Oracle8 L1 Parallel Server
Concepts & Administration

Release 8.0

November 14, 1997
Part No. A58238-01

ORACLE"

Enabling the Information Age™

Oracle8™ Parallel Server Concepts & Administration

Part No. A58238-01

Release 8.0

Copyright © 1997 Oracle Corporation. All Rights Reserved.

Primary Author: Rita Moran

Primary Contributors: Anjo Kolk, Graham Wood, Andrew Holdsworth

Contributors: Christina Anonuevo, Bill Bridge, Wilson Chan, Sandra Cheever, Carol Colrain, Mark
Coyle, Connie Dialeris, Karl Dias, Jeff Fischer, John Frazzini, Anurag Gupta, Deepak Gupta, Mike Hart-
stein, Ken Jacobs, Ashok Joshi, Jonathan Klein, Jan Klokkers, Boris Klots, Tirthankar Lahiri, Bill Lee, Lefty
Leverenz, Juan Loaiza, Sajjad Masud, Neil Machaughton, Ravi Mirchandaney, Kant Patel, Mark Porter,
Darryl Presley, Brian Quigley, Ann Rhee, Pat Ritto, Roger Sanders, Hari Sankar, Ekrem Soylemez, Vinay
Srihari, Alex Tsukerman, Tak Wang, Betty Wu

Graphic Designer: Valarie Moore

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are ‘restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate 111 (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8, Oracle Parallel Server, Oracle
Forms, Oracle TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Server Manager, Net8, PL/SQL,
and Pro*C are trademarks of Oracle Corporation, Redwood Shores, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Send Us Your Comments

Oracle8 Parallel Server Concepts & Administration, Release 8.0
Part No. A58238-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

infodev@us.oracle.com

FAX - 650-506-7228. Attn: Oracle8 Parallel Server
postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, 40P12

Redwood Shores, CA 94065

US.A.

If you would like a reply, please give your name, address, and telephone number below.

Contents

SENA US YOUI COMIMENES oottt oottt ettt ee et e et et e e e e e e e e eee e e e eneeeseienenes i
o =) =01 = T XXi
Part| Parallel Processing Fundamentals

1 Parallel Processing & Parallel Databases

What IS Parallel ProCeSSING?........oii ittt bbb 1-2
Parallel Processing DefiNed. ... 1-2
Problems of Parallel ProCeSSING.........ccciiiiiiiiiicieeie sttt re e 1-5
Characteristics of a Parallel SYSTEM ... 1-5
Parallel Processing for SMPS and MPPS..........cccoiiiiiese e 1-6
Parallel Processing for Integrated OPerations.............ccccvivieviesenesiesiesesieseeseeesie e e e e 1-6

What IS a Parallel Database?.........ccooiiiiiiiiiieeee e b 1-7

What Are the Key Elements of Parallel Processing?.......ccovviiiiiiiininsneeneesee e 1-8
Speedup and Scaleup: the Goals of Parallel Processingccccccvvvvevevieiicieiisiesesese e 1-8
Synchronization: A Critical SUCCESS FACLON..........ccciiiiiiiiii e 1-11
[0 Tod 17 o F OO TP PROPRTPPPRPUPPPRPON 1-13
Y [=TSTT= o 1T o TSSO 1-14

What Are the Benefits of Parallel Processing? ... 1-15
Enhanced Throughput: SCAIEUPcoiiiiiiiriiiie s 1-15
Improved ResSponse TimMe: SPEEAUPcvieiiiieiericiete et sttt st e e re e areas 1-16

What Are the Benefits of Parallel Database? ..o 1-16

Higher PErfOIMENCEcoviiiiiice bbb 1-16
Higher AVailabilitycooiiiiiii e sre s 1-16
Greater FIEXIDIIITYc.occvee et 1-17
IMIOTE UUSEIS ...ttt bt bt a e bt st b e et e bt e bt bt e e bt e Rt e s beeae e s b e e sbenbeenbenbeanbenbeenee 1-17
Is Parallel Server the Oracle Configuration YOU NEed?c.cccecvvivvvvierineneiesceeeeee e 1-17
Single Instance With EXCIUSIVE ACCESS.........cciiiiiieiiiie et ste e sre s 1-18
Multi-Instance Database SYSTEMcciiiiiiiiiiirese e 1-19
Distributed Database SYStEMccciieieiiceeeee st e e e e ane s 1-20
(O 1T o] =T Ve gV (=T o USSR 1-22
How Does Parallel EXECULION FIt IN?.......ooiiiiiiece e 1-23

2 Successfully Implementing Parallel Processing

The Four Levels of Scalability YOU N ...t 2-2
Scalability Of HAFAWANEcvciiiie et ne s 2-3
Scalability of Operating SYSTEM.........coi it 2-5
Scalability of Database Management SYSEMcocoiriiiiiiiini s 2-6
Scalability Of APPIICALION.........cci it 2-6

When Is Parallel Processing AdvantageOUS?..........ccccveieiierie it 2-7
Data Warehousing APPIICATIONS ..o e 2-7
Applications in Which Updated Data Blocks Do Not Overlapc..ccocevvevvvieieiviincnsniennnns 2-7
Failover and High AVailabilityccccoooiiiiii e 2-8
SUIMIMITY .ttt et b bbb R R r b e s e e st ettt e b n e nre s 2-8

When Is Parallel Processing NOt AdVantageouUS?..........cocveiviiieierieseseseseseesieessee e se e 2-9

Guidelines for Effective PartitioNing..........ccccooiiiiiiiicic et 2-10
OVEBIVIBW ...ttt ettt ettt et bttt s et eme e bt e b e bt eb e e b e nb e eb e be s eesb et e s et ene et e ebeabeebeneas 2-10
VErtical PartitiONinNgccccvoviiiiie et e e eneerenneanens 2-11
Horizontal PartitiONiNgccocoiiiiie ettt nre s 2-12

Common Misconceptions about Parallel Processing.........ccoceoveiienieninsiensence e 2-12

3 Parallel Hardware Architecture

OVBIVIBW ...ttt ettt et s et e st et e bt e bt e b e e Ee e be e bt e be s A eb et et neenbes s e st eneaneebeabesbesbenbenben 3-2
Parallel Processing Hardware Implementations............ccocvvvrienenieneieseresece e 3-2
APPHICAION PrOFIES ... et 3-3

vi

Required Hardware and Operating System SOFtWAre..........cccooeieieiiniciceeeeee e 3-3

High Speed INTEICONNECTc.oiiiiiiiiieci et 3-3
Globally Accessible Disk or Shared Disk SUDSYSEMccccevvieiinireiccee e 3-3
Shared MEMOIY SYSTEMIS........iiiii e te st e st e s ta et e eneenbeensesreenes 3-4
SHAred DISK SYSTEIMIS ..ottt bbbt bbbttt bt 3-6
Shared NOthiNG SYSTEMIScviiie s se s e re e eresresresrenes 3-8
Overview of Shared NOthing SYStEMSc.ocviiiiicec e 3-8
Massively Parallel SYSTEMS ..o 3-9
Summary: Shared NOthiNG SYSIEIMScvcvcicicec e 3-9
Shared Nothing /Shared Disk Combined SyStems...........cccocvieiiiiiiieeie e 3-10

Part Il Oracle Parallel Server Concepts

4 How Oracle Implements Parallel Processing

Enabling and Disabling Parallel SEIVEr ... 4-2
SYNCATONIZATION ...ttt bbb bbbt b et b et b ettt ettt 4-4
2] FoTot S Y= I o Tod {1 o USSP 4-4
oL YA =N =T o Tod 1] T SRS 4-4
SPACE MANAGEIMENT ...ttt ettt 4-5
System Change NUMDETcoiiiie et se e e e sresresresnenes 4-5
High PerfOrmance FEAUIES..........ciiieiciee ettt sttt et re e sneenreanes 4-6
Fast Commits, Group Commits, and Deferred WIIeS.........ccocovvieienineieieeeeeece e 4-6
Row Locking and Multiversion Read CONSISLENCYccccevivvereriererieniesiereeseeesiesesresesseseens 4-7
Online Backup and AFCRIVING ..ot 4-7
Sequence NUMDEE GENEIALOTSc.ciiiiiie ettt 4-7
(U o] oo T ST @4 NV I €T T 1=T = 1 o o S 4-7
FFEE LSS . ettt bbb bbb bbb et R et b b bbbt nae 4-8
FFEE LEST GrOUPS. ... ettt bbbk bbb bbbttt 4-8
[T ES] QAN i1 0T 2SS 4-9
Client-Side APPliCatioN FAIOVETccooiiiiiiiiie e 4-9
CACNE CONBIENCY ...ttt bbbt b et bt et b et bt e 4-10
Parallel Cache Management ISSUES..........coeiueieieiieieeesese s ere e s 4-10
NoN-PCM Cache Management ISSUES..........ccccveiiiiiie et 4-14

vii

5 Oracle Instance Architecture for the Parallel Server

OVEBIVIBW....c.i ettt sttt e et et e e tb e st e e ae e e beeaseshe e tesaeesbeste e teeteesbeesbesbeenbesbsenteaaeentesteeseeanens 5-2
Characteristics of OPS Multi-instance ArchiteCture ... 5-4
SYSEM GIODAI AFA.......ei ettt e et e ae e nte e sreanes 5-5
Background Processes and LCKN ... 5-5
Configuration Guidelines for Oracle Parallel SErver ... 5-7

6 Oracle Database Architecture for the Parallel Server

FITE STIUCTUIES ...t b e bbbkttt ettt et ne et s 6-2
100] a1 1 o] I 1 5 SO SUTO TP SOPR RPN 6-2
DALATIHIES ...ttt n bt e bbb e nae e 6-2
[T [38 o To T T 6-3

The Data DICLIONAINYccuvciicvice ettt sb et s b e e e s teesaeste e testa e beesaesbeeneenreenes 6-6

THE SEQUENCE GENETALONc.eiiviieiirieiise ittt et b et b bbbt b et b bbbt e st nnenes 6-6
The CREATE SEQUENCE StatemMeNtccciiiviiiiieiiece ettt ettt ne e sre v sresvaens 6-6
THE CACHE OPTION......iiiiiiiiie ittt b bt se bbbt b et ebe b b saen 6-7
THe ORDER OPTION ...ttt btttk 6-7

LR] o Uod S T=To o 1= o £ P 6-8
Rollback Segments on a Parallel SEIVET ... 6-8
Parameters Which Control Rollback SEgMENTS.........cccoeiiiiiiiiiiceeeee e 6-9
Public and Private ROIIbaCK SEGMENTScccovciiiiiiecere e 6-10
How Instances Acquire Rollback SEgMENTS ..o 6-11

7 Overview of Locking Mechanisms

Differentiating Oracle LOcking MeChaniSMS..........c.cccveiiiieiiiieie e 7-2
OVEBIVIBW ...ttt ettt sttt sttt et et e e te et e eab e e beeateebeeaeesheesbesbeesbeste e beeteebeeneesbeensenbeenns 7-2
[0 Tor= 1 I 1o o 2SS 7-3
1 1Y r= T (ot I Tod < S SPSSR 7-4
THE LCKIN PrOCESSESc.victieitectieitt ettt ettt ste st te et s e te st e e s e sbe et e sbeebeeaeesbeeneesteeseesbeeseestaestesraens 7-6
The LMON and LIMDO PrOCESSESc.eivirieriereirieriereeieesesesessessessessessessessessessesssssesssssssssssssesessens 7-7
(070153 i o) 0T RSP SSS 7-7
OraCle LOCK NAIMESottt et be et s te e s b e s ta e s te et b e s be et b e sbeesbesbeenbesbeetesaeesteanees 7-8
(0Tl S AN U g L= o - | RSP 7-8
08\ I Tod T A =T -SSR 7-9

viii

NON-PCM LOCK NAMESuviiiitiie ettt ettt e bt s eba e e s sab e e s s ba e s sbae e s sbbeesssbeeeaans 7-10

Coordination of Locking Mechanisms by the Integrated DLMccccoviniininiinccnnn 7-12
The Integrated DLM Tracks LOCK MOAESc.covvviiiiiiiiiiine e 7-12
The Instance Maps Database Resources to Integrated DLM ReSOUICES.........cccccovverennene. 7-13
How IDLM Locks and Instance LOCKS Relate ..o 7-13
The Integrated DLM Provides One Lock Per Instance on a Resource...........cccceevvevivennnne. 7-15

8 Integrated Distributed Lock Manager: Access to Resources

What Is the Integrated Distributed LOCK Manager?ccoovvivveviereieseieieiesesesesessse e 8-2
The Integrated DLM Grants and Converts Resource Lock Requests............cccocveiininncnenn 8-2
LOCK ReqUESES AFe QUEUEToiieiieiiiiteiist ettt e bbbttt 8-2
Asynchronous Traps (ASTs) Communicate Lock Request Status.........c.cccoevvevvivrvvenenennene 8-3
Persistent Resources Ensure EffiCient RECOVENYcccoviiiiieiiiicce e 8-3
Lock Requests Are Converted and Granted..........coevriiriiniinienesiesese s 8-3
Integrated DLM Lock Modes: Resource Access RIghts ... 8-6
INtegrated DLIM FEATUIESccv ottt et ste e ste e teaaesreesaenreens 8-9
DistribUted AFCRITECTUIE.......cui it ettt be e s 8-9
FAUIT TOIBIANCE......eiitiecece bbb bbbttt sttt 8-9
(o 08 1|V -1 (=]] T OSSPSR 8-10
[DCT: o | (ool g B L] (=i A o] o JHO RSSO PSP 8-11
-1 o] oo T ST @ NV A €T T 1=T =1 1 o 1SS 8-11
GroupP-0OWNEA LOCKS......ccuiiiiiiiieie ettt sre s 8-11
PEISISTENT RESOUICESccuiiiitieieiie sttt sttt sttt ettt ettt sbeste st et st et et e e et eneeseeneeneebeneenee 8-11
V1= g oT A = {=To [U T (=T g =] £SO 8-11
SUPPOIt FOFr MTS AN XA ...ttt et b bbb 8-12
Views to Monitor Integrated DLM SEatiStiCS.........coviireiiniiiniiseseseeese e 8-13

9 Parallel Cache Management Instance Locks

PCM Locks and HOW They WOTKccoiiiiiiiiiee e 9-2
WAt PCIM LOCKS Aottt ettt st st et e s e e neene s e snesne e s 9-3
Allocation and Release 0f PCIM LOCKS..........ccccciiiiiicicscce sttt 9-3
HOW PCM LOCKS WOTKcviitiiiiecie ettt ettt sttt st et et eeba e beenrenneenes 9-4
Number of BIOCKS Per PCM LOCK........cciiiiiiierieicieieiese et 9-7
Pinging: Signaling the Need to UPdate............coooiiiiiiiiiiiiii e 9-9
Lock Mode and BUTFEr StAte........cccooiiiiiiii e 9-10

10

11

How Initialization Parameters Control Blocks and PCM LOCKScccceevviiiiiiie e 9-13

GC_* INitialization PAFAMELETScoi it ene e 9-13
HanNdling Data BIOCKSc.coiiiiiiiiiieie ettt sttt naene e snennens 9-14
Two Methods of PCM Locking: Fixed and Releasable...........c.ccccoovveiiiiiiii e 9-15
Integrated DLM Lock Elements and PCM LOCKS..........cccoiiiiiiiiiiiecccseeis 9-15
Number of BIOCKS PEr PCM LOCKcciiuirieieieieieesie sttt e a e snesnens 9-16
Fine Grain Locking: Locks for One or More BIOCKS...........cccooveieiieiiii e 9-18
How Fine Grain LOCKING WOTKS..........ooiiiiiiiiee e 9-19
Performance Effects of Releasable LOCKINGcccooviviiiiiiiinin e 9-20
Applying Fine Grain and Hashed Locking to Different Files ... 9-21
How Locks Are AsSigned t0 BIOCKS ...t 9-21
[T (o 0Tl 1V, =T o] o 1 T SR 9-22
Number of LOCKS Per BIOCK CIaSScoiiiiiiieiiiec e 9-23
LOCK EIEMENT NUIMDET ...ttt ettt resnesne s 9-23
Examples: Mapping BIOCKS t0 PCIM LOCKSccccoviieieieicese e 9-24
Setting GC_FILES_ TO _LOCKS ..ottt sttt et et eneneene e 9-24
More Sample Hashed Settings of GC_FILES TO_LOCKS........cccoceiiiiieneneeeieeeeneeae 9-26
Sample Fine Grain Setting of GC_FILES TO _LOCKS........ccccooiviiiiie e 9-28
Non-PCM Instance Locks
OVBIVIBW ...ttt ettt btk b etk bbb bbbt e bbb st e b et e bt e bt ekt e ket b et et st be b b nn e 10-2
TranSaCtionN LOCKS (TX) ...uiiiiiiiiciieie sttt sttt ettt e e st e enbesaeenaesreesaesnaestesnaeseenneens 10-3
TADIE LOCKS (TIM)..oe ittt etk b et b et eb e bt b e b ene e 10-3
System Change NUMDBDET (SC)....cccviiiiieiirieee et e e re e e 10-4
Library Cache LOCKS (NJA-Z]) ..ottt s et sne 10-4
Dictionary Cache LOCKS (QLA-Z]) ...cuieiiiiitiiiteiet ettt 10-5
Database MouNt LOCK (DIM)c.vcviiiiie ettt st st se e enasresnennens 10-5
Space Management and Free List Groups

How Oracle HanNdIes FIree SPACE........coiviiiiiiiiree ettt s e e enens 11-2
OVEBIVIBW ...ttt bbb bbb et s et h e e b e b e bt b e e bt b eh bt b eb et e b et e st eb e ebeebeebentas 11-2
Database StOrage SIFUCTUIES. ..ottt 11-3
Structures for Managing Fre SPACEcccvvviereireeieeeeee e re e 11-4
EXAMPIE: Free LIS GIOUPScveiiiiieieeieieee ettt sttt st sttt ene s 11-8

SQL Options for Managing Free SPace.........cocoeeeiiiiiiiiiisere e 11-11

Managing Free Space on Multiple INStANCES ... 11-12
Partitioning Free Space into Multiple Free ListS.......ccccoooiiiiviiieninnin v 11-12
Partitioning Data With Free LISt GrOUPScccoeiiiiiiireicsiese e 11-12
How Free Lists and Free List Groups Are Assigned to INStancCes..........ccoceovveereiinennne, 11-13

Free Lists Associated with Instances, Users, and LOCKS...........ccococerninninnieneieneie e 11-14
Associating INstances With Free LSS ... 11-14
Associating User Processes With Free LiStS ... 11-15
Associating PCM Locks With Free LiStS ... 11-15

Controlling the Allocation Of EXTENTS.........ccoi e 11-16
Automatic Allocation Of NEW EXTENTS........cccoi i 11-17
Pre-allocation Of NEW EXEENTScoviiiiiiiiiee sttt 11-17
Dynamic Allocation of Blocks on LOCK BOUNANIESccceevveiviiesieiesee e 11-17

12 Application Analysis

How Detailed Must YOUr ANAlYSiS BE?ccocviiiiciiiiciceee et 12-2
Understanding Your Application Profile ... 12-3
Analyzing Application Functions and Table Access Patterns..........cccocceevevvevvecneeniesnsennnn, 12-3
R eT= Vo o]])Y IF- 1] 1= ST 12-3
Random SELECT and UPDATE TabIESccoiiieiiieie e 12-4
INSERT, UPDATE, or DELETE TabIes. ... 12-4
Planning the IMpPIemMEentation ... e 12-5
Partitioning GUIEIINES ..o 12-6
OVEIVIBW ...ttt bbbt b bbbkt b bbb st bbbttt et e 12-6
APPLICAtION PartitiONiNgcoioiiiieiiiie ettt sbe s 12-6
Data PartitiONiNg......ccoeiiieiiteiete ettt ettt r e 12-7

Part Il OPS System Development Procedures

13 Designing a Database for Parallel Server

OVEIVIBW ...ttt ettt e st e et e e b e e st e e be e teehe e beeheesbeeheesbe et eesteesbesbeenbeebeentesaeenbeaneesteaneas 13-2
Case Study: From First-Cut Database Design to OPS ... 13-2
“Eddie Bean” Catalog SAlES ..o 13-3
LI Lo 1= OSSOSO PSSR 13-3

Xi

14

15

Xii

APPHCATION Profile. ... e 13-4
ANalyze ACCESS 10 TaBIES....c.voiiecee s 13-4
Table Access ANalySiS WOIKSNEELccvcviiiie e 13-5
Case Study: Table ACCESS ANAIYSISccciiiiieii e 13-9
Analyze Transaction VoIUME DY USEIS ... 13-10
Transaction Volume Analysis WOIKSNEEL...........cccoviiiiiii e 13-10
Case Study: Transaction Volume ANalYSIS ..o 13-11
Partition USErS and Data...........ccouviiiiiiiiiiieinee ettt nes 13-14
Case Study: Initial Partitioning Plan ... 13-14
Case Study: Further Partitioning PIaNS ... 13-15
PartitionN TNAEXEScviieiiieeiesiee bbb bbbttt bbbt nes 13-17
Implement Hashed or Fine Grain LOCKINGcccooiiiiiiiiiiiicn s 13-17
Implement and TUNE YOUF DESIGN......cccciiiiiiiieiieese e 13-18
Creating a Database & Objects for Multiple Instances
Creating a Database for a Multi-instance ENVIroNmMent..........cc.cooveiieniensensienee e 14-2
SUMMATY OF TASKSveeeeceicece ettt st sn et e e e e eneeneaneenenns 14-2
Setting Initialization Parameters for Database Creation............cccoccevevievvsicce s, 14-2
Creating a Database and Starting U ... 14-3
Setting CREATE DATABASE OPLIONS......ccco it nns 14-4
Creating Database Objects to Support Multiple INStanCes...........ccoceveveiereieiccee 14-5
Creating Additional RoOIback SEgMENTS ..ot 14-5
Configuring the Online Redo Log for a Parallel Server ..., 14-8
Providing Locks for Added Datafiles..........ccccoviveiiiii i 14-10
Changing the Value of CREATE DATABASE OPLIONS ..ot 14-10
Allocating PCM Instance Locks

PIanning YOUT PCIM LOCKScoiiiiiiiiiece b 15-2
Planning and Maintaining INStanCe LOCKS..........cccciiviiiiiieiernse e 15-2
Key to AHOCAtING PCM LOCKScoiiiiieiiee sttt st sne e 15-2
Examining Your Datafiles and Data BIOCKS...........cc.ccoiiiiiiiiiieieeese e 15-3
Using Worksheets to Analyze PCM LOCK NEEAS...........ccovviireieiinene e 15-4
Mapping Hashed PCM Locks to Data BIOCKS.............ccooiiiiiiiiiiieeeceeeee e 15-5
Partitioning PCM L0OCKS AMONG INSTANCESccoeiiiiirieiieisieese et 15-6

16

Setting GC_FILES TO_LOCKS: PCM Locks for Each Datafileccccovvvveiviienv e,
GC_FILES TO_LOCKS SYNTAX...c0iititiieriieiisiesisiesesieesiesissesissessesessesessessssessssessssessesessesessesessens
D =T 0T T g o] =TSSP
Releasable LOCK EXAMPIE ..o
GUIAETINES ...ttt ettt st b e bbb et e et et e st e s e e neeneebesne e

Tips for Setting GC_FILES TO _LOCKS ..ot ane s
Providing ROOM fOr GrOWLENcoiiiii et
Checking for Valid NUMDBEr OF LOCKS.........ccciiiiriiiiiiiiesestse s
Checking for Valid LOCK ASSIGNMENTSccciveieieieeir e
Setting Tablespaces to REAd-0NIYcccoiiiiiiii e
Checking File Validityccooiiiiiii s
Adding Datafiles Without Changing Parameter ValUesccocvevvivvierencneieneceeeeens

Setting Other GC_* PAraQMELEIScccccieiiieee ettt e et ta e besre b e ene e
Setting GC_RELEASABLE LOCKS........ccoi it
Setting GC_ROLLBACK _LOCKS ..ottt

TUNING YOUF PCIM LOCKS.... .ottt ettt sttt et eaneetesaeestesneestesnaenteannens
HOW t0 Detect FalSe PINGING. ..o
How Long Does a PCM Lock CoONVErSion TaKE?.......cccveiviviireresesnseseesiesieseeseesesesneanens
Which Sessions Are Waiting for PCM Lock Conversions to Complete? ..o
What Is the Total Number of PCM Locks and Resources Needed?..........cccooeveiniennnnnns

Ensuring IDLM Capacity for All Resources & Locks

OVEIVIBW ..ttt st b ettt s e e st e s e E e Rt eb e e bt e Ee e b e s be e b s e et et e et enseneeseaseebenbenbeanens
Planning IDLIM Capacityccccvcieiiiieiiiisesisie e stesesee e e sse s e st sae st sae e e saesaessesessessessessenes
Avoiding Dynamic Allocation of Resources and LOCKScccccvveveiieiiiicnc e,
Computing Lock and RESOUICE NEEUS..........ccuruiiriiiiirieeeee e
Monitoring Resource UtIlIZatioN ...
Calculating the Number of NON-PCIM RESOUICEScccecvueiiiiieieeieseeie st eie s esve e e sre e
Calculating the Number of NON-PCM LOCKScccriiiiiriiiiiieseseseee s
Adjusting Oracle Initialization Parameters..........cccccivviviiiiiie s
Minimizing Table Locks to Optimize Performance..........cccooeiinenene e
Setting DIML_LOCKS t0 ZEIOcueiiiiiiiirieiinieiisieisie ettt
Disabling Table LOCKSc.vcviieiieiesis sttt sttt e e enaereanennenes

xii

17

Xiv

Using Free List Groups to Partition Data
OVBIVIBW ...ttt ettt et s e s e s e e bt eh e e b e e Rt e bt e b e eE e s b e be e ne et e st et eneeneebeabeabeebenreee 17-2
Deciding How to Partition Free Space for Database ObjJects.........cccccovvieriviencrcrcieciecieseinns 17-2
Database ODbject CharaCteriStiCS.........cuuiuiiiiiiiiieeiiee et ere s 17-3
Free SPace WOTKSNEET ..o e 17-5
Setting FREELISTS and FREELIST GROUPS in the CREATE Statementcc.ccccveveene. 17-6
FREELISTS OPLION....coiiiiiiiieiete ettt sttt sttt sttt sttt st b e b re e 17-6
FREELIST GROUPS OPLION ...ttt 17-6
Creating Free LiStS FOr CIUSTEIS ..ottt nns 17-7
Creating Free LisSts FOr INUEXEScviiiiieiieicree sttt sre s 17-7
Associating Instances, Users, and Locks with Free LiSt Groupsccccoevniinnineinecinnenns 17-9
Associating Instances With Free LiSt GrOUPS........ccocveiiiiisinsie s 17-9
Associating User Processes With Free LiSt GroUPS........cccveieiinenenene e 17-9
Associating PCM Locks With Free LiSt GrOUPS..........coovieriiiiniinececseeeseeseseesees 17-10
Pre-allocating EXtents (OPtioNal)........ccccooi i ene s 17-10
The ALLOCATE EXTENT OPLION ...eciiiiicie ettt ettt 17-10
Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters.........cc.cocoeeevvnernieeene. 17-11
Setting the INSTANCE_NUMBER Parameterccccccoeiiiiiiieninsnsnseseseseseeseeseeseseeneas 17-12
Examples of Extent Pre-alloCation............ccociiiiiiiiiiieee e 17-12
Dynamically AHOCAtING EXLENTS......cociiiiiiieiieiiie et 17-14
Translation of Block Database Address to LOCK Name.........ccccoeviveiiinnienne e 17-14
Iblocks with ALLOCATE EXTENT SYNTAX.....cciiiiiiiriiiiiisensesise s nes 17-14
Identifying and Deallocating UnNuUSed SPACE...........ccoeiiieiiiinineninie e 17-15
How to Determing UNUSEA SPACEccueiverveieieeeeceseseste ettt saenasnessenseens 17-15
Deallocating UNUSEA SPACE.........cii ittt et 17-15
Space Freed by Deletions Or UPAtESccociiiiiiiiiieiieenee e 17-15

Part IV OPS System Maintenance Procedures

18

19

Administering Multiple Instances

OVEIVIBW ...ttt ettt st b et et e s et e st e s e R e Rt eb e e bt e bt e b e e be e b st et e b e st enseneeseaneebeebenbeanens 18-2
Oracle Parallel SErver ManagemeENt..........ccccvvuiieierieeeieies e ene e sneanens 18-2
Defining Multiple Instances with Parameter Files ... 18-3
Using a Common Parameter File for Multiple INStances ... 18-3
Using Individual Parameter Files for Multiple INStances..........ccococvvvereierciccisece e 18-4
Embedding a Parameter File USING IFILEccooi i 18-4
Specifying a Non-default Parameter File with PFILEcccooiiiiiiiiiiee 18-7
Setting Initialization Parameters for the Parallel Serverccccoviviviii e 18-8
GC_* Global Constant Parameters..........cccciciieieiieiesi et e et sne s 18-8
Parameter Notes for Multiple INSTANCES...........coviiiiiiiie s 18-8
Parameters Which Must Be Identical on Multiple INStancesccccvvvvvvevcvcicieccvennn, 18-10
SEtING LIM_* PAramMEErS.....c.coiiiie ettt ettt sttt te et te et enraenbeene e 18-11
Creating Database Objects for Multiple INStaNCeScccoeiriiiiiincinee e 18-11
] U o T T o TN H g ES] 7 U g (o= RS 18-12
Enabling Parallel Server and Starting INStanCesccccoevveieie e 18-12
Starting up with Parallel Server Disabled...........coccoviiiiiiiis 18-13
Starting Up iN Shared MOGEccoeiiieiecccece e 18-14
SPECITYING INSTANCESoviiicieee bbbt bbb ettt et be e 18-16
Differentiating Between Current and Default INStance ... 18-16
How SQL Statements APPIY t0 INSLANCEScccvcieeieeecieese e 18-17
How Server Manager Commands AppPlY 10 INSTANCESccoeviiiiiie i 18-17
Using Group Membership SEIVICESccoviiiiiiiiieee et 18-21
SPECITYING INSTANCE GrOUPS ..o.veiviieieiieierierieieee ettt sae et sa s ese e e e eneerenne e 18-22
Using a Password File to Authenticate Users on Multiple Instances...........cccccoceoeeeeene. 18-25
SHUTEING DOWN TNSTANCESccviiiiiietiieeii sttt ettt bbbt b et b et b e e b e b 18-26
Limiting Instances for the Parallel QUENY..........cc.cvov i 18-27

Tuning the System to Optimize Performance

GeNEral GUITEIINES ..ot 19-2
OVEIVIBW....cot bbb bbb bR bbbttt 19-2
Keep Statistics fOr All INSTANCES.coiiiriiiieiieie et 19-2

XV

20

21

XVi

STALISTICS TO KB ...t b bbb bbbttt b b e 19-2

Change One Parameter at 8 TIMIE.......oociiiiiiiee et 19-3
100] 01 (=] 01 1] o HS OO OO OSSOSO T ST 19-3
Detecting LOCK CONVEISIONScc.oiiiiiecieiiee sttt ettt e e ae st ebesne e 19-3
Pinpointing Lock Contention within an Application ... 19-5
Tuning for High Availability ... 19-8
DELECTION OF EXTON ...ttt b e bbbttt b bbb 19-8
Recovery and Re-mastering of IDLM LOCKS.........cccoeoiiiiiiiiiiieeeeee e 19-8
Recovery Of Failed INSTANCE.........cocvie e ere e 19-8
Monitoring Views & Tuning a Parallel Server
Monitoring Data Dictionary Views with CATPARR.SQL........cccccvivvivviniine e eeeesnanens 20-2
Monitoring Dynamic Performance VIBWS ..ot 20-3
Global Dynamic Performance VIBWS.........coceiiieiiiiieieie et 20-3
TRE VS VIBWS ...ttt bbb bbbttt enes 20-4
Querying VSLOCK_ACTIVITY to Monitor Instance LOCK ACtIVILYcccccoveivveiencienennnn, 20-6
ANalyzing VELOCK _ACTIVITY .ottt 20-6
Monitoring and TunNiNg LOCK ACHIVILYcoeoveieicccece e 20-7
Querying the VSPING View to DeteCt PINGING ..o i 20-9
Querying VSCLASS_PING, VS$FILE_PING, and V3BH ... 20-10
Querying the VSWAITSTAT View to Monitor Contentionccccoceevenvensieneienenenenenens 20-11
Monitoring Contention for BIOCKS iN Free LiStScccvvviiiiiiiie i 20-11
Monitoring Contention for Rollback SEgMENTS..........cccviiiiiiiii s 20-12
Querying VSFILESTAT and V$DATAFILE to Monitor 1/O ACtiVitycccoceeveienvineninnnn, 20-13
Querying and Interpreting VSSESSTAT and V$SYSSTAT StatistiCS........cocevervvvvieiernriinenns 20-14
Backing Up the Database
Choosing a Backup MEethod..........cooiiiiiiie e 21-2
Archiving the Redo LOG FIlESo.oiiiiiiie s 21-2
ATFCRIVING IMOAE ...ttt e e e s e ene e e ereerenrens 21-3
Automatic or Manual ArchiVing ... e 21-3
Archive File Format and DestiNatioN...........cccoooiiiiiiiiisise e 21-5
Redo Log History in the Control File.........ccii s 21-6
Backing U the ArChIVE LOGSoouiiiiiiiiee et e 21-7
Checkpoints and LOG SWITCNESccciiiiiiiiie e 21-8

22

CRECKPIOINTS ... bbbttt b bbbt e et b e bt et eb et b sbe s 21-8

LLOG SWITCNES ...ttt bbbt bkt ne ekt e et r et b et b et ar e 21-9
When Checkpoints Occur Automaticallycoeveveviiieic e 21-9
FOrcing @ CheCKPOINT ..o e 21-10
FOrcing @ LOg SWITCNoviiiiiicc bbb 21-10
Forcing a Log Switch on a Closed Threadccccoveveeiieiicienn s 21-11
Backing Up the Database ..o 21-12
Open and Closed Database BaCKUPSccociriiriiiiciiesese s 21-12
Recovery Manager BaCKUP ISSUES.......c..ciiiiierieeieeceee ettt sne e 21-13
Operating SysStem BaCKUP ISSUEScc.ooiiiiieiiiiieinee s 21-14
Recovering the Database
L@ Y= YT USSR 22-2
Client-side APPlIcation FAITOVETcccoiiiiiiiii s 22-2
What Is Application FailOVEr? ... 22-2
How to Configure Application FAIOVEN ..o 22-4
Planned Shutdown and Dynamic Load BalanCing............ccccecreiiiniiniinenecneseeens 22-8
R oo T LI U] [0)V /=T gl o] o SRS 22-9
Tuning Failover PErfOrMAaNCEoovi ittt 22-10
FaIlOVEr RESTIICHIONSouiiiiicte ettt sttt ne e 22-10
Recovery from INStanCe FAIUIEc.cv v 22-11
SINGIE-NOAE FAIIUIE......coii e ettt esre e sreenees 22-11
MUItIPIE-NOAE FAIIUIE ... 22-12
Incremental ChecKPOINTiNG.......cc.ooviii e 22-12
Access to Datafiles for INStanCce RECOVEIYccocvciiiiiii et 22-13
Freezing the Database for INStanCce RECOVETYccvreiiiiiiinieiicesee e 22-13
Phases of Oracle INStanCe RECOVEIYcccviiiiieicieiceees et 22-14
Recovery from Media Failure. ... 22-15
Complete Media RECOVETYcoiiiiiiiiiitie ettt 22-16
INcomplete Media RECOVENYcocviiiiiiie sttt s na e e ne e 22-17
Restoring and Recovering Redo LOG FileS ... 22-18
DiSASTEN RECOVETY ...ttt ettt bbbt 22-19
PArallel RECOVEIYooieie ettt s et e e et e e e e e eneeneeneanenrn 22-23
Parallel Recovery Using RECOVENY MaNAQENccceciveiieiieiieeieseesiesieesieseesesae st sae e 22-23
Parallel Recovery Using Operating System ULIITIes. ..o 22-23

XVii

23 Migrating from Single Instance to Parallel Server

OVBIVIBW ...ttt ettt et s e s e s e e bt eh e e b e e Rt e bt e b e eE e s b e be e ne et e st et eneeneebeabeabeebenreee 23-2
(D 1-Tod Lo [T To IR (0 N O0] o 1V =T o TR 23-2
REASONS TO CONMVEIT......eeiiiiietiet ettt b bbb sr e s bt e e be et sbeennesbeennenreen 23-2
REASONS NOT 10 CONVEIT ...ttt bbbt et be et e et sieesbesreen 23-2
Preparing 10 CONVEITcvciiiie ettt et e et e e e enaeneeneanearenrs 23-3
Hardware and Software REQUITEMENTS ..o 23-3
Converting the Application from Single- to Multi-instance.............ccccoooiiiiiiiiciieene 23-3
AAMINISTFALIVE ISSUES.....c.eiviiiiiiiieiiitese ettt neens 23-3
Converting the Database from Single- to Multi-instance............cccoocovvviviic v 23-4
Troubleshooting the CONVEISION ..ottt 23-9
Database Recovery After CONVEISIONccocveiieieesiese s e e ee e e e snens 23-9
Loss of Rollback Segment TabIESPACE.ccuviiiiiiiiiiire e 23-9
Inadvisable NFS Mounting of Parameter File ... 23-9

PartV Reference

Differences Between Release 8.0.3 and Release 8.0.4........cccoviiiiiiineneie e A-2
New INitialization Parameters ... e A-2
Obsolete INitialization Parameters ..o A-2
Dynamic PerfOrManCe VIBWS.ccoouiiiiiiiieiieie ettt A-2
Group Membership SEIVICES.......cuiii it e sre s A-2

Differences Between Release 7.3 and Release 8.0.3 ... A-3
New Initialization Parameters ...t s sre s A-3
(00 1Y0] 1] (N G Ol T = g 4 [-1 (] S A-3
Changed GC _* ParameterS........ccoiiiie ettt sttt st te st e tearaesbeeneesteeneenreenes A-3
Dynamic PerforManCe VIBWS........ccoouiiiieiiiiieie ettt A-4
Global Dynamic Performance VIBWS........ccccieiiieieiecieesie st se e e e e sne s A-4
Integrated Distributed LOCK MaNAJETcccooiviiiiiec ettt ste e A-4
INSTANCE GIOUPS ..otttk h e e r e ettt et eenenr et nne A-4
Group MembErship SEIVICES........cviii it eenesrenne s A-5
T [€] = 1] o T oot {1 o PSSR A-5
Client-side APpPliCatioN FAIIOVEcoiiiiiiiiice s A-5
RECOVENY IMANAGETeiiiiiiiieitie ettt ettt bttt e st et e s b e e bt e s bt e e beesbbeenbeenaneennes A-5

Differences Between Release 7.2 and Release 7.3.......coiiiiiiiieee e A-6
INILIAlIZAtION PAFAMELEIS.ottt et e e sbe e ste e resbaesaesreens A-6

XViii

Data DICLIONAIY VIBWScciiiiii ettt ettt te et s te e te s e e sbesta e beensesbeensenaeanes A-6

Dynamic PerformManCe VIBWScocoiiiiiiiiiiiiiiiesie ettt A-6
eI Y A T o 11 o 1SS A-6
FINE Grain LOCKINGcoiiiieicecs sttt sae et ste e s te e e teenaesreens A-6
INSTANCE REGISIIATIONcviiiiiieiicie bbbttt sne e A-7
Yo]l 0] o1 o A VZ=T 0 =T o1 TS A-7
XA Performance IMPIOVEMENTS ..ottt re e A-8
XA ReECOVETY ENNANCEMENTSocuiiiiiiiti ettt A-8
Deferred TranSaction RECOVEIYcccviiiiiiiieriericieeeiese et e sttt sae e e e e e e e ere e snesresrenes A-9
Load Balancing at CONNECT..........cccviieiiiiecie ettt besaeesre e e nreannes A-10
Bypassing Cache for SOt OPErationsS ..ot A-10
Delayed-Logging BIOCK ClEANOULcccevereiicicieece s A-11
Parallel Query Processor AfFINILY ... A-11
Differences Between Release 7.1 and Release 7.2 ... A-13
Pre-allocating SPace UNNECESSANYccueiieiuerierieieieeeesesesrsstesieseessesaeseessessesesssessesessessessessenes A-13
Data DICLIONAIY VIBWSoiiiii ettt ettt sttt te e te e s te e e be et esteebesnsenaeeneesreanees A-13
Dynamic PerformManCe VIBWScociicirieiiieisieisie sttt sttt ene e A-13
eI ISy A 1 o 11 o 1SS A-13
TADIE LOCKS ...ttt bbb bbb bbbttt ettt b e A-13
LLOCK PrOCESSES. ... viuteiieiieieetieiee ettt sttt sttt s etttk ettt b e st e ee s b e be et e seene e st et eneebe et e sbesbeneas A-14
Differences Between Release 7.0 and Release 7.1 ... A-14
INITIAlIZAtION PAraMETEIS.c.eiiiii i et eb e sne A-14
Dynamic PerformManCe VIBWSccciiiirieiiieiiteisie sttt ettt sne e A-14
Differences Between Version 6 and Release 7.0 ... A-14
Version ComPatiDIlITy ..o A-14
FIlE OPBIALIONS ...ttt b bbbkttt e A-14
Deferred ROIDACK SEQMENTSviiiiiiiiiie e re e ene e A-16
=T [0 TN 1o T PSSR A-16
FIEE SPACE LISTS.....iiitiiieiiectiet et b bbbttt A-17
SQLFDBA ...t R bR bRt bbbt bt ne e A-17
INITIAlIZAtION PAramMETEIS.ot ettt sb e sre A-18
ATCINIVING ot b et bt bt bttt b ekt b bt bbb e bt b e n e ne e A-18
Y [=To TN =T ol o YT o OSSP A-19
COMPATTDITITY ... bbbttt ettt ebe bbb B-2
The Export and IMpPort UTIIITIES ... B-2

Xix

XX

Compatibility Between Shared and EXclusive MOESccocviriiiienineiiccee e

Restrictions

Maximum Number of Blocks Allocated at @ TIMEccevveiiiiiiece e
ReStrictions iN SNAr@A MOGEc.veiiiii et ete e sbae s

Preface

This manual describes the Oracle8 Parallel Server and supplements Oracle8 Admin-
istrator’s Guide and Oracle8 Concepts.

This manual prepares you to successfully implement parallel processing by provid-
ing a thorough presentation of the concepts and procedures involved. Information
in this manual applies to the Oracle8 Parallel Server running on all operating sys-
tems.

Note: Oracle8 Parallel Server Concepts and Administration contains information that
describes the features and functionality of the Oracle8 and the Oracle8 Enterprise
Edition products. Oracle8 and Oracle8 Enterprise Edition have the same basic fea-
tures. However, several advanced features are available only with the Enterprise
Edition, and some of these are optional. For example, to use application failover,
you must have the Enterprise Edition and the Parallel Server Option.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, please refer to Get-
ting to Know Oracle8 and the Oracle8 Enterprise Edition.

Intended Audience

This manual is written for database administrators and application developers who
work with a parallel server.

XXi

Structure

XXii

Part |: Parallel Processing Fundamentals

Chapter 1: Parallel Processing & Paral-
lel Databases

Chapter 2: Successfully Implementing
Parallel Processing

Chapter 3: Parallel Hardware Architec-
ture

This chapter introduces parallel process-
ing and parallel database technologies,
which offer great advantages for online
transaction processing and decision sup-
port applications.

This chapter explains how to attain the

goals of speedup and scaleup, by effec-

tively implementing parallel processing
and parallel database technology.

This chapter describes the range of avail-
able hardware implementations which
allow parallel processing, and surveys
their advantages and disadvantages.

Part Il: Oracle Parallel Server Concepts

Chapter 4: How Oracle Implements
Parallel Processing

Chapter 5: Oracle Instance Architec-
ture for the Parallel Server

Chapter 6: Oracle Database Architec-
ture for the Parallel Server

Chapter 7: Overview of Locking Mech-
anisms

Chapter 8: Integrated Distributed
Lock Manager: Access to Resources

This chapter gives a high-level view of
how the Oracle Parallel Server provides
high performance parallel processing.

This chapter explains features of Oracle
multi-instance architecture which differ
from an Oracle server in exclusive mode.

This chapter describes features of Oracle
database architecture that pertain to the
multiple instances of a parallel server.

This chapter provides an overview of
internal Oracle Parallel Server locking
mechanisms.

This chapter explains the role of the Inte-
grated Distributed Lock Manager in con-
trolling access to resources in a parallel
server.

Chapter 9: Parallel Cache Manage-
ment Instance Locks

Chapter 10: Non-PCM Instance Locks

Chapter 11: Space Management and
Free List Groups

Chapter 12: Application Analysis

This chapter provides a conceptual over-
view of PCM locks. The planning and
allocation of PCM locks is one of the
most complex tasks facing the Oracle Par-
allel Server database administrator.

This chapter describes some of the most
common non-PCM instance locks.

This chapter explains space management
concepts.

This chapter provides a conceptual
framework for optimizing OPS applica-
tion design.

Part Ill: OPS System Development Procedures

Chapter 13: Designing a Database for
Parallel Server

Chapter 14: Creating a Database &
Obijects for Multiple Instances

Chapter 15: Allocating PCM Instance
Locks

Chapter 16: Ensuring IDLM Capacity
for All Resources & Locks

Chapter 17: Using Free List Groups to
Partition Data

This chapter prescribes a general method-
ology for designing systems optimized
for the Oracle Parallel Server.

This chapter describes aspects of data-
base creation that are specific to a parallel
server.

This chapter explains how to allocate
PCM locks to datafiles by specifying val-
ues for parameters in the initialization
file of an instance.

This chapter explains how to reduce con-
tention for shared resources and gain
maximum performance from the parallel
server by ensuring that adequate space is
available in the Integrated Distributed
Lock Manager for all the necessary locks
and resources.

This chapter explains how to allocate free
lists and free list groups to partition data.
By doing this you can minimize conten-
tion for free space when using multiple
instances.

XXili

XXiV

Part IV: OPS System Maintenance Procedures

Chapter 18: Administering Multiple
Instances

Chapter 19: Tuning the System to Opti-
mize Performance

Chapter 20: Monitoring Views & Tun-
ing a Parallel Server

Chapter 21: Backing Up the Database

Chapter 22: Recovering the Database

Chapter 23: Migrating from Single
Instance to Parallel Server

Part V: Reference

Appendix A: Differences from Previ-
ous Versions

Appendix B: Restrictions

This chapter describes how to administer
instances of a parallel server.

This chapter provides an overview of tun-
ing issues.

This chapter describes how to monitor
performance of a parallel server by que-
rying data dictionary views and dynamic
performance views. It also explains how
to tune a parallel server.

This chapter explains how to protect
your data by archiving the online redo
log files and periodically backing up the
datafiles, the control file for your data-
base, and the parameter files for your
instances.

This chapter describes Oracle recovery
features on a parallel server.

This chapter describes database conver-
sion from a single instance Oracle8 data-
base to a multi-instance Oracle8 database
using the parallel server option.

This appendix describes the differences
between this release and previous
releases of the Parallel Server Option.

This appendix lists restrictions for the
parallel server.

Related Documents

This manual assumes you have already read Oracle8 Concepts and Oracle8 Adminis-
trator’s Guide.

Conventions
This section explains the conventions used in this manual including the following:
« text
« syntax diagrams and notation

« code examples

Text
This section explains the conventions used within the text:

UPPERCASE Characters

Uppercase text is used to call attention to command keywords, object names,
parameters, filenames, and so on.

For example, “If you create a private rollback segment, the name must be included
in the ROLLBACK_SEGMENTS parameter of the parameter file.”

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation

The syntax diagrams and notation in this manual show the syntax for SQL com-
mands, functions, hints, and other elements. This section tells you how to read syn-
tax diagrams and examples and write SQL statements based on them.

Keywords

Keywords are words that have special meanings in the SQL language. In the syntax
diagrams in this manual, keywords appear in uppercase. You must use keywords
in your SQL statements exactly as they appear in the syntax diagram, except that
they can be either uppercase or lowercase. For example, you must use the CREATE
keyword to begin your CREATE TABLE statements just as it appears in the CRE-
ATE TABLE syntax diagram.

XXV

Parameters

Parameters act as place holders in syntax diagrams. They appear in lowercase.
Parameters are usually names of database objects, Oracle datatype names, or
expressions. When you see a parameter in a syntax diagram, substitute an object or
expression of the appropriate type in your SQL statement. For example, to write a
CREATE TABLE statement, use the name of the table you want to create, such as
EMP, in place of the table parameter in the syntax diagram. (Note that parameter
names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and
examples of the values you might substitute for them in your statements:

XXVi

Parameter Description Examples

table The substitution value must be the emp
name of an object of the type speci-
fied by the parameter.

"text’ The substitution value must be a 'Employee Records’
character literal in single quotes.

condition The substitution value must be a ename >’'A’
condition that evaluates to TRUE or
FALSE.

date The substitution value must be a TO_DATE (
date constant or an expression of

d '01-Jan-1996’
DATE datatype. an '

DD-MON-YYYY’)

expr The substitution value can be an sal + 1000
expression of any datatype.

integer The substitution value must be an 72
integer.

rowid The substitution value must be an 00000462.0001.0001
expression of datatype ROWID.

subquery The substitution value must be a SELECT ename
SELECT statement contained in

FROM em

another SQL statement. P

statement_name The substitution value must be an sl

block_name identifier for a SQL statement or b1

PL/SQL block.

Code Examples

SQL and SQL*Plus commands and statements appear separated from the text of
paragraphs in a monospaced font. For example:

INSERT INTO emp (empno, ename) VALUES (1000, 'SMITH?);
ALTER TABLESPACE users ADD DATAFILE 'users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.
All punctuation in example statements is required. All example statements termi-
nate with a semicolon (;). Depending on the application, a semicolon or other termi-
nator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.
When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the con-
text of the example. For example, lowercase words may indicate the name of a
table, column, or file.

Your Comments Are Welcome

We value and appreciate your comments as an Oracle user and reader of the manu-
als. As we write, revise, and evaluate our documentation, your opinions are the
most important input we receive. Please use the reader’s comment form to tell us
what you like and dislike about this manual or other Oracle manuals. If the form is
not available, please use the following address:

« infodev@us.oracle.com
« FAX-650-506-7228. Attn: Oracle8 Parallel Server
« postal service:

Oracle Corporation

Server Technologies Documentation
500 Oracle Parkway, 40P12
Redwood Shores, CA 94065

US.A.

XXVil

XXViii

Part |

Parallel Processing Fundamentals

1

Parallel Processing & Parallel Databases

This chapter introduces parallel processing and parallel database technologies,
which offer great advantages for online transaction processing and decision sup-
port applications. The administrator’s challenge is to selectively deploy this tech-
nology to fully use its multiprocessing power.

To do this successfully you must understand how multiprocessing works, what
resources it requires, and when you can—and cannot—effectively apply it. This
chapter answers the following questions:

« What Is Parallel Processing?

« What Is a Parallel Database?

« What Are the Key Elements of Parallel Processing?
« What Are the Benefits of Parallel Processing?

« What Are the Benefits of Parallel Database?

« How Does Parallel Execution Fit In?

« Is Parallel Server the Oracle Configuration You Need?

Parallel Processing & Parallel Databases 1-1

What Is Parallel Processing?

What Is Parallel Processing?

This section defines parallel processing and describes its use.
« Parallel Processing Defined

« Problems of Parallel Processing

« Characteristics of a Parallel System

« Parallel Processing for SMPs and MPPs

« Parallel Processing for Integrated Operations

Parallel Processing Defined

Parallel processing divides a large task into many smaller tasks, and executes the
smaller tasks concurrently on several nodes. As a result, the larger task completes
more quickly.

Note: A node is a separate processor, often on a separate machine. Multiple proces-
sors, however, can reside on a single machine.

Some tasks can be effectively divided, and thus are good candidates for parallel
processing. Other tasks, however, do not lend themselves to this approach.

For example, in a bank with only one teller, all customers must form a single queue
to be served. With two tellers, the task can be effectively split so that customers
form two queues and are served twice as fast—or they can form a single queue to
provide fairness. This is an instance in which parallel processing is an effective solu-
tion.

By contrast, if the bank manager must approve all loan requests, parallel process-
ing will not necessarily speed up the flow of loans. No matter how many tellers are
available to process loans, all the requests must form a single queue for bank man-
ager approval. No amount of parallel processing can overcome this built-in bottle-
neck to the system.

Figure 1-1 and Figure 1-2 contrast sequential processing of a single parallel query
with parallel processing of the same query.

1-2 Oracle8 Parallel Server Concepts & Administration

What Is Parallel Processing?

Figure 1-1 Sequential Processing of a Large Task

| TOTAL ELAPSED TIME

Processor 1

@ task (runtime)

Figure 1-2 Parallel Processing: Executing Component Tasks in Parallel

| TOTAL ELAPSED TIME

Processors 1

© 00N O O WN

@D component task (runtime)

[uy
o

In sequential processing, the query is executed as a single large task. In parallel pro-
cessing, the query is divided into multiple smaller tasks, and each component task
is executed on a separate node.

Figure 1-3 and Figure 1-4 contrast sequential processing with parallel processing
of multiple independent tasks from an online transaction processing (OLTP) envi-
ronment.

Parallel Processing & Parallel Databases 1-3

What Is Parallel Processing?

Figure 1-3 Sequential Processing of Multiple Independent Tasks

| TOTAL ELAPSED TIME

Processors1 @

2 «-= @

3 ea» - ‘

4 - - - ‘

5 e e» e e .

6 - - - - - .

7 - - - - - - ‘

8 - - - - - - - ‘

9 - - - - - - - - ‘
@ task (runtime)
- \aijt

Figure 1-4 Parallel Processing: Executing Independent Tasks in Parallel

| TOTAL ELAPSED TIME

Processors 1

© 00N O O WDN
000000000

H
o
L

@ task (runtime)

In sequential processing, independent tasks compete for a single resource. Only
task 1 runs without having to wait. Task 2 must wait until task 1 has completed,;
task 3 must wait until tasks 1 and 2 have completed, and so on. (Although the fig-
ure shows the independent tasks as the same size, the size of the tasks will vary.)
By contrast, in parallel processing (for example, a parallel server on a symmetric

1-4 Oracle8 Parallel Server Concepts & Administration

What Is Parallel Processing?

multiprocessor), more CPU power is assigned to the tasks. Each independent task
executes immediately on its own processor: no wait time is involved.

Problems of Parallel Processing
Effective implementation of parallel processing involves two challenges:
« structuring tasks so that certain tasks can execute at the same time (in parallel)

« preserving the sequencing of tasks which must be executed serially

Characteristics of a Parallel System
A parallel processing system has the following characteristics:
« Each processor in a system can perform tasks concurrently.
« Tasks may need to be synchronized.

« Nodes usually share resources, such as data, disks, and other devices.

Parallel Processing & Parallel Databases 1-5

What Is Parallel Processing?

Parallel Processing for SMPs and MPPs

Parallel processing architectures may support:

« clustered and massively parallel processing (MPP) hardware, in which each
node has its own memory

« single memory systems—also known as symmetric multiprocessing (SMP)
hardware, in which multiple processors use one memory resource

Clustered and MPP machines have multiple memories, with each CPU typically
having its own memory. Such systems promise significant price/performance bene-
fits by using commodity memory and bus components to eliminate memory bottle-
necks.

Database management systems that support only one type of hardware limit the
portability of applications, the potential to migrate applications to new hardware
systems, and the scalability of applications. Oracle Parallel Server (OPS) exploits
both clusters and MPP systems, and has no such limitations. Oracle without the
Parallel Server Option exploits single CPU or SMP machines.

Parallel Processing for Integrated Operations

Parallel database software must effectively deploy the system’s processing power
to handle diverse applications: online transaction processing (OLTP) applications,
decision support system (DSS) applications, as well as a mixed OLTP and DSS
workload. OLTP applications are characterized by short transactions which have
low CPU and 170 usage. DSS applications are characterized by long transactions,
with high CPU and 170 usage.

Parallel database software is often specialized—usually to serve as query proces-
sors. Since they are designed to serve a single function, however, specialized serv-
ers do not provide a common foundation for integrated operations. These include
online decision support, batch reporting, data warehousing, OLTP, distributed oper-
ations, and high availability systems. Specialized servers have been used most suc-
cessfully in the area of very large databases: in DSS applications, for example.

Versatile parallel database software should offer excellent price/performance on
open systems hardware, and be designed to serve a wide variety of enterprise com-
puting needs. Features such as online backup, data replication, portability, interop-
erability, and support for a wide variety of client tools can enable a parallel server
to support application integration, distributed operations, and mixed application
workloads.

1-6 Oracle8 Parallel Server Concepts & Administration

What Is a Parallel Database?

What Is a Parallel Database?

A variety of hardware architectures allow multiple computers to share access to
data, software, or peripheral devices. A parallel database is designed to take advan-
tage of such architectures by running multiple instances which “share” a single
physical database. In appropriate applications, a parallel server can allow access to
a single database by users on multiple machines, with increased performance.

A parallel server processes transactions in parallel by servicing a stream of transac-
tions using multiple CPUs on different nodes, where each CPU processes an entire
transaction. Using parallel data manipulation language you can have one transac-
tion being performed by multiple nodes. This is an efficient approach because
many applications consist of online insert and update transactions which tend to
have short data access requirements. In addition to balancing the workload among
CPUs, the parallel database provides for concurrent access to data and protects
data integrity.

See Also: "Is Parallel Server the Oracle Configuration You Need?" on page 1-17 for
a discussion of the available Oracle configurations.

Parallel Processing & Parallel Databases 1-7

What Are the Key Elements of Parallel Processing?

What Are the Key Elements of Parallel Processing?

This section describes key elements of parallel processing:
« Speedup and Scaleup: the Goals of Parallel Processing
« Synchronization: A Critical Success Factor

« Locking

« Messaging

Speedup and Scaleup: the Goals of Parallel Processing

You can measure the performance goals of parallel processing in terms of two
important properties:

« Speedup
« Scaleup
Speedup

Speedup is the extent to which more hardware can perform the same task in less
time than the original system. With added hardware, speedup holds the task con-
stant and measures time savings. Figure 1-5 shows how each parallel hardware sys-
tem performs half of the original task in half the time required to perform it on a
single system.

Figure 1-5 Speedup

Original System:

Hardware |——p 100% Task
Time

Parallel System:

Hardware i 50% Task
Time

Hardware |—p 50% Task
Time

1-8 Oracle8 Parallel Server Concepts & Administration

What Are the Key Elements of Parallel Processing?

With good speedup, additional processors reduce system response time. You can
measure speedup using this formula:

Time_Original

Speedup =
P P Time_Parallel

where

Time_Original is the elapsed time spent by a small system on the given task
Time_Parallel is the elapsed time spent by a larger, parallel system on the given
task

For example, if the original system took 60 seconds to perform a task, and two par-
allel systems took 30 seconds, then the value of speedup would equal 2.

60
30

A value of n, where n times more hardware is used indicates the ideal of linear
speedup: when twice as much hardware can perform the same task in half the time
(or when three times as much hardware performs the same task in a third of the
time, and so on).

Attention: For most OLTP applications, no speedup can be expected: only scaleup.
The overhead due to synchronization may;, in fact, cause speed-down.

Parallel Processing & Parallel Databases 1-9

What Are the Key Elements of Parallel Processing?

Scaleup

Scaleup is the factor m that expresses how much more work can be done in the same
time period by a system n times larger. With added hardware, a formula for
scaleup holds the time constant, and measures the increased size of the job which
can be done.

Figure 1-6 Scaleup

Original System:

Hardware |— 100% Task
Time

Parallel System:

Hardware |——p
Time
200% Task

Hardware |——p
Time

With good scaleup, if transaction volumes grow, you can keep response time con-
stant by adding hardware resources such as CPUs.

You can measure scaleup using this formula:

Volume_Parallel

Scaleup = Volume_Original
where
Volume_Original is the transaction volume processed in a given amount of
time on a small system
Volume_Parallel is the transaction volume processed in a given amount of

time on a parallel system

For example, if the original system can process 100 transactions in a given amount
of time, and the parallel system can process 200 transactions in this amount of time,
then the value of scaleup would be equal to 2. That is, 200/100 = 2. A value of 2
indicates the ideal of linear scaleup: when twice as much hardware can process
twice the data volume in the same amount of time.

1-10 Oracle8 Parallel Server Concepts & Administration

What Are the Key Elements of Parallel Processing?

Synchronization: A Critical Success Factor

Coordination of concurrent tasks is called synchronization. Synchronization is neces-
sary for correctness. The key to successful parallel processing is to divide up tasks
so that very little synchronization is necessary. The less synchronization necessary;,
the better the speedup and scaleup.

In parallel processing between nodes, a high-speed interconnect is required among
the parallel processors. The overhead of this synchronization can be very expensive
if a great deal of inter-node communication is necessary. For parallel processing
within a node, messaging is not necessary: shared memory is used instead. Messag-
ing and locking between nodes is handled by the Integrated Distributed Lock Man-
ager (IDLM).

The amount of synchronization depends on the amount of resources and the num-
ber of users and tasks working on the resources. Little synchronization may be
needed to coordinate a small number of concurrent tasks, but lots of synchroniza-
tion may be necessary to coordinate many concurrent tasks.

Overhead

A great deal of time spent in synchronization indicates high contention for
resources.

Attention: Too much time spent in synchronization can diminish the benefits of par-
allel processing. With less time spent in synchronization, better speedup and
scaleup can be achieved.

Response time equals time spent waiting and time spent doing useful work.
Table 1-1 illustrates how overhead increases as more concurrent processes are
added. If 3 processes request a service at the same time, and they are served seri-
ally, then response time for process 1 is 1 second. Response time for process 2 is 2
seconds (waiting 1 second for process 1 to complete, then being serviced for 1 sec-
ond). Response time for process 3 is 3 seconds (2 seconds waiting time plus 1 sec-
ond service time).

Table 1-1 Increased Overhead with Increased Processes

Process Number Service Time Waiting Time Response Time

1 1 second 0 seconds 1 second
2 1 second 1 second 2 seconds
3 1 second 2 seconds 3 seconds

Parallel Processing & Parallel Databases 1-11

What Are the Key Elements of Parallel Processing?

One task, in fact, may require multiple messages. If tasks must continually wait to
synchronize, then several messages may be needed per task.

Cost of Synchronization

While synchronization is a necessary element of parallel processing to preserve cor-
rectness, you need to manage its cost in terms of performance and system
resources. Different kinds of parallel processing software may permit synchroniza-
tion to be achieved, but a given approach may or may not be cost-effective.

Sometimes synchronization can be accomplished very cheaply. In other cases, how-
ever, the cost of synchronization may be too high. For example, if one table takes
inserts from many nodes, a lot of synchronization is necessary. There will be high
contention from the different nodes to insert into the same datablock: the datablock
must be passed between the different nodes. This kind of synchronization can be
done--but not efficiently.

See Also: Chapter 12, “Application Analysis”
Chapter 19, “Tuning the System to Optimize Performance”

Chapter 8, “Integrated Distributed Lock Manager: Access to Resources”

1-12 Oracle8 Parallel Server Concepts & Administration

What Are the Key Elements of Parallel Processing?

Locking

Locks are fundamentally a way of synchronizing tasks. Many different locking
mechanisms are necessary to enable the synchronization of tasks required by paral-
lel processing.

The Integrated Distributed Lock Manager (Integrated DLM, or IDLM) is the inter-
nal locking facility used with Oracle Parallel Server. It coordinates resource sharing
between nodes running a parallel server. The instances of a parallel server use the
Integrated Distributed Lock Manager to communicate with each other and coordi-
nate modification of database resources. Each node operates independently of
other nodes, except when contending for the same resource.

Note: In Oracle8 the Integrated Distributed Lock Manager facility replaces the exter-
nal Distributed Lock Manager (DLM) which was used in previous releases. This
enhancement frees Oracle performance from the limitations of external lock manag-
ers.

The IDLM allows applications to synchronize access to resources such as data, soft-
ware, and peripheral devices, so that concurrent requests for the same resource are
coordinated between applications running on different nodes.

The IDLM performs the following services for applications:

« keeps track of the current “ownership” of a resource

« accepts lock requests for resources from application processes

« notifies the requesting process when a lock on a resource is available
= gets access to a resource for a process

See Also: Chapter 7, “Overview of Locking Mechanisms”, for a discussion of lock-
ing mechanisms internal to the Oracle database.

Chapter 8, “Integrated Distributed Lock Manager: Access to Resources”

Parallel Processing & Parallel Databases 1-13

What Are the Key Elements of Parallel Processing?

Messaging

Parallel processing requires fast and efficient communication between nodes: a sys-
tem with high bandwidth and low latency which efficiently communicates with the
IDLM.

Bandwidth is the total size of messages which can be sent per second. Latency is the
time (in seconds) it takes to place a message on the interconnect. Latency thus indi-
cates the number of messages which can be put on the interconnect per second. An
interconnect with high bandwidth is like a wide highway with many lanes to
accommodate heavy traffic: the number of lanes affects the speed at which traffic
can move. An interconnect with low latency is like a highway with an entrance
ramp which permits vehicles to enter without delay: the cost of getting on the high-
way is low.

Most MPP systems and clusters are being designed with networks that have reason-
ably high bandwidth. Latency, on the other hand, is an operating system issue pre-
dominantly having to do with software. MPP systems and most clusters
characteristically use interconnects with high bandwidth and low latency; other
clusters may use Ethernet connections with relatively low bandwidth and high
latency.

1-14 Oracle8 Parallel Server Concepts & Administration

What Are the Benefits of Parallel Processing?

What Are the Benefits of Parallel Processing?

Parallel processing can benefit certain kinds of applications by providing:
« Enhanced Throughput: Scaleup
« Improved Response Time: Speedup

Improved response time can be achieved either by breaking up a large task into
smaller components or by reducing wait time, as was shown in Figure 1-3.

Table 1-2 shows which types of workload can attain speedup and scaleup with
properly implemented parallel processing.

Table 1-2 Speedup and Scaleup with Different Workloads

Workload Speedup Scaleup
OLTP No Yes
DSS Yes Yes
Batch (Mixed) Possible Yes
Parallel Query Yes Yes

Enhanced Throughput: Scaleup

If tasks can run independently of one another, they can be distributed to different
CPUs or nodes and there will be a scaleup: more processes will be able to run
through the database in the same amount of time.

If processes can run ten times faster, then the system can accomplish ten times more
in the original amount of time. The parallel query feature, for example, permits
scaleup: a system might maintain the same response time if the data queried
increases tenfold, or if more users can be served. Oracle Parallel Server without the
parallel query feature also permits scaleup, but by running the same query sequen-
tially on different nodes.

With a mixed workload of DSS, OLTP, and reporting applications, scaleup can be
achieved by running multiple programs on different nodes. Speedup can also be
achieved if you rewrite the batch programs, splitting them into a number of paral-
lel streams to take advantage of the multiple CPUs which are now available.

Parallel Processing & Parallel Databases 1-15

What Are the Benefits of Parallel Database?

Improved Response Time: Speedup

DSS applications and parallel query can attain speedup with parallel processing:
each transaction can run faster.

For OLTP applications, however, no speedup can be expected: only scaleup. With
OLTP applications each process is independent: even with parallel processing, each
insert or update on an order table will still run at the same speed. In fact, the over-
head due to synchronization may cause a slight speed-down. Since each of the oper-
ations being done is small, it is inappropriate to attempt to parallelize them; the
overhead would be greater than the benefit.

Speedup can also be achieved with batch processing, but the degree of speedup
depends on the synchronization between tasks.

What Are the Benefits of Parallel Database?

Parallel database technology can benefit certain kinds of applications by enabling:
« Higher Performance

« Higher Availability

« Greater Flexibility

« More Users

Higher Performance

With more CPUs available to an application, higher speedup and scaleup can be
attained. The improvement in performance depends on the degree of inter-node
locking and synchronization activities. Each lock operation is processor and mes-
sage intensive; there can be a lot of latency. The volume of lock operations and data-
base contention, as well as the throughput and performance of the IDLM,
ultimately determine the scalability of the system.

Higher Availability

Nodes are isolated from each other, so a failure at one node does not bring the
whole system down. The remaining nodes can recover the failed node and con-
tinue to provide data access to users. This means that data is much more available
than it would be with a single node upon node failure, and amounts to significantly
higher availability of the database.

1-16 Oracle8 Parallel Server Concepts & Administration

Is Parallel Server the Oracle Configuration You Need?

Greater Flexibility

More Users

An Oracle Parallel Server environment is extremely flexible. Instances can be allo-
cated or deallocated as necessary. When there is high demand for the database,
more instances can be temporarily allocated. The instances can be deallocated and
used for other purposes once they are no longer necessary.

Parallel database technology can make it possible to overcome memory limits,
enabling a single system to serve thousands of users.

Is Parallel Server the Oracle Configuration You Need?

This section describes the following Oracle configurations, which can deliver high
performance for different types of applications:

« Single Instance with Exclusive Access
« Multi-Instance Database System

« Distributed Database System

« Client-Server Systems

The parallel server is one of several Oracle options which provide a high-perfor-
mance relational database serving many users. These configurations can be com-
bined to suit your needs. A parallel server can be one of several serversin a
distributed database environment, and the client-server configuration can combine
various Oracle configurations into a hybrid system to meet specific application
requirements.

Note: Support for any given Oracle configuration is platform-dependent; check to
confirm that your platform supports the configuration you want.

For optimal performance, configure your system according to your particular appli-
cation requirements and available resources, then design and tune the database and
applications to make the best use of the configuration. Consider also the migration
of existing hardware or software to the new system or to future systems.

The following sections help you determine which Oracle configuration best meets
your needs.

See Also: Chapter 3, “Parallel Hardware Architecture”

Parallel Processing & Parallel Databases 1-17

Is Parallel Server the Oracle Configuration You Need?

Single Instance with Exclusive Access

Figure 1-7 illustrates a single instance database system running on a symmetric
multiprocessor (SMP). The database itself is located on a set of disks.

Figure 1-7 Single Instance Database System

SMP

Oracle Instance
DBWR||LGWR

SGA

Database

A single instance accessing a single database can improve performance by running
on a larger computer. A large single computer does not require coordination
between several nodes and generally performs better than two small computers in
a multinode system. However, two small computers often cost less than one large
one.

The cost of redesigning and tuning your database and applications for the Parallel
Server Option might be significant if you want to migrate from a single computer
to a multinode system. In situations like this, consider whether, a larger single com-
puter might be a better solution than moving to a parallel server.

See Also: Oracle8 Concepts for complete information about single instance Oracle.

1-18 Oracle8 Parallel Server Concepts & Administration

Is Parallel Server the Oracle Configuration You Need?

Multi-Instance Database System

Oracle with the Parallel Server Option running on a cluster or MPP is called a
multi-instance database system, illustrated in Figure 1-8. This is an excellent solu-
tion for applications which can be configured to minimize the passing of data
between instances on different nodes.

Figure 1-8 Multi-Instance Database System

Node 1 Node 2 Node 3
Oracle Instance Oracle Instance Oracle Instance
bBWR] LGWR] [LMD | ...| [[DBWR] [LwR][L™MD]| ...] |[DBWR] [LGWR][LmD] ...
SGA SGA SGA

Note that this database system requires the LMD process on each instance. These
processes communicate with each other to coordinate global locking.

In a parallel server, instances are decoupled from databases. In exclusive mode,
there is a one-to-one correspondence of instance to database. In shared (parallel)
mode, however, there can be many instances to a single database.

In general, any single application performs best when it has exclusive access to a
database on a larger system, as compared with its performance on a smaller node
of a multinode environment. This is because the cost of synchronization may
become too high if you go to a multinode environment. The performance difference
depends on characteristics of that application and all other applications sharing
access to the database.

Applications with one or both of the following characteristics are well suited to run
on separate instances of a parallel server:

« applications which primarily query data

« applications which either change disjoint groups of datablocks or change the
same datablocks at different times

Parallel Processing & Parallel Databases 1-19

Is Parallel Server the Oracle Configuration You Need?

See Also: "Enabling and Disabling Parallel Server" on page 4-2
Chapter 8, “Integrated Distributed Lock Manager: Access to Resources”

Oracle8 Concepts for more information on the DBWR, LGWR, and LMD background
processes.

Distributed Database System

Several Oracle servers and databases can be linked to form a distributed database sys-
tem. This configuration includes multiple databases, each of which is accessed
directly by a single server and can be accessed indirectly by other instances

through server-to-server cooperation. Each node can be used for database process-
ing, but the data is permanently partitioned among the nodes. A parallel server, in
contrast, has multiple instances which share direct access to one database.

Note: Oracle Parallel Server can be one of the constituents of a distributed database.

Figure 1-9 illustrates a distributed database system. This database system requires
the RECO background process on each instance. There is no LCK, LMON, or LMD
background process because this is not an Oracle Parallel Server configuration, and
the Integrated Distributed Lock Manager is not needed.

Figure 1-9 Distributed Database System

Node 1 Node 2

Oracle Instance Oracle Instance
[DBWR][LGWR][RECO]... Net8 [DBWR][LGWR][RECO]...

The multiple databases of a distributed system can be treated as one logical data-
base, because servers can access remote databases transparently, using Net8.

1-20 Oracle8 Parallel Server Concepts & Administration

Is Parallel Server the Oracle Configuration You Need?

If your data can be partitioned into multiple databases with minimal overlap, you
can use a distributed database system instead of a parallel server, sharing data
between the databases with Net8. A parallel server provides automatic data shar-
ing among nodes through the common database.

A distributed database system allows you to keep your data at several widely sepa-
rated sites. Users can access data from databases which are geographically distant,
as long as network connections exist between the separate nodes. A parallel server
requires all data to be at a single site because of the requirement for low latency;,
high bandwidth communication between nodes, but it can also be part of a distrib-
uted database system. Such a system is illustrated in Figure 1-10.

Figure 1-10 Oracle Parallel Server as Part of a Distributed Database

Oracle Instance 1 | |Oracle Instance 2 || Oracle Instance 3 1 Oracle Instance 4

Net8

T

Database 1 Database 2

Multiple databases require separate database administration, and a distributed
database system requires coordinated administration of the databases and network
protocols. A parallel server can consolidate several databases to simplify adminis-
trative tasks.

Multiple databases can provide greater availability than a single instance accessing
a single database, because an instance failure in a distributed database system does
not prevent access to data in the other databases: only the database owned by the
failed instance is inaccessible. A parallel server, however, allows continued access
to all data when one instance fails, including data which was accessed by the
instance running on the failed node.

A parallel server accessing a single consolidated database can avoid the need for

distributed updates, inserts, or deletions and more expensive two-phase commits
by allowing a transaction on any node to write to multiple tables simultaneously,
regardless of which nodes usually write to those tables.

See Also: Oracle8 Distributed Database Systems for complete information about Ora-
cle distributed database features.

Parallel Processing & Parallel Databases 1-21

Is Parallel Server the Oracle Configuration You Need?

Client-Server Systems

Any of the Oracle configurations can run in a client-server environment. In Oracle,
a client application runs on a remote computer, using Net8 to access an Oracle
server through a network. The performance of this configuration is typically lim-
ited to the power of the single server node.

Figure 1-11 illustrates an Oracle client-server system.

Figure 1-11 Client-Server System

Node 1 Node 2
Oracle Instance
DBWR||LGWR] ... / [:]
SGA ’W '%
N client 1
Net8

= =

Database

Node 3

]

Note: Client-server processing is suitable for any Oracle configuration. Check your
Oracle platform-specific documentation to see whether it is implemented on your
platform.

Server

The client-server configuration allows you to off-load processing from the com-
puter which runs an Oracle server. If you have too many applications running on
one machine, you can off-load them to improve performance. However, if your
database server is reaching its processing limits you might want to move either to a
larger machine or to a multinode system.

1-22 Oracle8 Parallel Server Concepts & Administration

How Does Parallel Execution Fit In?

For compute-intensive applications, you could run some applications on one node
of a multinode system while running Oracle and other applications on another
node, or on several other nodes. In this way you could effectively use various
nodes of a parallel machine as client nodes, and one as a server node.

If the database consists of several distinct high-throughput parts, a parallel server
running on high-performance nodes can provide quick processing for each part of
the database while also handling occasional access across parts.

Remember that a client-server configuration requires that all communications
between the client application and the database take place over the network. This
may not be appropriate where a very high volume of such communications is
required--as in many batch applications.

See Also: “Client-Server Architecture” in Oracle8 Concepts

How Does Parallel Execution Fit In?

With its parallel execution features, Oracle can divide the work of processing cer-
tain types of SQL statements among multiple query server processes.

Oracle Parallel Server provides the framework for parallel execution to work
between nodes. Parallel execution features behave the same way in Oracle with or
without the Parallel Server Option. The only difference is that OPS enables multiple
nodes to execute on behalf of a single query or other parallel operation.

In some applications (notably data warehousing applications), an individual query
consumes a great deal of CPU resource and disk 170, unlike most online insert or
update transactions. To take advantage of multiprocessing systems, the data server
must parallelize individual queries into units of work which can be processed
simultaneously. Figure 1-12 shows an example of parallel query processing.

Parallel Processing & Parallel Databases 1-23

How Does Parallel Execution Fit In?

Figure 1-12 Example of Parallel Query Processing

SELECT SUM (REVENUE) FROM LI NE_| TEMS;

CPU
scan

/

CPU

_

= server t

CPU

CPU

Server 2

Without parallel query

If the query were not processed in parallel, disks would be read serially with a sin-
gle 1/0. A single CPU would have to scan all rows in the LINE_ITEMS table and
total the revenues across all rows. With the query parallelized, disks are read in par-
allel, with multiple 1/0s. Several CPUs can each scan a part of the table in parallel,
and aggregate the results. Parallel query benefits not only from multiple CPUs but
also from more of the available 1/0 bandwidth.

See Also: Oracle8 Concepts and Oracle8 Tuning for a detailed treatment of parallel

execution.

1-24 Oracle8 Parallel Server Concepts & Administration

COCOCD

_

% Server 1

CPU
scan

<+

CPU
scan

CPU
scan

CPU
scan

Server 2

With parallel query

C0C0CD

Successfully Implementing Parallel
Processing

There is an old network saying: Bandwidth problems can be cured with money. Latency
problems are harder because the speed of light is fixed—you can’t bribe God.

— David Clark, MIT

To attain the goals of speedup and scaleup, you must effectively implement parallel
processing and parallel database technology. This means designing and building
your system for parallel processing from the start. This chapter covers the follow-
ing issues:

« The Four Levels of Scalability You Need

« When Is Parallel Processing Advantageous?

« When Is Parallel Processing Not Advantageous?
« Guidelines for Effective Partitioning

« Common Misconceptions about Parallel Processing

Successfully Implementing Parallel Processing 2-1

The Four Levels of Scalability You Need

The Four Levels of Scalability You Need

Successful implementation of parallel processing and parallel database requires
optimal scalability on four levels:

« Scalability of Hardware

« Scalability of Operating System

« Scalability of Database Management System
« Scalability of Application

Attention: An inappropriately designed application may not fully utilize the poten-
tial scalability of the system. Likewise, no matter how well your application scales,
you will not get the desired performance if you try to run it on hardware that does
not scale.

Figure 2-1 Levels of Scalability

Scalability of: APPLICATION

DATABASE

(O]

HARDWARE

2-2 Oracle8 Parallel Server Concepts & Administration

The Four Levels of Scalability You Need

Scalability of Hardware

Interconnect is key to hardware scalability. Every system must have some means of
connecting the CPUs, whether it be a high speed bus or a low speed Ethernet con-
nection. Bandwidth and latency of the interconnect determine the scalability of the
hardware.

See Also: "Required Hardware and Operating System Software" on page 3-3.

Bandwidth and Latency

Most interconnects have sufficient bandwidth. A high bandwidth may;, in fact, dis-
guise high latency.

Hardware scalability depends heavily on very low latency. Lock coordination traf-
fic communication is characterized by a large number of very small messages
among the LMD processes.

Consider the difference between conveying a hundred passengers on a single bus,
compared to a hundred individual cars. In the latter case, efficiency depends
largely upon the capacity for cars to quickly enter and exit the highway.

Other operations between nodes, such as parallel query, rely on high bandwidth.

Disk Input and Output

Local 1/0s are faster than remote 1/0s (those which occur between nodes). If a
great deal of remote 1/0 is needed, the system loses scalability. In this case you can
partition data so that the data is local. Figure 2-2 illustrates the difference.

Note: Various clustering implementations are available from different hardware
vendors. On shared disk clusters with dual ported controllers, there is the same
latency from all nodes.

Successfully Implementing Parallel Processing 2-3

The Four Levels of Scalability You Need

Figure 2-2 Local and Remote I/O on Shared Nothing and Shared Disk

Shared Nothing

Node 1 Node 2

CPU Remote CPU

Local

Shared Disk Cluster

Node 1 Node 2

CPU CPU

Local Remote

Shared Disk Cluster with
Dual Ported Controller

Node 1 Node 2

CPU CPU

Local Local
Controller 1 ¢ Controller 2

2-4 Oracle8 Parallel Server Concepts & Administration

The Four Levels of Scalability You Need

Scalability of Operating System
The ultimate scalability of your system also depends upon the scalability of the
operating system. This section explains how to analyze this factor.

Software scalability can be an important issue if one node is a shared memory sys-
tem (that is, a system in which multiple CPUs connect to a symmetric multiproces-
sor single memory). Methods of synchronization in the operating system can
determine the scalability of the system. In asymmetrical multiprocessing, for exam-
ple, only a single CPU can handle 1/0 interrupts. Consider a system in which mul-
tiple user processes all need to request a resource from the operating system:

Figure 2-3 Asymmetric Multiprocessing vs. Symmetric Multiprocessing

Asymmetric Multiprocessing: Symmetric Multiprocessing:

User User User User @ @ @ @
Operating perating
System System
CPU CPU CPU

O
CPU CPU CPU CPU CPU

All I/O
Interrupts

Here, the potential scalability of the hardware is lost because the operating system
can only process one resource request at a time. Each time one request enters the
operating system, a lock is held to exclude the others. In symmetrical multiprocess-
ing, by contrast, there is no such bottleneck.

Successfully Implementing Parallel Processing 2-5

The Four Levels of Scalability You Need

Scalability of Database Management System

An important distinction in parallel server architectures is internal versus external
parallelism:; this has a strong effect on scalability. The key difference is whether the
object-relational database management system (ORDBMS) parallelizes the query, or
an external process parallelizes the query.

Disk affinity can improve performance by ensuring that nodes mainly access local,
rather than remote, devices. An efficient synchronization mechanism enables better
speedup and scaleup.

See Also: "Disk Affinity" on page 4-9.

“Parallel Execution” in Oracle8 Tuning.

Scalability of Application

Application design is key to taking advantage of the scalability of the other ele-
ments of the system.

Attention: Applications must be specifically designed to be scalable!

No matter how scalable the hardware, software, and database may be, a table with
only one row which every node is updating will synchronize on one datablock.
Consider the process of generating a unique sequence humber:

UPDATE ORDER_NUM
SET NEXT_ORDER_NUM =NEXT_ORDER_NUM +1,
COMMIT;

Every node which needs to update this sequence number will have to wait to
access the same row of this table: the situation is inherently unscalable. A better
approach would be to use sequences to improve scalability:

INSERT INTO ORDERS VALUES
(order_sequence.nextva, ...)

Note: Clients must be connected to server machines in a scalable manner: this
means that your network must also be scalable!

See Also: Chapter 13, “Designing a Database for Parallel Server”.

Chapter 12, “Application Analysis”.

2-6 Oracle8 Parallel Server Concepts & Administration

When Is Parallel Processing Advantageous?

When Is Parallel Processing Advantageous?

This section describes applications which commonly benefit from a parallel server.
« Data Warehousing Applications

« Applications in Which Updated Data Blocks Do Not Overlap

« Failover and High Availability

« Summary

Data Warehousing Applications

Data warehousing applications which infrequently update, insert, or delete data
are often appropriate for the parallel server. Query-intensive applications and other
applications with low update activity can access the database through different
instances with little additional overhead.

If the data blocks are not modified, multiple copies of the blocks can be read into
the Oracle buffer caches on several nodes and queried without additional 1/0 or
lock operations. As long as the instances are only reading data and not modifying
it, a block can be read into multiple buffer caches and one instance never has to
write the block to disk before another instance can read it.

Decision support applications are good candidates for a parallel server because
they only occasionally modify data, as in a database of financial transactions which
is mostly accessed by queries during the day and is updated during off-peak hours.

Applications in Which Updated Data Blocks Do Not Overlap

Applications which either update disjoint data blocks or update the same data
blocks at different times are also well suited to the parallel server. Applications can
run efficiently on a parallel server if the set of data blocks regularly updated by one
instance does not overlap with the set of blocks simultaneously updated by other
instances. An example is a time-sharing environment where each user primarily
owns and uses one set of tables.

An instance which needs to update blocks held in its buffer cache must hold one or
more instance locks in exclusive mode while modifying those buffers. You should
tune a parallel server and the applications which run on it, so as to reduce conten-
tion for instance locks.

Successfully Implementing Parallel Processing 2-7

When Is Parallel Processing Advantageous?

OLTP with Partitioned Data

Online transaction processing applications which modify disjoint sets of data bene-
fit the most from the parallel server architecture. One example is a branch banking
system where each branch (node) accesses its own accounts and only occasionally
accesses accounts from other branches.

OLTP with Random Access to a Large Database

Applications which access a database in a mostly random pattern also benefit from
the parallel server architecture, if the database is significantly larger than any
node’s buffer cache. One example is a Department of Motor Vehicles system where
individual records are unlikely to be accessed by different nodes at the same time.
Another example would be archived tax records or research data. In cases like
these, most of the accesses would result in 1/0 even if the instance had exclusive
access to the database. Oracle features such as fine grained locking can further
improve performance of such applications.

Departmentalized Applications

Applications which primarily modify different tables in the same database are also
suitable for Oracle Parallel Server. An example is a system where one node is dedi-
cated to inventory processing, another is dedicated to personnel processing, and a
third is dedicated to sales processing. Note that there is only one database to admin-
ister, not three.

Failover and High Availability

Summary

Applications which require high availability benefit from the Oracle parallel
server’s failover capability. If the connection to the database is broken, applica-
tions can automatically reconnect.

Figure 2-4 illustrates the relative scalability of different kinds of applications.
Online transaction processing applications which have a very high volume of
inserts or updates from multiple nodes on the same set of data may require parti-
tioning if they are to scale well. OLTP applications with a very low insert and
update load may not require partitioning at all to be successful.

2-8 Oracle8 Parallel Server Concepts & Administration

When Is Parallel Processing Not Advantageous?

Figure 2—4 Scalability of Applications

Low

High

When Is Parallel
The

May
Not
Scale

OLTP: Random Changes
to Large Database

Data
Warehousing

Departmentalized
Applications

OLTP with Partitioning

Degree of Partitioning of Data

Operations

No Change Heavy Change

Processing Not Advantageous?

following guidelines describe situations in which parallel processing is not

advantageous.

In general, parallel processing ceases to be advantageous when the cost of syn-
chronization becomes too high and therefore the throughput decreases.

If many users on a large number of nodes are modifying a small set of data,
then synchronization is likely to be very high. However, if they are just reading
the data then no synchronization is required.

Parallel processing is not advantageous when there is contention between
instances on a single block or row.

For example, it would not be effective to use a table with one row used prima-
rily as a sequence numbering tool. Such a table would be a bottleneck because
every process would have to select the row, update it, and release it sequen-
tially.

Successfully Implementing Parallel Processing 2-9

Guidelines for Effective Partitioning

Guidelines for Effective Partitioning

Overview

This section provides general guidelines to make partitioning decisions which will
decrease synchronization and add to your system’s performance.

« Overview
« Vertical Partitioning

« Horizontal Partitioning

You can partition any of the three elements of processing, depending on function,
location, and so on, such that they do not interfere with each other. These elements
are:

= users
« applications
« data

You can partition data, based on groups of users who access it; partition applica-
tions into groups which access the same data. You can also consider partitioning by
location (geographic partitioning).

2-10 Oracle8 Parallel Server Concepts & Administration

Guidelines for Effective Partitioning

Vertical Partitioning

With vertical partitioning, a large number of tasks can run on a large number of
resources without much synchronization. Figure 2-5 illustrates the concept of verti-

cal partitioning.

Figure 2-5 Vertical Partitioning

Node 1

Users

v

Accounts
Payable

&
<«

Node 2

Users

;

Accounts
Receivable

Synchronization layer (RDBMS)

v

-

AP Table

S

Database

AR Table

S

Here, a company’s accounts payable and accounts receivable functions have been
partitioned by users, application, and data. They have been placed on two separate
nodes. Here, most of the synchronization takes place on the same node, which is
very efficient. The cost of synchronization on the local node is cheaper than the cost
of synchronization between nodes.

Partition tasks on a subset of resources to reduce synchronization. When you parti-
tion, you have a smaller set of tasks working on a smaller resource.

Successfully Implementing Parallel Processing 2-11

Common Misconceptions about Parallel Processing

Horizontal Partitioning

To illustrate the concept of horizontal partitioning, Figure 2—6 represents the rows
of a stock table. If the Oracle Parallel Server has four instances on a single node,
then the data can be partitioned such that each instance accesses only a subset of
the data.

Figure 2—6 Horizontal Partitioning

Instance 1 Instance 2 Instance 3 Instance 4

Rows Rows Rows Rows
1 Through 10|11 Through 20|21 Through 30|31 Through 40

In this example, very little synchronization is necessary because the instances
access different sets of rows. Similarly, users partitioned by location can often run
almost independently: very little synchronization is necessary if the users do not
access the same data.

Common Misconceptions about Parallel Processing

Various mistaken notions can lead to unrealistic expectations about parallel process-
ing. Consider the following:

« Do not assume that you can switch to parallel processing and it will automati-
cally work the way you expect. A good deal of application tuning and database
design and tuning is required.

« Scalability is not determined just by the number of nodes or CPUs involved,
but also by interconnect (bandwidth/latency) and by the amount and cost of
synchronization.

In some applications a single synchronization may be so expensive as to consti-
tute a problem; in other applications, many cheap synchronizations may be per-
fectly acceptable.

« Just because you have parallel processing does not mean you automatically
have higher availability: this depends on the system architecture.

For example, on some MPP systems if one of the CPUs dies, the whole machine
dies. On a cluster, by contrast, if one of the nodes dies the other nodes survive.

« All applications may not have been designed to scale up effectively.

2-12 Oracle8 Parallel Server Concepts & Administration

3

Parallel Hardware Architecture

The parallel database server can use various machine architectures which allow par-
allel processing. This chapter describes the range of available hardware implemen-
tations and surveys their advantages and disadvantages.

Overview

Required Hardware and Operating System Software
Shared Memory Systems

Shared Disk Systems

Shared Nothing Systems

Shared Nothing /Shared Disk Combined Systems

Parallel Hardware Architecture 3-1

Overview

Overview

This section covers the following topics:
« Parallel Processing Hardware Implementations
« Application Profiles

Oracle configurations support parallel processing within a machine, between
machines, and between nodes. There is no advantage to running Oracle Parallel
Server on a single node and a single system image--you would incur overhead and
receive no benefit. With standard Oracle you do not have to do anything special on
shared memory configurations to take advantage of some parallel processing capa-
bilities.

Although this manual focuses on Oracle Parallel Server with shared nothing/
shared disk architecture, the application design issues discussed in this book may
also be relevant to standard Oracle systems.

Parallel Processing Hardware Implementations

Parallel processing hardware implementations are often categorized according to
the particular resources which are shared. The following categories are described in
this chapter:

« shared memory systems
« shared disk systems
« shared nothing systems

These implementations can also be described as “tightly coupled” or “loosely cou-
pled,” according to the way in which communication between nodes is accom-
plished.

Attention: Oracle supports all these different implementations of parallel process-
ing, assuming that in a shared nothing system the software enables a node to access
a disk from another node. For example, the IBM SP2 features a virtual shared disk:
the disk is shared through software.

Note: Support for any given Oracle configuration is platform-dependent; check to
confirm that your platform supports the configuration you want.

3-2 Oracle8 Parallel Server Concepts & Administration

Required Hardware and Operating System Software

Application Profiles

Online transaction processing (OLTP) applications tend to perform best on symmet-
ric multiprocessors; they perform well con clusters and MPP systems if they can be
well partitioned. Decision support (DSS) applications tend to perform well on
SMPs, clusters, and massively parallel systems. Choose the implementation that
provides the power you need for the application(s) you require.

Required Hardware and Operating System Software

Each hardware vendor implements parallel processing in its own way, but the fol-
lowing common elements are required for Oracle Parallel Server;

« High Speed Interconnect
« Globally Accessible Disk or Shared Disk Subsystem

High Speed Interconnect

This is a high bandwidth, low latency communication facility between the various
nodes for lock manager and cluster manager traffic. The interconnect can be Ether-
net, FDDI, or some other proprietary interconnect method. If the primary intercon-
nect fails, a back-up interconnect is usually available. The back-up interconnect will
ensure high availability, and prevent a single point of failure.

Globally Accessible Disk or Shared Disk Subsystem

All nodes in a loosely coupled or massively parallel system have simultaneous
access to shared disks. This gives multiple instances of Oracle8 concurrent access to
the same database. These shared disk subsystems are most often implemented via a
shared SCSI or twintailed SCSI (common in UNIX) connected to a disk farm. On
some MPP platforms, such as IBM SP, disks are associated to nhodes and a virtual
shared disk software layer enables global access to all nodes.

Note: The Integrated Distributed Lock Manager coordinates modifications of data
blocks, maintenance of cache consistency, recovery of failed nodes, transaction
locks, dictionary locks, and SCN locks.

Parallel Hardware Architecture 3-3

Shared Memory Systems

Shared Memory Systems

Tightly coupled shared memory systems, illustrated in Figure 3-1, have the follow-
ing characteristics:

« Multiple CPUs share memory.
« Each CPU has full access to all shared memory through a common bus.
« Communication between nodes occurs via shared memory.

« Performance is limited by the bandwidth of the memory bus.

Figure 3—1 Tightly Coupled Shared Memory System

CPU1 CPU 2 CPU 3

Common

Shared Bus
Memory

Shared
Disks

Symmetric multiprocessor (SMP) machines are often nodes in a cluster. Multiple
SMP nodes can be used with Oracle Parallel Server in a tightly coupled system,
where memory is shared among the multiple CPUs, and is accessible by all the
CPUs through a memory bus. Examples of tightly coupled systems include the Pyr-
amid, Sequent, and Sun SparcServer.

It does not make sense to run Oracle Parallel Server on a single SMP machine,
because the system would incur a great deal of unnecessary overhead from IDLM
accesses.

Performance is potentially limited in a tightly coupled system by a number of fac-
tors. These include various system components such as the memory bandwidth,
CPU to CPU communication bandwidth, the memory available on the system, the
170 bandwidth, and the bandwidth of the common bus.

3-4 Oracle8 Parallel Server Concepts & Administration

Shared Memory Systems

Parallel processing advantages of shared memory systems are these:

« Memory access is cheaper than inter-node communication. This means that
internal synchronization is faster than using the Lock Manager.

« Shared memory systems are easier to administer than a cluster.
A disadvantage of shared memory systems for parallel processing is as follows:

« Scalability is limited by bus bandwidth and latency, and by available memory.

Parallel Hardware Architecture 3-5

Shared Disk Systems

Shared Disk Systems

Shared disk systems are typically loosely coupled. Such systems, illustrated in
Figure 3-2, have the following characteristics:

Each node consists of one or more CPUs and associated memory.
Memory is not shared between nodes.

Communication occurs over a common high-speed bus.

Each node has access to the same disks and other resources.

A node can be an SMP if the hardware supports it.

Bandwidth of the high-speed bus limits the number of nodes (scalability) of the
system.

Figure 3-2 Loosely Coupled Shared Disk System

Node 1 Node 2 Node 3 Node 4 Node 5
|CPU”CPU”CPU| |CPU"CPU”CPU| |CPU"CPU"CPU| |CPU”CPU”CPU| |CPU”CPU”CPU|
|Shared Memory | | Shared Memory | | Shared Memory | |Shared Memory | | Shared Memory |

Common High-speed Bus

Shared
Disks

The cluster illustrated in Figure 3-2 is composed of multiple tightly coupled nodes.
The IDLM is required. Examples of loosely coupled systems are VAXclusters or Sun
clusters.

Since the memory is not shared among the nodes, each node has its own data
cache. Cache consistency must be maintained across the nodes and a lock manager
is needed to maintain the consistency. Additionally, instance locks using the IDLM

3-6 Oracle8 Parallel Server Concepts & Administration

Shared Disk Systems

on the Oracle level must be maintained to ensure that all nodes in the cluster see
identical data.

There is additional overhead in maintaining the locks and ensuring that the data
caches are consistent. The performance impact is dependent on the hardware and
software components, such as the bandwidth of the high-speed bus through which
the nodes communicate, and IDLM performance.

Parallel processing advantages of shared disk systems are as follows;

« Shared disk systems permit high availability. All data is accessible
even if one node dies.

« These systems have the concept of one database, which is an advantage over
shared nothing systems.

« Shared disk systems provide for incremental growth.
Parallel processing disadvantages of shared disk systems are these:

« Inter-node synchronization is required, involving IDLM overhead and greater
dependency on high-speed interconnect.

« If the workload is not partitioned well, there may be high synchronization over-
head.

« There is operating system overhead of running shared disk software.

Parallel Hardware Architecture 3-7

Shared Nothing Systems

Shared Nothing Systems
Shared nothing systems are typically loosely coupled. This section describes:
= Overview of Shared Nothing Systems
« Massively Parallel Systems

« Summary: Shared Nothing Systems

Overview of Shared Nothing Systems

In shared nothing systems only one CPU is connected to a given disk. If a table or
database is located on that disk, access depends entirely on the CPU which owns it.
Shared nothing systems can be represented as follows:

Figure 3-3 Shared Nothing System

CPU CPU CPU CPU

PP ===
'

Memory Memory Memory Memory

9998

Shared nothing systems are concerned with access to disks, not access to memory.
Nonetheless, adding more CPUs and disks can improve scaleup. Oracle Parallel
Server can access the disks on a shared nothing system as long as the operating sys-
tem provides transparent disk access, but this access is expensive in terms of
latency.

3-8 Oracle8 Parallel Server Concepts & Administration

Shared Nothing Systems

Massively Parallel Systems
Massively parallel (MPP) systems have the following characteristics:

« From only a few nodes, up to thousands of nodes are supported.

« The cost per processor may be extremely low because each node is an inexpen-
sive processor.

« Each node has associated non-shared memory.

« Each node may have its own devices, but in case of failure other nodes can
access the devices of the failed node.

« Nodes are organized in a grid, mesh, or hypercube arrangement.
« Oracle instances can potentially reside on any or all nodes.

A massively parallel system may have as many as several thousand nodes. Each
node may have its own Oracle instance, with all the standard facilities of an
instance. (An Oracle instance comprises the System Global Area and all the back-
ground processes.)

An MPP has access to a huge amount of real memory for all database operations
(such as sorts or the buffer cache), since each node has its own associated memory.
To avoid disk 170, this advantage will be significant in long running queries and
sorts. This is not possible for 32 bit machines which have a 2 GB addressing limit;
the total amount of memory on an MPP system may well be over 2 GB. As with
loosely coupled systems, cache consistency on MPPs must still be maintained
across all nodes in the system. Thus, the overhead for cache management is still
present. Examples of massively parallel systems are the nCUBE2 Scalar Supercom-
puter, the Unisys OPUS, Amdahl, Meiko, and the IBM SP.

Summary: Shared Nothing Systems

Shared nothing systems have advantages and disadvantages for parallel processing:

Advantages

« Shared nothing systems provide for incremental growth.

« System growth is practically unlimited.

« MPPs are good for read-only databases and decision support applications.

« Failure is local: if one node fails, the others stay up.

Parallel Hardware Architecture 3-9

Shared Nothing /Shared Disk Combined Systems

Disadvantages
« More coordination is required.

« More overhead is required for a process working on a disk belonging to
another node.

« If there is a heavy workload of updates or inserts, as in an online transaction
processing system, it may be worthwhile to consider data-dependent routing to
alleviate contention.

Shared Nothing /Shared Disk Combined Systems

A combined system can be very advantageous—one which brings together the
advantages of shared nothing and shared disk, while overcoming their respective
limitations. Such a combined system can be represented as follows:

Figure 3—-4 Two Shared Disk Systems Forming a Shared Nothing System

CPU CPU CPU CPU

‘ Memory |‘ Memory | ‘ Memory | ‘ Memory

Shared
Disks

Shared
Disks

Here, two shared disk systems are linked to form a system with the same hardware
redundancies as a shared nothing system. If one CPU fails, the other CPUs can still
access all disks.

3-10 Oracle8 Parallel Server Concepts & Administration

Part |

Oracle Parallel Server Concepts

A

How Oracle Implements Parallel Processing

This chapter gives a high-level view of how the Oracle Parallel Server (OPS) pro-
vides high performance parallel processing. Key issues include:

« Enabling and Disabling Parallel Server
« Synchronization

« High Performance Features

« Cache Coherency

See Also: Chapter 7, “Overview of Locking Mechanisms”, for an understanding of
lock hierarchy in Oracle.

How Oracle Implements Parallel Processing 4-1

Enabling and Disabling Parallel Server

Enabling and Disabling Parallel Server

Oracle Parallel Server can be enabled or disabled:

Parallel Server Enabled
Parallel Server
Oracle + Option Disabled Single Node Multiple Nodes
OPS not installed Yes: default No No
OPS installed Yes: default Yes: Single Shared Yes: Multiple Shared

When parallel server is disabled, only one Oracle instance can mount or open the
database. This mode is necessary to create and completely recover a database. It is
useful to implement Oracle Parallel Server but leave it disabled if standard Oracle
functionality can meet your current needs, but you want your system to be parallel-
server ready.

When parallel server is enabled, one or more instances of a parallel server mount
the same database. All instances mount the database and read from and write to
the same datafiles. Single shared mode describes an Oracle Parallel Server configura-
tion in which only one instance is running. Global operations exist, but are not
needed at the moment. The instance operates as though it is in a cluster (with Inte-
grated DLM overhead, and so on), although there is no contention for resources.
Multiple shared mode describes an Oracle Parallel Server configuration with multiple
instances running.

Figure 4-1 illustrates a typical configuration in which Oracle Parallel Server is
enabled with three instances on separate nodes accessing the database.

4-2 Oracle8 Parallel Server Concepts & Administration

Enabling and Disabling Parallel Server

Figure 4-1 Shared Mode Sharing Disks

High-speed bus

Node 1 Node 2 Node 3
Instance X Instance Y Instance Z
SGA and SGA and SGA and
Background Background Background
processes processes processes
Redo Redo
Log Log
Files Files

Control
Files
&
Data
Files

Shared Disks

Note: Each instance can access the redo log files of the other instances.

See Also: "Enabling Parallel Server and Starting Instances” on page 18-12

How Oracle Implements Parallel Processing 4-3

Synchronization

Synchronization

Inter-node synchronization is an issue that does not need to be addressed in stan-
dard Oracle. But with Oracle Parallel Server you must have a broad understanding
of the dimensions in which synchronization must occur. Some of these include:

« Block Level Locking

« Row Level Locking

« Space Management

« System Change Number

In Oracle Parallel Server exclusive mode, all synchronization is done within the
instance. In shared mode, synchronization is accomplished with the help of the Inte-
grated Distributed Lock Manager component.

Block Level Locking

Block access between instances is done on a per-block level. When certain blocks
are locked by an instance, other instances are not permitted to access them. Every
time Oracle tries to read a block from the database it needs to get an instance lock.
Ownership of the lock is thus assigned to the instance.

Since Oracle Parallel Server runs in an environment having multiple memories,
there can be multiple copies of the same data block in the multiple memories. Inter-
node synchronization using the Integrated DLM is used to ensure that all copies of
the block are valid: these block-level locks are the buffer cache locks.

Block level locking occurs only when parallel server is enabled. It is transparent to
the user and to the application. (Row level locking also operates, whether parallel
server is enabled or disabled.)

See Also: Chapter 9, “Parallel Cache Management Instance Locks”

Row Level Locking

Oracle Parallel Server provides row level locking in addition to block level locking
in the buffer cache. In fact, row level locks are stored within the block.

Consider the following example. Instance 1 reads file 2, block 10 in order to update
row 1. Instance 2 also reads file 2, block 10, in order to update row 2. Here, instance
1 obtains an instance lock on block 10, then locks and updates row 1. (The row lock
is implicit because of the UPDATE statement.)

4-4 Oracle8 Parallel Server Concepts & Administration

Synchronization

Instance 2 will then force instance 1 to write the updated block to disk, and instance
1 will give up ownership of the lock on block 10 so that instance 2 can have owner-
ship of it. Instance 2 will then lock row 2 and perform its own UPDATE.

Space Management

Free lists and free list groups are used to optimize space management in Oracle Par-
allel Server.

The problem of allocating space for inserts illustrates space management issues.
When a table uses more space, how can you make sure that no one else uses the
same space? How can you make sure that two nodes are not inserting into the same
space on the same disk, in the same file?

Consider the following example. Instance 1 reads file 2, block 10 in order to insert a
row. Instance 2 reads file 3, block 20, in order to insert another row. Each instance
proceeds to insert rows as needed. If one particular block were responsible for
assigning enough space for all these inserts, that block would constantly ping
between the instances. Instance 1 would lose ownership of the block when instance
2 needs to make an insert, and so forth. The situation would involve a great deal of
contention, and performance would suffer.

By contrast, free list groups make good space management possible. If two

instances are inserting into the same object (such as a table), but each instance has
its own set of free lists for that object, then contention for a single block would be
avoided. Each instance would insert into a different block belonging to the object.

System Change Number

In standard Oracle, the system change number (SCN) is maintained and incre-
mented in the SGA by an exclusive mode instance. In Oracle Parallel Server shared
mode, the SCN must be maintained globally. Its implementation may vary from
platform to platform. The SCN may be handled by the Integrated DLM, by the
Lamport SCN scheme, or by using a hardware clock or dedicated SCN server.

See Also: Your Oracle system-specific documentation.
"Lamport SCN Generation" on page 4-7
"System Change Number (SC)" on page 10-4

How Oracle Implements Parallel Processing 4-5

High Performance Features

High Performance Features

A parallel server takes advantage of systems of linked processors sharing resources
without sacrificing any transaction processing features of Oracle. The following sec-
tions discuss in more detail certain features that optimize performance on the Ora-
cle Parallel Server.

« Fast Commits, Group Commits, and Deferred Writes
« Row Locking and Multiversion Read Consistency

« Online Backup and Archiving

« Sequence Number Generators

« Lamport SCN Generation

» Free Lists

« Free List Groups

« Disk Affinity

Within a single instance, Oracle uses a buffer cache in memory to reduce the
amount of disk 1/0 necessary for database operations. Since each node in the paral-
lel server has its own memory that is not shared with other nodes, Oracle Parallel
Server must coordinate the buffer caches of different nodes while minimizing addi-
tional disk 1/0 that could reduce performance. The Oracle parallel cache manage-
ment technology maintains the high-performance features of Oracle while
coordinating multiple buffer caches.

See Also: Oracle8 Concepts for further information about each of these high-perfor-
mance features.

Fast Commits, Group Commits, and Deferred Writes

Fast commits, group commits, and deferred writes operate on a per-instance basis
in Oracle and work the same whether in exclusive or shared mode.

Oracle only reads data blocks from disk if they are not already in the buffer cache
of the instance that needs the data. Because data block writes are deferred, they
often contain modifications from multiple transactions.

Optimally, Oracle writes modified data blocks to disk only when necessary:

« when the blocks have not been used recently and new data requires buffer
cache space (in shared or exclusive mode)

« during checkpoints (shared or exclusive mode)

4-6 Oracle8 Parallel Server Concepts & Administration

High Performance Features

« when another instance needs the blocks (only in shared mode)

Oracle may also perform unnecessary writes to disk caused by forced reads or
forced writes.

See Also: "How to Detect False Pinging" on page 15-16

Row Locking and Multiversion Read Consistency

The Oracle row locking feature allows multiple transactions on separate nodes to
lock and update different rows of the same data block, without any of the transac-
tions waiting for the others to commit. If a row has been modified but not yet com-
mitted, the original row values are available to all instances for read access (this is
called multiversion read consistency).

Online Backup and Archiving

A parallel server supports all of the backup features of Oracle in exclusive mode,
including both online and offline backups of either an entire database or individual
tablespaces.

If you operate Oracle in ARCHIVELOG mode, online redo log files are archived
before they can be overwritten. In a parallel server, each instance can automatically
archive its own redo log files or one or more instances can archive the redo log files
manually for all instances.

In ARCHIVELOG mode, you can make both online and offline backups. If you
operate Oracle in NOARCHIVELOG mode, you can only make offline backups.
Operating production databases in ARCHIVELOG mode is strongly recommended.

Sequence Number Generators

A parallel server allows users on multiple instances to generate unique sequence
numbers with minimal cooperation or contention among instances.

The sequence number generator allows multiple instances to access and increment
a sequence without contention among instances for sequence numbers and without
waiting for any transactions to commit. Each instance can have its own sequence
cache for faster access to sequence numbers. Integrated DLM locks coordinate
sequences across instances in a parallel server.

Lamport SCN Generation

The System Change Number (SCN) is a logical time stamp Oracle uses to order
events within a single instance, and across all instances. For example, Oracle

How Oracle Implements Parallel Processing 4-7

High Performance Features

assigns an SCN to each transaction. Conceptually, there is a global serial point that
generates SCNs. In practice, however, SCNs can be read and generated in parallel.
One of the SCN generation schemes is called the Lamport SCN generation scheme.

The Lamport SCN generation scheme is fast and scalable because it can generate
SCNs in parallel on all instances. In this scheme, all messages across instances,
including lock messages, piggyback SCNs. These piggybacked SCNs propagate
causalities within Oracle. As long as causalities are respected in this way, multiple
instances can generate SCNs in parallel, with no need for extra communication
among these instances.

On most platforms, Oracle uses the Lamport SCN generation scheme when the
MAX_COMMIT_PROPAGATION_DELAY is larger than a platform-specific thresh-
old (typically 7 seconds). You can examine the alert log after an instance is started
to see whether the Lamport SCN generation scheme has been picked.

See Also: Your Oracle system-specific documentation.

Free Lists

Standard Oracle can use multiple use free lists as a way to reduce contention on
blocks. A free list is a list of data blocks, located in extents, that contain free space.
These data blocks are used when inserts or updates are made to a database object
such as a table or a cluster. No contention among instances occurs when different
instances’ transactions insert data into the same table. This is achieved by locating
free space for the new rows using free space lists that are associated with one or
more instances. The free list may be from a common pool of blocks, or multiple free
lists may be partitioned so that specific extents in files are allocated to objects.

With a single free list, when multiple inserts are taking place, single threading
occurs as these processes try to allocate space from the free list. The advantage of
using multiple free lists is that it allows processes to search a specific pool of blocks
when space is heeded, thus reducing contention among users for free space.

See Also: Chapter 11, “Space Management and Free List Groups”

Free List Groups

Oracle Parallel Server can use free list groups to eliminate contention between
instances for access to a single block containing free lists.

Even if multiple free lists reside in a single block, on Oracle Parallel Server the
block containing the free lists would have forced reads/writes between all the
instances all the time. To avoid this problem, free lists can be grouped, with one
group assigned to each instance. Each instance then has its own block containing

4-8 Oracle8 Parallel Server Concepts & Administration

High Performance Features

free lists. Since each instance uses its own free lists, there is no contention between
instances to access the same block containing free lists.

See Also: Chapter 17, “Using Free List Groups to Partition Data” regarding proper
use of free lists to achieve optimal performance in an Oracle Parallel Server environ-
ment.

"Backing Up the Database" on page 21-12

Disk Affinity

Disk affinity determines on which instances or processes to perform a parallelized
DML or query operation. Affinity is especially important for parallel DML when
running in Oracle Parallel Server configurations. Affinity information which per-
sists across statements can improve the buffer cache hit ratio and reduce forced
reads/writes on blocks between instances.

The granularity of parallelism for most PDML operations is by partition. For paral-
lel query, granularity is by rowid. Parallel DML operations need a partition-to-
instance mapping to implement affinity. The segment header of the partition is
used to determine the affinity of the partition for MPPs. Better performance is
achieved by having nodes mainly access local devices, with a better buffer cache hit
ratio for every node.

For other Oracle Parallel Server configurations, a deterministic mapping of parti-
tions to instances is used. Partition-to-instance affinity information is used to deter-
mine slave allocation and work assignment for all OPS/MPP configurations.

See Also: Parallel Data Manipulation Language (parallel DML) and degree of paral-
lelism are discussed at length in Oracle8 Concepts. For a discussion of PDML tuning
and optimizer hints, please see Oracle8 Tuning.

Client-Side Application Failover

Application failover enables the application to automatically reconnect to the data-
base if the connection is broken. Any active transaction will be rolled back, but the
new database connection will otherwise be identical to the original one. This is true
regardless of whether the connection was lost because the instance died or for some
other reason.

With application failover, a client sees no loss of connection as long as there is one
instance left serving the application. The DBA controls which applications run on
particular instances, and creates a failover order for each application.

See Also: "Client-side Application Failover" on page 22-2

How Oracle Implements Parallel Processing 4-9

Cache Coherency

Cache Coherency

Cache coherency is the technique of keeping multiple copies of an object consistent.
This section describes:

« Parallel Cache Management Issues

« Non-PCM Cache Management Issues

Parallel Cache Management Issues

With the Oracle Parallel Server option, separate Oracle instances run simulta-
neously on one or more nodes using a technology called parallel cache management.

Parallel cache management uses Integrated Distributed Lock Manager locks to coordinate
access to resources required by the instances of a parallel server. Rollback seg-
ments, dictionary entries, and data blocks are some examples of database resources.
The most often required database resources are data blocks.

Cache coherency is provided by the Parallel Cache Manager for the buffer caches of
instances located on separate nodes. The set of global constant (GC_*) initialization
parameters associated with PCM buffer cache locks are not used with the dictio-
nary cache, library cache, and so on.

The Parallel Cache Manager ensures that a master copy data block in an SGA has
identical copies in other SGAs that require a copy of the master. Thus, the most
recent copy of the block in all SGAs contains all changes made to that block by all
instances in the system, regardless of whether any of the transactions on those
instances have committed.

If a data block is modified in one buffer cache, then all existing copies in other
buffer caches are no longer current. New copies can be obtained after the modifica-
tion operation completes.

Parallel cache management enforces cache coherency while minimizing 170 and
use of the Integrated DLM. 1/0 and lock operations for cache coherency are only
done when the current version of a data block is in one instance’s buffer cache and
another instance requests that block for update.

Multiple transactions running on a single instance of a parallel server can share
access to a set of data blocks without additional instance lock operations, as long as
the blocks are not needed by transactions running on other instances.

In shared mode, the Integrated Distributed Lock Manager maintains the status of
instance locks. In exclusive mode, all locks are local and the IDLM is not used to
coordinate database resources.

4-10 Oracle8 Parallel Server Concepts & Administration

Cache Coherency

Instances use instance locks simply to indicate the ownership of a master copy of a
resource. When an instance becomes the owner of a master copy of a database
resource, it also inherently becomes the owner of the instance lock covering the
resource, with fixed locking. (Releasable locks are, of course, released.) A master
copy indicates that it is an updatable copy of the resource. The instance only dis-
owns the instance lock when another instance requests the resource for update.
Once another instance owns the master copy of the resource, it becomes the owner
of the instance lock.

Attention: Transactions and parallel cache management are autonomous mecha-
nisms in Oracle. PCM locks function independently of any form of transaction lock.

Example Consider the following example and the illustrations in Figure 4-2. (This
example assumes that one PCM lock covers one block--although many blocks
could be covered.)

« Instance X becomes the owner of the PCM lock covering data block n contain-
ing row 1 and updates the row.

« Instance Y requests the block to update row 4.
« Instance X writes the data block to disk and releases the PCM lock.

« Instance Y becomes the owner of the block and the PCM lock, and then
updates row 4.

« Instance X requests the block to update row 7.

« Instance Y writes the data block to disk and releases the block and the PCM
lock.

« Instance X becomes the owner of the block and PCM lock and updates row 7.

« Instance X commits its transaction and still owns the PCM lock and the master
copy of the block until another instance requests the block.

See Also: "How Buffer State and Lock Mode Change" on page 9-11

How Oracle Implements Parallel Processing 4-11

Cache Coherency

Figure 4-2 Multiple Instances Updating the Same Data Block

Time 0

Node 1

Instance X
SGA Buffer Cache

Data Block n
|

PCM
Lock

Time 1

Node 1

Instance X
SGA Buffer Cache

Data Block n
|

Time 2

Node 1

Instance X
SGA Buffer Cache

Data Block n

PCM
Lock

Data Block n

Data Block n
]

Data Block n

=

4-12 Oracle8 Parallel Server Concepts & Administration

Node 2

Instance Y
SGA Buffer Cache

Node 2

Instance Y
SGA Buffer Cache

Lock

Node 2

Instance Y
SGA Buffer Cache

Data Block n

Cache Coherency

Independence of PCM Locks and Row Locks

PCM locks and row locks operate independently of each other. An instance can dis-
own a PCM lock without affecting row locks held in the set of blocks covered by
the PCM lock. A row lock is acquired during a transaction. A database resource,
such as a data block, acquires a PCM lock when it is read for update by an instance.
During a transaction, a PCM lock can therefore be disowned and owned many
times if the blocks are needed in other instances.

In contrast, transactions do not release row locks until changes to the rows are
either committed or rolled back. Oracle uses internal mechanisms for concurrency
control to isolate transactions, so that modifications to data made by one transac-
tion are not visible to other transactions until the transaction modifying the data
commits. The row lock concurrency control mechanisms are independent of paral-
lel cache management: concurrency control does not require PCM locks, and PCM
lock operations do not depend on individual transactions committing or rolling
back.

Instance Lock Modes

An instance can acquire the instance lock that covers a set of data blocks in either
shared or exclusive mode, depending on the type of access required.

« Exclusive lock mode allows the instance to update a set of blocks.

If one instance needs to update a data block and a second instance already
holds the instance lock that covers the block, the first instance uses the IDLM
lock to request that the second instance disown the instance lock, writing the
block(s) to disk if necessary.

« Read lock mode only allows the instance to read blocks.

Multiple instances can own an instance lock as long as they only need to read,
not modify, the blocks covered by that instance lock. Thus, all instances can be
sure that their memory-resident copy of the block is a current copy, or that they
can read the current copy from disk without any instance lock operations to
request the block from another instance. This means that instances do not have
to disown instance locks for the portion of a database accessed for read-only
use, which may be a substantial portion of the time in many applications.

= Null lock mode allows instances to keep a lock without any permissions on the
block(s).

This mode is used so that locks need not be continually obtained and released—
locks are just converted from one mode to another.

How Oracle Implements Parallel Processing 4-13

Cache Coherency

See Also: Chapter 15, “Allocating PCM Instance Locks”, for a detailed description
of allocating PCM locks for datafiles.

Non-PCM Cache Management Issues

Oracle Parallel Server ensures that all of the standard Oracle caches are synchro-
nized across the instances. Changing a block on one node, and its ramifications for
the other nodes, is a familiar example of synchronization. Synchronization has
broader implications, however.

Understanding the way that caches are synchronized across instances can help you
to understand the ongoing overhead which affects the performance of your system.
Consider a five-node parallel server in which someone drops a table on one node.
Each of the five dictionary caches has a copy of the definition of that particular
table, thus the node that drops the table from its own dictionary cache must also
flush the other four dictionary caches. It does this automatically through the Inte-
grated DLM. Users on the other nodes will be notified of the change in lock status.

There are big advantages to having each node cache the library and table informa-
tion. Occasionally, a command like DROP TABLE will force other caches to be
flushed, but the brief effect this may have on performance does not diminish the
advantage of having multiple caches.

See Also: "Space Management" on page 4-5
"System Change Number" on page 4-5 for additional examples of non-PCM cache
management issues.

4-14 Oracle8 Parallel Server Concepts & Administration

Oracle Instance Architecture for the Parallel
Server

[Architecture] is music in space, as it were a frozen music...

— Schelling, Philosophie der Kunst

This chapter explains features of Oracle multi-instance architecture which differ
from an Oracle server in exclusive mode.

« Overview

« Characteristics of OPS Multi-instance Architecture
« System Global Area

« Background Processes and LCKn

« Configuration Guidelines for Oracle Parallel Server

Oracle Instance Architecture for the Parallel Server 5-1

Overview

Overview

Each Oracle instance in a parallel server architecture has its own
« system global area (SGA)

« background processes

« ORACLE_SID

« setofredo logs

All instances in a parallel server database share

« the same set of data files

« the same set of control files

The Oracle Parallel Server (OPS) instance contains

« anadditional PCM lock area in its SGA to coordinate the use of shared
resources (also known as lock elements)

« the Integrated Distributed Lock Manager component, an area for global locks
and resources. This area was formerly part of the external distributed lock man-
ager (DLM).

« additional background processes LCKn to coordinate the locking of shared
resources among the multiple instances in a parallel server

« additional background processes LMON and LMDO to manage global locks
and resources

Basic elements of the Oracle Parallel Server are illustrated in Figure 5-1. DBWR pro-
cesses are shown writing data, users reading data.

5-2 Oracle8 Parallel Server Concepts & Administration

Overview

Figure 5-1 Basic Elements of Oracle Parallel Server

Interprocess Communication (IPC)

Instance X Instance Y Instance Z
Variable|| Redo ||Database Variable || Redo || Database Variable || Redo ([Database
Part of Log Buffer Part of Log Buffer Part of Log Buffer
|| SGA || Buffer | Cache |l SGA |[| Buffer || Cache l{| SGA || Buffer || Cache
A A A
v v vV v v v vV v Vv v

v v
[LmoNHLmD][LcK]|[LewR][DBWR]] [LMONHLMD]|[LcK][LewR][DBWR]| [LMONHLMD][LCK][LGWR]||DBWR]

I-—l Users

Users

Data
Files &
Control
Files

See Also: “Memory Structures and Processes” in Oracle8 Concepts.

Oracle Instance Architecture for the Parallel Server 5-3

Characteristics of OPS Multi-instance Architecture

Characteristics of OPS Multi-instance Architecture

Characteristics of an Oracle parallel server can be summarized as follows:
« An Oracle instance can be started on one or more nodes in the network.

« Each instance has a separate System Global Area (SGA) and set of background
processes.

« All instances share the same datafiles and control file.
« Each instance has its own set of redo log files.

Note: The redo logs must be accessible to all instances in case of instance fail-
ure. On some MPP platforms, a redo server exists so that only one set of redo
logs is necessary for the whole OPS system.

« Archived logs are private, but must be accessible to all instances for media
recovery.

« Allinstances can execute transactions concurrently against the same database,
and each instance can have multiple users executing transactions.

« Row level locking is preserved.

A parallel server is administered in the same manner as a non-parallel server,
except that you must connect to a particular instance to perform administration.

Applications that access the database can run on the same nodes as instances of a
parallel server or on separate nodes, using the client-server architecture. A parallel
server can be part of a distributed database system. Distributed transactions access
the data in a remote database in the same manner, regardless of whether the data-
files are owned by an Oracle Server (in exclusive mode) or a parallel server (in
exclusive or shared mode).

Other non-Oracle processes can run on each node of the system, or you can dedi-
cate the entire system or part of the system to Oracle. For example, a parallel server
and its applications might occupy three nodes of a five-node configuration, while
the other two nodes are used for non-Oracle applications.

5-4 Oracle8 Parallel Server Concepts & Administration

Background Processes and LCKn

System Global Area

Each instance of a parallel server has its own System Global Area (SGA). The SGA
includes the following memory structures:

« Dbuffer cache for data blocks

« dictionary cache for data dictionary information

« redo log buffer for redo entries

« shared pool containing the shared SQL and shared PL/SQL areas
« instance lock area (only in a parallel server)

Data sharing between SGAs in a parallel server is controlled by parallel cache man-
agement, which uses parallel cache management (PCM) locks.

A data block can be present in several SGAs at the same time. PCM locks ensure
that the database buffer cache is kept consistent for all the instances. It thus ensures
readability by one instance of changes made by other instances.

Each instance has a shared pool that can only be used by the user applications con-
nected to that instance. If the same SQL statement is submitted by different applica-
tions using the same instance, it is parsed and stored once in that instance’s SGA. If
that same SQL statement is also submitted by an application on a different
instance, then this different instance also parses and stores the statement.

See Also: Chapter 9, “Parallel Cache Management Instance Locks”.

Background Processes and LCK n

Each instance in a parallel server has its own set of background processes, which
are identical to the background processes of a single server in exclusive mode. The
DBWR, LGWR, PMON, and SMON processes are present for every instance; the
optional processes, ARCH, CKPT, Dnnn and RECO, can be enabled by setting the
appropriate initialization parameters. In addition to the standard background pro-
cesses, each instance of a parallel server has at least one lock process, LCKO0. Addi-
tional lock processes can be enabled if necessary.

In OPS the Integrated Distributed Lock Manager also uses the LMON and LMDO
processes. LMON is used to manage instance and process deaths and associated
recovery for the Integrated DLM. In particular, LMON handles the part of recovery
that is associated with the global locks. The LMD processes are used to handle
remote lock requests (those which originate from other instances).

Oracle Instance Architecture for the Parallel Server 5-5

Background Processes and LCKn

The Lock process (LCKn) manages the locks used by an instance and coordinates
requests for those locks by other instances. Additional lock processes, LCK1
through LCK9, are available for systems that require exceptionally high throughput
of instance lock requests. The single lock process per instance, LCKO, is usually suf-
ficient for most systems.

All instances in a parallel server must have the same number of lock processes.
Lock processes use the Integrated DLM to coordinate the buffer caches of the differ-
ent SGAs in a parallel server.

When an instance fails in shared mode, another instance’s SMON detects the fail-
ure and recovers for the failed instance. The lock processes of the instance doing
the recovery clean up any outstanding PCM locks for the failed instance.

All the lock processes for one instance are functionally equivalent. Typically, one
lock process is sufficient. Occasionally, more than one lock process may maximize
throughput of locking requests. Although lock requests are asynchronous, each
request is blocked until the lock process knows if the lock can be granted immedi-
ately. Since multiple lock processes are functionally equivalent, this manual refers
only to the lock process.

See Also: "The LCKn Processes” on page 7-6
"GC_* Initialization Parameters" on page 9-13

5-6 Oracle8 Parallel Server Concepts & Administration

Configuration Guidelines for Oracle Parallel Server

Configuration Guidelines for Oracle Parallel Server

When setting up an Oracle Parallel Server environment, observe the guidelines pre-
sented in Table 5-1:

Table 5-1 Parallel Server Configuration Guidelines

Configuration Issue

Guidelines

\ersion

Links

Initialization parameters

Control files
Data files

Log files

NFS

Archived redo log files

Ensure that the same Oracle version exists on all the nodes.

UNIX soft or hard inks (“aliases”) to executables are not recommended for a
parallel server. If the single node containing the executables fails, none of the
nodes will be able to operate.

Keep in a single file the initialization parameters which should be identical across
all instances in a parallel server. Include this file in the individual initialization files
of the different instances using the IFILE option.

Must be accessible from all instances.
Must be accessible from all instances.

Must be located on the same set of disks as control files and data files. Although
the redo log files are independent per instance, each of the log files must still be
accessible by all the instances so that recovery is provided for.

You can use NFS to enable access to Oracle executables, but not access to
database files or log files. Note that if you are using NFS, the serving node is a sin-
gle point of failure.

Must be accessible from all instances.

Oracle Instance Architecture for the Parallel Server 5-7

Configuration Guidelines for Oracle Parallel Server

5-8 Oracle8 Parallel Server Concepts & Administration

6

Oracle Database Architecture for the
Parallel Server

This chapter describes features of Oracle database architecture that pertain to the
multiple instances of a parallel server.

File Structures
The Data Dictionary
The Sequence Generator

Rollback Segments

Oracle Database Architecture for the Parallel Server 6-1

File Structures

File Structures

Control Files

Datafiles

The following sections describe the features of control files, datafiles, and redo log
files that apply to a parallel server.

=« Control Files
« Datafiles

« Redo Log Files

All instances of a parallel server access the same control files. The control files hold
the values of global constant initialization parameters, such as GC_DB_LOCKS,
some of which must be identical for all instances running concurrently. As each
instance starts up, Oracle compares the global constant initialization values in a
common parameter file (or in parameter files for each instance) with those in the
control file, and generates a message if the values are different.

See Also: Oracle8 Concepts

"Parameters Which Must Be Identical on Multiple Instances" on page 18-10.
"Using a Common Parameter File for Multiple Instances" on page 18-3.
“Initialization Parameters” on page A-18.

All instances of a parallel server access the same datafiles. Database files are the
same for Oracle in parallel mode as for Oracle in exclusive mode. You do not have
to change the datafiles to start Oracle in exclusive or parallel mode.

To improve performance, you can control the physical placement of data so that the
various instances use disjoint sets of data blocks. Free lists, for example, enable you
to allocate space for inserts to particular instances.

Whenever an instance starts up, it verifies access to all online datafiles. The first
instance to start up in a parallel server must verify access to all online files so that it
can determine if media recovery is required. Additional instances can operate with-
out access to all of the online datafiles, but any attempt to use an unverified file
fails and a message is generated.

When an instance adds a datafile or brings an offline datafile online, all instances
verify access to the file. If an instance adds a new datafile on a disk that other
instances cannot access, verification fails, but the instances continue running. Verifi-
cation can also fail if instances access different copies of the same datafile.

6-2 Oracle8 Parallel Server Concepts & Administration

File Structures

Redo Log Files

If verification fails for any instance, you need to diagnose and fix the problem, then
use the ALTER SYSTEM CHECK DATAFILES statement to verify access. This state-
ment has a GLOBAL option (the default), which makes all instances verify access to
the online datafiles, and a LOCAL option, which makes the current instance verify
access.

ALTER SYSTEM CHECK DATAFILES makes the online datafiles available to the
instance or instances for which access is verified.

Oracle cannot recover from instance failure or media failure unless the instance that
performs recovery can verify access to all of the required online datafiles.

Oracle automatically maps absolute file numbers to relative file numbers. Use of a
parallel server does not affect these values. Query the VSDATAFILE view to see
both numbers for your datafiles.

See Also: Chapter 17, “Using Free List Groups to Partition Data”.

"Access to Datafiles for Instance Recovery" on page 22-13.

"Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile" on page 15-7.
For more information about relative file numbers, see Oracle8 Concepts.

In a parallel server, each instance writes to its own set of online redo log files. The
redo written by a single instance is called a thread of redo. Each online redo log file
is associated with a particular thread number. When an online redo log is archived,
its thread number is recorded to identify it during recovery.

A private thread is a redo log created using the ALTER DATABASE ADD LOGFILE
command with the THREAD clause. A public thread is a redo log created using the
ALTER DATABASE ADD LOGFILE, but no THREAD clause is specified.

If the THREAD initialization parameter is specified, the instance starting up
acquires the thread identified by that value as a private thread. If THREAD is the
default of zero, the instance acquires a public thread. Once acquired, a redo thread
is used exclusively by the acquiring instance.

Online redo log files can be multiplexed (or “mirrored”). A multiplexed redo log
consists of two or more groups of files, and all members of a group are written to
concurrently when that group is active. Figure 6—1 shows the threads of redo for
three instances of a parallel server.

Oracle Database Architecture for the Parallel Server 6-3

File Structures

Figure 6-1 Threads of Redo

Instance X Instance Y Instance Z

._I

0—(0

K& ia ia

Group
8
Thread 1 Thread 2 Thread 3
mirrored mirrored not mirrored
2 members per group 3 members per group

« Instance X uses thread 1, which contains three groups of online redo log files
(groups 1, 2, and 3). Thread 1 is multiplexed, that is, each group has two copies
(members) of the redo log file.

« Instance Y uses thread 2, which contains two groups of online redo log files
(groups 4 and 5). Thread 2 is multiplexed, with three members per group.

« Instance Z uses thread 3, which contains three groups of online redo log files
(groups 6, 7, and 8) that are not multiplexed.

6-4 Oracle8 Parallel Server Concepts & Administration

File Structures

Group numbers must be unique within the database, but the order of assigning
groups to instances is arbitrary. For example, although in Figure 6-1 thread 1 con-
tains groups 1, 2, and 3 while thread 2 contains groups 4 and 5, you could instead
assign groups 2, 4, and 5 to thread 1 while assigning groups 1 and 3 to thread 2.
The V$LOGFILE view displays the group number associated with each redo log
file.

Although it is possible to have different numbers of groups and members per
thread, Oracle Corporation recommends that all threads be configured to a com-
mon standard.

Different instances of a parallel server can have different degrees of mirroring (dif-
ferent numbers of members per group), and can also have different numbers of
groups. For example, one instance could have three groups with two members per
group, a second instance could have four log files that are not multiplexed, and a
third instance could have two groups with four members per group. While such a
configuration may be inconvenient to administer, it may be necessary in order to
realize the full potential of the system.

Each instance must have at least two groups of online redo log files. When the cur-
rent group fills, an instance begins writing to the next log file group. At a log
switch, information is written to the control file that can be used to identify the
filled group and its thread number after it has been archived.

The number of redo log files about which the control file can keep information is
limited by the value of the MAXLOGHISTORY option of the CREATE DATABASE
statement. Note that only one member per group is needed. MAXLOGHISTORY
can be extremely useful for sites with very demanding availability requirements.
This option can assist you in administration of recovery, especially when there are
many instances and many log files.

Attention: In Oracle Parallel Server, you should set the value of MAXLOGHIS-
TORY higher than in single instance Oracle, because in OPS the history of multiple
redo log files must be tracked.

See Also: “Recovery Structures” in Oracle8 Concepts for a full description of multi-
plexed redo log files.

"Archiving the Redo Log Files" on page 21-2.

"Checkpoints and Log Switches" on page 21-8.

"Recovery from Media Failure" on page 22-15.

Oracle Database Architecture for the Parallel Server 6-5

The Data Dictionary

The Data Dictionary

Each instance of a parallel server has a dictionary cache (row cache) containing
data dictionary information in its SGA. The data dictionary structure is the same
for Oracle instances in parallel mode as for an instance in exclusive mode. Instance
locks coordinate the data dictionary activity of multiple instances.

The Sequence Generator
This section describes the CREATE SEQUENCE statement and its options.

« The CREATE SEQUENCE Statement
« The CACHE Option
« The ORDER Option

The CREATE SEQUENCE Statement

The SQL statement CREATE SEQUENCE establishes a database object from which
multiple users can generate unique integers without waiting for other users to com-
mit transactions that access the same sequence number generator.

A parallel server allows users on multiple instances to generate unique sequence
numbers with minimal cooperation or contention among instances. Instances locks
coordinate sequences across instances in a parallel server.

Sequence numbers are always unique, unless you use the CYCLE option. However,
sequence numbers may be assigned out of order if you use the CACHE option with-
out the ORDER option, as described in the following section.

See Also: Oracle8 SQL Reference.

6-6 Oracle8 Parallel Server Concepts & Administration

The Sequence Generator

The CACHE Option

The CACHE option of CREATE SEQUENCE pre-allocates sequence numbers so
that they may be kept in an instance’s SGA for faster access. You can specify the
number of sequence numbers cached as an argument to the CACHE option; the
default value is 20.

Caching sequence numbers significantly improves performance but can cause the
loss of some numbers in the sequence. Losing sequence numbers is unimportant in
some applications, such as when sequences are used to generate unique numbers
for primary keys.

A cache for a given sequence is populated at the first request for a number from
that sequence. After the last number in that cached set of numbers is assigned, the
cache is repopulated.

Each instance keeps its own cache of sequence numbers in memory. When an
instance shuts down, cached sequence values that have not been used in commit-
ted DML statements can be lost. The potential number of lost values can be as great
as the value of the CACHE option times the number of instances shutting down.
Cached sequence numbers can be lost even when an instance shuts down normally.

The initialization parameter SEQUENCE_CACHE_ENTRIES determines the num-
ber of sequences that can be cached in the SGA for a given instance. For highest
concurrency, set SEQUENCE_CACHE_ENTRIES to the highest possible number of
cached sequences that an instance uses at one time.

The ORDER Option

The ORDER option of CREATE SEQUENCE guarantees that sequence numbers are
generated in the order of the requests. You can use the ORDER option for times-
tamp numbers and other sequences that must indicate the request order across mul-
tiple processes and instances.

If you do not require sequence numbers to be issued in order, the NOORDER
option of CREATE SEQUENCE can significantly reduce overhead in a parallel
server environment.

Attention: Oracle Parallel Server does not support the CACHE option with the
ORDER option of CREATE SEQUENCE when the database is mounted in parallel
mode. Oracle cannot guarantee an order if each instance has some sequence values
cached. Therefore, if you should create sequences with both the CACHE and
ORDER options, they will be ordered but not cached.

Oracle Database Architecture for the Parallel Server 6-7

Rollback Segments

Rollback Segments

This section describes rollback segments as they relate to Oracle Parallel Server.
« Rollback Segments on a Parallel Server

« Parameters Which Control Rollback Segments

» Public and Private Rollback Segments

« How Instances Acquire Rollback Segments

Rollback Segments on a Parallel Server

Rollback segments contain information required for read consistency and to undo
changes made by transactions that roll back or abort. Each instance in a parallel
server shares use of the SYSTEM rollback segment and requires at least one dedi-
cated rollback segment.

Both private and public rollback segments are acquired at instance startup and
used exclusively by the acquiring instance until taken offline or at the acquiring
instance shutdown. Private rollback segments are unique to a particular instance
and cannot be used by any other instance. A public rollback segment is offline and
not used by any instance until an instance that needs an extra rollback segment
starts up, acquires it, and brings it online; once online, a public rollback is used
exclusively by the acquiring instance.

Only one instance writes to a given rollback segment (except for the SYSTEM roll-
back segment), but other instances can read from it to create read-consistent snap-
shots or to perform instance recovery.

A parallel server needs at least as many rollback segments as the maximum num-
ber of concurrent instances plus one (SYSTEM). An instance cannot start unless it
has exclusive access to at least one rollback segment, whether it is public or private.

You can create new rollback segments in any tablespace. To reduce contention
between rollback data and table data, you can partition your rollback segments in a
separate tablespace. This also facilitates taking tablespaces offline, because a
tablespace cannot be taken offline if it contains an active rollback segment.

In general, you should make all extents for rollback segments the same size by spec-
ifying identical values for the storage parameters INITIAL and NEXT.

The data dictionary view DBA_ROLLBACK_SEGS shows each rollback segment’s
name, segment ID number, and owner (PUBLIC or other).

6-8 Oracle8 Parallel Server Concepts & Administration

Rollback Segments

See Also: "Creating Additional Rollback Segments" on page 14-5 for information
about the rollback segments that are required when you create a database.

Oracle8 Administrator’s Guide for information about contention for a rollback seg-
ment and the performance implications of adding rollback segments.

Parameters Which Control Rollback Segments
The following initialization parameters control the use of rollback segments:

ROLLBACK_SEGMENTS specifies the names of rollback segments that the
instance acquires at startup

GC_ROLLBACK _LOCKS reserves additional instance locks to reduce conten-
tion for blocks that contain rollback entries. In par-
ticular, it reserves instance locks for deferred
rollback segments, which contain rollback entries
for transactions in tablespaces that were taken
offline.

See Also: "Monitoring Rollback Segments" on page 14-6
“Data Blocks, Extents, and Segments” in Oracle8 Concepts

Oracle Database Architecture for the Parallel Server 6-9

Rollback Segments

Public and Private Rollback Segments

There are no performance differences between public and private rollback seg-
ments. However, private rollback segments provide more control over the match-
ing of instances with rollback segments, allowing you to locate the rollback
segments for different instances on different disks to improve performance. You
can therefore use private rollback segments to reduce disk contention in a high-per-
formance system.

Public rollback segments form a pool of rollback segments that can be acquired by
any instance needing an additional rollback segment. Using public rollback seg-
ments can be disadvantageous when instances are shutdown and started up at the
same time. For example, instance X shuts down and releases public rollback seg-
ments. Instance Y starts up and acquires the released rollback segments. Instance X
starts up and cannot acquire its original rollback segments.

By default a rollback segment is private and is used by the instance specifying it in
the parameter file. Private rollback segments are specified using the parameter
ROLLBACK_SEGMENTS.

Once a public rollback segment is acquired by an instance, it is then used exclu-
sively by that instance.

Once created, both public and private rollback segments can be brought online
using the ALTER ROLLBACK SEGMENT command.

Note: An instance needs at least one rollback segment or it will not be able to start
up.

6-10 Oracle8 Parallel Server Concepts & Administration

Rollback Segments

How Instances Acquire Rollback Segments

When an instance starts up, it uses the TRANSACTIONS and
TRANSACTIONS _PER_ROLLBACK initialization parameters to determine how
many rollback segments to acquire, as follows:

TRANSACTIONS
TRANSACTIONS_PER_ROLLBACK

= total_rollback_segments_required

The total_rollback_segments_required number is rounded up.

At startup, an instance attempts to acquire rollback segments as follows.

An instance first acquires any private rollback segments specified by the
ROLLBACK_SEGMENTS initialization parameter. If this
total_private_rollback_segments number is more than the
total_rollback_segments_required, then no further action is taken to acquire roll-
back segments.

If no private rollback segments are specified in the initialization file, the
instance attempts to acquire public rollback segments.

If the total_private_rollback segments falls short of the
total_rollback_segments_required, then the instance attempts to make up the dif-
ference by acquiring public rollback segments.

If only one private rollback segment is specified and acquired, or one public
rollback segment is acquired, the instance will start up, even if one rollback seg-
ment is below the total_rollback _segments_ required, in which case Oracle gener-
ates a message.

If a private rollback segment cannot be brought online at instance startup, the
startup fails and Oracle generates a message.

See Also: "Monitoring Rollback Segments" on page 14-6
Oracle8 SQL Reference

Oracle Database Architecture for the Parallel Server 6-11

Rollback Segments

6-12 Oracle8 Parallel Server Concepts & Administration

v

Overview of Locking Mechanisms

This chapter provides an overview of the locking mechanisms that are internal to
the parallel server. The chapter is organized as follows:

« Differentiating Oracle Locking Mechanisms
« Cost of Locks
« Oracle Lock Names

» Coordination of Locking Mechanisms by the Integrated DLM

Overview of Locking Mechanisms 7-1

Differentiating Oracle Locking Mechanisms

Differentiating Oracle Locking Mechanisms

Overview

This section covers the following topics:
« Overview

« Local Locks

= Instance Locks

« The LCKn Processes

« The LMON and LMDO Processes

You must understand locking mechanisms if you are to effectively harness parallel
processing and parallel database capabilities. You can influence each kind of lock-
ing through the way you set initialization parameters, administer the system, and
design applications. If you do not use locks effectively, your system may spend so
much time synchronizing shared resources that no speedup and no scaleup is
achieved; your parallel system could even suffer performance degradation com-
pared to a single instance system.

Locks are used for two main purposes in Oracle Parallel Server:
« to provide transaction isolation
« to provide cache coherency

Transaction locks are used to implement row level locking for transaction consis-
tency. Row level locking is supported in both single instance Oracle and Oracle Par-
allel Server.

Instance locks (also commonly known as distributed locks) guarantee cache coherency.
They ensure that data and other resources distributed among multiple instances
belonging to the same database remain consistent. Instance locks include PCM and
non-PCM locks.

See Also: Oracle8 Concepts for a detailed treatment of Oracle locks.
Chapter 8, “Integrated Distributed Lock Manager: Access to Resources” for more
information.

7-2 Oracle8 Parallel Server Concepts & Administration

Differentiating Oracle Locking Mechanisms

Local Locks

Figure 7-1 shows latches and enqueues: locking mechanisms which are synchro-
nized within a single instance. These are used in Oracle with or without the Parallel
Server Option, and whether parallel server is enabled or disabled.

Figure 7-1 Locking Mechanisms: Oracle and OPS Disabled

Instance Locks: Synchronized between instances

Non-PCM Locks

Mount lock (OPS exclusive)*

Local Locks: Synchronized within the instance

Local Enqueues TX/DMI/SCN/and so on

Local Latches

* The mount lock is obtained if the Parallel Server Option has been linked in to
your Oracle executable.

Latches

Latches are simple, low level serialization mechanisms to protect in-memory data
structures in the SGA. Latches do not protect datafiles. They are entirely automatic,
are held for a very short time, and can only be held in exclusive mode. Being local
to the node, internal locks and latches do not provide internode synchronization.

Enqueues

Enqueues are shared memory structures which serialize access to resources in the
database. These locks can be local to one instance or global to a database. They are
associated with a session or transaction, and can be in any mode: shared, exclusive,
protected read, protected write, concurrent read, concurrent write, or null.

Enqueues are held longer than latches, have more granularity and more modes,
and protect more resources in the database. For example, if you request a table lock
(a DML lock) you will receive an enqueue.

Overview of Locking Mechanisms 7-3

Differentiating Oracle Locking Mechanisms

Instance Locks

Certain enqueues are local to a single instance, when parallel server is disabled. But
when parallel server is enabled, those enqueues can no longer be managed on the
instance level: they need to be maintained on a system-wide level, managed by the
Integrated Distributed Lock Manager (IDLM).

When parallel server is enabled, most of the local enqueues become global
enqueues. This is reflected in Figure 7-1 and Figure 7-2. They will all appear as
enqueues in the fixed tables—no distinction is made there between local and global
enqueues. Global enqueues are handled in a distributed fashion.

Note: Transaction locks are simply a subset of enqueues.

Figure 7-2 illustrates the instance locks that come into play when Oracle Parallel
Server is enabled. In OPS implementations, the status of all Oracle locking mecha-
nisms is tracked and coordinated by the Integrated DLM component.

Figure 7-2 Locking Mechanisms: Parallel Server Enabled

Instance Locks: Synchronized between instances

Global Enqueues
PCM Locks
TX
(Hashed implementation
and/or DML/Table locks
Fine—grain DBA lock
implementation) Global Locks
SCN
Mount lock

Local Locks: Synchronized within the instance

Local Enqueues

Local Latches

Instance locks (other than the mount lock) only come into existence if you start an
Oracle instance with parallel server enabled. They synchronize between instances,
communicating the current status of a resource among the instances of an Oracle
Parallel Server.

7-4 Oracle8 Parallel Server Concepts & Administration

Differentiating Oracle Locking Mechanisms

Instance locks are held by background processes of instances, rather than by trans-
actions. An instance owns an instance lock that protects a resource (such as a data
block or data dictionary entry) when the resource enters its SGA.

The Integrated DLM component of Oracle handles locking only for resources
accessed by more than one instance of a Parallel Server, to ensure cache coherency.
The IDLM communicates requests for instance locks and the status of the locks
between the lock processes of each instance. The V3DLM_LOCKS view lists infor-
mation on all locks currently known to the IDLM.

Instance locks are of two types: parallel cache management (PCM) locks and non-
PCM locks.

PCM Locks

Parallel cache management locks are instance locks that cover one or more data
blocks (table or index blocks) in the buffer cache. PCM locks do not lock any rows
on behalf of transactions. PCM locks are implemented in two ways:

hashed locking This is the default implementation, in which PCM
locks are statically assigned to blocks in the datafiles.

fine grain locking In this implementation, PCM locks are assigned to
blocks on a dynamic basis.

With hashed locking, an instance never disowns a PCM lock unless another instance
asks for it. This minimizes the overhead of instance lock operations in systems that
have relatively low contention for resources. With fine grain locking, once the block
is released, the lock is released. (Note that non-PCM locks are disowned.)

Non-PCM Locks

Non-PCM locks of many different kinds control access to data and control files, con-
trol library and dictionary caches, and perform various types of communication
between instances. These locks do not protect datafile blocks. Examples are DML
enqueues (table locks), transaction enqueues, and DDL or dictionary locks. The Sys-
tem Change Number (SCN), and the mount lock are global locks, not enqueues.

Note: The context of Oracle Parallel Server causes most local enqueues to become
global; they can still be seen in the fixed tables and views which show enqueues
(such as V$LOCK). The V$LOCK table does not, however, show instance locks,
such as SCN locks, mount locks, and PCM locks.

Overview of Locking Mechanisms 7-5

Differentiating Oracle Locking Mechanisms

Many More PCM Locks Than Non-PCM Locks

Although PCM locks are typically far more numerous than non-PCM locks, there is
still a substantial enough number of non-PCM locks that you must carefully plan
adequate IDLM capacity for them. Typically 5% to 10% of locks are non-PCM. Non-
PCM locks do not grow in volume the same way that PCM locks do.

The user controls PCM locks in detail by setting initialization parameters to allocate
the number desired. However, the user has almost no control over non-PCM locks.
You can try to eliminate the need for table locks by setting DML_LOCKS =0 or by
using the ALTER TABLE ENABLE/DISABLE TABLE LOCK command, but other
non-PCM locks will still persist.

See Also: Chapter 16, “Ensuring IDLM Capacity for All Resources & Locks”

The LCK n Processes

With the Oracle Parallel Server, up to ten Lock processes (LCKO through LCK9) pro-
vide inter-instance locking.

LCK processes manage most of the locks used by an instance and coordinate
requests for those locks by other instances. LCK processes maintain all of the PCM
locks (hashed or fine grain) and some of the non-PCM locks (such as row cache or
library cache locks). LCKO will handle PCM as well as non-PCM locks. Additional
lock processes, LCK1 through LCKO, are available for systems that require excep-
tionally high throughput of instance lock requests; they will only handle PCM
locks. Multiple LCK processes can improve recovery time and startup time.

Although instance locks are mainly handled by the LCK processes, some instance
locks are directly acquired by other background or shadow foreground processes.
In general, if a background process such as LCK owns an instance lock, it is for the
whole instance. If a foreground process owns an instance lock, it is just for that par-
ticular process. For example, the log writer (LGWR) will get the SCN instance lock,
the database writer (DBWR) will get the media recovery lock. The bulk of all these
locks, however, are handled by the LCK processes.

Attention; Foreground processes obtain transaction locks—LCK processes do not.
Transaction locks are associated with the session/transaction unit, not with the pro-
cess.

See Also: Oracle8 Concepts for more information about the LCKn processes.

7-6 Oracle8 Parallel Server Concepts & Administration

Cost of Locks

The LMON and LMDO Processes

The LMON and LMDO processes implement the global lock management sub-
system of Oracle Parallel Server. LMON performs lock cleanup and lock invalida-
tion after the death of an Oracle shadow process or another Oracle instance. It also
reconfigures and redistributes the global locks as Oracle Parallel Server instances
are started and stopped.

The LMDO process handles remote lock requests for global locks (that is, lock
requests originating from another instance for a lock owned by the current
instance). All messages pertaining to global locks that are directed to an Oracle Par-
allel Server instance are handled by the LMDO process of that instance.

Cost of Locks

To effectively implement locks, you need to carefully evaluate their relative
expense. As a rule of thumb, latches are cheap; local enqueues are more expensive;
instance locks and global enqueues are quite expensive. In general, instance locks
and global enqueues have equivalent performance impact. (When parallel server is
disabled, all enqueues are local; when parallel server is enabled, most are global.)

Table 7-1 dramatizes the relative expense of latches, enqueues, and instance locks.
The elapsed time required per lock will vary by system--the values used in the
“Actual Time Required” column are only examples.

Table 7-1 Comparing the Relative Cost of Locks

Class of Lock Actual Time Required Relative Time Required
Latches 1 microsecond 1 minute

Local Enqueues 1 millisecond 1000 minutes (16 hours)
Instance Locks 1/10 second 100,000 minutes (69 days)

(or Global Enqueues)

Microseconds, milliseconds, and tenths of a second all sound like negligible units
of time. However, if you imagine the cost of locks using grossly exaggerated values
such as those listed in the “Relative Time Required” column, you can grasp the
need to carefully calibrate the use of locks in your system and applications. In a big
OLTP situation, for example, unregulated use of instance locks would be impermis-
sible. Imagine waiting hours or days to complete a transaction in real life!

Stored procedures are available for analyzing the number of PCM locks an applica-
tion will use if it performs particular functions. You can set values for your initial-

Overview of Locking Mechanisms 7-7

Oracle Lock Names

ization parameters and then call the stored procedure to see the projected
expenditure in terms of locks.

See Also: Chapter 15, “Allocating PCM Instance Locks”.
Chapter 16, “Ensuring IDLM Capacity for All Resources & Locks”.

Oracle Lock Names

This section covers the following topics:
« Lock Name Format

« PCM Lock Names

=« Non-PCM Lock Names

Lock Name Format

All Oracle enqueues and instance locks are named using one of the following for-
mats:

type ID1 ID2
or type, ID1, ID2
or type (ID1, ID2)

where

type A two-character type name for the lock type, as described in
the V$LOCK table, and listed in Table 7-2 and Table 7-3.

ID1 The first lock identifier, used by the IDLM. The convention for
this identifier differs from one lock type to another.

ID2 The second lock identifier, used by the IDLM. The convention

for this identifier differs from one lock type to another.
For example, a space management lock might be named ST 1 0. A PCM lock might
be named BL 1 900.

The V$LOCK table contains a list of local and global Oracle enqueues currently
held or requested by the local instance. The “lock name” is actually the name of the
resource; locks are taken out against the resource.

7-8 Oracle8 Parallel Server Concepts & Administration

Oracle Lock Names

PCM Lock Names
All PCM locks are Buffer Cache Management locks.

Table 7-2 PCM Lock Type and Name

Type Lock Name

BL Buffer Cache Management

The syntax of PCM lock names is type ID1 ID2, where

type is always BL (because PCM locks are buffer locks)
ID1 is the block class
ID2 For fixed locks, ID2 is the lock element (LE) index number

obtained by hashing the block address (see the
VSLOCK_ELEMENT fixed view). For releasable locks, ID2 is
the database address of the block.

Sample PCM lock names are:

BL (1, 100) This is a data block with lock element 100.
BL (4, 1000) This is a segment header block with lock element 1000.
BL (27, 1) This is an undo segment header with rollback segment #10.

The formula for the rollback segment is 7 + (10 * 2).

Overview of Locking Mechanisms 7-9

Oracle Lock Names

Non-PCM Lock Names

Non-PCM locks have many different names.

Table 7-3 Non-PCM Lock Types and Names

Type

Lock Name

CF
Cl
DF
DL
DM
DX
FS
KK

L[A-P]

N[A-Z]
QIA-Z]
PF

PR

PS

RT

sC

SM

SN

SQ

Controlfile Transaction
Cross-Instance Call Invocation
Datafile

Direct Loader Index Creation
Database Mount

Distributed Recovery

File Set

Redo Log “Kick”

Instance Number

Instance Recovery

Instance State

Mount Definition

Media Recovery

Library Cache Invalidation
Library Cache Lock

Library Cache Pin

Row Cache

Password File

Process Startup

Parallel Slave Synchronization
Redo Thread

System Commit Number
SMON

Sequence Number

Sequence Number Enqueue

7-10 Oracle8 Parallel Server Concepts & Administration

Oracle Lock Names

Table 7-3 Non-PCM Lock Types and Names

Type Lock Name

SV Sequence Number Value

ST Space Management Transaction

TA Transaction Recovery

™ DML Enqueue

TS Temporary Segment (also Table-Space)
TT Temporary Table

X Transaction

uL User-Defined Locks

UN User Name

WL Begin written Redo Log

XA Instance Registration Attribute Lock
XI Instance Registration Lock

See Also: Oracle8 Reference for descriptions of all these non-PCM locks.

Overview of Locking Mechanisms 7-11

Coordination of Locking Mechanisms by the Integrated DLM

Coordination of Locking Mechanisms by the Integrated DLM

The Integrated DLM component is a distributed resource manager that is internal to
the Oracle Parallel Server. This section explains how the IDLM coordinates locking
mechanisms that are internal to Oracle. Chapter 8, “Integrated Distributed Lock
Manager: Access to Resources” presents a detailed description of IDLM features
and functions.

This section covers the following topics:

« The Integrated DLM Tracks Lock Modes

« The Instance Maps Database Resources to Integrated DLM Resources
« How IDLM Locks and Instance Locks Relate

« The Integrated DLM Provides One Lock Per Instance on a Resource

The Integrated DLM Tracks Lock Modes

In Oracle Parallel Server implementations, the Integrated DLM facility keeps an
inventory of all the Oracle instance locks and global enqueues held against the
resources of your system. It acts as a referee when conflicting lock requests arise.

In Figure 7-3 the IDLM is represented as an inventory sheet listing resources and
the current status of locks on each resource across the parallel server. Locks are rep-
resented as follows: S for shared mode, N for null mode, X for exclusive mode.

Figure 7-3 The Integrated DLM Inventory of Oracle Resources and Locks

Integrated DLM

BL 1, 100 S

BL 1,101 SSSNNN
BL 4, 3000 X

BL 4, 3001 SSS

BL 6, 100 NNN

BL 6, 101 X

BL 8, 3000 X

BL 8, 3001 N

BL 9, 4000 N

7-12 Oracle8 Parallel Server Concepts & Administration

Coordination of Locking Mechanisms by the Integrated DLM

This inventory includes all instances. For example, resource BL 1, 101 is held by
three instances with shared locks and three instances with null locks. Since the
table reflects up to 6 locks on one resource, at least 6 instances are evidently run-
ning on this system.

The Instance Maps Database Resources to Integrated DLM Resources

Oracle database resources are mapped to IDLM resources, with the necessary map-
ping performed by the instance. For example, a hashed lock on an Oracle database
block with a given data block address (such as file 2 block 10) becomes translated

as a BL resource with the class of the block and the lock element number (such as
BL 9 1). The data block address (DBA) is translated from the Oracle resource level

to the IDLM resource level; the hashing function used is dependent on GC_* param-
eter settings. The IDLM resource name identifies the physical resource in views
such as V$LOCK.

Note: For DBA fine grain locking, the database address is used as the second identi-
fier, rather than the lock element number.

Figure 7-4 Database Resource Names Corresponding to IDLM Resource Names

fileid,blockno Instance BlLclass LE
translates
4>
BL 1xy
Database Resource Name LM Resource Name

How IDLM Locks and Instance Locks Relate

Figure 7-5 illustrates the way in which IDLM locks and PCM locks relate. For
instance B to read the value of data at data block address X, it must first check for
locks on that data. The instance translates the block’s database resource name to the
IDLM resource name, and asks the IDLM for a shared lock in order to read the data.

As illustrated in the following conceptual diagram, the IDLM checks all the out-
standing locks on the granted queue and determines that there are already two
shared locks on the resource BL1,441. Since shared locks are compatible with read-
only requests, the IDLM grants a shared lock to Instance B. The instance then pro-
ceeds to query the database to read the data at data block address x. The database
returns the data.

Overview of Locking Mechanisms 7-13

Coordination of Locking Mechanisms by the Integrated DLM

Figure 7-5 The IDLM Checks Status of Locks

Instances Global Lock Space
A BL1,106 S
BL1,532 X
o Check status of locks
>
B |« BL1441| s, S

e Shared lock granted

BL1,302 N

Read request

C
Database
DBAX
D

N/

Note: The global lock space is managed in distributed fashion by the LMDs of all
the instances cooperatively.

If the required block already had an exclusive lock on it by another instance, then
Instance B would have to wait for this to be released. The IDLM would place on the
convert queue the shared lock request from Instance B. The IDLM would notify the
instance when the exclusive lock was removed, and then grant its request for a
shared lock.

The term IDLM lock refers simply to the IDLM’s notations for tracking and coordi-
nating the outstanding locks on a resource.

7-14 Oracle8 Parallel Server Concepts & Administration

Coordination of Locking Mechanisms by the Integrated DLM

The Integrated DLM Provides One Lock Per Instance on a Resource

The IDLM provides one lock per instance on a PCM resource. As illustrated in
Figure 7-6, if you have a four-instance system and require a buffer lock on a single
resource, you will actually end up with four locks—one per instance.

Figure 7-6 Resources Have One Lock Per Instance

Resource

N S

S N

P Instance

P Instance

P Instance P Instance

The number of non-PCM locks may depend on the type of lock.
See Also: Chapter 10, “Non-PCM Instance Locks”

Overview of Locking Mechanisms 7-15

Coordination of Locking Mechanisms by the Integrated DLM

7-16 Oracle8 Parallel Server Concepts & Administration

Integrated Distributed Lock Manager:
Access to Resources

This chapter explains the role of the Integrated Distributed Lock Manager (Inte-
grated DLM, or IDLM) in controlling access to resources in a parallel server. The
chapter is organized as follows:

« What Is the Integrated Distributed Lock Manager?

« The Integrated DLM Grants and Converts Resource Lock Requests
« Integrated DLM Lock Modes: Resource Access Rights

« Integrated DLM Features

Integrated Distributed Lock Manager: Access to Resources 8-1

What Is the Integrated Distributed Lock Manager?

What Is the Integrated Distributed Lock Manager?

The Integrated Distributed Lock Manager component of Oracle8 maintains a list of

system resources and provides locking mechanisms to control allocation and modi-
fication of Oracle resources. IDLM resources are logical concepts, structures of data.
The IDLM does not control access to tables or anything in the database itself. Every

process interested in the database resource protected by the IDLM must open a lock
on the resource.

Oracle Parallel Server uses the IDLM facility to coordinate concurrent access to
resources, such as data blocks and rollback segments, across multiple instances.
The Integrated Distributed Lock Manager facility has replaced the external Distrib-
uted Lock Manager which was used in earlier releases of Oracle.

The Integrated DLM Grants and Converts Resource Lock Requests
« Lock Requests Are Queued
« Asynchronous Traps (ASTs) Communicate Lock Request Status
« Persistent Resources Ensure Efficient Recovery
» Lock Requests Are Converted and Granted

The IDLM coordinates lock requests, ensuring compatibility of access rights to the
resources. In this process the IDLM tracks all lock requests. Requests for available
resources are granted and the access rights granted are tracked. Requests for
resources not currently available are tracked, and access rights are granted when
the resource does become available. The IDLM keeps an inventory of all these lock
requests, and communicates their status to the users and processes involved.

Lock Requests Are Queued
The IDLM maintains two queues for lock requests:

convert queue If a lock request cannot be granted immediately, it is placed in
the convert queue, where waiting lock requests are tracked.

granted queue Lock requests that have been granted are tracked in the
granted queue.

8-2 Oracle8 Parallel Server Concepts & Administration

The Integrated DLM Grants and Converts Resource Lock Requests

Asynchronous Traps (ASTs) Communicate Lock Request Status

To communicate the status of lock requests, the IDLM uses two types of asynchro-
nous traps (ASTs) or interrupts:

acquisition AST When the lock is obtained in the requested mode, an acquisi-
tion AST (a “wakeup call”) is sent to tell the requestor that
the requestor owns the lock.

blocking AST When a process requests a certain mode of lock on a
resource, the IDLM sends a blocking AST to notify processes
which currently own locks on that resource in incompatible
modes. (Shared and exclusive modes, for example, are
incompatible.) Upon notification, owners of locks can relin-
guish them to permit access by the requestor.

Persistent Resources Ensure Efficient Recovery

The term “persistent resource” refers to the ability of a resource to maintain a partic-
ular state if all processes or groups holding a lock on it have died abnormally. This
contrasts with normal resources, which cease to exist when there are no longer any
owners of locks on that resource, regardless of how they exited.

Resource persistence is necessary for fine grain locking. It ensures that the database
resources protected by these locks can be recovered correctly and efficiently.

Note: Not all resource information is kept after failures, only adequate information
to protect resources during recovery.

Lock Requests Are Converted and Granted

The following figures show how the IDLM handles lock requests. In Figure 8-1,
shared lock request #1 has been granted on the resource to process 1, and shared
lock request#2 has been granted to process 2. The locks are tracked in the granted
gueue. When a request for an exclusive lock is made by process 2, it must wait in
the convert queue.

Integrated Distributed Lock Manager: Access to Resources 8-3

The Integrated DLM Grants and Converts Resource Lock Requests

Figure 8-1 The IDLM Granted and Convert Queues

IDLM

Resource

Granted queue | | Convert queue

Shared, process 1
Shared, process 2

Process Process
1 2

As illustrated in Figure 8-2, the IDLM sends a blocking AST to Process 1, the owner
of the shared lock, notifying it that a request for an exclusive lock is waiting. When
the shared lock is relinquished by Process 1, it is converted to a null mode lock, or
released.

8-4 Oracle8 Parallel Server Concepts & Administration

The Integrated DLM Grants and Converts Resource Lock Requests

Figure 8-2 Blocking AST

IDLM
Resource
Granted queue | | Convert queue
| Lockl I | Lock2 I
Shared == Null Shared =¥ Exclusive
l BAST
Process Process
1 2

An acquisition AST is then sent to wake up Process 2, the requestor of the exclusive
lock. The exclusive lock is granted and it is converted to the granted queue. This is
illustrated in Figure 8-3.

Integrated Distributed Lock Manager: Access to Resources 8-5

Integrated DLM Lock Modes: Resource Access Rights

Figure 8-3 Acquisition AST

IDLM

Resource

Granted queue | | Convert queue

Exclusive, process 2
Null, process 1

¢ AAST

Process Process
1 2

Integrated DLM Lock Modes: Resource Access Rights

Locks are used to obtain various rights to a resource. A lock may be initially created
on a resource with no access rights granted. Later, a process will convert a lock to

obtain new access rights.
Figure 8-4 illustrates the levels of access rights or “lock modes” which are available
through the IDLM.

8-6 Oracle8 Parallel Server Concepts & Administration

Integrated DLM Lock Modes: Resource Access Rights

Figure 8—4 IDLM Lock Modes: Levels of Access

Highest level

SSX

SX

Lowest level

SS

NULL

Integrated Distributed Lock Manager: Access to Resources 8-7

Integrated DLM Lock Modes: Resource Access Rights

Table 8—-1 Lock Mode Names

Oracle Mode Summary

Description

NULL Null mode. No lock is
on the resource

SS Sub-shared mode (con-
current read). Read;
there may be writers and
other readers

SX Shared exclusive mode
(concurrent write).
Write; there may be
other readers and writers

S Shared mode (protected
read).
Read; no writers are
allowed

SSX Sub-shared exclusive

mode (protected write).
One writer only; there
may be readers

X Exclusive mode.

Write; no other access is
allowed

Holding a lock at this level conveys no access
rights. Typically, a lock is held at this level to
indicate that a process is interested in a resource,
or it is used as a place holder.

Once created, null locks ensure that the
requestor always has a lock on the resource;
there is no need for the IDLM to be constantly
creating and destroying locks when ongoing
access is needed.

When a lock is held at this level, the associated
resource can be read in an unprotected fashion:
other processes can read and write the associated
resource.

When a lock is held at this level, the associated
resource can be read or written in an unpro-
tected fashion: other processes can both read and
write the resource.

When a lock is held at this level, no process can
write the associated resource. Multiple processes
can read the resource. This is the traditional
shared lock.

In shared mode, any number of users can have
simultaneous read access to the resource. Shared
access is appropriate for read operations.

Only one process can hold a lock at this level.
This allows a process to modify a resource with-
out allowing any other process to modify the
resource at the same time. Other processes can
perform unprotected reads. The traditional
update lock.

When a lock is held at this level, it grants the
holding process exclusive access to the resource.
No other process may read or write the resource.
This is the traditional exclusive lock.

8-8 Oracle8 Parallel Server Concepts & Administration

Integrated DLM Features

Integrated DLM Features

This section describes the following features of the Integrated DLM:
« Distributed Architecture

«» Fault Tolerance

« Lock Mastering

« Deadlock Detection

« Lamport SCN Generation

« Group-owned Locks

« Persistent Resources

« Memory Requirements

« Support for MTS and XA

« Views to Monitor Integrated DLM Statistics

Distributed Architecture

Fault Tolerance

The IDLM maintains a database of resources and locks held on these resources in
different modes. This lock database resides in volatile memory, and is distributed.
The Integrated DLM has a distributed architecture. In the distributed architecture
each node in the cluster (or each Oracle Parallel Server instance of an Oracle data-
base) participates in global lock management and manages a piece of the global
lock database. The lock database is distributed among all the participants. This dis-
tributed lock management scheme provides fault tolerance and enhanced runtime
performance.

The Integrated DLM is fault tolerant: it provides continual service and maintains
the integrity of the lock database in the event of multiple node and Oracle Parallel
Server instance failures. Instance reconfiguration may cause a brief delay. A data-
base is accessible as long as there is at least one OPS instance that is active on that
database after recovery completes. Fault tolerance also enables OPS instances to be
started and stopped at any time, in any order.

Integrated Distributed Lock Manager: Access to Resources 8-9

Integrated DLM Features

Lock Mastering

In a distributed system the IDLM must maintain information about the locks on all
nodes that are interested in a given resource. In this situation, the IDLM usually
nominates one node to manage all relevant information about the resource and its
locks. This is called the master node.

Two methods of lock mastering are currently available:

static hashing The resource name is hashed to one of the Oracle Parallel
Server instances, which acts as the master for this
resource. This scheme results in an even arbitrary distri-
bution of resources across all available nodes. In this
scheme, the directory node is also the master node for a
resource.

dynamic hashing The node that opens the first lock on a resource is nomi-
nated to be the master node for this resource. This infor-
mation is stored at the directory node for the resource. In
this scheme, the directory node may not be the master
node for a resource.

The Integrated DLM optimizes the method of lock mastering to use in each situa-
tion. The method of lock mastering has an impact on system performance, during
normal runtime activity as well as during instance startup. Performance is opti-
mized when a resource is mastered locally. When a resource is mastered remotely,
all conflicting accesses to this resource result in a message to the master node for
this resource, which results in internode message traffic and impacts system perfor-
mance.

Associated with every resource is a directory node and a master node. The direc-
tory node is derived from the resource name (the resource name is hashed to one of
the active nodes in the cluster). The directory node maintains information about the
node on which a resource is mastered. The node that masters a resource is the mas-
ter node for the resource. Each node acts as the directory node for a subset of
resources. In this sense, the directory service is distributed across all nodes in the
cluster.

8-10 Oracle8 Parallel Server Concepts & Administration

Integrated DLM Features

Deadlock Detection

IDLM performs distributed deadlock detection, in which all deadlock sensitive
locks and resources can be distributed.

Lamport SCN Generation

Oracle Parallel Server uses the fast and scalable Lamport SCN generation scheme,
which can generate SCNs in parallel on all instances.

See Also: "Lamport SCN Generation" on page 4-7.

Group-owned Locks

Group-based locking provides dynamic ownership: a single lock can be shared by
two or more processes belonging to the same group. Processes in the same group
can share and/or touch the lock without going to the IDLM grant and convert
queues.

See Also: "Support for MTS and XA" on page 8-12.

Persistent Resources

The Integrated DLM provides for persistent resources. Resources maintain their
state even if all processes or groups holding a lock on it have died abnormally.

See Also: "Persistent Resources Ensure Efficient Recovery" on page 8-3.

Memory Requirements

The user-level Integrated DLM can normally allocate as many resources as you
request; your process size, however, will increase accordingly. This is because you
are mapping the shared memory where locks and resources reside into your
address space. The process address space can become very large.

Make sure that the IDLM is configured to support all the resources which your
application will require.

Integrated Distributed Lock Manager: Access to Resources 8-11

Integrated DLM Features

Support for MTS and XA

Oracle Parallel Server uses two forms of lock ownership:

per-process ownership

group-based ownership

Locks are commonly process-owned: that is, if one
process owns a lock exclusively, then no other pro-
cess can touch the lock.

With group-based locking, ownership becomes
dynamic: a single lock can be exchanged by two or
more processes belonging to the same group. Pro-
cesses in the same group can exchange and/or touch
the lock without going to the IDLM grant and con-
vert queues.

Group-based locking is an important IDLM feature for Oracle multi-threaded
server (MTS) and XA library functionality.

MTS

XA libraries

Group-based locking is used for Oracle MTS configu-
rations. Without it, sessions could not migrate
between shared server processes. In addition, load
balancing may be affected, especially with long run-
ning transactions.

With Oracle XA libraries, multiple sessions or pro-
cesses can work on the transaction; they therefore
need to exchange the same locks, even in exclusive
mode. With group-based lock ownership, processes
can exchange access to an exclusive resource.

8-12 Oracle8 Parallel Server Concepts & Administration

Integrated DLM Features

Views to Monitor Integrated DLM Statistics

Four dynamic performance views are available to monitor Integrated DLM statis-
tics. These are:

Table 8-2 Views to Monitor Integrated DLM Statistics

View Description

V$DLM_CONVERT_LOCAL Shows the convert time for local lock convert operations
V$DLM_CONVERT_REMOTE Shows the convert time for remote lock convert operations

V$DLM_LATCH Contains statistics about Integrated DLM latch perfor-
mance. For each type of latch this table shows total gets
and immediate gets. Ideally, IMM_GETS/TTL_GETS
should be as close to 1 as possible.

V$DLM_LOCKS Contains statistics about all locks currently known to the
IDLM which are being blocked or are blocking others.

V$DLM_MISC Contains various Integrated DLM statistics.

See Also: Oracle8 Reference for a complete description of these dynamic perfor-
mance views.

Integrated Distributed Lock Manager: Access to Resources 8-13

Integrated DLM Features

8-14 Oracle8 Parallel Server Concepts & Administration

9

Parallel Cache Management Instance Locks

The planning and allocation of PCM locks is one of the most complex tasks facing
the Oracle Parallel Server database administrator. This chapter provides a concep-
tual overview of PCM locks.

This chapter covers the following topics:

« PCM Locks and How They Work

« How Initialization Parameters Control Blocks and PCM Locks
« Two Methods of PCM Locking: Fixed and Releasable

« How Locks Are Assigned to Blocks

« Examples: Mapping Blocks to PCM Locks

See Also: Chapter 15, “Allocating PCM Instance Locks”, for details on how to plan
and assign these locks.

Chapter 8, “Integrated Distributed Lock Manager: Access to Resources” for more
information about the IDLM facility.

Parallel Cache Management Instance Locks 9-1

PCM Locks and How They Work

PCM Locks and How They Work

This section covers the following topics:

What PCM Locks Are

Allocation and Release of PCM Locks
How PCM Locks Work

Number of Blocks per PCM Lock
Pinging: Signaling the Need to Update
Lock Mode and Buffer State

Figure 9-1 highlights PCM locks in relation to other locks used in Oracle.

Figure 9—1 Oracle Locking Mechanisms: PCM Locks

Local Locks

Instance Locks

PCM Locks Global Enqueues
X

DML/Table locks

Global Locks
SCN

Mount lock

Local Enqueues

Local Latches

9-2 Oracle8 Parallel Server Concepts & Administration

PCM Locks and How They Work

What PCM Locks Are

Parallel cache management locks, or PCM locks, are the instance locks which man-
age the locking of blocks in datafiles. They can cover one or more blocks of any
class: data blocks, index blocks, undo blocks, segment headers, and so on. Oracle
Parallel Server uses these instance locks to coordinate access to shared resources.
The Integrated DLM maintains the status of the instance locks.

PCM locks ensure cache coherency by forcing instances to acquire a lock before
modifying or reading any database block. PCM locks allow only one instance at a
time to modify a block. If a block is modified by an instance, the block must first be
written to disk before another instance can acquire the PCM lock, read the block,
and modify it.

PCM locks use the minimum amount of communication to ensure cache coherency.
The amount of cross-instance activity—and the corresponding performance of a
parallel server—is evaluated in terms of pings. A ping occurs each time a block
must be written to disk by one instance so that another instance can read it.

Note that busy systems can have a great deal of locking activity, but do not neces-
sarily have pinging. If data is well partitioned, then the locking will be local to each
node—therefore pinging will not occur.

Allocation and Release of PCM Locks

For optimal performance, the Oracle Parallel Server administrator must allocate
PCM locks to datafiles. You do this by specifying values for initialization parame-
ters which are read at startup of the database. Chapter 15, “Allocating PCM
Instance Locks” describes this procedure in detail.

You use the initialization parameter GC_FILES_TO_LOCKS to specify the number
of PCM locks which cover the data blocks in a data file or set of data files. The
smallest granularity is one PCM lock per datablock; this is the default. PCM locks
usually account for the greatest proportion of instance locks in a parallel server.

Four types of PCM locks can be allocated. They differ in the method by which they
are allocated, and in whether or not they are released.

Allocation of Releasable Fine Grain Locks

Fine grain PCM locks are acquired and released as needed. Since they are allocated
only as required, the instance can start up much faster than with hashed locks. An
IDLM resource is created and an IDLM lock is obtained only when a user actually
requests a block. Once a fine grain lock has been created, it can be converted to vari-
ous modes as required by various instances.

Parallel Cache Management Instance Locks 9-3

PCM Locks and How They Work

Fine grain locks are releasable: an instance can give up all references to the resource
name during normal operation. The IDLM resource is released when it is required
for reuse for a different block. This means that sometimes no instance holds a lock
on a given resource.

Allocation of Fixed Hashed Locks

Hashed locks are preallocated and statically hashed to blocks at startup time. The
first instance which starts up creates an IDLM resource and an IDLM lock (in null
mode) on the IDLM resource for each hashed PCM lock. The first instance initial-
izes each lock. The instance then proceeds to convert IDLM locks to other modes as
required. When a second instance requires a particular IDLM lock, it waits until the
lock is available and then converts the lock to the mode required.

By default, hashed PCM locks are never released; each will stay in the mode in
which it was last requested. If the lock is required by another instance, it is con-
verted to null mode. These locks are deallocated only at instance shutdown.

Allocation of Releasable Hashed Locks

You can specify releasable hashed PCM locks by using the R option with the
GC_FILES TO_LOCKS parameter. Releasable hashed PCM locks are taken from
the pool of GC_RELEASABLE_LOCKS.

Allocation of Fixed Fine Grain Locks

You can also allocate fixed locks in a fine grained manner. For example, you could
set 50,000 PCM locks for a particular file and thus provide 1 fixed lock for each
block.

See Also: "GC_FILES_TO_LOCKS Syntax" on page 15-8 for a detailed explanation
of how to set the GC_FILES_TO_LOCKS parameter.

How PCM Locks Work

Fixed PCM locks are initially acquired in null mode. All specified hashed locks are
allocated at instance startup, and deallocated at instance shutdown. Because of this,
hashed locks entail more overhead and longer startup time than fine grain locks.
The advantage of fixed hashed PCM locks, however, is that they do not need to be
continually acquired and released.

Releasable PCM locking is more dynamic than fixed hashed locking. For example,
if you set GC_RELEASABLE_LOCKS to 10000 you can obtain up to ten thousand
fine grain PCM locks. However, locks are allocated only as needed by the IDLM. At

9-4 Oracle8 Parallel Server Concepts & Administration

PCM Locks and How They Work

startup Oracle allocates lock elements, which are obtained directly in the requested
mode (normally shared or exclusive mode).

Figure 9-2 illustrates the way PCM locks work. When instance A reads in the black
block for modifications, it obtains the PCM lock for the black block. The same sce-
nario occurs with the shaded block and Instance B. If instance B requires the black
block, the block must be written to disk because instance A has modified it. The
ORACLE process communicates with the LMD processes in order to obtain the
instance lock from the IDLM.

Figure 9-2 How PCM Locks Work

Instance A
LCKO » [LMDO
A
IDLM
Instance B
IDLM
I v

Parallel Cache Management Instance Locks 9-5

PCM Locks and How They Work

PCM Locks Are Owned by Instance LCK Processes

Each instance has at least one LCK background process. If multiple LCK processes
exist within the same instance, the PCM locks are divided among the LCK pro-
cesses. This means that each LCK process is only responsible for a subset of the
PCM locks.

Locks Are Converted from One Mode to Another

A PCM lock is “owned” or controlled by an instance when a block covered by that
lock (in shared or exclusive mode) enters the buffer cache belonging to the instance.

LCK processes maintain PCM locks on behalf of the instance. The LCK processes
obtain and convert hashed PCM locks; they obtain, convert, and release fine
grained PCM locks.

Locks Can Be Owned by Multiple Instances

A PCM lock owned in shared mode is not disowned by an instance if another
instance also requests the PCM lock in shared mode. Thus, two instances may have
the same data block in their buffer caches because the copies are shared (no writes
occur). Different data blocks covered by the same PCM lock can be contained in the
buffer caches of separate instances. This can occur if all the different instances
request the PCM lock in shared mode.

9-6 Oracle8 Parallel Server Concepts & Administration

PCM Locks and How They Work

Number of Blocks per PCM Lock

Typically, a PCM lock covers a number of data blocks. The number of PCM locks
assigned to datafiles and the number of data blocks in those datafiles determines
the number of data blocks covered by a single PCM lock.

« If GC_FILES TO_LOCKS is not set for afile, then releasable locks are used with
one lock for each block.

« If GC_FILES TO_LOCKS is set for a file, then the number of blocks per PCM
lock can be expressed as follows, on a per file level. (This example assumes val-
ues of GC_FILES_TO_LOCKS = 1:300,2:200,3-5:100.)

File 1 filel blocks

ne 300 locks
File 2: file2 blocks

"€ < 7200 locks

. sum (file3, file4, file5 blocks)
File 3:

100 locks

If the size of each file, in blocks, is a multiple of the number of PCM locks assigned
to it, then each hashed PCM lock covers exactly the number of data blocks given by
the equation.

If the file size is not a multiple of the number of PCM locks, then the number of
data blocks per hashed PCM lock can vary by one for that datafile. For example, if
you assign 400 PCM locks to a datafile which contains 2,500 data blocks, then 100
PCM locks cover 7 data blocks each and 300 PCM locks cover 6 blocks. Any data-
files not specified in the GC_FILES TO_LOCKS initialization parameter use the
remaining PCM locks.

If n files share the same hashed PCM locks, then the number of blocks per lock can
vary by as much as n. If you assign locks to individual files, either with separate
clauses of GC_FILES TO_LOCKS or by using the keyword EACH, then the num-
ber of blocks per lock does not vary by more than one.

If you assign hashed PCM locks to a set of datafiles collectively, then each lock usu-
ally covers one or more blocks in each file. Exceptions can occur when you specify
contiguous blocks (using the “Iblocks” option) or when a file contains fewer blocks
than the number of locks assigned to the set of files.

Parallel Cache Management Instance Locks 9-7

PCM Locks and How They Work

Example

The following example illustrates how hashed PCM locks can cover multiple
blocks in different files. Figure 9-3 assumes 44 PCM locks assigned to 2 files which
have a total of 44 blocks. GC_FILES TO_LOCKS is set to A,B:44

Block 1 of a file does not necessarily begin with lock 1; a hashing function deter-
mines which lock a file begins with. In file A, which has 24 blocks, block 1 hashes to
lock 32. In file B, which has 20 blocks, block 1 hashes to lock 28.

Figure 9-3 Hashed PCM Locks Covering Blocks in Multiple Files

File A File B
32 1333435 28129 |30 |31
36 |37 | 38 | 39 32133 (34|35
40 |41 [42 | 43 36 | 37 [38 | 39
44 1 2 3 40 | 41 [42 | 43
4 | 5|6 7 4 1 1| 2 3 X | 1lock per block
819 |10 11 Y | 2lock per block

In Figure 9-3, locks 32 through 44 and 1 through 3 are used to cover 2 blocks each.
Locks 4 through 11 and 28 through 31 cover 1 block each; and locks 12 through 27
cover no blocks at all!

In a worst case scenario, if two files hash to the same lock as a starting point, then
all the common locks will cover two blocks each. If your files are large and have
multiple blocks per lock (on the order of 100 blocks per lock), then this is not an
important issue.

Periodicity of Hashed PCM Locks

Note also the periodicity of PCM locks. Figure 9-4 shows a file of 30 blocks which is
covered by 6 PCM locks. This file has hashed to begin with lock number 5. As sug-
gested by the shaded blocks covered by PCM lock number 4, use of each lock forms
a pattern over the blocks of the file.

9-8 Oracle8 Parallel Server Concepts & Administration

PCM Locks and How They Work

Figure 9—4 Periodicity of Hashed PCM Locks

Pinging: Signaling the Need to Update
On a parallel server, a particular data block can only be modified by a single
instance at a time. If one instance modifies a data block which another instance
needs, then each instance’s locks on the data block must be converted accordingly.
The first instance must write the block to disk before the other instance can read it.
This is known as pinging a block. The LCK process uses the Integrated DLM facility
to signal this need between the two instances.

Data blocks are pinged when a block that is held in the exclusive current (XCUR)
state in the buffer cache of one instance, is needed by a different instance. If an
instance has a block in SHARE mode, it will be pinged if another instance needs it
XCUR. In some cases, therefore, the number of PCM locks covering data blocks
may have little impact on whether a block gets pinged. You can have lost a PCM
lock on a block and still have a row lock on it: pinging is independent of whether a
commit has occurred. You can modify a block, but whether or not it is pinged is
independent of whether you have made the commit.

If you have partitioned data across instances and are doing updates, you can have a
million blocks each on the different instances, each covered by one PCM lock, and
still not have any forced reads or forced writes. As shown in Figure 9-5, if a single
PCM lock covers one million data blocks in a table which are read/write into the
SGA of instance X, and another single PCM lock covers another million data blocks
in the table which are read/write into the SGA of instance Y, then regardless of the
number of updates, there will be no forced reads or writes on data blocks between
instance X and instance Y.

Parallel Cache Management Instance Locks 9-9

PCM Locks and How They Work

Figure 9-5 Partitioning Data to Avoid Pinging

PCM Lock 1 1 million [—p read/Write == | Instance Y
data blocks

1 million .
PCM Lock 2 data blocks P read/write =P | Instance X

With read-only data, both instance X and instance Y can hold the PCM lock in
shared mode, and no pinging will take place. This scenario is illustrated in
Figure 9-6.

Figure 9—-6 No Pinging of Read-only Data

% read only = | Instance Y

2 million

PCM Lock 1 data blocks

% read only =7 | Instance X

Lock Mode and Buffer State

The state of a block in the buffer cache relates directly to the mode of the lock held
upon it. For example, if a buffer is in exclusive current (XCUR) state, you know that
an instance owns the PCM lock in exclusive mode. There can be only one XCUR
version of a block in the database, but there can be multiple SCUR versions. To per-
form a modification, a process must get the block in XCUR mode.

9-10 Oracle8 Parallel Server Concepts & Administration

PCM Locks and How They Work

Finding the State of a Buffer

To learn the state of a buffer, check the STATUS column of the V$BH dynamic per-
formance table. This table provides information about each buffer header.

Table 9-1 PCM Lock Mode and Buffer State

PCM Lock Mode Buffer State Name Description

X XCUR Instance has an EXCLUSIVE lock for this
buffer

S SCUR Instance has a SHARED lock for this buffer

N CR Instance has a NULL lock for this buffer

How Buffer State and Lock Mode Change

Figure 9-7 shows how buffer state and lock mode change as instances perform vari-
ous operations on a given buffer. Lock mode is shown in parentheses.

Figure 9—7 How State of Buffer and Lock Mode Change

Instance 1 Instance 2 Instance 3
SCUR (S) SCUR (S) SCUR (S)
[] []
‘ UPDATE ' '
1 [}
XCUR (X) CR (N) CR (N)
[[
: * SELECT :
SCUR (S) SCUR (S) CR (N)
L} L]
: : * SELECT
SCUR (S) SCUR (S) SCUR (S)

In Figure 9-7, the three instances start out with blocks in shared current mode, and
shared locks. When Instance 1 performs an update on the block, its lock mode on

Parallel Cache Management Instance Locks 9-11

PCM Locks and How They Work

the block changes to exclusive mode (X). The shared locks owned by Instance 2 and
Instance 3 convert to null mode (N). Meanwhile, the block state in Instance 1
becomes XCUR, and in Instance 2 and Instance 3 becomes CR. These lock modes
are compatible. Similar conversions of lock mode and block state occur when
Instance 2 performs a SELECT operation on the block, and when Instance 3 per-
forms a SELECT operation on it.

Lock Modes May Be Compatible or Incompatible

When one process owns a lock in a given mode, another process requesting a lock
in any particular mode succeeds or fails as shown in the following table.

Table 9-2 Lock Mode Compatibility

Lock

Requested: Null SS SX S SSX X

Lock Owned

NULL SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED
SS SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED FAIL

SX SUCCEED SUCCEED SUCCEED FAIL FAIL FAIL

S SUCCEED SUCCEED FAIL SUCCEED FAIL FAIL

SSX SUCCEED SUCCEED FAIL FAIL FAIL FAIL

X SUCCEED FAIL FAIL FAIL FAIL FAIL

9-12 Oracle8 Parallel Server Concepts & Administration

How Initialization Parameters Control Blocks and PCM Locks

How Initialization Parameters Control Blocks and PCM Locks

This section explains how certain initialization parameters control blocks and PCM

locks.

« GC_*Initialization Parameters

« Handling Data Blocks

GC_* Initialization Parameters

PCM locks are controlled by the initialization parameters listed below. Be sure to
set all of these parameters for your application.

Table 9-3 Parameters Which Control PCM Locks

Parameter

Description

Value

GC_FILES_TO_LOCKS

GC_LCK_PROCS

Gives the mapping of hashed and
releasable locks to blocks within
each datafile.

The meaning of this parameter has
changed. Previously, files not men-
tioned in this parameter (or files
added later) were assigned the
remaining hashed locks. Files not
mentioned in this parameter use
releasable locks. You can now have
multiple entries of
GC_FILES_TO_LOCKS.

Sets the number of background lock
processes (LCKO through LCKO9) for
an instance in a parallel server.

The configuration string for
GC_FILES_TO_LOCKS now includes a
value of zero for the number of locks.
This indicates that the blocks are pro-
tected by fine grain locks.

Instances must have identical values.

In shared mode, the value of this parame-
ter must be greater than 0; the default
value is 1. In exclusive mode, this param-
eter is ignored. Instances must have iden-
tical values.

Parallel Cache Management Instance Locks 9-13

How Initialization Parameters Control Blocks and PCM Locks

Table 9-3 Parameters Which Control PCM Locks

Parameter Description Value

GC_LATCHES Specifies the number of lock element Defaults to (#CPUs * 2). On a uniproces-
latches each LCK process has. This sor, therefore, each LCK process would
parameter should only be set if there have 2 latches.
is lock element latch contention.

GC_RELEASABLE_LOCKS Sets the number of locks which will ~ Defaults to the value of
be used for DBA locks. DB_BLOCK_BUFFERS. Normally this
value is optimal, and you should not
change it.

Note: In versions prior to Oracle8, setting
this parameter to a value less than
DB_BLOCK_BUFFERS was ineffective:
the value was automatically returned to
this default. In Oracle8, lower settings are
valid. If you have migrated from an ear-
lier version, check the setting of this
parameter to avoid performance impact.

GC_ROLLBACK_LOCKS For each rollback segment, specifies The default value is to use releasable
the number of instance locks avail- locks for each rollback segment.
able for simultaneously modified
rollback segment blocks.

See Also: Oracle8 Reference for complete specifications for these parameters.
Chapter 15, “Allocating PCM Instance Locks”, provides information on how to set
these parameters.

Handling Data Blocks

Do not allocate PCM locks for files which only contain the following, because class 1
blocks are not used for these files:

« temporary tables for internal sorts. (These are class 2 blocks.)
« rollback segments. These are protected by GC_ROLLBACK_LOCKS.

9-14 Oracle8 Parallel Server Concepts & Administration

Two Methods of PCM Locking: Fixed and Releasable

Two Methods of PCM Locking: Fixed and Releasable

This section compares the two methods for PCM locking: fixed and releasable lock-
ing. You can use either or both kinds of PCM locks to protect the blocks in datafiles.

« Integrated DLM Lock Elements and PCM Locks

« Number of Blocks per PCM Lock

« Fine Grain Locking: Locks for One or More Blocks
« How Fine Grain Locking Works

« Performance Effects of Releasable Locking

« Applying Fine Grain and Hashed Locking to Different Files

Integrated DLM Lock Elements and PCM Locks

Figure 9-8 illustrates the correspondence of lock elements to blocks in hashed and
fine grain locking. A lock element (LE) is an Oracle-specific data structure that rep-
resents an IDLM lock. There is a one-to-one correspondence between a lock ele-
ment and a PCM lock in the IDLM.

Figure 9—-8 Hashed Locking and DBA Fine Grain Locking

Hashed Locking, or Fine Grain Locking with > 1 Block per Lock

LE

DBA1 DBA2 DBA3 DBA4 DBA5

DBA Fine Grain Locking: 1 Block per Lock

LE1,1 LE2, 1 LE3,1 LE4,1 LE5,1

DBA1 DBA2 DBA3 DBA4 DBA5

Parallel Cache Management Instance Locks 9-15

Two Methods of PCM Locking: Fixed and Releasable

Lock Elements for Hashed PCM Locks

For both hashed PCM locks and fine grain locks, you can specify more than 1 block
per lock element. The difference is that by default hashed PCM locks are not releas-
able; the lock element name is fixed.

When the lock element is pinged, any other modified blocks owned by that lock ele-
ment will be written along with the needed one. For example, in Figure 9-8, if LE is
pinged when block DBA? is needed, blocks DBA1, DBA3, DBA4, and DBAS5 wiill all
be written to disk as well—if they have been modified.

Lock Elements for Fine Grain PCM Locks

In fine grain locking, the name of the lock element is the name of the resource
inside the IDLM.

Although a fixed number of lock elements cover potentially millions of blocks, the
lock element names change over and over again as they are associated with specific
blocks that are requested. The lock element name (for example, LE7,1) contains the
database block address (7) and class (1) of the block it covers. Before a lock element
can be reused, the IDLM lock must be released. You can then rename and reuse the
lock element, creating a new resource in the IDLM if necessary.

When using fine grain locking, you can set your system with many more potential
lock names, since they do not need to be held concurrently. However, the number
of blocks mapped to each lock is configurable in the same way as hashed locking.

Lock Elements for DBA Fine Grain PCM Locks

In fine grain locking you can set a one-to-one relationship between lock elements
and blocks. Such an arrangement, illustrated in Figure 9-8, is called DBA locking.
Thus if LE2,1 is pinged, only block DBAZ2 is written to disk.

Number of Blocks per PCM Lock

This section explains the ways in which hashed locks and fine grain locks can differ
in lock granularity.

Hashed Locks for Multiple Blocks

Hashed PCM locks can protect more than one Oracle database block. The mapping
of PCM locks to blocks in the database is determined on a file-by-file basis using ini-
tialization parameters specified when the first Oracle Parallel Server instance is
started. The parameters can specify that the PCM lock protects a range of contigu-
ous blocks within the file.

9-16 Oracle8 Parallel Server Concepts & Administration

Two Methods of PCM Locking: Fixed and Releasable

Hashed locks are useful in the following situations:

Table 9—4 When to Use Hashed PCM Locks

Situation Reason

When the data is mostly read-only A few hashed locks can cover many blocks without
requiring frequent lock operations. These locks are
released only when another instance needs to modify
the data. Hashed locking can perform up to 100%
faster than fine grain locking on read-only data with
the Parallel Query Option.

Note: If the data is strictly read-only, consider desig-
nating the tablespace itself as read-only. The
tablespace will not then require any PCM locks.

When the data can be partitioned Hashed locks which are defined to match this parti-
according to the instance which is tioning allow instances to hold disjoint IDLM lock

likely to modify it sets, reducing the need for IDLM operations.

When a large set of data is modi- Hashed locks permit access to a new database block
fied by a relatively small set of to proceed without IDLM activity, if the lock is
instances already held by the requesting instance.

Hashed locks may cause extra cross-instance lock activity, since conflicts may occur
between instances which are modifying different database blocks. The resolution of
this false conflict (“false pinging”) may require writing several blocks from the
cache of the instance which currently owns the lock.

Parallel Cache Management Instance Locks 9-17

Two Methods of PCM Locking: Fixed and Releasable

Fine Grain Locking: Locks for One or More Blocks

A fine grain lock can protect one or more Oracle database blocks. If you create a
one-to-one correspondence between PCM locks and datablocks, then contention
will occur only when instances need data from the same block. This level of fine
grain locking is known as DBA locking. (A DBA is the data block address of a sin-
gle block of data.) If you assign more than one block per lock, then contention will
occur as in hashed locking.

On most systems an instance could not possibly hold a lock for each block of a data-
base since SGA memory or IDLM locking capabilities would be exceeded. There-
fore, instances acquire and release fine grain locks as required. Since fine grain
locks, lock elements, and resources are renamed in the IDLM and reused, a system
can employ fewer of them. The value of DB_BLOCK_BUFFERS is the recom-
mended minimum number of releasable locks you should allocate.

DBA fine grain locks are useful when a database object is updated frequently by
several instances. This advantage is gained as follows:

« Conflicts occur only when the same block is needed by the two instances.

« Only the required block is written to disk by the instance currently owning the
PCM lock in exclusive mode.

A disadvantage of fine grain locking is that overhead is incurred for each block
read, and performance will be affected accordingly. (Acquiring a new lock and
releasing it each time causes more overhead through the IDLM than converting the
mode of an existing lock from null mode to exclusive mode and back, as is done in
hashed locking.)

See Also: "Releasable Lock Example" on page 15-10.

9-18 Oracle8 Parallel Server Concepts & Administration

Two Methods of PCM Locking: Fixed and Releasable

How Fine Grain Locking Works
Figure 9-9 shows how fine grain locking operates.

Figure 9-9 Lock Elements Coordinate Blocks (by Fine Grain Locking)

Instance 1 Instance 2
Lock Manager Lock Manager
Resource ... | LMDO | | LMDO

(][9]
A 4 4 44 A

gy i e s I oo s s e

B [LE][LE][LE][LE] ek [LE][LE][LE][|LE]

Buffer Cache [O O O Buffer Cache [O O O

The foreground process checks in the SGA to see if the instance owns a lock on the
block.

If it does not, then LCK will obtain the lock. To do this, LCK needs a free lock
element. If no free lock element exists, LCK will create one by releasing some
other lock. When this is done, LCK will obtain the new lock.

If the instance does own the lock, but in the wrong mode, then LCK will con-
vert the lock (for example, from shared to exclusive mode).

Parallel Cache Management Instance Locks 9-19

Two Methods of PCM Locking: Fixed and Releasable

A lock element is created in either of two modes: fixed or releasable

Fixed locks (whether hashed or fine grain) create a lock element in fixed mode,
which is always valid. This mode is static; lock elements stay the same, once
allocated.

Releasable locks (whether fine grain or hashed) create a lock element in non-
fixed mode; these lock element names can change, and the block or blocks cov-
ered can change. Lock elements in non-fixed mode can be valid, old, or free. If
the valid bit is set then a lock is owned on the resource in the IDLM. If not set,
there is no lock. If it is free, then there is a lock but we have unlinked the buffer
from the lock element, so it is on the least recently used list of free lock ele-
ments.

Note: Valid lock elements have a lock in the IDLM; invalid lock elements do
not. A free lock element indicates that a lock exists in the IDLM which is not
currently linked to this buffer; it is waiting on the LRU list. If a lock element is
old, then there is a valid lock handle for the old name. It must be given a new
name before Oracle can use it.

The V$LOCK_ELEMENT view shows the status of the lock elements.

Performance Effects of Releasable Locking

Releasable locking may affect performance of Oracle Parallel Server. Since releas-
able locks are more expensive (since they may cause a release lock and get lock on a
buffer get), some operations may show a decreased level of performance when run
in this mode. However, other types of access to the database will improve with
releasable fine grain locks. Fine grain locking may have the following results:

Read-only scans of tables may require more lock operations. If this happens,
you can use hashed locking.

There may be a reduction of false conflicts on high-contention blocks or objects.
If this happens, fine grain locking is a good choice.

The system has more expensive lock operations and a lower false conflict rate
for low concurrency data blocks. If this happens you must examine your priori-
ties and decide whether this is a reasonable trade-off for your application.

Grouping with fine grain locks might be good for table scans.

9-20 Oracle8 Parallel Server Concepts & Administration

How Locks Are Assigned to Blocks

Applying Fine Grain and Hashed Locking to Different Files

Each datafile can use one or the other method of locking. For best results, you may
need to use hashed locks on some datafiles, and fine grain locking on other data-
files.

You can selectively apply hashed and fine grain locking on different files. For exam-
ple, you could apply locks as follows on a set of files:

GC_FILES_TO_LOCKS =1=100:2=0:3=1000:4-5=0EACH”
GC_RELEASABLE_LOCKS=10000

Table 9-5 Selective Application of Hashed and Fine Grain Locking

File Number Locking Mode Value in GC_FILES TO_LOCKS
1 Hashed 100

2 Fine grain 0

3 Hashed 1000

4 Fine grain 0

5 Fine grain 0

How Locks Are Assigned to Blocks

This section explains how hashed locks and fine grain locks are assigned to blocks.
(DBA locks, of course, have a one-to-one correspondence to blocks.)

« File to Lock Mapping
« Number of Locks per Block Class

« Lock Element Number

Parallel Cache Management Instance Locks 9-21

How Locks Are Assigned to Blocks

File to Lock Mapping

Two data structures in the SGA control file to lock mapping. The first structure
maps each file (DB_FILES) to a bucket (index) in the second structure. This struc-
ture contains information on the number of locks allocated to this bucket, base lock
number and grouping factor. To find the number of locks for a tablespace, you
must count up the number of actual fixed locks which protect the different files. If
files share locks, you count the shared locks only once.

1. To find the number of locks for a tablespace, begin by performing a select from
the FILE_LOCK data dictionary table:

SELECT *FROM FILE_LOCK:

For example, you would get results like the following if you had set
GC_FILES_TO_LOCKS="1=500:5=200"

FILE_ID FLE NAME TABLESPACE_NAME START_LK NLOCKS BLOCKING
1 flel system 1 500 1

fle2 system 0

fle3 system 0

fled system 0

fle5 system 501 200 1

e

2. Count the number of locks in the tablespace by summing the number of locks
(value of the NLOCKS column) only for rows with different values in the
START_LCK column.

In this example, both filel and file5 have different values for START_LCK. You
therefore sum up their NLOCKS values for a total of 700 locks.

If, however, you had set GC_FILES _TO_LOCKS="1-2=500:5=200", your results
would look like the following:

FILE_ID HLE NAME TABLESPACE_NAME START_LK NLOCKS BLOCKING
1 flel system 1 500 1

fle2 system 1 500 1

fle3 system 0

fled system 0

fle5 system 501 200 1

N

This time, filel and file 2 have the same value for START LCK; this indicates that
they share the locks in question. File5 has a different value for START_LCK. You
therefore count once the 500 locks shared by files 1 and 2, and add an additional
200 locks for file 5, for a total of 700.

9-22 Oracle8 Parallel Server Concepts & Administration

How Locks Are Assigned to Blocks

Number of Locks per Block Class
You need only concern yourself with the number of blocks in the data and undo
block classes. Data blocks (class 1) contain data from indexes or tables. System
undo header blocks (class 10) are also known as the rollback segment headers or
transaction tables. System undo blocks (class 11) are part of the rollback segment
and provide storage for undo records.

User undo segment n header blocks are identified as class 10 + (n*2), where n repre-
sents the rollback segment number. A value of n = 0 indicates a system rollback seg-
ment; a value of n > 0 indicates a non-system rollback segment. Similarly, user
undo segment n header blocks are identified as class 10 + ((n*2) + 1).

The following query shows the number of locks allocated per class:

SELECT CLASS, COUNT(*)
FROM V$LOCK_ELEMENT
GROUP BY CLASS
ORDERBY CLASS,

The following query shows the number of fixed (non-releasable) PCM locks:

SELECT COUNT()
FROM V$LOCK_ELEMENT
WHERE bitand(fiag, 4)/=0;

The following query shows the number of fine grain PCM locks:

SELECT COUNT(*)
FROM V$LOCK_ELEMENT
WHERE bitand(flag, 4)=0;

Lock Element Number

For a data class block the file number is determined from the data block address
(DBA). The bucket is found through the X$KCLFI dynamic performance table. Data
class blocks are hashed to lock element numbers as follows:

DBA

_— modulo (locks) + (start)
grouping_factor

Other block classes are hashed to lock element numbers as follows

(DBA) modulo (locks_in_class)

Parallel Cache Management Instance Locks 9-23

Examples: Mapping Blocks to PCM Locks

Examples: Mapping Blocks to PCM Locks

« Setting GC_FILES_ TO_LOCKS
« More Sample Hashed Settings of GC_FILES TO_LOCKS
« Sample Fine Grain Setting of GC_FILES TO_LOCKS

Setting GC_FILES_ TO_LOCKS

The following examples show different ways of mapping blocks to PCM locks, and
how the same locks are used on multiple datafiles.

Note: These examples discuss very small sample files to illustrate important con-
cepts. The actual files you manage will be significantly larger.

Figure 9-10 Mapping PCM Locks to Data Blocks

e |

Data Data Data Data Data
File 1 File 2 File 3 File 4 File 5
WA | T H:
il | | |
il il
Tl | |
f H a
120 blocks 60 blocks 100 blocks 140 blocks 170 blocks
R e S S—
PCM Locks PCM Locks PCM Locks PCM Locks
1to 60 61 to 100 101 to 240 241 to 270
2 blocks 3,4,0r5 1 block 5 or 6 blocks
per lock blocks per lock per lock per lock

Example 1 Figure 9-10 shows an example of mapping blocks to PCM locks for the
parameter value GC_FILES_TO_LOCKS = "1=60:2-3=40:4=140:5=30".

In datafile 1 of the figure, 60 PCM locks map to 120 blocks, which is a multiple of
60. Each PCM lock therefore covers two data blocks.

In datafiles 2 and 3, 40 PCM locks map to a total of 160 blocks. A PCM lock can
cover either one or two data blocks in datafile 2, and two or three data blocks in

9-24 Oracle8 Parallel Server Concepts & Administration

Examples: Mapping Blocks to PCM Locks

datafile 3. Thus, one PCM lock may cover three, four, or five data blocks across
both datafiles.

In datafile 4, each PCM lock maps exactly to a single data block, since there is the
same number of PCM locks as data blocks.

In datafile 5, 30 PCM locks map to 170 blocks, which is not a multiple of 30. Each
PCM lock therefore covers five or six data blocks.

Each of the PCM locks illustrated in Figure 9-10 can be held in either read-lock
mode or read-exclusive mode.

Example 2 The following parameter value allocates 500 PCM locks to datafile 1; 400
PCM locks each to files 2, 3, 4, 10, 11, and 12; 150 PCM locks to file 5; 250 PCM locks
to file 6; and 300 PCM locks collectively to files 7 through 9:

GC_FILES_TO_LOCKS ="1-500:2-4,10-12=400EACH:5=150:6=250:7-9=300"

This example assigns a total of (500 + (6*400) + 150 + 250 + 300) = 3600 PCM locks.
You may specify more than this number of PCM locks if you intend to add more
datafiles later.

Example 3 In Example 2, 300 PCM locks are allocated to datafiles 7, 8, and 9 collec-
tively with the clause “7-9=300". The keyword EACH is omitted. If each of these
datafiles contains 900 data blocks, for a total of 2700 data blocks, then each PCM
lock covers 9 data blocks. Because the datafiles are multiples of 300, the 9 data
blocks covered by the PCM lock are spread across the 3 datafiles; that is, one PCM
lock covers 3 data blocks in each datafile.

Example 4 The following parameter value allocates 200 PCM locks each to files 1
through 3; 50 PCM locks to datafile 4; 100 PCM locks collectively to datafiles 5, 6, 7,
and 9; and 20 data locks in contiguous 50-block groups to datafiles 8 and 10 com-
bined:

GC_FILES_TO_LOCKS ="1-3=200EACH 4=50:5-7,9=100:8,10=20!50"

In this example, a PCM lock assigned to the combined datafiles 5, 6, 7, and 9 covers
one or more data blocks in each datafile, unless a datafile contains fewer than 100
data blocks. If datafiles 5 to 7 contain 500 data blocks each and datafile 9 contains
100 data blocks, then each PCM lock covers 16 data blocks: one in datafile 9 and
five each in the other datafiles. Alternatively, if datafile 9 contained 50 data blocks,
half of the PCM locks would cover 16 data blocks (one in datafile 9); the other half
of the PCM locks would only cover 15 data blocks (none in datafile 9).

Parallel Cache Management Instance Locks 9-25

Examples: Mapping Blocks to PCM Locks

The 20 PCM locks assigned collectively to datafiles 8 and 10 cover contiguous
groups of 50 data blocks. If the datafiles contain multiples of 50 data blocks and the
total number of data blocks is not greater than 20 times 50 (that is, 1000), then each
PCM lock covers data blocks in either datafile 8 or datafile 10, but not in both. This
is because each of these PCM locks covers 50 contiguous data blocks. If the size of
datafile 8 is not a multiple of 50 data blocks, then one PCM lock must cover data
blocks in both files. If the sizes of datafiles 8 and 10 exceed 1000 data blocks, then

some PCM locks must cover more than one group of 50 data blocks, and the groups
might be in different files.

More Sample Hashed Settings of GC_FILES TO_LOCKS

Examples 5, 6, and 7 show the results of specifying various values of
GC_FILES TO_LOCKS. In the examples, files 1 and 2 each have 16 blocks of data.

Example5 GC_FILES_TO_LOCKS="1-2=4"

In this example four locks are specified for files 1 and 2. Therefore, the number of
blocks covered by each lock is 8 ((16+16)/4). The blocks are not contiguous.

Figure 9-11 GC_FILES TO_LOCKS Example 5

File 1

B 7 Al A

File 2

H1 A /Al A Y

9-26 Oracle8 Parallel Server Concepts & Administration

Examples: Mapping Blocks to PCM Locks

Example 6 GC_FILES_TO_LOCKS="1-2=418"

In this example four locks are specified for files 1 and 2. However, the locks must
cover 8 contiguous blocks.

Figure 9-12 GC _FILES TO_LOCKS Example 6

File 1

Lock 1
Lock 2
Lock 3
Lock 4

N [

L[| | VA A A AS

Example 7 GC_FILES_TO_LOCKS="1-2=414EACH”

In this example four locks are specified for file 1 and four for file 2. The locks must
cover 4 contiguous blocks.

Figure 9-13 GC_FILES TO_LOCKS Example 7

File 1 L1
LU [| VA A7 Lock 2
Lock 3
File 2 Lock 4
/77,7 HESNENEN rocks
oc
/" Lock 7
Lock 8

Parallel Cache Management Instance Locks 9-27

Examples: Mapping Blocks to PCM Locks

Sample Fine Grain Setting of GC_FILES_TO_LOCKS

The following example shows fine grain locking mixed with hashed locking.

Example 8 GC_FILES_TO_LOCKS="1=4:2=0"

File 1 has hashed PCM locking with 4 locks. On file 2, fine grain locks are allocated
on demand—none are initially allocated.

Figure 9-14 GC _FILES TO_LOCKS Example 8

Lock 1
Lock 2
Lock 3
Lock 4

NNN |

9-28 Oracle8 Parallel Server Concepts & Administration

10

Non-PCM Instance Locks

This chapter describes some of the most common non-PCM instance locks. It cov-
ers the following information:

Overview

Transaction Locks (TX)

Table Locks (TM)

System Change Number (SC)
Library Cache Locks (N[A-Z])
Dictionary Cache Locks (Q[A-Z])
Database Mount Lock (DM)

See Also: Chapter 16, “Ensuring IDLM Capacity for All Resources & Locks”, for
details on how to calculate the number of non-PCM resources and locks to config-
ure in the Integrated DLM.

Non-PCM Instance Locks 10-1

Overview

Overview
Figure 10-1 highlights non-PCM locks in relation to other locks used in Oracle.

Figure 10-1 Oracle Locking Mechanisms: Non-PCM Locks

Instance Locks

PCM Locks Global Enqueues
X

DML/Table locks

Global

SCN

Mount lock

Local Locks

Local Enqueues

Local Latches

Whereas PCM locks are static (you allocate them when you design your applica-
tion), non-PCM locks are very dynamic. Their number and corresponding space
requirements will change as your system’s initialization parameter values change.

See Also: Oracle8 Reference for descriptions of all non-PCM locks.

10-2 Oracle8 Parallel Server Concepts & Administration

Table Locks (TM)

Transaction Locks (TX)

Row locks are locks that protect selected rows. A transaction acquires a global
enqueue and an exclusive lock for each individual row modified by one of the fol-
lowing statements:

« INSERT
« UPDATE
« DELETE

« SELECT with the FOR UPDATE clause

These locks are stored in the block, and each lock refers back to the global transac-
tion enqueue.

A transaction lock is acquired in exclusive mode when a transaction initiates its
first change. It is held until the transaction does a COMMIT or ROLLBACK. It is
also acquired exclusive by SMON when doing recovery (undo) of a transaction.
Transaction locks are used as a queuing mechanism for processes which are await-
ing the release of an object that is locked by a transaction in progress.

Table Locks (TM)

Table locks are DML locks that protect entire tables. A transaction acquires a table
lock when a table is modified by one of the following statements: INSERT,
UPDATE, DELETE, SELECT with the FOR UPDATE clause, and LOCK TABLE. A
table lock can be held in any of several modes: null (N), row share (RS), row exclu-
sive (RX), share lock (S), share row exclusive (SRX), and exclusive (X).

When an instance attempts to mount the database, a table lock is used to ensure
that all participating instances either have DML_LOCKS =0 or DML_LOCKS !=0.
If they do not, than error ORA-61 is returned and the mount attempt fails. Table
locks are acquired during the execution of a transaction when referencing a table
with a DML statement so that the object is not dropped or altered during the execu-
tion of the transaction. This occurs if and only if the DML_LOCKS parameter is
non-zero.

You can also selectively turn table locks on or off for a particular table, using the
statement

ALTER TABLE tablename DISABLE|JENABLE TABLE LOCK

Note that if DML_LOCKS is set to zero, then no DDL operations are allowed. The
same is true for tables which have disabled table locks.

Non-PCM Instance Locks 10-3

System Change Number (SC)

See Also: "Minimizing Table Locks to Optimize Performance” on page 16-8 to con-
sider disabling table locks for improved performance.

System Change Number (SC)

The System Change Number (SCN) is a logical time stamp Oracle uses to order
events within a single instance, and across all instances. One of the schemes Oracle
uses to generate SCNs is the lock scheme.

The lock SCN scheme keeps the global SCN in the value block of the SCN lock.

This value is incremented in response to many database events, most notably COM-
MIT WORK. A process incrementing the global SCN will get the SCN lock in exclu-
sive mode, increment the SCN, write the lock value block, and downgrade the lock.
Access to the SCN lock value is batched. Oracle keeps a cache copy of the global
SCN in memory. A process may get an SCN without any communication overhead
by reading the SCN fetched by other processes.

The SCN implementation can differ from platform to platform. On most platforms,
Oracle uses the lock SCN scheme when the
MAX_COMMIT_PROPAGATION_DELAY initialization parameter is smaller than
a platform-specific threshold (typically 7). Oracle uses the Lamport SCN scheme
when MAX_COMMIT_PROPAGATION_DELAY is larger than the threshold.You
can examine the alert log after an instance is started to see which SCN generation
scheme has been picked.

See Also: Your Oracle system-specific documentation for information about the
SCN implementation.

Library Cache Locks (N[A-Z])

When a database object (table, view, procedure, function, package, package body;,
trigger, index, cluster, synonym) is referenced during parsing or compiling of a
SQL (DML/DDL) or PL/SQL statement, the process parsing or compiling the state-
ment acquires the library cache lock in the correct mode. In Oracle8 the lock is held
only until the parse or compilation completes (for the duration of the parse call).

10-4 Oracle8 Parallel Server Concepts & Administration

Database Mount Lock (DM)

Dictionary Cache Locks (Q[A-Z])

The data dictionary cache contains information from the data dictionary, the meta-
data store. This cache provides efficient access to the data dictionary.

Creating a new table, for example, causes the meta-data of that table to be cached
in the data dictionary. If a table is dropped, the meta-data needs to be removed
from the data dictionary cache. To synchronize access to the data dictionary cache,
latches are used in exclusive mode and in single shared mode. Instance locks are
used in multiple shared (parallel) mode.

In the case of parallel server, the data dictionary cache on all nodes may contain the
meta-data of a table that gets dropped on one instance. The meta-data for this table
needs to be flushed from the data dictionary cache of every instance. This is per-
formed and synchronized by instance locks.

Database Mount Lock (DM)

The mount lock shows whether or not any instance has mounted a particular data-
base. This lock is only used with Oracle Parallel Server. It is the only multi-instance
lock used by OPS in exclusive mode, where it prevents another instance from
mounting the database in shared mode.

In Oracle Parallel Server single shared mode, this lock is held in shared mode.
Another instance can successfully mount the same database in shared mode. In
OPS exclusive mode, however, another instance will not able to get the lock.

Non-PCM Instance Locks 10-5

Database Mount Lock (DM)

10-6 Oracle8 Parallel Server Concepts & Administration

11

Space Management and Free List Groups

Thus would | double my life’s fading space;
For he that runs it well, runs twice his race.

Abraham Cowley, Discourse xi, Of Myself

This chapter explains space management concepts:

« How Oracle Handles Free Space

« SQL Options for Managing Free Space

« Managing Free Space on Multiple Instances

« Free Lists Associated with Instances, Users, and Locks
« Controlling the Allocation of Extents

See Also: Chapter 17, “Using Free List Groups to Partition Data”, for a description
of space management procedures.

Space Management and Free List Groups 11-1

How Oracle Handles Free Space

How Oracle Handles Free Space

This section provides an overview of how Oracle handles free space. It contains the
following sections:

« Overview
« Database Storage Structures
« Structures for Managing Free Space

« Example: Free List Groups

Overview

Oracle Parallel Server enables transactions running on separate instances to insert
and update data in the same table concurrently, without contention to locate free
space for new records.

Figure 11-1 Instances Concurrently Inserting to a Table

Table 1

ﬂi

Instance Instance

To take advantage of this capability, you must actively manage free space in your
database using several structures which are defined in this chapter.

For each database object (a table, cluster, or index), Oracle keeps track of blocks
with space available for inserts (or for updates which may cause rows to exceed
space available in their original block). A user process that needs free space can
look in the master free list of blocks that contain free space. If the master free list
does not contain a block with enough space to accommodate the user process, Ora-
cle allocates a new extent.

New extents that are automatically allocated to a table add their blocks to the mas-
ter free list. This can eventually result in contention for free space among multiple
instances on a parallel server because the free space contained in automatically allo-

11-2 Oracle8 Parallel Server Concepts & Administration

How Oracle Handles Free Space

cated extents cannot be reallocated to any group of free lists. You can have more
control over free space if you specifically allocate extents to instances; in this way
you can minimize contention for free space.

Database Storage Structures
This section describes basic structures of database storage:

« Segments and Extents

« High Water Mark

Segments and Extents

A segment is a unit of logical database storage. Oracle allocates space for segments
in smaller units called extents. An extent is a specific number of contiguous data
blocks allocated for storing a specific type of information.

A segment thus comprises a set of extents allocated for a specific type of data struc-
ture. For example, each table’s data is stored in its own data segment, while each
index’s data is stored in its own index segment.

The extents of a segment are all stored in the same tablespace; they may or may not
be contiguous on disk. The segments can span files, but individual extents cannot.

Note that although you can allocate additional extents, the blocks themselves are
allocated separately. If you allocate an extent to a specific instance, the blocks are
immediately allocated to the free list. However, if the extent is not allocated to a
specific instance, then the blocks themselves are allocated only when the high
water mark moves.

High Water Mark

The high water mark is the boundary between used and unused space in a segment.
As requests are received for new free blocks (which cannot be satisfied by existing
free lists), the block to which the high water mark points becomes a used block, and
the high water mark is advanced to the next block. In other words, the segment
space to the left of the high water mark is used, and the space to the right of it is
unused.

Figure 11-2 shows a segment which consists of three extents containing 10K, 20K,
and 30K of space, respectively. The high water mark is in the middle of the second
extent, thus the segment contains 20K of used space (to the left of the high water
mark), and 40K of unused space (to the right of the high water mark.

Space Management and Free List Groups 11-3

How Oracle Handles Free Space

Figure 11-2 High Water Mark
UNUSED SPACE = 40K
Segment
Extent 1 Extent 2 Extent 3
:
10K 20K 30K
'
High
Water
Mark

See Also: Oracle8 Concepts for further information about segments and extents.

Structures for Managing Free Space
Oracle uses the following structures to manage free space:

« Transaction Free Lists

« Process Free Lists

« Free List Groups
« The Master Free List

Process free lists are used to relieve contention for free space among processes
inside the instance, even if multiple instances can hash to a single free list group.

Free list groups are used to relieve forced reads/writes between instances. Process

free lists and free list groups are supported on all database objects alike: tables,
indexes, and clusters.

Transaction Free Lists

A transaction free list is a list of blocks made free by uncommitted transactions. They

exist by default.

When transactions are committed, the freed blocks eventually go to the master free

list (described below).

11-4 Oracle8 Parallel Server Concepts & Administration

How Oracle Handles Free Space

Process Free Lists

A process free list (also termed simply a “free list” in this documentation) is a list of
free data blocks that can be drawn from a number of different extents within the
segment.

Blocks in free lists contain free space greater than PCTFREE (the percentage of a
block to be reserved for updates to existing rows). In general, blocks included in
process free lists for a database object must satisfy the PCTFREE and PCTUSED
constraints described in the chapter “Data Blocks, Extents, and Segments” in
Oracle8 Concepts.

Process free lists must be specifically enabled by the user. You can specify the num-
ber of process free lists desired by setting the FREELISTS parameter when you cre-
ate a table, index or cluster. The maximum value of the FREELISTS parameter
depends on the Oracle block size on your system. In addition, for each free list, you
need to store a certain number of bytes in a block to handle overhead.

Note: The reserved area and the number of bytes required per free list depend
upon your platform. For more information, see your Oracle system-specific docu-
mentation.

Free List Groups

A free list group is a set of free lists you can specify for use by one or more particular
instances. Each free list group provides free data blocks to accommodate inserts or
updates on tables and clusters, and is associated with instance(s) at startup.

A parallel server has multiple instances, and process free lists alone cannot solve
the problem of contention. Free list groups, however, effectively reduce pinging
between instances.

When enabled, free list groups divide the set of free lists into subsets. Descriptions
of process free lists are stored in separate blocks for the different free list groups.
Each free list group block points to the same free lists, except that every instance
gets its own. (Or, in the case of more instances than free list groups, multiple
instances hash into the same free list group.) This ensures that the instances do not
compete for the same blocks

Attention: In Oracle Parallel Server, you should always use free list groups, along
with process free lists.

Space Management and Free List Groups 11-5

How Oracle Handles Free Space

The Master Free List

The master free list is a repository of blocks which contain available space, drawn
from any extent in the table. It exists by default, and includes:

« blocks which were made free by a committed transaction. These go on the mas-
ter free list when there is a need for free blocks.

= subsequent space allocations not specifically associated with any free list
group. When the high water mark moves, then blocks go on the master free list.

If free list groups exist, each group has its own master free list. There is, in addition,
a central master free list which is mostly used for parallel operations.

Avoiding Contention for the Segment Header and Master Free Llst

A highly concurrent environment has potential contention for the segment header,
which contains the master free list.

« If free list groups exist, then the segment header only points to the central master
free list. In addition, every free list group block contains pointers to its own
master free list, transaction free lists, and process free lists.

= If free list groups do not exist, then the segment header contains pointers to the
master free list, transaction free lists, and process free lists.

In a single instance environment, multiple process free lists help to solve the prob-
lem of many users seeking free data blocks by easing contention on segment
header blocks.

In a multi-instance environment, as illustrated in Figure 11-3, process free lists pro-
vide free data blocks from available extents to different instances. You can partition
multiple free lists so that extents are allocated to specific database instances. Each
instance hashes to one or more free list groups, and each group’s header block
points to process free lists.

If no free list groups are allocated, however, the segment header block of a file
points to the process free lists. Without free list groups, every instance must read
the segment header block in order to access the free lists.

11-6 Oracle8 Parallel Server Concepts & Administration

How Oracle Handles Free Space

Figure 11-3 Contention for the Segment Header

Data Segment

|
| |
/ B

Segment Data Data Data Data
Header

o/s Oracle File
Header Header

Instance Instance

Figure 11-4 shows the blocks of a file in which the master free list is stored in the
segment header block. Three instances are forced to read this block in their effort to
obtain free space. Because there is only one free list, there is only one insertion
point. Process free lists can help to reduce this contention by spreading this inser-
tion point over multiple blocks, each of which will be accessed less often.

Space Management and Free List Groups 11-7

How Oracle Handles Free Space

Figure 11-4 Contention for Master Free List

Data Segment

0o/Ss Oracle File| Segment | Data Data Data Data Data
Header Header Header

(Master

Free List)

F Instance p Instance Instance

Example: Free List Groups

A Simple Case

Figure 11-5 illustrates the division of free space for a table into a master free list
and two free list groups, each of which contains three free lists. This example con-
cerns a well-partitioned application in which deletes occur. The master free list pic-
tured is the master free list for this particular free list group.

The table was created with one initial extent, after which extents 2 and 5 were allo-
cated to instance X, extents 3 and 4 were allocated to instance Y, and extent 6 was
allocated automatically (not to a particular instance). Notice the following:

« The dark shaded blocks in the initial allocation and extent 6 represent the mas-
ter free list of free blocks.

« The light gray blocks represent available free space in free list group X.
« The medium gray blocks represent the available free space in free list group Y.

« Extent 5 is newly allocated, thus all of its blocks are in free list group X.

11-8 Oracle8 Parallel Server Concepts & Administration

How Oracle Handles Free Space

« Solid black blocks represent space freed by deletions, which returns to free list
groups X and Y.

« Unshaded blocks do not contain enough free space for inserts.

Each user process running on instance X uses one of the free lists in group X, and
each user process on instance Y uses one of the free lists in group Y. If more
instances start up, their user processes share free lists with instance X or Y.

A More Complicated Case

The simple case in Figure 11-5 becomes more complicated when you consider that
extents are not allocated to instances permanently, and that space allocated to one
instance cannot be used by another instance. Each free list group has its own mas-
ter free list. After allocation, some blocks go onto the master free list for the group,
some to a process free list, and some do not belong to a free list. If the application is
totally partitioned, then once blocks are allocated to a given instance, they stay
with that instance. However, blocks can move from one instance to another if the
application is not totally partitioned.

Consider a situation in which instance Y fills a block, takes it off the free list, and
then instance X frees the block. The block then goes to the free list of instance X, the
instance which freed it. If instance Y needs space, it cannot reclaim this block.
Instance Y can only obtain free space from its own free list group.

Space Management and Free List Groups 11-9

How Oracle Handles Free Space

Figure 11-5 Groups of Free Lists for a Table

+ automatic allocations

Common pool of free space from:
* Initial allocation (MINEXTENTS)

Extent 6

Allocated

Extent 1 Extent 2 Extent 3 Extent 4 Extent 5
il iy
Initial Allocated Allocated Allocated Allocated
Allocation to instance X to instance Y toinstance Y toinstance X Automatically

L

Free List Group X

&

Free

Free

List1 List2 List3

Free

Instance X
User processes

11-10 Oracle8 Parallel Server Concepts & Administration

X
Free List Group Y

Free Free Free
List1l List2 List3

Instance Y
User Processes

|:| New space
. Freed space

SQL Options for Managing Free Space

SQL Options for Managing Free Space

Several SQL options enable you to allocate process free lists and free list groups for
tables, clusters, and indexes. You can explicitly specify that new space for an object
be taken from a specific datafile. You can also associate free space with particular
free list groups, which can then be associated with particular instances.

The SQL statements include:
CREATE TABLE [CLUSTER, INDEX]
STORAGE
FREELISTS
FREELIST GROUPS

ALTER TABLE [CLUSTER, INDEX]
ALLOCATE EXTENT
SIZE
DATAFILE
INSTANCE

You can use these SQL options with the initialization parameter
INSTANCE_NUMBER to associate data blocks with instances.

See Also: Oracle8 SQL Reference for complete syntax of these statements.

Space Management and Free List Groups 11-11

Managing Free Space on Multiple Instances

Managing Free Space on Multiple Instances

This section describes:
« Partitioning Free Space into Multiple Free Lists
« Partitioning Data with Free List Groups

« How Free Lists and Free List Groups Are Assigned to Instances

Partitioning Free Space into Multiple Free Lists

You can partition free space for individual tables, clusters (other than hash clus-
ters), and indexes into multiple process free lists. Multiple free lists allow a process
to search a specific pool of blocks when space is needed, thus reducing contention
among users for free space. Within an instance, using free lists can reduce conten-
tion if multiple processes are inserting into the same table.

Each table has a master free list of blocks with available space, and can also contain
multiple free lists. Before looking in the master free list, a user process scans the
appropriate free list to locate a block that contains enough space.

Partitioning Data with Free List Groups

The separation of free space into groups can improve performance by reducing con-
tention for free data blocks during concurrent inserting by multiple instances on a
parallel server. You can thus create groups of process free lists for a parallel server,
each of which can contain multiple free lists for a table, index, or cluster. You can
use free list groups to partition data by allocating extents to particular instances.

In general, all tables should have the same number of free list groups, but the num-
ber of free lists within a group may vary, depending on the type and amount of
activity of each table.

Partitioning free space can particularly improve the performance of applications
that have a high volume of concurrent inserts, or updates requiring new space,
from multiple instances. Performance improvements also depend, of course, on
your operating system, hardware, data block size, and so on.

Note: In a multi-instance environment, information about multiple free lists and
free list groups is not preserved upon import. If you use Export and Import to back
up and restore your data, it will be difficult to import the data so that it is parti-
tioned again.

See Also: “Free Lists with Import and Export Utilities” on page B-4
Chapter 12, “Application Analysis”, for more information on partitioning data.

11-12 Oracle8 Parallel Server Concepts & Administration

Managing Free Space on Multiple Instances

How Free Lists and Free List Groups Are Assigned to Instances

Figure 11-6 illustrates the way in which free lists and free list groups are assigned
to instances.

Figure 11-6 How Free Lists and Free List Groups Are Assigned

INSTANCE_NUMBER-1
PARALLEL_SERVER=TRUE?

Yes No
>
NG AnEEey BER = (oracle_pid Modulo FREELIST GROUPS)+1
Yes

INSTANCE_NUMBER =

>
(INSTANCE_NUMBER modulo MAXINSTANCES) [» No MAXINSTANCES = FREELIST_GROUPS?

Yes No
Free lists are partitioned
(INSTANCE_NUMBER modulo FREELIST_GROUPS)+1 over the instances*

Note: Using the statement ALTER SESSION INSTANCE_NUMBER you can alter
the instance number to be larger than the value of MAXINSTANCES. The figure
shows how this possibility is taken into account: for the purposes of the internal cal-
culation whereby free list groups are assigned, the instance number is brought back
within the boundaries of MAXINSTANCES.

* Free lists are partitioned as follows: If there are 3 instances and 35 free list groups,
then instance 1 will handle the first twelve free list groups, instance 2 the next
twelve, and instance 3 the remaining eleven. The actual free list group block is
determined by hashing oracle_pid by the number of free list groups.

Space Management and Free List Groups 11-13

Free Lists Associated with Instances, Users, and Locks

Free Lists Associated with Instances, Users, and Locks

This section describes:
« Associating Instances with Free Lists
« Associating User Processes with Free Lists

« Associating PCM Locks with Free Lists

Associating Instances with Free Lists

A table can have separate groups of process free lists that are assigned to particular
instances. Each group of free lists can be associated with a single instance, or sev-
eral instances can share one group of free lists. All instances also have access to the
master free list of available space.

Groups of free lists allow you to associate instances with different sets of data
blocks for concurrent inserts and updates requiring new space. This reduces conten-
tion for the segment header block, which contains information about the master
free list of free blocks. For tables that do not have multiple free list groups, the seg-
ment header also contains information about free lists for user processes. You can
use free list groups to locate the data that an instance inserts and accesses fre-
guently in extents allocated to that instance.

Data partitioning can reduce contention for data blocks. Often the PCM locks that
cover blocks in one free list group tend to be held primarily by the instance using
that free list group, because an instance that modifies data is usually more likely to
reuse that data than other instances. However, if multiple instances take free space
from the same extent, they are more likely to contend for blocks in that extent if
they subsequently modify the data that they inserted.

Assignment of New Instances to Existing Free List Groups

If MAXINSTANCES is greater than the number of free list groups in the table or
cluster, then an instance number maps to the free list group associated with:

instance_number modulo number_of free list_groups

Note: “Modulo” (or “rem” for “remainder”) is a formula for determining which
free list group should be used by calculating a remainder value. In the following
example there are 2 free list groups and 10 instances. To determine which free list
group instance 6 will use, the formula would read 6 modulo 2 = 0. Six divided by 2
is 3 with zero remainder, so instance 6 will use free list group 0. Similarly, instance
5 would use free list group 1 because 5 modulo 2 = 1. Five is divisible by 2 with a
remainder of 1.

11-14 Oracle8 Parallel Server Concepts & Administration

Free Lists Associated with Instances, Users, and Locks

If there are more free list groups than MAXINSTANCES, then a different hashing
mechanism is used.

If multiple instances share one free list group, they share access to every extent spe-
cifically allocated to any instance sharing that free list group.

FREELIST GROUPS and MAXINSTANCES

In a system with relatively few nodes, such as a clustered system, the FREELIST
GROUPS option for a table should generally have the same value as the MAXIN-
STANCES option of CREATE DATABASE, which limits the number of instances
that can access a database concurrently.

In a massively parallel system, however, MAXINSTANCES could be many times
larger than FREELIST GROUPS so that many instances share one group of free lists.

See Also: "Associating Instances, Users, and Locks with Free List Groups" on page
17-9.

Associating User Processes with Free Lists

User processes are associated with process free lists based on their Oracle process
IDs. Each user process has access to only one free list in the free list group for the
instance on which it is running. Every user process also has access to the master
free list of free blocks.

If a table has multiple free lists but does not have multiple free list groups, or has
fewer free list groups than the number of instances, then each free list is shared by
user processes from different instances.

Associating PCM Locks with Free Lists

If each extent in the table is in a separate datafile, you can use the
GC_FILES TO_LOCKS parameter to allocate specific ranges of PCM locks to each
extent, so that each set of PCM locks is associated with only one group of free lists.

Figure 11-7 shows multiple extents in separate files. The GC_FILES TO_LOCKS
parameter allocates 10 locks to files 8 and 10, and 10 locks to files 9 and 11. Extents
A and C are in the same free list group, and extents B and D are in another free list
group. One set of PCM locks is associated with files 8 and 10, and a different set of
PCM locks is associated with files 9 and 11. You do not need separate locks for files
which are in the same free list group (such as files 8 and 10, or files 9 and 11).

Space Management and Free List Groups 11-15

Controlling the Allocation of Extents

Figure 11-7 Extents and Free List Groups

GC_FILES_TO_LOCKS =8, 10:10; 9, 11:10

File 8, Extent A

\ = N _— = = _—
P (VA VR VANV Y
Free List Group 1 File 9. Extent B
SNV VS
’, AR AN RN

File 10, Extent C

N —=

VAR EY I ENYARY

Free List Group 2 File 11, Extent D
\— < T~ T~ T~ - . -
// \‘//\\// > /\// NI /\// N

This example assumes total partitioning for reads as well as for writes. If more than
one instance is to update blocks, then it would still be desirable to have more than
one lock per file in order to minimize forced reads and writes. This is because even
with a shared lock, all blocks held by a lock are subject to forced reads when
another instance tries to read even one of the locked blocks.

See Also: "Setting GC_FILES TO_LOCKS: PCM Locks for Each Datafile" on page
15-7.

Controlling the Allocation of Extents

This section covers the following topics:

« Automatic Allocation of New Extents

« Pre-allocation of New Extents

« Dynamic Allocation of Blocks on Lock Boundaries

When a row is inserted into a table and new extents need to be allocated, a certain
number of contiguous blocks (specified with Iblocks in the GC_FILES TO_LOCKS
parameter) are allocated to the free list group associated with an instance. Extents
allocated when the table or cluster is first created and new extents that are automat-
ically allocated add their blocks to the master free list (space above the high water
mark).

11-16 Oracle8 Parallel Server Concepts & Administration

Controlling the Allocation of Extents

Automatic Allocation of New Extents

When a user explicitly allocates an extent without specifying an instance, or when
an extent is automatically allocated to a segment because the system is running out
of space (the high water mark cannot be advanced any more), the new extent
becomes part of the unused space. It is placed at the end of the extent map, which
means that the current high water mark is now in an extent “to the left” of the new
one. The new extent is thus added “above” the high water mark.

Pre-allocation of New Extents
You have two options for controlling the allocation of new extents.
« pre-allocating extents to free list groups
« dynamically allocating blocks to free list groups

Pre-allocating extents is a static approach to the problem of preventing automatic
allocation of extents by Oracle. You can pre-allocate extents to tables that have free
list groups. This means that all the free blocks will be formatted into free lists,
which will reside in the free list group of the instance to which you are pre-allocat-
ing the extent. This approach is useful if you need to partition data so as to greatly
reduce all pinging on insert, or if you need to accommodate objects which you
expect will grow.

Note: False pinging will not be eliminated.

See Also: "Pre-allocating Extents (Optional)" on page 17-10.

Dynamic Allocation of Blocks on Lock Boundaries

If you primarily need to accommodate growth, the strategy of dynamically allocat-
ing blocks to free list groups would be more effective than pre-allocation of extents.
You can use the !blocks option of GC_FILES TO_LOCKS to dynamically allocate
blocks to a free list from the high water mark within a lock boundary. This method
does not eliminate all pinging on the segment header-- rather, it allocates blocks on
the fly so that you do not have to pre-allocate extents.

Remember that locks are owned by instances. Blocks are allocated on a per-instance
basis--and that is why they are allocated to free list groups. Within an instance,
blocks can be allocated to different free lists.

Using this method, you can either explicitly allocate the !blocks value, or else leave
the balance of new blocks still covered by the existing PCM lock. If you choose the
latter, remember that there still may be contention for the existing PCM lock by allo-
cation to other instances. If the PCM lock covers multiple groups of blocks, there

Space Management and Free List Groups 11-17

Controlling the Allocation of Extents

may still be unnecessary forced reads and writes of all the blocks covered by the
lock.

See Also: "Dynamically Allocating Extents” on page 17-14.

Moving the High Water Mark of a Segment

A segment’s high water mark is the current limit to the number of blocks that have
been allocated within the segment. If you are allocating extents dynamically, the
high water mark is also the lock boundary. The lock boundary and the number of
blocks which will be allocated at one time within an extent must coincide. This
value must be the same for all instances.

Consider the following example, in which there are 4 blocks per lock (!4). Locks
have been allocated before the block content has been entered. If we have filled dat-
ablock D2, held by Lock 2, and then allocate another range of 4 blocks, only the
number of blocks which fits within the lock boundary will actually be allocated: in
this case, blocks 7 and 8. Both of these are protected by your current lock. With the
high water mark at 8, when instance 2 allocates a range of blocks, all four blocks 9
to 12 are allocated, covered by lock 3. The next time instance 1 allocates blocks it
will get blocks 13 to 16, covered by lock 4.

Figure 11-8 A File with High Water Mark Moving as Blocks Are Allocated

Lock 1 Lock 2 Lock 3
\ \ \

File Segment| Free Free Data Data Data Data Data Data Data Data

Header |Header | List List
Group Group
1 2

Initial high Shifted high
water mark water mark

11-18 Oracle8 Parallel Server Concepts & Administration

Controlling the Allocation of Extents

Example The example in this section assumes that GC_FILES TO_LOCKS has the
following setting for both instances:

GC_FILES TO_LOCKS ="1000!5"
With the EACH option specified, each file in file_list is allocated #locks number of

PCM locks. Within each file, Iblocks specifies the number of contiguous data blocks
to be covered by each lock.

Figure 11-9 shows the incremental process by which the segment grows:

« Stage 1 shows an extent in which instance 1 allocates 5 data blocks, which are
protected by Lock 2.

« Stage 2 shows instance 2 allocating 5 more data blocks, protected by Lock 3.

« Stage 3 shows instance 1 once more allocating 5 data blocks, protected by
Lock 4.

In this way, if user A on Instance 1 is working on block 10, no one else from either
instance can work on any block in the range of blocks that are covered by Lock 2
(that is, blocks 6 through 10).

Space Management and Free List Groups 11-19

Controlling the Allocation of Extents

Figure 11-9 Allocating Blocks Within an Extent

Instance 1 Segment A Instance 2

L °
(] (]
]]
(] (] A
: : PCM
s Freelist —p Lock 1
s group 1 ' Freelist
[' group 2
(] (]
0 0 PCM
0] ' Lock 2
AIIocIatllgn A,
5 Blocks
' ' Y jiigh
. . Mark 2
(] (]
(] (] 2
(] (]
' ' Instancel Segment A Instance 2
o
]]
: : Instance 1 Segment A Instance 2
’ ’ P ce- []
0 0 [] (]
' ' Freelist ——p» ’ :
0 0 group 1 «— Freelist . .
: : group 2 . .
] 0
' ' s Freelist =
lececcoaae s . 1 <4— Freelist
[[group 2
] (]
(]]
] []
Allocation B: : :
5 Blocks . .
High water — [.
Mark 2] .
] []
[]]
(]]
] []
[]]
]
(]
]
. — High water
' Mark 3
]
]
(]
]
]

11-20 Oracle8 Parallel Server Concepts & Administration

12

Application Analysis

This chapter provides a conceptual framework for optimizing Oracle Parallel
Server application design. It includes the following sections:

» How Detailed Must Your Analysis Be?
« Understanding Your Application Profile
« Partitioning Guidelines

See Also: Oracle8 Tuning for a discussion of performance tuning principles and
method.

Application Analysis 12-1

How Detailed Must Your Analysis Be?

How Detailed Must Your Analysis Be?

The level of detail to which you must analyze an application depends upon your
goals for the use of Oracle Parallel Server. If you need OPS to boost overall data-
base throughput, then a detailed analysis of the database design and application
workload profile will be necessary. This is to ensure that the additional CPU power
provided by each node of the parallel server is fully used for application process-
ing. Even if you are using Oracle Parallel Server primarily to provide high availabil-
ity, careful analysis will enable you to predict the resources that will be needed by
your workload.

Experience gained over many benchmark and real applications shows that, for opti-
mal performance, Oracle Parallel Server systems must minimize the computing
resources used for parallel cache management. This means minimizing the number
of instance lock operations. A successful OPS implementation ensures that each
node performs very few instance lock operations and subsequently the machine-to-
machine high speed interconnect traffic is within the design limitations of the clus-
ter.

You cannot successfully minimize the number of PCM lock operations during the
final fine tuning phase of the database lifetime. Rather, you must plan this early in
the physical database design process.

See Also: Chapter 13, “Designing a Database for Parallel Server”, for a case study
which shows how to design applications to take advantage of the Oracle Parallel
Server.

12-2 Oracle8 Parallel Server Concepts & Administration

Understanding Your Application Profile

Understanding Your Application Profile

To understand your application profile you must classify tables according to appli-
cation functions and access patterns. This section describes:

« Analyzing Application Functions and Table Access Patterns
« Read-only Tables

« Random SELECT and UPDATE Tables

» INSERT, UPDATE, or DELETE Tables

« Planning the Implementation

The following comments apply equally to clustered tables or non-clustered tables.

Analyzing Application Functions and Table Access Patterns

Beyond performing the usual application and data analysis phases, the database
designer for parallel server must anticipate the types of transactions or business
functions that may cause excessive lock conversion rates. You must cross reference
the core application tables and their access patterns with the application functions.

See Also: Chapter 13, “Designing a Database for Parallel Server”, for worksheets
you can use to analyze table access patterns.

Read-only Tables

With tables that are predominantly read-only, all Oracle Parallel Server nodes
quickly initialize the PCM locks to shared mode and very little lock activity takes
place. Read-only tables and their associated index structures require the allocation
of very few PCM locks. With this table type you can expect good performance and
scalability with Oracle Parallel Server.

Also consider putting tables in read-only tablespaces, using the SQL statement
ALTER TABLESPACE READ ONLY. This has two advantages: it speeds up recov-
ery, and no PCM instance locks are required.

Scalability of the parallel query on an Oracle Parallel Server environment is subject
to the interconnect speed between the nodes. You may need to run high levels of
parallelism just to keep the processors busy. It is not unusual to run a degree of par-
allelism three times the number of nodes (or processors).

These files should have their own PCM lock as specified in the
GC_FILES TO_LOCKS parameter, even if the application is read-only Large sorts,

Application Analysis 12-3

Understanding Your Application Profile

such as queries utilizing SORT MERGE JOINSs, or with GROUP-BYs and ORDER-
BYs, can update the data dictionary in the SYSTEM tablespace.

See Also: "The Four Levels of Scalability You Need" on page 2-2.

“Setting the Degree of Parallelism” in Oracle8 Tuning.

Random SELECT and UPDATE Tables

Random SELECT and UPDATE tables (that is, tables that are not partitioned) have
transactions that may read and then subsequently update any of the rows in a
table. This kind of access requires many lock conversions. First, the instance execut-
ing the transaction must obtain a shared PCM lock on the data block. This lock
request may cause a lock downgrade operation on another node. The instance exe-
cuting the transaction must finally obtain an exclusive mode PCM lock when the
UPDATE is actually performed.

If user transactions on different Oracle Parallel Server nodes modify data blocks
locked by the same PCM lock concurrently, there will be a noticeable performance
penalty. In some cases you can reduce this contention by creating additional hashed
PCM locks. In large tables, however, hardware and practical limitations may mean
that the number of hashed PCM locks you can effectively use may be limited. For
example, to reduce false contention you would need millions of hashed PCM locks--
but memory limitations and startup time would make this impossible. On sup-
ported platforms, fine grain locks offer a viable and economical solution.

For this type of table, if none of the table’s index keys are actually updated, then
the index’s PCM locks are only converted to shared mode and thus require few
PCM locks.

INSERT, UPDATE, or DELETE Tables

Transactions on random INSERT, UPDATE and DELETE tables require reading a
number of data blocks and then modifying some or all of the data blocks read. This
process for each of the data blocks specified again requires converting the PCM
lock to shared mode and then converting it to exclusive mode upon block modifica-
tion. This process has the same performance issues as random SELECT and
UPDATE tables.

For this table type more performance issues exist for two main reasons: index data
blocks are changed, and contention occurs for data blocks on the table’s free list.

In INSERT, DELETE and UPDATE transactions that modify indexed keys, you
need to maintain the table’s indexes. This process requires the modification of addi-
tional index blocks--and so the number of potential lock converts increases. In addi-

12-4 Oracle8 Parallel Server Concepts & Administration

Understanding Your Application Profile

tion, index blocks will probably require additional lock converts since users on
other nodes will be using the index to access other data. This applies particularly to
the initial root components of the index where block splitting may be taking place.
This causes more lock converts from null to exclusive and vice versa on all nodes
within the cluster.

If the INSERT and DELETE operations are subject to long running transactions,
then there is a high chance that another Oracle Parallel Server instance will require
read consistency information to complete its transactions. This process will force
yet more lock conversions as rollback segment data blocks are flushed to disk and
are made available to other instances.

Index block contention involving high lock convert rates must be avoided at all
costs, if performance is a critical issue in the Oracle Parallel Server implementation.

Index block contention can be made more extreme when using a sequence number
generator to generate unique keys for a table from multiple OPS nodes. When gen-
erating unique keys, make the instance number part of the primary key so that each
instance performs INSERTs into a different part of the index. Spreading the INSERT
load over the full width of the index can improve both single and multiple instance
performance.

In INSERT operations the allocation of free space within an extent may also cause
high lock convert rates. This is because multiple instances may wish to insert new
rows into the same data blocks, or into data blocks which are close together. If these
data blocks are managed by the same PCM lock, there will be contention. To avoid
this, create tables so as to allow the use of multiple free lists and multiple free list
groups.

See Also: Chapter 17, “Using Free List Groups to Partition Data”.

Planning the Implementation

Having analyzed the application workload, you can now plan the application’s
OPS implementation. Using the access profile you can see which transactions will
run well over multiple Oracle Parallel Server nodes, and which transactions should
be executed within a single Oracle Parallel Server node. In many cases compro-
mises and trade-offs are required to ensure that the application performs as needed.

Note: Load balancing between nodes should not be the main objective. Whereas
load balancing is useful in a benchmarking situation, it may not be useful in a real-
world application. Partitioning is the key to performance in an Oracle Parallel
Server system.

Application Analysis 12-5

Partitioning Guidelines

Partitioning Guidelines

This section covers the following topics:
« Overview
« Application Partitioning

« Data Partitioning

Overview

The database designer must clearly understand the system performance implica-
tions and design trade-offs made by application partitioning. Always bear in mind
that your goal is to minimize synchronization: this will result in optimized perfor-
mance.

As noted earlier, if the number of lock conversions is minimized the performance of
the Oracle Parallel Server system will be predictable and scalable. By partitioning
the application and/or data you can create and maintain cache affinities of data-
base data with respect to specific nodes of a cluster. A partitioned application
ensures that a minimum number of lock conversions are performed, thus data
block pinging and Integrated DLM activity should be very modest. If excessive
IDLM lock activity occurs in a partitioned application, your partitioning strategy
may be inappropriate, or the database creation and tuning process was incorrect.

Application Partitioning

Many partitioning techniques exist to achieve high system performance. One of the
simplest ways to break up or partition the load upon the database is to run differ-
ent applications that access the same database on different nodes of the cluster. For
example, one application may only reference a fixed set of tables that reside in one
set of datafiles, and another application may reference a different set of tables that
reside in a different set of datafiles. These applications can be run on different
nodes of a cluster and should yield good performance if the datafiles are assigned
different PCM locks. There will be no conflict for the same database objects (since
they are in different files) and hence no conflict for the same database blocks.

This scenario is particularly applicable to applications that during the day need to
support many users and a high OLTP workload, and during the night need to run a
high batch and decision support workload. In this case applications can be parti-
tioned amongst the cluster nodes to sustain good OLTP performance during the
day.

12-6 Oracle8 Parallel Server Concepts & Administration

Partitioning Guidelines

This model is very similar to a distributed database model, where tables that are
accessed together are stored together. At night, when it is necessary to access tables
that may be partitioned for OLTP purposes, you still can exploit the advantages of
a single database: all the data is stored effectively within a single database. Advan-
tages include improved batch and decision support, query performance, reduced
network traffic, and data replication issues.

With this approach you must ensure that each application’s tables and indexes are
stored such that one PCM lock does not cover any data blocks that are used by both
applications. Should this happen the purpose of partitioning would be lost. To rec-
tify the situation you would store each application’s table and index data in sepa-
rate datafiles.

Applications which share a set of SQL statements perform best when they run on
the same instance. Because shared SQL areas are not shared across instances, simi-
lar sets of SQL statements should run on one instance to improve memory usage
and reduce parsing.

Data Partitioning

Sometimes the partitioning of applications between nodes may not be possible. As
an alternative approach, you can partition the database objects themselves. To do
this effectively you must analyze the application profile in depth. You may or may
not need to split a table into multiple tables. In Oracle Parallel Server situations the
partitioning process can involve horizontal partitioning of the table between pre-
defined key ranges.

In addition to partitioning and splitting database objects, you must ensure that
each transaction from a user is executed upon the correct OPS instance. The correct
node for execution of the transaction is a function of the actual data values being
used in the transaction. This process is more commonly known as data-dependent
routing.

The process of partitioning a table for purposes of increasing parallel server perfor-
mance brings with it various development and administration implications.

From a development perspective, as soon as the table is partitioned the quantity
and complexity of application code increases. In addition, partitioning a table may
compromise the performance of other application functions such as batch and deci-
sion support queries.

The administration of data-dependent routing may be complex and involve addi-
tional application code. The process may be simplified if a transaction processing
monitor (TPM) or RPC mechanism is used by the application. It is possible to code

Application Analysis 12-7

Partitioning Guidelines

into the configuration of the TPM a data-dependent routing strategy based upon
the input RPC arguments. Similarly, this process could be coded into piece of proce-
dural code using a case statement to determine which instance should execute the

transaction.
See Also: "Client-Server Systems" on page 1-22

12-8 Oracle8 Parallel Server Concepts & Administration

Part ||

OPS System Development Procedures

13

Designing a Database for Parallel Server

This chapter prescribes a general methodology for designing systems optimized for
the Oracle Parallel Server.

Overview

Case Study: From First-Cut Database Design to OPS
Analyze Access to Tables

Analyze Transaction Volume by Users

Partition Users and Data

Partition Indexes

Implement Hashed or Fine Grain Locking

Implement and Tune Your Design

Designing a Database for Parallel Server 13-1

Overview

Overview

This chapter provides techniques for designing a new application for use with Ora-
cle Parallel Server. You can also use these analytical techniques to evaluate existing
applications and see how well suited they are for migration to a parallel server.

Attention: Always bear in mind that your goal is to minimize synchronization: this
will result in optimized performance.

The chapter assumes that you have made at least a first cut of your database
design. To optimize your design for a parallel server, follow the methodology sug-
gested here.

Make a first cut of your database design.
Analyze access to tables.

Analyze transaction volume.

Decide how to partition users and data.
Decide how to partition indexes, if necessary.

Choose hashed or fine grain locking.

N o o~ w NP

Implement and tune your design.

Case Study: From First-Cut Database Design to OPS

A simple case study is used throughout this chapter to demonstrate analytical tech-
niques in practice. Although your application will differ, this example will help you
to understand the process.

“Eddie Bean” Catalog Sales
« Tables
« Users

« Application Profile

13-2 Oracle8 Parallel Server Concepts & Administration

Case Study: From First-Cut Database Design to OPS

“Eddie Bean” Catalog Sales

Tables

Users

The case study concerns the Eddie Bean catalog sales company, which has many
order entry clerks who take telephone orders for various products. Shipping clerks
fulfill orders, accounts receivable clerks handle billing. Accounts payable clerks
handle orders for supplies and services which the company requires internally.
Sales managers and financial analysts run reports on the data. This company’s
financial application has three areas which operate on a single database:

« orderentry
« accounts payable

« accounts receivable

Tables from the Eddie Bean database include:

Table 13-1 “Eddie Bean” Sample Tables

Table Contents

ORDER_HEADER Order number, customer name and address.

ORDER_ITEMS Products ordered, quantity, and price.

ORGANIZATIONS Names, addresses, phone numbers of customers and suppliers.

ACCOUNTS_PAYABLE Tracks the company’s internal purchase orders and payments
for supplies and services.

BUDGET Balance sheet of the company’s expenses and income.

FORECASTS Projects future sales and records current performance.

Various application users access the database to perform different functions:
« order entry clerks

« accounts payable clerks

« accounts receivable clerks

« shipping clerks

« sales manager

« financial analyst

Designing a Database for Parallel Server 13-3

Analyze Access to Tables

Application Profile

Operation of the Eddie Bean application is fairly consistent throughout the day:
order entry, order processing, and shipping are performed all day and not, for
example, segregated into one-hour slots.

About 500 orders are entered per day. Each order header is updated about 4 times
through its lifetime (so we expect about 4 times as many updates as inserts). There
are many selects, because lots of people are querying order headers--people doing
sales work, financial work, shipping, tracing the status of orders, and so on.

There are about 4 items per order. Order items are never updated: an item may be
deleted and another item entered.

The ORDER_HEADER table has four indexes, and each of the other tables has a pri-
mary key index only.

Budget and Forecast activity has a much lower volume than the order tables. They
are read frequently, but modified infrequently. Forecasts are updated more often
than Budget, and are deleted once they go into actuals.

The vast bulk of the deletes are performed as a batch job at night: this maintenance
activity does not therefore need to be included in the analysis of nhormal function-
ing of the application.

Analyze Access to Tables

Begin by analyzing the existing (or expected) access patterns for the tables in your
database. You will then decide how to partition the tables, and group them accord-
ing to access pattern.

« Table Access Analysis Worksheet
« Case Study: Table Access Analysis

13-4 Oracle8 Parallel Server Concepts & Administration

Analyze Access to Tables

Table Access Analysis Worksheet

List all your high-activity database tables in a worksheet like this:

Table 13-2 Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Opera- Opera- Opera- Opera-

tions I/Os tions I/Os tions I/Os tions I/Os

To fill out this worksheet, you estimate the volume of operations of each type, and
then calculate the number of reads and writes (1/0s) the operations will entail.

Estimating Volume of Operations

For each type of operation that will be performed on a table, enter a figure that
reflects the normal volume you would expect in the course of a day.

Attention: The emphasis throughout this analysis is on relative values—gross figures
that describe the normal use of an application. Even if an application does not yet
exist, you can nonetheless project types of users and estimate relative levels of activ-
ity. Maintenance activity on the tables is not generally relevant to this analysis.

Calculating 1/0s per Operation
For each value in the Operations column, calculate the number of 1/0s that will be
generated (using a worst-case scenario).

Note that the SELECT operation involves read access, and the INSERT, UPDATE
and DELETE operations involve both read and write access. These operations
access not only data blocks, but also any related index blocks.

Designing a Database for Parallel Server 13-5

Analyze Access to Tables

Attention: The number of 1/0s generated per operation changes by table depending
on the access path of the table, and the table’s size. It also changes depending on
the number of indexes a table has. A small index, for example, may have only a sin-
gle index branch block.

For example, Figure 13-1 illustrates read and write access to data in a large table in
which two levels of the index are not in the buffer cache and only a high level index
is cached in the SGA.

Figure 13-1 Number of I/So per SELECT or INSERT Operation

Index
Root

Index
Branch

Lower Level
SELECT Index Branch INSERT

Read Read

Index
Leaf Block

Read Read/Write

Data

Block
v oc v Not Cached

Read Read/Write

Cached

In this example, assuming that you are accessing data via the primary key, a
SELECT entails three 1/0s:

1. one I/0 to read the first lower level index block
2. one I/0 to read the second lower level index block
3. one /0 to read the data block

Note: If all of the root and branch blocks are in the SGA, a SELECT may entail only
two 1/0s: read leaf index block, read data block.

13-6 Oracle8 Parallel Server Concepts & Administration

Analyze Access to Tables

AN INSERT or DELETE statement entails at least five 1/0s:
1. one I/0 to read the data block

2. one I/0 to write the data block

3. three I/0s per index: 2 to read the index entries and 1 to write the index
One UPDATE in this example entails seven 1/0s:

1. one I/0 to read the first lower level index block

2. one I/0 to read the second lower level index block

3. one I/0 to read the data block

4. one I/0 to write the data block

5. one I/0 to read the first lower level index block again

6. one I/0 to read the second lower level index block again
7. one I/0 to write the index block

Note: An INSERT or DELETE affects all indexes, but an UPDATE sometimes may
affect only one index. Check to see how many index keys are changed.

I/Os per Operation for Sample Tables
In the case study, number of 1/0s per operation differs from table to table—
because the number of indexes differs from table to table.

Table 13-3 shows how many 1/0s are generated by each type of operation on the
ORDER_HEADER table. It assumes that the ORDER_HEADER table has four
indexes.

Table 13-3 Number of I/Os per Operation: Sample ORDER_HEADER Table

Operation SELECT INSERT UPDATE DELETE
Type of Access read read/write read/write read/write
Number of 1/0s 3 14 7 14

Attention: Remember that you must adjust these figures depending upon the
actual number of indexes and access path for each table in your database.

Designing a Database for Parallel Server 13-7

Analyze Access to Tables

Table 13-4 shows how many 1/0Os are generated per operation for each of the other
tables in the case study, assuming that each of them has a primary key index only.

Table 13-4 Number of I/Os per Operation: Other Sample Tables

Operation SELECT INSERT UPDATE DELETE
Type of Access read read/write read/write read/write
Number of I/Os 3 5 7 5

For purposes of this analysis you can disregard the fact that any changes made to
the data will also generate rollback segments, entailing additional 1/0s. These 1/0s
are instance-based, and so should not cause problems with your parallel server
application.

See Also: Oracle8 Concepts for more information about indexes.

13-8 Oracle8 Parallel Server Concepts & Administration

Analyze Access to Tables

Case Study: Table Access Analysis
Table 13-5 shows rough figures reflecting normal use of the application in the case

study.
Table 13-5 Case Study: Table Access Analysis Worksheet
Daily Access Volume
Read Access Write Access
Select Insert Update Delete
Opera- Opera- Opera- Opera-
Table Name tions I/Os tions I/Os tions I/Os tions I/0s
ORDER_HEADER 20,000 60,000 500 7,000 2,000 14,000 | 1,000 14,000
ORDER_ITEM 60,000 180,000 2,000 10,000 | O 0 4,030 20,150
ORGANIZATIONS 40,000 120,000 10 50 100 700 0 0
BUDGET 300 900 1 5 2 14 0 0
FORECASTS 500 1,500 1 5 10 70 2 10
ACCOUNTS_PAYABLE | 230 690 50 250 20 140 0 0

The following conclusions can be drawn from this table:

« Only the ORDER_HEADER and ORDER_ITEM tables have significant levels of
write access.

« ORGANIZATIONS, by contrast, is predominantly a lookup table; while a cer-
tain number of INSERT, UPDATE, and DELETE operations will be performed
to maintain it, its normal use is SELECT-only.

Designing a Database for Parallel Server 13-9

Analyze Transaction Volume by Users

Analyze Transaction Volume by Users

Begin by analyzing the existing (or expected) access patterns for the tables in your
database. You will then decide how to partition the tables, and group them accord-

ing to access pattern.
« Transaction Volume Analysis Worksheet

» Case Study: Transaction Volume Analysis

Transaction Volume Analysis Worksheet
For each table which has a high volume of write access, analyze the transaction vol-

ume per day for each type of user.

Attention: For read-only tables, you do not need to analyze transaction volume by

user type.

Use worksheets like this:

Table 13-6 Transaction Volume Analysis Worksheet

Table Name:

Type of User

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Oper- Oper- Oper- Oper-
No.Users ations | 1/Os ations | 1/Os ations | 1/Os ations | 1/Os

Begin by estimating the volume of transactions by each type of user, and then calcu-

late the number of I/0s entailed.

13-10 Oracle8 Parallel Server Concepts & Administration

Analyze Transaction Volume by Users

Case Study: Transaction Volume Analysis

The following tables show transaction volume analysis of the three tables in the
case study which have a high level of write access: ORDER_HEADER,
ORDER_ITEMS, and ACCOUNTS_PAYABLE.

ORDER_HEADER Table
Table 13-7 shows rough figures for the ORDER_HEADER table in the case study.

Table 13-7 Case Study: Transaction Volume Analysis: ORDER_HEADER Table

Table Name: ORDER_HEADER

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Oper- Oper- Oper- Oper-
Type of User No.Users ations | 1/Os ations | 1/Os ations | 1/Os ations | 1/Os
OE clerk 25 5,000 15,000 | 500 7,000 0 0 0 0
AP clerk 5 0 0 0 0 0 0 0 0
AR clerk 5 6,000 18,000 | O 0 1,000 7,000 | O 0
Shipping clerk 4 4,000 12,000 | O 0 1,000 7,000 | O 0
Sales manager 2 3,000 9,000 0 0 0 0 0 0
Financial analyst | 2 2,000 6,000 0 0 0 0 0 0

The following conclusions can be drawn from this table:

« OE clerks perform all inserts on this table.

« AR and shipping clerks perform all updates.

« Sales managers and financial analysts only perform select operations on it.
« AP clerks never touch the table.

Deletes are performed as a maintenance operation, so they need not be considered
in this analysis.

Designing a Database for Parallel Server 13-11

Analyze Transaction Volume by Users

Furthermore, the application developers realize that sales managers normally
access data for the current month, whereas financial analysts access historical data.

ORDER_ITEMS Table
Table 13-8 shows rough figures for the ORDER_ITEMS table in the case study.

Table 13-8 Case Study: Transaction Volume Analysis: ORDER_ITEMS Table

Table Name: ORDER_ITEMS

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Oper- Oper- Oper- Oper-
Type of User No.Users ations | 1/Os ations | 1/Os ations | 1/Os ations | 1/Os
OE clerk 25 15,000 | 45,000 | 2,000 10,000 | O 0 20 100
AP clerk 5 0 0 0 0 0 0 0 0
AR clerk 5 18,000 | 54,000 | O 0 0 0 10 50
Shipping clerk 4 12,000 36,000 0 0 0 0 0 0
Sales manager 2 9,000 27,000 0 0 0 0 0 0
Financial analyst | 2 6,000 18,000 0 0 0 0 0 0

The following conclusions can be drawn from this table:
« OE clerks perform all inserts on this table.
« Updates are rarely performed

« AR clerks, shipping clerks, sales managers and financial analysts perform a
heavy volume of select operations on the table.

« AP clerks never touch the table.

Note that the ORDER_HEADER table has more writes than ORDER_ITEMS
because the order header tends to require more changes of status (such as address
changes) than the list of available products. The ORDER_ITEM table is seldom
updated because new items are listed as journal entries, instead.

13-12 Oracle8 Parallel Server Concepts & Administration

Analyze Transaction Volume by Users

ACCOUNTS_PAYABLE Table

Table 13-9 shows rough figures for the ACCOUNTS_PAYABLE table in the case
study.

Although this table does not have a particularly high level of write access, we have
analyzed it because it contains the main operation that the AP clerks perform.

Table 13-9 Case Study: Transaction Volume Analysis: ACCOUNTS_PAYABLE Table

Table Name: ACCOUNTS_PAYABLE

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Oper- Oper- Oper- Oper-
Type of User No.Users ations | 1/Os ations | 1/Os ations | 1/Os ations | 1/Os
OE clerk 25 0 0 0 0 0 0 0 0
AP clerk 5 200 600 50 250 20 140 0 0
AR clerk 5 0 0 0 0 0 0 0 0
Shipping clerk | 4 0 0 0 0 0 0 0 0
Sales manager | 2 0 0 0 0 0 0 0 0
Financial 2 30 90 0 0 0 0 0 0
analyst

The following conclusions can be drawn from this table:

« Accounts payable clerks send about 50 purchase orders per day to suppliers.
These clerks are the only users who change the data in this table.

« Financial analysts occasionally study the information.

Deletes are performed as a maintenance operation, so they need not be considered
in this analysis.

Designing a Database for Parallel Server 13-13

Partition Users and Data

Partition Users and Data

Your goal is now to partition applications across instances. This can involve split-
ting types of users across instances, and partitioning data that needs to be written
only by certain types of user. This will minimize the amount of contention on your
system. This section covers:

« Case Study: Initial Partitioning Plan
» Case Study: Further Partitioning Plans

Case Study: Initial Partitioning Plan

Partitioning
Users

Partitioning
Data

In the case study, for example, the large number of Order Entry clerks who do
heavy insert activity on the ORDER_HEADER and ORDER_ITEM tables should
not be split across machines. They should be concentrated on one node along with
the two tables they use so intensively. A good starting point, then, would be to set
aside one node for the OE clerks, and one node for all the other users, as illustrated
in Figure 13-2.

Figure 13-2 Case Study: Partitioning Users and Data

Instance 1 Instance 2
AP Clerks
AR Clerks
OE Clerks Shipping Clerks
Sales Managers
Financial Analysts
w T
9 9 % 3 @ 3
w)} @] (@] 3] o)
m m Q > 0) m
Py Py [=Z m 0O
't 'S = N . &
m |-_|-'| I(/:t E a
> z < =
(@) R o)
m =< =z
Py > n
)
—
m

13-14 Oracle8 Parallel Server Concepts & Administration

Partition Users and Data

This system would probably be well balanced across nodes. The database intensive
reporting done by financial analysts takes a good deal of system resources, whereas
the transactions run by the OE clerks are relatively lightweight.

This kind of load balancing of the number of users across the system is typically
useful, but not always critical. Load balancing has a lower priority for tuning than
reducing contention. not vitally important that financial analysts have the current
day’s data--if they are primarily interested in looking at historical data. (This would
not be appropriate if they needed up-to-the minute data.)

Case Study: Further Partitioning Plans

In the case study it is also clear that the Accounts Payable data is written exclu-
sively by AP clerks. This data and set of users can also be very effectively parti-
tioned onto a separate instance, as shown in Figure 13-3.

Figure 13-3 Case Study: Partitioning Users and Data: Design Option 1

Instance 1 Instance 2 Instance 3
AR Clerks
Partitioning OE Clerks AP Clerks Shipping Clerks
Users Sales Manager
Financial Analysts
Partitioning % 2 2 % P 3
bata 5 5 g g 2 i
Pyl Byl c z m 0
| (1 = = — >
z = 5 N 2
0 o » = o
S <4 5 o
m > P
Pyl ; 2
[or]
—
m

When all users who need write access to a certain part of the data are concentrated
on one node, the PCM locks will all reside on that node. In this way lock ownership
will not have to go back and forth between instances.

Designing a Database for Parallel Server 13-15

Partition Users and Data

Two design options suggest themselves, based on this analysis.

Design Option 1

You can set up the system just as shown above, with all of the order entry clerks
together on one instance so as to minimize contention for exclusive PCM locks on
the table. In this way sales managers and financial analysts could get up to the
minute information. Since they do want data that is predominantly historical, there
should still not be too much contention for current records.

Design Option 2

Alternatively, you could implement a separate ORDER_ITEM/ ORDER_HEADER
temporary table purely for the taking of new orders. Overnight, you could incorpo-
rate changes into the main table against which all queries are performed. This solu-
tion would work well if it is not vitally important that financial analysis have the
current day’s data—if they are primarily interested in looking at historical data.
(This would not be appropriate if they needed up-to-the-minute data.)

Figure 13-4 Case Study: Partitioning Users and Data: Design Option 2

Instance 1 Instance 2 Instance 3
AR Clerks
Partitioning — OE Clerks AP Clerks SSTIpp,:/rllg Clerks
Users Sales Mangagers
Financial Analysts

o o] o] (@) w m

P3|) c)%) Py} % c o

(o) g Q o g a) o))

m m o) m m e @ m

P ? c © © Z m g
Partitioning —| I\ m 0 i m 3 7
Data o |§ x g < g

Byl o < Py} %)

I_| = g

m o @

< m

T

13-16 Oracle8 Parallel Server Concepts & Administration

Implement Hashed or Fine Grain Locking

Partition Indexes

You need to consider index partitioning if multiple nodes in your system are insert-
ing into the same index. In this situation you must make sure that the different
instances insert into different points within the index.

(The problem is avoided in the Eddie Bean case study because application and data
usage are partitioned.)

See Also: "Creating Free Lists for Indexes" on page 17-7 for tips on using free lists,
free list groups, and sequence numbers to avoid contention on indexes.

"Pinpointing Lock Contention within an Application” on page 19-5 regarding
indexes as a point of contention.

Implement Hashed or Fine Grain Locking

For many applications, the DBA needs to decide whether to use hashed or fine
grain locking for particular database files.

On very large tables the locking mode you use will have a strong impact on perfor-
mance. If one node in exclusive mode gives 100% performance with hashed lock-
ing, one node in shared mode might give 70% of that performance with fine grain
locking. The second node in shared mode would also give 70% performance. With
hashed locking, the more nodes are added, the more the performance degrades.
Fine grain locking is thus a more scalable solution.

You should design for worst case (hashed locking). Then, in the design or monitor-
ing phase if you come to a situation where you have too many locks, or if you sus-
pect false pings, you should try fine grain locking.

Begin with an analysis on the database level. You can use a worksheet like this:

Table 13-10 Worksheet: Database Analysis for Hashed or Fine Grain Locking

Block Class Relevant Parameter(s) Use Fine Grain or Hashed Locking?

Designing a Database for Parallel Server 13-17

Implement and Tune Your Design

Next, list files and database objects in a worksheet like the following. Decide which
locking mode to use for each file.

Table 13-11 Worksheet: When to Use Hashed or Fine Grain Locking

Filename Objects Contained Use Fine Grain or Hashed Locking?

See Also: "Applying Fine Grain and Hashed Locking to Different Files" on page 9-

21.

Implement and Tune Your Design

Thus far you have conducted an analysis using gross figures. To finalize your
design you must now either prototype the application or implement it in practice—
and get it running. By observing the system in action you can tune it further. Try
the following techniques:

Identify blocks that are being pinged: find out where contention exists.

Consider moving users from one instance to another in order to reduce the
amount of pinging and false pinging.

If a high level of false pinging appears, consider increasing the granularity of
the locks (placing more locks on each file).

If there is pinging on inserts, adjust the free lists or use multiple sequence num-
ber generators so that inserts occur in different parts of the index.

See Also: Chapter 19, “Tuning the System to Optimize Performance”
Oracle8 Tuning

13-18 Oracle8 Parallel Server Concepts & Administration

14

Creating a Database & Objects for Multiple
Instances

This chapter describes:
Creating a Database for a Multi-instance Environment
Creating Database Obijects to Support Multiple Instances
Changing the Value of CREATE DATABASE Options

Creating a Database & Objects for Multiple Instances 14-1

Creating a Database for a Multi-instance Environment

Creating a Database for a Multi-instance Environment
This section covers aspects of database creation that are specific to a parallel server:
« Summary of Tasks
« Setting Initialization Parameters for Database Creation
« Creating a Database and Starting Up
« Setting CREATE DATABASE Options

Summary of Tasks
Database creation tasks specific to the parallel server can be summarized as follows:

1. Setinitialization parameters, including log archiving.

2. With parallel server disabled, enter the CREATE DATABASE statement, setting
MAXINSTANCES and other important options that are specific to a multi-
instance environment.

3. Create rollback segments for each node.

4. Dismount the database, then remount it with parallel server enabled. Then
start up the parallel server.

See Also: “Creating a Database” in Oracle8 Administrator’s Guide.

Setting Initialization Parameters for Database Creation

Certain initialization parameters that are critical at database creation or that affect
certain database operations must have the same value for every instance in a paral-
lel server. Be sure that these are set appropriately before you create a database for a
multi-instance environment.

Using ARCHIVELOG Mode

To enable the ARCH process while creating a database, you must set the initializa-
tion parameter LOG_ARCHIVE_START to TRUE. Then you can change the mode
to ARCHIVELOG with the ALTER DATABASE statement before you start up the
instance that creates the database.

Alternatively, you can reduce overhead by creating the database in NOAR-
CHIVELOG mode (the default). Then change to ARHIVELOG mode.

14-2 Oracle8 Parallel Server Concepts & Administration

Creating a Database for a Multi-instance Environment

You cannot use the STARTUP command to change the database archiving mode.
After creating a database, you can use the following Server Manager commands to
change archiving mode and reopen the database with parallel server enabled:

ALTER DATABASE CLOSE;
ALTER DATABASE ARCHIVELOG;
SHUTDOWN;

STARTUP PARALLEL;

See Also: "Archiving the Redo Log Files" on page 21-2
"Parameters Which Must Be Identical on Multiple Instances” on page 18-10

Creating a Database and Starting Up
Use the standard procedure to create a database.

Attention: The CREATE DATABASE statement mounts and opens the newly cre-
ated database, leaving the parallel server disabled. You must close and dismount
the database, then remount it with parallel server enabled.

1. Start Server Manager.

2. Connect with SYSDBA privileges.

3. Start up an instance with the NOMOUNT option.

4. Issue the CREATE DATABASE statement.

5. Create additional rollback segments and threads, as needed.
6. Close and dismount the database.

SVRMGR> SHUTDOWN
7. Update the initialization files to be sure they point to the proper rollback seg-
ments and threads, and that parallel server is enabled.

8. Remount the database.
SVRMGR> STARTUP [OPEN databasenanie

See Also: "Starting Up Instances" on page 18-12

Creating a Database & Objects for Multiple Instances 14-3

Creating a Database for a Multi-instance Environment

Setting CREATE DATABASE Options
This section describes CREATE DATABASE options specific to the parallel server.

Setting MAXINSTANCES

The MAXINSTANCES option of CREATE DATABASE limits the number of
instances that can access a database concurrently. MAXINSTANCES defaults to the
maximum value specific to your operating system; on most systems the default is 2.

For a parallel server, you should set MAXINSTANCES to a value greater than the
maximum number of instances you expect to run concurrently. In this way;, if
instance A fails and is being recovered by instance B, you will be able to start
instance C before instance A is fully recovered.

Setting MAXLOGFILES and MAXLOGMEMBERS

The MAXLOGFILES option of CREATE DATABASE specifies the maximum num-
ber of redo log groups that can be created for the database, and the MAXLOGMEM-
BERS option specifies the maximum number of members (copies) per group.

For a parallel server, you should set MAXLOGFILES to the maximum number of
threads possible, times the maximum anticipated number of groups per thread.

Setting MAXLOGHISTORY

The MAXLOGHISTORY option of CREATE DATABASE specifies the maximum
number of redo log files that can be recorded in the log history of the control file.
The log history is used for automatic media recovery of a parallel server.

For a parallel server, you should set MAXLOGHISTORY to a large value, such as
1000. The control files can then only store information about this number of redo
log files. When the log history exceeds this limit, the old history entries are over-
written in a circular fashion. The default for MAXLOGHISTORY is zero, which dis-
ables the log history.

Setting MAXDATAFILES

The MAXDATAFILES option is generic, but a parallel server tends to have more
data files and log files than standard systems. On your platform the default value
of this option may be too low.

See Also: Oracle8 SQL Reference for complete descriptions of the SQL statements
CREATE DATABASE and ALTER DATABASE.

See your Oracle operating system-specific documentation for information on
default values of CREATE DATABASE options.

14-4 Oracle8 Parallel Server Concepts & Administration

Creating Database Objects to Support Multiple Instances

"Redo Log Files" on page 6-3 for more information about redo log groups and mem-
bers.

"Redo Log History in the Control File" on page 21-6 for more information on MAX-
LOGHISTORY.

Creating Database Objects to Support Multiple Instances

In order to prepare a new database for the parallel server environment, you must
also create and configure the following additional database objects.

« Creating Additional Rollback Segments
« Configuring the Online Redo Log for a Parallel Server
« Providing Locks for Added Datafiles

Creating Additional Rollback Segments

You must create at least one rollback segment for each instance of a parallel server.
To avoid contention, create these rollback segments in a tablespace other than the
SYSTEM tablespace.

You must create and bring online one additional rollback segment in the SYSTEM
tablespace before you can create rollback segments in any other tablespace. The
instance that creates the database can create this additional rollback segment and
new tablespaces, but it cannot create database objects in non-SYSTEM tablespaces
until you bring the additional rollback segment online.

Using Private Rollback Segments
To allocate a private rollback segment to one instance, follow these steps:

1. Create the rollback segment with the SQL statement CREATE ROLLBACK SEG-
MENT, omitting the keyword PUBLIC. Optionally, before creating the rollback
segment you can create a tablespace for it.

2. Specify the rollback segment in the instance’s parameter file by naming it as a
value for the parameter. This reserves the rollback segment for that instance.

3. Use ALTER ROLLBACK SEGMENT to bring the rollback segment online. You
can also restart the instance to use the reserved rollback segment.

A private rollback segment should be specified in only one parameter file so that it
is associated with only one instance. If an instance attempts to acquire a private roll-
back segment that another instance has already acquired, Oracle generates a mes-
sage and prevents the instance from starting up.

Creating a Database & Objects for Multiple Instances 14-5

Creating Database Objects to Support Multiple Instances

Using Public Rollback Segments

Any instance can create a public rollback segment, which can then be claimed by
any instance when it starts up. Once a rollback segment has been claimed, it is only
used by the instance that claimed it until the instance shuts down, releasing the roll-
back segment for use by another instance.

To create a public rollback segment, use the SQL statement CREATE PUBLIC
ROLLBACK SEGMENT.

Typically, the parameter file for any particular instance does not specify public roll-
back segments because they are assumed to be available to any instance needing
them. However, if another instance is not already using it, you can hame a public
rollback segment as a value of the ROLLBACK_SEGMENTS parameter.

Public rollback segments are identified in the data dictionary view
DBA_ROLLBACK_SEGS as having the owner PUBLIC.

If the parameter file omits the ROLLBACK_SEGMENTS initialization parameter,
the instance uses public rollback segments by default.

A public rollback segment is brought online when an instance that requires public
rollback segments starts up and acquires it. However, starting an instance that uses
public rollback segments does not ensure that any particular public rollback seg-
ment comes online, unless the instance acquires all of the available public rollback
segments. Once acquired, a public rollback segment is used exclusively by the
acquiring instance.

Bringing online, taking offline, creating, and dropping rollback segments, whether
private or public, is the same whether parallel server is enabled or disabled.

Private rollback segments stay offline until brought online or the owning instance
restarts. A public rollback segment stays offline until brought online for a specific
instance or until an instance that requires a public rollback segment starts up and
acquires it.

If you need to keep a public rollback segment offline and do not want to drop it
and re-create it, you must ensure no instance starts up that requires public rollback
segments.

Monitoring Rollback Segments

You can use the Server Manager command MONITOR ROLLBACK to display
information about the status of the rollback segments that the current instance uses.

Alternatively, you can query the dynamic performance views VSROLLNAME and
V$ROLLSTAT for information about the current instance’s rollback segments.

14-6 Oracle8 Parallel Server Concepts & Administration

Creating Database Objects to Support Multiple Instances

Use the Server Manager command CONNECT @instance-path to change the current
instance before using the MONITOR command or querying the V$ views. You
must have Net8 installed to use the CONNECT command for an instance on a
remote node.

You can also query the data dictionary views DBA_ROLLBACK_SEGS and
DBA_SEGMENTS for information about the current status of all rollback segments
in your database.

For example, to list all the current rollback segments, you can query
DBA_ROLLBACK_ SEGS with the following statement:

SELECT segment_name, segment_id, owner, status

FROM dba,_rollback segs
This query displays the rollback segment’s name, ID number, owner, and whether
it is in use, as shown in the following example:

SEGMENT_NAME SEGMENT_ID OWNER STATUS

SYSTEM 0 SYS ONLINE
PUBLIC_RS 1 PUBLIC ONLINE
USERS1 RS 2 SYS ONLINE
USERS2_RS 3 SYS OFFLINE
USERS3 RS 4 SYS ONLNE
USERS$4_RS 5 SYS ONLNE
PUBLIC2_RS 6 PUBLIC OFFLINE

In the above example, rollback segments identified as owned by user SYS are pri-
vate rollback segments; the rollback segments identified as owned by user PUBLIC
are public rollback segments. The view DBA_ROLLBACK_SEGS also includes
information (not shown) about the tablespace containing the rollback segment, the
datafile containing the segment header, and the extent sizes. The view
DBA_SEGMENTS includes additional information about the number of extents in
each rollback segment and the segment size.

See Also: Oracle8 Administrator’s Guide for more information about rollback seg-
ments, and about connecting to a database.

Oracle Net8 Administrator’s Guide and your Oracle system-specific documentation
for the format of the connect string in instance-path.

Oracle8 Reference for a description of DBA_ROLLBACK_SEGS and
DBA_SEGMENTS, and other dynamic performance views.

Creating a Database & Objects for Multiple Instances 14-7

Creating Database Objects to Support Multiple Instances

Configuring the Online Redo Log for a Parallel Server

Each database instance has its own “thread” of online redo, consisting of its own
online redo log groups. When running a parallel server, two or more instances con-
currently access a single database, and each instance must have its own thread.
This section explains how to configure these online redo threads for multiple
instances with a parallel server.

You must create each thread with at least two redo log files (or multiplexed
groups), and you must enable the thread before an instance can use it.

The CREATE DATABASE statement creates thread number 1 as a public thread and
enables it automatically. You must use the ALTER DATABASE statement to create
and enable subsequent threads.

Creating Threads

Threads can be either public or private. The initialization parameter THREAD
assigns a unique thread number to the instance. If THREAD is zero, the default, the
instance acquires an available public thread by default.

Each thread must be created with at least two redo log files, or multiplexed groups,
and the thread must then be enabled before an instance can use it.

The CREATE DATABASE statement creates thread number 1 as a public thread and
enables it automatically. Subsequent threads must be created and enabled with the
ALTER DATABASE statement. For example, the following statements create thread
2 with two groups of three members each, as shown in Figure 6-1 on page 6 - 4:

ALTER DATABASE ADD LOGFILE THREAD 2
GROUP 4 (disk_filed, disk2_fle4, disk3_fie4) SIZE 1M REUSE
GROUP 5 (diskL_file5, disk2_fle5, disk3_file5) SIZE 1M REUSE;

ALTER DATABASE ENABLE PUBLIC THREAD 2;

If you omit the keyword PUBLIC when you enable the thread, it will be a private
thread that cannot be acquired by default. Only one thread number may be speci-
fied in the ALTER DATABASE ADD LOGFILE statement, and the THREAD clause
must be specified if the thread number of the current instance was chosen by
default.

14-8 Oracle8 Parallel Server Concepts & Administration

Creating Database Objects to Support Multiple Instances

Disabling Threads

You can disable a public or private thread with the statement ALTER DATABASE
DISABLE THREAD. You cannot disable a thread if an instance using the thread has
the database mounted. To change a thread from public to private, or vice versa, you
must disable it and then enable it again. An instance cannot disable its own thread.
The database must be open when you disable or enable a thread.

When you disable a thread, Oracle marks its current redo log file as needing to be
archived. If you want to drop that file, you might need to first archive it manually.

An error or failure while a thread is being enabled can result in a thread that has a
current set of log files but is not enabled. These log files cannot be dropped or
archived. In this case, you should disable the thread, even though it is already dis-
abled, then enable it.

Setting the Log’s Mode

The mode of using the redo log (ARCHIVELOG or NOARCHIVELOG) is set at
database creation. Although rarely necessary, the archive mode can be changed by
the SQL statement ALTER DATABASE. When archiving is enabled, online redo log
files cannot be reused until they are archived. To switch archiving mode, the data-
base must be mounted with parallel server disabled, but it cannot be open.

The redo log mode is associated with the database rather than with individual
instances. For most purposes, all instances should use the same archiving method
(automatic or manual) if the redo log is being used in ARCHIVELOG mode.

Changing the Redo Log

You can change the configuration of the redo log (add, drop, or rename a log file or
log file member) while the database is mounted with parallel server either enabled
or disabled. The only restrictions are that you cannot drop or rename a log file or
log file member that is currently in use by any thread, and you cannot drop a log
file if that would reduce the number of log groups below two for the thread it is in.

Any instance can add or rename redo log files (or members) of any group for any
other instance. As long as there are more than two groups for an instance, a redo
log group can be dropped from that instance by any other instance. Changes to
redo log files and log members take effect on the next log switch.

See Also: "Archiving the Redo Log Files" on page 21-2

Creating a Database & Objects for Multiple Instances 14-9

Changing the Value of CREATE DATABASE Options

Providing Locks for Added Datafiles

If datafiles are added while a parallel server is running, you must evaluate whether
enough locks are available to cover the new files.

Added datafiles use the unassigned locks which were created when the value for
GC_FILES _TO_LOCKS was set. If the remaining locks are not adequate to protect
the new files and avoid contention, then you must provide more locks by adjusting
these two GC parameters. Performance problems are likely if you neglect to make
these adjustments.

Note that in a read-only database extra locks would not be necessary even if you
added many new datafiles. In a database heavily used for inserts, however, you
might very well need to provide for more locks.

1. Analyze whether the remaining locks are adequate. If more are needed, then go
on to the next step.

2. Shut down the system.

3. Modify the GC_FILES_TO_LOCKS initialization parameter to provide enough
locks for the additional datafiles.

4. Restart the system.

Changing the Value of CREATE DATABASE Options

You can use the CREATE CONTROLFILE statement to change the value of the fol-
lowing database parameters for an existing database:

= MAXINSTANCES

= MAXLOGFILES

« MAXLOGMEMBERS
« MAXLOGHISTORY
= MAXDATAFILES

See Also: Oracle8 SQL Reference for a description of the statements CREATE CON-
TROLFILE and ALTER DATABASE BACKUP CONTROLFILE TO TRACE.

14-10 Oracle8 Parallel Server Concepts & Administration

15

Allocating PCM Instance Locks

This chapter explains how to allocate PCM locks to datafiles by specifying values
for parameters in the initialization file of an instance.

Planning Your PCM Locks

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile
Tips for Setting GC_FILES_ TO_LOCKS

Setting Other GC_* Parameters

Tuning Your PCM Locks

See Also: Chapter 9, “Parallel Cache Management Instance Locks”, for a concep-
tual discussion of PCM locks and GC_* parameters.

Oracle8 Reference for descriptions of all the initialization parameters used to allocate
locks for the parallel server.

Allocating PCM Instance Locks 15-1

Planning Your PCM Locks

Planning Your PCM Locks

This section describes how to plan and maintain PCM locks. It covers:

Planning and Maintaining Instance Locks

Key to Allocating PCM Locks

Examining Your Datafiles and Data Blocks
Using Worksheets to Analyze PCM Lock Needs
Mapping Hashed PCM Locks to Data Blocks

Partitioning PCM Locks Among Instances

Planning and Maintaining Instance Locks

The IDLM allows you to allocate only a finite number of locks. For this reason you
need to analyze and plan for the number of locks your application requires. You
also need to know how much memory is required by lock or by resource. Consider
these ramifications:

If you attempt to use more locks than the number configured in the IDLM facil-
ity, Oracle will get an error message and shut down.

If you change Oracle GC_* or LM_* initialization parameters to specify large
numbers of locks, this will impact the amount of memory used or available in
the SGA.

The number of instances also affects the memory requirements and number of
locks needed by your system.

Key to Allocating PCM Locks

The key to assigning locks is to analyze how often data is changed (via INSERT,
UPDATE, DELETE). You can then figure out how to group objects into files, based
on whether they should be read-only or read/write. Finally, assign locks based on
the groupings you have made. In general, follow these guidelines:

Allocate only a few locks to read-only files.
Allocate more locks to read/write intensive files.

If the whole tablespace is read-only, you can simply assign it a single lock. (If
you were not to assign the tablespace any locks at all, then the system would
attempt to use spare locks, for which it must contend with other tablespaces.
This will generate a lot of unnecessary forced reads/writes.)

15-2 Oracle8 Parallel Server Concepts & Administration

Planning Your PCM Locks

They key distinction is not between types of object (index or table) but between oper-
ations which are being performed on an object. The operation dictates the quantity
of locks needed.

See Also: Chapter 12, “Application Analysis”.

Examining Your Datafiles and Data Blocks
You must allocate locks at various levels:

« Specify the maximum number of PCM locks to be allocated for all datafiles.
« Specify how many locks to allocate to blocks in each datafile.
« Specify particular locks to cover particular classes of datablocks in a given file.

Begin by getting to know your datafiles and the blocks they contain.

How to Determine File ID, Tablespace Name, and Number of Blocks

Use the following command to determine the file ID, file name, tablespace name,
and number of blocks for all databases.

SQL> SELECT FILE_NAME, FILE_ID, TABLESPACE_NAME, BLOCKS
2 FROM DBA _DATA FILES;

Results are displayed as in the following example:
FILE_NAME FILE ID TABLESPACE NAME BLOCKS

Nldata/data01l.dbf 1 SYSTEM 200
Nldata/data02.dbf 2 ROLLBACK 1600

How Many Locks Do You Need?

Use the following approach to estimate the number of locks you need for particular
uses.

« Consider the nature of the data and the application.

Many locks are needed on heavily used, concurrently updated datafiles. But a
guery-only application does not need many locks—a single lock on the datafile
suffices.

= Assign many locks to files which many instances modify concurrently.

This reduces lock contention, minimizes 1/0 activity, and increases accessibil-
ity of the data in the files.

Allocating PCM Instance Locks 15-3

Planning Your PCM Locks

« Assign fewer locks to files which do not need to be accessed concurrently by

multiple instances.

This avoids unnecessary lock management overhead.

« Examine the objects in your files, and consider what operations are used on

them.

« Group read-only objects together in read-only tablespace(s).

Using Worksheets to Analyze PCM Lock Needs

On large applications, you need to carefully study the business processes involved.
Worksheets similar to the ones illustrated in this section may be useful.

Figure out the breakdown of operations on your system on a daily basis. The dis-
tinction between operations needing X locks and those needing S locks is the key.
Every time you have to go from one mode to the other, you need locks. Take into
consideration the interaction of different instances on a table. Also take into consid-
eration the number of rows in a block, the number of rows in a table, and the
growth rate. Based on this analysis, you can group your objects into files, and

assign free list groups.

Figure 15-1 PCM Lock Worksheet 1

Ops needing
S mode:
Object Operations needing X mode: Writes Reads TS/Datafile
INSERTS UPDATES DELETES SELECTS
A 80% 20%
full table scan?
single row?
B 100%
Cc
D

15-4 Oracle8 Parallel Server Concepts & Administration

Planning Your PCM Locks

Figure 15-2 PCM Lock Worksheet 2

Object Instance 1 Instance 2 nstance 3
D INSERT SELECT

UPDATE

DELETE
E
F

Figure 15-3 PCM Lock Worksheet 3

Table Name TS to putitin Row Size Number of Columns

Mapping Hashed PCM Locks to Data Blocks

In many cases, relatively few PCM locks are needed to cover read-only data com-
pared to data which is updated frequently. This is because read-only data can be
shared by all instances of a parallel server. Data which is never updated can be cov-
ered by a single PCM lock. Data which is not read-only should be covered by more
than a single PCM lock.

If data is read-only, then once an instance owns the PCM locks for the read-only
tablespace, the instance never disowns them. No distributed lock management
operations are required after the initial lock acquisition. For best results, partition
your read-only tablespace so that it is covered by its own set of PCM locks.

You can do this by placing read-only data in a tablespace which does not contain
any writable data. Then you can allocate PCM locks to the datafiles in the
tablespace, using the GC_FILES TO_LOCKS parameter.

Do not put read-only data and writable data in the same tablespace.

Allocating PCM Instance Locks 15-5

Planning Your PCM Locks

Partitioning PCM Locks Among Instances

You can map PCM locks to particular data blocks in order to partition the PCM
locks among instances based on the data each instance accesses.

This technigue minimizes unnecessary distributed lock management. Likewise, it
minimizes the disk 1/0 caused by an instance having to write out data blocks
because a requested data block was covered by a PCM lock owned by another
instance.

For example, if Instance X primarily updates data in datafiles 1, 2, and 3, while
Instance Y primarily updates data in datafiles 4 and 5, you can assign one set of
PCM locks to files 1, 2, and 3 and another set to files 4 and 5. Then each instance
acquires ownership of the PCM locks which cover the data it updates. One instance
disowns the PCM locks only if the other instance needs access to the same data.

By contrast, if you assign one set of PCM locks to datafiles 3 and 4, 1/0 will
increase. This happens because both instances regularly use the same set of PCM
locks.

15-6 Oracle8 Parallel Server Concepts & Administration

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

Setting GC_FILES TO_LOCKS: PCM Locks for Each Datafile

Set the GC_FILES_TO_LOCKS initialization parameter to specify the number of
PCM locks which will cover the data blocks in a datafile or set of datafiles. This sec-
tion covers:

«» GC_FILES _TO_LOCKS Syntax
« Fixed Lock Examples

« Releasable Lock Example

« Guidelines

Note: Whenever you add or resize a datafile, create a tablespace, or drop a
tablespace and its datafiles, you should adjust the value of GC_FILES_TO_LOCKS
before restarting Oracle with the parallel server enabled.

See Also: Chapter 9, “Parallel Cache Management Instance Locks”, to understand
how the number of data blocks covered by a single PCM lock is determined.

Allocating PCM Instance Locks 15-7

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

GC_FILES _TO_LOCKS Syntax

The syntax for setting the GC_FILES_TO_LOCKS parameter specifies the transla-
tion between the database address and class of a database block, and the lock name
which will protect it. You cannot specify this translation for files which are not men-
tioned in the GC_FILES_TO_LOCKS parameter.

The syntax for setting this parameter is:
GC_FILES_TO_LOCKS="{file_list=#locks['blocks][R][EACH][:]} . . .”
where

file_list file_list specifies a single file, range of files, or list of files and
ranges as follows: fileidA[-fileidC][fileidE[-fileidG]] ...

Query the data dictionary view DBA_DATA _FILES to find the
correspondence between file names and file ID numbers.

#locks Sets the number of PCM locks to assign to file_list. A value of
zero (0) for #locks means that fine grain locks will be used
instead of hashed locks.

Iblocks Specifies the number of contiguous data blocks to be covered
by each lock.

EACH Specifies #locks as the number of locks to be allocated to each
file in file_list.

R Specifies that the hashed locks are releasable: they may be
released by the instance when they are no longer needed.
Releasable hashed PCM locks are taken from the pool
GC_RELEASABLE_LOCKS.

Note: GC_ROLLBACK _ LOCKS uses the same syntax.

Spaces are not permitted within the quotation marks of the GC_FILES_TO_LOCKS
parameter.

In addition to controlling the mapping of PCM locks to datafiles,
GC_FILES_TO_LOCKS now controls the number of locks in the default bucket. The
default bucket is used for all files not explicitly mentioned in

GC_FILES _TO_LOCKS. A value of zero can be used, and the default is “0=0". For
example, “0=100", “0=100R”, “0-9=100EACH”. By default, the locks in this bucket
are releasable; you can however, set these locks to be fixed, if you wish.

15-8 Oracle8 Parallel Server Concepts & Administration

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

You can specify releasable hashed PCM locks by using the R option with the
GC_FILES TO_LOCKS parameter. Releasable hashed PCM locks are taken from
the pool of GC_RELEASABLE_LOCKS

REACH is a new keyword (combination of R and EACH). For example,
GC_FILES_TO_LOCKS=*0-9=100REACH”. EACHR is not a valid keyword.

Omitting EACH and “Iblocks” means that #locks PCM locks are allocated collec-
tively to file_list and individual PCM locks cover data blocks across every file in
file_list. However, if any datafile contains fewer data blocks than the number of
PCM locks, some PCM locks will not cover a data block in that datafile.

The default value for !blocks is 1. When specified, blocks contiguous data blocks are
covered by each one of the #locks PCM locks. To specify a value for blocks, you must
use the “!” separator. You would primarily specify blocks (and not specify the
EACH keyword) to allocate sets of PCM locks to cover multiple datafiles. You can
use blocks to allocate a set of PCM locks to cover a single datafile where PCM lock
contention on that datafile will be minimal, thus reducing PCM lock management.

Always set the Iblocks value to avoid breaking data partitioning gained by using
free list groups. Normally you do not need to pre-allocate disk space. When a row
is inserted into a table and new extents need to be allocated, contiguous blocks
specified with !blocks in GC_FILES TO_LOCKS are allocated to the free list group
associated with an instance.

Fixed Lock Examples

For example, you can assign 300 locks to file 1 and 100 locks to file 2 by adding the
following line to the parameter file of an instance:

GC_FILES TO_LOCKS ="1=300:2=100"
The following entry specifies a total of 1500 locks—500 each for files 1, 2, and 3:

GC_FILES_TO_LOCKS ="1-3=500EACH"

By contrast, the following entry specifies a total of only 500 locks, spread across the
three files:

GC_FILES TO_LOCKS ="1-3=500"

The following entry indicates that 1000 distinct locks should be used to protect

file 1. The data in the files is protected in groups of 25 blocks.

GC_FILES TO_LOCKS ="1=1000125"

Allocating PCM Instance Locks 15-9

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

The following entry indicates that the 1000 hashed locks (which protect file 1 in
groups of 25 blocks) may be released by the instance when they are no longer
needed.

GC_FILES_TO_LOCKS ="1=1000125R"

Releasable Lock Example

To specify fine grain locks for data blocks with a group factor, you can specify the
following in the parameter file of an instance:

Guidelines

GC_FILES_TO_LOCKS="1=014"

This specifies fine grain locks with a group factor of 4 for file 1.

Use the following guidelines to set the GC_FILES_TO_LOCKS parameter:

Always specify all datafiles in GC_FILES_TO_LOCKS.

Assign the same value to GC_FILES_TO_LOCKS for each instance accessing
the same database.

The number of PCM locks specified for a datafile should never exceed the num-
ber of blocks in the datafile. This ensures that if a datafile increases in size, the
new blocks can be covered by the extra PCM locks.

If a datafile is defined with the AUTOEXTEND clause or you issue the ALTER
DATABASE ... DATAFILE ... RESIZE command, then you should regularly
monitor the datafile for an increase in size. If this occurs, then you should
update the parameter GC_FILES TO_LOCKS as soon as possible, then shut
down and restart your parallel server.

Note: Restarting the parallel server is not required; but if you do not shut
down and restart, the locks will cover more blocks.

If the number of PCM locks specified for file_list is less than the actual number
of data blocks in the datafiles, then the IDLM uses some PCM locks to cover
more datablocks than specified. This can hurt performance, so you should
always ensure that sufficient PCM locks are available.

When you add new datafiles, always specify their locks in
GC_FILES _TO_LOCKS to avoid automatic allocation of the “spare” PCM locks.

At some point you may need to add a datafile (via ALTER TABLESPACE ...
ADD DATAFILE) while the parallel server is running. If you do this, then you

15-10 Oracle8 Parallel Server Concepts & Administration

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

should update GC_FILES TO_LOCKS as soon as possible, then shut down and
restart your parallel server.

When you want to reduce resource contention by creating disjoint data to be
accessed by different instances, you should place datafiles on different disks.
Use GC_FILES TO_LOCKS to allocate PCM locks to cover the data blocks in
the separate datafiles.

Specify relatively fewer PCM locks for blocks containing index data which is
modified infrequently. Place indexes in their own tablespace or in their own
datafiles within a tablespace so that a separate set of PCM locks can be
assigned to them. For a read-only index, only one PCM lock is needed.

Note that files not mentioned in GC_FILES TO_LOCKS use DBA fine-grained
locking.

Allocating PCM Instance Locks 15-11

Tips for Setting GC_FILES_TO_LOCKS

Tips for Setting GC_FILES TO_LOCKS

Setting GC_FILES_TO_LOCKS is an important tuning task in the Oracle Parallel
Server environment. This section covers some simple checks you can perform to
help ensure that your parameter settings are on the mark.

« Providing Room for Growth

« Checking for Valid Number of Locks

« Checking for Valid Lock Assignments

« Setting Tablespaces to Read-only

« Checking File Validity

« Adding Datafiles Without Changing Parameter Values

Providing Room for Growth

Sites which must run nonstop cannot afford to shut down in order to adjust param-
eter values. Therefore, when you size these parameters, remember to provide room
for growth: room for files to extend.

Additionally, whenever you add or resize a datafile, create a tablespace, or drop a
tablespace and its datafiles, you should adjust the value of GC_FILES TO_LOCKS
before restarting Oracle with parallel server enabled.

Checking for Valid Number of Locks

It is wise to check that the number of locks allocated is not larger than the number
of data blocks allocated. (Note that blocks currently allocated may be zero if you
are about to insert into a table.)

Check the FILE_LOCK data dictionary view to see the number of locks which are
allocated per file. Check V$DATAFILE to see the maximum size of the data file.

See Also: Oracle8 Reference for more information about FILE_LOCK and V$DATA-
FILE.

15-12 Oracle8 Parallel Server Concepts & Administration

Tips for Setting GC_FILES_TO_LOCKS

Checking for Valid Lock Assignments
To avoid problems with lock assignments, check the following:

« Do not assign locks to files which only hold rollback segments.

« Do not assign locks to files which only hold temporary data for internal tempo-
rary tables.

« Group read-only objects together and assign one lock only to that file.

Note: This will only work and/or perform if there is absolutely no write to the
file (there is no change to the blocks, such as block clean out, and so on).

Setting Tablespaces to Read-only

If a tablespace is actually read-only, consider setting it to read-only in Oracle. This
ensures that no write to the database will occur and no PCM locks will be used
(except for a single lock you can assign, to ensure that the tablespace will not have
to contend for spare locks).

Checking File Validity

Count the number of objects in each file, as follows:

SELECTEFILE ID FILE_ID,
COUNT(DISTINCT OWNERJNAME) OBJS
FROM DBA _EXTENTS E,
EXT_TO_OBJV
WHERE EFILE_ID=FILE#
AND EBLOCK_ID>=LOWB
AND EBLOCK_ID <=HIGHB
AND KIND = ‘FREE EXTENT
AND KIND = ‘UNDO'
GROUP BY EFILE_ID;

Examine the files which store multiple objects. Run CATPARR.SQL to use the
EXT_TO_OBJ view. Make sure that they can coexist in the same file (that is, make
sure the GC_FILES TO_LOCKS settings are compatible).

Allocating PCM Instance Locks 15-13

Setting Other GC_* Parameters

Adding Datafiles Without Changing Parameter Values
Consider the consequences for PCM lock distribution if you add a datafile to the
database. You cannot assign locks to this file without shutting down, changing the
GC_FILES_TO_LOCKS parameter, and restarting the database. This may not be
possible for a production database.

In this case, the datafile will be assigned to the pool of remaining locks and the file
must contend with all the files which were not mentioned in the
GC_FILES_TO_LOCKS parameter.

Setting Other GC_* Parameters

This section describes how to set two additional GC_* parameters:
« Setting GC_RELEASABLE_ LOCKS
« Setting GC_ROLLBACK_LOCKS

Setting GC_RELEASABLE_ LOCKS

For GC_RELEASABLE_LOCKS Oracle recommends the default setting, which is
the value of DB_BLOCK_BUFFERS. This recommendation holds although
GC_RELEASABLE_LOCKS can be set to less than the default to save memory, or
more than the default to get a possible reduction in locking activity. Too low a
value for GC_RELEASABLE_LOCKS could affect performance.

The statistic “releasable freelist waits” in the V$SYSSTAT view tracks the number of
times the system runs out of releasable locks. If this condition should occur, as indi-
cated by a non-zero value for releasable freelist waits, you must increase the value
of GC_RELEASABLE_LOCKS.

15-14 Oracle8 Parallel Server Concepts & Administration

Setting Other GC_* Parameters

Setting GC_ROLLBACK_ LOCKS

If you are using fixed locks, it is wise to check that the number of locks allocated is
not larger than the number of data blocks allocated. (Note that blocks currently allo-
cated may be zero if you are about to insert into a table.) Find the number of blocks
allocated to a rollback segment by entering:

SELECT S.SEGMENT_NAME NAME,
SUM(RBLOCKS) BLOCKS
FROMDBA SEGMENTSSS,
DBA EXTENTSR
WHERE S.SEGMENT _TYPE ='ROLLBACK’
AND S.SEGMENT _NAME =R SEGMENT_NAME
GROUP BY S.SEGMENT _NAME;

This query displays the number of blocks allocated to each rollback segment. When
there are many unnecessary forced reads/writes on the undo blocks, try using
releasable locks. (By default all rollback segments are protected by releasable locks.)

The parameter GC_ROLLBACK LOCKS takes arguments much like the
GC_FILES TO_LOCKS parameter, for example:

GC_ROLLBACK_LOCKS=*0=100:1-10=10EACH:11-20=20EACH”

In this example, rollback segment 0 (the system rollback segment) has 100 locks;
rollback segments 1 through 10 have 10 locks each; and rollback segments 11
through 20 have 20 locks each.

Note: GC_ROLLBACK_LOCKS cannot be used to make undo segments share
locks. The first example below is invalid, but the second is valid, since each of the
undo segments has 100 locks to itself:

Invalid: GC_ROLLBACK_LOCKS=*1-10=100"
Valid: GC_ROLLBACK_LOCKS=*1-10=100EACH”

Allocating PCM Instance Locks 15-15

Tuning Your PCM Locks

Tuning Your PCM Locks

This section discusses several issues you must consider before tuning your PCM
locks:

« How to Detect False Pinging
« How Long Does a PCM Lock Conversion Take?
= Which Sessions Are Waiting for PCM Lock Conversions to Complete?

= What Is the Total Number of PCM Locks and Resources Needed?

How to Detect False Pinging

False pinging occurs when you down-convert a lock element which protects two or
more blocks that are concurrently updated from different nodes. Assume that each
node is updating a different block. In this event, each node must write its own copy
of the block, even though the other node is not updating it. This is necessary
because the same lock covers both blocks.

There are no direct statistics of false pinging—only indications which you can inter-
pret. This section describes some indications you can watch out for.

The following SQL statement shows the number of lock operations which caused a
write, and the number of blocks actually written:

SELECT VALUE/(A.COUNTER + B.COUNTER + C.COUNTER) "PING RATE"
FROM V3SYSSTAT,
V$LOCK_ACTIMITY A,
V$LOCK_ACTMITY B,
V$LOCK_ACTVITYC
WHERE AFROM VAL="X
AND ATO_ VAL ="NULL’
AND BFROM_VAL="X
ANDB.TO_VAL='S
AND CFROM VAL =X
AND CTO_VAL ='SSX
AND NAME ="DBWR cross instance writes’;

15-16 Oracle8 Parallel Server Concepts & Administration

Tuning Your PCM Locks

Table 15-1 shows how to interpret the ping rate.

Table 15-1 Interpreting the Ping Rate

Ping Rate Meaning

<1 False pings may be occurring, but there are more lock operations than
writes for pings. DBWR is writing out blocks fast enough, causing no
write for a lock activity. This is also known as a “soft ping” (no 170 is
required for the ping, only lock activity).

=1 Each lock activity which involves a potential write, does indeed cause
the write to happen. False pinging may be occurring.

>1 False pings are definitely occurring.

Use this formula to calculate the percentage of pings that are definitely false:

(ping_rate - 1)

- * 100
ping_rate

Then check the total number of writes and calculate the number due to false pings:

SELECT Y.VALUE "ALL WRITES,
ZVALUE 'PING WRITES,
ZVALUE * pingrate "FALSE PINGS”,
FROM V$SYSSTAT Z,
VESYSSTATY,
WHERE ZNAME = DBWR cfoss instance writes
AND Y.NAME = ‘physical writes’;

Here, ping_rate is given by the following SQL statement:

CREATE OR REPLACE VIEW PING_RATE AS
SELECT ((VALUE/(A.COUNTER+B.COUNTER+C.COUNTER))-1)/
(VALUE/(A.COUNTER+B.COUNTER+C.COUNTER)) RATE
FROM V3SYSSTAT,
V$LOCK_ACTMMITY A,
V$LOCK_ACTMITY B,
V$LOCK_ACTVITYC
WHERE AFROM VAL=X
ANDATO VAL =NULL
AND BFROM_VAL=X
ANDB.TO VAL =S
AND CFROM VAL =X
ANDCTO_VAL ='SSX
AND NAME = ‘DBWR cross instance writes’;

Allocating PCM Instance Locks 15-17

Tuning Your PCM Locks

Needless to say, the goal is not only to reduce overall pinging, but also to reduce
false pinging. To do this, look at the distribution of instance locks in
GC_FILES_TO_LOCKS, and check the data in the files.

How Long Does a PCM Lock Conversion Take?

Be sure to check the amount of time needed for a PCM lock to convert. This time
differs between systems. Enter the following SQL statement to find lock conversion
time:

SELECT*

FROM V$SYSTEM_EVENT
WHERE EVENT ="lock element cleanup’

This SQL statement displays a table like the following:

TOTAL TOTAL TIME_ AVERAGE
EVENT WAITS TIMEOUTS WAITED WAIT

lock element cleanup 32709 44 685660 20.9624262

This means that a lock conversion took 20.9 hundredths of a second (0.209 sec-
onds).

Which Sessions Are Waiting for PCM Lock Conversions to Complete?

Enter the following SQL statement to see which sessions are currently waiting, and
which have just waited for a PCM lock conversion to complete:

SELECT*
FROM V$SESSION_WAIT
WHERE EVENT ="lock element cleanup’

15-18 Oracle8 Parallel Server Concepts & Administration

Tuning Your PCM Locks

What Is the Total Number of PCM Locks and Resources Needed?

This section explains how you can determine the number of PCM locks and
resources your system requires. This is the value you need to set for the
LM_LOCKS and LM_RESS parameters.

Formula for PCM Locks and Resources

To find this value, add the number of fixed (non-releasable) locks set per instance (the
sum of GC_FILES TO LOCKS and GC_ROLLBACK_LOCKS—fixed locks only) to
the total number of releasable locks (the value of GC_RELEASABLE_LOCKS), and
multiply by two.

2*(GC_FILES_TO_LOCKS + GC_ROLLBACK_LOCKSfixed + GC_RELEASABLE_LOCKS)

This figure represents the maximum number of PCM locks and resources your sys-
tem requires. Note that this calculation is independent of the number of instances.

Bear in mind the following considerations:

« GC_FILES _TO_LOCKS: default value is releasable; all instances must have the
same setting.

« GC_ROLLBACK_LOCKS: default is releasable; all instances must have the
same setting.

« GC_RELEASABLE_LOCKS: default is releasable, set to value of
DB_BLOCK_BUFFERS.

Allocating PCM Instance Locks 15-19

Tuning Your PCM Locks

Calculating PCM Locks and Resources: Example
For example, assume that your system has the following settings for each instance:

GC_FILES_TO_LOCKS="1=100:2-5=1000:6-10=1000EACH:11=100R"
GC_ROLLBACK_LOCKS="1-10=10EACH:11-20=20EACH"
GC_RELEASABLE_LOCKS=50,000

You add the GC_FILES_TO_LOCKS values as follows: File 1 has 100 fixed locks.
files 2, 3, 4, and 5 share 1000 locks. File 6 has 1000 fixed locks, file 7 has 1000 fixed
locks, file 8 has 1000 fixed locks, file 9 has 1000 fixed locks, file 10 has 1000 fixed
locks. File 11 has no fixed locks. Hence there is a total of 6,100 fixed locks set by
GC_FILES TO_LOCKS.

You add the GC_ROLLBACK_LOCKS values as follows: Files 1 through 10 have 10
fixed locks each, and Files 11 through 20 have 20 fixed locks each, for a total of 300
fixed locks.

Entering these figures into the formula, you would calculate as follows:
2 * (6,100 + 300 + 50,000) = 112,800
You would thus set the LM_LOCKS and LM_RESS parameters to 112,800.

See Also: "GC_FILES_TO_LOCKS Syntax" on page 15-8

15-20 Oracle8 Parallel Server Concepts & Administration

16

Ensuring IDLM Capacity for All Resources &

Locks

To reduce contention for shared resources and gain maximum performance from
the parallel server, you must ensure that the Integrated Distributed Lock Manager
(Integrated DLM, or IDLM) is adequately configured for all the locks and resources
your system requires. This chapter covers the following topics:

Overview

Planning IDLM Capacity

Calculating the Number of Non-PCM Resources
Calculating the Number of Non-PCM Locks
Adjusting Oracle Initialization Parameters

Minimizing Table Locks to Optimize Performance

See Also: Chapter 10, “Non-PCM Instance Locks”, for a conceptual overview.

Ensuring IDLM Capacity for All Resources & Locks 16-1

Overview

Overview

Planning PCM locks alone is not sufficient to manage locks on your system. Besides
explicitly allocating parallel cache management locks, you must actively ensure
that the Integrated DLM is adequately configured, on each node, for all the
required PCM and non-PCM locks and resources. Bear in mind that larger data-
bases and higher degree of parallelism require increased demand for many
resources.

Many different types of non-PCM lock exist, and each is handled differently.
Although you cannot directly adjust their number, you can estimate the overall
number of non-PCM resources and locks required, and adjust the LM_* or GC_* ini-
tialization parameters (or both) to guarantee adequate space. You also have the
option of minimizing table locks to optimize performance.

Planning IDLM Capacity

Carefully plan and configure an appropriate number of resources and locks to be
managed by the Integrated DLM. You allocate these locks and resources using the
initialization parameters LM_LOCKS and LM_RESS. Although additional locks
and resources can be allocated dynamically, this should be avoided.

Avoiding Dynamic Allocation of Resources and Locks

If the number of locks or resources required becomes greater than the amount you
have statically allocated, then the additional locks or resources will be allocated
from the SGA shared pool. This feature prevents the instance from stopping.

When dynamic allocation occurs, a message is written to the alert file indicating
that you should recompute and adjust the initialization parameters for the next
time the database is started. Since performance and memory usage may be
adversely affected by dynamic allocation, it is highly recommended that you cor-
rectly compute your lock and resource needs.

16-2 Oracle8 Parallel Server Concepts & Administration

Planning IDLM Capacity

Computing Lock and Resource Needs

Use the following approach to carefully plan IDLM capacity, on a per node basis,
for the total number of PCM and non-PCM resources and locks needed.

1.

Consider failover requirements.

In case of failover, you need to have enough resources configured on the
remaining instances so that the system can continue to operate. Thus if
resources are divided over 10 instances and 5 instances were to fail, you would
still want the system to be able to run on the remaining 5 instances. This means
that you should allow some leeway in the system by accounting for overhead
and setting large enough values for the Oracle initialization parameters deter-
mining IDLM locks and resources for each instance.

Consider the sizing of each instance on each node: number of users, volume of
transactions, and so on. Determine the values you will assign to each instance’s
initialization parameters.

Calculate the number of non-PCM resources and locks required, by filling in
the worksheets provided in this chapter.

Calculate the number of PCM resources and locks required, by using the script
in "What Is the Total Number of PCM Locks and Resources Needed?" on page
15-19.

Configure the IDLM to accommodate the required number of:
= non-PCM resources

= non-PCM locks

=« PCM resources

=« PCM locks

Monitoring Resource Utilization

The VSRESOURCE_LIMIT view provides information about global resource utiliza-
tion for some of the system resources. Using this view you can monitor the current
and the maximum resource utilization, and be forewarned if the values approach
the limit. With this information you can make better decisions when choosing val-
ues for resource limit-controlling parameters.

See Also: "Setting LM_* Parameters" on page 18-11
Oracle8 Reference regarding V$RESOURCE_LIMIT
Oracle8 Tuning for a complete discussion of resource limits

Ensuring IDLM Capacity for All Resources & Locks 16-3

Calculating the Number of Non-PCM Resources

Calculating the Number of Non-PCM Resources

Use the following worksheet to analyze your system resources.

1.

In the following worksheet, enter values for the PROCESSES, DML_LOCKS,
TRANSACTIONS, and ENQUEUE_RESOURCES initialization parameters for
each instance.

For each instance, enter the value of the DB_FILES parameter, which is the same
for all instances.

Enter values for Enqueue Locks for each instance. For each instance, you can
calculate this value as follows:

Enqueue Locks = 20 + (10 * SESSIONS) + DB_FILES + GC_LCK_PROCS +
(2 * PROCESSES) + (DB_BLOCK_BUFFERS/64)

For each instance, enter values for Parallel Query Overhead to cover inter-
instance communication. For individual instances, you can calculate this value
as follows:

PQ Overhead = 7 + (MAXINSTANCES * PARALLEL_MAX_SERVERS) +
PARALLEL_MAX_SERVERS + MAXINSTANCES

Add the entries horizontally to obtain the Subtotals: # of Non-PCM Resources
per Instance.

Add the per-instance subtotals to obtain the Total Number of Non-PCM
Resources System-Wide.

Table 16—-1 Worksheet: Calculating Non-PCM Resources

DB_FILES Subtotals:
(on one or PQ # NonPCM
Inst. | PRO- DML_ TRANS- ENQUEUE_ more Enqueue Over- Over- Locks per
No. CESSES | LOCKS ACTIONS RESOURCES instances) Locks head head Instance
1 200
2 200
3 200
4 200
Total Number of Non-PCM Locks System-Wide:

16-4 Oracle8 Parallel Server Concepts & Administration

Calculating the Number of Non-PCM Locks

Finally, use the figures derived from this worksheet to ensure that LM_RESS is
set to accommodate all non-PCM resources (see step 6 on page 16 - 4).

Note: The worksheet incorporates a standard overhead value of 200 for each

instance.

Table 16-2 shows sample values for a system with four instances, and with
PARALLEL_MAX_SERVERS set to 8 for instances 1 and 3, and set to 4 for instances
2 and 4. The buffer cache size is assumed to be 10K.

Table 16-2 Calculating Non-PCM Resources (Example)

DB _FILES Subtotals:
(on one or PQ # Non-PCM
Inst. | PRO- DML_ TRANS- ENQUEUE_ more Enqueue | Over- Over- | Locks per
No. CESSES | LOCKS ACTIONS RESOURCES | instances) Locks head head Instance
1 200 500 50 800 30 2808 51 200 4639
2 350 600 100 1000 - 4128 31 200 6409
3 175 400 75 800 -- 2453 51 200 4154
4 225 350 125 1200 - 3103 31 200 5234
Total Number of Non-PCM Locks System-Wide: 20436

Calculating the Number of Non-PCM Locks

Use the following worksheet to analyze your system’s lock needs.

1. In the following worksheet, enter values for the PROCESSES, DML_LOCKS,
TRANSACTIONS, and ENQUEUE_RESOURCES parameters for each instance.

2. For each instance, enter the value of the DB_FILES parameter, which is the same
for all instances.

3. Enter values for Enqueue Locks for each instance. For each instance, you can
calculate this value as follows:

Enqueue Locks = 20 + (10 * SESSIONS) + DB_FILES + GC_LCK_PROCS +
(2 * PROCESSES) + (DB_BLOCK_BUFFERS/64)

Ensuring IDLM Capacity for All Resources & Locks 16-5

Calculating the Number of Non-PCM Locks

4. For each instance, enter values for Parallel Query Overhead to cover inter-
instance communication. For individual instances, you can calculate this value
as follows:

PQ Overhead = 7 + (MAXINSTANCES * PARALLEL_MAX_SERVERS) +
PARALLEL_MAX_SERVERS + MAXINSTANCES

5. Add the entries horizontally to obtain the Subtotals: # of Non-PCM Locks per
Instance.

6. Add the per-instance Subtotals to obtain the Total Number of Non-PCM Locks
System-Wide.

Table 16-3 Worksheet: Calculating Non-PCM Locks

Subtotals:
DB_FILES PQ #0fNon-PCM

Inst. | PRO- DML_ TRANS- ENQUEUE_ (for all Enqueue | Over- Over- Locks per
No. CESSES | LOCKS ACTIONS | RESOURCES | instances) Locks head head Instance
1 200
2 200
3 200
4 200

Total Number of Non-PCM Locks System-Wide:

16-6

7. Finally, use the figures derived from this worksheet to ensure that the
LM_LOCKS parameter is configured to accommodate all non-PCM locks (see
step 6 on page 16 - 4).

Note: The worksheet incorporates a standard overhead value of 200 for each
instance.

Oracle8 Parallel Server Concepts & Administration

Calculating the Number of Non-PCM Locks

Table 16-4 shows sample values for a system with four instances, again assuming
that PARALLEL_MAX_ SERVERS is set to 8 for instances 1 and 3, and set to 4 for
instances 2 and 4. The buffer cache size is assumed to be 10K.

Table 16—-4 Calculating Non-PCM Locks (Example)

Subtotals:
DB_FILES PQ- #0fNon-PCM
Inst. | PRO- DML_ TRANS- ENQUEUE_ (for all Enqueue | Over- Over- Locks per
No. CESSES | LOCKS ACTIONS | RESOURCES | instances) Locks head head Instance
1 200 500 50 800 30 2808 51 200 4639
2 350 600 100 1000 30 4128 31 200 6439
3 175 400 75 800 30 2453 51 200 4184
4 225 350 125 1200 30 3103 31 200 5264
Total Number of Non-PCM Locks System-Wide: 20526

Ensuring IDLM Capacity for All Resources & Locks 16-7

Adjusting Oracle Initialization Parameters

Adjusting Oracle Initialization Parameters

Another way to ensure that your system has enough space for the required non-
PCM locks and resources is to adjust the values of the following Oracle initializa-
tion parameters:

DB_BLOCK_BUFFERS
DB_FILES

DML_LOCKS
GC_LCK_PROCS
PARALLEL_MAX_SERVERS
PROCESSES

SESSIONS
TRANSACTIONS

Begin by experimenting with these values in the worksheets supplied in this chapter.
You could artificially inflate parameter values in the worksheets, in order to see the
IDLM ramifications of providing extra room for failover.

Do not, however, specify actual parameter values considerably greater than needed
for each instance. Setting these parameters unnecessarily high entails overhead in a
parallel server environment.

Minimizing Table Locks to Optimize Performance

This section describes two strategies for improving performance by minimizing
table locks:

« Setting DML_LOCKS to Zero
«» Disabling Table Locks

Obtaining table locks (DML locks) for inserts, deletes, and updates can hurt perfor-
mance in a parallel server environment. Locking a table in a parallel server is very
undesirable because all instances holding locks on the table must release those
locks. Consider disabling these locks entirely.

Note: If you use either of these strategies you cannot perform DDL commands
against either the instance or the table.

16-8 Oracle8 Parallel Server Concepts & Administration

Minimizing Table Locks to Optimize Performance

Setting DML_LOCKS to Zero

Table locks are set with the initialization parameter DML_LOCKS. If the DROP
TABLE, CREATE INDEX, and LOCK TABLE commands are not needed, set
DML_LOCKS to zero in order to minimize lock conversions and gain maximum
performance.

Note: If DML_LOCKS is set to zero on one instance, it must be set to zero on all
instances. With other values, this parameter need not be identical on all instances.

Disabling Table Locks

To prevent any user from acquiring a table lock, you can use the following com-
mand:

ALTER TABLE table name DISABLE TABLE LOCK

Any user attempting to lock a table when its table lock is disabled will receive an
error.

To re-enable table locking, the following command is used:

ALTER TABLE table name ENABLE TABLE LOCK

The above command waits until all currently executing transactions commit before

enabling the table lock. Note that the command does not need to wait for new trans-
actions which start after the enable command was issued.

To determine whether a table has its table lock enabled or disabled, you can query
the column TABLE_LOCK in the data dictionary table USER_TABLES. If you have
select privilege on DBA_TABLES or ALL_TABLES, you can query the table lock
state of other users tables.

Ensuring IDLM Capacity for All Resources & Locks 16-9

Minimizing Table Locks to Optimize Performance

16-10 Oracle8 Parallel Server Concepts & Administration

1/

Using Free List Groups to Partition Data

This chapter explains how to allocate free lists and free list groups to partition data.
By doing this you can minimize contention for free space when using multiple
instances.

The chapter describes:

Overview

Deciding How to Partition Free Space for Database Objects

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement
Associating Instances, Users, and Locks with Free List Groups
Pre-allocating Extents (Optional)

Dynamically Allocating Extents

Identifying and Deallocating Unused Space

See Also: Chapter 11, “Space Management and Free List Groups”, for a conceptual
overview.

Using Free List Groups to Partition Data 17-1

Overview

Overview

Use the following procedure to manage free space for multiple instances.

1.
2.

3.
4.
5.

Analyze database objects and decide how to partition free space and data.

Set FREELISTS and FREELIST GROUPS in the CREATE statement for each
table, cluster, and index.

Associate instances, users, and locks with free lists.
Allocate blocks to free lists.

Pre-allocate extents, if desired.

By managing free space effectively, you may improve performance of an applica-
tion configuration which is not ideally suited to a parallel server.

Attention: For optimal system performance, use care in setting the FREELIST and
FREELIST GROUPS options; these values cannot be reset.

Deciding How to Partition Free Space for Database Objects

This section provides a worksheet to help you analyze database objects and decide
how to partition free space and data for optimal performance.

Database Object Characteristics

Free Space Worksheet

17-2 Oracle8 Parallel Server Concepts & Administration

Deciding How to Partition Free Space for Database Objects

Database Object Characteristics

Analyze the database objects you will create and sort them into the categories
described in this section.

Objects in a Static Table
If a table does not have high insert activity, it does not need free lists or free list

groups.

Figure 17-1 Database Objects in a Static Table

Segment

Objects in a Partitioned Application

With proper partitioning of certain applications, only one node needs to insert into
the table or segment. In such cases, free lists may be necessary if there are a large
number of users, but free list groups are not necessary.

Figure 17-2 Database Objects in a Partitioned Application

F Instance P Instance p Instance

Segment

Using Free List Groups to Partition Data 17-3

Deciding How to Partition Free Space for Database Objects

Objects Relating to Partitioned Data

Multiple free lists and free list groups are not necessary for objects with partitioned
data.

Figure 17-3 Database Objects Relating to Partitioned Data

Instance Instance Instance

Fegment Fegment Fegment

Objects in a Table with Random Inserts

Free lists and free list groups are needed when random inserts from multiple
instances occur in a table. All instances writing to the segment must check the mas-
ter free list to determine where to write. There would thus be contention for the seg-
ment header, which contains the master free list.

Figure 17-4 Database Objects in a Table with Random Inserts

Instance Instance Instance
Segment

17-4 Oracle8 Parallel Server Concepts & Administration

Deciding How to Partition Free Space for Database Objects

Free Space Worksheet

List each of your database objects (tables, clusters, and indexes) in a worksheet like
the following, and plan free lists and free list groups for each.

Table 17-1 Free Space Worksheet for Database Objects

Database Object Characteristics fFree List Groups Frlee Lists
Objects in Static Tables NA NA
NA NA
NA NA
NA NA
Objects in Partitioned Applications NA
NA
NA
NA
Objects Related to Partitioned Data NA NA
NA NA
NA NA
NA NA
Objects in Table w/Random Inserts

Note: Do not confuse partitioned data here with Oracle8 partitions, which may or
may not be in use.

Using Free List Groups to Partition Data 17-5

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

This section covers the following topics:
« FREELISTS Option

« FREELIST GROUPS Option

« Creating Free Lists for Clusters

« Creating Free Lists for Indexes

You can create free lists and free list groups by specifying the FREELISTS and
FREELIST GROUPS storage options in CREATE TABLE, CLUSTER or INDEX state-
ments. This can be done while accessing the database in either exclusive mode or
shared mode.

Attention: Once you have set these storage options you cannot change their values
with the ALTER TABLE, CLUSTER, or INDEX statements.

See Also: The STORAGE clause in Oracle8 SQL Reference for the syntax of these
options.

FREELISTS Option

FREELISTS specifies the number of free lists in each free list group. The default
value of FREELISTS is 1, which is also the minimum value; the maximum depends
on the data block size. If you specify a value that is too large, an error message
informs you of the maximum value. The optimal value of FREELISTS depends on
the expected number of concurrent inserts per free list group for this table.

FREELIST GROUPS Option

Each free list group is associated with one or more instances at startup. The default
value of FREELIST GROUPS is 1, which means that the table’s free lists (if any) are
available to all instances. Typically, you should set FREELIST GROUPS to the num-
ber of instances in the parallel server. Using free list groups also partitions data.
Blocks allocated to one instance, freed by another instance, are no longer available
to the first instance.

Note: Even in a non-shared environment, multiple free list groups can benefit per-
formance. With multiple free list groups, the free list structure is delinked from the
segment header, thereby reducing contention for the segment header. This is very
useful when there is a high volume of UPDATE and INSERT transactions.

17-6 Oracle8 Parallel Server Concepts & Administration

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

Example The following statement creates a table named DEPT that has seven free
list groups, each of which contains four free lists:

CREATE TABLE dept
(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13))
STORAGE (INITIAL100K NEXT 50K
MAXEXTENTS10 PCTINCREASES
FREELIST GROUPS 7 FREELISTS4);

Creating Free Lists for Clusters

You cannot specify the FREELISTS and FREELIST GROUPS storage options in the
CREATE TABLE statement for a clustered table. The free list options must be speci-
fied for the whole cluster, rather than for individual tables. This is because the tables
in a cluster use the storage parameters of the CREATE CLUSTER statement.

Clusters are an optional method of storing data in groups of tables that have col-
umns in common. Related rows of two or more tables in a cluster are physically
stored together within the database to improve access time. A parallel server allows
clusters (other than hash clusters) to use multiple free lists and free list groups.

Some hash clusters can also use multiple free lists and free list groups, if they are
created with a user-defined key for the hashing function, and the key is partitioned
by instance.

Creating Free Lists for Indexes

You can use the FREELISTS and FREELIST GROUPS storage options of the CRE-
ATE INDEX statement to create multiple free space lists for concurrent user pro-
cesses. Use these options in the same manner as described for tables.

When multiple instances concurrently insert rows into a table having an index, con-
tention for index blocks decreases performance unless index values can be sepa-
rated by instance. Figure 17-5 illustrates a situation in which all instances are
trying to insert into the same leaf block (n) of an index.

Using Free List Groups to Partition Data 17-7

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

Figure 17-5 Contention for One Index Block

Contention on a

single index block
Index Root |:_I

Index Branch

. hbobbik2

8 n

To avoid this problem, have each instance insert into its own tree, as illustrated in
Figure 17-6.

Figure 17-6 No Index Contention

I No contention
L

Index Root

Index Branch I::I

v i P

101... 201.. 301...

=

Compute the index value with an algorithm such as

instance_number * (100000000) + sequence_number

17-8 Oracle8 Parallel Server Concepts & Administration

Associating Instances, Users, and Locks with Free List Groups

Associating Instances, Users, and Locks with Free List Groups

This section explains how you can associate the following with free list groups:
« Associating Instances with Free List Groups
« Associating User Processes with Free List Groups

« Associating PCM Locks with Free List Groups

Associating Instances with Free List Groups
You can associate an instance with extents or free list groups as follows:

INSTANCE_NUMBER You can use various SQL options with the
parameter INSTANCE_NUMBER initialization parameter to
associate extents of data blocks with instances.

SET INSTANCE option You can use the SET INSTANCE option of the ALTER
SESSION command to ensure that a session uses the
free list group associated with a particular instance,
regardless of the instance to which the session is con-
nected. For example:

ALTER SESSION SET INSTANCE = inst_no

The SET INSTANCE feature is useful when an instance fails and a user connects to
another instance. For example, consider a database where space is pre-allocated to
the free list groups in a table and users are distributed across instances such that
the data is well partitioned, with the result that minimal pinging of data blocks
occurs. If an instance fails, moving all users onto other instances does not need to
ruin the data partitioning because each new session can use the original free list
group associated with the failed instance.

Associating User Processes with Free List Groups

User processes are automatically associated with free lists based on the Oracle pro-
cess ID of the process in which they are running, as follows:

(oracle_pid modulo #free_lists_for_object) + 1

You can use the ALTER SESSION SET INSTANCE statement if you wish to use the
free list group associated with a particular instance.

Using Free List Groups to Partition Data 17-9

Pre-allocating Extents (Optional)

Associating PCM Locks with Free List Groups

If each extent in the table is in a separate datafile, you can use the
GC_FILES_TO_LOCKS parameter to allocate specific ranges of PCM locks to each
extent, so that each set of PCM locks is associated with only one group of free lists.

See Also: "Free Lists Associated with Instances, Users, and Locks" on page 11-14.

Pre-allocating Extents (Optional)

This section explains how to pre-allocate extents. Note, however, that this useful
but static approach requires a certain amount of database administration overhead.

« The ALLOCATE EXTENT Option
« Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters
« Setting the INSTANCE_NUMBER Parameter

« Examples of Extent Pre-allocation

The ALLOCATE EXTENT Option

The ALLOCATE EXTENT option of the ALTER TABLE or ALTER CLUSTER state-
ment enables you to pre-allocate an extent to a table, index or cluster with options
to specify the extent size, datafile, and a group of free lists.

The syntax of the ALLOCATE EXTENT option is given in the descriptions of the
ALTER TABLE and ALTER CLUSTER statements in Oracle8 SQL Reference.

Exclusive and Shared Modes. You can use the ALTER TABLE (or CLUSTER)
ALLOCATE EXTENT statement while the database is running in exclusive mode,
as well as in shared mode. When an instance is running in exclusive mode, it still
follows the same rules for locating space. A transaction can use the master free list
or the specific free list group for that instance.

The SIZE Option. This option of the ALLOCATE EXTENT clause is the extent size
in bytes, rounded up to a multiple of the block size. If you do not specify SIZE, the
extent size is calculated according to the values of storage parameters NEXT and
PCTINCREASE.

The value of SIZE is not used as a basis for calculating subsequent extent alloca-
tions, which are determined by NEXT and PCTINCREASE.

The DATAFILE Option. This option specifies the datafile from which to take space
for the extent. If you omit this option, space is allocated from any accessible datafile
in the tablespace containing the table.

17-10 Oracle8 Parallel Server Concepts & Administration

Pre-allocating Extents (Optional)

Note that the filename must exactly match the string stored in the control file, even
with respect to the case of letters. You can check the DBA_DATA_FILES data dictio-
nary view for this string.

The INSTANCE Option. This option assigns the new space to the free list group
associated with instance number integer. Each instance acquires a unique instance
number at startup that maps it to a group of free lists. The lowest instance number
is 1, not 0; the maximum value is operating system specific. The syntax is as follows:

ALTER TABLE tablename ALLOCATE EXTENT (... INSTANCE n)

where n will map to the free list group with the same number. If the instance num-
ber is greater than the number of free list groups, then it is hashed as follows to
determine the free list group to which it should be assigned:

modulo(n,# _freelistgroups) + 1

If you do not specify the INSTANCE option, the new space is assigned to the table
but not allocated to any group of free lists. Such space is included in the master free
list of free blocks as needed when no other space is available.

Note: Use a value for INSTANCE which corresponds to the number of the free list
group you wish to use—rather than the actual instance number.

See Also: "Instance Numbers and Startup Sequence" on page 18-14.

Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters

You can prevent automatic allocations by pre-allocating extents to free list groups
associated with particular instances, and setting MAXEXTENTS to the current num-
ber of extents (pre-allocated extents plus MINEXTENTS). You can minimize the ini-
tial allocation when you create the table or cluster by setting MINEXTENTS to 1
(the default) and setting INITIAL to its minimum value (two data blocks, or 10 K
for a block size of 2048 bytes).

To minimize contention among instances for data blocks, you can create multiple
datafiles for each table and associate each instance with a different file.

If you expect to increase the number of nodes in your loosely coupled system at a
future time, you can allow for additional instances by creating tables or clusters
with more free list groups than the current number of instances. You do not have to
allocate any space to those free list groups until they are needed. Only the master
free list of free blocks has space allocated to it automatically.

For a data block to be associated with a free list group, either it must be brought
below PCTUSED by a process running on an instance using that free list group or it

Using Free List Groups to Partition Data 17-11

Pre-allocating Extents (Optional)

must be specifically allocated to that free list group. Therefore, a free list group that
is never used does not leave unused free data blocks.

Setting the INSTANCE_NUMBER Parameter

The INSTANCE_NUMBER initialization parameter allows you to start up an
instance and ensure that it uses the extents allocated to it for inserts and updates.
This will ensure that it does not use space allocated for other instances. The
instance cannot use data blocks in another free list unless the instance is restarted
with that INSTANCE_NUMBER.

Note that you can also override the instance number during a session by using an
ALTER SESSION statement.

Examples of Extent Pre-allocation
This section provides examples in which extents are pre-allocated.

Example 1 The following statement allocates an extent for table DEPT from the data-
file DEPT_FILEY to instance number 7:

ALTER TABLE dept

ALLOCATE EXTENT (SIZE 20K
DATAFILE ‘dept fie7
INSTANCE 7);

Example 2 The following SQL statement creates a table with three free list groups,
each containing ten free lists:

CREATE TABLE tablel ... STORAGE (FREELIST GROUPS 3 FREELISTS 10);

The following SQL statement then allocates new space, dividing the allocated
blocks among the free lists in the second free list group:

ALTER TABLE tablel ALLOCATE EXTENT (SIZE 50K INSTANCE 2);

In a parallel server running more instances than the value of the FREELIST
GROUPS storage option, multiple instances share the new space allocation. In this

example, every third instance to start up is associated with the same group of free
lists.

17-12 Oracle8 Parallel Server Concepts & Administration

Pre-allocating Extents (Optional)

Example 3 The following CREATE TABLE statement creates a table named EMP
with one initial extent and three groups of free lists, and the three ALTER TABLE
statements allocate one new extent to each group of free lists:

CREATE TABLEemp....
STORAGE (INITIAL 4096
MINEXTENTS 1
MAXEXTENTS 4
FREELIST GROUPS 3),
ALTER TABLE emp
ALLOCATE EXTENT (SIZE 100K DATAFILE 'empfilel’ INSTANCE 1)
ALLOCATE EXTENT (SIZE 100K DATAFILE 'empfile2’ INSTANCE 2)
ALLOCATE EXTENT (SIZE 100K DATAFILE 'empfile3' INSTANCE 3);

MAXEXTENTS is set to 4, the sum of the values of MINEXTENTS and FREELIST
GROUPS, to prevent automatic allocations.

When you need additional space beyond this allocation, use ALTER TABLE to
increase MAXEXTENTS before allocating the additional extents. For example, if the
second group of free lists requires additional free space for inserts and updates,
you could set MAXEXTENTS to 5 and allocate another extent for that free list

group:

ALTERTABLEemp ...
STORAGE (MAXEXTENTS5)
ALLOCATE EXTENT (SIZE 100K DATAFILE 'empfile2’ INSTANCE 2);

Using Free List Groups to Partition Data 17-13

Dynamically Allocating Extents

Dynamically Allocating Extents

This section explains how to use the !blocks option of GC_FILES TO_LOCKS to
dynamically allocate blocks to a free list from the high water mark within a lock
boundary. It covers:

=« Translation of Block Database Address to Lock Name
« Iblocks with ALLOCATE EXTENT Syntax

Translation of Block Database Address to Lock Name

As described in the “Allocating PCM Instance Locks” chapter, the syntax for setting
the GC_FILES_TO_LOCKS parameter specifies the translation between the data-
base address of a block, and the lock name that will protect it. Briefly, the syntax is:

GC_FILES TO_LOCKS = “{file_list=#locks ['blocks] [EACH] [:]} ...”

The following entry indicates that 1000 distinct lock names should be used to pro-
tect the files in this bucket. The data in the files is protected in groups of 25 blocks.

GC_FILES_TO_LOCKS ="1000125"

Iblocks with ALLOCATE EXTENT Syntax

Similarly, the !blocks parameter enables you to control the number of blocks which
are available for use within an extent. (To be available, blocks must be put onto a
free list.). You can use !blocks to specify the rate at which blocks are allocated within
an extent, up to 255 blocks at a time. Thus,

GC_FILES_TO_LOCKS =1000!10

means that 10 blocks will be made available each time an instance requires the allo-
cation of blocks.

See Also: Chapter 15, “Allocating PCM Instance Locks”.

17-14 Oracle8 Parallel Server Concepts & Administration

Identifying and Deallocating Unused Space

|dentifying and Deallocating Unused Space

This section covers:
« How to Determine Unused Space
« Deallocating Unused Space

« Space Freed by Deletions or Updates

How to Determine Unused Space

The DBMS_SPACE package contains procedures by which you can determine the
amount of used and unused space in the free list groups in a table. In this way you
can determine which instance needs to start allocating space again. The package is
created using the DBMSUTIL.SQL script as described in the Oracle8 Reference.

Deallocating Unused Space

Unused space you have allocated to an instance using the ALLOCATE EXTENT
command cannot be deallocated, because it exists below the high water mark.

Unused space can be deallocated from the segment, however, if the space exists
within an extent that was allocated dynamically above the high water mark. You
can use DEALLOCATE UNUSED with ALTER TABLE or ALTER INDEX command
in order to trim the segment back to the high water mark.

Space Freed by Deletions or Updates

Blocks freed by deletions or by updates that shrank rows will go to the free list and
free list group of the process that deletes them.

Using Free List Groups to Partition Data 17-15

Identifying and Deallocating Unused Space

17-16 Oracle8 Parallel Server Concepts & Administration

PartlV

OPS System Maintenance Procedures

18

Administering Multiple Instances

Justice is a machine that, when someone has once given it the starting push, rolls on of itself.

John Galsworthy: Justice. Act Il.

This chapter describes how to administer instances of a parallel server. It includes
the following topics:

« Overview

« Oracle Parallel Server Management

« Defining Multiple Instances with Parameter Files

« Setting Initialization Parameters for the Parallel Server
« Setting LM_* Parameters

« Creating Database Objects for Multiple Instances

« Starting Up Instances

« Specifying Instances

« Shutting Down Instances

« Limiting Instances for the Parallel Query

Administering Multiple Instances 18-1

Overview

Overview

This chapter explains how to set up and then start up instances for a parallel server
using the following general procedure:

1. Define multiple instances by setting up parameter files.

2. Setinitialization parameter values for multiple instances.

3. Determine the number of PCM and non-PCM locks your system will require.
4. Set LM_*initialization parameters.

5. Create database objects for multiple instances.

6. Start up instances.

See Also: “Starting Up and Shutting Down” in Oracle8 Administrator’s Guide.

Oracle Parallel Server Management

Note also that Oracle Parallel Server Management (OPSM) is available. This is a
comprehensive and integrated system management solution for the Oracle Parallel
Server. OPSM allows you to manage multi-instance databases running in heteroge-
neous environments through an open client-server architecture.

In addition to managing parallel databases, OPSM allows you to schedule jobs, per-
form event management, monitor performance, and obtain statistics to tune paral-
lel databases.

For more information about OPSM, refer to the Oracle Parallel Server Management
Configuration Guide for UNIX and the Oracle Parallel Server Management User's Guide.
For installation instructions, refer to your platform-specific installation guide.

18-2 Oracle8 Parallel Server Concepts and Administration

Defining Multiple Instances with Parameter Files

Defining Multiple Instances with Parameter Files

When an instance starts up, Oracle uses the values found in an initialization param-
eter file to create the System Global Area (SGA) for that instance. You can use vari-
ous approaches to define multiple instances:

« Using a Common Parameter File for Multiple Instances
« Using Individual Parameter Files for Multiple Instances
« Embedding a Parameter File Using IFILE
« Specifying a Non-default Parameter File with PFILE
Using a Common Parameter File for Multiple Instances
A common parameter file for all instances, shown in Figure 18-1, can make admin-

istration easy. If file systems are shared among nodes, you can update all instances
by making a change in only one place.

Figure 18-1 Instances with a Common Parameter File

P Instance F Instance P Instance

initX.ora

Most clustering systems, however, do not share file systems. In this case you would
have to make for each node a separate physical copy of the common file.

Administering Multiple Instances 18-3

Defining Multiple Instances with Parameter Files

Using Individual Parameter Files for Multiple Instances

Individual parameter files are useful when many parameters should differ from
instance to instance. For example, initialization parameters to create difference size
SGAs for different size machines may improve performance dramatically.

Figure 18-2 Instances with Individual Parameter Files

P Instance F Instance F Instance

initA.ora initB.ora initC.ora

Embedding a Parameter File Using IFILE

By setting the IFILE parameter, each individual parameter file can embed an addi-
tional parameter file containing common values. This approach is illustrated in
Figure 18-3.

Figure 18-3 Instances with Individual Parameter Files and IFILE

P Instance F Instance F Instance

initA.ora initB.ora initC.ora

IFILE

18-4 Oracle8 Parallel Server Concepts and Administration

Defining Multiple Instances with Parameter Files

In a parallel server, some initialization parameters must have the same values for
every instance, whether individual or common parameter files are used. By refer-
encing the same file using the IFILE parameter, instances which have individual
parameter files can ensure that they have the correct parameter values for those
which must be identical, while allowing individual values for parameters which
can differ.

Instances must use individual parameter files in the following cases:

« Every instance which uses private rollback segments must have its own param-
eter file, but instances which only use public rollback segments can all use the
same parameter file.

« Every instance which specifies the INSTANCE_NUMBER or THREAD parame-
ter must have its own parameter file.

Example

For example, a Server Manager session on the local node can start up two instances
on remote nodes using individual parameter files named INIT_A.ORA and
INIT_B.ORA:

SETINSTANCE instancel;
STARTUP PFILE=int_a.ora;
SET INSTANCE instance2;
STARTUP PFILE=int_b.ora;

Here, “instancel” and “instance2” are Net8 aliases for the two respective instances,
as defined in TNSNAMES.ORA.

Both individual parameter files can use the IFILE parameter to include parameter
values from the file INIT_COMMON.ORA. They can reference this file as follows:

INIT_A.ORA:

IFILE=INIT_COMMON.ORA
INSTANCE_NUMBER=1
THREAD=1

INIT_B.ORA:

IFILE=INIT_COMMON.ORA
INSTANCE_NUMBER=2
THREAD=2

The INIT_COMMON.ORA file can contain the following parameter settings, which
must be identical on both instances.

Administering Multiple Instances 18-5

Defining Multiple Instances with Parameter Files

DB_NAME=DB1
CONTROL_FILES=(CTRL_1,CTRL 2,CTRL 3)
GC_FILES TO_LOCKS="1=600:2-4,9=500EACH:5-8=800"
GC_ROLLBACK_SEGMENTS=10

GC_SEGMENTS=10

LOG_ARCHIVE_START=TRUE
PARALLEL_SERVER=TRUE

Each parameter file must contain the same values for the CONTROL_FILES param-
eter, for example, because all instances share the control files.

To change the value of a common initialization parameter, you would only have to
modify the file INIT_COMMON.ORA, rather than changing both individual
parameter files.

IFILE Usage

When you specify parameters which have identical values in a common parameter
file referred to by the IFILE parameter, you can omit parameters for which you are
using the default values.

If you use multiple Server Manager sessions on separate nodes to start up the
instances, each node must have its own copy of the common parameter file (unless
the file systems are shared).

If a parameter is duplicated in an instance-specific file and the common file, or
within one file, the last value specified overrides earlier values. You can therefore
ensure the use of common parameter values by placing the IFILE parameter at the
end of an individual parameter file. Placing IFILE at the beginning of the individ-
ual file allows you to override the common values.

You can specify IFILE more than once in a parameter file to include multiple com-
mon parameter files. Unlike the other initialization parameters, IFILE does not over-
ride previous values. For example, an individual parameter file might include a file
INIT_COMMON.ORA and separate command files for the LOG_* and GC_*
parameters:

IFILE=INIT_COMMON.ORA

IFILE=INIT_LOG.ORA

IFILE=INIT_GC.ORA
LOG_ARCHIVE_START=FALSE

THREAD=3
ROLLBACK_SEGMENTS=(RB_C1RB_C2RB _C3)

18-6 Oracle8 Parallel Server Concepts and Administration

Defining Multiple Instances with Parameter Files

The individual value of LOG_ARCHIVE_START overrides the value specified in
INIT_LOG.ORA, because the IFILE = INIT_LOG.ORA appears before
LOG_ARCHIVE_START parameter specification. The individual GC_* values speci-
fied in INIT_GC.ORA override any values specified in INIT_COMMON.ORA,
because IFILE = INIT_GC.ORA comes after IFILE = INIT_COMMON.ORA.

See Also: "Instance Numbers and Startup Sequence" on page 18-14.
"Redo Log Files" on page 6-3.
"Parameters Which Must Be Identical on Multiple Instances” on page 18-10.

Specifying a Non-default Parameter File with PFILE

The PFILE option of the STARTUP command allows you to specify a parameter file
other than the default file when you start up an instance. The parameter file speci-
fied by PFILE must be on a disk accessible to the local node, even for an instance on
a remote node.

Administering Multiple Instances 18-7

Setting Initialization Parameters for the Parallel Server

Setting Initialization Parameters for the Parallel Server

This section discusses initialization parameters which are important for a parallel
server.

« GC_*Global Constant Parameters
« Parameter Notes for Multiple Instances
« Parameters Which Must Be Identical on Multiple Instances

See Also: Oracle8 Reference for details about other Oracle initialization parameters.

GC_* Global Constant Parameters

Initialization parameters with the prefix GC (Global Constant) are relevant only for
a parallel server. The settings of these parameters determine the size of the collec-
tion of global locks which protect the database buffers on all instances. The settings
you choose affect use of certain operating system resources.

The first instance to start up in shared mode determines the values of the global
constant parameters for all instances. The control file records the values of the GC_*
parameters when the first instance starts up.

When another instance attempts to start up in shared mode, Oracle compares the
values of the global constant parameters in its parameter file with those already in
use and issues a message if any values are incompatible. The instance cannot
mount the database unless it has correct values for its global constant parameters.

The global constant parameters for a parallel server are:

GC_FILES TO _LOCKS controls data block locks

GC_LATCHES controls lock element latches for LCK processes
GC_LCK_PROCS controls number of background lock processes
GC_ROLLBACK_LOCKS controls undo block locks

GC_RELEASABLE_LOCKS controls the number of locks

See Also: Chapter 15, “Allocating PCM Instance Locks”.
Parameter Notes for Multiple Instances

Multi-instance issues concerning initialization parameters are summarized in
Table 18-1.

18-8 Oracle8 Parallel Server Concepts and Administration

Setting Initialization Parameters for the Parallel Server

Table 18-1

Initialization Parameter Notes for Multiple Instances

Parameter

CHECKPOINT_PROCESS

DELAYED_LOGGING_BLOCK_
CLEANOUTS

DML_LOCKS
INSTANCE_NUMBER

LOG_ARCHIVE_FORMAT
MAX_COMMIT_PROPAGATION_
DELAY

NLS_* parameters

PARALLEL_SERVER

PROCESSES

RECOVERY_PARALLELISM

ROLLBACK_SEGMENTS

THREAD

Parallel Server Notes

In Oracle Parallel Server your database may have
more datafiles. To speed up checkpoints, enable the
CHECKPOINT_PROCESS parameter.

The default value, True, helps reduce pinging
between instances.

Must be identical on all instances only if set to zero.

If specified, this parameter must have unique values
for different instances.

You must include thread number.

If you want commits to be seen immediately on
remote instances, you may need to change the value
of this parameter.

Can have different values for different instances.

To enable parallel server this parameter must be set
to TRUE in the initialization file. It defaults to FALSE.

This parameter must have a value large enough to
allow for all background processes and all user pro-
cesses in an instance. Some operating systems can
have additional DBWR processes.

Defaults for the SESSIONS and TRANSACTIONS
parameters are derived directly or indirectly from the
value of the PROCESSES parameter

If you do not use the defaults, you may want to
increase some of these parameter values to allow for
LCKn and other optional background processes.

To speed up the roll forward or cache recovery phase,
you may want to set this parameter.

Specify the private rollback segments for each
instance.

If specified, this parameter must have unique values
for different instances.

See Also: Oracle8 Reference for details about each parameter.

Administering Multiple Instances 18-9

Setting Initialization Parameters for the Parallel Server

Parameters Which Must Be Identical on Multiple Instances

Certain initialization parameters that are critical at database creation or that affect
certain database operations must have the same value for every instance in a paral-
lel server. For example, the values of DB_BLOCK_SIZE and CONTROL_FILES
must be identical for every instance. Other parameters can have different values for
different instances. The following initialization parameters must have identical val-
ues for every instance in a parallel server:

CACHE_SIZE_THRESHOLD
CONTROL_FILES

CPU_COUNT

DB_BLOCK_SIZE

DB_FILES

DB_NAME

DML_LOCKS (must be identical only if set to zero)
GC_FILES TO_LOCKS

GC_LCK_PROCS

GC_ROLLBACK_LOCKS

LM_LOCKS (identical values recommended)
LM_PROCS (identical values recommended)
LM_RESS (identical values recommended)
LOG_FILES
MAX_COMMIT_PROPAGATION_DELAY
PARALLEL_DEFAULT_MAX_INSTANCES
PARALLEL_DEFAULT_MAX_SCANS
ROLLBACK_SEGMENTS

ROW_LOCKING

See Also: Oracle8 Reference for details about each parameter.

18-10 Oracle8 Parallel Server Concepts and Administration

Creating Database Objects for Multiple Instances

Setting LM_* Parameters

Set values for the LM_* initialization parameters. Note that the resources, locks and
processes configurations are per OPS instance. For ease of administration, these
parameters should be consistent for all the instances.

LM_LOCKS Number of locks. Where R is the number of resources, N is
the total number of nodes, and L is the total number of
locks, the following calculation is used:

L=R+ (R*(N-1))/N

LM_PROCS Number of processes. The value of PROCESSES initializa-

tion parameter multiplied by the number of nodes.

LM_RESS This parameter controls the number of resources that can
be locked by the Lock Manager. This parameter covers the
number of lock resources allocated for DML, DDL (data
dictionary locks), and data dictionary cache locks + file
and log management locks.

Increased values will be necessary if you plan to use parallel DML or DML per-
formed on partitioned objects.

See Also: Oracle8 Reference
"Planning IDLM Capacity" on page 16-2

Creating Database Objects for Multiple Instances

Creating a database automatically starts up a single instance with parallel server
disabled. Before you can start up multiple instances, however, you must perform
certain administrative operations. These tasks may include:

« creating extra rollback segments for each additional instance
« adding and enabling a thread for each additional instance
« providing locks for added datafiles

You can perform these operations with a single instance in either exclusive or
shared mode.

See Also: "Creating Additional Rollback Segments” on page 14-5
"Redo Log Files" on page 6-3
"What Is the Total Number of PCM Locks and Resources Needed?" on page 15-19

Administering Multiple Instances 18-11

Starting Up Instances

Starting Up Instances

An Oracle instance can start up with parallel server enabled or disabled. This sec-
tion includes the following topics:

« Enabling Parallel Server and Starting Instances
« Starting up with Parallel Server Disabled
« Starting Up in Shared Mode

Enabling Parallel Server and Starting Instances

Note: In Oracle8 the keywords SHARED, EXCLUSIVE, and PARALLEL are obso-
lete in the STARTUP and ALTER DATABASE MOUNT statements.

Starting an Instance Using SQL

1. Toenable parallel server in Oracle8, you must set the PARALLEL_SERVER
parameter to TRUE in the initialization file. It defaults to FALSE.

2. Start up any required operating system specific processes.

For more information, see your Oracle system-specific documentation.
3. Start up Group Membership Services (GMS).

See "Using Group Membership Services" on page 18-21 for more information.
4. Connect with SYSDBA or SYSOPER privileges.

CONNECTsemame/passwofss SYSDBA

5. Make sure the PARALLEL_SERVER initialization parameter is set to TRUE if
you wish to run with parallel server enabled, or to FALSE if you wish to run
with parallel server disabled.

6. Start up an instance.

STARTUP NOMOUNT

7. Mount a database.
ALTER DATABASE database_namdOUNT

8. Open the database.
ALTER DATABASE OPEN

18-12 Oracle8 Parallel Server Concepts and Administration

Starting Up Instances

Starting an Instance Using Server Manager

Note: The Server Manager command STARTUP with the OPEN option performs
steps 4, 5, and 6 of the procedure given above.

1. Start up any required operating system specific processes.
For more information, see your Oracle system-specific documentation.

2. Setthe PARALLEL_SERVER initialization parameter to TRUE if you wish to
run with parallel server enabled, or to FALSE if you wish to run with parallel
server disabled.

3. Start up Group Membership Services (GMS).

See "Using Group Membership Services" on page 18-21 for more information.
4. Start Server Manager.
5. Start up an instance with the OPEN option:

STARTUP OPENdatabase_name

Starting up with Parallel Server Disabled

Parallel server must be disabled whenever you change the archiving mode
(ARCHIVELOG or NOARCHIVELOG). To change the archiving mode, the data-
base must be mounted but not open.

If an instance mounts a database with PARALLEL _SERVER set to FALSE, no other
instance can mount the database.

Before you can start up an instance in exclusive mode, you must shut down all
instances running in shared mode. A single instance running in shared mode is not
the same as an instance running in exclusive mode, and the last instance running in
shared mode does not automatically revert to exclusive mode.

An instance starting up with parallel server disabled can specify an instance num-
ber with the INSTANCE_NUMBER parameter. This is only necessary if the
instance will perform inserts and updates and if the tables in your database use the
FREELIST GROUPS storage option to allocate free space to instances. If you start
up an instance just to perform administrative operations with parallel server dis-
abled, you can omit the INSTANCE_NUMBER parameter from the parameter file.

An instance starting up with parallel server disabled can also specify a thread other
than 1, to use the online redo log files associated with that thread.

See Also: Chapter 17, “Using Free List Groups to Partition Data”

Administering Multiple Instances 18-13

Starting Up Instances

Starting Up in Shared Mode

In a parallel server, each instance must mount the database in shared mode. Each
initialization parameter file for each instance must have the SINGLE_PROCESS
parameter set to FALSE and the PARALLEL_SERVER parameter set to TRUE.
Before you start up multiple instances in shared mode, you must create at least one
rollback segment for each instance sharing the same database and enable a thread
containing at least two groups of redo log files for each additional instance.

If one instance mounts a database in shared mode, other instances can also mount
the database in shared mode, but not in exclusive mode.

If PARALLEL_SERVER is set to FALSE, the instance tries to start up with parallel
server disabled by default.

Retrying to Mount a Database in Shared Mode

If you attempt to start an instance and mount a database in shared mode while
another instance is currently recovering the same database, your new instance can-
not mount the database until the recovery is complete.

Rather than repeatedly attempting to start the instance, you can use the STARTUP
RETRY statement. This causes the new instance to retry every five seconds to
mount the database until it succeeds or has reached the retry limit. For example:

STARTUP OPEN maildb RETRY

To set the maximum number of times the instance attempts to mount the database,
use the Server Manager SET command with the RETRY option; you can specify
either an integer (such as 10) or the keyword INFINITE.

If the database cannot be opened for some reason other than recovery by another
instance, then the RETRY will not repeat. For example, if the database was

mounted in exclusive mode by one instance, then trying the STARTUP RETRY com-
mand in shared mode will not work for another instance.

Instance Numbers and Startup Sequence

When an instance starts up, it acquires an instance number which maps the
instance to one group of free lists for each table created with the FREELIST
GROUPS storage option.

An instance can specify its instance number explicitly by using the initialization
parameter INSTANCE_NUMBER when it starts up with parallel server enabled or
disabled. If an instance does not specify the INSTANCE_NUMBER parameter, it
automatically acquires the lowest available number.

18-14 Oracle8 Parallel Server Concepts and Administration

Starting Up Instances

Startup order determines the instance numbers for instances which do not specify
the INSTANCE_NUMBER parameter. Startup numbers are difficult to control if
instances start up in parallel, and they can change after instances shut down and
restart.

Instances which use the INSTANCE_NUMBER parameter must specify different
numbers. The Server Manager command SHOW PARAMETERS
INSTANCE_NUMBER can show the current instance number each instance is
using. This command displays a null value if an instance number was assigned
based on startup order.

After an instance shuts down, its instance number becomes available again. If a sec-
ond instance starts up before the first instance restarts, the second instance can
acquire the instance number previously used by the first instance.

Instance numbers based on startup order are independent of instance numbers
specified with the INSTANCE_NUMBER parameter. After an instance acquires an
instance number by one of these methods (either with or without
INSTANCE_NUMBER), another instance cannot acquire the same number by the
other method. All numbers are unique, regardless of the method by which they are
acquired.

Always use the INSTANCE_NUMBER parameter if you need a consistent alloca-
tion of extents to instances for inserts and updates. This allows you to maintain
data partitioning among instances.

See Also: "Rollback Segments" on page 6-8

"Creating Additional Rollback Segments" on page 14-5

"Redo Log Files" on page 6-3

Chapter 17, “Using Free List Groups to Partition Data”, for information about allo-
cating free space for inserts and updates.

Administering Multiple Instances 18-15

Specifying Instances

Specifying Instances

When performing administrative operations in a multi-instance environment, you
must be sure that you have specified the correct instance. This section includes the
following topics:

« Differentiating Between Current and Default Instance
« How SQL Statements Apply to Instances

« How Server Manager Commands Apply to Instances
« Specifying Instance Groups

« Using a Password File to Authenticate Users on Multiple Instances

Differentiating Between Current and Default Instance

Some Server Manager commands apply to the instance to which Server Manager is
currently connected, and others apply to the default instance.

default instance The default instance is on the machine where you initiate
Server Manager. Server Manager commands which cannot
be used while you are connected to an instance (such as
executing a host command) apply to the default instance.

current instance The current instance is determined by the CONNECT com-
mand. Server Manager commands which can be used
while you are connected to an instance apply to the current
instance.

The current instance can be different from the default instance if you specify a con-
nect string in the CONNECT command.

Net8 must be installed to use the SET INSTANCE or CONNECT command for an
instance running on a remote node.

See Also: Your platform-specific Oracle documentation, for more information
about installing Net8 and the exact format required for the connect string used in
the SET INSTANCE and CONNECT commands.

18-16 Oracle8 Parallel Server Concepts and Administration

Specifying Instances

How SQL Statements Apply to Instances

Instance-specific SQL statements apply to the current instance. For example, the
statement ALTER DATABASE ADD LOGFILE only applies to the instance to which
you are currently connected, rather than the default instance or all instances.

ALTER SYSTEM CHECKPOINT LOCAL applies to the current instance. By con-
trast, ALTER SYSTEM CHECKPOINT or ALTER SYSTEM CHECKPOINT GLO-
BAL applies to all instances.

ALTER SYSTEM SWITCH LOGFILE applies only to the current instance. To force a
global log switch, you can use ALTER SYSTEM ARCHIVE LOG CURRENT. The
THREAD option of ALTER SYSTEM ARCHIVE LOG allows you to archive online
redo log files for a specific instance.

How Server Manager Commands Apply to Instances

When you initiate Server Manager, the commands you enter are relevant to the
default instance, which is also the current instance.

This is true until you use the SET INSTANCE command to set the current instance.
From that point onwards, all Server Manager commands operate on the current
instance.

Administering Multiple Instances 18-17

Specifying Instances

Table 18-2 How Server Manager Commands Apply to Instances

Server Manager

Command Associated Instance

ARCHIVE LOG always applies to the current instance

CONNECT uses the default instance if no instance is specified in the
CONNECT command

HOST applies to the node running the Server Manager session,
regardless of the location of the current and default instances

MONITOR MONITOR display screens identify the current instance, not
the default instance, in the upper left corner.

RECOVER does not apply to any particular instance, but rather to the

SHOW INSTANCE

SHOW PARAME-
TERS

SHOW SGA
SHUTDOWN

STARTUP

database

displays information about the default instance, which can
be different from the current instance

displays information about the current instance

displays information about the current instance

always applies to the current instance. A privileged Server
Manager command.

always applies to the current instance. A privileged Server
Manager command.

Note: The security mechanism invoked when you use privileged Server Manager
commands depends on the operating system you are using. Most operating sys-
tems have a secure authentication mechanism when logging onto the operating sys-
tem. On these systems, your default operating system privileges will usually
determine whether you can use STARTUP and SHUTDOWN. For more informa-
tion, see your Oracle system-specific documentation.

18-18 Oracle8 Parallel Server Concepts and Administration

Specifying Instances

The SET INSTANCE and SHOW INSTANCE Commands
You can change the default instance with the Server Manager statement:

SET INSTANCE instance_path

where instance_path is a valid Net8 connect string (without a user ID/password). If
you are connected to an instance, you must disconnect before using SET
INSTANCE. Alternatively, if you do not wish to disconnect from the current
instance, you may use the CONNECT command with instance_path.

You can use the SET INSTANCE command to specify an instance on a remote node
for the commands STARTUP and SHUTDOWN. The parameter file for a remote
instance must be on the local node.

The SHOW INSTANCE command displays the connect string for the default
instance. SHOW INSTANCE returns the value local if you have not used SET
INSTANCE during the Server Manager session.

To reset to the default instance, use SET INSTANCE without specifying a connect
string or specify LOCAL (but not DEFAULT, which would indicate a connect string
for an instance named “DEFAULT”).

The following Server Manager line mode examples illustrate the relationship
between SHOW INSTANCE and SET INSTANCE:

SHOW INSTANCE
Instance local

SET INSTANCE nodel

Oracle8 Server Release 8.0 - Production

With the distributed, parallel query and Parallel Server options
PL/SQL V8.0 - Production

SHOW INSTANCE
Instance node2

SETINSTANCE

ORACLES Server Release 8.0 - Production

With the procedural, distributed, and Parallel Server options
PL/SQL V8.0 - Production

SHOW INSTANCE
Instance local

SET INSTANCE DEFAULT
ORA-06030: NETDNT: connect failed, unrecognized node name

Administering Multiple Instances 18-19

Specifying Instances

The CONNECT Command

The CONNECT command can associate Server Manager with either the default
instance or an instance which you specify explicitly. The instance to which Server
Manager connects becomes the current instance.

The CONNECT command has the following syntax:

username

| SYSOPER I
@instance_path SYSDBA
—>| CONNECT

where instance-path is a valid Net8 connect string. CONNECT without the argu-
ment @instance-path connects to the default instance (which may have been set pre-
viously with SET INSTANCE).

Connecting as SYSOPER or SYSDBA allows you to perform privileged operations,
such as instance startup and shutdown.

Multiple Server Manager sessions can connect to the same instance at the same
time. When you are connected to one instance, you can connect to a different
instance without using the DISCONNECT command. Server Manager disconnects
you from the first instance automatically whenever you connect to another one.

The CONNECT @instance-path command allows you to specify an instance before
using the Server Manager commands MONITOR, STARTUP, SHUTDOWN, SHOW
SGA, and SHOW PARAMETERS.

See Also: Oracle Server Manager User’s Guide for syntax of Server Manager com-
mands.

Oracle Net8 Administrator’s Guide for the proper specification of instance_path.
Oracle8 Administrator’s Guide for information on connecting with SYSDBA or
SYSOPER privileges.

18-20 Oracle8 Parallel Server Concepts and Administration

Specifying Instances

Using Group Membership Services

Group Membership Services (GMS) is used by the Lock Manager (LM) and other
Oracle components for inter-instance initialization and coordination. Instances of a
distributed service can register with the GMS and retrieve the current set of
instances providing the same service cluster-wide. The GMS monitors each of its cli-
ents and notifies the other instances of a given service when one instance stops or is
shut down. It obtains a view of the current cluster membership from the (system
specific) cluster management software.

If a GMS instance or a node stops, the remaining GMS instances are informed
through the cluster manager. Providers of distributed services are then be notified
by the GMS if any of their peers stopped as a result of the node stoppage.

Platforms which use the opsctl program start GMS automatically. For other plat-
forms, you must start this process by manually issuing the ogmsctl command. This
program has the following options:

start start up the GMS instance on the current node
stop stop the GMS instance on the current node
abort kill the GMS instance on the current node
status check the status of the GMS on the current node

ogms_home=X set the GMS home directory to X, where debugging trace files

and the communication key file will be written during its oper-
ation. The directory must be either local to its own node or dif-
ferent from other GMS directories in the network environment.
Multiple GMS instances could be running at the same time in a
cluster. When this option is specified, the corresponding
OGMS_HOME initialization parameter needs to be specified as
well to pick up the GMS listen port id information.

trace=n set the GMS trace level to a number n between 0 and 10 (with
10 being the highest trace level). You can use this option with
the start option or specify it separately after the GMS has been
started.

When you have installed the Oracle Parallel Server option, you must start the GMS,
even to bring the instance up with parallel server disabled. If OPS is linked in, Ora-
cle starts the Integrated Distributed Lock Manager and connects to the GMS to
obtain a mount lock. This prevents you from accidentally mounting the database
exclusive on more than one mode.

Administering Multiple Instances 18-21

Specifying Instances

See Also: Your Oracle system-specific documentation to determine whether GMS is
started automatically, and whether it requires additional cluster configuration.

Specifying Instance Groups

For ease in administration, you can logically group different instances together and
perform parallel operations upon all of the associated instances at once. You can
define an instance group as a set of instances used for a specific purpose (such as
resource allocation, parallel query or other parallel operations). They thus enable
you to partition your resources effectively.

Sometimes, for example, a DBA may wish to prevent users or query processes from
obtaining resources on all instances. The DBA may want to keep certain instances
available only for users running OLTP processes, and restrict users running parallel
gueries only to a particular set of instances.

For example, you might create instance groups such that between 9 AM and 5 PM
users can use group B, but after 5 PM they can use group D. Or, you might use
group C for normal OLTP inserts and updates but use group D for big parallel
tasks, to avoid interfering with OLTP performance.

= You should define all potentially desirable group configurations during startup
since you cannot add and delete instances from groups dynamically while the
instance is up.

« One instance can be a member of more than one group at any given time.
Groups may overlap one another.

= You can define as many groups as you wish, but only use them as needed.
Instance groups do not incur much overhead, and you are not required to refer
to them, once they are defined.

If you simply set the degree of parallelism, the system chooses which specific
instances to use (given disk affinity, and the number of instances actually running).
By specifying instance groups you can directly specify the instances which should
be used for parallel operations.

Note that the instance from which you initiate a query, need not be a member of the
group of instances which carry out the query. The parallel coordinator does run on
the current instance.

How to Specify Instance Groups

To specify instance groups, set the INSTANCE_GROUPS initialization parameter
within the parameter file of each instance you wish to associate to the group. This
parameter at once defines a group and adds the current instance to the group.

18-22 Oracle8 Parallel Server Concepts and Administration

Specifying Instances

For example, instance 1 could set the parameter as follows:
INSTANCE_GROUPS = groupB, groupD

Instance 3 could set it as follows:
INSTANCE_GROUPS = groupA, groupD

As a result, instances 1 and 3 would both belong to instance group D, but would
also belong to other groups as well.

Note that INSTANCE_GROUPS cannot be changed dynamically.

How to Use Instance Groups
You can use instance groups for two purposes:

« toidentify a group to be used for a parallel operation (with
PARALLEL_INSTANCE_GROUP)

« to identify instances which should return information in a GV$ fixed-view
query (with OPS_ADMIN_GROUP)

The default for PARALLEL_INSTANCE_GROUP and OPS_ADMIN_GROUP is a
group consisting of all currently running instances.

To use a particular instance group for a given parallel operation, specify the follow-
ing parameter in the initialization parameter file:

PARALLEL_INSTANCE_GROUP = groupname

All parallel operations initiated from that instance will spawn processes only
within that group, using the same algorithm as before (either randomly or with
disk affinity).

PARALLEL_INSTANCE_GROUP is a dynamic parameter which you can change
using an ALTER SESSION or ALTER SYSTEM statement. You can use it to refer to
only one instance group; by default it is set to a default group which includes all
currently active instances. The instance upon which you are running need not be a
part of the instance group which you are going to use for a particular operation.

To determine the instances which should return information in a GV$viewname
guery, set the OPS_ADMIN_GROUP parameter.

See Also: Oracle8 Reference for complete information about initialization parame-
ters and views.

"Global Dynamic Performance Views" on page 20-3 for information about the
OPS_ADMIN_GROUP parameter.

Administering Multiple Instances 18-23

Specifying Instances

How to List the Members of Instance Groups
To find out the members of the different instance groups you can query the GV$
global dynamic performance view GV$PARAMETER. Look at all entries for the
INSTANCE_GROUPS parameter name.

Instance Group Example
In this example, instance 1 has the following settings in its initialization parameter
file:

INSTANCE_GROUPS =Ga, Gb
PARALLEL_INSTANCE_GROUP =Gb

Instance 2 has the following setting in its initialization parameter file:

INSTANCE_GROUPS =Gb, Gc
PARALLEL_INSTANCE _GROUP =Gc

On instance 1, if you enter the following statements, the instances in Gb will be
used. Two server processes will be spawned on instance 1, and 2 server processes
on instance 2.

ALTER TABLE table PARALLEL (DEGREE 2 INSTANCES 2);
SELECT COUNT(*) FROM table;

If you enter the following statements on instance 1, Gc will be used. Two server pro-
cesses will be spawned on instance 2 only.

ALTER SESSION SET PARALLEL INSTANCE_GROUP ='Gc;;
SELECT COUNT(*) FROM table;

If you enter the following statements on instance 1, the default instance group (all
currently running instances) will be used. Two server processes will be spawned on
instance 1, and 2 server processes on instance 2.

ALTER SESSION SET PARALLEL INSTANCE_GROUP=":
SELECT COUNT(*) FROM table;

18-24 Oracle8 Parallel Server Concepts and Administration

Specifying Instances

Using a Password File to Authenticate Users on Multiple Instances

You can use a password file to authenticate users performing database administra-
tion when running multiple instances on a parallel server. In this case, the environ-
ment variable for each instance must point to the same password file. Similarly, the
REMOTE_LOGIN_PASSWORDFILE initialization parameter for each instance
must be set to the appropriate, identical value.

See Also: Oracle8 Administrator’s Guide for information about the
REMOTE_LOGIN_PASSWORDFILE parameter.

For more information on the exact name of the password file, or for the name of the

environment variable used to specify this name for your operating system, see your
Oracle system-specific documentation.

Administering Multiple Instances 18-25

Shutting Down Instances

Shutting Down Instances

Use the following procedure to shut down an instance:
1. Connect with SYSDBA.
CONNECTusemame/passwoiS SYSDBA

2. Close the database.
ALTER DATABASEdatabase_nam@&L OSE

3. Dismount the database.
ALTER DATABASEdatabase nani@®lSMOUNT

Alternatively, you can use the Server Manager command SHUTDOWN, which per-
forms all three of these steps for the current instance.

In a parallel server, shutting down one instance does not interfere with the opera-
tions of any instances still running.

To shut down a database which is mounted in shared mode, you must shut down
every instance in the parallel server. The parallel server allows you to shut down
instances in parallel from different nodes. When an instance shuts down abnor-
mally, Oracle forces all user processes running in that instance to log off the data-
base. If a user process is currently accessing the database, Oracle terminates that
access and returns the message “ORA-1092: Oracle instance terminated. Disconnec-
tion forced”. If a user process is not currently accessing the database when the
instance shuts down, Oracle returns the message “ORA-1012: Not logged on” upon
the next call or request made to Oracle.

After a NORMAL or IMMEDIATE shutdown, instance recovery is not required.
Recovery is required, however, after the SHUTDOWN ABORT command or after
an instance terminates abnormally. The SMON process of an instance which is still
running performs instance recovery for the instance which shut down. If no other
instances are running, the next instance to open the database performs instance
recovery for any instances which need it.

If multiple Server Manager sessions are connected to the same instance simulta-
neously, all but one must disconnect before the instance can be shut down nor-
mally. You can use the IMMEDIATE or ABORT option of the SHUTDOWN
command to shut down an instance when multiple Server Manager sessions (or
any other sessions) are connected to it.

See Also: “Starting Up and Shutting Down” in Oracle8 Administrator’s Guide for
options of the SHUTDOWN command.

18-26 Oracle8 Parallel Server Concepts and Administration

Limiting Instances for the Parallel Query

Limiting Instances for the Parallel Query

Although the parallel query feature does not require the Oracle Parallel Server,
some aspects of parallel query apply only to a parallel server.

The INSTANCES keyword of the PARALLEL clause of the CREATE TABLE,
ALTER TABLE, CREATE CLUSTER, and ALTER CLUSTER commands allows you
to specify that a table or cluster is split up among the buffer caches of all available
instances of a parallel server when the table is scanned in a parallel query.

If you do not want tables to be dynamically partitioned among all the available
instances, you can specify the number of instances that can participate in scanning
or caching with the PARALLEL_DEFAULT_MAX_INSTANCES parameter or the
ALTER SYSTEM command.

If you want to specify the number of instances to participate in parallel query pro-
cessing at startup time, you can specify a value for the initialization parameter
PARALLEL_DEFAULT_MAX_INSTANCES.

If you want to limit the number of instances available for parallel query processing
dynamically, use the ALTER SYSTEM command. For example, if your parallel
server has ten instances running, but you want only eight to be involved in parallel
guery processing, while the remaining two instances will be dedicated for other
use, you can issue the following command:

ALTER SYSTEM SET SCAN_INSTANCES =8§;

Thereafter, if a table’s definition has a value of ten specified for the INSTANCES
keyword, the table will be scanned by query servers on only eight of the ten
instances. Oracle selects the first eight instances in this example. You can set the

PARALLEL_MAX_SERVERS initialization parameter to zero on the instances that
you do not want to participate in parallel query processing.

If you wish to limit the number of instances that cache a table, you can issue the fol-
lowing command:

ALTER SYSTEM SET CACHE_INSTANCES =8

Thereafter, if a table definition has 10 specified for the INSTANCES keyword and
the CACHE keyword was specified, the table will be divided evenly among eight
of the ten available instances’ buffer caches.

See Also: "Specifying Instance Groups" on page 18-22.

Oracle8 Reference for more information about parameters.

Administering Multiple Instances 18-27

Limiting Instances for the Parallel Query

18-28 Oracle8 Parallel Server Concepts and Administration

19

Tuning the System to Optimize Performance

Last of the gods, Contention ends her tale.

Aeschylus, Antigone
This chapter provides an overview of tuning issues. It covers the following topics:
« General Guidelines
« Contention

« Tuning for High Availability

See Also: "Oracle Parallel Server Management" on page 18-2

Tuning the System to Optimize Performance 19-1

General Guidelines

General Guidelines

This section covers the following topics:
« Overview

« Keep Statistics for All Instances

« Statistics to Keep

« Change One Parameter at a Time

Overview

With experience, you can anticipate most parallel server application problems prior
to rollout and testing of the application. This can be done using the methods
described in this document. In addition, a number of tunable parameters can
enhance system performance. Tuning parameters can have a major influence and
improve system performance, but they cannot overcome problems caused by a
poor analysis of potential LM lock contention.

In tuning OPS applications the techniques used for single-instance applications are
still valid. It is still important, however, to effectively tune the buffer cache, shared

pool and all the disk subsystems. OPS introduces some additional parameters and

statistics that you must collect and understand.

Note: In Oracle8, locks are mastered and remastered dynamically, so the instances
do not need to be started in any particular order.

When collecting statistics to monitor the performance of the OPS, the following gen-
eral guidelines will make debugging and monitoring of the system simpler and
more accurate.

Keep Statistics for All Instances

It is important to monitor all instances in the same way, but keep separate statistics
for each instance. This is particularly true if the partitioning strategy results in a
highly asymmetrical solution. By monitoring the instances you can determine the
highest loaded node and test how well the system partitioning has been performed.

Statistics to Keep

The best statistics to monitor within the database are those kept within the SGA:
the “V$” and “X$” tables, for example. It is best to snapshot these views over a
period of time. In addition, good operating system statistics should be kept to assist

19-2 Oracle8 Parallel Server Concepts & Administration

Contention

in the monitoring and debugging process. The most important of these are CPU
usage, disk 170, virtual memory usage, network usage and lock manager statistics.

Change One Parameter at a Time

Contention

In benchmarking or capacity planning exercises it is important to manage effec-
tively the changes to the setup of the system. By documenting each change and
effectively quantifying its effect on the system, you can profile and understand the
mechanics of the system and application. This is particularly important when
debugging a system or determining whether more hardware resources are
required. You must adopt a systematic approach for the measurement and tuning
phases of a performance project. Although this approach may seem time consum-
ing, it will save time and system resources in the long term.

This section covers the following topics:
« Detecting Lock Conversions

« Pinpointing Lock Contention within an Application

Detecting Lock Conversions

To detect whether a large number of lock conversions is taking place, you can exam-
ine the “V$” tables which enable you to see that locks are being upgraded and
downgraded. The best views for initially determining whether a lock contention
problem exists are VSLOCK_ACTIVITY and V$SYSSTAT.

To determine the number of lock converts over a period of time, query the
V$LOCK_ACTIVITY table. From this you should be able to determine whether you
have reached the maximum lock convert rate for the LM. If this is the case, you
must repartition the application to remove the bottleneck. In this situation, adding
more hardware resources such as CPUs, disk drives, and memory is unlikely to
improve system performance significantly.

Note: Maximum lock convert rate depends on the implementation of the IPC mech-
anism on your platform.

To determine whether lock converts are being performed too often, calculate how
often the transaction requires a lock convert operation when a data block is
accessed for either a read or a modification. Query the V$SYSSTAT table.

In this way you can calculate a lock hit ratio which may be compared to the cache
hit ratio. The value calculated is the number of times there occur data block

Tuning the System to Optimize Performance 19-3

Contention

accesses that do not require lock converts, compared to the total number of data
block accesses. The lock hit ratio is computed as:

consistent_gets - global_lock_converts_(async)

consistent_gets

A SQL statement that computes this ratio is as follows:

SELECT (bl.value - b2.value) / bl.value ops_ratio
FROM V$SYSSTAT b1, V$SYSSTAT b2
WHERE bl.name = ‘consistent gets’
AND b2.name = ‘global lock converts (async);;

If this ratio drops below 95%, optimal scaling of performance may not be achieved
as additional nodes are added.

Another indication of too many PCM lock conversions is the ping/write ratio,
which is determined as follows:

DBWR_cross_instance_writes

ing_write_ratio = - -
ping_ - physical_writes

See Also: "Tuning Your PCM Locks" on page 15-16

19-4 Oracle8 Parallel Server Concepts & Administration

Contention

Pinpointing Lock Contention within an Application

If an application shows performance problems and you determine that excessive
lock convert operations are the major problem, you must identify the transactions
and SQL statements which are causing the problem. When excessive lock conten-
tion occurs it is likely to be caused by one of three problem areas when setting up
the OPS environment. These key areas are as follows:

=« contention for a common resource
« lack of locks

« constraints

Excessive Lock Convert Rates: Contention for a Common Resource

This section describes excessive lock conversion rates associated with contention
for a common resource.

In some cases within OPS applications the system may not be performing as antici-
pated. This may be because one small area of the database setup or application
design overlooked some database blocks that must be accessed in exclusive mode
by all instances, for the entire time that the application runs. This forces the whole
system to effectively single thread with respect to this resource.

This problem can also occur in single instance cases where all users require exclu-
sive access to a single resource. In an inventory system, for example, all users may
wish to modify a common stock level.

In OPS applications the most common points for contention are associated with
contention for a common set of database blocks. To determine whether this is hap-
pening you can query an additional set of V$ tables (VBH, VCACHE and
V$PING). All these tables yield basically the same data, but V$CACHE and
V$PING have been created as views joining additional data dictionary tables to
make them easier to use. These tables and views examine the status of the current
data blocks within an instance’s SGA. They enable you to construct queries to see
how many times a block has been pinged between nodes, and how many revisions
of the same data block exist within the SGA at the same time. You can use both of
these features to determine whether excessive single threading upon a single data-
base block is occurring.

Note: GVBH, GVCACHE, and GV$PING views are also available, enabling you
to query across all instances.

Tuning the System to Optimize Performance 19-5

Contention

The most common areas of high block contention tend to be:

« Free list contention by INSERT statements requiring more free space to insert
into a table. Often you can recognize this by querying V$PING and noticing
that a single block has multiple copies in the SGA. If this is the second block in
the file, free list contention is probably occurring. This problem may actually be
solved by use of free list groups and multiple free lists. Free list contention may
also occur on single-instance systems, especially SMP machines with a large
number of CPUs. This problem can be determined by querying the V$WAIT-
STAT table.

« Segment header contention for transactions sharing the same space header
management block. This is likely to occur during parallel index creates, when
the parallel query slaves allocate sorting space from the temporary tablespace.
Each segment that undergoes simultaneous space management in a parallel
server requires approximately 9 distributed locks dedicated to coordinating
Space management activities.

« Index contention by INSERT and DELETE statements that operate upon an
indexed table. By querying V$PING you can see that a number of data blocks
within the first extent of the index have both multiple copies within the SGA
and experience a high number of block pings. This problem cannot be solved
by tuning; to solve this problem it is important to localize all access (read or
write) to this index to a single instance.

This will involve routing transactions that alter this table to a single instance
and running the system asymmetrically. If this cannot be done further consider-
ation should be given to partitioning the table and using a data dependent rout-
ing strategy.

Excessive Lock Convert Rates through Lack of Locks

In tables that have random access for SELECT, UPDATE and DELETE statements,

each node will need to perform a number of PCM lock upgrades and downgrades.
If these lock convert operations require a disk 170 they will be particularly expen-
sive and performance will be affected.

If, however, many of the lock converts can be satisfied by just converting the lock
without a disk 170, a performance improvement can be made. This is often
referred to as an 1/0 less ping. The reason that the lock convert can be achieved
without an 170 is that the database is able to age the data blocks out of the SGA via
the database writer, as it would with a single instance. This is only likely when the
table is very large in comparison to the size of the SGA. Small tables are likely to
require a disk 1/0, since they are unlikely to be aged out of the SGA.

19-6 Oracle8 Parallel Server Concepts & Administration

Contention

With small tables where random access occurs you can still achieve performance
improvements by reducing the number of rows stored in a data block. You can do
this by increasing the table PCTFREE value and by reducing the number of data
blocks managed by a PCM lock. The process of adjusting the number of rows man-
aged per PCM lock can be performed until lock converts are minimized or the hard-
ware configuration runs out of PCM locks.

The number of PCM locks managed by the LM is not an infinite resource. Each lock
requires memory on each OPS node, and this resource may be quickly be
exhausted. Within an OPS environment the addition of more PCM locks lengthens
the time taken to restart or recover an OPS instance. In environments where high
availability is required, the time taken to restart or recover an instance may deter-
mine the maximum number of PCM locks that you can practically allocate.

Excessive Lock Convert Rates Due to Constraints

In certain situations excessive lock conversion rates cannot be reduced due to cer-
tain constraints. In large tables, clusters, or indexes many gigabytes in size, it
becomes impossible to allocate enough PCM locks to prevent high lock convert
rates even if these are all false pings. This is mainly due to the physical limitations
of allocating enough locks. In this situation a single PCM lock may effectively man-
age more than a thousand data blocks.

Where random access is taking place, lock converts are performed even if there is
not contention for the same data block. In this situation tuning the number of locks
is unlikely to enhance performance, since the number of locks required is far in
excess of what can actually be created by the lock manager.

In such cases you must either restrict access to these database objects or else
develop a partitioned solution.

Tuning the System to Optimize Performance 19-7

Tuning for High Availability

Tuning for High Availability

Failure of an Oracle instance on one Parallel Server node may be caused by prob-
lems that may or may not require rebooting the failed node. If the node fails and
requires reboot or restart, the recovery process on remaining nodes will take longer.
Assuming a full recovery is required the recovery process will be performed in
three discreet phases:

» Detection of Error
« Recovery and Re-mastering of IDLM Locks

« Recovery of Failed Instance

Detection of Error

The first phase of recovery is to detect that either a node or an OPS instance has
failed. Complete node failure or failure of an Oracle instance is detected through
the operating system node management facility.

Recovery and Re-mastering of IDLM Locks

If a complete node failure has occurred, the remaining nodes will be required to re-
master the locks held by the failed node. On non-failed instances at this point all
database processing will halt until recovery has completed. To speed this process
for the Integrated DLM it is important to have the minimum number of PCM locks.
This will eventually be reflected in a trade-off between database performance and
availability requirements.

Recovery of Failed Instance

Once the IDLM has recovered all lock information, one of the remaining nodes can
get an exclusive lock on the failed instance’s IDLM instance lock. This node enables
the failed instance to recover by providing roll forward/roll backward recovery of
the failed instance’s redo logs. This process is performed by the SMON background
process. The time needed to perform this process depends upon the quantity of
redo logs to be recovered, a function of how often the system was checkpointed at
runtime. Again, this is a trade-off between system runtime performance, which
favors a minimum of checkpoints, and system availability requirements.

See Also: "Phases of Oracle Instance Recovery" on page 22-14.

19-8 Oracle8 Parallel Server Concepts & Administration

20

Monitoring Views & Tuning a Parallel Server

A needless Alexandrine ends the song,
That like a wounded snake drags its slow length along.
—Alexander Pope

This chapter describes how to monitor performance of a parallel server by query-
ing data dictionary views and dynamic performance views. It also explains how to
tune a parallel server.

« Monitoring Data Dictionary Views with CATPARR.SQL

= Monitoring Dynamic Performance Views

« Querying VSLOCK_ACTIVITY to Monitor Instance Lock Activity
= Querying the V$PING View to Detect Pinging

=« Querying V$CLASS_PING, VS$FILE_PING, and V$BH

« Querying the VSWAITSTAT View to Monitor Contention

= Querying VSFILESTAT and V$DATAFILE to Monitor I/0 Activity
« Querying and Interpreting V$SESSTAT and V$SYSSTAT Statistics

See Also: "Oracle Parallel Server Management" on page 18-2

Monitoring Views & Tuning a Parallel Server 20-1

Monitoring Data Dictionary Views with CATPARR.SQL

Monitoring Data Dictionary Views with CATPARR.SQL

The SQL script CATPARR.SQL creates parallel server data dictionary views. To run
this script, you must have SYSDBA privileges and either log in with the SYS user-
name or use the CONNECT INTERNAL command.

Note: CONNECT INTERNAL may nhot be supported in future releases.

CATALOG.SQL creates the standard V$ dynamic views, as described in the Oracle8
Reference, including:

= GV$CACHE

= GVS$PING

=« GVS$CLASS_PING
=« GVS$FILE_PING

You can rerun CATPARR.SQL if you want the EXT_TO_OBJ table to contain the lat-
est information after you add extents. Note that if you drop objects without rerun-
ning CATPARR.SQL, EXT_TO_OBJ may display misleading information.

The following data dictionary views, created by CATPARR.SQL, are available to
monitor a parallel server:

. FILE_LOCK
. FILE_PING

See Also: Oracle8 Reference for more information on dynamic views and monitor-
ing your database.

20-2 Oracle8 Parallel Server Concepts & Administration

Monitoring Dynamic Performance Views

Monitoring Dynamic Performance Views

This section covers the following topics:
« Global Dynamic Performance Views
« The V$ Views

Global Dynamic Performance Views

Tuning and performance information for the Oracle database is stored in a set of
dynamic performance tables (the V$ fixed views). Each active instance has its own
set of fixed views. In a parallel server environment, you can query a global

dynamic performance (GV$) view to retrieve the V$ view information from all qual-
ified instances. A global fixed view is available for all of the existing dynamic per-
formance views except for VSROLLNAME, V$CACHE_LOCK,
VSLOCK_ACTIVITY, and VSLOCKS_WITH_COLLISIONS.

The global view contains all the columns from the local view, with an additional
column, INST_ID (datatype INTEGER). This column displays the instance number
from which the associated V$ information was obtained. You can use the INST_ID
column as a filter to retrieve V$ information from a subset of available instances.
For example, the query:

SELECT * FROM GV$LOCKWHERE INST_ID=20rINST_ID=5

retrieves the information from the V$ views on instances 2 and 5.

Each global view contains a GLOBAL hint which creates a parallel query that
fetches the contents of the local view on each instance. You can use the GV$ views
to return information on groups of instances defined with the
OPS_ADMIN_GROUP parameter. Note that a query over G$V views will only
return data from instances in instance group g1.

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and
you attempt to query a GV$ view, one additional parallel server process will be
spawned for this purpose. This extra process will serve any subsequent GV$ que-
ries until expiration of the PARALLEL_SERVER_IDLE_TIME, at which point the
process will terminate. The extra process is not available for any parallel operation
other than GV$ queries.

Note: If PARALLEL MAX_SERVERS is set to zero for an instance, then no addi-
tional parallel server process will be allocated to accommodate a GV$ query.

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and
issue multiple GV$ queries, all but the first query will fail--unless

Monitoring Views & Tuning a Parallel Server 20-3

Monitoring Dynamic Performance Views

The V$ Views

ALLOW_PARTIAL_SN_RESULTS is set. This parameter permits partial results to
be returned on excess queries to global dynamic performance views, even if a corre-
sponding parallel server process cannot not be allocated on the instance. In most
parallel queries, if a server process could not be allocated this would result in either
an error or a sequential execution of the query by the query coordinator. For global
views, it may be acceptable to continue running the query in parallel and return the
data from the instances which could allocate servers for the query. If the desired
behavior is to report an error if server allocation on an instance fails, then the value
of ALLOW_PARTIAL_SN_RESULTS should be set to FALSE. If it is acceptable to
retrieve results only from instances where server allocation succeeded, then the
value of the parameter should be set to TRUE.

See Also: "Specifying Instance Groups" on page 18-22

Oracle8 Reference for restrictions on GV$ views, and complete descriptions of all the
parameters and V$ dynamic performance views.

The following dynamic views are available to monitor a parallel server:

V$BH GV$BH
V$CACHE GV$CACHE
V$CACHE_LOCK

V$CLASS_PING GV$CLASS_PING
V$DLM_LOCKS GV$DLM_LOCKS
V$FALSE_PING GVS$FALSE_PING
VS$FILE_PING GVS$FILE_PING
VSLOCK_ACTIVITY

V$LOCK_ELEMENT GV$LOCK_ELEMENT
V$LOCKS_WITH_COLLISIONS

V$PING GV$PING

The V$ views are accessible to the user with SYSDBA privileges. You can grant
PUBLIC access to V$ views by running the script MONITOR.SQL, or you can grant
individual users SELECT access to new views based on the dynamic views, as
described in the “Data Dictionary Reference” chapter of Oracle8 Administrator’s
Guide.

20-4 Oracle8 Parallel Server Concepts & Administration

Monitoring Dynamic Performance Views

The VBH, VCACHE, and V$PING views contain statistics about the frequency of
PCM lock conversion due to contention between instances. Each row in these views
represents one block in the buffer cache of the current instance.

The COUNTER Column

In the VSLOCK_ACTIVITY view, the COUNTER column shows the number of
times each type of PCM lock conversion has occurred since the instance started up.

The XNC Column

In the VBH, VCACHE, and V$PING views, the XNC column shows the number
of times the PCM lock covering that block has converted from X (exclusive) to
NULL at the request of another instance since the block entered the buffer cache.
XNC therefore indicates the amount of contention for data. If the PCM lock covers
a set of blocks, some or all of the lock conversions could be caused by requests for
other blocks in that set.

Each block starts with an XNC value of zero when it first enters the buffer cache.
This value is incremented whenever the instance releases the PCM lock covering
that block. If a PCM lock covers multiple blocks, they can have different values of
XNC because they may enter the buffer cache at different times.

Note: A single block can appear in multiple rows of the VBH, VCACHE, and
V$PING views. Each row represents a different copy (version) of the block. Multi-
ple versions created for read-consistent queries appear with the status CR. For tun-
ing purposes, you only need consider the current copy (status XCUR or SCUR) that
contains the greatest value of XNC.

When an instance writes a block to disk and reuses that buffer for other data, XNC
is reset to zero. If the block returns to the buffer cache while other versions of that
block are still in the cache, it starts with the greatest value of XNC for any version
of the same block, rather than starting with zero.

Null Values

Null values appear in rows for distributed locks on temporary segments, such as
sort blocks. Null values can also appear in some rows of the dynamic views after
you create or modify database objects, or after the Oracle Server allocates new
extents to database objects; in this case, you should update the views by rerunning
CATPARR.SQL.

Use the following procedure to monitor and tune the distributed lock activity in a
parallel server.

Monitoring Views & Tuning a Parallel Server 20-5

Querying VSLOCK_ACTIVITY to Monitor Instance Lock Activity

Querying VSLOCK_ACTIVITY to Monitor Instance Lock Activity

The VSLOCK_ACTIVITY view lists the frequencies of various types of PCM lock
conversions for all buffers in the SGA of the current instance; it does not contain
information about particular blocks, files, or database objects.

This section covers the following topics:
= Analyzing VSLOCK_ACTIVITY
« Monitoring and Tuning Lock Activity

Analyzing VSLOCK_ACTIVITY

Query the VSLOCK_ACTIVITY view for each instance of a parallel server periodi-
cally. The Server Manager command CONNECT @instance-path allows you to spec-
ify an instance before querying its dynamic performance views. Net8 must be
installed to use the CONNECT command for an instance on a remote node. When
analyzing the VELOCK_ACTIVITY view, note that:

« Many PCM locks are initially converted when an instance is started.

« Rapid increases in the number of lock conversions in successive queries (for
example, increments of 500+) indicate system contention problems.

« Excessive lock conversions (for example, exceeding 5,000 per minute) indicate
contention problems on the system.

For example, the following query could display rows as shown:
SELECT * FROM V$LOCK_ACTMITY;

FROMTO ACTION COUNTER
NULLS Lock buffers for read 5953

NULL X Lock buffers for write 1118

S NULL Make buffers CR (no write) 6373

S X Upgrade read lock to write 2077

X NULL Make buffers CR (write dirty buffers) 1

X S Downgrade write lock to read (write dirty buffers) 3164
X SSX Wiite transaction tablefundo blocks 1007

SSX NULL Transaction table/undo blocks (write dirty buffers) 2
SSX S Make transaction table/undo block available share 1
SSX X Rearm transaction table write mechanism 1007

See Also: Your platform-specific Oracle documentation for information about con-
necting with Net8.

20-6 Oracle8 Parallel Server Concepts & Administration

Querying VSLOCK_ACTIVITY to Monitor Instance Lock Activity

Monitoring and Tuning Lock Activity
Use the following procedure to control distributed lock activity.

1.

Repeatedly query each instance that you want to monitor with the following
SQL statement:

SELECT * FROM V$LOCK_ACTIVITY;

If this increases rapidly for any instance, identify the types of lock conversions
that are most active in the instance with the following SQL statement:

SELECT * FROM V$LOCK_ACTIMITY;

Any lock activities from X to a lower mode (such as X to S, X to Null, X to SSX,
or S to N) indicate that there is contention among instances for blocks in the
buffer cache (blocks are being “pinged”) and the instance is releasing locks at
the request of other instances. Query the instance repeatedly to find out
whether the number of conversions is increasing rapidly.

Query the VSLOCK_ACTIVITY view of each instance to identify which
instances have the most NULL to S conversions or S to X conversions. These
instance are making most of the requests for data that is locked by other
instances (“pinging™).

If the pinging occurs mainly between two instances, you should consider let-
ting the applications on those instances run on a single instance.

If pinging occurs on several instances at approximately the same rate, you may
need to tune your PCM lock allocations (see Step 7) or you may have a set of
data that the instances access equally, in which case you need to tune your
applications (see Step 8).

Identify which blocks are pinging by querying the V$PING view of an instance
you are monitoring:

SELECT * FROM V$PING;

You might want to restrict this query with a qualifier to display the blocks that
have undergone the most contention; for example:

SELECT * FROM V$PING WHERE FORCED READS > 10 OR FORCED_WRITES > 10;

or:

SELECT NAME, KIND, STATUS, SUM(FORCED_READS), SUM(FORCED_WRITES)
FROM VS$PING

Monitoring Views & Tuning a Parallel Server 20-7

Querying VSLOCK_ACTIVITY to Monitor Instance Lock Activity

GROUP BY NAME, KIND, STATUS
ORDER BY SUM(FORCED_READS);

Note: Querying V$BH is faster than querying V$PING or VSCACHE. You can
qguery V$BH to find the block numbers and file numbers of interest. Since
V$BH has an OBJD (object number) field, you can join with OBJS$ to find the
name of the object, as follows:

SELECT O.NAME, BH*

FROM V$BH BH, OBJ$ O

WHERE O.OBJ#=BH.OBJD

AND (BH.FORCED_READS > 10 OR BH.FORCED_WRITES > 10);

5. For blocks that show high rates of pinging, compare FILE# with the datafiles
specified in GC_FILES _TO_LOCKS to find out whether their PCM locks cover
multiple blocks. If so, also note whether the locks cover blocks in multiple files.

6. If the PCM locks cover multiple blocks, you should determine whether other
instances require data from the same block or from different blocks in the same
set. To do this, query V$CACHE (or V$BH) in other instances for the BLOCK#
that corresponds to a high value of XNC in the instance you are monitoring.

7. If the block does not appear in another instance, there is unnecessary conten-
tion (false pinging) because instances that require different blocks are using the
same PCM lock for those blocks. To minimize unnecessary contention within
one or more datafiles, reduce the number of blocks per lock by allocating more
PCM locks to the files with the GC_FILES TO_LOCKS parameter. If the PCM
locks cover multiple files, you can reduce contention by allocating separate sets
of locks to individual files.

8. If the same blocks show up in multiple buffer caches, the instances are contend-
ing for the same data.

When multiple instances frequently need to modify data in the same block, you
may be able to improve performance by running the applications that require
the data on the same instance.

If the instances modify different rows within the same block, you can re-create
the table using the FREELIST GROUPS storage option, then alter the table to
allocate extents to particular instances and update selectively to place the data
in the appropriate extents.

For a small table, you can use the PCTFREE and PCTUSED parameters to
ensure that a block only contains one row.

20-8 Oracle8 Parallel Server Concepts & Administration

Querying the V$PING View to Detect Pinging

If the contention is for rows that are used to generate unique numbers, you can
change the applications so that they use SEQUENCE numbers instead of gener-
ating their own numbers.

Note: Contention for data blocks and other shared resources does not necessarily
have a significant effect on performance. If the response time of your applications is
acceptable and you do not anticipate substantial increases in system usage, you
may not need to tune your parallel server.

Querying the VSPING View to Detect Pinging

“Pinging” is a catchall term for contention. It includes

“pings”, which are lock down-conversions

forced reads and forced writes, which constitute the 1/0 subset of contention.
Note that some pings can cause multiple forced writes.

“False pinging” occurs when different instances request different blocks, which
happen to map to the same PCM lock. This pinging is unnecessary because it can
be reduced by decreasing the granularity of the PCM locks.

Use the following procedure to detect pings.

1.

Query V$PING to display summary statistics about lock conversions.

SQL> SELECT NAME, FILE#, CLASS#, MAX(XNC) FROM V$PING
2 GROUP BY NAME, FILE#, CLASS#
3 ORDER BY NAME, FILE#, CLASSH#,

NAME FILE# CLASS# MAX(XNC)
DEPT 8 1 492

DEPT 8 4 10

EMP 8 1 3197

EMP 8 4 29

Query V$PING again to display the frequency of PCM lock conversions and
information for blocks in file 8.

SQL> SELECT * FROM V$PING WHERE FILE#=8;
FILE# BLOCK# STAT XNC CLASS# NAME KIND

8 98 XCUR 450 1 EMP TABLE
8 764 SCUR 59 1 DEPT TABLE

Monitoring Views & Tuning a Parallel Server 20-9

Querying VSCLASS_PING, V$FILE_PING, and V$BH

3. Query the EMP table to display the rows contained in block 98. Convert the
BLOCK# to a hexadecimal value and compare it to the ROWID. (98 equals 62 in
hexadecimal.)

SQL> SELECT ROWID, EMPNO, ENAME FROM EMP
2 WHERE chartorowid(rowid) like ‘0000006294,
ROWID EMPNO ENAME

00000062.0000.0008 12340 JONES
00000062.0000.0008 6491 CLARK

Querying VSCLASS PING, V$SFILE_PING, and V$BH

Using dynamic performance views you can separate out, by file, the block classes
that are causing most of the contention.

The V$CLASS_PING view helps you identify which class of blocks (such as roll-
back segments) are being pinged the most. It provides a detailed breakdown by
lock conversion type (such as Null to Shared), with read and write physical 1/0
incurred due to the conversion. Its statistics are cumulative since instance startup.
To distribute the contention, you can move different classes of blocks to separate
files. For example, you might want to separate rollback segments and datablocks
into different files.

The V$FILE_PING view helps you identify which files are being pinged the most.
Its statistics are also cumulative since instance startup. To distribute the contention,
you can move to other files the objects contained within a heavily pinged file. If a
table is heavily pinged, you could partition the table, and place the partitions on
separate files.

The V$BH view is a changing snapshot of the buffer cache at any given time. You
should periodically sample it, and see how it changes over time. Its statistics are
dynamic, not cumulative since startup. V$BH should be sampled periodically to
get an idea of ping activity at different points in time during the workload (as
stated earlier). You can use V$BH to identify objects in the buffer cache that are
undergoing pings, and to determine the forced read/write 1/0 caused by these
pings. V$BH has the object identifier, which can be joined with OBJ$ to get the
object name.

Note: You can also monitor the global (GV$) dynamic performance view corre-
sponding to each of these views.

See Also: Oracle8 Reference for more information on dynamic views.

20-10 Oracle8 Parallel Server Concepts & Administration

Querying the VSWAITSTAT View to Monitor Contention

Querying the VSWAITSTAT View to Monitor Contention

Use this view to display block contention statistics for resources such as rollback
segments and free lists.

This section covers the following topics:

Monitoring Contention for Blocks in Free Lists

Monitoring Contention for Rollback Segments

Monitoring Contention for Blocks in Free Lists
Use the following procedure to monitor contention for blocks in free lists.

1.

To check the number of waits for free blocks in free lists:

SQL> SELECT CLASS, COUNT FROM V$WAITSTAT
2WHERE CLASS =free list;
CLASS COUNT

free list 12

Compare the COUNT obtained with total number of requests (SUM) for data
over the same period.

SQL> SELECT SUM(VALUE) FROM V$SYSSTAT
2WHERE name IN
3 (db block gets’, ‘consistent gets);

SUM (VALUE)

12050211

If the number of waits for free blocks (COUNT) is greater than 1% of the total
requests (SUM), consider adding more free lists to tables to reduce contention.
To add more free lists to a table, recreate the table with a larger value for the
FREELISTS storage parameter. Make the value of FREELISTS equal to the num-
ber of users that concurrently insert data into the table.

SQL> CREATE TABLE new_emp
2 STORAGE (FREELISTS 5)
3AS SELECT * FROM emp;
Table created.
SQL>DROP TABLE emp;
Table dropped.
SQL>RENAME new_emp TO emp;
Table renamed.

Monitoring Views & Tuning a Parallel Server 20-11

Querying the VSWAITSTAT View to Monitor Contention

Monitoring Contention for Rollback Segments
Use the following procedure to monitor contention for rollback segments.

1. Determine contention for rollback segments with the VSWAITSTAT view.

SQL>SELECT CLASS, COUNT
2FROM V$WAITSTAT
3WHERE CLASS IN (‘'system undo header’,
4’system undo block’,undo header’,undo block);
CLASS COUNT
systemundo header 12
systemundoblock 11
undo header 28
undo block 6

2. Compare the COUNT obtained with total number of requests (SUM) for data
over the same period.

SQL> SELECT SUM(VALUE) FROM V$SYSSTAT
2\WHERE name IN
3 (db block gets’, ‘consistent gets);

SUM (VALUE)

12050211

3. If the number of waits for any class of blocks (COUNT) is greater than 1% of
the total requests (SUM), use the CREATE ROLLBACK SEGMENT command
to add more rollback segments.

See Also: “Data Dictionary Reference” chapter in Oracle8 Reference.

20-12 Oracle8 Parallel Server Concepts & Administration

Querying VSFILESTAT and V$DATAFILE to Monitor I/O Activity

Querying VSFILESTAT and V$DATAFILE to Monitor I/O Activity

Use the VSFILESTAT and V$DATAFILE views to monitor statistics on disk/file
access and determine the greatest 1/0 activity in the system.

1.

To determine the number of reads and writes to each database file and the
name of each datafile, query the V$FILESTAT and VSDATAFILE views.

SQL> SELECT NAME, PHYRDS, PHYWRTS
2 FROM V$DATAFILE df, V$FILESTAT fs
3 WHERE dffile# = fsfilet;

NAME PHYRDS PHYWRTS

fest71/ora_system.dbs 7679 2735
fest71jora_system1.dbs 32 546

To determine the number of reads and writes to each non-database file, use an
operating system utility, such as the UNIX utility iostat. The total 1/0 for each
disk is the total number of reads and writes to all files on the disk.

Analyze statistics from the VSFILESTAT view to determine whether disk 170
needs to be distributed to avoid overloading one or more disks. To minimize
contention for disk 1/0:

« Separate datafiles and redo log files on different disks.
« Separate (or stripe) table data on different disks.

« Separate tables and indexes on different disks.

« Reduce disk 170 not related to the Oracle server.

Analyze the statistics from the V$DATAFILE view to determine whether files
need to be placed on separate disks to avoid contention for disk 1/0.

« Place frequently accessed datafiles on separate disks to allow multiple pro-
cesses to access the data with less contention.

« Place each set of redo log files on a separate disk with little activity. Infor-
mation in a redo log file is written sequentially; writing can take place
much faster if there is no concurrent activity on the same disk.

« Stripe a large table to store the table data on separate disks.

Note: Consult your hardware documentation to determine disk 170 limits. Any
disks operating at or near full capacity are potential sites for disk contention. For
example, 40 or more 1/0s per second is excessive for most disks on VMS or UNIX
operating systems.

Monitoring Views & Tuning a Parallel Server 20-13

Querying and Interpreting V$SESSTAT and V$SYSSTAT Statistics

Querying and Interpreting V$SESSTAT and V$SYSSTAT Statistics

The V$SESSTAT and V$SYSSTAT views provide parallel statistics for monitoring
contention for various resources including data blocks, rollback segment blocks,
and free space lists. This section describes how to query and interpret these statis-

tics.

To display system statistics for analyzing your parallel server (class = 32 or class =

40), issue the following command:

SQL> SELECT * FROM V$SYSSTAT
WHERE CLASS =32 OR CLASS =40

STATISTIC# NAME CLASS VALUE

28 global lock gets (non async) 32 225663
29 global lock gets (async) 32 169023
30 global lock get time 32 23199
31 global lock converts (nonasync) 32 773052
32 global lock converts (async) 32 93488
33 global lock convert time 32 65636
34 global lock releases (nonasync) 32 381994
35 global lock releases (async) 2 0
36 global lock release time 32 13637
59 DBWR cross instance writes 40 230
60 remote instance undo writes 40 O
61 remote instance undo requests 40 255
62 cross instance CR read 0 24
69 next scns gotten without goingtoDLM 32 0
73calstogetsnapshotscnkemgss 32 349
74 kemsss waited for batching 2 0
75 kemgss reads scnwithoutgoingtoDLM 32 0
84 hash latch wait gets 40 1

18 rows selected.

20-14 Oracle8 Parallel Server Concepts & Administration

Querying and Interpreting V$SESSTAT and V$SYSSTAT Statistics

The following tips will help you interpret statistics obtained from these views.

global lock converts (async)

DBWR cross-instance writes

remote instance undo writes

remote instance undo requests

cross-instance CR read

next scns gotten without going
to DLM

hash latch wait gets

kemgss waited for batching

Divide this number by the V$SYSSTAT statis-
tic “user commits” to calculate the percentage
of cache hits.

Equals the number of blocks pinged. For large
values, reallocate locks based on V$PING sta-
tistics.

A large value may signify pinging activity.

A large value indicates that data modified by
this instance if often read by another instance;
locate applications (and thus transactions) con-
tending for the same data on the same instance.

This is a slow read because every instance has
to write out the block; a large value indicates
that the instance is spending too much time
waiting on blocks modified by other instances.
Evaluate the distribution of locks in the
GC_FILES TO_LOCKS parameter and reallo-
cate to keep the value of this statistic small.

Divide this value by the total number of SCN
gets given by the “user commits” statistic to
calculate the percentage of SCN gets satisfied
from the cache and thus measure the effective-
ness of a parallel server’s SCN cache.

If this value is large or rapidly increasing,
increase the number of hash latches.

An internal call to get a snapshot might have
to wait (for an on-going fetch of a SCN to com-
plete) before contacting the distributed lock
manager. This statistic value indicates system
load and the number of opportunities that Ora-
cle has to batch a single get-snapshot-SCN
with other SCN fetches.

Monitoring Views & Tuning a Parallel Server 20-15

Querying and Interpreting V$SESSTAT and V$SYSSTAT Statistics

kemgss reads scn without going If an internal call (to get a snapshot SCN)

to LM waits for an on-going SCN fetch, it may use
the SCN acquired by the SCN fetch, thus
avoiding overhead in using the lock manager.
The ratio of “kcmgss reads scn without going
to LM” and “kemgss waited for batching” indi-
cates the effectiveness of the parallel server’s
SCN batch algorithm.

See Also: Oracle8 Reference for definitions of these statistics.

Oracle Server Manager User’s Guide descriptions of the MONITOR STATISTICS
CACHE display for information about monitoring contention for various kinds of
blocks.

20-16 Oracle8 Parallel Server Concepts & Administration

21

Backing Up the Database

Those behind cried “Forward!”
And those before cried “Back!”

Thomas Babington, Lord Macaulay: On Frederic The Great

To protect your data, you should archive the online redo log files and periodically
back up the datafiles. You should also back up the control file for your database
and the parameter files for your instances. This chapter discusses:

» Choosing a Backup Method

« Archiving the Redo Log Files
» Checkpoints and Log Switches
« Backing Up the Database

Oracle Parallel Server supports all of the backup features of Oracle in exclusive
mode, including both open and closed backup of either an entire database or indi-
vidual tablespaces.

Backing Up the Database 21-1

Choosing a Backup Method

Choosing a Backup Method

In Oracle8 you can perform backup and recovery operations using two different
methods:

« Using Recovery Manager
« Using the operating system (existing method)

The information provided in this chapter is true for both methods, unless specified
otherwise.

Note: To avoid confusion between online and offline datafiles and tablespaces, this
documentation uses the terms “open” and “closed” to indicate whether a database
is available or unavailable during a backup. The term “whole backup” or “database
backup” indicates that all datafiles and control files have been backed up. “Full”
and “incremental” backups refer only to particular types of backup provided by
Recovery Manager.

See Also: Oracle8 Backup and Recovery Guide for a complete discussion of backup
and recovery operations and terminology.

Archiving the Redo Log Files

This section explains how to archive the redo log files for each instance of a parallel
server:

« Archiving Mode

« Automatic or Manual Archiving

« Archive File Format and Destination
« Redo Log History in the Control File
« Backing Up the Archive Logs

21-2 Oracle8 Parallel Server Concepts & Administration

Archiving the Redo Log Files

Archiving Mode

Oracle provides two archiving modes: ARCHIVELOG mode and NOAR-
CHIVELOG mode. With Oracle in ARCHIVELOG mode, the instance must archive
its redo logs as they are filled—before they can be overwritten. The logs can thus be
recovered in the event of media failure. In ARCHIVELOG mode, you can make
both open and closed backups. In NOARCHIVELOG mode, you can only make
closed backups.

Note that archiving is a per-instance operation which can be handled in one of two
ways:

« Each instance on a parallel server can archive its own redo log files.

« Alternatively, one or more instances can archive the redo log files manually for
all instances, as described in the following section.

See Also: "Open and Closed Database Backups" on page 21-12.

Automatic or Manual Archiving

Archiving can be performed automatically or manually for a given instance,
depending on the value you set for the LOG_ARCHIVE_START initialization
parameter.

« With LOG_ARCHIVE_START set to TRUE, Oracle automatically archives redo
logs as they fill.

« With LOG_ARCHIVE_START set to FALSE, Oracle waits until you instruct it to
archive.

For Oracle Parallel Server, each instance can set this parameter differently. Thus, for
example, you can manually use SQL commands or Server Manager to have
instance 1 archive the redo log files of instance 2, if instance 2 has
LOG_ARCHIVE_START set to FALSE.

Automatic Archiving

The ARCH background process performs automatic archiving upon instance star-
tup when LOG_ARCHIVE_START is set to TRUE. With automatic archiving, online
redo log files are copied only for the instance that performs the archiving.

In the case of a closed thread, the archiving process in the active instance performs
the log switch and archiving for the closed thread. This is done when log switches
are forced on all threads to maintain roughly the same range of SCNs in the
archived logs of all enabled threads.

Backing Up the Database 21-3

Archiving the Redo Log Files

Manual Archiving

When LOG_ARCHIVE_START is set to FALSE, you can perform manual archiving
in one of the following ways:

« using the ARCHIVE LOG clause of the ALTER SYSTEM command (in SQL)

« enabling automatic archiving (by using the SQL command ALTER SYSTEM
ARCHIVE LOG START, or using Server Manager)

Manual archiving is performed by the user process that issues the archiving com-
mand; it is not performed by the instance’s ARCH process.

ALTER SYSTEM ARCHIVE LOG Options for Manual Archiving
ALTER SYSTEM ARCHIVE LOG manual archiving options include:

ALL All online redo log files that are full but have not been
archived.

CHANGE The lowest system change number (SCN) in the online
redo log file.

CURRENT The current redo log of every enabled thread.

GROUP integer The group number of an online redo log.

LOGFILE *filename’ The filename of an online redo log file in the thread.

NEXT The next full redo log file that needs to be archived.

SEQ integer The log sequence number of an online redo log file.

THREAD integer The thread containing the redo log file to archive
(defaults to the thread number assigned to the current
instance).

You can use the THREAD option of ALTER SYSTEM ARCHIVE LOG to archive
redo log files in a thread associated with an instance other than the current instance.

See Also: Oracle8 Reference for information about the syntax of the ALTER SYSTEM
ARCHIVE LOG statement.

“Archiving Redo Information” chapter in Oracle8 Administrator’s Guide for more
information about manual and automatic archiving.

Oracle8 Backup and Recovery Guide for more information about manual and auto-
matic archiving.

"Forcing a Log Switch" on page 21-10 regarding threads and log switches.

21-4 Oracle8 Parallel Server Concepts & Administration

Archiving the Redo Log Files

Archive File Format and Destination

Archived redo logs are uniquely named as specified by the
LOG_ARCHIVE_FORMAT parameter. This operating-system specific format can
include text strings, one or more variables, and a filename extension.
LOG_ARCHIVE_FORMAT can have the following variables. (Table 21-1 assumes
that LOG_ARCHIVE_FORMAT= arch%parameter, and the upper bound for all
parameters is 10 characters:)

Table 21-1 Archived Redo Log Filename Format Parameters

Parameter Description Example

%T thread number, left-zero-padded arch0000000001
%t thread number, not padded archl

%S log sequence number, left-zero-padded arch0000000251
%s log sequence number, not padded arch251

The thread parameters %t and %T are used only with the Parallel Server Option.
For example, if the instance associated with redo thread number 7 sets
LOG_ARCHIVE_FORMAT to LOG_%s_T%t.ARC, then its archived redo log files
are named:

LOG_1 T7ARC
LOG 2 T7.ARC
LOG 3 T7.ARC

Note: Always specify thread and sequence number in archive log file format for
easy identification of the redo log file.

See Also: Your Oracle system-specific documentation for default log archive format
and destination.

“Archiving Redo Information” chapter in Oracle8 Administrator’s Guide for informa-
tion about specifying the archived redo log filename format and destination.
“Recovery Structures” chapter in Oracle8 Concepts.

Backing Up the Database 21-5

Archiving the Redo Log Files

Redo Log History in the Control File

You can use the MAXLOGHISTORY clause of the CREATE DATABASE or CREATE
CONTROLFILE command to enable the control file to keep a history of the redo
log files that a parallel server has filled. After creating the database, it is only possi-
ble to increase or decrease the log history by creating a new control file. Note that
using CREATE CONTROLFILE destroys all log history in the current control file.

The MAXLOGHISTORY option specifies how many entries can be recorded in the
archive history. Its default value is operating-system specific. If MAXLOGHIS-
TORY is set to a value greater than zero, then whenever an instance switches from
one online redo log file to another, its LGWR process writes the following data to
the control file.

« thread number

« log sequence number

« low system change number (SCN)

« low SCN timestamp

« hext SCN (that is, the low SCN of the next log in sequence)

Note: LGWR writes log history data to the control file during a log switch, not
when a redo log file is archived.

Log history records are small, and are overwritten in a circular fashion when the
log history exceeds the limit set by MAXLOGHISTORY.

During recovery, Server Manager prompts for the appropriate file names. Recovery
Manager automatically restores the redo logs it requires. You can use the log his-
tory to reconstruct archived log file names from an SCN and thread number, for
automatic media recovery of a parallel server that has multiple threads of redo. An
Oracle instance that accesses the database in exclusive mode with only one thread
enabled does not need the log history--but the log history is useful when multiple
threads are enabled, even if only one thread is open.

You can query the log history information from the V3LOG_HISTORY view. When
you are using Server Manager, VSRECOVERY_LOG also displays information
about archived logs needed to complete media recovery; this is derived from infor-
mation in the log history records.

Multiplexed redo log files do not require multiple entries in the log history. Each
entry identifies a group of multiplexed redo log files, not a particular filename.

See Also: Your Oracle system-specific documentation for the default MAXLOGHIS-
TORY value.

21-6 Oracle8 Parallel Server Concepts & Administration

Archiving the Redo Log Files

"Restoring and Recovering Redo Log Files" on page 22-18 for Server Manager
prompts during recovery.

Backing Up the Archive Logs

Archive logs are generally only accessible by the node on which they were created.
In a parallel server environment you have two backup options:

« have each node back up its own archive logs
« move the archive logs to one node, and then back them up

Using O/S utilities, you can manually implement either solution.

Backing Up Archive Logs with Recovery Manager

Recovery Manager can automatically enable each node to back up its own archive
logs. However, if you wish to move the logs you must do so manually and then use
the appropriate rman catalog and change commands to reflect the movement of
files. Once Recovery Manager has been informed of the changes you have made, it
can back up archive logs from the single node.

If you are using multiple nodes to back up your archive logs, note that when Recov-
ery Manager compiles the list of logs to be archived, it must be able to check that
the archived logs exist. To do this it must be able to read the headers of all archived
logs on all nodes.

Each node can then back up the archived logs it has created. In the example below,
because the initial target database is node 1 (on the rman command line), you must
ensure that node 1 is able to read the headers of the archived logs (even those pro-

duced by node 2).

rman target intemalknl@nodel reveat man/man@rcat

un{
allocate channel t1 type 'SBT_TAPE' connect intemalkni@nodel’,
allocate channel 22 type 'SBT_TAPE' connect intemalkni@node2;;
backup
filesperset 10
format ‘al %t %s %p'
(archivelog until ime 'SYSDATE thread 1 delete input channel t1)
(archivelog until ime 'SYSDATE thread 2 delete input channel t2);

}

Backing Up the Database 21-7

Checkpoints and Log Switches

Restoring Archive Logs with Recovery Manager

By default, rman will restore archive logs to the log_archive_dest of the instances it
connects to. If you are using multiple nodes to restore and recover, this means the
archive logs may be restored to any of the nodes doing the restore/recover. The
node which will actually read the restored logs and perform the roll-forward is the
target node initially connected to. For recovery to use these logs, you must ensure
that the logs are readable from that node.

Checkpoints and Log Switches

Checkpoints

This section discusses:

« Checkpoints

« Log Switches

« When Checkpoints Occur Automatically
« Forcing a Checkpoint

« Forcing a Log Switch

« Forcing a Log Switch on a Closed Thread

A checkpoint causes modified datablocks held in the SGA buffer cache to be writ-
ten to disk. A global checkpoint causes all instances to write modified datablocks to
disk. An instance checkpoint causes one instance to write modified datablocks to
disk. Lastly, a datafile checkpoint causes all instances to write the modified dat-
ablocks for a single datafile to disk. During a checkpoint, the DBWR process of an
instance writes the modified datablocks to disk only for that instance.

Because all database changes up to the checkpoint are written to the datafiles, redo
log entries before the checkpoint are not needed for instance recovery.

For a single instance with exclusive access to a database, checkpoints determine the
maximum recovery time after instance failure, because you only need to recover
changes made after the last checkpoint.

For multi-instance systems, checkpoints determine the maximum recovery time for
each instance. Since instances usually have different checkpoint intervals, instance
failures on different nodes generally require different recovery times.

21-8 Oracle8 Parallel Server Concepts & Administration

Checkpoints and Log Switches

Log Switches

A log switch is the point in time when an instance’s LGWR process ceases writing
redo log entries in one online redo log file and begins writing redo log entries in the
next available redo log file.

The intervals between checkpoints for each instance are determined by the fre-
guency of log switches, which depend on the redo log file size and the amount of
redo data generated, and by the values of the parameters
LOG_CHECKPOINT_TIMEOUT and LOG_CHECKPOINT_INTERVAL. Addi-
tional checkpoints and log switches can be forced by various SQL statements and
Server Manager commands, and a parallel server can force a log switch so that an
online redo log file can be archived.

When Checkpoints Occur Automatically
An instance performs a checkpoint under any of the following circumstances:

When the number of redo log blocks written by that instance reaches the limit
specified by the LOG_CHECKPOINT_INTERVAL initialization parameter.

At periods specified by the LOG_CHECKPOINT_TIMEOUT. initialization
parameter.

At log switch time, which occurs when the instance’s current online redo log
file is full, when Oracle forces a log switch to archive a redo log file, or when
the database administrator forces a log switch by one of the following methods:

— ALTER SYSTEM SWITCH LOGFILE
— ALTER SYSTEM ARCHIVE LOG CURRENT

When the database administrator issues the ALTER SYSTEM CHECKPOINT
statement

When the instance shuts down using the NORMAL or IMMEDIATE option.

When backup of a tablespace in an open database begins, a partial checkpoint
is performed by every instance for the datafiles in that tablespace.

See Also: "Forcing a Log Switch" on page 21-10.

Backing Up the Database 21-9

Checkpoints and Log Switches

Forcing a Checkpoint

The SQL statement ALTER SYSTEM CHECKPOINT explicitly forces Oracle to per-
form a checkpoint for either the current instance or all instances. Forcing a check-
point ensures that all changes to the database buffers are written to the datafiles on
disk.

The GLOBAL option of ALTER SYSTEM CHECKPOINT is the default. It forces all
instances that have opened the database to perform a checkpoint. The LOCAL
option forces a checkpoint by the current instance.

A global checkpoint is not finished until all instances that require recovery have
been recovered. If any instance fails during the global checkpoint, however, the
checkpoint might complete before that instance has been recovered.

To force a checkpoint on an instance running on a remote node, you can change the
current instance with the Server Manager command CONNECT.

Note: You need the ALTER SYSTEM privilege to force a checkpoint.

See Also: "Specifying Instances” on page 18-16 for information on specifying a
remote node.

Forcing a Log Switch

A parallel server can force a log switch for any instance that fails to archive its
online redo log files for some period of time, either because the instance has not
generated many redo entries or because the instance has shut down. This prevents
an instance’s redo log, known as a thread of redo, from remaining unarchived for
too long. If media recovery is necessary, the redo entries used for recovery are
always reasonably recent.

For example, after an instance has shut down, another instance can force a log
switch for that instance so that its current redo log file can be archived.

Note: The initialization parameters LOG_CHECKPOINT_TIMEOUT and
LOG_CHECKPOINT_INTERVAL can force an inactive instance to perform check-
points, but these do not force the instance to perform log switches.

The SQL statement ALTER SYSTEM SWITCH LOGFILE forces the current instance
to begin writing to a new redo log file, regardless of whether the current redo log
file is full.

Forcing a log switch also forces a checkpoint. Oracle returns control to you immedi-
ately after beginning the log switch, rather than waiting until the checkpoint is fin-
ished.

21-10 Oracle8 Parallel Server Concepts & Administration

Checkpoints and Log Switches

To force all instances to perform log switches, known as a global log switch, use the
SQL statement ALTER SYSTEM ARCHIVE LOG CURRENT omitting the THREAD
keyword. After you issue this statement, Oracle waits until all online redo log files
are archived before returning control to you. Use this statement to force a single
instance to perform a log switch and archive its online redo log files by specifying
the THREAD keyword.

In Server Manager, you can use the Instance Force Log Switch option for the cur-
rent instance only. There is no global option for forcing a log switch in Server Man-
ager. You may want to force a log switch so that you can archive, drop, or rename
the current redo log file.

Note: You need the ALTER SYSTEM privilege to force a log switch.

See Also: "Redo Log Files" on page 6-3 for more information about threads.

Forcing a Log Switch on a Closed Thread

You can force a closed thread to complete a log switch while the database is open.
This is useful if you want to drop the current log of the thread. This procedure does
not work on an open thread (including the current thread), even if the instance that
had the thread open is shut down. For example, if an instance aborted while the
thread was open, you could not force the thread’s log to switch.

To force a log switch on a closed thread, manually archive the thread, using the
Begin Manual Archive dialog box of Server Manager or the SQL command ALTER
SYSTEM with the ARCHIVE LOG option. For example:

ALTER SYSTEM ARCHIVE LOG GROUP 2;

To archive a closed redo log group manually that will force it to log switch, you
must connect with SYSOPER or SYSDBA privileges.

See Also: Oracle8 Administrator’s Guide for information on connecting with SYS-
DBA or SYSOPER privileges.

Backing Up the Database 21-11

Backing Up the Database

Backing Up the Database

This section covers backup operation issues in an Oracle Parallel Server environ-
ment. It covers the following topics:

« Open and Closed Database Backups
« Recovery Manager Backup Issues

« Operating System Backup Issues

Open and Closed Database Backups

All backup operations can be performed from any node of a parallel server. Open
backups allow you to back up all or part of the database while it is running. Users
can access the database and update data in any part of the database during an open
backup. With a parallel server you can make open backups of multiple tablespaces
simultaneously from different nodes. An open backup includes copies of one or
more datafiles and the current control file. Subsequent archived redo log files or
incremental backups are also necessary to allow recovery up to the time of a media
failure.

When using the operating system, closed backups are taken while the database is
closed. When using Recovery Manager, an instance must be started and mounted,
but not open, in order to do a closed backup. Before you make a closed backup,
you must therefore shut down all instances of a parallel server. While the database
is closed, you can back up its files in parallel from different nodes. A closed whole
database backup includes copies of all datafiles and the current control file.

If you archive redo log files, a closed backup allows recovery up to the time of a
media failure. In NOARCHIVELOG mode, full recovery is not possible since a
closed backup only allows restoration of the database to the point in time of the
backup.

Warning: Do not use operating-system utilities to back up the control file in
ARCHIVELOG mode, unless you are performing a whole, closed backup.

Never erase, reuse, or destroy archived redo log files until you have done
another whole backup (preferably two whole backups), either open or closed.

See Also: Oracle8 Backup and Recovery Guide.

“Database Backup” and “Database Recovery” in Oracle8 Concepts.

21-12 Oracle8 Parallel Server Concepts & Administration

Backing Up the Database

Recovery Manager Backup Issues

Preparing for Snapshot Control Files in Recovery Manager

In an Oracle Parallel Server environment, you must prepare for snapshot control
files before you perform a backup using Recovery Manager.

Any node making a backup may need to create a snapshot control file. Therefore,
on all nodes used for backup, you must ensure the existence of the directory to
which such a snapshot control file will be written.

For example, to specify that the snapshot control file should be written to the file
/oracle/db_files/snapshot/snap_prod.cf, you would enter:

SET SNAPSHOT CONTROLFILE TO ‘/oracle/db_files/snapshot/snap_prod.cf;
You must then ensure that the directory /oracle/db_files/snapshot exists on all
nodes from which you perform backups.

It is also possible to specify a raw device destination for a snapshot control file,
which like other datafiles in an OPS environment will be shared across all nodes in
the cluster.

Performing an Open Backup Using Recovery Manager

See the Oracle8 Backup and Recovery Guide for complete information on open back-
ups using Recovery Manager.

If you are also backing up archive logs, then issue an ALTER SYSTEM ARCHIVE
LOG CURRENT statement after the backup has completed. This ensures that you
have all redo to make the files in this backup consistent.

The following sample script distributes datafile and archive log backups across two
instances in a parallel server environment. It assumes:

= there are more than 20 files in the database

« 4 tape drives available, two on each node

« redo thread 1 is used by the instance on node 1
« redo thread 2 is used by the instance on node 2

« thearchive log files produced by thread 2 are readable by nodel

Backing Up the Database 21-13

Backing Up the Database

The sample script is as follows:

run{
allocate channel nodel_t1 type 'SBT_TAPE' connect intemalkni@nodel;
allocate channel nodel_t2 type 'SBT_TAPE' connect intemalknl@nodel;
allocate channel node2_t3 type 'SBT_TAPE' connect intemalknl@node2;
allocate channel node2_t4 type 'SBT_TAPE' connect intemalknl@node2;;
backup
flesperset 6
format 'df %t %s %p'
(database);
sql ‘alter system archive log current;;
backup
filesperset 10
format ‘al_ %t %s %p'
(archivelog until ime 'SYSDATE thread 1 delete input channel nodel _t1)
(archivelog until ime 'SYSDATE thread 2 delete input channel node2_t3);
}

Operating System Backup Issues

Beginning and Ending an Open Backup Using Operating System Utilities
When using the operating system method, you begin an open backup of a

tablespace at one instance and can end the backup at the same instance or another
instance. For example:

ALTER TABLESPACE tablespace BEGIN BACKUP;/* Instance X */
Statement processed.

....operating system commands to copy datafiles...
....copy completed...

ALTER TABLESPACE tablespace END BACKUP;/* Instance Y */
Statement processed.

Warning: If the ALTER TABLESPACE ... BEGIN BACKUP command is not issued
or does not complete before an operating system backup of the tablespace is
started, then the backed up datafiles are not useful for subsequent recovery opera-

tions. Attempting to recover such a backup is risky and can cause errors that result
in inconsistent data.

It does not matter which instance issues each of these statements, but they must be

issued whenever you make an open backup. The BEGIN BACKUP option has no
effect on users’ access to the tablespace.

21-14 Oracle8 Parallel Server Concepts & Administration

Backing Up the Database

For an open backup to be usable for complete or incomplete media recovery, you
must retain all archived redo logs spanning the period of time between the execu-
tion of the BEGIN BACKUP command and the recovery end-point.

After making an open backup, you can force a global log switch by using ALTER
SYSTEM ARCHIVE LOG CURRENT. This statement archives all online redo log
files that need to be archived, including the current online redo log files of all
enabled threads and closed threads of any instance that shut down without
archiving its current redo log file.

See Also: Oracle8 SQL Reference for a description of the BEGIN BACKUP and END
BACKUP clauses of the ALTER TABLESPACE command.

Performing an Open Backup Using Operating System Utilities

The following steps are recommended if you are using operating system utilities to
perform an open backup in a parallel server environment.

1. Before starting the open backup, issue the ALTER SYSTEM ARCHIVE LOG
CURRENT command.

This switches and archives the current redo log file for all threads in a parallel
server environment, even those threads that are not currently up.

2. Issue the ALTER TABLESPACE tablespace BEGIN BACKUP command.
3. Wait for the ALTER TABLESPACE command to successfully complete.

4. Inthe operating-system environment, issue the appropriate commands to back
up the datafiles for the tablespace.

5. Wait for the operating-system backup to successfully complete.
6. Issue the ALTER TABLESPACE tablespace END BACKUP command.

7. Back up the control files with ALTER DATABASE BACKUP CONTROLFILE
TO filename.

For an added measure of safety, back up the control file to a trace file with the
ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS com-
mand, then identify and back up that trace file.

If you are also backing up archive logs, then issue an ALTER SYSTEM ARCHIVE
LOG CURRENT statement after END BACKUP. This ensures that you have all redo
to roll to the end backup marker.

Backing Up the Database 21-15

Backing Up the Database

21-16 Oracle8 Parallel Server Concepts & Administration

22

Recovering the Database

This chapter describes Oracle recovery features on a parallel server. It covers the fol-
lowing topics:

Overview

Client-side Application Failover
Recovery from Instance Failure
Recovery from Media Failure

Parallel Recovery

Recovering the Database 22-1

Overview

Overview

This chapter discusses client-side application failover, and three types of recovery:

Table 22-1 Types of Recovery

Type of Recovery Definition

Instance failure Occurs when a software or hardware problem prevents an
instance from continuing work.

Media failure Occurs when the storage medium for Oracle files is dam-
aged. This usually prevents Oracle from reading or writing
data.

Parallel recovery For Recovery Manager, restore and application of incremen-
tal backups are parallelized using channel allocate.

Application of redo (whether it is done by Recovery Man-
ager or by Server Manager) is determined by the
RECOVERY_PARALLELISM parameter.

Client-side Application Failover

This section covers the following topics:

« What Is Application Failover?

« How to Configure Application Failover

« Planned Shutdown and Dynamic Load Balancing
« Special Failover Topics

« Failover Restrictions

Note: To use application failover, you must have the Oracle8 Enterprise Edition
and the Parallel Server Option. For more information, please refer to Getting to
Know Oracle8 and the Oracle8 Enterprise Edition.

What Is Application Failover?

On Oracle Parallel Server, application failover is the ability of the application to
automatically reconnect if the connection to the database is broken. Any active
transaction will be rolled back, but the new database connection will otherwise be
identical to the original one. This is true only if the connection was lost because the
instance died due to ALTER SYSTEM DISCONNECT SESSION.

22-2 Oracle8 Parallel Server Concepts & Administration

Client-side Application Failover

Often a client really wants to connect to an application rather than to a database
instance. With application failover the client sees no loss of connection while there
is a surviving instance serving the application, and is normally able to continue
SELECTs started before the instance failed. The DBA can control which applica-
tions run on various instances, and create a failover order for each application.

Note that after failover, only select or fetch calls are replayed; all other calls will
receive an error message. Also, if the client’s process dies but the instance does not,
then failover will not occur.

Figure 22-1 Failover Flow Chart

. es
Failure? Y

no

(alter system
discc_mnect yes Ask Isnr
session) Error if instance

is alive?

Use it reconnect?

‘ Use connect string

to connect again

v

‘ Failover

to a backup

Recovering the Database 22-3

Client-side Application Failover

How to Configure Application Failover

The DBA can configure the connect string for the application at the names server,
or put it in the TNSNAMES.ORA file. Alternatively, the connect string can be hard
coded in the application. For each application, the names server provides informa-
tion about the listener, the instance group, and the failover mode. The connect
string failover_mode field specifies the type and method of failover. For more infor-
mation on syntax, please refer to the Net8 Administrator’s Guide.

TYPE: Failover Mode Functionality Options

The client’s failover functionality is determined by the “TYPE” keyword in the con-
nect string. The choices are:

SELECT This allows users with open cursors to continue fetching on
them after failure. However, this mode involves overhead on
the client side in normal select operations, so the user is
allowed to disable select failover.

SESSION This fails over the session; that is, if a user’s connection is
lost, a second session is automatically created for the user on
the backup. This type of failover does not attempt to recover
selects.

NONE This is the default, in which no failover functionality is used.
This can also be explicitly specified to prevent failover from
happening.

METHOD: Failover Mode Performance Options

Improving the speed of application failover often requires putting more work on
the backup instance. The DBA can use the METHOD keyword in the connect string
to configure the BASIC or PRECONNECT performance options.

BASIC Establish connections at failover time. This option requires
almost no work on the backup server until failover time.

PRECONNECT Pre-establish connections. This provides faster failover but
requires that the backup instance be able to support all the
connections from every supported instance.

22-4 Oracle8 Parallel Server Concepts & Administration

Client-side Application Failover

Failover and Listeners

For application failover to work correctly, the connect string used to attach initially
must also go to a valid instance at failover time. This means that the listener to
which the client connects at failover time must be able to either establish a connec-
tion with the right instance, or refuse the connection so that the client can chose
another listener (via a description_list or an address_list in the connect string).

There are several ways of achieving this. The approach to use depends on the exact
situation, and the role that the listeners play in connecting. The solutions are
described in this section.

Failover with the Multi-threaded Server. To use application failover with the
multi-threaded server, you must set the MTS_SERVICE parameter to the same
value for every instance. This value must match the value of the SID in the connect
string. If there is more than one listener for the database, then the dispatchers must
be configured individually with the (LISTENERS=) clause of the
MTS_DISPATCHER parameter.

Also note that the techniques described for dedicated servers will also work for
multi-threaded servers as long as the mts_service is the same as the instance SID.

Several dynamic performance views are available to help you tune the MTS dis-
patcher:

V$DISPATCHER_RATE
V$DISPATCHER_RATE_CURRENT
V$DISPATCHER_RATE_MAXIMUM
V$DISPATCHER_RATE_AVERAGE

These views contain statistics which show message rates and buffer rates. Using
these views you can adjust the relationship between the number of events in a loop
and how busy the dispatcher is, so as to minimize overhead. Note that the Net8
parameter SDUSIZE determines how large a message you can send at one time.

See Also: Oracle8 Reference for details on views and statistics.

Recovering the Database 22-5

Client-side Application Failover

Failover with the Connection Load Balancer. The Net8 generic listener can sup-
port plug-in load balancing. (This is not required for single instance failover.) On
some platforms the Oracle Connect Load Balancing (CLB) module can perform this
function. The CLB allows the SID portion of the connect string to be an instance

group.
An example of an explicit connect string is:

(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=westreg)(port=1512))
(CONNECT_DATA=(SID=OE)(SERVER=SHARED)

(FAILOVER_MODE=(TYPE=SELECT)(METHOD=BASIC))))

The first line announces that this is a connect string. The second line provides the
listener’s address. The third line begins with the instance group definition. This is
the set of instances on which this application is served. The third line concludes by
specifying a connection via MTS. The remaining line provides the new data about
the failover mode. The TYPE field specifies the functionality option, and the
METHOD field specifies the method.

Note that you can specify an instance group in the connect string.

See Also: "Specifying Instance Groups" on page 18-22

Oracle Enterprise Manager documentation

Oracle platform-specific documentation regarding support for CLB and other load
balancing packages.

Failover with Dedicated Servers. To accomplish failover with dedicated servers,
there must be multiple listeners (unless all the instances are on the same machine).
This will usually mean that the connect string will contain either a description list
or an address list. For failover to work properly, the listeners must know whether
or not the instance is alive. This is accomplished by having the instances register
themselves with their listeners, and the LISTENER.ORA file not contain the
instance's SID. The instance registration is configured via the LOCAL_LISTENERS
parameter (see documentation on this parameter). By using this technique, an
address list may be employed to achieve a “primary/backup” relationship between
two (or more) instances. If the first instance is not up the connection to the first lis-
tener in the address_list will fail and the client will proceed to try the second. Like-
wise, a description_list will provide the semantics that connections are spread
evenly over the living instances. See the documentation on address_lists and
description_lists for more details.

22-6 Oracle8 Parallel Server Concepts & Administration

Client-side Application Failover

Preconnect Connect Strings. When using preconnect, the client must make a con-
nection to a backup while the primary instance is still up. The DBA should provide
a connect string to use as a backup. In this way, the DBA can be sure that the
backup instance will be different from the primary instance. This backup connect
string is provided with the BACKUP keyword in the FAILOVER_MODE portion of
the connect string. This can be either an explicit address or an alias to look up. If no
backup is provided, failover will use the original connect string. This will work, but
some percent of clients will get the same backup as primary, and will have to recon-
nect at failover time.

In the following example, one instance is running on each node. The database is
called i1 and the ORACLE_SIDs are i1l and i12. There is one listener on each node
listening for the local instance and the instance groups are as follows:

group g1=(11)
group g2=(i12)
group gc=(11,i12)

In the TNSNAMES.ORA file you would enter:

i11 = (DESCRIPTION=
(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))
(CONNECT DATA=(SID=i11)(SERVER=DEDICATED)
(FAILOVER _MODE=(TYPE=select)(METHOD=preconnect)
(BACKUP=i12))
)

)
i12 = (DESCRIPTION=

(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))
(CONNECT DATA=(SID=i12)(SERVER=DEDICATED)
(FAILOVER_MODE=(TYPE=selectj(METHOD=preconnect)
(BACKUP=i11))
)
)

This way, each client uses either connect string i1l or i12, and establishes a backup
connection using the other connect string. So if a client uses connect string il1, it
will initially connect to instance 1, and use instance 2 if instance 1 fails.

Recovering the Database 22-7

Client-side Application Failover

Failover Fields in V$SESSION
The view V$SESSION has the following fields related to failover:

FAILED_OVER TRUE if using the backup, otherwise FALSE
TYPE One of SELECT, SESSION, or NONE
METHOD Either BASIC or PRECONNECT

Planned Shutdown and Dynamic Load Balancing

This section explains how the DBA can bring down an instance or a session. For
complete syntax of available SQL statements, see the Oracle8 Server SQL Reference.

Shutting Down an Instance after Current Transactions

The TRANSACTIONAL option to the SHUTDOWN command enables the DBA to
do a planned shutdown of one instance while minimally interrupting clients. This
option will wait for ongoing transactions to complete, and is useful for installing
patch releases, or other times when the instance must be brought down without
interrupting service.

While waiting, no client can start a new transaction on the instance. Clients will be
disconnected if they try to start a transaction, and this will trigger failover, if it is
enabled. When the last transaction completes the primary instance performs a
SHUTDOWN IMMEDIATE. If failover is enabled, SHUTDOWN TRANSAC-
TIONAL normally prevents any clients from losing work, while not requiring all
users to log off first, as a SHUTDOWN NORMAL would. Clients are automatically
reconnected to the instance.

Disconnecting a Session after the Current Transaction

The ALTER SYSTEM DISCONNECT SESSION POST_TRANSACTION statement
disconnects a session on the first call after its current transaction has been finished.
The application will failover automatically.

ALTER SYSTEM DISCONNECT SESSION ‘sid,serial¥ POST_TRANSACTION

where
sid is the system identifier
serial# is the session serial number, from the V$SESSION view

The POST_TRANSACTION option works well with failover as a way for the DBA
to control load. If one instance is overloaded, the DBA can manually disconnect a

22-8 Oracle8 Parallel Server Concepts & Administration

Client-side Application Failover

group of sessions using this option. Since the option guarantees that there is no
transaction at the time the session is disconnected, the user should never notice the
shift, except for a slight delay executing the next command following the discon-
nect.

Special Failover Topics
This section describes multiple user handles and callbacks.

Multiple User Handles

Failover is supported for multiple user handles. In OCI the server context handle
and the user handle are decoupled. You can have multiple user handles related to
the server context handle, and multiple users can thus share the same connection to
the database.

If the connection is destroyed, then every user associated with that connection will
be failed over. But if a single user process is destroyed then failover does not occur
because the connection is still there. Failover will not reauthenticate migrateable
user handles.

See Also: Programmer’s Guide to the Oracle Call Interface, Volume I: OCI Concepts, and
Programmer*s Guide to the Oracle Call Interface, Volume 11: OCI Reference

Failover Callback

Frequently failure of one instance and failover to another takes some time. Because
of this delay, you may want to inform the user that failover is in progress, and
request that the user stand by. Additionally, the session on the initial instance may
have received some ALTER SESSION commands. These will not be automatically
replayed on the second instance. You may want to ensure that these commands will
be replayed on the second instance.

To address these problems, you can register a callback function. Failover will call
the callback function several times during the course of reestablishing the user's ses-
sion. The first call occurs when instance connection loss is first detected, so the
application can inform the user of upcoming delay. If failover is successful, the sec-
ond call occurs when the connection is reestablished and usable. At this time the cli-
ent may wish to replay ALTER SESSION statements and inform the user that
failover has occurred. If failover is unsuccessful, then the callback will be called to
inform the application that failover will not take place. Additionally, the callback
will be called each time a user handle besides the primary handle is reauthenti-
cated on the new connection.

See Also: Oracle Call Interface Programmer’s Guide

Recovering the Database 22-9

Client-side Application Failover

Tuning Failover Performance

The elapsed time of failover includes instance recovery as well as time needed to
reconnect to the database. For best performance of failover, therefore, you should
tune instance recovery by having frequent checkpoints, and so on.

Performance can also be improved by having multiple listeners, using the multi-
threaded server or dedicated servers. Note in particular that MTS connections tend
to be much faster than connections via dedicated servers.

The number of users trying to failover at the same time also affects failover perfor-
mance. Failover occurs when users attempt to perform actions. In some applica-
tions, many users may be logged in, but few may be performing work at any given
time. In such as case, if no instance recovery is necessary and only a few users are
failing over at any given time, failover may be very fast. Thus the amount of effort
you may decide to put in to tuning failover performance will probably be related to
the number of concurrent users you expect. In a three-tier application design, for
example, it might be best to have few connections; for faster failover each connec-
tion could have several sessions associated with it.

Failover Restrictions
When a connection is lost, you will see the following effects:

« All PL/SQL package states on the server will be lost at failover time.
« ALTER SESSION statements will be lost.

« If failover occurs when a transaction is in process, then each subsequent call
will cause an error message until the user issues an OCIlTransRollback call.
Then an OCI success with information message is issued. Be sure to check this
informational message to see if you must perform any additional operations.

« Continuing work on failed over cursors may cause an error message.

« If the first command after failover is not a SQL SELECT or OCIStmtFetch state-
ment, an error message will result.

« Failover only takes effect if the application is programmed using OCI Release
8.0.

« At failover time, any queries that are in progress will be reissued and processed
again from the beginning. This may result in the next fetch taking a long time,
if the original query took a long time.

See Also: Oracle Call Interface Programmer’s Guide

22-10 Oracle8 Parallel Server Concepts & Administration

Recovery from Instance Failure

Recovery from Instance Failure

The following sections describe the recovery performed after failure of instances
accessing the database in shared mode.

« Single-node Failure

« Multiple-node Failure

« Incremental Checkpointing

« Access to Datafiles for Instance Recovery

« Freezing the Database for Instance Recovery
« Phases of Oracle Instance Recovery

After instance failure, Oracle uses the online redo log files to perform automatic
recovery of the database. For a single instance running in exclusive mode, instance
recovery occurs as soon as the instance starts up again after it has failed or shut
down abnormally.

When instances accessing the database in shared mode fail, online instance recov-
ery is performed automatically. Instances that continue running on other nodes are
not affected, as long as they are reading from the buffer cache. If instances attempt
to write, the transaction will stop. All operations to the database are suspended
until cache recovery of the failed instance is complete.

See Also: Oracle8 Backup and Recovery Guide.

Single-node Failure

A parallel server performs instance recovery by coordinating recovery operations
through the SMON processes of the other running instances. If one instance fails,
the SMON process of another instance notices the failure and automatically per-
forms instance recovery for the failed instance.

Instance recovery does not include restarting the failed instance or any applications
that were running on that instance. Applications that were running may continue
by failover, as described in "Client-side Application Failover" on page 22-2.

When one instance performs recovery for another instance that has failed, the sur-
viving instance reads the redo log entries generated by the failed instance, and uses
that information to ensure that all committed transactions are reflected in the data-
base. No data from committed transactions is lost. The instance that is performing
recovery rolls back any transactions that were active at the time of the failure and
releases any resources being used by those transactions.

Recovering the Database 22-11

Recovery from Instance Failure

Multiple-node Failure

As long as one instance continues running, its SMON process performs instance
recovery for any other instances that fail in a parallel server.

If all instances of a parallel server fail, instance recovery is performed automatically
the next time an instance opens the database. The instance does not have to be one
of the instances that failed, and it can mount the database in either shared or exclu-
sive mode from any node of the parallel server. This recovery procedure is the
same for Oracle running in shared mode as it is for Oracle in exclusive mode,
except that one instance performs instance recovery for all of the instances that
failed.

Incremental Checkpointing

Incremental checkpointing improves the performance of crash and instance recov-
ery (but not media recovery). An incremental checkpoint records the position in the
redo thread (log) from which crash/instance recovery needs to begin. This log posi-
tion is determined by the oldest dirty buffer in the buffer cache. The incremental
checkpoint information is maintained periodically with minimal or no overhead
during normal processing.

Recovery performance is roughly proportional to the number of buffers that had
not been written to the database prior to the crash. You can influence the perfor-
mance of crash or instance recovery by setting the parameter

DB BLOCK_MAX_DIRTY_TARGET, which specifies an upper bound on the num-
ber of dirty buffers that can be present in the buffer cache of an instance at any
moment in time. Thus, it is possible to influence recovery time for situations where
the buffer cache is very large and/or where there are stringent limitations on the
duration of crash/instance recovery. Smaller values of this parameter impose
higher overhead during normal processing since more buffers have to be written.
On the other hand, the smaller the value of this parameter, the better the recovery
performance, since fewer blocks need to be recovered.

Incremental checkpoint information is maintained automatically by Oracle8 Server
without affecting other checkpoints (such as log switch checkpoints and user-speci-
fied checkpoints). In other words, incremental checkpointing occurs independently
of other checkpoints occurring in the instance.

Incremental checkpointing is beneficial for recovery in a single instance as well as a
multi-instance environment.

See Also: Oracle8 Concepts
Oracle8 Reference

22-12 Oracle8 Parallel Server Concepts & Administration

Recovery from Instance Failure

Access to Datafiles for Instance Recovery

An instance that performs recovery for another instance must have access to all of
the online datafiles that the failed instance was accessing. When instance recovery
fails because a datafile fails verification, the instance that attempted to perform
recovery does not fail, but a message is written to the ALERT file.

After you correct the problem that prevented access to the database files, you must
use the SQL statement ALTER SYSTEM CHECK DATAFILES to make the files
available to the instance.

See Also: "Datafiles" on page 6-2

Freezing the Database for Instance Recovery

With a parallel server you can use the dynamic parameter
FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY to control freezing of the
database during instance recovery. Note that multiple instances must have the
same value for this parameter.

When this parameter is set to TRUE, Oracle freezes the whole database during
instance recovery. The advantage of freezing the whole database is to stop all other
disk activities except those for instance recovery. Instance recovery may thus com-
plete sooner. The drawback of freezing the whole database is that it becomes
unavailable during instance recovery.

When this parameter is set to FALSE, Oracle does not freeze the whole database,
thus part of the unaffected database will be accessible during instance recovery.

The system attempts to pick a good default value intelligently.

« If all online datafiles use hash locks, the default value of this parameter is
FALSE. This is because, when hash locks are used, most parts of the database
can be accessed by the user during instance recovery.

« If any data files use fine grain locks, the default is TRUE. When fine grain locks
are used, an instance death may affect a larger portion of the database. Affected
data will be accessible only after instance recovery. In this case, setting this
parameter to TRUE can potentially make those pars of the database available
sooner.

To see the number of times the whole database is frozen for instance recovery after
this instance has started up, you can check the “instance recovery database freeze
count” statistic in V$SYSSTAT.

See Also: Oracle8 Reference

Recovering the Database 22-13

Recovery from Instance Failure

Phases of Oracle Instance Recovery

Figure 22-2 illustrates the degree of database availability during each phase of Ora-
cle instance recovery.

Figure 22-2 Phases of Oracle Instance Recovery

Full (8)
2
E
o
T
5: Partial a
b
3
I
5
a}
None 3 Q 6 6 >
Elapsed Time

Phases of recovery are these:
1. Oracle Parallel Server is running on multiple nodes.
2. Node failure is detected.

3. The LM is reconfigured; resource and lock management is redistributed onto
the set of surviving nodes. One call will get persistent resources. Lock value
block is marked as dubious for locks held in exclusive or protected write mode.
Lock requests are queued.

LCKn processes build a list of all invalid lock elements.
Roll forward. Redo logs of the dead thread(s) are applied to the database.

LCKn processes make all invalid lock elements valid.

N oo o &

Roll back. Rollback segments are applied to the database for all uncommitted
transactions.

8. Instance recovery is complete, and all data is accessible.

During phase 5 (forward application of the redo log), database access is limited by
the transitional state of the buffer cache. The following data access restrictions exist

22-14 Oracle8 Parallel Server Concepts & Administration

Recovery from Media Failure

for all user data in all datafiles, regardless of whether you are using hashed or fine
grain locking, or any particular features:

« No writes to any of the surviving buffer caches will succeed while the access is
limited.

« Nodisk I/0 of any sort via the buffer cache and direct path can be done from
any of the surviving instances.

« No lock requests will be made to the LM for any user data.

Reads of buffers already in the cache with the correct global lock can be done, since
they do not involve any 1/0 or lock operations.

The transitional state of the buffer cache begins at the conclusion of the initial lock
scan phase when instance recovery is first started by scanning for dead redo
threads. Subsequent lock scans are made if new dead threads are discovered. This
state lasts while the redo log is applied (cache recovery) and ends when the redo
logs have been applied and the file headers have been updated. Cache recovery
operations conclude with validation of the invalid locks, which occurs after the
buffer cache state is normalized.

Recovery from Media Failure

After a media failure that results in the loss of one or more database files, you must
use backups of the datafiles to recover the database.

If you are using Recovery Manager, you might also need to apply incremental back-
ups, archived redo log files and a backup of the control file.

If you are using operating system utilities, you might need to apply archived redo
log files to the database and use a backup of the control file.

This section describes:

« Complete Media Recovery

« Incomplete Media Recovery

« Restoring and Recovering Redo Log Files
« Disaster Recovery

See Also: Oracle8 Backup and Recovery Guide for procedures to recover from various
kinds of media failure.

Recovering the Database 22-15

Recovery from Media Failure

Complete Media Recovery

You can perform complete media recovery in either exclusive or shared mode. The
following table shows what the status of the database must be, for you to recover
particular database objects.

Table 22-2 Database Status for Media Recovery

To Recover Database Status

An entire database or The database must be mounted but not opened by any

the SYSTEM instance.

tablespace

A tablespace other The database must be opened by the instance performing
than the SYSTEM the recovery and the tablespace must be offline.
tablespace

A datafile The database can be open with the datafile offline, or the

database can be mounted but not opened by any instance.
(For a datafile in the SYSTEM tablespace, the database
must be mounted but not open.)

You can recover multiple datafiles or tablespaces on multiple instances simulta-
neously.

Complete Media Recovery Using Operating System Utilities
With operating system utilities you can perform open database recovery of

tablespaces or datafiles in shared mode, by using the Server Manager command
RECOVER TABLESPACE or RECOVER DATAFILE.

You can use the Server Manager RECOVER DATABASE command to recover a
database that is mounted in shared mode, but not open. Only one instance can
issue this command in a parallel server.

Note: The recommended method of recovering a database is to use Server Manager.
Direct use of the ALTER DATABASE RECOVER SQL command is not recom-
mended.

22-16 Oracle8 Parallel Server Concepts & Administration

Recovery from Media Failure

Complete Media Recovery Using Recovery Manager

With Recovery Manager, you can issue the following statements to restore and
recover the files:

RESTORE DATABASE
RESTORE TABLESPACE
RESTORE DATAFILE
RECOVER DATABASE
RECOVER TABLESPACE
RECOVER DATAFILE

Incomplete Media Recovery

Incomplete media recovery can be performed while the database is mounted in
shared or exclusive mode, but not open by any instance, using the following data-
base recovery options:

With Recovery Manager:

« UNTIL CHANGE integer

« UNTIL TIME date

« UNTIL LOGSEQ integer THREAD integer
With operating system utilities:

« UNTIL CANCEL

« UNTIL CHANGE integer

« UNTIL TIME date

See Also: Oracle8 Backup and Recovery Guide

Recovering the Database 22-17

Recovery from Media Failure

Restoring and Recovering Redo Log Files

Media recovery of a database accessed by a parallel server may require multiple
archived log files to be open at the same time. Because each instance writes redo
log data to a separate thread of redo, recovery may require as many as one archived
log file per thread.

However, if a thread’s online redo log contains enough recovery information,
restoring any archived log files for that thread will be unnecessary.

Recovery Using Recovery Manager

Recovery Manager automatically restores and applies the archive logs required. By
default, Recovery Manager will restore archive logs to the LOG_ARCHIVE_DEST
directory of the instances to which it connects. If you are using multiple nodes to
restore and recover, this means that the archive logs may be restored to any of the
nodes performing the restore/recover. The nodes which will actually read the
restored logs and perform the roll forward is the target node to which the connec-
tion was initially made. You must ensure that the logs are readable from that node.

See Also: Oracle8 Backup and Recovery Guide for information about overriding the
location to which Recovery Manager restores archive logs.

Recovery Using Operating System Utilities

When recovering using Server Manager, you are prompted for the archived log
files as they are needed. Messages supply information about the required files, and
Server Manager prompts you for the filename.

For example, if the log history is enabled and the filename format is
LOG_T%t_SEQ%s, where %t is the thread and %s is the log sequence number, then
you might receive these messages to begin recovery with SCN 9523 in thread 8:

ORA-00279: Change 9523 generated at 27/09/91 11:42:54 needed for thread 8
ORA-00289: Suggestion: LOG_T8 SEQ438

ORA-00280: Change 9523 for thread 8 is in sequence 438

Specify log: {<RET> = suggested | flename | AUTO | FROM | CANCEL}

If you use the ALTER DATABASE statement with the RECOVER clause instead of
Server Manager, you receive these messages but not the prompt. Redo log files may
be required for each enabled thread in the parallel server. Oracle issues a message
when a log file is no longer needed. The next log file for that thread is then
requested, unless the thread was disabled or recovery is finished.

If recovery reaches a time when an additional thread was enabled, Oracle simply
requests the archived log file for that thread. Whenever an instance enables a

22-18 Oracle8 Parallel Server Concepts & Administration

Recovery from Media Failure

thread, it writes a redo entry that records the change; therefore, all necessary infor-
mation about threads is available from the redo log files during recovery.

If recovery reaches a time when a thread was disabled, Oracle informs you that the
log file for that thread is no longer needed and does not request any further log
files for the thread.

Note: If Oracle reconstructs the names of archived redo log files, the format that
LOG_ARCHIVE_FORMAT specifies for the instance doing recovery must be the
same as the format specified for the instances that archived the files. All instances
should use the same value of LOG_ARCHIVE_FORMAT in a parallel server, and
the instance performing recovery should also use that value. You can specify a dif-
ferent value of LOG_ARCHIVE_DEST during recovery if the archived redo log files
are not at their original archive destinations.

Disaster Recovery

Disaster recovery is used when a failure makes a whole site unavailable. In this case,
you can recover at an alternate site using open or closed database backups. (To
recover up to the latest point in time, all logs must be available at a remote site; oth-
erwise some work may be lost.)

This section describes disaster recovery using Recovery Manager, and using operat-
ing system utilities.

Disaster Recovery Using Recovery Manager
The following scenario assumes:

= Yyou have lost the whole database, all control files and the online redo log.
« you will be distributing your restore over 2 nodes

« there are 4 tape drives (two on each node)

= Yyou are using a recovery catalog

Note: It is highly advisable to back up the database immediately after opening the
database reset logs, since all previous backups are invalidated. (This is not shown
in the example.)

Note also that the SET UNTIL command is used in case the database structure has
changed in the most recent backups, and you wish to recover to that point in time.
In this way Recovery Manager restores the database to the same structure the data-
base had at the specified time.

Recovering the Database 22-19

Recovery from Media Failure

Before You Begin: Before beginning the database restore, you must:

restore your initialization file, and your recovery catalog from your most recent
backup

catalog any archive logs, datafile copies or backup sets which are on disk, but
are not registered in the recovery catalog

The archive logs up to the logseq number being restored must be cataloged in
the recovery catalog, or Recovery Manager will not know where to find them.

If you resync the recovery catalog frequently, and have an up-to-date copy
from which you have restored, there should not be many archive logs that need
cataloging.

What the Sample Script Does: The following script restores and recovers the data-
base to the most recently available archived log, which is log 124 thread 1. It does
the following:

starts the database NOMOUNT, and restricts connections to DBA-only users
restores the control file to the location specified

copies (or replicates) this control file to all the other locations specified by the
CONTROL_FILES initialization parameter

mounts the control file
catalogs any archive logs not in the recovery catalog
restores the database files (to the original locations)

If volume names have changed you must use the statement SET NEWNAME
FOR ... before the restore, then perform a switch after the restore (to update the
control file with the datafiles’ new locations).

recovers the datafiles by either using a combination of incremental backups
and redo, or just redo.

Recovery Manager will complete the recovery when it reaches the log sequence
number specified.

Opens the database resetlogs.

Note: Only complete the following step if you are certain there are no other
archived logs which can be applied.

Oracle recommends you back up your database after the resetlogs. (This is not
shown in the example.)

22-20 Oracle8 Parallel Server Concepts & Administration

Recovery from Media Failure

Restore/Recover Sample Script:
The DBA starts up Server Manager as follows:

SVRMGRL> connect scottftiger as sysdba
Connected.
SVRMGRL> startup nomount restrict

The DBA then starts up Recovery Manager and runs the script.
Note: The user specified in the target parameter must have SYSDBA privilege.

rman target scottfiger@nodel reveat rman/man@rcat
run{
setuntil logseq 124 thread 1;
allocate channel t1 type 'SBT_TAPE' connect intemalkni@nodel’;
allocate channel 22 type 'SBT_TAPE' connect intemalkni@nodel’;
allocate channel t3 type 'SBT_TAPE' connect intemalkni@node?;
allocate channel 4 type 'SBT_TAPE' connect intemalkni@node2;;
allocate channel d1 type disk;
restore
controfleto /deviigd_1 O/vtS);
replicate
controffile from /devivgd_1_0/nvt5;
sql ‘alter database mount;
catalog archivelog Yoracle/db_flesinodel/arch/arch_1 123.rdo’,
catalog archivelog oracle/db_fles/nodel/arch/arch_1 124.rdo’,
restore
(database);
recover
database;
sql ‘alter database open resetlogs;
}

Recovering the Database 22-21

Recovery from Media Failure

Disaster Recovery Using Operating System Utilities
Use the following procedure.

1.

a A~ 0D

7.
8.
9.

Restore the last full backup at the alternate site as described in Oracle8 Backup
and Recovery Guide.

Start up Server Manager.
Connect as SYSDBA.
Start and mount the database with the STARTUP MOUNT statement.

Initiate an incomplete recovery using the RECOVER command with the appro-
priate UNTIL option.

The following command is an example:

RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

When prompted with a suggested redo log file name for a specific thread, use
that filename.

If the suggested archive log is not in the archive directory, specify where the file
can be found. If redo information is needed for a thread and a file name is not
suggested, try using archive log files for the thread in question.

Repeat step 6 until all archive log files have been applied.
Stop the recovery operation using the CANCEL command.
Issue the ALTER DATABASE OPEN RESETLOGS statement.

Note: If any distributed database actions are used, check to see whether your recov-
ery procedures require coordinated distributed database recovery. Otherwise, you
may cause logical corruption to the distributed data.

22-22 Oracle8 Parallel Server Concepts & Administration

Parallel Recovery

Parallel Recovery

The goal of the parallel recovery feature is to use compute and 1/0 parallelism to
reduce the elapsed time required to perform crash recovery, single-instance recov-
ery, or media recovery. Parallel recovery is most effective at reducing recovery time
when several datafiles on several disks are being recovered concurrently.

Parallel Recovery Using Recovery Manager

With Recovery Manager’s RESTORE and RECOVER commands Oracle can auto-
matically parallelize all three stages of recovery.

Restoring Data Files: When restoring data files, the number of channels you allo-
cate in the Recovery Manager recover script effectively sets the parallelism with
which Recovery Manager will operate. For example, if you allocate 5 channels, you
can have up to 5 parallel streams restoring data files.

Applying Incremental Backups: Similarly, when you are applying incremental
backups, the number of channels you have allocated determines the potential paral-
lelism.

Applying Redo Logs: Oracle applies the redo logs in parallel, as determined by the
RECOVERY_PARALLELISM parameter.

The RECOVERY_PARALLELISM initialization parameter specifies the number of
redo application server processes that participate in instance or media recovery.
One process reads the log files sequentially and dispatches redo information to sev-
eral recovery processes, which apply the changes from the log files to the datafiles.
A value of 0 or 1 indicates that recovery is to be performed serially by one process.
The value of this parameter cannot exceed the value of the
PARALLEL_MAX_SERVERS parameter.

Parallel Recovery Using Operating System Utilities
You can parallelize instance and media recovery in two ways:
« Setting the RECOVERY_ PARALLELISM Parameter
« Specifying RECOVER Command Options

The Oracle Server can use one process to read the log files sequentially and dis-
patch redo information to several recovery processes to apply the changes from the
log files to the datafiles. The recovery processes are started automatically by Oracle,
so there is no need to use more than one session to perform recovery.

Recovering the Database 22-23

Parallel Recovery

Setting the RECOVERY _ PARALLELISM Parameter

The RECOVERY_PARALLELISM initialization parameter specifies the number of
redo application server processes that participate in instance or media recovery.
One process reads the log files sequentially and dispatches redo information to sev-
eral recovery processes, which apply the changes from the log files to the datafiles.
A value of 0 or 1 indicates that recovery is to be performed serially by one process.
The value of this parameter cannot exceed the value of the
PARALLEL_MAX_SERVERS parameter.

Specifying RECOVER Command Options

When you use the RECOVER command to parallelize instance and media recovery,
the allocation of recovery processes to instances is operating system specific. The
DEGREE keyword of the PARALLEL clause can either signify the number of pro-
cesses on each instance of a parallel server or the number of processes to spread
across all instances.

See Also: Your Oracle system-specific documentation for more information on the
allocation of recovery processes to instances.
Oracle8 Concepts for more information on parallel recovery.

22-24 Oracle8 Parallel Server Concepts & Administration

23

Migrating from Single Instance to Parallel

Server

This chapter describes database conversion: how to convert from a single instance
Oracle8 database to a multi-instance Oracle8 database using the parallel server
option.

The chapter is organized as follows:

Overview

Deciding to Convert

Preparing to Convert

Converting the Database from Single- to Multi-instance

Troubleshooting the Conversion

Migrating from Single Instance to Parallel Server 23-1

Overview

Overview

The present chapter explains how to enable your database structure to support mul-
tiple instances. It can also prepare you to start a project with a single instance
Oracle8 database, while being ready to migrate to multi-instance in the future. In
addition, it can help you extend an existing Oracle Parallel Server configuration to
additional nodes.

Attention: Before using this chapter to convert to a multi-instance database, use the
Oracle8 Migration manual to perform any necessary upgrade of the Oracle Server.
That manual also provides information on upgrading and downgrading in repli-
cated systems.

Deciding to Convert

This section describes:
« Reasons to Convert

« Reasons Not to Convert

Reasons to Convert
You may wish to convert to a multi-instance database for the following reasons:

= You want to move from a single node to a cluster (when you have designed
your application with Oracle Parallel Server in mind).

= You are already running Oracle Parallel Server, but want to extend your data-
base to include more nodes.

= Your application was already designed for Oracle Parallel Server, but you
ended up running without enough instances (without enough nodes specified
for the database).

= You have enough nodes specified, but need to bring the other nodes online.

Reasons Not to Convert
Do not attempt to convert to a multi-instance database in the following situations:

« You are using a file system which is not shared.

= Your application was not designed for parallel processing; you need to examine
your application more.

= You are not using a supported configuration (of shared disks, and so on).

23-2 Oracle8 Parallel Server Concepts & Administration

Preparing to Convert

Preparing to Convert

This section describes:
« Hardware and Software Requirements
« Converting the Application from Single- to Multi-instance

« Administrative Issues

Hardware and Software Requirements
To convert to a multi-instance database you must have:

« asupported hardware and OS software configuration
« license for Oracle Parallel Server
« Oracle Server running on all nodes

=« Oracle Parallel Server linked in

Converting the Application from Single- to Multi-instance

Just making your database run in parallel does not automatically mean that you
have effectively implemented parallel processing. Besides migrating your existing
database from single instance Oracle to multi-instance Oracle, you must also
migrate any existing application which was designed for single-instance Oracle.
Preparing an application for use with a multi-instance database may require appli-
cation partitioning and physical schema changes.

See Also: Chapter 12, “Application Analysis”, for a full discussion.

Administrative Issues
Note the following ramifications of conversion:

« Your regular backup procedures should be in place before you proceed to con-
vert from single-instance Oracle8 to the Oracle8 Parallel Server.

« Additional archiving considerations apply in an Oracle Parallel Server environ-
ment. In particular, the archive file format must have the thread number. Fur-
thermore, archived logs from all nodes are needed for media recovery. If you
archive to a file, then on systems where file systems cannot be shared, some
method of accessing the archive logs is required.

See Also: Chapter 21, “Backing Up the Database”.

Migrating from Single Instance to Parallel Server 23-3

Converting the Database from Single- to Multi-instance

Converting the Database from Single- to Multi-instance

The following procedure explains how to migrate an existing database from single
instance Oracle to multi-instance Oracle. Remember that you must also migrate the
application from single-instance to multi-instance.

1.
2.

Modify your application to make it Oracle Parallel Server ready.
Make sure that all necessary files are shared between the nodes.

Oracle8 Parallel Server assumes that disks are shared between the different
instances such that each instance can access all log files, control files, and data-
base files. These files should normally be on raw devices, since the disks are
shared through raw devices on most clusters.

Attention: NFS cannot be used to share files for Oracle8 Parallel Server. NFS
does not provide adequate availability: if the node goes down, NFS goes down
and the files cannot be reached. Likewise, NFS does not provide adequate con-
sistency: a write may be cached and not written to disk immediately.

Check MAXINSTANCES on the single instance.

The MAXINSTANCES parameter was set at database creation, usually to its
default value of 1. With MAXINSTANCES set to 1, only one instance can run
the database, and the database cannot run in parallel server mode. Note that
the number of rows in VSTHREAD is one per created thread. The MAXIN-
STANCES value may be much higher. You can check VSACTIVE_INSTANCES
to find this value.

To check the value of MAXINSTANCES you can check
V$ACTIVE_INSTANCES. Alternatively, you can dump the control file to a
trace file by entering

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE,;

The trace file may look like this:

Dump file /mfl/gjones/gjLirdbmsfog/ora_20016.trc

Oracle8 Server Release 8.0.3

With the distributed, replication, parallel query and
Parallel Server options

PL/SQL Release 3.0

ORACLE_HOME =/mfl/gjones/gjl

ORACLE_SID=mflqjl

Oracle process number: 19 Unix process id: 20016

Systemname: mflseq

Nodename: mflseq

23-4 Oracle8 Parallel Server Concepts & Administration

Converting the Database from Single- to Multi-instance

Release: 320
Version: V211
Machine: 386
Wed Feb 22 14:30:22 1997
Wed Feb 22 14:30:23 1997
** SESSION ID:(18.1)
The following commands will create a new control file and
use it to open the database.
No data other than log history will be lost. Additional logs
may be required for media recovery of offine data files.
Use this only if the current version of all online logs are
#avallable.
STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE “TPCC’NORESETLOGS
NOARCHIVELOG
MAXLOGFILES 16
MAXLOGMEMBERS 2
MAXDATAFILES 62
MAXINSTANCES 1
MAXLOGHISTORY 100
LOGFILE
GROUP 1 /devirvoliv-gj80W-og11l' SIZE 200M,
GROUP 2 ‘/devirvoli-qj8B0W-og12' SIZE 200M
DATAFILE
‘ldevirvoli-qj80W-sys,
‘/devirvoli-gj80W-temp),
‘Idevirvoli-gj80W-custl’,

Recovery is required if any of the datafiles are restored
backups, or if the last shutdown was not normal or
#immediate.

RECOVER DATABASE

Database can now be opened normally.

ALTER DATABASE OPEN,;

Migrating from Single Instance to Parallel Server 23-5

Converting the Database from Single- to Multi-instance

4. Edit the control file script to include a larger MAXINSTANCES value.

Edit the trace file so that it only contains the SQL commands necessary to gener-
ate the CREATE CONTROLFILE statement. Then make the following changes:

a. Set PFILE to point to the correct initialization file.

b. Increase the MAXINSTANCES parameter to the number of Oracle
instances you want to support.

c. Use alarge value for the MAXLOGHISTORY parameter.

The resulting control file is a script that will recover and reopen your database
if necessary.

Before you run the SQL file, make sure that the current control file(s) are
moved to the backup directory.

A sample script follows:

STARTUP NOMOUNT PFILE=$HOME/perfftkvc/adminfkverun.ora
CREATE CONTROLFILE REUSE DATABASE “TPCC’NORESETLOGS
NOARCHIVELOG
MAXLOGFILES 16
MAXLOGMEMBERS 2
MAXDATAFILES 62
MAXINSTANCES 1
MAXLOGHISTORY 100
LOGFILE
GROUP 1 fdevirvoliv-gj80W-log11l' SIZE 200M,
GROUP 2 ‘/devivoli-gj80WHog12' SIZE 200M
DATAFILE
‘/devirvoli-qj80W-sys,
‘/devirvoli-gj80W-temp),
‘Idevirvoli-gj80W-custl’,

Recovery is required if any of the datafiles are restored
backups, or if the last shutdown was not normal or
#immediate.

RECOVER DATABASE

Database can now be opened normally.

ALTER DATABASE OPEN,;

23-6 Oracle8 Parallel Server Concepts & Administration

Converting the Database from Single- to Multi-instance

Back up the new control file immediately after conversion. Oracle Corporation
also recommends that you commence your backup procedures for the database.

Decide how to administer the initialization parameter file(s).

Each instance will have private initialization parameters, but some of the
parameters need to have the same value on each instance. There are two alter-
native ways of administering this.

One approach is for each instance to have a private parameter file that includes
the common parameter file that is shared between the instances. The common
parameter file must be on a shared device accessible to all nodes. This way,
when you need to make a generic change to one of the common initialization
parameters, you need only make the change on one node--rather than on all
nodes.

Alternatively, you can make multiple copies of the parameter file and place one
on the private disk of each node that participates in the Oracle Parallel Server.
In this case you would need to update all of the parameter files each time you
make a generic change.

Edit the following parameters in the instance-specific initialization parameter
file:

a. Specify an INSTANCE_NUMBER for this instance. Each instance will be
numbered at startup time. The instance number is used in the free list
group assignment. If you do not specify the INSTANCE_NUMBER, Oracle
will assign a number based on the order of start up.

b. Specify ROLLBACK_SEGMENTS. Each instance should have a set of pri-
vate rollback segments to work on.

c. Specify the THREAD parameter in the initialization parameter file so that
the instance always starts with the same set of redo log files. A thread num-
ber will be assigned at startup time, to associate an instance with the log
files of that thread. By default this value is 0; you can set it to 1 for the first
instance.

d. Addthe DB_NAME parameter to the initialization parameter file.

Migrating from Single Instance to Parallel Server 23-7

Converting the Database from Single- to Multi-instance

8. Make sure that the following common initialization parameters have the same
values for all instances:

CONTROL_FILES

DB_BLOCK_SIZE

DB_FILES

DB_NAME

GC_FILES TO_LOCKS
GC_ROLLBACK_LOCKS

LM_LOCKS (identical values recommended)
LM_PROCS (identical values recommended)
LM_RESS (identical values recommended)
LOG_FILES
MAX_COMMIT_PROPAGATION_DELAY
ROW_LOCKING

SINGLE_PROCESS

9. Make sure that the Oracle executable is linked with the Parallel Server Option,
and that each node is running the same versions of the executable. The banner
displayed upon connection should display the words “Parallel Server”.

Note: Corruption may occur if one node opens the database in shared mode
and another node opens it in exclusive mode.

10. Perform a shutdown normal of the database.
11. Back up the control files using operating system commands.
12. Remove the control files (keep the backups).

13. Run the new script you have built, which will recreate the old control files with
new data—Ilarger structures for some of the database objects.

14. Add rollback segments.

15. Add additional threads.

16. Shut down the database.

17. Start up the database in shared mode. The first instance will be started.

18. Add the second instance in shared mode, using the standard procedure
described in "Starting Up in Shared Mode" on page 18-14. (Note that the second
instance will only succeed if the first instance is in shared mode.) Add redo log
files, rollback segments, and so on.

19. Tune the GC_* and LM_* parameters for optimal performance.

23-8 Oracle8 Parallel Server Concepts & Administration

Troubleshooting the Conversion

Troubleshooting the Conversion

This section explains how to resolve common errors:
« Database Recovery After Conversion
« Loss of Rollback Segment Tablespace

« Inadvisable NFS Mounting of Parameter File

Database Recovery After Conversion

If you should lose your database and Oracle8 files after converting from single-
instance Oracle to Oracle Parallel Server, you would have to restore your cold
backup and then apply all changes from the redo logs. In this case your old control
file would be used, as though you had never done the conversion. You would have
to recreate the new control file, if you migrate to Oracle Parallel Server.

Loss of Rollback Segment Tablespace

The following problem may occur if a user has created tablespaces for private roll-
back segments, and allocated them to specific instances at startup. It may also occur
if files that contain rollback segments are lost.

If you lose one rollback segment tablespace or file containing rollback segments
due to media failure, all of the instances will fail. To recover, you must shut down
all instances. All the other rollback segments must remain offline so that you can
bring the one you want to recover off line.

Inadvisable NFS Mounting of Parameter File

It is not advisable to access a common parameter file (or any Oracle file or execut-
able) over NFS. If the NFS disk were to go down, no other instance could start.
Note also that access to control files and data files is not supported over NFS.

Migrating from Single Instance to Parallel Server 23-9

Troubleshooting the Conversion

23-10 Oracle8 Parallel Server Concepts & Administration

Part V

Reference

Differences from Previous Versions

This appendix describes differences in the Oracle Parallel Server Option from
release to release.

« Differences Between Release 8.0.3 and Release 8.0.4
« Differences Between Release 7.3 and Release 8.0.3

« Differences Between Release 7.2 and Release 7.3

« Differences Between Release 7.1 and Release 7.2

« Differences Between Release 7.0 and Release 7.1

« Differences Between Version 6 and Release 7.0

See Also: Oracle8 Migration for instructions on upgrading your database.

Differences from Previous Versions A-1

Differences Between Release 8.0.3 and Release 8.0.4

Differences Between Release 8.0.3 and Release 8.0.4

New Initialization Parameters

The following initialization parameters were added specifically for Oracle Parallel
Server:

OGMS_HOME
GC_LATCHES

Obsolete Initialization Parameters
The following initialization parameters are obsolete:

MTS_LISTENER_ADDRESS
MTS_MULTIPLE_LISTENERS

Dynamic Performance Views
The following views changed:

V$DLM_LOCKS

Group Membership Services
A new option has been added for the ogmsctl command.

A-2 Oracle8 Parallel Server Concepts & Administration

Differences Between Release 7.3 and Release 8.0.3

Differences Between Release 7.3 and Release 8.0.3

New Initialization Parameters
The following parameters were added specifically for Oracle Parallel Server:

FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY
LM_LOCKS

LM_PROCS

LM_RESS

INSTANCE_GROUPS
PARALLEL_INSTANCE_GROUP
OPS_ADMIN_GROUP
ALLOW_PARTIAL_SN_RESULTS

See Also: "Setting LM_* Parameters" on page 18-11.

Obsolete GC_* Parameters
The following global cache lock initialization parameters are obsolete:

GC_DB_LOCKS parameter
GC_FREELIST_GROUPS parameter
GC_ROLLBACK_SEGMENTS parameter
GC_SAVE_ROLLBACK_LOCKS parameter
GC_SEGMENTS parameter
GC_TABLESPACES parameter

See Also: "GC_* Global Constant Parameters" on page 18-8.

Changed GC_* Parameters

The values set by the GC_* parameters are not adjusted to prime numbers, but
rather are left exactly as entered.

The following parameters have changed:

GC_FILES_TO_LOCKS
GC_ROLLBACK_LOCKS
GC_RELEASABLE_LOCKS

See Also: "GC_* Initialization Parameters" on page 9-13.

Differences from Previous Versions A-3

Differences Between Release 7.3 and Release 8.0.3

Dynamic Performance Views
The following new views were added:

V$RESOURCE_LIMIT
V$DLM_CONVERT_LOCAL
V$DLM_CONVERT_REMOTE
V$DLM_LATCH
V$DLM_MISC

VS$FILE_PING
V$CLASS_PING

The following views changed:

V$BH
V$SESSIONS
V$SYSSTAT

Global Dynamic Performance Views

Global dynamic performance views (GV$ fixed views) were added, corresponding
to each of the V$ views except for VSROLLNAME.

See Also: "Global Dynamic Performance Views" on page 20-3.

Integrated Distributed Lock Manager

Oracle Parallel Server release 8.0 is not dependent on an external Distributed Lock
Manager. The lock management facility is now internal to Oracle. The Integrated
Distributed Lock Manager is dependent on an external node monitor.

LMON and LMDn processes have been added.

See Also: Chapter 8, “Integrated Distributed Lock Manager: Access to Resources”.

Instance Groups

The ability to logically group instances together and perform operations upon all of
the associated instances was added.

See Also: "Specifying Instance Groups" on page 18-22.

A-4 Oracle8 Parallel Server Concepts & Administration

Differences Between Release 7.3 and Release 8.0.3

Group Membership Services

Group Membership Services (GMS) is used by the Lock Manager (LM) and other
Oracle components for inter-instance initialization and coordination.

See Also: "Using Group Membership Services" on page 18-21.

Fine Grain Locking

In Oracle Parallel Server release 8.0, fine grain locking is available on all platforms.
It is enabled by default.

Client-side Application Failover

Oracle8 supports the ability of the application to automatically reconnect if the con-
nection to the database is broken.

See Also: "Client-side Application Failover" on page 22-2.

Recovery Manager
Recovery Manager is now the preferred method of recovery from media failure.

See Also: "Recovery from Media Failure” on page 22-15.

Differences from Previous Versions A-5

Differences Between Release 7.2 and Release 7.3

Differences Between Release 7.2 and Release 7.3

Initialization Parameters

The following initialization parameters were added specifically for the Parallel
Server Option:

CLEANUP_ROLLBACK_ENTRIES
DELAYED_LOGGING_BLOCK_CLEANOUTS
GC_FREELIST_GROUPS
GC_RELEASABLE_LOCKS

Data Dictionary Views
The following view was added specifically for the Parallel Server Option:

FILE_LOCK

Dynamic Performance Views
The following view changed:
V$BH
The following views were added:

V$SORT_SEGMENT
V$ACTIVE_INSTANCES

Free List Groups
You can now set free list groups for indexes, as well as for tables and clusters.

Fine Grain Locking

In Oracle Parallel Server release 7.3, PCM locks have additional options for configu-
ration using fine grain locking. The changes affect the interpretation of the various
parameters that determine the locks used to protect the database blocks in the dis-
tributed parallel server cache.

Fine grain locking is a more efficient method for providing locking in a multinode
configuration. It provides a reduced rate of lock collision, and reduced space
requirements for managing locks, particularly in MPP systems. This feature relies
on facilities provided by the hardware and operating system platform, and may not
be available on all platforms.

A-6 Oracle8 Parallel Server Concepts & Administration

Differences Between Release 7.2 and Release 7.3

Fine grain locking is discussed in the section "Two Methods of PCM Locking: Fixed
and Releasable” on page 9-15.

Instance Registration

This feature enables each instance to register itself and certain of its attributes, and
to establish contact with any other instance. Instance registration is transparent to
the user, except in the case of parallel query failure on remote instances of a parallel
server. If a parallel query dies due to an error on a remote instance, the failed
instance is now identified in the error message.

Sort Improvements

This release offers a more efficient way of allocating sort temporary space, which
reduces serialization and cross-instance pinging. If you set up this capability cor-
rectly, it can particularly benefit OPS performance in parallel mode.

For best results, try to establish stable sort space. Remember that sort space is
cached in the instance. One instance does not release the space unless another
instance runs out of space and issues a call to the first one to do so. This is an expen-
sive, serialized process which hurts performance. If your system permanently devi-
ates from stable sort space, it is better to overallocate space, or simply not to use
temporary tablespaces.

To determine the stability of your sort space, you can check the
V$SORT_SEGMENT view. This new view shows every instance’s history of sort-
ing. If the FREED_EXTENTS and ADDED_EXTENTS columns show excessive allo-
cation/deallocation activity, you should consider adding more space to the
corresponding tablespace. Check also the FREE_REQUESTS value to determine if
there is inter-instance conflict over sort space.

Another reason for excessive allocation and deallocation may be that some sorts are
just too big. It may be worthwhile to assign a different temporary tablespace for the
operations which require huge sorts. The MAX_SORT_SIZE value may help you to
determine whether these large sorts have indeed occurred.

See Also: Oracle8 Administrator’s Guide for more information on sort enhancements.

Differences from Previous Versions A-7

Differences Between Release 7.2 and Release 7.3

XA Performance Improvements

Various scalability and throughput improvements have been made that affect XA
transactions. These changes have no visible impact, other than improved perfor-
mance.

The following three latches perform much better, and so enhance scalability:
« Global transaction mapping table latch

« Enqueues latch

« Session switching latch

Transaction throughput is enhanced because most of the common XA calls have
reduced code path and reduced round-trips to the database.

XA Recovery Enhancements

Recovery of distributed transactions submitted through a TP monitor using the XA
interface is now fully supported in OPS.

The XA_RECOVER call has been enhanced, ensuring correct and complete recov-
ery of one instance from transactions that have failed in another instance.

An option has been added to make the XA_RECOVER call wait for instance recov-
ery. This feature enables one Oracle instance to do recovery on behalf of a failed
Oracle instance, when both are part of the same OPS cluster.

The XA_INFO string has a new clause called OPS_FAILOVER. If this is set to true
for a given XA resource manager connection, any XA_RECOVER call issued from
that connection will wait for any needed instance recovery to complete. The syntax
is as follows:

OPS_FAILOVER=T

Upper- or lowercase (T or t) can be used. The default value of OPS_FAILOVER is
false (F or f).

Previously, there was no guarantee that an XA _RECOVER call would return the list
of in-doubt transactions from the failed instance. Setting OPS_FAILOVER=T
ensures that this will happen.

When OPS_FAILOVER is set to true, the XA_RECOVER call will wait until SMON
has finished cache recovery, has identified the in-doubt transactions, and added
them to the PENDING_TRANSS table that has a list of in-doubt transactions.

A-8 Oracle8 Parallel Server Concepts & Administration

Differences Between Release 7.2 and Release 7.3

Deferred Transaction Recovery
Transaction recovery behavior has changed to allow:

« Greater database availability during startup
« Transactions to be recovered in parallel, if needed

« Recovery of long transactions without interfering with recovery of short trans-
actions

Fast Warmstart

In previous releases, the database could not be opened until complete transaction
recovery was performed after a failure. As of release 7.3, the database is opened for
connections as soon as cache recovery is completed. (This only applies when open-
ing the database, as opposed to doing failover in an OPS environment.) In case of
an instance failure, the database is available for connections through other running
instances.

This means that active transactions as of the time of the failure are not yet rolled
back; they appear active (holding row locks) to users of the system. Furthermore,
all transactions system-wide that were active as of the time of failure are marked
DEAD and the rollback segments containing these transactions are marked PAR-
TIALLY AVAILABLE. These transactions are recovered as part of SMON recovery
in the background, or by foreground processes that may encounter them, as
described in the next section. The rollback segment is available for onlining.

Transaction Recovery

Given fast warmstart capability, the time needed to recover all transactions does
not limit the general availability of the database. All data except the part locked by
unrecovered transactions is now available to users. Given an OLTP workload, how-
ever, all the requests that were active when the database or instance went down
will probably be resubmitted immediately. They will very likely encounter the
locks held by the unrecovered transactions. The time needed to recover these trans-
actions is thus still critical for access to the locked data. To alleviate this problem,
transactions can now be recovered in parallel, if needed. Recovery can be done by
the following operations.

Recovery by Foreground Processes. Rows may be locked by a transaction that has
not yet been recovered. Any foreground process that encounters such a row can
itself recover the transaction. The current recovery by SMON will still happen--so
the entire transaction recovery will complete eventually. But if any foreground pro-
cess runs into a row lock, it can quickly recover the transaction holding the lock,

Differences from Previous Versions A-9

Differences Between Release 7.2 and Release 7.3

and continue. In this way recovery operations are parallelized on a need basis:
dead transactions will not hold up active transactions. Previously, active transac-
tions had to wait for SMON to recover the dead transactions.

Recovery is done on a per-rollback segment basis. This prevents multiple fore-
ground processes in different instances from recovering transactions in the same
rollback segment, which would cause pinging. The foreground process fully recov-
ers the transaction that it would otherwise have waited for. In addition, it makes a
pass over the entire rollback segment and partially recovers all unrecovered transac-
tions. It applies a configurable number of changes (undo records) to each transac-
tion. This allows short transactions to be recovered quickly; without waiting for
long transactions to be recovered. The initialization parameter
CLEANUP_ROLLBACK_ENTRIES specifies the number of changes to apply.

Recovery by SMON. SMON transaction recovery operations are mostly
unchanged. SMON is responsible for recovering transactions marked DEAD within
its instance, transaction recovery during startup, and instance recovery. The only
change is that it will make multiple passes over all the transactions that need recov-
ery and apply only the specified number of undo records per transaction per pass.
This prevents short transactions from waiting for recovery of a long transaction.

Recovery by Onlining Rollback Segment. Onlining a rollback segment now
causes complete recovery of all transactions it contains. Previously, the onlining
process posted SMON to do the recovery. Note that implicit onlining of rollback
segments as part of warmstart or instance startup does not recover all transactions
but instead marks them DEAD.

Load Balancing at Connect

In standard Oracle, load balancing now allows multiple listeners and multiple
instances to be balanced at SQL*Net connect time. Multiple listeners can now listen
on one Oracle instance, and the Oracle dispatcher will register with multiple listen-
ers. The SQL*Net client layer will randomize multiple listeners via the
DESCRIPTION_LIST feature.

For more information about load balancing at connect, please see the SQL*Net doc-
umentation for Oracle7 Server release 7.3.

Bypassing Cache for Sort Operations

The default value for the SORT_DIRECT_WRITES initialization parameter is now
AUTO; it will turn itself on if your sort area is a certain size or greater. This will
improve performance. For more information, see the Oracle8 Tuning.

A-10 Oracle8 Parallel Server Concepts & Administration

Differences Between Release 7.2 and Release 7.3

Delayed-Logging Block Cleanout

In Oracle7 Server release 7.3, the performance of delayed block cleanout is
improved and related pinging is reduced. These enhancements are particularly ben-
eficial for the Oracle Parallel Server.

Oracle7 Server release 7.3 provides a new initialization parameter,
DELAYED_LOGGING_BLOCK_CLEANOUTS, which is TRUE by default.

When Oracle commits a transaction, each block that the transaction changed is not
immediately marked with the commit time. This is done later, upon demand--when
the block is read or updated. This is called block cleanout. When block cleanout is
done during an update to a current block, the cleanout changes and the redo
records of the update are piggybacked with those of the update. In previous
releases, when block cleanout was needed during a read to a current block, extra
cleanout redo records were generated and the block was dirtied. This has been
changed.

As of release 7.3, when a transaction commits, all blocks in the cache changed by
the transaction are cleaned out immediately. This cleanout performed at commit
time is a “fast version” which does not generate redo log records and does not
repin the block. Most blocks will be cleaned out in this way, with the exception of
blocks changed by long running transactions.

During queries, therefore, the data block’s transaction information is normally
up-to-date and the frequency with which block cleanout is needed is much
reduced. Regular block cleanouts are still needed when querying a block where the
transactions are still truly active, or when querying a block which was not cleaned
out during commit.

During changes (INSERT, DELETE, UPDATE), the cleanout redo log records are
generated and piggyback with the redo of the changes.

Parallel Query Processor Affinity

Oracle7 Server release 7.3 provides improved defaults in the method by which serv-
ers are allocated among instances for the parallel query option. As a result, users
can now specify parallelism without giving any hints.

Parallel query slaves are now assigned based on disk transfer rates and CPU pro-
cessing rates for user queries. Work is assigned to query slaves that have preferred
access to local disks versus remote disks, which is more costly. In this way data
locality will improve parallel query performance.

For best results, you should evenly divide data among the parallel server instances
and nodes--particularly for moderate to large size tables that substantially domi-

Differences from Previous Versions A-11

Differences Between Release 7.2 and Release 7.3

nate the processing. Data should be fairly evenly distributed on various disks, or
across all the nodes. For very small tables, this is not necessary.

For example, if you have two nodes, a table should not be divided in an unbal-
anced way such that 90% resides on one node and 10% on the other node. Similarly,
if you have four disks, one should not contain 90% of the data and the others con-
tain only 10%. Rather, data should be spread evenly across available nodes and
disks. This happens automatically if you use disk striping. If you do not use disk
striping, you must manually ensure that this happens, if you desire optimum per-
formance.

A-12 Oracle8 Parallel Server Concepts & Administration

Differences Between Release 7.1 and Release 7.2

Differences Between Release 7.1 and Release 7.2

Pre-allocating Space Unnecessary

For most parallel server configurations it is no longer necessary to pre-allocate data
blocks to retain partitioning of data across free list groups. When a row is inserted,
a group of data blocks is allocated to the appropriate free list group for an instance.

Data Dictionary Views
The following views were added specifically for the Parallel Server Option:

FILE_LOCK
FILE_PING

Dynamic Performance Views
The following views changed:

V$BH

V$CACHE

V$PING
VSLOCK_ACTIVITY

The following views were added:

V$FALSE_PING
V$LOCKS_WITH_COLLISIONS
V$LOCK_ELEMENT

Free List Groups

It is now possible to specify a particular instance, and hence the free list group,
from a session, using the command:

ALTER SESSION SET INSTANCE = instance_number

Table Locks

It is now possible to disable the ability for a user to lock a table using the command:
ALTER TABLE table_name DISABLE TABLE LOCK

Re-enabling table locks is accomplished using the following command:

ALTER TABLE table_name ENABLE TABLE LOCK

Differences from Previous Versions A-13

Differences Between Release 7.0 and Release 7.1

Lock Processes

The PCM locks held by a failing instance are now recovered by the lock processes
of the instance recovering for the failed instance.

Differences Between Release 7.0 and Release 7.1

Initialization Parameters
CACHE_SIZE_ THRESHOLD was added.

Dynamic Performance Views
The following views changed:

V$BH

V$CACHE

V$PING
VSLOCK_ACTIVITY

Differences Between Version 6 and Release 7.0

This section describes differences between Oracle Version 6 and Oracle7 Release 7.0.

Version Compatibility

The Parallel Server Option for Version 6 is upwardly compatible with Oracle7 with
one exception. In Version 6 all instances share the same set of redo log files,
whereas in Oracle7 each instance has its own set of redo log files. Oracle8 Migration
gives full details of migrating to Oracle7. After a database is upgraded to work
with Oracle7 it cannot be started using a Oracle Version 6 server. Applications that
run on Oracle7 may not run on Oracle Version 6.

File Operations

While the database is mounted in parallel mode, Oracle7 supports the following
file operations that Oracle Version 6 only supported in exclusive mode:

« adding, renaming, or dropping a datafile
« taking a datafile offline or online
« Creating, altering, or dropping a tablespace

« taking a tablespace offline or online

A-14 Oracle8 Parallel Server Concepts & Administration

Differences Between Version 6 and Release 7.0

The instance that executes these operations may have the database open, as well as
mounted.

Table A-1 shows the file operations and corresponding SQL statements that cannot
be performed in Oracle Version 6 with the database mounted in parallel mode.

Table A-1 SQL Statements Now Supported in Oracle7

Operation SQL statement
Creating a tablespace CREATE TABLESPACE tablespace
Dropping a tablespace DROP TABLESPACE tablespace

Taking a tablespace offline or ALTER TABLESPACE tablespace OFFLINE
online ALTER TABLESPACE tablespace ONLINE
Adding a datafile ALTER TABLESPACE tablespace

ADD DATAFILE

Renaming a datafile ALTER TABLESPACE tablespace

RENAME DATAFILE
Renaming a datafile log file ALTER TABLESPACE tablespace RENAME FILE
Adding a redo log file ALTER DATABASE dbname ADD LOGFILE
Dropping a redo log file ALTER DATABASE dbname DROP LOGFILE

Taking a datafile offline or online ALTER DATABASE dbname DATAFILE OFFLINE
ALTER DATABASE dbname DATAFILE ONLINE

Oracle7 allows all of the file operations listed above while the database is mounted
in shared mode.

A redo log file cannot be dropped when it is active, or when dropping it would
reduce the number of groups for that thread below two. When taking a datafile
online or offline in Oracle7, the instance can have the database either open or
closed and mounted. If any other instance has the database open, the instance tak-
ing the file online or offline must also have the database open.

Note: Whenever you add a datafile, create a tablespace, or drop a tablespace and its
datafiles, you should adjust the values of GC_FILES TO LOCKS and
GC_DB_LOCKS, if necessary, before restarting Oracle in parallel mode. Failure to
do so may result in an insufficient number of locks to cover the new file.

Differences from Previous Versions A-15

Differences Between Version 6 and Release 7.0

Deferred Rollback Segments

Redo Logs

The global constant parameter GC_SAVE_ROLLBACK_LOCKS reserves distrib-
uted locks for deferred rollback segments, which contain rollback entries for trans-
actions in tablespaces that were taken offline.

Version 6 does not support taking tablespaces offline in parallel mode, so the initial-
ization parameter GC_SAVE_ROLLBACK_LOCKS is not necessary in Oracle Ver-
sion 6. In Oracle7, this parameter is required for deferred rollback segments.

In Oracle Version 6, all instances share the same set of online redo log files and each
instance writes to the space allocated to it within the current redo log file.

In Oracle7, each instance has its own set of redo log files. A set of redo log files is
called a thread of redo. Thread numbers are associated with redo log files when the
files are added to the database, and each instance acquires a thread number when it
starts up.

Log switches are performed on a per-instance basis in Oracle7; log switches in Ora-
cle Version 6 apply to all instances, because the instances share redo log files.

Oracle7 introduces mirroring of online redo log files. The degree of mirroring is
determined on a per-instance basis. This allows you to specify mirroring according
to the requirements of the applications that run on each instance.

ALTER SYSTEM SWITCH LOGFILE

In Oracle Version 6, all instances shared one set of online redo log files. Therefore,
the ALTER SYSTEM SWITCH LOGFILE statement forced all instances to do a log
switch to the new redo log file.

There is no global option for this SQL statement in Oracle7, but you can force all
instances to switch log files (and archive all online log files up to the switch) by
using the ALTER SYSTEM ARCHIVE LOG CURRENT statement.

Initialization Parameters

The LOG_ALLOCATION parameter of Oracle Version 6 is obsolete in Oracle7.
Oracle7 includes the new initialization parameter THREAD, which associates a set
of redo log files with a particular instance at startup.

A-16 Oracle8 Parallel Server Concepts & Administration

Differences Between Version 6 and Release 7.0

Free Space Lists

SQL*DBA

This section describes changes concerning free space lists.

Space Freed by Deletions and Updates

In Oracle Version 6, blocks freed by deletions or by updates that shrank rows are
added to the common pool of free space. In Oracle7, blocks will go to the free list
and free list group of the process that deletes them.

Free Lists for Clusters

In Oracle Version 6, the FREELISTS and FREELIST GROUPS storage options are
not available for the CREATE CLUSTER statement, and the ALLOCATE EXTENT
clause is not available for the ALTER CLUSTER statement.

In Oracle7, clusters (except for most hash clusters) can use multiple free lists by
specifying the FREELISTS and FREELIST GROUPS storage options of CREATE
CLUSTER and by assigning extents to instances with the statement ALTER CLUS-
TER ALLOCATE EXTENT (INSTANCE n).

Hash clusters in Oracle7 can have free lists and free list groups if they are created
with a user-defined key for the hashing function and the key is partitioned by
instance.

Initialization Parameters

The FREELISTS and FREELIST GROUPS storage options replace the initialization
parameters FREE_LIST _INST and FREE_LIST_PROC of Oracle Version 6.

Import/Export

In Oracle Version 6, Export did not export free list information. In Oracle?7, Export
and Import can handle FREELISTS and FREELIST GROUPS.

STARTUP and SHUTDOWN must be done while disconnected in Version 6. In
Oracle7, Release 7.0, STARTUP and SHUTDOWN must be issued while connected
as INTERNAL, or as SYSDBA or SYSOPER.

In Oracle7, operations can be performed using either commands or the SQL*DBA
menu interface, as described in Oracle8 Utilities.

Differences from Previous Versions A-17

Differences Between Version 6 and Release 7.0

Initialization Parameters
This section lists new parameters and obsolete parameters.

New Parameters

The new initialization parameter THREAD associates a set of redo log files with a
particular instance at startup.

For a complete list of new parameters, refer to Oracle8 Reference.

Obsolete Parameters

The following initialization parameters used in earlier versions of the Parallel
Server Option are now obsolete in Oracle?.

ENQUEUE_DEBUG_MULTI_INSTANCE
FREE_LIST_INST

FREE_LIST_PROC

GC_SORT_LOCKS

INSTANCES

LANGUAGE

LOG_ALLOCATION
LOG_DEBUG_MULTI_INSTANCE
MI_BG_PROCS (renamed to GC_LCK_PROCS)
ROW_CACHE_ENQUEUE
ROW_CACHE_MULTI_INSTANCE

For a complete list of obsolete parameters, refer to the Oracle8 Migration.

Archiving

In Oracle Version 6, each instance archives the online redo log files for the entire
parallel server because all instances share the same redo log files. You can therefore
have the instance with easiest access to the storage medium use automatic
archiving, while other instances archive manually.

In Oracle7, each instance has its own set of online redo log files so that automatic
archiving only archives for the current instance. Oracle7 can also archive closed
threads. Manual archiving allows you to archive online redo log files for all
instances. You can use the THREAD option of the ALTER SYSTEM ARCHIVE LOG
statement to archive redo log files for any specific instance.

In Oracle7, the filenames of archived redo log files can include the thread number
and log sequence number.

A-18 Oracle8 Parallel Server Concepts & Administration

Differences Between Version 6 and Release 7.0

A new initialization parameter, LOG_ARCHIVE_FORMAT, specifies the format for
the archived filename. A new database parameter, MAXLOGHISTORY, in the CRE-
ATE DATABASE statement can be specified to keep an archive history in the con-
trol file.

Media Recovery

Online recovery from media failure is supported in Oracle7 while the database is
mounted in either parallel or exclusive mode.

In either mode, the database or object being recovered cannot be in use during
recovery:

« Torecover an entire database, it must be mounted but not open.

« Torecover a tablespace, the database must be open and the tablespace must be
offline.

« Torecover datafiles (other than files in the SYSTEM tablespace), the database
must be closed or open with the data files offline.

Differences from Previous Versions A-19

Differences Between Version 6 and Release 7.0

A-20 Oracle8 Parallel Server Concepts & Administration

B

Restrictions

This appendix documents Oracle Parallel Server compatibility issues and restric-
tions.

« Compatibility

=« Restrictions

Restrictions B-1

Compatibility

Compatibility

The following sections describe aspects of compatibility between shared and exclu-
sive modes on a parallel server.

« The Export and Import Utilities
« Compatibility Between Shared and Exclusive Modes

The Export and Import Utilities

The Export utility writes data from an Oracle database into operating system files,
and the Import utility reads data from those files back into an Oracle database. This
feature of Oracle is the same in shared or exclusive mode.

See Also: Oracle8 Utilities for more information about Import and Export.

Compatibility Between Shared and Exclusive Modes

A parallel server runs with any Oracle database created in exclusive mode. Each
instance must have its own set of redo logs.

Oracle in exclusive mode can access a database created or modified by a parallel
server.

If a parallel server allocates free space to a specific instance, that space may not be
available for inserts for a different instance in exclusive mode. Of course, all data in
the allocated extents is always available.

B-2 Oracle8 Parallel Server Concepts & Administration

Restrictions

Restrictions

The following sections describe restrictions.
« Maximum Number of Blocks Allocated at a Time

« Restrictions in Shared Mode

Maximum Number of Blocks Allocated at a Time

The !'blocks option of the GC_FILES_TO_LOCKS parameter enables you to control
the number of blocks which are available for use within a free list group. You can
use !blocks to specify the rate at which blocks are allocated within an extent, up to
255 blocks at a time.

Restrictions in Shared Mode

Oracle running multiple instances in shared mode supports all the functionality of
Oracle in exclusive mode, except as noted in the following sections.

Restricted SQL Statements
In shared mode, the following operations are not supported:

« Creating a database (CREATE DATABASE)
« creating a control file (CREATE CONTROLFILE)

« switching the database’s archiving mode (the ARCHIVELOG and NOAR-
CHIVELOG options of ALTER DATABASE)

To perform these operations, you must shut down all instances and start up one
instance in exclusive mode, as described in "Starting Up Instances" on page 18-12.

Maximum Number of Datafiles

The number of datafiles supported by Oracle is operating system specific. Within
this limit, the maximum number allowed depends on the values used in the CRE-
ATE DATABASE command, which in turn is limited by the physical size of the con-
trol file. This limit is the same in shared mode as in exclusive mode, but the
additional instances of a parallel server restrict the maximum number of files more
than a single-instance system. For more details, see Oracle8 SQL Reference, and your
Oracle operating system specific documentation.

Restrictions B-3

Restrictions

Sequence Number Generators

Oracle Parallel Server does not support the CACHE ORDER combination of
options for sequence number generators in shared mode. Sequences created with
both of these options are ordered but not cached when running in a parallel server.

Free Lists with Import and Export Utilities

The Export utility does not preserve information about multiple free lists and free
list groups. When you export data from multiple instances and then, from a single
node, import it into a file, the data may not end up distributed across extents in
exactly the same way it was initially. The meta-data of the table into which it is
imported contains the free list and free list group information which is henceforth
associated with the datablocks.

Therefore, if you use Export and Import to back up and restore your data, it will be
difficult to import the data so that it is partitioned again.

B-4 Oracle8 Parallel Server Concepts & Administration

Index

A ALLOCATE EXTENT option, 17-10
allocating extents, 17-12
ALTER DATABASE OPEN RESETLOGS
statement, 22-22
ALTER DATABASE statement
ADD LOGFILE, 6-3
adding or dropping log file, A-15
CLOSE option, 18-17
DATAFILE OFFLINE and ONLINE options,
A-15
DATFILE RESIZE, 15-10
DISABLE, 14-9
ENABLE THREAD, 14-8
MOUNT option, 18-12
OPEN option, 18-12
RECOVER, 22-16
RECOVER option, 22-16
renaming a file, A-15
setting the log mode, 14-2, 14-9, B-3
THREAD, 14-9
ALTER INDEX statement
DEALLOCATE UNUSED option, 17-15
ALTER ROLLBACK SEGMENT command, 6-10
ALTER SESSION statement
SET INSTANCE option, 11-11,17-9
ALTER SYSTEM ARCHIVE LOG statement,
18-17, 21-15
CURRENT option, 21-9, 21-11, A-16
global log switch, 21-9, 21-11, 21-15
THREAD option, 18-17,21-4
ALTER SYSTEM CHECK DATAFILES
statement, 6-3
instance recovery, 22-13

absolute file number, 6-3
acquiring rollback segments, 14-5
initialization parameters, 6-9

acquisition AST, 8-3,8-5
ADD LOGFILE clause
THREAD clause, 6-3
thread required, 14-8
ADDED_EXTENTS, A-7
adding a file, 14-9, 15-10, A-15
affinity
disk, 4-9,18-22
parallel processor, A-11
ALERT file, 6-2,22-13
ALL option, 21-4
ALL_TABLES table, 16-9
ALLOCATE EXTENT option
DATAFILE option, 11-11,17-10
in exclusive mode, 17-10
instance number, 11-15, 17-12
INSTANCE option, 11-11, 17-11
not available, A-17
pre-allocating extents, 17-12
SIZE option, 11-11,17-10
allocation
automatic, 11-16, 17-11, 17-13
extents, 17-12,17-13, 18-15
free space, 11-6,11-11
PCM locks, 9-7,9-25,11-15,17-10
rollback segments, 14-5
sequence numbers, 6-7
ALLOW_PARTIAL_SN_RESULTS parameter, 20-4
ALTER CLUSTER statement, A-17

Index-1

ALTER SYSTEM CHECKPOINT statement, 21-9,
21-10
global versus local, 18-17
specifying an instance, 18-17
ALTER SYSTEM command
limiting instances for parallel query, 18-27
ALTER SYSTEM DISCONNECT SESSION, 22-8
ALTER SYSTEM privilege, 21-10, 21-11
ALTER SYSTEM SWITCH LOGFILE
statement, 18-17, 21-10, A-16
checkpoint, 21-9
DBA privilege, 21-10, A-16
ALTER TABLE statement
ALLOCATE EXTENT option, 17-10
allocating extents, 17-12,17-13
DISABLE TABLE LOCK option, 7-6, 10-3, 16-9
ENABLE TABLE LOCK option, 7-6, 10-3, 16-9
MAXEXTENTS option, 17-13
ALTER TABLESPACE statement
ADD DATAFILE, 15-10
ADD DATAFILE option, A-15
BACKUP option, 21-14
OFFLINE and ONLINE options, A-15
READ ONLY option, 12-3
renaming a data file, A-15
application
analysis, 12-2
availability, 22-11
business functions, 12-3
compute-intensive, 1-23
converting to multi-instance, 23-3
departmentalized, 2-8
designing, 13-2
disjoint data, 1-19, 2-7
DSS, 1-6,1-15,1-23, 2-7
failover, 4-9,22-2
insert-intensive, 11-12
node, 5-4
OLTP, 1-6,1-15,2-8
performance, 11-12
portability, 1-6
profile, 12-3
profiles, 3-3
query-intensive, 1-19, 2-7
random access, 2-8

Index-2

redesigning for parallel processing, 1-18
scalability, 2-2,2-6
tuning, 12-2
tuning performance, 1-17, 11-12
ARCH process, 5-5,21-4
architecture
hardware, 3-1
multi-instance, 5-4
Oracle database, 6-1
Oracle instance, 5-2
archive log
backup, 21-7
ARCHIVE LOG clause
CURRENT option, 21-9,21-11, 21-15, A-16
global log switch, 21-11, 21-15
manual archiving, 21-4
specifying an instance, 18-20
THREAD option, 21-4
ARCHIVE LOG command, 21-3
ARCHIVELOG mode, 14-9
automatic archiving, 4-7,21-3
changing mode, 14-2, 14-9, B-3
creating a database, 14-2
online and offline backups, 4-7, 21-3
archiving redo log files, 21-1
automatic versus manual, 21-3
conversion to multi-instance, 23-3
creating a database, 14-2
forcing a log switch, 21-10
history, 21-6
identified in control file, 6-5
log sequence number, 21-5
online archiving, 4-7,21-3
AST, 8-3
asymmetrical multiprocessing, 2-5
asynchronous trap, 8-3, 8-4, 8-5
authentication
password file, 18-25
AUTOEXTEND, 15-10
automatic archiving, 21-3
automatic recovery, 21-6
availability, 12-2
and interconnect, 3-3
benefit of parallel database, 1-16
data files, 6-3, 22-13

multiple databases, 1-21
phases of recovery, 22-14
recovery time, 21-8

shared disk systems, 3-7
single-node failure, 2-12,22-11

B

background process, 5-5
ARCH, 21-4
DBWR, 21-8
holding instance lock, 7-5, 7-6
instance, 5-4
LCKn, 5-6
LGWR, 21-6
optional, 5-5
parallel cache management, 4-10, 5-6
SMON, 18-26, 22-11
backup, 21-1
archive log, 21-7
checkpoint, 21-9
conversion to multi-instance, 23-3
export, B-2
files used in recovery, 22-16
offline, 4-7,21-12
online, 4-7,21-9, 21-12, 21-15
parallel, 21-12
bandwidth, 1-14, 2-3,2-12, 3-3, 3-4, 3-6, 3-7
batch applications, 1-15, 1-16
BEGIN BACKUP option, 21-14
block
allocating dynamically, 17-14
associated with instance, 11-11, 22-11
cleanout, A-11
contention, 6-9, 11-15, 15-6, 17-10, 17-11
deferred rollback, 6-9, A-16
distributed lock, 5-5
free space, 11-2
instance lock, 4-10
multiple copies, 4-6, 4-10, 5-5
redo log, 21-9
segment header, 11-14
when written to disk, 4-6, 9-9, 21-8
blocking AST, 8-4
buffer cache, 5-5

checkpoint, 21-8
coherency, 4-10
distributed locks, 2-7
instance recovery, 22-11
minimizing 1/0, 4-6, 4-10
written to disk, 4-6
buffer state, 9-10, 9-11
buffer, redo log, 5-5

C

cache
buffer cache, 4-6,5-5
coherency, 4-10,9-3
consistency, on MPPs, 3-9
dictionary cache, 4-10, 5-5, 6-6
flushing dictionary, 4-14
management issues, non-PCM, 4-14
parallel cache management, 4-10
recovery, 22-15
row cache, 6-6
sequence cache, 4-7,6-7
CACHE keyword, 18-27
CACHE option, CREATE SEQUENCE, 6-6, 6-7
CACHE_SIZE_THRESHOLD parameter, 18-10,
A-14
callback,failover, 22-9
capacity planning, 19-3
CATPARR.SQL script, 15-13, 20-2, 20-5
CHECK DATAFILES clause, 6-3
instance recovery, 22-13
checkpoint
datafile, 21-8
DBWR process, 21-8
definition, 21-8
forcing, 21-9,21-10
global, 21-8
incremental, 22-12
instance, 21-8
log switch, 21-10
CHECKPOINT_PROCESS parameter, 18-9
CKPT process, 5-5
CLEANUP_ROLLBACK_ENTRIES parameter,
A-6, A-10
client-server configuration, 5-4

Index-3

description, 1-22

Net8, 1-22
closed thread, 21-4,21-15
cluster

allocating extents, 17-12

free list groups, 17-10

free lists, 11-12, 17-7

hash cluster, 11-12,17-7, A-17

implementations, 2-3

performance, 3-3
committed data

checkpoint, 21-10

instance failure, 22-11

sequence numbers, 6-7
compatibility

shared and exclusive modes, 6-2, 17-10
concurrency

inserts and updates, 11-14,17-6

maximum number of instances, 11-15, 14-4

SEQUENCE_CACHE_ENTRIES, 6-7

sequences, 6-7

shared mode, 4-2

transactions, 5-4,11-2
configurations

change in redo log, 14-9

client-server, 1-22

guidelines for parallel server, 5-7

multi-instance database system, 1-19

overview of Oracle, 1-17

single instance database system, 1-18
CONNECT command, 14-7,18-18, 18-20

forcing a checkpoint, 21-10

Net8, 18-16

SYSDBA option, 18-12, 18-26
Connect Load Balancing (CLB), 22-6
connect string, 18-16, 18-19, 18-20, 22-6
consistency

multiversion read, 4-7

rollback information, 6-8
contention

block, 6-9,11-15, 15-6, 17-10, 17-11

disk, 6-2,6-10

distributed lock, 15-6

for rollback segments, 20-12

free list, 19-6

Index-4

free space, 4-8,11-2,11-14
index, 19-6
monitoring, 20-11
on single block or row, 2-9
rollback segment, 6-8, 6-9, 6-10
segment header, 11-14, 19-6
sequence number, 4-7, 6-6
SYSTEM tablespace, 14-5
table data, 6-2,6-8,17-11
control file, 6-2
accessibility, 5-7
backing up, 21-1
conversion to multi-instance, 23-7
creating, 14-10
data files, 17-11
log history, 14-4,21-6
MAXLOGHISTORY, 6-5
parameter values, 18-8
shared, 5-4, 18-6
CONTROL_FILES parameter, 18-10, 22-20
same for all instances, 18-6, 18-10
conversion
application, 23-3
database, 23-4
database, to multi-instance, 23-1
ramifications, 23-3
convert queue, 8-3
COUNTER column, 20-5
CPU usage, 19-3
CPU_COUNT parameter, 18-10
CREATE CLUSTER statement, 17-7, A-17
FREELIST GROUPS option, 17-6
FREELISTS option, 17-6
CREATE CONTROLFILE statement
changing database options, 14-10
conversion to multi-instance, 23-6
exclusive mode, B-3
MAXLOGHISTORY, 21-6
CREATE DATABASE statement, 14-3
exclusive mode, B-3
MAXINSTANCES, 11-15, 14-4
MAXLOGFILES, 14-4
MAXLOGHISTORY, 6-5, 14-4, 21-6
MAXLOGMEMBERS, 14-4
options, 14-4

setting the log mode, 14-2, 14-9
thread number 1, 14-8
CREATE INDEX statement
FREELISTS option, 17-7
CREATE ROLLBACK SEGMENT statement,
14-6, 20-12
CREATE SEQUENCE statement, 6-7
CACHE option, 6-7
CYCLE option, 6-6
description, 6-6
ORDER option, 6-6, 6-7
CREATE TABLE statement
clustered tables, 17-7
examples, 17-12,17-13
FREELIST GROUPS option, 11-11
FREELISTS option, 11-11,17-6
initial storage, 17-11,17-13
CREATE TABLESPACE statement, A-15
creating a rollback segment, 14-5, 14-6
creating a tablespace, A-15
cross-instance CR read, 20-15
current instance, 18-20
checkpoint, 21-10
log switch, 21-10
specifying, 18-16
CURRENT option, 21-4
checkpoints, 21-9, 21-11
forcing a global log switch, 21-9, 21-11
global log switch, 21-15
new in Oracle7, A-16
CYCLE option, CREATE SEQUENCE, 6-6

D

data block, 5-5
data dependent routing, 12-7,19-6
data dictionary, 5-5
objects, 6-6
querying views, 20-2
row cache, 6-6
sequence cache, 6-7
views, 14-6
data warehousing, 2-7
database
archiving mode, 14-2,14-9

backup, 4-7,21-1

closing, 18-26

conversion to multi-instance, 23-1, 23-4

creation, 14-3

designing, 1-17,13-2

dismounting, 18-26

export and import, B-2

migrating to multi-instance, 23-3

mounted but not open, 14-9

number of archived log files, 6-5, 21-6

number of instances, 11-15, 14-4

rollback segments, 14-5

scalability, 2-6

starting NOMOUNT, 22-20
database administrator (DBA), 1-21
data-dependent routing, 3-10
datafile

accessiblity, 5-7

adding, 15-7,15-10, 15-14, A-15

allocating extents, 17-10

backing up, 21-1, 21-9

checkpoint, 21-8,21-9

disk contention, 6-2

dropping, A-15

file ID, 15-3

instance recovery, 6-3,22-13

mapping locks to blocks, 9-7

maximum number, B-3

multiple files per table, 11-15, 17-10, 17-11

number of blocks, 15-3
parallel recovery, 22-16
recovery, 22-16, A-19
renaming, A-15
shared, 5-4,6-2
tablespace, A-15
tablespace name, 15-3
taking offline or online, A-15
unspecified for PCM locks, 9-7
validity, 15-13
DATAFILE option
table, 17-12
tablespace, A-15
DB_BLOCK_BUFFERS parameter, 9-18
ensuring LM lock capacity, 16-8
GC_RELEASABLE_LOCKS, 15-14

Index-5

DB_BLOCK_MAX_DIRTY_TARGET applications with, 1-19, 2-7

parameter, 22-12 data files, 6-2

DB_BLOCK_SIZE parameter disk

same for all instances, 18-10 access, 3-2,3-3
DB_FILES parameter affinity, 18-22

calculating non-PCM locks, 16-5 contention, 6-2, 6-10

calculating non-PCM resources, 16-4 1/0 statistics, 19-3, 19-6

ensuring LM lock capacity, 16-8 media failure, 22-2

same for all instances, 18-10 reading blocks, 4-6
DB_NAME parameter rollback segments, 6-10

conversion to multi-instance, 23-7 striping, 20-13

same for all instances, 18-10 writing blocks, 4-6, 9-9, 21-8
DBA_ROLLBACK_SEGS view, 6-8, 14-7 disk affinity, 4-9

public rollback segments, 14-6 distributed lock
DBA_SEGMENTS view, 14-7 memory area, 5-5
DBA_TABLES table, 16-9 rollback segment, 6-9
DBMS_SPACE package, 17-15 row cache, 6-6
DBMSUTIL.SQL script, 17-15 sequence, 6-6
DBWR process, 5-5, 7-6 Distributed Lock Manager, A-4

checkpoint, 21-8 DM, Database Mount, 10-5

cross-instance writes, 20-15 DML lock, 7-3,7-5

in parallel server, 5-2 DML_LOCKS parameter, 7-6, 10-3, 18-9, 18-10
DDL commands, 16-8 and performance, 16-9
DDL lock, 7-5 calculating non-PCM locks, 16-5
deadlock detection, 8-11 calculating non-PCM resources, 16-4
deallocating unused space, 17-15 ensuring IDLM lock capacity, 16-8
ded, xxi DROP TABLE command, 4-14
dedicated server, 22-6 DROP TABLESPACE statement, A-15
default instance, 18-16, 18-19 dropping a database object
deferred rollback segment, A-16 tablespace, 15-7, A-15
DELAYED_LOGGING_BLOCK_CLEANOUTS dropping a redo log file, A-15

parameter, 18-9, A-6, A-11 log switch, 21-11

departmentalized applications, 2-8 manual archiving, 14-9
DESCRIPTION_LIST feature, A-10 restrictions, 14-9
dictionary cache, 4-10, 4-14, 5-5, 6-6 DSS applications, 1-6, 1-15, 1-16, 1-23, 2-7, 3-3
dictionary cache lock, 10-5 dual ported controllers, 2-3
DISABLE TABLE LOCK option, 16-9 dynamic load balancing, 22-8
DISABLE THREAD clause, 14-9 dynamic performance view
disabling the archive history, 14-4 creating, 20-2
disaster recovery, 22-19,22-22 granting PUBLIC access, 20-4
DISCONNECT command, 18-20 list of, 20-4
disconnecting from an instance, 18-19, 18-20 null values, 20-5

multiple sessions, 18-26 querying, 20-6

user process, 18-26 XNC column, 20-5
disjoint data dynamically allocating blocks, 11-17

Index-6

E

ENABLE TABLE LOCK option, 16-9
END BACKUP option, 21-14
enqueue, 7-3
global, 7-4
in VSLOCK, 7-8
local, 7-4
OPS context, 7-5
enqueue locks
calculating non-PCM locks, 16-5
calculating non-PCM resources, 16-4
ENQUEUE_DEBUG_MULTI_INSTANCE
parameter (Oracle Version 6), A-18
ENQUEUE_RESOURCES parameter
calculating non-PCM locks, 16-5
calculating non-PCM resources, 16-4
error message
parameter values, 18-14
rollback segment, 14-5
storage options, 17-6
exclusive mode, 8-8, 18-11
compatibility, B-2
database access, 1-18, 4-2
free lists, 17-6,17-10
instance recovery, 21-8
MAXLOGHISTORY, 21-6
media recovery, 14-4
required for file operations, A-14, B-3
specifying instance number, 17-12
specifying thread number, 18-13
startup, 17-12,18-11
switching archive log mode, 14-9
taking tablespace offline, A-15
EXCLUSIVE option, 18-12
exclusive PCM lock, 4-13
Export utility
and free lists, 11-12, A-17,B-4
backing up data, B-2
compatibility, B-2
EXT_TO_OBJtable, 15-13,20-2
extent
allocating PCM locks, 11-15, 17-10

allocating to instance, 17-9, 17-12, 18-15

definition, 11-3

initial allocation, 17-11

not allocat

ed to instance,

rollback segment, 6-8, 14-7

size, 6-8,
specifying

F

14-7,17-10
afile, 17-10

11-6, 11-16, 17-11

failover, 4-9

, 16-3, 22-2, A-8

BASIC, 22-4

callback,
listeners,

22-9
22-5

METHOD, 22-4
multi-threaded server, 22-5
PRECONNECT, 22-4
TYPE, 22-4
FAILOVER_MODE, 22-7

failure
access to fi

les, 22-13

ALERT file, 6-2

instance,

21-8

instance recovery, 22-13
media, 22-2,22-16, A-19

MPP node

, 39

node, 1-21,21-8, 22-11

false pings,

9-17, 15-17

fault tolerance, 8-9

file

adding, A-15

ALERT, 6-2,22-13

allocating extents, 17-10

archiving redo log, 4-7,21-3, 21-4, 21-5

common parameter file, 18-5
control file, 6-2, 6-5, 21-6
datafile, 6-2

dropping, 14-9, 21-11, A-15
exported, B-2

maximum number, B-3
multiplexed, 21-6

number, absolute, 6-3
number, relative, 6-3

parameter,

18-3, 18-6

PFILE, 18-5,18-7

redo log,
renaming,

4-7,6-3, 21-3, 21-5, 21-6, A-15
14-9, 21-11, A-15

Index-7

restricted operations, 21-11, A-14
size, 9-7,21-9
used in recovery, 22-16
FILE_LOCK view, 9-22,15-12, 20-2, A-6
FILE_PING view, 20-2
fine grain lock, 9-4,9-7, 9-16, 9-18, 9-19, 9-20, 9-21
creation, 9-3
DBA lock, 9-16
group factor, 15-10
introduction, 7-5
one lock element to one block, 9-16
specifying, 15-10
fine grain locking, 2-8, A-6
fixed hashed PCM lock, 9-4
fixed mode, lock element, 9-20
flexibility of parallel database, 1-17
foreground process
instance shutdown, 18-26
format, lock name, 7-8
free list, 11-15
and Export utility, 11-12, B-4
assigned to instance, 11-13
cluster, 17-7, A-17
concurrent inserts, 4-8, 11-14
contention, 19-6
definition, 11-5
exclusive mode, B-2
extent, 11-12
hash cluster, 17-7
in exclusive mode, 17-6, 17-10
index, 17-7
list groups, 11-12
number of lists, 17-6
partitioning, 11-13
partitioning data, 11-12,18-15
PCM locks, 11-15,17-10
transaction, 11-4
unused space, 17-15
free list group
assigned to instance, 11-13,11-14
assigning to session, 17-9
definition, 11-5
enhanced for release 7.3, A-6
high performance feature, 4-8
setting !'blocks, 15-9

Index-8

unused space, 17-15
used space, 17-15
FREE_LIST_INST parameter (Oracle Version 6),
A-17, A-18
FREE_LIST_PROC parameter (Oracle Version
6), A-17, A-18
FREED_EXTENTS, A-7
FREELIST GROUPS storage option, 17-6, 17-12,
18-13, 20-8
clustered tables, A-17
instance number, 11-15
FREELISTS parameter, 11-5
FREELISTS storage option, 17-6, 20-11
clustered tables, A-17
indexes, 17-7
maximum value, 17-6
FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY
parameter, 22-13, A-3

G

GC_DB_LOCKS parameter, A-3

adjusting after file operations, A-15
GC_FILES_TO_LOCKS parameter, 9-3,9-4,9-7, 9-

13, 9-24, 14-10, 15-19, 15-20, 18-10

adding datafiles, 15-14

adjusting after file operations, 15-7, A-15

associating PCM locks with extents, 11-15, 17-10

default bucket, 15-8

evaluating, 20-15

fine grain examples, 15-10

guidelines, 15-10

hashed examples, 15-9

index data, 15-5

number of blocks per lock, 9-7

reducing false pings, 15-18

room for growth, 15-12

setting, 15-7

syntax, 15-8
GC_FREELIST_GROUPS parameter, A-3, A-6
GC_LATCHES parameter, 9-14, A-2
GC_LCK_PROCS parameter, 9-13

ensuring LM lock capacity, 16-8

same for all instances, 18-10
GC_RELEASABLE_LOCKS parameter, 9-14,

15-19, 15-20, A-6 GVS$FILE_PING view, 20-2, 20-4

default, 15-14 GV$LOCK_ELEMENT view, 20-4
GC_ROLLBACK_LOCKS parameter, 6-9, 9-14, GV$PARAMETER view, 18-24
15-8, 15-15, 15-19, 15-20, 18-10 GVS$PING view, 19-5, 20-2, 20-4
GC_ROLLBACK_SEGMENTS parameter, A-3
number of distributed locks, 6-9 H
GC_SAVE_ROLLBACK_LOCKS parameter, 6-9,
A-3, A-16 handle, user, 22-9
GC_SEGMENTS parameter, A-3 hardware
GC_SORT_LOCKS parameter, A-18 architecture, 3-1
GC_TABLESPACES parameter, A-3 requirements, 3-3
global checkpoint, 21-8 scalability, 2-3
global constant parameter, 18-10 hash cluster, 17-7
and non-PCM locks, 4-10 free lists, 11-12, A-17
control file, 6-2 hash latch wait gets, 20-15
description, 9-13 hashed PCM lock, 9-4,9-16, 9-21, 9-22
list of, 18-8 creation, 9-4
rollback segments, 6-9 introduction, 7-5
same for all instances, 18-8, 18-10 releasable, 9-4, 15-8, 15-10
global dynamic performance view, 18-23, 18-24, specifying, 15-9
20-3, A-4 header
GLOBAL hint, 20-3 rollback segment, 14-7
global lock converts, 20-15 segment, 11-14,14-7
GLOBAL option high speed interconnect, 12-2
forcing a checkpoint, 18-17, 21-10 high water mark, 11-17
verifying access to files, 6-3 definition, 11-3,11-18
GMS, see Group Membership Services, 18-21 moving, 11-18, 11-19
granted queue, 8-3, 8-5 high-speed bus, 3-6, 3-7
group history, archive, 21-6,22-18
free list, 11-12 horizontal partitioning, 2-12
MAXLOGFILES, 14-4 HOST command, 18-18
redo log files, 6-4, 14-4, 14-9 host, IDLM, 9-9

unique numbers, 6-5
VSLOGFILE, 6-5 |

Group Membership Services (GMS), 18-12, 18-13,

18-21, A-5 170
GROUP option, 21-4 and scalability, 2-3
group-based locking, 8-11, 8-12 disk contention, 4-6
growth, room for, 15-12 interrupts, 2-5
GV$ view, 18-24,20-3, A-4 minimizing, 1-19, 4-6, 4-10, 15-6
GV$BH view, 19-5,20-4 identifier, lock, 7-8
GV$CACHE view, 19-5,20-2, 20-4 IDLM, 8-1
GVS$CLASS_PING view, 20-2, 20-4 IDLM parameters, 18-11
GV$DLM_LOCKS view, 20-4 IFILE parameter, 18-4
GVS$FALSE_PING view, 20-4 multiple files, 18-6

Index-9

overriding values, 18-6
specifying identical parameters, 18-5

Import utility

Compatibility, B-2
free lists, A-17
restoring data, B-2

incremental checkpoint, 22-12
incremental growth, 17-11
index

contention, 19-6

creating, 17-7

data partitioning, 11-12, 15-5
FREELISTS option, 17-7
PCM locks, 15-5

INITIAL storage parameter

minimum value, 17-11
rollback segments, 6-8

initialization parameter

archiving, 21-3

CACHE_SIZE_THRESHOLD, 18-10

control of blocks, 9-13

control of PCM locks, 9-13

displaying values, 18-15, 18-20

duplicate values, 18-6

global constant, 6-2, 18-8

guidelines, 5-7

identical for all instances, 18-10

Integrated Distributed Lock Manager, 18-11

MAX_DEFAULT_PROPAGATION_DELAY,
18-10

obsolete, A-18

PARALLEL _DEFAULT_MAX_INSTANCES,
18-10

PARALLEL_DEFAULT_MAXSCANS, 18-10

planning LM capacity, 16-3, 16-8

using default value, 18-6

inserts

concurrent, 4-8,11-14,17-6
free lists, 11-14, 18-15

free space unavailable, 17-10
performance, 11-12

instance

adding instances, 14-4,17-11, 23-2
associated with data block, 11-11
associated with data file, 17-11

Index-10

associated with extent, 17-9
background processes, 4-10, 5-4, 5-5
changing current, 18-20
changing default, 18-19
checkpoint, 21-8
current, 18-19, 18-20, 21-10
failure, 21-8,22-12
free list, 11-14,17-10
instance number, 11-15, 17-12
maximum number, 6-8, 11-15, 14-4
number, 17-9
ownership of PCM locks, 9-6
parallel server characteristics, 5-2
recovery, 14-4,18-26, 21-8, 22-11
remote, 18-5,18-7, 18-19
rollback segment required, 6-8
startup order, 18-15
thread number, 6-3, 14-8, 18-13
instance group, 22-6
connection load balancing, 22-6
GV$ view queries, 20-3
specifying, 18-22
instance lock, 7-2
acquired by background process, 7-6
acquired by foreground process, 7-6
definition, 7-2,7-4
types, 7-5
instance number, 11-13
INSTANCE option
allocating, 17-12
SET INSTANCE command, 17-9, 18-16
SHOW INSTANCE command, 18-19
instance recovery
abnormal shutdown, 18-26
access to files, 6-3,22-13
global checkpoint, 21-10
multiple failures, 22-12
recovery time, 21-8
rollback segments, 6-8
starting another instance, 14-4
instance registration, A-7
INSTANCE_GROUPS parameter, 18-22
INSTANCE_ID column, 20-3
INSTANCE_NUMBER parameter, 17-9
and SQL options, 11-11

assigning free lists to instances, 11-13
conversion to multi-instance, 23-7
exclusive mode, 18-13
exclusive or shared mode, 18-14
individual parameter files, 18-5
setting, 17-12
unique values for instances, 18-9, 18-15
unspecified, 18-14
INSTANCES keyword, 18-27
INSTANCES parameter (Oracle Version 6), A-18
Integrated Distributed Lock Manager
capacity for locks and resources, 16-2
configuring, 16-3
definition, 1-13, 8-2
distributed architecture, 8-9
failover requirements, 16-3
fault tolerant, 8-9
features, 8-9
group-based locking, 8-12
handling lock requests, 8-3
instance architecture, 5-2
internalized, A-4
LCKn process, 9-9
lock mastering, 8-10
minimizing use, 1-19, 4-10
non-PCM lock capacity, 7-6
queues, 8-2
recovery phases, 22-14
resource sharing, 9-9
Integrated DLM, 8-1
integrated operations, 1-6
interconnect, 3-3
and scalability, 2-3
high-speed, 1-11
INTERNAL option
instance shutdown, 18-26
inter-node communication, 1-11
iostat UNIX utility, 20-13

K

kemgss reads scn without going to LM, 20-16
kemgss waited for batching, 20-15

L

Lamport SCN generation, 4-8
LANGUAGE parameter (Oracle Version 6), A-18
latch, 7-3,10-5
latency, 1-14,1-16, 2-3, 2-12, 3-3
LCKn process, 5-5, 5-6, 9-6
definition, 7-6
description, 5-6
on multi-instance database, 1-19
role in recovery, 22-14
LGWR process, 5-5,7-6
log history, 21-6
log switch, 21-9
library cache lock, 10-4
links, 5-7
LISTENER.ORA file, 22-6
LM_LOCKS parameter, 15-19, 15-20, 16-2, 16-6,
18-10, 18-11, A-3
LM_PROCS parameter, 18-10, 18-11, A-3
LM_RESS parameter, 15-19, 15-20, 16-2, 16-5,
18-10, 18-11, A-3
LMDn process, 5-5, A-4
definition, 7-7
LMON process, 5-5, A-4
definition, 7-7
load balancing, 12-5, 22-6, A-10
dynamic, 22-8
local 1/0, 2-3
local instance
node, 18-19
local lock, 7-3
LOCAL option
forcing a checkpoint, 18-17, 21-10
verifying access to files, 6-3
LOCAL_LISTENERS parameter, 22-6
lock
boundary, 11-18
conversion, 8-5
costof, 7-7
dictionary cache, 10-5
DML, 7-3,10-3
enqueue, 7-3
fine grain, 7-5
global, 18-8

Index-11

group-based, 8-11, 8-12
hashed, 7-5
identifier, 7-8
implementations, PCM, 7-5
instance, 7-2,7-4
latch, 7-3
LCKn process, 5-6
library cache, 10-4
local, 7-3
mastering, 8-10, 19-8
mode compatibility, 9-12
mode, and buffer state, 9-10
mount lock, 7-3, 10-5
name format, 7-8
non-PCM, 7-4,7-5
OPS exclusive mode, 7-3
OPS shared mode, 7-2
overview of locking mechanisms,
ownership by IDLM, 8-12
PCM lock, 9-3,11-15,17-10
process-owned, 8-12
request, handling by IDLM, 8-3
rollback segment, 6-9
row, 4-13,10-3
row cache, 6-6
system change number, 10-4
table, 7-3,7-5,7-6,10-3
transaction, 4-11, 7-2, 10-3
types of, 7-3

lock activity, 20-5
monitoring and tuning, 20-7

lock contention
detecting, 19-3
pinpointing, 19-5

lock conversion, 20-5
detecting, 19-3
excessive rate, 19-7

lock element, 7-9
correspondence to locks, 9-15
creation, 9-20
name, 9-16
non-fixed mode, 9-20
number, 9-23
valid bit, 9-20

lock process, 5-6

Index-12

7-2

lock value block, 10-4
log file
accessibility, 5-7
redo log file, 21-1
log history, 14-4,21-6, 22-18
log sequence number, 21-5, 21-6
log switch, 6-5
adding or dropping files, 14-9
checkpoint, 21-9
closed thread, 21-11
forcing, 21-9, 21-10, 21-11, 21-15, A-16
global, 21-15
log history, 21-6
LOG_ALLOCATION parameter (Oracle Version
6), A-16, A-18
LOG_ARCHIVE_DEST parameter, 22-18, 22-19
specifying for recovery, 22-19
LOG_ARCHIVE_FORMAT parameter, 18-9, 21-5,
22-19
same for all instances, 22-19
used in recovery, 22-19
LOG_ARCHIVE_START parameter
automatic archiving, 18-7,21-3
creating a database, 14-2
LOG_CHECKPOINT_INTERVAL parameter,
21-9, 21-10
LOG_CHECKPOINT_TIMEOUT parameter, 21-9,
21-10
inactive instance, 21-10
LOG_DEBUG_MULTI_INSTANCE parameter
(Oracle Version 6), A-18
LOG_FILES parameter, 18-10
same for all instances, 18-10
logical database, 1-20
loosely coupled system
cache consistency, 3-9
characteristics, 3-6
disk access, 3-3
hardware architecture, 3-2, 3-8
tightly coupled nodes, 3-6
LRU list
lock elements, 9-20

M

manual archiving, 21-3,21-4
dropping a redo log file, 14-9
massively parallel system, 1-6, 11-15
application profile, 3-3
disk access, 3-3
hardware architecture, 3-9
master free list, 11-6
master node, 8-10
mastering, lock, 8-10, 19-8
MAX_COMMIT_PROPAGATION_DELAY
parameter, 4-8, 10-4, 18-9, 18-10
MAX_SORT _SIZE, A-7
MAXDATAFILES option, 14-10
MAXEXTENTS storage parameter
automatic allocations, 11-17,17-11
preallocating extents, 17-13
MAXINSTANCES option, 11-15, 14-4
changing, 14-10
MAXINSTANCES parameter, 11-13,23-4
assigning free lists to instances, 11-13, 11-15
calculating non-PCM locks, 16-5
calculating non-PCM resources, 16-4
conversion to multi-instance, 23-4, 23-6
MAXLOGFILES option, 14-4, 14-10
MAXLOGHISTORY option, 6-5, 14-4, 21-6
changing, 14-10
CREATE CONTROLFILE, 21-6
log history, 21-6
MAXLOGHISTORY parameter, 23-6
MAXLOGMEMBERS option, 14-4,14-10
media failure, 22-2,22-16, A-19
access to files, 6-2
automatic recovery, 21-6
recovery, A-19
media recovery, 22-16
incomplete, 22-17
log history, 14-4,21-6, 22-18
O/S utilities, 22-17
member
MAXLOGMEMBERS, 14-4
memory
cache, 4-6
cached data, 4-6

distributed locks, 5-5

IDLM requirements, 8-11

SGA, 6-7
message

access to files, 6-2,22-13

ALERT file, 6-2,22-13

distributed lock manager, 9-9

instance shutdown, 18-26

parameter values, 6-2
messaging, in parallel processing, 1-14
migration

data migration, B-2

planning for future, 1-17

returning to exclusive mode, 17-10
MINEXTENTS storage parameter

automatic allocations, 11-17,17-11, 17-13

default, 17-11
mode

archiving, 4-7,14-2, 14-9, 21-3

database access, 4-2, 18-11, 18-14

incompatible, 8-3

lock compatibility, 9-12

lock element, 9-20

PCM lock, 4-13
modified data

instance recovery, 22-11

updates, 5-5
modulo, 11-13, 11-14,17-9, 17-11
MONITOR command

default instance in display screen, 18-18

specifying an instance, 18-20
MONITOR STATISTICS CACHE display, 20-16
MONITOR.SQL script, 20-4
mount lock, 7-3, 10-5, 18-21
MOUNT option, 18-12
MPP systems, 1-6
MTS_DISPATCHER parameter, 22-5
MTS_LISTENER_ADDRESS parameter, A-2
MTS_MULTIPLE_LISTENERS parameter, A-2
MTS_SERVICE parameter, 22-5
multi-instance database

converting application, 23-3

definition, 1-19

reasons not to convertto, 23-2

reasons to convert to, 23-2

Index-13

requirements, 23-3
multiple shared mode, 4-2, 10-5
multiple user handles, 22-9
multiplexed redo log files, 6-3
example, 6-4
log history, 21-6
total number of files, 14-4
multi-threaded server (MTS), 8-12
failover, 22-5
multiversion read consistency, 4-7

N

Net8
client-server configuration, 1-22
connect string, 18-19, 18-20
connecting with, 20-6
distributed database system, 1-20
for CONNECT, 18-16
for SET INSTANCE, 18-16
Net8 Administrator’s Guide, 14-7
network usage, 19-3
NEXT storage parameter, 6-8,21-4
NFS, 5-7,23-4,23-9
NLS_* parameters, 18-9
NOARCHIVELOG mode, 14-9
changing mode, 14-2, 14-9, B-3
creating a database, 14-2, 14-9
offline backups, 4-7
requiring offline backups, 21-3
node
adding, 17-11, 23-2
cache coherency, 4-10
definition, 1-2
failure, 1-16,1-21, 21-8, 22-11
independent operation, 1-13
local, 18-5, 18-7
parallel backup, 21-12
parallel shutdown, 18-26
recovery time, 21-8
remote, 18-16, 18-19
single to cluster, 23-2
NOMOUNT option, 14-3,22-20
non-fixed mode, lock element, 9-20
non-PCM lock

Index-14

calculating, 16-5
dictionary cache lock, 10-5
DML lock, 10-3
enqueue, 7-4
IDLM capacity, 7-6
library cache lock, 10-4
mount lock, 10-5
overview, 10-2
relative number, 7-6
system change number, 10-4
table lock, 10-3
transaction lock, 10-3
types, 7-5
user control, 7-6
non-PCM resources, 16-4

NOORDER option, CREATE SEQUENCE,
NSTANCE_GROUPS parameter, 18-24

null lock mode, 4-13
number generator, 6-6

O

6-7

obsolete parameters, A-17, A-18
OCIStmtFetch, 22-10
OClITransRollback, 22-10
offline backup, 4-7,21-1
parallel, 21-12
redo log files, 21-12
offline datafile, A-15
offline tablespace
deferred rollback segments, A-16
restrictions, 6-8, A-15
OGMS_HOME parameter, 18-21, A-2
ogmsctl command, 18-21

OLTP applications, 1-3, 1-6, 1-9, 1-15, 1-16, 2-8, 3-3

online backup, 4-7,21-1
archiving log files, 21-15
checkpoint, 21-9
parallel, 21-12
procedure, 21-15
redo log files, 21-12
online datafile
supported operations, A-15

online recovery, 6-3,22-11, 22-13, 22-16, A-19

online redo log file

archive log mode, 14-9
archiving, 21-1,21-6
checkpoint interval, 21-9
log switch, 21-6,21-11
thread of redo, 6-3, 18-13
online transaction processing, 1-3
OPEN option, 18-12
operating system
exported files, B-2
Integrated Distributed Lock Manager, 9-9
privileges, 18-18
scalability, 2-5
OPS_ADMIN_GROUP parameter, 18-23, 20-3, A-3
OPS_FAILOVER clause, A-8
opsctl program, 18-21
Oracle
background processes, 5-5
backing up, 4-7,21-1
compatibility, 17-10, B-3
configurations, 1-17
data dictionary, 6-6
datafile compatibility, 6-2
exclusive mode, 4-2, 18-12
free space unavailable, 17-10
instance recovery, 22-12
instances on MPP nodes, 3-9
migration, A-14
multi-instance, 7-4
obsolete parameters, A-18
performance features, 4-6
restrictions, 6-7, A-14, A-16
shared mode, 4-2
single-instance, 7-4
version on all nodes, 5-7
Oracle executable, 23-8
Oracle Parallel Server
Group Membership Services, 18-21
Oracle Parallel Server Management (OPSM), 18-2
oracle_pid, 11-13
ORDER option, 6-6, 6-7
overhead
calculating non-PCM locks, 16-5
calculating non-PCM resources, 16-4

P

parallel backup, 21-12
parallel cache management, 4-10
parallel cache management lock
acquiring, 4-13
conversion, 9-6
definition, 7-5,9-3
disowning, 4-13
exclusive, 4-13
how they work, 9-3
implementations, 7-5
minimizing number of, 12-2
null, 4-13
number of blocks per lock, 9-7
owned by instance LCK processes, 9-6
owned by multiple instances, 9-6
periodicity, 9-8
read, 4-13
relative number, 7-6
releasable hashed, 9-4, 15-8, 15-10
releasing, 4-13
sequence, 4-7
user control, 7-6
parallel database
and parallel query, 1-23
availability, 1-16
benefits, 1-16
definition, 1-7
parallel mode
file operation restrictions, A-14, A-16, B-3
recovery restrictions, A-19
sequence restrictions, 6-7, B-4
shutdown, 18-26
startup, 18-8
PARALLEL option, 18-12
parallel processing
benefits, 1-15
characteristics, 1-5
elements of, 1-8
for integrated operations, 1-6
for MPPs, 1-6
for SMPs, 1-6
hardware architecture, 3-1, 3-2
implementations, 3-2

Index-15

messaging, 1-14
misconceptions about, 2-12
Oracle configurations, 1-17
types of workload, 1-15
when advantageous, 2-7
when not advantageous, 2-9
parallel processor affinity, A-11
parallel query
calculating overhead, 16-4, 16-5
limiting instances, 18-27
processor affinity, A-11
query processing, 1-2,1-23, 2-6
scalability, 12-3
speedup and scaleup, 1-15
under Oracle Parallel Server, 1-23
parallel recovery, 22-16, 22-23, 22-24
Parallel Server
startup and shutdown, 18-13, 18-26
PARALLEL_DEFAULT_MAX_INSTANCES
parameter, 18-10, 18-27
PARALLEL_DEFAULT_MAXSCANS
parameter, 18-10
PARALLEL_INSTANCE_GROUP parameter,
18-23
PARALLEL_MAX_SERVERS parameter, 18-27,
22-23,22-24
calculating non-PCM locks, 16-5
calculating non-PCM resources, 16-4
ensuring LM lock capacity, 16-8
PARALLEL_SERVER parameter, 18-9, 18-12,
18-13, 18-14
parameter
controlling PCM locks, 9-13
database creation, 11-15, 14-4
obsolete, A-18
storage, 6-8,17-6, 17-7, 17-10
parameter file, 18-3
backing up, 21-1
common file, 18-4, 18-5, 23-7
conversion to multi-instance, 23-7
duplicate values, 18-6
identical parameters, 18-6
NFS access inadvisable, 23-9
PFILE, 18-5,18-7,23-6
remote instance, 18-5, 18-7, 18-19

Index-16

partitioning
application, 12-6
data, 12-7
elements, 2-10
guidelines, 2-10
horizontal, 2-12
of OLTP applications, 2-8
vertical, 2-11
partitioning data, 11-12
data files, 6-2,17-11
free list, 18-15
free lists, 11-2,11-15,17-10
index data, 15-5
PCM locks, 11-15, 15-5, 15-6, 17-10
rollback segments, 6-8, 6-10
table data, 11-12, 11-15, 15-5, 17-10
PCM lock
adding datafiles, 15-14
allocating, 15-2
calculating, 15-19
checking for valid number, 15-12, 15-15
contention, 11-15, 15-5, 15-6, 17-10
conversion, 20-6
conversion time, 15-18
estimating number needed, 15-3
exclusive, 9-25
fixed fine grain, 9-4
fixed hashed, 9-4
index data, 15-5
mapping blocks to, 9-7, 11-15, 17-10
planning, 15-2
releasable fine grain, 9-3
releasable hashed, 9-4
sessions waiting, 15-18
set of files, 9-7
shared, 9-25, 15-5
specifying total number, 14-10
valid lock assignments, 15-13
worksheets, 15-4
PCM resources, 15-19
PCTFREE, 11-5,19-7, 20-8
PCTINCREASE parameter
table extents, 17-10
PCTUSED, 11-5,20-8
performance

and lock mastering, 8-10
application, 11-12
benefits of parallel database, 1-16
caching sequences, 6-7
fine grain locking, 9-20
inserts and updates, 11-12
monitoring, 20-1
Oracle8 features, 4-6
rollback segments, 6-9, 6-10
sequence numbers, 6-7
shared resource system, 1-17
tuning, 20-1
persistent resource, 8-3, 8-11
PFILE option, 18-5, 18-7
conversion to multi-instance, 23-6
ping rate, 15-17
ping/write ratio, 19-4
pinging, 9-9,9-10, 15-16, 15-18
definition, 9-3, 20-9
detecting, 20-9
false, 9-17
tuning, 20-7
PL/SQL shared memory area, 5-5
PMON process, 5-5
POST_TRANSACTION option, 22-8
pre-allocating extent, 11-17
preconnect, 22-7
preface, iii
prime number, A-3
private rollback segment
acquisition, 6-8
creating, 14-5
individual parameter file, 18-4
specifying, 6-10
private thread, 14-8
privilege
ALTER SYSTEM, 21-10, 21-11
process free list
definition, 11-5
pinging of segment header, 11-6
PROCESSES parameter, 18-9
calculating non-PCM locks, 16-5
calculating non-PCM resources, 16-4
ensuring LM lock capacity, 16-8
processor affinity

parallel query, A-11

protected write mode, 8-8
public rollback segment

bringing online, 14-6
common parameter file, 18-4
creating, 14-6

owner, 14-6

specifying, 14-6

using by default, 14-6

PUBLIC thread, 14-8

random access, 2-8
raw device, 23-4
read consistency

multiversion, 4-7
rollback information, 6-8

read lock mode, 4-13
read-only access, 4-7,4-13

applications, 2-7
index data, 15-5
read PCM lock, 4-13

read-only tables, 12-3

RECO process, 1-20, 5-5

RECOVER command, 18-18, 22-16, 22-22, 22-24
RECOVER DATABASE statement, 22-16, 22-17
RECOVER DATAFILE statement, 22-16, 22-17
RECOVER TABLESPACE statement,
recovery, 22-1

access to files, 6-2, 6-3, 22-13

after SHUTDOWN ABORT, 18-26

archive history, 14-4

automatic, 21-6

conversion to multi-instance, 23-9

deferred transaction, A-9

definition, 22-2

detection of error, 19-8

disaster, 22-19, 22-22

FREEZE_DB_FOR_INSTANCE_RECOVERY,
22-13

from an offline backup, 22-19

from an online backup, 22-19

from multiple node failure, 22-12

from single-node failure, 22-11

Index-17

22-16, 22-17

global checkpoint, 21-10
incomplete media, 22-17
instance, 14-4, 18-26, 21-8, 22-11
instance failure, 22-2

instance recovery, 22-1

LCKn process, 7-6

log history, 21-6, 22-18

media failure, 6-2, 21-6, 21-10, 22-15, 22-16, A-19

online, 22-11
parallel, 22-23,22-24

PARALLEL_MAX_SERVERS parameter,

22-24
phases, 22-14
Recovery Manager, 22-17
recovery time, 21-8,21-10
restrictions, A-19
rolling back, 6-8
setting parallelism, 22-23,22-24
starting another instance, 14-4
using redo log, 21-12
Recovery Manager, 22-15
archive log backup, 21-7
disaster recovery, 22-19
incomplete media recovery, 22-17
media recovery, 22-17
RECOVERY_PARALLELISM parameter,
22-2,22-23,22-24
redo log
archiving mode, 21-3
block, 21-9
instance recovery, 22-11
log history, 21-6
reconfiguring, 14-9
redo log buffer, 5-5

redo log file
accessibility, 5-7
adding, A-15

archiving, 4-7,14-9, 21-1, 21-3, 21-11
backup, 21-12

dropping, 21-11, A-15

identified in control file, 6-5

log history, 21-6

log sequence number, 21-5
multiplexed, 21-6

overwriting, 4-7,21-3

Index-18

18-9,

22-23,

renaming, 21-11, A-15

size, 21-9

thread of redo, 6-3
redo thread, 21-4
relative file number, 6-3
releasable freelist waits, 15-14
releasable hashed PCM lock, 9-4, 15-8, 15-10
remote databases, 1-20
remote 1/0, 2-3
remote instance, 18-5, 18-7, 18-19
remote instance undo requests, 20-15
remote instance undo writes, 20-15
REMOTE_LOGIN_PASSWORDFILE

parameter, 18-25

renaming a file

log switch, 21-11

redo log file, A-15

RENAME FILE option, A-15
replicated systems, 23-2
resource

database, 4-10

operating system, 18-8

persistent, 8-3, 8-11

releasing, 22-11
response time, 1-11
RESTORE DATABASE statement, 22-17
RESTORE DATAFILE statement, 22-17
RESTORE TABLESPACE statement, 22-17
restrictions

cached sequence, 6-7

changing the redo log, 14-9

deferred rollback segments, A-16

file operations, A-14, A-16, B-3

offline tablespace, 6-8, A-15

recovery, A-19
RETRY option, 18-14

STARTUP PARALLEL command, 18-14
rollback segment, 14-5

contention, 6-8, 6-9, 14-5

deferred, 6-9, A-16

description, 6-8

distributed locks, 6-9

global constant parameters, 6-9

ID number, 14-5, 14-7

monitoring contention for, 20-12

multiple, 6-8, 14-5, 18-14
name, 14-5,14-7
online, 6-8, 14-7
onlining, A-10
private, 6-8,23-9
public, 6-8, 14-6
public vs. private, 6-10, 14-6, 18-4
specifying, 14-5
SYSTEM, 6-8
tablespace, 6-8, 14-5, 14-7
rollback segment tablespace, 23-9
ROLLBACK_SEGMENTS parameter, 6-9, 6-10,
6-11, 18-9, 18-10
conversion to multi-instance, 23-7
private and public segments, 14-5, 14-6
rolling back
instance recovery, 22-11
rollback segments, 6-8
row locks, 4-13
routing, data dependent, 19-6
routing, data-dependent, 12-7
row cache, 6-6
row level locking, 7-2
DML locks, 10-3
independent of PCM locks, 4-13
resource sharing system, 4-7,5-4
ROW_CACHE_MULTI_INSTANCE parameter
(Oracle Version 6), A-18
ROW_LOCKING parameter, 18-10

S

SC, System Change Number, 10-4
scalability
application, 2-2,2-6, 2-12
database, 2-6
definition, 1-10
determinants, 1-16
disk input and output, 2-3
enhancement for release 7.3, A-8
four levels of, 2-2
hardware, 2-3
network, 2-6
operating system, 2-5
potential, 1-15

relative, 2-8
shared memory system, 2-5
SCN, 4-5
SCsI, 3-3
SDUSIZE parameter, 22-5
segment
definition, 11-3
header block, 11-14, 14-7
header contention, 11-6, 19-6
ID number, 14-5, 14-7

name, 14-7
rollback segment, 6-8
size, 14-7
segment header, 7-9, 11-6
sequence

data dictionary cache, 4-7,6-7

log sequence number, 21-5, 21-6

not cached, 6-7,B-4

timestamp, 6-7
SEQUENCE number, 20-9
sequence number generator

application scalability, 2-6

contention, 2-9

distributed locks, 6-6

LM locks, 4-7

on parallel server, 6-6

restriction, 6-7,B-4

skipping sequence numbers, 6-7
SEQUENCE_CACHE_ENTRIES parameter, 6-7
sequential processing, 1-2,1-4
SERIALIZABLE parameter, 18-10
Server Manager

privileged commands, 18-18
session

multiple, 18-6, 18-20, 18-26

waiting for PCM lock conversion, 15-18
SESSIONS parameter

ensuring LM lock capacity, 16-8
SET INSTANCE command, 18-5, 18-17, 18-19

instance startup, 18-5, 18-19

requires Net8, 18-16
SET UNTIL command, 22-19
shared disk system

advantages, 3-7

implementations, 3-3

Index-19

scalability, 2-3
with shared nothing system, 3-10
shared exclusive mode, 8-8
shared memory system
scalability, 2-5
tightly coupled, 3-4
shared mode
database access, 4-2
datafiles, 6-2
file operation restrictions, A-15
instance number, 18-14
instance recovery, 22-11
recovery restrictions, 22-16
startup, 18-14
shared nothing system
advantages, 3-9
disadvantages, 3-10
disk access, 3-2
massively parallel systems, 3-9
overview, 3-8
scalability, 2-3
with shared disk system, 3-10
SHARED option, 18-12
shared PL/SQL area, 5-5
shared resource system, 17-11
shared SQL area, 5-5,12-7
SHOW INSTANCE command, 18-18, 18-19
SHOW PARAMETERS command, 18-18, 18-20
instance number, 18-15
SHOW SGA command, 18-18, 18-20
SHUTDOWN command, 18-26
ABORT option, 18-26
checkpoint, 21-9
IMMEDIATE option, 18-26, 21-9
specifying an instance, 18-19
SHUTDOWN NORMAL, 22-8
SHUTDOWN TRANSACTIONAL, 22-8
shutting down an instance, 18-26
abnormal shutdown, 18-26
archiving redo log files, 21-10
changing startup order, 18-15
checkpoint, 21-9
forcing a log switch, 21-10
lost sequence numbers, 6-7
unarchived log files, 21-4

Index-20

single instance database, 1-18
single shared mode, 4-2, 10-5
SINGLE_PROCESS parameter, 18-14
SIZE option
allocating extents, 17-12
SMON process, 5-6
instance recovery, 22-11,22-12
recovery after SHUTDOWN ABORT, 18-26
transaction recovery, A-10
SMP, 1-18
sort enhancements, A-7
SORT MERGE JOIN, 124
sort space, A-7
SORT_DIRECT_WRITES parameter, A-10
space
allocating extents, 17-11
deallocating unused, 17-15
determining unused, 17-15
free blocks, 11-2,11-16
free list, 11-2
not allocated to instance, 11-6, 17-11
SGA, 18-20
sources of free blocks, 11-6
unavailable in exclusive mode, 17-10
specialized servers, 1-6
speed-down, 1-9,1-16
speedup
definition, 1-8
with batch processing, 1-16
SQL area, shared, 12-7
SQL statement
instance-specific, 18-17
restrictions, B-3
starting up
after file operations, 15-7, A-15
creating database and, 14-3
during instance recovery, 14-4
exclusive mode, 17-12,18-11
global constant parameters, 6-9, 18-8
LCKn process, 7-6
remote instance, 18-5, 18-6, 18-7, 18-19
rollback segments, 6-8, 14-5
shared mode, 18-14, A-15
startup order, 18-15
verifying access to files, 6-2

STARTUP command, 14-3, 18-5, 18-12
MOUNT option, 22-22
OPEN option, 18-12
PFILE option, 18-5, 18-7
specifying an instance, 18-19
statistics
display system, 20-14
frequency of PCM lock conversion, 20-5
lock conversions, 20-9
tuning, 19-2
V$FILESTAT view, 20-13
V$SESSTAT and V$SYSSTAT, 20-15
storage options
clustered tables, 17-6, A-17
extent size, 6-8,17-10, 17-11, 17-12, 17-13
index, 17-7
rollback segment, 6-8
table, 17-6
stored procedures, 7-7
striping, disk, 20-13
sub-shared exclusive mode, 8-8
sub-shared mode, 8-8
switch archiving mode, 14-2, 14-9, B-3
symmetric multiprocessor, 2-5, 3-3, 3-4
configuration, 1-18
in loosely coupled system, 3-6
parallel processing, 1-6
synchronization
costof, 1-12,1-19, 2-9, 2-11, 2-12
minimizing, 13-2
non-PCM, 4-14
overhead, 1-11
SYSDBA, 18-12, 18-20, 18-26, 20-4, 21-11
SYSOPER, 18-12, 18-20, 18-26, 21-11
system change number (SCN), 10-4
archive file format, 21-5
archiving redo log files, 21-4
incrementation, 4-5
Lamport, 4-7
non-PCM lock, 7-5
redo log history, 21-6
System Global Area (SGA)
in parallel server, 5-5
instance, 5-4
parameter file, 18-3

row cache, 6-6
sequence cache, 6-7
SHOW SGA command, 18-20
statistics, 18-20
SYSTEM rollback segment, 6-8
SYSTEM tablespace, 14-5
system-specific Oracle documentation
archived redo log name, 21-5
client-server processing, 1-22
connecting with Net8, 20-6
datafiles, maximum number, B-3
free list overhead, 11-5
instance number range, 17-11
load balancing, 22-6
MAXLOGHISTORY default, 21-6
Net8 connect string, 14-7, 18-16
recovery process allocation, 22-24
redo log archive destination, 21-5
redo log archive format, 21-5
supported Oracle configurations, 1-17
system change number (SCN), 4-5
system change number, Lamport, 4-8

T

table
access pattern, 12-3
allocating extents, 11-11,17-12
cluster, 17-7
contention, 6-8,17-11
free space unavailable, 17-10
initial storage, 11-16, 17-11
lock, 7-3,7-6
multiple files, 11-12,17-11
PCM locks, 11-15,17-10
read-only, 12-3
tablespace, 6-8
table lock, 10-3
disabling, 16-9
minimizing, 16-8
TABLE_LOCK column, 16-9
tablespace
active rollback segments, 6-8
backup, 4-7,21-1,21-9
creating, 15-7, A-15

Index-21

data files, A-15

dropping, 15-7, A-15

index data, 15-5

offline, 6-8

online rollback segments, 14-5, 14-7
parallel backup, 21-12

parallel recovery, 22-16
read-only, 15-13

recovery, 22-16, A-19

rollback segment, 6-8, 14-5, 14-7
SYSTEM, 14-5

tables, 6-8
taking offline, 6-8, A-15, A-16
thread

archive file format, 21-5
archiving redo log files, 21-4,21-10, 21-11
associated with an instance, 14-8
closed, 21-15
disabled, 14-9
enabled, 21-6,21-15, 22-18
example, 6-3
exclusive mode, 18-13
forced log switch, 21-10
log history, 21-6
number of groups, 6-4, 14-5
open, 21-6,21-15
public, 14-8
single, 4-8
THREAD option, 18-17, 21-4,21-11
creating private thread, 6-3
creating public thread, 6-3
disabling a thread, 14-9
when required, 14-8
THREAD parameter, 14-8, 18-9
conversion to multi-instance, 23-7
individual parameter files, 18-5
instance acquiring thread, 6-3
tightly coupled system
hardware architecture, 3-4, 3-6
implementations, 3-2
TM, DML Enqueue, 10-3
TNSNAMES.ORA file, 22-4
TP monitor, A-8
trace file
conversion to multi-instance, 23-4

Index-22

transaction
aborted, 6-8
committed data, 4-7, 21-10
concurrent, 4-7,4-10,5-4
inserts, 4-8,11-2
instance failure, 22-11
isolation, 4-13
lock, 4-11,7-2,7-4,7-5

offline tablespace, 6-9, A-16

recovery, A-9

rollback segments, 6-9, A-16

rolling back, 6-8, 22-11
row locking, 4-7,4-13
sequence numbers, 6-6
updates, 4-7,11-2

waiting for recovery, 22-11

transaction free list, 11-4
transaction lock, 7-6, 10-3

transaction processing monitor,

TRANSACTIONAL option
SHUTDOWN, 22-8

TRANSACTIONS parameter,
calculating non-PCM locks,

12-8

6-11
16-5

calculating non-PCM resources, 16-4

ensuring LM lock capacity,

16-8

TRANSACTIONS_PER_ROLLBACK parameter,

6-11
tuning, 18-2,19-2
two-phase commits, 1-21
TX, Transaction, 10-3

U

updates
at different times, 2-7
concurrent, 4-7,11-14
free lists, 11-14, 18-15
instance lock, 9-9
PCM lock, 4-13
performance, 11-12
upgrade
Oracle, 23-2
replicated systems, 23-2
user
benefits of parallel database,

1-17

commits statistic, 20-15

handles, 22-9

multiple, 5-4

name and password, 18-19

PUBLIC, 14-6,14-7

SYS, 14-7
user process

free list, 11-2,11-15,17-7

instance shutdown errors, 18-26

manual archiving, 21-4
USER_TABLES table, 16-9
user-level IDLM, 8-11
utilities, Oracle

Export, Import, B-2

\%

VSACTIVE_INSTANCES view, 23-4, A-6
V$BH view, 9-11, 19-5, 20-4, 20-5, 20-10, A-2, A-4,
A-6, A-14
V$CACHE view, 19-5, 20-4, 20-5, A-14
V$CACHE_LOCK view, 20-3,20-4
V$CLASS_PING view, 20-4,20-10, A-4
V$DATAFILE view, 6-3,15-12, 20-13
VS$DISPATCHER_RATE view, 22-5
VSDISPATCHER_RATE_AVERAGE view, 22-5
V$DISPATCHER_RATE_CURRENT view, 22-5
V$DISPATCHER_RATE_MAXIMUM view, 22-5
V$DLM_CONVERT_LOCAL view, 8-13, A-4
V$DLM_CONVERT_REMOTE view, 8-13, A-4
VSDLM_LATCH view, 8-13, A-4
V$DLM_LOCKS view, 7-5,8-13, 20-4
V$DLM_MISC view, 8-13, A-4
V$FALSE_PING view, 20-4
VS$FILE_PING view, 20-4,20-10, A-4
VSFILESTAT view, 20-13
VSLE table, 9-20
VSLOCK view, 7-8
VSLOCK_ACTIVITY view, 20-3,20-4, A-14
COUNTER column, 20-5
detecting lock conversion, 19-3
querying, 20-6, 20-7
VSLOCK_ELEMENT view, 7-9, 9-20, 20-4
VSLOCKS_WITH_COLLISIONS view, 20-3, 20-4,
A-13

V$LOG_HISTORY view, 21-6
VS$LOGFILE view, 6-5
VSPING view, 19-5,19-6, 20-4, 20-5, 20-9, A-14
querying, 20-7,20-9
V$RECOVERY_LOG view, 21-6
V$RESOURCE_LIMIT view, 16-3, A-4
V$ROLLNAME view, 20-3
V$SESSION view, 22-8
V$SESSION_WAIT view, 15-18
VS$SESSTAT view, 20-14
V$SORT_SEGMENT view, A-6, A-7
V$SYSSTAT view, 15-14,22-13, A-4
detecting lock conversion, 19-3
querying, 20-14
V$SYSTEM_EVENT view, 15-18
V$THREAD view, 23-4
V$SWAITSTAT view, 19-6
querying, 20-11, 20-12
valid bit, lock element, 9-20
versions, Oracle
compatibility, 17-10, A-14
upgrading, A-1
vertical partitioning, 2-11
view
global, 18-24, 20-3
rollback segments, 14-6
virtual memory usage, 19-3

W

wait time, 1-5,1-11
wait, session, 15-18
workload
and scaleup, 1-15
balancing, 1-7
mixed, 1-6
partitioning, 1-22
type of, 1-6,1-15

X

XA interface, A-8

XA library, 8-12
XA_RECOVERcall, A-8
XNC column, 20-5

Index-23

Index-24

	Up
	Send Us Your Comments
	Contents
	Preface
	1 Parallel Processing & Parallel Databases
	What Is Parallel Processing?
	Parallel Processing Defined
	Problems of Parallel Processing
	Characteristics of a Parallel System
	Parallel Processing for SMPs and MPPs
	Parallel Processing for Integrated Operations

	What Is a Parallel Database?
	What Are the Key Elements of Parallel Processing?
	Speedup and Scaleup: the Goals of Parallel Process...
	Synchronization: A Critical Success Factor
	Locking
	Messaging

	What Are the Benefits of Parallel Processing?
	Enhanced Throughput: Scaleup
	Improved Response Time: Speedup

	What Are the Benefits of Parallel Database?
	Higher Performance
	Higher Availability
	Greater Flexibility
	More Users

	Is Parallel Server the Oracle Configuration You Ne...
	Single Instance with Exclusive Access
	Multi-Instance Database System
	Distributed Database System
	Client-Server Systems

	How Does Parallel Execution Fit In?

	2 Successfully Implementing Parallel Processing
	The Four Levels of Scalability You Need
	Scalability of Hardware
	Scalability of Operating System
	Scalability of Database Management System
	Scalability of Application

	When Is Parallel Processing Advantageous?
	Data Warehousing Applications
	Applications in Which Updated Data Blocks Do Not O...
	Failover and High Availability
	Summary

	When Is Parallel Processing Not Advantageous?
	Guidelines for Effective Partitioning
	Overview
	Vertical Partitioning
	Horizontal Partitioning

	Common Misconceptions about Parallel Processing

	3 Parallel Hardware Architecture
	Overview
	Parallel Processing Hardware Implementations
	Application Profiles

	Required Hardware and Operating System Software
	High Speed Interconnect
	Globally Accessible Disk or Shared Disk Subsystem

	Shared Memory Systems
	Shared Disk Systems
	Shared Nothing Systems
	Overview of Shared Nothing Systems
	Massively Parallel Systems
	Summary: Shared Nothing Systems

	Shared Nothing /Shared Disk Combined Systems

	4 How Oracle Implements Parallel Processing
	Enabling and Disabling Parallel Server
	Synchronization
	Block Level Locking
	Row Level Locking
	Space Management
	System Change Number

	High Performance Features
	Fast Commits, Group Commits, and Deferred Writes
	Row Locking and Multiversion Read Consistency
	Online Backup and Archiving
	Sequence Number Generators
	Lamport SCN Generation
	Free Lists
	Free List Groups
	Disk Affinity
	Client-Side Application Failover

	Cache Coherency
	Parallel Cache Management Issues
	Non-PCM Cache Management Issues

	5 Oracle Instance Architecture for the Parallel ...
	Overview
	Characteristics of OPS Multi-instance Architecture...
	System Global Area
	Background Processes and LCKn
	Configuration Guidelines for Oracle Parallel Serve...

	6 Oracle Database Architecture for the Parallel ...
	File Structures
	Control Files
	Datafiles
	Redo Log Files

	The Data Dictionary
	The Sequence Generator
	The CREATE SEQUENCE Statement
	The CACHE Option
	The ORDER Option

	Rollback Segments
	Rollback Segments on a Parallel Server
	Parameters Which Control Rollback Segments
	Public and Private Rollback Segments
	How Instances Acquire Rollback Segments

	7 Overview of Locking Mechanisms
	Differentiating Oracle Locking Mechanisms
	Overview
	Local Locks
	Instance Locks
	The LCKn Processes
	The LMON and LMD0 Processes

	Cost of Locks
	Oracle Lock Names
	Lock Name Format
	PCM Lock Names
	Non-PCM Lock Names

	Coordination of Locking Mechanisms by the Integrat...
	The Integrated DLM Tracks Lock Modes
	The Instance Maps Database Resources to Integrated...
	How IDLM Locks and Instance Locks Relate
	The Integrated DLM Provides One Lock Per Instance ...

	8 Integrated Distributed Lock Manager: Access to R...
	What Is the Integrated Distributed Lock Manager?
	The Integrated DLM Grants and Converts Resource Lo...
	Lock Requests Are Queued
	Asynchronous Traps (ASTs) Communicate Lock Request...
	Persistent Resources Ensure Efficient Recovery
	Lock Requests Are Converted and Granted

	Integrated DLM Lock Modes: Resource Access Rights
	Integrated DLM Features
	Distributed Architecture
	Fault Tolerance
	Lock Mastering
	Deadlock Detection
	Lamport SCN Generation
	Group-owned Locks
	Persistent Resources
	Memory Requirements
	Support for MTS and XA
	Views to Monitor Integrated DLM Statistics

	9 Parallel Cache Management Instance Locks
	PCM Locks and How They Work
	What PCM Locks Are
	Allocation and Release of PCM Locks
	How PCM Locks Work
	Number of Blocks per PCM Lock
	Pinging: Signaling the Need to Update
	Lock Mode and Buffer State

	How Initialization Parameters Control Blocks and P...
	GC_* Initialization Parameters
	Handling Data Blocks

	Two Methods of PCM Locking: Fixed and Releasable
	Integrated DLM Lock Elements and PCM Locks
	Number of Blocks per PCM Lock
	Fine Grain Locking: Locks for One or More Blocks
	How Fine Grain Locking Works
	Performance Effects of Releasable Locking
	Applying Fine Grain and Hashed Locking to Differen...

	How Locks Are Assigned to Blocks
	File to Lock Mapping
	Number of Locks per Block Class
	Lock Element Number

	Examples: Mapping Blocks to PCM Locks
	Setting GC_FILES_ TO_LOCKS
	More Sample Hashed Settings of GC_FILES_TO_LOCKS
	Sample Fine Grain Setting of GC_FILES_TO_LOCKS

	10 Non-PCM Instance Locks
	Overview
	Transaction Locks (TX)
	Table Locks (TM)
	System Change Number (SC)
	Library Cache Locks (N[A-Z])
	Dictionary Cache Locks (Q[A-Z])
	Database Mount Lock (DM)

	11 Space Management and Free List Groups
	How Oracle Handles Free Space
	Overview
	Database Storage Structures
	Structures for Managing Free Space
	Example: Free List Groups

	SQL Options for Managing Free Space
	Managing Free Space on Multiple Instances
	Partitioning Free Space into Multiple Free Lists
	Partitioning Data with Free List Groups
	How Free Lists and Free List Groups Are Assigned t...

	Free Lists Associated with Instances, Users, and L...
	Associating Instances with Free Lists
	Associating User Processes with Free Lists
	Associating PCM Locks with Free Lists

	Controlling the Allocation of Extents
	Automatic Allocation of New Extents
	Pre-allocation of New Extents
	Dynamic Allocation of Blocks on Lock Boundaries

	12 Application Analysis
	How Detailed Must Your Analysis Be?
	Understanding Your Application Profile
	Analyzing Application Functions and Table Access P...
	Read-only Tables
	Random SELECT and UPDATE Tables
	INSERT, UPDATE, or DELETE Tables
	Planning the Implementation

	Partitioning Guidelines
	Overview
	Application Partitioning
	Data Partitioning

	13 Designing a Database for Parallel Server
	Overview
	Case Study: From First-Cut Database Design to OPS
	“Eddie Bean” Catalog Sales
	Tables
	Users
	Application Profile

	Analyze Access to Tables
	Table Access Analysis Worksheet
	Case Study: Table Access Analysis

	Analyze Transaction Volume by Users
	Transaction Volume Analysis Worksheet
	Case Study: Transaction Volume Analysis

	Partition Users and Data
	Case Study: Initial Partitioning Plan
	Case Study: Further Partitioning Plans

	Partition Indexes
	Implement Hashed or Fine Grain Locking
	Implement and Tune Your Design

	14 Creating a Database & Objects for Multiple I...
	Creating a Database for a Multi-instance Environme...
	Summary of Tasks
	Setting Initialization Parameters for Database Cre...
	Creating a Database and Starting Up
	Setting CREATE DATABASE Options

	Creating Database Objects to Support Multiple Inst...
	Creating Additional Rollback Segments
	Configuring the Online Redo Log for a Parallel Ser...
	Providing Locks for Added Datafiles

	Changing the Value of CREATE DATABASE Options

	15 Allocating PCM Instance Locks
	Planning Your PCM Locks
	Planning and Maintaining Instance Locks
	Key to Allocating PCM Locks
	Examining Your Datafiles and Data Blocks
	Using Worksheets to Analyze PCM Lock Needs
	Mapping Hashed PCM Locks to Data Blocks
	Partitioning PCM Locks Among Instances

	Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data...
	GC_FILES_TO_LOCKS Syntax
	Fixed Lock Examples
	Releasable Lock Example
	Guidelines

	Tips for Setting GC_FILES_TO_LOCKS
	Providing Room for Growth
	Checking for Valid Number of Locks
	Checking for Valid Lock Assignments
	Setting Tablespaces to Read-only
	Checking File Validity
	Adding Datafiles Without Changing Parameter Values...

	Setting Other GC_* Parameters
	Setting GC_RELEASABLE_ LOCKS
	Setting GC_ROLLBACK_ LOCKS

	Tuning Your PCM Locks
	How to Detect False Pinging
	How Long Does a PCM Lock Conversion Take?
	Which Sessions Are Waiting for PCM Lock Conversion...
	What Is the Total Number of PCM Locks and Resource...

	16 Ensuring IDLM Capacity for All Resources & L...
	Overview
	Planning IDLM Capacity
	Avoiding Dynamic Allocation of Resources and Locks...
	Computing Lock and Resource Needs
	Monitoring Resource Utilization

	Calculating the Number of Non-PCM Resources
	Calculating the Number of Non-PCM Locks
	Adjusting Oracle Initialization Parameters
	Minimizing Table Locks to Optimize Performance
	Setting DML_LOCKS to Zero
	Disabling Table Locks

	17 Using Free List Groups to Partition Data
	Overview
	Deciding How to Partition Free Space for Database ...
	Database Object Characteristics
	Free Space Worksheet

	Setting FREELISTS and FREELIST GROUPS in the CREAT...
	FREELISTS Option
	FREELIST GROUPS Option
	Creating Free Lists for Clusters
	Creating Free Lists for Indexes

	Associating Instances, Users, and Locks with Free ...
	Associating Instances with Free List Groups
	Associating User Processes with Free List Groups
	Associating PCM Locks with Free List Groups

	Pre-allocating Extents (Optional)
	The ALLOCATE EXTENT Option
	Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parame...
	Setting the INSTANCE_NUMBER Parameter
	Examples of Extent Pre-allocation

	Dynamically Allocating Extents
	Translation of Block Database Address to Lock Name...
	!blocks with ALLOCATE EXTENT Syntax

	Identifying and Deallocating Unused Space
	How to Determine Unused Space
	Deallocating Unused Space
	Space Freed by Deletions or Updates

	18 Administering Multiple Instances
	Overview
	Oracle Parallel Server Management
	Defining Multiple Instances with Parameter Files
	Using a Common Parameter File for Multiple Instanc...
	Using Individual Parameter Files for Multiple Inst...
	Embedding a Parameter File Using IFILE
	Specifying a Non-default Parameter File with PFILE...

	Setting Initialization Parameters for the Parallel...
	GC_* Global Constant Parameters
	Parameter Notes for Multiple Instances
	Parameters Which Must Be Identical on Multiple Ins...

	Setting LM_* Parameters
	Creating Database Objects for Multiple Instances
	Starting Up Instances
	Enabling Parallel Server and Starting Instances
	Starting up with Parallel Server Disabled
	Starting Up in Shared Mode

	Specifying Instances
	Differentiating Between Current and Default Instan...
	How SQL Statements Apply to Instances
	How Server Manager Commands Apply to Instances
	Using Group Membership Services
	Specifying Instance Groups
	Using a Password File to Authenticate Users on Mul...

	Shutting Down Instances
	Limiting Instances for the Parallel Query

	19 Tuning the System to Optimize Performance
	General Guidelines
	Overview
	Keep Statistics for All Instances
	Statistics to Keep
	Change One Parameter at a Time

	Contention
	Detecting Lock Conversions
	Pinpointing Lock Contention within an Application

	Tuning for High Availability
	Detection of Error
	Recovery and Re-mastering of IDLM Locks
	Recovery of Failed Instance

	20 Monitoring Views & Tuning a Parallel Server
	Monitoring Data Dictionary Views with CATPARR.SQL
	Monitoring Dynamic Performance Views
	Global Dynamic Performance Views
	The V$ Views

	Querying V$LOCK_ACTIVITY to Monitor Instance Lock ...
	Analyzing V$LOCK_ACTIVITY
	Monitoring and Tuning Lock Activity

	Querying the V$PING View to Detect Pinging
	Querying V$CLASS_PING, V$FILE_PING, and V$BH
	Querying the V$WAITSTAT View to Monitor Contention...
	Monitoring Contention for Blocks in Free Lists
	Monitoring Contention for Rollback Segments

	Querying V$FILESTAT and V$DATAFILE to Monitor I/O ...
	Querying and Interpreting V$SESSTAT and V$SYSSTAT ...

	21 Backing Up the Database
	Choosing a Backup Method
	Archiving the Redo Log Files
	Archiving Mode
	Automatic or Manual Archiving
	Archive File Format and Destination
	Redo Log History in the Control File
	Backing Up the Archive Logs

	Checkpoints and Log Switches
	Checkpoints
	Log Switches
	When Checkpoints Occur Automatically
	Forcing a Checkpoint
	Forcing a Log Switch
	Forcing a Log Switch on a Closed Thread

	Backing Up the Database
	Open and Closed Database Backups
	Recovery Manager Backup Issues
	Operating System Backup Issues

	22 Recovering the Database
	Overview
	Client-side Application Failover
	What Is Application Failover?
	How to Configure Application Failover
	Planned Shutdown and Dynamic Load Balancing
	Special Failover Topics
	Tuning Failover Performance
	Failover Restrictions

	Recovery from Instance Failure
	Single-node Failure
	Multiple-node Failure
	Incremental Checkpointing
	Access to Datafiles for Instance Recovery
	Freezing the Database for Instance Recovery
	Phases of Oracle Instance Recovery

	Recovery from Media Failure
	Complete Media Recovery
	Incomplete Media Recovery
	Restoring and Recovering Redo Log Files
	Disaster Recovery

	Parallel Recovery
	Parallel Recovery Using Recovery Manager
	Parallel Recovery Using Operating System Utilities...

	23 Migrating from Single Instance to Parallel S...
	Overview
	Deciding to Convert
	Reasons to Convert
	Reasons Not to Convert

	Preparing to Convert
	Hardware and Software Requirements
	Converting the Application from Single- to Multi-i...
	Administrative Issues

	Converting the Database from Single- to Multi-inst...
	Troubleshooting the Conversion
	Database Recovery After Conversion
	Loss of Rollback Segment Tablespace
	Inadvisable NFS Mounting of Parameter File

	A Differences from Previous Versions
	Differences Between Release 8.0.3 and Release 8.0....
	New Initialization Parameters
	Obsolete Initialization Parameters
	Dynamic Performance Views
	Group Membership Services

	Differences Between Release 7.3 and Release 8.0.3
	New Initialization Parameters
	Obsolete GC_* Parameters
	Changed GC_* Parameters
	Dynamic Performance Views
	Global Dynamic Performance Views
	Integrated Distributed Lock Manager
	Instance Groups
	Group Membership Services
	Fine Grain Locking
	Client-side Application Failover
	Recovery Manager

	Differences Between Release 7.2 and Release 7.3
	Initialization Parameters
	Data Dictionary Views
	Dynamic Performance Views
	Free List Groups
	Fine Grain Locking
	Instance Registration
	Sort Improvements
	XA Performance Improvements
	XA Recovery Enhancements
	Deferred Transaction Recovery
	Load Balancing at Connect
	Bypassing Cache for Sort Operations
	Delayed-Logging Block Cleanout
	Parallel Query Processor Affinity

	Differences Between Release 7.1 and Release 7.2
	Pre-allocating Space Unnecessary
	Data Dictionary Views
	Dynamic Performance Views
	Free List Groups
	Table Locks
	Lock Processes

	Differences Between Release 7.0 and Release 7.1
	Initialization Parameters
	Dynamic Performance Views

	Differences Between Version 6 and Release 7.0
	Version Compatibility
	File Operations
	Deferred Rollback Segments
	Redo Logs
	Free Space Lists
	SQL*DBA
	Initialization Parameters
	Archiving
	Media Recovery

	B Restrictions
	Compatibility
	The Export and Import Utilities
	Compatibility Between Shared and Exclusive Modes

	Restrictions
	Maximum Number of Blocks Allocated at a Time
	Restrictions in Shared Mode

	Index

