Oraclel Configurator

Oracle Configuration Interface Object (ClO) Developer’'s Guide

Release 11i

March 2000
Part No. A81001-03

This document describes Functional Companions, which augment the
functionality of an Oracle SellingPoint application, and the Oracle
Configuration Interface Object (CIO), which is used by Functional Companions
to access the Oracle Configurator Active Model.

ORACLE

Oracle Configuration Interface Object (CIO) Developer’s Guide, Release 11i

Part No. A81001-03

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Mark Sawtelle

Contributors: Brent Benson, Jim Carlson, Ivan Lazarov, Marty Plotkin, Brian Ross

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle SellingPoint Configurator is a trademark or registered
trademark of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

SeNd US YOUT COMMEBNTS ...ttt Xi
PlrOIACE. ...ttt Xiii
| LSS g e LYo BN T S TSl g el <Y Xiii
1] 5 40 Lol 101 4 < T TRURPRRRN Xiv
Related DOCUIMEIES.coovviieceeeie ettt e e et e e e et e e st eeeae e e sttt e s ssteesssaseessaaeesaneeessnteessnnes Xiv
(@16) 417 a1 Te) o L= TR TSR Xiv

1 Functional Companions

11 What Are Functional Companions?c.ccccceueueururiririrnineinenieeeeeseseeesee s 1-1
111 Types of Functional COmMpanions............coeeorueieiiicieinicce e 1-1
112 Background to Building Functional Companions...........cccceeeeuvenrenrrncnrcncnenee. 1-3
1.2 Functional Companions and the CIO...........ccccccceiiiiiiiiniiincrrreeee e 1-4
121 Using the CIO Interface..........cccoooeiiiiiiiiiiniii s 1-4
122 Implementing Standard Interface Methodscccocoovueviiiinnnnnnee, 1-5
13 Building Functional Companions in Java ..o 1-5
131 Procedure for Building Functional Companions in Javacccccecceveiceieiicceiennnne, 1-5
132 Installation Requirements for Java Functional Companions............cccoceveevrvvcnaee. 1-8
1321 Requirements for Developing Functional Companionsc.cccecevevrvrrunee. 1-8
1.3.2.2 Requirements for Running Functional Companions..........c.c.cccccoeueveiricieininnnen. 1-8
1.3.2.3 Requirements for Testing Java Functional Companionsccccceeeevveevenaee 1-9
133 Minimal Example of a Java Functional Companionccccccccucvcicurieciniennnnene 1-9
14 Building Functional Companions in COM...........cccooriiiiiiiiiccecce 1-11

15 Incorporating Functional Companions in your Applicationc.cccccccoevccueucrccuennne 1-13

151 Associating Functional Companions with your Model...........cccccoiiiiinin 1-13
152 Testing Functional Companions in the Oracle SellingPoint Application 1-17
1521 Testing from the Windows Start Menu.........cccccevvevvvnnncniniccccccccenes 1-18
1522 Testing from Oracle Configurator Developer ..o 1-18
1523 Test Functionality in the Oracle SellingPoint Application..........ccccceeveveneeee. 1-18

The Configuration Interface Object (CIO)

21 BacKGIOUNGcooviiiiiiiciiic e 2-1
211 What is the CIO? ..o 2-1
21.2 The CIO and Functional Companions.............cceceeueircieieiiccieiecceie e, 2-2
2.2 The CIO’s Runtime Node Interface Classes...........cccoviriiiiniiiiiiininicciinns 2-2
2.3 Initializing the CIO ... s 2-4
24 Access t0 Configurations.........ccceueiiiiucieiiiiice s 2-6
24.1 Creating and Deleting Configurations...........ccocceveveerrerinnirinneie e 2-6
2.4.2 Saving and Restoring Configurationscccooveeieiiiiniiieiiceecccee 2-7
2.4.3 Access to Configuration Parametersccccoovieieiiiicieiiiiccieecc e, 2-8
244 Logic Transactions...........ocueiiiniiiiiiiiiicicc e 2-8
25 Access to Nodes of the Model at Runtime...........cccccocovvviviiiiinnniii, 2-9
251 Accessing COMPONENLSceveiiiiiiiiiiieiei s 2-10
25.2 Adding and Deleting Optional Components............ccccoeeevverrrernrrenescncncncnenn. 2-10
253 AccessiNg Featurescocuiiiiiiiiii s 2-10
254 Getting and Setting Logic Statesccceoioioiiiiic 2-11
255 Getting and Setting Numeric Values.........ccccccccceiiiiiinnnnnnccrnreeeeececeeee 2-12
25.6 ACCeSSING Propertiest 2-14
25.7 ACCESS t0 OPLIONS ...t 2-14
2571 Example for JOPHiONc.ccucurivieiiiiiccrcrrree e 2-14
2.6 Introspection through IRUNtimeNoOde..........ccccooiiiiiiiiii 2-15
2.7 Handling Logical Contradictions...........ccouoveeiiiiiiiiciiiicieece 2-17
2.7.1 Generating Error Messages from Contradictions..........coccovveveveeiiriniencccnccncnne. 2-18
2.7.2 Overriding Contradictions...........cceviiiieiiicc 2-18
2.8 Validating Configurations...........cc.ooiieieiiiiic 2-20
2.9 Standard Interface Methods for Functional Companions...........c.ceceevveeevecciccncnne. 2-21
29.1 The initialize() Interface Method.........ccocvrierieenineniicinincrncrrc e 2-22
29.2 The autoConfigure() Interface Method ..o, 2-24

2.9.3 The validate() Interface Method.........cocveevieriiierieieieieire et enens 2-24

29.4 The generateOutput() Interface Method..........c.ccoooi 2-25

295 The terminate() Interface Method........c.covevecieiiiniiniieicieeee s 2-26
3 Reference Documentation for the CIO

4 Examples

4.1 Initializing the CIO ... 4-1

4.2 Basic Java Functional Companion ... 4-2

4.3 Thin-Client generateOutput() Functional Companion.............cccceeeiiniiicincnnn, 4-9
Glossary

Glossary of Acronyms

A CIO Package and Related Classes
B Package oracle.apps.cz.cio

C Package oracle.apps.cz.common

D Package oracle.apps.cz.utilities

Index

Vi

List of Examples

1-1 Elementary Java Functional Companion: MyClass.javacccccooeomeeiniicnicicicicienne. 1-9
1-2 COM Functional COMPANIONccoviurueieiiiciciieiciete et 1-12
2-1 Initializing the CIO (Short Example)cccoiiioiiiiiiiiiiciccee e 2-5
2-2 Creating New Configuration ObJects...........ccoeuiueieiiiiiiiiciciccc 2-7
2-3 Getting the state of aN0de ..o 2-12
2-4 Setting the state of @ NOAEcuveiiiiii 2-12
2-5 Setting a NUMETIC VAlUEoourviiiiii s 2-13
26 Testing whether a node is selected, or satisfied..........c.c.ccoooreiiiii 2-16
2-7 Getting a child node by name.........c.c.c.ooriii 2-16
2-8 Collecting all child nodes by type........cccccoviiiiiniiiiiiiiiiiii 2-17
2-9 Handling and overriding Logical EXCEPtioNSccoeviiiiiiiiiiciciciicce 2-19
4-1 Initializing the CIO (Long Example)cccccooiiiiiiiiiieicc 4-1
4-2 Basic Functional Companion: FuncCompTest].........cccooviiiiiiiiiiiiiiiiicce, 4-3
4-3 Thin-client Output Functional Companion...........cccccoeeoiiiiiiiiciiiiccceceec, 4-10

vii

List of Figures

viii

Associating a Component with a Functional Companioncccccvvviniiiinnnn. 1-16
Functional Companion Rule: Detail of the Attributes view...........ccccocevviininininnnen. 1-17
Testing Functional Companions in the Oracle SellingPoint application. 1-19
Modifying Functional Companion Buttons.............ccccccceivivniiniinninie, 1-20

List of Tables

1-1 Types of Functional COmMPAanionscccceieiieuicmiieieieeeeeeneeneeeeeneneneeesesenenenes 1-2
1-2 Required Software for Functional Companionsccceeeveveireniinenccininncccceenes 1-8
2-1 Runtime node interface classes for the CIOc.coooiviiiiiniiiiiccceceeenes 2-2
2-2 Methods of the Interface Class IOPHIONccccccueicuciciciiiiieiicciccrreee e 2-14
2-3 Methods of the interface class IRuntimeNode...........cccccoeiiciciiiiiiiicceene, 2-15
2-4 Standard methods of the IFunctionalCompanion interface...........cccccovovrieieinnnnn. 2-22

Send Us Your Comments

Oracle Configuration Interface Object (ClO) Developer’'s Guide, Release 11i
Part No. A81001-03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

s Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments through your call to Oracle Support
Services or by sending them to:

Oracle Configurator
Oracle Corporation
Documentation

21 North Avenue
Burlington, MA 01803
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

xi

Xii

Preface

You can use Functional Companions to augment the functionality of your Oracle
SellingPoint application beyond what is provided by Oracle Configurator
Developer. You create Functional Companion objects, which use the Configuration
Interface Object (CIO) to perform various tasks, including accessing the Model,
setting and getting logic states, and adding optional components. You can also use
the CIO in your own applications, to interact with the Model.

Intended Audience

This manual is intended primarily for software developers writing Functional
Companions. The language recommended for developing Functional Companions
is Java.

This manual assumes that you are an experienced programmer and that you
understand Oracle databases, the SQL and Java programming languages, and the
principles of JDBC.

Note: For specialized purposes, Functional Companions can be
written in Oracle’s GSL (Generative Specification Language), and
by using COM with the Microsoft Java Virtual Machine. This is
only possible on Windows 95/98 and Windows NT 4.0.

This manual also provides background and reference information on the CIO,
which is needed by developers of applications having customized user interfaces
that need access to the Oracle Configurator Active Model.

xiii

Structure

This manual contains:

Chapter 1, "Functional Companions"

Chapter 2, "The Configuration Interface Object (CIO)"
Chapter 3, "Reference Documentation for the CIO"
Chapter 4, "Examples”

Related Documents

For more information, see the following manuals in Release 11i of the Oracle
Configurator documentation set:

Oracle SellingPoint Configurator Administration Guide
Oracle Configurator Developer User’s Guide
Oracle SellingPoint CompanionBuilder Help

Oracle Configurator Developer Tutorial

The following documents are also relevant:

Conventions

Oracle8i [DBC Developer’s Guide and Reference

Oracle White Paper: “Using COM with Oracle SellingPoint 4.2” (Available
through Products Online, http:/ /products.us.oracle.com. Look under “Supply
Chain”, “SellingPoint”, “Collateral”.)

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

Xiv

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Convention

Meaning

boldface text

Horizontal ellipsis points in statements or commands mean that
parts of the statement orcommand not directly related to the example
have been omitted

Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

Angle brackets enclose user-supplied names.

Brackets enclose optional clauses from which you can choose one or
none.

The left bracket alone sign represents the MS DOS prompt.

XV

XVi

1

Functional Companions

Functional Companions extend your Oracle SellingPoint application by attaching
custom code through established interfaces.

1.1 What Are Functional Companions?

A Functional Companion is a programming object that you attach to your Model in
order to extend the functionality of your Oracle SellingPoint application in ways
that are not provided by Oracle Configurator Developer.

You can write a Functional Companion object in several languages, depending on
the functionality needed by your application. The Functional Companion
communicates with your Model through an API (application programming
interface) called the Configuration Interface Object (CIO). The Oracle Configuration
Interface Object is written in Java. See Chapter 2, "The Configuration Interface
Object (CIO)".

You connect Functional Companions to specific nodes in your Model using Oracle
Configurator Developer. You also specify the type of action that you want the
specified Functional Companion to perform when your end users select its
associated node. Then you generate the logic and user interface, as you normally do
for your Oracle SellingPoint application. This action associates the Functional
Companion with your application so that when your end users select a node in the
Model, the Functional Companion on that node is automatically invoked.

1.1.1 Types of Functional Companions

You can assign a Functional Companion to perform any or all of these three types of
actions:

Functional Companions 1-1

What Are Functional Companions?

Table 1-1 Types of Functional Companions

Type

Description

Auto-configuration

Validation

Output

Configures the state of the Model. You can use this to modify
the shape of the Model tree, and the state of its nodes. For
instance, your application might gather initial needs
assessment information and use it to set up the appropriate set
of choices for your end user to make.

In your Oracle SellingPoint application, your end user will
explicitly choose to run an auto-configuration Functional
Companion

See Section 2.9.2, "The autoConfigure() Interface Method".

Validates the logical choice that the end user has just made.
The Functional Companion can perform complex operations
beyond the scope of what you can develop in Oracle
Configurator Developer. For instance, you can perform
sophisticated numeric comparisons.

A Java Functional Companion returns null if the validation is
successful. If the validation fails, it returns a List of
CompanionValidationFailure objects. A COM Functional
Companion returns true if the validation is successful. If the
validation fails, it returns a COM Array of Strings.

In your Oracle SellingPoint application, all validation
Functional Companions are run every time your end user
chooses an Option. After each action, the end user gets the
collection of strings returned by each Functional Companion
that failed.

Validation companions query the model to determine validity,
but should not modify the model. Modifying the model in a
validation Functional Companion can cause unexpected
application failures.

See Section 2.9.3, "The validate() Interface Method".

Generates some form of output from the configuration. This
output might be a report, a performance graph, a geometric
rendering, or a graphical representation of the configuration.

In your Oracle SellingPoint application, your end user will
explicitly choose to run an output Functional Companion.

See Section 2.9.4, "The generateOutput() Interface Method".

1-2 Oracle Configuration Interface Object (CIO) Developer's Guide

What Are Functional Companions?

1.1.2 Background to Building Functional Companions

To build a Functional Companion, you implement an object class in the language
that you choose as being most appropriate for the operation that you want to
perform. The language choices are:

Java This is the recommended choice for developing Functional
Companions. Java Functional Companions can run on any
platform supported by Java. The other language choices are
recommended only for special purposes.

GSL GSL (Generative Specification Language) is an Oracle
proprietary object-oriented dynamic language recommended
primarily for geometric visualization and modeling. Using it
requires CompanionBuilder, which is only available on
Windows 95/98 and Windows NT 4.0. The resultant
Functional Companions can only be used in a “fat client”
deployment, not, for example, in a web browser.

COM Functional Companions can be written to the Microsoft COM
standard (using Visual Basic, for instance), but are restricted to
Windows 95/98 and Windows NT 4.0, and require the
Microsoft Java Virtual Machine.

When an Oracle SellingPoint application runs, it creates an instance of the CIO,
which creates runtime instances of all the Components in the Model. If you used
Oracle Configurator Developer to associate a Functional Companion with a
Component, then the application creates, for each instance of that Component, an
instance of the class that you defined for your Functional Companion and attaches
the Functional Companion instance to the Component.

You can associate more than one Functional Companion with a particular
Component; the CIO will create instances of all of them.

If any Functional Companions cannot be loaded when you create a new
configuration (for instance, due to internal errors or an incorrect CLASSPATH), the
configuration will fail to open.

You can also associate Functional Companions with Products.

= For Functional Companions built with Java, you implement a class that extends
oracl e. apps. cz. ci 0. Funct i onal Conpani on. See Section 1.3, "Building
Functional Companions in Java".

Functional Companions 1-3

Functional Companions and the CIO

= For Functional Companions built with COM, you implement an object that
supports IDispatch. See Section 1.4, "Building Functional Companions in COM".
For details and more background, see the Oracle White Paper “Using COM
with Oracle SellingPoint 4.2”.

= For Functional Companions built with (GSL) (the Generative Specification
Language), you implement a library object to be used as the basis of the
companion instances. See the Oracle SellingPoint CompanionBuilder Help for
details.

= Forall language choices, you also implement one or more of the standard
interface methods of or acl e. apps. cz. ci 0. | Functi onal Conpani on,
which are described in Section 2.9, "Standard Interface Methods for Functional
Companions".

In order to communicate with the Model of your application, the Functional
Companion uses Oracle’s CIO APIL The CIO can also be used to develop a custom
user interface for an Oracle SellingPoint application, in order to access the Model.
As a point of information, both Oracle Configurator Developer and the default user
interface for the Oracle SellingPoint application communicate in just this way with
the Model, using the Oracle Configurator Database to store structure, rules, and
user interface information (in addition to your end user’s data).

1.2 Functional Companions and the CIO

Functional Companions are invoked by the CIO through the Oracle SellingPoint
application, and Functional Companions call the CIO to get information from the
Active Model. The CIO is like a broker for the Active Model, in that it passes
information both ways. Programmers writing Functional Companions need to
know how to use the CIO.

Each Functional Companion is an object class. For every Component instance in
your Model that is associated with a Functional Companion, the CIO creates an
instance of this class.

1.2.1 Using the CIO Interface

Your Functional Companion is a client of the CIO. When you program against the
CIO, you create instances of a set of public interface objects, which are defined in
oracl e. apps.cz.cio.

Your code should refer only to these public interface objects. See Section 2.2, "The
CIO’s Runtime Node Interface Classes".

1-4 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in Java

Reference
For reference documentation, see: Package oracle.apps.cz.cio.

1.2.2 Implementing Standard Interface Methods

You provide functionality for your Functional Companion by implementing body
code for the methods:

= initialize

=« autoConfigure
= Vvalidate

= gener at eCut put
= terminate

These methods are described in Section 2.9, "Standard Interface Methods for
Functional Companions".

For particulars that apply to the languages currently supported by the CIO, and
examples, see Section 1.3, "Building Functional Companions in Java", and the
Oracle SellingPoint CompanionBuilder Help.

1.3 Building Functional Companions in Java

1.3.1 Procedure for Building Functional Companions in Java

Here is an overview of the tasks for Building Functional Companions in Java. See
also Section 1.3.2, "Installation Requirements for Java Functional Companions".

1. Use aJava development environment or text editor to create a .java file in which
to define a Java class.

2. Import the classes for the CIO (or acl e. apps. cz. ci 0. *).
i nport oracl e. apps. cz. ci 0. *;

3. Define a class in which to determine the behavior of your Functional
Companion.
Here is the relevant line from Example 1-1:

public class MA ass extends Functional Gonpanion // line 6

Functional Companions 1-5

Building Functional Companions in Java

When you define your Functional Companion class, you can do one of the
following:

= Normally: Extend the base class for Functional Companions—
oracl e. apps. cz. ci 0. Funct i onal Conpani on—and override just the
particular methods that you need. In this case, you gain the functionality of
the Funct i onal Conmpani on base class. This functionality includes: saving
references to the runtime node with which the Functional Companion is
associated (with the Funct i onal Conpani on. get Runti neNode()
method), and returning the name of the Functional Companion (with the
Functi onal Conpani on. get Nane() method). See the reference for:
FunctionalCompanion.

= More rarely: Implement the interface class for Functional
Companions—or acl e. apps. cz. ci 0. | Funct i onal Conpani on—and
implement all its methods. You do not extend
oracl e. apps. cz. ci 0. Funct i onal Conpani on. In this case, you lose
the functionality of the Funct i onal Conpani on base class. See the
reference for: Functional Companion.

4. You may want to override
oracl e. apps. cz. ci o. Functi onal Conpanion.initialize().(See
Section 2.9.1, "The initialize() Interface Method".)

You should ordinarily never directly call

Functi onal Conpani on.initialize(),since the CIO does that for you.
However, if your Functional Companion overrides Functi onal Conpani on
as its base class, then the i ni ti al i ze() method of your class should call
super.initialize().This passes some necessary variables to the superclass
(oracl e. apps. cz. ci 0. Funct i onal Conpani on) so that its methods will
work.

For an example in context, see Line 35 in Example 4-2, "Basic Functional
Companion: FuncCompTest1" on page 4-2, which is shown below:

public void initialize(lRunti mneNode conp_node, String nane, String
description, int id)

{

thi s. conp_node = conp_node;

super.initialize(conp_node, nane, description, id); // line 35

}

5. Override one or more of the other interface methods of

oracl e. apps. cz. ci o. | Functi onal Conpani on (see Section 2.9, "Standard
Interface Methods for Functional Companions"):

1-6 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in Java

10.

aut oConfi gure
val i date
gener at eQut put
term nate

For examples in context, see Example 4-2, "Basic Functional Companion:
FuncCompTestl" on page 4-2:

public void autoGonfi gure()
public List validate()
public String generateQuitput ()

Optionally, call the methods of the other interface classes of the CIO (see
Section 2.2, "The CIO’s Runtime Node Interface Classes").

Note: Basic Functional Companions, ones that only use the
standard interface methods listed in step 5, do not need to use the
interface classes of the CIO.

Compile the java file into a .class file for example, with JDK 1.1.x:

javac FuncConpTest 1. j ava

Put the resulting .class file in your classpath, or into a JAR file in your classpath.
For example:

jar cvf FuncConps.jar FuncConpTest 1. cl ass
set (LASSPATH=%L ASSPATHY D \ conpani ons\ FuncConps. j ar

Run Oracle Configurator Developer with this classpath. Associate your
Functional Companion with a Component in your Model. See Section 1.5,
"Incorporating Functional Companions in your Application" on page 1-13.
Generate the Active Model and User Interface.

To test your Functional Companion, click the Test button in Oracle Configurator
Developer. When the Oracle SellingPoint application runs, click the buttons that
have been generated in the Ul for activating your Functional Companions. See
Section 1.5.2, "Testing Functional Companions in the Oracle SellingPoint
Application” on page 1-17.

Functional Companions 1-7

Building Functional Companions in Java

1.3.2 Installation Requirements for Java Functional Companions

1.3.2.1 Requirements for Developing Functional Companions

In order to develop Java Functional Companions, you must install a Java
development environment that enables you to compile Java classes, such as:

= Oracle JDeveloper

= Sun]JDK1.1.x or JDK 1.2.x (JDK 1.1.x is recommended for compatibility with
Oracle Applications Release 11i)

= Microsoft Visual J++

You do not need JDBC drivers or database access to compile a Functional
Companion, although these are required to run one.

1.3.2.2 Requirements for Running Functional Companions

At runtime, an Oracle SellingPoint application using Functional Companions
requires:

s The Microsoft Java Virtual Machine (JVM)

s Microsoft JDBC/ODBC drivers

= An ODBC datasource

The Oracle SellingPoint application automatically sets up a JDBC database
connection for use by the CIO. Custom user interfaces that take the place of the
Oracle SellingPoint application must perform this task. See Section 2.3, "Initializing
the CIO" for details.

In order to run Java Functional Companions, the software described in Table 1-2
must be installed and recognized by your operating system environment in the
indicated locations.

Table 1-2 Required Software for Functional Companions

File name Location Required for Source
config jar CLASSPATH Any use of CIO. Oracle Configurator (OC)
installation.

confw32 jar CLASSPATH Functional Companions OC installation.
using COM or GSL.

collectionsjar CLASSPATH Any use of CIO. OC installation.

1-8 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in Java

Table 1-2 (Cont.) Required Software for Functional Companions

File name Location Required for Source

swingall jar CLASSPATH Use of Swing Ul widgets. ~ OC installation.

xmlparserjar ~CLASSPATH Custom application user ~ OC installation.

interfaces.
cz.dll PATH CIO and Functional OC installation.
czni.dll Companion access to the
J. Oracle Configurator logic
engine.
JDBC OCI PATH Functional Companions Oracle Technology Network
driver (such as using Oracle JDBC OCI download area, under
oci805jdbc.dll) (“thick”)drivers. For use “Oracle 8 JDBC OCI and JDBC

with Javasoft JDK 1.1.x. Thin Drivers”.

classeslll.zip CLASSPATH Functional Companions Oracle Technology Network

using the Oracle JDBC download area, under
Thin drivers. For use with “Oracle 8 JDBC OCI and JDBC
Javasoft JDK 1.1.x. Thin Drivers”.

For background on JDBC drivers, see the Oracle8i JDBC Developer’s Guide and
Reference.

1.3.2.3 Requirements for Testing Java Functional Companions

The class(es) that implement your Functional Companions must be included in
your CLASSPATH environment variable. Otherwise, you are likely to get an error
message like the following when you try to create a new configuration:

New Configuration: Cannot create configuration:
oracl e. apps. cz. ci 0. FuncGonpCr eat i onExcept i on:
j ava. | ang. A assNot FoundExcepti on: cl assnane

Where classname is the name of the first Functional Companion to be loaded.

1.3.3 Minimal Example of a Java Functional Companion

Example 1-1 illustrates the minimal coding required for a Functional Companion
that does not perform any work. (See Section 4.2, "Basic Java Functional
Companion" for a fuller example.)

Example 1-1 Elementary Java Functional Companion: MyClass.java

Functional Companions 1-9

Building Functional Companions in Java

i nport oracl e. apps. cz. ci 0. *;

inport comsun.java.util.collections.List; Il line 2
inport javax.servlet.http. HtpServl et Response;

inport java.io.lCException;

public class M/QA ass extends Functi onal Conpani on Il line 6

{

int

/1 constructor
public Mdass(AOcio, |RuntineNode node) {

}

public void initialize(lRunti mreNode node, Sring nane, Sring description,
id) {
/1 inplenent body, if necesary

super.initialize(node, nane, description, id);

}

public voi d autoConfigure() throws Logi cal Exception {
/1 inplenent body as desired

}

public List validate() {
/1 inplenent body as desired
return nul | ;

}

/1 for thin client
public voi d generat eQut put (H t pSer vl et Response response) throws | CException

/1 inplenent body as desired
}

/1 for thick client

public Sring generateQutput() {
/1 inplenent body as desired
return nul | ;

}

public void termnate() {
/1 inplenent body, if necesary
super.termnate();

}

1-10 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in COM

Line 2
inport comsun.java.util.collections.List; // line 2

If you are using JDK 1.1.x, import com sun. java. util.collections. List,
which is provided in col | ecti ons. j ar (see "Installation Requirements for Java
Functional Companions" on page 1-8). If you are using JDK 1.2, then

import java.util.List.

Line 4
public class M/A ass extends Functional Gonpanion // line 6

This class extends the base class for Functional Companions:
oracl e. apps. cz. ci 0. Funct i onal Conpani on. See the explanation under
Step 3.

1.4 Building Functional Companions in COM

With certain restrictions, you can build Functional Companions as objects
conforming to the Microsoft Component Object Model (COM) standard.

It is currently only possible to run COM Functional Companions on

Windows 95/98 and Windows NT 4.0, using the Microsoft Java Virtual Machine
(JVM). (This precludes using COM Functional Companions in a server context
using Oracle Application Server.)

The Java wrapper classes needed to access the CIO are installed with Oracle
Configurator. (See Section 1.3.2, "Installation Requirements for Java Functional
Companions" on page 1-8.)

A COM Functional Companion should be implemented as an object that supports
| Di spat ch (every instance of a Visual Basic class fits this criteria). The object then
needs to implement the i ni ti al i ze, autoConfi gure, gener ateCut put
and t er nm nat e methods.)

The ProglID of the COM object should be specified as the Program String in Oracle
Configurator Developer. See Section 1.5.1, "Associating Functional Companions
with your Model".

For details, a fuller example, and more background, see the Oracle White Paper
“Using COM with Oracle SellingPoint 4.2” (as noted under "Related Documents" on
page -xiv).

Functional Companions 1-11

Building Functional Companions in COM

Example 1-2 illustrates a simple COM Functional Companion implemented in
Visual Basic.

Example 1-2 COM Functional Companion
otion Explicit

Private mconponent As (bj ect
Private mname As Sring
Private mdescription As Sring
Private mid As Long
" The initialize nethod stores the initialization information in instance
vari abl es
Public Sub initialize(conponent As (hject, nane As String, description As
String, id As Long)

Set mconponent = conponent

mnane = nane

mdescri pti on = description

mid =id
End Sub

' This autoConfigure nethod sel ects a particular option in a feature of the
conponent
Public Sub aut oConfi gure()

Dmfeaturel As (bject

D moptionl As (oj ect

Set featurel = mconponent. get Chi | dByNane(" Feat urel")
Set optionl = featurel. get Chi | dByNane(" (pti onl")
Call optionl. Sel ect

End Sub

' This validate nethod requires that a particular option not be set. If the
optionis

' set, avalidation failure is raised by returning the failure nessage in an
array,

otherwi se, True is returned.

Public Function validate() As Variant
Dmfeaturel As (bject

D moption2 As (hj ect

Set featurel = mconponent. get Chi | dByNane(" Feat urel")

Set option2 = featurel. get Chi | dByNane(" Qpti on2")
If option2.isSelected() Then

1-12 Oracle Configuration Interface Object (CIO) Developer's Guide

Incorporating Functional Companions in your Application

validate = Array("(ption2 cannot be sel ected")
H se
validate = True
End I f
End Function

' This generateQutput nethod returns the nane of the conponent.
Publ i c Function generateQutput() As Sring

gener at eQut put = m conponent . get Nane()
End Function

Public Sub term nate()
End Sub

1.5 Incorporating Functional Companions in your Application

1.5.1 Associating Functional Companions with your Model

To enable your Functional Companion to work with your Oracle SellingPoint
application, you must associate it with a Component (or Product) in your Model.
You create this association in Oracle Configurator Developer, as a type of
Configuration Rule that specifies the Functional Companion method(s) that you
have implemented, and the path to be used by the Oracle SellingPoint application
to locate the Functional Companion object.

To create an association between a Component and a Functional Companion:
1. Click on the Rules button on the main toolbar.
A list of the Configuration Rule types appear in the lower-left pane.

2. Choose New Functional Companion from the Create menu. You can also
highlight the Functional Companions node, click on the right mouse button,
and select New Functional Companion from the popup menu.

3. Type a name for the Functional Companion rule.

4. In the Description section, type a short explanation of the Functional
Companion rule. If necessary, open the Description section by clicking on the
blue arrow to the left of it.

5. If necessary, open the Definition section by clicking on the blue arrow to the left
of it. In the Model view, select the Component or Product that you want to
include in this rule. Drag it with the left-hand mouse button to the Base

Functional Companions 1-13

Incorporating Functional Companions in your Application

Component field in the Definition section. Only one Base Component may be
specified per rule.

6. Choose one or more roles for the Functional Companion. The choices are:

Type Associated Functional Companion method
Auto-configuration aut oConfi gure

Validation val i date

Output gener at eQuput

See Section 1.1.1, "Types of Functional Companions" and Section 2.9, "Standard
Interface Methods for Functional Companions” for background. Note that you
do not associate thei ni ti al i ze() andter m nat e() methods, since they
are invoked automatically by the Oracle SellingPoint application.

7. Indicate how the Functional Companion is implemented:

= Java
= GSL
« COM

8. Type in the Program String that identifies the Functional Companion:

= For Java, this is the name of the class that implements the Functional
Companion, such as:

FuncConpTest 1
The full class specification must be accessible through your CLASSPATH

environment variable. For instance, if FuncConpTest 1 is contained this
wayinaJARfilet ests. jar:

comj ava\t est s\ FuncConpTest 1. cl ass
then you would specify the Functional Companion this way in
Configurator Developer:

comj ava. t est s. FuncConpTest 1

See Step 8 under Section 1.3.1, "Procedure for Building Functional
Companions in Java".

= For GSL, this is a top-level path specifying a library and building block,
such as:

1-14 Oracle Configuration Interface Object (CIO) Developer's Guide

Incorporating Functional Companions in your Application

fc_test_lib.fc_test

See Oracle SellingPoint CompanionBuilder Help for details on working with
GSL.

= For COM, this is a ProglD, such as:
FCTest Pr oj ect . FCTest

See Section 1.4, "Building Functional Companions in COM".
9. Choose Generate Active Model from the Tools menu.

10. When the Generate Active Model command completes successfully, click on the
UI button on the main toolbar, then choose Refresh from the Edit menu.

Figure 1-1 shows what the Rules module screen of Oracle Configurator
Developer might look like after you associate a Component with a Functional
Companion.

Functional Companions 1-15

Incorporating Functional Companions in your Application

Figure 1-1 Associating a Component with a Functional Companion

MNeode azsociated with Spe-:i_fies toleis) of t_he
Functional Companicn Functiznal Companion
v onuardn § relingPodnt Dewelnpeer- FuseampT edd
be b Liczle ¥Maan 1ad: Hea
Y sirds M F@Tw | C o & BB&E
" Huel :
. Fr-
C A # et al
=] Ca=peren:| W D=iciipbon
VEE -t
Coreem Cainyl
o el L
HE L 1'!.
S D [- Uelmilin T
3 @l ra-peren
B T9w+
[wiider
W r g s,
Lo g Hs .@. = MASTIER e
:l-|_-I =232 e Dase Ca—paa=a: e
ST e e
! 2D “weeperiser Pk rE Pt Lenpridioe
:~-f 1 “ropetiebe =4 Compatbi s R -
U 2T Tun ek Cempelibi e : i
L%_-l:l “1ahzoa Camosaers :j"'lJ- m:t:u:«.;r
i i..ﬂ. 1zCemp el
' A TC-Zonfig T ebereralar II|Ir
H :-ﬂ- FL- ez W e
© e Fi Salisukdin
ST en Ol ez

Functional Cormpanion ldentifies the
rule being defined Functicnal Companicn

Figure 1-2 shows details of the Attributes view of the screen in Figure 1-1.

1-16 Oracle Configuration Interface Object (ClO) Developer's Guide

Incorporating Functional Companions in your Application

Figure 1-2 Functional Companion Rule: Detail of the Attributes view

Specifiez relels) of the
Functicnal Companion

¥ Definition

/
Type: /
¥ “alidation
@ ¥ Auto-Configuration
Baze Compaotient ' Output
“ Product-1 Implementation:
£ IJava j

Program String:

|Fur‘u:E|:|m|:|T ezt

f

Fi

Mode azzociated with
Functienal Cormpanicn

Idertifies the
Functichnal Companien

1.5.2 Testing Functional Companions in the Oracle SellingPoint Application

The Oracle SellingPoint application is provided with

Release 11i of Oracle Configurator.

After you generate the Active Model and U], you can test your Functional
Companions by running the Oracle SellingPoint application. You can run the Oracle
SellingPoint application in the ways described below.

Functional Companions 1-17

Incorporating Functional Companions in your Application

1.5.2.1 Testing from the Windows Start Menu
To run the Oracle SellingPoint application from the Windows Start Menu:

» Follow the instructions in the Oracle Configurator Developer CD-ROM Insert on
running the Oracle SellingPoint application.

1.5.2.2 Testing from Oracle Configurator Developer
To run the Oracle SellingPoint application from Oracle Configurator Developer:

1. Use Tools > Options to chose the Oracle SellingPoint application as your test
environment.

2. Click the Test button.

3. Follow the instructions in the Oracle Configurator Developer CD-ROM Insert on
running the Oracle SellingPoint application.

1.5.2.3 Test Functionality in the Oracle SellingPoint Application

The Active User Interface for the Oracle SellingPoint application allows you to test
your Functional Companions as appropriate:

Type User Interface feature

Auto-configuration A button allows the user to run the aut oConf i gur e() method
on the associated Component instance.

Validation The val i dat e() method is called automatically when the user
selects anything.

Output A button allows the user to run the gener at eQuput ()
method on the associated Component instance.

Figure 1-3 illustrates testing several Functional Companions in the Oracle
SellingPoint application. The Functional Companions illustrated are the ones
defined in the example in Section 4.2, "Basic Java Functional Companion" on
page 4-2.

s Clicking the GenerateOutput Functional Companion button produces a
window that displays the current value of several Features. (This uses the "thick
client" version of gener at eQut put () . For a thin-client example, see
Section 4.3, "Thin-Client generateOutput() Functional Companion".)

= There is no button for the Validate Functional Companion. The val i dat e()
method is run whenever there is a change in the value of an Option. If the value

1-18 Oracle Configuration Interface Object (ClO) Developer's Guide

Incorporating Functional Companions in your Application

violates a specified range, or a Configuration Rule, then the application displays
a Configuration Status message.

» Clicking the AutoConfigure Functional Companion button changes the value of
a numeric Feature (not shown here), in this case violating a specified minimum
and thereby triggering the Configuration Status message.

Figure 1-3 Testing Functional Companions in the Oracle SellingPoint application.

i < Oracle SellingPoint - [Configuration-6620]
| Eie Go Teok Help

P meal @ -

Product-1
Component-1
Opportunities Component-2 1
Customers Companent-2 2
Contacts

B Home

Order Status

configuration

Add Companent-2

Gen FC-Satisfyhdin

Gen FC-1 [AutoConfigure]

Gen FC-tluantityCampare

I
I
I
Gen FC-1 [GenerateQutpui] I
I
Gen FC-ConfigFileGeneratar |

Configuration Status

The configuration is not valid due to the following
items:

@ Old: Value less than minimum

S0EPM | BM18/99 Y

i Some info about t... [H=] B3

Integer Feature: IF-1 -5
Integer Feature: IF-2 -0
Integer Feature: IF-2 -0
Text Feature: TF-1 - Hi there

Each button that runs a Functional Companion is labelled with default text that
identifies the Functional Companion that the button activates. You can use the User
Interface module of Oracle Configurator Developer to modify these labels. The
labels buttons generated by the Functional Companion shown in Figure 1-1 have

Functional Companions 1-19

Incorporating Functional Companions in your Application

been so modified, by adding the self-identifying text [Aut oConf i gur e] and
[Gener at eQuput], as shown in Figure 1-4.

Figure 1-4 Modifying Functional Companion Buttons

i 2 Oracle SellingPoint Studio: FuncCompT estl

File Edit Create Wiew Tools Help
Bitodel EiRues FU [Tt DS 4 2@
3 Madsl

E|--- Product-1

- El| Component-1
[B Component-2

[@)]Gen FC

w- D iption

w- Definition

[T User Interfaces ToolTip Text: I

=8 FuncCompTest] Product-1 User Interface
D Praduct 5Selection Ficture: |<none> | Bordess: INDn'3]v

= |
5 EIDDIEEZ::NS Tres Achon: IFunctionaI Companion AutoConfigure j.
B8 Title bitmap N | =l
Text-13327 L

Gen FC-5 atizfpMin Comparion: I i

Gen FC-1 ¥ Label

Gen FC-QuantityCompare Text IGen FC-1 [AuteConfigure]
Gen FC-ConfigFilel eneratar

Add Component-2 Font;: W UseDefault |<default> _I

[Compaonent-1 Backaround :
=-[&)] Component-2 gCoIor: [Use Default | _I
Background =
Style: IDDE":'“e J
} - Layout

1-20 Oracle Configuration Interface Object (CIO) Developer's Guide

2

The Configuration Interface Object (CIO)

2.1 Background

2.1.1 What is the CIO?

The Configuration Interface Object (CIO) is an API (application programming
interface) that provides your programs access to the Model used by a Oracle
SellingPoint application, which you construct with Oracle Configurator Developer.

The CIO is also used by Functional Companions. See Section 1.2, "Functional
Companions and the CIO".

The CIO is a top-level configuration server. The CIO is responsible for creating,
saving and destroying objects representing configurations, which themselves
contain objects representing Products, Components, Features, Options, Totals and
Resources. The runtime configuration model can be completely controlled and
manipulated through these interfaces, using methods for getting and setting logical,
numeric and string values, and creating optional subcomponents.

Internally, the CIO performs its tasks through interfaces to logic net objects (to get
and set logic states), to runtime model subschema objects (to create the appropriate
runtime Model based on the design-time model), and to configuration subschema
objects (to save and restore configurations created by a user).

The Oracle Configuration Interface Object is written in Java, and implemented as a
set of Java packages. The only one that you will usually need to import is:

oracl e. apps.cz.cio

The Configuration Interface Object (CIO) 2-1

The CIO’s Runtime Node Interface Classes

Note: All references in this document to classes, methods, and
properties refer to the package or acl e. apps. cz. ci 0, and all
code examples are in Java, unless otherwise stated.

Interfaces are also provided for Oracle’s Generative Specification Language (GSL).
The current version of Oracle Configurator Developer supports the ability to
connect your Model directly to GSL objects built with CompanionBuilder.

2.1.2 The CIO and Functional Companions

A Functional Companion is a Java client of the CIO.

Functional Companions are invoked by the CIO through the Oracle SellingPoint
application, and Functional Companions call the CIO to get information from the
running Model. The CIO is like a broker for the Active Model, in that it passes
information both ways. Programmers writing Functional Companions need to have
some knowledge of how to use the CIO.

Each Functional Companion is an object class. For every Component instance in
your Model that is associated with a Functional Companion, the CIO creates an
instance of this class.

2.2 The CIO’s Runtime Node Interface Classes

When you program against the CIO, you only create instances of the classes Cl O
(see Section 2.3, "Initializing the CIO") and Conf i gur at i on (see Section 2.4.1,
"Creating and Deleting Configurations"). You then use the public interfaces listed in
Table 2-1 to access fields in the runtime node objects created by your instances of

Cl O and Confi gurati on. Apart from Cl O and Confi gurati on, your code
should refer only to these public runtime node interface objects. You should not
implement any of the runtime node interface classes, but only use them as
references to runtime node objects.

These interfaces are all defined in the Java package or acl e. apps. cz. ci o.

Table 2-1 Runtime node interface classes for the CIO

Interface Role of implementing classes

IBomlItem Implemented by all selectable BOM items.

2-2 Oracle Configuration Interface Object (CIO) Developer’'s Guide

The ClO’s Runtime Node Interface Classes

Table 2-1 (Cont.) Runtime node interface classes for the CIO

Interface

Role of implementing classes

IConfigEventListener
ICompSetEventListener

ICount
IDecimal

IDecimalMinMax

IFunctionalCompanion

IInteger
IIntegerMinMax

IOption

IOptionFeature

IReadOnlyDecimal

IRuntimeNode

IState

IText

Implemented by objects that want to find out about added
components.

Implemented by objects that want to find out about added
components.

Implemented by objects that have an associated integer count.
Implemented by objects that have a decimal value.

Implemented by objects that have a decimal minimum and
maximum value.

Implemented by Functional Companion objects attached to
Components in order to provide programmatic functionality to
a configuration model.

Implemented by objects that have an integer value.

Implemented by objects that have an integer minimum and
maximum.

Implemented by objects that act as options. The defining
characteristic of an option is that it can be selected and
deselected.

Implemented by objects that contain selectable options. This
interface provides a mechanism for selecting and deselecting
options, and for determining which options are currently
selected.

Implemented by objects that have a decimal value.

This interface implements behavior common to all nodes in the
runtime configuration tree, including Components, Features,
Options, Totals, and Resources.

Implemented by objects that have logic state. This interface
contains a set of input states, used to specify a new state for an
object, a set of output states, returned when querying an object
for its state, and a set of methods for getting and setting the
object's state.

Implemented by objects that have a textual value.

The functionality underlying the CIO interfaces is implemented by other classes in
oracl e. apps. cz. ci 0, which are subject to revision by Oracle. This

The Configuration Interface Object (CIO) 2-3

Initializing the CIO

interface/implementer architecture protects your code from the effects of such
revisions, since the interfaces will remain constant.

Reference
For reference documentation, see: Package oracle.apps.cz.cio.

2.3 Initializing the CIO

In order to use any of the features of the CIO, an application must initialize it, using
a JDBC driver to make a connection to the Oracle Configurator Database. This
connection enables the CIO to obtain and store data about Model structure,
Configuration Rules, and User Interface.

If you are using the CIO in a custom user interface, you will have to initialize the
CIO.

Note: When you run Functional Companions through the Oracle
SellingPoint application (or test them by using the Test button in
Oracle Configurator Developer), this initialization and connection
work is automatically handled for you by the application; you do
not have to write your own code to initialize the CIO.

1. Import the necessary packages.

i nport java.sql.Connecti on;
i nport java.sql.DriverMnager;
i nport java.sql.SQException;

i nport oracl e. apps. cz. ci 0. *;
i nport oracl e. apps. cz. common. *;

2. Load the database driver that you have installed. For instance, load one of the
following:

A ass. f or Name(" com ns. j dbc. odbe. JdbcQdbeDri ver");
A ass. f or Nanme(" sun. j dbc. odbc. JdbcQdbeDri ver™);
d ass. forName("oracl e. jdbc. Dri ver. Qacl eDxiver");

3. Create a CZContext context object and pass to it the information needed to

make a database connection: the database URL, the user ID and password of the
current user, and the owner of the database. The context object manages the

2-4 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Initializing the CIO

database connection; you should not create a separate connection object (e.g.,
with j ava. sql . Dri ver Manager . get Connecti on).

CZGont ext cont ext (bj ect = new CZCont ext ("] dbc: subpr ot ocol : dat asour ce”,
"user| D', "password", "schenaOaner");

4. Create a CIO object.
AOcioject = newdQq);

5. Pass the location of the Active Model to the CIO object. Ordinarily, this will be

ORACLE_HQOVE/ OSP/ Shar ed/ Act i veModel /. This is only necessary if your
application logic is not generated in the database.

ci opj ect . set Act i veMbdel Pat h(" nodel Pat h") ;

Example 2-1 shows how Steps 1 through 5 are combined together. See Section 4.1,
"Initializing the CIO" for a fuller example of initializing the CIO.

Example 2-1 |Initializing the CIO (Short Example)

inport java.sql.Connection;
inport java.sql.DriverMunager;
i nport java.sql . SQException;

i nport oracl e. apps. cz. ci 0. *;
i nport oracl e. apps. cz. common. *;

public class 1nitdO

{
private void InitializedQ) throws SQException
{
adoOcio;
CZont ext context ;
try{Q ass. f or Narme(" com ns. j dbc. odbc. JdbcQdbeDri ver") ; }
cat ch (A assNot FoundException c){Systemout. println(c);}
context = new CZQontext ("j dbc: odbc: Tutorial Lite", "spx", "spx", "spx");
cio=newdq);
ci 0. set Act i veMbdel Pat h(" D / or ant / C8P/ Shar ed/ Acti veMbdel /") ;
}
}

The Configuration Interface Object (CIO) 2-5

Access to Configurations

2.4 Access to Configurations

The Configuration object, or acl e. apps. cz. ci 0. Confi gur ati on, represents a
complete configuration. You can use the CIO to work with multiple configurations
within the same session.

A configuration communicates through the Configuration object. It supports
accessing the containing CIO, the root Component, the project ID, a collection of
current validation failures, access to any runtime node based on its runtime ID, and
an indication if the complete configuration is satisfied. In addition, there are
methods for starting, ending, and rolling back configuration-level logic transactions;
these transactions are to maintain logic consistency and are not database
transactions. See Section 2.4.4, "Logic Transactions".

Reference
For reference documentation, see: Conf i gur ati on.

2.4.1 Creating and Deleting Configurations

Use Cl O. creat eConfi guration() to create a Configuration object, which is the
top-level entry point to a configuration. There are different ways to create a
Configuration, depending on your requirements.

= To create a Configuration using the name of a Project as specified in Oracle
Configurator Developer, use this form:

createConfiguration(java.lang. String proj ect Nane,
or acl e. apps. f nd. cormon. Gont ext ct x)
= To create a Configuration using the ID of the root node of your Model, use this
form:
creat eConfiguration(int rootNodel D,
oracl e. apps. f nd. coomon. Gont ext ¢t x)

To determine the root node ID, you would query the Oracle Configurator
Database, which is described in the Oracle Configurator Technical Reference
Manual. Such a query might be:

SHECT PS NE | D FROM (Z_PS NDES WHERE NAME = ' O\D744'

Both ways of creating a Configuration object require a database context object, as
discussed in Step 3 of Section 2.3 on page 2-4.

For reference documentation on the database context object, see: CZCont ext .

2-6 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Configurations

To delete all runtime structure and memory associated with a configuration, use
Cl O cl oseConfi guration()

To get the CIO that created the configuration, use Confi gurati on. getCl ().

Example 2-2 Creating New Configuration Objects

/] create the database context object
ctx = new CZQont ext ("j dbc: odbc: t est db101", "nyuser nane”, "nypasswd', "adnin0l");

/] create Configuration using Project nane and Qontext
cfg prj = createConfiguration(“Project 10", ctx);

/] create Configuration using I D of root node of Mbdel and Context
cfg id = createConfiguration(1221, ctx);

2.4.2 Saving and Restoring Configurations

Use Configuration. saveNew() to Save an entirely new Configuration object
into the Oracle Configurator Database.

Use Confi guration. save() tosave subsequent changes to a Configuration
object created with saveNew(), or to a Configuration object restored with
ClOrestoreConfiguration().

Use Cl O restoreConfiguration() torestore a Configuration object from the
Oracle Configurator Database.

Use Configuration.saveNewRev() tosave a new revision of the restored
Configuration object.

Use Configuration.saveAs(configHeaderl D, revNunber) tosave the
current Configuration object over a different Configuration already saved in the
database. You use the conf i gHeader | D and revNumber toopena
configuration header object and replace the configuration in it.

Note: Do not save a Configuration object during a logic
transaction (see Section 2.4.4). You may miss some validation
messages that are not available until the transaction is committed.

The Configuration Interface Object (CIO) 2-7

Access to Configurations

2.4.3 Access to Configuration Parameters

If you are using Oracle Configurator Internet Edition for a web-based application,
you can use the CIO to allow a Functional Companion to obtain a list of the
configuration inputs that were passed from your application to your configuration
Model.

Create a Functional Companion that calls

Confi guration. getl nitParaneters(), which returns a NameValuePairSet
object. This object contains all the parameter values stored by the Internet Edition
UI Server when it processed the initialization message sent by your application to
the Internet Edition UI Servlet.

See the Oracle Configurator Internet Edition Developer’s Guide for information on
Internet Edition.

Reference
For reference documentation, see: NaneVal uePai r Set .

2.4.4 Logic Transactions

In order to help you maintain consistency in interactions with the Oracle
Configurator logic engine, you can use configuration-level logic transactions. A logic
transaction comprises all the logical assertions that constitute a user interaction. At
the end of a transaction, the CIO returns a list of all validation failures. See

Section 2.8, "Validating Configurations".

The Configuration object, or acl e. apps. cz. ci 0. Confi gurati on, provides a
set of methods for starting, ending, and rolling back configuration-level logic
transactions. Note that logic transactions are not database transactions.

Inside a transaction, the normal course of action is to set the logical states and
numeric values of runtime nodes (see Section 2.5.4 and Section 2.5.5).

» UseConfiguration. begi nConfigTransacti on() to create anew
transaction, returning a ConfigTransaction object. After performing the desired
series of operations (e.g., setting states and values), you must end, commit, or
roll back the transaction by passing the ConfigTransaction object to one of the
mutually exclusive methods that finish the transaction:

endConfi gTransacti on
conmi t Confi gTransacti on
rol | backConfi gTransaction

2-8 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Nodes of the Model at Runtime

s Configuration.endConfigTransaction(transaction) ends the
transaction begun with begi nConf i gTr ansact i on() , without committing it
(thus skipping validation checking).

s Configuration.commtConfigTransaction(transaction) commits
the given transaction or series of nested transactions, propagates the effect of
user selections throughout the configuration Model, and triggers validation
checking (see Section 2.8, "Validating Configurations").

s Configuration.roll backConfigTransaction(transacti on)rolls
back the unfinished transaction, undoing the operations performed inside it.

You can nest intermediate transactions with begi nConf i gTr ansacti on() and
endConfi gTransact i on, delaying validation checking until you call

conmi t Confi gTransacti on() . You must end or commit inner transactions
before ending or committing the outer ones that contain them. When rolling back
unfinished transactions, with r ol | backConf i gTr ansacti on(), you can roll
back outer transactions, which automatically rolls back the inner transactions.

When beginning a transaction, you can autocommit it, by setting the optional
boolean aut oConmi t argument to begi nConfi gTransacti on() toTRUE. If
no argument is set, then the transaction inherits the autocommit state of its parent
(outer) transaction. If an outer transaction sets aut oConmi t to TRUE, then inner
transactions can override it to either TRUE or FALSE. If an outer transaction sets
aut oConmi t to FALSE, then inner transactions cannot override it; they will
always inherit FALSE.

Reference
For reference documentation, see: Conf i gur ati on.

2.5 Access to Nodes of the Model at Runtime

The root Component, and every other node in the underlying runtime Model tree,
implements the IRuntimeNode interface. This interface exposes the type of the node
(based on a set of node type constants), its name, the database ID, the database node
of which this runtime node is an instance, a runtime ID that is unique to this node
across all nodes created by this particular CIO, the parent node (which is null for
the root Component), a (possibly empty) collection of children, and information
about whether this part of the runtime tree has been satisfied. See Section 2.6,
"Introspection through IRuntimeNode".

Use | Runti meNode. get Confi gurati on() to get the configuration to which a
node belongs.

The Configuration Interface Object (CIO) 2-9

Access to Nodes of the Model at Runtime

Reference
For reference documentation, see: | Runt i meNode.get Confi guration().

2.5.1 Accessing Components

Use Conmponent . get Funct i onal Conpani ons() to return a list of all the
Functional Companions associated with this Component.

2.5.2 Adding and Deleting Optional Components

The Component set represents a set of similar Components that can be added and
deleted dynamically. Each Component set implements the IRuntimeNode interface.

Use Conrponent Set . add() to an optional Component. The add() method can
throw a LogicalException exception if adding the Component causes a logical
contradiction.

Use Conrponent Set . del et e(corponent) to delete an optional Component.

2.5.3 Accessing Features

There are several specialized types of Features. Each Feature type supports the

I Runt i meNode interface, enabling you to use its general methods for working with
runtime nodes (see "Introspection through IRuntimeNode" on page 2-15). Each type
also supports its own interface with appropriately specialized methods.

BooleanFeatures have a boolean (true/false) value.

CountFeatures have both a boolean value, and an associated integer-valued
numeric count. The minimum value of the count must be greater than or equal to
zero. The boolean value a CountFeatures object is returned by its methods
hasMax() and hasM n().

IntegerFeatures have an integer numeric value. The value can be positive, negative,
or zero.

DecimalFeatures have a floating point value.
TextFeatures have a string value.

OptionFeatures have a logic value, and a set of options as children. You can use the
methods get M nSel ect ed() and get MaxSel ected(),of | Opti onFeature,
to determine the minimum and maximum number of a Feature’s child Options that
can be selected. If you do, first use hasM nSel ect ed() or hasMaxSel ect ed()
to determine whether there is a minimum or maximum number of Options.

2-10 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Nodes of the Model at Runtime

Note: If, in Oracle Configurator Developer, you set the minimum
count of a Feature greater than or equal to zero, then the CIO treats
this as a CountFeature object. If you set the minimum count less
than zero, then the CIO treats this as a IntegerFeature object.

2.5.4 Getting and Setting Logic States

To interact with objects that have logic state, you implement the IState interface.
This interface contains:

a set of input states, used to specify a new state for an object

FALSE The input state used to set an object to false.
TRUE The input state used to set an object to true.
TOGGLE The input state used to turn an object state to true if it is false or

unknown, and to make it unknown or false if it is true.

a set of output states, returned when querying an object for its state

LFALSE The logically false output state, indicating that the state is false as a
consequence of a rule.

LTRUE The logically true output state, indicating that the state is true as a
consequence of a rule.

UFALSE The user false output state, indicating that a user has set this object to
false.

UNKNOWN The unknown output state.

UTRUE The user true output state, indicating that a user has set this object to
true.

a set of methods for getting and setting the object's state

get State() Gets the current logic state of this object.

setState(int state) Change the current logic state of this object.

The Configuration Interface Object (CIO) 2-11

Access to Nodes of the Model at Runtime

Example 2-3 Getting the state of a node

The following code fragment, which uses get St at e() with UTRUE, is taken from
Section 4.2, "Basic Java Functional Companion", after the comment "//get the
necessary conponents fromthe configuration // line 61".

/1 get the necessary conponents fromthe configuration /1 line 61
baseConponent = (oracl e. apps. cz. ci 0. Gonponent) conp_
node. get Chi | dByNane(" Conponent - 1") ;

of = (Opti onFeat ur e) baseCnponent . get Chi | dByNane(" Feat ure-1");

op = (Opti on)of . get Chi | dByNare(" ot i on-1");

intFeat = (I nteger Feat ur €) baseGnponent . get Chi | dByNane("1 F-1");

//check if the optionis set to UIRE |If so, set the Integer val ue
to 5

if(op.getSate() == I|Sate. U'RE)

i nt Feat . set | nt Val ue(5);

Example 2-4 Setting the state of a node

The following code fragment, which uses set St at e() with TOGGLE, toggles the
state of the selected item in the Model tree.

private void toggl eSel ectedlten{) {
| Sate node = (I Sate)tree. get Last Sel ect edPat hConponent () ;

try {
node. set S ate(l Sate. TAZLE);
}

catch (Logi cal Exception le) {}
catch (Transacti onException te) {}

tree.repaint();

2.5.5 Getting and Setting Numeric Values

You can use the following methods to get and set the values of objects that have
numeric values.

For decimal values, use:

| Deci mal . set Deci mal Val ue()
| ReadOnl yDeci mal . get Deci mal Val ue()
For integer values, use:

I I nt eger. setl ntVal ue()

2-12 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Nodes of the Model at Runtime

I I nt eger. getl ntVal ue()

The code fragment in Example 2-5 uses set | nt Val ue() to change the value of an
Integer Feature. Note that you can use the generalized IRuntimeNode interface for
flexibility in selecting a child node, and then cast the node object to a particular
interface to perform the desired operation on it.

Example 2-5 Setting a numeric value

/] select a node by nanme
IRuntineNode |imt = baseConp. get Chi | dByNane("Qurrent Limt");

/] use an interface cast to set the node’ s val ue by the desired type
((llnteger)limt).setlntVal ue(5);

To determine whether a numeric value has violated its Minimum or Maximum
range, you may need to iterate through the collection of validation failures returned
by Confi gurati on. get Val i dati onFai | ures() after setting a value, for
instance with | | nt eger. set | nt Val ue() . See Section 2.8, "Validating
Configurations" for more background.

There is a subtlety that you should take note of.

| Deci mal . set Deci mal Val ue() does not throw a LogicalException when setting
the value of a decimal feature that exceeds the feature's Min/Max limits. The
collection of validation failures returned by

Confi guration. getValidationFailures() doesnotinclude any failures
that result from setting a numeric value until the logic transaction has been closed,
so there is no way to roll back a transaction in which a Min/Max violation has
occurred. Here is a suggested method for dealing with this situation:

1. Open a transaction.

2. Set the new value.

3. Close the transaction.

4. Get the collection of validation failures for the configuration.
5

If the last transaction caused a Min/Max violation, then call
Confi gurati on. undo(), which retracts the last transaction.

This situation illustrates why it is a good practice to perform the setting of a single
value inside a logic transaction. You can always undo it if the result is
unsatisfactory.

The Configuration Interface Object (CIO) 2-13

Access to Nodes of the Model at Runtime

2.5.6 Accessing Properties

You can determine which Properties belong to a runtime node, then use methods of
the class Property to obtain information about the Properties.

Use | Runt i meNode. get Properties() to geta collection of the properties
associated with a node.

Use | Runt i meNode. get PropertyByNane() to geta particular property of a
node, based on its name.

When you have the Property, use methods of the class Pr operty, such as
get St ri ngVal ue(), to obtain specific information.

2.5.7 Access to Options

Option features have special methods for selecting options and querying for
selected options. The sel ect Qpt i on() method implements mutual exclusion
behavior for option features with a min/max of 1/1 by deselecting a currently
selected option before selecting the new option. The get Sel ect edOpt i on()
method throws the TooManySelectedException if more than one option is selected
in the feature.

An option is a child of an option feature which supports a true/false logic state and
a count. Options implement the IRuntimeNode interface.

You can use the interface class IOption to select, deselect, and determine the
selection state of Options.

Table 2-2 Methods of the Interface Class 10ption

Method Action

desel ect () Deselect this Option.

i sSel ected() Returns true if this Option is selected, and false otherwise.
sel ect () Select this Option.

2.5.7.1 Example for 10ption

The following code fragment displays a “check” icon if an Option of a runtime node
is selected, and displays an “unsatisfied” icon if the node is logically unsatisfied:

| Runti neNode rtNode = (I Runti neNbde) val ue;
if (value instanceof |(ption) {

| oti on optionNode = (1 Qption)val ue;
if (optionNode.isSelected()) {

2-14 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Introspection through IRuntimeNode

set | con(checkl con) ;

}

} elseif (rtNode.islhsatisfied()) {

set | con(unsat | con);

}

return this;

2.6 Introspection through IRuntimeNode

You can get information about a node in a Model at runtime by using methods of
the interface class IRuntimeNode. This helps you to write “generic” Functional
Companions, which can interact with a Model tree dynamically, without having
prior knowledge of its structure.

Table 2-3 Methods of the interface class IRuntimeNode

Method

Action

get Chi | dByl D(i d)

get Chi | dByNane(nane)
get Chi l dren()

get Chi | drenByType(type)
get Confi guration()

get Dat abasel D()

get Description()
get Nare()

get Parent ()

get Properties()

get Pr oper t yByNane(nane)

get Runti mel D()
get Sel ecti onLi nel ()

Gets a particular child identified by its ID.

Gets a particular child identified by its name.

Gets the children of this runtime configuration node.
Gets all of the children of a particular type.

Gets the configuration to which this node belongs.

Gets the database ID of the node. This is the field CZ_PS_
NODES.PS_NODE_ID in the Oracle Configurator
Database, described in the Oracle Configurator Technical
Reference Manual.

Returns the design-time description of the runtime node.
Gets the name of the node.
Gets the parent of the node.

Returns a collection of the properties associated with this
node. The collection contains items of the type Property.

Returns a particular property of the node, based on its
name. Returns null if a property of the given name does
not exist.

Gets the runtime ID of the node.

Returns selection line ID (configuration output database
ID) for node.

The Configuration Interface Object (CIO) 2-15

Introspection through IRuntimeNode

Table 2-3 (Cont.) Methods of the interface class IRuntimeNode

Method Action

get Type() Gets the type of this node.

hasCount () Returns true if the node has an object count.

hasDeci mal Val ue() Returns true if the node has a decimal value.

hasSel ecti onLi nel () Returns true if node has a selection line ID (configuration
output ID), false if no

hasSt at e() Returns true if the node has a logical state.

hasText Val ue() Returns true if the node has a text value

i sUnsatisfied() Returns true if this particular node, or any one of its

children, has not been completely configured.

i sUnsati sfi edNode() Returns true if this particular node has not been
completely configured.

Reference
For reference documentation, see the Methods summary for: | Runt i meNode.

Example 2-6 Testing whether a node is selected, or satisfied

The following code fragment displays a “check” icon if an Option of a runtime node
is selected, and displays an “unsatisfied” icon if the node is logically unsatisfied:

| Runti neNode rtNode = (I Runti neNbde) val ue;
if (value instanceof |(ption) {
| oti on optionNode = (1 Qption)val ue;
if (optionNode.isSelected()) {
set | con(checkl con) ;

}
} elseif (rtNode.islhsatisfied()) {

set | con(unsat | con);

}

return this;

Example 2-7 Getting a child node by name

The following code fragment creates a Configuration object conf i g, sets
honeTheat er to the root Component of the configuration, and sets user Type to
the child node with the user-visible name “User Type”.

Gonfiguration config = mcio. creat eConfigurati on(mproduct);

2-16 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Handling Logical Contradictions

| Runt i neNbde horeTheat er = confi g. get Root Conponent () ;

| Runti neNode user Type = honeTheat er. get Chi | dByNane(" User Type");

Example 2-8 Collecting all child nodes by type

The following code fragment, which uses get Chi | dr enByType(), is taken from
Section 4.2, "Basic Java Functional Companion", after the comment "//get all the
text features // line 167".

/lget all the text features /1 line 167
text Feat Li st = conp. get Chi | dr enByType(conp. TEXT_FEATURE) ;
traver seTr ee(conp. get Chi | dren(),

conp. TEXT_FEATURE,
textFeat List);
iter = textFeatList.iterator();

2.7 Handling Logical Contradictions

When you make a request to modify the state of a logic network, for instance by
using | St at e. set St at e, the result may be a failure of the request because of a
logical contradiction. Such a failure will create and throw a logical exception,
accessed through either the Logi cal Excepti on or

Logi cal Overri dabl eExcepti on objects. A Logi cal Excepti on cannotbe
overriden.

See "Overriding Contradictions" for details on using
Logi cal Overri dabl eExcepti on to override the contradiction.

Use Logi cal Exception.i sOverridabl e() todetermine whether the
exception is an instance of Logi cal Overri dabl eExcepti on, which can be
overriden with its overri de() method.

Use Logi cal Excepti on. get Cause() to get the runtime node that caused the
failure.

Use Logi cal Excepti on. get Reasons() to get a list of reason strings for the
failure.

Use Logi cal Excepti on. get Message() to provide a message containing either
the cause or the reasons.

The Configuration Interface Object (CIO) 2-17

Handling Logical Contradictions

Reference
For reference documentation, see: Logi cal Excepti on.

2.7.1 Generating Error Messages from Contradictions

You can use the Reason object to wrap the information returned by a contradiction,
in order to include information about internal error messages.

Reason(int type,
| Runti neNode node,
java.lang. Sring nsg)
Constructs a Reason given all of its information:
type What type of reason this is.
node The node that caused the problem.

nsg The message returned.

Use Reason. get Msg() to get the message associated with this reason.
Use Reason. get Node() to get the node associated with this reason.
Use Reason. get Type() to get the type of reason held in this object.

Use Reason. t oSt ri ng() to convert this object to a string.

Reference
For reference documentation, see: Reason.

2.7.2 Overriding Contradictions

Your Oracle SellingPoint application or Functional Companion can provide a
message to your user, and ask whether the contradiction should be overridden.

If a logical contraction can be overriden, then a Logi cal Overri dabl eExcepti on
is signalled, instead of a Logi cal Excepti on.

Logi cal Overri dabl eExcepti on isasubclass of Logi cal Excepti on that
addsan override() method. Use

Logi cal Overri dabl eExcepti on. overri de() to override the contradiction.

Both types of exceptions (Logi cal Excepti on and

Logi cal Overri dabl eExcepti on) may be thrown back from any of the "set"
methods (like set St at e) or from

Confi guration. comm t Confi gTransacti on().If you want to override the

2-18 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Handling Logical Contradictions

overridable exception you have to call its over ri de() method, which can also
throw a Logi cal Except i on. This means that even when you try to override the
exception you still trigger a contradiction and cannot continue. If the override
succeeds then you still need to call conmi t Confi gTransacti on() to close the
transaction. If you don't want to override or if you get a Logi cal Excepti on you
need to call r ol | backConfi gTransacti on() to purge it. Example 2-9 is a code
fragment that illustrates this point. Note that the operations represented with
<ASK “text”> and <SHOW “text”> are not part of the CIO but suggest where your
own Functional Companion should try to handle the situation.

Example 2-9 Handling and overriding Logical Exceptions

try {
/] begin a transaction

GonfigTransaction tr = confi g. begi nConfi gTransacti on();

[/l call the "set" nethod
optl.setSate();

// commt the transaction
confi g. commt Gonfi gTransaction(tr);
}
cat ch(Logi cal Overri dabl eException | oe) {
proceed = <ASK "Do you want to override?">;
if (! proceed) {
rol | back@nfi gTransaction();

}

el se {
try {
/1 override the contradiction and ...
| oe. override();
/1 ... finish the transaction
commi t Gonfi gTransaction();
}
catch (Logi cal Exception le) {
/1 we cannot do anything
<SHOWN"Cannot be overri den">
confi g.rol | backGonfi gTransacti on(tr);

}
}
}
catch (Logi cal Exception le) {
/1 we cannot do anythi ng
<SHOW" Cannot be overriden">

The Configuration Interface Object (CIO) 2-19

Validating Configurations

confi g. rol | backGonfi gTransacti on(tr);

}

Reference
For reference documentation, see: Logi cal Overri dabl eExcepti on.

2.8 Validating Configurations

You want to be able to check whether a Configuration is valid (that is, does not
violate the rules associated with it).

The CIO validates a Configuration after all logical assertions that constitute a user
interaction are performed. This corresponds exactly to the length of a logical
transaction. See Section 2.4.4, "Logic Transactions".

Validation checking and reporting occur when a logical transaction is ended by
using Confi guration. conmi t Confi gTransacti on(transaction) or
Confi guration.roll backConfi gTransacti on(transacti on).

After a committal or rollback, the CIO traverses the nodes of the Model, checking
for validation failures, selected items and unsatisfied items. These are kept in a set
of collections maintained on the Configuration.

At this point, you can call the following methods of
oracl e. apps. cz.cio. Configuration:

get Val i dat i onFai | ures() Actually returns a collection of
"ValidationFailure" objects. Call this after
committing or rolling back a transaction, in order
to inspect the list of validation failures.

get Sel ectedl t ens() Returns a collection of selected items as a
St at usl nf o structure indicating the set of
selected (true) items in the Configuration.

get Unsatisfiedltens() Returns a collection of unsatisfied items as a
St at usl nf o structure indicating the set of
unsatisfied items in the Configuration.

As nodes become selected they have a status of STATUS_NEW. If they continue to
be selected since the last transaction their status is STATUS_EXISTING. If they
become unselected, their status becomes STATUS_DELETED until the next
transaction at which time they will be removed from the collection.

2-20 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Standard Interface Methods for Functional Companions

If you are writing a Functional Companion, the val i dat e() method should return
a list of Conpani onVal i dat i onFai | ur e objects in the event of a validation
failure. This allows you to return more than one failure. Your val i dat e() method
can include several tests; you can track which ones failed, and why. See

Section 2.9.3, "The validate() Interface Method".

Reference
For reference documentation, see: Val i dat i onFai | ur e and Confi gurati on.

2.9 Standard Interface Methods for Functional Companions

You provide functionality for your Functional Companion by implementing body
code for the methods described in this section. For particulars that apply to the
languages currently supported by the CIO, and examples, see Section 1.3, "Building
Functional Companions in Java".

These methods are invoked by your Oracle SellingPoint application, through the
CIO, in response to program events or the actions of end users. The type of method
invoked for each Component is determined when you associate the Component
with a Functional Companion in Oracle Configurator Developer. See Section 1.5,
"Incorporating Functional Companions in your Application" for details.

These methods are invoked by the CIO for each Functional Companion object that it
creates for the Components in your Model. Note that your code does not invoke

these methods directly; that is done by the CIO. Rather, you implement the body of
each method, using the API provided by the CIO to communicate with your Model.

The body of any or all of these methods can be empty. Your Functional Companion
object has to implement only those methods indicated in Oracle Configurator
Developer.

The interface class that defines these methods is:

oracl e. apps. cz. ci o. | Functi onal Conpani on

Reference
For reference documentation, see: | Funct i onal Conpani on.

The Configuration Interface Object (CIO) 2-21

Standard Interface Methods for Functional Companions

Table 2-4 Standard methods of the IFunctionalCompanion interface

Method Purpose

Details in

initialize Saves information about the Model and performs any
actions needed to initialize the Functional Companion.

aut oConfigure Performs a programmatic configuration step.

val i dat e Programmatically checks that a configuration is valid

and throws a LogicalException object if the Model is not

valid.

gener at eQut put Generates output for this Component, for either a thick
or thin client.

termnate Performs any cleanup on this Functional Companion
that needs to occur before the Companion is destroyed.

Section 2.9.1

Section 2.9.2

Section 2.9.3

Section 2.9.4

Section 2.9.5

2.9.1 The initialize() Interface Method

The | Functi onal Conpanion.initialize() method is called when the

companion is created. It connects a Functional Companion object to its

configuration modeling environment (for example, a running instance of the Oracle
SellingPoint application). Be aware that Functional Companions are created and
initialized after all subcomponent instances are created for the current Component

instance.

Your implementation of i ni ti al i ze() can include tasks that you wish to perform
when the Functional Companion is first created. For example, you might wish to
start writing audit messages to a log file, tracking the actions performed by your

end users.

When an Oracle SellingPoint application runs, it creates runtime instances of all the
Components in the Model and their associated Functional Companions. When a
Functional Companion object is created, the CIO callsi ni ti al i ze() and passes

the following input parameters:

Name Type Description

node IRuntimeNode The node instance associated with the Functional
Companion being created. Specified in Configurator
Developer. Currently, only Components can be specified

in Configurator Developer.

name String The name of the Functional Companion. Specified in

Configurator Developer.

2-22 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Standard Interface Methods for Functional Companions

Name Type Description

description String A description of the Functional Companion. Specified in
Configurator Developer.

id int The database ID of the Functional Companion. Created
internally.

Note: It is worth emphasizing that the node passed as the first
input parameter toi ni ti al i ze() isspecified in Oracle
Configurator Developer, when you create the Functional
Companion rule that associates a Model node with your Functional
Companion.

Your Functional Companion should ordinarily never directly call

Functi onal Conpani on.initialize(),since the CIO does that for you
automatically. However, if your Functional Companion extends

Functi onal Conpani on as its base class, and you wish to perform some
specialized initialization tasks, then the overriding i ni ti al i ze() method in your
class should call super.initialize().This passes some necessary variables to
the superclass (or acl e. apps. cz. ci 0. Funct i onal Conpani on) so that its
methods will work.

It is not normally necessary to implement your owni nitiali ze() methodin
your Functional Companion. If you need to obtain the values of the input
parameters of Funct i onal Conpani on.initialize() foruseelsewherein
your Functional Companion, you can use the set of accessor methods of

Funct i onal Conpani on already provided in the

oracl e. apps. cz. ci 0. Funct i onal Conpani on base class. Each of these
methods returns the value of the corresponding input parameter:

get Runt i meNode() Returns the runtime node to which this functional is associated.
get Narre() Returns the name of the functional companion.
get Description() Returns the description of the functional companion.

getl DY) Returns the database ID of the functional companion.

The Configuration Interface Object (CIO) 2-23

Standard Interface Methods for Functional Companions

Note: Currently, in Configurator Developer, you can only
associate a Functional Companion with a Component (which
corresponds to the node parameter ofi ni ti ali ze().However,
to accommodate possible future enhancement of Configurator
Developer, the | Funct i onal Conrpani on interface allows any
runtime node to be associated with your Functional Companion.

Reference

For reference documentation, see: i ni ti al i ze(| Runti neNode, Stri ng,
String, int).

2.9.2 The autoConfigure() Interface Method

The | Funct i onal Conpani on. aut oConfi gur e() method is called at the
request of the controlling User Interface, and can set states in the Model, add
optional Components, etc.

This method performs an automatic configuration on the Model. This action can
include changing the logical state of Options, or adding nodes underneath the
selected Component instance in the Model tree.

Your implementation of aut oConf i gur e() can include configuration actions that
you wish to be performed before your end users arrive at a certain point in a
configuration session, or as the result of certain choices that they make.

Reference
For reference documentation, see: aut oConf i gure().

2.9.3 The validate() Interface Method

The | Functi onal Conpani on. val i dat e() method is called automatically when
a logical transaction takes place, and should returna Li st of
Conpani onVal i dat i onFai | ur e objects if the Model is not valid.

This method performs a functional validation for the selected Component instance
each time the end user selects a node in the Model (for example, in the
Configurations section of the Oracle SellingPoint application).

You should not modify the Model in a validation function. Doing so can cause
unexpected application failures.

2-24 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Standard Interface Methods for Functional Companions

Your implementation of val i dat e() can include tasks that you wish to perform
whenever your end users make any selection. For example, you might wish to
perform a calculation based on the object count of the selected Component, and
present the end user with a notification if the result is outside a range that you
define.

If the validation fails, then information about the failure is gathered by the CIO in a
Li st of Conpani onVal i dat i onFai | ur e objects.

The general structure of your implementation of val i dat e() should be:
1. Collect inputs from the Model.

2. Call a generic validation function that you define outside the body of
val i date().

3. Propagate the result back as the value of the function, either null ora Li st of
Conpani onVal i dat i onFai | ur e objects.

Reference
For reference documentation, see: val i dat e() .

2.9.4 The generateOutput() Interface Method

The gener at eQut put () method is invoked at the request of the controlling User
Interface.

Your implementation of gener at eQut put () might include tasks such as writing
to a database, creating a report, or producing a visualization of the end user’s
configuration choices.

There are two versions of gener at eQut put () :
= “thick client” version

public String generateQutput();

A thick client architecture is one in which the configuration Model, and the user
interface for manipulating it, both reside on the same client machine. The thick
client architecture allows your Functional Companion’s Output method to
produce output windows directly on the client machine.

This version is invoked when your Functional Companion operates with the
Oracle SellingPoint application. (Note: The returned string is ignored.)

s “thin client” version

The Configuration Interface Object (CIO) 2-25

Standard Interface Methods for Functional Companions

public void generat eQut put (HtpServl et Response response) throws | CException

A thin client, browser-based architecture is one in which the configuration
Model resides on a server, and the user interface resides on a client machine's
web browser. The thin-client architecture allows your Functional Companion’s
Output method to produce out in web-browser windows.

This version is invoked when your Functional Companion operates in a
web-based context.

See Section 4.3, "Thin-Client generateOutput() Functional Companion" for an
example.

Currently, there is no mechanism for output generated through
gener at eQut put () to provide feedback to the User Interface or the runtime
Model.

Reference

For reference documentation, see: gener at eCut put () and
gener at eQut put (Ht t pSer vl et Response) .

2.9.5 The terminate() Interface Method

The | Funct i onal Conrpani on. t er m nat e() method is called automatically by
the CIO when the Component that the Functional Companion is attached to is
deleted from the running Model.

Your implementation of this method can include tasks that you wish to perform
when the Functional Companion is deleted. For example, ifi ni ti al i ze() opens
a file and reads some data, t er m nat e() would close the file.

Your Functional Companion should ordinarily never directly call

Functi onal Conpani on. t er m nat e(), since the CIO does that for you
automatically. However, if your Functional Companion extends

Functi onal Conpani on as its base class, and you wish to perform some
specialized termination tasks, then the overriding t er mi nat e() method in your
class should call super.termni nate().

Reference
For reference documentation, see: t er mi nat e() .

2-26 Oracle Configuration Interface Object (CIO) Developer’'s Guide

3

Reference Documentation for the CIO

Reference documentation for the Oracle Configuration Interface Object is provided
in the form of HTML pages generated by the Javadoc tool from the source code for
the CIO.

For the main entry point to these pages, follow this link:

s CIO Package and Related Classes

Tips

Here are some tips on using the generated reference documentation:
= Use the Bookmarks pane to navigate through the reference.

= Use the Contents and Index to look up items alphabetically.

» Reminder: Constants are referred to in Java as “static variables,” and are listed
under the heading “Fields” in the class in which they are defined.

Reference Documentation for the CIO 3-1

3-2 Oracle Configuration Interface Object (CIO) Developer’'s Guide

A

Examples

This chapter contains code examples illustrating the use of Functional Companions
and the CIO. These examples are fuller and longer than the examples provided in
the rest of this document, which are often fragments. The examples here can be
compiled and used. See the cited background sections for details.

The examples given here are all in Java, and were compiled with JDK 1.1.8.

4.1 Initializing the CIO

For background, see Section 2.3, "Initializing the CIO". This example is intended for
custom user interfaces that use the CIO.

Example 4-1 |Initializing the CIO (Long Example)
inport java.io.*;

inport java.sql.*;

i nport oracl e. apps. cz. ci 0. *;

i nport oracl e. apps. cz. comon. *;

cl ass ci oExanpl e

{
private dOInitializedQ Q)

{
aoOcio =null;
CZOontext context = nul | ;

Sring jdbcDriver
nane of the JDBC dri ver

Sring dblURL

Sring dbQaner

"com ns. j dbc. odbc. JdbcQdbeDri ver™; /] Aass

"j dbc: odbc: ci oExanpl e";
"ci oExanpl e";

Examples 4-1

Basic Java Functional Companion

Sring dbUsernane = "spx";
Sring dbPassword = "spx";
Sring activeMdel Path = "D /orant/ 8P Shared/ Acti veModel /"; /1l

Location of the LCE file

try {
/! Load the JDBC dri ver

d ass. f or Nane(j dbcDri ver);

/] Establish a connection to the database
context = new CZQont ext (dbUR., dbUser nane, dbPassword, dbOaner);
}
catch (d assNot FoundException cnfe) {
Systemout.printIn("Eror loading class " + jdbcDriver);
Systemexit(0);
}
catch (SQ.Exception sqgle) {
Systemout.printIn("Eror in creating Gontext");
Systemexit(0);

}
try {

Il Initialize the QO

cio=newaqQ);

ci 0. set Act i veMbdel Pat h(act i veMbdel Pat h) ;
}

catch (Exception e) {
Systemout. println("Exception in InitializedQO);
cio=null;

}

return cio;

4.2 Basic Java Functional Companion
For background, see Section 1.3, "Building Functional Companions in Java".

Example 4-2 implements all of the types of Functional Companions, which are
described in Section 1.1.1. The example implements the methods described in
Section 2.9, and assumes the structure of the Model shown in Figure 1-1.

4-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

Basic Java Functional Companion

Example 4-2 Basic Functional Companion: FuncCompTestl

i nport oracl e. apps. cz. ci 0. *;

inport comsun.java. util.collections.List; /! line 2
inport comsun.java.util.collections.Arraylist;

inport comsun.java.util.collections.lterator;

inport java.aw.*;

inport java.aw.event.*;

public class FuncConpTest 1 extends Functi onal Conpani on

{

oracl e. apps. cz. cio. | Runti neNode conp_node; // currently, only Gonponents

Frane f;
java.awt . Li st uiList;

/**

* (onstructor:

* Can be used for any necessary setup.
*/

publ i ¢ FuncGonpTest 1()

{

}

/**

* Initialize: calls '"super' to get access to its functions.

* @aram conp_node - base node of functional conpanion (currently, only
Gonponent s)

* @aramnane - the nane of the conpani on

* @aramdescription - a description of the conpani on

* @aramid - the db id of the conpani on

* Al of these paraneters, except 'id , are specified in the conpanion

* definitionin Developer. idis created internally.

*/

public void initialize(lRunti meNode conp_node, Sring nane, Sring
description, int id)

{

thi s. conp_node = conp_node;

super.initialize(conp_node, nane, description, id); // line 35
}
/**

* Functionality inpl enentation:
* There are three types of functionality for conpani ons
* Any nunber of themcan be inpl enented i n each conpani on.

Examples 4-3

Basic Java Functional Companion

*/

/**

* Type 1. Auto-configuration

* |f this method is defined, a button will appear in the U and the code

wll

* be run when the button is clicked. It is used to make changes to the

* configuration.

*/

public voi d aut oGonfi gure()
/1 This exanpl e sinply checks if a certain value is true and, if so, sets
/lan integer feature value to 5;

ptionFeature of ;

Qption op;

I nteger Feature intFeat;

oracl e. apps. cz. ci 0. Gonponent baseConponent ;

try
{

/1 get the necessary conponents fromthe configuration /1 line 61
baseConmponent = (oracl e. apps. cz. ci 0. Conponent) conp_

node. get Chi | dByNane(" Conponent - 1") ;
of = (Qpti onFeat ur e) baseCnponent . get Chi | dByNare(" Feat ure-1");
op = (Opti on)of . get Chi | dByNare(" Qpti on-1");
intFeat = (I ntegerFeat ure) baseGnponent . get Chi | dByNane("1 F-1");
//check if the optionis set to UIRE |If so, set the Integer val ue

to5
if(op.getSate() = |Sate. UIRE)
i nt Feat . set | nt Val ue(5);
}
cat ch(Exception e){Systemout.println(e);}
}
/**

* Type 2. Validation

* |f this method is defined, the code will autonatically be run any tine

* a change is made to the base node or one of its children in the

* configuration. It is used for ensuring that changes nade result in a

* valid configuration. |If not, the nethod returns a list of validation
failures.

*/

public List validate()

/1 This exanpl e defines 'mn' (presunmably the nini numanount this

cust oner

4-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

Basic Java Functional Companion

//may order) and checks to see if the value equals at |east this amount.
/lln the real world, you would want to get this value fromyour custoner
/] dat abase. For exanple, custonmers in foreign countries nmay have hi gher
m ni nuns
/] since shipping is expensive.
{
int mn = §;
int val 0;
I ntegerFeature intFeat;
ArrayList failures = new ArrayList();

try

//get the value of the integer feature in the configuration

oracl e. apps. cz. ci 0. nponent ¢ = (oracl e. apps. cz. ci 0. Conponent) conp_
node. get Chi | dByNane(" Conponent - 1") ;

intFeat = (IntegerFeature)c.getChil dByNane("IF1");

val = intFeat.getlntVal ue();

}
cat ch(NoSuchChi | dException e){e. print S ackTrace();}

/lcheck to see if the value in the config is not at | east the nmin val ue
/1 line 102

if(!'(val >>mn))
failures.add(new Conpani onVal i dati onFai | ure("Val ue | ess than
nini munt, conp_node, this));

if(failures.isBmwty())
return nul | ;

el se
return failures;

}

/**
* Type 3: Qut put
* |f this method is defined, a button will appear in the U which, when
* pressed, will run the code below It is used to generate output to the
* user. Note: this uses the "thick client" version of generateQutput().
*/
public Sring generateQutput()
/1 This exanpl e opens up a windowwth a list of sone of the current
/] conponents of the configuration and their values. This exanple is
very basi c but
//the idea here is that data fromthe configuration can be used to

Examples 4-5

Basic Java Functional Companion

generate reports,
[l graphs, nodels, etc.
{
I ntegerFeature intFeat;
Text Feature text Feat;
comsun.java. util.collections.List intFeatList, textFeatList;
Iterator iter;

//setup the U
if(f = null)
{
f = new Frane("Sone info about this config");
uiList = newjava.aw.List();
f.add(uiList);
f. addW ndowLi st ener (new WndowAdapt er () {
public voi d wi ndowd osi ng(WndowEvent e)

{
}

f. di spose();

I8
}

ui Li st.renoveA | ();

try

/lget all the integer features
i nt Feat Li st = conp_node. get Chi | dr enByType(conmp_node. | NTEGER
FEATURE) ;
t raver seTr ee(conp_node. get Chi | dren(),
conp_node. | NTECGER FEATURE,
intFeatList);
iter =intFeatList.iterator();

/ladd the integer features to the U
vhi | e(iter. hasNext ())

{
intFeat = (IntegerFeature)iter.next();
Sring nane = intFeat. get Nane();
int val =intFeat.getlntValue();
uiList.add("Integer Feature: " + name +" - " + val);
}
/lget all the text features /1 line 167

text Feat Li st = conp_node. get Chi | dr enByType(conp_node. TEXT_FEATURE) ;
t raver seTr ee(conp_node. get Chi | dren(),

4-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

Basic Java Functional Companion

conp_node. TEXT_FEATURE,
textFeatList);
iter = textFeatList.iterator();

//add the text features to the U
whi | e(i ter. hasNext ())

{
textFeat = (TextFeature)iter.next();
String nane = textFeat. get Nane();
String str = text Feat. get Text Val ue() ;
ui List.add("Text Feature: " + name + " - " + str);
}
f.setS ze(200, 200);
f.show();
}
cat ch(Exception e){e.printSackTrace();}
return nul | ;
}
/**

* This function is used by generateQutput() to run through the config tree
and

* pull out all of the itens of a specified type. It is not part of the
Funct i onal Conpani on APl ,

* but was witten for this specific conmpanion.

* @aramchildren this is alist of all the children of the current node

* @aramtype this is the type we are currently searching for

* @aramresultList all itens of the specified type which are found are
added to this list

*/
private void traverseTree(comsun.java. util.collections.List children,
int type,
comsun.java. util.collections. List resultList)
{

i f(!children.isBEmpty())
{

Iterator iter = children.iterator();

whi | e(iter.hasNext())

{
RuntineNode rtn = (RuntineNode)iter. next();

resul tList.addAl | (rtn. get Chi | drenByType(type));
traverseTree(rtn. get Children(),

Examples 4-7

Basic Java Functional Companion

type,
resul tList);

Notes on the example

Line 2
inport comsun.java.util.collections.List; // line 2

If you are using JDK 1.1.x, import com sun. java. util.col |l ections. List,
which is provided in col | ecti ons. j ar (see Section 1.3.2, "Installation
Requirements for Java Functional Companions” on page 1-8). If you are using JDK
1.2, then import java.util.List.

Line 35
super.initialize(conp_node, nane, description, id); // line 35

Intheinitialize() method, call super.initialize(). This passessome of
the necessary variables to the superclass so that its methods will work.

Lines 61-68
/1 get the necessary conponents fromthe configuration // line 61

This block illustrates how to get the logical state of an Option (with get St at e),
test the logical state (with the expression == | St at e. UTRUE), and set the value of
a Feature (with set | nt Val ue).

Lines 102-109

//check to see if the value in the config is not at |least the nin value // line
102

This block produces the Configuration Status message shown in Figure 1-3,
"Testing Functional Companions in the Oracle SellingPoint application."

4-8 Oracle Configuration Interface Object (CIO) Developer’s Guide

Thin-Client generateOutput() Functional Companion

4.3 Thin-Client generateOutput() Functional Companion

This Functional Companion uses the "thin-client"” version of gener at eQut put ()
(see Section 2.9.4 on page 2-25). When you invoke the Functional Companion from a
web browser, it produces an HTML representation of the runtime Model tree,
beginning at the node to which the companion is attached.

In order to use this type of Functional Companion, you must use Oracle
Configurator Internet Edition (OCIE). See the Oracle Configurator Internet Edition
Developer’s Guide for details not covered in this document. Here is a summary of the
tasks:

Compile the Java source code into a class file.
In Configurator Developer, define a Functional Companion rule:
- Typeis Output

- Base Component is the Component to which you want to attach the
Functional Companion

- Implementation language is Java
- Program String is the name of the class file

In Configurator Developer’s User Interface module, define a button for the
Component that invokes the Functional Companion.

In Oracle Application Server, create an OCIE servlet.

Add the new class file for the Functional Companion to the CLASSPATH
environment variable for the servlet.

You can test the Functional Companion from Configurator Developer, by
specifying the URL of the servlet (in Tools>Options>Test>Servlet URL) and
clicking the Test button. This opens a web browser, passing it a URL that
includes an XMLmsg parameter containing the necessary OCIE initialization
message. This message contains database connection and login strings, and
specifies the Model to display, by means of the ui _def _i d parameter that
identifies the User Interface definition you created in Configurator Developer.

You can test the Functional Companion outside Configurator Developer, by
creating an HTML test page that substitutes for your host application.
(Examples are provided in the Oracle Configurator Internet Edition Developer’s
Guide.) This page sends an OCIE initialization message that specifies database
connection and login information, and the Model containing the Component.
You can copy these parameters from the URL produced by the Test button in

Examples 4-9

Thin-Client generateOutput() Functional Companion

Configurator Developer. Test the Functional Companion by opening the HTML
test page.

The example first calls the r esponse. set Cont ent Type() method of the
HttpServletResponse class, passing "text/html" as the output type. Then it calls
response. get Witer() togetan outputstream t o which the Functional
Companion can write HTML.

You can also write non-HTML output by setting another content type (a MIME
type) and writing appropriate data to the output stream.

Example 4-3 Thin-client Output Functional Companion

inport java.io.lCException;

inport java.io.PrintWiter;

inport javax.servlet.http. HtpServl et Response;
inport comsun.java.util.collections.lterator;
i nport oracl e. apps. cz. ci 0. Funct i onal Gonpani on;
i nport oracl e. apps. cz. ci 0. | Runt i neNode;

public class Show&ructure extends Functional Gonpani on {

publ i c voi d generat eQut put (H t pSer vl et Response response) throws | GException {
r esponse. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();
out.println("<htnt>");
out. println("<head>");
out.println("<title>Runtine Mdel Structure</title>");
out.println("</ head>");
out. println("<body>");
out. println("<h3>Runti ne Mbdel Sructure</h3>");
| Runt i neNode root Node = get Runti neNode() ;
gener at eNode(out, root Node, 0);
out. println("</body>");
out.println("</htm>");
}

private static void generateNode(PrintWiter out, |Runti neNode node, int
level) throws | CException {

for (int i =0; i <level; ++) {
out.print("--");
}
out. printl n(node. get Nane() + "
");
for (Iterator i = node.getChildren().iterator(); i.hasNext();) {

| Runt i neNode chi | dNode = (I Runti neNode)i . next ();

4-10 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Thin-Client generateOutput() Functional Companion

gener at eNode(out, childN\ode, (level + 1));
}
}
}

Examples 4-11

Thin-Client generateOutput() Functional Companion

4-12 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Glossary

This glossary for Oracle Configurator is followed by a Glossary of Acronyms

Acceptance Test

Test for validating the system (the correctness of results). Acceptance tests are based
on acceptance criteria specified in the project's Test Plan.

Active Model

The part of Oracle Configurator runtime architecture that processes model structure
and rules to create configurations. Interfaces dynamically with the end user Active
Ul and data.

Active User Interface

The part of Oracle Configurator runtime architecture that provides the views
necessary to create configurations interactively. Interfaces with the Active Model
and data to give users access to customer requirements gathering, product selection,
and customer-centric extensions.

Alpha

An internal release of the application before implementation is complete, delivered
as a build, and subject to integration, verification, and system testing.

Application

The Oracle Configurator or Oracle SellingPoint application. The end-user runtime
environment that provides configuration functionality and output. Also called sales
configuration application or enterprise selling system. See also Oracle Configurator.

Glossary-1

Glossary-2

Application Architecture

The software structure of an application at runtime. Architecture affects how an
application is used, maintained, extended, and changed.

Application Architecture and Desigh Document

Document presenting the overall architecture for the application and how the
application will be implemented.

Application Design

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for determining, documenting, reviewing, and delivering the
scheme that will turn user requirements into an operational application. Occurs in
parallel with the end of the Test Case Definition task and the beginning of the
Construction task. Application Design results in an Application Architecture and
Design Document.

Application Development

See Construction.

Application Implementer

The person who uses Oracle Configurator Developer to construct an Oracle
Configurator application or the model structure, rules, and UI customizations for a
Oracle Configurator. The test application generated by Oracle Configurator
Developer is the Oracle SellingPoint application.

Application Testing

See Full Application Testing.

Architecture

The software structure of a system. Architecture affects how a system is used,
maintained, extended, and changed. See also Application Architecture.

Beta

An external release, delivered as an installable application, and subject to system,
validation, and acceptance testing. Specially selected and prepared end users may
participate in beta testing.

Bill of Material

A list of component items associated with a parent item (assembly) and information
about how each item relates to the parent item.

BOM
See Bill of Material.

BOM Item

The nodes imported into the Oracle Configurator Developer Model that correspond
to an Oracle BOM.

BOM Model

The imported Model node in the Oracle Configurator Developer that corresponds
to Standard Model in an Oracle BOM.

BOM OptionClass

The imported Model node in the Oracle Configurator Developer that corresponds
to Option Class in an Oracle BOM.

BOM Standardltem

The imported Model node in the Oracle Configurator Developer that corresponds
to Standard Item in an Oracle BOM.

Boolean Expression

An element of a component in the Model that has two options: true or false.

Bug
See Defect.

Build

A specific instance of an application during its construction. A build must have an
install early in the project so that application implementers can unit test their latest
work in the context of the entire available application.

Change Control Board

A group of people responsible for evaluating Change Request Forms, approving or
rejecting them, and notifying affected parties of how each one was resolved.
Change Control Procedures

A plan that describes how change control will be conducted during a project.

Glossary-3

Glossary-4

Change Request Form

A form used to propose changes as part of a standard change control process. A
Change Request Form typically includes a description of the proposed change and
an evaluation of impacts on cost and schedule.

Clo

See Oracle Configuration Interface Object.

CIO protocols support creating and navigating the Model, querying and modifying
selection states, and saving and restoring configurations.

Client

A runtime program using a server to access functionality shared with other clients.

Comparison Rule

A relationship that determines the selection state of a logical item (option, boolean
feature, or list-of-options feature) based on a comparison of two numeric values
(numeric features, totals, resources, option counts, or numeric constants). The
numeric values being compared can be computed or they can be discrete intervals
in a continuous numeric input.

Compatibility

A relationship among features in the Model that specifies the allowable
combinations of options.

Compatibility Rule

A kind of compatibility relationship where the allowable combinations of options
are specified implicitly by relationships between property values of the options.
Compatibility Table

A type of compatibility relationship where the allowable combination of options are
explicitly enumerated.

Component

Represents a configurable element in a product. An element of the Model typically
containing features.

Component Set

An element of the Model that contains a number of components of the same type,
where each component of the set is independently configured.

Configuration Management

A process for managing the versions of the application and its documentation
during construction.

Configuration Model

The model structure and rules-based content of an Oracle Configurator or Oracle
SellingPoint application. The configuration model is constructed and maintained
using Oracle Configurator Developer, and is interpreted at runtime by the Active
Model.

Configuration Rules

The logic rules and numeric rules available for defining configurations.

Configurator

The part of the Oracle Configurator or Oracle SellingPoint application that provides
custom configuration capabilities.

Constraint Rule

A logical relationship amongst features and options. See also Rules.

Construction

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for building the Oracle Configurator using Oracle Configurator
Developer. Construction is based on the user's requirements and an approved
application design. Occurs in parallel with completion of the Design task.
Construction includes reviews and testing.

Contributes

A numeric rule for accumulating a total value.

Consumes

A numeric rule for specifying the quantity of a resource used.

Core Functionality

Also called Phase 1. The first release of the application delivered in 14 weeks. After
validation with a subset of users, the core functionality application can be fully
deployed to all intended users, maintained, or extended to offer additional product
families or more functionality. See Full Deployment, Additional Product Families,
and Extended Functionality.

Glossary-5

Glossary-6

CRM

Customer Relationship Management. The aspect of the enterprise that involves
contact with customers, from lead generation to support services.

Customer

The person or persons for whom products are configured by end users of the Oracle
Configurator or other Order Management and CRM applications.

Customer-centric Views

Optional extensions to core functionality that supplement product selection with
rules for pre-selection, validation, and intelligent views. View capabilities include
generative geometry, drawings, sketches and schematics, charts, performance
analyses, and ROI calculations.

Customer-centric Extensions

See Customer-centric Views.

Customer Requirements

The needs of the customer that serve as the basis for determining the configuration
of products, systems, and/or services. Not to be confused with Requirements, a task
in Oracle Configurator Deployment Methodology.

Data Import

Populating the Oracle Configurator Database with enterprise data from ERP or
legacy systems via import tables.

Data Integration Object

Data Integration Object. A server in the runtime application that creates and
manages the interface between the client (usually a user interface like the Active
User Interface) and the Oracle Configurator Database.

Data Maintenance Environment

The environment in which the Oracle Configurator or Oracle SellingPoint
application data is maintained.

Data Replication

The activity of downloading and uploading configuration, quote, and order data
between the Oracle Configurator Database on the enterprise server and Oracle
Configurator Mobile Database on end-user mobile laptop PCs. See also Data
Synchronization.

Datasource

A programmatic reference to a database.

Data Synchronization

A process for matching the data in the Oracle Configurator Database and the data
available to client processes such as the Oracle Configurator. See also Data
Replication.

Default

The automatic selection of an option based on the pre-selection rules or the selection
of another option.

Defaults

A logic rule to determine the logic state of features or options in a default relation to
other features and options. For instance, if you set A to True by selecting it, B
becomes true (selected) if it is available (not false) and can be set to True without
contradicting a non-default rule or a previous default setting for B.

Defect

A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a “bug”.

Defect Tracking

A system of identifying defects for managing additional tests, testing, and approval
for release to users.

Definition

Defining and scoping the first phase of a project, and selecting a vendor such as
Oracle to implement a sales configuration application.

Deliverable

A work product that is specified for review and delivery.

Delivery

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for organizing a deployment of the application. Includes beta
testing.

Glossary-7

Demonstration

A presentation of the tested application, showing a particular usage scenario.

Deployment

The stage in a project between Implementation and Maintenance when the fully
operational application is distributed to users. See also Pilot and Full Deployment.
Design

See Application Design.

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compeatibilities interactively in a chart view.

Desigh Review

A technical review that focuses on application or system design.

Development

See Construction.

DIO
See Data Integration Object.

Domain Expert

A member of the customer's staff who has specific product or process knowledge
needed in the Oracle Configurator or Oracle SellingPoint application.

End User

The ultimate user of the Oracle Configurator or Oracle SellingPoint application. The
types of end users vary by project but may include salespeople or distributors,
administrative office staff, marketing personnel, order entry personnel, product
engineers, or customers directly accessing the application via web or kiosk.
Enterprise

The systems and resources of a business.

Environment

The arena in which software tools are used, such as operating system, applications,
and server processes.

Glossary-8

ERP

Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

Excludes

A logic rule to determine the logic state of features or options in an excluding
relation to other features and options. For instance, if you set A to True, B becomes
false, since it is not allowed when A is true. If you set A to False, there is no effect on
B, meaning it could be true, false, or unknown.

Extended Functionality

A release after delivery of core functionality that extends that core functionality
with customer-centric views, more complex proposal generation, discounting,
quoting, and expanded integration with ERP, OMS, and COM-compliant
third-party software.

Feature
An element of the Model. A configurable parameter of a component. Features can
either have a value (numeric or boolean) or enumerated options.

Full Application Testing

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for testing the constructed application prior to delivery. Full
Application Testing results in a completely validated application approved for
delivery to users.

Full Deployment

A release of the application to all intended users after implementation and
validation of the core functionality.

Full Roll Out

An external release delivered to all intended end users of the application. See also
Full Deployment.

Functional Companion

An object associated with a component that supplies methods that can be used to
initialize, validate and generate customer-centric views and outputs for the
configuration.

Glossary-9

Glossary-10

Functional Specification

Document describing the functionality of the application based on user
requirements.

Incremental Construction

The process of organizing the construction of the application into builds, where
each build is designed to meet a specified portion of the overall requirements and is
unit tested.

Increments

A logical relation that increments a count or value associated with an item by an
integer quantity.

Implementation

The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed sales
configuration application. The Implementation stage includes gathering
requirements, defining test cases, designing the application, constructing and
testing the application, and delivering it to users.

Implies

A logic rule that determines the logic state of features or options in an implied
relation to other features and options. For instance, if you set A to True by selecting
it, B becomes true, since selecting A implies that B is also selected. If you set A to
False by deselecting it, there is no effect on B, meaning it could be true false or
unknown based on other relations B participates in. And if you set B to True by
selecting it, there is no effect on A, meaning it could be true false or unknown based
on other relations A participates in. But if you set B to False by deselecting it, the
relation of A implies B is preserved only by having A be false (deselected) as well.

Import Tables

Tables mirroring the Oracle Configurator Database Item Master structure, but
without integrity constraints. Import Tables allow batch population of the Oracle
Configurator Database Item Master. Import Tables are used in conjunction with
extractions from Oracle Applications or legacy data to create, update, or delete
records in the Oracle Configurator Database Item Master.

Install

A program that sets up the local machine and installs the application for testing and
use.

Integration

The process of combining multiple software components and making them work
together.

Integration Testing

Testing the interaction among software programs that have been integrated into an
application or system.

Intelligent Views

Configuration output, such as reports, graphs, schematics, and diagrams, that help
to illustrate the value proposition of what is being sold.

Item Master

A table in the Oracle Configurator Database containing data used to structure the
product. Data in the item master is either entered manually or imported from
Oracle Applications or legacy data.

Iltem Type

A table in the Oracle Configurator Database containing data used to classify the
product data in the item master table.

Logic Rules

Logic rules directly or indirectly set the logical state (true, false, or unknown) of
features and options in the Model.

There are four (4) primary logic rules: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of features or options as operands. See also Logic,
Implies, Requires, Excludes, and Negates.

Maintenance

The effort of keeping a system running once it has been deployed, through bug
fixes, procedure changes, infrastructure adjustments, data replication schedules, etc.
Maintainability

The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

Glossary-11

Glossary-12

Maintenance Guide

A guide for maintaining a specific application or system. The maintenance guide
covers all aspects of maintenance described in the generic Maintenance Plan.
Maintenance Plan

A document that outlines what is required for successful maintenance, and who is
responsible for all the actions and deliverables of carrying out maintenance on a
system. Oracle's Application and System Maintenance Plan presents a generic
model of activities and deliverables necessary for successful maintenance.

ocC

See Oracle Configurator.

Methodology

A standard, step-by-step process designed to achieve consistent, reliable results.
Oracle Configurator Deployment Methodology is a repeatable implementation
process based on software development standards and Oracle Configurator
implementation best practices.

Mobile Database

See Oracle Configurator Mobile Database.

Model

The entire hierarchical “tree” view of all the data required for configurations,
including model structure, variables such as resources and totals, and elements in
support of intermediary rules. May consist of BOM Items.

Oracle Configurator

The views of the model structure and rules generated by the Active Ul to present
end users with interactive product selection based on configuration models.
Model Structure

Hierarchical, “tree” view of data in terms of product elements (models,
components, features, and options). May include reusable components.

MRP

Manufacturing Resource Planning. A software system and process for monitoring
and maintaining the customer's manufacturing systems.

Negates

A logic rule to determine the logic state of features or options in a negating relation
to other features and options. For instance, if you set one item in the relationship to
True, the other item must be false. And if you set one item to False, the other item
must be true.

Next Phase

The phase following Phase 1 Core Functionality, consisting of Full Deployment of
Phase 1, expanding the application for coverage of additional Product Families or
extending the functionality to include more complexity and customer-centric views.
Node

The place in a Model occupied by a component, feature, option or variable, BOM
Model, BOM OptionClass, or BOM StandardItem.

Numeric Rules

Rules that are used to set the global parameters specified in product structuring.
These include Contributes, Supplies, and Consumes. See also Numeric Rules,
Contributes, Supplies, and Consumes.

ocC

See Oracle Configurator.

Opportunity

The workspace in the Oracle SellingPoint application and Oracle Field Sales in
which products, systems, and/or services are configured, quotes and proposals are
generated, and orders are submitted.

Option

An element of the Model. A choice for the value of an enumerated feature.

A logical selection made by the end user when configuring a component.

Oracle Configurator

The product family consisting of development tools and runtime applications such
as Oracle Configurator Developer and Oracle Configurator Sales Edition, variously
packaged for use in networked, mobile, or web deployments.

Glossary-13

Glossary-14

Oracle Configurator Database

The implementation version of the standard Oracle Configurator or Oracle
SellingPoint application data-warehousing schema that manages data for the
configuration model. The implementation schema includes all the data required for
the runtime system as well as specific tables used during the construction of the
application.

Oracle Configurator Deployment Methodology

The methodology of stages, tasks, steps, and activities to deliver a core functionality,
Phase 1 Oracle SellingPoint application or Oracle Configurator to users in 14 weeks.
Oracle Configurator Deployment Methodology includes templates and checklists
for organizing and managing an Oracle Configurator project.

Oracle Configurator Deployment Methodology Program

The rapid application development program that combines the tools of Oracle
Configurator Developer with the application construction methodology and project
management methods of Oracle Configurator Deployment Methodology to ensure
delivery of a core functionality Phase 1 Oracle SellingPoint application or Oracle
Configurator in 14-weeks. Oracle Education provides books and courses in support
of using Oracle Configurator Developer and Oracle Configurator Deployment
Methodology most effectively. See also Oracle Configurator Developer and Oracle
Configurator Deployment Methodology.

Oracle Configuration Interface Object

A server in the runtime application that creates and manages the interface between
the client (usually a user interface like the Active User Interface) and the underlying
representation of model structure and rules in the Active Model.

Oracle Configurator Mobile Database

The runtime version of the standard Oracle Configurator Database that manages
data for the configuration model. The runtime schema includes customer, product,
and pricing data as well as data created during operation of an Oracle Configurator.

Oracle Configurator Developer
The suite of tools in the Oracle Configurator product for constructing and
maintaining sales configuration applications.

Oracle Configurator

The end-user application created with the Oracle Configurator Developer product.
See also Application, Oracle Configurator and Oracle SellingPoint application.

Oracle Configurator Architecture

The application runtime architecture consists of the Active User Interface, the
Active Model, and the Oracle Configurator Database or Oracle Configurator Mobile
Database. The application development architecture consists of Oracle Configurator
Developer and the Oracle Configurator Database.

Oracle SellingPoint application

The test application generated by Oracle Configurator Developer.

Output

The output generated by the sales configuration application, such as quotes,
proposals, bills of material (BOM), and customer-centric views.

PDM

Product Data Management. A software system that manages the version control of
product data.

Phase 1 (one)

All the sales configuration functionality that can be implemented within the Active
User Interface and Oracle Configurator Developer within the 14-week Oracle
Configurator Deployment Methodology program, and nothing that requires
programming outside of these environments. See also Core Functionality.

Pilot

An external release to a subset of 20-25 end users for validation of the system.

Populator

An entity in the Oracle Configurator Developer that defines how to create a Model
from information in the item master.

Preliminary Project Plan

An initial high-level project plan and schedule describing the events in the project
in terms of time relations rather than specific delivery dates.

Pre-selection

The default state in a sales configuration application that defines an initial selection
of components, features, and options for sales configuration.

A process that is implemented to select the initial element(s) of the configuration.

Glossary-15

Glossary-16

Principal Design Consultant

Member of the project team responsible for architecting the design of the
application.

Product

Whatever is subjected to configuration and is the output of the application.

The root element of the Model.

Product Family

A collection of products or product lines, which are organized as a group by a
provider or manufacturer.

Product Maintenance

A release of the application after delivery of core functionality that adds wider
product coverage or keeps product data correct.

Product Structure

See Model Structure

Project

A project is the process of implementing and delivering an Oracle Configurator or
Oracle SellingPoint application.

A Project in Oracle Configurator Developer is the workspace in which sales
configuration applications are constructed.

Project Manager

A member of the project team who is responsible for directing the project during
implementation.

Project Plan

A document that outlines the logistics of successfully implementing the project,
including the schedule.

Property

A named value associated with an object in the Model or the item master. A set of
properties may be associated with an item type.

Prototype

A construction technique in which a preliminary version of the application, or part
of the application, is built to facilitate user feedback, to prove feasibility or examine
other implementation issues.

Reference

The use of a reusable component within the Model. Not implemented in Release 11i
or before.

Regression Test

An automated test that ensures the newest build still meets previously tested
requirements and functionality.

Requirements

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project when the project team explores and understands what the
application will do. Occurs in parallel with starting the Implementation task Test
Case Definition. Requirements gathering results in a Functional Specification.
Requires

Alogic rule to determine the logic state of features or options in a requirement
relation to other features and options. For instance, if you set one item in the
relationship to True, the other item is required to be true as well. And if you set one
item to False, the other item must be false as well.

Resource

Staff or materials available or needed within an enterprise.
A variable in the Model used to maintain the balance of features not consuming

more of a specific resource than has been provided by other features.

Reusable Component

A component that is referenced from multiple locations in the Model. Not
implemented in Release 11i or before.

Reusability

The extent to and ease with which parts of a system can be put to use in other
systems.

Glossary-17

Glossary-18

Roll Out
See Full Roll Out.

Rules

Also called business rules or configuration rules. Constraints applied among
elements of the product to ensure that defined relationships are preserved during
configuration. Elements of the product are components, features, and options. Rules
express logic, numeric parameters, implicit compatibility, or explicit compatibility.
Rules are used to provide pre-selection and validation capability in an application.

See also Logic Rules and Numeric Rules.

Runtime

The environment and context in which applications are run or used, rather than
developed.

Sales Configuration

A part of the sales process to which configuration technology has been applied in
order to increase sales effectiveness and decrease order errors. Commonly identifies
needs assessment and product configuration.

SellingPoint

The configuration engine used in the Oracle Configurator.

Server

Centrally located software processes or hardware, shared by clients.

Solution

The deployed system as a response to a problem or problems.

Statement of Work

Document describing the work required to deliver an application based on pre-sales
scoping activities.

Studio

See Oracle Configurator Developer.

Supplies

A numeric rule for specifying how much of a resource is available.

System

The hardware and software components and infrastructure integrated to satisfy
sales configuration requirements.

System Project

The project of implementing the solution, including the Oracle Configurator or
Oracle SellingPoint application. See also Project.

System User

Any user in contact with the system.

Test Case

A description of inputs, execution instructions, and expected results, which are
created for the purpose of determining whether a specific software feature works
correctly or a specific requirement has been met.

Test Case Definition

The task in the Oracle Configurator Deployment Methodology Implementation
stage of a project for defining the Test Cases and describing the tests that will be
performed to validate the application. Occurs in parallel with the end of the
Requirements task and much of the Design task. Test Case Definition results in a
detailed Test Plan for the project.

Testing

See Full Application Testing

Test Log

A record of what tests were run at what time on which version of the application to
what effect.

Test Plan

The plan for defining and executing tests.

Timeline

The schedule for completing the tasks and activities required to implement a phase
of the sales configuration application project.

Glossary-19

Glossary-20

Total

A variable in the Model used to accumulate a numeric total, such as total price or
total weight.

Training

Training that prepares Oracle Configurator Deployment Methodology program
users for creating, changing, extending, and supporting the application.

Training that prepares the application end user for operating the system.

Training Guide

A guide created by members of the project team to instruct end users how to use the
system. See also User's Guide.

Undetermined

The logic state that is neither true nor false, but unknown at the time a logic rule is
executed.

Unit Test

Execution of individual routines and modules by the application implementer or by
an independent test consultant for the purposes of finding defects.

User

The person using the Oracle Configurator tools and methods to build an Oracle
Configurator or Oracle SellingPoint application. See also End user.

User Interface

The visible part of the application, including menus, dialog boxes, and other
on-screen elements. The part of a system where the user interacts with the software.
User Requirements

A description of what the Oracle Configurator or Oracle SellingPoint application is
expected to do from the end user's perspective.

User's Guide

Documentation on using the application to solve the intended problem. See also
Training Guide.

Validation

Tests that ensure that the configured components will meet specific performance or
acceptance criteria.

A type of functional companion that is implemented to ensure that the configured
components will meet specific performance or acceptance criteria.

Variable

Parts of the Model that represent either totals or resources.

Verification

Tests that check whether the result agrees with the specification.

Glossary-21

Glossary-22

Glossary of Acronyms

API

Application Programming Interface

ATP

Available to Promise

BOM
Bill of Material

Clo

Configuration Interface Object

CM

Configuration Management

COM
Component Object Module

CRM

Customer Relationship Management

DBMS

Database Management System

DCOM
Distributed Component Object Modeling

Glossary of Acronyms-1

DHTML
Dynamic Hypertext Markup Language

DIO
Data Integration Object

DLL
Dynamically Linked Library

DXF
Drawing Exchange Format (AutoCAD drawings)

ECO
Engineering Change Order

ERM

Enterprise Relationship Management

ERP

Enterprise Resource Planning

ESD

Electronic Software Distribution

ESP

External Service Provider

ESS
Enterprise Selling System

GSE

Generative Specification Environment

GSL

Generative Specification Language

HT
High Tech

Glossary of Acronyms-2

HTML
Hypertext Markup Language

P

Industrial Products

IS

Information Services

ISS

Interactive Selling System

ISV

Independent Software Vendor

LAN

Local Area Network

LCE

Logical Configuration Engine

MAPI

Messaging Application Programming Interface

MC/S
Mobile Client/Server System

MDUI

Model-Driven User Interface

MES
Marketing Encyclopedia System (Catalog)

MIS

Management Information Systems

MRP

Manufacturing Resource Planning

Glossary of Acronyms-3

MS

Microsoft

ocC

Oracle Configurator

OCX
Object Control File, OLE custom controls

ODBC
Open Database Connectivity

OLE
Object linking and embedding

OoMS
Opportunity Management System

OOoD
Object-Oriented Design

ORB
Object Request Broker

PDM

Product Data Management

PIA

Project Impact Assessment

PM

Project Manager

POS
Point of Sale

QA

Quality Assurance

Glossary of Acronyms-4

RAD
Rapid Application Development

RDBMS

Relational Database Management System

RFQ
Request for Quote

ROI

Return on Investment

SAS
Sales Analysis System

SCM
Supply Chain Management

SCS

Sales Configuration System

SE

Sales Engineer

SFA

Sales Force Automation

Sl

System Integrator

SOT
Strategic Options Theory

SOwW
Statement of Work

CDBI

Configurator Database Interface

Glossary of Acronyms-5

SQA

Software Quality Assurance

SQL
Structured Query Language

TERM
Technology-Enabled Relationship Management

TES
Technology-Enabled Selling

ul

User Interface

VAR
Value-Added Reseller

VB

Microsoft Visual Basic

WAN
Wide Area Network

WIP
Work In Progress

Y2K
Year 2000 Compliant

Glossary of Acronyms-6

A

ClO Package and Related Classes

Package Summary

Packages
Package oracle.apps.cz.cio
Package oracle.apps.cz.common

Package oracle.apps.cz.utilities

Provides classes used to create, save and restore configurations.

CIO Package and Related Classes A-1

A-2 Oracle Configuration Interface Object (CIO) Developer’'s Guide

B

Package oracle.apps.cz.cio

Description

Provides classes used to create, save and restore configurations. The top-level entry
point to this package is the configuration integration object, which provides
methods for creating, saving, restoring and deleting configurations. The
configuration can be manipulated by calling methods on the configuration object
and its tree of runtime objects.

Class Summary

Interfaces

|Atp

IBomltem
ICompSetEventListener
IConfigEventListener
ICount

IDecimal
IDecimalMinMax

[FunctionalCompanion

lInteger
lIntegerMinMax
[Option

|OptionFeature

Implemented by objects that can have ATP calculated.

Implemented by all selectable BOM items.

Implemented by objects that want to find out about added components.
Implemented by objects that want to find out about added components.
Implemented by objects that have an associated integer count.

Implemented by objects that can both get and set a decimal value.
Implemented by objects that have a decimal minimum and maximum value.

Implemented by functional companion objects attached to components in
order to provide programatic functionality to a configuration model.

Implemented by objects that have an integer value.
Implemented by objects that have an integer minimum and maximum.
Implemented by objects that act as options.

Implemented by objects that contain selectable options.

Package oracle.apps.cz.cio B-1

Class Summary

[Price
IReadOnlyDecimal
IRuntimeNode
[State

[Text

Classes
BomModel
BomNode
BomOptionClass
BomStditem
BooleanFeature
Clo

CompanionNode

CompanionRoot

CompanionValidationFailure
Component
ComponentNode
ComponentSet
ConfigTransaction
Configuration

CountFeature
DecimalFeature

DecimalNode

Factory

FunctionalCompanion

Implemented by objects that can be priced.

Implemented by objects that have a decimal value.
Implemented by all objects in the runtime configuration tree.
Implemented by objects that have logic state.

Implemented by objects that have a textual value.

Represents configurable BOM Models.
Represents configurable BOM option classes.
Represents configurable BOM option classes.
Represents configurable BOM models.
Represents a feature with a boolean value.

Implements a configuration integration object that can be used to create, save,
restore and delete configurations.

Provides methods for extracting values from a model based on property
annotations.

Provides functional companion implementors with property-based feature
extraction.

Failure produced by a functional companion object.

Implements the runtime configuration behavior of products and components.
Represents a set of configurable components.

Represents a set of configurable components.

Represents a configuration transaction.

The top-level entry point to a configuration.

Represents a countable integer feature.

Represents a feature with a decimal value.

An abstract class implementing behavior common to objects with a decimal
value.

Provides a class factory for the CIO to clients that do not support arguments to
constructors.

Base object on which user functional companions can be based.

B-2 Oracle Configuration Interface Object (ClO) Developer’s Guide

Class Summary

FunctionalCompanionException

IntegerFeature
IntegerNode

Option

OptionFeature
OptionFeatureNode
OptionNode

Property
ReadOnlyDecimalNode

Reason

Resource
RestoreValidationFailure
RuntimeNode

StateCountNode

StateNode

Statuslnfo

TextFeature

TextNode

Total

ValidationFailure
Exceptions
AtpUnavailableException

BomExplosionException

FuncCompCreationException

This exception is used to indicate that an error occured somewhere inside the
functional companion.

Represents a feature with an integer value.
Represents a feature with an integer value.
Represents an option of an option feature.
Represents a feature with selectable options.
An abstract class implementing behavior commont to all features with options.
An abstract class implementing behavior common to all option-like objects.
Represents name/value properties associated with runtime nodes.

An abstract class implementing behavior common to objects with a decimal
value.

This class wraps the information returned by a contradiction in order to
include information about internal error messages.

Represents a consumable resource.
Failure produced when restoring a configuration over a changed model.
Abstract class implementing common behavior across all runtime nodes.

Abstract class implementing common behavior for nodes with a logic state
and count.

Abstract class implementing common behavior across nodes with logic state.
Contains information about a status change for a particular runtime node.
Represents a feature that has a textual value.

Represents a feature that has a textual value.

Represents a total that has a decimal numeric value.

Implements behavior common to all validation failures.

Signals that the CIO ATP calculation functionality is not available.

Exception which is thrown when a client tries to create a configuration directly
from an Apps bill of material and there is a problem with the explosion of the
bill.

Signalled if a functional companion cannot be created.

Package oracle.apps.cz.cio B-3

Class Summary

IncompatiblelnputException

LogicalException
LogicalOverridableException
LogicalRuntimeException
MissingFileException
MissingLogicException

NoAtpCalculatedException

NoConfigHeaderException

NonPricedNodeException

NoSuchChildException

NotOneProductException

NotOneProjectException

PricingUnavailableException

SelectionNotMutexedException

TransactionException

Signalled if a particular input is of different type than the node it is trying to
restore over.

Signalled if a logical failure occurs.

Signalled if a logical contradiction occurs that can be overriden.
Signalled if a fatal logic exception occured.

Signalled if a particular logic file is missing.

Signalled if a particular logic record is missing.

Exception which is thrown when an ATP method is called on an item for
which ATP is not calculated.

Signalled if the configuration hasn't been saved yet.

Exception which is thrown when a pricing method is called on an item which
should not be priced.

Signalled if a requested child does not exist.

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project contains more than one or no
products.

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project name identifies more than
one or no projects.

Signals that the CIO pricing functionality is not available.

Signalled when an mutexed selection operation is performed on an option
feature that does not support mutexed selection.

Signalled if a particular logic file is missing.

B-4 Oracle Configuration Interface Object (ClO) Developer’s Guide

AtpUnavailableException

oracle.apps.cz.cio
AtpUnavailableException

Syntax
public class At plhavai | abl eException extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. At pUnavai | abl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signals that the CIO ATP calculation functionality is not available.

Member Summary

Constructors
AtpUnavailableException(String)

AtpUnavailableException(String,
Object, Log)

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-5

AtpUnavailableException

Constructors

AtpUnavailableException(String)

public Atplhavail abl eException(java.lang. Sring reason)
AtpUnavailableException(String, Object, Log)

public Atplhavail abl eException(java.lang. Sring reason, java.lang. (bject
source, oracl e. apps. f nd. conmon. Log | og)

B-6 Oracle Configuration Interface Object (ClO) Developer’s Guide

BomExplosionException

oracle.apps.cz.cio
BomExplosionException

Syntax
public cl ass BonExpl osi onExcepti on extends java. | ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. BonExpl osi onExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a client tries to create a configuration directly from
an Apps bill of material and there is a problem with the explosion of the bill.

Member Summary

Methods
getExplosionDate()
getlnventoryltemlid()

getOrganizationld()

Inherited Member Summary

Methods inherited from class java.lang.Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

Package oracle.apps.cz.cio B-7

BomExplosionException

Inherited Member Summary

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods

getExplosionDate()
public java.util.Date get Expl osi onDate()

getinventoryltemid()
public int getlnventoryltemd()

getOrganizationid()
public int getQganizationld()

B-8 Oracle Configuration Interface Object (ClO) Developer’s Guide

BomModel

oracle.apps.cz.cio
BomModel

Syntax
public class BonMbdel extends Bom\bde

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

I
+- - BoniNode

+--oracl e. apps. cz. ci 0. Bonmvbdel

All Implemented Interfaces:
|Atp, IBomitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM Models.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Package oracle.apps.cz.cio B-9

BomModel

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(), getAtpNotifications(),
getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getinventoryltemlid(), getltemKey(), getListPrice(), getMaxQuantity(),
getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationld(), getPrimaryUomCode(), getState(), getUomCode(),
hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(), isRequired),
isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode
isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IBomItem

getComponentCode(), getinventoryltemld(), getMaxQuantity(), getMinQuantity(), getOrganizationld(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState
getState(), setState(int), unset()

Methods inherited from interface ICount

B-10 Oracle Configuration Interface Object (CIO) Developer's Guide

BomModel

Inherited Member Summary

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-11

BomNode

oracle.apps.cz.cio
BomNode

Syntax
public abstract class Borm\bde extends (pti onFeat ureNode inpl enents | Bormtem

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

+--oracl e. apps. cz. ci 0. BomNode

Direct Known Subclasses:
BonMbdel , Bompti ond ass, Bon&tdltem

All Implemented Interfaces:
|Atp, IBonitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM option classes.

Member Summary

Methods
addAtpNotification(String)
calculateAtpDate()
clearAtpDate()
clearAtpNotifications()

deselect()

B-12 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Member Summary

getAtpDate()
getAtpNotifications()
getComponentCode()
getDefaultQuantity()
getDiscountedPrice()
getlnventoryltemlid()
getltemKey()
getListPrice()
getMaxQuantity()
getMaxSelected()
getMinQuantity()
getMinSelected()
getOrganizationld()
getPrimaryUomCode()
getState()
getUomCode()
hasDefaultQuantity()
hasMaxQuantity()
hasMaxSelected()
hasMinQuantity()
hasMinSelected()
isOptionMutexed()
isRequired()
isSelected()
isSelectionMutexed()
select()
select(IOption)
setAtpDate(Date)

Package oracle.apps.cz.cio B-13

BomNode

Member Summary

setState(int)

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode
isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IOptionFeature
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from interface IState

unset()

Methods inherited from interface ICount
getCount(), setCount(int), unset()

Methods inherited from interface IPrice

B-14 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Inherited Member Summary

getDatabaselD(), getExtendedPrice(), getPricingNotifications()
Methods inherited from interface IAtp
getDatabaselD()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),

toString(boolean)

Methods

addAtpNotification(String)

public void addAt pNoti fication(java.lang. Sring nessage)

calculateAtpDate()
public void cal cul at eAt pDat e()

clearAtpDate()
public void cl ear At pDat e()

clearAtpNotifications|()
public void cl ear ApNotifications()

deselect()
public void desel ect()
Specified By:
deselect() in interface IOption
getAtpDate()

public java. util.Date get At pDate()

Specified By:
getAtpDate() in interface IAtp

Package oracle.apps.cz.cio B-15

BomNode

getAtpNotifications()
public java.lang. Sring get A pNotifications()

Specified By:
getAtpNotifications() in interface IAtp

getComponentCode()
public java.lang. Sring get Conponent Gode()

Specified By:

getComponentCode() in interface IBomItem

getDefaultQuantity()
public int getDefaul tQuantity()

getDiscountedPrice()
publ i ¢ doubl e get b scount edPri ce()

Specified By:

getDiscountedPrice() in interface IPrice

Specified By:

getDiscountedPrice() in interface IPrice

Overrides:
getDiscountedPrice() in class StateCountNode

getinventoryltemid()
public int getlnventoryltemd()

Specified By:

getInventoryltemlId() in interface IBomlItem

getltemKey()
public java.lang. Sring getltenkey()

B-16 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Specified By:

getltemKey() in interface IPrice

Specified By:
getltemKey() in interface IAtp

Specified By:

getltemKey() in interface IPrice

Overrides:
getltemKey() in class StateCountNode

getListPrice()
publ i c doubl e getListPrice()
Specified By:
getListPrice() in interface IPrice
Specified By:
getListPrice() in interface IPrice
Overrides:
getListPrice() in class StateCountNode
getMaxQuantity()
public int get MxQuantity()
Specified By:
getMaxQuantity() in interface IBomltem
getMaxSelected()

public int get MxSel ected()

Specified By:
getMaxSelected() in interface IOptionFeature

Package oracle.apps.cz.cio B-17

BomNode

Specified By:
getMaxSelected() in interface IOptionFeature

getMinQuantity()
public int getMnQuantity()

Specified By:
getMinQuantity() in interface IBomItem

getMinSelected()
public int getM nSel ected()

Specified By:
getMinSelected() in interface IOptionFeature

Specified By:
getMinSelected() in interface IOptionFeature

getOrganizationid()
public int getQganizationld()

Specified By:

getOrganizationld() in interface IBomItem

getPrimaryUomCode()
public java.lang. Sring getPri marylUonGode()

Specified By:

getPrimaryUomCode() in interface IBomItem

getState()
public int getSate()

Specified By:
getState() in interface IState

B-18 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Overrides:
getState() in class StateNode

getUomCode()
public java.lang. Sring get UonCode()

Specified By:

getUomCode() in interface IPrice

Specified By:
getUomCode() in interface [Atp

Specified By:

getUomCode() in interface IPrice

Overrides:
getUomCode() in class StateCountNode

hasDefaultQuantity()
publ i ¢ bool ean hasDef aul t Quanti ty()

hasMaxQuantity()
publ i ¢ bool ean hasMaxQuanti ty()

Specified By:
hasMaxQuantity() in interface IBomltem

Package oracle.apps.cz.cio B-19

BomNode

hasMaxSelected()

publ i ¢ bool ean hasvaxSel ect ed()

Specified By:
hasMaxSelected() in interface IOptionFeature

Specified By:
hasMaxSelected() in interface IOptionFeature

hasMinQuantity()

publ i ¢ bool ean hasM nQuanti ty()

Specified By:
hasMinQuantity() in interface IBomItem

hasMinSelected()

publ i ¢ bool ean hasM nSel ect ed()

Specified By:
hasMinSelected() in interface IOptionFeature

Specified By:
hasMinSelected() in interface IOptionFeature

isOptionMutexed()

isRequired()

publ i ¢ bool ean i sQpti onMut exed()

Specified By:
isOptionMutexed() in interface IOption

publ i ¢ bool ean i sRequi red()

Specified By:

isRequired() in interface IBomltem

B-20 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

isSelected()

publ i ¢ bool ean i sSel ect ed()

Specified By:
isSelected() in interface IOption

isSelectionMutexed()

select()

select(IOption)

publ i ¢ bool ean i sSel ecti onMit exed()

Specified By:

isSelectionMutexed() in interface IOptionFeature

Specified By:

isSelectionMutexed() in interface IOptionFeature

Overrides:
isSelectionMutexed() in class OptionFeatureNode

public void sel ect()

Specified By:

select() in interface IOption

public void sel ect (I Qption option)

Specified By:

select(IOption) in interface IOptionFeature

Specified By:

select(IOption) in interface IOptionFeature

Overrides:
select(IOption) in class OptionFeatureNode

Package oracle.apps.cz.cio

B-21

BomNode

setAtpDate(Date)
public void setAtpDate(java.util.Date atpDate)

setState(int)
public void setSate(int newxtate)

Specified By:

setState(int) in interface IState

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Overrides:
setState(int) in class StateNode

B-22 Oracle Configuration Interface Object (CIO) Developer’'s Guide

BomOptionClass

oracle.apps.cz.cio
BomOptionClass

Syntax
public class BonQptiond ass extends Boniode

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

I
+- - BoniNode

+--oracl e. apps. cz. ci 0. BonOpti onCl ass

All Implemented Interfaces:
|Atp, IBomitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM option classes.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Package oracle.apps.cz.cio B-23

BomOptionClass

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(), getAtpNotifications(),
getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getinventoryltemlid(), getltemKey(), getListPrice(), getMaxQuantity(),
getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationld(), getPrimaryUomCode(), getState(), getUomCode(),
hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(), isRequired),
isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode
isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IBomItem

getComponentCode(), getinventoryltemld(), getMaxQuantity(), getMinQuantity(), getOrganizationld(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState
getState(), setState(int), unset()

Methods inherited from interface ICount

B-24 Oracle Configuration Interface Object (CIO) Developer’'s Guide

BomOptionClass

Inherited Member Summary

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-25

BomStditem

oracle.apps.cz.cio
BomStditem

Syntax
public class Bon&tdltemextends Boribde

j ava. | ang. (hj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

I
+- - BoniNode

+--oracl e. apps. cz. ci 0. BonStdl tem

All Implemented Interfaces:
|Atp, IBonitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM models.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

B-26 Oracle Configuration Interface Object (CIO) Developer's Guide

BomStdltem

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(), getAtpNotifications(),
getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getinventoryltemlid(), getltemKey(), getListPrice(), getMaxQuantity(),
getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationld(), getPrimaryUomCode(), getState(), getUomCode(),
hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(), isRequired(),
isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode
isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int), unset()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IBomItem

getComponentCode(), getinventoryltemld(), getMaxQuantity(), getMinQuantity(), getOrganizationld(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState
getState(), setState(int), unset()

Methods inherited from interface ICount

Package oracle.apps.cz.cio B-27

BomStditem

Inherited Member Summary

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-28 Oracle Configuration Interface Object (CIO) Developer's Guide

BooleanFeature

oracle.apps.cz.cio
BooleanFeature

Syntax
public class Bool eanFeat ure extends S ateNode

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

+-oracl e. apps. cz. ci 0. Bool eanFeat ur e

All Implemented Interfaces:
| Runti neNode, |Sate

Description
Represents a feature with a boolean value.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateNode

Package oracle.apps.cz.cio B-29

BooleanFeature

Inherited Member Summary

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-30 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

oracle.apps.cz.cio
ClO

Syntax

public class A O extends java.lang. j ect

j ava. | ang. (oj ect

+--oracl e. apps.cz.cio.ClO

Description

Implements a configuration integration object that can be used to create, save,
restore and delete configurations.

Member Summary

Constructors

ClO()

Methods

clearLogicFile(String)
clearLogicFileCache()

close()
closeConfiguration(Configuration)

createConfiguration(int, Context)

createConfiguration(int, int, Context)

createConfiguration(int, int, Date,
Context)

createConfiguration(String, Context)
getActiveModelPath()

restoreConfiguration(DbConfigHeade
r, Context)

Constructs a newly allocated configuration integration object.

Clears only the key specified file from the LCE file cache

Clears all LogicFile objects from the logic file cache.

Closes the CIO object and all associated runtime objects.

Deletes all runtime structure and memory associated with a configuration.

Creates a new configuration based on a root model node ID representing a
configurable product or component.

Creates a new BOM explosion configuration based on inventoryltemld,
organizationld, and explosionDate representing a configurable product or
component.

Creates a new configuration based on a project name representing a configurable
product or component.

Gets the current active model path.

Restores a configuration from the database.

Package oracle.apps.cz.cio B-31

Clo

Member Summary

restoreConfiguration(int, int, Context) Restores a configuration from the database.

setActiveModelPath(String) Sets the path to the directory where the CIO will look for logic files, and where it
will store logic files when generating them out of the database.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructors
Clo()

public 4AQ)

Constructs a newly allocated configuration integration object.
Methods

clearLogicFile(String)

public void cl earLogi cH | e(j ava.l ang. Sring key)
Clears only the key specified file from the LCE file cache

clearLogicFileCache()

public void cl earLogi cH | eCache()
Clears all LogicFile objects from the logic file cache.

close()

public void cl ose()
Closes the CIO object and all associated runtime objects.

closeConfiguration(Configuration)

public void cl oseConfiguration(Configuration confi g)
Deletes all runtime structure and memory associated with a configuration.

B-32 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

Parameters:
confi g - the configuration to be deleted.

See Also:
Configuration

createConfiguration(int, Context)

public Configuration createConfiguration(int rootNodel D,

oracl e. apps. f nd. coomon. Cont ext ct x)

Creates a new configuration based on a root model node ID representing a
configurable product or component.

Parameters:

r oot Nodel D- the ID of the DIO model node representing the product or
configuration to be configured.

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

createConfiguration(int, int, Context)

public Configuration createConfiguration(int projectlD int rootNodel D,
oracl e. apps. f nd. coomon. Cont ext ct x)

Deprecated.

Creates a new configuration based on a project ID and root model node ID both
representing a configurable product or component.

Package oracle.apps.cz.cio B-33

Clo

Parameters:

proj ect | D- the ID of the DIO project representing the product or configuration to
be configured.

r oot Nodel D- the ID of the DIO model node representing the product or
configuration to be configured.

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

createConfiguration(int, int, Date, Context)

public Configuration createConfiguration(int inventoryltemd, int

organi zationld, java.util.Date expl osi onDate, oracle. apps. f nd. common. Gont ext
ctx)

Creates a new BOM explosion configuration based on inventoryltemld,
organizationld, and explosionDate representing a configurable product or
component.

Parameters:
i nvent oryl t em d - the inventory item id of the BOM explosion model

or gani zat i onl d - the organization id of the BOM explosion model
expl osi onDat e - the effective date of the BOM explosion model

ct x - the Context object representing the application context

Returns:
a new configuration.

B-34 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

Throws:

NotOneProductException - if the specified project contains more than one or no
products

LogicalException - if a logic failure is encountered when initializing the
configuration.

See Also:
Configuration

createConfiguration(String, Context)

public Configuration createConfiguration(java.lang.String projectNang,

oracl e. apps. f nd. coomon. Cont ext ct x)

Creates a new configuration based on a project name representing a configurable
product or component.

Parameters:

pr oj ect Nane - the name of the DIO project representing the product or
configuration to be configured.

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:

NotOneProductException - if the specified project contains more than one or no
products

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

getActiveModelPath()

public java.lang. Sring getActi veMbdel Pat h()
Gets the current active model path.

Package oracle.apps.cz.cio B-35

Clo

Returns:
the active model path.

restoreConfiguration(DbConfigHeader, Context)

public Configuration

rest oreConfi gurati on(oracl e. apps. cz. di 0. confi g. DbConf i gHeader header,
oracl e. apps. f nd. coomon. Cont ext ct x)

Restores a configuration from the database.

Parameters:
t he - header containing information identifying the configuration to be restored.

ct x - the Context object representing the application context

Returns:
the restored configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

restoreConfiguration(int, int, Context)

public Configuration restoreCnfiguration(int configHeaderID int revNunber,
oracl e. apps. f nd. coomon. Cont ext ct x)
Restores a configuration from the database.

Parameters:
t he - ID of the header containing information identifying the configuration to be
restored.

t he - revision number of the header containing information identifying the
configuration to be restored.

ct x - the Context object representing the application context

B-36 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

Returns:
the restored configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

setActiveModelPath(String)

public voi d setActi veMbdel Pat h(j ava. | ang. String pat h)
Sets the path to the directory where the CIO will look for logic files, and where it
will store logic files when generating them out of the database.

Parameters:

pat h - the path to the active model directory which should include the trailing path
separator.

Package oracle.apps.cz.cio B-37

CompanionNode

oracle.apps.cz.cio
CompanionNode

Syntax

public class Conpani onNode ext ends j ava. | ang. (bj ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. ci 0. Conpani onNode

Description

Provides methods for extracting values from a model based on property
annotations.

Created by a parent CompanionRoot from a functional companion and used to get
property-mapped feature information.

Member Summary

Methods
getBoolean(String)
getBoolean(String, boolean)
getChildren()
getDouble(String)
getDouble(String, double)
getFeature(String)

getinteger(String)
getinteger(String, int)
getString(String)
getString(String, String)
hasFeature(String)

Returns the value of a boolean feature.

Returns the value of a boolean feature, or the default if features is not present.
Returns all of the CompanionNode children of this CompanionNode.
Returns the value of a double feature.

Returns the value of a double feature, or the default if features is not present.

Get the runtime node representing a particular feature based on its property
annotation.

Returns the value of an integer feature.

Returns the value of an integer feature, or the default if features is not present.
Returns the value of a string feature.

Returns the value of a string feature, or the default if the feature is not present.

Returns true if this CompanionNode contains the named feature.

B-38 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionNode

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods

getBoolean(String)

publ i ¢ bool ean get Bool ean(j ava. |l ang. S ring nane)
Returns the value of a boolean feature.

getBoolean(String, boolean)

publ i c bool ean get Bool ean(j ava. |l ang. ring nane, bool ean dflt)
Returns the value of a boolean feature, or the default if features is not present.

getChildren()

public comsun.java. util.collections.List getChildren()
Returns all of the CompanionNode children of this CompanionNode.

getDouble(String)

publ i c doubl e get Doubl e(j ava. |l ang. Sring nane)
Returns the value of a double feature.

getDouble(String, double)

publ i c doubl e get Doubl e(j ava.lang. Sring nane, double dflt)
Returns the value of a double feature, or the default if features is not present.

getFeature(String)

public | Runti neNode get Feature(java.lang. Sring nane)
Get the runtime node representing a particular feature based on its property
annotation.

getinteger(String)

public int getlnteger(java.lang. Sring nane)
Returns the value of an integer feature.

Package oracle.apps.cz.cio B-39

CompanionNode

getinteger(String, int)
public int getlnteger(java.lang. Sring nane, int dflt)
Returns the value of an integer feature, or the default if features is not present.

getString(String)

public java.lang. Sring get Sring(java.lang. Sring nane)
Returns the value of a string feature.

getString(String, String)

public java.lang. Sring get Sring(java.lang. Xring nane, java.lang. Sring dflt)
Returns the value of a string feature, or the default if the feature is not present.

hasFeature(String)

publ i ¢ bool ean hasFeat ure(j ava.lang. Sring nane)
Returns true if this CompanionNode contains the named feature.

B-40 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionRoot

oracle.apps.cz.cio
CompanionRoot

Syntax
public abstract class Conpani onRoot extends j ava. | ang. (bj ect

j ava. | ang. (oj ect

+--oracl e. apps. cz. ci 0. Conpani onRoot

Description

Provides functional companion implementors with property-based feature
extraction.

An abstract class to be extended by functional companion implementors which
attaches CompanionNode objects to runtime nodes and makes model features
available to the function companion through a flexible system of property-based
annotations.

In order to use this class, the implementor should provide implementations of
getNodeldentifier() , which returns the name of the property used to identify
runtime nodes to which Conpani onNodes will be attached, getFeatureldentifier()
which returns the name of the property used to identify features of the

Conpani onNode, and getNodeClass(String) which maps the value of the

get Nodel denti fi er property to the subclass of Conpani onNode that should be
instantiated to represent a particular node.

Member Summary

Constructors

CompanionRoot(IRuntimeNode) Creates a tree of companion node objects based on property annotations.
Methods

getFeatureldentifier() Returns the name of the property used to identify companion features.
getNodeClass(String) Maps a node type to the class used to represent the node.

Package oracle.apps.cz.cio B-41

CompanionRoot

Member Summary

getNodeldentifier() Returns the name of the property used to identify companion nodes.

getRootNodes() Returns the root CompanionNode objects.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructors

CompanionRoot(IRuntimeNode)

public Gonpani onRoot (| Runti neNode r oot)
Creates a tree of companion node objects based on property annotations.

Methods
getFeatureldentifier()
public abstract java.lang. Sring get Featureldentifier()
Returns the name of the property used to identify companion features.
getNodeClass(String)
public abstract java.lang. Sring get Noded ass(j ava. | ang. S ring nodeType)
Maps a node type to the class used to represent the node.
getNodeldentifier()

public abstract java.lang. String get Nodel dentifier()

Returns the name of the property used to identify companion nodes. Runtime
nodes that have a property of this name will be mapped to Conpani onNode
objects. The value of the property will be mapped through the
getNodeClass(String) method to determine which subclass of Conpani onNode to
instantiate.

B-42 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionRoot

getRootNodes()

public comsun.java. util.collections.List getRoot Nodes()
Returns the root CompanionNode objects.

Package oracle.apps.cz.cio B-43

CompanionValidationFailure

oracle.apps.cz.cio
CompanionValidationFailure

Syntax
public class Conpani onVal i dationFail ure extends ValidationFail ure

j ava. | ang. (bj ect

+-Satuslnfo

+--Val idationFail ure

+-oracl e. apps. cz. ci 0. Conpani onVal i dati onFai |l ure

Description
Failure produced by a functional companion object.

Member Summary

Constructors

CompanionValidationFailure(String,
|IRuntimeNode,
IFunctionalCompanion)

Methods
equals(Object)
getCompanion() Returns the companion in which this validation failure occurred.

hashCode()

Inherited Member Summary

Fields inherited from class ValidationFailure

COMPANION_FAILURE, MAX_FAILURE, MIN_FAILURE, MINO_FAILURE, MINMAX_FAILURE, RESOURCE_FAILURE, RESTORE_
FAILURE

Fields inherited from class StatusInfo

B-44 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionValidationFailure

Inherited Member Summary

STATUS_DELETED, STATUS_EXISTING, STATUS_NEW
Methods inherited from class ValidationFailure
getMessage(), getMessage(String), getType(), toString()
Methods inherited from class StatusInfo

getNode(), getStatus(), statusToString(int), toString(boolean)
Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Constructors

CompanionValidationFailure(String, IRuntimeNode, IFunctionalCompanion)

public GConpani onValidationFailure(java.lang. Sring nmessage, |RuntineNode node,
| Funct i onal Gonpani on conpani on)

Methods

equals(Object)

publ i ¢ bool ean equal s(j ava. | ang. (hj ect obj)

Overrides:
equals(Object) in class ValidationFailure

getCompanion()

publ i c | Functi onal Conpani on get Gonpani on()
Returns the companion in which this validation failure occurred.

hashCode()
public int hashCode()

Overrides:
hashCode() in class StatusInfo

Package oracle.apps.cz.cio B-45

Component

oracle.apps.cz.cio

Component

Syntax

public class Conponent extends Conponent Node

j ava. | ang. (bj ect

+- - Runt i neNode

+- - Gonponent Node

+-oracl e. apps. cz. ci 0. Conponent

All Implemented Interfaces:
I I nt eger M nMax, | Runti neNode

Description
Implements the runtime configuration behavior of products and components.

Member Summary

Methods

getChildren()

getCount()
getFuncCompByID(int)
getFuncCompByName(String)
getFunctionalCompanions()
getinstanceNumber()
getMax()

getMin()

getName()

getType()

Returns a list of this node's children.

Returns the count of the associated component set.

Returns a particular functional companion based on its ID, null if no match.
Returns a particular functional companion based on its name, null if no match.
Returns a list of all functional companions associated with this component.
Returns the instance number of this component (1 if not in a component set).
Returns the maximum of the design-time component.

Returns the minimum of the design-time component.

Returns the name of this runtime node.

Returns the type of this runtime node.

B-46 Oracle Configuration Interface Object (CIO) Developer's Guide

Component

Member Summary

hasMax() Returns true if the design-time component has a maximum.
hasMin() Returns true if the design-time component has a minimum.

instance TypeToString(int)

isRoot() Returns true if this is the root component in the runtime tree.
isVirtual() Returns true if this component is a virtual component.
setName(String) Sets the name of this component.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ComponentNode
getChildrenByType(int), isActive()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getConfiguration(), getDatabaselD(), getDescription(), getParent(), getProperties(),
getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(), hasDescription(), hasIntegerValue(),
hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(), toString(boolean),
typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(), hasDescription(),
hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getChildren()

public comsun.java. util.collections.List getChildren()
Returns a list of this node's children.

Package oracle.apps.cz.cio B-47

Component

Overrides:
getChildren() in class RuntimeNode

getCount()

public int getCount()

Returns the count of the associated component set.
getFuncCompByID(int)

publ i c | Functi onal Conpani on get FuncConpByl (i nt i d)
Returns a particular functional companion based on its ID, null if no match.

getFuncCompByName(String)

publ i c | Functi onal Conpani on get FuncConpByNane(j ava. | ang. St ri ng nane)
Returns a particular functional companion based on its name, null if no match.

getFunctionalCompanions()

public comsun.java. util.collections.List getFunctional Conpani ons()
Returns a list of all functional companions associated with this component.

getinstanceNumber()

public int getlnstanceNunber ()
Returns the instance number of this component (1 if not in a component set).

getMax()

public int getMx()

Returns the maximum of the design-time component.
getMin()

public int getMn()

Returns the minimum of the design-time component.
getName()

public java.lang. Sring get Nang()
Returns the name of this runtime node.

Overrides:
getName() in class RuntimeNode

B-48 Oracle Configuration Interface Object (CIO) Developer's Guide

Component

getType()

hasMax()

hasMin()

public int getType()
Returns the type of this runtime node.

Overrides:
getType() in class RuntimeNode

publ i ¢ bool ean hasiax()
Returns true if the design-time component has a maximum.

publ i ¢ bool ean hasM n()
Returns true if the design-time component has a minimum.

instanceTypeToString(int)

isRoot()

isVirtual()

setName(String)

public static java. lang. Sring i nstanceTypeToSring(int instanceType)

publ i ¢ bool ean i sRoot ()
Returns true if this is the root component in the runtime tree.

public bool ean i sMrtual ()
Returns true if this component is a virtual component.

public voi d set Nane(j ava. | ang. Stri ng newNane)
Sets the name of this component. NOTE: The method setName() shouldn't be used
and may be removed in a future release.

Package oracle.apps.cz.cio B-49

ComponentNode

oracle.apps.cz.cio
ComponentNode

Syntax
public abstract class Gonponent Node extends Runti neNode i npl enent s
I I nt eger M nMax

j ava. | ang. (bj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. Conponent Node

Direct Known Subclasses:
Gonponent, Gonponent Set

All Implemented Interfaces:
I I nteger M nMax, | Runti neNode

Description
Represents a set of configurable components.

Member Summary

Methods
getChildrenByType(int) Returns a list of all children of a given type.
isActive() Returns true if this node has been activated.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

B-50 Oracle Configuration Interface Object (CIO) Developer's Guide

ComponentNode

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaselD(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IIntegerMinMax
getMax(), getMin(), hasMax(), hasMin()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaselD(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(), hasDecimalValug(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getChildrenByType(int)

public comsun.java. util.collections.List getChildrenByType(int type)
Returns a list of all children of a given type.

Specified By:
getChildrenByType(int) in interface IRuntimeNode

Overrides:
getChildrenByType(int) in class RuntimeNode

isActive()

publ i c bool ean isActive()
Returns true if this node has been activated.

Package oracle.apps.cz.cio B-51

ComponentSet

oracle.apps.cz.cio
ComponentSet

Syntax
public class Conponent Set ext ends Conponent Node

j ava. | ang. (hj ect

I
+- - Runt i neNode

I
+- - Gonponent Node

+-oracl e. apps. cz. ci 0. Conponent Set

All Implemented Interfaces:
I I nt eger M nMax, | Runti neNode

Description
Represents a set of configurable components.

Member Summary

Methods
add()

addConfigEventListener(ICompSetEv Add a listener that is notified when a component is added or deleted.
entListener)

delete(Component)
getChildByInstanceNumber(int)
getCount()

getMax()

getMin()

getType()
hasMax()
hasMin()

B-52 Oracle Configuration Interface Object (CIO) Developer's Guide

ComponentSet

Member Summary

removeConfigEventListener(ICompSe Remove a listener that is notified when a component is added or deleted.
tEventListener)

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ComponentNode
getChildrenByType(int), isActive()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaselD(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(), hasDescription(),
hasIntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

add()
publ i ¢ Conponent add()

addConfigEventListener(ICompSetEventListener)

public voi d addConfi gEvent Li st ener (| ConpSet Event Li st ener |i stener)
Add a listener that is notified when a component is added or deleted.

delete(Component)
public void del et e(Conponent conponent)

Package oracle.apps.cz.cio B-53

ComponentSet

getChildBylnstanceNumber(int)
publ i ¢ Conponent get Chi | dByl nst anceNunber (i nt i nst Nur)

getCount()

public int getCount()
getMax()

public int getMx()
getMin()

public int getMn()
getType()

public int getType()

Overrides:

getType() in class RuntimeNode
hasMax()

publ i ¢ bool ean hasiax()
hasMin()

publ i ¢ bool ean hasM n()
removeConfigEventListener(ICompSetEventListener)

public voi d renmoveConfi gEvent Li st ener (1 GonpSet Event Li st ener | i st ener)
Remove a listener that is notified when a component is added or deleted.

B-54 Oracle Configuration Interface Object (CIO) Developer's Guide

ConfigTransaction

oracle.apps.cz.cio
ConfigTransaction

Syntax
public class GonfigTransaction extends oracl e. apps. cz. ci 0. Basi cConfi gActi on

j ava. | ang. (oj ect

+--oracl e. apps. cz. ci 0. Basi cConfi gAction

+--oracl e. apps. cz. ci 0. Confi gTransacti on

Description
Represents a configuration transaction.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Package oracle.apps.cz.cio B-55

Configuration

oracle.apps.cz.cio
Configuration

Syntax

public class Gonfiguration

oracl e. apps. cz. ci 0. Confi gurati on

Description
The top-level entry point to a configuration.

Member Summary

Methods

addConfigEventListener(IConfigEvent
Listener)

addConfigMessage(String, String)
beginConfigTransaction()
beginConfigTransaction(boolean)
calculateAtpDates()
calculateListPrices()

canPerform()

canUndo()
clearConfigMessages()
close()

commitConfigTransaction(ConfigTran
saction)

endConfigTransaction(ConfigTransact
ion)

finalizeWorkaround()

getAltPricingAtpContext()

Add a listener that is notified when a component is added or deleted.

Adds a configuration message to be saved to the cz_config_messages table.
Creates a new transaction.

Creates a new transaction and specifies the auto commit mode.

Calculates ATP dates for all IAtp nodes in the tree.

Calculates list prices of all IPrice nodes within configuration.

Returns true if there is at least one undone or not commited transaction that can be
performed.

Returns true if there are performed transactions that can be undone.
Removes all configuration messages added by addConfigMessage.
Close the Configuration object and all associated runtime objects.

Commits the given transaction if it matches with current one in the configuration.

Ends the given transaction if it matches with current one in the configuration.

Returns context that was added to the configuration through
setAltPricing AtpContext, or null if no alternate pricing/ATP context exists.

B-56 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Member Summary

getCIO()
getConfigHeaderCheckoutUser()
getConfigHeaderDateCreated()
getConfigHeaderDescription()
getConfigHeaderEffectiveFrom()
getConfigHeaderEffectiveTo()
getConfigHeaderld()
getConfigHeaderLastUpdateDate()
getConfigHeaderName()
getConfigHeaderNote()

getConfigHeaderNumberQuotesUsed
In()

getConfigHeaderOpportunityHeaderl
d()

getConfigHeaderRevision()
getConfigHeaderStatus()
getConfigHeaderUiDefinitionld()
getConfigHeaderUserldCreated()
getContext()

getlnitParameters()
getLastContradiction()
getProjectID()
getRootBomModel()
getRootBomModel(int, int)

getRootComponent()
getRootComponentDbld()
getRuntimeNode(int)

Gets the CIO that created this configuration.

Gets the user who has the config header checked out.
Gets the date when the config header was creaed.

Gets the description of the config header.

Gets the date from which the config header is effective.
Gets the date towhich the config header is effective.
Gets the id of the config header.

Gets the date when the config header was last updated.
Gets the name of the config header.

Gets the note of the config header.

Gets the config header number quotes used in.
Gets the opportunity header id of the config header .

Gets the revision of the config header.

Gets the status of the config header.

Gets the Ul definition id in the config header.

Gets the id of the user who created the config header.

Returns the Context object associated with this configuration

Gets initialization parameters, which are stored in a NameValuePairSet object.
Returns the most recent contradiction.

Gets the database ID of the project from which this configuration was created.
Returns the root BOM Model node, if there is associated with this configuration.

Returns the root BOM Model node with the given inventory item ID and
organization ID

Gets the root product or component of the configuration.
Gets the database id of the root component.

Fetches a runtime node based on a runtime ID.

Package oracle.apps.cz.cio B-57

Configuration

Member Summary

getSelectedltems()

getTotalDiscountedPrice()
getTransactionDepth()

getUnsatisfiedltems()

getValidationFailures()

isUnsatisfied()
perform()

removeConfigEventListener(IConfigE
ventListener)

restartConfiguration(boolean)

rollbackConfigTransaction(ConfigTran
saction)

save()
saveAs(int, int)
saveNew()
saveNewRev()

setAltPricingAtpContext(Context)

setConfigHeaderCheckoutUser(String
)

setConfigHeaderDateCreated(Timest
amp)

setConfigHeaderDescription(String)

setConfigHeaderEffectiveFrom(Times
tamp)

setConfigHeaderEffectiveTo(Timesta
mp)

setConfigHeaderName(String)

Gets a collection of status info objects describing all selected items in the
configuration.

Returns rolled up discounted price of the configuration.
Returns the number of nested transactions (depth).

Gets a collection of status info objects describing all unsatisfied items in the
configuration.

Gets a collection of validation failures describing current problems with the
configuration.

Returns t r ue if the configuration is incomplete.
Perform the next pending transaction.

Remove a listener that is notified when a component is added or deleted.

Restart the current configuration instance without destroying the objects NOTE:
Currently, it works only for values and states.

Rolls back the given transaction if it matches with current one in the configuration.

Saves the restored configuration.

Saves over the current configuration.

Saves a whole new configuration.

Saves a new revision of the restored configuration.

If pricing and ATP information should be retrieved from an alternate Apps
database, the setAltPricingAtpContext method should be called immediately after
the Configuration is created.

Sets the user who has checked out the config header.

Sets the config header creation date.

Sets the config header description.

Sets the date from which the config header is effective.
Sets the date to which the config header is effective.

Sets the config header name.

B-58 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Member Summary

setConfigHeaderNote(String) Sets the config header note.

setConfigHeaderOpportunityHeaderl ~ Sets the config header opportunity header id.
d(int)

setConfigHeaderUiDefinitionld(int) Sets the config header UI definition id.

setlnitParameters(NameValuePairSet Sets configuration initialization parameters, e.g.

)

undo() Undo the previous transaction.

Methods

addConfigEventListener(IConfigEventListener)

public voi d addConfi gEvent Li st ener (| Gonfi gEvent Li stener i stener)
Add a listener that is notified when a component is added or deleted.

addConfigMessage(String, String)

public voi d addConfi gMessage(j ava. | ang. Sring keyword, java.lang. Sring nessage)
Adds a configuration message to be saved to the cz_config_messages table.
Messages are cleared from the Configuration object when the configuration and
messages are saved.

Parameters:
keywor d - keyword describing the type of message, e.g. "CONTRADICTION"

message - message string

beginConfigTransaction()

public ConfigTransacti on begi nConfi gTransacti on()
Creates a new transaction.

Returns:
a reference to the newly created transaction.

beginConfigTransaction(boolean)

publ i c Confi gTransacti on begi nConfi gTransact i on(bool ean aut oCormi t)
Creates a new transaction and specifies the auto commit mode.

Package oracle.apps.cz.cio B-59

Configuration

Returns:
a reference to the newly created transaction.

calculateAtpDates()

public java. util.Date cal cul at eAt pDat es()
Calculates ATP dates for all IAtp nodes in the tree. ATP values can then be retrieved
using IAtp.getAtpDate().

Returns:
configuration level ATP date if calculated, null if not

Throws:

AtpUnavailableException - thrown if configuration initialization parameters
required to run ATP check have not all been provided

calculateListPrices()

public void cal cul ateLi stPrices()
Calculates list prices of all IPrice nodes within configuration. Prices are retrieved
through IPrice.getListPrice.

canPerform()

publ i ¢ bool ean canPerf or n{)

Returns true if there is at least one undone or not commited transaction that can be

performed.
canUndo()

publ i ¢ bool ean canUndo()

Returns true if there are performed transactions that can be undone.
clearConfigMessages()

public voi d cl ear Gonfi gMessages()

Removes all configuration messages added by addConfigMessage.
close()

public void cl ose()
Close the Configuration object and all associated runtime objects.

B-60 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

commitConfigTransaction(ConfigTransaction)

public voi d comm t Confi gTransacti on(Gonfi gTransacti on transacti on)
Commits the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

endConfigTransaction(ConfigTransaction)

public voi d endConfi gTransacti on(Confi gTransacti on transacti on)
Ends the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

finalizeWorkaround()
public void finalizeVrkaround()

getAltPricingAtpContext()

publ i c oracl e. apps. f nd. conmon. Cont ext get Al t Pri ci ngAt pGont ext ()
Returns context that was added to the configuration through
setAltPricing AtpContext, or null if no alternate pricing/ATP context exists.

getCIO()

public QO getd Q)
Gets the CIO that created this configuration.

Returns:
the CIO that created this configuration.

See Also:
CIO

getConfigHeaderCheckoutUser()

public java.lang. Sring get Confi gHeader Checkout User ()
Gets the user who has the config header checked out.

Package oracle.apps.cz.cio B-61

Configuration

Returns:
the config header checkout user.

getConfigHeaderDateCreated()

public java.sql. T nestanp get Gonfi gHeader Dat eQr eat ed()
Gets the date when the config header was creaed.

Returns:
the config header creation date.

getConfigHeaderDescription()

public java.lang. Sring get Confi gHeader Descri ption()
Gets the description of the config header.

Returns:
the config header description.

getConfigHeaderEffectiveFrom()

public java.sql.Tinestanp get Confi gHeader & f ecti veFr ong)
Gets the date from which the config header is effective.

Returns:
the config header 'Effective From' date.

getConfigHeaderEffectiveTo()

public java.sql. T nestanp get Confi gHeader E f ect i veTo()
Gets the date towhich the config header is effective.

Returns:
the config header 'Effective To' date.

getConfigHeaderld()

public int getConfigHeaderld()
Gets the id of the config header.

B-62 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Returns:
the config header id.

getConfigHeaderLastUpdateDate()

public java.sql. T nestanp get Gonfi gHeader Last Updat eDat e()
Gets the date when the config header was last updated.

Returns:
the config header last update date.

getConfigHeaderName()

public java.lang. Sring get Confi gHeader Nane()
Gets the name of the config header.

Returns:
the config header name.

getConfigHeaderNote()

public java.lang. Sring get Confi gHeader Not e()
Gets the note of the config header.

Returns:
the config header note.

getConfigHeaderNumberQuotesUsedin()

public int getGonfi gHeader Nunber Quot esUsedl n()
Gets the config header number quotes used in.

Returns:
the config header number quotes used in.

getConfigHeaderOpportunityHeaderld()

public int getGonfigHeader Qoport uni t yHeader | d()
Gets the opportunity header id of the config header .

Package oracle.apps.cz.cio B-63

Configuration

Returns:
the config header opportunity header id.

getConfigHeaderRevision()

public int getConfigHeader Revi si on()
Gets the revision of the config header.

Returns:
the config header revision.

getConfigHeaderStatus|()

public java.lang. Sring get Confi gHeader & at us()
Gets the status of the config header.

Returns:
the config header status.

getConfigHeaderUiDefinitionld()

public int getConfigHeader U Definitionld()
Gets the Ul definition id in the config header.

Returns:
the config header Ul definition id.

getConfigHeaderUserldCreated()

public int getConfigHeader User | dO eat ed()
Gets the id of the user who created the config header.

Returns:
the config header user id created.

getContext()

public oracl e. apps. f nd. conmon. Cont ext get Cont ext ()
Returns the Context object associated with this configuration

B-64 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

getinitParameters()

publ i ¢ NaneVal uePai r Set get | ni t Par anet ers()
Gets initialization parameters, which are stored in a NameValuePairSet object.

Returns:
initParameters object

getLastContradiction()

public Logi cal Exception getLast Gontradi cti on()
Returns the most recent contradiction.

getProjectiD()
public int getProjectl))
Gets the database ID of the project from which this configuration was created.
Returns:
the project ID.
getRootBomModel()

publ i ¢ BonMbdel get Root Bonivbdel ()
Returns the root BOM Model node, if there is associated with this configuration.

getRootBomModel(int, int)

publ i ¢ BonMbdel get Root Bonbdel (int inventoryltemid, int organizationld)
Returns the root BOM Model node with the given inventory item ID and
organization ID

getRootComponent()

publ i ¢ Conponent get Root Conponent ()
Gets the root product or component of the configuration.

Returns:
the root product or component.

See Also:
Component

Package oracle.apps.cz.cio B-65

Configuration

getRootComponentDbld()

public int get Root Conponent Dbl d()
Gets the database id of the root component.

Returns:
the root component db id.

getRuntimeNode(int)

public | Runti neNode get Runti neNode(int runti nel D
Fetches a runtime node based on a runtime ID.

Parameters:
runt i mel D- the runtime ID of the desired node.

Returns:
the corresponding runtime node.

See Also:
IRuntimeNode

getSelectedltems|()

public comsun.java. util.collections.Collection getSelectedltens()
Gets a collection of status info objects describing all selected items in the
configuration.

Returns:
the collection of status info objects.

getTotalDiscountedPrice()

publ i c doubl e get Tot al O scount edPri ce()
Returns rolled up discounted price of the configuration. Discounted prices on
selected items are available after this call through IPrice.getDiscountedPrice.

getTransactionDepth()

public int getTransactionDepth()
Returns the number of nested transactions (depth).

B-66 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Returns:
the transaction depth.

getUnsatisfiedltems()

public comsun.java. util.collections.Collection getlinsatisfiedl tens()
Gets a collection of status info objects describing all unsatisfied items in the
configuration.

Returns:
the collection of status info objects.

getValidationFailures()

public comsun.java. util.collections.Qllection getValidationFailures()
Gets a collection of validation failures describing current problems with the
configuration.

Returns:
the collection of validation failures.

isUnsatisfied()

publ i ¢ bool ean i slhsati sfied()

Returns t r ue if the configuration is incomplete.

Returns:

a boolean indicating whether the configuration is unsatisfied.
perform()

public void perforng)
Perform the next pending transaction.

removeConfigEventListener(IConfigEventListener)

public voi d removeConfi gEvent Li st ener (1 Gonfi gBvent Li stener |i stener)
Remove a listener that is notified when a component is added or deleted.

restartConfiguration(boolean)
public void restart Configuration(bool ean checkVal i dati ons)

Package oracle.apps.cz.cio B-67

Configuration

Restart the current configuration instance without destroying the objects NOTE:
Currently, it works only for values and states. Additions and deletions are not being
restarted. Therefore, after restart() you get the latest (before the restart) component
instances and cannot undo an instance addition or deletion.

rollbackConfigTransaction(ConfigTransaction)

save()

saveAs(int, int)

saveNew()

saveNewRev()

public void rol | backGnfi gTransact i on(Confi gTransacti on transacti on)
Rolls back the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

public void save()
Saves the restored configuration.

Throws:
NoConfigHeaderException - when this configuration hasn't been previously saved.
Consider calling SaveNew().

Confi gOverwriteNot Al | owedExcept i on - when this configuration is "read
only". Consider calling SaveNewRev() or SaveNew/().

public void saveAs(int configHeaderl D int revNunber)
Saves over the current configuration. It uses the passed ID and revision number to
open a ConfigHeader object and to save the configuration int it

Throws:

Confi gOverwriteNot Al | owedExcept i on - when this configuration is "read
only". Consider calling SaveNewRev() or SaveNew/().

public void saveNew()
Saves a whole new configuration.

public voi d saveNewRev()

B-68 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Saves a new revision of the restored configuration.

Throws:

NoConfigHeaderException - when this configuration hasn't been previously saved.
Consider calling SaveNew().

setAltPricingAtpContext(Context)

public void set A tPrici ngAt pQont ext (oracl e. apps. f nd. common. Cont ext ct X)

If pricing and ATP information should be retrieved from an alternate Apps
database, the setAltPricing AtpContext method should be called immediately after
the Configuration is created.

Parameters:

ct x - Context which represents session on database from which pricing and ATP
information is retrieved

setConfigHeaderCheckoutUser(String)

public void set Confi gHeader Checkout User (j ava. | ang. S ring user)
Sets the user who has checked out the config header.

setConfigHeaderDateCreated(Timestamp)

public void set Confi gHeader Dat eQr eat ed(j ava. sql . Ti nest anp dat eQr eat ed)
Sets the config header creation date.

setConfigHeaderDescription(String)

public void set Confi gHeader Descri ption(java.lang. Sring description)
Sets the config header description.

setConfigHeaderEffectiveFrom(Timestamp)

public void set Confi gHeader B f ecti veFrongj ava. sql . Ti nest anp ef f Fron)
Sets the date from which the config header is effective.

setConfigHeaderEffectiveTo(Timestamp)

public void setConfi gHeader Ef f ecti veTo(j ava. sql . Ti nest anp ef f To)
Sets the date to which the config header is effective.

Package oracle.apps.cz.cio B-69

Configuration

setConfigHeaderName(String)

public voi d set Confi gHeader Nane(j ava. | ang. S ri ng nane)
Sets the config header name.

setConfigHeaderNote(String)

public voi d set Confi gHeader Not e(j ava. | ang. S ring not e)
Sets the config header note.

setConfigHeaderOpportunityHeaderld(int)

public voi d set Confi gHeader Qpport uni t yHeader | d(int i d)
Sets the config header opportunity header id.

setConfigHeaderUiDefinitionld(int)

public void setConfigHeader U Definitionld(int id)
Sets the config header Ul definition id.

setinitParameters(NameValuePairSet)

public void setlnitParaneters(NameVal uePai r Set i nit Paranet ers)
Sets configuration initialization parameters, e.g. order header information. All
parameter values should be provided as String objects.

To use the callback pricing mechanism, the following parameters must be provided:
"pricing_package_name" (required), "price_mult_items_proc" or "price_single_
item_proc" (one is required), "configurator_session_key" (required)

To use Apps 10.7/11.0 pricing for BomNodes ("AMNT" pricing method only), the
following parameters must be provided: "price_list_id" (required), "pricing_
attributel" (optional), "pricing_attribute2" (optional), "pricing_attribute3" (optional),
"pricing_attribute4" (optional), "pricing_attribute5" (optional), "pricing_attribute6"
(optional), "pricing_attribute7" (optional), "pricing_attribute8" (optional), "pricing_
attribute9" (optional), "pricing_attribute10" (optional), "pricing_attributell"
(optional), "pricing_attribute12" (optional), "pricing_attribute13" (optional),
"pricing_attribute14" (optional), "pricing_attributel5" (optional), "ship_to_site_use_
id" (optional), "customer_id" (optional), "invoice_to_site_use_id" (optional), "po_
number” (optional), "agreement_id" (optional), "agreement_type_code" (optional),
"order_type_id" (optional), "gsa" (optional).

NOTE: If the callback parameters and price_list_id are both provided, then the
pricing callback will be run to determine prices.

B-70 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

undo()

To use the callback ATP mechanism, the following parameters must be provided:
"atp_package_name" (required), "get_atp_dates_proc" (required), "configurator_
session_key" (required), "warehouse_id" (required), "requested_date" (optional),
and either "ship_to_org_id" (required) or "customer_id" and "customer_site_id"
(required),

To use Apps 10.7/11.0 ATP calculation methods, the following parameters must be
provided: "user_id" (required), "application_id" (required), "responsibility_id"
(required), "atp_timeout" (required)

public void undo()
Undo the previous transaction.

Package oracle.apps.cz.cio B-71

CountFeature

oracle.apps.cz.cio
CountFeature

Syntax

public class Gount Feature extends S ateCount Node i npl enents | Integer,
I I nt eger M nMax

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

+-oracl e. apps. cz. ci 0. Count Feat ure

All Implemented Interfaces:
| Gount, Ilnteger, I|lntegerMnhVax, IPrice, IRuntineNode, |State

Description

Represents a countable integer feature. A count feature is similar to an integer
feature except that its minimum value must be greater than or equal to zero.

Member Summary

Methods
getintValue()

getMax()

(
getMin()
getType()
hasMax()
hasMin()

setintValue(int)

B-72 Oracle Configuration Interface Object (CIO) Developer's Guide

CountFeature

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IInteger

unset()

Methods inherited from interface ICount

getCount(), setCount(int)

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IState

getState(), setState(int)

Methods inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-73

CountFeature

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getintValue()

public int getlntVal ue()

Specified By:

getIntValue() in interface IInteger
getMax()

public int getMx()

Specified By:

getMax() in interface IIntegerMinMax
getMin()

public int getMn()

Specified By:

getMin() in interface IIntegerMinMax
getType()

public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

B-74 Oracle Configuration Interface Object (CIO) Developer's Guide

CountFeature

hasMax()

hasMin()

setintValue(int)

publ i ¢ bool ean hasiax()

Specified By:
hasMax() in interface IIntegerMinMax

publ i ¢ bool ean hasM n()

Specified By:
hasMin() in interface IIntegerMinMax

public void setlntVal ue(int newal ue)

Specified By:

setIntValue(int) in interface IInteger

Package oracle.apps.cz.cio B-75

DecimalFeature

oracle.apps.cz.cio
DecimalFeature

Syntax
public class Deci nal Feat ure extends Deci nal Node i npl enent's | Deci nal M nvax

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+- - ReadOnl yDeci nal Node

I
+ - Deci nal Node

+-oracl e. apps. cz. ci 0. Deci nal Feat ure

All Implemented Interfaces:
| Deci nal , | Deci mal M nvax, | ReadOnl yDeci nal , | Runti neNode

Description
Represents a feature with a decimal value.

Member Summary

Methods
getMax()
getMin()

getType()
hasMax()

hasMin()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

B-76 Oracle Configuration Interface Object (CIO) Developer’'s Guide

DecimalFeature

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode
setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IDecimal
setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal
getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getMax()

publ i c doubl e get Max()

Specified By:

getMax() in interface IDecimalMinMax
getMin()

publ i c doubl e get Mn()

Package oracle.apps.cz.cio B-77

DecimalFeature

Specified By:
getMin() in interface IDecimalMinMax

getType()
public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

hasMax()
publ i ¢ bool ean hasiax()

Specified By:
hasMax() in interface IDecimalMinMax

hasMin()

publ i c bool ean hasM n()

Specified By:

hasMin() in interface IDecimalMinMax

B-78 Oracle Configuration Interface Object (CIO) Developer’'s Guide

DecimalNode

oracle.apps.cz.cio
DecimalNode

Syntax
public abstract class Deci nal Node extends ReadOnl yDeci nal Node i npl enent s
| Deci nal

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+- - ReadOnl yDeci nal Node

+-oracl e. apps. cz. ci 0. Deci nal Node

Direct Known Subclasses:
Deci mal Feat ure, Resource, Total

All Implemented Interfaces:
| Deci nal , | ReadOnl yDeci nal , | Runt i neNode

Description
An abstract class implementing behavior common to objects with a decimal value.

Member Summary

Methods
setDecimalValue(double)
toString()

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-79

DecimalNode

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IReadOnlyDecimal
getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

setDecimalValue(double)
public void set Deci nal Val ue(doubl e newal ue)

Specified By:

setDecimalValue(double) in interface IDecimal

toString()
public java.lang. Sring toString()

Overrides:
toString() in class ReadOnlyDecimalNode

B-80 Oracle Configuration Interface Object (CIO) Developer's Guide

DecimalNode

unset()
public void unset ()

Specified By:

unset() in interface IDecimal

Package oracle.apps.cz.cio B-81

Factory

oracle.apps.cz.cio
Factory

Syntax

public class Factory extends java.lang. (bj ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. ci o. Factory

Description

Provides a class factory for the CIO to clients that do not support arguments to
constructors.

Member Summary

Constructors
Factory()
Methods
createCIlO()

createContext(String, String, String,
String)

createContext(String, String, String,
String, String, String, String)

loadDriver(String)

Creates an instance of the CIO.

Creates the database context object which is required by most CIO methods.
Creates the database context object which is required by most CIO methods.

Loads the JDBC driver named by the argument.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

B-82 Oracle Configuration Interface Object (CIO) Developer's Guide

Factory

Constructors

Factory()
public Factory()

Methods

createCIO()

public A Ocreated Q)
Creates an instance of the CIO.

createContext(String, String, String, String)

public oracl e. apps. f nd. conmon. Cont ext creat eCont ext (j ava.lang. Sring url,
java.lang. String unane, java.lang. Sring pwd, java.lang.Sring owner)

Creates the database context object which is required by most CIO methods. This
method requires a database user and password.

Parameters:

url - database connection URL that specifies JDBC driver and datasource
unairre - database username
pwd - database password

owner - SellingPoint schema owner

createContext(String, String, String, String, String, String, String)

public oracl e. apps. f nd. conmon. Cont ext creat eCont ext (j ava.lang. Sring url,
java.lang. Stri ng appslsernane, java.lang. String appsPassword, java.lang. Sring
gat enaylUser nang, java.lang. String gatewayPassword, java.lang. Sring fndN\am
java.lang. String appl Serverl d)

Creates the database context object which is required by most CIO methods. This
method uses Apps FND authentication to validate the user.

Parameters:
url - database connection URL, identifies JDBC driver and data source

appsUser nane - Oracle Applications user name

appsPasswor d - Oracle Applications password for appsUsername

Package oracle.apps.cz.cio B-83

Factory

gat ewayUser nane - gateway user name
gat ewayPasswor d - password for gatewayUsername

f ndNam- Apps schema owner

appl Server | d - application server ID, only used if its security feature is ON (OFF
by default)

loadDriver(String)

public void | oadDxi ver(java.lang. String driver)
Loads the JDBC driver named by the argument.

Throws:
Cl assNot FoundExcept i on - if the driver cannot be loaded.

B-84 Oracle Configuration Interface Object (CIO) Developer's Guide

FuncCompCreationException

oracle.apps.cz.cio
FuncCompCreationException

Syntax
public class FuncConpQ eati onException ext ends java. |l ang. Runti meExcepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. FuncConpCr eat i onExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a functional companion cannot be created.

Member Summary

Methods

getDescrption() Returns the description of the failed companion.

getID() Returns the database ID of the failed companion.

getName() Returns the name of the failed companion.

getProgString() Returns the program string used when trying to create the companion.

Inherited Member Summary

Methods inherited from class java.lang. Throwable

filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Package oracle.apps.cz.cio B-85

FuncCompCreationException

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods
getDescrption()

public java.lang. Sring getDescrption()

Returns the description of the failed companion.
getlD()

public int getlX)

Returns the database ID of the failed companion.
getName()

public java.lang. Sring get Nane()

Returns the name of the failed companion.
getProgString()

public java.lang. Sring get ProgSring()
Returns the program string used when trying to create the companion.

B-86 Oracle Configuration Interface Object (CIO) Developer's Guide

FunctionalCompanion

oracle.apps.cz.cio
FunctionalCompanion

Syntax

public class Functi onal Conpani on extends java.l ang. (bj ect inpl enents
| Funct i onal Gonpani on

j ava. | ang. (bj ect

+--oracl e. apps. cz. ci 0. Funct i onal Conpani on

All Implemented Interfaces:
| Funct i onal Gonpani on

Description
Base object on which user functional companions can be based.

Member Summary

Constructors

FunctionalCompanion()

Methods

autoConfigure() Does nothing.
generateOutput() Does nothing.

generateOutput(HttpServietResponse Does nothing.

)

getDescription() Returns the description of the functional companion.

getID() Returns the database ID of the functional companion.

getName() Returns the name of the functional companion.

getRuntimeNode() Returns the runtime node to which this functional is associated.
initialize(IRuntimeNode, String, Saves the parameters in member variables.

String, int)

terminate() Does nothing.

Package oracle.apps.cz.cio B-87

FunctionalCompanion

Member Summary

toString()

validate() Does nothing.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

FunctionalCompanion()
public Functi onal Conpani on()

Methods

autoConfigure()

public void autoGConfi gure()
Does nothing.

Specified By:

autoConfigure() in interface IFunctional Companion

generateOutput()

public java.lang. Sring generateQutput ()
Does nothing. Returns null.

Specified By:

generateOutput() in interface IFunctionalCompanion
generateOutput(HttpServletResponse)

public void generat eQut put (j avax. servl et. http. Ht pServl et Response response)
Does nothing.

B-88 Oracle Configuration Interface Object (CIO) Developer's Guide

FunctionalCompanion

Specified By:

generateOutput(HttpServletResponse) in interface IFunctional Companion

getDescription()

public java.lang. Sring getDescription()
Returns the description of the functional companion.

Specified By:

getDescription() in interface IFunctionalCompanion

getlD()

public int getlX)
Returns the database ID of the functional companion.

Specified By:

getID() in interface IFunctionalCompanion

getName()

public java.lang. Sring get Nang()
Returns the name of the functional companion.

Specified By:

getName() in interface IFunctional Companion

getRuntimeNode()

public | Runti neNode get Runti neNode()
Returns the runtime node to which this functional is associated.

Specified By:

getRuntimeNode() in interface IFunctional Companion

initialize(IRuntimeNode, String, String, int)

public void initialize(lRuntinmeNode node, java.lang. Sring nane,
java.lang. String description, int id)
Saves the parameters in member variables.

Package oracle.apps.cz.cio B-89

FunctionalCompanion

terminate()

toString()

validate()

Specified By:

initialize(IRuntimeNode, String, String, int) in interface IFunctionalCompanion

public void termnate()
Does nothing.

Specified By:

terminate() in interface IFunctional Companion

public java.lang. Sring toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

public comsun.java. util.collections.List validate()
Does nothing.

Specified By:

validate() in interface IFunctionalCompanion

B-90 Oracle Configuration Interface Object (CIO) Developer's Guide

FunctionalCompanionException

oracle.apps.cz.cio
FunctionalCompanionException

Syntax
public class Functi onal Conpani onExcepti on

oracl e. apps. cz. ci 0. Funct i onal Conpani onExcept i on

Description
This exception is used to indicate that an error occured somewhere inside the
functional companion.

Member Summary

Constructors

FunctionalCompanionException(Thro The message of the original exception will be the message of this exception.
wable)

FunctionalCompanionException(Thro
wable, String)

Constructors

FunctionalCompanionException(Throwable)

public Functi onal Conpani onExcept i on(j ava. | ang. Thr owabl e ex)
The message of the original exception will be the message of this exception.

FunctionalCompanionException(Throwable, String)

public Functi onal Conpani onExcepti on(j ava. | ang. Throwabl e ex, java.lang. String
nessage)

Parameters:
nmessage - the message of the exception

Package oracle.apps.cz.cio B-91

IAtp

oracle.apps.cz.cio
IAtp

Syntax
public interface | Ap extends | Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount

Description

Implemented by objects that can have ATP calculated. This interface contains
methods for getting available-to-promise (ATP) information, and methods to
retrieve ATP errors/warnings/messages.

Member Summary

Methods

getAtpDate() Retrieves last ATP date calculated by Configuration.calculateAtpDates for this item.

getAtpNotifications() Returns string containing any ATP messages, warnings or errors generated for this
node by the latest Configuration.calculate AtpDates call.

getDatabaselD() Returns the database ID of the runtime node.

getltemKey() Returns item key for items imported from Oracle Inventory / BOM.

getUomCode() Returns unit of measure code for items imported from Oracle Inventory/ BOM.

Inherited Member Summary

Methods inherited from interface ICount

getCount(), setCount(int), unset()

B-92 Oracle Configuration Interface Object (CIO) Developer's Guide

IAtp

Methods

getAtpDate()

public java. util.Date get At pDate()
Retrieves last ATP date calculated by Configuration.calculateAtpDates for this item.

Returns:
ATP date

Throws:
AtpUnavailableException - thrown if ATP initialization parameters were not
provided

NoAtpCalculatedException - thrown if ATP was never demanded or if the ATP
procedure did not calculate an ATP date for this node

getAtpNotifications()
public java.lang. Sring get A pNotifications()
Returns string containing any ATP messages, warnings or errors generated for this
node by the latest Configuration.calculateAtpDates call.

getDatabaselD()

public int getDatabasel)
Returns the database ID of the runtime node.

getltemKey()
public java.lang. Sring getltenkey()
Returns item key for items imported from Oracle Inventory / BOM. Item key is
constructed from BOM_EXPLOSIONS field values: "[COMPONENT_
CODE]:[EXPLOSION_TYPE]:[ORGANIZATION_ID]:[TOP_ITEM_ID]" Item key
may be used by PL/SQL ATP procedures to calculate ATP for nodes. Returns null if
node was not imported from Oracle Inventory / BOM.

getUomCode()
public java.lang. Sring get UonCode()
Returns unit of measure code for items imported from Oracle Inventory/ BOM. The
unit of measure may be used by PL/SQL pricing procedures to calculate ATP for
nodes. Returns null if node was not imported from Oracle Inventory / BOM.

Package oracle.apps.cz.cio B-93

[Bomltem

oracle.apps.cz.cio
IBomltem

Syntax
public interface |Bonmitemextends | QptionFeature, | Qption, IPrice, AP

All Superinterfaces:
|Atp, 1Cunt, |ption, | ptionFeature, IPrice, |Sate

All Known Implementing Classes:
Bomhbde

Description
Implemented by all selectable BOM items.

Member Summary

Methods

getComponentCode() Returns component code of item.

getinventoryltemld() Returns Oracle Applications inventory_item_id of item.
getMaxQuantity() Gets the maximum quantity.

getMinQuantity() Gets the minimum quantity.

getOrganizationld() Returns Oracle Applications organization_id of item.
getPrimaryUomCode() Gets primary unit of measure code for item.
hasMaxQuantity() Reuturns true if the BOM item has maximum quantity
hasMinQuantity() Returns true if the BOM item has minimum quantity
isRequired() Returns t r ue if this is a required BOM item.

Inherited Member Summary

Fields inherited from interface IState

B-94 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IBomltem

Inherited Member Summary

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Methods inherited from interface IOptionFeature

deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(), hasMinSelected(),
isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods

getComponentCode()

public java.lang. Sring get Conponent Code()
Returns component code of item. Component code is used to identify the item
within an exploded bill of materials.

getinventoryltemid()

public int getlnventoryltemd()
Returns Oracle Applications inventory_item_id of item.

getMaxQuantity()

public int get MxQuantity()
Gets the maximum quantity.

getMinQuantity()
public int getMnQuantity()

Package oracle.apps.cz.cio B-95

[Bomltem

Gets the minimum quantity.

getOrganizationid()

public int getQganizationld()
Returns Oracle Applications organization_id of item.

getPrimaryUomCode()

public java.lang. Sring getPrimarylUonGode()
Gets primary unit of measure code for item.

hasMaxQuantity()

publ i ¢ bool ean hasvaxQuanti ty()
Reuturns true if the BOM item has maximum quantity

hasMinQuantity()

publ i ¢ bool ean hasM nQuanti ty()
Returns true if the BOM item has minimum quantity

isRequired()

publ i ¢ bool ean i sRequi red()
Returns t r ue if this is a required BOM item.

B-96 Oracle Configuration Interface Object (CIO) Developer's Guide

ICompSetEventListener

oracle.apps.cz.cio
ICompSetEventListener

Syntax
public interface | ConpSet Event Li st ener extends java. util . EventLi stener

All Superinterfaces:
java. util.EventLi stener

Description
Implemented by objects that want to find out about added components.

Member Summary

Methods
notifyComponentAdded(Component) Called when a component is added to the component set.

notifyComponentDeleted(Component - Called when a component is deleted from the component set.

)

Methods

notifyComponentAdded(Component)

public void notifyConponent Added(Conponent conponent)
Called when a component is added to the component set.

notifyComponentDeleted(Component)

public void notifyConponent Del et ed(Conponent conponent)
Called when a component is deleted from the component set.

Package oracle.apps.cz.cio B-97

IConfigEventListener

oracle.apps.cz.cio
IConfigEventListener

Syntax
public interface | Confi gEventLi stener extends java.util.BventLi stener

All Superinterfaces:
java. util.EventLi stener

Description

Implemented by objects that want to find out about added components. This
listener's methods are called as the result of user interaction, after a functional
companion is initialized.

Member Summary

Methods

notifyComponentAdded(Component) ~ Called when a component is added to the configuration as the result of user
interaction, after a functional companion is initialized.

notifyComponentDeleted(Component Called when a component is deleted from the configuration as the result of user
) interaction, after a functional companion is initialized.

Methods

notifyComponentAdded(Component)

public voi d notifyConponent Added(Conponent conponent)
Called when a component is added to the configuration as the result of user
interaction, after a functional companion is initialized.

notifyComponentDeleted(Component)

public voi d notifyConponent Del et ed(Conponent component)
Called when a component is deleted from the configuration as the result of user
interaction, after a functional companion is initialized.

B-98 Oracle Configuration Interface Object (CIO) Developer's Guide

ICount

oracle.apps.cz.cio
ICount

Syntax
public interface | Count

All Known Subinterfaces:
|Atp, IBonitem I Qption, | QptionFeature, |Price

All Known Implementing Classes:
S at eCount Node

Description
Implemented by objects that have an associated integer count.

Member Summary

Methods

getCount() Gets the current count of this object.

setCount(int) Sets the count of this object.

unset() Retracts any user selection made toward this node
Methods

getCount()

public int getCount()
Gets the current count of this object.

Returns:
the current count of this object.

setCount(int)
public void setGunt (i nt newGount)

Package oracle.apps.cz.cio B-99

[Count

Sets the count of this object.
unset()

public void unset ()
Retracts any user selection made toward this node

B-100 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IDecimal

oracle.apps.cz.cio
IDecimal

Syntax
public interface | Deci nal extends | Readnl yDeci nal

All Superinterfaces:
| ReadOnl yDeci nal

All Known Implementing Classes:
Deci nal Node

Description
Implemented by objects that can both get and set a decimal value.

Member Summary

Methods
setDecimalValue(double) Sets the current value of this object.
unset() Retracts any user selection made toward this node

Inherited Member Summary

Methods inherited from interface IReadOnlyDecimal

getDecimalValue()

Methods

setDecimalValue(double)

public voi d set Deci nal Val ue(doubl e newal ue)
Sets the current value of this object.

Package oracle.apps.cz.cio B-101

IDecimal

unset()

public void unset ()
Retracts any user selection made toward this node

B-102 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IDecimalMinMax

oracle.apps.cz.cio
IDecimalMinMax

Syntax
public interface I Deci nal M nMax

All Known Implementing Classes:
Deci nal Feat ure

Description
Implemented by objects that have a decimal minimum and maximum value.

Member Summary

Methods
getMax() Get the maximum allowable value.
getMin() Get the minimum allowable value.
hasMax() Returns true if there is a maximum limit.
hasMin() Returns true if there is a minimum limit.
Methods
getMax()

publ i c doubl e get Max()

Get the maximum allowable value.
getMin()

publ i c doubl e get M n()

Get the minimum allowable value.
hasMax()

publ i c bool ean hasiax()
Returns true if there is a maximum limit.

Package oracle.apps.cz.cio

B-103

IDecimalMinMax

hasMin()

publ i ¢ bool ean hasM n()
Returns true if there is a minimum limit.

B-104 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IFunctionalCompanion

oracle.apps.cz.cio
IFunctionalCompanion

Syntax
public interface | Functional Gonpani on

All Known Implementing Classes:
Funct i onal Conpani on

Description

Implemented by functional companion objects attached to components in order to
provide programatic functionality to a configuration model.

Member Summary

Methods
autoConfigure() Performs a programmatic configuration step.
generateQOutput() Generates output for this component.

generateOutput(HttpServietResponse Generates output for this component.

)

getDescription() Returns the description of the functional companion.

getID() Returns the database ID of the functional companion.

getName() Returns the name of the functional companion.

getRuntimeNode() Returns the runtime node to which this component is attached.
initialize(IRuntimeNode, String, Saves information about the model and performs any actions needed to initialize
String, int) the companion.

terminate() Performs any cleanup on this companion that needs to occur before the companion

is destroyed.

validate() Programatically checks that a configuration is valid and returns a list of
ValidationFailure objects if there are failures, and null otherwise.

Package oracle.apps.cz.cio B-105

IFunctionalCompanion

Methods

autoConfigure()

public voi d aut oGonfi gure()
Performs a programmatic configuration step. Any modifications to the model

should be performed here.

generateOutput()

public java.lang. Sring generateQutput ()

Generates output for this component. This version is called in a thick client context
where the user's machine can be addressed directly. Can modify the model, but this
is not recommended practice.

generateOutput(HttpServietResponse)

getDescription()

public voi d generat eQut put (j avax. servl et. http. Ht pServl et Response response)
Generates output for this component. This version is called in a thin client context
where the user's browser is addressed indirectly by writing to the
HttpServletResponse object. Can modify the model, but this is not recommended
practice.

public java.lang. Sring getDescription()
Returns the description of the functional companion.

getlD()

public int getlX)

Returns the database ID of the functional companion.
getName()

public java.lang. Sring get Nang()

Returns the name of the functional companion.
getRuntimeNode()

public | Runti neNode get Runti neNode()
Returns the runtime node to which this component is attached.

B-106 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IFunctionalCompanion

initialize(IRuntimeNode, String, String, int)

terminate()

validate()

public void initialize(lRuntineNode node, java.lang. Sring nane,

java.lang. String description, int id)

Saves information about the model and performs any actions needed to initialize
the companion. Should never attempt to modify the model.

public void termnate()
Performs any cleanup on this companion that needs to occur before the companion
is destroyed.

public comsun.java. util.collections.List validate()

Programatically checks that a configuration is valid and returns a list of
ValidationFailure objects if there are failures, and null otherwise. Should never
attempt to modify the model.

Package oracle.apps.cz.cio B-107

lInteger

oracle.apps.cz.cio
linteger

Syntax
public interface Ilnteger

All Known Implementing Classes:
Qount Feat ure, | nt eger Node

Description
Implemented by objects that have an integer value.

Member Summary

Methods

getintValue() Get the current integer value of this object.
setintValue(int) Set the current integer value of this object.

unset() Retracts any user selection made toward this node
Methods

getintValue()

public int getlntVal ue()
Get the current integer value of this object.

setintValue(int)

public void setlntVal ue(int newal ue)
Set the current integer value of this object.

unset()

public void unset ()
Retracts any user selection made toward this node

B-108 Oracle Configuration Interface Object (CIO) Developer’'s Guide

lIntegerMinMax

oracle.apps.cz.cio
lintegerMinMax

Syntax
public interface IIntegerM nMax

All Known Implementing Classes:
Qount Feat ure, I ntegerFeature, Conponent Node

Description
Implemented by objects that have an integer minimum and maximum.

Member Summary

Methods
getMax() Get the maximal allowable value for this object.
getMin() Get the minimal allowable value for this object.
hasMax() Returns true if there is a maximum limit.
hasMin() Returns true if there is a minimum limit.
Methods
getMax()

public int getMx()

Get the maximal allowable value for this object.
getMin()

public int getMn()

Get the minimal allowable value for this object.
hasMax()

publ i c bool ean hasiax()
Returns true if there is a maximum limit.

Package oracle.apps.cz.cio B-109

lIntegerMinMax

hasMin()

publ i ¢ bool ean hasM n()
Returns true if there is a minimum limit.

B-110 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IncompatibleInputException

oracle.apps.cz.cio
IncompatiblelnputException

Syntax
public class I nconpati bl el nput Excepti on extends java. |l ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci o. I nconpati bl el nput Excepti on

All Implemented Interfaces:
java.io. Serializable

Description

Signalled if a particular input is of different type than the node it is trying to restore
over.

Member Summary

Methods
getinput() Returns the input object where the mismatch occured
getModelNode() Returns the corresponding model node where the mismatch occured

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-111

IncompatibleInputException

Methods

getinput()
publ i c oracl e. apps. cz. di 0. confi g. DbConfi gl nput get | nput ()
Returns the input object where the mismatch occured
Returns:
the failed DbConfigInput object

getModelNode()

publ i ¢ oracl e. apps. cz. di 0. nodel . DoMbdel Node get Mbdel Node()
Returns the corresponding model node where the mismatch occured

Returns:
the failed DbConfigInput object

B-112 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IntegerFeature

oracle.apps.cz.cio
IntegerFeature

Syntax
public class |IntegerFeature extends |ntegerNode inpl enents |Integer M nivax

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- I nt eger Node

+-oracl e. apps. cz. cio. | ntegerFeature

All Implemented Interfaces:
I Integer, |lntegerMnhax, |RuntineNode

Description
Represents a feature with an integer value.

Member Summary

Methods
getMax()
getMin()
getType()
hasMax()
hasMin()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Package oracle.apps.cz.cio B-113

IntegerFeature

Inherited Member Summary

Methods inherited from class IntegerNode
getintValue(), setintValue(int), unset()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IInteger
getintValue(), setintValue(int), unset()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getMax()

public int getMx()

Specified By:

getMax() in interface IIntegerMinMax
getMin()

public int getMn()

Specified By:

getMin() in interface IIntegerMinMax
getType()

public int getType()

B-114 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IntegerFeature

hasMax()

hasMin()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

publ i ¢ bool ean hasiax()

Specified By:
hasMax() in interface IIntegerMinMax

publ i ¢ bool ean hasM n()

Specified By:

hasMin() in interface IIntegerMinMax

Package oracle.apps.cz.cio B-115

IntegerNode

oracle.apps.cz.cio
IntegerNode

Syntax
public abstract class IntegerNode extends RuntineNode i npl enents |1 nteger

j ava. | ang. (bj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. I nt eger Node

Direct Known Subclasses:
I nt eger Feat ure

All Implemented Interfaces:
I Integer, |Runti neNode

Description
Represents a feature with an integer value.

Member Summary

Methods
getintValue()
setintValue(int)

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

B-116 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IntegerNode

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods
getintValue()

public int getlntVal ue()

Specified By:

getIntValue() in interface IInteger
setintValue(int)

public void setlntVal ue(int new ntVal ue)

Specified By:

setIntValue(int) in interface IInteger
unset()

public void unset ()

Specified By:

unset() in interface IInteger

Package oracle.apps.cz.cio B-117

[Option

oracle.apps.c
IOption

Z.cio

Syntax
public interface | Qption extends | Sate, |Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount, ISate

All Known Implementing Classes:
ot i onNbde

Description

Implemented by objects that act as options. The defining characteristic of an option
is that it can be selected and deselected.

Member Summary

Methods
deselect()
isOptionMutexed()
isSelected()

select()

Deslect this option.
Returns true if this option is a child of a mutexed parent
Returns t r ue if this option is selected, and f al se otherwise.

Select this option.

Inherited Member

Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Methods inherited from interface IState

B-118 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|Option

Inherited Member Summary

getState(), setState(int), unset()
Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods
deselect()

public void desel ect ()

Deslect this option.
isOptionMutexed()

publ i ¢ bool ean i sQpti onMut exed()

Returns true if this option is a child of a mutexed parent
isSelected()

publ i ¢ bool ean isSel ect ed()

Returns t r ue if this option is selected, and f al se otherwise.
select()

public void sel ect()
Select this option.

Package oracle.apps.cz.cio B-119

[OptionFeature

oracle.apps.cz.cio
IOptionFeature

Syntax
public interface | Opti onFeature extends | State, |Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount, ISate

All Known Implementing Classes:
ot i onFeat ur eNode

Description

Implemented by objects that contain selectable options. This interface provides a
mechansim for selecting and deselecting options, and for determining which
options are currently selected.

Member Summary

Methods
deselect(IOption)
getMaxSelected()
getMinSelected()
getSelectedOption()
getSelectedOptions()
hasMaxSelected()
hasMinSelected()
isSelectionMutexed()

select(IOption)

Deselect a particular option.

Returns the maximum number of selected options.

Returns the minimum number of selected options.

Returns the currently selected option, or nul | if no option is selected.
Returns a, possibly empty, collection of options that are currently selected.
Returns true if the Feature specifies a maximum number of selected options.
Returns true if the Feature specifies a minimum number of selected options.
Returns t r ue if this feature supports mutexed selections.

Select a particular option.

B-120 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|OptionFeature

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods
deselect(IOption)

public void desel ect (1 Qption option)

Deselect a particular option.

Parameters:

opt i on - the option to be de selected.
getMaxSelected()

public int getMixSel ected()

Returns the maximum number of selected options.
getMinSelected()

public int getM nSel ected()

Returns the minimum number of selected options.
getSelectedOption()

public | Qption getSel ect edQption()
Returns the currently selected option, or nul | if no option is selected.

Returns:
the currently selected option.

Package oracle.apps.cz.cio B-121

[OptionFeature

Throws:
SelectionNotMutexedException - if this feature does not support mutexed
selections.

getSelectedOptions()

public comsun.java. util.collections.List getSel ectedOptions()
Returns a, possibly empty, collection of options that are currently selected.

hasMaxSelected()

publ i ¢ bool ean hasMvaxSel ect ed()
Returns true if the Feature specifies a maximum number of selected options.

hasMinSelected()

publ i ¢ bool ean hasM nSel ect ed()
Returns true if the Feature specifies a minimum number of selected options.

isSelectionMutexed()

publ i ¢ bool ean i sSel ecti onMit exed()

Returns t r ue if this feature supports mutexed selections. When a selection is
mutexed, it means that only one of a particular option is selectable at any one time,
and selecting one option automatically deselects any other option that is mutexed
and currently selected.

select(IOption)

public void sel ect (I Qption option)
Select a particular option.

Parameters:
opt i on - the option to be selected.

B-122 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|Price

oracle.apps.cz.cio

IPrice

Syntax
public interface | Price extends | Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount

All Known Implementing Classes:
S at eCount Node

Description

Implemented by objects that can be priced. This interface contains methods for
getting list, discount, and extended prices, and methods to retrieve pricing
errors/warnings/messages.

Member Summary

Methods
getDatabaselD()

getDiscountedPrice()

getExtendedPrice()
getltemKey()
getListPrice()
getPricingNotifications()

getUomCode()

Returns the database ID of the runtime node.

Gets discounted price of item based on adjustments associated with price list

specified in initParameters.

Calculates extended price of item (quantity * discounted price).
Returns item key for items imported from Oracle Inventory / BOM.
Gets list price of item on price list specified in initParameters.

Returns string containing any pricing messages, warnings, or errors.

Returns unit of measure code for items imported from Oracle Inventory/ BOM.

Package oracle.apps.cz.cio B-123

IPrice

Inherited Member Summary

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods

getDatabaselD()

public int getDatabasel)
Returns the database ID of the runtime node.

getDiscountedPrice()

publ i c doubl e get O scount edPri ce()
Gets discounted price of item based on adjustments associated with price list
specified in initParameters.

getExtendedPrice()

publ i c doubl e get Ext endedPri ce()
Calculates extended price of item (quantity * discounted price).

getltemKey()

public java.lang. Sring getltenkey()

Returns item key for items imported from Oracle Inventory / BOM. Item key is
constructed from BOM_EXPLOSIONS field values: "[COMPONENT_
CODE]:[EXPLOSION_TYPE]:[ORGANIZATION_ID]:[TOP_ITEM_ID]" Item key
may be used by PL/SQL pricing procedures to price nodes. Returns null if node
was not imported from Oracle Inventory / BOM.

getListPrice()

public doubl e getListPrice()
Gets list price of item on price list specified in initParameters.

getPricingNotifications()

public java.lang. Sring get PricingNotifications()
Returns string containing any pricing messages, warnings, or errors.

B-124 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|Price

getUomCode()

public java.lang. Sring get UonCode()
Returns unit of measure code for items imported from Oracle Inventory/ BOM. The

unit of measure may be used by PL/SQL pricing procedures to price nodes. Returns
null if node was not imported from Oracle Inventory / BOM.

Package oracle.apps.cz.cio B-125

IReadOnlyDecimal

oracle.apps.cz.cio
IReadOnlyDecimal

Syntax
public interface | ReadOnl yDeci nal

All Known Subinterfaces:
| Deci nal

All Known Implementing Classes:
Readnl yDeci mal Node

Description
Implemented by objects that have a decimal value.

Member Summary

Methods

getDecimalValue() Gets the current value of this object.

Methods

getDecimalValue()

publ i ¢ doubl e get Deci nal Val ue()
Gets the current value of this object.

Returns:
the current value.

B-126 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

oracle.apps.cz.cio
IRuntimeNode

Syntax
public interface | Runti neNode

All Known Implementing Classes:
Runt i neNode

Description

Implemented by all objects in the runtime configuration tree. This interface
implements behavior common to all nodes in the runtime configuration tree,
including components, features, options, totals, etc.

Member Summary

Fields

ALL_FEATURES A pseudo-type that represents all feature types for use in getChildrenByType.
BOM_MODEL BOM model type.
BOM_OPTION_CLASS BOM option class type.
BOM_STD_ITEM BOM standard item type.
BOOLEAN_FEATURE Boolean feature type.
COMPONENT Component type.
COMPONENT_SET Component set type.
COUNT_FEATURE Count feature type.
DECIMAL_FEATURE Decimal feature type.
INTEGER_FEATURE Integer feature type.
OPTION Option type.
OPTION_FEATURE Option feature type.
RESOURCE Resource type.
TEXT_FEATURE Text feature type.

Package oracle.apps.cz.cio B-127

IRuntimeNode

Member Summary

TOTAL

Methods
getChildBylID(int)
getChildByName(String)
getChildren()
getChildrenByType(int)
getConfiguration()
getDatabaselD()
getDescription()
getName()

getParent()
getProperties|()
getPropertyByName(String)
getRuntimelD()
getSelectionLinelD()
getType()

hasCount()
hasDecimalValue()
hasDescription()
hasSelectionLinelD()
hasState()
hasTextValue()
isNative()

isUnsatisfied()

isUnsatisfiedNode()

toString(boolean)

Total type.

Gets a particular child identified by its ID.

Gets a particular child identified by its name.

Gets the children of this runtime configuration node.

Gets all of the children of a particular type.

Gets the configuration to which this node belongs.

Gets the database ID of the node.

Returns the design-time description of the runtime node.

Gets the name of the node.

Get the parent of this node.

Returns a collection of the properties associated with this node.
Returns a particular property of this node, based on its name.

Gets the runtime ID of the node.

Returns selection line ID (configuration output database ID) for node.
Gets the type of this node.

Returns true if the node has an object count.

Returns true if the node has a decimal value.

Returns true if there is a design-time description of the runtime node.
Returns true if node has a selection line ID (configuration output ID), false if not.
Returns true if the node has a logical state.

Returns true if the node has a text value.

Returns true if this is a native BOM node

Returns t r ue if this particular node, or any one of its children, has not been
completely configured.

Returns t r ue if this particular node has not been completely configured.

Returns a String representation of this node, based on whether the client demands a

description (if there is one) or just a name

B-128 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

Fields

ALL_FEATURES

public static final int ALL FEATURES
A pseudo-type that represents all feature types for use in getChildrenByType.

BOM_MODEL

public static final int BOM MODEL
BOM model type.

BOM_OPTION_CLASS

public static final int BOMCPTI ON OLASS
BOM option class type.

BOM_STD_ITEM

public static final int BOMSTD | TEM
BOM standard item type.

BOOLEAN_FEATURE

public static final int BOOLEAN FEATURE
Boolean feature type.

COMPONENT

public static final int GOMPONENT
Component type.

COMPONENT_SET

public static final int OQOMPONENT_SET
Component set type.

COUNT_FEATURE

public static final int QONT_FEATURE
Count feature type.

DECIMAL_FEATURE
public static final int DEQ MAL_FEATURE

Package oracle.apps.cz.cio B-129

IRuntimeNode

Decimal feature type.

INTEGER_FEATURE

public static final int | NTEGER FEATURE
Integer feature type.

OPTION

public static final int GPTICN
Option type.

OPTION_FEATURE

public static final int CGPTI ON FEATURE
Option feature type.

RESOURCE

public static final int RESORCE
Resource type.

TEXT_FEATURE

public static final int TEXT_FEATURE
Text feature type.

TOTAL

public static final int TOTAL
Total type.

Methods

getChildBylD(int)
public | Runti neNode get Chil dByl (i nt id)
Gets a particular child identified by its ID.

Returns:
a child of this node.

B-130 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

getChildByName(String)

public | Runti neNode get Chi | dByNane(j ava. |l ang. Sri ng nane)
Gets a particular child identified by its name.

Returns:
a child of this node.

getChildren()

public comsun.java. util.collections.List getChildren()
Gets the children of this runtime configuration node.

Returns:
a collection of children.

getChildrenByType(int)
public comsun.java. util.collections.List getChildrenByType(int type)
Gets all of the children of a particular type.

Returns:
a collection of children.

getConfiguration()

public Configuration get Gonfiguration()
Gets the configuration to which this node belongs.

Returns:
the configuration to which this node belongs.

See Also:
Configuration

getDatabaselD()

public int getDatabasel)
Gets the database ID of the node.

Package oracle.apps.cz.cio B-131

IRuntimeNode

Returns:
the database ID of the node.

getDescription()

public java.lang. Sring getDescription()
Returns the design-time description of the runtime node.

getName()

public java.lang. Sring get Nang()
Gets the name of the node.

Returns:
the name of the node.

getParent()

public | Runti neNode get Parent ()
Get the parent of this node.

Returns:
the node's parent.

getProperties()

public comsun.java. util.collections.Collection getProperties()
Returns a collection of the properties associated with this node. The collection
contains items of the type Property.

getPropertyByName(String)

public Property getPropertyByNange(j ava. | ang. Sring nane)
Returns a particular property of this node, based on its name. Returns null if a
property of the given name does not exist.

getRuntimelD()

public int getRuntinel ()
Gets the runtime ID of the node. This ID is unique across all other nodes created by

a particular CIO.

B-132 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

Returns:
runtime ID of the node.

getSelectionLinelD()

public int getSelectionLinel)

Returns selection line ID (configuration output database ID) for node. The
hasSelectionLinelD() method should always be called before this method. A
RuntimeException will be thrown if ID doesn't exist.

Returns:
line ID

getType()
public int getType()
Gets the type of this node.

Returns:
the type of this node.

hasCount()

publ i ¢ bool ean hasCount ()
Returns true if the node has an object count.

hasDecimalValue()

publ i ¢ bool ean hasDeci nal Val ue()
Returns true if the node has a decimal value.

hasDescription()

publ i ¢ bool ean hasDescri pti on()
Returns true if there is a design-time description of the runtime node.

hasSelectionLinelD()

publ i ¢ bool ean hasSel ecti onLi nel ()
Returns true if node has a selection line ID (configuration output ID), false if not.

Package oracle.apps.cz.cio B-133

IRuntimeNode

hasState()
publ i c bool ean hasStat e()
Returns true if the node has a logical state.
hasTextValue()
publ i ¢ bool ean hasText Val ue()
Returns true if the node has a text value.
isNative()
publ i c bool ean isNative()
Returns true if this is a native BOM node
isUnsatisfied()
publ i c bool ean islhsati sfied()
Returns t r ue if this particular node, or any one of its children, has not been
completely configured. The value is cached and is only updated on transaction
commit or rollback.
Returns:
a boolean indicating whether the node is unsatisfied.
isUnsatisfiedNode()
publ i ¢ bool ean islhsati sfi edNode()
Returns t r ue if this particular node has not been completely configured. The value
is cached and is only updated on transaction commit or rollback.
Returns:
a boolean indicating whether the node is unsatisfied.
toString(boolean)

public java.lang. Sring toSring(bool ean descri pti on)

Returns a String representation of this node, based on whether the client demands a

description (if there is one) or just a name

B-134 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|State

oracle.apps.cz.cio
IState

Syntax

public interface | Sate

All Known Subinterfaces:
IBomitem | Qption, |QptionFeature

All Known Implementing Classes:

S at eNode

Description

Implemented by objects that have logic state. This interface contains a set of input
states, used to specify a new state for an object, a set of output states, returned when
querying an object for its state, and a set of methods for getting and setting the
object's state.

Member Summary

Fields
FALSE
LFALSE

LTRUE

TOGGLE

TRUE
UFALSE
UNKNOWN
UTRUE
Methods

The input state used to set an object to false.

The logically false output state, indicating that the state is false as a consequence of
arule.

The logically true output state, indicating that the state is true as a consequence of a
rule.

The input state used to turn an object state to true if it is false or unknown, and to
make it unknown or false if it is true.

The input state used to set an object to true.
The user false output state, indicating that a user has set this object to false.
The unknown output state.

The user true output state, indicating that a user has set this object to true.

Package oracle.apps.cz.cio B-135

|State

Member Summary

getState() Gets the current logic state of this object.
setState(int) Change the current logic state of this object.
unset() Retracts any user selection made toward this node
Fields
FALSE
public static final int FALSE
The input state used to set an object to false.
LFALSE
public static final int LFALSE
The logically false output state, indicating that the state is false as a consequence of
arule.
LTRUE
public static final int LTRE
The logically true output state, indicating that the state is true as a consequence of a
rule.
TOGGLE
public static final int TOZAE
The input state used to turn an object state to true if it is false or unknown, and to
make it unknown or false if it is true.
TRUE
public static final int TRE
The input state used to set an object to true.
UFALSE

public static final int UFALSE
The user false output state, indicating that a user has set this object to false.

B-136 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|State

UNKNOWN

UTRUE

Methods

getState()

setState(int)

unset()

public static final int UNKNOMW
The unknown output state.

public static final int URE

The user true output state, indicating that a user has set this object to true.

public int getSate()
Gets the current logic state of this object.

Returns:
the current state.

public void setState(int state)
Change the current logic state of this object.

public void unset()
Retracts any user selection made toward this node

Package oracle.apps.cz.cio B-137

[Text

oracle.apps.cz.cio
IText

Syntax
public interface | Text

All Known Implementing Classes:
Text Node

Description
Implemented by objects that have a textual value.

Member Summary

Methods
getTextValue() Gets the current textual value of this object.
setTextValue(String) Sets the current textual value of this object.
unset() Retracts any user selection made toward this node
Methods
getTextValue()
public java.lang. Sring get Text Val ue()
Gets the current textual value of this object.
Returns:
the current value.
setTextValue(String)

public void set Text Val ue(java. | ang. String val ue)
Sets the current textual value of this object.

B-138 Oracle Configuration Interface Object (CIO) Developer’'s Guide

| Text

unset()

public void unset ()
Retracts any user selection made toward this node

Package oracle.apps.cz.cio B-139

LogicalException

oracle.apps.cz.cio
LogicalException

Syntax
public class Logi cal Excepti on extends java. | ang. Excepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci o. Logi cal Excepti on

Direct Known Subclasses:
Logi cal Overri dabl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Signalled if a logical failure occurs. This failure could either be a contradiction, or a
more serious problem.

Member Summary

Constructors
LogicalException()

LogicalException(LogicException,
Configuration)

LogicalException(Reason,
Configuration)

LogicalException(String,
Configuration)

Methods
getCause()

B-140 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalException

Member Summary

getMessage()
getMessageHeader()
getReasons()
isOverridable()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
fillinStackTrace, getLocalizedMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

LogicalException()
public Logi cal Exception()

LogicalException(LogicException, Configuration)

public Logi cal Excepti on(oracl e. apps. cz. | ogi c. Logi cException | e, Configuration
confi g)

LogicalException(Reason, Configuration)
public Logical Excepti on(Reason r, Configuration config)

LogicalException(String, Configuration)
public Logical Exception(java.lang. String nsg, Gonfiguration config)

Methods

getCause()
public | Runti neNode get Cause()

Package oracle.apps.cz.cio B-141

LogicalException

getMessage()

public java.lang. Sring get Message()

Overrides:

java.lang. Throwable.getMessage() in class java.lang. Throwable
getMessageHeader()

public java.lang. Sring get Messageteader ()
getReasons()

public comsun.java. util.collections.List getReasons()
isOverridable()

publ i ¢ bool ean i sQverri dabl e()

B-142 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalOverridableException

oracle.apps.cz.cio
LogicalOverridableException

Syntax
public class Logi cal Oserridabl eException extends Logi cal Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Except i on

+- - Logi cal Excepti on

+-oracl e. apps. cz. ci 0. Logi cal Overri dabl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a logical contradiction occurs that can be overriden.

Member Summary

Constructors

LogicalOverridableException(LogicCo
ntradictionException, Configuration)

Methods
equals(Object)
isOverridable()

override()

Package oracle.apps.cz.cio B-143

LogicalOverridableException

Inherited Member Summary

Methods inherited from interface LogicalException

getCause(), getMessage(), getMessageHeader(), getReasons()

Methods inherited from class java.lang. Throwable

filllnStackTrace, getlLocalizedMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

LogicalOverridableException(LogicContradictionException, Configuration)

public
Logi cal Overri dabl eExcept i on(or acl e. apps. cz. | ogi c. Logi cCont r adi ct i onExcepti on
Ice, Gonfiguration confi g)

Methods
equals(Object)
publ i ¢ bool ean equal s(j ava. | ang. (bj ect | ce)
Overrides:
java.lang.Object.equals(java.lang.Object) in class java.lang.Object
isOverridable()
publ i ¢ bool ean i sQverri dabl e()
Overrides:
isOverridable() in class LogicalException
override()

public void override()

B-144 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalRuntimeException

oracle.apps.cz.cio
LogicalRuntimeException

Syntax
public class Logi cal RuntineException extends java.lang. Runti neExcepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. Logi cal Runti neExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a fatal logic exception occured.

Member Summary

Constructors

LogicalRuntimeException(LogicExcep
tion)

LogicalRuntimeException(String)
Methods
getLogicException()

Inherited Member Summary

Methods inherited from class java.lang. Throwable

Package oracle.apps.cz.cio B-145

LogicalRuntimeException

Inherited Member Summary

filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

LogicalRuntimeException(LogicException)

public Logi cal RuntineException(oracl e. apps. cz. | ogi c. Logi cException | e)

LogicalRuntimeException(String)
public Logi cal RuntineException(java.lang. Sring nsg)

Methods

getLogicException()
public oracl e. apps. cz. | ogi c. Logi cExcepti on get Logi cExcepti on()

B-146 Oracle Configuration Interface Object (CIO) Developer’'s Guide

MissingFileException

oracle.apps.cz.cio
MissingFileException

Syntax

public class MssingH | eException extends java.lang. Runti meExcepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. M ssi ngFi | eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a particular logic file is missing.

Inherited Member Summary

Methods inherited from class java.lang. Throwable

filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-147

MissingLogicException

oracle.apps.cz.cio
MissingLogicException

Syntax
public class M ssingLogi cException extends java. |l ang. Runti neExcepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. M ssi ngLogi cExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a particular logic record is missing.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-148 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NoAtpCalculatedException

oracle.apps.cz.cio
NoAtpCalculatedException

Syntax
public class NoAt pCal cul at edException extends java. | ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NoAt pCal cul at edExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when an ATP method is called on an item for which ATP
is not calculated.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-149

NoConfigHeaderException

oracle.apps.cz.cio
NoConfigHeaderException

Syntax
public class NoConfi gHeader Excepti on extends j ava. | ang. Exception

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NoConf i gHeader Excepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if the configuration hasn't been saved yet.

Member Summary

Constructors

NoConfigHeaderException()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-150 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NoConfigHeaderException

Constructors

NoConfigHeaderException()
public NoConfi gHeader Exception()

Package oracle.apps.cz.cio B-151

NonPricedNodeException

oracle.apps.cz.cio
NonPricedNodeException

Syntax
public class NonPri ced\bdeException extends java. | ang. Exception

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NonPri cedNodeExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Exception which is thrown when a pricing method is called on an item which
should not be priced.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-152 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NoSuchChildException

oracle.apps.cz.cio
NoSuchChildException

Syntax
public class NoSuchChi | dException extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NoSuchChi | dExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a requested child does not exist.

Member Summary

Constructors

NoSuchChildException(IRuntimeNod
e, int)

NoSuchChildException(IRuntimeNod
e, String)

Methods
getlD()

getName()
getParent()

Package oracle.apps.cz.cio B-153

NoSuchChildException

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

NoSuchChildException(IRuntimeNode, int)
public NoSuchhi | dException(l RuntineNode parent, int id)

NoSuchChildException(IRuntimeNode, String)
public NoSuchhi | dException(l RuntineNode parent, java.lang. Sring nane)

Methods
getlD()
public int getlX)
getName()
public java.lang. Sring get Nang()
getParent()

public | Runti neNode get Parent ()

B-154 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NotOneProductException

oracle.apps.cz.cio
NotOneProductException

Syntax
public class Not OneProduct Exception extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Not OnePr oduct Excepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project contains more than one or no
products.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-155

NotOneProjectException

oracle.apps.cz.cio
NotOneProjectException

Syntax
public class Not OneProj ect Exception extends java. | ang. Exception

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Not OnePr oj ect Excepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project name identifies more than one or
no projects.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-156 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Option

oracle.apps.cz.cio
Option

Syntax
public class ption extends (pti onNode

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+ - (pt i onNode

+--oracl e. apps. cz. cio. Option

All Implemented Interfaces:
| Gount, I Qption, IPrice, IRuntineNode, |Sate

Description
Represents an option of an option feature.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-157

Option

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionNode
deselect(), isOptionMutexedy(), isSelected(), select(), setState(int)
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int),
unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IOption
deselect(), isOptionMutexed(), isSelected(), select()
Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount
getCount(), setCount(int), unset()

Methods inherited from interface IPrice
getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

B-158 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Option

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-159

OptionFeature

oracle.apps.cz.cio
OptionFeature

Syntax
public class ptionFeature extends pti onFeat ur eNode

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

+--oracl e. apps. cz. ci 0. Opti onFeature

All Implemented Interfaces:
| Gount, | ptionFeature, IPrice, |RuntineNode, |Sate

Description
Represents a feature with selectable options.

Member Summary

Methods
getMaxSelected()
getMinSelected()
getType()
hasMaxSelected()
hasMinSelected()

B-160 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeature

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions(), isSelectionMutexed(), select(IOption)
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

deselect(IOption), getSelectedOption(), getSelectedOptions(), isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-161

OptionFeature

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getMaxSelected()

public int get MxSel ected()
getMinSelected()

public int getM nSel ected()
getType()

public int getType()

Overrides:

getType() in class RuntimeNode
hasMaxSelected()

publ i ¢ bool ean hasMvaxSel ect ed()
hasMinSelected()

publ i ¢ bool ean hasM nSel ect ed()

B-162 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeatureNode

oracle.apps.cz.cio
OptionFeatureNode

Syntax
public abstract class (ptionFeatureNode extends S ateCount Node i npl enent s
| Opt i onFeat ure

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - & at eCount Node

+-oracl e. apps. cz. ci 0. Opti onFeat ur eNode

Direct Known Subclasses:
Boni\ode, (pti onFeat ure

All Implemented Interfaces:
| Gount, | QptionFeature, IPrice, IRuntineNode, | Sate

Description
An abstract class implementing behavior commont to all features with options.

Member Summary

Methods
deselect(IOption)
getSelectedOption()
getSelectedOptions()
isSelectionMutexed()

select(IOption)

Package oracle.apps.cz.cio B-163

OptionFeatureNode

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

getMaxSelected(), getMinSelected(), hasMaxSelected(), hasMinSelected()

Methods inherited from interface IState

getState(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

B-164 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeatureNode

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

deselect(IOption)
public void desel ect (1 Qption option)

Specified By:

deselect(IOption) in interface IOptionFeature

getSelectedOption()
public | Qption getSel ect edQption()

Specified By:
getSelectedOption() in interface IOptionFeature

getSelectedOptions()

public comsun.java. util.collections.List getSel ectedtions()

Specified By:
getSelectedOptions() in interface IOptionFeature

isSelectionMutexed()
publ i ¢ bool ean i sSel ecti onMit exed()

Specified By:

isSelectionMutexed() in interface IOptionFeature

select(IOption)

public void sel ect (I Qption option)

Package oracle.apps.cz.cio B-165

OptionFeatureNode

Specified By:
select(IOption) in interface IOptionFeature

B-166 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionNode

oracle.apps.cz.cio
OptionNode

Syntax
public abstract class (ptionNode extends S ateCount Node inpl enents | Qpti on

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

+-oracl e. apps. cz. ci 0. Opti onNode

Direct Known Subclasses:
otion

All Implemented Interfaces:
| Qount, I Gption, IPrice, IRunti neNode, | Sate

Description
An abstract class implementing behavior common to all option-like objects.

Member Summary

Methods
deselect()
isOptionMutexed()
isSelected()
select()

setState(int)

Package oracle.apps.cz.cio B-167

OptionNode

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), statesMatch(int, int),
unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IState

getState(), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

B-168 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionNode

Methods
deselect()

public void desel ect()

Specified By:

deselect() in interface IOption
isOptionMutexed()

publ i ¢ bool ean i sQpti onMut exed()

Specified By:

isOptionMutexed () in interface IOption
isSelected()

publ i c bool ean isSel ect ed()

Specified By:

isSelected() in interface IOption
select()

public void sel ect()

Specified By:

select() in interface IOption
setState(int)

public void setSate(int newxtate)

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Package oracle.apps.cz.cio B-169

OptionNode

Overrides:
setState(int) in class StateNode

B-170 Oracle Configuration Interface Object (CIO) Developer’'s Guide

PricingUnavailableException

oracle.apps.cz.cio
PricingUnavailableException

Syntax
public class Pricinglhavai |l abl eException extends java.l ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci o. Pri ci ngUnavai | abl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signals that the CIO pricing functionality is not available.

Member Summary

Constructors
PricingUnavailableException(String)

PricingUnavailableException(String,
Object, Log)

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-171

PricingUnavailableException

Constructors

PricingUnavailableException(String)
public Prici nglhavai |l abl eException(java. |l ang. String reason)

PricingUnavailableException(String, Object, Log)

public Pricinglhavail abl eException(java. |l ang. Sring reason, java.lang. (hject
source, oracl e. apps. f nd. conmon. Log | og)

B-172 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Property

oracle.apps.cz.cio

Property

public class Property extends java.l ang. Qoj ect
j ava. | ang. (oj ect

+--oracl e. apps. cz. cio. Property

Description
Represents name/value properties associated with runtime nodes.

Member Summary

Methods
getBooleanValue()
getDecimalValue()
getDescription()
getintValue()
getName()
getStringValue()
getUnit()
hasBooleanValue()
hasDecimalValue()
hasDefaultValue()
haslntegerValue()

hasStringValue()

Returns the property's value as a boolean.
Returns the property's value as a double.
Returns the property's description.

Returns the property's value as an integer.
Returns the property's name.

Returns the property's value as a string.
Returns the property's unit of measure.
Returns true if property is a boolean property.
Returns true if property is a decimal property.
Checks to see if property has overridden its default value.
Returns true if property is an integer property.

Returns true if property is a string property.

Package oracle.apps.cz.cio

B-173

Property

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods

getBooleanValue()

publ i ¢ bool ean get Bool eanVal ue()
Returns the property's value as a boolean.

getDecimalValue()

publ i ¢ doubl e get Deci nal Val ue()
Returns the property's value as a double.

getDescription()

public java.lang. Sring getDescription()
Returns the property's description.

getintValue()

public int getlntVal ue()

Returns the property's value as an integer.
getName()

public java.lang. Sring get Nane()

Returns the property's name.
getStringValue()

public java.lang. Sring get SringVval ue()

Returns the property's value as a string.
getUnit()

public java.lang. Sring get Lhit()
Returns the property's unit of measure.

B-174 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Property

hasBooleanValue()

publ i ¢ bool ean hasBool eanVal ue()
Returns true if property is a boolean property.

hasDecimalValue()

publ i ¢ bool ean hasDeci nal Val ue()
Returns true if property is a decimal property.

hasDefaultValue()

publ i ¢ bool ean hasDef aul t Val ue()
Checks to see if property has overridden its default value.

hasintegerValue()

publ i ¢ bool ean hasl nt eger Val ue()
Returns true if property is an integer property.

hasStringValue()

publ i ¢ bool ean hasStri ngVal ue()
Returns true if property is a string property.

Package oracle.apps.cz.cio B-175

ReadOnlyDecimalNode

oracle.apps.cz.cio
ReadOnlyDecimalNode

Syntax
public abstract class ReadOnl yDeci nal Node ext ends Runti neNode i npl enent's
| ReadOnl yDeci nal

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+--oracl e. apps. cz. ci 0. ReadOnl yDeci nal Node

Direct Known Subclasses:
Deci nal Node

All Implemented Interfaces:
| ReadOnl yDeci nal , | Runti neNode

Description
An abstract class implementing behavior common to objects with a decimal value.

Member Summary

Methods
getDecimalValue()

toString()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

B-176 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ReadOnlyDecimalNode

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods
getDecimalValue()

publ i ¢ doubl e get Deci nal Val ue()

Specified By:

getDecimalValue() in interface IReadOnlyDecimal
toString()

public java.lang. Sring toString()

Overrides:
toString() in class RuntimeNode

Package oracle.apps.cz.cio B-177

Reason

oracle.apps.cz.cio
Reason

Syntax

public class Reason extends java.lang. o ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. ci 0. Reason

Description

This class wraps the information returned by a contradiction in order to include
information about internal error messages.

Member Summary

Fields

DEFAULT

INTL_TEXT

MINMAX

ORTHEN

TEXT

TRUEATBIRTH

Constructors

Reason(int, IRuntimeNode, String)

Reason(Message, String,
IRuntimeNode)

Reason(String)
Methods
getMsg()
getNode()

getType()

This reason initiated from inability to set a state, because of a default relation.
The message is an internationalized text string.

This reason initiated from an internal MINMAX relationship.

This reason initiated from an internal ORTHEN relationship.

The message is an unknown format text string.

This reason initiated from an internal relationship for a group.

Construct a reason given all of it's information.

Constructs a reason from an FND message.

Constructs a simple TEXT reason.

Get the message associated with this reason.
Get the node associated with this reason.

Get the type of reason is held in this object.

B-178 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Reason

Member Summary

toString() Convert this object to a string.

translate() This method returns the translated string for the reason.

translate(String) This method returns the translated reason string using the given name for
substitution variable.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Fields
DEFAULT

public static int DEFALLT

This reason initiated from inability to set a state, because of a default relation.
INTL_TEXT

public static int | NIL_TEXT

The message is an internationalized text string.
MINMAX

public static int MNVAX

This reason initiated from an internal MINMAX relationship.
ORTHEN

public static int CRTHEN

This reason initiated from an internal ORTHEN relationship.
TEXT

public static int TEXT
The message is an unknown format text string.

Package oracle.apps.cz.cio B-179

Reason

TRUEATBIRTH

Constructors

public static int TRUEATB RTH
This reason initiated from an internal relationship for a group.

Reason(int, IRuntimeNode, String)

public Reason(int type, |Runti neNode node, java.lang. Sring nsg)
Construct a reason given all of it's information.

Parameters:
t ype - What type of reason this is.

node - The node that caused the problem.

msg - The message returned.

Reason(Message, String, IRuntimeNode)

Reason(String)

public Reason(oracl e. apps. f nd. conmon. Message fndMsg, java.lang. Sring token,
| Runt i neNode node)
Constructs a reason from an FND message.

Parameters:
f ndMsg - The FND message object with all but one token substituted.

t oken - The token name left to substitute.

node - The node requiring substitution.

public Reason(java.lang. Sring nsg)
Constructs a simple TEXT reason.

Parameters:
nmsg - The message string for the reason.

B-180 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Reason

Methods
getMsg()

public java.lang. Sring get Msg()

Get the message associated with this reason.
getNode()

public | Runti neNode get Node()

Get the node associated with this reason.
getType()

public int getType()

Get the type of reason is held in this object.
toString()

public java.lang. Sring toString()

Convert this object to a string.

Overrides:

java.lang.Object.toString() in class java.lang.Object
translate()

public java.lang. Sring transl ate()

This method returns the translated string for the reason. If the string has a node

name substitution then the internal name is used.
translate(String)

public java.lang. Sring transl ate(java. |l ang. Sri ng nodeNane)
This method returns the translated reason string using the given name for
substitution variable.

Parameters:
nodeNane - The node name to substitute into the string.

Package oracle.apps.cz.cio B-181

Resource

oracle.apps.cz.cio
Resource

Syntax
public class Resource extends Deci nal Node

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+- - ReadOnl yDeci nal Node

I
+ - Deci nal Node

+-oracl e. apps. cz. ci 0. Resour ce

All Implemented Interfaces:
| Deci nal , | ReadOnl yDeci nal , | Runt i neNode

Description

Represents a consumable resource. A resource will signal a validation failure when
it is overconsumed (in other words, when its value goes below zero). NOTE: This
class inherits from DecimalNode, but the functionality of a DecimalNode
(specifically the method SetDecimalValue()) is 'deprecated’, meaning that it
shouldn't be used on new projects and may be unsupported in a future release. Use
only methods inherited from ReadOnlyDecimalNode.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

B-182 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Resource

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode
setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IDecimal
setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal
getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-183

RestoreValidationFailure

oracle.apps.cz.cio
RestoreValidationFailure

Syntax
public class RestoreValidationFail ure extends ValidationFail ure

j ava. | ang. (hj ect

+-Satuslnfo

+--Val idationFail ure

+-oracl e. apps. cz. cio. RestoreVal i dati onFail ure

Description
Failure produced when restoring a configuration over a changed model.

Member Summary

Methods
equals(Object)
getinput() Returns the input object where the validation failure occured

hashCode()

Inherited Member Summary

Fields inherited from class ValidationFailure

COMPANION_FAILURE, MAX_FAILURE, MIN_FAILURE, MINO_FAILURE, MINMAX_FAILURE, RESOURCE_FAILURE, RESTORE_
FAILURE

Fields inherited from class StatusInfo
STATUS_DELETED, STATUS_EXISTING, STATUS_NEW
Methods inherited from class ValidationFailure

getMessage(), getMessage(String), getType(), toString()

B-184 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RestoreValidationFailure

Inherited Member Summary

Methods inherited from class StatusInfo
getNode(), getStatus(), statusToString(int), toString(boolean)
Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Methods
equals(Object)
publ i ¢ bool ean equal s(j ava. | ang. (hj ect obj)
Overrides:
equals(Object) in class ValidationFailure
getinput()
publ i c oracl e. apps. cz. di 0. confi g. DbConfi gl nput get | nput ()
Returns the input object where the validation failure occured
Returns:
the failed DbConfigInput object
hashCode()

public int hashCode()

Overrides:
hashCode() in class StatusInfo

Package oracle.apps.cz.cio B-185

RuntimeNode

oracle.apps.cz.cio
RuntimeNode

Syntax

public abstract class Runti meNode extends java.lang. (bj ect inpl enents
| Runt i neNode

j ava. | ang. (bj ect

+--oracl e. apps. cz. ci 0. Runti mreNode

Direct Known Subclasses:
Gonponent Nbde, | nt eger Node, ReadOnl yDeci nal Node, S at eNode, Text Node

All Implemented Interfaces:
| Runt i neNode

Description
Abstract class implementing common behavior across all runtime nodes.

Member Summary

Methods
getChildBylID(int)
getChildByName(String)
getChildren()
getChildrenByType(int)
getConfiguration()
getDatabaselD()
getDescription()
getName()

getParent()

getProperties|()

Returns the child of this node with a given database ID.

Returns the child of this node with a given name.

Returns a list of all children of this runtime node.

Returns a list of all children of a particular type.

Returns the configuration to which this node belongs.

Returns the database ID of the runtime node.

Returns the design-time description of the runtime node.

Returns the name of the runtime node.

Returns the parent of this runtime node, or nul | if this is the root node.

Returns a collection of the properties associated with this node.

B-186 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

Member Summary

getPropertyByName(String)
getRuntimelD()
getSelectionLinelD()
getType()
hasCount()
hasDecimalValue()
hasDescription()
haslntegerValue()
hasSelectionLinelD()
hasState()
hasTextValue()
isNative()
isUnsatisfied()
isUnsatisfiedNode()
toString()
toString(boolean)

typeToString(int)

Returns a particular property of this node, based on its name.

Returns the runtime ID for the node.

Returns the type of the runtime node.

Returns true if the node has an object count.

Returns true if the node has a decimal value.

Returns true if there is a design-time description of the runtime node.

Returns true if the node has a integer value.

Returns true if the node has a logical state.

Returns true if the node has a text value.

Returns true if this is a native BOM node

Returns true if this runtime node, or any of its children, is not fully configured.

Returns true if this particular node is not fully configured.

Returns a string representation of a given runtime node type constant.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-187

RuntimeNode

Methods

getChildByID(int)
public | Runti neNode get Chil dByl (i nt id)
Returns the child of this node with a given database ID.

Specified By:
getChildByID(int) in interface IRuntimeNode

Throws:
NoSuchChildException - if there is no child with such ID.

getChildByName(String)

public | Runti neNode get Chi | dByNane(j ava. |l ang. S ri ng nane)
Returns the child of this node with a given name.

Specified By:
getChildByName(String) in interface IRuntimeNode

Throws:
NoSuchChildException - if there is no child with such name.

getChildren()

public comsun.java. util.collections.List getChildren()
Returns a list of all children of this runtime node.

Specified By:
getChildren() in interface IRuntimeNode

getChildrenByType(int)
public comsun.java. util.collections.List getChildrenByType(int type)
Returns a list of all children of a particular type.

Specified By:
getChildrenByType(int) in interface IRuntimeNode

B-188 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

getConfiguration()

public Configuration get Gonfiguration()
Returns the configuration to which this node belongs.

Specified By:

getConfiguration() in interface IRuntimeNode

getDatabaselD()

public int getDatabasel ()
Returns the database ID of the runtime node.

Specified By:
getDatabaselD() in interface IRuntimeNode

getDescription()

public java.lang. Sring getDescription()
Returns the design-time description of the runtime node.

Specified By:

getDescription() in interface IRuntimeNode

getName()

public java.lang. Sring get Nang()
Returns the name of the runtime node.

Specified By:

getName() in interface IRuntimeNode

getParent()

public | Runti neNode get Parent ()
Returns the parent of this runtime node, or nul | if this is the root node.

Specified By:

getParent() in interface IRuntimeNode

Package oracle.apps.cz.cio B-189

RuntimeNode

getProperties()

public comsun.java. util.collections.Collection getProperties()
Returns a collection of the properties associated with this node. The collection
contains items of the type IProperty.

Specified By:

getProperties() in interface IRuntimeNode

getPropertyByName(String)

public Property getPropertyByNange(j ava. |l ang. Sring nane)
Returns a particular property of this node, based on its name. Returns null if a
property of the given name does not exist.

Specified By:
getPropertyByName(String) in interface IRuntimeNode

getRuntimelD()

public int getRuntinel ()
Returns the runtime ID for the node. This ID is unique across all nodes in a
particular configuration.

Specified By:
getRuntimelD() in interface IRuntimeNode

getSelectionLinelD()
public int getSelectionLinel)

Specified By:
getSelectionLinelD() in interface IRuntimeNode

getType()

public abstract int getType()
Returns the type of the runtime node. Must be implemented.

Specified By:
getType() in interface IRuntimeNode

B-190 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

hasCount()

publ i ¢ bool ean hasCount ()
Returns true if the node has an object count.

Specified By:

hasCount() in interface IRuntimeNode

hasDecimalValue()

publ i ¢ bool ean hasDeci nal Val ue()
Returns true if the node has a decimal value.

Specified By:

hasDecimalValue() in interface IRuntimeNode

hasDescription()

publ i ¢ bool ean hasDescri pti on()
Returns true if there is a design-time description of the runtime node.

Specified By:

hasDescription() in interface IRuntimeNode

hasintegerValue()

publ i ¢ bool ean hasl nt eger Val ue()
Returns true if the node has a integer value.

hasSelectionLinelD()
publ i ¢ bool ean hasSel ecti onLi nel ()

Specified By:

hasSelectionLinelD() in interface IRuntimeNode

hasState()

publ i c bool ean hasStat e()
Returns true if the node has a logical state.

Package oracle.apps.cz.cio

B-191

RuntimeNode

Specified By:
hasState() in interface IRuntimeNode

hasTextValue()

publ i ¢ bool ean hasText Val ue()
Returns true if the node has a text value.

Specified By:
hasTextValue() in interface [IRuntimeNode

isNative()

publ i c bool ean i shative()
Returns true if this is a native BOM node

Specified By:

isNative() in interface IRuntimeNode

isUnsatisfied()

publ i ¢ bool ean i slhsati sfied()
Returns true if this runtime node, or any of its children, is not fully configured.

Specified By:

isUnsatisfied() in interface IRuntimeNode

isUnsatisfiedNode()

publ i ¢ bool ean islhsati sfi edNode()
Returns true if this particular node is not fully configured.

Specified By:

isUnsatisfiedNode() in interface IRuntimeNode

toString()
public java.lang. Sring toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

B-192 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

toString(boolean)
public java.lang. Sring toSring(bool ean descri pti on)

Specified By:

toString(boolean) in interface IRuntimeNode
typeToString(int)

public static java.lang. Sring typeToString(int type)
Returns a string representation of a given runtime node type constant.

Package oracle.apps.cz.cio B-193

SelectionNotMutexedException

oracle.apps.cz.cio
SelectionNotMutexedException

Syntax
public class Sel ectionNot Mit exedExcepti on extends java. | ang. Excepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Sel ecti onNot Mut exedExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Signalled when an mutexed selection operation is performed on an option feature
that does not support mutexed selection.

Member Summary

Methods
getFeature()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-194 Oracle Configuration Interface Object (CIO) Developer’'s Guide

SelectionNotMutexedException

Methods

getFeature()
public | Qpti onFeature get Feat ure()

Package oracle.apps.cz.cio B-195

StateCountNode

oracle.apps.cz.cio
StateCountNode

Syntax
public abstract class S ateCount Node extends S ateNode inpl ements | Gount, |Price

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

+-oracl e. apps. cz. ci 0. St at eCount Node

Direct Known Subclasses:
Qount Feat ure, Qpti onFeat ureNode, Qpti onNode

All Implemented Interfaces:
| Gount, IPrice, |RuntineNode, | Sate

Description

Abstract class implementing common behavior for nodes with a logic state and
count.

Member Summary

Methods
addPricingNotification(String)
clearDiscountedPrice()
clearPricingNotifications()
getCount()
getDiscountedPrice()
getExtendedPrice()
getltemKey()

B-196 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateCountNode

Member Summary

getListPrice()
getPricingNotifications()
getUomCode()
setCount(int)
setDiscountedPrice(double)
setListPrice(double)

toString()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknownState(int), isUserState(int), setState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface ICount

unset()

Methods inherited from interface IPrice
getDatabaselD()

Methods inherited from interface IState

Package oracle.apps.cz.cio B-197

StateCountNode

Inherited Member Summary

getState(), setState(int)
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

addPricingNotification(String)

public void addPricingNotification(java.lang. Sring nessage)

clearDiscountedPrice()
public void cl earD scount edPri ce()

clearPricingNotifications()
public void clearPricingNotifications()

getCount()
public int getCount()

Specified By:

getCount() in interface ICount

Specified By:
getCount() in interface ICount

getDiscountedPrice()
publ i ¢ doubl e get O scount edPri ce()

Specified By:

getDiscountedPrice() in interface IPrice

B-198 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateCountNode

getExtendedPrice()
publ i ¢ doubl e get Ext endedPri ce()

Specified By:

getExtendedPrice() in interface IPrice

getitemKey()
public java.lang. Sring getltenkey()

Specified By:
getltemKey() in interface IPrice

getListPrice()
publ i c doubl e getListPrice()

Specified By:

getListPrice() in interface IPrice

getPricingNotifications()
public java.lang. Sring getPricingNotifications()

Specified By:

getPricingNotifications() in interface IPrice

getUomCode()
public java.lang. Sring get UonCode()

Specified By:

getUomCode() in interface IPrice

setCount(int)
public void setCount (i nt newGount)

Specified By:

setCount(int) in interface ICount

Package oracle.apps.cz.cio B-199

StateCountNode

Specified By:

setCount(int) in interface ICount

setDiscountedPrice(double)
public voi d setD scountedPri ce(doubl e di scountedPrice)

setListPrice(double)
public void setListPrice(double |istPrice)

toString()
public java.lang. Sring toString()

Overrides:
toString() in class RuntimeNode

B-200 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateNode

oracle.apps.cz.cio

StateNode

Syntax
public abstract class SateNode extends RuntineNode inpl enents | Sate

j ava. | ang. (oj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. St at eNode

Direct Known Subclasses:
Bool eanFeat ure, St at eCount Node

All Implemented Interfaces:
| Runti neNode, |Sate

Description
Abstract class implementing common behavior across nodes with logic state.

Member Summary

Methods
getState()
isDefaultState(int)
isFalseState(int)
isLogicState(int)
isTrueState(int)
isUnknownState(int)
isUserState(int)
setState(int)

statesMatch(int, int)

Returns true if the given state is default (not unknown, or user, or logic).
Returns true if the given state is false (not unknown or true).
Returns true if the given state is logic (not unknown, or user, or default).
Returns true if the given state is true (not unknown or false).
Returns true if the given state is unknown (not true or false).

Returns true if the given state is user (not unknown, or logic, or default).

Returns true if the two given states match.

Package oracle.apps.cz.cio B-201

StateNode

Member Summary

unset()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

getState()
public int getSate()

Specified By:
getState() in interface IState

isDefaultState(int)

public static bool ean isDefaul t Sate(int state)
Returns true if the given state is default (not unknown, or user, or logic).

B-202 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateNode

isFalseState(int)

public static bool ean i sFal seState(int state)
Returns true if the given state is false (not unknown or true).

isLogicState(int)
public static bool ean isLogicState(int state)
Returns true if the given state is logic (not unknown, or user, or default).

isTrueState(int)

public static bool ean i sTrueState(int state)
Returns true if the given state is true (not unknown or false).

isUnknownState(int)

public static bool ean i slhknownS ate(int state)
Returns true if the given state is unknown (not true or false).

isUserState(int)

public static bool ean i slserSate(int state)
Returns true if the given state is user (not unknown, or logic, or default).

setState(int)
public void setSate(int newxtate)

Specified By:
setState(int) in interface IState

statesMatch(int, int)

public static bool ean stateshatch(int inputState, int outputSate)
Returns true if the two given states match.

unset()
public void unset ()

Specified By:

unset() in interface [State

Package oracle.apps.cz.cio B-203

StatusInfo

oracle.apps.cz.cio

Statusinfo

Syntax
public class Satuslnfo extends java.l ang. bj ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. cio. Statusl nfo

Direct Known Subclasses:
Val i dationFai |l ure

Description

Contains information about a status change for a particular runtime node. The
status can be STATUS_NEW, STATUS_EXISTING, or STATUS_DELETED. The
condition for which this status holds depends on which list the status exists.
Possibilities include validation failure, selected nodes, and unsatisfied nodes.

Member Summary

Fields
STATUS_DELETED
STATUS_EXISTING
STATUS_NEW
Methods
equals(Object)
getNode()
getStatus()
hashCode()
statusToString(int)
toString()

toString(boolean)

The node has newly lost this status since the last check.
The already had this status during the last check, and it still does.

The node has newly attained this status since the last check.

Returns the runtime node with which this status is associated.

Returns the current status of the node.

Return a printable representation of a status constant.

B-204 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StatuslInfo

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Fields

STATUS_DELETED

public static final int STATUS DE ETED
The node has newly lost this status since the last check.

STATUS_EXISTING

public static final int STATUS EX STING
The already had this status during the last check, and it still does.

STATUS_NEW

public static final int STATUS NEW

The node has newly attained this status since the last check.
Methods
equals(Object)

publ i ¢ bool ean equal s(j ava. | ang. (hj ect obj)

Overrides:

java.lang.Object.equals(java.lang.Object) in class java.lang.Object
getNode()

public | Runti neNode get Node()

Returns the runtime node with which this status is associated.
getStatus()

public int getSatus()
Returns the current status of the node.

Package oracle.apps.cz.cio B-205

StatusInfo

hashCode()

public int hashCode()

Overrides:

java.lang.Object.hashCode() in class java.lang.Object
statusToString(int)

public static java. lang. Sring statusToSring(int status)

Return a printable representation of a status constant.
toString()

public java.lang. Sring toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

toString(boolean)
public java.lang. Sring toSring(bool ean descri pti on)

B-206 Oracle Configuration Interface Object (CIO) Developer’'s Guide

TextFeature

oracle.apps.cz.cio
TextFeature

Syntax
public class Text Feature extends Text Node

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+- - Text Node

+-oracl e. apps. cz. ci 0. Text Feat ure

All Implemented Interfaces:
| Runti neNode, | Text

Description
Represents a feature that has a textual value.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class TextNode
getTextValue(), setTextValue(String), unset()

Methods inherited from class RuntimeNode

Package oracle.apps.cz.cio B-207

TextFeature

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IText
getTextValue(), setTextValue(String), unset()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-208 Oracle Configuration Interface Object (CIO) Developer’'s Guide

TextNode

oracle.apps.cz.cio
TextNode

Syntax
public abstract class Text Node extends Runti neNode inpl enents | Text

j ava. | ang. (oj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. Text Node

Direct Known Subclasses:
Text Feature

All Implemented Interfaces:
| Runti neNode, | Text

Description
Represents a feature that has a textual value.

Member Summary

Methods
getTextValue()
setTextValue(String)

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Package oracle.apps.cz.cio B-209

TextNode

Inherited Member Summary

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

getTextValue()
public java.lang. Sring get Text Val ue()

Specified By:
getTextValue() in interface IText

setTextValue(String)

public void set Text Val ue(j ava. | ang. String newText Val ue)

Specified By:

setTextValue(String) in interface IText

unset()
public void unset ()

Specified By:

unset() in interface IText

B-210 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Total

oracle.apps.cz.cio
Total

Syntax

public class Total extends Deci nal Node

j ava. | ang. (oj ect

I
+- - Runt i neNode

+- - ReadOnl yDeci nal Node

+ - Deci nal Node

+-oracl e. apps. cz. cio. Tot al

All Implemented Interfaces:
| Deci nal , | ReadOnl yDeci nal , | Runt i neNode

Description

Represents a total that has a decimal numeric value. NOTE: This class inherits from
DecimalNode, but the functionality of a DecimalNode (specifically the method
SetDecimalValue()) is 'deprecated’, meaning that it shouldn't be used on new
projects and may be unsupported in a future release. Use only methods inherited

from ReadOnlyDecimalNode.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-211

Total

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode
setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IDecimal
setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal
getDecimalValue()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-212 Oracle Configuration Interface Object (CIO) Developer’'s Guide

TransactionException

oracle.apps.cz.cio
TransactionException

Syntax
public class Transacti onException extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Transact i onExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a particular logic file is missing.

Member Summary

Methods

getAction() Returns a String representation of the action that caused the exception

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-213

TransactionException

Methods

getAction()

public java.lang. Sring get Action()
Returns a String representation of the action that caused the exception

B-214 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ValidationFailure

oracle.apps.cz.cio
ValidationFailure

Syntax
public class ValidationFailure extends S atuslnfo

j ava. | ang. (oj ect

Direct Known Subclasses:

+-Satuslnfo

+--oracl e. apps. cz. cio. ValidationFail ure

Gonpani onVal i dati onFai l ure, RestoreValidationFail ure

Description

Implements behavior common to all validation failures.

Member Summary

Fields
COMPANION_FAILURE
MAX_FAILURE
MIN_FAILURE
MINO_FAILURE
MINMAX_FAILURE
RESOURCE_FAILURE
RESTORE_FAILURE
Methods
equals(Object)
getMessage()
getMessage(String)
getType()

Package oracle.apps.cz.cio B-215

ValidationFailure

Member Summary

toString()

Inherited Member Summary

Fields inherited from class StatusInfo

STATUS_DELETED, STATUS_EXISTING, STATUS_NEW

Methods inherited from class StatusInfo

getNode(), getStatus(), hashCode(), statusToString(int), toString(boolean)
Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Fields

COMPANION_FAILURE
public static final int GOMPAN ON FA LURE

MAX_FAILURE

public static final int MAX FA LURE
MIN_FAILURE

public static final int MNFA LURE
MINO_FAILURE

public static final int MNO_FA LURE

MINMAX_FAILURE
public static final int MNVAX FA LURE

RESOURCE_FAILURE
public static final int RESORCE FA LURE

B-216 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ValidationFailure

RESTORE_FAILURE
public static final int RESTGRE FA LURE

Methods
equals(Object)

publ i ¢ bool ean equal s(j ava. | ang. (bj ect obj)

Overrides:

equals(Object) in class StatusInfo
getMessage()

public java.lang. Sring get Message()
getMessage(String)

public java.lang. Sring get Message(j ava. | ang. S ri ng nodeNane)
getType()

public int getType()
toString()

public java.lang. Sring toString()

Overrides:
toString() in class StatusInfo

Package oracle.apps.cz.cio B-217

ValidationFailure

B-218 Oracle Configuration Interface Object (CIO) Developer’'s Guide

C

Package oracle.apps.cz.common

Description
Class Summary
Classes
CZContext Represents the runtime context of a configuration session.

Package oracle.apps.cz.common C-1

CZContext

oracle.apps.cz.common

CZContext

Syntax

public final class CZGont ext

or acl e. apps. cz. conmon. CZCont ext

Description

Represents the runtime context of a configuration session. The context owns the
database connection, resources, and log object. It also maintains apps, user, and
language information. CZContext is a shadow of the
oracle.apps.fnd.common.AppsContext implementation and is designed to operate
outside of the middle-tier Oracle Apps environment. The intent is for the CIO to run
with either the AppsContext or CZContext depending on the runtime environment.

Member Summary

Constructors

CZContext(String, String)

CZContext(String, String, String,

String)

Methods

getAppld(String)
getCurrLangCode()
getCurrLanglnfo()
getDbOwner()
getJDBCConnection(Object)
getLangCode(String)
getLanglnfo(String, String)
getNLSLang(String)

getSessionManager()

Creates a new CZContext containing a connection established with the supplied
database url.

Creates a new CZContext containing a connection established with the supplied
database url, user name, and password.

Returns the application ID for product configuration (CZ).
Returns the current language code.

This method is restricted.

Returns name of SellingPoint schema owner.

Returns the JDBC connection.

This method is restricted.

This method is restricted.

This method is restricted.

This method is restricted.

C-2 Oracle Configuration Interface Object (CIO) Developer's Guide

CZContext

Member Summary

getUrl() Returns the JDBC URL.
getUser() Returns the user name.
setCurrLang(String) Sets the current language code.
Constructors

CZContext(String, String)

public CZontext(java.lang.Sring url, java.lang. Sring dbOaner)
Creates a new CZContext containing a connection established with the supplied
database url.

Parameters:
url - The full url of the database.

dbOmner - the schema owner of the SellingPoint tables

CZContext(String, String, String, String)

Methods

public CZOontext(java.lang.Sring url, java.lang. Sring user, java.lang. Sring
password, java.lang. String dbOaner)

Creates a new CZContext containing a connection established with the supplied
database url, user name, and password.

Parameters:
url - The full url of the database.

user - The database user name.
passwor d - The user password.

dbOaner - the schema owner of the SellingPoint tables

getAppld(String)

public int getAppld(java.lang. Sring appl Sht Nane)
Returns the application ID for product configuration (CZ). The parameter signature
is for compatibility with the AppsContext implementation.

Package oracle.apps.cz.common C-3

CZContext

getCurrLangCode()

public java.lang. Sring get QurrLangCode()
Returns the current language code.

getCurrLanginfo()

public oracl e. apps. f nd. conmon. Langl nf o get Qurr Langl nf o()
This method is restricted.

getDbOwner()

public java.lang. Sring get DbOaner ()
Returns name of SellingPoint schema owner.

getdDBCConnection(Object)

public java.sgl.Gonnection get JDBODonnecti on(j ava. | ang. oj ect pThi S)
Returns the JDBC connection. The parameter signature includes a reference to the
caller to be compatible with the AppsContext implementation.

getLangCode(String)

public java.lang. Sring get LangCode(j ava. | ang. Stri ng pNLSLang)
This method is restricted.

getLanginfo(String, String)

public oracl e. apps. f nd. conmon. Langl nf o get Langl nf o(j ava. | ang. S ri ng pLangCode,
java.lang. Stri ng pNLSLang)
This method is restricted.

getNLSLang(String)

public java.lang. Sring get N.SLang(j ava. | ang. S ri ng pLangCode)
This method is restricted.

getSessionManager()

public oracl e. apps. f nd. security. Sessi onManager get Sessi onManager ()
This method is restricted.

getUrl()

public java.lang. Sring get Ul ()
Returns the JDBC URL.

C-4 Oracle Configuration Interface Object (CIO) Developer's Guide

CZContext

getUser()
public java.lang. Sring getser ()
Returns the user name.
setCurrLang(String)

publ i ¢ bool ean set QurrLang(j ava. |l ang. Sring pLangCode)
Sets the current language code.

Package oracle.apps.cz.common C-5

CZContext

C-6 Oracle Configuration Interface Object (CIO) Developer's Guide

D

Package oracle.apps.cz.utilities

Description
Class Summary
Classes
NameValuePair Provides a name-value pair object combination.
NameValuePairSet Implements an object to hold a unique set of name value pairs

Package oracle.apps.cz.utilities D-1

NameValuePair

oracle.apps.cz.utilities
NameValuePair

Syntax
public class NaneVal uePai r ext ends j ava. |l ang. (bj ect

j ava. | ang. (hj ect

+--oracl e.apps.cz.utilities.NaneVal uePair

Description
Provides a name-value pair object combination. The name cannot be changed once
created.
Member Summary
Constructors
NameValuePair(String) Constructs a name-value pair object without a value.
NameValuePair(String, Object) Constructs a name-value pair object.
Methods
getName() Retrieve the name (key).
getValue() Retrieve the value which can be null.
setValue(Object) Replaces the value for this pair.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

D-2 Oracle Configuration Interface Object (ClO) Developer’s Guide

NameValuePair

Constructors

NameValuePair(String)

public NaneVal uePair(java.lang. Sring key)
Constructs a name-value pair object without a value. Key is always stored as a
lowercase string, regardless of the case of the key parameter.

Parameters:
key - - The String name(key) for this pair.

NameValuePair(String, Object)

public NaneVal uePair(java.lang. Sring key, java.lang. (bject val ue)
Constructs a name-value pair object. Key is always stored as a lowercase string,
regardless of the case of the key parameter.

Parameters:

key - - The String name(key) for this pair. String cannot be null or have only
whitespace.

val ue - - The Object for this pair.

Methods
getName()

public java.lang. Sring get Nane()

Retrieve the name (key). Will always be lowercase.
getValue()

public java.lang. (j ect get Val ue()

Retrieve the value which can be null.
setValue(Object)

public void setVal ue(j ava. |l ang. (bj ect val ue)
Replaces the value for this pair.

Parameters:
The - Object for this pair which can be null.

Package oracle.apps.cz.utilities D-3

NameValuePairSet

oracle.apps.cz.utilities
NameValuePairSet

Syntax
public class NaneVal uePai r Set extends j ava. | ang. (bj ect

j ava. | ang. (hj ect

+--oracle.apps.cz.utilities.NaneVal uePai r Set

Description
Implements an object to hold a unique set of name value pairs

Member Summary

Constructors

NameValuePairSet()

Methods

Add(NameValuePair) Add a name value pair object to the set

Add(String, Object) Create a NameValuePair and add it to the set using the name and object.

getValueByName(String) Gets value, which may be null, of the name/value pair identified by the "name”
input.

iterator() Returns the set of keys for the name value pairs

lookupPairByName(String) Look up a name (key) in the set

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

D-4 Oracle Configuration Interface Object (ClO) Developer’s Guide

NameValuePairSet

Constructors

NameValuePairSet()
public NaneVal uePai r Set ()

Methods

Add(NameValuePair)

public void Add(NaneVal uePai r nvp)
Add a name value pair object to the set

Parameters:

naneVal uePai r - - The NameValuePair object to add. The key will provide the
hash.

Add(String, Object)
public void Add(java.lang. Sring nane, java.lang. (bject val ue)
Create a NameValuePair and add it to the set using the name and object.

Parameters:
nane - - The String key of the pair. THe name will provide the hash identifier.

val ue - - The value object which can be null.

getValueByName(String)

public java.lang. (bj ect get Val ueByNane(j ava. | ang. S ri ng nane)
Gets value, which may be null, of the name/value pair identified by the "name"
input. Returns null if pair does not exist.

Parameters:
name - the name string by which to look up the value

Returns:
the value associated with name

iterator()
public comsun.java. util.collections.Iterator iterator()

Package oracle.apps.cz.utilities D-5

NameValuePairSet

Returns the set of keys for the name value pairs

lookupPairByName(String)

publ i ¢ NaneVal uePai r | ookupPai r ByNane(j ava. | ang. Stri ng nane)
Look up a name (key) in the set

Parameters:
nane - - The String to lookup

Returns:
The NameValuePair which can be null if the string is not in the set

D-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

A

add() -
oracle.apps.cz.cio.ComponentSet.add(), B-53
Add(NameValuePair) -
oracle.apps.cz.utilities. NameValuePairSet. Add(
oracle.apps.cz.utilities. NameValuePair), D-5
Add(String, Object) -
oracle.apps.cz.utilities. NameValuePairSet. Add(j
ava.lang.String, java.lang.Object), D-5
addAtpNotification(String) -
oracle.apps.cz.cio.BomNode.add AtpNotificatio
n(java.lang.String), B-15
addConfigEventListener(ICompSetEventListener) -
oracle.apps.cz.cio.ComponentSet.addConfigEve
ntListener(oracle.apps.cz.cioICompSetEventLis
tener), B-53
addConfigEventListener(IConfigEventListener) -
oracle.apps.cz.cio.Configuration.addConfigEve
ntListener(oracle.apps.cz.cio.IConfigEventListe
ner), B-59
addConfigMessage(String, String) -
oracle.apps.cz.cio.Configuration.addConfigMes
sage(java.lang.String, java.lang.String), B-59
addPricingNotification(String) -
oracle.apps.cz.cio.StateCountNode.addPricingN
otification(java.lang.String), B-198
ALL_FEATURES -
oracle.apps.cz.cio.IRuntimeNode ALL_
FEATURES, B-129
AtpUnavailableException -
oracle.apps.cz.cio.AtpUnavailableException, B
-5
AtpUnavailableException(String) -

Index

oracle.apps.cz.cio.AtpUnavailableException. At
pUnavailableException(java.lang.String), B-6
AtpUnavailableException(String, Object, Log) -
oracle.apps.cz.cio.AtpUnavailableException. At
pUnavailableException(java.lang.String,
java.lang.Object,
oracle.apps.fnd.common.Log), B-6
Auto-configuration, 1-2,1-14,1-18
autoConfigure() -
oracle.apps.cz.cio.Functional Companion.autoC
onfigure(), B-88
autoConfigure() -
oracle.apps.cz.cio.IFunctionalCompanion.autoC
onfigure(), B-106

B

beginConfigTransaction() -
oracle.apps.cz.cio.Configuration.beginConfigTr
ansaction(), B-59

beginConfigTransaction(boolean) -
oracle.apps.cz.cio.Configuration.beginConfigTr
ansaction(boolean), B-59

BOM_MODEL -
oracle.apps.cz.cio.IRuntimeNode. BOM_
MODEL, B-129

BOM_OPTION_CLASS -
oracle.apps.cz.cio.IRuntimeNode. BOM_
OPTION_CLASS, B-129

BOM_STD_ITEM -
oracle.apps.cz.cio.IRuntimeNode. BOM_STD_
ITEM, B-129

BomExplosionException -
oracle.apps.cz.cio.BomExplosionException, B-

Index-1

7
BomModel - oracle.apps.cz.cio.BomModel, B-9
BomNode - oracle.apps.cz.cio.BomNode, B-12
BomOptionClass -
oracle.apps.cz.cio.BomOptionClass, B-23
BomStdItem - oracle.apps.cz.cio.BomStdItem, B-26
BOOLEAN_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. BOOLEAN _
FEATURE, B-129
BooleanFeature -
oracle.apps.cz.cio.BooleanFeature, B-29

C

calculateAtpDate() -

oracle.apps.cz.cio.BomNode.calculate AtpDate(),
B-15

calculateAtpDates() -
oracle.apps.cz.cio.Configuration.calculateAtpD
ates(), B-60

calculateListPrices() -
oracle.apps.cz.cio.Configuration.calculateListPri
ces(), B-60

canPerform() -
oracle.apps.cz.cio.Configuration.canPerformy(),

B-60

canUndo() -
oracle.apps.cz.cio.Configuration.canUndo(), B
-60

CIO
See Configuration Interface Object

CIO - oracle.apps.cz.cio.CIO, B-31

CIO() - oracle.apps.cz.cio.CIO.CIO(), B-32

classes11l.zip, 1-9

CLASSPATH, 1-8

clearAtpDate() -
oracle.apps.cz.cio.BomNode.clearAtpDate(), B
-15

clearAtpNotifications() -
oracle.apps.cz.cio.BomNode.clear AtpNotificatio
ns(), B-15

clearConfigMessages() -
oracle.apps.cz.cio.Configuration.clearConfigMe
ssages(), B-60

clearDiscountedPrice() -

Index-2

oracle.apps.cz.cio.StateCountNode.clearDiscou
ntedPrice(), B-198
clearLogicFile(String) -
oracle.apps.cz.cio.CIO.clearLogicFile(java.lang.S
tring), B-32
clearLogicFileCache() -
oracle.apps.cz.cio.CIO.clearLogicFileCache(),
B-32
clearPricingNotifications() -
oracle.apps.cz.cio.StateCountNode.clearPricing
Notifications(), B-198
close() - oracle.apps.cz.cio.CIO.close(), B-32
close() -
oracle.apps.cz.cio.Configuration.close(), B-60
closeConfiguration(Configuration) -
oracle.apps.cz.cio.CIO.closeConfiguration(oracl
e.apps.cz.cio.Configuration), B-32
collectionsjar, 1-8
CcoM
building Functional Companions with, 1-4,
1-11
commitConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.commitConfig
Transaction(oracle.apps.cz.cio.ConfigTransactio
n), B-61
companion
See Functional Companion
COMPANION_FAILURE -
oracle.apps.cz.cio.ValidationFailure. COMPANI
ON_FAILURE, B-216
CompanionNode -
oracle.apps.cz.cio.CompanionNode, B-38
CompanionRoot -
oracle.apps.cz.cio.CompanionRoot, B-41
CompanionRoot(IRuntimeNode) -
oracle.apps.cz.cio.CompanionRoot.Companion
Root(oracle.apps.cz.cio.IRuntimeNode), B—42
CompanionValidationFailure -
oracle.apps.cz.cio.CompanionValidationFailure,
B-44
CompanionValidationFailure(String,
IRuntimeNode, IFunctional Companion) -
oracle.apps.cz.cio.CompanionValidationFailure.
CompanionValidationFailure(java.lang.String,
oracle.apps.cz.cio.IRuntimeNode,

oracle.apps.cz.cio.IFunctionalCompanion), B-
45
Component - oracle.apps.cz.cio.Component, B-46
COMPONENT -
oracle.apps.cz.cio.IRuntimeNode. COMPONEN
T, B-129
COMPONENT_SET -
oracle.apps.cz.cio.IRuntimeNode. COMPONEN
T_SET, B-129
ComponentNode -
oracle.apps.cz.cio.ComponentNode, B-50
ComponentSet -
oracle.apps.cz.cio.ComponentSet, B-52
configjar, 1-8
ConfigTransaction -
oracle.apps.cz.cio.ConfigTransaction, B-55
Configuration -
oracle.apps.cz.cio.Configuration, B-56
Configuration Interface Object, 1-1
configuration subschema objects, 2-1
configuration-level logic transactions, 2-8
configurations, 2-6
confw32jar, 1-8
constants, 3-1
COUNT_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. COUNT_
FEATURE, B-129
CountFeature -
oracle.apps.cz.cio.CountFeature, B-72
createCIO() -
oracle.apps.cz.cio.Factory.createCIO(), B-83
createConfiguration(int, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
oracle.apps.fnd.common.Context), B-33
createConfiguration(int, int, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
int, oracle.apps.fnd.common.Context), B-33
createConfiguration(int, int, Date, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
int, java.util.Date,
oracle.apps.fnd.common.Context), B-34
createConfiguration(String, Context) -

oracle.apps.cz.cio.CIO.createConfiguration(java.

lang.String,
oracle.apps.fnd.common.Context), B-35

createContext(String, String, String, String) -
oracle.apps.cz.cio.Factory.createContext(java.la
ng.String, java.lang.String, java.lang.String,
java.lang.String), B-83

createContext(String, String, String, String, String,
String, String) -
oracle.apps.cz.cio.Factory.createContext(java.la
ng.String, java.lang.String, java.lang.String,
java.lang.String, java.lang.String,
java.lang.String, java.lang.String), B-83

CZContext -
oracle.apps.cz.common.CZContext, C-2

CZContext(String, String) -
oracle.apps.cz.common.CZContext.CZContext(j
ava.lang.String, java.lang.String), C-3

CZContext(String, String, String, String) -
oracle.apps.cz.common.CZContext.CZContext(j
ava.lang.String, java.lang.String,
java.lang.String, java.lang.String), C-3

cz.dll, 1-9

czjnidll, 1-9

D

DECIMAL_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. DECIMAL _
FEATURE, B-129

DecimalFeature -
oracle.apps.cz.cio.DecimalFeature, B-76

DecimalNode -
oracle.apps.cz.cio.DecimalNode, B-79

DEFAULT -
oracle.apps.cz.cio.Reason.DEFAULT, B-179

delete(Component) -
oracle.apps.cz.cio.ComponentSet.delete(oracle.a
pps.cz.cio.Component), B-53

deselect() -
oracle.apps.cz.cio.BomNode.deselect(), B-15

deselect() -
oracle.apps.cz.cio.IOption.deselect(), B-119

deselect() -
oracle.apps.cz.cio.OptionNode.deselect(), B-1
69

deselect(IOption) -

oracle.apps.cz.cio.IOptionFeature.deselect(oracl

Index-3

e.apps.cz.cio.IOption), B-121
deselect(IOption) -
oracle.apps.cz.cio.OptionFeatureNode.deselect(
oracle.apps.cz.cio.lOption), B-165
drivers
JDBC, 1-9

E

endConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.endConfigTran
saction(oracle.apps.cz.cio.ConfigTransaction),
B-61

equals(Object) -
oracle.apps.cz.cio.CompanionValidationFailure.
equals(java.lang.Object), B-45

equals(Object) -
oracle.apps.cz.cio.LogicalOverridableException.
equals(java.lang.Object), B-144

equals(Object) -
oracle.apps.cz.cio.RestoreValidationFailure.equ
als(java.lang.Object), B-185

equals(Object) -
oracle.apps.cz.cio.StatusInfo.equals(java.lang.O
bject), B-205

equals(Object) -
oracle.apps.cz.cio.ValidationFailure.equals(java.
lang.Object), B-217

exception
logical, 2-17

F

Factory - oracle.apps.cz.cio.Factory, B-82
Factory() -
oracle.apps.cz.cio.Factory.Factory(), B-83
FALSE - oracle.apps.cz.cio.IState. FALSE, B-136
finalizeWorkaround() -
oracle.apps.cz.cio.Configuration.finalizeWorkar
ound(), B-61
FuncCompCreationException -
oracle.apps.cz.cio.FuncCompCreationException
, B-85
Functional Companions
and Project Structure, 1-13

Index-4

defined, 1-1
relationship to CIO, 1-4,2-2
types, 1-1,1-2
FunctionalCompanion -
oracle.apps.cz.cio.FunctionalCompanion, B-87
FunctionalCompanion() -
oracle.apps.cz.cio.Functional Companion.Functi
onalCompanion(), B-88
FunctionalCompanionException -
oracle.apps.cz.cio.Functional CompanionExcepti
on, B-91
FunctionalCompanionException(Throwable) -
oracle.apps.cz.cio.Functional CompanionExcepti
on.Functional CompanionException(java.lang.T
hrowable), B-91
FunctionalCompanionException(Throwable, String)
oracle.apps.cz.cio.Functional CompanionExcepti
on.Functional CompanionException(java.lang.T
hrowable, java.lang.String), B-91

G

generateOutput() -
oracle.apps.cz.cio.Functional Companion.genera
teOutput(), B-88

generateOutput() -
oracle.apps.cz.cio.IFunctional Companion.gener
ateOutput(), B-106

generateOutput(HttpServletResponse) -
oracle.apps.cz.cio.Functional Companion.genera
teOutput(javax.servlet.http. HttpServletRespons
e), B-88

generateOutput(HttpServletResponse) -
oracle.apps.cz.cio.IFunctional Companion.gener
ateOutput(javax.servlet.http. HttpServletRespon
se), B-106

getAction() -
oracle.apps.cz.cio.TransactionException.getActi
on(), B-214

getActiveModelPath() -
oracle.apps.cz.cio.CIO.getActiveModelPath(),
B-35

getAltPricing AtpContext() -
oracle.apps.cz.cio.Configuration.getAltPricingA

tpContext(), B-61

getAppld(String) -
oracle.apps.cz.common.CZContext.getAppld(ja
va.lang.String), C-3

getAtpDate() -
oracle.apps.cz.cio.BomNode.getAtpDate(), B-
15

getAtpDate() -
oracle.apps.cz.cio.lAtp.getAtpDate(), B-93

getAtpNotifications() -
oracle.apps.cz.cio.BomNode.getAtpNotification
s(), B-16

getAtpNotifications() -
oracle.apps.cz.cio.IAtp.getAtpNotifications(),
B-93

getBoolean(String) -
oracle.apps.cz.cio.CompanionNode.getBoolean(
java.lang.String), B-39

getBoolean(String, boolean) -
oracle.apps.cz.cio.CompanionNode.getBoolean(
java.lang.String, boolean), B-39

getBooleanValue() -
oracle.apps.cz.cio.Property.getBooleanValue(),

B-174

getCause() -

oracle.apps.cz.cio.LogicalException.getCause(),
B-141

getChildBylID(int) -
oracle.apps.cz.cio.IRuntimeNode.getChild ByID(
int), B-130

getChildByID(int) -
oracle.apps.cz.cio.RuntimeNode.getChildByID(i
nt), B-188

getChildByInstanceNumber(int) -
oracle.apps.cz.cio.ComponentSet.getChildBylns
tanceNumber(int), B-54

getChildByName(String) -
oracle.apps.cz.cio.IRuntimeNode.getChildByNa
me(java.lang.String), B-131

getChildByName(String) -
oracle.apps.cz.cio.RuntimeNode.getChildByNa
me(java.lang.String), B-188

getChildren() -
oracle.apps.cz.cio.CompanionNode.getChildren
(), B-39

getChildren() -
oracle.apps.cz.cio.Component.getChildren(), B
—47

getChildren() -
oracle.apps.cz.cio.IRuntimeNode.getChildreny(),

B-131

getChildren() -

oracle.apps.cz.cio.RuntimeNode.getChildren(),
B-188

getChildrenByType(int) -
oracle.apps.cz.cio.ComponentNode.getChildren
ByType(int), B-51

getChildrenByType(int) -
oracle.apps.cz.cio.IRuntimeNode.getChildrenBy
Type(int), B-131

getChildrenByType(int) -
oracle.apps.cz.cio.RuntimeNode.getChildrenBy
Type(int), B-188

getCIO() -
oracle.apps.cz.cio.Configuration.getCIO(), B-6
1

getCompanion() -
oracle.apps.cz.cio.CompanionValidationFailure.
getCompanion(), B—45

getComponentCode() -
oracle.apps.cz.cio.BomNode.getComponentCod
e()) B-16

getComponentCode() -
oracle.apps.cz.cio.IBomlItem.getComponentCod
e(), B-95

getConfigHeaderCheckoutUser() -
oracle.apps.cz.cio.Configuration.getConfigHead
erCheckoutUser(), B-61

getConfigHeaderDateCreated() -
oracle.apps.cz.cio.Configuration.getConfigHead
erDateCreated(), B-62

getConfigHeaderDescription() -
oracle.apps.cz.cio.Configuration.getConfigHead
erDescription(), B-62

getConfigHeaderEffectiveFrom() -
oracle.apps.cz.cio.Configuration.getConfigHead
erEffectiveFrom(), B-62

getConfigHeaderEffectiveTo() -
oracle.apps.cz.cio.Configuration.getConfigHead
erEffectiveTo(), B-62

Index-5

getConfigHeaderId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erld(), B-62

getConfigHeaderLastUpdateDate() -
oracle.apps.cz.cio.Configuration.getConfigHead
erLastUpdateDate(), B-63

getConfigHeaderName() -
oracle.apps.cz.cio.Configuration.getConfigHead
erName(), B-63

getConfigHeaderNote() -
oracle.apps.cz.cio.Configuration.getConfigHead
erNote(), B-63

getConfigHeaderNumberQuotesUsedIn() -
oracle.apps.cz.cio.Configuration.getConfigHead
erNumberQuotesUsedIn(), B-63

getConfigHeaderOpportunityHeaderId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erOpportunityHeaderId(), B-63

getConfigHeaderRevision() -
oracle.apps.cz.cio.Configuration.getConfigHead
erRevision(), B-64

getConfigHeaderStatus() -
oracle.apps.cz.cio.Configuration.getConfigHead
erStatus(), B-64

getConfigHeaderUiDefinitionId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erUiDefinitionId(), B-64

getConfigHeaderUserldCreated() -
oracle.apps.cz.cio.Configuration.getConfigHead
erUserldCreated(), B-64

getConfiguration() -
oracle.apps.cz.cio.IRuntimeNode.getConfigurat
ion(), B-131

getConfiguration() -
oracle.apps.cz.cio.RuntimeNode.getConfigurati
on(), B-189

getContext() -
oracle.apps.cz.cio.Configuration.getContext(),
B-64

getCount() -
oracle.apps.cz.cio.Component.getCount(), B-4
8

getCount() -
oracle.apps.cz.cio.ComponentSet.getCount(),
B-54

Index-6

getCount() -
oracle.apps.cz.cio.ICount.getCount(), B-99

getCount() -
oracle.apps.cz.cio.StateCountNode.getCount(),
B-198

getCurrLangCode() -
oracle.apps.cz.common.CZContext.getCurrLan
gCode(), CH4

getCurrLangInfo() -
oracle.apps.cz.common.CZContext.getCurrLan
glnfo(), C—4

getDatabaselD() -
oracle.apps.cz.cio.IAtp.getDatabaseIlD(), B-93

getDatabaselD() -
oracle.apps.cz.cio.IPrice.getDatabaselD(), B-12
4

getDatabaselD() -
oracle.apps.cz.cio.IRuntimeNode.getDatabasel
D(), B-131

getDatabaselD() -
oracle.apps.cz.cio.RuntimeNode.getDatabaselD
(), B-189

getDbOwner() -
oracle.apps.cz.common.CZContext.getDbOwne
r(), CH4

getDecimalValue() -
oracle.apps.cz.cio.IReadOnlyDecimal.getDecim
alValue(), B-126

getDecimalValue() -
oracle.apps.cz.cio.Property.getDecimalValue(),
B-174

getDecimalValue() -
oracle.apps.cz.cio.ReadOnlyDecimalNode.getD
ecimalValue(), B-177

getDefaultQuantity() -
oracle.apps.cz.cio.BomNode.getDefaultQuantit
y0, B-16

getDescription() -
oracle.apps.cz.cio.Functional Companion.getDes
cription(), B-89

getDescription() -
oracle.apps.cz.cio.JFunctionalCompanion.getDe
scription(), B-106

getDescription() -
oracle.apps.cz.cio.IRuntimeNode.getDescriptio

n(), B-132

getDescription() -
oracle.apps.cz.cio.Property.getDescription(), B
-174

getDescription() -
oracle.apps.cz.cio.RuntimeNode.getDescription
(), B-189

getDescrption() -
oracle.apps.cz.cio.FuncCompCreationException
.getDescrption(), B-86

getDiscountedPrice() -
oracle.apps.cz.cio.BomNode.getDiscountedPric
e(), B-16

getDiscountedPrice() -
oracle.apps.cz.cio.IPrice.getDiscountedPrice(),

B-124

getDiscountedPrice() -
oracle.apps.cz.cio.StateCountNode.getDiscount
edPrice(), B-198

getDouble(String) -
oracle.apps.cz.cio.CompanionNode.getDouble(j
ava.lang.String), B-39

getDouble(String, double) -
oracle.apps.cz.cio.CompanionNode.getDouble(j
ava.lang.String, double), B-39

getExplosionDate() -
oracle.apps.cz.cio.BomExplosionException.getE
xplosionDate(), B-8

getExtendedPrice() -
oracle.apps.cz.cio.IPrice.getExtendedPrice(), B
-124

getExtendedPrice() -
oracle.apps.cz.cio.StateCountNode.getExtended
Price(), B-199

getFeature() -
oracle.apps.cz.cio.SelectionNotMutexedExcepti
on.getFeature(), B-195

getFeature(String) -
oracle.apps.cz.cio.CompanionNode.getFeature(j
ava.lang.String), B-39

getFeatureldentifier() -
oracle.apps.cz.cio.CompanionRoot.getFeatureld
entifier(), B-42

getFuncCompBylID(int) -
oracle.apps.cz.cio.Component.getFuncCompByl

D(int), B-48

getFuncCompByName(String) -
oracle.apps.cz.cio.Component.getFuncCompBy
Name(java.lang.String), B—48

getFunctionalCompanions() -
oracle.apps.cz.cio.Component.getFunctionalCo
mpanions(), B-48

getID() -
oracle.apps.cz.cio.FuncCompCreationException
.getID(), B-86

getID() -
oracle.apps.cz.cio.Functional Companion.getID()
, B-89

getID() -
oracle.apps.cz.cio.JFunctionalCompanion.getID(
), B-106

getID() -
oracle.apps.cz.cio.NoSuchChildException.getID
(), B-154

getInitParameters() -
oracle.apps.cz.cio.Configuration.getInitParamet
ers(), B-65

getInput() -
oracle.apps.cz.cio.IncompatibleInputException.
getlnput(), B-112

getInput() -
oracle.apps.cz.cio.RestoreValidationFailure.getI
nput(), B-185

getInstanceNumber() -
oracle.apps.cz.cio.Component.getInstanceNum
ber(), B-48

getInteger(String) -
oracle.apps.cz.cio.CompanionNode.getInteger(j
ava.lang.String), B-39

getInteger(String, int) -
oracle.apps.cz.cio.CompanionNode.getInteger(j
ava.lang.String, int), B—40

getIntValue() -
oracle.apps.cz.cio.CountFeature.getIntValue(),
B-74

getIntValue() -
oracle.apps.cz.cio.lInteger.getIntValue(), B-10
8

getIntValue() -
oracle.apps.cz.cio.IntegerNode.getIntValue(),

Index-7

B-117

getIntValue() -
oracle.apps.cz.cio.Property.getIntValue(), B-1
74

getInventoryltemId() -
oracle.apps.cz.cio.BomExplosionException.getl
nventoryltemlId(), B-8

getInventoryltemId() -
oracle.apps.cz.cio.BomNode.getInventorylteml
d(), B-16

getInventoryltemId() -
oracle.apps.cz.cio.IBomlItem.getInventoryltemld
(), B-95

getltemKey() -
oracle.apps.cz.cio.BomNode.getltemKey(), B-
16

getltemKey() -
oracle.apps.cz.cio.IAtp.getltemKey(), B-93

getltemKey() -
oracle.apps.cz.cio.IPrice.getltemKey(), B-124

getltemKey() -
oracle.apps.cz.cio.StateCountNode.getItemKey(
), B-199

get]DBCConnection(Object) -
oracle.apps.cz.common.CZContext.getf DBCCon
nection(java.lang.Object), C—4

getLangCode(String) -
oracle.apps.cz.common.CZContext.getLangCod
e(java.lang.String), C—4

getLangInfo(String, String) -
oracle.apps.cz.common.CZContext.getLangInfo
(java.lang.String, java.lang.String), C—4

getLastContradiction() -
oracle.apps.cz.cio.Configuration.getLastContra
diction(), B-65

getListPrice() -
oracle.apps.cz.cio.BomNode.getListPrice(), B-
17

getListPrice() -
oracle.apps.cz.cio.IPrice.getListPrice(), B-124

getListPrice() -
oracle.apps.cz.cio.StateCountNode.getListPrice(
), B-199

getLogicException() -
oracle.apps.cz.cio.LogicalRuntimeException.get

Index-8

LogicException(), B-146

getMax() -
oracle.apps.cz.cio.Component.getMax(), B—48

getMax() -
oracle.apps.cz.cio.ComponentSet.getMax(), B-
54

getMax() -
oracle.apps.cz.cio.CountFeature.getMax(), B-7
4

getMax() -
oracle.apps.cz.cio.DecimalFeature.getMax(), B
=77

getMax() -
oracle.apps.cz.cio.IDecimalMinMax.getMax(),
B-103

getMax() -
oracle.apps.cz.cio.IIntegerMinMax.getMax(),
B-109

getMax() -
oracle.apps.cz.cio.IntegerFeature.getMax(), B-
114

getMaxQuantity() -
oracle.apps.cz.cio.BomNode.getMaxQuantity(),
B-17

getMaxQuantity() -
oracle.apps.cz.cio. IBomItem.getMaxQuantity(),
B-95

getMaxSelected() -
oracle.apps.cz.cio.BomNode.getMaxSelected(),
B-17

getMaxSelected() -
oracle.apps.cz.cio.IOptionFeature.getMaxSelect
ed()/ B-121

getMaxSelected() -
oracle.apps.cz.cio.OptionFeature.getMaxSelecte
d(), B-162

getMessage() -
oracle.apps.cz.cio.LogicalException.getMessage
(), B-142

getMessage() -
oracle.apps.cz.cio.ValidationFailure.getMessage
(), B-217

getMessage(String) -
oracle.apps.cz.cio.ValidationFailure.getMessage
(java.lang.String), B-217

getMessageHeader() -
oracle.apps.cz.cio.LogicalException.getMessage
Header(), B-142

getMin() -
oracle.apps.cz.cio.Component.getMin(), B-48

getMin() -
oracle.apps.cz.cio.ComponentSet.getMin(), B-
54

getMin() -
oracle.apps.cz.cio.CountFeature.getMin(), B-7
4

getMin() -
oracle.apps.cz.cio.DecimalFeature.getMin(), B
=77

getMin() -
oracle.apps.cz.cio.IDecimalMinMax.getMin(),
B-103

getMin() -
oracle.apps.cz.cio.lIntegerMinMax.getMin(), B
-109

getMin() -
oracle.apps.cz.cio.IntegerFeature.getMin(), B-
114

getMinQuantity() -
oracle.apps.cz.cio.BomNode.getMinQuantity(),
B-18

getMinQuantity() -
oracle.apps.cz.cio.IBomlItem.getMinQuantity(),
B-95

getMinSelected() -
oracle.apps.cz.cio.BomNode.getMinSelected(),
B-18

getMinSelected() -
oracle.apps.cz.cio.IOptionFeature.getMinSelecte
d(), B-121

getMinSelected() -
oracle.apps.cz.cio.OptionFeature.getMinSelecte
d(), B-162

getModelNode() -
oracle.apps.cz.cio.IncompatibleInputException.
getModelNode(), B-112

getMsg() -
oracle.apps.cz.cio.Reason.getMsg(), B-181

getName() -
oracle.apps.cz.cio.Component.getName(), B-4

8

getName() -
oracle.apps.cz.cio.FuncCompCreationException
.getName(), B-86

getName() -
oracle.apps.cz.cio.Functional Companion.getNa
me(), B-89

getName() -
oracle.apps.cz.cio.JFunctionalCompanion.getNa
me(), B-106

getName() -
oracle.apps.cz.cio.IRuntimeNode.getName(),
B-132

getName() -
oracle.apps.cz.cio.NoSuchChildException.getNa
me(), B-154

getName() -
oracle.apps.cz.cio.Property.getName(), B-174

getName() -
oracle.apps.cz.cio.RuntimeNode.getName(), B
-189

getName() -
oracle.apps.cz.utilities. NameValuePair.getNam
e(), D-3

getNLSLang(String) -
oracle.apps.cz.common.CZContext.getNLSLang
(java.lang.String), C—4

getNode() -
oracle.apps.cz.cio.Reason.getNode(), B-181
getNode() -
oracle.apps.cz.cio.StatusInfo.getNode(), B-205
getNodeClass(String) -

oracle.apps.cz.cio.CompanionRoot.getNodeClas
s(java.lang.String), B—42

getNodeldentifier() -
oracle.apps.cz.cio.CompanionRoot.getNodelde
ntifier(), B-42

getOrganizationld() -
oracle.apps.cz.cio.BomExplosionException.getO
rganizationld(), B-8

getOrganizationId() -
oracle.apps.cz.cio.BomNode.getOrganizationId(
), B-18

getOrganizationId() -
oracle.apps.cz.cio.IBomltem.getOrganizationId(

Index-9

), B-96

getParent() -
oracle.apps.cz.cio.IRuntimeNode.getParent(),
B-132

getParent() -
oracle.apps.cz.cio.NoSuchChildException.getPa
rent(), B-154

getParent() -
oracle.apps.cz.cio.RuntimeNode.getParent(), B
-189

getPricingNotifications() -
oracle.apps.cz.cio.IPrice.getPricingNotifications
(), B-124

getPricingNotifications() -
oracle.apps.cz.cio.StateCountNode.getPricingN
otifications(), B-199

getPrimaryUomCode() -
oracle.apps.cz.cio.BomNode.getPrimaryUomCo
de(), B-18

getPrimaryUomCode() -
oracle.apps.cz.cio.IBomlItem.getPrimaryUomCo
de(), B-96

getProgString|() -
oracle.apps.cz.cio.FuncCompCreationException
.getProgString(), B-86

getProjectID() -
oracle.apps.cz.cio.Configuration.getProjectID(),

B-65

getProperties() -
oracle.apps.cz.cio.IRuntimeNode.getProperties(
), B-132

getProperties() -
oracle.apps.cz.cio.RuntimeNode.getProperties()
, B-190

getPropertyByName(String) -
oracle.apps.cz.cio.IRuntimeNode.getPropertyBy
Name(java.lang.String), B-132

getPropertyByName(String) -
oracle.apps.cz.cio.RuntimeNode.getPropertyBy
Name(java.lang.String), B-190

getReasons() -
oracle.apps.cz.cio.LogicalException.getReasons(
), B-142

getRootBomModel() -
oracle.apps.cz.cio.Configuration.getRootBomM

Index-10

odel(), B-65

getRootBomModel(int, int) -
oracle.apps.cz.cio.Configuration.getRootBomM
odel(int, int), B-65

getRootComponent() -
oracle.apps.cz.cio.Configuration.getRootCompo
nent(), B-65

getRootComponentDbld() -
oracle.apps.cz.cio.Configuration.getRootCompo
nentDbId(), B-66

getRootNodes() -
oracle.apps.cz.cio.CompanionRoot.getRootNod
es(), BH43

getRuntimelD() -
oracle.apps.cz.cio.IRuntimeNode.getRuntimeID
(), B-132

getRuntimelD() -
oracle.apps.cz.cio.RuntimeNode.getRuntimelD(
), B-190

getRuntimeNode() -
oracle.apps.cz.cio.FunctionalCompanion.getRu
ntimeNode(), B-89

getRuntimeNode() -
oracle.apps.cz.cio.IFunctionalCompanion.getRu
ntimeNode(), B-106

getRuntimeNode(int) -
oracle.apps.cz.cio.Configuration.getRuntimeNo
de(int), B-66

getSelectedItems() -
oracle.apps.cz.cio.Configuration.getSelectedIte
ms(), B-66

getSelectedOption() -
oracle.apps.cz.cio.IOptionFeature.getSelectedO
ption(), B-121

getSelectedOption() -
oracle.apps.cz.cio.OptionFeatureNode.getSelect
edOption(), B-165

getSelectedOptions() -
oracle.apps.cz.cio.IOptionFeature.getSelectedO
ptions(), B-122

getSelectedOptions() -
oracle.apps.cz.cio.OptionFeatureNode.getSelect
edOptions(), B-165

getSelectionLinelD() -
oracle.apps.cz.cio.IRuntimeNode.getSelectionLi

nelD(), B-133

getSelectionLinelD() -
oracle.apps.cz.cio.RuntimeNode.getSelectionLin
elD(), B-190

getSessionManager() -
oracle.apps.cz.common.CZContext.getSessionM
anager(), CH4

getState() -
oracle.apps.cz.cio.BomNode.getState(), B-18

getState() -
oracle.apps.cz.cio.IState.getState(), B-137

getState() -
oracle.apps.cz.cio.StateNode.getState(), B-202

getStatus() -
oracle.apps.cz.cio.StatusInfo.getStatus(), B-205

getString(String) -
oracle.apps.cz.cio.CompanionNode.getString(ja
va.lang.String), B-40

getString(String, String) -
oracle.apps.cz.cio.CompanionNode.getString(ja
va.lang.String, java.lang.String), B-40

getStringValue() -
oracle.apps.cz.cio.Property.getStringValue(), B
-174

getTextValue() -
oracle.apps.cz.cio.IText.getTextValue(), B-138

getTextValue() -
oracle.apps.cz.cio.TextNode.getTextValue(), B
-210

getTotalDiscountedPrice() -
oracle.apps.cz.cio.Configuration.getTotalDiscou
ntedPrice(), B-66

getTransactionDepth() -
oracle.apps.cz.cio.Configuration.getTransaction
Depth(), B-66

getType() -
oracle.apps.cz.cio.BomModel.getType(), B-11

getType() -
oracle.apps.cz.cio.BomOptionClass.getType(),
B-25

getType() -
oracle.apps.cz.cio.BomStdItem.getType(), B-2
8

getType() -

oracle.apps.cz.cio.BooleanFeature.getType(), B

-30

getType() -
oracle.apps.cz.cio.Component.getType(), B-49

getType() -
oracle.apps.cz.cio.ComponentSet.getType(), B
-54

getType() -
oracle.apps.cz.cio.CountFeature.getType(), B-
74

getType() -
oracle.apps.cz.cio.DecimalFeature.getType(),
B-78

getType() -
oracle.apps.cz.cio.IntegerFeature.getType(), B
-114

getType() -
oracle.apps.cz.cio.IRuntimeNode.getType(), B
-133

getType() -
oracle.apps.cz.cio.OptionFeature.getType(), B-
162

getType() -
oracle.apps.cz.cio.Option.getType(), B-159

getType() -
oracle.apps.cz.cio.Reason.getType(), B-181

getType() -
oracle.apps.cz.cio.Resource.getType(), B-183

getType() -
oracle.apps.cz.cio.RuntimeNode.getType(), B-
190

getType() -
oracle.apps.cz.cio.TextFeature.getType(), B-20
8

getType() -
oracle.apps.cz.cio.Total.getType(), B-212

getType() -
oracle.apps.cz.cio.ValidationFailure.getType(),
B-217

getUnit() -
oracle.apps.cz.cio.Property.getUnit(), B-174

getUnsatisfiedItems() -
oracle.apps.cz.cio.Configuration.getUnsatisfiedI
tems(), B-67

getUomCode() -
oracle.apps.cz.cio.BomNode.getUomCode(), B

Index-11

-19
getUomCode() -
oracle.apps.cz.cio.IAtp.getUomCode(), B-93
getUomCode() -
oracle.apps.cz.cio.IPrice.getUomCode(), B-125
getUomCode() -
oracle.apps.cz.cio.StateCountNode.getUomCod
e()) B-199
getUrl() -
oracle.apps.cz.common.CZContext.getUrl(), C
-4
getUser() -
oracle.apps.cz.common.CZContext.getUser(),
C-5
getValidationFailures() -
oracle.apps.cz.cio.Configuration.getValidationF
ailures(), B-67
getValue() -
oracle.apps.cz.utilities. NameValuePair.getValue
()r D-3
getValueByName(String) -
oracle.apps.cz.utilities. NameValuePairSet.getVa
lueByName(java.lang.String), D-5
GSL
building Functional Companions with, 1-3, 1-4
See also Generative Specification Language
specifying Functional Companion type, 1-14

H

hasBooleanValue() -
oracle.apps.cz.cio.Property.hasBooleanValue(),
B-175
hasCount() -
oracle.apps.cz.cio.IRuntimeNode.hasCount(),
B-133
hasCount() -
oracle.apps.cz.cio.RuntimeNode.hasCount(), B
-191
hasDecimalValue() -
oracle.apps.cz.cio.IRuntimeNode.hasDecimalVa
lue(), B-133
hasDecimalValue() -
oracle.apps.cz.cio.Property. hasDecimalValue(),
B-175

Index-12

hasDecimalValue() -
oracle.apps.cz.cio.RuntimeNode.hasDecimalVal
ue()/ B-191

hasDefaultQuantity() -
oracle.apps.cz.cio.BomNode.hasDefaultQuantit
y0, B-19

hasDefaultValue() -
oracle.apps.cz.cio.Property.hasDefaultValue(),
B-175

hasDescription() -
oracle.apps.cz.cio.IRuntimeNode.hasDescriptio
n(), B-133

hasDescription() -
oracle.apps.cz.cio.RuntimeNode.hasDescription
(), B-191

hasFeature(String) -
oracle.apps.cz.cio.CompanionNode.hasFeature(
java.lang.String), B—40

hashCode() -
oracle.apps.cz.cio.CompanionValidationFailure.
hashCode(), B—45

hashCode() -
oracle.apps.cz.cio.RestoreValidationFailure.has
hCode(), B-185

hashCode() -
oracle.apps.cz.cio.StatusInfo.hashCode(), B-20
6

hasIntegerValue() -
oracle.apps.cz.cio.Property.hasIntegerValue(),
B-175

hasIntegerValue() -
oracle.apps.cz.cio.RuntimeNode.hasIntegerValu
e(), B-191

hasMax() -
oracle.apps.cz.cio.Component.hasMax(), B-49

hasMax() -
oracle.apps.cz.cio.ComponentSet.hasMax(), B-
54

hasMax() -
oracle.apps.cz.cio.CountFeature hasMax(), B-7
5

hasMax() -
oracle.apps.cz.cio.DecimalFeature.hasMax(), B
-78

hasMax() -

oracle.apps.cz.cio.IDecimalMinMax.hasMax(),
B-103

hasMax() -
oracle.apps.cz.cio.lIntegerMinMax.hasMax(),
B-109

hasMax() -
oracle.apps.cz.cio.IntegerFeature.hasMax(), B-
115

hasMaxQuantity() -
oracle.apps.cz.cio.BomNode hasMaxQuantity(),
B-19

hasMaxQuantity() -
oracle.apps.cz.cio.IBomItem.hasMaxQuantity(),
B-96

hasMaxSelected() -
oracle.apps.cz.cio.BomNode.hasMaxSelected(),
B-20

hasMaxSelected() -
oracle.apps.cz.cio.IOptionFeature.hasMaxSelect
ed(), B-122

hasMaxSelected() -
oracle.apps.cz.cio.OptionFeature.hasMaxSelecte
d(), B-162

hasMin() -
oracle.apps.cz.cio.Component.hasMin(), B—49

hasMin() -
oracle.apps.cz.cio.ComponentSet.hasMin(), B-
54

hasMin() -
oracle.apps.cz.cio.CountFeature.hasMin(), B-7
5

hasMin() -
oracle.apps.cz.cio.DecimalFeature.hasMin(), B
78

hasMin() -
oracle.apps.cz.cio.IDecimalMinMax.hasMin(),
B-104

hasMin() -
oracle.apps.cz.cio.lIntegerMinMax.hasMin(),
B-110

hasMin() -
oracle.apps.cz.cio.IntegerFeature.hasMin(), B-
115

hasMinQuantity() -
oracle.apps.cz.cio.BomNode hasMinQuantity(),

B-20

hasMinQuantity() -
oracle.apps.cz.cio.IBomItem.hasMinQuantity(),
B-96

hasMinSelected() -
oracle.apps.cz.cio.BomNode.hasMinSelected(),
B-20

hasMinSelected() -
oracle.apps.cz.cio.IOptionFeature.hasMinSelect
ed()/ B-122

hasMinSelected() -
oracle.apps.cz.cio.OptionFeature.hasMinSelecte
d(), B-162

hasSelectionLinelD() -
oracle.apps.cz.cio.IRuntimeNode.hasSelectionLi
nelD(), B-133

hasSelectionLinelD() -
oracle.apps.cz.cio.RuntimeNode.hasSelectionLi
nelD(), B-191

hasState() -
oracle.apps.cz.cio.IRuntimeNode.hasState(), B
-134

hasState() -
oracle.apps.cz.cio.RuntimeNode.hasState(), B-
191

hasStringValue() -
oracle.apps.cz.cio.Property.hasStringValue(),
B-175

hasTextValue() -
oracle.apps.cz.cio.IRuntimeNode.hasTextValue(
), B-134

hasTextValue() -
oracle.apps.cz.cio.RuntimeNode.hasTextValue()
, B-192

IAtp - oracle.apps.cz.cio.IAtp, B-92

IBomItem - oracle.apps.cz.cio.IBomltem, B-94

ICompSetEventListener -
oracle.apps.cz.cio.lCompSetEventListener, B-
97

IConfigEventListener -
oracle.apps.cz.cio.IConfigEventListener, B-98

ICount - oracle.apps.cz.cioICount, B-99

Index-13

IDecimal - oracle.apps.cz.cio.IDecimal, B-101
IDecimalMinMax -
oracle.apps.cz.cio.lDecimalMinMax, B-103
IFunctionalCompanion, 2-21,2-22, 2-24, 2-26
IFunctionalCompanion -
oracle.apps.cz.cio.IFunctionalCompanion, B-1
05
IInteger - oracle.apps.cz.cio.lInteger, B-108
IIntegerMinMax -
oracle.apps.cz.cio.llntegerMinMax, B-109
IncompatibleInputException -
oracle.apps.cz.cio.IncompatibleInputException,
B-111
initialize(IRuntimeNode, String, String, int) -
oracle.apps.cz.cio.Functional Companion.initiali
ze(oracle.apps.cz.cio.IRuntimeNode,
java.lang.String, java.lang.String, int), B-89
initialize(IRuntimeNode, String, String, int) -
oracle.apps.cz.cio.IFunctional Companion.initial
ize(oracle.apps.cz.cio.IRuntimeNode,
java.lang.String, java.lang.String, int), B-107
instanceTypeToString(int) -
oracle.apps.cz.cio.Component.instanceTypeToS
tring(int), B-—49
INTEGER_FEATURE -
oracle.apps.cz.cio.IRuntimeNode INTEGER _
FEATURE, B-130
IntegerFeature -
oracle.apps.cz.cio.IntegerFeature, B-113
IntegerNode -
oracle.apps.cz.cio.IntegerNode, B-116
interface
methods, 2-21
objects, 1-4,2-2
INTL_TEXT - oracle.apps.cz.cio.Reason.INTL_
TEXT, B-179
IOption - oracle.apps.cz.cio.IOption, B-118
IOptionFeature -
oracle.apps.cz.cio.lOptionFeature, B-120
IPrice - oracle.apps.cz.cio.IPrice, B-123
IReadOnlyDecimal -
oracle.apps.cz.cio.IReadOnlyDecimal, B-126
IRuntimeNode -
oracle.apps.cz.cio.IRuntimeNode, B-127
isActive() -

Index-14

oracle.apps.cz.cio.ComponentNode.isActive(),
B-51

isDefaultState(int) -
oracle.apps.cz.cio.StateNode.isDefaultState(int),
B-202

isFalseState(int) -
oracle.apps.cz.cio.StateNode.isFalseState(int),
B-203

isLogicState(int) -
oracle.apps.cz.cio.StateNode.isLogicState(int),
B-203

isNative() -
oracle.apps.cz.cio IRuntimeNode.isNative(), B
-134

isNative() -
oracle.apps.cz.cio.RuntimeNode.isNative(), B-
192

isOptionMutexed() -
oracle.apps.cz.cio.BomNode.isOptionMutexed ()
, B-20

isOptionMutexed() -
oracle.apps.cz.cio.IOption.isOptionMutexed(),
B-119

isOptionMutexed() -
oracle.apps.cz.cio.OptionNode.isOptionMutexe
d(), B-169

isOverridable() -
oracle.apps.cz.cio.LogicalException.isOverridab
le(), B-142

isOverridable() -
oracle.apps.cz.cio.LogicalOverridableException.
isOverridable(), B-144

isRequired() -
oracle.apps.cz.cio.BomNode.isRequired(), B-2
0

isRequired() -
oracle.apps.cz.cio.IBomltem.isRequired(), B-9
6

isRoot() -
oracle.apps.cz.cio.Component.isRoot(), B-49

isSelected() -
oracle.apps.cz.cio.BomNode.isSelected(), B-21

isSelected() -
oracle.apps.cz.cio.IOption.isSelected(), B-119

isSelected() -

oracle.apps.cz.cio.OptionNode.isSelected(), B-
169

isSelectionMutexed() -
oracle.apps.cz.cio.BomNode.isSelectionMutexe
d(), B-21

isSelectionMutexed() -
oracle.apps.cz.cio.IOptionFeature.isSelectionMu
texed(), B-122

isSelectionMutexed() -
oracle.apps.cz.cio.OptionFeatureNode.isSelectio
nMutexed(), B-165

IState - oracle.apps.cz.cio.IState, B-135

isTrueState(int) -
oracle.apps.cz.cio.StateNode.isTrueState(int),
B-203

isUnknownState(int) -
oracle.apps.cz.cio.StateNode.isUnknownState(i
nt), B-203

isUnsatisfied() -
oracle.apps.cz.cio.Configuration.isUnsatisfied(),

B-67

isUnsatisfied() -
oracle.apps.cz.cio.IRuntimeNode.isUnsatisfied()
, B-134

isUnsatisfied() -
oracle.apps.cz.cio.RuntimeNode.isUnsatisfied(),

B-192

isUnsatisfiedNode() -
oracle.apps.cz.cio.IRuntimeNode.isUnsatisfied
Node(), B-134

isUnsatisfiedNode() -
oracle.apps.cz.cio.RuntimeNode.isUnsatisfiedN
ode(), B-192

isUserState(int) -
oracle.apps.cz.cio.StateNode.isUserState(int),
B-203

isVirtual() -
oracle.apps.cz.cio.Component.isVirtual(), B—4
9

iterator() -
oracle.apps.cz.utilities. NameValuePairSet.iterat
or(), D-5

IText - oracle.apps.cz.cio.IText, B-138

J

Java
building Functional Companions with, 1-3, 1-5
packages for the CIO, 2-1
specifying Functional Companion type, 1-14
JDBC
drivers, 1-9

L

LFALSE - oracle.apps.cz.cio.IState. LFALSE, B-136

loadDriver(String) -
oracle.apps.cz.cio.Factory.loadDriver(java.lang.
String), B-84

logic

transactions, 2-8

logic net objects, 2-1

logical contradictions, 2-17

logical exception, 2-17

logical transaction, 2-20

LogicalException -
oracle.apps.cz.cio.LogicalException, B-140

LogicalException() -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(), B-141

LogicalException(LogicException, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(oracle.apps.cz.logic.LogicException,
oracle.apps.cz.cio.Configuration), B-141

LogicalException(Reason, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(oracle.apps.cz.cio.Reason,
oracle.apps.cz.cio.Configuration), B-141

LogicalException(String, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(java.lang.String,
oracle.apps.cz.cio.Configuration), B-141

LogicalOverridableException -
oracle.apps.cz.cio.LogicalOverridableException,

B-143

LogicalOverridableException(LogicContradictionEx
ception, Configuration) -
oracle.apps.cz.cio.LogicalOverridableException.
LogicalOverridableException(oracle.apps.cz.log

Index-15

ic.LogicContradictionException,
oracle.apps.cz.cio.Configuration), B-144

LogicalRuntimeException -
oracle.apps.cz.cio.LogicalRuntimeException, B
-145

LogicalRuntimeException(LogicException) -
oracle.apps.cz.cio.LogicalRuntimeException.Lo
gicalRuntimeException(oracle.apps.cz.logic.Log
icException), B-146

LogicalRuntimeException(String) -
oracle.apps.cz.cio.LogicalRuntimeException.Lo
gicalRuntimeException(java.lang.String), B-14
6

lookupPairByName(String) -
oracle.apps.cz.utilities. NameValuePairSet.looku
pPairByName(java.lang.String), D-6

LTRUE - oracle.apps.cz.cio.IState. LTRUE, B-136

M

MAX_FAILURE -
oracle.apps.cz.cio.ValidationFailure MAX_
FAILURE, B-216

MIN_FAILURE -
oracle.apps.cz.cio.ValidationFailure. MIN_
FAILURE, B-216

MINO_FAILURE -
oracle.apps.cz.cio.ValidationFailure. MINO_
FAILURE, B-216

MINMAX -
oracle.apps.cz.cio.Reason. MINMAX, B-179

MINMAX_FAILURE -
oracle.apps.cz.cio.ValidationFailure MINMAX_
FAILURE, B-216

MissingFileException -
oracle.apps.cz.cio.MissingFileException, B-14
7

MissingLogicException -
oracle.apps.cz.cio.MissingLogicException, B-1
48

N

NameValuePair -
oracle.apps.cz.utilities. NameValuePair, D-2

Index-16

NameValuePair(String) -
oracle.apps.cz.utilities. NameValuePair. NameVa
luePair(java.lang.String), D-3

NameValuePair(String, Object) -
oracle.apps.cz.utilities. NameValuePair. NameVa
luePair(java.lang.String, java.lang.Object), D-3

NameValuePairSet -
oracle.apps.cz.utilities. NameValuePairSet, D-
4

NameValuePairSet() -
oracle.apps.cz.utilities. NameValuePairSet.Nam
eValuePairSet(), D-5

New Functional Companion command, 1-13

NoAtpCalculatedException -
oracle.apps.cz.cio.NoAtpCalculatedException,

B-149

NoConfigHeaderException -
oracle.apps.cz.cio.NoConfigHeaderException,
B-150

NoConfigHeaderException() -
oracle.apps.cz.cio.NoConfigHeaderException.N
oConfigHeaderException(), B-151

NonPricedNodeException -
oracle.apps.cz.cio.NonPricedNodeException,
B-152

NoSuchChildException -
oracle.apps.cz.cio.NoSuchChildException, B-1
53

NoSuchChildException(IRuntimeNode, int) -
oracle.apps.cz.cio.NoSuchChildException.NoSu
chChildException(oracle.apps.cz.cio.IRuntimeN
ode, int), B-154

NoSuchChildException(IRuntimeNode, String) -
oracle.apps.cz.cio.NoSuchChildException.NoSu
chChildException(oracle.apps.cz.cio.IRuntimeN
ode, java.lang.String), B-154

notifyComponentAdded(Component) -
oracle.apps.cz.cio.ICompSetEventListener.notif
yComponentAdded(oracle.apps.cz.cio.Compon
ent), B-97

notifyComponentAdded(Component) -
oracle.apps.cz.cio.IConfigEventListener.notifyC
omponentAdded(oracle.apps.cz.cio.Component
), B-98

notifyComponentDeleted(Component) -

oracle.apps.cz.cio.ICompSetEventListener.notif
yComponentDeleted(oracle.apps.cz.cio.Compo
nent), B-97

notifyComponentDeleted(Component) -
oracle.apps.cz.cio.IConfigEventListener.notifyC
omponentDeleted(oracle.apps.cz.cio.Componen
t), B-98

NotOneProductException -
oracle.apps.cz.cio.NotOneProductException, B
-155

NotOneProjectException -
oracle.apps.cz.cio.NotOneProjectException, B-
156

@)

OPTION -
oracle.apps.cz.cio.IRuntimeNode.OPTION, B-
130

Option - oracle.apps.cz.cio.Option, B-157

OPTION_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. OPTION_
FEATURE, B-130

OptionFeature -
oracle.apps.cz.cio.OptionFeature, B-160

OptionFeatureNode -
oracle.apps.cz.cio.OptionFeatureNode, B-163

OptionNode -
oracle.apps.cz.cio.OptionNode, B-167

Oracle JDBC OCI drivers, 1-9

Oracle JDBC Thin drivers, 1-9

Oracle Technology Network, 1-9

oracle.apps.cz.cio, 2-1,2-2

oracle.apps.cz.cio - oracle.apps.cz.cio, B-1

oracle.apps.cz.cio.IFunctionalCompanion, 2-21

oracle.apps.cz.common -
oracle.apps.cz.common, C-1

oracle.apps.cz.utilities -
oracle.apps.cz.utilities, D-1

ORTHEN -
oracle.apps.cz.cio.Reason.ORTHEN, B-179

Output, 1-2,1-14,1-18

override() -
oracle.apps.cz.cio.LogicalOverridableException.
override(), B-144

P
PATH, 1-9
perform() -

oracle.apps.cz.cio.Configuration.perform(), B-
67
PricingUnavailableException -
oracle.apps.cz.cio.PricingUnavailableException,
B-171
PricingUnavailableException(String) -
oracle.apps.cz.cio.PricingUnavailableException.
PricingUnavailableException(java.lang.String),
B-172
PricingUnavailableException(String, Object, Log) -
oracle.apps.cz.cio.PricingUnavailableException.
PricingUnavailableException(java.lang.String,
java.lang.Object,
oracle.apps.fnd.common.Log), B-172
Property - oracle.apps.cz.cio.Property, B-173

R

ReadOnlyDecimalNode -
oracle.apps.cz.cio.ReadOnlyDecimalNode, B-
176

Reason - oracle.apps.cz.cio.Reason, B-178

Reason(int, IRuntimeNode, String) -
oracle.apps.cz.cio.Reason.Reason(int,
oracle.apps.cz.cio.IRuntimeNode,
java.lang.String), B-180

Reason(Message, String, IRuntimeNode) -
oracle.apps.cz.cio.Reason.Reason(oracle.apps.fn
d.common.Message, java.lang.String,
oracle.apps.cz.cio.IRuntimeNode), B-180

Reason(String) -
oracle.apps.cz.cio.Reason.Reason(java.lang.Strin
g), B-180

removeConfigEventListener(ICompSetEventListene
r) -
oracle.apps.cz.cio.ComponentSet.removeConfig
EventListener(oracle.apps.cz.cio.ICompSetEven
tListener), B-54

removeConfigEventListener(IConfigEventListener) -
oracle.apps.cz.cio.Configuration.removeConfig
EventListener(oracle.apps.cz.cio.IConfigEventLi

Index-17

stener), B-67

RESOURCE -
oracle.apps.cz.cio.IRuntimeNode.RESOURCE,

B-130

Resource - oracle.apps.cz.cio.Resource, B-182

RESOURCE_FAILURE -
oracle.apps.cz.cio.ValidationFailure. RESOURC
E_FAILURE, B-216

restartConfiguration(boolean) -
oracle.apps.cz.cio.Configuration.restartConfigu
ration(boolean), B-67

RESTORE_FAILURE -
oracle.apps.cz.cio.ValidationFailure RESTORE_
FAILURE, B-217

restoreConfiguration(DbConfigHeader, Context) -
oracle.apps.cz.cio.CIO.restoreConfiguration(ora
cle.apps.cz.dio.config. DbConfigHeader,
oracle.apps.fnd.common.Context), B-36

restoreConfiguration(int, int, Context) -
oracle.apps.cz.cio.CIO.restoreConfiguration(int,
int, oracle.apps.fnd.common.Context), B-36

RestoreValidationFailure -
oracle.apps.cz.cio.RestoreValidationFailure, B
-184

rollbackConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.rollbackConfig
Transaction(oracle.apps.cz.cio.ConfigTransactio
n), B-68

runtime model subschema objects, 2-1

RuntimeNode -
oracle.apps.cz.cio.RuntimeNode, B-186

S

save() -
oracle.apps.cz.cio.Configuration.save(), B-68

saveAs(int, int) -
oracle.apps.cz.cio.Configuration.saveAs(int,
int), B-68

saveNew() -
oracle.apps.cz.cio.Configuration.saveNew(), B
-68

saveNewRev() -
oracle.apps.cz.cio.Configuration.saveNewRev(),
B-68

Index-18

select() - oracle.apps.cz.cio.BomNode.select(), B-21

select() - oracle.apps.cz.cio.IOption.select(), B-119

select() -
oracle.apps.cz.cio.OptionNode.select(), B-169

select(IOption) -
oracle.apps.cz.cio.BomNode.select(oracle.apps.c
z.cio.IOption), B-21

select(IOption) -
oracle.apps.cz.cio.IOptionFeature.select(oracle.a
pps-cz.cio.IOption), B-122

select(IOption) -
oracle.apps.cz.cio.OptionFeatureNode.select(or
acle.apps.cz.cio.IOption), B-165

SelectionNotMutexedException -
oracle.apps.cz.cio.SelectionNotMutexedExcepti
on, B-194

setActiveModelPath(String) -
oracle.apps.cz.cio.CIO.setActiveModelPath(java
Jang.String), B-37

setAltPricing AtpContext(Context) -
oracle.apps.cz.cio.Configuration.setAltPricing A
tpContext(oracle.apps.fnd.common.Context),
B-69

setAtpDate(Date) -
oracle.apps.cz.cio.BomNode.setAtpDate(java.ut
il.Date), B-22

setConfigHeaderCheckoutUser(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erCheckoutUser(java.lang.String), B-69

setConfigHeaderDateCreated(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erDateCreated(java.sql.Timestamp), B—69

setConfigHeaderDescription(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erDescription(java.lang.String), B-69

setConfigHeaderEffectiveFrom(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erEffectiveFrom(java.sql.Timestamp), B-69

setConfigHeaderEffectiveTo(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erEffectiveTo(java.sql. Timestamp), B-69

setConfigHeaderName(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erName(java.lang.String), B-70

setConfigHeaderNote(String) -

oracle.apps.cz.cio.Configuration.setConfigHead
erNote(java.lang.String), B-70

setConfigHeaderOpportunityHeaderld(int) -
oracle.apps.cz.cio.Configuration.setConfigHead
erOpportunityHeaderld(int), B-70

setConfigHeaderUiDefinitionId(int) -
oracle.apps.cz.cio.Configuration.setConfigHead
erUiDefinitionld(int), B-70

setCount(int) -
oracle.apps.cz.cio.ICount.setCount(int), B-99

setCount(int) -
oracle.apps.cz.cio.StateCountNode.setCount(int
), B-199

setCurrLang(String) -
oracle.apps.cz.common.CZContext.setCurrLang
(java.lang.String), C-5

setDecimalValue(double) -
oracle.apps.cz.cio.DecimalNode.setDecimalVal
ue(double), B-80

setDecimalValue(double) -
oracle.apps.cz.cio.IDecimal.setDecimalValue(do
uble), B-101

setDiscountedPrice(double) -
oracle.apps.cz.cio.StateCountNode.setDiscounte
dPrice(double), B-200

setInitParameters(NameValuePairSet) -
oracle.apps.cz.cio.Configuration.setInitParamet
ers(oracle.apps.cz.utilities. NameValuePairSet),

B-70

setIntValue(int) -
oracle.apps.cz.cio.CountFeature.setIntValue(int)
, B-75

setIntValue(int) -
oracle.apps.cz.cio.llnteger.setIntValue(int), B-
108

setIntValue(int) -
oracle.apps.cz.cio.IntegerNode.setIntValue(int),

B-117

setListPrice(double) -
oracle.apps.cz.cio.StateCountNode.setListPrice(
double), B-200

setName(String) -
oracle.apps.cz.cio.Component.setName(java.lan
g.String), B—49

setState(int) -

oracle.apps.cz.cio.BomNode.setState(int), B-2
2

setState(int) -
oracle.apps.cz.cio.IState.setState(int), B-137

setState(int) -
oracle.apps.cz.cio.OptionNode.setState(int), B
-169

setState(int) -
oracle.apps.cz.cio.StateNode.setState(int), B-2
03

setTextValue(String) -
oracle.apps.cz.cio.IText.setTextValue(java.lang.
String), B-138

setTextValue(String) -
oracle.apps.cz.cio.TextNode.setTextValue(java.l
ang.String), B-210

setValue(Object) -
oracle.apps.cz.utilities. NameValuePair.setValue
(java.lang.Object), D-3

StateCountNode -
oracle.apps.cz.cio.StateCountNode, B-196

StateNode - oracle.apps.cz.cio.StateNode, B-201

statesMatch(int, int) -
oracle.apps.cz.cio.StateNode.statesMatch(int,
int), B-203

STATUS_DELETED -
oracle.apps.cz.cio.StatusInfo.STATUS_
DELETED, B-205

STATUS_EXISTING -
oracle.apps.cz.cio.StatusInfo.STATUS_
EXISTING, B-205

STATUS_NEW -
oracle.apps.cz.cio.StatusInfo.STATUS_
NEW, B-205

StatusInfo - oracle.apps.cz.cio.StatusInfo, B-204

statusToString(int) -
oracle.apps.cz.cio.StatusInfo.statusToString(int),

B-206

subschema objects
configuration, 2-1
runtime model, 2-1

swingalljar, 1-9

Index-19

T

terminate() -
oracle.apps.cz.cio.Functional Companion.termin
ate()/ B-90

terminate() -
oracle.apps.cz.cio.IFunctional Companion.termi
nate(), B-107

TEXT - oracle.apps.cz.cio.Reason. TEXT, B-179

TEXT_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. TEXT_
FEATURE, B-130

TextFeature - oracle.apps.cz.cio. TextFeature, B-207

TextNode - oracle.apps.cz.cio.TextNode, B-209

TOGGLE -
oracle.apps.cz.cio.IState. TOGGLE, B-136

toString() -
oracle.apps.cz.cio.DecimalNode.toString(), B-
80

toString() -
oracle.apps.cz.cio.Functional Companion.toStrin
g(), B-90

toString() -
oracle.apps.cz.cio.ReadOnlyDecimalNode.toStri
ng(), B-177

toString() -
oracle.apps.cz.cio.Reason.toString(), B-181

toString() -
oracle.apps.cz.cio.RuntimeNode.toString(), B-
192

toString() -
oracle.apps.cz.cio.StateCountNode.toString(),
B-200

toString() -
oracle.apps.cz.cio.StatusInfo.toString(), B-206

toString() -
oracle.apps.cz.cio.ValidationFailure.toString(),

B-217

toString(boolean) -
oracle.apps.cz.cio.IRuntimeNode.toString(boole
an), B-134

toString(boolean) -
oracle.apps.cz.cio.RuntimeNode.toString(boolea
n), B-193

toString(boolean) -

Index-20

oracle.apps.cz.cio.StatusInfo.toString(boolean),
B-206

TOTAL -
oracle.apps.cz.cio.IRuntimeNode. TOTAL, B-1
30

Total - oracle.apps.cz.cio.Total, B-211

TransactionException -
oracle.apps.cz.cio.TransactionException, B-21
3

transactions
logic, 2-8

translate() -
oracle.apps.cz.cio.Reason.translate(), B-181

translate(String) -
oracle.apps.cz.cio.Reason.translate(java.lang.Str
ing), B-181

TRUE - oracle.apps.cz.cio.IState. TRUE, B-136

TRUEATBIRTH -
oracle.apps.cz.cio.Reason.TRUEATBIRTH, B-
180

typeToString(int) -
oracle.apps.cz.cio.RuntimeNode.typeToString (i
nt), B-193

U

UFALSE - oracle.apps.cz.cio.IState. UFALSE, B-136
undo() -

oracle.apps.cz.cio.Configuration.undo(), B-71
UNKNOWN -

oracle.apps.cz.cio.IState. UNKNOWN, B-137
unset() -

oracle.apps.cz.cio.DecimalNode.unset(), B-81
unset() - oracle.apps.cz.cio.ICount.unset(), B-100
unset() - oracle.apps.cz.cio.lDecimal.unset(), B-102
unset() - oracle.apps.cz.cio.IlInteger.unset(), B-108
unset() -

oracle.apps.cz.cio.IntegerNode.unset(), B-117
unset() - oracle.apps.cz.cio.IState.unset(), B-137
unset() - oracle.apps.cz.cio.IText.unset(), B-139
unset() -

oracle.apps.cz.cio.StateNode.unset(), B-203
unset() -

oracle.apps.cz.cio.TextNode.unset(), B-210
UTRUE - oracle.apps.cz.cio.IState. UTRUE, B-137

\Y

validate() -
oracle.apps.cz.cio.Functional Companion.validat
e()) B-90

validate() -
oracle.apps.cz.cio.JFunctionalCompanion.valida
te(), B-107

Validation, 1-2,1-14, 1-18

ValidationFailure -
oracle.apps.cz.cio.ValidationFailure, B-215

X

xmlparserjar, 1-9

Index-21

Index-22

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	1 Functional Companions
	1.1� What Are Functional Companions?
	1.1.1� Types of Functional Companions
	1.1.2� Background to Building Functional Companions

	1.2� Functional Companions and the CIO
	1.2.1� Using the CIO Interface
	1.2.2� Implementing Standard Interface Methods

	1.3� Building Functional Companions in Java
	1.3.1� Procedure for Building Functional Companions in Java
	1.3.2� Installation Requirements for Java Functional Companions
	1.3.2.1� Requirements for Developing Functional Companions
	1.3.2.2� Requirements for Running Functional Companions
	1.3.2.3� Requirements for Testing Java Functional Companions

	1.3.3� Minimal Example of a Java Functional Companion

	1.4� Building Functional Companions in COM
	1.5� Incorporating Functional Companions in your Application
	1.5.1� Associating Functional Companions with your Model
	1.5.2� Testing Functional Companions in the Oracle �SellingPoint Application
	1.5.2.1� Testing from the Windows Start Menu
	1.5.2.2� Testing from Oracle Configurator Developer
	1.5.2.3� Test Functionality in the Oracle �SellingPoint Application

	2 The Configuration Interface Object (CIO)
	2.1� Background
	2.1.1� What is the CIO?
	2.1.2� The CIO and Functional Companions

	2.2� The CIO’s Runtime Node Interface Classes
	2.3� Initializing the CIO
	2.4� Access to Configurations
	2.4.1� Creating and Deleting Configurations
	2.4.2� Saving and Restoring Configurations
	2.4.3� Access to Configuration Parameters
	2.4.4� Logic Transactions

	2.5� Access to Nodes of the Model at Runtime
	2.5.1� Accessing Components
	2.5.2� Adding and Deleting Optional Components
	2.5.3� Accessing Features
	2.5.4� Getting and Setting Logic States
	2.5.5� Getting and Setting Numeric Values
	2.5.6� Accessing Properties
	2.5.7� Access to Options
	2.5.7.1� Example for IOption

	2.6� Introspection through IRuntimeNode
	2.7� Handling Logical Contradictions
	2.7.1� Generating Error Messages from Contradictions
	2.7.2� Overriding Contradictions

	2.8� Validating Configurations
	2.9� Standard Interface Methods for Functional Companions
	2.9.1� The initialize() Interface Method
	2.9.2� The autoConfigure() Interface Method
	2.9.3� The validate() Interface Method
	2.9.4� The generateOutput() Interface Method
	2.9.5� The terminate() Interface Method

	3 Reference Documentation for the CIO
	4 Examples
	4.1� Initializing the CIO
	4.2� Basic Java Functional Companion
	4.3� Thin-Client generateOutput() Functional Companion

	Glossary
	Glossary of Acronyms
	A CIO Package and Related Classes
	B Package oracle.apps.cz.cio
	AtpUnavailableException
	BomExplosionException
	BomModel
	BomNode
	BomOptionClass
	BomStdItem
	BooleanFeature
	CIO
	CompanionNode
	CompanionRoot
	CompanionValidationFailure
	Component
	ComponentNode
	ComponentSet
	ConfigTransaction
	Configuration
	CountFeature
	DecimalFeature
	DecimalNode
	Factory
	FuncCompCreationException
	FunctionalCompanion
	FunctionalCompanionException
	IAtp
	IBomItem
	ICompSetEventListener
	IConfigEventListener
	ICount
	IDecimal
	IDecimalMinMax
	IFunctionalCompanion
	IInteger
	IIntegerMinMax
	IncompatibleInputException
	IntegerFeature
	IntegerNode
	IOption
	IOptionFeature
	IPrice
	IReadOnlyDecimal
	IRuntimeNode
	IState
	IText
	LogicalException
	LogicalOverridableException
	LogicalRuntimeException
	MissingFileException
	MissingLogicException
	NoAtpCalculatedException
	NoConfigHeaderException
	NonPricedNodeException
	NoSuchChildException
	NotOneProductException
	NotOneProjectException
	Option
	OptionFeature
	OptionFeatureNode
	OptionNode
	PricingUnavailableException
	Property
	ReadOnlyDecimalNode
	Reason
	Resource
	RestoreValidationFailure
	RuntimeNode
	SelectionNotMutexedException
	StateCountNode
	StateNode
	StatusInfo
	TextFeature
	TextNode
	Total
	TransactionException
	ValidationFailure

	C Package oracle.apps.cz.common
	CZContext

	D Package oracle.apps.cz.utilities
	NameValuePair
	NameValuePairSet

	Index

