
Oracle Configurator

Oracle Configuration Interface Object (CIO) Developer’s Guide

Release 11i

March 2000

Part No. A81001-03

This document describes Functional Companions, which augment the
functionality of an Oracle SellingPoint application, and the Oracle
Configuration Interface Object (CIO), which is used by Functional Companions
to access the Oracle Configurator Active Model.

Oracle Configuration Interface Object (CIO) Developer’s Guide, Release 11i

Part No. A81001-03

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Mark Sawtelle

Contributors: Brent Benson, Jim Carlson, Ivan Lazarov, Marty Plotkin, Brian Ross

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle SellingPoint Configurator is a trademark or registered
trademark of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

 iii

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xi

Preface... xiii

Intended Audience ... xiii
Structure.. xiv
Related Documents.. xiv
Conventions.. xiv

1 Functional Companions

1.1 What Are Functional Companions? ... 1–1
1.1.1 Types of Functional Companions.. 1–1
1.1.2 Background to Building Functional Companions... 1–3
1.2 Functional Companions and the CIO... 1–4
1.2.1 Using the CIO Interface... 1–4
1.2.2 Implementing Standard Interface Methods ... 1–5
1.3 Building Functional Companions in Java.. 1–5
1.3.1 Procedure for Building Functional Companions in Java ... 1–5
1.3.2 Installation Requirements for Java Functional Companions................................... 1–8
1.3.2.1 Requirements for Developing Functional Companions 1–8
1.3.2.2 Requirements for Running Functional Companions... 1–8
1.3.2.3 Requirements for Testing Java Functional Companions 1–9
1.3.3 Minimal Example of a Java Functional Companion ... 1–9
1.4 Building Functional Companions in COM... 1–11

iv

1.5 Incorporating Functional Companions in your Application 1–13
1.5.1 Associating Functional Companions with your Model... 1–13
1.5.2 Testing Functional Companions in the Oracle SellingPoint Application 1–17
1.5.2.1 Testing from the Windows Start Menu... 1–18
1.5.2.2 Testing from Oracle Configurator Developer.. 1–18
1.5.2.3 Test Functionality in the Oracle SellingPoint Application............................. 1–18

2 The Configuration Interface Object (CIO)

2.1 Background ... 2–1
2.1.1 What is the CIO?.. 2–1
2.1.2 The CIO and Functional Companions.. 2–2
2.2 The CIO’s Runtime Node Interface Classes.. 2–2
2.3 Initializing the CIO... 2–4
2.4 Access to Configurations... 2–6
2.4.1 Creating and Deleting Configurations... 2–6
2.4.2 Saving and Restoring Configurations .. 2–7
2.4.3 Access to Configuration Parameters .. 2–8
2.4.4 Logic Transactions... 2–8
2.5 Access to Nodes of the Model at Runtime.. 2–9
2.5.1 Accessing Components .. 2–10
2.5.2 Adding and Deleting Optional Components.. 2–10
2.5.3 Accessing Features .. 2–10
2.5.4 Getting and Setting Logic States ... 2–11
2.5.5 Getting and Setting Numeric Values.. 2–12
2.5.6 Accessing Properties ... 2–14
2.5.7 Access to Options .. 2–14
2.5.7.1 Example for IOption .. 2–14
2.6 Introspection through IRuntimeNode... 2–15
2.7 Handling Logical Contradictions... 2–17
2.7.1 Generating Error Messages from Contradictions... 2–18
2.7.2 Overriding Contradictions... 2–18
2.8 Validating Configurations... 2–20
2.9 Standard Interface Methods for Functional Companions .. 2–21
2.9.1 The initialize() Interface Method... 2–22
2.9.2 The autoConfigure() Interface Method .. 2–24

v

2.9.3 The validate() Interface Method.. 2–24
2.9.4 The generateOutput() Interface Method.. 2–25
2.9.5 The terminate() Interface Method... 2–26

3 Reference Documentation for the CIO

4 Examples

4.1 Initializing the CIO.. 4–1
4.2 Basic Java Functional Companion .. 4–2
4.3 Thin-Client generateOutput() Functional Companion.. 4–9

Glossary

Glossary of Acronyms

A CIO Package and Related Classes

B Package oracle.apps.cz.cio

C Package oracle.apps.cz.common

D Package oracle.apps.cz.utilities

Index

vi

vii

List of Examples

1–1 Elementary Java Functional Companion: MyClass.java ... 1–9
1–2 COM Functional Companion ... 1–12
2–1 Initializing the CIO (Short Example) .. 2–5
2–2 Creating New Configuration Objects ... 2–7
2–3 Getting the state of a node .. 2–12
2–4 Setting the state of a node ... 2–12
2–5 Setting a numeric value ... 2–13
2–6 Testing whether a node is selected, or satisfied... 2–16
2–7 Getting a child node by name... 2–16
2–8 Collecting all child nodes by type.. 2–17
2–9 Handling and overriding Logical Exceptions .. 2–19
4–1 Initializing the CIO (Long Example) .. 4–1
4–2 Basic Functional Companion: FuncCompTest1.. 4–3
4–3 Thin-client Output Functional Companion.. 4–10

viii

List of Figures

1–1 Associating a Component with a Functional Companion ... 1–16
1–2 Functional Companion Rule: Detail of the Attributes view... 1–17
1–3 Testing Functional Companions in the Oracle SellingPoint application. 1–19
1–4 Modifying Functional Companion Buttons.. 1–20

ix

List of Tables

1–1 Types of Functional Companions .. 1–2
1–2 Required Software for Functional Companions .. 1–8
2–1 Runtime node interface classes for the CIO .. 2–2
2–2 Methods of the Interface Class IOption ... 2–14
2–3 Methods of the interface class IRuntimeNode.. 2–15
2–4 Standard methods of the IFunctionalCompanion interface.. 2–22

x

xi

Send Us Your Comments

Oracle Configuration Interface Object (CIO) Developer’s Guide, Release 11i

Part No. A81001-03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments through your call to Oracle Support
Services or by sending them to:

 Oracle Configurator
 Oracle Corporation
 Documentation
 21 North Avenue
 Burlington, MA 01803
 USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

You can use Functional Companions to augment the functionality of your Oracle
SellingPoint application beyond what is provided by Oracle Configurator
Developer. You create Functional Companion objects, which use the Configuration
Interface Object (CIO) to perform various tasks, including accessing the Model,
setting and getting logic states, and adding optional components. You can also use
the CIO in your own applications, to interact with the Model.

Intended Audience
This manual is intended primarily for software developers writing Functional
Companions. The language recommended for developing Functional Companions
is Java.

This manual assumes that you are an experienced programmer and that you
understand Oracle databases, the SQL and Java programming languages, and the
principles of JDBC.

This manual also provides background and reference information on the CIO,
which is needed by developers of applications having customized user interfaces
that need access to the Oracle Configurator Active Model.

Note: For specialized purposes, Functional Companions can be
written in Oracle’s GSL (Generative Specification Language), and
by using COM with the Microsoft Java Virtual Machine. This is
only possible on Windows 95/98 and Windows NT 4.0.

xiv

Structure
This manual contains:

� Chapter 1, "Functional Companions"

� Chapter 2, "The Configuration Interface Object (CIO)"

� Chapter 3, "Reference Documentation for the CIO"

� Chapter 4, "Examples"

Related Documents
For more information, see the following manuals in Release 11i of the Oracle
Configurator documentation set:

� Oracle SellingPoint Configurator Administration Guide

� Oracle Configurator Developer User’s Guide

� Oracle SellingPoint CompanionBuilder Help

� Oracle Configurator Developer Tutorial

The following documents are also relevant:

� Oracle8i JDBC Developer's Guide and Reference

� Oracle White Paper: “Using COM with Oracle SellingPoint 4.2” (Available
through Products Online, http://products.us.oracle.com. Look under “Supply
Chain”, “SellingPoint”, “Collateral”.)

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

xv

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement orcommand not directly related to the example
have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

> The left bracket alone sign represents the MS DOS prompt.

Convention Meaning

xvi

Functional Companions 1-1

1
Functional Companions

Functional Companions extend your Oracle SellingPoint application by attaching
custom code through established interfaces.

1.1 What Are Functional Companions?
A Functional Companion is a programming object that you attach to your Model in
order to extend the functionality of your Oracle SellingPoint application in ways
that are not provided by Oracle Configurator Developer.

You can write a Functional Companion object in several languages, depending on
the functionality needed by your application. The Functional Companion
communicates with your Model through an API (application programming
interface) called the Configuration Interface Object (CIO). The Oracle Configuration
Interface Object is written in Java. See Chapter 2, "The Configuration Interface
Object (CIO)".

You connect Functional Companions to specific nodes in your Model using Oracle
Configurator Developer. You also specify the type of action that you want the
specified Functional Companion to perform when your end users select its
associated node. Then you generate the logic and user interface, as you normally do
for your Oracle SellingPoint application. This action associates the Functional
Companion with your application so that when your end users select a node in the
Model, the Functional Companion on that node is automatically invoked.

1.1.1 Types of Functional Companions
You can assign a Functional Companion to perform any or all of these three types of
actions:

What Are Functional Companions?

1-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

Table 1–1 Types of Functional Companions

Type Description

Auto-configuration Configures the state of the Model. You can use this to modify
the shape of the Model tree, and the state of its nodes. For
instance, your application might gather initial needs
assessment information and use it to set up the appropriate set
of choices for your end user to make.

In your Oracle SellingPoint application, your end user will
explicitly choose to run an auto-configuration Functional
Companion

See Section 2.9.2, "The autoConfigure() Interface Method".

Validation Validates the logical choice that the end user has just made.
The Functional Companion can perform complex operations
beyond the scope of what you can develop in Oracle
Configurator Developer. For instance, you can perform
sophisticated numeric comparisons.

A Java Functional Companion returns null if the validation is
successful. If the validation fails, it returns a List of
CompanionValidationFailure objects. A COM Functional
Companion returns true if the validation is successful. If the
validation fails, it returns a COM Array of Strings.

In your Oracle SellingPoint application, all validation
Functional Companions are run every time your end user
chooses an Option. After each action, the end user gets the
collection of strings returned by each Functional Companion
that failed.

Validation companions query the model to determine validity,
but should not modify the model. Modifying the model in a
validation Functional Companion can cause unexpected
application failures.

See Section 2.9.3, "The validate() Interface Method".

Output Generates some form of output from the configuration. This
output might be a report, a performance graph, a geometric
rendering, or a graphical representation of the configuration.

In your Oracle SellingPoint application, your end user will
explicitly choose to run an output Functional Companion.

See Section 2.9.4, "The generateOutput() Interface Method".

What Are Functional Companions?

Functional Companions 1-3

1.1.2 Background to Building Functional Companions
To build a Functional Companion, you implement an object class in the language
that you choose as being most appropriate for the operation that you want to
perform. The language choices are:

When an Oracle SellingPoint application runs, it creates an instance of the CIO,
which creates runtime instances of all the Components in the Model. If you used
Oracle Configurator Developer to associate a Functional Companion with a
Component, then the application creates, for each instance of that Component, an
instance of the class that you defined for your Functional Companion and attaches
the Functional Companion instance to the Component.

You can associate more than one Functional Companion with a particular
Component; the CIO will create instances of all of them.

If any Functional Companions cannot be loaded when you create a new
configuration (for instance, due to internal errors or an incorrect CLASSPATH), the
configuration will fail to open.

You can also associate Functional Companions with Products.

� For Functional Companions built with Java, you implement a class that extends
oracle.apps.cz.cio.FunctionalCompanion. See Section 1.3, "Building
Functional Companions in Java".

Java This is the recommended choice for developing Functional
Companions. Java Functional Companions can run on any
platform supported by Java. The other language choices are
recommended only for special purposes.

GSL GSL (Generative Specification Language) is an Oracle
proprietary object-oriented dynamic language recommended
primarily for geometric visualization and modeling. Using it
requires CompanionBuilder, which is only available on
Windows 95/98 and Windows NT 4.0. The resultant
Functional Companions can only be used in a “fat client”
deployment, not, for example, in a web browser.

COM Functional Companions can be written to the Microsoft COM
standard (using Visual Basic, for instance), but are restricted to
Windows 95/98 and Windows NT 4.0, and require the
Microsoft Java Virtual Machine.

Functional Companions and the CIO

1-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

� For Functional Companions built with COM, you implement an object that
supports IDispatch. See Section 1.4, "Building Functional Companions in COM".
For details and more background, see the Oracle White Paper “Using COM
with Oracle SellingPoint 4.2”.

� For Functional Companions built with (GSL) (the Generative Specification
Language), you implement a library object to be used as the basis of the
companion instances. See the Oracle SellingPoint CompanionBuilder Help for
details.

� For all language choices, you also implement one or more of the standard
interface methods of oracle.apps.cz.cio.IFunctionalCompanion,
which are described in Section 2.9, "Standard Interface Methods for Functional
Companions".

In order to communicate with the Model of your application, the Functional
Companion uses Oracle’s CIO API. The CIO can also be used to develop a custom
user interface for an Oracle SellingPoint application, in order to access the Model.
As a point of information, both Oracle Configurator Developer and the default user
interface for the Oracle SellingPoint application communicate in just this way with
the Model, using the Oracle Configurator Database to store structure, rules, and
user interface information (in addition to your end user’s data).

1.2 Functional Companions and the CIO
Functional Companions are invoked by the CIO through the Oracle SellingPoint
application, and Functional Companions call the CIO to get information from the
Active Model. The CIO is like a broker for the Active Model, in that it passes
information both ways. Programmers writing Functional Companions need to
know how to use the CIO.

Each Functional Companion is an object class. For every Component instance in
your Model that is associated with a Functional Companion, the CIO creates an
instance of this class.

1.2.1 Using the CIO Interface
Your Functional Companion is a client of the CIO. When you program against the
CIO, you create instances of a set of public interface objects, which are defined in
oracle.apps.cz.cio.

Your code should refer only to these public interface objects. See Section 2.2, "The
CIO’s Runtime Node Interface Classes".

Building Functional Companions in Java

Functional Companions 1-5

Reference
For reference documentation, see: Package oracle.apps.cz.cio.

1.2.2 Implementing Standard Interface Methods
You provide functionality for your Functional Companion by implementing body
code for the methods:

� initialize

� autoConfigure

� validate

� generateOutput

� terminate

These methods are described in Section 2.9, "Standard Interface Methods for
Functional Companions".

For particulars that apply to the languages currently supported by the CIO, and
examples, see Section 1.3, "Building Functional Companions in Java", and the
Oracle SellingPoint CompanionBuilder Help.

1.3 Building Functional Companions in Java

1.3.1 Procedure for Building Functional Companions in Java
Here is an overview of the tasks for Building Functional Companions in Java. See
also Section 1.3.2, "Installation Requirements for Java Functional Companions".

1. Use a Java development environment or text editor to create a .java file in which
to define a Java class.

2. Import the classes for the CIO (oracle.apps.cz.cio.*).

import oracle.apps.cz.cio.*;

3. Define a class in which to determine the behavior of your Functional
Companion.

Here is the relevant line from Example 1–1:

public class MyClass extends FunctionalCompanion // line 6

Building Functional Companions in Java

1-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

When you define your Functional Companion class, you can do one of the
following:

� Normally: Extend the base class for Functional Companions—
oracle.apps.cz.cio.FunctionalCompanion—and override just the
particular methods that you need. In this case, you gain the functionality of
the FunctionalCompanion base class. This functionality includes: saving
references to the runtime node with which the Functional Companion is
associated (with the FunctionalCompanion.getRuntimeNode()
method), and returning the name of the Functional Companion (with the
FunctionalCompanion.getName() method). See the reference for:
FunctionalCompanion.

� More rarely: Implement the interface class for Functional
Companions—oracle.apps.cz.cio.IFunctionalCompanion—and
implement all its methods. You do not extend
oracle.apps.cz.cio.FunctionalCompanion. In this case, you lose
the functionality of the FunctionalCompanion base class. See the
reference for: FunctionalCompanion.

4. You may want to override
oracle.apps.cz.cio.FunctionalCompanion.initialize(). (See
Section 2.9.1, "The initialize() Interface Method".)

You should ordinarily never directly call
FunctionalCompanion.initialize(), since the CIO does that for you.
However, if your Functional Companion overrides FunctionalCompanion
as its base class, then the initialize() method of your class should call
super.initialize(). This passes some necessary variables to the superclass
(oracle.apps.cz.cio.FunctionalCompanion) so that its methods will
work.

For an example in context, see Line 35 in Example 4–2, "Basic Functional
Companion: FuncCompTest1" on page 4-2, which is shown below:

public void initialize(IRuntimeNode comp_node, String name, String
description, int id)

{
this.comp_node = comp_node;
super.initialize(comp_node, name, description, id); // line 35
}

5. Override one or more of the other interface methods of
oracle.apps.cz.cio.IFunctionalCompanion (see Section 2.9, "Standard
Interface Methods for Functional Companions"):

Building Functional Companions in Java

Functional Companions 1-7

autoConfigure
validate
generateOutput
terminate

For examples in context, see Example 4–2, "Basic Functional Companion:
FuncCompTest1" on page 4-2:

public void autoConfigure()

public List validate()

public String generateOutput()

6. Optionally, call the methods of the other interface classes of the CIO (see
Section 2.2, "The CIO’s Runtime Node Interface Classes").

7. Compile the .java file into a .class file for example, with JDK 1.1.x:

javac FuncCompTest1.java

8. Put the resulting .class file in your classpath, or into a JAR file in your classpath.
For example:

jar cvf FuncComps.jar FuncCompTest1.class

set CLASSPATH=%CLASSPATH%;D:\companions\FuncComps.jar

9. Run Oracle Configurator Developer with this classpath. Associate your
Functional Companion with a Component in your Model. See Section 1.5,
"Incorporating Functional Companions in your Application" on page 1-13.
Generate the Active Model and User Interface.

10. To test your Functional Companion, click the Test button in Oracle Configurator
Developer. When the Oracle SellingPoint application runs, click the buttons that
have been generated in the UI for activating your Functional Companions. See
Section 1.5.2, "Testing Functional Companions in the Oracle SellingPoint
Application" on page 1-17.

Note: Basic Functional Companions, ones that only use the
standard interface methods listed in step 5, do not need to use the
interface classes of the CIO.

Building Functional Companions in Java

1-8 Oracle Configuration Interface Object (CIO) Developer’s Guide

1.3.2 Installation Requirements for Java Functional Companions

1.3.2.1 Requirements for Developing Functional Companions
In order to develop Java Functional Companions, you must install a Java
development environment that enables you to compile Java classes, such as:

� Oracle JDeveloper

� Sun JDK 1.1.x or JDK 1.2.x (JDK 1.1.x is recommended for compatibility with
Oracle Applications Release 11i)

� Microsoft Visual J++

You do not need JDBC drivers or database access to compile a Functional
Companion, although these are required to run one.

1.3.2.2 Requirements for Running Functional Companions
At runtime, an Oracle SellingPoint application using Functional Companions
requires:

� The Microsoft Java Virtual Machine (JVM)

� Microsoft JDBC/ODBC drivers

� An ODBC datasource

The Oracle SellingPoint application automatically sets up a JDBC database
connection for use by the CIO. Custom user interfaces that take the place of the
Oracle SellingPoint application must perform this task. See Section 2.3, "Initializing
the CIO" for details.

In order to run Java Functional Companions, the software described in Table 1–2
must be installed and recognized by your operating system environment in the
indicated locations.

Table 1–2 Required Software for Functional Companions

File name Location Required for Source

config.jar CLASSPATH Any use of CIO. Oracle Configurator (OC)
installation.

confw32.jar CLASSPATH Functional Companions
using COM or GSL.

OC installation.

collections.jar CLASSPATH Any use of CIO. OC installation.

Building Functional Companions in Java

Functional Companions 1-9

For background on JDBC drivers, see the Oracle8i JDBC Developer's Guide and
Reference.

1.3.2.3 Requirements for Testing Java Functional Companions
The class(es) that implement your Functional Companions must be included in
your CLASSPATH environment variable. Otherwise, you are likely to get an error
message like the following when you try to create a new configuration:

New Configuration: Cannot create configuration:
oracle.apps.cz.cio.FuncCompCreationException:
java.lang.ClassNotFoundException: classname

Where classname is the name of the first Functional Companion to be loaded.

1.3.3 Minimal Example of a Java Functional Companion
Example 1–1 illustrates the minimal coding required for a Functional Companion
that does not perform any work. (See Section 4.2, "Basic Java Functional
Companion" for a fuller example.)

Example 1–1 Elementary Java Functional Companion: MyClass.java

swingall.jar CLASSPATH Use of Swing UI widgets. OC installation.

xmlparser.jar CLASSPATH Custom application user
interfaces.

OC installation.

cz.dll

czjni.dll

PATH CIO and Functional
Companion access to the
Oracle Configurator logic
engine.

OC installation.

JDBC OCI
driver (such as
oci805jdbc.dll)

PATH Functional Companions
using Oracle JDBC OCI
(“thick”)drivers. For use
with Javasoft JDK 1.1.x.

Oracle Technology Network
download area, under
“Oracle 8 JDBC OCI and JDBC
Thin Drivers”.

classes111.zip CLASSPATH Functional Companions
using the Oracle JDBC
Thin drivers. For use with
Javasoft JDK 1.1.x.

Oracle Technology Network
download area, under
“Oracle 8 JDBC OCI and JDBC
Thin Drivers”.

Table 1–2 (Cont.) Required Software for Functional Companions

File name Location Required for Source

Building Functional Companions in Java

1-10 Oracle Configuration Interface Object (CIO) Developer’s Guide

import oracle.apps.cz.cio.*;
import com.sun.java.util.collections.List; // line 2
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

public class MyClass extends FunctionalCompanion // line 6
{

// constructor
public MyClass(CIO cio, IRuntimeNode node) {
}

public void initialize(IRuntimeNode node, String name, String description,
int id) {

// implement body, if necesary
super.initialize(node, name, description, id);

}

public void autoConfigure() throws LogicalException {
// implement body as desired
}

public List validate() {
// implement body as desired
return null;
}

// for thin client
public void generateOutput(HttpServletResponse response) throws IOException

{
// implement body as desired
}

// for thick client
public String generateOutput() {
// implement body as desired
return null;
}

public void terminate() {
// implement body, if necesary
super.terminate();
}

}

Building Functional Companions in COM

Functional Companions 1-11

Line 2
import com.sun.java.util.collections.List; // line 2

If you are using JDK 1.1.x, import com.sun.java.util.collections.List,
which is provided in collections.jar (see "Installation Requirements for Java
Functional Companions" on page 1-8). If you are using JDK 1.2, then
import java.util.List.

Line 4
public class MyClass extends FunctionalCompanion // line 6

This class extends the base class for Functional Companions:
oracle.apps.cz.cio.FunctionalCompanion. See the explanation under
Step 3.

1.4 Building Functional Companions in COM
With certain restrictions, you can build Functional Companions as objects
conforming to the Microsoft Component Object Model (COM) standard.

It is currently only possible to run COM Functional Companions on
Windows 95/98 and Windows NT 4.0, using the Microsoft Java Virtual Machine
(JVM). (This precludes using COM Functional Companions in a server context
using Oracle Application Server.)

The Java wrapper classes needed to access the CIO are installed with Oracle
Configurator. (See Section 1.3.2, "Installation Requirements for Java Functional
Companions" on page 1-8.)

A COM Functional Companion should be implemented as an object that supports
IDispatch (every instance of a Visual Basic class fits this criteria). The object then
needs to implement the initialize, autoConfigure, generateOutput
and terminate methods.)

The ProgID of the COM object should be specified as the Program String in Oracle
Configurator Developer. See Section 1.5.1, "Associating Functional Companions
with your Model".

For details, a fuller example, and more background, see the Oracle White Paper
“Using COM with Oracle SellingPoint 4.2” (as noted under "Related Documents" on
page -xiv).

Building Functional Companions in COM

1-12 Oracle Configuration Interface Object (CIO) Developer’s Guide

Example 1–2 illustrates a simple COM Functional Companion implemented in
Visual Basic.

Example 1–2 COM Functional Companion

Option Explicit

Private m_component As Object
Private m_name As String
Private m_description As String
Private m_id As Long

' The initialize method stores the initialization information in instance
variables
Public Sub initialize(component As Object, name As String, description As
String, id As Long)
Set m_component = component
m_name = name
m_description = description
m_id = id

End Sub

' This autoConfigure method selects a particular option in a feature of the
component
Public Sub autoConfigure()
Dim feature1 As Object
Dim option1 As Object

Set feature1 = m_component.getChildByName("Feature1")
Set option1 = feature1.getChildByName("Option1")
Call option1.Select

End Sub

' This validate method requires that a particular option not be set. If the
option is
' set, a validation failure is raised by returning the failure message in an
array,
' otherwise, True is returned.
Public Function validate() As Variant
Dim feature1 As Object
Dim option2 As Object

Set feature1 = m_component.getChildByName("Feature1")
Set option2 = feature1.getChildByName("Option2")
If option2.isSelected() Then

Incorporating Functional Companions in your Application

Functional Companions 1-13

validate = Array("Option2 cannot be selected")
Else
validate = True

End If
End Function

' This generateOutput method returns the name of the component.
Public Function generateOutput() As String
generateOutput = m_component.getName()

End Function

Public Sub terminate()
End Sub

1.5 Incorporating Functional Companions in your Application

1.5.1 Associating Functional Companions with your Model
To enable your Functional Companion to work with your Oracle SellingPoint
application, you must associate it with a Component (or Product) in your Model.
You create this association in Oracle Configurator Developer, as a type of
Configuration Rule that specifies the Functional Companion method(s) that you
have implemented, and the path to be used by the Oracle SellingPoint application
to locate the Functional Companion object.

To create an association between a Component and a Functional Companion:

1. Click on the Rules button on the main toolbar.

A list of the Configuration Rule types appear in the lower-left pane.

2. Choose New Functional Companion from the Create menu. You can also
highlight the Functional Companions node, click on the right mouse button,
and select New Functional Companion from the popup menu.

3. Type a name for the Functional Companion rule.

4. In the Description section, type a short explanation of the Functional
Companion rule. If necessary, open the Description section by clicking on the
blue arrow to the left of it.

5. If necessary, open the Definition section by clicking on the blue arrow to the left
of it. In the Model view, select the Component or Product that you want to
include in this rule. Drag it with the left-hand mouse button to the Base

Incorporating Functional Companions in your Application

1-14 Oracle Configuration Interface Object (CIO) Developer’s Guide

Component field in the Definition section. Only one Base Component may be
specified per rule.

6. Choose one or more roles for the Functional Companion. The choices are:

See Section 1.1.1, "Types of Functional Companions" and Section 2.9, "Standard
Interface Methods for Functional Companions" for background. Note that you
do not associate the initialize() and terminate() methods, since they
are invoked automatically by the Oracle SellingPoint application.

7. Indicate how the Functional Companion is implemented:

� Java

� GSL

� COM

8. Type in the Program String that identifies the Functional Companion:

� For Java, this is the name of the class that implements the Functional
Companion, such as:

FuncCompTest1

The full class specification must be accessible through your CLASSPATH
environment variable. For instance, if FuncCompTest1 is contained this
way in a JAR file tests.jar:

com\java\tests\FuncCompTest1.class

then you would specify the Functional Companion this way in
Configurator Developer:

com.java.tests.FuncCompTest1

See Step 8 under Section 1.3.1, "Procedure for Building Functional
Companions in Java".

� For GSL, this is a top-level path specifying a library and building block,
such as:

Type Associated Functional Companion method

Auto-configuration autoConfigure

Validation validate

Output generateOuput

Incorporating Functional Companions in your Application

Functional Companions 1-15

fc_test_lib.fc_test

See Oracle SellingPoint CompanionBuilder Help for details on working with
GSL.

� For COM, this is a ProgID, such as:

FCTestProject.FCTest

See Section 1.4, "Building Functional Companions in COM".

9. Choose Generate Active Model from the Tools menu.

10. When the Generate Active Model command completes successfully, click on the
UI button on the main toolbar, then choose Refresh from the Edit menu.

Figure 1–1 shows what the Rules module screen of Oracle Configurator
Developer might look like after you associate a Component with a Functional
Companion.

Incorporating Functional Companions in your Application

1-16 Oracle Configuration Interface Object (CIO) Developer’s Guide

Figure 1–1 Associating a Component with a Functional Companion

Figure 1–2 shows details of the Attributes view of the screen in Figure 1–1.

Incorporating Functional Companions in your Application

Functional Companions 1-17

Figure 1–2 Functional Companion Rule: Detail of the Attributes view

1.5.2 Testing Functional Companions in the Oracle SellingPoint Application

After you generate the Active Model and UI, you can test your Functional
Companions by running the Oracle SellingPoint application. You can run the Oracle
SellingPoint application in the ways described below.

Note: The Oracle SellingPoint application is provided with
Release 11i of Oracle Configurator.

Incorporating Functional Companions in your Application

1-18 Oracle Configuration Interface Object (CIO) Developer’s Guide

1.5.2.1 Testing from the Windows Start Menu
To run the Oracle SellingPoint application from the Windows Start Menu:

� Follow the instructions in the Oracle Configurator Developer CD-ROM Insert on
running the Oracle SellingPoint application.

1.5.2.2 Testing from Oracle Configurator Developer
To run the Oracle SellingPoint application from Oracle Configurator Developer:

1. Use Tools > Options to chose the Oracle SellingPoint application as your test
environment.

2. Click the Test button.

3. Follow the instructions in the Oracle Configurator Developer CD-ROM Insert on
running the Oracle SellingPoint application.

1.5.2.3 Test Functionality in the Oracle SellingPoint Application
The Active User Interface for the Oracle SellingPoint application allows you to test
your Functional Companions as appropriate:

Figure 1–3 illustrates testing several Functional Companions in the Oracle
SellingPoint application. The Functional Companions illustrated are the ones
defined in the example in Section 4.2, "Basic Java Functional Companion" on
page 4-2.

� Clicking the GenerateOutput Functional Companion button produces a
window that displays the current value of several Features. (This uses the "thick
client" version of generateOutput(). For a thin-client example, see
Section 4.3, "Thin-Client generateOutput() Functional Companion".)

� There is no button for the Validate Functional Companion. The validate()
method is run whenever there is a change in the value of an Option. If the value

Type User Interface feature

Auto-configuration A button allows the user to run the autoConfigure() method
on the associated Component instance.

Validation The validate() method is called automatically when the user
selects anything.

Output A button allows the user to run the generateOuput()
method on the associated Component instance.

Incorporating Functional Companions in your Application

Functional Companions 1-19

violates a specified range, or a Configuration Rule, then the application displays
a Configuration Status message.

� Clicking the AutoConfigure Functional Companion button changes the value of
a numeric Feature (not shown here), in this case violating a specified minimum
and thereby triggering the Configuration Status message.

Figure 1–3 Testing Functional Companions in the Oracle SellingPoint application.

Each button that runs a Functional Companion is labelled with default text that
identifies the Functional Companion that the button activates. You can use the User
Interface module of Oracle Configurator Developer to modify these labels. The
labels buttons generated by the Functional Companion shown in Figure 1–1 have

Incorporating Functional Companions in your Application

1-20 Oracle Configuration Interface Object (CIO) Developer’s Guide

been so modified, by adding the self-identifying text [AutoConfigure] and
[GenerateOuput], as shown in Figure 1–4.

Figure 1–4 Modifying Functional Companion Buttons

The Configuration Interface Object (CIO) 2-1

2
The Configuration Interface Object (CIO)

2.1 Background

2.1.1 What is the CIO?
The Configuration Interface Object (CIO) is an API (application programming
interface) that provides your programs access to the Model used by a Oracle
SellingPoint application, which you construct with Oracle Configurator Developer.

The CIO is also used by Functional Companions. See Section 1.2, "Functional
Companions and the CIO".

The CIO is a top-level configuration server. The CIO is responsible for creating,
saving and destroying objects representing configurations, which themselves
contain objects representing Products, Components, Features, Options, Totals and
Resources. The runtime configuration model can be completely controlled and
manipulated through these interfaces, using methods for getting and setting logical,
numeric and string values, and creating optional subcomponents.

Internally, the CIO performs its tasks through interfaces to logic net objects (to get
and set logic states), to runtime model subschema objects (to create the appropriate
runtime Model based on the design-time model), and to configuration subschema
objects (to save and restore configurations created by a user).

The Oracle Configuration Interface Object is written in Java, and implemented as a
set of Java packages. The only one that you will usually need to import is:

oracle.apps.cz.cio

The CIO’s Runtime Node Interface Classes

2-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

Interfaces are also provided for Oracle’s Generative Specification Language (GSL).
The current version of Oracle Configurator Developer supports the ability to
connect your Model directly to GSL objects built with CompanionBuilder.

2.1.2 The CIO and Functional Companions
A Functional Companion is a Java client of the CIO.

Functional Companions are invoked by the CIO through the Oracle SellingPoint
application, and Functional Companions call the CIO to get information from the
running Model. The CIO is like a broker for the Active Model, in that it passes
information both ways. Programmers writing Functional Companions need to have
some knowledge of how to use the CIO.

Each Functional Companion is an object class. For every Component instance in
your Model that is associated with a Functional Companion, the CIO creates an
instance of this class.

2.2 The CIO’s Runtime Node Interface Classes
When you program against the CIO, you only create instances of the classes CIO
(see Section 2.3, "Initializing the CIO") and Configuration (see Section 2.4.1,
"Creating and Deleting Configurations"). You then use the public interfaces listed in
Table 2–1 to access fields in the runtime node objects created by your instances of
CIO and Configuration. Apart from CIO and Configuration, your code
should refer only to these public runtime node interface objects. You should not
implement any of the runtime node interface classes, but only use them as
references to runtime node objects.

These interfaces are all defined in the Java package oracle.apps.cz.cio.

Note: All references in this document to classes, methods, and
properties refer to the package oracle.apps.cz.cio, and all
code examples are in Java, unless otherwise stated.

Table 2–1 Runtime node interface classes for the CIO

Interface Role of implementing classes

IBomItem Implemented by all selectable BOM items.

The CIO’s Runtime Node Interface Classes

The Configuration Interface Object (CIO) 2-3

The functionality underlying the CIO interfaces is implemented by other classes in
oracle.apps.cz.cio, which are subject to revision by Oracle. This

 IConfigEventListener Implemented by objects that want to find out about added
components.

ICompSetEventListener Implemented by objects that want to find out about added
components.

ICount Implemented by objects that have an associated integer count.

IDecimal Implemented by objects that have a decimal value.

IDecimalMinMax Implemented by objects that have a decimal minimum and
maximum value.

IFunctionalCompanion Implemented by Functional Companion objects attached to
Components in order to provide programmatic functionality to
a configuration model.

IInteger Implemented by objects that have an integer value.

IIntegerMinMax Implemented by objects that have an integer minimum and
maximum.

IOption Implemented by objects that act as options. The defining
characteristic of an option is that it can be selected and
deselected.

IOptionFeature Implemented by objects that contain selectable options. This
interface provides a mechanism for selecting and deselecting
options, and for determining which options are currently
selected.

IReadOnlyDecimal Implemented by objects that have a decimal value.

IRuntimeNode This interface implements behavior common to all nodes in the
runtime configuration tree, including Components, Features,
Options, Totals, and Resources.

IState Implemented by objects that have logic state. This interface
contains a set of input states, used to specify a new state for an
object, a set of output states, returned when querying an object
for its state, and a set of methods for getting and setting the
object's state.

IText Implemented by objects that have a textual value.

Table 2–1 (Cont.) Runtime node interface classes for the CIO

Interface Role of implementing classes

Initializing the CIO

2-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

interface/implementer architecture protects your code from the effects of such
revisions, since the interfaces will remain constant.

Reference
For reference documentation, see: Package oracle.apps.cz.cio.

2.3 Initializing the CIO
In order to use any of the features of the CIO, an application must initialize it, using
a JDBC driver to make a connection to the Oracle Configurator Database. This
connection enables the CIO to obtain and store data about Model structure,
Configuration Rules, and User Interface.

If you are using the CIO in a custom user interface, you will have to initialize the
CIO.

1. Import the necessary packages.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;

2. Load the database driver that you have installed. For instance, load one of the
following:

Class.forName("com.ms.jdbc.odbc.JdbcOdbcDriver");
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Class.forName("oracle.jdbc.Driver.OracleDriver");

3. Create a CZContext context object and pass to it the information needed to
make a database connection: the database URL, the user ID and password of the
current user, and the owner of the database. The context object manages the

Note: When you run Functional Companions through the Oracle
SellingPoint application (or test them by using the Test button in
Oracle Configurator Developer), this initialization and connection
work is automatically handled for you by the application; you do
not have to write your own code to initialize the CIO.

Initializing the CIO

The Configuration Interface Object (CIO) 2-5

database connection; you should not create a separate connection object (e.g.,
with java.sql.DriverManager.getConnection).

CZContext contextObject = new CZContext("jdbc:subprotocol:datasource",
"userID", "password", "schemaOwner");

4. Create a CIO object.

CIO cioObject = new CIO();

5. Pass the location of the Active Model to the CIO object. Ordinarily, this will be
ORACLE_HOME/OSP/Shared/ActiveModel/. This is only necessary if your
application logic is not generated in the database.

cioObject.setActiveModelPath("modelPath");

Example 2–1 shows how Steps 1 through 5 are combined together. See Section 4.1,
"Initializing the CIO" for a fuller example of initializing the CIO.

Example 2–1 Initializing the CIO (Short Example)

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;

public class InitCIO
{

private void InitializeCIO() throws SQLException
{
CIO cio;
CZContext context;

try{Class.forName("com.ms.jdbc.odbc.JdbcOdbcDriver");}
catch (ClassNotFoundException c){System.out.println(c);}

context = new CZContext("jdbc:odbc:TutorialLite", "spx", "spx", "spx");
cio = new CIO();
cio.setActiveModelPath("D:/orant/OSP/Shared/ActiveModel/");
}

}

Access to Configurations

2-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

2.4 Access to Configurations
The Configuration object, oracle.apps.cz.cio.Configuration, represents a
complete configuration. You can use the CIO to work with multiple configurations
within the same session.

A configuration communicates through the Configuration object. It supports
accessing the containing CIO, the root Component, the project ID, a collection of
current validation failures, access to any runtime node based on its runtime ID, and
an indication if the complete configuration is satisfied. In addition, there are
methods for starting, ending, and rolling back configuration-level logic transactions;
these transactions are to maintain logic consistency and are not database
transactions. See Section 2.4.4, "Logic Transactions".

Reference
For reference documentation, see: Configuration.

2.4.1 Creating and Deleting Configurations
Use CIO.createConfiguration() to create a Configuration object, which is the
top-level entry point to a configuration. There are different ways to create a
Configuration, depending on your requirements.

� To create a Configuration using the name of a Project as specified in Oracle
Configurator Developer, use this form:

createConfiguration(java.lang.String projectName,
oracle.apps.fnd.common.Context ctx)

� To create a Configuration using the ID of the root node of your Model, use this
form:

createConfiguration(int rootNodeID,
oracle.apps.fnd.common.Context ctx)

To determine the root node ID, you would query the Oracle Configurator
Database, which is described in the Oracle Configurator Technical Reference
Manual. Such a query might be:

SELECT PS_NODE_ID FROM CZ_PS_NODES WHERE NAME = 'CN9744';

Both ways of creating a Configuration object require a database context object, as
discussed in Step 3 of Section 2.3 on page 2-4.

For reference documentation on the database context object, see: CZContext.

Access to Configurations

The Configuration Interface Object (CIO) 2-7

To delete all runtime structure and memory associated with a configuration, use
CIO.closeConfiguration()

To get the CIO that created the configuration, use Configuration.getCIO().

Example 2–2 Creating New Configuration Objects

// create the database context object
ctx = new CZContext("jdbc:odbc:testdb101", "myusername", "mypasswd", "admin01");

// create Configuration using Project name and Context
cfg_prj = createConfiguration(“Project 10”, ctx);

// create Configuration using ID of root node of Model and Context
cfg_id = createConfiguration(1221, ctx);

2.4.2 Saving and Restoring Configurations
Use Configuration.saveNew()to Save an entirely new Configuration object
into the Oracle Configurator Database.

Use Configuration.save() to save subsequent changes to a Configuration
object created with saveNew(), or to a Configuration object restored with
CIO.restoreConfiguration().

Use CIO.restoreConfiguration() to restore a Configuration object from the
Oracle Configurator Database.

Use Configuration.saveNewRev() to save a new revision of the restored
Configuration object.

Use Configuration.saveAs(configHeaderID, revNumber) to save the
current Configuration object over a different Configuration already saved in the
database. You use the configHeaderID and revNumber to open a
configuration header object and replace the configuration in it.

Note: Do not save a Configuration object during a logic
transaction (see Section 2.4.4). You may miss some validation
messages that are not available until the transaction is committed.

Access to Configurations

2-8 Oracle Configuration Interface Object (CIO) Developer’s Guide

2.4.3 Access to Configuration Parameters
If you are using Oracle Configurator Internet Edition for a web-based application,
you can use the CIO to allow a Functional Companion to obtain a list of the
configuration inputs that were passed from your application to your configuration
Model.

Create a Functional Companion that calls
Configuration.getInitParameters(), which returns a NameValuePairSet
object. This object contains all the parameter values stored by the Internet Edition
UI Server when it processed the initialization message sent by your application to
the Internet Edition UI Servlet.

See the Oracle Configurator Internet Edition Developer’s Guide for information on
Internet Edition.

Reference
For reference documentation, see: NameValuePairSet.

2.4.4 Logic Transactions
In order to help you maintain consistency in interactions with the Oracle
Configurator logic engine, you can use configuration-level logic transactions. A logic
transaction comprises all the logical assertions that constitute a user interaction. At
the end of a transaction, the CIO returns a list of all validation failures. See
Section 2.8, "Validating Configurations".

The Configuration object, oracle.apps.cz.cio.Configuration, provides a
set of methods for starting, ending, and rolling back configuration-level logic
transactions. Note that logic transactions are not database transactions.

Inside a transaction, the normal course of action is to set the logical states and
numeric values of runtime nodes (see Section 2.5.4 and Section 2.5.5).

� Use Configuration.beginConfigTransaction() to create a new
transaction, returning a ConfigTransaction object. After performing the desired
series of operations (e.g., setting states and values), you must end, commit, or
roll back the transaction by passing the ConfigTransaction object to one of the
mutually exclusive methods that finish the transaction:

endConfigTransaction
commitConfigTransaction
rollbackConfigTransaction

Access to Nodes of the Model at Runtime

The Configuration Interface Object (CIO) 2-9

� Configuration.endConfigTransaction(transaction) ends the
transaction begun with beginConfigTransaction(), without committing it
(thus skipping validation checking).

� Configuration.commitConfigTransaction(transaction) commits
the given transaction or series of nested transactions, propagates the effect of
user selections throughout the configuration Model, and triggers validation
checking (see Section 2.8, "Validating Configurations").

� Configuration.rollbackConfigTransaction(transaction)rolls
back the unfinished transaction, undoing the operations performed inside it.

You can nest intermediate transactions with beginConfigTransaction() and
endConfigTransaction, delaying validation checking until you call
commitConfigTransaction(). You must end or commit inner transactions
before ending or committing the outer ones that contain them. When rolling back
unfinished transactions, with rollbackConfigTransaction(), you can roll
back outer transactions, which automatically rolls back the inner transactions.

When beginning a transaction, you can autocommit it, by setting the optional
boolean autoCommit argument to beginConfigTransaction() to TRUE. If
no argument is set, then the transaction inherits the autocommit state of its parent
(outer) transaction. If an outer transaction sets autoCommit to TRUE, then inner
transactions can override it to either TRUE or FALSE. If an outer transaction sets
autoCommit to FALSE, then inner transactions cannot override it; they will
always inherit FALSE.

Reference
For reference documentation, see: Configuration.

2.5 Access to Nodes of the Model at Runtime
The root Component, and every other node in the underlying runtime Model tree,
implements the IRuntimeNode interface. This interface exposes the type of the node
(based on a set of node type constants), its name, the database ID, the database node
of which this runtime node is an instance, a runtime ID that is unique to this node
across all nodes created by this particular CIO, the parent node (which is null for
the root Component), a (possibly empty) collection of children, and information
about whether this part of the runtime tree has been satisfied. See Section 2.6,
"Introspection through IRuntimeNode".

Use IRuntimeNode.getConfiguration() to get the configuration to which a
node belongs.

Access to Nodes of the Model at Runtime

2-10 Oracle Configuration Interface Object (CIO) Developer’s Guide

Reference
For reference documentation, see: IRuntimeNode.getConfiguration().

2.5.1 Accessing Components
Use Component.getFunctionalCompanions() to return a list of all the
Functional Companions associated with this Component.

2.5.2 Adding and Deleting Optional Components
The Component set represents a set of similar Components that can be added and
deleted dynamically. Each Component set implements the IRuntimeNode interface.

Use ComponentSet.add() to an optional Component. The add() method can
throw a LogicalException exception if adding the Component causes a logical
contradiction.

Use ComponentSet.delete(component) to delete an optional Component.

2.5.3 Accessing Features
There are several specialized types of Features. Each Feature type supports the
IRuntimeNode interface, enabling you to use its general methods for working with
runtime nodes (see "Introspection through IRuntimeNode" on page 2-15). Each type
also supports its own interface with appropriately specialized methods.

BooleanFeatures have a boolean (true/false) value.

CountFeatures have both a boolean value, and an associated integer-valued
numeric count. The minimum value of the count must be greater than or equal to
zero. The boolean value a CountFeatures object is returned by its methods
hasMax() and hasMin().

IntegerFeatures have an integer numeric value. The value can be positive, negative,
or zero.

DecimalFeatures have a floating point value.

TextFeatures have a string value.

OptionFeatures have a logic value, and a set of options as children. You can use the
methods getMinSelected() and getMaxSelected(), of IOptionFeature,
to determine the minimum and maximum number of a Feature’s child Options that
can be selected. If you do, first use hasMinSelected() or hasMaxSelected()
to determine whether there is a minimum or maximum number of Options.

Access to Nodes of the Model at Runtime

The Configuration Interface Object (CIO) 2-11

2.5.4 Getting and Setting Logic States
To interact with objects that have logic state, you implement the IState interface.
This interface contains:

� a set of input states, used to specify a new state for an object

� a set of output states, returned when querying an object for its state

� a set of methods for getting and setting the object's state

Note: If, in Oracle Configurator Developer, you set the minimum
count of a Feature greater than or equal to zero, then the CIO treats
this as a CountFeature object. If you set the minimum count less
than zero, then the CIO treats this as a IntegerFeature object.

FALSE The input state used to set an object to false.

TRUE The input state used to set an object to true.

TOGGLE The input state used to turn an object state to true if it is false or
unknown, and to make it unknown or false if it is true.

LFALSE The logically false output state, indicating that the state is false as a
consequence of a rule.

LTRUE The logically true output state, indicating that the state is true as a
consequence of a rule.

UFALSE The user false output state, indicating that a user has set this object to
false.

UNKNOWN The unknown output state.

UTRUE The user true output state, indicating that a user has set this object to
true.

getState() Gets the current logic state of this object.

setState(int state) Change the current logic state of this object.

Access to Nodes of the Model at Runtime

2-12 Oracle Configuration Interface Object (CIO) Developer’s Guide

Example 2–3 Getting the state of a node

The following code fragment, which uses getState() with UTRUE, is taken from
Section 4.2, "Basic Java Functional Companion", after the comment "//get the

necessary components from the configuration // line 61".

//get the necessary components from the configuration // line 61
baseComponent = (oracle.apps.cz.cio.Component)comp_
node.getChildByName("Component-1");

of = (OptionFeature)baseComponent.getChildByName("Feature-1");
op = (Option)of.getChildByName("Option-1");
intFeat = (IntegerFeature)baseComponent.getChildByName("IF-1");
//check if the option is set to UTRUE. If so, set the Integer value

to 5
if(op.getState() == IState.UTRUE)

intFeat.setIntValue(5);
}

Example 2–4 Setting the state of a node

The following code fragment, which uses setState() with TOGGLE, toggles the
state of the selected item in the Model tree.

private void toggleSelectedItem() {
IState node = (IState)tree.getLastSelectedPathComponent();
try {
node.setState(IState.TOGGLE);

}
catch (LogicalException le) {}
catch (TransactionException te) {}

tree.repaint();

2.5.5 Getting and Setting Numeric Values
You can use the following methods to get and set the values of objects that have
numeric values.

For decimal values, use:

IDecimal.setDecimalValue()
IReadOnlyDecimal.getDecimalValue()
For integer values, use:

IInteger.setIntValue()

Access to Nodes of the Model at Runtime

The Configuration Interface Object (CIO) 2-13

IInteger.getIntValue()

The code fragment in Example 2–5 uses setIntValue() to change the value of an
Integer Feature. Note that you can use the generalized IRuntimeNode interface for
flexibility in selecting a child node, and then cast the node object to a particular
interface to perform the desired operation on it.

Example 2–5 Setting a numeric value

// select a node by name
IRuntimeNode limit = baseComp.getChildByName("Current Limit");

// use an interface cast to set the node’s value by the desired type
((IInteger)limit).setIntValue(5);

To determine whether a numeric value has violated its Minimum or Maximum
range, you may need to iterate through the collection of validation failures returned
by Configuration.getValidationFailures() after setting a value, for
instance with IInteger.setIntValue(). See Section 2.8, "Validating
Configurations" for more background.

There is a subtlety that you should take note of.
IDecimal.setDecimalValue()does not throw a LogicalException when setting
the value of a decimal feature that exceeds the feature's Min/Max limits. The
collection of validation failures returned by
Configuration.getValidationFailures() does not include any failures
that result from setting a numeric value until the logic transaction has been closed,
so there is no way to roll back a transaction in which a Min/Max violation has
occurred. Here is a suggested method for dealing with this situation:

1. Open a transaction.

2. Set the new value.

3. Close the transaction.

4. Get the collection of validation failures for the configuration.

5. If the last transaction caused a Min/Max violation, then call
Configuration.undo(), which retracts the last transaction.

This situation illustrates why it is a good practice to perform the setting of a single
value inside a logic transaction. You can always undo it if the result is
unsatisfactory.

Access to Nodes of the Model at Runtime

2-14 Oracle Configuration Interface Object (CIO) Developer’s Guide

2.5.6 Accessing Properties
You can determine which Properties belong to a runtime node, then use methods of
the class Property to obtain information about the Properties.

Use IRuntimeNode.getProperties() to get a collection of the properties
associated with a node.

Use IRuntimeNode.getPropertyByName() to get a particular property of a
node, based on its name.

When you have the Property, use methods of the class Property, such as
getStringValue(), to obtain specific information.

2.5.7 Access to Options
Option features have special methods for selecting options and querying for
selected options. The selectOption() method implements mutual exclusion
behavior for option features with a min/max of 1/1 by deselecting a currently
selected option before selecting the new option. The getSelectedOption()
method throws the TooManySelectedException if more than one option is selected
in the feature.

An option is a child of an option feature which supports a true/false logic state and
a count. Options implement the IRuntimeNode interface.

You can use the interface class IOption to select, deselect, and determine the
selection state of Options.

2.5.7.1 Example for IOption
The following code fragment displays a “check” icon if an Option of a runtime node
is selected, and displays an “unsatisfied” icon if the node is logically unsatisfied:

IRuntimeNode rtNode = (IRuntimeNode)value;
if (value instanceof IOption) {
IOption optionNode = (IOption)value;
if (optionNode.isSelected()) {

Table 2–2 Methods of the Interface Class IOption

Method Action

deselect() Deselect this Option.

isSelected() Returns true if this Option is selected, and false otherwise.

select() Select this Option.

Introspection through IRuntimeNode

The Configuration Interface Object (CIO) 2-15

setIcon(checkIcon);
}

} else if (rtNode.isUnsatisfied()) {
setIcon(unsatIcon);

}
return this;

2.6 Introspection through IRuntimeNode
You can get information about a node in a Model at runtime by using methods of
the interface class IRuntimeNode. This helps you to write “generic” Functional
Companions, which can interact with a Model tree dynamically, without having
prior knowledge of its structure.

Table 2–3 Methods of the interface class IRuntimeNode

Method Action

getChildByID(id) Gets a particular child identified by its ID.

getChildByName(name) Gets a particular child identified by its name.

getChildren() Gets the children of this runtime configuration node.

getChildrenByType(type) Gets all of the children of a particular type.

getConfiguration() Gets the configuration to which this node belongs.

getDatabaseID() Gets the database ID of the node. This is the field CZ_PS_
NODES.PS_NODE_ID in the Oracle Configurator
Database, described in the Oracle Configurator Technical
Reference Manual.

getDescription() Returns the design-time description of the runtime node.

getName() Gets the name of the node.

getParent() Gets the parent of the node.

getProperties() Returns a collection of the properties associated with this
node. The collection contains items of the type Property.

getPropertyByName(name) Returns a particular property of the node, based on its
name. Returns null if a property of the given name does
not exist.

getRuntimeID() Gets the runtime ID of the node.

getSelectionLineID() Returns selection line ID (configuration output database
ID) for node.

Introspection through IRuntimeNode

2-16 Oracle Configuration Interface Object (CIO) Developer’s Guide

Reference
For reference documentation, see the Methods summary for: IRuntimeNode.

Example 2–6 Testing whether a node is selected, or satisfied

The following code fragment displays a “check” icon if an Option of a runtime node
is selected, and displays an “unsatisfied” icon if the node is logically unsatisfied:

IRuntimeNode rtNode = (IRuntimeNode)value;
if (value instanceof IOption) {
IOption optionNode = (IOption)value;
if (optionNode.isSelected()) {
setIcon(checkIcon);

}
} else if (rtNode.isUnsatisfied()) {
setIcon(unsatIcon);

}
return this;

Example 2–7 Getting a child node by name

The following code fragment creates a Configuration object config, sets
homeTheater to the root Component of the configuration, and sets userType to
the child node with the user-visible name “User Type”.

Configuration config = m_cio.createConfiguration(m_product);

getType() Gets the type of this node.

hasCount() Returns true if the node has an object count.

hasDecimalValue() Returns true if the node has a decimal value.

hasSelectionLineID() Returns true if node has a selection line ID (configuration
output ID), false if no

hasState() Returns true if the node has a logical state.

hasTextValue() Returns true if the node has a text value

isUnsatisfied() Returns true if this particular node, or any one of its
children, has not been completely configured.

isUnsatisfiedNode() Returns true if this particular node has not been
completely configured.

Table 2–3 (Cont.) Methods of the interface class IRuntimeNode

Method Action

Handling Logical Contradictions

The Configuration Interface Object (CIO) 2-17

IRuntimeNode homeTheater = config.getRootComponent();

IRuntimeNode userType = homeTheater.getChildByName("User Type");

Example 2–8 Collecting all child nodes by type

The following code fragment, which uses getChildrenByType(), is taken from
Section 4.2, "Basic Java Functional Companion", after the comment "//get all the

text features // line 167".

//get all the text features // line 167
textFeatList = comp.getChildrenByType(comp.TEXT_FEATURE);
traverseTree(comp.getChildren(),

comp.TEXT_FEATURE,
textFeatList);

iter = textFeatList.iterator();

2.7 Handling Logical Contradictions
When you make a request to modify the state of a logic network, for instance by
using IState.setState, the result may be a failure of the request because of a
logical contradiction. Such a failure will create and throw a logical exception,
accessed through either the LogicalException or
LogicalOverridableException objects. A LogicalException cannot be
overriden.

See "Overriding Contradictions" for details on using
LogicalOverridableException to override the contradiction.

Use LogicalException.isOverridable() to determine whether the
exception is an instance of LogicalOverridableException, which can be
overriden with its override() method.

Use LogicalException.getCause() to get the runtime node that caused the
failure.

Use LogicalException.getReasons()to get a list of reason strings for the
failure.

Use LogicalException.getMessage() to provide a message containing either
the cause or the reasons.

Handling Logical Contradictions

2-18 Oracle Configuration Interface Object (CIO) Developer’s Guide

Reference
For reference documentation, see: LogicalException.

2.7.1 Generating Error Messages from Contradictions
You can use the Reason object to wrap the information returned by a contradiction,
in order to include information about internal error messages.

Reason(int type,
IRuntimeNode node,
java.lang.String msg)

Constructs a Reason given all of its information:

Use Reason.getMsg()to get the message associated with this reason.

Use Reason.getNode()to get the node associated with this reason.

Use Reason.getType()to get the type of reason held in this object.

Use Reason.toString()to convert this object to a string.

Reference
For reference documentation, see: Reason.

2.7.2 Overriding Contradictions
Your Oracle SellingPoint application or Functional Companion can provide a
message to your user, and ask whether the contradiction should be overridden.

If a logical contraction can be overriden, then a LogicalOverridableException
is signalled, instead of a LogicalException.
LogicalOverridableException is a subclass of LogicalException that
adds an override() method. Use
LogicalOverridableException.override()to override the contradiction.

Both types of exceptions (LogicalException and
LogicalOverridableException) may be thrown back from any of the "set"
methods (like setState) or from
Configuration.commitConfigTransaction(). If you want to override the

type What type of reason this is.

node The node that caused the problem.

msg The message returned.

Handling Logical Contradictions

The Configuration Interface Object (CIO) 2-19

overridable exception you have to call its override() method, which can also
throw a LogicalException. This means that even when you try to override the
exception you still trigger a contradiction and cannot continue. If the override
succeeds then you still need to call commitConfigTransaction() to close the
transaction. If you don't want to override or if you get a LogicalException you
need to call rollbackConfigTransaction() to purge it. Example 2–9 is a code
fragment that illustrates this point. Note that the operations represented with
<ASK “text”> and <SHOW “text”> are not part of the CIO but suggest where your
own Functional Companion should try to handle the situation.

Example 2–9 Handling and overriding Logical Exceptions

try {
// begin a transaction

ConfigTransaction tr = config.beginConfigTransaction();

// call the "set" method
opt1.setState();

// commit the transaction
config.commitConfigTransaction(tr);

}
catch(LogicalOverridableException loe) {
proceed = <ASK "Do you want to override?">;
if (! proceed) {
rollbackConfigTransaction();

}
else {
try {

// override the contradiction and ...
loe.override();
// ... finish the transaction

commitConfigTransaction();
}
catch (LogicalException le) {

// we cannot do anything
<SHOW "Cannot be overriden">
config.rollbackConfigTransaction(tr);

}
}

}
catch (LogicalException le) {

// we cannot do anything
<SHOW "Cannot be overriden">

Validating Configurations

2-20 Oracle Configuration Interface Object (CIO) Developer’s Guide

config.rollbackConfigTransaction(tr);
}

Reference
For reference documentation, see: LogicalOverridableException.

2.8 Validating Configurations
You want to be able to check whether a Configuration is valid (that is, does not
violate the rules associated with it).

The CIO validates a Configuration after all logical assertions that constitute a user
interaction are performed. This corresponds exactly to the length of a logical
transaction. See Section 2.4.4, "Logic Transactions".

Validation checking and reporting occur when a logical transaction is ended by
using Configuration.commitConfigTransaction(transaction) or
Configuration.rollbackConfigTransaction(transaction).

After a committal or rollback, the CIO traverses the nodes of the Model, checking
for validation failures, selected items and unsatisfied items. These are kept in a set
of collections maintained on the Configuration.

At this point, you can call the following methods of
oracle.apps.cz.cio.Configuration:

As nodes become selected they have a status of STATUS_NEW. If they continue to
be selected since the last transaction their status is STATUS_EXISTING. If they
become unselected, their status becomes STATUS_DELETED until the next
transaction at which time they will be removed from the collection.

getValidationFailures() Actually returns a collection of
"ValidationFailure" objects. Call this after
committing or rolling back a transaction, in order
to inspect the list of validation failures.

getSelectedItems() Returns a collection of selected items as a
StatusInfo structure indicating the set of
selected (true) items in the Configuration.

getUnsatisfiedItems() Returns a collection of unsatisfied items as a
StatusInfo structure indicating the set of
unsatisfied items in the Configuration.

Standard Interface Methods for Functional Companions

The Configuration Interface Object (CIO) 2-21

If you are writing a Functional Companion, the validate() method should return
a list of CompanionValidationFailure objects in the event of a validation
failure. This allows you to return more than one failure. Your validate() method
can include several tests; you can track which ones failed, and why. See
Section 2.9.3, "The validate() Interface Method".

Reference
For reference documentation, see: ValidationFailure and Configuration.

2.9 Standard Interface Methods for Functional Companions
You provide functionality for your Functional Companion by implementing body
code for the methods described in this section. For particulars that apply to the
languages currently supported by the CIO, and examples, see Section 1.3, "Building
Functional Companions in Java".

These methods are invoked by your Oracle SellingPoint application, through the
CIO, in response to program events or the actions of end users. The type of method
invoked for each Component is determined when you associate the Component
with a Functional Companion in Oracle Configurator Developer. See Section 1.5,
"Incorporating Functional Companions in your Application" for details.

These methods are invoked by the CIO for each Functional Companion object that it
creates for the Components in your Model. Note that your code does not invoke
these methods directly; that is done by the CIO. Rather, you implement the body of
each method, using the API provided by the CIO to communicate with your Model.

The body of any or all of these methods can be empty. Your Functional Companion
object has to implement only those methods indicated in Oracle Configurator
Developer.

The interface class that defines these methods is:

oracle.apps.cz.cio.IFunctionalCompanion

Reference
For reference documentation, see: IFunctionalCompanion.

Standard Interface Methods for Functional Companions

2-22 Oracle Configuration Interface Object (CIO) Developer’s Guide

2.9.1 The initialize() Interface Method
The IFunctionalCompanion.initialize() method is called when the
companion is created. It connects a Functional Companion object to its
configuration modeling environment (for example, a running instance of the Oracle
SellingPoint application). Be aware that Functional Companions are created and
initialized after all subcomponent instances are created for the current Component
instance.

Your implementation of initialize() can include tasks that you wish to perform
when the Functional Companion is first created. For example, you might wish to
start writing audit messages to a log file, tracking the actions performed by your
end users.

When an Oracle SellingPoint application runs, it creates runtime instances of all the
Components in the Model and their associated Functional Companions. When a
Functional Companion object is created, the CIO calls initialize() and passes
the following input parameters:

Table 2–4 Standard methods of the IFunctionalCompanion interface

Method Purpose Details in

initialize Saves information about the Model and performs any
actions needed to initialize the Functional Companion.

Section 2.9.1

autoConfigure Performs a programmatic configuration step. Section 2.9.2

validate Programmatically checks that a configuration is valid
and throws a LogicalException object if the Model is not
valid.

Section 2.9.3

generateOutput Generates output for this Component, for either a thick
or thin client.

Section 2.9.4

terminate Performs any cleanup on this Functional Companion
that needs to occur before the Companion is destroyed.

Section 2.9.5

Name Type Description

node IRuntimeNode The node instance associated with the Functional
Companion being created. Specified in Configurator
Developer. Currently, only Components can be specified
in Configurator Developer.

name String The name of the Functional Companion. Specified in
Configurator Developer.

Standard Interface Methods for Functional Companions

The Configuration Interface Object (CIO) 2-23

Your Functional Companion should ordinarily never directly call
FunctionalCompanion.initialize(), since the CIO does that for you
automatically. However, if your Functional Companion extends
FunctionalCompanion as its base class, and you wish to perform some
specialized initialization tasks, then the overriding initialize() method in your
class should call super.initialize(). This passes some necessary variables to
the superclass (oracle.apps.cz.cio.FunctionalCompanion) so that its
methods will work.

It is not normally necessary to implement your own initialize() method in
your Functional Companion. If you need to obtain the values of the input
parameters of FunctionalCompanion.initialize() for use elsewhere in
your Functional Companion, you can use the set of accessor methods of
FunctionalCompanion already provided in the
oracle.apps.cz.cio.FunctionalCompanion base class. Each of these
methods returns the value of the corresponding input parameter:

description String A description of the Functional Companion. Specified in
Configurator Developer.

id int The database ID of the Functional Companion. Created
internally.

Note: It is worth emphasizing that the node passed as the first
input parameter to initialize() is specified in Oracle
Configurator Developer, when you create the Functional
Companion rule that associates a Model node with your Functional
Companion.

getRuntimeNode() Returns the runtime node to which this functional is associated.

getName() Returns the name of the functional companion.

getDescription() Returns the description of the functional companion.

getID() Returns the database ID of the functional companion.

Name Type Description

Standard Interface Methods for Functional Companions

2-24 Oracle Configuration Interface Object (CIO) Developer’s Guide

Reference
For reference documentation, see: initialize(IRuntimeNode, String,
String, int).

2.9.2 The autoConfigure() Interface Method
The IFunctionalCompanion.autoConfigure() method is called at the
request of the controlling User Interface, and can set states in the Model, add
optional Components, etc.

This method performs an automatic configuration on the Model. This action can
include changing the logical state of Options, or adding nodes underneath the
selected Component instance in the Model tree.

Your implementation of autoConfigure() can include configuration actions that
you wish to be performed before your end users arrive at a certain point in a
configuration session, or as the result of certain choices that they make.

Reference
For reference documentation, see: autoConfigure().

2.9.3 The validate() Interface Method
The IFunctionalCompanion.validate() method is called automatically when
a logical transaction takes place, and should return a List of
CompanionValidationFailure objects if the Model is not valid.

This method performs a functional validation for the selected Component instance
each time the end user selects a node in the Model (for example, in the
Configurations section of the Oracle SellingPoint application).

You should not modify the Model in a validation function. Doing so can cause
unexpected application failures.

Note: Currently, in Configurator Developer, you can only
associate a Functional Companion with a Component (which
corresponds to the node parameter of initialize(). However,
to accommodate possible future enhancement of Configurator
Developer, the IFunctionalCompanion interface allows any
runtime node to be associated with your Functional Companion.

Standard Interface Methods for Functional Companions

The Configuration Interface Object (CIO) 2-25

Your implementation of validate() can include tasks that you wish to perform
whenever your end users make any selection. For example, you might wish to
perform a calculation based on the object count of the selected Component, and
present the end user with a notification if the result is outside a range that you
define.

If the validation fails, then information about the failure is gathered by the CIO in a
List of CompanionValidationFailure objects.

The general structure of your implementation of validate() should be:

1. Collect inputs from the Model.

2. Call a generic validation function that you define outside the body of
validate().

3. Propagate the result back as the value of the function, either null or a List of
CompanionValidationFailure objects.

Reference
For reference documentation, see: validate().

2.9.4 The generateOutput() Interface Method
The generateOutput() method is invoked at the request of the controlling User
Interface.

Your implementation of generateOutput() might include tasks such as writing
to a database, creating a report, or producing a visualization of the end user’s
configuration choices.

There are two versions of generateOutput():

� “thick client” version

public String generateOutput();

A thick client architecture is one in which the configuration Model, and the user
interface for manipulating it, both reside on the same client machine. The thick
client architecture allows your Functional Companion’s Output method to
produce output windows directly on the client machine.

This version is invoked when your Functional Companion operates with the
Oracle SellingPoint application. (Note: The returned string is ignored.)

� “thin client” version

Standard Interface Methods for Functional Companions

2-26 Oracle Configuration Interface Object (CIO) Developer’s Guide

public void generateOutput(HttpServletResponse response) throws IOException

A thin client, browser-based architecture is one in which the configuration
Model resides on a server, and the user interface resides on a client machine's
web browser. The thin-client architecture allows your Functional Companion’s
Output method to produce out in web-browser windows.

This version is invoked when your Functional Companion operates in a
web-based context.

See Section 4.3, "Thin-Client generateOutput() Functional Companion" for an
example.

Currently, there is no mechanism for output generated through
generateOutput() to provide feedback to the User Interface or the runtime
Model.

Reference
For reference documentation, see: generateOutput() and
generateOutput(HttpServletResponse).

2.9.5 The terminate() Interface Method
The IFunctionalCompanion.terminate() method is called automatically by
the CIO when the Component that the Functional Companion is attached to is
deleted from the running Model.

Your implementation of this method can include tasks that you wish to perform
when the Functional Companion is deleted. For example, if initialize() opens
a file and reads some data, terminate() would close the file.

Your Functional Companion should ordinarily never directly call
FunctionalCompanion.terminate(), since the CIO does that for you
automatically. However, if your Functional Companion extends
FunctionalCompanion as its base class, and you wish to perform some
specialized termination tasks, then the overriding terminate() method in your
class should call super.terminate().

Reference
For reference documentation, see: terminate().

Reference Documentation for the CIO 3-1

3
Reference Documentation for the CIO

Reference documentation for the Oracle Configuration Interface Object is provided
in the form of HTML pages generated by the Javadoc tool from the source code for
the CIO.

For the main entry point to these pages, follow this link:

� CIO Package and Related Classes

Tips
Here are some tips on using the generated reference documentation:

� Use the Bookmarks pane to navigate through the reference.

� Use the Contents and Index to look up items alphabetically.

� Reminder: Constants are referred to in Java as “static variables,” and are listed
under the heading “Fields” in the class in which they are defined.

3-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

Examples 4-1

4
Examples

This chapter contains code examples illustrating the use of Functional Companions
and the CIO. These examples are fuller and longer than the examples provided in
the rest of this document, which are often fragments. The examples here can be
compiled and used. See the cited background sections for details.

The examples given here are all in Java, and were compiled with JDK 1.1.8.

4.1 Initializing the CIO
For background, see Section 2.3, "Initializing the CIO". This example is intended for
custom user interfaces that use the CIO.

Example 4–1 Initializing the CIO (Long Example)

import java.io.*;
import java.sql.*;
import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;

class cioExample

{
private CIO InitializeCIO()
{

CIO cio = null;
CZContext context = null;

String jdbcDriver = "com.ms.jdbc.odbc.JdbcOdbcDriver"; // Class
name of the JDBC driver

String dbURL = "jdbc:odbc:cioExample";
String dbOwner = "cioExample";

Basic Java Functional Companion

4-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

String dbUsername = "spx";
String dbPassword = "spx";
String activeModelPath = "D:/orant/OSP/Shared/ActiveModel/"; //

Location of the LCE file

try {
// Load the JDBC driver
Class.forName(jdbcDriver);

// Establish a connection to the database
context = new CZContext(dbURL, dbUsername, dbPassword, dbOwner);

}
catch (ClassNotFoundException cnfe) {

System.out.println("Error loading class " + jdbcDriver);
System.exit(0);

}
catch (SQLException sqle) {

System.out.println("Error in creating Context");
System.exit(0);

}

try {
// Initialize the CIO
cio = new CIO();
cio.setActiveModelPath(activeModelPath);

}
catch (Exception e) {

System.out.println("Exception in InitializeCIO");
cio = null;

}

return cio;
}

}

4.2 Basic Java Functional Companion
For background, see Section 1.3, "Building Functional Companions in Java".

Example 4–2 implements all of the types of Functional Companions, which are
described in Section 1.1.1. The example implements the methods described in
Section 2.9, and assumes the structure of the Model shown in Figure 1–1.

Basic Java Functional Companion

Examples 4-3

Example 4–2 Basic Functional Companion: FuncCompTest1

import oracle.apps.cz.cio.*;
import com.sun.java.util.collections.List; // line 2
import com.sun.java.util.collections.ArrayList;
import com.sun.java.util.collections.Iterator;
import java.awt.*;
import java.awt.event.*;

public class FuncCompTest1 extends FunctionalCompanion
{

oracle.apps.cz.cio.IRuntimeNode comp_node; // currently, only Components

Frame f;
java.awt.List uiList;

/**
* Constructor:
* Can be used for any necessary setup.
*/
public FuncCompTest1()
{
}

/**
* Initialize: calls 'super' to get access to its functions.
* @param comp_node - base node of functional companion (currently, only

Components)
* @param name - the name of the companion
* @param description - a description of the companion
* @param id - the db id of the companion
* All of these parameters, except 'id', are specified in the companion
* definition in Developer. id is created internally.
*/
public void initialize(IRuntimeNode comp_node, String name, String

description, int id)
{

this.comp_node = comp_node;
super.initialize(comp_node, name, description, id); // line 35

}

/**
* Functionality implementation:
* There are three types of functionality for companions
* Any number of them can be implemented in each companion.

Basic Java Functional Companion

4-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

*/

/**
* Type 1: Auto-configuration
* If this method is defined, a button will appear in the UI and the code

will
* be run when the button is clicked. It is used to make changes to the
* configuration.
*/
public void autoConfigure()

//This example simply checks if a certain value is true and, if so, sets
//an integer feature value to 5;

{
OptionFeature of;
Option op;
IntegerFeature intFeat;
oracle.apps.cz.cio.Component baseComponent;

try
{

//get the necessary components from the configuration // line 61
baseComponent = (oracle.apps.cz.cio.Component)comp_

node.getChildByName("Component-1");
of = (OptionFeature)baseComponent.getChildByName("Feature-1");
op = (Option)of.getChildByName("Option-1");
intFeat = (IntegerFeature)baseComponent.getChildByName("IF-1");
//check if the option is set to UTRUE. If so, set the Integer value

to 5
if(op.getState() == IState.UTRUE)

intFeat.setIntValue(5);
}
catch(Exception e){System.out.println(e);}

}

/**
* Type 2: Validation
* If this method is defined, the code will automatically be run any time
* a change is made to the base node or one of its children in the
* configuration. It is used for ensuring that changes made result in a
* valid configuration. If not, the method returns a list of validation

failures.
*/
public List validate()

//This example defines 'min' (presumably the minimum amount this
customer

Basic Java Functional Companion

Examples 4-5

//may order) and checks to see if the value equals at least this amount.
//In the real world, you would want to get this value from your customer
//database. For example, customers in foreign countries may have higher

minimums
//since shipping is expensive.

{
int min = 8;
int val = 0;
IntegerFeature intFeat;
ArrayList failures = new ArrayList();

try
{

//get the value of the integer feature in the configuration
oracle.apps.cz.cio.Component c = (oracle.apps.cz.cio.Component)comp_

node.getChildByName("Component-1");
intFeat = (IntegerFeature)c.getChildByName("IF-1");
val = intFeat.getIntValue();

}
catch(NoSuchChildException e){e.printStackTrace();}

//check to see if the value in the config is not at least the min value
// line 102

if(!(val >= min))
failures.add(new CompanionValidationFailure("Value less than

minimum", comp_node, this));

if(failures.isEmpty())
return null;

else
return failures;

}

/**
* Type 3: Output
* If this method is defined, a button will appear in the UI which, when
* pressed, will run the code below. It is used to generate output to the
* user. Note: this uses the "thick client" version of generateOutput().
*/
public String generateOutput()

//This example opens up a window with a list of some of the current
//components of the configuration and their values. This example is

very basic but
//the idea here is that data from the configuration can be used to

Basic Java Functional Companion

4-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

generate reports,
//graphs, models, etc.

{
IntegerFeature intFeat;
TextFeature textFeat;
com.sun.java.util.collections.List intFeatList, textFeatList;
Iterator iter;

//setup the UI
if(f == null)

{
f = new Frame("Some info about this config");
uiList = new java.awt.List();
f.add(uiList);
f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e)
{

f.dispose();
}

});
}
uiList.removeAll();

try
{

//get all the integer features
intFeatList = comp_node.getChildrenByType(comp_node.INTEGER_

FEATURE);
traverseTree(comp_node.getChildren(),

comp_node.INTEGER_FEATURE,
intFeatList);

iter = intFeatList.iterator();

//add the integer features to the UI
while(iter.hasNext())
{

intFeat = (IntegerFeature)iter.next();
String name = intFeat.getName();
int val = intFeat.getIntValue();
uiList.add("Integer Feature: " + name + " - " + val);

}

//get all the text features // line 167
textFeatList = comp_node.getChildrenByType(comp_node.TEXT_FEATURE);
traverseTree(comp_node.getChildren(),

Basic Java Functional Companion

Examples 4-7

comp_node.TEXT_FEATURE,
textFeatList);

iter = textFeatList.iterator();

//add the text features to the UI
while(iter.hasNext())
{

textFeat = (TextFeature)iter.next();
String name = textFeat.getName();
String str = textFeat.getTextValue();
uiList.add("Text Feature: " + name + " - " + str);

}

f.setSize(200,200);
f.show();

}
catch(Exception e){e.printStackTrace();}

return null;
}

/**
* This function is used by generateOutput() to run through the config tree

and
* pull out all of the items of a specified type. It is not part of the

FunctionalCompanion API,
* but was written for this specific companion.
* @param children this is a list of all the children of the current node
* @param type this is the type we are currently searching for
* @param resultList all items of the specified type which are found are

added to this list
*/
private void traverseTree(com.sun.java.util.collections.List children,

int type,
com.sun.java.util.collections.List resultList)

{
if(!children.isEmpty())
{

Iterator iter = children.iterator();

while(iter.hasNext())
{

RuntimeNode rtn = (RuntimeNode)iter.next();
resultList.addAll(rtn.getChildrenByType(type));
traverseTree(rtn.getChildren(),

Basic Java Functional Companion

4-8 Oracle Configuration Interface Object (CIO) Developer’s Guide

type,
resultList);

}
}

}
}

Notes on the example

Line 2
import com.sun.java.util.collections.List; // line 2

If you are using JDK 1.1.x, import com.sun.java.util.collections.List,
which is provided in collections.jar (see Section 1.3.2, "Installation
Requirements for Java Functional Companions" on page 1-8). If you are using JDK
1.2, then import java.util.List.

Line 35
super.initialize(comp_node, name, description, id); // line 35

In the initialize() method, call super.initialize(). This passes some of
the necessary variables to the superclass so that its methods will work.

Lines 61-68
//get the necessary components from the configuration // line 61

This block illustrates how to get the logical state of an Option (with getState),
test the logical state (with the expression == IState.UTRUE), and set the value of
a Feature (with setIntValue).

Lines 102-109
//check to see if the value in the config is not at least the min value // line
102

This block produces the Configuration Status message shown in Figure 1–3,
"Testing Functional Companions in the Oracle SellingPoint application."

Thin-Client generateOutput() Functional Companion

Examples 4-9

4.3 Thin-Client generateOutput() Functional Companion
This Functional Companion uses the "thin-client" version of generateOutput()
(see Section 2.9.4 on page 2-25). When you invoke the Functional Companion from a
web browser, it produces an HTML representation of the runtime Model tree,
beginning at the node to which the companion is attached.

In order to use this type of Functional Companion, you must use Oracle
Configurator Internet Edition (OCIE). See the Oracle Configurator Internet Edition
Developer’s Guide for details not covered in this document. Here is a summary of the
tasks:

� Compile the Java source code into a class file.

� In Configurator Developer, define a Functional Companion rule:

– Type is Output

– Base Component is the Component to which you want to attach the
Functional Companion

– Implementation language is Java

– Program String is the name of the class file

� In Configurator Developer’s User Interface module, define a button for the
Component that invokes the Functional Companion.

� In Oracle Application Server, create an OCIE servlet.

� Add the new class file for the Functional Companion to the CLASSPATH
environment variable for the servlet.

� You can test the Functional Companion from Configurator Developer, by
specifying the URL of the servlet (in Tools>Options>Test>Servlet URL) and
clicking the Test button. This opens a web browser, passing it a URL that
includes an XMLmsg parameter containing the necessary OCIE initialization
message. This message contains database connection and login strings, and
specifies the Model to display, by means of the ui_def_id parameter that
identifies the User Interface definition you created in Configurator Developer.

� You can test the Functional Companion outside Configurator Developer, by
creating an HTML test page that substitutes for your host application.
(Examples are provided in the Oracle Configurator Internet Edition Developer’s
Guide.) This page sends an OCIE initialization message that specifies database
connection and login information, and the Model containing the Component.
You can copy these parameters from the URL produced by the Test button in

Thin-Client generateOutput() Functional Companion

4-10 Oracle Configuration Interface Object (CIO) Developer’s Guide

Configurator Developer. Test the Functional Companion by opening the HTML
test page.

The example first calls the response.setContentType() method of the
HttpServletResponse class, passing "text/html" as the output type. Then it calls
response.getWriter() to get an output stream to which the Functional
Companion can write HTML.

You can also write non-HTML output by setting another content type (a MIME
type) and writing appropriate data to the output stream.

Example 4–3 Thin-client Output Functional Companion

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServletResponse;
import com.sun.java.util.collections.Iterator;
import oracle.apps.cz.cio.FunctionalCompanion;
import oracle.apps.cz.cio.IRuntimeNode;

public class ShowStructure extends FunctionalCompanion {

public void generateOutput(HttpServletResponse response) throws IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head>");
out.println("<title>Runtime Model Structure</title>");
out.println("</head>");
out.println("<body>");
out.println("<h3>Runtime Model Structure</h3>");
IRuntimeNode rootNode = getRuntimeNode();
generateNode(out, rootNode, 0);
out.println("</body>");
out.println("</html>");

}

private static void generateNode(PrintWriter out, IRuntimeNode node, int
level) throws IOException {

for (int i = 0; i < level; ++i) {
out.print("--");

}
out.println(node.getName() + "
 ");
for (Iterator i = node.getChildren().iterator(); i.hasNext();) {
IRuntimeNode childNode = (IRuntimeNode)i.next();

Thin-Client generateOutput() Functional Companion

Examples 4-11

generateNode(out, childNode, (level + 1));
}

}
}

Thin-Client generateOutput() Functional Companion

4-12 Oracle Configuration Interface Object (CIO) Developer’s Guide

Glossary-1

Glossary

This glossary for Oracle Configurator is followed by a Glossary of Acronyms

Acceptance Test

Test for validating the system (the correctness of results). Acceptance tests are based
on acceptance criteria specified in the project's Test Plan.

Active Model

The part of Oracle Configurator runtime architecture that processes model structure
and rules to create configurations. Interfaces dynamically with the end user Active
UI and data.

Active User Interface

The part of Oracle Configurator runtime architecture that provides the views
necessary to create configurations interactively. Interfaces with the Active Model
and data to give users access to customer requirements gathering, product selection,
and customer-centric extensions.

Alpha

An internal release of the application before implementation is complete, delivered
as a build, and subject to integration, verification, and system testing.

Application

The Oracle Configurator or Oracle SellingPoint application. The end-user runtime
environment that provides configuration functionality and output. Also called sales
configuration application or enterprise selling system. See also Oracle Configurator.

Glossary-2

Application Architecture

The software structure of an application at runtime. Architecture affects how an
application is used, maintained, extended, and changed.

Application Architecture and Design Document

Document presenting the overall architecture for the application and how the
application will be implemented.

Application Design

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for determining, documenting, reviewing, and delivering the
scheme that will turn user requirements into an operational application. Occurs in
parallel with the end of the Test Case Definition task and the beginning of the
Construction task. Application Design results in an Application Architecture and
Design Document.

Application Development

See Construction.

Application Implementer

The person who uses Oracle Configurator Developer to construct an Oracle
Configurator application or the model structure, rules, and UI customizations for a
Oracle Configurator. The test application generated by Oracle Configurator
Developer is the Oracle SellingPoint application.

Application Testing

See Full Application Testing.

Architecture

The software structure of a system. Architecture affects how a system is used,
maintained, extended, and changed. See also Application Architecture.

Beta

An external release, delivered as an installable application, and subject to system,
validation, and acceptance testing. Specially selected and prepared end users may
participate in beta testing.

Bill of Material

A list of component items associated with a parent item (assembly) and information
about how each item relates to the parent item.

Glossary-3

BOM

See Bill of Material.

BOM Item

The nodes imported into the Oracle Configurator Developer Model that correspond
to an Oracle BOM.

BOM Model

The imported Model node in the Oracle Configurator Developer that corresponds
to Standard Model in an Oracle BOM.

BOM OptionClass

The imported Model node in the Oracle Configurator Developer that corresponds
to Option Class in an Oracle BOM.

BOM StandardItem

The imported Model node in the Oracle Configurator Developer that corresponds
to Standard Item in an Oracle BOM.

Boolean Expression

An element of a component in the Model that has two options: true or false.

Bug

See Defect.

Build

A specific instance of an application during its construction. A build must have an
install early in the project so that application implementers can unit test their latest
work in the context of the entire available application.

Change Control Board

A group of people responsible for evaluating Change Request Forms, approving or
rejecting them, and notifying affected parties of how each one was resolved.

Change Control Procedures

A plan that describes how change control will be conducted during a project.

Glossary-4

Change Request Form

A form used to propose changes as part of a standard change control process. A
Change Request Form typically includes a description of the proposed change and
an evaluation of impacts on cost and schedule.

CIO

See Oracle Configuration Interface Object.

CIO protocols support creating and navigating the Model, querying and modifying
selection states, and saving and restoring configurations.

Client

A runtime program using a server to access functionality shared with other clients.

Comparison Rule

A relationship that determines the selection state of a logical item (option, boolean
feature, or list-of-options feature) based on a comparison of two numeric values
(numeric features, totals, resources, option counts, or numeric constants). The
numeric values being compared can be computed or they can be discrete intervals
in a continuous numeric input.

Compatibility

A relationship among features in the Model that specifies the allowable
combinations of options.

Compatibility Rule

A kind of compatibility relationship where the allowable combinations of options
are specified implicitly by relationships between property values of the options.

Compatibility Table

A type of compatibility relationship where the allowable combination of options are
explicitly enumerated.

Component

Represents a configurable element in a product. An element of the Model typically
containing features.

Component Set

An element of the Model that contains a number of components of the same type,
where each component of the set is independently configured.

Glossary-5

Configuration Management

A process for managing the versions of the application and its documentation
during construction.

Configuration Model

The model structure and rules-based content of an Oracle Configurator or Oracle
SellingPoint application. The configuration model is constructed and maintained
using Oracle Configurator Developer, and is interpreted at runtime by the Active
Model.

Configuration Rules

The logic rules and numeric rules available for defining configurations.

Configurator

The part of the Oracle Configurator or Oracle SellingPoint application that provides
custom configuration capabilities.

Constraint Rule

A logical relationship amongst features and options. See also Rules.

Construction

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for building the Oracle Configurator using Oracle Configurator
Developer. Construction is based on the user's requirements and an approved
application design. Occurs in parallel with completion of the Design task.
Construction includes reviews and testing.

Contributes

A numeric rule for accumulating a total value.

Consumes

A numeric rule for specifying the quantity of a resource used.

Core Functionality

Also called Phase 1. The first release of the application delivered in 14 weeks. After
validation with a subset of users, the core functionality application can be fully
deployed to all intended users, maintained, or extended to offer additional product
families or more functionality. See Full Deployment, Additional Product Families,
and Extended Functionality.

Glossary-6

CRM

Customer Relationship Management. The aspect of the enterprise that involves
contact with customers, from lead generation to support services.

Customer

The person or persons for whom products are configured by end users of the Oracle
Configurator or other Order Management and CRM applications.

Customer-centric Views

Optional extensions to core functionality that supplement product selection with
rules for pre-selection, validation, and intelligent views. View capabilities include
generative geometry, drawings, sketches and schematics, charts, performance
analyses, and ROI calculations.

Customer-centric Extensions

See Customer-centric Views.

Customer Requirements

The needs of the customer that serve as the basis for determining the configuration
of products, systems, and/or services. Not to be confused with Requirements, a task
in Oracle Configurator Deployment Methodology.

Data Import

Populating the Oracle Configurator Database with enterprise data from ERP or
legacy systems via import tables.

Data Integration Object

Data Integration Object. A server in the runtime application that creates and
manages the interface between the client (usually a user interface like the Active
User Interface) and the Oracle Configurator Database.

Data Maintenance Environment

The environment in which the Oracle Configurator or Oracle SellingPoint
application data is maintained.

Data Replication

The activity of downloading and uploading configuration, quote, and order data
between the Oracle Configurator Database on the enterprise server and Oracle
Configurator Mobile Database on end-user mobile laptop PCs. See also Data
Synchronization.

Glossary-7

Datasource

A programmatic reference to a database.

Data Synchronization

A process for matching the data in the Oracle Configurator Database and the data
available to client processes such as the Oracle Configurator. See also Data
Replication.

Default

The automatic selection of an option based on the pre-selection rules or the selection
of another option.

Defaults

A logic rule to determine the logic state of features or options in a default relation to
other features and options. For instance, if you set A to True by selecting it, B
becomes true (selected) if it is available (not false) and can be set to True without
contradicting a non-default rule or a previous default setting for B.

Defect

A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a “bug”.

Defect Tracking

A system of identifying defects for managing additional tests, testing, and approval
for release to users.

Definition

Defining and scoping the first phase of a project, and selecting a vendor such as
Oracle to implement a sales configuration application.

Deliverable

A work product that is specified for review and delivery.

Delivery

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for organizing a deployment of the application. Includes beta
testing.

Glossary-8

Demonstration

A presentation of the tested application, showing a particular usage scenario.

Deployment

The stage in a project between Implementation and Maintenance when the fully
operational application is distributed to users. See also Pilot and Full Deployment.

Design

See Application Design.

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a chart view.

Design Review

A technical review that focuses on application or system design.

Development

See Construction.

DIO

See Data Integration Object.

Domain Expert

A member of the customer's staff who has specific product or process knowledge
needed in the Oracle Configurator or Oracle SellingPoint application.

End User

The ultimate user of the Oracle Configurator or Oracle SellingPoint application. The
types of end users vary by project but may include salespeople or distributors,
administrative office staff, marketing personnel, order entry personnel, product
engineers, or customers directly accessing the application via web or kiosk.

Enterprise

The systems and resources of a business.

Environment

The arena in which software tools are used, such as operating system, applications,
and server processes.

Glossary-9

ERP

Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

Excludes

A logic rule to determine the logic state of features or options in an excluding
relation to other features and options. For instance, if you set A to True, B becomes
false, since it is not allowed when A is true. If you set A to False, there is no effect on
B, meaning it could be true, false, or unknown.

Extended Functionality

A release after delivery of core functionality that extends that core functionality
with customer-centric views, more complex proposal generation, discounting,
quoting, and expanded integration with ERP, OMS, and COM-compliant
third-party software.

Feature

An element of the Model. A configurable parameter of a component. Features can
either have a value (numeric or boolean) or enumerated options.

Full Application Testing

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for testing the constructed application prior to delivery. Full
Application Testing results in a completely validated application approved for
delivery to users.

Full Deployment

A release of the application to all intended users after implementation and
validation of the core functionality.

Full Roll Out

An external release delivered to all intended end users of the application. See also
Full Deployment.

Functional Companion

An object associated with a component that supplies methods that can be used to
initialize, validate and generate customer-centric views and outputs for the
configuration.

Glossary-10

Functional Specification

Document describing the functionality of the application based on user
requirements.

Incremental Construction

The process of organizing the construction of the application into builds, where
each build is designed to meet a specified portion of the overall requirements and is
unit tested.

Increments

A logical relation that increments a count or value associated with an item by an
integer quantity.

Implementation

The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed sales
configuration application. The Implementation stage includes gathering
requirements, defining test cases, designing the application, constructing and
testing the application, and delivering it to users.

Implies

A logic rule that determines the logic state of features or options in an implied
relation to other features and options. For instance, if you set A to True by selecting
it, B becomes true, since selecting A implies that B is also selected. If you set A to
False by deselecting it, there is no effect on B, meaning it could be true false or
unknown based on other relations B participates in. And if you set B to True by
selecting it, there is no effect on A, meaning it could be true false or unknown based
on other relations A participates in. But if you set B to False by deselecting it, the
relation of A implies B is preserved only by having A be false (deselected) as well.

Import Tables

Tables mirroring the Oracle Configurator Database Item Master structure, but
without integrity constraints. Import Tables allow batch population of the Oracle
Configurator Database Item Master. Import Tables are used in conjunction with
extractions from Oracle Applications or legacy data to create, update, or delete
records in the Oracle Configurator Database Item Master.

Install

A program that sets up the local machine and installs the application for testing and
use.

Glossary-11

Integration

The process of combining multiple software components and making them work
together.

Integration Testing

Testing the interaction among software programs that have been integrated into an
application or system.

Intelligent Views

Configuration output, such as reports, graphs, schematics, and diagrams, that help
to illustrate the value proposition of what is being sold.

Item Master

A table in the Oracle Configurator Database containing data used to structure the
product. Data in the item master is either entered manually or imported from
Oracle Applications or legacy data.

Item Type

A table in the Oracle Configurator Database containing data used to classify the
product data in the item master table.

Logic Rules

Logic rules directly or indirectly set the logical state (true, false, or unknown) of
features and options in the Model.

There are four (4) primary logic rules: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of features or options as operands. See also Logic,
Implies, Requires, Excludes, and Negates.

Maintenance

The effort of keeping a system running once it has been deployed, through bug
fixes, procedure changes, infrastructure adjustments, data replication schedules, etc.

Maintainability

The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

Glossary-12

Maintenance Guide

A guide for maintaining a specific application or system. The maintenance guide
covers all aspects of maintenance described in the generic Maintenance Plan.

Maintenance Plan

A document that outlines what is required for successful maintenance, and who is
responsible for all the actions and deliverables of carrying out maintenance on a
system. Oracle's Application and System Maintenance Plan presents a generic
model of activities and deliverables necessary for successful maintenance.

OC

See Oracle Configurator.

Methodology

A standard, step-by-step process designed to achieve consistent, reliable results.
Oracle Configurator Deployment Methodology is a repeatable implementation
process based on software development standards and Oracle Configurator
implementation best practices.

Mobile Database

See Oracle Configurator Mobile Database.

Model

The entire hierarchical “tree” view of all the data required for configurations,
including model structure, variables such as resources and totals, and elements in
support of intermediary rules. May consist of BOM Items.

Oracle Configurator

The views of the model structure and rules generated by the Active UI to present
end users with interactive product selection based on configuration models.

Model Structure

Hierarchical, “tree” view of data in terms of product elements (models,
components, features, and options). May include reusable components.

MRP

Manufacturing Resource Planning. A software system and process for monitoring
and maintaining the customer's manufacturing systems.

Glossary-13

Negates

A logic rule to determine the logic state of features or options in a negating relation
to other features and options. For instance, if you set one item in the relationship to
True, the other item must be false. And if you set one item to False, the other item
must be true.

Next Phase

The phase following Phase 1 Core Functionality, consisting of Full Deployment of
Phase 1, expanding the application for coverage of additional Product Families or
extending the functionality to include more complexity and customer-centric views.

Node

The place in a Model occupied by a component, feature, option or variable, BOM
Model, BOM OptionClass, or BOM StandardItem.

Numeric Rules

Rules that are used to set the global parameters specified in product structuring.
These include Contributes, Supplies, and Consumes. See also Numeric Rules,
Contributes, Supplies, and Consumes.

OC

See Oracle Configurator.

Opportunity

The workspace in the Oracle SellingPoint application and Oracle Field Sales in
which products, systems, and/or services are configured, quotes and proposals are
generated, and orders are submitted.

Option

An element of the Model. A choice for the value of an enumerated feature.

A logical selection made by the end user when configuring a component.

Oracle Configurator

The product family consisting of development tools and runtime applications such
as Oracle Configurator Developer and Oracle Configurator Sales Edition, variously
packaged for use in networked, mobile, or web deployments.

Glossary-14

Oracle Configurator Database

The implementation version of the standard Oracle Configurator or Oracle
SellingPoint application data-warehousing schema that manages data for the
configuration model. The implementation schema includes all the data required for
the runtime system as well as specific tables used during the construction of the
application.

Oracle Configurator Deployment Methodology

The methodology of stages, tasks, steps, and activities to deliver a core functionality,
Phase 1 Oracle SellingPoint application or Oracle Configurator to users in 14 weeks.
Oracle Configurator Deployment Methodology includes templates and checklists
for organizing and managing an Oracle Configurator project.

Oracle Configurator Deployment Methodology Program

The rapid application development program that combines the tools of Oracle
Configurator Developer with the application construction methodology and project
management methods of Oracle Configurator Deployment Methodology to ensure
delivery of a core functionality Phase 1 Oracle SellingPoint application or Oracle
Configurator in 14-weeks. Oracle Education provides books and courses in support
of using Oracle Configurator Developer and Oracle Configurator Deployment
Methodology most effectively. See also Oracle Configurator Developer and Oracle
Configurator Deployment Methodology.

Oracle Configuration Interface Object

A server in the runtime application that creates and manages the interface between
the client (usually a user interface like the Active User Interface) and the underlying
representation of model structure and rules in the Active Model.

Oracle Configurator Mobile Database

The runtime version of the standard Oracle Configurator Database that manages
data for the configuration model. The runtime schema includes customer, product,
and pricing data as well as data created during operation of an Oracle Configurator.

Oracle Configurator Developer

The suite of tools in the Oracle Configurator product for constructing and
maintaining sales configuration applications.

Oracle Configurator

The end-user application created with the Oracle Configurator Developer product.
See also Application, Oracle Configurator and Oracle SellingPoint application.

Glossary-15

Oracle Configurator Architecture

The application runtime architecture consists of the Active User Interface, the
Active Model, and the Oracle Configurator Database or Oracle Configurator Mobile
Database. The application development architecture consists of Oracle Configurator
Developer and the Oracle Configurator Database.

Oracle SellingPoint application

The test application generated by Oracle Configurator Developer.

Output

The output generated by the sales configuration application, such as quotes,
proposals, bills of material (BOM), and customer-centric views.

PDM

Product Data Management. A software system that manages the version control of
product data.

Phase 1 (one)

All the sales configuration functionality that can be implemented within the Active
User Interface and Oracle Configurator Developer within the 14-week Oracle
Configurator Deployment Methodology program, and nothing that requires
programming outside of these environments. See also Core Functionality.

Pilot

An external release to a subset of 20-25 end users for validation of the system.

Populator

An entity in the Oracle Configurator Developer that defines how to create a Model
from information in the item master.

Preliminary Project Plan

An initial high-level project plan and schedule describing the events in the project
in terms of time relations rather than specific delivery dates.

Pre-selection

The default state in a sales configuration application that defines an initial selection
of components, features, and options for sales configuration.

A process that is implemented to select the initial element(s) of the configuration.

Glossary-16

Principal Design Consultant

Member of the project team responsible for architecting the design of the
application.

Product

Whatever is subjected to configuration and is the output of the application.

The root element of the Model.

Product Family

A collection of products or product lines, which are organized as a group by a
provider or manufacturer.

Product Maintenance

A release of the application after delivery of core functionality that adds wider
product coverage or keeps product data correct.

Product Structure

See Model Structure

Project

A project is the process of implementing and delivering an Oracle Configurator or
Oracle SellingPoint application.

A Project in Oracle Configurator Developer is the workspace in which sales
configuration applications are constructed.

Project Manager

A member of the project team who is responsible for directing the project during
implementation.

Project Plan

A document that outlines the logistics of successfully implementing the project,
including the schedule.

Property

A named value associated with an object in the Model or the item master. A set of
properties may be associated with an item type.

Glossary-17

Prototype

A construction technique in which a preliminary version of the application, or part
of the application, is built to facilitate user feedback, to prove feasibility or examine
other implementation issues.

Reference

The use of a reusable component within the Model. Not implemented in Release 11i
or before.

Regression Test

An automated test that ensures the newest build still meets previously tested
requirements and functionality.

Requirements

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project when the project team explores and understands what the
application will do. Occurs in parallel with starting the Implementation task Test
Case Definition. Requirements gathering results in a Functional Specification.

Requires

A logic rule to determine the logic state of features or options in a requirement
relation to other features and options. For instance, if you set one item in the
relationship to True, the other item is required to be true as well. And if you set one
item to False, the other item must be false as well.

Resource

Staff or materials available or needed within an enterprise.

A variable in the Model used to maintain the balance of features not consuming
more of a specific resource than has been provided by other features.

Reusable Component

A component that is referenced from multiple locations in the Model. Not
implemented in Release 11i or before.

Reusability

The extent to and ease with which parts of a system can be put to use in other
systems.

Glossary-18

Roll Out

See Full Roll Out.

Rules

Also called business rules or configuration rules. Constraints applied among
elements of the product to ensure that defined relationships are preserved during
configuration. Elements of the product are components, features, and options. Rules
express logic, numeric parameters, implicit compatibility, or explicit compatibility.
Rules are used to provide pre-selection and validation capability in an application.

See also Logic Rules and Numeric Rules.

Runtime

The environment and context in which applications are run or used, rather than
developed.

Sales Configuration

A part of the sales process to which configuration technology has been applied in
order to increase sales effectiveness and decrease order errors. Commonly identifies
needs assessment and product configuration.

SellingPoint

The configuration engine used in the Oracle Configurator.

Server

Centrally located software processes or hardware, shared by clients.

Solution

The deployed system as a response to a problem or problems.

Statement of Work

Document describing the work required to deliver an application based on pre-sales
scoping activities.

Studio

See Oracle Configurator Developer.

Supplies

A numeric rule for specifying how much of a resource is available.

Glossary-19

System

The hardware and software components and infrastructure integrated to satisfy
sales configuration requirements.

System Project

The project of implementing the solution, including the Oracle Configurator or
Oracle SellingPoint application. See also Project.

System User

Any user in contact with the system.

Test Case

A description of inputs, execution instructions, and expected results, which are
created for the purpose of determining whether a specific software feature works
correctly or a specific requirement has been met.

Test Case Definition

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for defining the Test Cases and describing the tests that will be
performed to validate the application. Occurs in parallel with the end of the
Requirements task and much of the Design task. Test Case Definition results in a
detailed Test Plan for the project.

Testing

See Full Application Testing

Test Log

A record of what tests were run at what time on which version of the application to
what effect.

Test Plan

The plan for defining and executing tests.

Timeline

The schedule for completing the tasks and activities required to implement a phase
of the sales configuration application project.

Glossary-20

Total

A variable in the Model used to accumulate a numeric total, such as total price or
total weight.

Training

Training that prepares Oracle Configurator Deployment Methodology program
users for creating, changing, extending, and supporting the application.

Training that prepares the application end user for operating the system.

Training Guide

A guide created by members of the project team to instruct end users how to use the
system. See also User's Guide.

Undetermined

The logic state that is neither true nor false, but unknown at the time a logic rule is
executed.

Unit Test

Execution of individual routines and modules by the application implementer or by
an independent test consultant for the purposes of finding defects.

User

The person using the Oracle Configurator tools and methods to build an Oracle
Configurator or Oracle SellingPoint application. See also End user.

User Interface

The visible part of the application, including menus, dialog boxes, and other
on-screen elements. The part of a system where the user interacts with the software.

User Requirements

A description of what the Oracle Configurator or Oracle SellingPoint application is
expected to do from the end user's perspective.

User's Guide

Documentation on using the application to solve the intended problem. See also
Training Guide.

Glossary-21

Validation

Tests that ensure that the configured components will meet specific performance or
acceptance criteria.

A type of functional companion that is implemented to ensure that the configured
components will meet specific performance or acceptance criteria.

Variable

Parts of the Model that represent either totals or resources.

Verification

Tests that check whether the result agrees with the specification.

Glossary-22

Glossary of Acronyms-1

Glossary of Acronyms

API

Application Programming Interface

ATP

Available to Promise

BOM

Bill of Material

CIO

Configuration Interface Object

CM

Configuration Management

COM

Component Object Module

CRM

Customer Relationship Management

DBMS

Database Management System

DCOM

Distributed Component Object Modeling

Glossary of Acronyms-2

DHTML

Dynamic Hypertext Markup Language

DIO

Data Integration Object

DLL

Dynamically Linked Library

DXF

Drawing Exchange Format (AutoCAD drawings)

ECO

Engineering Change Order

ERM

Enterprise Relationship Management

ERP

Enterprise Resource Planning

ESD

Electronic Software Distribution

ESP

External Service Provider

ESS

Enterprise Selling System

GSE

Generative Specification Environment

GSL

Generative Specification Language

HT

High Tech

Glossary of Acronyms-3

HTML

Hypertext Markup Language

IP

Industrial Products

IS

Information Services

ISS

Interactive Selling System

ISV

Independent Software Vendor

LAN

Local Area Network

LCE

Logical Configuration Engine

MAPI

Messaging Application Programming Interface

MC/S

Mobile Client/Server System

MDUI

Model-Driven User Interface

MES

Marketing Encyclopedia System (Catalog)

MIS

Management Information Systems

MRP

Manufacturing Resource Planning

Glossary of Acronyms-4

MS

Microsoft

OC

Oracle Configurator

OCX

Object Control File, OLE custom controls

ODBC

Open Database Connectivity

OLE

Object linking and embedding

OMS

Opportunity Management System

OOD

Object-Oriented Design

ORB

Object Request Broker

PDM

Product Data Management

PIA

Project Impact Assessment

PM

Project Manager

POS

Point of Sale

QA

Quality Assurance

Glossary of Acronyms-5

RAD

Rapid Application Development

RDBMS

Relational Database Management System

RFQ

Request for Quote

ROI

Return on Investment

SAS

Sales Analysis System

SCM

Supply Chain Management

SCS

Sales Configuration System

SE

Sales Engineer

SFA

Sales Force Automation

SI

System Integrator

SOT

Strategic Options Theory

SOW

Statement of Work

CDBI

Configurator Database Interface

Glossary of Acronyms-6

SQA

Software Quality Assurance

SQL

Structured Query Language

TERM

Technology-Enabled Relationship Management

TES

Technology-Enabled Selling

UI

User Interface

VAR

Value-Added Reseller

VB

Microsoft Visual Basic

WAN

Wide Area Network

WIP

Work In Progress

Y2K

Year 2000 Compliant

CIO Package and Related Classes A-1

A
CIO Package and Related Classes

Package Summary

Packages

Package oracle.apps.cz.cio Provides classes used to create, save and restore configurations.

Package oracle.apps.cz.common

Package oracle.apps.cz.utilities

A-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

Package oracle.apps.cz.cio B-1

B
Package oracle.apps.cz.cio

Description
Provides classes used to create, save and restore configurations. The top-level entry
point to this package is the configuration integration object, which provides
methods for creating, saving, restoring and deleting configurations. The
configuration can be manipulated by calling methods on the configuration object
and its tree of runtime objects.

Class Summary

Interfaces

IAtp Implemented by objects that can have ATP calculated.

IBomItem Implemented by all selectable BOM items.

ICompSetEventListener Implemented by objects that want to find out about added components.

IConfigEventListener Implemented by objects that want to find out about added components.

ICount Implemented by objects that have an associated integer count.

IDecimal Implemented by objects that can both get and set a decimal value.

IDecimalMinMax Implemented by objects that have a decimal minimum and maximum value.

IFunctionalCompanion Implemented by functional companion objects attached to components in
order to provide programatic functionality to a configuration model.

IInteger Implemented by objects that have an integer value.

IIntegerMinMax Implemented by objects that have an integer minimum and maximum.

IOption Implemented by objects that act as options.

IOptionFeature Implemented by objects that contain selectable options.

B-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

IPrice Implemented by objects that can be priced.

IReadOnlyDecimal Implemented by objects that have a decimal value.

IRuntimeNode Implemented by all objects in the runtime configuration tree.

IState Implemented by objects that have logic state.

IText Implemented by objects that have a textual value.

Classes

BomModel Represents configurable BOM Models.

BomNode Represents configurable BOM option classes.

BomOptionClass Represents configurable BOM option classes.

BomStdItem Represents configurable BOM models.

BooleanFeature Represents a feature with a boolean value.

CIO Implements a configuration integration object that can be used to create, save,
restore and delete configurations.

CompanionNode Provides methods for extracting values from a model based on property
annotations.

CompanionRoot Provides functional companion implementors with property-based feature
extraction.

CompanionValidationFailure Failure produced by a functional companion object.

Component Implements the runtime configuration behavior of products and components.

ComponentNode Represents a set of configurable components.

ComponentSet Represents a set of configurable components.

ConfigTransaction Represents a configuration transaction.

Configuration The top-level entry point to a configuration.

CountFeature Represents a countable integer feature.

DecimalFeature Represents a feature with a decimal value.

DecimalNode An abstract class implementing behavior common to objects with a decimal
value.

Factory Provides a class factory for the CIO to clients that do not support arguments to
constructors.

FunctionalCompanion Base object on which user functional companions can be based.

Class Summary

Package oracle.apps.cz.cio B-3

FunctionalCompanionException This exception is used to indicate that an error occured somewhere inside the
functional companion.

IntegerFeature Represents a feature with an integer value.

IntegerNode Represents a feature with an integer value.

Option Represents an option of an option feature.

OptionFeature Represents a feature with selectable options.

OptionFeatureNode An abstract class implementing behavior commont to all features with options.

OptionNode An abstract class implementing behavior common to all option-like objects.

Property Represents name/value properties associated with runtime nodes.

ReadOnlyDecimalNode An abstract class implementing behavior common to objects with a decimal
value.

Reason This class wraps the information returned by a contradiction in order to
include information about internal error messages.

Resource Represents a consumable resource.

RestoreValidationFailure Failure produced when restoring a configuration over a changed model.

RuntimeNode Abstract class implementing common behavior across all runtime nodes.

StateCountNode Abstract class implementing common behavior for nodes with a logic state
and count.

StateNode Abstract class implementing common behavior across nodes with logic state.

StatusInfo Contains information about a status change for a particular runtime node.

TextFeature Represents a feature that has a textual value.

TextNode Represents a feature that has a textual value.

Total Represents a total that has a decimal numeric value.

ValidationFailure Implements behavior common to all validation failures.

Exceptions

AtpUnavailableException Signals that the CIO ATP calculation functionality is not available.

BomExplosionException Exception which is thrown when a client tries to create a configuration directly
from an Apps bill of material and there is a problem with the explosion of the
bill.

FuncCompCreationException Signalled if a functional companion cannot be created.

Class Summary

B-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

IncompatibleInputException Signalled if a particular input is of different type than the node it is trying to
restore over.

LogicalException Signalled if a logical failure occurs.

LogicalOverridableException Signalled if a logical contradiction occurs that can be overriden.

LogicalRuntimeException Signalled if a fatal logic exception occured.

MissingFileException Signalled if a particular logic file is missing.

MissingLogicException Signalled if a particular logic record is missing.

NoAtpCalculatedException Exception which is thrown when an ATP method is called on an item for
which ATP is not calculated.

NoConfigHeaderException Signalled if the configuration hasn't been saved yet.

NonPricedNodeException Exception which is thrown when a pricing method is called on an item which
should not be priced.

NoSuchChildException Signalled if a requested child does not exist.

NotOneProductException Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project contains more than one or no
products.

NotOneProjectException Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project name identifies more than
one or no projects.

PricingUnavailableException Signals that the CIO pricing functionality is not available.

SelectionNotMutexedException Signalled when an mutexed selection operation is performed on an option
feature that does not support mutexed selection.

TransactionException Signalled if a particular logic file is missing.

Class Summary

AtpUnavailableException

Package oracle.apps.cz.cio B-5

oracle.apps.cz.cio
AtpUnavailableException

Syntax
public class AtpUnavailableException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.AtpUnavailableException

All Implemented Interfaces:
java.io.Serializable

Description
Signals that the CIO ATP calculation functionality is not available.

Member Summary

Constructors

AtpUnavailableException(String)

AtpUnavailableException(String,
Object, Log)

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

AtpUnavailableException

B-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

AtpUnavailableException(String)
public AtpUnavailableException(java.lang.String reason)

AtpUnavailableException(String, Object, Log)
public AtpUnavailableException(java.lang.String reason, java.lang.Object
source, oracle.apps.fnd.common.Log log)

BomExplosionException

Package oracle.apps.cz.cio B-7

oracle.apps.cz.cio
BomExplosionException

Syntax
public class BomExplosionException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.BomExplosionException

All Implemented Interfaces:
java.io.Serializable

Description
Exception which is thrown when a client tries to create a configuration directly from
an Apps bill of material and there is a problem with the explosion of the bill.

Member Summary

Methods

getExplosionDate()

getInventoryItemId()

getOrganizationId()

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

BomExplosionException

B-8 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getExplosionDate()
public java.util.Date getExplosionDate()

getInventoryItemId()
public int getInventoryItemId()

getOrganizationId()
public int getOrganizationId()

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Inherited Member Summary

BomModel

Package oracle.apps.cz.cio B-9

oracle.apps.cz.cio
BomModel

Syntax
public class BomModel extends BomNode

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--OptionFeatureNode

|
+--BomNode

|
+--oracle.apps.cz.cio.BomModel

All Implemented Interfaces:
IAtp, IBomItem, ICount, IOption, IOptionFeature, IPrice, IRuntimeNode, IState

Description
Represents configurable BOM Models.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

BomModel

B-10 Oracle Configuration Interface Object (CIO) Developer’s Guide

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(), getAtpNotifications(),
getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getInventoryItemId(), getItemKey(), getListPrice(), getMaxQuantity(),
getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationId(), getPrimaryUomCode(), getState(), getUomCode(),
hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(), isRequired(),
isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode

deselect(IOption), getSelectedOption(), getSelectedOptions()

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IBomItem

getComponentCode(), getInventoryItemId(), getMaxQuantity(), getMinQuantity(), getOrganizationId(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected(),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

Inherited Member Summary

BomModel

Package oracle.apps.cz.cio B-11

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaseID(), getItemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

BomNode

B-12 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
BomNode

Syntax
public abstract class BomNode extends OptionFeatureNode implements IBomItem

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--OptionFeatureNode

|
+--oracle.apps.cz.cio.BomNode

Direct Known Subclasses:
BomModel, BomOptionClass, BomStdItem

All Implemented Interfaces:
IAtp, IBomItem, ICount, IOption, IOptionFeature, IPrice, IRuntimeNode, IState

Description
Represents configurable BOM option classes.

Member Summary

Methods

addAtpNotification(String)

calculateAtpDate()

clearAtpDate()

clearAtpNotifications()

deselect()

BomNode

Package oracle.apps.cz.cio B-13

getAtpDate()

getAtpNotifications()

getComponentCode()

getDefaultQuantity()

getDiscountedPrice()

getInventoryItemId()

getItemKey()

getListPrice()

getMaxQuantity()

getMaxSelected()

getMinQuantity()

getMinSelected()

getOrganizationId()

getPrimaryUomCode()

getState()

getUomCode()

hasDefaultQuantity()

hasMaxQuantity()

hasMaxSelected()

hasMinQuantity()

hasMinSelected()

isOptionMutexed()

isRequired()

isSelected()

isSelectionMutexed()

select()

select(IOption)

setAtpDate(Date)

Member Summary

BomNode

B-14 Oracle Configuration Interface Object (CIO) Developer’s Guide

setState(int)

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionFeatureNode

deselect(IOption), getSelectedOption(), getSelectedOptions()

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

deselect(IOption), getSelectedOption(), getSelectedOptions()

Methods inherited from interface IState

unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

Member Summary

BomNode

Package oracle.apps.cz.cio B-15

Methods

addAtpNotification(String)
public void addAtpNotification(java.lang.String message)

calculateAtpDate()
public void calculateAtpDate()

clearAtpDate()
public void clearAtpDate()

clearAtpNotifications()
public void clearAtpNotifications()

deselect()
public void deselect()

Specified By:
deselect() in interface IOption

getAtpDate()
public java.util.Date getAtpDate()

Specified By:
getAtpDate() in interface IAtp

getDatabaseID(), getExtendedPrice(), getPricingNotifications()

Methods inherited from interface IAtp

getDatabaseID()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

BomNode

B-16 Oracle Configuration Interface Object (CIO) Developer’s Guide

getAtpNotifications()
public java.lang.String getAtpNotifications()

Specified By:
getAtpNotifications() in interface IAtp

getComponentCode()
public java.lang.String getComponentCode()

Specified By:
getComponentCode() in interface IBomItem

getDefaultQuantity()
public int getDefaultQuantity()

getDiscountedPrice()
public double getDiscountedPrice()

Specified By:
getDiscountedPrice() in interface IPrice

Specified By:
getDiscountedPrice() in interface IPrice

Overrides:
getDiscountedPrice() in class StateCountNode

getInventoryItemId()
public int getInventoryItemId()

Specified By:
getInventoryItemId() in interface IBomItem

getItemKey()
public java.lang.String getItemKey()

BomNode

Package oracle.apps.cz.cio B-17

Specified By:
getItemKey() in interface IPrice

Specified By:
getItemKey() in interface IAtp

Specified By:
getItemKey() in interface IPrice

Overrides:
getItemKey() in class StateCountNode

getListPrice()
public double getListPrice()

Specified By:
getListPrice() in interface IPrice

Specified By:
getListPrice() in interface IPrice

Overrides:
getListPrice() in class StateCountNode

getMaxQuantity()
public int getMaxQuantity()

Specified By:
getMaxQuantity() in interface IBomItem

getMaxSelected()
public int getMaxSelected()

Specified By:
getMaxSelected() in interface IOptionFeature

BomNode

B-18 Oracle Configuration Interface Object (CIO) Developer’s Guide

Specified By:
getMaxSelected() in interface IOptionFeature

getMinQuantity()
public int getMinQuantity()

Specified By:
getMinQuantity() in interface IBomItem

getMinSelected()
public int getMinSelected()

Specified By:
getMinSelected() in interface IOptionFeature

Specified By:
getMinSelected() in interface IOptionFeature

getOrganizationId()
public int getOrganizationId()

Specified By:
getOrganizationId() in interface IBomItem

getPrimaryUomCode()
public java.lang.String getPrimaryUomCode()

Specified By:
getPrimaryUomCode() in interface IBomItem

getState()
public int getState()

Specified By:
getState() in interface IState

BomNode

Package oracle.apps.cz.cio B-19

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Overrides:
getState() in class StateNode

getUomCode()
public java.lang.String getUomCode()

Specified By:
getUomCode() in interface IPrice

Specified By:
getUomCode() in interface IAtp

Specified By:
getUomCode() in interface IPrice

Overrides:
getUomCode() in class StateCountNode

hasDefaultQuantity()
public boolean hasDefaultQuantity()

hasMaxQuantity()
public boolean hasMaxQuantity()

Specified By:
hasMaxQuantity() in interface IBomItem

BomNode

B-20 Oracle Configuration Interface Object (CIO) Developer’s Guide

hasMaxSelected()
public boolean hasMaxSelected()

Specified By:
hasMaxSelected() in interface IOptionFeature

Specified By:
hasMaxSelected() in interface IOptionFeature

hasMinQuantity()
public boolean hasMinQuantity()

Specified By:
hasMinQuantity() in interface IBomItem

hasMinSelected()
public boolean hasMinSelected()

Specified By:
hasMinSelected() in interface IOptionFeature

Specified By:
hasMinSelected() in interface IOptionFeature

isOptionMutexed()
public boolean isOptionMutexed()

Specified By:
isOptionMutexed() in interface IOption

isRequired()
public boolean isRequired()

Specified By:
isRequired() in interface IBomItem

BomNode

Package oracle.apps.cz.cio B-21

isSelected()
public boolean isSelected()

Specified By:
isSelected() in interface IOption

isSelectionMutexed()
public boolean isSelectionMutexed()

Specified By:
isSelectionMutexed() in interface IOptionFeature

Specified By:
isSelectionMutexed() in interface IOptionFeature

Overrides:
isSelectionMutexed() in class OptionFeatureNode

select()
public void select()

Specified By:
select() in interface IOption

select(IOption)
public void select(IOption option)

Specified By:
select(IOption) in interface IOptionFeature

Specified By:
select(IOption) in interface IOptionFeature

Overrides:
select(IOption) in class OptionFeatureNode

BomNode

B-22 Oracle Configuration Interface Object (CIO) Developer’s Guide

setAtpDate(Date)
public void setAtpDate(java.util.Date atpDate)

setState(int)
public void setState(int newState)

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Overrides:
setState(int) in class StateNode

BomOptionClass

Package oracle.apps.cz.cio B-23

oracle.apps.cz.cio
BomOptionClass

Syntax
public class BomOptionClass extends BomNode

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--OptionFeatureNode

|
+--BomNode

|
+--oracle.apps.cz.cio.BomOptionClass

All Implemented Interfaces:
IAtp, IBomItem, ICount, IOption, IOptionFeature, IPrice, IRuntimeNode, IState

Description
Represents configurable BOM option classes.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

BomOptionClass

B-24 Oracle Configuration Interface Object (CIO) Developer’s Guide

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(), getAtpNotifications(),
getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getInventoryItemId(), getItemKey(), getListPrice(), getMaxQuantity(),
getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationId(), getPrimaryUomCode(), getState(), getUomCode(),
hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(), isRequired(),
isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode

deselect(IOption), getSelectedOption(), getSelectedOptions()

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IBomItem

getComponentCode(), getInventoryItemId(), getMaxQuantity(), getMinQuantity(), getOrganizationId(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected(),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

Inherited Member Summary

BomOptionClass

Package oracle.apps.cz.cio B-25

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaseID(), getItemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

BomStdItem

B-26 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
BomStdItem

Syntax
public class BomStdItem extends BomNode

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--OptionFeatureNode

|
+--BomNode

|
+--oracle.apps.cz.cio.BomStdItem

All Implemented Interfaces:
IAtp, IBomItem, ICount, IOption, IOptionFeature, IPrice, IRuntimeNode, IState

Description
Represents configurable BOM models.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

BomStdItem

Package oracle.apps.cz.cio B-27

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(), getAtpNotifications(),
getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getInventoryItemId(), getItemKey(), getListPrice(), getMaxQuantity(),
getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationId(), getPrimaryUomCode(), getState(), getUomCode(),
hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(), isRequired(),
isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode

deselect(IOption), getSelectedOption(), getSelectedOptions()

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IBomItem

getComponentCode(), getInventoryItemId(), getMaxQuantity(), getMinQuantity(), getOrganizationId(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected(),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

Inherited Member Summary

BomStdItem

B-28 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaseID(), getItemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

BooleanFeature

Package oracle.apps.cz.cio B-29

oracle.apps.cz.cio
BooleanFeature

Syntax
public class BooleanFeature extends StateNode

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--oracle.apps.cz.cio.BooleanFeature

All Implemented Interfaces:
IRuntimeNode, IState

Description
Represents a feature with a boolean value.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateNode

BooleanFeature

B-30 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

CIO

Package oracle.apps.cz.cio B-31

oracle.apps.cz.cio
CIO

Syntax
public class CIO extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.CIO

Description
Implements a configuration integration object that can be used to create, save,
restore and delete configurations.

Member Summary

Constructors

CIO() Constructs a newly allocated configuration integration object.

Methods

clearLogicFile(String) Clears only the key specified file from the LCE file cache

clearLogicFileCache() Clears all LogicFile objects from the logic file cache.

close() Closes the CIO object and all associated runtime objects.

closeConfiguration(Configuration) Deletes all runtime structure and memory associated with a configuration.

createConfiguration(int, Context) Creates a new configuration based on a root model node ID representing a
configurable product or component.

createConfiguration(int, int, Context)

createConfiguration(int, int, Date,
Context)

Creates a new BOM explosion configuration based on inventoryItemId,
organizationId, and explosionDate representing a configurable product or
component.

createConfiguration(String, Context) Creates a new configuration based on a project name representing a configurable
product or component.

getActiveModelPath() Gets the current active model path.

restoreConfiguration(DbConfigHeade
r, Context)

Restores a configuration from the database.

CIO

B-32 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

CIO()
public CIO()
Constructs a newly allocated configuration integration object.

Methods

clearLogicFile(String)
public void clearLogicFile(java.lang.String key)
Clears only the key specified file from the LCE file cache

clearLogicFileCache()
public void clearLogicFileCache()
Clears all LogicFile objects from the logic file cache.

close()
public void close()
Closes the CIO object and all associated runtime objects.

closeConfiguration(Configuration)
public void closeConfiguration(Configuration config)
Deletes all runtime structure and memory associated with a configuration.

restoreConfiguration(int, int, Context) Restores a configuration from the database.

setActiveModelPath(String) Sets the path to the directory where the CIO will look for logic files, and where it
will store logic files when generating them out of the database.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary

CIO

Package oracle.apps.cz.cio B-33

Parameters:
config - the configuration to be deleted.

See Also:
Configuration

createConfiguration(int, Context)
public Configuration createConfiguration(int rootNodeID,
oracle.apps.fnd.common.Context ctx)
Creates a new configuration based on a root model node ID representing a
configurable product or component.

Parameters:
rootNodeID - the ID of the DIO model node representing the product or
configuration to be configured.

ctx - the Context object representing the application context

Returns:
a new configuration.

Throws:
LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

createConfiguration(int, int, Context)
public Configuration createConfiguration(int projectID, int rootNodeID,
oracle.apps.fnd.common.Context ctx)

Deprecated.
Creates a new configuration based on a project ID and root model node ID both
representing a configurable product or component.

CIO

B-34 Oracle Configuration Interface Object (CIO) Developer’s Guide

Parameters:
projectID - the ID of the DIO project representing the product or configuration to
be configured.

rootNodeID - the ID of the DIO model node representing the product or
configuration to be configured.

ctx - the Context object representing the application context

Returns:
a new configuration.

Throws:
LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

createConfiguration(int, int, Date, Context)
public Configuration createConfiguration(int inventoryItemId, int
organizationId, java.util.Date explosionDate, oracle.apps.fnd.common.Context
ctx)
Creates a new BOM explosion configuration based on inventoryItemId,
organizationId, and explosionDate representing a configurable product or
component.

Parameters:
inventoryItemId - the inventory item id of the BOM explosion model

organizationId - the organization id of the BOM explosion model

explosionDate - the effective date of the BOM explosion model

ctx - the Context object representing the application context

Returns:
a new configuration.

CIO

Package oracle.apps.cz.cio B-35

Throws:
NotOneProductException - if the specified project contains more than one or no
products

LogicalException - if a logic failure is encountered when initializing the
configuration.

See Also:
Configuration

createConfiguration(String, Context)
public Configuration createConfiguration(java.lang.String projectName,
oracle.apps.fnd.common.Context ctx)
Creates a new configuration based on a project name representing a configurable
product or component.

Parameters:
projectName - the name of the DIO project representing the product or
configuration to be configured.

ctx - the Context object representing the application context

Returns:
a new configuration.

Throws:
NotOneProductException - if the specified project contains more than one or no
products

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

getActiveModelPath()
public java.lang.String getActiveModelPath()
Gets the current active model path.

CIO

B-36 Oracle Configuration Interface Object (CIO) Developer’s Guide

Returns:
the active model path.

restoreConfiguration(DbConfigHeader, Context)
public Configuration
restoreConfiguration(oracle.apps.cz.dio.config.DbConfigHeader header,
oracle.apps.fnd.common.Context ctx)
Restores a configuration from the database.

Parameters:
the - header containing information identifying the configuration to be restored.

ctx - the Context object representing the application context

Returns:
the restored configuration.

Throws:
LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

restoreConfiguration(int, int, Context)
public Configuration restoreConfiguration(int configHeaderID, int revNumber,
oracle.apps.fnd.common.Context ctx)
Restores a configuration from the database.

Parameters:
the - ID of the header containing information identifying the configuration to be
restored.

the - revision number of the header containing information identifying the
configuration to be restored.

ctx - the Context object representing the application context

CIO

Package oracle.apps.cz.cio B-37

Returns:
the restored configuration.

Throws:
LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

setActiveModelPath(String)
public void setActiveModelPath(java.lang.String path)
Sets the path to the directory where the CIO will look for logic files, and where it
will store logic files when generating them out of the database.

Parameters:
path - the path to the active model directory which should include the trailing path
separator.

CompanionNode

B-38 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
CompanionNode

Syntax
public class CompanionNode extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.CompanionNode

Description
Provides methods for extracting values from a model based on property
annotations.

Created by a parent CompanionRoot from a functional companion and used to get
property-mapped feature information.

Member Summary

Methods

getBoolean(String) Returns the value of a boolean feature.

getBoolean(String, boolean) Returns the value of a boolean feature, or the default if features is not present.

getChildren() Returns all of the CompanionNode children of this CompanionNode.

getDouble(String) Returns the value of a double feature.

getDouble(String, double) Returns the value of a double feature, or the default if features is not present.

getFeature(String) Get the runtime node representing a particular feature based on its property
annotation.

getInteger(String) Returns the value of an integer feature.

getInteger(String, int) Returns the value of an integer feature, or the default if features is not present.

getString(String) Returns the value of a string feature.

getString(String, String) Returns the value of a string feature, or the default if the feature is not present.

hasFeature(String) Returns true if this CompanionNode contains the named feature.

CompanionNode

Package oracle.apps.cz.cio B-39

Methods

getBoolean(String)
public boolean getBoolean(java.lang.String name)
Returns the value of a boolean feature.

getBoolean(String, boolean)
public boolean getBoolean(java.lang.String name, boolean dflt)
Returns the value of a boolean feature, or the default if features is not present.

getChildren()
public com.sun.java.util.collections.List getChildren()
Returns all of the CompanionNode children of this CompanionNode.

getDouble(String)
public double getDouble(java.lang.String name)
Returns the value of a double feature.

getDouble(String, double)
public double getDouble(java.lang.String name, double dflt)
Returns the value of a double feature, or the default if features is not present.

getFeature(String)
public IRuntimeNode getFeature(java.lang.String name)
Get the runtime node representing a particular feature based on its property
annotation.

getInteger(String)
public int getInteger(java.lang.String name)
Returns the value of an integer feature.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

CompanionNode

B-40 Oracle Configuration Interface Object (CIO) Developer’s Guide

getInteger(String, int)
public int getInteger(java.lang.String name, int dflt)
Returns the value of an integer feature, or the default if features is not present.

getString(String)
public java.lang.String getString(java.lang.String name)
Returns the value of a string feature.

getString(String, String)
public java.lang.String getString(java.lang.String name, java.lang.String dflt)
Returns the value of a string feature, or the default if the feature is not present.

hasFeature(String)
public boolean hasFeature(java.lang.String name)
Returns true if this CompanionNode contains the named feature.

CompanionRoot

Package oracle.apps.cz.cio B-41

oracle.apps.cz.cio
CompanionRoot

Syntax
public abstract class CompanionRoot extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.CompanionRoot

Description
Provides functional companion implementors with property-based feature
extraction.

An abstract class to be extended by functional companion implementors which
attaches CompanionNode objects to runtime nodes and makes model features
available to the function companion through a flexible system of property-based
annotations.

In order to use this class, the implementor should provide implementations of
getNodeIdentifier() , which returns the name of the property used to identify
runtime nodes to which CompanionNodes will be attached, getFeatureIdentifier()
which returns the name of the property used to identify features of the
CompanionNode, and getNodeClass(String) which maps the value of the
getNodeIdentifier property to the subclass of CompanionNode that should be
instantiated to represent a particular node.

Member Summary

Constructors

CompanionRoot(IRuntimeNode) Creates a tree of companion node objects based on property annotations.

Methods

getFeatureIdentifier() Returns the name of the property used to identify companion features.

getNodeClass(String) Maps a node type to the class used to represent the node.

CompanionRoot

B-42 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

CompanionRoot(IRuntimeNode)
public CompanionRoot(IRuntimeNode root)
Creates a tree of companion node objects based on property annotations.

Methods

getFeatureIdentifier()
public abstract java.lang.String getFeatureIdentifier()
Returns the name of the property used to identify companion features.

getNodeClass(String)
public abstract java.lang.String getNodeClass(java.lang.String nodeType)
Maps a node type to the class used to represent the node.

getNodeIdentifier()
public abstract java.lang.String getNodeIdentifier()
Returns the name of the property used to identify companion nodes. Runtime
nodes that have a property of this name will be mapped to CompanionNode
objects. The value of the property will be mapped through the
getNodeClass(String) method to determine which subclass of CompanionNode to
instantiate.

getNodeIdentifier() Returns the name of the property used to identify companion nodes.

getRootNodes() Returns the root CompanionNode objects.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary

CompanionRoot

Package oracle.apps.cz.cio B-43

getRootNodes()
public com.sun.java.util.collections.List getRootNodes()
Returns the root CompanionNode objects.

CompanionValidationFailure

B-44 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
CompanionValidationFailure

Syntax
public class CompanionValidationFailure extends ValidationFailure

java.lang.Object
|
+--StatusInfo

|
+--ValidationFailure

|
+--oracle.apps.cz.cio.CompanionValidationFailure

Description
Failure produced by a functional companion object.

Member Summary

Constructors

CompanionValidationFailure(String,
IRuntimeNode,
IFunctionalCompanion)

Methods

equals(Object)

getCompanion() Returns the companion in which this validation failure occurred.

hashCode()

Inherited Member Summary

Fields inherited from class ValidationFailure

COMPANION_FAILURE, MAX_FAILURE, MIN_FAILURE, MIN0_FAILURE, MINMAX_FAILURE, RESOURCE_FAILURE, RESTORE_
FAILURE

Fields inherited from class StatusInfo

CompanionValidationFailure

Package oracle.apps.cz.cio B-45

Constructors

CompanionValidationFailure(String, IRuntimeNode, IFunctionalCompanion)
public CompanionValidationFailure(java.lang.String message, IRuntimeNode node,
IFunctionalCompanion companion)

Methods

equals(Object)
public boolean equals(java.lang.Object obj)

Overrides:
equals(Object) in class ValidationFailure

getCompanion()
public IFunctionalCompanion getCompanion()
Returns the companion in which this validation failure occurred.

hashCode()
public int hashCode()

Overrides:
hashCode() in class StatusInfo

STATUS_DELETED, STATUS_EXISTING, STATUS_NEW

Methods inherited from class ValidationFailure

getMessage(), getMessage(String), getType(), toString()

Methods inherited from class StatusInfo

getNode(), getStatus(), statusToString(int), toString(boolean)

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Inherited Member Summary

Component

B-46 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
Component

Syntax
public class Component extends ComponentNode

java.lang.Object
|
+--RuntimeNode

|
+--ComponentNode

|
+--oracle.apps.cz.cio.Component

All Implemented Interfaces:
IIntegerMinMax, IRuntimeNode

Description
Implements the runtime configuration behavior of products and components.

Member Summary

Methods

getChildren() Returns a list of this node's children.

getCount() Returns the count of the associated component set.

getFuncCompByID(int) Returns a particular functional companion based on its ID, null if no match.

getFuncCompByName(String) Returns a particular functional companion based on its name, null if no match.

getFunctionalCompanions() Returns a list of all functional companions associated with this component.

getInstanceNumber() Returns the instance number of this component (1 if not in a component set).

getMax() Returns the maximum of the design-time component.

getMin() Returns the minimum of the design-time component.

getName() Returns the name of this runtime node.

getType() Returns the type of this runtime node.

Component

Package oracle.apps.cz.cio B-47

Methods

getChildren()
public com.sun.java.util.collections.List getChildren()
Returns a list of this node's children.

hasMax() Returns true if the design-time component has a maximum.

hasMin() Returns true if the design-time component has a minimum.

instanceTypeToString(int)

isRoot() Returns true if this is the root component in the runtime tree.

isVirtual() Returns true if this component is a virtual component.

setName(String) Sets the name of this component.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ComponentNode

getChildrenByType(int), isActive()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getConfiguration(), getDatabaseID(), getDescription(), getParent(), getProperties(),
getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(), hasDescription(), hasIntegerValue(),
hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(), toString(boolean),
typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(), getParent(),
getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(), hasDescription(),
hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Member Summary

Component

B-48 Oracle Configuration Interface Object (CIO) Developer’s Guide

Overrides:
getChildren() in class RuntimeNode

getCount()
public int getCount()
Returns the count of the associated component set.

getFuncCompByID(int)
public IFunctionalCompanion getFuncCompByID(int id)
Returns a particular functional companion based on its ID, null if no match.

getFuncCompByName(String)
public IFunctionalCompanion getFuncCompByName(java.lang.String name)
Returns a particular functional companion based on its name, null if no match.

getFunctionalCompanions()
public com.sun.java.util.collections.List getFunctionalCompanions()
Returns a list of all functional companions associated with this component.

getInstanceNumber()
public int getInstanceNumber()
Returns the instance number of this component (1 if not in a component set).

getMax()
public int getMax()
Returns the maximum of the design-time component.

getMin()
public int getMin()
Returns the minimum of the design-time component.

getName()
public java.lang.String getName()
Returns the name of this runtime node.

Overrides:
getName() in class RuntimeNode

Component

Package oracle.apps.cz.cio B-49

getType()
public int getType()
Returns the type of this runtime node.

Overrides:
getType() in class RuntimeNode

hasMax()
public boolean hasMax()
Returns true if the design-time component has a maximum.

hasMin()
public boolean hasMin()
Returns true if the design-time component has a minimum.

instanceTypeToString(int)
public static java.lang.String instanceTypeToString(int instanceType)

isRoot()
public boolean isRoot()
Returns true if this is the root component in the runtime tree.

isVirtual()
public boolean isVirtual()
Returns true if this component is a virtual component.

setName(String)
public void setName(java.lang.String newName)
Sets the name of this component. NOTE: The method setName() shouldn't be used
and may be removed in a future release.

ComponentNode

B-50 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
ComponentNode

Syntax
public abstract class ComponentNode extends RuntimeNode implements
IIntegerMinMax

java.lang.Object
|
+--RuntimeNode

|
+--oracle.apps.cz.cio.ComponentNode

Direct Known Subclasses:
Component, ComponentSet

All Implemented Interfaces:
IIntegerMinMax, IRuntimeNode

Description
Represents a set of configurable components.

Member Summary

Methods

getChildrenByType(int) Returns a list of all children of a given type.

isActive() Returns true if this node has been activated.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

ComponentNode

Package oracle.apps.cz.cio B-51

Methods

getChildrenByType(int)
public com.sun.java.util.collections.List getChildrenByType(int type)
Returns a list of all children of a given type.

Specified By:
getChildrenByType(int) in interface IRuntimeNode

Overrides:
getChildrenByType(int) in class RuntimeNode

isActive()
public boolean isActive()
Returns true if this node has been activated.

getChildByID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaseID(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IIntegerMinMax

getMax(), getMin(), hasMax(), hasMin()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaseID(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

ComponentSet

B-52 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
ComponentSet

Syntax
public class ComponentSet extends ComponentNode

java.lang.Object
|
+--RuntimeNode

|
+--ComponentNode

|
+--oracle.apps.cz.cio.ComponentSet

All Implemented Interfaces:
IIntegerMinMax, IRuntimeNode

Description
Represents a set of configurable components.

Member Summary

Methods

add()

addConfigEventListener(ICompSetEv
entListener)

Add a listener that is notified when a component is added or deleted.

delete(Component)

getChildByInstanceNumber(int)

getCount()

getMax()

getMin()

getType()

hasMax()

hasMin()

ComponentSet

Package oracle.apps.cz.cio B-53

Methods

add()
public Component add()

addConfigEventListener(ICompSetEventListener)
public void addConfigEventListener(ICompSetEventListener listener)
Add a listener that is notified when a component is added or deleted.

delete(Component)
public void delete(Component component)

removeConfigEventListener(ICompSe
tEventListener)

Remove a listener that is notified when a component is added or deleted.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ComponentNode

getChildrenByType(int), isActive()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaseID(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(), hasDescription(),
hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Member Summary

ComponentSet

B-54 Oracle Configuration Interface Object (CIO) Developer’s Guide

getChildByInstanceNumber(int)
public Component getChildByInstanceNumber(int instNum)

getCount()
public int getCount()

getMax()
public int getMax()

getMin()
public int getMin()

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

hasMax()
public boolean hasMax()

hasMin()
public boolean hasMin()

removeConfigEventListener(ICompSetEventListener)
public void removeConfigEventListener(ICompSetEventListener listener)
Remove a listener that is notified when a component is added or deleted.

ConfigTransaction

Package oracle.apps.cz.cio B-55

oracle.apps.cz.cio
ConfigTransaction

Syntax
public class ConfigTransaction extends oracle.apps.cz.cio.BasicConfigAction

java.lang.Object
|
+--oracle.apps.cz.cio.BasicConfigAction

|
+--oracle.apps.cz.cio.ConfigTransaction

Description
Represents a configuration transaction.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Configuration

B-56 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
Configuration

Syntax
public class Configuration

oracle.apps.cz.cio.Configuration

Description
The top-level entry point to a configuration.

Member Summary

Methods

addConfigEventListener(IConfigEvent
Listener)

Add a listener that is notified when a component is added or deleted.

addConfigMessage(String, String) Adds a configuration message to be saved to the cz_config_messages table.

beginConfigTransaction() Creates a new transaction.

beginConfigTransaction(boolean) Creates a new transaction and specifies the auto commit mode.

calculateAtpDates() Calculates ATP dates for all IAtp nodes in the tree.

calculateListPrices() Calculates list prices of all IPrice nodes within configuration.

canPerform() Returns true if there is at least one undone or not commited transaction that can be
performed.

canUndo() Returns true if there are performed transactions that can be undone.

clearConfigMessages() Removes all configuration messages added by addConfigMessage.

close() Close the Configuration object and all associated runtime objects.

commitConfigTransaction(ConfigTran
saction)

Commits the given transaction if it matches with current one in the configuration.

endConfigTransaction(ConfigTransact
ion)

Ends the given transaction if it matches with current one in the configuration.

finalizeWorkaround()

getAltPricingAtpContext() Returns context that was added to the configuration through
setAltPricingAtpContext, or null if no alternate pricing/ATP context exists.

Configuration

Package oracle.apps.cz.cio B-57

getCIO() Gets the CIO that created this configuration.

getConfigHeaderCheckoutUser() Gets the user who has the config header checked out.

getConfigHeaderDateCreated() Gets the date when the config header was creaed.

getConfigHeaderDescription() Gets the description of the config header.

getConfigHeaderEffectiveFrom() Gets the date from which the config header is effective.

getConfigHeaderEffectiveTo() Gets the date towhich the config header is effective.

getConfigHeaderId() Gets the id of the config header.

getConfigHeaderLastUpdateDate() Gets the date when the config header was last updated.

getConfigHeaderName() Gets the name of the config header.

getConfigHeaderNote() Gets the note of the config header.

getConfigHeaderNumberQuotesUsed
In()

Gets the config header number quotes used in.

getConfigHeaderOpportunityHeaderI
d()

Gets the opportunity header id of the config header .

getConfigHeaderRevision() Gets the revision of the config header.

getConfigHeaderStatus() Gets the status of the config header.

getConfigHeaderUiDefinitionId() Gets the UI definition id in the config header.

getConfigHeaderUserIdCreated() Gets the id of the user who created the config header.

getContext() Returns the Context object associated with this configuration

getInitParameters() Gets initialization parameters, which are stored in a NameValuePairSet object.

getLastContradiction() Returns the most recent contradiction.

getProjectID() Gets the database ID of the project from which this configuration was created.

getRootBomModel() Returns the root BOM Model node, if there is associated with this configuration.

getRootBomModel(int, int) Returns the root BOM Model node with the given inventory item ID and
organization ID

getRootComponent() Gets the root product or component of the configuration.

getRootComponentDbId() Gets the database id of the root component.

getRuntimeNode(int) Fetches a runtime node based on a runtime ID.

Member Summary

Configuration

B-58 Oracle Configuration Interface Object (CIO) Developer’s Guide

getSelectedItems() Gets a collection of status info objects describing all selected items in the
configuration.

getTotalDiscountedPrice() Returns rolled up discounted price of the configuration.

getTransactionDepth() Returns the number of nested transactions (depth).

getUnsatisfiedItems() Gets a collection of status info objects describing all unsatisfied items in the
configuration.

getValidationFailures() Gets a collection of validation failures describing current problems with the
configuration.

isUnsatisfied() Returns true if the configuration is incomplete.

perform() Perform the next pending transaction.

removeConfigEventListener(IConfigE
ventListener)

Remove a listener that is notified when a component is added or deleted.

restartConfiguration(boolean) Restart the current configuration instance without destroying the objects NOTE:
Currently, it works only for values and states.

rollbackConfigTransaction(ConfigTran
saction)

Rolls back the given transaction if it matches with current one in the configuration.

save() Saves the restored configuration.

saveAs(int, int) Saves over the current configuration.

saveNew() Saves a whole new configuration.

saveNewRev() Saves a new revision of the restored configuration.

setAltPricingAtpContext(Context) If pricing and ATP information should be retrieved from an alternate Apps
database, the setAltPricingAtpContext method should be called immediately after
the Configuration is created.

setConfigHeaderCheckoutUser(String
)

Sets the user who has checked out the config header.

setConfigHeaderDateCreated(Timest
amp)

Sets the config header creation date.

setConfigHeaderDescription(String) Sets the config header description.

setConfigHeaderEffectiveFrom(Times
tamp)

Sets the date from which the config header is effective.

setConfigHeaderEffectiveTo(Timesta
mp)

Sets the date to which the config header is effective.

setConfigHeaderName(String) Sets the config header name.

Member Summary

Configuration

Package oracle.apps.cz.cio B-59

Methods

addConfigEventListener(IConfigEventListener)
public void addConfigEventListener(IConfigEventListener listener)
Add a listener that is notified when a component is added or deleted.

addConfigMessage(String, String)
public void addConfigMessage(java.lang.String keyword, java.lang.String message)
Adds a configuration message to be saved to the cz_config_messages table.
Messages are cleared from the Configuration object when the configuration and
messages are saved.

Parameters:
keyword - keyword describing the type of message, e.g. "CONTRADICTION"

message - message string

beginConfigTransaction()
public ConfigTransaction beginConfigTransaction()
Creates a new transaction.

Returns:
a reference to the newly created transaction.

beginConfigTransaction(boolean)
public ConfigTransaction beginConfigTransaction(boolean autoCommit)
Creates a new transaction and specifies the auto commit mode.

setConfigHeaderNote(String) Sets the config header note.

setConfigHeaderOpportunityHeaderI
d(int)

Sets the config header opportunity header id.

setConfigHeaderUiDefinitionId(int) Sets the config header UI definition id.

setInitParameters(NameValuePairSet
)

Sets configuration initialization parameters, e.g.

undo() Undo the previous transaction.

Member Summary

Configuration

B-60 Oracle Configuration Interface Object (CIO) Developer’s Guide

Returns:
a reference to the newly created transaction.

calculateAtpDates()
public java.util.Date calculateAtpDates()
Calculates ATP dates for all IAtp nodes in the tree. ATP values can then be retrieved
using IAtp.getAtpDate().

Returns:
configuration level ATP date if calculated, null if not

Throws:
AtpUnavailableException - thrown if configuration initialization parameters
required to run ATP check have not all been provided

calculateListPrices()
public void calculateListPrices()
Calculates list prices of all IPrice nodes within configuration. Prices are retrieved
through IPrice.getListPrice.

canPerform()
public boolean canPerform()
Returns true if there is at least one undone or not commited transaction that can be
performed.

canUndo()
public boolean canUndo()
Returns true if there are performed transactions that can be undone.

clearConfigMessages()
public void clearConfigMessages()
Removes all configuration messages added by addConfigMessage.

close()
public void close()
Close the Configuration object and all associated runtime objects.

Configuration

Package oracle.apps.cz.cio B-61

commitConfigTransaction(ConfigTransaction)
public void commitConfigTransaction(ConfigTransaction transaction)
Commits the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

endConfigTransaction(ConfigTransaction)
public void endConfigTransaction(ConfigTransaction transaction)
Ends the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

finalizeWorkaround()
public void finalizeWorkaround()

getAltPricingAtpContext()
public oracle.apps.fnd.common.Context getAltPricingAtpContext()
Returns context that was added to the configuration through
setAltPricingAtpContext, or null if no alternate pricing/ATP context exists.

getCIO()
public CIO getCIO()
Gets the CIO that created this configuration.

Returns:
the CIO that created this configuration.

See Also:
CIO

getConfigHeaderCheckoutUser()
public java.lang.String getConfigHeaderCheckoutUser()
Gets the user who has the config header checked out.

Configuration

B-62 Oracle Configuration Interface Object (CIO) Developer’s Guide

Returns:
the config header checkout user.

getConfigHeaderDateCreated()
public java.sql.Timestamp getConfigHeaderDateCreated()
Gets the date when the config header was creaed.

Returns:
the config header creation date.

getConfigHeaderDescription()
public java.lang.String getConfigHeaderDescription()
Gets the description of the config header.

Returns:
the config header description.

getConfigHeaderEffectiveFrom()
public java.sql.Timestamp getConfigHeaderEffectiveFrom()
Gets the date from which the config header is effective.

Returns:
the config header 'Effective From' date.

getConfigHeaderEffectiveTo()
public java.sql.Timestamp getConfigHeaderEffectiveTo()
Gets the date towhich the config header is effective.

Returns:
the config header 'Effective To' date.

getConfigHeaderId()
public int getConfigHeaderId()
Gets the id of the config header.

Configuration

Package oracle.apps.cz.cio B-63

Returns:
the config header id.

getConfigHeaderLastUpdateDate()
public java.sql.Timestamp getConfigHeaderLastUpdateDate()
Gets the date when the config header was last updated.

Returns:
the config header last update date.

getConfigHeaderName()
public java.lang.String getConfigHeaderName()
Gets the name of the config header.

Returns:
the config header name.

getConfigHeaderNote()
public java.lang.String getConfigHeaderNote()
Gets the note of the config header.

Returns:
the config header note.

getConfigHeaderNumberQuotesUsedIn()
public int getConfigHeaderNumberQuotesUsedIn()
Gets the config header number quotes used in.

Returns:
the config header number quotes used in.

getConfigHeaderOpportunityHeaderId()
public int getConfigHeaderOpportunityHeaderId()
Gets the opportunity header id of the config header .

Configuration

B-64 Oracle Configuration Interface Object (CIO) Developer’s Guide

Returns:
the config header opportunity header id.

getConfigHeaderRevision()
public int getConfigHeaderRevision()
Gets the revision of the config header.

Returns:
the config header revision.

getConfigHeaderStatus()
public java.lang.String getConfigHeaderStatus()
Gets the status of the config header.

Returns:
the config header status.

getConfigHeaderUiDefinitionId()
public int getConfigHeaderUiDefinitionId()
Gets the UI definition id in the config header.

Returns:
the config header UI definition id.

getConfigHeaderUserIdCreated()
public int getConfigHeaderUserIdCreated()
Gets the id of the user who created the config header.

Returns:
the config header user id created.

getContext()
public oracle.apps.fnd.common.Context getContext()
Returns the Context object associated with this configuration

Configuration

Package oracle.apps.cz.cio B-65

getInitParameters()
public NameValuePairSet getInitParameters()
Gets initialization parameters, which are stored in a NameValuePairSet object.

Returns:
initParameters object

getLastContradiction()
public LogicalException getLastContradiction()
Returns the most recent contradiction.

getProjectID()
public int getProjectID()
Gets the database ID of the project from which this configuration was created.

Returns:
the project ID.

getRootBomModel()
public BomModel getRootBomModel()
Returns the root BOM Model node, if there is associated with this configuration.

getRootBomModel(int, int)
public BomModel getRootBomModel(int inventoryItemId, int organizationId)
Returns the root BOM Model node with the given inventory item ID and
organization ID

getRootComponent()
public Component getRootComponent()
Gets the root product or component of the configuration.

Returns:
the root product or component.

See Also:
Component

Configuration

B-66 Oracle Configuration Interface Object (CIO) Developer’s Guide

getRootComponentDbId()
public int getRootComponentDbId()
Gets the database id of the root component.

Returns:
the root component db id.

getRuntimeNode(int)
public IRuntimeNode getRuntimeNode(int runtimeID)
Fetches a runtime node based on a runtime ID.

Parameters:
runtimeID - the runtime ID of the desired node.

Returns:
the corresponding runtime node.

See Also:
IRuntimeNode

getSelectedItems()
public com.sun.java.util.collections.Collection getSelectedItems()
Gets a collection of status info objects describing all selected items in the
configuration.

Returns:
the collection of status info objects.

getTotalDiscountedPrice()
public double getTotalDiscountedPrice()
Returns rolled up discounted price of the configuration. Discounted prices on
selected items are available after this call through IPrice.getDiscountedPrice.

getTransactionDepth()
public int getTransactionDepth()
Returns the number of nested transactions (depth).

Configuration

Package oracle.apps.cz.cio B-67

Returns:
the transaction depth.

getUnsatisfiedItems()
public com.sun.java.util.collections.Collection getUnsatisfiedItems()
Gets a collection of status info objects describing all unsatisfied items in the
configuration.

Returns:
the collection of status info objects.

getValidationFailures()
public com.sun.java.util.collections.Collection getValidationFailures()
Gets a collection of validation failures describing current problems with the
configuration.

Returns:
the collection of validation failures.

isUnsatisfied()
public boolean isUnsatisfied()
Returns true if the configuration is incomplete.

Returns:
a boolean indicating whether the configuration is unsatisfied.

perform()
public void perform()
Perform the next pending transaction.

removeConfigEventListener(IConfigEventListener)
public void removeConfigEventListener(IConfigEventListener listener)
Remove a listener that is notified when a component is added or deleted.

restartConfiguration(boolean)
public void restartConfiguration(boolean checkValidations)

Configuration

B-68 Oracle Configuration Interface Object (CIO) Developer’s Guide

Restart the current configuration instance without destroying the objects NOTE:
Currently, it works only for values and states. Additions and deletions are not being
restarted. Therefore, after restart() you get the latest (before the restart) component
instances and cannot undo an instance addition or deletion.

rollbackConfigTransaction(ConfigTransaction)
public void rollbackConfigTransaction(ConfigTransaction transaction)
Rolls back the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

save()
public void save()
Saves the restored configuration.

Throws:
NoConfigHeaderException - when this configuration hasn't been previously saved.
Consider calling SaveNew().

ConfigOverwriteNotAllowedException - when this configuration is "read
only". Consider calling SaveNewRev() or SaveNew().

saveAs(int, int)
public void saveAs(int configHeaderID, int revNumber)
Saves over the current configuration. It uses the passed ID and revision number to
open a ConfigHeader object and to save the configuration int it

Throws:
ConfigOverwriteNotAllowedException - when this configuration is "read
only". Consider calling SaveNewRev() or SaveNew().

saveNew()
public void saveNew()
Saves a whole new configuration.

saveNewRev()
public void saveNewRev()

Configuration

Package oracle.apps.cz.cio B-69

Saves a new revision of the restored configuration.

Throws:
NoConfigHeaderException - when this configuration hasn't been previously saved.
Consider calling SaveNew().

setAltPricingAtpContext(Context)
public void setAltPricingAtpContext(oracle.apps.fnd.common.Context ctx)
If pricing and ATP information should be retrieved from an alternate Apps
database, the setAltPricingAtpContext method should be called immediately after
the Configuration is created.

Parameters:
ctx - Context which represents session on database from which pricing and ATP
information is retrieved

setConfigHeaderCheckoutUser(String)
public void setConfigHeaderCheckoutUser(java.lang.String user)
Sets the user who has checked out the config header.

setConfigHeaderDateCreated(Timestamp)
public void setConfigHeaderDateCreated(java.sql.Timestamp dateCreated)
Sets the config header creation date.

setConfigHeaderDescription(String)
public void setConfigHeaderDescription(java.lang.String description)
Sets the config header description.

setConfigHeaderEffectiveFrom(Timestamp)
public void setConfigHeaderEffectiveFrom(java.sql.Timestamp effFrom)
Sets the date from which the config header is effective.

setConfigHeaderEffectiveTo(Timestamp)
public void setConfigHeaderEffectiveTo(java.sql.Timestamp effTo)
Sets the date to which the config header is effective.

Configuration

B-70 Oracle Configuration Interface Object (CIO) Developer’s Guide

setConfigHeaderName(String)
public void setConfigHeaderName(java.lang.String name)
Sets the config header name.

setConfigHeaderNote(String)
public void setConfigHeaderNote(java.lang.String note)
Sets the config header note.

setConfigHeaderOpportunityHeaderId(int)
public void setConfigHeaderOpportunityHeaderId(int id)
Sets the config header opportunity header id.

setConfigHeaderUiDefinitionId(int)
public void setConfigHeaderUiDefinitionId(int id)
Sets the config header UI definition id.

setInitParameters(NameValuePairSet)
public void setInitParameters(NameValuePairSet initParameters)
Sets configuration initialization parameters, e.g. order header information. All
parameter values should be provided as String objects.

To use the callback pricing mechanism, the following parameters must be provided:
"pricing_package_name" (required), "price_mult_items_proc" or "price_single_
item_proc" (one is required), "configurator_session_key" (required)

To use Apps 10.7/11.0 pricing for BomNodes ("AMNT" pricing method only), the
following parameters must be provided: "price_list_id" (required), "pricing_
attribute1" (optional), "pricing_attribute2" (optional), "pricing_attribute3" (optional),
"pricing_attribute4" (optional), "pricing_attribute5" (optional), "pricing_attribute6"
(optional), "pricing_attribute7" (optional), "pricing_attribute8" (optional), "pricing_
attribute9" (optional), "pricing_attribute10" (optional), "pricing_attribute11"
(optional), "pricing_attribute12" (optional), "pricing_attribute13" (optional),
"pricing_attribute14" (optional), "pricing_attribute15" (optional), "ship_to_site_use_
id" (optional), "customer_id" (optional), "invoice_to_site_use_id" (optional), "po_
number" (optional), "agreement_id" (optional), "agreement_type_code" (optional),
"order_type_id" (optional), "gsa" (optional).

NOTE: If the callback parameters and price_list_id are both provided, then the
pricing callback will be run to determine prices.

Configuration

Package oracle.apps.cz.cio B-71

To use the callback ATP mechanism, the following parameters must be provided:
"atp_package_name" (required), "get_atp_dates_proc" (required), "configurator_
session_key" (required), "warehouse_id" (required), "requested_date" (optional),
and either "ship_to_org_id" (required) or "customer_id" and "customer_site_id"
(required),

To use Apps 10.7/11.0 ATP calculation methods, the following parameters must be
provided: "user_id" (required), "application_id" (required), "responsibility_id"
(required), "atp_timeout" (required)

undo()
public void undo()
Undo the previous transaction.

CountFeature

B-72 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
CountFeature

Syntax
public class CountFeature extends StateCountNode implements IInteger,
IIntegerMinMax

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--oracle.apps.cz.cio.CountFeature

All Implemented Interfaces:
ICount, IInteger, IIntegerMinMax, IPrice, IRuntimeNode, IState

Description
Represents a countable integer feature. A count feature is similar to an integer
feature except that its minimum value must be greater than or equal to zero.

Member Summary

Methods

getIntValue()

getMax()

getMin()

getType()

hasMax()

hasMin()

setIntValue(int)

CountFeature

Package oracle.apps.cz.cio B-73

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getItemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IInteger

unset()

Methods inherited from interface ICount

getCount(), setCount(int)

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IState

getState(), setState(int)

Methods inherited from interface IRuntimeNode

CountFeature

B-74 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getIntValue()
public int getIntValue()

Specified By:
getIntValue() in interface IInteger

getMax()
public int getMax()

Specified By:
getMax() in interface IIntegerMinMax

getMin()
public int getMin()

Specified By:
getMin() in interface IIntegerMinMax

getType()
public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

CountFeature

Package oracle.apps.cz.cio B-75

hasMax()
public boolean hasMax()

Specified By:
hasMax() in interface IIntegerMinMax

hasMin()
public boolean hasMin()

Specified By:
hasMin() in interface IIntegerMinMax

setIntValue(int)
public void setIntValue(int newValue)

Specified By:
setIntValue(int) in interface IInteger

DecimalFeature

B-76 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
DecimalFeature

Syntax
public class DecimalFeature extends DecimalNode implements IDecimalMinMax

java.lang.Object
|
+--RuntimeNode

|
+--ReadOnlyDecimalNode

|
+--DecimalNode

|
+--oracle.apps.cz.cio.DecimalFeature

All Implemented Interfaces:
IDecimal, IDecimalMinMax, IReadOnlyDecimal, IRuntimeNode

Description
Represents a feature with a decimal value.

Member Summary

Methods

getMax()

getMin()

getType()

hasMax()

hasMin()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

DecimalFeature

Package oracle.apps.cz.cio B-77

Methods

getMax()
public double getMax()

Specified By:
getMax() in interface IDecimalMinMax

getMin()
public double getMin()

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode

setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode

getDecimalValue()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IDecimal

setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal

getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

DecimalFeature

B-78 Oracle Configuration Interface Object (CIO) Developer’s Guide

Specified By:
getMin() in interface IDecimalMinMax

getType()
public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

hasMax()
public boolean hasMax()

Specified By:
hasMax() in interface IDecimalMinMax

hasMin()
public boolean hasMin()

Specified By:
hasMin() in interface IDecimalMinMax

DecimalNode

Package oracle.apps.cz.cio B-79

oracle.apps.cz.cio
DecimalNode

Syntax
public abstract class DecimalNode extends ReadOnlyDecimalNode implements
IDecimal

java.lang.Object
|
+--RuntimeNode

|
+--ReadOnlyDecimalNode

|
+--oracle.apps.cz.cio.DecimalNode

Direct Known Subclasses:
DecimalFeature, Resource, Total

All Implemented Interfaces:
IDecimal, IReadOnlyDecimal, IRuntimeNode

Description
An abstract class implementing behavior common to objects with a decimal value.

Member Summary

Methods

setDecimalValue(double)

toString()

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

DecimalNode

B-80 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

setDecimalValue(double)
public void setDecimalValue(double newValue)

Specified By:
setDecimalValue(double) in interface IDecimal

toString()
public java.lang.String toString()

Overrides:
toString() in class ReadOnlyDecimalNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ReadOnlyDecimalNode

getDecimalValue()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IReadOnlyDecimal

getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

DecimalNode

Package oracle.apps.cz.cio B-81

unset()
public void unset()

Specified By:
unset() in interface IDecimal

Factory

B-82 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
Factory

Syntax
public class Factory extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.Factory

Description
Provides a class factory for the CIO to clients that do not support arguments to
constructors.

Member Summary

Constructors

Factory()

Methods

createCIO() Creates an instance of the CIO.

createContext(String, String, String,
String)

Creates the database context object which is required by most CIO methods.

createContext(String, String, String,
String, String, String, String)

Creates the database context object which is required by most CIO methods.

loadDriver(String) Loads the JDBC driver named by the argument.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Factory

Package oracle.apps.cz.cio B-83

Constructors

Factory()
public Factory()

Methods

createCIO()
public CIO createCIO()
Creates an instance of the CIO.

createContext(String, String, String, String)
public oracle.apps.fnd.common.Context createContext(java.lang.String url,
java.lang.String uname, java.lang.String pwd, java.lang.String owner)
Creates the database context object which is required by most CIO methods. This
method requires a database user and password.

Parameters:
url - database connection URL that specifies JDBC driver and datasource

uname - database username

pwd - database password

owner - SellingPoint schema owner

createContext(String, String, String, String, String, String, String)
public oracle.apps.fnd.common.Context createContext(java.lang.String url,
java.lang.String appsUsername, java.lang.String appsPassword, java.lang.String
gatewayUsername, java.lang.String gatewayPassword, java.lang.String fndNam,
java.lang.String applServerId)
Creates the database context object which is required by most CIO methods. This
method uses Apps FND authentication to validate the user.

Parameters:
url - database connection URL, identifies JDBC driver and data source

appsUsername - Oracle Applications user name

appsPassword - Oracle Applications password for appsUsername

Factory

B-84 Oracle Configuration Interface Object (CIO) Developer’s Guide

gatewayUsername - gateway user name

gatewayPassword - password for gatewayUsername

fndNam - Apps schema owner

applServerId - application server ID, only used if its security feature is ON (OFF
by default)

loadDriver(String)
public void loadDriver(java.lang.String driver)
Loads the JDBC driver named by the argument.

Throws:
ClassNotFoundException - if the driver cannot be loaded.

FuncCompCreationException

Package oracle.apps.cz.cio B-85

oracle.apps.cz.cio
FuncCompCreationException

Syntax
public class FuncCompCreationException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--oracle.apps.cz.cio.FuncCompCreationException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a functional companion cannot be created.

Member Summary

Methods

getDescrption() Returns the description of the failed companion.

getID() Returns the database ID of the failed companion.

getName() Returns the name of the failed companion.

getProgString() Returns the program string used when trying to create the companion.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

FuncCompCreationException

B-86 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getDescrption()
public java.lang.String getDescrption()
Returns the description of the failed companion.

getID()
public int getID()
Returns the database ID of the failed companion.

getName()
public java.lang.String getName()
Returns the name of the failed companion.

getProgString()
public java.lang.String getProgString()
Returns the program string used when trying to create the companion.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Inherited Member Summary

FunctionalCompanion

Package oracle.apps.cz.cio B-87

oracle.apps.cz.cio
FunctionalCompanion

Syntax
public class FunctionalCompanion extends java.lang.Object implements
IFunctionalCompanion

java.lang.Object
|
+--oracle.apps.cz.cio.FunctionalCompanion

All Implemented Interfaces:
IFunctionalCompanion

Description
Base object on which user functional companions can be based.

Member Summary

Constructors

FunctionalCompanion()

Methods

autoConfigure() Does nothing.

generateOutput() Does nothing.

generateOutput(HttpServletResponse
)

Does nothing.

getDescription() Returns the description of the functional companion.

getID() Returns the database ID of the functional companion.

getName() Returns the name of the functional companion.

getRuntimeNode() Returns the runtime node to which this functional is associated.

initialize(IRuntimeNode, String,
String, int)

Saves the parameters in member variables.

terminate() Does nothing.

FunctionalCompanion

B-88 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

FunctionalCompanion()
public FunctionalCompanion()

Methods

autoConfigure()
public void autoConfigure()
Does nothing.

Specified By:
autoConfigure() in interface IFunctionalCompanion

generateOutput()
public java.lang.String generateOutput()
Does nothing. Returns null.

Specified By:
generateOutput() in interface IFunctionalCompanion

generateOutput(HttpServletResponse)
public void generateOutput(javax.servlet.http.HttpServletResponse response)
Does nothing.

toString()

validate() Does nothing.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Member Summary

FunctionalCompanion

Package oracle.apps.cz.cio B-89

Specified By:
generateOutput(HttpServletResponse) in interface IFunctionalCompanion

getDescription()
public java.lang.String getDescription()
Returns the description of the functional companion.

Specified By:
getDescription() in interface IFunctionalCompanion

getID()
public int getID()
Returns the database ID of the functional companion.

Specified By:
getID() in interface IFunctionalCompanion

getName()
public java.lang.String getName()
Returns the name of the functional companion.

Specified By:
getName() in interface IFunctionalCompanion

getRuntimeNode()
public IRuntimeNode getRuntimeNode()
Returns the runtime node to which this functional is associated.

Specified By:
getRuntimeNode() in interface IFunctionalCompanion

initialize(IRuntimeNode, String, String, int)
public void initialize(IRuntimeNode node, java.lang.String name,
java.lang.String description, int id)
Saves the parameters in member variables.

FunctionalCompanion

B-90 Oracle Configuration Interface Object (CIO) Developer’s Guide

Specified By:
initialize(IRuntimeNode, String, String, int) in interface IFunctionalCompanion

terminate()
public void terminate()
Does nothing.

Specified By:
terminate() in interface IFunctionalCompanion

toString()
public java.lang.String toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

validate()
public com.sun.java.util.collections.List validate()
Does nothing.

Specified By:
validate() in interface IFunctionalCompanion

FunctionalCompanionException

Package oracle.apps.cz.cio B-91

oracle.apps.cz.cio
FunctionalCompanionException

Syntax
public class FunctionalCompanionException

oracle.apps.cz.cio.FunctionalCompanionException

Description
This exception is used to indicate that an error occured somewhere inside the
functional companion.

Constructors

FunctionalCompanionException(Throwable)
public FunctionalCompanionException(java.lang.Throwable ex)
The message of the original exception will be the message of this exception.

FunctionalCompanionException(Throwable, String)
public FunctionalCompanionException(java.lang.Throwable ex, java.lang.String
message)

Parameters:
message - the message of the exception

Member Summary

Constructors

FunctionalCompanionException(Thro
wable)

The message of the original exception will be the message of this exception.

FunctionalCompanionException(Thro
wable, String)

IAtp

B-92 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IAtp

Syntax
public interface IAtp extends ICount

All Known Subinterfaces:
IBomItem

All Superinterfaces:
ICount

Description
Implemented by objects that can have ATP calculated. This interface contains
methods for getting available-to-promise (ATP) information, and methods to
retrieve ATP errors/warnings/messages.

Member Summary

Methods

getAtpDate() Retrieves last ATP date calculated by Configuration.calculateAtpDates for this item.

getAtpNotifications() Returns string containing any ATP messages, warnings or errors generated for this
node by the latest Configuration.calculateAtpDates call.

getDatabaseID() Returns the database ID of the runtime node.

getItemKey() Returns item key for items imported from Oracle Inventory / BOM.

getUomCode() Returns unit of measure code for items imported from Oracle Inventory/ BOM.

Inherited Member Summary

Methods inherited from interface ICount

getCount(), setCount(int), unset()

IAtp

Package oracle.apps.cz.cio B-93

Methods

getAtpDate()
public java.util.Date getAtpDate()
Retrieves last ATP date calculated by Configuration.calculateAtpDates for this item.

Returns:
ATP date

Throws:
AtpUnavailableException - thrown if ATP initialization parameters were not
provided

NoAtpCalculatedException - thrown if ATP was never demanded or if the ATP
procedure did not calculate an ATP date for this node

getAtpNotifications()
public java.lang.String getAtpNotifications()
Returns string containing any ATP messages, warnings or errors generated for this
node by the latest Configuration.calculateAtpDates call.

getDatabaseID()
public int getDatabaseID()
Returns the database ID of the runtime node.

getItemKey()
public java.lang.String getItemKey()
Returns item key for items imported from Oracle Inventory / BOM. Item key is
constructed from BOM_EXPLOSIONS field values: "[COMPONENT_
CODE]:[EXPLOSION_TYPE]:[ORGANIZATION_ID]:[TOP_ITEM_ID]" Item key
may be used by PL/SQL ATP procedures to calculate ATP for nodes. Returns null if
node was not imported from Oracle Inventory / BOM.

getUomCode()
public java.lang.String getUomCode()
Returns unit of measure code for items imported from Oracle Inventory/ BOM. The
unit of measure may be used by PL/SQL pricing procedures to calculate ATP for
nodes. Returns null if node was not imported from Oracle Inventory / BOM.

IBomItem

B-94 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IBomItem

Syntax
public interface IBomItem extends IOptionFeature, IOption, IPrice, IAtp

All Superinterfaces:
IAtp, ICount, IOption, IOptionFeature, IPrice, IState

All Known Implementing Classes:
BomNode

Description
Implemented by all selectable BOM items.

Member Summary

Methods

getComponentCode() Returns component code of item.

getInventoryItemId() Returns Oracle Applications inventory_item_id of item.

getMaxQuantity() Gets the maximum quantity.

getMinQuantity() Gets the minimum quantity.

getOrganizationId() Returns Oracle Applications organization_id of item.

getPrimaryUomCode() Gets primary unit of measure code for item.

hasMaxQuantity() Reuturns true if the BOM item has maximum quantity

hasMinQuantity() Returns true if the BOM item has minimum quantity

isRequired() Returns true if this is a required BOM item.

Inherited Member Summary

Fields inherited from interface IState

IBomItem

Package oracle.apps.cz.cio B-95

Methods

getComponentCode()
public java.lang.String getComponentCode()
Returns component code of item. Component code is used to identify the item
within an exploded bill of materials.

getInventoryItemId()
public int getInventoryItemId()
Returns Oracle Applications inventory_item_id of item.

getMaxQuantity()
public int getMaxQuantity()
Gets the maximum quantity.

getMinQuantity()
public int getMinQuantity()

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected(),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaseID(), getItemKey(), getUomCode()

Inherited Member Summary

IBomItem

B-96 Oracle Configuration Interface Object (CIO) Developer’s Guide

Gets the minimum quantity.

getOrganizationId()
public int getOrganizationId()
Returns Oracle Applications organization_id of item.

getPrimaryUomCode()
public java.lang.String getPrimaryUomCode()
Gets primary unit of measure code for item.

hasMaxQuantity()
public boolean hasMaxQuantity()
Reuturns true if the BOM item has maximum quantity

hasMinQuantity()
public boolean hasMinQuantity()
Returns true if the BOM item has minimum quantity

isRequired()
public boolean isRequired()
Returns true if this is a required BOM item.

ICompSetEventListener

Package oracle.apps.cz.cio B-97

oracle.apps.cz.cio
ICompSetEventListener

Syntax
public interface ICompSetEventListener extends java.util.EventListener

All Superinterfaces:
java.util.EventListener

Description
Implemented by objects that want to find out about added components.

Methods

notifyComponentAdded(Component)
public void notifyComponentAdded(Component component)
Called when a component is added to the component set.

notifyComponentDeleted(Component)
public void notifyComponentDeleted(Component component)
Called when a component is deleted from the component set.

Member Summary

Methods

notifyComponentAdded(Component) Called when a component is added to the component set.

notifyComponentDeleted(Component
)

Called when a component is deleted from the component set.

IConfigEventListener

B-98 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IConfigEventListener

Syntax
public interface IConfigEventListener extends java.util.EventListener

All Superinterfaces:
java.util.EventListener

Description
Implemented by objects that want to find out about added components. This
listener's methods are called as the result of user interaction, after a functional
companion is initialized.

Methods

notifyComponentAdded(Component)
public void notifyComponentAdded(Component component)
Called when a component is added to the configuration as the result of user
interaction, after a functional companion is initialized.

notifyComponentDeleted(Component)
public void notifyComponentDeleted(Component component)
Called when a component is deleted from the configuration as the result of user
interaction, after a functional companion is initialized.

Member Summary

Methods

notifyComponentAdded(Component) Called when a component is added to the configuration as the result of user
interaction, after a functional companion is initialized.

notifyComponentDeleted(Component
)

Called when a component is deleted from the configuration as the result of user
interaction, after a functional companion is initialized.

ICount

Package oracle.apps.cz.cio B-99

oracle.apps.cz.cio
ICount

Syntax
public interface ICount

All Known Subinterfaces:
IAtp, IBomItem, IOption, IOptionFeature, IPrice

All Known Implementing Classes:
StateCountNode

Description
Implemented by objects that have an associated integer count.

Methods

getCount()
public int getCount()
Gets the current count of this object.

Returns:
the current count of this object.

setCount(int)
public void setCount(int newCount)

Member Summary

Methods

getCount() Gets the current count of this object.

setCount(int) Sets the count of this object.

unset() Retracts any user selection made toward this node

ICount

B-100 Oracle Configuration Interface Object (CIO) Developer’s Guide

Sets the count of this object.

unset()
public void unset()
Retracts any user selection made toward this node

IDecimal

Package oracle.apps.cz.cio B-101

oracle.apps.cz.cio
IDecimal

Syntax
public interface IDecimal extends IReadOnlyDecimal

All Superinterfaces:
IReadOnlyDecimal

All Known Implementing Classes:
DecimalNode

Description
Implemented by objects that can both get and set a decimal value.

Methods

setDecimalValue(double)
public void setDecimalValue(double newValue)
Sets the current value of this object.

Member Summary

Methods

setDecimalValue(double) Sets the current value of this object.

unset() Retracts any user selection made toward this node

Inherited Member Summary

Methods inherited from interface IReadOnlyDecimal

getDecimalValue()

IDecimal

B-102 Oracle Configuration Interface Object (CIO) Developer’s Guide

unset()
public void unset()
Retracts any user selection made toward this node

IDecimalMinMax

Package oracle.apps.cz.cio B-103

oracle.apps.cz.cio
IDecimalMinMax

Syntax
public interface IDecimalMinMax

All Known Implementing Classes:
DecimalFeature

Description
Implemented by objects that have a decimal minimum and maximum value.

Methods

getMax()
public double getMax()
Get the maximum allowable value.

getMin()
public double getMin()
Get the minimum allowable value.

hasMax()
public boolean hasMax()
Returns true if there is a maximum limit.

Member Summary

Methods

getMax() Get the maximum allowable value.

getMin() Get the minimum allowable value.

hasMax() Returns true if there is a maximum limit.

hasMin() Returns true if there is a minimum limit.

IDecimalMinMax

B-104 Oracle Configuration Interface Object (CIO) Developer’s Guide

hasMin()
public boolean hasMin()
Returns true if there is a minimum limit.

IFunctionalCompanion

Package oracle.apps.cz.cio B-105

oracle.apps.cz.cio
IFunctionalCompanion

Syntax
public interface IFunctionalCompanion

All Known Implementing Classes:
FunctionalCompanion

Description
Implemented by functional companion objects attached to components in order to
provide programatic functionality to a configuration model.

Member Summary

Methods

autoConfigure() Performs a programmatic configuration step.

generateOutput() Generates output for this component.

generateOutput(HttpServletResponse
)

Generates output for this component.

getDescription() Returns the description of the functional companion.

getID() Returns the database ID of the functional companion.

getName() Returns the name of the functional companion.

getRuntimeNode() Returns the runtime node to which this component is attached.

initialize(IRuntimeNode, String,
String, int)

Saves information about the model and performs any actions needed to initialize
the companion.

terminate() Performs any cleanup on this companion that needs to occur before the companion
is destroyed.

validate() Programatically checks that a configuration is valid and returns a list of
ValidationFailure objects if there are failures, and null otherwise.

IFunctionalCompanion

B-106 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

autoConfigure()
public void autoConfigure()
Performs a programmatic configuration step. Any modifications to the model
should be performed here.

generateOutput()
public java.lang.String generateOutput()
Generates output for this component. This version is called in a thick client context
where the user's machine can be addressed directly. Can modify the model, but this
is not recommended practice.

generateOutput(HttpServletResponse)
public void generateOutput(javax.servlet.http.HttpServletResponse response)
Generates output for this component. This version is called in a thin client context
where the user's browser is addressed indirectly by writing to the
HttpServletResponse object. Can modify the model, but this is not recommended
practice.

getDescription()
public java.lang.String getDescription()
Returns the description of the functional companion.

getID()
public int getID()
Returns the database ID of the functional companion.

getName()
public java.lang.String getName()
Returns the name of the functional companion.

getRuntimeNode()
public IRuntimeNode getRuntimeNode()
Returns the runtime node to which this component is attached.

IFunctionalCompanion

Package oracle.apps.cz.cio B-107

initialize(IRuntimeNode, String, String, int)
public void initialize(IRuntimeNode node, java.lang.String name,
java.lang.String description, int id)
Saves information about the model and performs any actions needed to initialize
the companion. Should never attempt to modify the model.

terminate()
public void terminate()
Performs any cleanup on this companion that needs to occur before the companion
is destroyed.

validate()
public com.sun.java.util.collections.List validate()
Programatically checks that a configuration is valid and returns a list of
ValidationFailure objects if there are failures, and null otherwise. Should never
attempt to modify the model.

IInteger

B-108 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IInteger

Syntax
public interface IInteger

All Known Implementing Classes:
CountFeature, IntegerNode

Description
Implemented by objects that have an integer value.

Methods

getIntValue()
public int getIntValue()
Get the current integer value of this object.

setIntValue(int)
public void setIntValue(int newValue)
Set the current integer value of this object.

unset()
public void unset()
Retracts any user selection made toward this node

Member Summary

Methods

getIntValue() Get the current integer value of this object.

setIntValue(int) Set the current integer value of this object.

unset() Retracts any user selection made toward this node

IIntegerMinMax

Package oracle.apps.cz.cio B-109

oracle.apps.cz.cio
IIntegerMinMax

Syntax
public interface IIntegerMinMax

All Known Implementing Classes:
CountFeature, IntegerFeature, ComponentNode

Description
Implemented by objects that have an integer minimum and maximum.

Methods

getMax()
public int getMax()
Get the maximal allowable value for this object.

getMin()
public int getMin()
Get the minimal allowable value for this object.

hasMax()
public boolean hasMax()
Returns true if there is a maximum limit.

Member Summary

Methods

getMax() Get the maximal allowable value for this object.

getMin() Get the minimal allowable value for this object.

hasMax() Returns true if there is a maximum limit.

hasMin() Returns true if there is a minimum limit.

IIntegerMinMax

B-110 Oracle Configuration Interface Object (CIO) Developer’s Guide

hasMin()
public boolean hasMin()
Returns true if there is a minimum limit.

IncompatibleInputException

Package oracle.apps.cz.cio B-111

oracle.apps.cz.cio
IncompatibleInputException

Syntax
public class IncompatibleInputException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.IncompatibleInputException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a particular input is of different type than the node it is trying to restore
over.

Member Summary

Methods

getInput() Returns the input object where the mismatch occured

getModelNode() Returns the corresponding model node where the mismatch occured

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

IncompatibleInputException

B-112 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getInput()
public oracle.apps.cz.dio.config.DbConfigInput getInput()
Returns the input object where the mismatch occured

Returns:
the failed DbConfigInput object

getModelNode()
public oracle.apps.cz.dio.model.DbModelNode getModelNode()
Returns the corresponding model node where the mismatch occured

Returns:
the failed DbConfigInput object

IntegerFeature

Package oracle.apps.cz.cio B-113

oracle.apps.cz.cio
IntegerFeature

Syntax
public class IntegerFeature extends IntegerNode implements IIntegerMinMax

java.lang.Object
|
+--RuntimeNode

|
+--IntegerNode

|
+--oracle.apps.cz.cio.IntegerFeature

All Implemented Interfaces:
IInteger, IIntegerMinMax, IRuntimeNode

Description
Represents a feature with an integer value.

Member Summary

Methods

getMax()

getMin()

getType()

hasMax()

hasMin()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

IntegerFeature

B-114 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getMax()
public int getMax()

Specified By:
getMax() in interface IIntegerMinMax

getMin()
public int getMin()

Specified By:
getMin() in interface IIntegerMinMax

getType()
public int getType()

Methods inherited from class IntegerNode

getIntValue(), setIntValue(int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IInteger

getIntValue(), setIntValue(int), unset()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

IntegerFeature

Package oracle.apps.cz.cio B-115

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

hasMax()
public boolean hasMax()

Specified By:
hasMax() in interface IIntegerMinMax

hasMin()
public boolean hasMin()

Specified By:
hasMin() in interface IIntegerMinMax

IntegerNode

B-116 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IntegerNode

Syntax
public abstract class IntegerNode extends RuntimeNode implements IInteger

java.lang.Object
|
+--RuntimeNode

|
+--oracle.apps.cz.cio.IntegerNode

Direct Known Subclasses:
IntegerFeature

All Implemented Interfaces:
IInteger, IRuntimeNode

Description
Represents a feature with an integer value.

Member Summary

Methods

getIntValue()

setIntValue(int)

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

IntegerNode

Package oracle.apps.cz.cio B-117

Methods

getIntValue()
public int getIntValue()

Specified By:
getIntValue() in interface IInteger

setIntValue(int)
public void setIntValue(int newIntValue)

Specified By:
setIntValue(int) in interface IInteger

unset()
public void unset()

Specified By:
unset() in interface IInteger

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

IOption

B-118 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IOption

Syntax
public interface IOption extends IState, ICount

All Known Subinterfaces:
IBomItem

All Superinterfaces:
ICount, IState

All Known Implementing Classes:
OptionNode

Description
Implemented by objects that act as options. The defining characteristic of an option
is that it can be selected and deselected.

Member Summary

Methods

deselect() Deslect this option.

isOptionMutexed() Returns true if this option is a child of a mutexed parent

isSelected() Returns true if this option is selected, and false otherwise.

select() Select this option.

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Methods inherited from interface IState

IOption

Package oracle.apps.cz.cio B-119

Methods

deselect()
public void deselect()
Deslect this option.

isOptionMutexed()
public boolean isOptionMutexed()
Returns true if this option is a child of a mutexed parent

isSelected()
public boolean isSelected()
Returns true if this option is selected, and false otherwise.

select()
public void select()
Select this option.

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Inherited Member Summary

IOptionFeature

B-120 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IOptionFeature

Syntax
public interface IOptionFeature extends IState, ICount

All Known Subinterfaces:
IBomItem

All Superinterfaces:
ICount, IState

All Known Implementing Classes:
OptionFeatureNode

Description
Implemented by objects that contain selectable options. This interface provides a
mechansim for selecting and deselecting options, and for determining which
options are currently selected.

Member Summary

Methods

deselect(IOption) Deselect a particular option.

getMaxSelected() Returns the maximum number of selected options.

getMinSelected() Returns the minimum number of selected options.

getSelectedOption() Returns the currently selected option, or null if no option is selected.

getSelectedOptions() Returns a, possibly empty, collection of options that are currently selected.

hasMaxSelected() Returns true if the Feature specifies a maximum number of selected options.

hasMinSelected() Returns true if the Feature specifies a minimum number of selected options.

isSelectionMutexed() Returns true if this feature supports mutexed selections.

select(IOption) Select a particular option.

IOptionFeature

Package oracle.apps.cz.cio B-121

Methods

deselect(IOption)
public void deselect(IOption option)
Deselect a particular option.

Parameters:
option - the option to be de selected.

getMaxSelected()
public int getMaxSelected()
Returns the maximum number of selected options.

getMinSelected()
public int getMinSelected()
Returns the minimum number of selected options.

getSelectedOption()
public IOption getSelectedOption()
Returns the currently selected option, or null if no option is selected.

Returns:
the currently selected option.

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

IOptionFeature

B-122 Oracle Configuration Interface Object (CIO) Developer’s Guide

Throws:
SelectionNotMutexedException - if this feature does not support mutexed
selections.

getSelectedOptions()
public com.sun.java.util.collections.List getSelectedOptions()
Returns a, possibly empty, collection of options that are currently selected.

hasMaxSelected()
public boolean hasMaxSelected()
Returns true if the Feature specifies a maximum number of selected options.

hasMinSelected()
public boolean hasMinSelected()
Returns true if the Feature specifies a minimum number of selected options.

isSelectionMutexed()
public boolean isSelectionMutexed()
Returns true if this feature supports mutexed selections. When a selection is
mutexed, it means that only one of a particular option is selectable at any one time,
and selecting one option automatically deselects any other option that is mutexed
and currently selected.

select(IOption)
public void select(IOption option)
Select a particular option.

Parameters:
option - the option to be selected.

IPrice

Package oracle.apps.cz.cio B-123

oracle.apps.cz.cio
IPrice

Syntax
public interface IPrice extends ICount

All Known Subinterfaces:
IBomItem

All Superinterfaces:
ICount

All Known Implementing Classes:
StateCountNode

Description
Implemented by objects that can be priced. This interface contains methods for
getting list, discount, and extended prices, and methods to retrieve pricing
errors/warnings/messages.

Member Summary

Methods

getDatabaseID() Returns the database ID of the runtime node.

getDiscountedPrice() Gets discounted price of item based on adjustments associated with price list
specified in initParameters.

getExtendedPrice() Calculates extended price of item (quantity * discounted price).

getItemKey() Returns item key for items imported from Oracle Inventory / BOM.

getListPrice() Gets list price of item on price list specified in initParameters.

getPricingNotifications() Returns string containing any pricing messages, warnings, or errors.

getUomCode() Returns unit of measure code for items imported from Oracle Inventory/ BOM.

IPrice

B-124 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getDatabaseID()
public int getDatabaseID()
Returns the database ID of the runtime node.

getDiscountedPrice()
public double getDiscountedPrice()
Gets discounted price of item based on adjustments associated with price list
specified in initParameters.

getExtendedPrice()
public double getExtendedPrice()
Calculates extended price of item (quantity * discounted price).

getItemKey()
public java.lang.String getItemKey()
Returns item key for items imported from Oracle Inventory / BOM. Item key is
constructed from BOM_EXPLOSIONS field values: "[COMPONENT_
CODE]:[EXPLOSION_TYPE]:[ORGANIZATION_ID]:[TOP_ITEM_ID]" Item key
may be used by PL/SQL pricing procedures to price nodes. Returns null if node
was not imported from Oracle Inventory / BOM.

getListPrice()
public double getListPrice()
Gets list price of item on price list specified in initParameters.

getPricingNotifications()
public java.lang.String getPricingNotifications()
Returns string containing any pricing messages, warnings, or errors.

Inherited Member Summary

Methods inherited from interface ICount

getCount(), setCount(int), unset()

IPrice

Package oracle.apps.cz.cio B-125

getUomCode()
public java.lang.String getUomCode()
Returns unit of measure code for items imported from Oracle Inventory/ BOM. The
unit of measure may be used by PL/SQL pricing procedures to price nodes. Returns
null if node was not imported from Oracle Inventory / BOM.

IReadOnlyDecimal

B-126 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IReadOnlyDecimal

Syntax
public interface IReadOnlyDecimal

All Known Subinterfaces:
IDecimal

All Known Implementing Classes:
ReadOnlyDecimalNode

Description
Implemented by objects that have a decimal value.

Methods

getDecimalValue()
public double getDecimalValue()
Gets the current value of this object.

Returns:
the current value.

Member Summary

Methods

getDecimalValue() Gets the current value of this object.

IRuntimeNode

Package oracle.apps.cz.cio B-127

oracle.apps.cz.cio
IRuntimeNode

Syntax
public interface IRuntimeNode

All Known Implementing Classes:
RuntimeNode

Description
Implemented by all objects in the runtime configuration tree. This interface
implements behavior common to all nodes in the runtime configuration tree,
including components, features, options, totals, etc.

Member Summary

Fields

ALL_FEATURES A pseudo-type that represents all feature types for use in getChildrenByType.

BOM_MODEL BOM model type.

BOM_OPTION_CLASS BOM option class type.

BOM_STD_ITEM BOM standard item type.

BOOLEAN_FEATURE Boolean feature type.

COMPONENT Component type.

COMPONENT_SET Component set type.

COUNT_FEATURE Count feature type.

DECIMAL_FEATURE Decimal feature type.

INTEGER_FEATURE Integer feature type.

OPTION Option type.

OPTION_FEATURE Option feature type.

RESOURCE Resource type.

TEXT_FEATURE Text feature type.

IRuntimeNode

B-128 Oracle Configuration Interface Object (CIO) Developer’s Guide

TOTAL Total type.

Methods

getChildByID(int) Gets a particular child identified by its ID.

getChildByName(String) Gets a particular child identified by its name.

getChildren() Gets the children of this runtime configuration node.

getChildrenByType(int) Gets all of the children of a particular type.

getConfiguration() Gets the configuration to which this node belongs.

getDatabaseID() Gets the database ID of the node.

getDescription() Returns the design-time description of the runtime node.

getName() Gets the name of the node.

getParent() Get the parent of this node.

getProperties() Returns a collection of the properties associated with this node.

getPropertyByName(String) Returns a particular property of this node, based on its name.

getRuntimeID() Gets the runtime ID of the node.

getSelectionLineID() Returns selection line ID (configuration output database ID) for node.

getType() Gets the type of this node.

hasCount() Returns true if the node has an object count.

hasDecimalValue() Returns true if the node has a decimal value.

hasDescription() Returns true if there is a design-time description of the runtime node.

hasSelectionLineID() Returns true if node has a selection line ID (configuration output ID), false if not.

hasState() Returns true if the node has a logical state.

hasTextValue() Returns true if the node has a text value.

isNative() Returns true if this is a native BOM node

isUnsatisfied() Returns true if this particular node, or any one of its children, has not been
completely configured.

isUnsatisfiedNode() Returns true if this particular node has not been completely configured.

toString(boolean) Returns a String representation of this node, based on whether the client demands a
description (if there is one) or just a name

Member Summary

IRuntimeNode

Package oracle.apps.cz.cio B-129

Fields

ALL_FEATURES
public static final int ALL_FEATURES
A pseudo-type that represents all feature types for use in getChildrenByType.

BOM_MODEL
public static final int BOM_MODEL
BOM model type.

BOM_OPTION_CLASS
public static final int BOM_OPTION_CLASS
BOM option class type.

BOM_STD_ITEM
public static final int BOM_STD_ITEM
BOM standard item type.

BOOLEAN_FEATURE
public static final int BOOLEAN_FEATURE
Boolean feature type.

COMPONENT
public static final int COMPONENT
Component type.

COMPONENT_SET
public static final int COMPONENT_SET
Component set type.

COUNT_FEATURE
public static final int COUNT_FEATURE
Count feature type.

DECIMAL_FEATURE
public static final int DECIMAL_FEATURE

IRuntimeNode

B-130 Oracle Configuration Interface Object (CIO) Developer’s Guide

Decimal feature type.

INTEGER_FEATURE
public static final int INTEGER_FEATURE
Integer feature type.

OPTION
public static final int OPTION
Option type.

OPTION_FEATURE
public static final int OPTION_FEATURE
Option feature type.

RESOURCE
public static final int RESOURCE
Resource type.

TEXT_FEATURE
public static final int TEXT_FEATURE
Text feature type.

TOTAL
public static final int TOTAL
Total type.

Methods

getChildByID(int)
public IRuntimeNode getChildByID(int id)
Gets a particular child identified by its ID.

Returns:
a child of this node.

IRuntimeNode

Package oracle.apps.cz.cio B-131

getChildByName(String)
public IRuntimeNode getChildByName(java.lang.String name)
Gets a particular child identified by its name.

Returns:
a child of this node.

getChildren()
public com.sun.java.util.collections.List getChildren()
Gets the children of this runtime configuration node.

Returns:
a collection of children.

getChildrenByType(int)
public com.sun.java.util.collections.List getChildrenByType(int type)
Gets all of the children of a particular type.

Returns:
a collection of children.

getConfiguration()
public Configuration getConfiguration()
Gets the configuration to which this node belongs.

Returns:
the configuration to which this node belongs.

See Also:
Configuration

getDatabaseID()
public int getDatabaseID()
Gets the database ID of the node.

IRuntimeNode

B-132 Oracle Configuration Interface Object (CIO) Developer’s Guide

Returns:
the database ID of the node.

getDescription()
public java.lang.String getDescription()
Returns the design-time description of the runtime node.

getName()
public java.lang.String getName()
Gets the name of the node.

Returns:
the name of the node.

getParent()
public IRuntimeNode getParent()
Get the parent of this node.

Returns:
the node's parent.

getProperties()
public com.sun.java.util.collections.Collection getProperties()
Returns a collection of the properties associated with this node. The collection
contains items of the type Property.

getPropertyByName(String)
public Property getPropertyByName(java.lang.String name)
Returns a particular property of this node, based on its name. Returns null if a
property of the given name does not exist.

getRuntimeID()
public int getRuntimeID()
Gets the runtime ID of the node. This ID is unique across all other nodes created by
a particular CIO.

IRuntimeNode

Package oracle.apps.cz.cio B-133

Returns:
runtime ID of the node.

getSelectionLineID()
public int getSelectionLineID()
Returns selection line ID (configuration output database ID) for node. The
hasSelectionLineID() method should always be called before this method. A
RuntimeException will be thrown if ID doesn't exist.

Returns:
line ID

getType()
public int getType()
Gets the type of this node.

Returns:
the type of this node.

hasCount()
public boolean hasCount()
Returns true if the node has an object count.

hasDecimalValue()
public boolean hasDecimalValue()
Returns true if the node has a decimal value.

hasDescription()
public boolean hasDescription()
Returns true if there is a design-time description of the runtime node.

hasSelectionLineID()
public boolean hasSelectionLineID()
Returns true if node has a selection line ID (configuration output ID), false if not.

IRuntimeNode

B-134 Oracle Configuration Interface Object (CIO) Developer’s Guide

hasState()
public boolean hasState()
Returns true if the node has a logical state.

hasTextValue()
public boolean hasTextValue()
Returns true if the node has a text value.

isNative()
public boolean isNative()
Returns true if this is a native BOM node

isUnsatisfied()
public boolean isUnsatisfied()
Returns true if this particular node, or any one of its children, has not been
completely configured. The value is cached and is only updated on transaction
commit or rollback.

Returns:
a boolean indicating whether the node is unsatisfied.

isUnsatisfiedNode()
public boolean isUnsatisfiedNode()
Returns true if this particular node has not been completely configured. The value
is cached and is only updated on transaction commit or rollback.

Returns:
a boolean indicating whether the node is unsatisfied.

toString(boolean)
public java.lang.String toString(boolean description)
Returns a String representation of this node, based on whether the client demands a
description (if there is one) or just a name

IState

Package oracle.apps.cz.cio B-135

oracle.apps.cz.cio
IState

Syntax
public interface IState

All Known Subinterfaces:
IBomItem, IOption, IOptionFeature

All Known Implementing Classes:
StateNode

Description
Implemented by objects that have logic state. This interface contains a set of input
states, used to specify a new state for an object, a set of output states, returned when
querying an object for its state, and a set of methods for getting and setting the
object's state.

Member Summary

Fields

FALSE The input state used to set an object to false.

LFALSE The logically false output state, indicating that the state is false as a consequence of
a rule.

LTRUE The logically true output state, indicating that the state is true as a consequence of a
rule.

TOGGLE The input state used to turn an object state to true if it is false or unknown, and to
make it unknown or false if it is true.

TRUE The input state used to set an object to true.

UFALSE The user false output state, indicating that a user has set this object to false.

UNKNOWN The unknown output state.

UTRUE The user true output state, indicating that a user has set this object to true.

Methods

IState

B-136 Oracle Configuration Interface Object (CIO) Developer’s Guide

Fields

FALSE
public static final int FALSE
The input state used to set an object to false.

LFALSE
public static final int LFALSE
The logically false output state, indicating that the state is false as a consequence of
a rule.

LTRUE
public static final int LTRUE
The logically true output state, indicating that the state is true as a consequence of a
rule.

TOGGLE
public static final int TOGGLE
The input state used to turn an object state to true if it is false or unknown, and to
make it unknown or false if it is true.

TRUE
public static final int TRUE
The input state used to set an object to true.

UFALSE
public static final int UFALSE
The user false output state, indicating that a user has set this object to false.

getState() Gets the current logic state of this object.

setState(int) Change the current logic state of this object.

unset() Retracts any user selection made toward this node

Member Summary

IState

Package oracle.apps.cz.cio B-137

UNKNOWN
public static final int UNKNOWN
The unknown output state.

UTRUE
public static final int UTRUE
The user true output state, indicating that a user has set this object to true.

Methods

getState()
public int getState()
Gets the current logic state of this object.

Returns:
the current state.

setState(int)
public void setState(int state)
Change the current logic state of this object.

unset()
public void unset()
Retracts any user selection made toward this node

IText

B-138 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
IText

Syntax
public interface IText

All Known Implementing Classes:
TextNode

Description
Implemented by objects that have a textual value.

Methods

getTextValue()
public java.lang.String getTextValue()
Gets the current textual value of this object.

Returns:
the current value.

setTextValue(String)
public void setTextValue(java.lang.String value)
Sets the current textual value of this object.

Member Summary

Methods

getTextValue() Gets the current textual value of this object.

setTextValue(String) Sets the current textual value of this object.

unset() Retracts any user selection made toward this node

IText

Package oracle.apps.cz.cio B-139

unset()
public void unset()
Retracts any user selection made toward this node

LogicalException

B-140 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
LogicalException

Syntax
public class LogicalException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.LogicalException

Direct Known Subclasses:
LogicalOverridableException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a logical failure occurs. This failure could either be a contradiction, or a
more serious problem.

Member Summary

Constructors

LogicalException()

LogicalException(LogicException,
Configuration)

LogicalException(Reason,
Configuration)

LogicalException(String,
Configuration)

Methods

getCause()

LogicalException

Package oracle.apps.cz.cio B-141

Constructors

LogicalException()
public LogicalException()

LogicalException(LogicException, Configuration)
public LogicalException(oracle.apps.cz.logic.LogicException le, Configuration
config)

LogicalException(Reason, Configuration)
public LogicalException(Reason r, Configuration config)

LogicalException(String, Configuration)
public LogicalException(java.lang.String msg, Configuration config)

Methods

getCause()
public IRuntimeNode getCause()

getMessage()

getMessageHeader()

getReasons()

isOverridable()

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Member Summary

LogicalException

B-142 Oracle Configuration Interface Object (CIO) Developer’s Guide

getMessage()
public java.lang.String getMessage()

Overrides:
java.lang.Throwable.getMessage() in class java.lang.Throwable

getMessageHeader()
public java.lang.String getMessageHeader()

getReasons()
public com.sun.java.util.collections.List getReasons()

isOverridable()
public boolean isOverridable()

LogicalOverridableException

Package oracle.apps.cz.cio B-143

oracle.apps.cz.cio
LogicalOverridableException

Syntax
public class LogicalOverridableException extends LogicalException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--LogicalException

|
+--oracle.apps.cz.cio.LogicalOverridableException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a logical contradiction occurs that can be overriden.

Member Summary

Constructors

LogicalOverridableException(LogicCo
ntradictionException, Configuration)

Methods

equals(Object)

isOverridable()

override()

LogicalOverridableException

B-144 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

LogicalOverridableException(LogicContradictionException, Configuration)
public
LogicalOverridableException(oracle.apps.cz.logic.LogicContradictionException
lce, Configuration config)

Methods

equals(Object)
public boolean equals(java.lang.Object lce)

Overrides:
java.lang.Object.equals(java.lang.Object) in class java.lang.Object

isOverridable()
public boolean isOverridable()

Overrides:
isOverridable() in class LogicalException

override()
public void override()

Inherited Member Summary

Methods inherited from interface LogicalException

getCause(), getMessage(), getMessageHeader(), getReasons()

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

getClass, hashCode, notify, notifyAll, wait, wait, wait

LogicalRuntimeException

Package oracle.apps.cz.cio B-145

oracle.apps.cz.cio
LogicalRuntimeException

Syntax
public class LogicalRuntimeException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--oracle.apps.cz.cio.LogicalRuntimeException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a fatal logic exception occured.

Member Summary

Constructors

LogicalRuntimeException(LogicExcep
tion)

LogicalRuntimeException(String)

Methods

getLogicException()

Inherited Member Summary

Methods inherited from class java.lang.Throwable

LogicalRuntimeException

B-146 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

LogicalRuntimeException(LogicException)
public LogicalRuntimeException(oracle.apps.cz.logic.LogicException le)

LogicalRuntimeException(String)
public LogicalRuntimeException(java.lang.String msg)

Methods

getLogicException()
public oracle.apps.cz.logic.LogicException getLogicException()

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Inherited Member Summary

MissingFileException

Package oracle.apps.cz.cio B-147

oracle.apps.cz.cio
MissingFileException

Syntax
public class MissingFileException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--oracle.apps.cz.cio.MissingFileException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a particular logic file is missing.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

MissingLogicException

B-148 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
MissingLogicException

Syntax
public class MissingLogicException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--oracle.apps.cz.cio.MissingLogicException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a particular logic record is missing.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

NoAtpCalculatedException

Package oracle.apps.cz.cio B-149

oracle.apps.cz.cio
NoAtpCalculatedException

Syntax
public class NoAtpCalculatedException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.NoAtpCalculatedException

All Implemented Interfaces:
java.io.Serializable

Description
Exception which is thrown when an ATP method is called on an item for which ATP
is not calculated.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

NoConfigHeaderException

B-150 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
NoConfigHeaderException

Syntax
public class NoConfigHeaderException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.NoConfigHeaderException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if the configuration hasn't been saved yet.

Member Summary

Constructors

NoConfigHeaderException()

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

NoConfigHeaderException

Package oracle.apps.cz.cio B-151

Constructors

NoConfigHeaderException()
public NoConfigHeaderException()

NonPricedNodeException

B-152 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
NonPricedNodeException

Syntax
public class NonPricedNodeException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.NonPricedNodeException

All Implemented Interfaces:
java.io.Serializable

Description
Exception which is thrown when a pricing method is called on an item which
should not be priced.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

NoSuchChildException

Package oracle.apps.cz.cio B-153

oracle.apps.cz.cio
NoSuchChildException

Syntax
public class NoSuchChildException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.NoSuchChildException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a requested child does not exist.

Member Summary

Constructors

NoSuchChildException(IRuntimeNod
e, int)

NoSuchChildException(IRuntimeNod
e, String)

Methods

getID()

getName()

getParent()

NoSuchChildException

B-154 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

NoSuchChildException(IRuntimeNode, int)
public NoSuchChildException(IRuntimeNode parent, int id)

NoSuchChildException(IRuntimeNode, String)
public NoSuchChildException(IRuntimeNode parent, java.lang.String name)

Methods

getID()
public int getID()

getName()
public java.lang.String getName()

getParent()
public IRuntimeNode getParent()

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

NotOneProductException

Package oracle.apps.cz.cio B-155

oracle.apps.cz.cio
NotOneProductException

Syntax
public class NotOneProductException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.NotOneProductException

All Implemented Interfaces:
java.io.Serializable

Description
Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project contains more than one or no
products.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

NotOneProjectException

B-156 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
NotOneProjectException

Syntax
public class NotOneProjectException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.NotOneProjectException

All Implemented Interfaces:
java.io.Serializable

Description
Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project name identifies more than one or
no projects.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Option

Package oracle.apps.cz.cio B-157

oracle.apps.cz.cio
Option

Syntax
public class Option extends OptionNode

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--OptionNode

|
+--oracle.apps.cz.cio.Option

All Implemented Interfaces:
ICount, IOption, IPrice, IRuntimeNode, IState

Description
Represents an option of an option feature.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

Option

B-158 Oracle Configuration Interface Object (CIO) Developer’s Guide

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionNode

deselect(), isOptionMutexed(), isSelected(), select(), setState(int)

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getItemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int),
unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

Option

Package oracle.apps.cz.cio B-159

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

OptionFeature

B-160 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
OptionFeature

Syntax
public class OptionFeature extends OptionFeatureNode

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--OptionFeatureNode

|
+--oracle.apps.cz.cio.OptionFeature

All Implemented Interfaces:
ICount, IOptionFeature, IPrice, IRuntimeNode, IState

Description
Represents a feature with selectable options.

Member Summary

Methods

getMaxSelected()

getMinSelected()

getType()

hasMaxSelected()

hasMinSelected()

OptionFeature

Package oracle.apps.cz.cio B-161

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionFeatureNode

deselect(IOption), getSelectedOption(), getSelectedOptions(), isSelectionMutexed(), select(IOption)

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getItemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

deselect(IOption), getSelectedOption(), getSelectedOptions(), isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

OptionFeature

B-162 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getMaxSelected()
public int getMaxSelected()

getMinSelected()
public int getMinSelected()

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

hasMaxSelected()
public boolean hasMaxSelected()

hasMinSelected()
public boolean hasMinSelected()

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

OptionFeatureNode

Package oracle.apps.cz.cio B-163

oracle.apps.cz.cio
OptionFeatureNode

Syntax
public abstract class OptionFeatureNode extends StateCountNode implements
IOptionFeature

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--oracle.apps.cz.cio.OptionFeatureNode

Direct Known Subclasses:
BomNode, OptionFeature

All Implemented Interfaces:
ICount, IOptionFeature, IPrice, IRuntimeNode, IState

Description
An abstract class implementing behavior commont to all features with options.

Member Summary

Methods

deselect(IOption)

getSelectedOption()

getSelectedOptions()

isSelectionMutexed()

select(IOption)

OptionFeatureNode

B-164 Oracle Configuration Interface Object (CIO) Developer’s Guide

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getItemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

getMaxSelected(), getMinSelected(), hasMaxSelected(), hasMinSelected()

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

OptionFeatureNode

Package oracle.apps.cz.cio B-165

Methods

deselect(IOption)
public void deselect(IOption option)

Specified By:
deselect(IOption) in interface IOptionFeature

getSelectedOption()
public IOption getSelectedOption()

Specified By:
getSelectedOption() in interface IOptionFeature

getSelectedOptions()
public com.sun.java.util.collections.List getSelectedOptions()

Specified By:
getSelectedOptions() in interface IOptionFeature

isSelectionMutexed()
public boolean isSelectionMutexed()

Specified By:
isSelectionMutexed() in interface IOptionFeature

select(IOption)
public void select(IOption option)

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

OptionFeatureNode

B-166 Oracle Configuration Interface Object (CIO) Developer’s Guide

Specified By:
select(IOption) in interface IOptionFeature

OptionNode

Package oracle.apps.cz.cio B-167

oracle.apps.cz.cio
OptionNode

Syntax
public abstract class OptionNode extends StateCountNode implements IOption

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--StateCountNode

|
+--oracle.apps.cz.cio.OptionNode

Direct Known Subclasses:
Option

All Implemented Interfaces:
ICount, IOption, IPrice, IRuntimeNode, IState

Description
An abstract class implementing behavior common to all option-like objects.

Member Summary

Methods

deselect()

isOptionMutexed()

isSelected()

select()

setState(int)

OptionNode

B-168 Oracle Configuration Interface Object (CIO) Developer’s Guide

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getItemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int),
unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IState

getState(), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaseID(), getDiscountedPrice(), getExtendedPrice(), getItemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

OptionNode

Package oracle.apps.cz.cio B-169

Methods

deselect()
public void deselect()

Specified By:
deselect() in interface IOption

isOptionMutexed()
public boolean isOptionMutexed()

Specified By:
isOptionMutexed() in interface IOption

isSelected()
public boolean isSelected()

Specified By:
isSelected() in interface IOption

select()
public void select()

Specified By:
select() in interface IOption

setState(int)
public void setState(int newState)

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

OptionNode

B-170 Oracle Configuration Interface Object (CIO) Developer’s Guide

Overrides:
setState(int) in class StateNode

PricingUnavailableException

Package oracle.apps.cz.cio B-171

oracle.apps.cz.cio
PricingUnavailableException

Syntax
public class PricingUnavailableException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.PricingUnavailableException

All Implemented Interfaces:
java.io.Serializable

Description
Signals that the CIO pricing functionality is not available.

Member Summary

Constructors

PricingUnavailableException(String)

PricingUnavailableException(String,
Object, Log)

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

PricingUnavailableException

B-172 Oracle Configuration Interface Object (CIO) Developer’s Guide

Constructors

PricingUnavailableException(String)
public PricingUnavailableException(java.lang.String reason)

PricingUnavailableException(String, Object, Log)
public PricingUnavailableException(java.lang.String reason, java.lang.Object
source, oracle.apps.fnd.common.Log log)

Property

Package oracle.apps.cz.cio B-173

oracle.apps.cz.cio
Property

Syntax
public class Property extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.Property

Description
Represents name/value properties associated with runtime nodes.

Member Summary

Methods

getBooleanValue() Returns the property's value as a boolean.

getDecimalValue() Returns the property's value as a double.

getDescription() Returns the property's description.

getIntValue() Returns the property's value as an integer.

getName() Returns the property's name.

getStringValue() Returns the property's value as a string.

getUnit() Returns the property's unit of measure.

hasBooleanValue() Returns true if property is a boolean property.

hasDecimalValue() Returns true if property is a decimal property.

hasDefaultValue() Checks to see if property has overridden its default value.

hasIntegerValue() Returns true if property is an integer property.

hasStringValue() Returns true if property is a string property.

Property

B-174 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getBooleanValue()
public boolean getBooleanValue()
Returns the property's value as a boolean.

getDecimalValue()
public double getDecimalValue()
Returns the property's value as a double.

getDescription()
public java.lang.String getDescription()
Returns the property's description.

getIntValue()
public int getIntValue()
Returns the property's value as an integer.

getName()
public java.lang.String getName()
Returns the property's name.

getStringValue()
public java.lang.String getStringValue()
Returns the property's value as a string.

getUnit()
public java.lang.String getUnit()
Returns the property's unit of measure.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Property

Package oracle.apps.cz.cio B-175

hasBooleanValue()
public boolean hasBooleanValue()
Returns true if property is a boolean property.

hasDecimalValue()
public boolean hasDecimalValue()
Returns true if property is a decimal property.

hasDefaultValue()
public boolean hasDefaultValue()
Checks to see if property has overridden its default value.

hasIntegerValue()
public boolean hasIntegerValue()
Returns true if property is an integer property.

hasStringValue()
public boolean hasStringValue()
Returns true if property is a string property.

ReadOnlyDecimalNode

B-176 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
ReadOnlyDecimalNode

Syntax
public abstract class ReadOnlyDecimalNode extends RuntimeNode implements
IReadOnlyDecimal

java.lang.Object
|
+--RuntimeNode

|
+--oracle.apps.cz.cio.ReadOnlyDecimalNode

Direct Known Subclasses:
DecimalNode

All Implemented Interfaces:
IReadOnlyDecimal, IRuntimeNode

Description
An abstract class implementing behavior common to objects with a decimal value.

Member Summary

Methods

getDecimalValue()

toString()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

ReadOnlyDecimalNode

Package oracle.apps.cz.cio B-177

Methods

getDecimalValue()
public double getDecimalValue()

Specified By:
getDecimalValue() in interface IReadOnlyDecimal

toString()
public java.lang.String toString()

Overrides:
toString() in class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

Reason

B-178 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
Reason

Syntax
public class Reason extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.Reason

Description
This class wraps the information returned by a contradiction in order to include
information about internal error messages.

Member Summary

Fields

DEFAULT This reason initiated from inability to set a state, because of a default relation.

INTL_TEXT The message is an internationalized text string.

MINMAX This reason initiated from an internal MINMAX relationship.

ORTHEN This reason initiated from an internal ORTHEN relationship.

TEXT The message is an unknown format text string.

TRUEATBIRTH This reason initiated from an internal relationship for a group.

Constructors

Reason(int, IRuntimeNode, String) Construct a reason given all of it's information.

Reason(Message, String,
IRuntimeNode)

Constructs a reason from an FND message.

Reason(String) Constructs a simple TEXT reason.

Methods

getMsg() Get the message associated with this reason.

getNode() Get the node associated with this reason.

getType() Get the type of reason is held in this object.

Reason

Package oracle.apps.cz.cio B-179

Fields

DEFAULT
public static int DEFAULT
This reason initiated from inability to set a state, because of a default relation.

INTL_TEXT
public static int INTL_TEXT
The message is an internationalized text string.

MINMAX
public static int MINMAX
This reason initiated from an internal MINMAX relationship.

ORTHEN
public static int ORTHEN
This reason initiated from an internal ORTHEN relationship.

TEXT
public static int TEXT
The message is an unknown format text string.

toString() Convert this object to a string.

translate() This method returns the translated string for the reason.

translate(String) This method returns the translated reason string using the given name for
substitution variable.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Member Summary

Reason

B-180 Oracle Configuration Interface Object (CIO) Developer’s Guide

TRUEATBIRTH
public static int TRUEATBIRTH
This reason initiated from an internal relationship for a group.

Constructors

Reason(int, IRuntimeNode, String)
public Reason(int type, IRuntimeNode node, java.lang.String msg)
Construct a reason given all of it's information.

Parameters:
type - What type of reason this is.

node - The node that caused the problem.

msg - The message returned.

Reason(Message, String, IRuntimeNode)
public Reason(oracle.apps.fnd.common.Message fndMsg, java.lang.String token,
IRuntimeNode node)
Constructs a reason from an FND message.

Parameters:
fndMsg - The FND message object with all but one token substituted.

token - The token name left to substitute.

node - The node requiring substitution.

Reason(String)
public Reason(java.lang.String msg)
Constructs a simple TEXT reason.

Parameters:
msg - The message string for the reason.

Reason

Package oracle.apps.cz.cio B-181

Methods

getMsg()
public java.lang.String getMsg()
Get the message associated with this reason.

getNode()
public IRuntimeNode getNode()
Get the node associated with this reason.

getType()
public int getType()
Get the type of reason is held in this object.

toString()
public java.lang.String toString()
Convert this object to a string.

Overrides:
java.lang.Object.toString() in class java.lang.Object

translate()
public java.lang.String translate()
This method returns the translated string for the reason. If the string has a node
name substitution then the internal name is used.

translate(String)
public java.lang.String translate(java.lang.String nodeName)
This method returns the translated reason string using the given name for
substitution variable.

Parameters:
nodeName - The node name to substitute into the string.

Resource

B-182 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
Resource

Syntax
public class Resource extends DecimalNode

java.lang.Object
|
+--RuntimeNode

|
+--ReadOnlyDecimalNode

|
+--DecimalNode

|
+--oracle.apps.cz.cio.Resource

All Implemented Interfaces:
IDecimal, IReadOnlyDecimal, IRuntimeNode

Description
Represents a consumable resource. A resource will signal a validation failure when
it is overconsumed (in other words, when its value goes below zero). NOTE: This
class inherits from DecimalNode, but the functionality of a DecimalNode
(specifically the method SetDecimalValue()) is 'deprecated', meaning that it
shouldn't be used on new projects and may be unsupported in a future release. Use
only methods inherited from ReadOnlyDecimalNode.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Resource

Package oracle.apps.cz.cio B-183

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode

setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode

getDecimalValue()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IDecimal

setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal

getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

RestoreValidationFailure

B-184 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
RestoreValidationFailure

Syntax
public class RestoreValidationFailure extends ValidationFailure

java.lang.Object
|
+--StatusInfo

|
+--ValidationFailure

|
+--oracle.apps.cz.cio.RestoreValidationFailure

Description
Failure produced when restoring a configuration over a changed model.

Member Summary

Methods

equals(Object)

getInput() Returns the input object where the validation failure occured

hashCode()

Inherited Member Summary

Fields inherited from class ValidationFailure

COMPANION_FAILURE, MAX_FAILURE, MIN_FAILURE, MIN0_FAILURE, MINMAX_FAILURE, RESOURCE_FAILURE, RESTORE_
FAILURE

Fields inherited from class StatusInfo

STATUS_DELETED, STATUS_EXISTING, STATUS_NEW

Methods inherited from class ValidationFailure

getMessage(), getMessage(String), getType(), toString()

RestoreValidationFailure

Package oracle.apps.cz.cio B-185

Methods

equals(Object)
public boolean equals(java.lang.Object obj)

Overrides:
equals(Object) in class ValidationFailure

getInput()
public oracle.apps.cz.dio.config.DbConfigInput getInput()
Returns the input object where the validation failure occured

Returns:
the failed DbConfigInput object

hashCode()
public int hashCode()

Overrides:
hashCode() in class StatusInfo

Methods inherited from class StatusInfo

getNode(), getStatus(), statusToString(int), toString(boolean)

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Inherited Member Summary

RuntimeNode

B-186 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
RuntimeNode

Syntax
public abstract class RuntimeNode extends java.lang.Object implements
IRuntimeNode

java.lang.Object
|
+--oracle.apps.cz.cio.RuntimeNode

Direct Known Subclasses:
ComponentNode, IntegerNode, ReadOnlyDecimalNode, StateNode, TextNode

All Implemented Interfaces:
IRuntimeNode

Description
Abstract class implementing common behavior across all runtime nodes.

Member Summary

Methods

getChildByID(int) Returns the child of this node with a given database ID.

getChildByName(String) Returns the child of this node with a given name.

getChildren() Returns a list of all children of this runtime node.

getChildrenByType(int) Returns a list of all children of a particular type.

getConfiguration() Returns the configuration to which this node belongs.

getDatabaseID() Returns the database ID of the runtime node.

getDescription() Returns the design-time description of the runtime node.

getName() Returns the name of the runtime node.

getParent() Returns the parent of this runtime node, or null if this is the root node.

getProperties() Returns a collection of the properties associated with this node.

RuntimeNode

Package oracle.apps.cz.cio B-187

getPropertyByName(String) Returns a particular property of this node, based on its name.

getRuntimeID() Returns the runtime ID for the node.

getSelectionLineID()

getType() Returns the type of the runtime node.

hasCount() Returns true if the node has an object count.

hasDecimalValue() Returns true if the node has a decimal value.

hasDescription() Returns true if there is a design-time description of the runtime node.

hasIntegerValue() Returns true if the node has a integer value.

hasSelectionLineID()

hasState() Returns true if the node has a logical state.

hasTextValue() Returns true if the node has a text value.

isNative() Returns true if this is a native BOM node

isUnsatisfied() Returns true if this runtime node, or any of its children, is not fully configured.

isUnsatisfiedNode() Returns true if this particular node is not fully configured.

toString()

toString(boolean)

typeToString(int) Returns a string representation of a given runtime node type constant.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Member Summary

RuntimeNode

B-188 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getChildByID(int)
public IRuntimeNode getChildByID(int id)
Returns the child of this node with a given database ID.

Specified By:
getChildByID(int) in interface IRuntimeNode

Throws:
NoSuchChildException - if there is no child with such ID.

getChildByName(String)
public IRuntimeNode getChildByName(java.lang.String name)
Returns the child of this node with a given name.

Specified By:
getChildByName(String) in interface IRuntimeNode

Throws:
NoSuchChildException - if there is no child with such name.

getChildren()
public com.sun.java.util.collections.List getChildren()
Returns a list of all children of this runtime node.

Specified By:
getChildren() in interface IRuntimeNode

getChildrenByType(int)
public com.sun.java.util.collections.List getChildrenByType(int type)
Returns a list of all children of a particular type.

Specified By:
getChildrenByType(int) in interface IRuntimeNode

RuntimeNode

Package oracle.apps.cz.cio B-189

getConfiguration()
public Configuration getConfiguration()
Returns the configuration to which this node belongs.

Specified By:
getConfiguration() in interface IRuntimeNode

getDatabaseID()
public int getDatabaseID()
Returns the database ID of the runtime node.

Specified By:
getDatabaseID() in interface IRuntimeNode

getDescription()
public java.lang.String getDescription()
Returns the design-time description of the runtime node.

Specified By:
getDescription() in interface IRuntimeNode

getName()
public java.lang.String getName()
Returns the name of the runtime node.

Specified By:
getName() in interface IRuntimeNode

getParent()
public IRuntimeNode getParent()
Returns the parent of this runtime node, or null if this is the root node.

Specified By:
getParent() in interface IRuntimeNode

RuntimeNode

B-190 Oracle Configuration Interface Object (CIO) Developer’s Guide

getProperties()
public com.sun.java.util.collections.Collection getProperties()
Returns a collection of the properties associated with this node. The collection
contains items of the type IProperty.

Specified By:
getProperties() in interface IRuntimeNode

getPropertyByName(String)
public Property getPropertyByName(java.lang.String name)
Returns a particular property of this node, based on its name. Returns null if a
property of the given name does not exist.

Specified By:
getPropertyByName(String) in interface IRuntimeNode

getRuntimeID()
public int getRuntimeID()
Returns the runtime ID for the node. This ID is unique across all nodes in a
particular configuration.

Specified By:
getRuntimeID() in interface IRuntimeNode

getSelectionLineID()
public int getSelectionLineID()

Specified By:
getSelectionLineID() in interface IRuntimeNode

getType()
public abstract int getType()
Returns the type of the runtime node. Must be implemented.

Specified By:
getType() in interface IRuntimeNode

RuntimeNode

Package oracle.apps.cz.cio B-191

hasCount()
public boolean hasCount()
Returns true if the node has an object count.

Specified By:
hasCount() in interface IRuntimeNode

hasDecimalValue()
public boolean hasDecimalValue()
Returns true if the node has a decimal value.

Specified By:
hasDecimalValue() in interface IRuntimeNode

hasDescription()
public boolean hasDescription()
Returns true if there is a design-time description of the runtime node.

Specified By:
hasDescription() in interface IRuntimeNode

hasIntegerValue()
public boolean hasIntegerValue()
Returns true if the node has a integer value.

hasSelectionLineID()
public boolean hasSelectionLineID()

Specified By:
hasSelectionLineID() in interface IRuntimeNode

hasState()
public boolean hasState()
Returns true if the node has a logical state.

RuntimeNode

B-192 Oracle Configuration Interface Object (CIO) Developer’s Guide

Specified By:
hasState() in interface IRuntimeNode

hasTextValue()
public boolean hasTextValue()
Returns true if the node has a text value.

Specified By:
hasTextValue() in interface IRuntimeNode

isNative()
public boolean isNative()
Returns true if this is a native BOM node

Specified By:
isNative() in interface IRuntimeNode

isUnsatisfied()
public boolean isUnsatisfied()
Returns true if this runtime node, or any of its children, is not fully configured.

Specified By:
isUnsatisfied() in interface IRuntimeNode

isUnsatisfiedNode()
public boolean isUnsatisfiedNode()
Returns true if this particular node is not fully configured.

Specified By:
isUnsatisfiedNode() in interface IRuntimeNode

toString()
public java.lang.String toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

RuntimeNode

Package oracle.apps.cz.cio B-193

toString(boolean)
public java.lang.String toString(boolean description)

Specified By:
toString(boolean) in interface IRuntimeNode

typeToString(int)
public static java.lang.String typeToString(int type)
Returns a string representation of a given runtime node type constant.

SelectionNotMutexedException

B-194 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
SelectionNotMutexedException

Syntax
public class SelectionNotMutexedException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.SelectionNotMutexedException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled when an mutexed selection operation is performed on an option feature
that does not support mutexed selection.

Member Summary

Methods

getFeature()

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

SelectionNotMutexedException

Package oracle.apps.cz.cio B-195

Methods

getFeature()
public IOptionFeature getFeature()

StateCountNode

B-196 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
StateCountNode

Syntax
public abstract class StateCountNode extends StateNode implements ICount, IPrice

java.lang.Object
|
+--RuntimeNode

|
+--StateNode

|
+--oracle.apps.cz.cio.StateCountNode

Direct Known Subclasses:
CountFeature, OptionFeatureNode, OptionNode

All Implemented Interfaces:
ICount, IPrice, IRuntimeNode, IState

Description
Abstract class implementing common behavior for nodes with a logic state and
count.

Member Summary

Methods

addPricingNotification(String)

clearDiscountedPrice()

clearPricingNotifications()

getCount()

getDiscountedPrice()

getExtendedPrice()

getItemKey()

StateCountNode

Package oracle.apps.cz.cio B-197

getListPrice()

getPricingNotifications()

getUomCode()

setCount(int)

setDiscountedPrice(double)

setListPrice(double)

toString()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface ICount

unset()

Methods inherited from interface IPrice

getDatabaseID()

Methods inherited from interface IState

Member Summary

StateCountNode

B-198 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

addPricingNotification(String)
public void addPricingNotification(java.lang.String message)

clearDiscountedPrice()
public void clearDiscountedPrice()

clearPricingNotifications()
public void clearPricingNotifications()

getCount()
public int getCount()

Specified By:
getCount() in interface ICount

Specified By:
getCount() in interface ICount

getDiscountedPrice()
public double getDiscountedPrice()

Specified By:
getDiscountedPrice() in interface IPrice

getState(), setState(int)

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

StateCountNode

Package oracle.apps.cz.cio B-199

getExtendedPrice()
public double getExtendedPrice()

Specified By:
getExtendedPrice() in interface IPrice

getItemKey()
public java.lang.String getItemKey()

Specified By:
getItemKey() in interface IPrice

getListPrice()
public double getListPrice()

Specified By:
getListPrice() in interface IPrice

getPricingNotifications()
public java.lang.String getPricingNotifications()

Specified By:
getPricingNotifications() in interface IPrice

getUomCode()
public java.lang.String getUomCode()

Specified By:
getUomCode() in interface IPrice

setCount(int)
public void setCount(int newCount)

Specified By:
setCount(int) in interface ICount

StateCountNode

B-200 Oracle Configuration Interface Object (CIO) Developer’s Guide

Specified By:
setCount(int) in interface ICount

setDiscountedPrice(double)
public void setDiscountedPrice(double discountedPrice)

setListPrice(double)
public void setListPrice(double listPrice)

toString()
public java.lang.String toString()

Overrides:
toString() in class RuntimeNode

StateNode

Package oracle.apps.cz.cio B-201

oracle.apps.cz.cio
StateNode

Syntax
public abstract class StateNode extends RuntimeNode implements IState

java.lang.Object
|
+--RuntimeNode

|
+--oracle.apps.cz.cio.StateNode

Direct Known Subclasses:
BooleanFeature, StateCountNode

All Implemented Interfaces:
IRuntimeNode, IState

Description
Abstract class implementing common behavior across nodes with logic state.

Member Summary

Methods

getState()

isDefaultState(int) Returns true if the given state is default (not unknown, or user, or logic).

isFalseState(int) Returns true if the given state is false (not unknown or true).

isLogicState(int) Returns true if the given state is logic (not unknown, or user, or default).

isTrueState(int) Returns true if the given state is true (not unknown or false).

isUnknownState(int) Returns true if the given state is unknown (not true or false).

isUserState(int) Returns true if the given state is user (not unknown, or logic, or default).

setState(int)

statesMatch(int, int) Returns true if the two given states match.

StateNode

B-202 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getState()
public int getState()

Specified By:
getState() in interface IState

isDefaultState(int)
public static boolean isDefaultState(int state)
Returns true if the given state is default (not unknown, or user, or logic).

unset()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Member Summary

StateNode

Package oracle.apps.cz.cio B-203

isFalseState(int)
public static boolean isFalseState(int state)
Returns true if the given state is false (not unknown or true).

isLogicState(int)
public static boolean isLogicState(int state)
Returns true if the given state is logic (not unknown, or user, or default).

isTrueState(int)
public static boolean isTrueState(int state)
Returns true if the given state is true (not unknown or false).

isUnknownState(int)
public static boolean isUnknownState(int state)
Returns true if the given state is unknown (not true or false).

isUserState(int)
public static boolean isUserState(int state)
Returns true if the given state is user (not unknown, or logic, or default).

setState(int)
public void setState(int newState)

Specified By:
setState(int) in interface IState

statesMatch(int, int)
public static boolean statesMatch(int inputState, int outputState)
Returns true if the two given states match.

unset()
public void unset()

Specified By:
unset() in interface IState

StatusInfo

B-204 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.cio
StatusInfo

Syntax
public class StatusInfo extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.cio.StatusInfo

Direct Known Subclasses:
ValidationFailure

Description
Contains information about a status change for a particular runtime node. The
status can be STATUS_NEW, STATUS_EXISTING, or STATUS_DELETED. The
condition for which this status holds depends on which list the status exists.
Possibilities include validation failure, selected nodes, and unsatisfied nodes.

Member Summary

Fields

STATUS_DELETED The node has newly lost this status since the last check.

STATUS_EXISTING The already had this status during the last check, and it still does.

STATUS_NEW The node has newly attained this status since the last check.

Methods

equals(Object)

getNode() Returns the runtime node with which this status is associated.

getStatus() Returns the current status of the node.

hashCode()

statusToString(int) Return a printable representation of a status constant.

toString()

toString(boolean)

StatusInfo

Package oracle.apps.cz.cio B-205

Fields

STATUS_DELETED
public static final int STATUS_DELETED
The node has newly lost this status since the last check.

STATUS_EXISTING
public static final int STATUS_EXISTING
The already had this status during the last check, and it still does.

STATUS_NEW
public static final int STATUS_NEW
The node has newly attained this status since the last check.

Methods

equals(Object)
public boolean equals(java.lang.Object obj)

Overrides:
java.lang.Object.equals(java.lang.Object) in class java.lang.Object

getNode()
public IRuntimeNode getNode()
Returns the runtime node with which this status is associated.

getStatus()
public int getStatus()
Returns the current status of the node.

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

StatusInfo

B-206 Oracle Configuration Interface Object (CIO) Developer’s Guide

hashCode()
public int hashCode()

Overrides:
java.lang.Object.hashCode() in class java.lang.Object

statusToString(int)
public static java.lang.String statusToString(int status)
Return a printable representation of a status constant.

toString()
public java.lang.String toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

toString(boolean)
public java.lang.String toString(boolean description)

TextFeature

Package oracle.apps.cz.cio B-207

oracle.apps.cz.cio
TextFeature

Syntax
public class TextFeature extends TextNode

java.lang.Object
|
+--RuntimeNode

|
+--TextNode

|
+--oracle.apps.cz.cio.TextFeature

All Implemented Interfaces:
IRuntimeNode, IText

Description
Represents a feature that has a textual value.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class TextNode

getTextValue(), setTextValue(String), unset()

Methods inherited from class RuntimeNode

TextFeature

B-208 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IText

getTextValue(), setTextValue(String), unset()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

TextNode

Package oracle.apps.cz.cio B-209

oracle.apps.cz.cio
TextNode

Syntax
public abstract class TextNode extends RuntimeNode implements IText

java.lang.Object
|
+--RuntimeNode

|
+--oracle.apps.cz.cio.TextNode

Direct Known Subclasses:
TextFeature

All Implemented Interfaces:
IRuntimeNode, IText

Description
Represents a feature that has a textual value.

Member Summary

Methods

getTextValue()

setTextValue(String)

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

TextNode

B-210 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getTextValue()
public java.lang.String getTextValue()

Specified By:
getTextValue() in interface IText

setTextValue(String)
public void setTextValue(java.lang.String newTextValue)

Specified By:
setTextValue(String) in interface IText

unset()
public void unset()

Specified By:
unset() in interface IText

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Inherited Member Summary

Total

Package oracle.apps.cz.cio B-211

oracle.apps.cz.cio
Total

Syntax
public class Total extends DecimalNode

java.lang.Object
|
+--RuntimeNode

|
+--ReadOnlyDecimalNode

|
+--DecimalNode

|
+--oracle.apps.cz.cio.Total

All Implemented Interfaces:
IDecimal, IReadOnlyDecimal, IRuntimeNode

Description
Represents a total that has a decimal numeric value. NOTE: This class inherits from
DecimalNode, but the functionality of a DecimalNode (specifically the method
SetDecimalValue()) is 'deprecated', meaning that it shouldn't be used on new
projects and may be unsupported in a future release. Use only methods inherited
from ReadOnlyDecimalNode.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Total

B-212 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode

setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode

getDecimalValue()

Methods inherited from class RuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasIntegerValue(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IDecimal

setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal

getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildByID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaseID(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimeID(), getSelectionLineID(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLineID(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Inherited Member Summary

TransactionException

Package oracle.apps.cz.cio B-213

oracle.apps.cz.cio
TransactionException

Syntax
public class TransactionException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--oracle.apps.cz.cio.TransactionException

All Implemented Interfaces:
java.io.Serializable

Description
Signalled if a particular logic file is missing.

Member Summary

Methods

getAction() Returns a String representation of the action that caused the exception

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

TransactionException

B-214 Oracle Configuration Interface Object (CIO) Developer’s Guide

Methods

getAction()
public java.lang.String getAction()
Returns a String representation of the action that caused the exception

ValidationFailure

Package oracle.apps.cz.cio B-215

oracle.apps.cz.cio
ValidationFailure

Syntax
public class ValidationFailure extends StatusInfo

java.lang.Object
|
+--StatusInfo

|
+--oracle.apps.cz.cio.ValidationFailure

Direct Known Subclasses:
CompanionValidationFailure, RestoreValidationFailure

Description
Implements behavior common to all validation failures.

Member Summary

Fields

COMPANION_FAILURE

MAX_FAILURE

MIN_FAILURE

MIN0_FAILURE

MINMAX_FAILURE

RESOURCE_FAILURE

RESTORE_FAILURE

Methods

equals(Object)

getMessage()

getMessage(String)

getType()

ValidationFailure

B-216 Oracle Configuration Interface Object (CIO) Developer’s Guide

Fields

COMPANION_FAILURE
public static final int COMPANION_FAILURE

MAX_FAILURE
public static final int MAX_FAILURE

MIN_FAILURE
public static final int MIN_FAILURE

MIN0_FAILURE
public static final int MIN0_FAILURE

MINMAX_FAILURE
public static final int MINMAX_FAILURE

RESOURCE_FAILURE
public static final int RESOURCE_FAILURE

toString()

Inherited Member Summary

Fields inherited from class StatusInfo

STATUS_DELETED, STATUS_EXISTING, STATUS_NEW

Methods inherited from class StatusInfo

getNode(), getStatus(), hashCode(), statusToString(int), toString(boolean)

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Member Summary

ValidationFailure

Package oracle.apps.cz.cio B-217

RESTORE_FAILURE
public static final int RESTORE_FAILURE

Methods

equals(Object)
public boolean equals(java.lang.Object obj)

Overrides:
equals(Object) in class StatusInfo

getMessage()
public java.lang.String getMessage()

getMessage(String)
public java.lang.String getMessage(java.lang.String nodeName)

getType()
public int getType()

toString()
public java.lang.String toString()

Overrides:
toString() in class StatusInfo

ValidationFailure

B-218 Oracle Configuration Interface Object (CIO) Developer’s Guide

Package oracle.apps.cz.common C-1

C
Package oracle.apps.cz.common

Description

Class Summary

Classes

CZContext Represents the runtime context of a configuration session.

CZContext

C-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.common
CZContext

Syntax
public final class CZContext

oracle.apps.cz.common.CZContext

Description
Represents the runtime context of a configuration session. The context owns the
database connection, resources, and log object. It also maintains apps, user, and
language information. CZContext is a shadow of the
oracle.apps.fnd.common.AppsContext implementation and is designed to operate
outside of the middle-tier Oracle Apps environment. The intent is for the CIO to run
with either the AppsContext or CZContext depending on the runtime environment.

Member Summary

Constructors

CZContext(String, String) Creates a new CZContext containing a connection established with the supplied
database url.

CZContext(String, String, String,
String)

Creates a new CZContext containing a connection established with the supplied
database url, user name, and password.

Methods

getAppId(String) Returns the application ID for product configuration (CZ).

getCurrLangCode() Returns the current language code.

getCurrLangInfo() This method is restricted.

getDbOwner() Returns name of SellingPoint schema owner.

getJDBCConnection(Object) Returns the JDBC connection.

getLangCode(String) This method is restricted.

getLangInfo(String, String) This method is restricted.

getNLSLang(String) This method is restricted.

getSessionManager() This method is restricted.

CZContext

Package oracle.apps.cz.common C-3

Constructors

CZContext(String, String)
public CZContext(java.lang.String url, java.lang.String dbOwner)
Creates a new CZContext containing a connection established with the supplied
database url.

Parameters:
url - The full url of the database.

dbOwner - the schema owner of the SellingPoint tables

CZContext(String, String, String, String)
public CZContext(java.lang.String url, java.lang.String user, java.lang.String
password, java.lang.String dbOwner)
Creates a new CZContext containing a connection established with the supplied
database url, user name, and password.

Parameters:
url - The full url of the database.

user - The database user name.

password - The user password.

dbOwner - the schema owner of the SellingPoint tables

Methods

getAppId(String)
public int getAppId(java.lang.String applShtName)
Returns the application ID for product configuration (CZ). The parameter signature
is for compatibility with the AppsContext implementation.

getUrl() Returns the JDBC URL.

getUser() Returns the user name.

setCurrLang(String) Sets the current language code.

Member Summary

CZContext

C-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

getCurrLangCode()
public java.lang.String getCurrLangCode()
Returns the current language code.

getCurrLangInfo()
public oracle.apps.fnd.common.LangInfo getCurrLangInfo()
This method is restricted.

getDbOwner()
public java.lang.String getDbOwner()
Returns name of SellingPoint schema owner.

getJDBCConnection(Object)
public java.sql.Connection getJDBCConnection(java.lang.Object pThis)
Returns the JDBC connection. The parameter signature includes a reference to the
caller to be compatible with the AppsContext implementation.

getLangCode(String)
public java.lang.String getLangCode(java.lang.String pNLSLang)
This method is restricted.

getLangInfo(String, String)
public oracle.apps.fnd.common.LangInfo getLangInfo(java.lang.String pLangCode,
java.lang.String pNLSLang)
This method is restricted.

getNLSLang(String)
public java.lang.String getNLSLang(java.lang.String pLangCode)
This method is restricted.

getSessionManager()
public oracle.apps.fnd.security.SessionManager getSessionManager()
This method is restricted.

getUrl()
public java.lang.String getUrl()
Returns the JDBC URL.

CZContext

Package oracle.apps.cz.common C-5

getUser()
public java.lang.String getUser()
Returns the user name.

setCurrLang(String)
public boolean setCurrLang(java.lang.String pLangCode)
Sets the current language code.

CZContext

C-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

Package oracle.apps.cz.utilities D-1

D
Package oracle.apps.cz.utilities

Description

Class Summary

Classes

NameValuePair Provides a name-value pair object combination.

NameValuePairSet Implements an object to hold a unique set of name value pairs

NameValuePair

D-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.utilities
NameValuePair

Syntax
public class NameValuePair extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.utilities.NameValuePair

Description
Provides a name-value pair object combination. The name cannot be changed once
created.

Member Summary

Constructors

NameValuePair(String) Constructs a name-value pair object without a value.

NameValuePair(String, Object) Constructs a name-value pair object.

Methods

getName() Retrieve the name (key).

getValue() Retrieve the value which can be null.

setValue(Object) Replaces the value for this pair.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

NameValuePair

Package oracle.apps.cz.utilities D-3

Constructors

NameValuePair(String)
public NameValuePair(java.lang.String key)
Constructs a name-value pair object without a value. Key is always stored as a
lowercase string, regardless of the case of the key parameter.

Parameters:
key - - The String name(key) for this pair.

NameValuePair(String, Object)
public NameValuePair(java.lang.String key, java.lang.Object value)
Constructs a name-value pair object. Key is always stored as a lowercase string,
regardless of the case of the key parameter.

Parameters:
key - - The String name(key) for this pair. String cannot be null or have only
whitespace.

value - - The Object for this pair.

Methods

getName()
public java.lang.String getName()
Retrieve the name (key). Will always be lowercase.

getValue()
public java.lang.Object getValue()
Retrieve the value which can be null.

setValue(Object)
public void setValue(java.lang.Object value)
Replaces the value for this pair.

Parameters:
The - Object for this pair which can be null.

NameValuePairSet

D-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

oracle.apps.cz.utilities
NameValuePairSet

Syntax
public class NameValuePairSet extends java.lang.Object

java.lang.Object
|
+--oracle.apps.cz.utilities.NameValuePairSet

Description
Implements an object to hold a unique set of name value pairs

Member Summary

Constructors

NameValuePairSet()

Methods

Add(NameValuePair) Add a name value pair object to the set

Add(String, Object) Create a NameValuePair and add it to the set using the name and object.

getValueByName(String) Gets value, which may be null, of the name/value pair identified by the "name"
input.

iterator() Returns the set of keys for the name value pairs

lookupPairByName(String) Look up a name (key) in the set

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

NameValuePairSet

Package oracle.apps.cz.utilities D-5

Constructors

NameValuePairSet()
public NameValuePairSet()

Methods

Add(NameValuePair)
public void Add(NameValuePair nvp)
Add a name value pair object to the set

Parameters:
nameValuePair - - The NameValuePair object to add. The key will provide the
hash.

Add(String, Object)
public void Add(java.lang.String name, java.lang.Object value)
Create a NameValuePair and add it to the set using the name and object.

Parameters:
name - - The String key of the pair. THe name will provide the hash identifier.

value - - The value object which can be null.

getValueByName(String)
public java.lang.Object getValueByName(java.lang.String name)
Gets value, which may be null, of the name/value pair identified by the "name"
input. Returns null if pair does not exist.

Parameters:
name - the name string by which to look up the value

Returns:
the value associated with name

iterator()
public com.sun.java.util.collections.Iterator iterator()

NameValuePairSet

D-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

Returns the set of keys for the name value pairs

lookupPairByName(String)
public NameValuePair lookupPairByName(java.lang.String name)
Look up a name (key) in the set

Parameters:
name - - The String to lookup

Returns:
The NameValuePair which can be null if the string is not in the set

Index-1

Index
A
add() -

oracle.apps.cz.cio.ComponentSet.add(), B–53
Add(NameValuePair) -

oracle.apps.cz.utilities.NameValuePairSet.Add(
oracle.apps.cz.utilities.NameValuePair), D–5

Add(String, Object) -
oracle.apps.cz.utilities.NameValuePairSet.Add(j
ava.lang.String, java.lang.Object), D–5

addAtpNotification(String) -
oracle.apps.cz.cio.BomNode.addAtpNotificatio
n(java.lang.String), B–15

addConfigEventListener(ICompSetEventListener) -
oracle.apps.cz.cio.ComponentSet.addConfigEve
ntListener(oracle.apps.cz.cio.ICompSetEventLis
tener), B–53

addConfigEventListener(IConfigEventListener) -
oracle.apps.cz.cio.Configuration.addConfigEve
ntListener(oracle.apps.cz.cio.IConfigEventListe
ner), B–59

addConfigMessage(String, String) -
oracle.apps.cz.cio.Configuration.addConfigMes
sage(java.lang.String, java.lang.String), B–59

addPricingNotification(String) -
oracle.apps.cz.cio.StateCountNode.addPricingN
otification(java.lang.String), B–198

ALL_FEATURES -
oracle.apps.cz.cio.IRuntimeNode.ALL_
FEATURES, B–129

AtpUnavailableException -
oracle.apps.cz.cio.AtpUnavailableException, B
–5

AtpUnavailableException(String) -

oracle.apps.cz.cio.AtpUnavailableException.At
pUnavailableException(java.lang.String), B–6

AtpUnavailableException(String, Object, Log) -
oracle.apps.cz.cio.AtpUnavailableException.At
pUnavailableException(java.lang.String,
java.lang.Object,
oracle.apps.fnd.common.Log), B–6

Auto-configuration, 1–2, 1–14, 1–18
autoConfigure() -

oracle.apps.cz.cio.FunctionalCompanion.autoC
onfigure(), B–88

autoConfigure() -
oracle.apps.cz.cio.IFunctionalCompanion.autoC
onfigure(), B–106

B
beginConfigTransaction() -

oracle.apps.cz.cio.Configuration.beginConfigTr
ansaction(), B–59

beginConfigTransaction(boolean) -
oracle.apps.cz.cio.Configuration.beginConfigTr
ansaction(boolean), B–59

BOM_MODEL -
oracle.apps.cz.cio.IRuntimeNode.BOM_
MODEL, B–129

BOM_OPTION_CLASS -
oracle.apps.cz.cio.IRuntimeNode.BOM_
OPTION_CLASS, B–129

BOM_STD_ITEM -
oracle.apps.cz.cio.IRuntimeNode.BOM_STD_
ITEM, B–129

BomExplosionException -
oracle.apps.cz.cio.BomExplosionException, B–

Index-2

7
BomModel - oracle.apps.cz.cio.BomModel, B–9
BomNode - oracle.apps.cz.cio.BomNode, B–12
BomOptionClass -

oracle.apps.cz.cio.BomOptionClass, B–23
BomStdItem - oracle.apps.cz.cio.BomStdItem, B–26
BOOLEAN_FEATURE -

oracle.apps.cz.cio.IRuntimeNode.BOOLEAN_
FEATURE, B–129

BooleanFeature -
oracle.apps.cz.cio.BooleanFeature, B–29

C
calculateAtpDate() -

oracle.apps.cz.cio.BomNode.calculateAtpDate(),
B–15

calculateAtpDates() -
oracle.apps.cz.cio.Configuration.calculateAtpD
ates(), B–60

calculateListPrices() -
oracle.apps.cz.cio.Configuration.calculateListPri
ces(), B–60

canPerform() -
oracle.apps.cz.cio.Configuration.canPerform(),

B–60
canUndo() -

oracle.apps.cz.cio.Configuration.canUndo(), B
–60

CIO
See Configuration Interface Object

CIO - oracle.apps.cz.cio.CIO, B–31
CIO() - oracle.apps.cz.cio.CIO.CIO(), B–32
classes111.zip, 1–9
CLASSPATH, 1–8
clearAtpDate() -

oracle.apps.cz.cio.BomNode.clearAtpDate(), B
–15

clearAtpNotifications() -
oracle.apps.cz.cio.BomNode.clearAtpNotificatio
ns(), B–15

clearConfigMessages() -
oracle.apps.cz.cio.Configuration.clearConfigMe
ssages(), B–60

clearDiscountedPrice() -

oracle.apps.cz.cio.StateCountNode.clearDiscou
ntedPrice(), B–198

clearLogicFile(String) -
oracle.apps.cz.cio.CIO.clearLogicFile(java.lang.S
tring), B–32

clearLogicFileCache() -
oracle.apps.cz.cio.CIO.clearLogicFileCache(),
B–32

clearPricingNotifications() -
oracle.apps.cz.cio.StateCountNode.clearPricing
Notifications(), B–198

close() - oracle.apps.cz.cio.CIO.close(), B–32
close() -

oracle.apps.cz.cio.Configuration.close(), B–60
closeConfiguration(Configuration) -

oracle.apps.cz.cio.CIO.closeConfiguration(oracl
e.apps.cz.cio.Configuration), B–32

collections.jar, 1–8
COM

building Functional Companions with, 1–4,
1–11

commitConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.commitConfig
Transaction(oracle.apps.cz.cio.ConfigTransactio
n), B–61

companion
See Functional Companion

COMPANION_FAILURE -
oracle.apps.cz.cio.ValidationFailure.COMPANI
ON_FAILURE, B–216

CompanionNode -
oracle.apps.cz.cio.CompanionNode, B–38

CompanionRoot -
oracle.apps.cz.cio.CompanionRoot, B–41

CompanionRoot(IRuntimeNode) -
oracle.apps.cz.cio.CompanionRoot.Companion
Root(oracle.apps.cz.cio.IRuntimeNode), B–42

CompanionValidationFailure -
oracle.apps.cz.cio.CompanionValidationFailure,

B–44
CompanionValidationFailure(String,

IRuntimeNode, IFunctionalCompanion) -
oracle.apps.cz.cio.CompanionValidationFailure.
CompanionValidationFailure(java.lang.String,
oracle.apps.cz.cio.IRuntimeNode,

Index-3

oracle.apps.cz.cio.IFunctionalCompanion), B–
45

Component - oracle.apps.cz.cio.Component, B–46
COMPONENT -

oracle.apps.cz.cio.IRuntimeNode.COMPONEN
T, B–129

COMPONENT_SET -
oracle.apps.cz.cio.IRuntimeNode.COMPONEN
T_SET, B–129

ComponentNode -
oracle.apps.cz.cio.ComponentNode, B–50

ComponentSet -
oracle.apps.cz.cio.ComponentSet, B–52

config.jar, 1–8
ConfigTransaction -

oracle.apps.cz.cio.ConfigTransaction, B–55
Configuration -

oracle.apps.cz.cio.Configuration, B–56
Configuration Interface Object, 1–1
configuration subschema objects, 2–1
configuration-level logic transactions, 2–8
configurations, 2–6
confw32.jar, 1–8
constants, 3–1
COUNT_FEATURE -

oracle.apps.cz.cio.IRuntimeNode.COUNT_
FEATURE, B–129

CountFeature -
oracle.apps.cz.cio.CountFeature, B–72

createCIO() -
oracle.apps.cz.cio.Factory.createCIO(), B–83

createConfiguration(int, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
oracle.apps.fnd.common.Context), B–33

createConfiguration(int, int, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
int, oracle.apps.fnd.common.Context), B–33

createConfiguration(int, int, Date, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
int, java.util.Date,
oracle.apps.fnd.common.Context), B–34

createConfiguration(String, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(java.
lang.String,
oracle.apps.fnd.common.Context), B–35

createContext(String, String, String, String) -
oracle.apps.cz.cio.Factory.createContext(java.la
ng.String, java.lang.String, java.lang.String,
java.lang.String), B–83

createContext(String, String, String, String, String,
String, String) -
oracle.apps.cz.cio.Factory.createContext(java.la
ng.String, java.lang.String, java.lang.String,
java.lang.String, java.lang.String,
java.lang.String, java.lang.String), B–83

CZContext -
oracle.apps.cz.common.CZContext, C–2

CZContext(String, String) -
oracle.apps.cz.common.CZContext.CZContext(j
ava.lang.String, java.lang.String), C–3

CZContext(String, String, String, String) -
oracle.apps.cz.common.CZContext.CZContext(j
ava.lang.String, java.lang.String,
java.lang.String, java.lang.String), C–3

cz.dll, 1–9
czjni.dll, 1–9

D
DECIMAL_FEATURE -

oracle.apps.cz.cio.IRuntimeNode.DECIMAL_
FEATURE, B–129

DecimalFeature -
oracle.apps.cz.cio.DecimalFeature, B–76

DecimalNode -
oracle.apps.cz.cio.DecimalNode, B–79

DEFAULT -
oracle.apps.cz.cio.Reason.DEFAULT, B–179

delete(Component) -
oracle.apps.cz.cio.ComponentSet.delete(oracle.a
pps.cz.cio.Component), B–53

deselect() -
oracle.apps.cz.cio.BomNode.deselect(), B–15

deselect() -
oracle.apps.cz.cio.IOption.deselect(), B–119

deselect() -
oracle.apps.cz.cio.OptionNode.deselect(), B–1
69

deselect(IOption) -
oracle.apps.cz.cio.IOptionFeature.deselect(oracl

Index-4

e.apps.cz.cio.IOption), B–121
deselect(IOption) -

oracle.apps.cz.cio.OptionFeatureNode.deselect(
oracle.apps.cz.cio.IOption), B–165

drivers
JDBC, 1–9

E
endConfigTransaction(ConfigTransaction) -

oracle.apps.cz.cio.Configuration.endConfigTran
saction(oracle.apps.cz.cio.ConfigTransaction),
B–61

equals(Object) -
oracle.apps.cz.cio.CompanionValidationFailure.
equals(java.lang.Object), B–45

equals(Object) -
oracle.apps.cz.cio.LogicalOverridableException.
equals(java.lang.Object), B–144

equals(Object) -
oracle.apps.cz.cio.RestoreValidationFailure.equ
als(java.lang.Object), B–185

equals(Object) -
oracle.apps.cz.cio.StatusInfo.equals(java.lang.O
bject), B–205

equals(Object) -
oracle.apps.cz.cio.ValidationFailure.equals(java.
lang.Object), B–217

exception
logical, 2–17

F
Factory - oracle.apps.cz.cio.Factory, B–82
Factory() -

oracle.apps.cz.cio.Factory.Factory(), B–83
FALSE - oracle.apps.cz.cio.IState.FALSE, B–136
finalizeWorkaround() -

oracle.apps.cz.cio.Configuration.finalizeWorkar
ound(), B–61

FuncCompCreationException -
oracle.apps.cz.cio.FuncCompCreationException
, B–85

Functional Companions
and Project Structure, 1–13

defined, 1–1
relationship to CIO, 1–4, 2–2
types, 1–1, 1–2

FunctionalCompanion -
oracle.apps.cz.cio.FunctionalCompanion, B–87

FunctionalCompanion() -
oracle.apps.cz.cio.FunctionalCompanion.Functi
onalCompanion(), B–88

FunctionalCompanionException -
oracle.apps.cz.cio.FunctionalCompanionExcepti
on, B–91

FunctionalCompanionException(Throwable) -
oracle.apps.cz.cio.FunctionalCompanionExcepti
on.FunctionalCompanionException(java.lang.T
hrowable), B–91

FunctionalCompanionException(Throwable, String)
-
oracle.apps.cz.cio.FunctionalCompanionExcepti
on.FunctionalCompanionException(java.lang.T
hrowable, java.lang.String), B–91

G
generateOutput() -

oracle.apps.cz.cio.FunctionalCompanion.genera
teOutput(), B–88

generateOutput() -
oracle.apps.cz.cio.IFunctionalCompanion.gener
ateOutput(), B–106

generateOutput(HttpServletResponse) -
oracle.apps.cz.cio.FunctionalCompanion.genera
teOutput(javax.servlet.http.HttpServletRespons
e), B–88

generateOutput(HttpServletResponse) -
oracle.apps.cz.cio.IFunctionalCompanion.gener
ateOutput(javax.servlet.http.HttpServletRespon
se), B–106

getAction() -
oracle.apps.cz.cio.TransactionException.getActi
on(), B–214

getActiveModelPath() -
oracle.apps.cz.cio.CIO.getActiveModelPath(),
B–35

getAltPricingAtpContext() -
oracle.apps.cz.cio.Configuration.getAltPricingA

Index-5

tpContext(), B–61
getAppId(String) -

oracle.apps.cz.common.CZContext.getAppId(ja
va.lang.String), C–3

getAtpDate() -
oracle.apps.cz.cio.BomNode.getAtpDate(), B–
15

getAtpDate() -
oracle.apps.cz.cio.IAtp.getAtpDate(), B–93

getAtpNotifications() -
oracle.apps.cz.cio.BomNode.getAtpNotification
s(), B–16

getAtpNotifications() -
oracle.apps.cz.cio.IAtp.getAtpNotifications(),
B–93

getBoolean(String) -
oracle.apps.cz.cio.CompanionNode.getBoolean(
java.lang.String), B–39

getBoolean(String, boolean) -
oracle.apps.cz.cio.CompanionNode.getBoolean(
java.lang.String, boolean), B–39

getBooleanValue() -
oracle.apps.cz.cio.Property.getBooleanValue(),

B–174
getCause() -

oracle.apps.cz.cio.LogicalException.getCause(),
B–141

getChildByID(int) -
oracle.apps.cz.cio.IRuntimeNode.getChildByID(
int), B–130

getChildByID(int) -
oracle.apps.cz.cio.RuntimeNode.getChildByID(i
nt), B–188

getChildByInstanceNumber(int) -
oracle.apps.cz.cio.ComponentSet.getChildByIns
tanceNumber(int), B–54

getChildByName(String) -
oracle.apps.cz.cio.IRuntimeNode.getChildByNa
me(java.lang.String), B–131

getChildByName(String) -
oracle.apps.cz.cio.RuntimeNode.getChildByNa
me(java.lang.String), B–188

getChildren() -
oracle.apps.cz.cio.CompanionNode.getChildren
(), B–39

getChildren() -
oracle.apps.cz.cio.Component.getChildren(), B
–47

getChildren() -
oracle.apps.cz.cio.IRuntimeNode.getChildren(),

B–131
getChildren() -

oracle.apps.cz.cio.RuntimeNode.getChildren(),
B–188

getChildrenByType(int) -
oracle.apps.cz.cio.ComponentNode.getChildren
ByType(int), B–51

getChildrenByType(int) -
oracle.apps.cz.cio.IRuntimeNode.getChildrenBy
Type(int), B–131

getChildrenByType(int) -
oracle.apps.cz.cio.RuntimeNode.getChildrenBy
Type(int), B–188

getCIO() -
oracle.apps.cz.cio.Configuration.getCIO(), B–6
1

getCompanion() -
oracle.apps.cz.cio.CompanionValidationFailure.
getCompanion(), B–45

getComponentCode() -
oracle.apps.cz.cio.BomNode.getComponentCod
e(), B–16

getComponentCode() -
oracle.apps.cz.cio.IBomItem.getComponentCod
e(), B–95

getConfigHeaderCheckoutUser() -
oracle.apps.cz.cio.Configuration.getConfigHead
erCheckoutUser(), B–61

getConfigHeaderDateCreated() -
oracle.apps.cz.cio.Configuration.getConfigHead
erDateCreated(), B–62

getConfigHeaderDescription() -
oracle.apps.cz.cio.Configuration.getConfigHead
erDescription(), B–62

getConfigHeaderEffectiveFrom() -
oracle.apps.cz.cio.Configuration.getConfigHead
erEffectiveFrom(), B–62

getConfigHeaderEffectiveTo() -
oracle.apps.cz.cio.Configuration.getConfigHead
erEffectiveTo(), B–62

Index-6

getConfigHeaderId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erId(), B–62

getConfigHeaderLastUpdateDate() -
oracle.apps.cz.cio.Configuration.getConfigHead
erLastUpdateDate(), B–63

getConfigHeaderName() -
oracle.apps.cz.cio.Configuration.getConfigHead
erName(), B–63

getConfigHeaderNote() -
oracle.apps.cz.cio.Configuration.getConfigHead
erNote(), B–63

getConfigHeaderNumberQuotesUsedIn() -
oracle.apps.cz.cio.Configuration.getConfigHead
erNumberQuotesUsedIn(), B–63

getConfigHeaderOpportunityHeaderId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erOpportunityHeaderId(), B–63

getConfigHeaderRevision() -
oracle.apps.cz.cio.Configuration.getConfigHead
erRevision(), B–64

getConfigHeaderStatus() -
oracle.apps.cz.cio.Configuration.getConfigHead
erStatus(), B–64

getConfigHeaderUiDefinitionId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erUiDefinitionId(), B–64

getConfigHeaderUserIdCreated() -
oracle.apps.cz.cio.Configuration.getConfigHead
erUserIdCreated(), B–64

getConfiguration() -
oracle.apps.cz.cio.IRuntimeNode.getConfigurat
ion(), B–131

getConfiguration() -
oracle.apps.cz.cio.RuntimeNode.getConfigurati
on(), B–189

getContext() -
oracle.apps.cz.cio.Configuration.getContext(),
B–64

getCount() -
oracle.apps.cz.cio.Component.getCount(), B–4
8

getCount() -
oracle.apps.cz.cio.ComponentSet.getCount(),
B–54

getCount() -
oracle.apps.cz.cio.ICount.getCount(), B–99

getCount() -
oracle.apps.cz.cio.StateCountNode.getCount(),

B–198
getCurrLangCode() -

oracle.apps.cz.common.CZContext.getCurrLan
gCode(), C–4

getCurrLangInfo() -
oracle.apps.cz.common.CZContext.getCurrLan
gInfo(), C–4

getDatabaseID() -
oracle.apps.cz.cio.IAtp.getDatabaseID(), B–93

getDatabaseID() -
oracle.apps.cz.cio.IPrice.getDatabaseID(), B–12
4

getDatabaseID() -
oracle.apps.cz.cio.IRuntimeNode.getDatabaseI
D(), B–131

getDatabaseID() -
oracle.apps.cz.cio.RuntimeNode.getDatabaseID
(), B–189

getDbOwner() -
oracle.apps.cz.common.CZContext.getDbOwne
r(), C–4

getDecimalValue() -
oracle.apps.cz.cio.IReadOnlyDecimal.getDecim
alValue(), B–126

getDecimalValue() -
oracle.apps.cz.cio.Property.getDecimalValue(),

B–174
getDecimalValue() -

oracle.apps.cz.cio.ReadOnlyDecimalNode.getD
ecimalValue(), B–177

getDefaultQuantity() -
oracle.apps.cz.cio.BomNode.getDefaultQuantit
y(), B–16

getDescription() -
oracle.apps.cz.cio.FunctionalCompanion.getDes
cription(), B–89

getDescription() -
oracle.apps.cz.cio.IFunctionalCompanion.getDe
scription(), B–106

getDescription() -
oracle.apps.cz.cio.IRuntimeNode.getDescriptio

Index-7

n(), B–132
getDescription() -

oracle.apps.cz.cio.Property.getDescription(), B
–174

getDescription() -
oracle.apps.cz.cio.RuntimeNode.getDescription
(), B–189

getDescrption() -
oracle.apps.cz.cio.FuncCompCreationException
.getDescrption(), B–86

getDiscountedPrice() -
oracle.apps.cz.cio.BomNode.getDiscountedPric
e(), B–16

getDiscountedPrice() -
oracle.apps.cz.cio.IPrice.getDiscountedPrice(),

B–124
getDiscountedPrice() -

oracle.apps.cz.cio.StateCountNode.getDiscount
edPrice(), B–198

getDouble(String) -
oracle.apps.cz.cio.CompanionNode.getDouble(j
ava.lang.String), B–39

getDouble(String, double) -
oracle.apps.cz.cio.CompanionNode.getDouble(j
ava.lang.String, double), B–39

getExplosionDate() -
oracle.apps.cz.cio.BomExplosionException.getE
xplosionDate(), B–8

getExtendedPrice() -
oracle.apps.cz.cio.IPrice.getExtendedPrice(), B
–124

getExtendedPrice() -
oracle.apps.cz.cio.StateCountNode.getExtended
Price(), B–199

getFeature() -
oracle.apps.cz.cio.SelectionNotMutexedExcepti
on.getFeature(), B–195

getFeature(String) -
oracle.apps.cz.cio.CompanionNode.getFeature(j
ava.lang.String), B–39

getFeatureIdentifier() -
oracle.apps.cz.cio.CompanionRoot.getFeatureId
entifier(), B–42

getFuncCompByID(int) -
oracle.apps.cz.cio.Component.getFuncCompByI

D(int), B–48
getFuncCompByName(String) -

oracle.apps.cz.cio.Component.getFuncCompBy
Name(java.lang.String), B–48

getFunctionalCompanions() -
oracle.apps.cz.cio.Component.getFunctionalCo
mpanions(), B–48

getID() -
oracle.apps.cz.cio.FuncCompCreationException
.getID(), B–86

getID() -
oracle.apps.cz.cio.FunctionalCompanion.getID()
, B–89

getID() -
oracle.apps.cz.cio.IFunctionalCompanion.getID(
), B–106

getID() -
oracle.apps.cz.cio.NoSuchChildException.getID
(), B–154

getInitParameters() -
oracle.apps.cz.cio.Configuration.getInitParamet
ers(), B–65

getInput() -
oracle.apps.cz.cio.IncompatibleInputException.
getInput(), B–112

getInput() -
oracle.apps.cz.cio.RestoreValidationFailure.getI
nput(), B–185

getInstanceNumber() -
oracle.apps.cz.cio.Component.getInstanceNum
ber(), B–48

getInteger(String) -
oracle.apps.cz.cio.CompanionNode.getInteger(j
ava.lang.String), B–39

getInteger(String, int) -
oracle.apps.cz.cio.CompanionNode.getInteger(j
ava.lang.String, int), B–40

getIntValue() -
oracle.apps.cz.cio.CountFeature.getIntValue(),

B–74
getIntValue() -

oracle.apps.cz.cio.IInteger.getIntValue(), B–10
8

getIntValue() -
oracle.apps.cz.cio.IntegerNode.getIntValue(),

Index-8

B–117
getIntValue() -

oracle.apps.cz.cio.Property.getIntValue(), B–1
74

getInventoryItemId() -
oracle.apps.cz.cio.BomExplosionException.getI
nventoryItemId(), B–8

getInventoryItemId() -
oracle.apps.cz.cio.BomNode.getInventoryItemI
d(), B–16

getInventoryItemId() -
oracle.apps.cz.cio.IBomItem.getInventoryItemId
(), B–95

getItemKey() -
oracle.apps.cz.cio.BomNode.getItemKey(), B–
16

getItemKey() -
oracle.apps.cz.cio.IAtp.getItemKey(), B–93

getItemKey() -
oracle.apps.cz.cio.IPrice.getItemKey(), B–124

getItemKey() -
oracle.apps.cz.cio.StateCountNode.getItemKey(
), B–199

getJDBCConnection(Object) -
oracle.apps.cz.common.CZContext.getJDBCCon
nection(java.lang.Object), C–4

getLangCode(String) -
oracle.apps.cz.common.CZContext.getLangCod
e(java.lang.String), C–4

getLangInfo(String, String) -
oracle.apps.cz.common.CZContext.getLangInfo
(java.lang.String, java.lang.String), C–4

getLastContradiction() -
oracle.apps.cz.cio.Configuration.getLastContra
diction(), B–65

getListPrice() -
oracle.apps.cz.cio.BomNode.getListPrice(), B–
17

getListPrice() -
oracle.apps.cz.cio.IPrice.getListPrice(), B–124

getListPrice() -
oracle.apps.cz.cio.StateCountNode.getListPrice(
), B–199

getLogicException() -
oracle.apps.cz.cio.LogicalRuntimeException.get

LogicException(), B–146
getMax() -

oracle.apps.cz.cio.Component.getMax(), B–48
getMax() -

oracle.apps.cz.cio.ComponentSet.getMax(), B–
54

getMax() -
oracle.apps.cz.cio.CountFeature.getMax(), B–7
4

getMax() -
oracle.apps.cz.cio.DecimalFeature.getMax(), B
–77

getMax() -
oracle.apps.cz.cio.IDecimalMinMax.getMax(),
B–103

getMax() -
oracle.apps.cz.cio.IIntegerMinMax.getMax(),
B–109

getMax() -
oracle.apps.cz.cio.IntegerFeature.getMax(), B–
114

getMaxQuantity() -
oracle.apps.cz.cio.BomNode.getMaxQuantity(),

B–17
getMaxQuantity() -

oracle.apps.cz.cio.IBomItem.getMaxQuantity(),
B–95

getMaxSelected() -
oracle.apps.cz.cio.BomNode.getMaxSelected(),

B–17
getMaxSelected() -

oracle.apps.cz.cio.IOptionFeature.getMaxSelect
ed(), B–121

getMaxSelected() -
oracle.apps.cz.cio.OptionFeature.getMaxSelecte
d(), B–162

getMessage() -
oracle.apps.cz.cio.LogicalException.getMessage
(), B–142

getMessage() -
oracle.apps.cz.cio.ValidationFailure.getMessage
(), B–217

getMessage(String) -
oracle.apps.cz.cio.ValidationFailure.getMessage
(java.lang.String), B–217

Index-9

getMessageHeader() -
oracle.apps.cz.cio.LogicalException.getMessage
Header(), B–142

getMin() -
oracle.apps.cz.cio.Component.getMin(), B–48

getMin() -
oracle.apps.cz.cio.ComponentSet.getMin(), B–
54

getMin() -
oracle.apps.cz.cio.CountFeature.getMin(), B–7
4

getMin() -
oracle.apps.cz.cio.DecimalFeature.getMin(), B
–77

getMin() -
oracle.apps.cz.cio.IDecimalMinMax.getMin(),
B–103

getMin() -
oracle.apps.cz.cio.IIntegerMinMax.getMin(), B
–109

getMin() -
oracle.apps.cz.cio.IntegerFeature.getMin(), B–
114

getMinQuantity() -
oracle.apps.cz.cio.BomNode.getMinQuantity(),

B–18
getMinQuantity() -

oracle.apps.cz.cio.IBomItem.getMinQuantity(),
B–95

getMinSelected() -
oracle.apps.cz.cio.BomNode.getMinSelected(),

B–18
getMinSelected() -

oracle.apps.cz.cio.IOptionFeature.getMinSelecte
d(), B–121

getMinSelected() -
oracle.apps.cz.cio.OptionFeature.getMinSelecte
d(), B–162

getModelNode() -
oracle.apps.cz.cio.IncompatibleInputException.
getModelNode(), B–112

getMsg() -
oracle.apps.cz.cio.Reason.getMsg(), B–181

getName() -
oracle.apps.cz.cio.Component.getName(), B–4

8
getName() -

oracle.apps.cz.cio.FuncCompCreationException
.getName(), B–86

getName() -
oracle.apps.cz.cio.FunctionalCompanion.getNa
me(), B–89

getName() -
oracle.apps.cz.cio.IFunctionalCompanion.getNa
me(), B–106

getName() -
oracle.apps.cz.cio.IRuntimeNode.getName(),
B–132

getName() -
oracle.apps.cz.cio.NoSuchChildException.getNa
me(), B–154

getName() -
oracle.apps.cz.cio.Property.getName(), B–174

getName() -
oracle.apps.cz.cio.RuntimeNode.getName(), B
–189

getName() -
oracle.apps.cz.utilities.NameValuePair.getNam
e(), D–3

getNLSLang(String) -
oracle.apps.cz.common.CZContext.getNLSLang
(java.lang.String), C–4

getNode() -
oracle.apps.cz.cio.Reason.getNode(), B–181

getNode() -
oracle.apps.cz.cio.StatusInfo.getNode(), B–205

getNodeClass(String) -
oracle.apps.cz.cio.CompanionRoot.getNodeClas
s(java.lang.String), B–42

getNodeIdentifier() -
oracle.apps.cz.cio.CompanionRoot.getNodeIde
ntifier(), B–42

getOrganizationId() -
oracle.apps.cz.cio.BomExplosionException.getO
rganizationId(), B–8

getOrganizationId() -
oracle.apps.cz.cio.BomNode.getOrganizationId(
), B–18

getOrganizationId() -
oracle.apps.cz.cio.IBomItem.getOrganizationId(

Index-10

), B–96
getParent() -

oracle.apps.cz.cio.IRuntimeNode.getParent(),
B–132

getParent() -
oracle.apps.cz.cio.NoSuchChildException.getPa
rent(), B–154

getParent() -
oracle.apps.cz.cio.RuntimeNode.getParent(), B
–189

getPricingNotifications() -
oracle.apps.cz.cio.IPrice.getPricingNotifications
(), B–124

getPricingNotifications() -
oracle.apps.cz.cio.StateCountNode.getPricingN
otifications(), B–199

getPrimaryUomCode() -
oracle.apps.cz.cio.BomNode.getPrimaryUomCo
de(), B–18

getPrimaryUomCode() -
oracle.apps.cz.cio.IBomItem.getPrimaryUomCo
de(), B–96

getProgString() -
oracle.apps.cz.cio.FuncCompCreationException
.getProgString(), B–86

getProjectID() -
oracle.apps.cz.cio.Configuration.getProjectID(),

B–65
getProperties() -

oracle.apps.cz.cio.IRuntimeNode.getProperties(
), B–132

getProperties() -
oracle.apps.cz.cio.RuntimeNode.getProperties()
, B–190

getPropertyByName(String) -
oracle.apps.cz.cio.IRuntimeNode.getPropertyBy
Name(java.lang.String), B–132

getPropertyByName(String) -
oracle.apps.cz.cio.RuntimeNode.getPropertyBy
Name(java.lang.String), B–190

getReasons() -
oracle.apps.cz.cio.LogicalException.getReasons(
), B–142

getRootBomModel() -
oracle.apps.cz.cio.Configuration.getRootBomM

odel(), B–65
getRootBomModel(int, int) -

oracle.apps.cz.cio.Configuration.getRootBomM
odel(int, int), B–65

getRootComponent() -
oracle.apps.cz.cio.Configuration.getRootCompo
nent(), B–65

getRootComponentDbId() -
oracle.apps.cz.cio.Configuration.getRootCompo
nentDbId(), B–66

getRootNodes() -
oracle.apps.cz.cio.CompanionRoot.getRootNod
es(), B–43

getRuntimeID() -
oracle.apps.cz.cio.IRuntimeNode.getRuntimeID
(), B–132

getRuntimeID() -
oracle.apps.cz.cio.RuntimeNode.getRuntimeID(
), B–190

getRuntimeNode() -
oracle.apps.cz.cio.FunctionalCompanion.getRu
ntimeNode(), B–89

getRuntimeNode() -
oracle.apps.cz.cio.IFunctionalCompanion.getRu
ntimeNode(), B–106

getRuntimeNode(int) -
oracle.apps.cz.cio.Configuration.getRuntimeNo
de(int), B–66

getSelectedItems() -
oracle.apps.cz.cio.Configuration.getSelectedIte
ms(), B–66

getSelectedOption() -
oracle.apps.cz.cio.IOptionFeature.getSelectedO
ption(), B–121

getSelectedOption() -
oracle.apps.cz.cio.OptionFeatureNode.getSelect
edOption(), B–165

getSelectedOptions() -
oracle.apps.cz.cio.IOptionFeature.getSelectedO
ptions(), B–122

getSelectedOptions() -
oracle.apps.cz.cio.OptionFeatureNode.getSelect
edOptions(), B–165

getSelectionLineID() -
oracle.apps.cz.cio.IRuntimeNode.getSelectionLi

Index-11

neID(), B–133
getSelectionLineID() -

oracle.apps.cz.cio.RuntimeNode.getSelectionLin
eID(), B–190

getSessionManager() -
oracle.apps.cz.common.CZContext.getSessionM
anager(), C–4

getState() -
oracle.apps.cz.cio.BomNode.getState(), B–18

getState() -
oracle.apps.cz.cio.IState.getState(), B–137

getState() -
oracle.apps.cz.cio.StateNode.getState(), B–202

getStatus() -
oracle.apps.cz.cio.StatusInfo.getStatus(), B–205

getString(String) -
oracle.apps.cz.cio.CompanionNode.getString(ja
va.lang.String), B–40

getString(String, String) -
oracle.apps.cz.cio.CompanionNode.getString(ja
va.lang.String, java.lang.String), B–40

getStringValue() -
oracle.apps.cz.cio.Property.getStringValue(), B
–174

getTextValue() -
oracle.apps.cz.cio.IText.getTextValue(), B–138

getTextValue() -
oracle.apps.cz.cio.TextNode.getTextValue(), B
–210

getTotalDiscountedPrice() -
oracle.apps.cz.cio.Configuration.getTotalDiscou
ntedPrice(), B–66

getTransactionDepth() -
oracle.apps.cz.cio.Configuration.getTransaction
Depth(), B–66

getType() -
oracle.apps.cz.cio.BomModel.getType(), B–11

getType() -
oracle.apps.cz.cio.BomOptionClass.getType(),
B–25

getType() -
oracle.apps.cz.cio.BomStdItem.getType(), B–2
8

getType() -
oracle.apps.cz.cio.BooleanFeature.getType(), B

–30
getType() -

oracle.apps.cz.cio.Component.getType(), B–49
getType() -

oracle.apps.cz.cio.ComponentSet.getType(), B
–54

getType() -
oracle.apps.cz.cio.CountFeature.getType(), B–
74

getType() -
oracle.apps.cz.cio.DecimalFeature.getType(),
B–78

getType() -
oracle.apps.cz.cio.IntegerFeature.getType(), B
–114

getType() -
oracle.apps.cz.cio.IRuntimeNode.getType(), B
–133

getType() -
oracle.apps.cz.cio.OptionFeature.getType(), B–
162

getType() -
oracle.apps.cz.cio.Option.getType(), B–159

getType() -
oracle.apps.cz.cio.Reason.getType(), B–181

getType() -
oracle.apps.cz.cio.Resource.getType(), B–183

getType() -
oracle.apps.cz.cio.RuntimeNode.getType(), B–
190

getType() -
oracle.apps.cz.cio.TextFeature.getType(), B–20
8

getType() -
oracle.apps.cz.cio.Total.getType(), B–212

getType() -
oracle.apps.cz.cio.ValidationFailure.getType(),

B–217
getUnit() -

oracle.apps.cz.cio.Property.getUnit(), B–174
getUnsatisfiedItems() -

oracle.apps.cz.cio.Configuration.getUnsatisfiedI
tems(), B–67

getUomCode() -
oracle.apps.cz.cio.BomNode.getUomCode(), B

Index-12

–19
getUomCode() -

oracle.apps.cz.cio.IAtp.getUomCode(), B–93
getUomCode() -

oracle.apps.cz.cio.IPrice.getUomCode(), B–125
getUomCode() -

oracle.apps.cz.cio.StateCountNode.getUomCod
e(), B–199

getUrl() -
oracle.apps.cz.common.CZContext.getUrl(), C
–4

getUser() -
oracle.apps.cz.common.CZContext.getUser(),
C–5

getValidationFailures() -
oracle.apps.cz.cio.Configuration.getValidationF
ailures(), B–67

getValue() -
oracle.apps.cz.utilities.NameValuePair.getValue
(), D–3

getValueByName(String) -
oracle.apps.cz.utilities.NameValuePairSet.getVa
lueByName(java.lang.String), D–5

GSL
building Functional Companions with, 1–3, 1–4
See also Generative Specification Language
specifying Functional Companion type, 1–14

H
hasBooleanValue() -

oracle.apps.cz.cio.Property.hasBooleanValue(),
B–175

hasCount() -
oracle.apps.cz.cio.IRuntimeNode.hasCount(),
B–133

hasCount() -
oracle.apps.cz.cio.RuntimeNode.hasCount(), B
–191

hasDecimalValue() -
oracle.apps.cz.cio.IRuntimeNode.hasDecimalVa
lue(), B–133

hasDecimalValue() -
oracle.apps.cz.cio.Property.hasDecimalValue(),

B–175

hasDecimalValue() -
oracle.apps.cz.cio.RuntimeNode.hasDecimalVal
ue(), B–191

hasDefaultQuantity() -
oracle.apps.cz.cio.BomNode.hasDefaultQuantit
y(), B–19

hasDefaultValue() -
oracle.apps.cz.cio.Property.hasDefaultValue(),

B–175
hasDescription() -

oracle.apps.cz.cio.IRuntimeNode.hasDescriptio
n(), B–133

hasDescription() -
oracle.apps.cz.cio.RuntimeNode.hasDescription
(), B–191

hasFeature(String) -
oracle.apps.cz.cio.CompanionNode.hasFeature(
java.lang.String), B–40

hashCode() -
oracle.apps.cz.cio.CompanionValidationFailure.
hashCode(), B–45

hashCode() -
oracle.apps.cz.cio.RestoreValidationFailure.has
hCode(), B–185

hashCode() -
oracle.apps.cz.cio.StatusInfo.hashCode(), B–20
6

hasIntegerValue() -
oracle.apps.cz.cio.Property.hasIntegerValue(),
B–175

hasIntegerValue() -
oracle.apps.cz.cio.RuntimeNode.hasIntegerValu
e(), B–191

hasMax() -
oracle.apps.cz.cio.Component.hasMax(), B–49

hasMax() -
oracle.apps.cz.cio.ComponentSet.hasMax(), B–
54

hasMax() -
oracle.apps.cz.cio.CountFeature.hasMax(), B–7
5

hasMax() -
oracle.apps.cz.cio.DecimalFeature.hasMax(), B
–78

hasMax() -

Index-13

oracle.apps.cz.cio.IDecimalMinMax.hasMax(),
B–103

hasMax() -
oracle.apps.cz.cio.IIntegerMinMax.hasMax(),
B–109

hasMax() -
oracle.apps.cz.cio.IntegerFeature.hasMax(), B–
115

hasMaxQuantity() -
oracle.apps.cz.cio.BomNode.hasMaxQuantity(),

B–19
hasMaxQuantity() -

oracle.apps.cz.cio.IBomItem.hasMaxQuantity(),
B–96

hasMaxSelected() -
oracle.apps.cz.cio.BomNode.hasMaxSelected(),

B–20
hasMaxSelected() -

oracle.apps.cz.cio.IOptionFeature.hasMaxSelect
ed(), B–122

hasMaxSelected() -
oracle.apps.cz.cio.OptionFeature.hasMaxSelecte
d(), B–162

hasMin() -
oracle.apps.cz.cio.Component.hasMin(), B–49

hasMin() -
oracle.apps.cz.cio.ComponentSet.hasMin(), B–
54

hasMin() -
oracle.apps.cz.cio.CountFeature.hasMin(), B–7
5

hasMin() -
oracle.apps.cz.cio.DecimalFeature.hasMin(), B
–78

hasMin() -
oracle.apps.cz.cio.IDecimalMinMax.hasMin(),
B–104

hasMin() -
oracle.apps.cz.cio.IIntegerMinMax.hasMin(),
B–110

hasMin() -
oracle.apps.cz.cio.IntegerFeature.hasMin(), B–
115

hasMinQuantity() -
oracle.apps.cz.cio.BomNode.hasMinQuantity(),

B–20
hasMinQuantity() -

oracle.apps.cz.cio.IBomItem.hasMinQuantity(),
B–96

hasMinSelected() -
oracle.apps.cz.cio.BomNode.hasMinSelected(),

B–20
hasMinSelected() -

oracle.apps.cz.cio.IOptionFeature.hasMinSelect
ed(), B–122

hasMinSelected() -
oracle.apps.cz.cio.OptionFeature.hasMinSelecte
d(), B–162

hasSelectionLineID() -
oracle.apps.cz.cio.IRuntimeNode.hasSelectionLi
neID(), B–133

hasSelectionLineID() -
oracle.apps.cz.cio.RuntimeNode.hasSelectionLi
neID(), B–191

hasState() -
oracle.apps.cz.cio.IRuntimeNode.hasState(), B
–134

hasState() -
oracle.apps.cz.cio.RuntimeNode.hasState(), B–
191

hasStringValue() -
oracle.apps.cz.cio.Property.hasStringValue(),
B–175

hasTextValue() -
oracle.apps.cz.cio.IRuntimeNode.hasTextValue(
), B–134

hasTextValue() -
oracle.apps.cz.cio.RuntimeNode.hasTextValue()
, B–192

I
IAtp - oracle.apps.cz.cio.IAtp, B–92
IBomItem - oracle.apps.cz.cio.IBomItem, B–94
ICompSetEventListener -

oracle.apps.cz.cio.ICompSetEventListener, B–
97

IConfigEventListener -
oracle.apps.cz.cio.IConfigEventListener, B–98

ICount - oracle.apps.cz.cio.ICount, B–99

Index-14

IDecimal - oracle.apps.cz.cio.IDecimal, B–101
IDecimalMinMax -

oracle.apps.cz.cio.IDecimalMinMax, B–103
IFunctionalCompanion, 2–21, 2–22, 2–24, 2–26
IFunctionalCompanion -

oracle.apps.cz.cio.IFunctionalCompanion, B–1
05

IInteger - oracle.apps.cz.cio.IInteger, B–108
IIntegerMinMax -

oracle.apps.cz.cio.IIntegerMinMax, B–109
IncompatibleInputException -

oracle.apps.cz.cio.IncompatibleInputException,
B–111

initialize(IRuntimeNode, String, String, int) -
oracle.apps.cz.cio.FunctionalCompanion.initiali
ze(oracle.apps.cz.cio.IRuntimeNode,
java.lang.String, java.lang.String, int), B–89

initialize(IRuntimeNode, String, String, int) -
oracle.apps.cz.cio.IFunctionalCompanion.initial
ize(oracle.apps.cz.cio.IRuntimeNode,
java.lang.String, java.lang.String, int), B–107

instanceTypeToString(int) -
oracle.apps.cz.cio.Component.instanceTypeToS
tring(int), B–49

INTEGER_FEATURE -
oracle.apps.cz.cio.IRuntimeNode.INTEGER_
FEATURE, B–130

IntegerFeature -
oracle.apps.cz.cio.IntegerFeature, B–113

IntegerNode -
oracle.apps.cz.cio.IntegerNode, B–116

interface
methods, 2–21
objects, 1–4, 2–2

INTL_TEXT - oracle.apps.cz.cio.Reason.INTL_
TEXT, B–179

IOption - oracle.apps.cz.cio.IOption, B–118
IOptionFeature -

oracle.apps.cz.cio.IOptionFeature, B–120
IPrice - oracle.apps.cz.cio.IPrice, B–123
IReadOnlyDecimal -

oracle.apps.cz.cio.IReadOnlyDecimal, B–126
IRuntimeNode -

oracle.apps.cz.cio.IRuntimeNode, B–127
isActive() -

oracle.apps.cz.cio.ComponentNode.isActive(),
B–51

isDefaultState(int) -
oracle.apps.cz.cio.StateNode.isDefaultState(int),

B–202
isFalseState(int) -

oracle.apps.cz.cio.StateNode.isFalseState(int),
B–203

isLogicState(int) -
oracle.apps.cz.cio.StateNode.isLogicState(int),
B–203

isNative() -
oracle.apps.cz.cio.IRuntimeNode.isNative(), B
–134

isNative() -
oracle.apps.cz.cio.RuntimeNode.isNative(), B–
192

isOptionMutexed() -
oracle.apps.cz.cio.BomNode.isOptionMutexed()
, B–20

isOptionMutexed() -
oracle.apps.cz.cio.IOption.isOptionMutexed(),

B–119
isOptionMutexed() -

oracle.apps.cz.cio.OptionNode.isOptionMutexe
d(), B–169

isOverridable() -
oracle.apps.cz.cio.LogicalException.isOverridab
le(), B–142

isOverridable() -
oracle.apps.cz.cio.LogicalOverridableException.
isOverridable(), B–144

isRequired() -
oracle.apps.cz.cio.BomNode.isRequired(), B–2
0

isRequired() -
oracle.apps.cz.cio.IBomItem.isRequired(), B–9
6

isRoot() -
oracle.apps.cz.cio.Component.isRoot(), B–49

isSelected() -
oracle.apps.cz.cio.BomNode.isSelected(), B–21

isSelected() -
oracle.apps.cz.cio.IOption.isSelected(), B–119

isSelected() -

Index-15

oracle.apps.cz.cio.OptionNode.isSelected(), B–
169

isSelectionMutexed() -
oracle.apps.cz.cio.BomNode.isSelectionMutexe
d(), B–21

isSelectionMutexed() -
oracle.apps.cz.cio.IOptionFeature.isSelectionMu
texed(), B–122

isSelectionMutexed() -
oracle.apps.cz.cio.OptionFeatureNode.isSelectio
nMutexed(), B–165

IState - oracle.apps.cz.cio.IState, B–135
isTrueState(int) -

oracle.apps.cz.cio.StateNode.isTrueState(int),
B–203

isUnknownState(int) -
oracle.apps.cz.cio.StateNode.isUnknownState(i
nt), B–203

isUnsatisfied() -
oracle.apps.cz.cio.Configuration.isUnsatisfied(),

B–67
isUnsatisfied() -

oracle.apps.cz.cio.IRuntimeNode.isUnsatisfied()
, B–134

isUnsatisfied() -
oracle.apps.cz.cio.RuntimeNode.isUnsatisfied(),

B–192
isUnsatisfiedNode() -

oracle.apps.cz.cio.IRuntimeNode.isUnsatisfied
Node(), B–134

isUnsatisfiedNode() -
oracle.apps.cz.cio.RuntimeNode.isUnsatisfiedN
ode(), B–192

isUserState(int) -
oracle.apps.cz.cio.StateNode.isUserState(int),
B–203

isVirtual() -
oracle.apps.cz.cio.Component.isVirtual(), B–4
9

iterator() -
oracle.apps.cz.utilities.NameValuePairSet.iterat
or(), D–5

IText - oracle.apps.cz.cio.IText, B–138

J
Java

building Functional Companions with, 1–3, 1–5
packages for the CIO, 2–1
specifying Functional Companion type, 1–14

JDBC
drivers, 1–9

L
LFALSE - oracle.apps.cz.cio.IState.LFALSE, B–136
loadDriver(String) -

oracle.apps.cz.cio.Factory.loadDriver(java.lang.
String), B–84

logic
transactions, 2–8

logic net objects, 2–1
logical contradictions, 2–17
logical exception, 2–17
logical transaction, 2–20
LogicalException -

oracle.apps.cz.cio.LogicalException, B–140
LogicalException() -

oracle.apps.cz.cio.LogicalException.LogicalExce
ption(), B–141

LogicalException(LogicException, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(oracle.apps.cz.logic.LogicException,
oracle.apps.cz.cio.Configuration), B–141

LogicalException(Reason, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(oracle.apps.cz.cio.Reason,
oracle.apps.cz.cio.Configuration), B–141

LogicalException(String, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(java.lang.String,
oracle.apps.cz.cio.Configuration), B–141

LogicalOverridableException -
oracle.apps.cz.cio.LogicalOverridableException,

B–143
LogicalOverridableException(LogicContradictionEx

ception, Configuration) -
oracle.apps.cz.cio.LogicalOverridableException.
LogicalOverridableException(oracle.apps.cz.log

Index-16

ic.LogicContradictionException,
oracle.apps.cz.cio.Configuration), B–144

LogicalRuntimeException -
oracle.apps.cz.cio.LogicalRuntimeException, B
–145

LogicalRuntimeException(LogicException) -
oracle.apps.cz.cio.LogicalRuntimeException.Lo
gicalRuntimeException(oracle.apps.cz.logic.Log
icException), B–146

LogicalRuntimeException(String) -
oracle.apps.cz.cio.LogicalRuntimeException.Lo
gicalRuntimeException(java.lang.String), B–14
6

lookupPairByName(String) -
oracle.apps.cz.utilities.NameValuePairSet.looku
pPairByName(java.lang.String), D–6

LTRUE - oracle.apps.cz.cio.IState.LTRUE, B–136

M
MAX_FAILURE -

oracle.apps.cz.cio.ValidationFailure.MAX_
FAILURE, B–216

MIN_FAILURE -
oracle.apps.cz.cio.ValidationFailure.MIN_
FAILURE, B–216

MIN0_FAILURE -
oracle.apps.cz.cio.ValidationFailure.MIN0_
FAILURE, B–216

MINMAX -
oracle.apps.cz.cio.Reason.MINMAX, B–179

MINMAX_FAILURE -
oracle.apps.cz.cio.ValidationFailure.MINMAX_
FAILURE, B–216

MissingFileException -
oracle.apps.cz.cio.MissingFileException, B–14
7

MissingLogicException -
oracle.apps.cz.cio.MissingLogicException, B–1
48

N
NameValuePair -

oracle.apps.cz.utilities.NameValuePair, D–2

NameValuePair(String) -
oracle.apps.cz.utilities.NameValuePair.NameVa
luePair(java.lang.String), D–3

NameValuePair(String, Object) -
oracle.apps.cz.utilities.NameValuePair.NameVa
luePair(java.lang.String, java.lang.Object), D–3

NameValuePairSet -
oracle.apps.cz.utilities.NameValuePairSet, D–
4

NameValuePairSet() -
oracle.apps.cz.utilities.NameValuePairSet.Nam
eValuePairSet(), D–5

New Functional Companion command, 1–13
NoAtpCalculatedException -

oracle.apps.cz.cio.NoAtpCalculatedException,
B–149

NoConfigHeaderException -
oracle.apps.cz.cio.NoConfigHeaderException,
B–150

NoConfigHeaderException() -
oracle.apps.cz.cio.NoConfigHeaderException.N
oConfigHeaderException(), B–151

NonPricedNodeException -
oracle.apps.cz.cio.NonPricedNodeException,
B–152

NoSuchChildException -
oracle.apps.cz.cio.NoSuchChildException, B–1
53

NoSuchChildException(IRuntimeNode, int) -
oracle.apps.cz.cio.NoSuchChildException.NoSu
chChildException(oracle.apps.cz.cio.IRuntimeN
ode, int), B–154

NoSuchChildException(IRuntimeNode, String) -
oracle.apps.cz.cio.NoSuchChildException.NoSu
chChildException(oracle.apps.cz.cio.IRuntimeN
ode, java.lang.String), B–154

notifyComponentAdded(Component) -
oracle.apps.cz.cio.ICompSetEventListener.notif
yComponentAdded(oracle.apps.cz.cio.Compon
ent), B–97

notifyComponentAdded(Component) -
oracle.apps.cz.cio.IConfigEventListener.notifyC
omponentAdded(oracle.apps.cz.cio.Component
), B–98

notifyComponentDeleted(Component) -

Index-17

oracle.apps.cz.cio.ICompSetEventListener.notif
yComponentDeleted(oracle.apps.cz.cio.Compo
nent), B–97

notifyComponentDeleted(Component) -
oracle.apps.cz.cio.IConfigEventListener.notifyC
omponentDeleted(oracle.apps.cz.cio.Componen
t), B–98

NotOneProductException -
oracle.apps.cz.cio.NotOneProductException, B
–155

NotOneProjectException -
oracle.apps.cz.cio.NotOneProjectException, B–
156

O
OPTION -

oracle.apps.cz.cio.IRuntimeNode.OPTION, B–
130

Option - oracle.apps.cz.cio.Option, B–157
OPTION_FEATURE -

oracle.apps.cz.cio.IRuntimeNode.OPTION_
FEATURE, B–130

OptionFeature -
oracle.apps.cz.cio.OptionFeature, B–160

OptionFeatureNode -
oracle.apps.cz.cio.OptionFeatureNode, B–163

OptionNode -
oracle.apps.cz.cio.OptionNode, B–167

Oracle JDBC OCI drivers, 1–9
Oracle JDBC Thin drivers, 1–9
Oracle Technology Network, 1–9
oracle.apps.cz.cio, 2–1, 2–2
oracle.apps.cz.cio - oracle.apps.cz.cio, B–1
oracle.apps.cz.cio.IFunctionalCompanion, 2–21
oracle.apps.cz.common -

oracle.apps.cz.common, C–1
oracle.apps.cz.utilities -

oracle.apps.cz.utilities, D–1
ORTHEN -

oracle.apps.cz.cio.Reason.ORTHEN, B–179
Output, 1–2, 1–14, 1–18
override() -

oracle.apps.cz.cio.LogicalOverridableException.
override(), B–144

P
PATH, 1–9
perform() -

oracle.apps.cz.cio.Configuration.perform(), B–
67

PricingUnavailableException -
oracle.apps.cz.cio.PricingUnavailableException,

B–171
PricingUnavailableException(String) -

oracle.apps.cz.cio.PricingUnavailableException.
PricingUnavailableException(java.lang.String),

B–172
PricingUnavailableException(String, Object, Log) -

oracle.apps.cz.cio.PricingUnavailableException.
PricingUnavailableException(java.lang.String,
java.lang.Object,
oracle.apps.fnd.common.Log), B–172

Property - oracle.apps.cz.cio.Property, B–173

R
ReadOnlyDecimalNode -

oracle.apps.cz.cio.ReadOnlyDecimalNode, B–
176

Reason - oracle.apps.cz.cio.Reason, B–178
Reason(int, IRuntimeNode, String) -

oracle.apps.cz.cio.Reason.Reason(int,
oracle.apps.cz.cio.IRuntimeNode,
java.lang.String), B–180

Reason(Message, String, IRuntimeNode) -
oracle.apps.cz.cio.Reason.Reason(oracle.apps.fn
d.common.Message, java.lang.String,
oracle.apps.cz.cio.IRuntimeNode), B–180

Reason(String) -
oracle.apps.cz.cio.Reason.Reason(java.lang.Strin
g), B–180

removeConfigEventListener(ICompSetEventListene
r) -
oracle.apps.cz.cio.ComponentSet.removeConfig
EventListener(oracle.apps.cz.cio.ICompSetEven
tListener), B–54

removeConfigEventListener(IConfigEventListener) -
oracle.apps.cz.cio.Configuration.removeConfig
EventListener(oracle.apps.cz.cio.IConfigEventLi

Index-18

stener), B–67
RESOURCE -

oracle.apps.cz.cio.IRuntimeNode.RESOURCE,
B–130

Resource - oracle.apps.cz.cio.Resource, B–182
RESOURCE_FAILURE -

oracle.apps.cz.cio.ValidationFailure.RESOURC
E_FAILURE, B–216

restartConfiguration(boolean) -
oracle.apps.cz.cio.Configuration.restartConfigu
ration(boolean), B–67

RESTORE_FAILURE -
oracle.apps.cz.cio.ValidationFailure.RESTORE_
FAILURE, B–217

restoreConfiguration(DbConfigHeader, Context) -
oracle.apps.cz.cio.CIO.restoreConfiguration(ora
cle.apps.cz.dio.config.DbConfigHeader,
oracle.apps.fnd.common.Context), B–36

restoreConfiguration(int, int, Context) -
oracle.apps.cz.cio.CIO.restoreConfiguration(int,
int, oracle.apps.fnd.common.Context), B–36

RestoreValidationFailure -
oracle.apps.cz.cio.RestoreValidationFailure, B
–184

rollbackConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.rollbackConfig
Transaction(oracle.apps.cz.cio.ConfigTransactio
n), B–68

runtime model subschema objects, 2–1
RuntimeNode -

oracle.apps.cz.cio.RuntimeNode, B–186

S
save() -

oracle.apps.cz.cio.Configuration.save(), B–68
saveAs(int, int) -

oracle.apps.cz.cio.Configuration.saveAs(int,
int), B–68

saveNew() -
oracle.apps.cz.cio.Configuration.saveNew(), B
–68

saveNewRev() -
oracle.apps.cz.cio.Configuration.saveNewRev(),

B–68

select() - oracle.apps.cz.cio.BomNode.select(), B–21
select() - oracle.apps.cz.cio.IOption.select(), B–119
select() -

oracle.apps.cz.cio.OptionNode.select(), B–169
select(IOption) -

oracle.apps.cz.cio.BomNode.select(oracle.apps.c
z.cio.IOption), B–21

select(IOption) -
oracle.apps.cz.cio.IOptionFeature.select(oracle.a
pps.cz.cio.IOption), B–122

select(IOption) -
oracle.apps.cz.cio.OptionFeatureNode.select(or
acle.apps.cz.cio.IOption), B–165

SelectionNotMutexedException -
oracle.apps.cz.cio.SelectionNotMutexedExcepti
on, B–194

setActiveModelPath(String) -
oracle.apps.cz.cio.CIO.setActiveModelPath(java
.lang.String), B–37

setAltPricingAtpContext(Context) -
oracle.apps.cz.cio.Configuration.setAltPricingA
tpContext(oracle.apps.fnd.common.Context),
B–69

setAtpDate(Date) -
oracle.apps.cz.cio.BomNode.setAtpDate(java.ut
il.Date), B–22

setConfigHeaderCheckoutUser(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erCheckoutUser(java.lang.String), B–69

setConfigHeaderDateCreated(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erDateCreated(java.sql.Timestamp), B–69

setConfigHeaderDescription(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erDescription(java.lang.String), B–69

setConfigHeaderEffectiveFrom(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erEffectiveFrom(java.sql.Timestamp), B–69

setConfigHeaderEffectiveTo(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erEffectiveTo(java.sql.Timestamp), B–69

setConfigHeaderName(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erName(java.lang.String), B–70

setConfigHeaderNote(String) -

Index-19

oracle.apps.cz.cio.Configuration.setConfigHead
erNote(java.lang.String), B–70

setConfigHeaderOpportunityHeaderId(int) -
oracle.apps.cz.cio.Configuration.setConfigHead
erOpportunityHeaderId(int), B–70

setConfigHeaderUiDefinitionId(int) -
oracle.apps.cz.cio.Configuration.setConfigHead
erUiDefinitionId(int), B–70

setCount(int) -
oracle.apps.cz.cio.ICount.setCount(int), B–99

setCount(int) -
oracle.apps.cz.cio.StateCountNode.setCount(int
), B–199

setCurrLang(String) -
oracle.apps.cz.common.CZContext.setCurrLang
(java.lang.String), C–5

setDecimalValue(double) -
oracle.apps.cz.cio.DecimalNode.setDecimalVal
ue(double), B–80

setDecimalValue(double) -
oracle.apps.cz.cio.IDecimal.setDecimalValue(do
uble), B–101

setDiscountedPrice(double) -
oracle.apps.cz.cio.StateCountNode.setDiscounte
dPrice(double), B–200

setInitParameters(NameValuePairSet) -
oracle.apps.cz.cio.Configuration.setInitParamet
ers(oracle.apps.cz.utilities.NameValuePairSet),

B–70
setIntValue(int) -

oracle.apps.cz.cio.CountFeature.setIntValue(int)
, B–75

setIntValue(int) -
oracle.apps.cz.cio.IInteger.setIntValue(int), B–
108

setIntValue(int) -
oracle.apps.cz.cio.IntegerNode.setIntValue(int),

B–117
setListPrice(double) -

oracle.apps.cz.cio.StateCountNode.setListPrice(
double), B–200

setName(String) -
oracle.apps.cz.cio.Component.setName(java.lan
g.String), B–49

setState(int) -

oracle.apps.cz.cio.BomNode.setState(int), B–2
2

setState(int) -
oracle.apps.cz.cio.IState.setState(int), B–137

setState(int) -
oracle.apps.cz.cio.OptionNode.setState(int), B
–169

setState(int) -
oracle.apps.cz.cio.StateNode.setState(int), B–2
03

setTextValue(String) -
oracle.apps.cz.cio.IText.setTextValue(java.lang.
String), B–138

setTextValue(String) -
oracle.apps.cz.cio.TextNode.setTextValue(java.l
ang.String), B–210

setValue(Object) -
oracle.apps.cz.utilities.NameValuePair.setValue
(java.lang.Object), D–3

StateCountNode -
oracle.apps.cz.cio.StateCountNode, B–196

StateNode - oracle.apps.cz.cio.StateNode, B–201
statesMatch(int, int) -

oracle.apps.cz.cio.StateNode.statesMatch(int,
int), B–203

STATUS_DELETED -
oracle.apps.cz.cio.StatusInfo.STATUS_
DELETED, B–205

STATUS_EXISTING -
oracle.apps.cz.cio.StatusInfo.STATUS_
EXISTING, B–205

STATUS_NEW -
oracle.apps.cz.cio.StatusInfo.STATUS_
NEW, B–205

StatusInfo - oracle.apps.cz.cio.StatusInfo, B–204
statusToString(int) -

oracle.apps.cz.cio.StatusInfo.statusToString(int),
B–206

subschema objects
configuration, 2–1
runtime model, 2–1

swingall.jar, 1–9

Index-20

T
terminate() -

oracle.apps.cz.cio.FunctionalCompanion.termin
ate(), B–90

terminate() -
oracle.apps.cz.cio.IFunctionalCompanion.termi
nate(), B–107

TEXT - oracle.apps.cz.cio.Reason.TEXT, B–179
TEXT_FEATURE -

oracle.apps.cz.cio.IRuntimeNode.TEXT_
FEATURE, B–130

TextFeature - oracle.apps.cz.cio.TextFeature, B–207
TextNode - oracle.apps.cz.cio.TextNode, B–209
TOGGLE -

oracle.apps.cz.cio.IState.TOGGLE, B–136
toString() -

oracle.apps.cz.cio.DecimalNode.toString(), B–
80

toString() -
oracle.apps.cz.cio.FunctionalCompanion.toStrin
g(), B–90

toString() -
oracle.apps.cz.cio.ReadOnlyDecimalNode.toStri
ng(), B–177

toString() -
oracle.apps.cz.cio.Reason.toString(), B–181

toString() -
oracle.apps.cz.cio.RuntimeNode.toString(), B–
192

toString() -
oracle.apps.cz.cio.StateCountNode.toString(),
B–200

toString() -
oracle.apps.cz.cio.StatusInfo.toString(), B–206

toString() -
oracle.apps.cz.cio.ValidationFailure.toString(),

B–217
toString(boolean) -

oracle.apps.cz.cio.IRuntimeNode.toString(boole
an), B–134

toString(boolean) -
oracle.apps.cz.cio.RuntimeNode.toString(boolea
n), B–193

toString(boolean) -

oracle.apps.cz.cio.StatusInfo.toString(boolean),
B–206

TOTAL -
oracle.apps.cz.cio.IRuntimeNode.TOTAL, B–1
30

Total - oracle.apps.cz.cio.Total, B–211
TransactionException -

oracle.apps.cz.cio.TransactionException, B–21
3

transactions
logic, 2–8

translate() -
oracle.apps.cz.cio.Reason.translate(), B–181

translate(String) -
oracle.apps.cz.cio.Reason.translate(java.lang.Str
ing), B–181

TRUE - oracle.apps.cz.cio.IState.TRUE, B–136
TRUEATBIRTH -

oracle.apps.cz.cio.Reason.TRUEATBIRTH, B–
180

typeToString(int) -
oracle.apps.cz.cio.RuntimeNode.typeToString(i
nt), B–193

U
UFALSE - oracle.apps.cz.cio.IState.UFALSE, B–136
undo() -

oracle.apps.cz.cio.Configuration.undo(), B–71
UNKNOWN -

oracle.apps.cz.cio.IState.UNKNOWN, B–137
unset() -

oracle.apps.cz.cio.DecimalNode.unset(), B–81
unset() - oracle.apps.cz.cio.ICount.unset(), B–100
unset() - oracle.apps.cz.cio.IDecimal.unset(), B–102
unset() - oracle.apps.cz.cio.IInteger.unset(), B–108
unset() -

oracle.apps.cz.cio.IntegerNode.unset(), B–117
unset() - oracle.apps.cz.cio.IState.unset(), B–137
unset() - oracle.apps.cz.cio.IText.unset(), B–139
unset() -

oracle.apps.cz.cio.StateNode.unset(), B–203
unset() -

oracle.apps.cz.cio.TextNode.unset(), B–210
UTRUE - oracle.apps.cz.cio.IState.UTRUE, B–137

Index-21

V
validate() -

oracle.apps.cz.cio.FunctionalCompanion.validat
e(), B–90

validate() -
oracle.apps.cz.cio.IFunctionalCompanion.valida
te(), B–107

Validation, 1–2, 1–14, 1–18
ValidationFailure -

oracle.apps.cz.cio.ValidationFailure, B–215

X
xmlparser.jar, 1–9

Index-22

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	1 Functional Companions
	1.1� What Are Functional Companions?
	1.1.1� Types of Functional Companions
	1.1.2� Background to Building Functional Companions

	1.2� Functional Companions and the CIO
	1.2.1� Using the CIO Interface
	1.2.2� Implementing Standard Interface Methods

	1.3� Building Functional Companions in Java
	1.3.1� Procedure for Building Functional Companions in Java
	1.3.2� Installation Requirements for Java Functional Companions
	1.3.2.1� Requirements for Developing Functional Companions
	1.3.2.2� Requirements for Running Functional Companions
	1.3.2.3� Requirements for Testing Java Functional Companions

	1.3.3� Minimal Example of a Java Functional Companion

	1.4� Building Functional Companions in COM
	1.5� Incorporating Functional Companions in your Application
	1.5.1� Associating Functional Companions with your Model
	1.5.2� Testing Functional Companions in the Oracle �SellingPoint Application
	1.5.2.1� Testing from the Windows Start Menu
	1.5.2.2� Testing from Oracle Configurator Developer
	1.5.2.3� Test Functionality in the Oracle �SellingPoint Application

	2 The Configuration Interface Object (CIO)
	2.1� Background
	2.1.1� What is the CIO?
	2.1.2� The CIO and Functional Companions

	2.2� The CIO’s Runtime Node Interface Classes
	2.3� Initializing the CIO
	2.4� Access to Configurations
	2.4.1� Creating and Deleting Configurations
	2.4.2� Saving and Restoring Configurations
	2.4.3� Access to Configuration Parameters
	2.4.4� Logic Transactions

	2.5� Access to Nodes of the Model at Runtime
	2.5.1� Accessing Components
	2.5.2� Adding and Deleting Optional Components
	2.5.3� Accessing Features
	2.5.4� Getting and Setting Logic States
	2.5.5� Getting and Setting Numeric Values
	2.5.6� Accessing Properties
	2.5.7� Access to Options
	2.5.7.1� Example for IOption

	2.6� Introspection through IRuntimeNode
	2.7� Handling Logical Contradictions
	2.7.1� Generating Error Messages from Contradictions
	2.7.2� Overriding Contradictions

	2.8� Validating Configurations
	2.9� Standard Interface Methods for Functional Companions
	2.9.1� The initialize() Interface Method
	2.9.2� The autoConfigure() Interface Method
	2.9.3� The validate() Interface Method
	2.9.4� The generateOutput() Interface Method
	2.9.5� The terminate() Interface Method

	3 Reference Documentation for the CIO
	4 Examples
	4.1� Initializing the CIO
	4.2� Basic Java Functional Companion
	4.3� Thin-Client generateOutput() Functional Companion

	Glossary
	Glossary of Acronyms
	A CIO Package and Related Classes
	B Package oracle.apps.cz.cio
	AtpUnavailableException
	BomExplosionException
	BomModel
	BomNode
	BomOptionClass
	BomStdItem
	BooleanFeature
	CIO
	CompanionNode
	CompanionRoot
	CompanionValidationFailure
	Component
	ComponentNode
	ComponentSet
	ConfigTransaction
	Configuration
	CountFeature
	DecimalFeature
	DecimalNode
	Factory
	FuncCompCreationException
	FunctionalCompanion
	FunctionalCompanionException
	IAtp
	IBomItem
	ICompSetEventListener
	IConfigEventListener
	ICount
	IDecimal
	IDecimalMinMax
	IFunctionalCompanion
	IInteger
	IIntegerMinMax
	IncompatibleInputException
	IntegerFeature
	IntegerNode
	IOption
	IOptionFeature
	IPrice
	IReadOnlyDecimal
	IRuntimeNode
	IState
	IText
	LogicalException
	LogicalOverridableException
	LogicalRuntimeException
	MissingFileException
	MissingLogicException
	NoAtpCalculatedException
	NoConfigHeaderException
	NonPricedNodeException
	NoSuchChildException
	NotOneProductException
	NotOneProjectException
	Option
	OptionFeature
	OptionFeatureNode
	OptionNode
	PricingUnavailableException
	Property
	ReadOnlyDecimalNode
	Reason
	Resource
	RestoreValidationFailure
	RuntimeNode
	SelectionNotMutexedException
	StateCountNode
	StateNode
	StatusInfo
	TextFeature
	TextNode
	Total
	TransactionException
	ValidationFailure

	C Package oracle.apps.cz.common
	CZContext

	D Package oracle.apps.cz.utilities
	NameValuePair
	NameValuePairSet

	Index

