
Implementing
Oracle HRMS
RELEASE 11i

December 1999



Implementing Oracle HRMS Release 11i

The part number for this book is A73313–01.
Copyright � 1996, 2000 Oracle Corporation.  All rights reserved.

Contributing Authors:  Louise Raffo, Juliette Fleming and John Cafolla.

Contributors:  Bill Kerr, John Thuringer and Janet Harrington–Kuller.

The Programs (which include both the software and documentation) contain proprietary
information of Oracle Corporation; they are provided under a license agreement
containing restrictions on use and disclosure and are also protected by copyright, patent
and other intellectual and industrial property laws.  Reverse engineering, disassembly or
decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

Program Documentation is licensed for use solely to support the deployment of the
Programs and not for any other purpose.

The information contained in this document is subject to change without notice.  If you
find any problems in the documentation, please report them to us in writing.  Oracle
Corporation does not warrant that this document is error free.  Except as may be expressly
permitted in your license agreement for these Programs, no part of these Programs may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the
Programs on behalf of the US government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE
Programs delivered subject to the DOD FAR Supplement are ‘commercial computer
software’ and use, duplication and disclosure of the Programs including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement.  Otherwise, Programs delivered subject to the Federal Acquisition Regulations
are ‘restricted computer software’ and use, duplication and disclosure of the Programs
shall be subject to the restrictions in FAR 52.227–19, Commercial Computer Software –
Restricted Rights (June 1987).  Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or
other inherently dangerous applications.  It shall be licensee’s responsibility to take all
appropriate fail–safe, back–up redundancy and other measures to ensure the safe use of
such applications if the Programs are used for such purposes, and Oracle disclaims
liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and, Oracle Alert, Oracle Financials, SQL*Forms,
SQL*Plus, SQL*Report, Oracle Application Object Library, and Oracle Business Manager
are trademarks or registered trademarks of Oracle Corporation.  Other names may be
trademarks of their respective owners.



 iContents

Contents

Preface Preface  ix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Audience for This Guide  x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
How To Use This Guide  x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Finding Out What’s New  xi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Other Information Sources  xi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Do Not Use Database Tools to Modify Oracle Applications 
Data  xviii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
About Oracle  xix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Your Feedback  xx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

PART I IMPLEMENTATION

Chapter 1 Planning Your Implementation 1 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 
Implementation Steps 1 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Implementation Checklist 1 – 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Implementation Flowchart 1 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2 Implementation Steps 2 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Administration 2 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Work Structures 2 – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Compensation and Benefits 2 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Total Compensation 2 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
People and Assignments 2 – 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 ii Implementing Oracle HRMS

Specific Business Functions 2 – 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Career and Succession Management 2 – 56. . . . . . . . . . . . . . . . . . . . 
Control 2 – 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

PART II TECHNICAL ESSAYS

Chapter 3 APIs in Oracle HRMS 3 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
API Overview 3 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Understanding the Object Version Number  (OVN) 3 – 6. . . . . . . 
API Parameters 3 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
API Features 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Flexfields with APIs 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Multilingual Support 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Alternative APIs 3 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
API Errors and Warnings 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Example PL/SQL Batch Program 3 – 30. . . . . . . . . . . . . . . . . . . . . . . 
WHO Columns and Oracle Alert 3 – 33. . . . . . . . . . . . . . . . . . . . . . . 
API User Hooks 3 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Using APIs as Building Blocks 3 – 55. . . . . . . . . . . . . . . . . . . . . . . . . 
Handling Object Version Numbers in Oracle Forms 3 – 56. . . . . . . 

Chapter 4 Oracle HRMS Data Pump 4 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Overview 4 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Using Data Pump 4 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Running the Meta–Mapper 4 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Loading Data Into the Batch Tables 4 – 14. . . . . . . . . . . . . . . . . . . . . 
Running the Data Pump Process 4 – 17. . . . . . . . . . . . . . . . . . . . . . . 
Finding and Fixing Errors 4 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Purging Data 4 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Sample Code 4 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Notes on Using The Generated Interfaces 4 – 26. . . . . . . . . . . . . . . . 
Utility Procedures Available With Data Pump 4 – 29. . . . . . . . . . . . 
Table and View Descriptions 4 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . 
APIs Supported by Data Pump 4 – 36. . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 5 DateTrack 5 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
How DateTrack Works 5 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Behavior of DateTracked Forms 5 – 2. . . . . . . . . . . . . . . . . . . . . . . . 
Table Structure for DateTracked Tables 5 – 4. . . . . . . . . . . . . . . . . . 



 iiiContents

Creating a DateTracked Table and View 5 – 5. . . . . . . . . . . . . . . . . 
Restricting Datetrack Options Available to Forms Users 5 – 7. . . 

How to Create and Modify DateTrack History Views 5 – 10. . . . . . . . . 
What Happens When You Request DateTrack History 5 – 10. . . . . 
Rules for Creating or Modifying DateTrack History Views 5 – 11. 
Using Alternative DateTrack History Views 5 – 13. . . . . . . . . . . . . . 
List of DateTrack History Views 5 – 14. . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 6 FastFormula 6 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The FastFormula Application Dictionary 6 – 2. . . . . . . . . . . . . . . . . . . . 

Entities in the Dictionary 6 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Defining New Database Items 6 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . 

Calling FastFormula from PL/SQL 6 – 14. . . . . . . . . . . . . . . . . . . . . . . . . 
The Execution Engine Interface 6 – 14. . . . . . . . . . . . . . . . . . . . . . . . . 
Changes in R11i 6 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Server Side Interface 6 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Client Side Call Interface 6 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Special Forms Call Interface 6 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . 
Logging Options 6 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7 Extending Security in Oracle HRMS 7 – 1. . . . . . . . . . . . . . . . . . . . . . . 
Security Profiles 7 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Security Processes 7 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Securing Custom Tables 7 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 8 Batch Element Entry 8 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Creating Control Totals for the Batch Element Entry Process 8 – 2. . . 

Setting Up Control Totals 8 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Creating the SQL Code 8 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 9 Validation of Flexfield Values 9 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Referencing User Profile Options 9 – 2. . . . . . . . . . . . . . . . . . . . . . . 
Referencing Form block.field Items 9 – 4. . . . . . . . . . . . . . . . . . . . . 
Referencing FND_SESSIONS Row 9 – 5. . . . . . . . . . . . . . . . . . . . . . 
Incomplete Context Field Value Lists 9 – 6. . . . . . . . . . . . . . . . . . . . 
Using Segment Separator in Data 9 – 7. . . . . . . . . . . . . . . . . . . . . . . 



 iv Implementing Oracle HRMS

Chapter 10 Payroll Processes 10 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Overview 10 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

PYUGEN 10 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Payroll Action Parameters 10 – 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Overview of the Payroll Processes 10 – 4. . . . . . . . . . . . . . . . . . . . . . 
Assignment Level Interlocks 10 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Payroll Run Process 10 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Determine Assignments and Elements 10 – 6. . . . . . . . . . . . . . . . . . 
Process Each Assignment 10 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Create Run Results and Values 10 – 9. . . . . . . . . . . . . . . . . . . . . . . . . 
Set Up Contexts 10 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Run Element Skip Rules 10 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Create and Maintain Balances 10 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . 
Run Formulas 10 – 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Payment Processes 10 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Magnetic Tape Process 10 – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Running the Magnetic Tape Payments Process 10 – 19. . . . . . . . . . . 
Running Magnetic Tape Reports 10 – 21. . . . . . . . . . . . . . . . . . . . . . . . 
SRS Definitions 10 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
How the Magnetic Tape Process Works 10 – 23. . . . . . . . . . . . . . . . . . 
The PL/SQL Driving Procedure 10 – 25. . . . . . . . . . . . . . . . . . . . . . . . 
The Generic PL/SQL 10 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The Formula Interface 10 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Error Handling 10 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Example PL/SQL 10 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cheque Writer/Check Writer Process 10 – 38. . . . . . . . . . . . . . . . . . . . . . . 
The Process 10 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Cheque Numbering 10 – 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Voiding and Reissuing Cheques 10 – 42. . . . . . . . . . . . . . . . . . . . . . . . 
Mark for Retry 10 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rolling Back the Payments 10 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SRW2 Report 10 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Using or Changing the PL/SQL Procedure 10 – 45. . . . . . . . . . . . . . 

Cash Process 10 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Costing Process 10 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Example of Payroll Costs Allocation 10 – 48. . . . . . . . . . . . . . . . . . . . 
Example of Employer Charge Distribution 10 – 49. . . . . . . . . . . . . . . 

Transfer to the General Ledger Process 10 – 52. . . . . . . . . . . . . . . . . . . . . . 
Assignment Level Interlocks 10 – 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Action Classifications 10 – 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rules For Rolling Back and Marking for Retry 10 – 56. . . . . . . . . . . . 



 vContents

Pre–Payments Process 10 – 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Setting Up Payment Methods 10 – 58. . . . . . . . . . . . . . . . . . . . . . . . . . 
Preparing Cash Payments (UK Only) 10 – 59. . . . . . . . . . . . . . . . . . . 
Prenotification (US Only) 10 – 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Consolidation Sets 10 – 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Third Party Payments 10 – 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Exchange Rates 10 – 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Overriding Payment Method 10 – 61. . . . . . . . . . . . . . . . . . . . . . . . . . 
The Process 10 – 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Payroll Action Parameters 10 – 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Action Parameter Values 10 – 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Summary of Action Parameters 10 – 64. . . . . . . . . . . . . . . . . . . . . . . . 
Parallel Processing Parameters 10 – 65. . . . . . . . . . . . . . . . . . . . . . . . . 
Array Select, Update and Insert Buffer Size Parameters 10 – 66. . . . 
Costing Specific Parameters 10 – 67. . . . . . . . . . . . . . . . . . . . . . . . . . . 
Magnetic Tape Specific Parameters 10 – 68. . . . . . . . . . . . . . . . . . . . . 
Error Reporting Parameters 10 – 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rollback Specific Parameters 10 – 69. . . . . . . . . . . . . . . . . . . . . . . . . . . 
Payroll Process Logging 10 – 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Logging Parameters 10 – 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Miscellaneous Parameters 10 – 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
System Management of QuickPay Processing 10 – 73. . . . . . . . . . . . 

Chapter 11 Payroll Archive Reporter Process 11 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . 
The Payroll Archive Reporter (PAR) Process 11 – 2. . . . . . . . . . . . . . . . . 

PAR Modes 11 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Overview of the PAR Process 11 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . 
Overview of the Setup Steps 11 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 
Create Database Items for Archiving 11 – 4. . . . . . . . . . . . . . . . . . . . 
Write Formulas 11 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Write Package Procedures For Assignments And 
Assignment Actions 11 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Provide an SRS Definition for the PAR Process 11 – 10. . . . . . . . . . . 
Populate Rows in the 
PAY_REPORT_FORMAT_MAPPINGS_F Table 11 – 11. . . . . . . . . . . 
Examples:   INITIALIZATION_CODE and 
ARCHIVE_CODE 11 – 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 vi Implementing Oracle HRMS

Chapter 12 Balances in Oracle Payroll 12 – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Balances in Oracle Payroll 12 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Overview of Balances 12 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Latest Balances 12 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Balance Dimensions 12 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Initial Balance Loading for Oracle Payroll 12 – 9. . . . . . . . . . . . . . . . . . . 

Introduction 12 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Steps 12 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Balance Loading Process 12 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Latest Balances 12 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Setting Up an Element to Feed Initial Balances 12 – 12. . . . . . . . . . . 
Setting Up the Initial Balance Values 12 – 13. . . . . . . . . . . . . . . . . . . . 
Running the Initial Balance Upload Process 12 – 17. . . . . . . . . . . . . . 
Balance Initialization Steps 12 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Including Balance Values in Reports 12 – 24. . . . . . . . . . . . . . . . . . . . . . . . 
The Balance Function 12 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Including Balance Values in Reports (UK Only) 12 – 27. . . . . . . . . . . . . . 
The Balance Function 12 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Legislative Balance Initialization (UK Only) 12 – 29. . . . . . . . . . . . . . . . . 
Balance Initialization Elements 12 – 29. . . . . . . . . . . . . . . . . . . . . . . . . 

Balance View Usage 12 – 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 13 Payroll Advice Report (UK Only) 13 – 1. . . . . . . . . . . . . . . . . . . . . . . . . 
Pay Advice Report 13 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Parameter Values 13 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Queries 13 – 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Groups 13 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Triggers 13 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Layout 13 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Dynamic Sort Order 13 – 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix A Post Install Steps A – 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Glossary

Index



 viiPreface

Preface



 viii Implementing Oracle HRMS

Audience for This Guide

Welcome to Release 11i of Implementing Oracle� HRMS.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Oracle HRMS

If you have never used Oracle HRMS, we suggest you attend one
or more of the Oracle HRMS training classes available through
Oracle University.

• The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user
interface, read the Oracle Applications User Guide.

See Other Information Sources for more information about Oracle
Applications product information.

How To Use This Guide

This guide contains the information you need to implement Oracle
HRMS.

This preface explains how this user guide is organized and introduces
other sources of information that can help you.  This guide contains the
following information:

• Part I provides you with implementation information:

– Chapter 1 is designed to help you plan your
implementation.  It includes flowcharts showing the major
stages of an implementation and a summary checklist.

– Chapter 2 contains a step–by–step implementation sequence
summarizing the decisions and tasks required for each
stage.

• Part II provides technical essays which may be required by the
implementation team for initial data loading, customizing Oracle
HRMS, or integrating it with other applications or processes.
Chapters 3 to 13 include essays on these subjects:

– Chapter 3: APIs in Oracle HRMS

– Chapter 4: Oracle HRMS Data Pump

– Chapter 5: DateTrack



 ixPreface

– Chapter 6: FastFormula

– Chapter 7: Extending Security in Oracle HRMS

– Chapter 8: Batch Element Entry

– Chapter 9: Validation of Flexfield Values

– Chapter 10: Payroll Processes

– Chapter 11: Payroll Archive Reporter Process

– Chapter 12: Balances in Oracle Payroll

– Chapter 13: Payroll Advice Report (UK Only)

• Appendix A describes any post install steps you must perform
before you implement Oracle HRMS.

Finding Out What’s New

From the HTML help window for Oracle HRMS, choose the section
that describes new features or what’s new from the expandable menu.
This section describes:

• New features in 11i. This information is updated for each new
release of Oracle HRMS.

• Information about any features that were not yet available when
this guide was printed.  For example, if your system
administrator has installed software from a mini pack as an
upgrade, this document describes the new features.

Other Information Sources

You can choose from many sources of information, including online
documentation, training, and support services, to increase your
knowledge and understanding of Oracle HRMS.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11i versions of those guides unless we specify
otherwise.



 x Implementing Oracle HRMS

Online Documentation

All Oracle Applications documentation is available online (HTML and
PDF).  The technical reference guides are available in paper format
only.  Note that the HTML documentation is translated into over
twenty languages.

The HTML version of this guide is optimized for onscreen reading, and
you can use it to follow hypertext links for easy access to other HTML
guides in the library.  When you have an HTML window open, you can
use the features on the left side of the window to navigate freely
throughout all Oracle Applications documentation.

• You can use the Search feature to search by words or phrases.

• You can use the expandable menu to search for topics in the
menu structure we provide.  The Library option on the menu
expands to show all Oracle Applications HTML documentation.

You can view HTML help in the following ways:

• From an application window, use the help icon or the help menu
to open a new Web browser and display help about that window.

• Use the documentation CD.

• Use a URL provided by your system administrator.

Your HTML help may contain information that was not available when
this guide was printed.

Related User Guides

Oracle HRMS shares business and setup information with other Oracle
Applications products.  Therefore, you may want to refer to other user
guides when you set up and use Oracle HRMS.

You can read the guides online by choosing Library from the
expandable menu on your HTML help window, by reading from the
Oracle Applications Document Library CD included in your media
pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle
store at http://oraclestore.oracle.com.



 xiPreface

User Guides Related to All Products

Oracle Applications User Guide

This guide explains how to navigate the system, enter data, and query
information, and introduces other basic features of the GUI available
with this release of Oracle HRMS (and any other Oracle Applications
product).

You can also access this user guide online by choosing “Getting Started
and Using Oracle Applications” from the Oracle Applications help
system.

Oracle Alert User Guide

Use this guide to define periodic and event alerts that monitor the
status of your Oracle Applications data.

Oracle Applications Implementation Wizard User Guide

If you are implementing more than one Oracle product, you can use the
Oracle Applications Implementation Wizard to coordinate your setup
activities.  This guide describes how to use the wizard.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle
Applications development staff.  It describes the Oracle Application
Object Library components needed to implement the Oracle
Applications user interface described in the Oracle Applications User
Interface Standards.  It also provides information to help you build your
custom Oracle Developer forms so that they integrate with Oracle
Applications.

Oracle Applications User Interface Standards

This guide contains the user interface (UI) standards followed by the
Oracle Applications development staff.  It describes the UI for the
Oracle Applications products and how to apply this UI to the design of
an application built by using Oracle Forms.



 xii Implementing Oracle HRMS

User Guides Related to This Product

Using Oracle HRMS – The Fundamentals

This user guide explains how to setup and use enterprise modeling,
organization management, and cost analysis. It also includes
information about defining payrolls.

Managing People Using Oracle HRMS

Use this guide to find out about using employee management,
recruitment activities, career management, and budgeting.

Running Your Payroll Using Oracle HRMS

This user guide provides information about wage attachments, taxes
and social insurance, the payroll run, and other processes.

Managing Compensation and Benefits Using Oracle HRMS

Use this guide to learn about compensation setup, entry and analysis,
setting up basic, standard and advanced benefits, salary
administration, and absence management and PTO accruals.

Customizing, Reporting and System Administration in Oracle HRMS

This guide provides information about extending and customizing
Oracle HRMS, managing security, auditing, information access, and
letter generation.

Implementing Oracle Self–Service Human Resources (SSHR)

This guide provides information about setting up the self–service
human resources management functions for managers and employees.
Managers and employees can then use an intranet and Web browser to
have easy and intuitive access to personal and career management
functionality.



 xiiiPreface

Using Oracle FastFormula

This guide provides information about writing, editing, and using
formulas to customize your system. Oracle FastFormula provides a
simple way to write formulas using English words and basic
mathematical functions. For example, Oracle FastFormula enables you
to specify elements in payroll runs or create rules for PTO and accrual
plans.

Using Oracle Training Administration (OTA)

This guide provides information about how to set up and use Oracle
Training Administration to facilitate your training and certification
business.

Using Oracle SSP/SMP (UK Only)

This guide provides information about setting up and using Oracle
SSP/SMP to meet your statutory sick pay and statutory maternity pay
obligations.

Using Application Data Exchange and Hierarchy Diagrammers

This guide provides information about using Application Data
Exchange to view HRMS data with desktop tools, and upload revised
data to your application.  This guide also provides information about
using Hierarchy Diagrammers to view hierarchy diagrams for
organizations and positions.

Oracle Business Intelligence System Implementation Guide

This guide provides information about implementing Oracle Business
Intelligence (BIS) in your environment.

BIS 11i User Guide Online Help

This guide is provided as online help only from the BIS application and
includes information about intelligence reports, Discoverer workbooks,
and the Performance Management Framework.

Using Oracle Time Management

This guide provides information about capturing work patterns such as
shift hours so that this information can be used by other applications
such as General Ledger.



 xiv Implementing Oracle HRMS

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference
information for the Oracle HRMS implementation team, as well as for
users responsible for the ongoing maintenance of Oracle Applications
product data. This guide also provides information on creating custom
reports on flexfields data.

Installation and System Administration Guides

Oracle Applications Concepts

This guide provides an introduction to the concepts, features,
technology stack, architecture, and terminology for Oracle Applications
Release 11i.  It provides a useful first book to read before an installation
of Oracle Applications.  This guide also introduces the concepts behind,
and major issues, for Applications–wide features such as Business
Intelligence (BIS), languages and character sets, and self–service
applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle
Applications products.  In Release 11i, much of the installation process
is handled using Oracle One–Hour Install, which minimizes the time it
takes to install Oracle Applications and the Oracle 8i Server technology
stack by automating many of the required steps.  This guide contains
instructions for using Oracle One–Hour Install and lists the tasks you
need to perform to finish your installation.  You should use this guide
in conjunction with individual product user guides and
implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications
Release 10.7 or Release 11.0 products to Release 11i.  This guide
describes the upgrade process in general and lists database upgrade
and product–specific upgrade tasks.  You must be at either Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0 to upgrade to
Release 11i.  You cannot upgrade to Release 11i directly from releases
prior to 10.7.



 xvPreface

Using the AD Utilities

Use this guide to help you run the various AD utilities, such as
AutoInstall, AutoPatch, AD Administration, AD Controller, Relink,
and others.  It contains how–to steps, screenshots, and other
information that you need to run the AD utilities.

Oracle Applications Product Update Notes

Use this guide as a reference if you are responsible for upgrading an
installation of Oracle Applications.  It provides a history of the changes
to individual Oracle Applications products between Release 11.0 and
Release 11i.  It includes new features and enhancements and changes
made to database objects, profile options, and seed data for this
interval.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator.  It contains information on how to
define security, customize menus and online help, and manage
processing.

Oracle HRMS Applications Technical Reference Guide

This reference guide contains database diagrams and a detailed
description of database tables, forms, reports, and programs for Oracle
HRMS, including Oracle HRMS and related applications.  This
information helps you convert data from your existing applications,
integrate Oracle HRMS with non–Oracle applications, and write
custom reports for Oracle HRMS.

You can order a technical reference guide for any product you have
licensed.  Technical reference guides are available in paper format only.

Oracle Workflow Guide

This guide explains how to define new workflow business processes as
well as customize existing Oracle Applications–embedded workflow
processes. You also use this guide to complete the setup steps necessary
for any Oracle Applications product that includes workflow–enabled
processes.



 xvi Implementing Oracle HRMS

Training and Support

Training

We offer a complete set of training courses to help you and your staff
master Oracle Applications. We can help you develop a training plan
that provides thorough training for both your project team and your
end users. We will work with you to organize courses appropriate to
your job or area of responsibility.

Training professionals can show you how to plan your training
throughout the implementation process so that the right amount of
information is delivered to key people when they need it the most. You
can attend courses at any one of our many Educational Centers, or you
can arrange for our trainers to teach at your facility. We also offer Net
classes, where training is delivered over the Internet, and many
multimedia–based courses on CD. In addition, we can tailor standard
courses or develop custom courses to meet your needs.

Support

From on–site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle HRMS working for you. This team includes your Technical
Representative, Account Manager, and Oracle’s large staff of
consultants and support specialists with expertise in your business
area, managing an Oracle server, and your hardware and software
environment.

Do Not Use Database Tools to Modify Oracle Applications Data

We STRONGLY RECOMMEND that you never use SQL*Plus, Oracle
Data Browser, database triggers, or any other tool to modify Oracle
Applications tables, unless we tell you to do so in our guides.

Oracle provides powerful tools you can use to create, store, change,
retrieve, and maintain information in an Oracle database.  But if you
use Oracle tools such as SQL*Plus to modify Oracle Applications data,
you risk destroying the integrity of your data and you lose the ability to
audit changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using an Oracle Applications form can update many tables at
once. But when you modify Oracle Applications data using anything



 xviiPreface

other than Oracle Applications forms, you might change a row in one
table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving
erroneous information and you risk unpredictable results throughout
Oracle Applications.

When you use Oracle Applications forms to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. But, if you
enter information into database tables using database tools, you may
store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools
do not keep a record of changes.

About Oracle

Oracle Corporation develops and markets an integrated line of
software products for database management, applications
development, decision support and office automation, as well as Oracle
Applications. Oracle Applications provides the E–Business Suite, a
fully integrated suite of more than 70 software modules for financial
management, internet procurement, business intelligence, supply chain
management, manufacturing, project systems, human resources and
sales and service management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers, and personal digital assistants,
enabling organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and application products, along with related
consulting, education and support services, in over 145 countries
around the world.



 xviii Implementing Oracle HRMS

Your Feedback

Thank you for using Oracle HRMS and this user guide.

We value your comments and feedback.  This guide contains a
Reader’s Comment Form you can use to explain what you like or
dislike about Oracle HRMS or this user guide.  Mail your comments to
the following address or call us directly at (650) 506–7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA  94065
U.S.A.

Or, send electronic mail to appsdoc@us.oracle.com.



P A R T

  I 

T

Implementation

his part of Implementing Oracle HRMS provides you with the
information you need for your Oracle HRMS implementation. It
includes information about:

• Planning your implementation

• Performing implementation steps





C H A P T E R

1

1 – 1Planning Your Implementation

Planning Your
Implementation



1 – 2 Implementing Oracle HRMS

Implementation Steps

The flexibility of Oracle HRMS enables you develop an implementation
project plan that meets your own specific business needs for both
Oracle Human Resources, Oracle Payroll, Oracle Advanced Benefits
and Oracle Self–Service Human Resources (SSHR).

With Oracle HRMS you choose the functions you want to implement
initially. You implement other functions when you need to use them.

For example, you might decide to implement initially for HR users and
then to add payroll processing capabilities in a subsequent phase.
Alternatively, you might decide to implement payroll functions during
your initial phase.  You could choose to extend your range of HR
information and functions later.

Decision making is an important part of any implementation process
and before you begin to customize Oracle HRMS you must decide how
you want to use the system.

Adopting a staged, or incremental, approach to implementation lets you
focus on those areas of the system you want to use.

Working in partnership with Oracle you can call on skilled consultants
to provide you with all of the training, and technical and professional
expertise you need.  Together you can successfully implement a HRMS
system that matches your specific business needs in the most efficient
and cost–effective manner.

Before You Start

Before you begin implementing Oracle HRMS, you must ensure your
legislation–specific startup data is installed.  The installation is
normally done by the MIS Manager. You need this startup data before
you use Elements, Payment Methods or Legislation Specific Flexfield
Structures.

Consult your Oracle Applications Installation Manual for more
information.

Also, check to see whether there are any post installation steps you
need to perform before you start to implement Oracle HRMS.

See: Post Install Steps: page A – 2.



1 – 3Planning Your Implementation

Oracle Applications Implementation Wizard

If you are implementing more than one Oracle Applications product,
we recommend that you use the Oracle Application Implementation
Wizard to coordinate your setup activities. The Implementation Wizard
guides you through the setup steps for the applications you have
installed, suggesting a logical sequence that satisfies cross–product
implementation dependencies and reduces redundant setup steps.

You can use the Implementation Wizard to see a graphical overview of
setup steps, read online help for a setup activity and open the
appropriate setup window. You can also document your
implementation, for further reference and review, by using the Wizard
to record comments for each step.

See: Oracle Applications Implementation Wizard User’s Guide.



1 – 4 Implementing Oracle HRMS

Implementation Checklist

Use the following checklists to record which parts of Oracle HRMS you
want to use. Then refer to the implementation flowcharts to see the
high level steps you must complete for each business function you have
chosen to implement.

Note:  Refer to the Post Install Steps: page A – 2 to see any
steps you must perform before you implement Oracle HRMS.

❑ Administration: page 2 – 2  (Required)

Includes key and descriptive flexfields, Extra Information Types
(EITs), currencies, “View All” HRMS User, lookups and
Application Data Exchange (ADE).

❑ Work Structures: page 2 – 19 (Required)

Includes organizations, jobs, positions, grades and payrolls

❑ Compensation and Benefits: page 2 – 27 (Optional)

Includes compensation elements, input value validation, balances,
formulas, salary administration, absence management/accruals of
paid time off and element sets.

❑ Total Compensation: page 2 – 38 (Optional)

Includes online benefits services, benefits eligibility, eligibility
factors, life events, program setup and flex credits calculations.

❑ People and Assignments: page 2 – 49 (Required)

Includes person types, assignment statuses and special personal
information.

❑ Specific Business Functions: page 2 – 53 (Optional)

Includes human resource budgets, evaluation systems and
requirements matching.

❑ Career and Succession Management: page 2 – 56 (Optional)

Includes recruitment, career management, evaluation and
appraisals and succession planning.

❑ Control: page 2 – 62 (Optional)

Includes reports, letter generation, customization, task flows, user
security, audit requirements and iHelp.



1 – 5Planning Your Implementation

Implementation Flowchart

Some of the steps outlined in this section are Required, and some are
Optional. Required with Defaults means that the setup functionality
comes with predefined, default values in the database; however, you
should review those defaults and decide whether to change them to
suit your business needs. If you want or need to change them, you
should perform that setup step. You need to perform Optional steps
only if you plan to use the related feature or complete certain business
functions.



1 – 6 Implementing Oracle HRMS

Figure 1 – 1 Implementation Flowchart for Administration

/



1 – 7Planning Your Implementation

Figure 1 – 2 Implementation Flowchart for Work Structures 1



1 – 8 Implementing Oracle HRMS

Figure 1 – 3 Implementation Flowchart for Work Structures 2



1 – 9Planning Your Implementation

Figure 1 – 4 Implementation Flowchart for Compensation and Benefits 1



1 – 10 Implementing Oracle HRMS

Figure 1 – 5 Implementation Flowchart for Compensation and Benefits 2



1 – 11Planning Your Implementation

Figure 1 – 6 Implementation Flowchart for Total Compensation 1



1 – 12 Implementing Oracle HRMS

Figure 1 – 7 Implementation Flowchart for Total Compensation 2



1 – 13Planning Your Implementation

Figure 1 – 8 Implementation Flowchart for Total Compensation 3



1 – 14 Implementing Oracle HRMS

Figure 1 – 9 Implementation Flowchart for Total Compensation 4



1 – 15Planning Your Implementation

Figure 1 – 10 Implementation Flowchart for People and Assignments



1 – 16 Implementing Oracle HRMS

Figure 1 – 11 Implementation Flowchart for Specific Business Functions



1 – 17Planning Your Implementation

Figure 1 – 12 Implementation Flowchart for Career and Succession Management



1 – 18 Implementing Oracle HRMS

Figure 1 – 13 Implementation Flowchart for Control 1



1 – 19Planning Your Implementation

Figure 1 – 14 Implementation Flowchart for Control 2



1 – 20 Implementing Oracle HRMS

Figure 1 – 15 Implementation Flowchart for Control 3



C H A P T E R

2

2 – 1Implementation Steps

Implementation Steps



Step 1

2 – 2 Implementing Oracle HRMS

Administration

The administration steps are usually performed by the System
Administrator.  Sign on to the system using your System Administrator
username and password.  Contact your DBA if you do not know this
information.

Define Key Flexfields

There are 5 Key Flexfield Structures you must define before you can
define a Business Group in Oracle HRMS.  These are:

• Job

• Position

• Grade

• People Group

• Cost Allocation

Before you begin your implementation of these 5 key flexfields you
must clearly specify your requirements.  This specification must
include the following details for each key flexfield:

• The Structure Name and the number of Segments

• The Flexfield Segment Names, Order, Validation Options and
Qualifiers

• The Flexfield Value Sets to be used and any lists of values

After you have completed the definition of a key flexfield, you need to
run the Create Key Flexfield Database Items process concurrent process
to generate Database Items for the individual segments of the Flexfield.

This applies to your Job, Position, Grade and People Group Key
Flexfields only.

Define Job Flexfield

After you have specified your requirements to take best advantage of
the flexibility of Oracle HRMS for recording and reporting Job
information in your enterprise, the implementation sequence which
you follow is:

Define Job Flexfield Value Sets

To validate the values which a user can enter for any segment, you
must define a specific Value Set.

The attributes of the Value Set control the type of values that can be
entered, and how many characters each segment can hold.  The



Step 2

Step 3

Step 4

2 – 3Implementation Steps

attributes of the Value Set will also control how the values are to be
validated.

Value Sets can be shared by different segments of the same flexfield, or
by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide.

Define Job Flexfield Segments

Define a structure for your Job Flexfield which contains the segments
you want to use for your Business Group.  You will use this structure to
create your unique Job Names in the Job window.

You must enter Yes in the Allow Dynamic Inserts field.  If you enter
No, you will not be able to create new job name combinations in the Job
window.

Note:  You do not need to use a Value Set to validate a
segment.  If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define Job Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value
Set used by a Job Flexfield Segment, you must define your list of valid
values for the Value Set.

Use the Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide.

Define Job Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values.
For each segment, you can define a Low to High range of values.

Use the Cross–Validation Rule window

See: Defining Cross–Validation Rules, Oracle Applications Flexfields
Guide.



Step 5

Step 6

Step 7

Step 8

2 – 4 Implementing Oracle HRMS

Define Job Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide.

Freeze and Compile Your Job Flexfield Structure

You are now ready to freeze your Job Flexfield definition.  Navigate to
the Key Flexfield Segments window.  Enter Yes in the Freeze Flexfield
Definition field and save your changes.  Oracle Human Resource
Management Systems now freezes and compiles your Job Flexfield
definition.  Compiling the flexfield definition enables the Job Flexfield
window with the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Run Create Key Flexfield Database Items Process

If you want to make use of the individual segments of the flexfield as
separate Database Items you can run this concurrent process from the
Submit a New Request window.  The only parameter associated with
this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Define Position Flexfield

After you have specified your requirements to take best advantage of
the flexibility of Oracle Human Resource Management Systems for
recording and reporting Position information in your enterprise, the
implementation sequence which you follow is:

Define Position Flexfield Value Sets

To validate the values which a user can enter for any segment, you
must define a specific Value Set.

The attributes of the Value Set control the type of values that can be
entered, and how many characters each segment can hold.  The
attributes of the Value Set will also control how the values are to be
validated.

Value Sets can be shared by different segments of the same flexfield, or
by segments of any other flexfield.



Step 9

Step 10

Step 11

Step 12

2 – 5Implementation Steps

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide.

Define Position Flexfield Segments

Define a structure for your Position Flexfield which contains the
segments you want to use for your Business Group.  You will use this
structure to create your unique Position Names in the Position window.

You must enter Yes in the Allow Dynamic Inserts field.  If you enter
No, you will not be able to create new position name combinations in
the Position window.

Note:  You do not need to use a Value Set to validate a
segment.  If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define Position Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value
Set used by a Position Flexfield Segment, you must define your list of
valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide.

Define Position Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values.
For each segment, you can define a Low to High range of values.

Use the Cross–Validation Rule window

See: Defining Cross–Validation Rules, Oracle Applications Flexfields
Guide.

Define Position Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide.



Step 13

Step 14

Step 15

2 – 6 Implementing Oracle HRMS

Freeze and Compile Your Position Flexfield Structure

You are now ready to freeze your Position Flexfield definition.
Navigate to the Key Flexfield Segments window.  Enter Yes in the
Freeze Flexfield Definition field and save your changes.  Oracle Human
Resource Management Systems now freezes and compiles your
Position Flexfield definition.  Compiling the flexfield definition enables
the Position Flexfield window with the defaults, values and rules that
you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield as
separate Database Items you can run this concurrent process from the
Submit a New Request window.  The only parameter associated with
this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Define Grade Flexfield

After you have specified your requirements to take best advantage of
the flexibility of Oracle Human Resource Management Systems for
recording and reporting Grade information in your enterprise, the
implementation sequence which you follow is:

Define Grade Flexfield Value Sets

To validate the values which a user can enter for any segment, you
must define a specific Value Set.

The attributes of the Value Set control the type of values that can be
entered, and how many characters each segment can hold.  The
attributes of the Value Set will also control how the values are to be
validated.

Value Sets can be shared by different segments of the same flexfield, or
by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide.



Step 16

Step 17

Step 18

Step 19

Step 20

2 – 7Implementation Steps

Define Grade Flexfield Segments

Define a structure for your Grade Flexfield which contains the
segments you want to use for your Business Group.  You will use this
structure to create your unique Grade Names in the Grades window.

You must enter Yes in the Allow Dynamic Inserts field.  If you enter
No, you will not be able to create new grade name combinations in the
Grades window.

Note:  You do not need to use a Value Set to validate a
segment.  If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define Grade Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value
Set used by a Grade Flexfield Segment, you must define your list of
valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide.

Define Grade Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values.
For each segment, you can define a Low to High range of values.

Use the Cross–Validation Rule window

See: Defining Cross–Validation Rules, Oracle Applications Flexfields
Guide.

Define Grade Flexfield  Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide.

Freeze and Compile Your Grade Flexfield Structure

You are now ready to freeze your Grade Flexfield definition.  Navigate
to the Key Flexfield Segments window.  Enter Yes in the Freeze



Step 21

Step 22

2 – 8 Implementing Oracle HRMS

Flexfield Definition field and save your changes.  Oracle Human
Resource Management Systems now freezes and compiles your Grade
Flexfield definition.  Compiling the flexfield definition enables the
Grade Flexfield window with the defaults, values and rules that you
have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Run Create Key Flexfield Database Items Process

If you want to make use of the individual segments of the flexfield as
separate Database Items you can run this concurrent process from the
Submit a New Request window.  The only parameter associated with
this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Define People Group Flexfield

People Group information is associated with employee assignments
and is used to identify special groups of employees in your enterprise,
such as members of a union.

Warning:  In Oracle HRMS you must define at least one
segment for the People Group Key Flexfield.

If you do not, you will not be able to use the Assignment
window for employees or applicants.

After you have specified your requirements to take best advantage of
the flexibility of Oracle HRMS for recording and reporting People
Group information in your enterprise, the implementation sequence
you follow is:

Define People Group Flexfield Value Sets

To validate the values which a user can enter for any segment, you
must define a specific Value Set.

The attributes of the Value Set control the type of values that can be
entered, and how many characters each segment can hold.  The
attributes of the Value Set will also control how the values are to be
validated.

Value Sets can be shared by different segments of the same flexfield, or
by segments of any other flexfield.

Use the Value Set window.



Step 23

Step 24

Step 25

Step 26

2 – 9Implementation Steps

See: Defining Value Sets, Oracle Applications Flexfields Guide.

Define People Group Flexfield Segments

Define a structure for your People Group Flexfield which contains the
segments you want to use for your Business Group.  You will use this
structure to enter People Group details in the Assignment window.

You must enter Yes in the Allow Dynamic Inserts field.  If you enter
No, you will not be able to enter People Group information in the
Assignment window.

Note:  You do not need to use a Value Set to validate a
segment.  If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define People Group Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value
Set used by a People Group Flexfield Segment, you must define your
list of valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide.

Define People Group Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values.
For each segment, you can define a Low to High range of values.

Use the Cross–Validation Rule window

See: Defining Cross–Validation Rules, Oracle Applications Flexfields
Guide.

Define People Group Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide.



Step 27

Step 28

Step 29

2 – 10 Implementing Oracle HRMS

Freeze and Compile Your People Group Flexfield Structure

You are now ready to freeze your People Group Flexfield definition.
Navigate to the Key Flexfield Segments window.  Enter Yes in the
Freeze Flexfield Definition field and save your changes.  Oracle Human
Resource Management Systems now freezes and compiles your People
Group Flexfield definition.  Compiling the flexfield definition enables
the People Group Flexfield window with the defaults, values and rules
that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield as
separate Database Items you can run this concurrent process from the
Submit a New Request window.  The only parameter associated with
this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Create Key Flexfield Database Items, Customizing, Reporting and
System Administration in Oracle HRMS

Define Cost Allocation Flexfield

Cost Allocation information is normally used to record the details of
employee costing associated with payroll results.  If you have installed
Oracle Payroll, you can accumulate the costs associated with your
payroll results and transfer these to your General Ledger system.  If
you have not installed Oracle Payroll you can use the costing flexfield
to enter your cost allocation information.

After you have specified your requirements to take best advantage of
the flexibility for recording and reporting costing information in your
enterprise, the implementation sequence which you follow is:

Warning:  In Oracle HRMS you must define at least one
segment for the Cost Allocation Key Flexfield.  If you do not,
you will experience problems using windows with the flexfield
window.

Define Cost Allocation Flexfield Value Sets

To validate the values which a user can enter for any segment, you
must define a specific Value Set.

The attributes of the Value Set control the type of values that can be
entered, and how many characters each segment can hold.  The



Step 30

Step 31

2 – 11Implementation Steps

attributes of the Value Set will also control how the values are to be
validated.

Value Sets can be shared by different segments of the same flexfield, or
by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide.

Define Cost Allocation Flexfield Segments and Qualifiers

Define a structure for your Cost Allocation Flexfield which contains the
segments you want to use for your Business Group.  You will use this
structure to enter your payroll costing details in Oracle HRMS.

You must enter Yes in the Allow Dynamic Inserts field.  If you enter
No, you will not be able to enter Costing details anywhere on the
system.

Note:  You do not need to use a Value Set to validate a
segment.  If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

The only key flexfield in Oracle HRMS which makes use of Qualifiers is
the Cost Allocation Flexfield.  You use Segment Qualifiers to control the
level at which costing information can be entered to the system.  Each
Qualifier determines the level at which costing information can be
entered.  There are six possible choices for each segment:

Qualifier Effect on window

Payroll Enter segment values in the Payroll window.

Link Enter segment values in the Element Link window.

Balancing Enter balancing segment values in the Element Link window.

Organization Enter segment values in the Costing Information window for the
Organization.

Assignment Enter segment values in the Costing window for the assignment.

Entry Enter segment values in the Element Entries window.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define Cost Allocation Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value
Set used by a Cost Allocation Flexfield Segment, you must define your
list of valid values for the Value Set.



Step 32

Step 33

Step 34

2 – 12 Implementing Oracle HRMS

Use the Define Segment Values window.

See: Defining Segments Values, Oracle Applications Flexfields Guide

Define Cost Allocation Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values.
For each segment, you can define a Low to High range of values.

Use the Cross–Validation Rule window

See: Defining Cross–Validation Rules, Oracle Applications Flexfields
Guide.

Define Cost Allocation Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide.

Freeze and Compile Your Cost Allocation Flexfield Structure

You are now ready to freeze your Cost Allocation Flexfield definition.
Navigate to the Key Flexfield Segments window.  Enter Yes in the
Freeze Flexfield Definition field and save your changes.  Oracle HRMS
now freezes and compiles your Cost Allocation Flexfield definition.
Compiling the flexfield definition enables the Cost Allocation Flexfield
window with the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define Descriptive Flexfields

Use descriptive flexfields in Oracle HRMS to define your own
additional fields to the standard windows.  For example, if you want to
record Driver’s License Number for any person you can define a segment
of the Additional Personal Details flexfield to record this additional
information.

After this, you can enter a Driver’s License Number in the Person
window after the standard Personal details.

Warning:  The descriptive flexfield is defined at the level of the
base–table.  This means that any window which uses the



Step 35

2 – 13Implementation Steps

base–table will display the same descriptive flexfield segments.
In this example, the Driver’s License Number will appear in the
Contact window, as well as the Person window.

Before you begin to implement any descriptive flexfield you must
clearly specify your requirements.  You must include the following
details:

• The Context and the number of Segments for each Context

• The Flexfield Segment Names, Order and Validation Options

• The Flexfield Value Sets to be used and any lists of values

You can define two types of descriptive flexfield Segments:

• Global Segments

Segments always appear in the flexfield window.

• Context–Sensitive Segments

Segments appear only when a defined context exists.  You can
prompt a user to enter the context, or you can provide the
context automatically from a reference field in the same region.

Suggestion:  Often you can choose between using a code, a
’base–table’ field, and a field which contains a meaning or
description.  You should always use base–table fields as
reference fields for Context–Sensitive segments.  These fields
usually have the same name as the column in the base table.

Some of the Standard Reports supplied with the system include
descriptive segment values.  If you follow this suggestion,
these reports will be able to use the prompts you define –
otherwise they will apply a generic prompt to the data.

Suggestion:  If you want to include descriptive flexfield
Segment Values in the Lookups list for DateTrack History you
need to modify the DateTrack History Views that are supplied
with the system.

Register a Reference Field

You must use the Application Developer Responsibility to update the
definition of the descriptive flexfield. From the Descriptive Flexfields
window, navigate to the Reference Fields block and enter the name of
the Reference Field you want to use.

Warning:  Some descriptive flexfields are predefined and
protected.  These are used to deal with specific legislative and
reporting needs of individual countries or industries.

Do not attempt to alter the definitions of these protected
flexfields.  These definitions are a fundamental part of Oracle



Step 36

Step 37

2 – 14 Implementing Oracle HRMS

HRMS.  Any change to them may lead to errors in the
operating of the system.

It is possible that Oracle HRMS will use other segments of
these flexfields in the future.  Therefore, do not add segments
to any protected flexfield.  This can affect your ability to
upgrade your system in the future.

Use the Descriptive Flexfields window

Define Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

• The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can
hold.

• The attributes of the Value Set will also control how the values
are to be validated.

Note:  Value Sets can be shared by different segments of the
same flexfield, or by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide.

Define Descriptive Flexfield Segments.

Define the segments of your descriptive flexfield for each Context.

You do not need to use a Value Set to validate a segment.  If you do not
specify a Value Set then a user can enter any alphanumeric value up to
a limit of 150 characters.

1. Use Global Context to define any segments which will always
appear in the flexfield window.

2. Enter your own Context Name to define segments which will
appear only for that context.

3. Freeze and compile your descriptive flexfield definitions.

Warning:  If you define a segment as ’Required’, it will be
required for every record on the system.  There are two
common problems you can encounter:

– If you define a ’Required’ segment after you have entered
records: Existing records will not have any value in this
segment and the system will prompt you with an error
when you query an existing record.



Step 38

Step 39

2 – 15Implementation Steps

– Some descriptive flexfields are used in more than one block.
For example, any ’Required’ segments for Additional
Personal Details must be entered for every Employee,
Applicant or Contact.

Use the Descriptive Flexfield Segments window.

See: Defining Descriptive Flexfield Structures, Oracle Applications
Flexfields Guide.

Define Flexfield Segment Values

If you have chosen Independent validation for a Value Set used by a
descriptive flexfield Segment, you must define a list of valid values for
the Value Set.

Use the Define Segment Values window.

See: Defining Segments Values, Oracle Applications Flexfields Guide

Run Create Descriptive Flexfields Database Items Process

When you have defined your descriptive flexfields you should run the
Create Descriptive Flexfields Database Items process to create database
items for your non–context–sensitive descriptive flexfield segments.

You should rerun this process whenever you create additional
non–context–sensitive descriptive flexfield segments.

Note:  If you require Database Items for Context Sensitive
flexfield segments you should consult your Oracle Support
Representative for full details of how to add other Database
Items.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide

Define Extra Information Types (EITs)

Extra Information Types are a type of descriptive flexfield that let you
add an unlimited number of information types to six of the most
important entities in Oracle HRMS.

For example, you might want to use the EIT on Assignment to hold
information about project work within an assignment.

Note:  With Organizations you can group the EITs by
classification so that when a user selects a classification they
will see the EITs associated with the classification.  This means
that there are some additional steps to implement EITs for an
Organization.



Step 40

Step 41

Step 42

2 – 16 Implementing Oracle HRMS

Define Extra Information Types (Excluding Organizations)

Define Extra Information Types for Locations, Jobs, Positions, People
and Assignments

Once you have decided which extra information types you require, you
need to select the descriptive flexfield by title. Create a new record in
the Context Field Values region and enter the name of your new
Information Type in the Code field. Enter the segment values and
compile the descriptive flexfield.

Use the Descriptive Flexfield Segments window.

See: Setting up Extra Information Types (Excluding Organization EITs),
Customizing, Reporting and System Administration in Oracle HRMS

Set Up Responsibility Access for Extra Information Types

EITs will not appear automatically in any responsibility.  You must set
up responsibility level access for EITs. Alternatively, use CustomForm
security to add individual EITs to a specific taskflow window.  This
level of security is usually defined later in the implementation when
you need to restrict access for users.

Note:  This security does not apply to EITs on organizations.

Use the Information Types Security window.

See: Setting Up Extra Information Types against a Responsibility,
Customizing, Reporting and System Administration in Oracle HRMS

Define Extra Information Types for Organization

EITs for organization classifications are set up differently from other
EITs.  When you define them you must also associate them with the
classification of the organization. When a user selects the classification
then the system will display the correct set of EITs.

Define Organization Classification

Define a new organization classification if you want to group your EITs
in this way. You do not need to do this, if you intend to use a
classification that already exists.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS



Step 43

Step 44

Step 45

Step 46

2 – 17Implementation Steps

Set Up Extra Information Types for an Organization Classification

Define a new EIT and then enter a row into the
HR_ORG_INFORMATION TYPES table. Then specify for which
organization classifications this EIT is available.

See: Setting Up Extra Information Types for an Organization
Classification, Customizing, Reporting and System Administration in
Oracle HRMS

Administration

These are tasks for your System Administrator.

Enable Currencies

All major currencies are predefined with Oracle Applications.  The
codes used are the ISO standard codes for currencies.  However, you
must enable the specific currencies you want to use for your base
currency, or for any compensation and benefit information.

The ’base currency’ is the default currency used by your Business
Group.

Note:  Extended precision is not used in Oracle HRMS.  You
can control the precision in any calculation using a formula.

Use the Currencies window

See: Enabling Currencies, Customizing, Reporting and System
Administration in Oracle HRMS.

Define ’View All’ HRMS User

Before you can access any of the HRMS windows you must create a
new Application User with access to one of the default Responsibilities
supplied with the system.

Use the Users window.

See: Users Window, Oracle Applications System Administrator’s Guide

Application Data Exchange (ADE) and Hierarchy Diagrammers

Set Up ADE

You can set up Application Data Exchange (ADE) to export information
between your Oracle HRMS database to other applications.

See: Outline of Setup Steps, Using Application Data Exchange and
Hierarchy Diagrammers.



Step 47

2 – 18 Implementing Oracle HRMS

Control Access to Hierarchy Diagrammers

You can also graphically create and maintain your Organization and
Position hierarchies, known as Hierarchy Diagrammers.  Organization
and Position hierarchies reflect reporting lines in your enterprise.  The
Hierarchy Diagrammers are launched within Oracle HRMS from
Application Data Exchange (ADE).  You must have ADE installed to
use them.

See: Setting Up the Hierarchy Diagrammers, Using Application Data
Exchange and Hierarchy Diagrammers



Step 48

Step 49

2 – 19Implementation Steps

Work Structures

Define Organization Structures

Adapt or Create Business Group

A Business Group is a special class of organization.  Every Business
Group can have its own set of default values, with its own internal
organizations, grades, jobs, positions, payrolls, employees, applicants,
compensations and benefits.

A ’Setup’ Business Group is supplied with Oracle HRMS.  This
business group is used by the default responsibility.  You can use this
business group with all of its default definitions as the starting point
for your own Business Group, or you can define other business groups
to meet your own needs.

Note:  When you create a business group, the exchange rate
type default is Corporate. However, you can define a different
exchange rate type for BIS, HRMS Reporting, or Payroll
processes using the Table Values window.

Warning:  The Setup Business Group has a default legislation
code of US and a default base currency of USD.

If you intend to process payrolls in your business group, or you
intend to implement legislation for another territory, you may
need to create a new business group with a valid legislation
code and base currency.  The system uses these values to copy
in the predefined data it needs to comply with local legislative
and processing requirements.

You cannot change these definitions after they have been saved.

Use the Organization window.

See: Adapting and Creating a New Business Group, Using Oracle
HRMS – The Fundamentals.

Create a ’View All’ Responsibility for the Business Group

If you are using the Setup Business Group supplied with Oracle HRMS,
you can omit this step.

Use the Responsibility window.

See: Defining a ’View All’ Responsibility, Using Oracle HRMS – The
Fundamentals.



Step 50

Step 51

Step 52

Step 53

2 – 20 Implementing Oracle HRMS

Set User Profile Option Values for Responsibility

Set the HR User Profile Options for the new responsibility. You must set
up the HR: User Type option.

You can set also set up other User Profile Options.

Use the System Profile Values window.

See: System Profile Values Window, Oracle Applications User’s Guide

Define Lookup Types and Values

Lookups supply many of the lists of values in Oracle HRMS.  For
example, both Title and Nationality in the Person window use
Lookups.

Some Lookup Types have been predefined.  You only need to define
values for these types.

Lookup Values are the valid entries that appear in the list of values.
They make choosing information quick and easy, and they ensure that
users enter only valid data into Oracle HRMS.

You can add new Lookups Values at any time.  You can set the Enable
Flag for a Value to No, so that it will no longer appear in the list of
values, or you can use the Start and End Dates to control when a value
will appear in a list.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Create Locations

Create each work location used by your enterprise.  You define each
location and address once only.  This saves you time if you have several
organizations with the same address.

Use the Location window.

See: Setting Up Locations, Using Oracle HRMS – The Fundamentals.

Create Organizations

Organizations are the basic work structure of any enterprise.  They
usually represent the functional, management, or reporting groups
which exist within a Business Group.

In addition to these internal organizations you can define other
organizations for tax and government reporting purposes, for third
party payments.



Step 54

Step 55

2 – 21Implementation Steps

Suggestion:  When you install Oracle HRMS you will find a
predefined list of Organization Classifications.  These values
are defined for the Lookup Type ORG_CLASS, and provide
options for all users of the Organization window.

You can disable the Lookup values you will not use in your
implementation in the Application Utilities Lookups window.

If you intend loading historic assignment details into Oracle HRMS,
make sure you enter valid dates.  You cannot assign an employee to an
organization before the start date of the organization.

Suggestion:  Consider using a fixed date as a default for your
initial setup, for example, 01–JAN–1951.  This will simplify
your data–entry.

Enter Organization Classifications and Additional Information

Enter the appropriate classifications for each organization and details
for any extra information types.

Use the Organization window.

See: Entering Organization Classifications, and Entering Additional
Information, Using Oracle HRMS – The Fundamentals

Accounting Reference Information for Cash Management Integration

If you are using Oracle Payroll with Oracle Cash Management for the
reconciliation of payments, then you will also need to set up accounting
reference information.

Choose the Operating Unit classification for your organization and then
choose the GRE/Legal Entity classification for the organization.  Enter
the Set of Books and VAT Registration Number in the extra information
for Legal Entity Accounting.

Use the Organization window.

See: Creating an Organization, Using Oracle HRMS – The Fundamentals.

Define Organization Hierarchies

A Business Group can include any number of organizations.  You can
represent your management or other reporting structures by arranging
these organizations into reporting hierarchies.  An organization can
belong to any number of hierarchies, but it can only appear once in any
hierarchy.

Suggestion:  You may find it easier to define the primary
reporting hierarchy using the top organization and one other.
Then you can add organizations into the hierarchy when you
make your definitions in the Organization window.



Step 56

Step 57

2 – 22 Implementing Oracle HRMS

Organization reporting lines change often and you can generate a new
version of a hierarchy at any time with start and end dates.  In this way,
you can keep the history of your organizational changes, and you can
also use this feature to help you plan future changes.

When you use DateTrack you see the ’current’ hierarchy for your
effective date.

You can create organization hierarchies using the:

• Organization Hierarchy Window

See: Creating Organization Hierarchies, Using Oracle HRMS –
The Fundamentals.

• Organization Hierarchy Diagrammers (they enable you to create
your hierarchies graphically, and to make intuitive
drag–and–drop changes).

See: Adding Organizations or Positions to a Hierarchy, Using
Application Data Exchange and Hierarchy Diagrammers.

Define Roles

Define Jobs

Jobs can be generic or specific roles within your enterprise.  By
definition they are independent of organization structures and are
generally used where there is flexibility in employee roles.

A ’Job Name’ is a unique combination of values in the segments of the
job flexfield structure that you have linked to your Business Group.

As you define jobs add any additional information that is appropriate.

Use the Job window.

See: Defining a Job, Using Oracle HRMS – The Fundamentals.

See: Entering Additional Information about Jobs and Positions, Using
Oracle HRMS – The Fundamentals

Define Position Hiring Statuses

Each position must have a hiring status: Proposed, Active, Frozen,
Eliminated or Deleted. You can create user names for these system
hiring statuses, and define more than one user name for each system
name, if required.

Use the User Types and Statuses window.

See: Defining Hiring Statuses, Using Oracle HRMS – The Fundamentals.



Step 58

Step 59

Step 60

2 – 23Implementation Steps

Define Positions

In Oracle HRMS a position is a job within an organization.  Positions
are generally used where roles are fixed within a single organization.  If
you decide to use positions you may want to use jobs to identify the
common job groups of individual positions.

A ’Position Name’ is a unique combination of values in the segments of
the position flexfield structure that you have linked to your Business
Group.

As you define positions add any additional information that is
appropriate.

Use the Position window.

See: Defining a Position, Using Oracle HRMS – The Fundamentals.

See: Entering Additional Information about Jobs and Positions, Using
Oracle HRMS – The Fundamentals.

Set up the Synchronise Positions Process to Run Nightly

Oracle HRMS uses the Synchronise Positions process to update the
non–datetracked Positions table (PER_ALL_POSITIONS_F) with
changes made to the datetracked table (HR_ALL_POSITIONS_F).
When you run the process, any datetracked changes with an effective
date on or before today are applied to the non–datetracked table.
Hence, future dated changes are not applied until they become
effective.

Running the Synchronise Positions process every night ensures that the
system automatically updates the table with the position changes that
become effective each day. If a power or computer failure disrupts this
process, you can start it manually from the Submit a New Request
window.

Warning:  Ensure that the resubmission interval is set to run
every night.

Use the Submit a New Request window.

See: Submitting a Request, Oracle Applications User’s Guide.

Create a Position Hierarchy

You can structure positions into hierarchies to show detailed position
reporting structures.  You can also use position hierarchies to define
security profile groups within your enterprise, or to define career
progression paths for positions.

You can create position hierarchies using the:



Step 61

Step 62

Step 63

2 – 24 Implementing Oracle HRMS

• Position Hierarchy Window

See: Creating a Position Hierarchy, Using Oracle HRMS – The
Fundamentals.

• Position Hierarchy Diagrammers (they enable you to create your
hierarchies graphically, and to make intuitive drag–and–drop
changes).

See: Adding Organizations or Positions to a Hierarchy, Using
Application Data Exchange and Hierarchy Diagrammers.

Define Grade Related Information

Define Grades

Grades show the relative status of employees within an enterprise and
are often used as the basis for eligibility to Compensation and Benefits.

The Grade Name is a unique combination of values in the segments of
the job flexfield structure that you have linked to your Business Group.

You can define Valid Grades for jobs or positions which will be used to
cross check the details a user enters as part of the Employee Assignment.

Use the Grades window.

See: Defining a Grade, Using Oracle HRMS – The Fundamentals.

Define Grade Rates

Grade rates are normally used to show valid rates of pay which are
directly related to grades. These can be expressed as a fixed value, or as
a range of values.

When you define a grade rate you are setting up a table of values.  You
can use these values with an employee’s grade to control, or compare,
the salary of the employee.

• You can use grade rate values in a formula to validate the input
value of any element for an employee.

• Grade rate values are used to calculate comparatio values in the
View Employee Grade Comparatio window and in the Salary
Administration window for salary validation.

Use the Grade Rate window.

See: Defining a Grade Rate, Using Oracle HRMS – The Fundamentals.

Define Pay Scales

Pay scales are used commonly in government and regulated or
unionized enterprises where actual values of pay are defined as a ’pay
scale’, a ’schedule’, or a ’spine’.



Step 64

Step 65

Step 66

2 – 25Implementation Steps

In this environment it is common to find an automatic incrementing of
employee pay based on length of service or on a fixed date.  When you
define the Pay Scale you define the points in the incrementing sequence
you want to use.

A predefined incrementing process is supplied with Oracle HRMS.
This will automatically increment step and point values for employees
using a fixed date.

Note:  You can modify the process to meet your specific
business rules for incrementing.

Use the Pay Scale window.

See: Defining a Pay Scale, Using Oracle HRMS – The Fundamentals.

Define Scale Rates

You define a scale rate for each point on the pay scale.  These values are
DateTracked.

Use the Scale Rate window.

See: Defining Scale Rates, Using Oracle HRMS – The Fundamentals.

Relate Grades to Progression Points

Define the valid points for each grade as a numeric sequence of steps.

The steps you define are used in the auto–incrementing process which
will increment an employee’s grade point up to a ceiling which you can
define for the grade.  Points above the ceiling can be entered by users in
the Grade Step Placement window.

Use the Grade Scale window.

See: Relating Grades to Progression Points, Using Oracle HRMS – The
Fundamentals.

Define Payroll Information

You must include a payroll in the employee assignment before you can
make nonrecurring entries of any element for an employee.
Nonrecurring entries are only valid for one payroll period.

Define Payment Methods

Standard categories of payment methods such as Cheque/Check and
Direct Deposit are predefined with your system.  You can define your
own names for each of these methods, and if you have installed Oracle
Payroll you can also use these methods to control payments to your
employees.



Step 67

Step 68

2 – 26 Implementing Oracle HRMS

Use the Organizational Payment Method window.

See: Defining a Payment Method, Using Oracle HRMS – The
Fundamentals.

Define Consolidation Sets

When you define your Business Group the system will automatically
generate a default Consolidation Set.  If you have not installed Oracle
Payroll you can skip this step.

Consolidation sets are used by Oracle Payroll where you want to gather
the results from different payroll runs into a single set for reporting or
transfer to other systems.  You can define any number of additional
consolidation sets.

Use the Consolidation Sets window.

See: Defining Consolidation Sets, Running Your Payroll Using Oracle
HRMS.

Define Payrolls

You define your own payroll groups to meet your business needs for
processing and payment.  For example, you may have a semi–monthly
and a weekly payroll but you might want to manage and process your
weekly payroll by plant location.  In this case you could define one
semi–monthly payroll and two weekly payrolls, one for each plant.

Note:  The payroll calendar is different from the budgetary
calendar in Oracle HR. You define your budgetary calendar for
headcount or staffing budgets.

Use the Payroll window.

See: Defining a Payroll, Using Oracle HRMS – The Fundamentals.



�

Step 69

Step 70

2 – 27Implementation Steps

Compensation and Benefits

Oracle HRMS uses elements to represent all types of earnings,
deductions and benefits.  Elements hold the information you need to
manage compensation and benefits.

Attention:  If you intend to set up benefit plans using the
standard or advanced benefits functionality, follow the
implementation steps in the Total Compensation section to set
up your benefit plans. See: Total Compensation: page 2 – 38.

Before you define any elements, you should make all of your decisions
about the definitions and rules for eligibility.

If you plan to load details of employee entry history you should
consider using a fixed date, such as 01–JAN–1951, as a default for your
initial setup definitions.  This will simplify your data–entry.

Define Input Value Validation

Define Lookup Types and Values

You define new Lookup Types to create additional lists of values to
validate any element input value with a character datatype.

Note:  You can also use Lookup Types to validate a flexfield
segment.  Use the Table Validation option for the Value Set and
use the Lookups table as the source of your list.

You can add new Lookup Values at any time.  You can set the Enable
Flag for a Value to No, so that it will no longer appear in the list of
values, or you can use the Start and End Dates to control when a value
will appear in a list.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Define User Tables

With Oracle HRMS you can set up any number of ’User–Defined
Tables’.  A user–defined table is a ’matrix’ of columns that hold
different values for the same row.  You can access this information
using the GET_TABLE_VALUE function in any formula.

For example, you may want to set up a single table to hold union pay
rates, deductions and benefit levels for different job groups.   Use the
rows to hold ’Job Group’ and the columns to hold the specific values
for each job group.



Step 71

Step 72

�

Step 73

2 – 28 Implementing Oracle HRMS

You can define exact row values or an inclusive range of values.

Use the Table Structure window.

See: Setting Up User Tables, Columns and Rows Customizing, Reporting
and System Administration in Oracle HRMS.

Define Table Values

You now need to define the table values.

Use the Table Values window.

See: Entering Table Values, Customizing, Reporting and System
Administration in Oracle HRMS.

Define Element Validation Formulas

When you define input values you can use a formula to validate any
entry to that input value.

Attention:  You must define the formula before you define the
element input value.

The type of formula is Element Input Validation with the following
constraints:

• The formula has one Input only:

ENTRY_VALUE(char)

• The formula must return a predefined status code for success or
error:

FORMULA_STATUS =  ’S’  or   ’E’

• You can also return a message for the user, which is displayed in
a message window:

FORMULA_MESSAGE = ’ ...  ’

Define Compensation and Benefits

Define Elements and Input Values

Elements are the basic components of all compensation and benefit
types.  You can also use elements to represent tangible items
distributed to employees, such as tools or safety equipment.

For each element you can:

• Define up to 15 input values

• Set validation options for each value



Step 74

Step 75

2 – 29Implementation Steps

– Fixed

– Range

– List of values using Lookups

– Formula

• Set Hot and Cold Defaulting Rules

If you are using the element for payroll processing, you can also:

• Make one input value the ’Pay Value’ for the element

Note:  If you set the Process In Run flag to ’Yes’ a pay value will
be created automatically.

You must set this flag to ’Yes’ if you want to process this type
of element in a payroll run.

• use the Balance Feed window to modify the individual balances
that an element will feed.

Use the Element window.

See: Defining an Element, Managing Compensation and Benefits Using
Oracle HRMS

Define Element Links

You can give an entry to an employee only when they are eligible for
that element.  Employees are eligible for an element when their
assignment details match the link details.

You can link an element to any combination of organization, group,
grade, job, position, payroll, location, employment category or salary
basis.

Use the Element Link window.

See: Defining Element Links, Managing Compensation and Benefits Using
Oracle HRMS

Activate Predefined Elements

When you install Oracle HRMS a number of predefined elements are
installed. These elements represent the legislative deductions that are
processed in the payroll run.

If you have installed Oracle Payroll you will also have all of the
formulas and balances you need for processing these deductions.  If
you have not installed Oracle Payroll, you can still use these elements
to record information for transfer to your own payroll system.

To activate these predefined elements you need only define links for
them.



Step 76

�

2 – 30 Implementing Oracle HRMS

Use the Element Link window.

See: Defining Element Links, Managing Compensation and Benefits Using
Oracle HRMS

UK Implementations Only

Examples of elements representing legislative deductions in the UK are:
PAYE, NI, PAYE, Court Orders, EAS Court Order (only applies in
Scotland) and CMA Court Order (only applies in Scotland).

If you are a UK implementation and you want to use the employee Tax
window to enter PAYE and NI details you should define a ’Standard’
link to all Payrolls for both the PAYE and NI elements.

When you define links for the PAYE and NI elements you will have to
specify some default input values.  We suggest you use the following
defaults:

• Tax Code   ’BR’

• Tax Basis  ’Cumulative’

• NI Category  ’A’ or ’D’ (Use category D if the majority of your
employees are enrolled in a company pension scheme.)

Define Balances, Formulas and Results for Payroll

If you have not installed Oracle Payroll these windows will not be
available in your menus.  You should skip these steps and go to the
next section.

Define User Balances

Attention:  Oracle Payroll has many predefined balances
installed with the system to support all your legislative
requirements for calculation of gross to net balances.  To
protect the integrity of the payroll processes you cannot change
any of these balances.

You can define other balances.  For example, you might want to define
a special balance to calculate a ’Stop Rule’ on a recurring deduction.
You might also need to define a special balance for calculating
retroactive payments.

When you define a payroll balance you must specify the feeds and the
dimensions.

Use the Balance window.

See: Defining User Balances, Managing Compensation and Benefits Using
Oracle HRMS.



Step 77

Step 78

2 – 31Implementation Steps

Write Payroll Formulas

You write the formula for every element that you want to process in a
payroll run. The formula type is ’Oracle Payroll’

Warning:  Remember that formula definitions are datetracked.
After you have used a formula in a payroll calculation you
should always ’Update’ any changes to the formula.

This will keep the history of formulas for any re–calculation of
retrospective earnings or deductions.

Use the Formula window.

See: Writing Payroll Formulas for Elements, Using Oracle FastFormula.

Define Formula Result Rules

When you process an element in a payroll run the system will calculate
the results using a formula.  The results of the formula are the values
you include in the Return statement to end the formula.  The result
rules define what will happen to each of the results produced by the
formula.

You can calculate any number of different results in a single formula.
The different types of result are:

• Direct

• Indirect

• Message

• Stop Recurring

• Update Recurring

There can be only one Direct result of a payroll calculation.  This would
normally be the Pay Value of the entry.

Warning:  If you allow users to enter the Pay Value of any
earnings or deduction type, this value will override any
formula calculation to provide the direct result for payment.

Use the Formula Result Rules window.

See: Defining Formula Processing and Result Rules, Managing
Compensation and Benefits Using Oracle HRMS



Step 79

Step 80

Step 81

Step 82

2 – 32 Implementing Oracle HRMS

Salary Administration

Use the Salary Administration function to manage the basic
remuneration for individual employees.

Create or Decide on Salary Elements

You need at least one salary element for each salary basis in your
enterprise.

If predefined elements exist in your localization, you might decide to
use these. If your localization does not include predefined elements, or
if the predefined elements are insufficient or inappropriate, you must
create new elements to store the salary value.

Note:  Consider how many different elements you will need to
define for the different salary bases you want to manage.
Remember that you can administer the salary on an annual
basis but store the value as a monthly value.

Use the Element window.

See: Creating a Salary Element, Managing Compensation and Benefits
Using Oracle HRMS.

Link the Salary Element

Link the salary elements to components of employee assignments to
establish employee eligibility for the elements.

Use the Element Link window.

See: Linking the Salary Element, Managing Compensation and Benefits
Using Oracle HRMS.

Define a Salary Basis

Define a salary basis for each salary element to be used for salary
administration. This establishes the duration for which a salary is
quoted, for example, hourly, monthly or annually.

Use the Salary Basis window.

See: Defining a Salary Basis, Managing Compensation and Benefits Using
Oracle HRMS.

Review or Create Salary Components

Review the salary components predefined as values for the Lookup
Type PROPOSAL_REASON. If necessary, create your own salary
components.

If you want your new components to be displayed in the Salary
Management folder, you must also change a view.



Step 83

Step 84

Step 85

2 – 33Implementation Steps

See:  Creating Salary Components, Managing Compensation and Benefits
Using Oracle HRMS

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Define Performance Rating Types

If you want to record performance ratings such as Outstanding,
Superior and Average, enter them in the Application Utilities Lookups
window for the Lookup Type PERFORMANCE_RATING.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Add the Salary Administration Approve Function

Add the function “Salary Administration Approve” to the menu of
responsibilities that should be able to approve salary proposals.

Note:  If this function does not exist for a Responsibility then a
user can enter but not approve salary proposals.

Use the Menus window.

See: Defining Menus, Customizing, Reporting and System Administration
in Oracle HRMS.

Validate Salary Entries

You can validate salary entries in one of two ways:

• Warn users when they enter a salary proposal that is outside a
valid range defined for an employee’s grade.  This approach uses
grade rate ranges.

• Prevent users from approving a salary that is outside a valid
range, or that fails validation performed by a formula.  Notice
that this validation is not performed until you try to approve a
salary proposal.  This approach uses element input value
validation.

See: Validating Salary Entries, Managing Compensation and Benefits Using
Oracle HRMS.



Step 86

Step 87

Step 88

Step 89

Step 90

2 – 34 Implementing Oracle HRMS

Absence Management and Accruals of Paid Time Off (PTO)

You can set up as many plans as you need to permit employees to
accrue PTO to use for vacation or sick leave. Each plan has the units of
Hours or Days, and can have its own rules regarding accrual frequency,
accrual bands, ceilings, carryover, start dates, entitlement of employees
with different assignment statuses, and so on.

Set Up Absence Management

Define a Nonrecurring Absence Element

For each of your accrual plans, you define a nonrecurring element and
input value to hold the actual time taken for vacation or sick leave.

Use the Element window.

See: Defining and Linking an Absence Element, Managing Compensation
and Benefits Using Oracle HRMS.

Link the Absence Element

Link each absence element to define who is eligible to take this kind of
absence.

Use the Element Link window.

See: Defining Element Links, Managing Compensation and Benefits Using
Oracle HRMS

Define Categories of Absence Types

Define categories of absence types as values for the Lookup Type
ABSENCE_CATEGORY, and your absence reasons as values for the
Lookup Type ABSENCE_REASON.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Define Absence Types and Associate with Absence Elements

Define each absence type, and associate it with an absence element

Use the Absence Attendance Type window.

See: Defining an Absence Type, Managing Compensation and Benefits
Using Oracle HRMS.

Make Initial Element Entries

For an absence type with a decreasing balance, use the Element Entries
window or the MIX batch facility to make initial element entries for
employees eligible for the type.



Step 91

Step 92

Step 93

Step 94

Step 95

2 – 35Implementation Steps

If you want to make entries for individual employees, see Making
Manual Element Entries, Managing Compensation and Benefits Using
Oracle HRMS. If you want to make batch entries, see Making Batch
Element Entries Using BEE,  Managing Compensation and Benefits Using
Oracle HRMS

Set Up Accrual Plans

Define and Link Element for Plan’s Absence Type

Define and link an absence element, if you haven’t already done this.

Use the Element window.

See: Defining and Linking an Absence Element, Managing Compensation
and Benefits Using Oracle HRMS.

Define an Absence Type for the Plan

If you expect to record accrued time taken under the plan using the
Absence Detail window, define an absence type for the plan,
associating its absence element with this type.

Use the Absence Attendance Type window.

See: Defining an Absence Type, Managing Compensation and Benefits
Using Oracle HRMS.

Define New Accrual Start Rules

There are three seeded start rules: Hire Date, Beginning of Calendar
Year, and Six Months After Hire Date. If you need other rules, define
them as values for the Lookup Type US_ACCRUAL_START_TYPE.

Use the Application Utilities Lookups window.

Decide on Accrual and Carry Over Formulas

Decide which Accrual and Carry Over formulas to use. You can use the
seeded formulas, customize them, or write your own.

Use the Formula window.

See: Writing Formulas for Accrual Plans, Managing Compensation and
Benefits Using Oracle HRMS.

Write Ineligibility Formula

If your Accrual formula defines a period of ineligibility and you want
to use Batch Element Entry (BEE) to enter absences against the accrual
plan, define an Ineligibility formula. BEE calls this formula to check
whether an employee is eligible to use accrued PTO.



Step 96

Step 97

Step 98

Step 99

2 – 36 Implementing Oracle HRMS

Note:  If you use the seeded Accrual formulas, you do not need
to define an Ineligibility formula. They use a period of
ineligibility entered on the Accrual Plan form, and BEE
validation can use the same value.

Use the Formula window.

See: Writing Formulas for Accrual Plans, Managing Compensation and
Benefits Using Oracle HRMS.

Define New Accrual Categories

There are several seeded accrual categories. If you need additional
categories, define them as values for the Lookup Type
US_PTO_ACCRUAL.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Define a PTO Accrual Plan

Define the accrual plan, selecting the formulas and absence element it is
to use.

Use the Accrual Plan window.

See: Defining a PTO Accrual Plan, Managing Compensation and Benefits
Using Oracle HRMS.

Set Up Length of Service Bands

Optionally, set up length of service bands for the plan.

Use the Accrual Bands window.

See: Setting Up Length of Service Bands, Managing Compensation and
Benefits Using Oracle HRMS.

Review the Net Calculation Rules

Review the net calculation rules for the plan. If necessary, create
additional elements and associate them with the plan by selecting them
in the Net Calculation Rules window.

See: Changing Net Accrual Calculations, Managing Compensation and
Benefits Using Oracle HRMS.



Step 100

2 – 37Implementation Steps

Element Sets

Define Element Sets

In Oracle HRMS you can define a set of elements to:

• Restrict access to elements using Form Customization

• Distribute costs across a Distribution Set of elements

• Process a restricted set in a Payroll Run

• Enter values for a restricted set using BEE (Batch Element Entry)

You define an element set as a named list of elements such as Salary, or
Salary and Bonus.  You can also define an element set using the
classification.  For example, you can restrict access to all elements in the
classification Earnings.

Use the Element and Distribution Set window.

See: Defining an Element or Distribution Set, Customizing, Reporting and
System Administration in Oracle HRMS.



Step 101

Step 102

2 – 38 Implementing Oracle HRMS

Total Compensation

Many implementation steps are shared by Standard and Advanced
Benefits. Those implementation steps that only apply to Advanced
Benefits are indicated.

Benefits Tabbed Region

You need to add the benefits tabbed region to the People window for
those secure responsibilities that should have access to the benefits
information contained in this region. This region includes such
information as the benefits group to which a person belongs and their
medical plan.

Add the Benefits Tabbed Region to the People Window

A person with a responsibility of system administrator or application
developer can use the Menus window to add the benefits alternate
region to the People window.

1. Query the BEN_MANAGER menu in the Menu field.

2. Add a new line and select HR View Benefits in the Function field.

3. Save your work

Use the Menus window.

See: Menus Window, Oracle Applications System Administrator’s Guide

Benefits Eligibility

You define participation eligibility profiles to determine eligibility for
benefits.  Eligibility factors can also be used when determining variable
contribution and distribution rates for a benefit.

Define Benefits Groups

You define a benefits group as a category of people who can be either
included or excluded from receiving a benefit or a standard activity
rate.  A benefit group is one optional component of an eligibility profile
or a variable rate profile.

Use the Benefits Groups window.

See: Defining Benefits Groups, Managing Compensation and Benefits
Using Oracle HRMS



Step 103

Step 104

Step 105

Step 106

2 – 39Implementation Steps

Define Postal Code (ZIP) Ranges

You define postal code (zip) ranges if you limit benefits eligibility based
on a person’s home address or if an activity rate varies based on a
person’s address.

Postal code ranges are also a component of service areas.

Use the Postal Zip Ranges window.

See: Defining Postal Zip Ranges, Managing Compensation and Benefits
Using Oracle HRMS

Define Service Areas

You can define a service area to group people who live in a region by
their postal codes.  A service area is one optional component of an
eligibility profile or a variable rate profile.

Use the Service Areas window.

See: Defining Service Areas, Managing Compensation and Benefits Using
Oracle HRMS

Define Regulations

You define regulations as discrete rules, policies, or requirements that a
governmental or policy making body defines regarding the
administration of one or more benefits.

Use the Regulations window.

See: Defining Regulations, Managing Compensation and Benefits Using
Oracle HRMS

Derived Eligibility Factors

A derived factor is a system calculated value that you can use to
determine eligibility for a benefit or to determine an activity rate.

Define Derived Compensation Level Factors

Define compensation level factors to determine how the system derives
a person’s compensation level based on a person’s stated salary or a
balance type that you specify.

Use the Derived Factors window.

See: Defining Derived Factors: Compensation Level, Managing
Compensation and Benefits Using Oracle HRMS



Step 107

Step 108

Step 109

Step 110

Step 111

2 – 40 Implementing Oracle HRMS

Define Derived Percent of Full Time Employment Factors

Define percent of full time factors to determine how the system derives
a person’s percent of full time employment.

Use the Derived Factors window.

See: Defining Derived Factors: Percent of Full Time Employment,
Managing Compensation and Benefits Using Oracle HRMS

Define Derived Hours Worked in Period Factors

Define hours worked in period factors to determine how the system
derives the number of hours a person worked in a given period.

Use the Derived Factors window.

See: Defining Derived Factors: Hours Worked in Period, Managing
Compensation and Benefits Using Oracle HRMS

Define Age Factors

Define age factors to determine how the system derives a person’s age.

Use the Derived Factors window.

See: Defining Derived Factors: Age, Managing Compensation and Benefits
Using Oracle HRMS

Define Length of Service Factors

Define length of service factors to determine how the system calculates
a person’s length of service.

Use the Derived Factors window.

See: Defining Derived Factors: Length of Service, Managing
Compensation and Benefits Using Oracle HRMS

Define Combination Age and Length of Service Factors

Define combination age and length of service factors to combine an age
factor and a length of service factor.

Use the Derived Factors window.

See: Defining Derived Factors: Combination Age and Length of Service,
Managing Compensation and Benefits Using Oracle HRMS



Step 112

Step 113

Step 114

Step 115

2 – 41Implementation Steps

Eligibility Profiles

Define an Eligibility Profile

Defining an eligibility profile is the primary way in which you
implement eligibility requirements for a benefit.  You link an eligibility
profile with a compensation object (a benefit that you define) so that
when eligibility processes are run, only the persons meeting the
eligibility profile requirements are eligible to receive the benefit.

Use the Participation Eligibility Profiles window.

See: Defining an Eligibility Profile, Managing Compensation and Benefits
Using Oracle HRMS

Define Dependent Coverage Eligibility Profiles

You define dependent coverage eligibility profiles to enforce eligibility
requirements for dependents.

Use the Dependent Coverage Eligibility Profiles window.

See: Defining the Criteria in a Dependent Coverage Eligibility Profile,
Managing Compensation and Benefits Using Oracle HRMS

Define Life Events (Advanced Benefits)

You define a life event as a change in a person’s record that can
potentially trigger an enrollment action. Life events can be external to
work, such as a marriage or the birth of a dependent, or they can be
internal, such as a job change. Scheduled enrollments are also
considered life events.

Define Life Event Processing

Define the life events that you use to control electability, activity rates
and coverage levels, coverage dates, communications, and automatic
and default enrollment processing.

Use the Life Event Reasons window.

See: General Characteristics of Life Event Reasons, Managing
Compensation and Benefits Using Oracle HRMS

Define Person Changes

You define the changes to a person’s record that trigger a life event by
specifying the value of the database field that indicates this person
change has occurred.

Use the Person Changes window.



Step 116

Step 117

Step 118

2 – 42 Implementing Oracle HRMS

See: Defining Person Changes, Managing Compensation and Benefits
Using Oracle HRMS

Associate Person Changes with Life Events

You associate the person change that triggers the life event for each life
event that you define.

Use the Person Change Causes Life Event window.

See: Associating a Person Change with a Life Event, Managing
Compensation and Benefits Using Oracle HRMS

Define Related Person Changes

You define the changes to a person’s record that trigger a life event for
a related person by specifying the value of the database field that
indicates this related person change has occurred.

For example, you could define a termination life event to end benefits
coverage for terminated employees.  You would define a corresponding
related person life event that ends coverage for the dependents of the
primary participant when the primary participant is terminated.

Use the Related Person Changes window.

See: Defining Person Changes, Managing Compensation and Benefits
Using Oracle HRMS

Associate Related Person Changes with Life Events

You associate a related person change with each related person life event
that you define. A related person change is a change to the primary
participant’s HR record that may generate a life event for a person
related to the primary participant.

Use the Related Person Change Causes Life Event window.

See: Associating a Person Change with a Life Event, Managing
Compensation and Benefits Using Oracle HRMS

Program Setup

You define compensation objects as the benefits that you offer to your
employees and other eligible participants.

Compensation objects are arranged according to the compensation
object hierarchy:

• Program

• Plan Type



Step 119

Step 120

Step 121

Step 122

Step 123

2 – 43Implementation Steps

• Plan

• Option

Definitions that you set at the program level cascade to the plan types,
plans, and options in that program unless you override the definition at
a lower point in the hierarchy.

Define Reimbursable Goods and Service Types

Define goods and services that you approve for reimbursement. You
then associate one or more goods and services types with a
reimbursement plan.

Use the Goods and Services window.

See: Defining Reimbursable Goods and Service Types, Managing
Compensation and Benefits Using Oracle HRMS

Define a Program or Plan Year Period

You define a program or plan year period to set the coverage
boundaries for the duration of a benefit program or plan.

Use the Program/Plan Year window.

See: Defining a Program or Plan Year Period, Managing Compensation
and Benefits Using Oracle HRMS

Define Plan Types

You define plan types to categorize common types of benefits, such as
medical plans or savings plans.

Use the Plan Types window.

See: Defining Plan Types, Managing Compensation and Benefits Using
Oracle HRMS

Define Options

You define options to indicate the coverage levels available under a
plan or to define investment options for a savings plan.

Use the Options window.

See: Defining Options, Managing Compensation and Benefits Using Oracle
HRMS

Define Plans

A plan is a benefit in which an eligible participant can enroll.  Common
plans include medical, group term life insurance, and stock purchase
plans.



Step 124

Step 125

Step 126

Step 127

2 – 44 Implementing Oracle HRMS

Use the Plans window.

See: Defining General Plan Information, Managing Compensation and
Benefits Using Oracle HRMS

Define Reimbursement Plans

Reimbursement plans allow you to define goods and services that
eligible participants may purchase.  The participant can submit a
reimbursement claim for the cost of the good or service that was
purchased out–of–pocket.

Use the Plan Reimbursement window.

See: Defining General Plan Reimbursement Information, Managing
Compensation and Benefits Using Oracle HRMS

Define Programs

You define a program to group together the benefits that you offer as a
package.  A program typically is comprised of plan types, plans, and
options.

Use the Programs window.

See: Defining General Characteristics of a Program, Managing
Compensation and Benefits Using Oracle HRMS

Enrollment Requirements

You define enrollment requirements to control when an eligible person
can enroll in a benefit.

Define Program Enrollment Requirements

Enrollment requirements determine how an eligible participant enrolls
in a program.

Standard benefits customers define enrollment requirements based on
the unrestricted enrollment type. Advanced Benefits benefits customers
can specify whether default or automatic enrollment rules apply for a
program.

Use the Program Enrollment Requirements window.

See: Defining Enrollment Methods for a Program, Managing
Compensation and Benefits Using Oracle HRMS

Define Enrollment Requirements for a Plan

You use the Plan Enrollment Requirements window to define
enrollment requirements for a not in program plan or an option in plan.



Step 128

Step 129

Step 130

Step 131

2 – 45Implementation Steps

You also use this window to set up requirements for beneficiary
designations.

Use the Plan Enrollment Requirements window.

See: Defining an Enrollment Method for a Plan, Managing Compensation
and Benefits Using Oracle HRMS

Activity Rates and Coverage Calculations

Activity rate calculations determine the contribution rate necessary to
purchase a benefit and the distribution rate for benefits that provide
distributions.

Calculate Variable Activity Rates

You define variable activity rate calculations if an activity rate for a
compensation object can vary by participant.

Use the Variable Rate Profiles window.

See: Defining General Information for a Variable Rate Profile, Managing
Compensation and Benefits Using Oracle HRMS

Calculate Coverages

You define the amount of coverage available under a benefit plan for
those plans that offer a range of coverage options. Your coverage
calculation can include the minimum and maximum coverage level
available regardless of the calculation result.  For Advanced Benefits
customers, coverage levels can vary based on life events.

Use the Coverages window.

See: Defining a Coverage Calculation for a Plan, Managing Compensation
and Benefits Using Oracle HRMS

Define Across Plan Type Coverage Limits

You can define the minimum and maximum coverage amount that a
participant can elect across plan types in a program.

Use the Coverage Across Plan Types window.

See: Defining a Coverage Limit Across Plan Types

See:  Defining a Coverage Limit Across Plan Types, Managing
Compensation and Benefits Using Oracle HRMS

Calculate Actual Premium Costs

You need to maintain the criteria used to calculate the actual premium
cost that a plan sponsor owes to a benefits supplier.



Step 132

Step 133

Step 134

2 – 46 Implementing Oracle HRMS

Use the Actual Premiums window.

See: Defining an Imputed Income Calculation, Managing Compensation
and Benefits Using Oracle HRMS

Define Period–to–Date Limits

You define period–to–date contribution limits for those plans or
options in plan that restrict participant contribution levels in a year
period.  When you define a standard contribution, you can associate a
period–to–date limit for those plans or options in plan that require
contribution restrictions.

Use the Period–to–Date Limits window.

See: Defining Period–to–Date Limits, Managing Compensation and
Benefits Using Oracle HRMS

Define Activity Rates for Standard Contribution/Distribution

You define a standard activity rate calculation to calculate a benefit’s
contribution or a distribution amount.

Note:  You must have already created the corresponding
elements.

Use the Standard Contributions/Distributions window.

See: Defining Activity Rates for Standard Contribution/Distribution,
Managing Compensation and Benefits Using Oracle HRMS

Reporting Groups

Define Reporting Groups

You can define a reporting group that you link to one or more
programs and plans.  When you run a report for a reporting group, the
report results are based on the programs and plans that you include in
the reporting group.

You can also define the regulatory bodies and regulations govern a
reporting group.

Use the Reporting Groups window.

See: Defining a Reporting Group, Managing Compensation and Benefits
Using Oracle HRMS



Step 135

Step 136

Step 137

Step 138

2 – 47Implementation Steps

Flex Credit Calculations (Advanced Benefits)

Define Characteristics of Benefit Pools

You define benefit pools to limit how a participant can spend flex
credits and how excess flex credits can be rolled over, distributed as
cash, or forfeited.

Use the Benefit Pools window.

See: Defining the General Characteristics of a Benefit Pool, Managing
Compensation and Benefits Using Oracle HRMS

Define Flex Credits

You define a flex credit calculation and link the calculation with a
compensation object.  The compensation object to which you link a flex
credit calculation must be part of a program regardless of the level at
which you define flex credits.

Use the Flex Credit Definitions window.

See: Defining Flex Credits, Managing Compensation and Benefits Using
Oracle HRMS

Define Communications

You define the communications you send to employees and other
potential participants.  You specify the conditions that trigger a
communication and the delivery method and medium.

Use the Communication Types window.

See: Defining Communications, Managing Compensation and Benefits
Using Oracle HRMS

Administration

Define Benefit Balances

Benefit balances are useful for transitioning legacy system data to
Oracle HRMS.  You define a benefit balance type and then assign a
value to that type for a given person using the Person Benefit Balances
window.

Use the Benefit Balances window.

See: Defining a Benefit Balance Type, Managing Compensation and
Benefits Using Oracle HRMS

Define Online Benefits Services

You use the Online Benefit Services window to access a variety of
benefits windows from a central location.  You can configure the



Step 139

Step 140

2 – 48 Implementing Oracle HRMS

windows that are accessible from this window and you can define the
pop up messages that display based on user events that you define.

Maintain Desktop Activities List

The Maintain Online Activities window lets you define the functions
and windows that are available from the Desktop Activities list of the
Online Benefits Services windows.

Use the Maintain Online Activities window.

See: Maintaining Online Activities, Managing Compensation and Benefits
Using Oracle HRMS

Maintain Pop Up Messages

You can configure messages to display in the Online Benefit Services
window based on user events that you define. You create the message
text in the Messages window

Use the Maintain Pop Up Messages window.

See: Maintaining Pop Up Messages, Managing Compensation and Benefits
Using Oracle HRMS



Step 141

Step 142

Step 143

2 – 49Implementation Steps

People and Assignments

Oracle HRMS enables you to define your own names to identify the
’types’ of people in your system, and to identify the status of
employees in each assignment using your own names.

Person Types and Assignment Statuses

Define Person Types

You can define your own names to identify the ’types’ of people in your
system.

Note:  Person Type is a common option for Form
Customization.

Use the Person Types window.

See: Defining Person Types, Managing People Using Oracle HRMS.

Define Assignment Statuses for Employees

With Oracle HRMS you can identify the status of employees in each
assignment using your own names.  For example, you might want to
define a special status to identify assignments which have been
Suspended while the employee is temporarily assigned to another role.

Use the Assignment Statuses window.

See: Defining Assignment Statuses, Managing People Using Oracle
HRMS.

Create Contract Statuses

You can create up to 250 contract statuses. You can select a contract
status in the Contracts window. Create the contract statuses you
require using the Lookups CONTRACT_STATUS.

The contract status can contain a prefix that defines whether a contract
is active, inactive or obsolete.

• A–: You should use this prefix for statuses that indicate a
contract is Active.

• O–: You should use this prefix for statuses that indicate a
contract is Obsolete.

Note:  If a contract status has no prefix it is assumed to mean
that the contract is Inactive.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS



Step 144

Step 145

2 – 50 Implementing Oracle HRMS

Special Personal Information (Personal Analysis Key Flexfield Structures)

The Personal Analysis Key Flexfield is used to record special personal
information which is not included as standard information.  Each type
of information is defined as a separate Structure of the flexfield.  For
example, you might set up a structure to hold medical information.

This flexfield is used in the following areas:

• Special Information details for People

• Matching requirements for Jobs and Positions

You need to design a Personal Analysis Flexfield Structure for each
Special Information Type you want to hold in Oracle HRMS.  For each
structure you must include the following:

• The Structure Name and the number of Segments.

• The Flexfield Segment Names, Order and Validation Options.

• The Flexfield Value Sets to be used and any lists of values.

Defining the Flexfield Structure is a task for your System
Administrator.

Note:  You cannot use the Create Key Flexfield Database Items
process to create database items for the segments of your
Personal Analysis Flexfield structures.

Define Personal Analysis Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that can
be entered, and how many characters each segment can hold.  The
attributes of the Value Set will also control how the values are to be
validated.

Value Sets can be shared by different segments of the same flexfield, or
by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide.

Define Personal Analysis Flexfield Segments

Define a structure for your Personal Analysis Flexfield which contains
the segments you want to use.  You will use this structure to enter
details in the Special Information Types window.

You must enter Yes in the Allow Dynamic Inserts field.  If you enter
No, you will not be able to enter new details in the Special Information
Types window.



Step 146

Step 147

Step 148

Step 149

2 – 51Implementation Steps

Note:  You do not need to use a Value Set to validate a
segment.  If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.

Define Personal Analysis Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value
Set used by a Personal Analysis Flexfield Segment, you must define
your list of valid values for the Value Set.

See: Defining Segment Values, Oracle Applications Flexfields Guide.

Define Personal Analysis Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values.
For each segment, you can define a Low to High range of values.

Use the Cross–Validation Rule window

See: Defining Cross–Validation Rules, Oracle Applications Flexfields
Guide.

Define Personal Analysis Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide.

Freeze and Compile Your Personal Analysis Flexfield Structure

You are now ready to freeze your flexfield definition.  Navigate to the
Define Flexfield Segments window.  Enter Yes in the Freeze Flexfield
Definition field and save your changes.  Oracle Human Resource
Management Systems now freezes and compiles your Personal
Analysis Flexfield definition.  Compiling the flexfield definition enables
the flexfield window with the defaults, values and rules that you have
defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields
Guide.



Step 150

2 – 52 Implementing Oracle HRMS

Register Special Information Types for the Business Group

After you have defined your Personal Analysis Flexfield Structures you
must link them to your Business Group.

You do this using your view–all responsibility.

• Select each Information Type you want to use in this Business
Group.

• Select the categories for each type.

– Job for Job Requirements

– Position for Position Requirements

– Skills for use with Oracle Training Administration

– Other for use with Person Special Information

– ADA for use only in the US, for special information types
set up to record information about employees with
disabilities.

– OSHA for use only in the US, for a special information type
set up to record information about employees’ work–related
injuries or illness.

Suggestion:  If you do not check the Other category, you
cannot use the type to hold information for a person.  This
means that you could also use the Special Information Types to
hold any type of information for a Job or a Position only.

Use the Special Information Types window.

See: Enabling Special Information Types, Managing People Using Oracle
HRMS.



Step 151

Step 152

Step 153

Step 154

2 – 53Implementation Steps

Specific Business Functions

Human Resource Budgets

Define Lookup Types and Values

Headcount and Full–Time Equivalent budget measurement types are
already predefined in Oracle HRMS.  You can change the names of
these predefined types or add any new types you might need.

Define values for BUDGET_MEASUREMENT_TYPES

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS

Define Period Types

The most common period types are already predefined in Oracle
HRMS.  You can change the names of these predefined types but
cannot add any new types.

Use the Period Types window.

See: Renaming Period Types, Managing People Using Oracle HRMS.

Define Budgetary Calendars

You use calendars to define the budget years for your staffing budgets.

Use the Budgetary Calendar window.

See: Defining Budgetary Calendars, Managing People Using Oracle
HRMS.

Define Human Resources Budgets

When you define staffing budgets you can use the system to measure
actual budget values of assignments against planned budget values.

An assignment which does not have an actual value is not counted in
the budget.  Actual values for each budget type for an assignment are
entered in the Assignment Budget Values window.

Use the Budget window.

See: Defining Human Resource Budgets, Managing People Using Oracle
HRMS.



Step 155

Step 156

2 – 54 Implementing Oracle HRMS

Evaluation Systems

Define Evaluation Types

With Oracle HRMS you can record summary evaluation information
for Jobs, or Positions in the Evaluation window.

Define the name of your evaluation system as a value for the Lookup
Type EVAL_SYSTEM.

To record detailed evaluation scores for the Hay System or any other
system you can enable the Additional Evaluation Details descriptive
flexfield to hold and validate this information.

You can also hold comment or review information for each evaluation
you undertake.

Note:  If you use more than one evaluation system you may
want to define the segments as context sensitive to the System
Name.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS.

Define Valid Grades for Jobs or Positions

Oracle HRMS lets you define Valid Grades for Jobs.  These definitions
provide warning messages to users in the Assignment window when
you enter Job and Grade information.

Use the Valid Grades window.

See: Entering Valid Grades for Jobs or Positions, Using Oracle HRMS –
The Fundamentals.

Requirements Matching

If you have set up competencies, you can enter these as requirements
for jobs and positions and match them against people’s competence
profiles.

If you have other job and position requirements that you want to
record, but not define as competencies, you can set them up using the
Personal Analysis key flexfield.  You can set up each type of
requirement as a Special Information Type, which is one instance of the
flexfield.

For each Special Information Type, you can also choose whether to
enable entry of information for people. You do this by selecting



Step 157

Step 158

2 – 55Implementation Steps

categories in the Special Information Type window.  Enabling entry of
information for people enables you to match people against the job or
position requirements.  A standard report (Skills Matching) has been
provided to match the requirements of a job and the Special
Information details of people in the system.

Define Requirements for Jobs

You can define the attributes required by any employee who is
assigned to a job.  These attributes may be Essential or Desirable.

Definitions of requirements can use the same personal analysis flexfield
structures and segments you have defined for special personal
information.

Use the Job window.

See: Entering Job and Position Requirements, Using Oracle HRMS – The
Fundamentals.

Define Requirements for Positions

After you define positions in your enterprise, you can define the
attributes required by any employee assigned to that position.  These
attributes may be Essential or Desirable.  The requirements are based
on the same personal analysis flexfield structures you have defined for
special personal information.

Use the Position window.

See: Entering Job and Position Requirements, Using Oracle HRMS – The
Fundamentals.



Step 159

Step 160

Step 161

2 – 56 Implementing Oracle HRMS

Career and Succession Management

Recruitment

Define Assignment Statuses for Applicants

Assignment Statuses for applicants enable you to define the distinct
stages of your own recruitment processes.

With Oracle HRMS you can use your own names to identify these
stages. For example, you might want to define a special status to
identify applicants who have been invited to a First Interview and
applicants who have been Rejected on Application.

These user statuses enable you to track the recruitment circumstances
of all your applicants.

Use the Assignment Statuses window.

See: Defining Assignment Statuses, Managing People Using Oracle
HRMS.

Career Management

If you are developing the competence approach as part of your
performance management system, you must identify your enterprise’s
strategic business goals or objectives you want the competence
approach to address. You can then set up your methods of
measurement, create your competencies and create your assessment
and appraisal templates.

If you are using Oracle Self–Service Human Resources to  provide
self–service human resource management for managers and
employees, you also need to perform additional implementation steps.

See: Implementation Steps (SSHR), Implementing Oracle Self–Service
Human Resources (SSHR).

Create Rating Scales

Create rating scales if you want to describe your enterprise’s
competencies in a general way.

Use the Rating Scales window.

See: Creating a Rating Scale, Managing People Using Oracle HRMS.

Create Competencies

Create competencies that best meet the needs of your enterprise. If you
are using the individual method, you need to set up the proficiency
levels for each competence you create.



Step 162

Step 163

Step 164

Step 165

2 – 57Implementation Steps

Use the Competencies window.

See: Creating a Competence, Managing People Using Oracle HRMS.

Create Competence Types

You might want to group related competencies together, for example,
for advertising a vacancy, or for reporting purposes.

Create the competence types you require using the Lookup
COMPETENCE_TYPE.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Customizing, Reporting and
System Administration in Oracle HRMS.

Group Competencies into Types

You now need to group related competencies together.

Use the Competence Types window.

See: Grouping Competencies into Types, Managing People Using Oracle
HRMS.

Define Competence Requirements

To ensure your enterprise meets its current and future goals, you’ll
need to define your competence requirements.

Use the Competence Requirements window.

See: Defining Competence Requirements – Core or Generic
Competencies, Managing People Using Oracle HRMS.

See: Defining Competence Requirements – No Core Competencies,
Managing People Using Oracle HRMS.

Enter Work Choices for a Job or Position

You can enter work choices that can affect an employee’s, applicant’s,
contractor’s, or ex–employee’s capacity to be deployed within your
enterprise (or a customer’s). Work Choices include willingness to
travel, willingness to relocate, and preferred working hours and work
schedule.  You can enter work choices for a job or position, and
compare these with the personal work choices entered for people.

Use the Work Choices window.

See: Entering Work Choices for a Job or Position, Managing People Using
Oracle HRMS.



Step 166

Step 167

Step 168

Step 169

2 – 58 Implementing Oracle HRMS

Define Functions (to Implement the Competence Approach in OTA)

If you have Oracle Human Resources and OTA installed in your
enterprise, you can hold the qualifications, attributes and knowledge
that students can expect to attain by attending training activities as
competencies, skills or a mixture of both (competencies and skills).

You use parameters to enable you to phase in the delivery of
competencies through training activities. This enables you to indicate
whether users can enter skills, competencies, or both from the
Activities window.  You also use parameters to enable selected users to
add competencies gained through an activity directly to a student’s
Competence Profile.

Use the Form Functions window.

See: Defining Functions, Using Oracle Training Administration.

Create Qualification Types

You can enter all the qualification types your enterprise recognizes.

Use the Qualification Types window.

See: Creating Qualification Types, Managing People Using Oracle HRMS.

Create Schools and Colleges

You need to create schools and colleges that deliver the qualifications
your enterprise recognizes. These are then used to record where a
person gained the qualification. If you have not automatically loaded
these schools and colleges into Oracle Human Resources, you can enter
them manually.

Note:  Schools and colleges you enter are available to all
Business Groups you create, therefore only load or enter them
once.

Use the Schools and Colleges window.

See: Schools and Colleges, Managing People Using Oracle HRMS.

Evaluations and Appraisals

Implement Oracle Self–Service Human Resources (SSHR)

You must also perform other  SSHR implementation tasks, such as
configuring SSHR web processes using Oracle Workflow, before you
can create your appraisal and assessment templates.

See: Implementation Steps (SSHR), Implementing Oracle Self–Service
Human Resources (SSHR).



Step 170

Step 171

�

2 – 59Implementation Steps

Create an Assessment Template

You can create assessment templates for all the different evaluations
your enterprise performs.

Use the Assessment Template window.

See: Creating an Assessment Template, Managing People Using Oracle
HRMS.

Create an Appraisal Template

You can create appraisal templates to provide instructions to
appraisers, to identify which questions belong to which appraisal and
to identify which performance rating scale to use.

You can use one of the example appraisal templates we provide and
modify them to suit your own needs, or you can create your own.

Use the Appraisal Template window.

See: Creating an Appraisal Template, Managing People Using Oracle
HRMS.

Career and Succession Planning

The flexibility provided by Oracle Human Resources means you can
handle your enterprise’s career and succession plans using one of a
number of models. Which model you decide to use depends upon
whether your enterprise’s career and succession planning is based
upon jobs or positions, and whether your enterprise is using a
Windows interface only, or a mixture of the Web and Windows.

Career Paths show the progression paths which are available within
your enterprise.  You can map out career paths for both jobs and
positions.

By planning successors for jobs and positions you always have a
shortlist of qualified candidates. You can also identify training and
development needs to prepare an employee for a job or position and
model different succession options.

Model Career and Succession Plans Based on Jobs

If your enterprise’s career and succession planning is based upon jobs,
you can use career paths to show possible progressions to one job from
any number of other jobs.

Attention:  In the US, for AAP–Workforce Analysis reporting
use the career path functionality to build the lines of progression
for the jobs included in your AAP plans.



Step 172

Step 173

Step 174

Step 175

2 – 60 Implementing Oracle HRMS

Use the Career Path Names and Map Career Paths windows.

See: Defining Career Paths, Managing People Using Oracle HRMS.

Create and Map Career Paths

Career paths are based on the structures of your enterprise rather than
the people you employ.  You may also want to record personal
aspirations and progression paths for individual employees.  There are
several ways to do this.

Use the Career Path Names and Map Career Paths windows.

See: Defining Career Paths, Managing People Using Oracle HRMS.

Enter Work Choices

You can use work choices to help identify a person’s career plan.

Use the Work Choices windows.

See: Entering Work Choices for a Job or Position, Managing People Using
Oracle HRMS.

Model Career and Succession Plans Based on Positions

If your enterprise’s career and succession planning is based upon
positions, you can create additional position hierarchies to show any
type of progression.  These might represent existing line management
structures, or even cut across departmental or job–type boundaries.

Create Position Hierarchies

Optionally, create position hierarchies to show career paths, if you want
to show typical career progression.

Use the Position Hierarchy window.

See: Creating a Position Hierarchy, Using Oracle HRMS – The
Fundamentals.

Use Succession Planning (SSHR with a Line Manager
Responsibility)

If you are using SSHR you can use the Succession Planning function to
record one or more next positions for each employee. And create, and
rank, a group of qualified employees if a position becomes available.

Use the Succession Planning function in SSHR.



Step 176

Step 177

2 – 61Implementation Steps

Use Suitability Matching (SSHR with a Line Manager
Responsibility)

If you are using SSHR you can use the Suitability Matching function to
compare the competence profile of an employee, or employee’s, with
the competency needs of a position.

Use the Suitability Matching function in SSHR.

Use Attachments or Special Information Types

Consider holding succession plan information against people as
attachments or using a special information type.

Use the Personal Analysis Key Flexfield.

See: Defining Special Information Types, Managing People Using Oracle
HRMS.



Step 178

Step 179

Step 180

2 – 62 Implementing Oracle HRMS

Control

Define Reports

Use Standard Reports or Write New Reports

A number of standard reports are supplied with Oracle HRMS.  These
reports have been written using Oracle Reports V.2 and registered as
concurrent programs with the Standard Requests Submission (SRS)
feature of Oracle Applications.

You can use these Standard Reports or write your own reports and
register these as additional reports which users can request from the
Submit a New Request window.

UK Payroll Implementation Only

In the UK, P45 and Pay Advice reports supplied with Oracle Payroll are
designed for use with preprinted stationery.  These reports use two
special printer drivers to control the print format.

• P45 paygbp45.prt

• Pay Advice paygbsoe.prt

If your printer does not accept the same control characters as the DEC
LN03 printer, you may need to modify the special SRW driver files.

When you install Oracle Payroll the two sample files are stored in the
$PAY_TOP/srw directory.  You should copy the files to
$FND_TOP/$APPLREP and then register them using the Printer
Drivers window.

Register Reports as Concurrent Programs

After you have written your new reports and saved them in the correct
subdirectory, you must register the report as a concurrent program.
You also register the parameters which can be submitted with the
report.  For example, you may have written a report to display
personal details and you want to submit employee name to limit the
output to include one person at a time.

Use the Concurrent Programs window.

See: Concurrent Programs Window, Oracle Applications User’s Guide.

Define Report Sets

You can define sets of Reports:

• To restrict user access to specific reports.

A set of reports can be linked to a Responsibility.



Step 181

Step 182

2 – 63Implementation Steps

• To simplify requesting a report

You can run a report set in one request, rather than a request for
each report.

Use the Request Set window.

See: Defining Request Sets, Oracle Applications User’s Guide

Standard Letter Generation

You can use standard letters in HRMS to help you to manage your
enterprise’s recruitment or enrollments, for example. You do this by
issuing standard letters to applicants or students, triggered by changes
in assignment or enrollment status.

Oracle HRMS provides you with two different methods to create
standard letters:

• Method 1  Concurrent Processing : page 2 – 63

• Method 2 – Online, using Application Data Exchange (ADE).
See: Using Application Data Exchange and Hierarchy Diagrammers.

Method 1 – Concurrent Processing

There are two methods of using concurrent processing to set up your
standard letters:

• Using word processors

– 1a – MultiMate or WordPerfect: page 2 – 63

– 1b – Microsoft Word: page 2 – 65

• Using Oracle Reports: page 2 – 66

Using Word Processors Option 1a – MultiMate or WordPerfect

Plan Standard Letter Requirements

You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Customizing, Reporting and
System Administration in Oracle HRMS.

Write a SQL*Plus Script for MultiMate or WordPerfect

Oracle HRMS supplies you with SQL*Plus scripts as templates for
extracting database information for standard letters.  You can copy the
SQL*Plus script templates and modify them to create the standard
letters you require.



Step 183

Step 184

Step 185

Step 186

2 – 64 Implementing Oracle HRMS

See: Writing a SQL*Plus Script for MultiMate or WordPerfect,
Customizing, Reporting and System Administration in Oracle HRMS.

Register the SQL*Plus Script

Register your SQL*Plus program with Oracle HRMS.  You register your
program so that you can run it as a concurrent program.  Name the file
PERWP*** (or OTAWP***). You must use this prefix for the system to
recognise it as a type of letter.

Use the Concurrent Programs window.

See: Registering the SQL*Plus Script, Customizing, Reporting and System
Administration in Oracle HRMS.

Link the SQL*Plus Script to the Letter

Link your SQL*Plus script with a letter and one or more statuses.  In
Oracle Human Resources, you can link one or more applicant
assignment statuses with each recruitment letter.  A request for the
letter is then created automatically when an applicant is given an
associated assignment status.  For example, you can link your standard
recruitment rejection letter to the status Rejected so that the letter is
triggered when you set an applicant’s assignment status to Rejected

Use the Letter window.

See: Linking the SQL*Plus Script with the Letter, Customizing, Reporting
and System Administration in Oracle HRMS.

Writing a Skeleton Letter

Write a skeleton letter using your word processor.  Include the
appropriate merge codes from the data source for the word processor
you are using.

See: Writing a Skeleton Letter, Customizing, Reporting and System
Administration in Oracle HRMS.

Requesting Letters

When you, or other users, set the status for an applicant or enrollment
that triggers your standard letters, Oracle HRMS creates a letter
request automatically, with the status of Pending. It also adds the
applicant’s or student’s name to the request.  You can view the pending
request and names through the Request Letter window.

Use the Request Letter window.

See: Requesting Letters, Customizing, Reporting and System
Administration in Oracle HRMS.



Step 187

Step 188

Step 189

Step 190

Step 191

2 – 65Implementation Steps

Merging the Data Files

You now need to merge the data in the Data File with your skeleton
letters.

See: Merging the Data File with the Standard Letter, Customizing,
Reporting and System Administration in Oracle HRMS.

Using Word Processors Option 1b – Microsoft Word

Plan Standard Letter Requirements

You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Customizing, Reporting and
System Administration in Oracle HRMS

Write a SQL*Plus Script for Microsoft Word

Oracle HRMS supplies you with SQL*Plus scripts as templates for
extracting database information for standard letters.  You can copy the
SQL*Plus script templates and modify them to create the standard
letters you require.

See: Writing a SQL*Plus Script for Microsoft Word, Customizing,
Reporting and System Administration in Oracle HRMS

Register the SQL*Plus Script

Register your SQL*Plus program with Oracle HRMS.  You register your
program so that you can run it as a concurrent program.  Name the file
PERWP*** (or OTAWP***). You must use this prefix for the system to
recognize it as a type of letter.

Use the Concurrent Programs window.

See: Registering the SQL*Plus Script, Customizing, Reporting and System
Administration in Oracle HRMS.

Link the SQL*Plus Script to the Letter

Link your SQL*Plus script with a letter and one or more statuses.  In
Oracle Human Resources, you can link one or more applicant
assignment statuses with each recruitment letter.  A request for the
letter is then created automatically when an applicant is given an
associated assignment status.  For example, you can link your standard
recruitment rejection letter to the status Rejected so that the letter is
triggered when you set an applicant’s assignment status to Rejected

Use the Letter window.

See: Linking the SQL*Plus Script to the Letter, Customizing, Reporting
and System Administration in Oracle HRMS.



Step 192

Step 193

Step 194

Step 195

Step 196

2 – 66 Implementing Oracle HRMS

Writing a Skeleton Letter

Write a skeleton letter using your word processor.  Include the
appropriate merge codes from the data source for the word processor
you are using.

See: Writing a Skeleton Letter, Customizing, Reporting and System
Administration in Oracle HRMS.

Requesting Letters

When you, or other users, set the status for an applicant or enrollment
that triggers your standard letters, Oracle HRMS creates a letter
request automatically, with the status of Pending. It also adds the
applicant’s or student’s name to the request.  You can view the pending
request and names through the Request Letter window.

Use the Request Letter window.

See: Requesting Letters, Customizing, Reporting and System
Administration in Oracle HRMS.

Merging the Data Files

You now need to merge the data in the Data File with your skeleton
letters.

See: Merging the Data Files, Customizing, Reporting and System
Administration in Oracle HRMS.

Option 2 – Oracle Reports

You can create a report for each letter using Oracle Reports, or another
tool of your choice.  The report contains the skeleton letter text and
Select statements specifying the data to be extracted from the Oracle
database.

Plan Standard Letter Requirements

You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Customizing, Reporting and
System Administration in Oracle HRMS.

Write and Register the Report

You now need to  write and register the report.

See: Writing and Registering the Report, Customizing, Reporting and
System Administration in Oracle HRMS.



Step 197

Step 198

Step 199

2 – 67Implementation Steps

Link the Report with a Letter

You need to link your report with a letter and one or more statuses.  In
Oracle Human Resources, you can link one or more applicant
assignment statuses with each recruitment letter.  A request for the
letter is then created automatically when an applicant is given an
associated assignment status.  In Oracle Training Administration, you
can link one or more enrollment statuses with each enrollment letter.  A
request for the letter is then created automatically when an enrollment
is given an associated status.

Use the Letter window.

See: Linking the Report With a Letter, Customizing, Reporting and System
Administration in Oracle HRMS.

Run the Report

When you, or other users, set the status for an applicant or enrollment
that triggers your standard letters, Oracle HRMS creates a letter
request automatically, with the status of Pending. It also adds the
applicant’s or student’s name to the request.  You can view the pending
request and names through the Request Letter window.

Then, when you change the letter request from Pending to Requested,
Oracle HRMS runs the report that you created.

Use the Request Letter window.

See: Running the Report, Customizing, Reporting and System
Administration in Oracle HRMS.

Customize Oracle HRMS

Define Elements and Distribution Sets

Select element classifications or individual elements to define a set.
There are three types of set:

• Customization set

• Run set

• Distribution set

Use the Element and Distribution Set window.

See: Defining an Element or Distribution Set, Customizing, Reporting and
System Administration in Oracle HRMS.



Step 200

Step 201

Step 202

Step 203

2 – 68 Implementing Oracle HRMS

Define Customized Version of a Window

Form Customization lets you restrict the types of information a user
can access in a specific window.

You can define your own window titles for any window customization
option. Remember that the user guides and the online help use the
default window names to identify windows.

You can call the customized window in two ways:

• Define a customized node in a task flow

• Add the customization as an argument to the menu function
which calls the window

Use the Form Customization window.

See: Defining Customized Version of a Window, Customizing, Reporting
and System Administration in Oracle HRMS.

Add Customized Window to a Menu or a Task flow

You must add your customized windows to a menu or task flow.

See: Adding Customized Windows to a Menu or a Task Flow, see
Customizing, Reporting and System Administration in Oracle HRMS.

Restrict Access to Query–Only Mode

You can restrict access to query–only mode for an individual form.

See: Adding Customized Windows to a Menu or a Task Flow, see
Customizing, Reporting and System Administration in Oracle HRMS.

Change the Default National Address Style

The different national address styles are held and configured in the
Personal Address Information descriptive flexfield using the
Descriptive Flexfield Segments window. You can change the national
address style for any country.

See: Changing Default National Address Styles, see Customizing,
Reporting and System Administration in Oracle HRMS.

Create Task Flows

A task flow defines the selection of windows you want to use when
performing a specific task.  These can be arranged in sequence or as
branched groups of Nodes, and you can include ’customized’ windows
as nodes in your task flow.



Step 204

Step 205

Step 206

Step 207

2 – 69Implementation Steps

Warning:  Do not use apostrophes (’) or percent (%) symbols
in task flow names or task flow node names.

You can create task flows using:

• Forms: page 2 – 69

• Workflow: page 2 – 69

Create Task Flows Using Forms

Define Task Flow Nodes

All of the taskflow windows provided with Oracle HRMS have nodes
predefined for them.  You can define new task flow nodes to provide
different versions of these windows.  For example, if you wanted to use
CustomForm on a specific node in a taskflow.

Use the Define Task Flow Nodes window.

See: Defining Task Flow Nodes, Customizing, Reporting and System
Administration in Oracle HRMS.

Define Task Flows

Arrange the nodes of your task flows in sequential or branched groups

See: Defining Task Flows, Customizing, Reporting and System
Administration in Oracle HRMS.

Create Task Flows Using Workflow

Create a Top Level Process

You must define a top level process for each task flow. The top level
process can contain sub processes, but not any other top level
processes.

You use the Process Diagrammers within Oracle Workflow to create
your task flows. You do this by adding and connecting the windows
you want to appear.

You must create a top level process, sub processes are optional.

See: Creating a Top Level Process, Customizing, Reporting and System
Administration in Oracle HRMS.

Create Sub Processes

You can group a logical set of task flow windows into a sub process,
which can then be used by several top level processes. This simplifies
process modelling. Each sub process can contain other sub processes.
There are two rules to note regarding sub processes:



Step 208

Step 209

Step 210

Step 211

2 – 70 Implementing Oracle HRMS

• A sub process cannot be defined as runnable.

• When you use a sub process in another process, you must
connect the sub process to the Top Node window.

See: Creating Sub Processes, Customizing, Reporting and System
Administration in Oracle HRMS.

Create Button Labels

You can enter the label you want to appear on the task flowed
windows, such as Photo (for the Picture window), and such.  Each task
flow window activity has an attribute called Button Label.  Use this
attribute to override the default button label for a window and to
define an access key (or keyboard shortcut).

See: Creating Button Labels, Customizing, Reporting and System
Administration in Oracle HRMS.

Position Button Display

You can position the display order of buttons on the window.  For
example, you might want the first button to display the Picture
window.

See: Positioning Button Display, Customizing, Reporting and System
Administration in Oracle HRMS.

Identify Windows or Blocks to Display

If you are creating task flows using the combined People and
Assignment window, complete this step, otherwise skip this step.

For most task flow windows, you must display the first block of the
window on entry.  However, when you use the Combined People and
Assignment window in a task flow, you must specify whether to
display the People window (or block) or the Assignment window on
entry.

See: Identifying Windows or Blocks to Display, Customizing, Reporting
and System Administration in Oracle HRMS.

Identify Customized Forms to Include in the Task Flow

If you have created a customized version of a window, you can use the
customized version of the window in the task flow. If not, you can skip
this step.

See: Identifying Customized Forms to Include in the Task Flow,
Customizing, Reporting and System Administration in Oracle HRMS.



Step 212

Step 213

Step 214

Step 215

2 – 71Implementation Steps

Verify and Save the Workflow

When you have completed the task flow definition within Oracle
Workflow, use the Workflow Verify function to check that your
workflow conforms to Oracle Workflow modeling rules. When you
have successfully verified the Workflow, save it to the HRMS database.

See: Verifying and Saving the Workflow, Customizing, Reporting and
System Administration in Oracle HRMS.

Generate a Task Flow From Oracle Workflow

After modelling a task flow in Oracle Workflow and saving it to the
database, you must generate task flow definitions.

Use the Define Task Flow window.

See: Generate a Task Flow From Oracle Workflow, Customizing,
Reporting and System Administration in Oracle HRMS.

Define Menus

Define Menu Functions

Menus are composed of submenus and functions and all Oracle
Applications are supplied with default functions and menus to give
you access to all of the available windows.

Warning:  You should not modify the default functions and
menus supplied with the system.  On upgrade, these defaults
will be overwritten.

If you want to add window customization options or task
flows you should define your own menus.

Use the Form Functions window.

See: Defining Menu Functions, Customizing, Reporting and System
Administration in Oracle HRMS.

Define Menus

The supplied menus give you access to all of the available submenus.
However, a number of seeded functions are not enabled on these
menus. You need to add them for the responsibilities that should have
access to these functions:

Use the Menus window.

See: Defining Menus, Customizing, Reporting and System Administration
in Oracle HRMS.



Step 216

�

Step 217

Step 218

2 – 72 Implementing Oracle HRMS

Disable the Multiple Windows Feature

In most Oracle Applications, you can open multiple windows from the
Navigator window without closing the window you already have
open. HRMS, however, does not support Multiform functionality.

Attention:  You must disable this feature on menu structures
that access Oracle HRMS windows.

See: Disabling Multiple Windows, Customizing, Reporting and System
Administration in Oracle HRMS.

Define User Security

Any system that holds human resource and payroll information must
be secured against unauthorized access.  To reach employee
information you need the correct security clearance.

The responsibility for defining and maintaining the internal security of
your system is usually given to your system administrator.

Defining the access limits of each user is a multi–stage process which
defines which records a user can see and which forms and windows
they can see and use.

There are two security models to enable you to set up the right type of
security for your enterprise, one for reporting.

• Standard HRMS: page 2 – 72

• Cross Business Group Responsibility: page 2 – 75

You can also create reporting users who have read only access to data.
This can be useful if you want to permit access to the data from another
system.

See: Reporting Users: page 2 – 77.

Define Standard HRMS Security

Set up standard HRMS security if your enterprise sets up a different
responsibility for each Business Group.

Ensure that the Enable Security Group option is Set

Ensure the Enable Security Groups profile option is set to No at site
and application level.

Use the System Profiles Value window

See: System Profile Values, Oracle Applications User’s Guide.

Define a Security Profile

Use a view–all responsibility to define security profiles.



Step 219

Step 220

Step 221

Step 222

2 – 73Implementation Steps

Use the Security Profile window.

See: Defining a Security Profile, Customizing, Reporting and System
Administration in Oracle HRMS.

Ensure Required Functions or Menus are Set Up

This is required for the responsibility. For menu functions calling
customized forms or task flows, you must enter a parameter in the
Parameter field of the Form Functions window.

See: Set up Menus, Customizing, Reporting and System Administration in
Oracle HRMS.

Ensure Required Request Group is Set Up

You can define the groups of standard reports and processes that a user
can run from the Submit a New Request window.  Every responsibility
can have access to one request group.

Use the Request Group window.

See: Set up Menus, Customizing, Reporting and System Administration in
Oracle HRMS.

See: Request Groups Window, Oracle Applications User’s Guide.

Define a Responsibility

You need to define a responsibility.

Use the Responsibilities window.

See: Responsibilities Window, Oracle Applications User’s Guide

Set the User Profile Option Values for Responsibility

Set the HR User Profile Options for the new responsibility. You must set
up the following:

• HR: User Type

Use this profile option to limit field access on windows shared
between Oracle Human Resources and Oracle Payroll.

• HR: Security Profile

Enter the security profile for the responsibility. This must be set
up at responsibility level, otherwise the default view–all security
profile is used. Using Standard HRMS security you can only set
up one security profile for a responsibility.

You can set also set up other User Profile Options.



Step 223

Step 224

Step 225

�

2 – 74 Implementing Oracle HRMS

Use the System Profile Values window.

See: System Profile Values Window, Oracle Applications User’s Guide

Associate a Responsibility With a Set of Help Files

Oracle Applications Help for HRMS defaults to Global help, but you
can associate a responsibility with a set of help files for a localization,
such as US or UK, or for a verticalization such as Oracle Federal
HRMS. You do this by setting the user profile Help_Localization_Code.

See:User Profiles, Customizing, Reporting and System Administration in
Oracle HRMS.

In addition to associating a responsibility with a localization or a
verticalization you can also specify that a particular responsibility
should have access to a customized subset of the localized or
verticalized help files.

See: Customizing Oracle Applications Help, Oracle Applications User’s
Guide.

Create Usernames and Passwords

You need to create usernames and passwords. Do not link
responsibilities and security groups (Business Groups) to users in this
window for HRMS, use the HRMS Assign Security Profile window. If
you do enter a responsibility and security group in this window, you
still need to use the Assign Security Profile window, to link your user
to a responsibility and security profile. If you do not use the Assign
Security Profile window, the default view–all security profile is used
and your user will be able to see all records in the Business Group.

Use the User window.

See: Users Window, Oracle Applications User’s Guide

Run Security List Maintenance Process (LISTGEN)

Oracle HRMS uses the Security List Maintenance process to generate
the lists of organizations, positions, payrolls, employees and applicants
that each security profile can access.

Attention:  When you initiate the Listgen process you must
enter the resubmission interval to run Listgen every night

You must do this so that the system will automatically update
the lists with the data changes you make every day.

If a power or computer failure should disrupt this process, you
can initiate it manually from the Submit a New Request
window.



Step 226

Step 227

Step 228

Step 229

Step 230

2 – 75Implementation Steps

When this process has completed successfully you can sign on to the
system using the new username and responsibility.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Define Cross Business Group Responsibility Security

Create cross Business Group security if your enterprise wants to enable
many Business Groups for one responsibility. This type of security is
most commonly used by Service Centers.

Set the Enable Security Groups Profile Option

Ensure the Enable Security Groups profile option is set to Yes at the
application level.

Use the System Profiles Value window

See: System Profile Values, Oracle Applications User’s Guide.

Run the Enable Multiple Security Group Process.

You must run the Enable Multiple Security Group process to set up
Oracle HRMS to use security groups.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Define a Security Profile

Use a view–all responsibility to define security profiles.

Use the Security Profile window.

See: Defining a Security Profile, Customizing, Reporting and System
Administration in Oracle HRMS.

Ensure Required Functions or Menus are Set Up

This is required for the responsibility. For menu functions calling
customized forms or task flows, you must enter a parameter in the
Parameter field of the Form Functions window.

See: Set up Menus, Customizing, Reporting and System Administration in
Oracle HRMS.

Ensure Required Request Group is Set Up

You can define the groups of standard reports and processes that a user
can run from the Submit a New Request window.  Every responsibility
can have access to one request group.



Step 231

Step 232

Step 233

Step 234

2 – 76 Implementing Oracle HRMS

Use the Request Group window.

See: Set up Menus, Customizing, Reporting and System Administration in
Oracle HRMS.

See: Request Group window, Oracle Applications User’s Guide.

Define a Responsibility

You need to define a responsibility.

Use the Responsibilities window.

See: Responsibilities Window, Oracle Applications User’s Guide.

Set User Profile Option Values for Responsibility

Set the HR User Profile Options for the new responsibility. You must set
up the HR: User Type option.

Note:  For Cross Business Group Responsibility security do not
set up or amend the HR: Security Profile option using the
System Profile Values window. To set up or change this profile
option use the Assign Security Profile window.

You can set also set up other User Profile Options.

Use the System Profile Values window.

See: System Profile Values Window, Oracle Applications User’s Guide

Associate a Responsibility With a Set of Help Files

Oracle Applications Help for HRMS defaults to Global help, but you
can associate a responsibility with a set of help files for a localization,
such as US or UK, or for a verticalization such as Oracle Federal
HRMS. You do this by setting the user profile Help_Localization_Code.

See:User Profiles, Customizing, Reporting and System Administration in
Oracle HRMS.

In addition to associating a responsibility with a localization or a
verticalization you can also specify that a particular responsibility
should have access to a customized subset of the localized or
verticalized help files.

See: Customizing Oracle Applications Help Oracle Applications User’s
Guide.

Create Usernames and Passwords

You need to create usernames and passwords. Do not link
responsibilities and security groups (Business Groups) to users in this



Step 235

Step 236

�

Step 237

2 – 77Implementation Steps

window for HRMS, use the HRMS Assign Security Profile window. If
you do enter a responsibility and security group in this window, you
still need to use the Assign Security Profile window, to link your user
to a responsibility and security profile. If you do not use the Assign
Security Profile window, the default view–all security profile is used
and your user will be able to see all records in the Business Group.

Use the User window.

See: Users Window, Oracle Applications User’s Guide

Assign Security Profiles

Associate a security profile with a user, responsibility and Business
Group.

Use the Assign Security Profile window.

See: Assigning Security Profiles, Customizing, Reporting and System
Administration in Oracle HRMS.

Run Security List Maintenance Process (LISTGEN)

Oracle HRMS uses the Security List Maintenance process to generate
the lists of organizations, positions, payrolls, employees and applicants
that each security profile can access.

Attention:  When you initiate the Listgen process you must
enter the resubmission interval to run Listgen every night.

You must do this so that the system will automatically update
the lists with the data changes you make every day.

If a power or computer failure should disrupt this process, you
can initiate it manually from the Submit a New Request
window.

When this process has completed successfully you can sign on to the
system using the new username and responsibility.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Reporting Users

Create a New Reporting User Oracle IDs

If you want reporting users to have the same restricted access to
records as your online users, ask your ORACLE Database
Administrator to create a new ORACLE User ID.

Reporting Users have read only access to data.  This can be useful if
you want to permit access to the data from another system.



Step 238

Step 239

Step 240

Step 241

2 – 78 Implementing Oracle HRMS

Note:  You need to inform Reporting Users of their Reporting
Username and Password.

Register the New Oracle ID

Register the new ORACLE ID with Application Object Library.

Use the Register window.

Define a Security Profile

Using a view–all responsibility, you can define security profiles in the
Security Profile window.

Use the Security Profile window.

See: Defining a Security Profile, Customizing, Reporting and System
Administration in Oracle HRMS.

Run Generate Secure User Process (SECGEN)

The Generate Secure User process will grant permissions to the new
Reporting User ORACLE ID. Until you run this process, reporting
users cannot access Oracle HRMS data using this security profile.

1. Select Generate Secure User.

2. In the Parameters window, enter the security profile you created
for the ORACLE ID.

3. Submit your request.

A concurrent request ID appears in the ID field.  You can check the
progress of your request on the View Concurrent Requests
window.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User’s Guide.

Define Audit Requirements

Estimate File Sizing and Management Needs

Whenever you choose to audit the actions of users of the system you
are deciding to keep the details of all the transactions which take place.
This will include before and after details as well as the details of who
made the change and when.

Turning Audit on has no noticeable effect on the performance of the
system and users will not be aware of any extra delay in committing
their transactions.



Step 242

Step 243

Step 244

Step 245

2 – 79Implementation Steps

Warning:  In normal use the auditing of data can soon
generate large volumes of audit data, which even when stored
in a compressed format will continue to grow in size until you
reach the limits imposed by your environment.  If you reach the
limits during active use then users will be unable to use the
system until you remedy the problem.

You are strongly advised to consider the scope of your audit activities
and how you will use the data you accumulate.  Also you should
consider how often you will report on the audit data, and when you
will archive and purge your audit data.

If you need more advice on this you should contact your Oracle
Support representative.

Define Audit Installations

If you have installed more than one Oracle Application you can audit
across multiple installations.  For Oracle HRMS you should enable
auditing for the HR user and the APPLSYS user.

See: Audit Installations Window, Oracle Applications User’s Guide

Define Audit Tables and Columns

With Oracle Applications you can define the level of detail you want to
audit. You define the individual fields of each record that you want to
audit.

• Query the Table you want to audit

• Enter the columns you want to audit for that table

Use the Audit Tables window.

See: Audit Tables Window, Oracle Applications User’s Guide

Define Audit Groups

You can define one or more Audit Groups for your installation.  You
might find this useful if you have more than one Oracle Application
installed.

Use the Audit Groups window.

See: Audit Tables Window, Oracle Applications User’s Guide

Activate AuditTrail Update Tables Process

To start the AuditTrail activity you must submit the Activate AuditTrail
Update Tables Process.

Use the Submit a New Request window.

See: Submitting a Request, Oracle Applications User’s Guide.



2 – 80 Implementing Oracle HRMS



P A R T

  II 

T

Technical Essays

hese essays provide technical information which may be required
by the implementation team for initial data loading, customizing Oracle
HRMS, or integrating it with other applications or processes. This part
contains essays on the following topics:

• APIs in Oracle HRMS

• Oracle HRMS Data Pump

• DateTrack

• FastFormula

• Extending Security in Oracle HRMS

• Batch Element Entry

• Validation of Flexfield Values

• Payroll Processes

• Payroll Archive Reporter (PAR) Process

• Balances in Oracle Payroll

• Payroll Advice Report (UK Only)





C H A P T E R

3

3 – 1APIs in Oracle HRMS

APIs in Oracle HRMS



3 – 2 Implementing Oracle HRMS

APIs in Oracle HRMS

In common usage an Application Programmatic Interface, or API, is
usually a logical grouping of all external process routines.  For the
Oracle HRMS products we have an API strategy that delivers a set of
PL/SQL packaged procedures and functions that together provide an
open interface to the database.  For convenience we have called each of
these procedures an API.

This document provides all the technical information you need to be
able to use these APIs and covers the following topics:

• API Overview: page 3 – 3

Describes how you can use the Oracle HRMS APIs and the
advantages of this approach.

• Understanding the Object Version Number (OVN): page 3 – 6

Explains the role of the object version number. The APIs use it to
check whether a row has been updated by another user, to
prevent overwriting their changes.

• API Parameters: page 3 – 8

Explains where to find information about the parameters used in
each API; parameter naming conventions; the importance of
naming parameters in the API call instead of relying on
parameter list order.; and how to use default values to avoid
specifying all parameters. Also explains the operation of certain
control parameters, such as those controlling DateTrack
operations.

• API Features: page 3 – 23

Explains that commits are handled by the calling program, not
the APIs, and the advantages of this approach. Also explains how
to avoid deadlocks when calling more than one API in the same
commit unit.

• Flexfields with APIs: page 3 – 24

Describes how the APIs validate key flexfield and descriptive
flexfield values.

• Multilingual Support: page 3 – 25

Explains how to use the Multilingual Support APIs.

• Alternative APIs: page 3 – 26

Explains that we provide legislation–specific APIs for some
business processes, such as Create Address.



3 – 3APIs in Oracle HRMS

• API Errors and Warnings: page 3 – 28

Explains how the APIs raise errors and warnings, and how the
calling code can handle them. A message table is provided for
handling errors in batch processes.

• Example PL/SQL Batch Program: page 3 – 30

Shows how to load a batch of person address data and how to
handle validation errors.

• WHO Columns and Oracle Alert: page 3 – 33

Explains how to populate the WHO columns (which record the
Applications User who caused the database row to be created or
updated) when you use the APIs.

• API User Hooks: page 3 – 34

A user hook is a location where you can add processing logic or
validation to an API. There are hooks in the APIs for adding
validation associated with a particular business process. There are
also hooks in table–level modules for validation on specific data
items. This section explains where user hooks are available and
how to implement them. It also explains their advantages over
database triggers.

• Using APIs as Building Blocks: page 3 – 55

Explains how you can write your own APIs that call one or more
of the supplied APIs.

• Handling Object Version Numbers in Oracle Forms: page 3 – 56

Explains how to implement additional Forms logic to manage the
object version number if you write your own Forms that call the
APIs.

API Overview

Fundamental to the design of all APIs in Oracle HRMS is that they
should provide an insulating layer between the user and the data–model
that would simplify all data–manipulation tasks and would protect
customer extensions on upgrade.  They are parameterized and
executable PL/SQL packages that provide full data validation and
manipulation.

The API layer enables us to capture and execute business rules within
the database – not just in the user interface layer.  This layer supports
the use of alternative interfaces to HRMS, such as web pages or



3 – 4 Implementing Oracle HRMS

spreadsheets, and guarantees all transactions comply with the business
rules that have been implemented in the system.  It also simplifies
integration of Oracle HRMS with other systems or processes and
provides supports for the initial loading

Alternative User Interfaces

The supported APIs  can be used as an alternative data entry point into
Oracle HRMS. Instead of manually typing in new information or
altering existing data using the online forms, you can implement other
programs to perform similar operations.

These other programs do not modify data directly in the database. They
call the APIs which:

1. Ensure it is appropriate to allow that particular business operation

2. Validate the data passed to the API

3. Insert/update/delete data in the HR schema

APIs are implemented on the server–side and can be used in many
ways. For example:

• Customers who want to upload data from an existing system.
Instead of employing temporary data entry clerks to type in data,
a program could be written to extract data from the existing
system and then transfer the data into Oracle HRMS by calling
the APIs.

• Customers who purchase a number of Applications from
different vendors to build a complete solution.  In an integrated
environment a change in one application may require changes to
data in another.  Instead of users having to remember to go into
each application repeating the change, the update to the HRMS
applications could be applied electronically. Modifications can be
made in batches or immediately on an individual basis.

• Customers who want to build a custom version of the standard
forms supplied with Oracle HRMS.  An alternative version of one
or more forms could be implemented using the APIs to manage
all database transactions.

• Customers who want to develop web–based interfaces to allow
occasional users to access and maintain HR information without
the cost of deploying or supporting standard Oracle HRMS
forms.  This is the basis of most Self–Service functions that allow
employees to query and update their own information, such as
change of name, address, marital status.  This also applies to
managers who want to query or maintain details for the
employees they manage.



3 – 5APIs in Oracle HRMS

• Managers who are more familiar with spreadsheet applications
may want to export and manipulate data without even being
connected to the database and then upload modifications to the
HRMS database when reconnected.

In all these examples, the programs would not need to modify data
directly in the Oracle HRMS database tables.  The specific programs
would call one or more APIs and these would ensure that invalid data is
not written to the Oracle HRMS database and that existing data is not
corrupted.

Advantages of Using APIs

Why use APIs instead of directly modifying data in the database tables?

Oracle does not support any direct manipulation of the data in any
application using PL/SQL.  APIs provide you with many advantages:

• APIs enable you to maintain HR and Payroll information without
using Oracle forms.

• APIs insulate you from the need to fully understand every feature
of the database structure.  They manage all the inter–table
relationships and updates.

• APIs are guaranteed to maintain the integrity of the database.
When necessary, database row level locks are used to ensure
consistency between different tables. Invalid data cannot be
entered into the system and existing data is protected from
incorrect alterations.

• APIs are guaranteed to apply all parts of a business process to the
database.  When an API is called, either the whole transaction is
successful and all the individual database changes will be
applied. Or the complete transaction fails and the database is left
in the starting valid state, as if the API had not been called

• APIs do not make these changes permanent by issuing a commit.
It is the responsibility of the calling program to do this. This
provides flexibility between individual record and batch
processing. It also ensures that the standard commit processing
carried out by client programs such as Forms is not affected.

• APIs help to protect any customer–specific logic from database
structure changes on upgrade.  While we cannot guarantee that
any API will not change to support improvements or extensions
of functionality, we are committed to minimize the number of
changes and to provide appropriate notification and
documentation if such changes occur.



3 – 6 Implementing Oracle HRMS

Note:  Writing programs to call APIs in Oracle HRMS requires
knowledge of PL/SQL version 2.  The rest of this essay explains
how to call the APIs and assumes the reader has knowledge of
programming in PL/SQL.

Understanding the Object Version Number  (OVN)

Nearly every row in every database table is assigned an
object_version_number. When a new row is inserted, the API usually
sets the object version number to 1. Whenever that row is updated in the
database, the object version number is incremented. The row keeps that
object version number until it is next updated or deleted. The number is
not decremented or reset to a previous value.

Note:  The object version number is not unique and does not
replace the primary key. There can be many rows in the same
table with the same version number. The object version number
indicates the version of a specific primary key row.

Whenever a database row is transferred (queried) to a client, the existing
object version number is always transferred with the other attributes. If
the object is modified by the client and saved back to the server, then the
current server object version number is compared with the value passed
from the client.

• If the two object version number values are the same, then the
row on the server is in the same state as when the attributes were
transferred to the client. As no other changes have occurred, the
current change request can continue and the object version
number is incremented.

• If the two values are different, then another user has already
changed and committed the row on the server. The current
change request is not allowed to continue because the
modifications the other user made may be overwritten and lost.
(Database locks are used to prevent another user from
overwriting uncommitted changes.)

The object version number provides similar validation comparison to
the online system. Forms interactively compare all the field values and
displays the ”Record has been modified by another user” error message
if any differences are found. Object version numbers allow transactions
to occur across longer periods of time without holding long term
database locks. For example, the client application may save the row
locally, disconnect from the server and reconnect at a later date to save
the change to the database. Additionally, you do not need to check all
the values on the client and the server.



3 – 7APIs in Oracle HRMS

Example

Consider creating a new address for a Person. The create_person_address
API automatically sets the object_version_number to 1 on the new
database row. Then, two separate users query this address at the same
time. User A and user B will both see the same address details with the
current object_version_number equal to 1.

User A updates the Town field to a different value and calls the
update_person_address API passing the current object_version_number
equal to 1.  As this object_version_number is the same as the value on
the database row the update is allowed and the object_version_number
is incremented to 2. The new object_version_number is returned to user
A and the row is committed in the database.

User B, who has details of the original row, notices that first line of the
address is incorrect. User B calls the update_person_address API,
passing the new first line and what he thinks is the current
object_version_number (1). The API compares this value with the
current value on the database row (2). As there is a difference the update
is not allowed to continue and an error is returned to user B.

To correct the problem, user B then re–queries this address, seeing the
new town and obtains the object_version_number 2. The first line of the
address is updated and the update_person_address API is called again.
As the object_version_number is the same as the value on the database
row the update is allowed to continue.

Therefore both updates have been applied without overwriting the first
change.

Understanding the API Control Parameter p_object_version_number

Most published APIs have the p_object_version_number control
parameter.

• For create style APIs, this parameter is defined as an OUT and
will always be initialized.

• For update style APIs, the parameter is defined as an IN OUT and
is mandatory.

The API ensures that the object version number(s) match the current
value(s) in the database. If the values do not match, the application error
HR_7155_OBJECT_LOCKED is generated. At the end of the API call, if
there are no errors the new object version number is passed out.

For delete style APIs when the object is not DateTracked, it is a
mandatory IN parameter. For delete style APIs when the object is
DateTracked, it is a mandatory IN OUT parameter.



3 – 8 Implementing Oracle HRMS

The API ensures that the object version number(s) match the current
value(s) in the database. When the values do not match, the application
error HR_7155_OBJECT_LOCKED is raised. When there are no errors
for DateTracked objects that still list, the new object version number is
passed out.

See:

Understanding the p_datetrack_update_mode control parameter: page
3 – 19

Understanding the p_datetrack_delete_mode control parameter: page
3 – 20

Handling Object Version Numbers in Oracle Forms: page 3 – 56

Detecting and Handling Object Conflicts

When the row being processed does not have the correct object version
number, the application error HR_7155_OBJECT_LOCKED is raised.
This error indicates that a particular row has been successfully changed
and committed since you selected the information. To ensure that the
other changes are not overwritten by mistake, re–select the information,
reapply your changes, and re–submit to the API.

API Parameters

This section describes parameter usage in Oracle HRMS.

Locating Parameter Information

You can find the parameters for each API in one of two ways, either
looking at the documentation in the package header creation scripts or
by using SQL*Plus.

Package Header Creation Scripts

For a description of each API, including a list of IN parameters and OUT
parameters, refer to the documentation in the package header creation
scripts.

For core product APIs, which are included in the first version of a main
Release, scripts are located in the product TOP admin/sql directories.
Refer to filenames such as *api.pkh. Localization–specific APIs follow a
*LLi.pkh naming standard, where LL is the two letter localization code.

For example, details for all the APIs in the hr_employee_api package
can be found in the $PER_TOP/admin/sql/peempapi.pkh file.



3 – 9APIs in Oracle HRMS

New APIs that were not included in the first version of a main Release,
or are localization–specific, may be provided in different operating
system directories.

Oracle only supports the APIs listed in the following documentation:

• The Publicly Callable Business Process APIs topic in the guide
Customizing, Reporting and System Administration in Oracle HRMS
and in the help system.

• The What’s New in Oracle HRMS topic in the help system. This
will list any new APIs introduced after the first version of a main
Release.

These lists are a reduced set of the server side code that matches all of
the following three criteria:

• The database package name ends with ”_API”.

• The package header creation script filename conforms to the
*api.pkh or *LLi.pkh naming standard, where LL is a two letter
localization code.

• The individual API documentation has an ”Access” section with a
value of ”Public”.

Many other packages include procedures and functions, which may be
called from the API code itself. Direct calls to any other routines are not
supported, unless explicitly specified, because API validation and logic
steps will be bypassed. This may corrupt the data held within the Oracle
HRMS application suite.

Using SQL*Plus to List Parameters

If you simply want a list of PL/SQL parameters, use SQL*Plus. At the
SQL*Plus prompt, use the describe command followed by the database
package name, period, and the name of the API. For example, to list the
parameters for the create_grade_rate_value API, enter the following at
the SQL> prompt:

describe hr_grade_api.create_grade_rate_value

Parameter Names

Each API has a number of parameters that may or may not be specified.
Most parameters map onto a database column in the HR schema. There
are some control parameters that affect the processing logic that are not
explicitly held on the database.

Every parameter name starts with p_. If the parameter maps onto a
database column, the remaining part of the name is usually the same as



3 – 10 Implementing Oracle HRMS

the column name. Some names may be truncated due to the 30 character
length limit. The parameter names have been made slightly different to
the actual column name, using a p_ prefix, to avoid coding conflicts
when a parameter and the corresponding database column name are
both referenced in the same section of code.

When a naming conflict occurs between parameters, a three–letter short
code (identifying the database entity) is included in the parameter name.
Sometimes there is no physical name conflict, but the three–letter short
code is used to avoid any confusion over the entity with which the
parameter is associated.

For example, create_employee contains examples of both these cases.
Part of the logic to create a new employee is to insert a person record
and insert an assignment record. Both these entities have an
object_version_number. The APIs returns both object_version_number
values using two OUT parameters. Both parameters cannot be called
p_object_version_number, so p_per_object_version_number holds the
value for the person record and p_asg_object_version_number holds the
value for the assignment record.

Both these entities can have text comments associated with them. When
any comments are passed into the create_employee API, they are only
noted against the person record. The assignment record comments are
left blank.

To avoid any confusion over where the comments have allocated in the
database, the API returns the id using the p_per_comment_id
parameter.

Parameter Named Notation

When calling the APIs, it is strongly recommended that you use
”Named Notation,” instead of ”Positional Notation.” Thus, you should
list each parameter name in the call instead of relying on the parameter
list order.

Using ”Named Notation” helps protect your code from parameter
interface changes. With future releases, it eases code maintenance when
parameters are added or removed from the API.

For example, consider the following procedure declaration:

  procedure change_age

    (p_name    in     varchar2

    ,p_age     in     number

    ;

Calling by ’Named Notation’:



�

3 – 11APIs in Oracle HRMS

  begin

    change_age

      (p_name => ’Bloggs’       

      ,p_age  => 21

      );

  end;

Calling by ’Positional Notation’:
  begin

    change_age

      (’Bloggs’

      ,21

      );

  end;

Using Default Parameter Values

When calling an API it may not be necessary to specify every parameter.
Where a PL/SQL default value has been specified it is optional to
specify a value.

If you want to call the APIs from your own Forms, then all parameters
in the API call must be specified. You cannot make use of the PL/SQL
declared default values because the way Forms calls server–side
PL/SQL does not support this.

Default Parameters with Create Style APIs

For APIs that create new data in the HR schema, optional parameters
are usually identified with a default value of null. After validation has
been completed, the corresponding database columns will be set to null.
When calling the API, you must specify all the parameters that do not
have a default value defined.

However, some APIs contain logic to derive some attribute values.
When you pass in the PL/SQL default value the API determines a
specific value to set on the database column. You can still override this
API logic by passing in your own value instead of passing in a null
value or not specifying the parameter in the call.

Take care with IN OUT parameters, because you must always include
them in the calling parameter list. As the API can pass values out, you
must use a variable to pass values into this type of parameter.

These variables must be set with your values before calling the API. If
you do not want to specify a value for an IN OUT parameter, use a
variable to pass a null value to the parameter.

Attention:  Check the comments in each API package header
creation script for details of when each IN OUT parameter can
and cannot be set with a null value.



3 – 12 Implementing Oracle HRMS

The create_employee API contains examples of all these different types
of parameter.

  procedure create_employee

    (

    ...

    ,p_sex                           in     varchar2

    ,p_person_type_id                in     number

                                        default null

    ...

    ,p_email_address                 in     varchar2

                                        default null

    ,p_employee_number               in out varchar2

    ...

    ,p_person_id                        out number

    ,p_assignment_id                    out number

    ,p_per_object_version_number        out number

    ,p_asg_object_version_number        out number

    ,p_per_effective_start_date         out date

    ,p_per_effective_end_date           out date

    ,p_full_name                        out varchar2

    ,p_per_comment_id                   out number

    ,p_assignment_sequence              out number

    ,p_assignment_number                out varchar2

    ,p_name_combination_warning         out boolean

    ,p_assign_payroll_warning           out boolean

    ,p_orig_hire_warning                out boolean

    );

Because no PL/SQL default value has been defined, the p_sex
parameter must be set. The p_person_type_id parameter can be passed
in with the ID of an Employee person type. If you do not provide a
value, or explicitly pass in a null value, the API sets the database column
to the ID of the active default employee system person type for the
business group. The comments in each API package header creation
script provide more information.

The p_email_address parameter does not have to be passed in. If you do
not specify this parameter in your call, a null value is placed on the
corresponding database column. (This is similar to the user of a form
leaving a displayed field blank.)

The p_employee_number parameter must be specified in each call.
When you do not want to set the employee number, the variable used in
the calling logic must be set to null. (For the p_employee_number
parameter, you must specify a value for the business group when the
method of employee number generation is set to manual. Values are
only passed out when the generation method is automatic or national
identifier.)



3 – 13APIs in Oracle HRMS

Example 1

An example call to the create_employee API where the business group
method of employee number generation is manual, the default
employee person type is required and the e–mail attributes do not need
to be set.

  declare

    l_emp_num                    varchar2(30);

    l_person_id                  number;

    l_assignment_id              number;

    l_per_object_version_number  number;

    l_asg_object_version_number  number;

    l_per_effective_start_date   date;

    l_per_effective_end_date     date;

    l_full_name                  varchar2(240);

    l_per_comment_id             number;

    l_assignment_sequence        number;

    l_assignment_number          varchar2(30);

    l_name_combination_warning   boolean;

    l_assign_payroll_warning     boolean;

    l_orig_hire_warning          boolean;

  begin

    ––

    –– Set variable with the employee number value,

    –– which is going to be passed into the API.

    ––

    l_emp_num := 4532;

    ––

    –– Put the new employee details in the database

    –– by calling the create_employee API

    ––

    hr_employee.create_employee

      (p_hire_date                 =>

                   to_date(’06–06–1996’,’DD–MM–YYYY’)

      ,p_business_group_id         => 23

      ,p_last_name                 => ’Bloggs’

      ,p_sex                       => ’M’

      ,p_employee_number           => l_emp_num

      ,p_person_id                 => l_person_id

      ,p_assignment_id             => l_assignment_id

      ,p_per_object_version_number => l_per_object_version_number

      ,p_asg_object_version_number => l_asg_object_version_number

      ,p_per_effective_start_date  => l_per_effective_start_date

      ,p_per_effective_end_date    => l_per_effective_end_date

      ,p_full_name                 => l_full_name

      ,p_per_comment_id            => l_per_comment_id

      ,p_assignment_sequence       => l_assignment_sequence

      ,p_assignment_number         => l_assignment_number 

      ,p_name_combination_warning  => l_name_combination_warning



3 – 14 Implementing Oracle HRMS

      ,p_assign_payroll_warning    => l_assign_payroll_warning

      ,p_orig_hire_warning        => l_orig_hire_warning

      );

  end;

Note:  The database column for employee_number is defined as
varchar2 to allow for when the business group method of
employee_number generation is set to National Identifier.

Example 2

An example call to the create_employee API where the business group
method of employee number generation is Automatic, a non–default
employee person type must be used and the email attribute details must
be held.

  declare

    l_emp_num                    varchar2(30);

    l_person_id                  number;

    l_assignment_id              number;

    l_per_object_version_number  number;

    l_asg_object_version_number  number;

    l_per_effective_start_date   date;

    l_per_effective_end_date     date;

    l_full_name                  varchar2(240);

    l_per_comment_id             number;

    l_assignment_sequence        number;

    l_assignment_number          varchar2(30);

    l_name_combination_warning   boolean;

    l_assign_payroll_warning     boolean;

    l_orig_hire_warning          boolean;

  begin

    ––

    –– Clear the employee number variable

    ––

    l_emp_num := null;

    ––

    –– Put the new employee details in the database

    –– by calling the create_employee API

    ––

    hr_employee.create_employee

      (p_hire_date                 =>

                     to_date(’06–06–1996’,’DD–MM–YYYY’)

      ,p_business_group_id         => 23

      ,p_last_name                 => ’Bloggs’

      ,p_sex                       => ’M’

      ,p_person_type_id            => 56

      ,p_email_address             => ’bloggsf@uk.uiq.com’

      ,p_employee_number           => l_emp_num

      ,p_person_id                 => l_person_id

      ,p_assignment_id             => l_assignment_id



3 – 15APIs in Oracle HRMS

      ,p_per_object_version_number => l_per_object_version_number

      ,p_asg_object_version_number => l_asg_object_version_number

      ,p_per_effective_start_date  => l_per_effective_start_date

      ,p_per_effective_end_date    => l_per_effective_end_date

      ,p_full_name                 => l_full_name

      ,p_per_comment_id            => l_per_comment_id

      ,p_assignment_sequence       => l_assignment_sequence

      ,p_assignment_number         => l_assignment_number 

      ,p_name_combination_warning  => l_name_combination_warning

      ,p_assign_payroll_warning    => l_assign_payroll_warning

      ,p_orig_hire_warning         => l_orig_hire_warning

      );

      ––

      –– The l_emp_num variable is now set with the

      –– employee_number allocated by the HR system.

      ––

  end;

Default Parameters with Update Style APIs

With update style APIs the primary key and object version number
parameters are usually mandatory. In most cases it is not necessary
provide all the parameter values. You only need to specify any control
parameters and the attributes you are actually altering. It is not
necessary (but it is possible) to pass in the existing values of attributes
that are not being modified. Optional parameters have one of the
following PL/SQL default values, depending on the datatype:

  Data Type     Default value

  varchar2      hr_api.g_varchar2

  number        hr_api.g_number

  date          hr_api.g_date

These hr_api.g_ default values are constant definitions, set to special
values. They are not hard coded text strings. If you need to specify these
values, use the constant name, not the value. The actual values are
subject to change.

Care must be taken with IN OUT parameters, because they must always
be included in the calling parameter list. As the API is capable of
passing values out, you must use a variable to pass values into this type
of parameter. These variables must be set with your values before
calling the API. If you do not want to explicitly modify that attribute
you should set the variable to the hr_api.g_... value for that datatype.
The update_emp_asg_criteria API contains examples of these different
types of parameters.



3 – 16 Implementing Oracle HRMS

procedure update_emp_asg_criteria

(...

,p_assignment_id                in     number

,p_object_version_number        in out number

...

,p_position_id                  in     number

                            default hr_api.g_number

...

,p_special_ceiling_step_id      in out number

...

,p_employment_category          in     varchar2

                            default hr_api.g_varchar2

,p_effective_start_date            out date

,p_effective_end_date              out date

,p_people_group_id                 out number

,p_group_name                      out varchar2

,p_org_now_no_manager_warning      out boolean

,p_other_manager_warning           out boolean

,p_spp_delete_warning              out boolean

,p_entries_changed_warning         out varchar2

,p_tax_district_changed_warning    out boolean

);

Note:  Only the parameters that are of particular interest have
been shown. Ellipses (...) indicate where irrelevant parameters
to this example have been omitted.

The p_assignment_id and p_object_version_number parameters are
mandatory and must be specified in every call. The p_position_id
parameter is optional. If you do not want to alter the existing value, then
exclude the parameter from your calling logic or pass in the
hr_api.g_varchar2 constant or pass in the existing value.

The p_special_ceiling_step_id parameter is IN OUT. With certain cases
the API sets this attribute to null on the database and the latest value is
passed out of the API. If you do not want to alter this attribute, set the
calling logic variable to hr_api.g_number.

Example

The following is an example call to the update_emp_asg_criteria API,
with which you do not want to alter the position_id and
special_ceiling_step_id attributes, but you do want to modify the
employment_category value.

  declare

    l_assignment_id                 number;

    l_object_version_number         number;

    l_special_ceiling_step_id       number;

    ...

  begin



3 – 17APIs in Oracle HRMS

    l_assignment_id           := 23121;

    l_object_version_number   := 4;

    l_special_ceiling_step_id := hr_api.g_number;

    hr_assignment_api.update_emp_asg_criteria

      (...

      ,p_assignment_id                => l_assignment_id

      ,p_object_version_number        => l_object_version_number

      ...

      ,p_special_ceiling_step_id      => l_special_ceiling_step_id

      ...

      ,p_employment_category          => ’FT’

      ...

      );

    ––

    –– As p_special_ceiling_step_id is an IN OUT parameter the

    –– l_special_ceiling_step_id variable is now set to the same

    –– value as on the database. i.e. The existing value before

    –– the API was called or the value which was derived by the

    –– API. The variable will not be set to hr_api.g_number.

    ––

  end;

Default Parameters with Delete Style APIs

Most delete style APIs do not have default values for any attribute
parameters. In rare cases parameters with default values work in a
similar way to those of update style APIs.

Understanding the p_validate Control Parameter

Every published API includes the p_validate control parameter. When
this parameter is set to FALSE (the default value), the procedure
executes all validation for that business function. If the operation is
valid, the database rows/values are inserted or updated or deleted. Any
non warning OUT parameters, warning OUT parameters and IN OUT
parameters are all set with specific values.

When the p_validate parameter is set to TRUE, the API only checks that
the operation is valid. It does so by issuing a savepoint at the start of the
procedure and rolling back to that savepoint at the end. You do not have
access to these internal savepoints. If the procedure is successful,
without raising any validation errors, then non–warning OUT
parameters are set to null, warning OUT parameters are set to a specific
value, and IN OUT parameters are reset to their IN values.

In some cases you may want to write your PL/SQL routines using the
public API procedures as building blocks. This enables you to write
routines specific to your business needs. For example, say that you have
a business requirement to apply a DateTracked update to a row and



3 – 18 Implementing Oracle HRMS

then apply a DateTrack delete to the same row in the future. You could
write an ”update_and_future_del” procedure that calls two of the
standard APIs.

When calling each standard API, p_validate must be set to false. If true
is used the update procedure call is rolled back. So when the delete
procedure is called, it is working on the non–updated version of the row.
However when p_validate is set to false, the update is not rolled back.
Thus, the delete call operates as if the user really wanted to apply the
whole transaction.

If you want to be able to check that the update and delete operation is
valid, you must issue your own savepoint and rollback commands. As
the APIs do not issue any commits, there is no danger of part of the
work being left in the database. It is the responsibility of the calling code
to issue commits. The following simulates some of the p_validate true
behavior.

Example
     savepoint s1;

     update_api_prc(.........);

     delete_api_prc(..........);

     rollback to s1;

You should not use our API procedure names for the savepoint names.
An unexpected result may occur if you do not use different names.

Understanding the p_effective_date Control Parameter

Most APIs that insert/update/delete data for at least one DateTrack
entity have a p_effective_date control parameter. This mandatory
parameter defines the date you want an operation to be applied from.
The PL/SQL datatype of this parameter is date.

As the smallest unit of time in DateTrack is one day, the time portion of
the p_effective_date parameter is not used. This means that the change
always comes into affect just after midnight.

Some APIs have a more specific date for processing. For example, the
create_employee API does not have a p_effective_date parameter. The
p_hire_date parameter is used as the first day the person details come
into effect.

Example 1

This example creates a new grade rate that starts from today.

   hr_grade_api.create_grade_rate_value

   (...

   ,p_effective_date => trunc(sysdate)

    ...);



3 – 19APIs in Oracle HRMS

Example 2

This example creates a new employee who joins the company at the start
of March 1997.

  hr_employee_api.create_employee

  (...

  ,p_hire_date => to_date(’01–03–1997’,’DD–MM–YYYY’)

  ...);

Some APIs that do not modify data in DateTrack entities still have a
p_effective_date parameter. The date value is not used to determine
when the changes take effect. It is used to validate Lookup values. Each
Lookups value can be specified with a valid date range. The start date
indicates when the value can first be used. The end date shows the last
date the value can be used on new records and set when updating
records. Existing records, which are not changed, can continue to use the
Lookup after the end date.

Understanding the p_datetrack_update_mode Control Parameter

Most APIs that update data for at least one DateTrack entity have a
p_datetrack_update_mode control parameter. It enables you to define
the type of DateTrack change to be made. This mandatory parameter
must be set to one of the following values:
Value Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UPDATE Keep history of existing information

CORRECTION Correct existing information

UPDATE_OVERRIDE Replace all scheduled changes

UPDATE_CHANGE_INSERT Insert this change before next 

scheduled change

It may not be possible to use every mode in every case. For example, if
there are no existing future changes for the record you are changing, the
DateTrack modes UPDATE_OVERRIDE and
UPDATE_CHANGE_INSERT cannot be used.

Some APIs that update DateTrack entities do not have a
p_datetrack_update_mode parameter. These APIs automatically
perform the DateTrack operations for that business operation.

Each dated instance for the same primary key has a different
object_version_number. When calling the API the
p_object_version_number parameter should be set to the value that
applies as of the date for the operation (that is, p_effective_date).

Example

Assume the following grade rate values already exist in the
pay_grade_rules_f table:



3 – 20 Implementing Oracle HRMS

Effective Effective_ Version_

Grade_rule_id Start_Date End_Date Number Value

12122 01–JAN–1996 20–FEB–1996 2 45

12122 21–FEB–1996 20–JUN–1998 3 50

Also assume that the grade rate value was updated to the wrong value
on 21–FEB–1996. The update from 45 to 50 should have been 45 to 55
and you want to correct the error.
  declare

    l_object_version_number number;

    l_effective_start_date  date;

    l_effective_end_date    date;

  begin

    l_object_version_number := 3;

    hr_grade_api.update_grade_rate_value

      (p_effective_date      => to_date(’21–02–1996’,’DD–MM–YYYY’)

      ,p_datetrack_update_mode => ’CORRECTION’

      ,p_grade_rule_id         => 12122

      ,p_object_version_number => l_object_version_number

      ,p_value                 => 55

      ,p_effective_start_date  => l_effective_start_date

      ,p_effective_end_date    => l_effective_end_date

      );

    –– l_object_version_number will now be set to the value

    –– as on database row, as of 21st February 1996.

  end;

Understanding the p_datetrack_delete_mode Control Parameter
Most APIs that delete data for at least one DateTrack entity have a
p_datetrack_delete_mode control parameter. It enables you to define the
type of DateTrack deletion to be made. This mandatory parameter must
be set to one of the following values:
p_datetrack_delete_mode Value  Description

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  ZAP                          Completely remove from the database

  DELETE                       Set end date to effective date

  FUTURE_CHANGE                Remove all scheduled changes

  DELETE_NEXT_CHANGE           Remove next change

It may not be possible to use every mode in every case. For example, if
there are no existing future changes for the record you are changing, the
DateTrack modes FUTURE_CHANGE and DELETE_NEXT_CHANGE
cannot be used. Some APIs that update DateTrack entities do not have a
p_datetrack_delete_mode parameter. These APIs automatically perform
the DateTrack operations for that business operation. Refer to the
comments in each API package header creation script for further details.

Each dated instance for the same primary key has a different
object_version_number. When calling the API the



3 – 21APIs in Oracle HRMS

p_object_version_number parameter should be set to the value that
applies as of the date for the operation (that is, p_effective_date).

Example

Assume that the following grade rate values already exist in the
pay_grade_rules_f table:
                                           Object_

                 Effective_   Effective_   Version_

  Grade_rule_id  Start_Date   End_Date     Number     Value

  –––––––––––––  –––––––––––  –––––––––––  ––––––––   –––––

  5482           15–JAN–1996  23–MAR–1996  4          10

  5482           24–MAR–1996  12–AUG–1996  8          20

Also assume that you want to remove all dated instances of this grade
rate value from the database.
  declare

    l_object_version_number number;

    l_effective_start_date  date;

    l_effective_end_date    date;

  begin

 

    l_object_version_number := 4;

 

    hr_grade_api.update_grade_rate_value

      (p_effective_date     => to_date(’02–02–1996’, ’DD–MM–YYYY’)

      ,p_datetrack_delete_mode => ’ZAP’

      ,p_grade_rule_id         => 5482

      ,p_object_version_number => l_object_version_number

      ,p_effective_start_date  => l_effective_start_date

      ,p_effective_end_date    => l_effective_end_date

      );

 

    –– As ZAP mode was used l_object_version_number now is null.

  end;

Understanding the p_effective_start_date and p_effective_end_date Parameters

Most APIs that insert/delete/update data for at least one DateTrack
entity have the p_effective_start_date and p_effective_end_date control
parameters.

Both of these parameters are defined as OUT.

The values returned correspond to the effective_start_date and
effective_end_date database column values for the row that is effective
as of p_effective_date.

These parameters are set to null when all the DateTracked instances of a
particular row are deleted from the database (that is, when a delete style
API is called with a DateTrack mode of ZAP).



3 – 22 Implementing Oracle HRMS

Example

Assume that the following grade rate values already exist in the
pay_grade_rules_f table:

                  Effective_          Effective_

  Grade_rule_id   Start_Date          End_Date

  ––––––––––––––––––––––––––––––––––––––––––––––––

  17392           01–FEB–1996         24–MAY–1996

  17392           25–MAY–1996         01–SEP–1997

The update_grade_rate_value API is called to perform a DateTrack
mode of UPDATE_CHANGE_INSERT with an effective date of
10–MAR–1996. The API then modifies the database rows to the
following:

                  Effective_           Effective_

  Grade_rule_id   Start_Date           End_Date

  ––––––––––––––––––––––––––––––––––––––––––––––––

  17392           01–FEB–1996          09–MAR–1996

  17392           10–MAR–1996          24–MAY–1996

  17392           25–MAY–1996          01–SEP–1997

The API p_effective_start_date parameter is set to 10–MAR–1996 and
p_effective_end_date to 24–MAY–1996.

Understanding the p_language_code Parameter

The p_language_code parameter is only available on create and update
style Multilingual Support APIs. It enables you to specify which
language the translation values apply to. The parameter can be set to the
base or any installed language. The parameter default value of
hr_api.userenv_lang is equivalent to:

select userenv(’LANG’)

    from dual;

If this parameter is set to null or hr_api.g_varchar2, the
hr_api.userenv_lang default is still used.

See: Multilingual Support: page 3 – 25



3 – 23APIs in Oracle HRMS

API Features

Commit Statements
None of the HRMS APIs issue a commit. It is the responsibility of the
calling code to issue commit statements. This ensures that parts of a
transaction are not left in the database. If an error occurs, the whole
transaction is rolled back. Therefore API work is either all completed or
none of the work is done. You can use the HRMS APIs as ”building
blocks” to construct your own business functions. This gives you the
flexibility to issue commits where you decide.

It also avoids conflicts with different client tools. For example, Oracle
Forms only issues a commit if all the user’s changes are not in error. This
could be one or more record changes, which are probably separate API
calls.

Avoiding Deadlocks
If calling more than one API in the same commit unit, take care to
ensure deadlock situations do not happen. Deadlocks should be avoided
by accessing the tables in the order they are listed in the table locking
ladder. For example, you should update or delete rows in the table with
the lowest Processing Order first.

If more than one row in the same table is being touched, then lock the
rows in ascending primary key order. For example, if you are updating
all the assignments for one person, then change the row with the lowest
assignment_id first.

If it is impossible or impractical for operations to be done in locking
ladder order, explicit locking logic is required. When a table is brought
forward in the processing order, any table rows that have been jumped
and will be touched later must be explicitly locked in advance. Where a
table is jumped and none of the rows are going to be updated or deleted,
no locks should be taken on that table.

Example

Assume that the locking ladder order is as follows:
      Table   Processing Order

        A          10

        B          20

        C          30

        D          40

Also assume that your logic has to update rows in the following order:
        A  1st

        D  2nd

        C  3rd



3 – 24 Implementing Oracle HRMS

Then your logic should:

1. Update rows in table A.

2. Lock rows in table C. (Only need to lock the rows that are going to
be updated in step 4.)

3. Update rows in table D.

4. Update rows in table C.

Table B is not locked because it is not accessed after D. Your code does
not have to explicitly lock rows in tables A or D, because locking is done
as one of the first steps in the API.

In summary, you can choose the sequence of updates or deletes, but
table rows must be locked in the order shown by the table locking
ladder.

Flexfields with APIs

APIs validate the Descriptive Flexfield and Key Flexfield column values
using the Flexfield definitions created using the Oracle Application
Object Library Forms.

As the API Flexfield validation is performed within the database, the
value set definitions should not refer directly to Forms objects such as
fields. Server–side validation cannot resolve these references so any
checks will fail. Care should also be taken when referencing profiles, as
these values may be unavailable in the server–side.

Even where the Forms do not currently call the APIs to perform their
commit time processing, it is strongly recommended that you do not
directly refer to any Form fields in your value set definitions. Otherwise
problems may occur with future upgrades. If you want to perform other
field validation or perform Flexfield validation that cannot be
implemented in values sets,use API User Hooks.

See: API User Hooks: page 3 – 34

For further information about, and solutions to, some problems that you
may encounter with flexfield validation, see: Validation of Flexfield
Values: page 9 – 2.

The APIs do not enforce Flexfield value security. This can only be done
when using the Forms user interface.

For each Descriptive Flexfield, Oracle Applications has defined a
structure column. In most cases the structure column name ends with
the letters, or is called, ”ATTRIBUTE_CATEGORY”. The



3 – 25APIs in Oracle HRMS

implementation team can associate this structure column with a
reference field. The structure column value can affect which Flexfield
structure is for validation. When reference fields are defined and you
want to call the APIs, it is your responsibility to populate and update
the ATTRIBUTE_CATEGORY value with the reference field value.

For Descriptive Flexfields, the APIs usually perform the Flexfield
validation after other column validation for the current table. For Key
Flexfield segments, values are held on a separate table, known as the
combination table. As rows are maintained in the combination table
ahead of the main product table, the APIs execute the Flexfield
validation before main product table column validation.

In Release 11.0 and before, it was necessary to edit copies of the skeleton
Flexfield validation package body creation scripts before the APIs could
perform Flexfield validation. The technology constraints that made this
technique necessary have now been lifted. These skeleton files *fli.pkb
are no longer shipped with the product.

Multilingual Support

Several entities in the HRMS schema provide Multilingual Support
(MLS), where translated values are held in _TL tables. For general
details of the MLS concept refer to the following documentation:

See: Oracle Applications Concepts Manual for Principles of MLS,
Oracle Applications Install Guide for Configuration of MLS

As the non–translated and translated values are identified by the same
surrogate key ID column and value, the Multilingual Support APIs
manage both groups of values in the same PL/SQL procedure call.

Create and update style APIs have a p_language_code parameter which
you use to indicate which language the translated values apply to. The
API maintains the required rows in the _TL table, setting the
source_lang and language columns appropriately. These columns, and
the p_language_code parameter, hold a language_code value from the
FND_LANGUAGES table.

The p_language_code parameter has a default value of
hr_api.userenv_lang, which is equivalent to:

  select userenv(’LANG’)

    from dual;

Setting the p_language_code parameter enables you to maintain
translated data for different languages within the same database session.
If this parameter is set to null or hr_api.g_varchar2 then the
hr_api.userenv_lang default is still used.



3 – 26 Implementing Oracle HRMS

When a create style Multilingual Support API is called, a row is inserted
into the _TL table for each base and installed language. For each row, the
source_lang column equals the p_language_code parameter and the
translated column values are the same. When the other translated values
are available they can be set by calling the update API, setting the
p_language_code parameter to the appropriate language code.

Each call to an update style Multilingual Support API can amend the
non–translated values and one set of translated values. The API updates
the non–translated values in the main table and translated data values
on corresponding row, or rows, in the _TL table. The translated columns
are updated on rows where the p_language_code parameter matches the
language or source_lang columns. Including a matching against the
source_lang column ensures translations that have not been explicitly
set remain synchronised with the created language. When a translation
is being set for the first time the source_lang column is also updated
with the p_language_code value. If you want to amend the values for
another translation, call the update API again setting the
p_language_code and translated parameters appropriately.

For delete style Multilingual Support APIs there is no p_language_code
parameter. When the non–translated data is removed, all corresponding
translation rows in the _TL table are also removed. So the API does not
need to perform the process for a particular language.

When a Multilingual Support API is called more than one row may be
processed in the _TL table. To avoid identifying every row that will be
modified, _TL tables do not have an object_version_number column.
The main table, holding the non–translated values, does have an
object_version_number column. When you use a Multilingual Support
API, set the p_object_version_number parameter to the value from the
main table, even when only updating translated values.

Alternative APIs

In some situations it is possible to perform the same business process
using more than one API. This is especially the case where entities hold
extra details for different legislations. Usually there is a main API, which
can be used for any legislation, and also specific versions for some
legislations. Whichever API is called, the same validation and changes
are made to the database.

For example, there is an entity to hold addresses for people. For GB style
addresses some of the general address attributes are used to hold
specific details.



3 – 27APIs in Oracle HRMS

  PER_ADDRESSES        create_person          create_gb_person

  Table                _address API            _address API

  Column Name          Parameter Name         Parameter Name

  ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  style                p_style                N/A

  address_line1        p_address_line1        p_address_line1

  address_line2        p_address_line2        p_address_line2

  address_line3        p_address_line3        p_address_line3

  town_or_city         p_town_or_city         p_town

  region_1             p_region_1             p_county

  region_2             p_region_2             N/A for this style

  region_3             p_region_3             N/A for this style

  postal_code          p_postal_code          p_postcode

  country              p_country              p_country

  telephone_number_1   p_telephone_number_1   p_telephone_number

  telephone_number_2   p_telephone_number_2   N/A for this style

  telephone_number_3   p_telephone_number_3   N/A for this style

Note:  Not all database columns names or API parameters have
been listed.

The p_style parameter does not exist on the create_gb_person_address
API because this API only creates addresses for one style.

Not all of the address attributes are used in every style. For example, the
region_2 attribute cannot be set for a GB style address. Hence, there is
no corresponding parameter on the create_gb_person_address API.
When the create_person_address API is called with p_style set to ”GB”
then p_region_2 must be null.

Both interfaces are provided to give the greatest flexibility. If your
company only operates in one location, you may find it more convenient
to call the address style interface that corresponds to your country. If
your company operates in various locations and you want to store the
address details using the local styles, you may find it more convenient to
call the general API and specify the required style on creation.

Refer to comments in each API package header creation script for
further details of where other alternative interfaces are provided.

See also: User Hooks and Alternative Interface APIs: page 3 – 53



3 – 28 Implementing Oracle HRMS

API Errors and Warnings

Failure Errors

When calling APIs, validation or processing errors may occur. These
errors are raised like any other PL/SQL error in Oracle applications.

When an error is raised, all the work done by that single API call is
rolled back. As the APIs do not issue any commits, there is no danger
that part of the work will be left in the database. It is the responsibility
of the calling code to issue commits.

Warning Values

Warnings are returned using OUT parameters. The names of these
parameters ends with _WARNING. In most cases the datatype is
boolean. When a warning value is raised, the parameter is set to true.
Other values are returned when the datatype is not boolean. Refer to the
comments in each API package header creation script for further details.

The API assumes that although a warning situation has been flagged, it
is acceptable to continue. If there was risk of a serious data problem, a
PL/SQL error would have been raised and processing for the current
API call would have stopped.

However, in your particular organization you may need to make a note
about the warning or perform further checks. If you do not want the
change to be kept in the database while this is done, you will need to
explicitly roll back the work the API performed.

Example

When the create_employee API is called, the
p_name_combination_warning parameter is set to true when person
details already in the database include the same combination of
last_name, first_name and date_of_birth.



3 – 29APIs in Oracle HRMS

  declare

    l_name_combination_warning  boolean;

    l_assign_payroll_warning    boolean;

  begin

    savepoint on_name_warning;

    hr_employee.create_employee

      (p_validate           => false

      ...

      ,p_last_name          => ’Bloggs’

      ,p_first_name         => ’Fred’

      ,p_date_of_birth      => to_date(’06–06–1964’, ’DD–MM–YYYY’)

      ...

      ,p_name_combination_warning  => l_name_combination_warning

      ,p_assign_payroll_warning    => l_assign_payroll_warning

      );

    if l_name_combination_warning then

      –– Note that similar person details already exist.

      –– Do not hold the details in the database until it is

      –– confirmed this is really a different person.

      rollback to on_name_warning;

    end if;

  end;

Note:  It would not have been necessary to rollback the API
work if the p_validate parameter had been set to true.

You should not use our API procedure names for the savepoint names.
An unexpected result may occur if you do not use different names.

Handling Errors in PL/SQL Batch Processes

In a batch environment, errors raised to the batch process must be
handled and recorded so that processing can continue. To aid the
development of such batch processes, we provide a message table called
HR_API_BATCH_MESSAGE_LINES and some APIs, as follows:

   API Name             Description

    –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

   create_message_line     Adds a single error message to the

                           HR_API_BATCH_MESSAGE_LINES table.

 

   delete_message_line     Removes a single error message to the

                           HR_API_BATCH_MESSAGE_LINES table.

 

   delete_message_lines    Removes all error message lines for a

                           particular batch run.

For a full description of each API, refer to the comments in the package
header creation script.



3 – 30 Implementing Oracle HRMS

For handling API errors in a PL/SQL batch process it is recommended
that any messages should be stored in the
HR_API_BATCH_MESSAGE_LINES table.

Example PL/SQL Batch Program

Assume a temporary table has been created containing employee
addresses. The addresses need to be inserted into the HR schema. The
temporary table holding the address is called temp_person_address. It
could have been populated from an ASCII file using Sql*Loader.

TEMP_PERSON_ADDRESSES Table

  Column Name        DataType

  ––––––––––––––––   ––––––––– 

  person_id          number 

  primary_flag       varchar2 

  date_from          date 

  address_type       varchar2 

  address_line1      varchar2 

  address_line2      varchar2 

  address_line3      varchar2 

  town               varchar2 

  county             varchar2 

  postcode           varchar2 

  country            varchar2 

  telephone_number   varchar2

Sample Code

declare 

  ––  

  l_rows_processed  number := 0; –– rows processed by api

l_commit_point      number := 20; – Commit after X successful rows

  l_batch_run_number

hr_api_batch_message_lines.batch_run_number%type; 

  l_dummy_line_id         hr_api_batch_message_lines.line_id%type;

  l_address_id            per_addresses.address_id%type; 

  l_object_version_number_id

per_addresses.object_version_number_id%type; 

  –– 

  –– select the next batch run number 

  –– 

  cursor csr_batch_run_number is 

    select nvl(max(abm.batch_run_number), 0) + 1 

      from hr_api_batch_message_lines abm; 

  –– 

  –– select all the temporary ’GB’ address rows 



3 – 31APIs in Oracle HRMS

  –– 

  cursor csr_tpa is 

    select tpa.person_id 

         , tpa.primary_flag

         , tpa.date_from 

         , tpa.address_type 

         , tpa.address_line1 

         , tpa.address_line2 

         , tpa.address_line3 

         , tpa.town

         , tpa.county 

         , tpa.postcode 

         , tpa.country 

         , tpa.telephone_number 

         , tpa.rowid 

      from temp_person_addresses tpa 

     where tpa.address_style = ’GB’; 

begin 

  –– open and fetch the batch run number 

  open csr_batch_run_number; 

  fetch csr_batch_run_number into l_batch_run_number; 

  close csr_batch_run_number; 

  –– open and fetch each temporary address row 

  for sel in csr_tpa loop 

    begin 

      –– create the address in the HR Schema 

      hr_person_address_api.create_gb_person_address 

        (p_person_id             => sel.person_id  

        ,p_effective_date        => trunc(sysdate)

        ,p_primary_flag          => sel.primary_flag 

        ,p_date_from             => sel.date_from 

        ,p_address_type          => sel.address_type 

        ,p_address_line1         => sel.address_line1 

        ,p_address_line2         => sel.address_line2 

        ,p_address_line3         => sel.address_line3 

        ,p_town                  => sel.town 

        ,p_county                => sel.county 

        ,p_postcode              => sel.postcode 

        ,p_country               => sel.country 

        ,p_telephone_number      => sel.telephone_number 

        ,p_address_id            => l_address_id 

        ,p_object_version_number => l_object_version_number

        );

      –– increment the number of rows processed by the api 

      l_rows_processed := l_rows_processed + 1; 

      –– determine if the commit point has been reached 

      if (mod(l_rows_processed, l_commit_point) = 0) then 

        –– the commit point has been reached therefore commit 

        commit; 



3 – 32 Implementing Oracle HRMS

      end if; 

    exception 

      when others then 

        –– 

        –– An API error has occurred 

        –– Note: As an error has occurred only the work in the

        –– last API call will be rolled back. The

        –– uncommitted work done by previous API calls will not be

        –– affected. If the error is ora–20001 the fnd_message.get

        –– function will retrieve and substitute all tokens for

        –– the short and extended message text. If the error is

        –– not ora–20001, null will be returned.

        ––

        hr_batch_message_line_api.create_message_line 

          (p_batch_run_number       => l_batch_run_number 

          ,p_api_name               =>

 

’hr_person_address_api.create_gb_person_address’ 

          ,p_status                 => ’F’ 

          ,p_error_number           => sqlcode 

          ,p_error_message          => sqlerrm 

          ,p_extended_error_message => fnd_message.get 

          ,p_source_row_information => to_char(sel.rowid) 

          ,p_line_id                => l_dummy_line_id); 

    end;

  end loop; 

  –– commit any final rows 

  commit; 

end;

You can view any errors that might have been created during the
processes by selecting from the HR_API_BATCH_MESSAGE_LINES
table for the batch run completed, as follows:

select *

  from hr_api_batch_message_lines abm

 where abm.batch_run_number = :batch_run_number

 order by abm.line_id;



3 – 33APIs in Oracle HRMS

WHO Columns and Oracle Alert

In many tables in Oracle Applications there are standard WHO columns.
These include:

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The values held in these columns usually refer to the Applications User
who caused the database row to be created or updated. In the Oracle
HRMS Applications these columns are maintained by database triggers.
You cannot directly populate these columns, as corresponding API
parameters have not been provided.

When the APIs are executed from an Application Form or concurrent
manager session, then these columns will be maintained just as if the
Form had carried out the database changes.

When the APIs are called from a SQL*Plus database session, the
CREATION_DATE and LAST_UPDATE_DATE column will still be
populated with the database sysdate value. As there are no application
user details, the CREATED_BY, LAST_UPDATED_BY and
LAST_UPDATE_LOGIN column will be set to the “anonymous user”
values.

If you want the CREATED_BY and LAST_UPDATED_BY columns to be
populated with details of a known application user in a SQL*Plus
database session, then before executing any HRMS APIs, call the
following server–side package procedure once:

fnd_global.apps_initialize

If you call this procedure it is your responsibility to pass in valid values,
as incorrect values are not rejected. The above procedure should also be
called if you want to use Oracle Alert and the APIs.

By using AOL profiles, it is possible to associate a HR security profile
with an AOL responsibility. Care should be taken when setting the
apps_initialize resp_id parameter to a responsibility associated with a
restricted HR security profile. To ensure API validation is not over
restrictive, you should only maintain data held within that
responsibility’s business group.

To maintain data in more than one business group in the same database
session, use a responsibility associated with an unrestricted HR security
profile.



3 – 34 Implementing Oracle HRMS

API User Hooks

APIs in Oracle HRMS support the addition of custom business logic.
We have called this feature ‘API User Hooks’.  These hooks enable you
to extend the standard business rules that are executed by the APIs.  You
can include your own validation rules or further processing logic and
have it executed automatically whenever the associated API is executed.

Consider:

• Customer–specific data validation

For example, when an employee is promoted you might want to
restrict the change of grade to a single step, unless they work at a
specific location, or have been in the grade for longer than six
months.

• Maintenance of data held in extra customer–specific tables

For example, you may want to store specific market or evaluation
information about your employees in database tables that were
not supplied by Oracle Applications.

• Capturing the fact that a particular business event has occurred

For example, you may want to capture the fact that an employee
is leaving the enterprise to send an electronic message directly to
your separate security database, so the employee’s office security
pass can be disabled.

User hooks are locations in the APIs where extra logic can be executed.
When the API processing reaches a user hook, the main processing stops
and any custom logic is executed.  Then, assuming no errors have
occurred, the main API processing continues.

Warning:  You must not edit the API code files supplied by
Oracle.  These are part of the delivered product code and, if they
are modified, Oracle may be unable to support or upgrade your
implementation.  Oracle Applications support direct calls only
to the published APIs.  Direct calls to any other server–side
package procedures or functions that are written as part of the
Oracle HRMS product set are not supported, unless explicitly
specified.

Implementing API User Hooks

All the extra logic that you want to associate with APIs should be
implemented as separate server–side package procedures using
PL/SQL.  The analysis and design of your business rules model is
specific to your implementation.  This essay focuses on how you can
associate the rules you decide to write with the API user hooks.



3 – 35APIs in Oracle HRMS

After you have written and loaded into the database your server–side
package, you need to associate your package with one or more specific
user hooks.  There are 3 special APIs to insert, update and delete this
information.  To create the links between the delivered APIs and the
extra logic, execute the supplied pre–processor program.  This looks at
the data you have defined, the package procedure you want to call and
builds logic to execute your PL/SQL from the specific user hooks.  This
step is provided to optimize the overall performance of API execution
with user hooks.  Effectively each API knows the extra logic to perform
without needing to check explicitly.

As the link between the APIs and the extra logic is held in data,
upgrades are easier to support. Where the same API user hooks and
parameters exist in the new version, the pre–processor program can be
executed again. This process rebuilds the extra code needed to execute
your PL/SQL from the specific user hooks without the need for manual
edits to Oracle applications or your own source code files.

� To implement API user hooks:

1. Identify the APIs and user hooks where you want to attach your
extra logic. See: Available User Hooks: page 3 – 35

2. Identify the data values available at the user hooks you intend to
use. See: Data Values Available at User Hooks: page 3 – 39

3. Implement your extra logic in a PL/SQL server–side package
procedure. See: Implementing Extra Logic in a Separate Procedure
Package: page 3 – 41

4. Register your extra PL/SQL packages with the appropriate API user
hooks by calling the hr_api_hook_call_api.create_api_hook_call API.
Define the mapping data between the user hook and the server–side
package procedure. See: Linking Custom Procedures to User Hooks:
page 3 – 43

5. Execute the user hook pre–processor program.  This validates the
parameters to your PL/SQL server–side package procedure and
dynamically generates another package body directly into the
database. This generated code contains PL/SQL to call the custom
package procedures from the API user hooks. See: The API User
Hook Pre–processor Program: page 3 – 48

Available User Hooks

API user hooks are provided in the HRMS APIs that create, maintain or
delete information. For example, the create_employee and
update_emp_asg_criteria APIs.



3 – 36 Implementing Oracle HRMS

Note:  User hooks are not provided in alternative interface APIs.
For example, create_us_employee and create_gb_employee are
both alternatives to the create_employee API.  You should
associate any extra logic with the main API.  Also user hooks are
not provided in utility style APIs such as create_message_line.

A PL/SQL script is available that lists all the different user hooks.

See: API User Hook Support Scripts: page 3 – 55

In the main APIs for HRMS there are two user hooks:

• Before Process

• After Process

There are different versions of these two user hooks in each API.  For
example, there is a Before Process and an After Process user hook in the
create_employee API and a different Before Process and After Process user
hook in the update_person API.  This enables you to link your own logic
to a specific API and user hook.

Main API User Hooks

–––––––––––––––––––––––––––––––

|     create_employee API     |

|      (Standard HR API)      |

–––––––––––––––––––––––––––––––

  |             |          |

  |             |          |

  V             V          V

 Before        Core       After

 Process       Product    Process

 User Hook     Logic      User Hook

 Extra Logic              Extra Logic

Before Process Logic

Before Process user hooks execute any extra logic before the main API
processing logic modifies any data in the database. In this case, the
majority of validation will not have been executed. If you implement
extra logic from this type of user hook, you must remember that none of
the context and data values have been validated. It is possible the values
are invalid and will be rejected when the main API processing logic is
executed.

After Process Logic

After Process user hooks execute any extra logic after all the main API
validation and processing logic has successfully completed. All the
database changes that are going to be made by the API have been made.



3 – 37APIs in Oracle HRMS

Any values provided from these user hooks have passed the validation
checks. Your extra validation can assume the values provided are
correct. If the main processing logic does not finish, due to an error, the
After Process user hook is not called.

Note:  You cannot alter the core product logic, which is executed
between the ’Before Process’ and ’After Process’ user hooks. You
can only add extra custom logic at the user hooks.

Core Product Logic

Core Product Logic is split into a number of components. For tables that
can be altered by an API there is an internal row handler code module.
These rows handlers are implemented for nearly all the tables in the
system where APIs are available. They control all the insert, update,
delete and lock processing required by the main APIs. For example, if a
main API needs to insert a new row into the PER_ALL_PEOPLE_F table
it will not perform the DML itself. Instead it will execute the
PER_ALL_PEOPLE_F row handler module.

Oracle Applications does not support any direct calls to these internal
row handlers, as they do not contain the complete validation and
processing logic. Calls are only allowed to the list of supported and
published APIs. This list is provided in the Publicly Callable Business
Process APIs topic in the guide Customizing, Reporting and System
Administration in Oracle HRMS and in Oracle HRMS Help. Any new
APIs introduced in the new version of a Release will be listed in the
What’s New in Oracle HRMS topic in the help system.

In each of the row handler modules three more user hooks are available,
After Insert, After Update and After Delete. The user hook extra logic will
be executed after the validation specific to the current table columns has
been successfully completed and immediately after the corresponding
table DML statement.

These row handler user hooks are provided after the DML has been
completed for two reasons:

• All core product validation has been carried out. So you know
that the change to that particular table is valid.

• For inserts, the primary key value is not known until the row has
actually been inserted.

Note:  Although the update or delete DML statements may
have been executed, the previous – before DML, column values
are still available for use in any user hook logic. This is
explained in more detail in a later section of this essay.

When an API inserts, updates or deletes records in more than one table
there are many user hooks available for your use. For example, the
create_employee API can create data in up to six different tables.



3 – 38 Implementing Oracle HRMS

Create Employee API Summary Code Module Structure

––––––––––––––––––––––––––––––––––––––––––––––––––––––

|                  create_employee                   |

––––––––––––––––––––––––––––––––––––––––––––––––––––––

 |         |             |             |            |

 |         |             |             |            |

 V         |             |             |            V

Before     |             |             |         After

Process    |             |             |       Process

User Hook  |             |             |     User Hook

           V             V             V

––––––––––––––  –––––––––––––––––  –––––––––––––––––––

|  PER_ALL_  |  |  PER_PERIODS  |  |  PER_ALL_       |

|  PEOPLE_F  |  |  _OF_SERVICE  |  |  ASSIGNMENTS_F  |

––––––––––––––  –––––––––––––––––  –––––––––––––––––––

          |                  |                    |

          V                  V                    V

After Insert       After Insert         After Insert

   User Hook          User Hook            User Hook

In the above diagram create_employee is the supported and published
API. Only three of the internal row handlers have been shown,
PER_ALL_PEOPLE_F, PER_PERIODS_OF_SERVICE and
PER_ALL_ASSIGNMENTS_F. These internal row handlers must not be
called directly.

Order of user hook execution:

1st) Create employee API Before Process user hook.

2nd) PER_ALL_PEOPLE_F row handler After Insert user hook.

3rd) PER_PERIODS_OF_SERVICE row handler After Insert user hook.

4th) PER_ALL_ASSIGNMENT_F row handler After Insert user hook.

...

last) Create employee API After Process user hook.

Note:  Core product validation and processing logic is executed
between each of the user hooks.

When a validation or processing error is detected, processing is
immediately aborted by raising a PL/SQL exception. API validation is
carried out in each of the separate code modules. For example, when the
create_employee API is used, validation logic is executed in each of the
row handlers that are executed. Let’s assume that a validation check is
violated in the PER_PERIODS_OF_SERVICE row handler. The logic
defined against the first two user hooks is executed. As a PL/SQL
exception is raised, the 3rd and all remaining user hooks for that API
call are not executed.



3 – 39APIs in Oracle HRMS

Note:  When a DateTrack operation is carried out on a particular
record, only one row handler user hook is executed. For
example, when updating a person record using the DateTrack
mode ’UPDATE’, only the After Update user hook is executed in
the PER_ALL_PEOPLE_F row handler.

The published APIs are also known as Business Processes as they
perform a business event within HRMS.

Data Values Available at User Hooks

In general, where a value is known inside the API it will be available to
the custom user hook code.

All values are read only.  None of the values can be altered by user hook
logic.

None of the AOL WHO values are available at any user hook, including:

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The p_validate parameter value is not available at any user hook. Any
additional processing should be done regardless of the p_validate value.

Data values are made available to user hook logic using individual
PL/SQL procedure parameters. In most cases the parameter name
matches the name of the corresponding database column name with a p_
prefix. For example, the NATIONALITY column on the
PER_ALL_PEOPLE_F table has a corresponding user hook parameter
name of p_nationality.

Before Process and After Process User Hook Data Values

• IN parameter values on each published API are available at the
Before Process and After Process user hooks. At the Before
Process hook none of the values are validated.

• OUT parameter values on the published API are only available
from the After Process user hook. They are unavailable from the
Before Process user hook because no core product logic has been
executed to derive them.

• IN OUT parameter values on the published API are available at
the Before Process and After Process user hooks. The potentially



3 – 40 Implementing Oracle HRMS

invalid IN value is available at the Before Process user hook. The
value passed out of the published API is available at the After
Process user hook.

From the row handler After Insert user hook only column values that can
be populated or are derived during insert are available.

From the After Update user hook two sets of values are available. The
new values and the old values.  That is, the values that correspond to the
updated record and the values that existed on the record before the
DML statement was executed. The new value parameter names
correspond to the database column name with a p_ prefix. The old
values parameter names match the database column name with a p_
prefix and a _o suffix. For example, the new value parameter name for
the NATIONALITY column on the PER_ALL_PEOPLE_F table is
p_nationality. The old value parameter name is p_nationality_o.

Except for the primary key ID, if a database column cannot be updated a
new value parameter is not available. There is still a corresponding
parameter without the _o suffix. For example, the
BUSINESS_GROUP_ID column cannot be updated on the
PER_ALL_PEOPLE_F table. At the After Update user hook a
p_business_group_id_o parameter is available. But there is no new
value p_business_group_id parameter.

From the After Delete user hooks only old values are available with _o
suffix style parameter names. The primary key ID value is available
with a parameter that does not have the _o suffix.

Old values are only made available at the row handler After Update and
After Delete user hooks. Old values are NOT available from any of the
Before Process, After Process or After Insert user hooks.

Wherever the database column name is used, the end of the name may
be truncated, to fit the PL/SQL 30 character limit for parameter names.

For DateTrack table row handlers, whenever data values are made
available from the After Insert, After Update or After Delete user hooks, the
provided new and old values apply as of the operation’s effective_date.
If past or future values are required the custom logic needs to select
them explicitly from the database table. The effective_start_date and
effective_end_date column and DateTrack mode value are made
available.

A complete list of available user hooks and the data values provided can
be found by executing a PL/SQL script.

See: API User Hook Support Scripts: page 3 – 55



�

3 – 41APIs in Oracle HRMS

Implementing Extra Logic In a Separate Package Procedure

Any extra logic that you want to link to an API with a user hook must be
implemented inside a PL/SQL server–side package procedure.

Note:  These procedures can do anything that can be
implemented in PL/SQL except ‘commit’ and full ‘rollbacks’.

The APIs have been designed to perform all of the work associated with
a business process.  If it is not possible to complete all of the database
changes then the API fails and rolls back all changes.  This is achieved
by not committing any values to the database within an API.  If an error
occurs in later processing all database changes made up to that point are
rolled back automatically.

Attention:  Commits or full rollbacks are not allowed in any
API code as they would interfere with this mechanism.  This
includes user–hooks and extra logic.  If you attempt to issue a
commit or full rollback statement, the user hook mechanism will
detect this and raise its own error.

When an invalid value is detected by extra validation, you should raise
an error using a PL/SQL exception. This automatically rolls back any
database changes carried out by the current call to the published API.
This rollback includes any changes made by earlier user hooks.

The user hook code does not support any optional or decision logic to
decide when your custom code should be executed.  If you link extra
logic to a user hook it will always be called when that API processing
point is reached.  You must implement any conditional logic inside your
custom package procedure.  For example, suppose you want to check
that ‘Administrators’ are promoted by one grade step only with each
change.  As your extra logic will be called for all assignments, regardless
of job type, you should decide if you need to check for the job of
‘Administrator’ before checking the grade details.

Limitations

There are some limitations to implementing extra logic as custom
PL/SQL code.  Only calls to server–side package procedures are
supported. But more than one package procedure can be executed from
the same user hook. Custom PL/SQL cannot be executed from user
hooks if it is implemented in:

• Stand alone procedures (not defined within a package)

• Package functions

• Stand alone package functions (not defined within a package)

• Package procedures that have overloaded versions



3 – 42 Implementing Oracle HRMS

Note:  Do not try to implement commit or full rollback
statements in your custom PL/SQL.  This will interfere with the
API processing and will generate an error.

When a parameter name is defined it must match exactly the name of a
data value parameter that is available at the user hooks where it will be
executed. The parameter must have the same datatype as the user hook
data value. Any normal implicit PL/SQL data conversions are not
supported from user hooks. All the package procedure parameters must
be defined as IN, without any default value. OUT and IN OUT
parameters are not supported in the custom package procedure.

At all user hooks many data values are available. When implementing a
custom package procedure every data value does not have to be listed.
Only the data values for parameters that are required for the custom
PL/SQL need to be listed.

A complete list of available user hooks, data values provided and their
datatypes can be found by executing a PL/SQL script.

See: API User Hook Support Scripts: page 3 – 55

When you have completed your custom PL/SQL package you should
execute the package creation scripts on the database and test that the
package procedure compiles.  Then test that this carries out the intended
validation on a test database.

Example

A particular enterprise requires the previous last name for all married
females when they are entered in the system.  This requirement is not
implemented in the core product, but an implementation team can code
this extra validation in a separate package procedure and call it using
API user hooks. When marital status is ‘Married’ and sex is ‘Female’,
use a PL/SQL exception to raise an error if the previous last name is
null.  The following sample code provides a server–side package
procedure to perform this validation rule.



3 – 43APIs in Oracle HRMS

Create Or Replace Package cus_extra_person_rules as

procedure extra_name_checks

  (p_previous_last_name              in     varchar2

  ,p_sex                             in     varchar2

  ,p_marital_status                  in     varchar2

  );

end cus_extra_person_rules;

/

exit;

Create Or Replace Package Body cus_extra_person_rules as

procedure extra_name_checks

  (p_previous_last_name              in     varchar2

  ,p_sex                             in     varchar2

  ,p_marital_status                  in     varchar2

  ) is

begin

   –– When the person is a married female raise an

   –– error if the previous last name has not been

   –– entered

   if p_marital_status = ’M’ and p_sex = ’F’ then

     if p_previous_last_name is null then

       dbms_standard.raise_application_error

         (num => –20999

         ,msg => ’Previous last name must be entered for married

females’

         );

     end if;

   end if;

end extra_name_checks;

end cus_extra_person_rules;

/

exit;

Linking Custom Procedures to User Hooks

After you have executed the package creation scripts on your intended
database, you need to link the custom package procedures to the
appropriate API user hooks.  The linking between user hooks and
custom package procedures is defined as data in the
HR_API_HOOK_CALLS table.

There are three special APIs to maintain data in this table:

• hr_api_hook_call_api.create_api_hook_call

• hr_api_hook_call_api.update_api_hook_call

• hr_api_hook_call_api.delete_api_hook_call



3 – 44 Implementing Oracle HRMS

HR_API_HOOK_CALLS

• The HR_API_HOOK_CALLS table must contain one row for each
package procedure linking to a specific user hook.

• The API_HOOK_CALL_ID column is the unique identifier.

• The API_HOOK_ID column specifies the user hook to link to the
package procedure.

This is a foreign key to the HR_API_HOOKS table.  Currently the
user hooks mechanism only support calls to package procedures,
so the API_HOOK_CALL_TYPE column must be set to ’PP’.

• The ENABLED_FLAG column indicates if the user hook call
should be included.

It must be set to ’Y’ for Yes, or ’N’ for No.

• The SEQUENCE column is used to indicate the order of hook
calls. Lowest numbers are processed first.

The user hook mechanism is also used by Oracle to supply
legislation specific and vertical market specific PL/SQL. The
sequence numbers from 1000 to 1999 inclusive, are reserved for
Oracle internal use.

You can use sequence numbers less than 1000 or greater than 1999
for custom logic. Where possible we recommend you use
sequence numbers greater than 2000. Oracle specific user hook
logic will then be executed first. This will avoid the need to
duplicate Oracle’s additional logic in the custom logic.

There are two other tables that contain data used by the API user hook
mechanism, HR_API_MODULES and HR_API_HOOKS.

HR_API_MODULES

HR_API_MODULES contains a row for every API code module that
contains user hooks.



3 – 45APIs in Oracle HRMS

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁHR_API_MODULES Main Columns

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

API_MODULE_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Unique  identifier
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

API_MODULE_TYPE
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

A code value representing the
type of the API code module.

’BP’ for Business Process APIs –
the published APIs.

’RH’ for the internal Row
Handler code modules.

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

MODULE_NAME
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

The value depends on the
module type.

For ’BP’ the name of the
published API, such as
CREATE_EMPLOYEE.

For ’RH’ modules the name of
the table, such as
PER_PERIODS_OF_SERVICE.

 HR_API_HOOKS

The HR_API_HOOKS table is a child of the HR_API_MODULES table.
It contains a record for each user hook in a particular API code module.

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

HR_API_HOOKS Main ColumnsÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_HOOK_ID
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Unique  identifier

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_MODULE_ID
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Foreign key.  Parent ID to the
HR_API_MODULES table.

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_HOOK_TYPE
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Code value representing the
type of user hook.

The API_HOOK_TYPE code represents the type of user hook:



3 – 46 Implementing Oracle HRMS

User Hook Type    API_HOOK_TYPE

–––––––––––––––   –––––––––––––

After Insert      AI

After Update      AU

After Delete      AD

Before Process    BP

After Process     AP

Warning:  Data in the HR_API_MODULES and
HR_API_HOOKS tables is supplied and owned by Oracle.
Oracle also supplies some data in the HR_API_HOOK_CALLS
table. Customers must not modify data in these tables.  Any
changes you make to these tables may affect product
functionality and may invalidate your support agreement with
Oracle.

Note:  Data in these tables may come from more than one
source and API_MODULE_IDs and API_HOOK_IDs may have
different values on different databases.  Any scripts you write
must allow for this difference.

Full details for each of these tables can be found in the Oracle HRMS
Technical Reference Manual.

Example

For the example where you want to make sure previous name is entered,
the extra validation needs to be executed whenever a new person is
entered into the system.  The best place to execute this validation is from
the PER_ALL_PEOPLE_F row handler After Insert user hook.

The following PL/SQL code is an example script to call the
create_api_hook_call API. This tells the user hook mechanism that the
cus_extra_person_rules.extra_name_checks package procedure should be
executed from the PER_ALL_PEOPLE_F row handler After Insert user
hook.

declare

  ––

  –– Declare cursor statements

  ––

  cursor cur_api_hook is

    select ahk.api_hook_id

      from hr_api_hooks   ahk

         , hr_api_modules ahm

     where ahm.module_name   = ’PER_ALL_PEOPLE_F’

       and ahm.api_module_type   = ’RH’

       and ahk.api_hook_type = ’AI’

       and ahk.api_module_id = ahm.api_module_id;

  ––

  –– Declare local variables



3 – 47APIs in Oracle HRMS

  ––

  l_api_hook_id            number;

  l_api_hook_call_id       number;

  l_object_version_number  number;

begin

  ––

  –– Obtain the ID if the PER_ALL_PEOPLE_F

  –– row handler After Insert API user hook.

  ––

  open cursor csr_api_hook;

  fetch csr_api_hook into l_api_hook_id;

  if csr_api_hook %notfound then

    close csr_api_hook;

    dbms_standard.raise_application_error

         (num => –20999

         ,msg => ’The ID of the API user hook was not found’

         );

  end if;

  close csr_api_hook;

  ––

  –– Tell the API user hook mechanism to call the

  –– cus_extra_person_rules.extra_name_checks

  –– package procedure from the PER_ALL_PEOPLE_F row

  –– handler module ’After Insert’ user hook.

  ––

  hr_api_hook_call_api.create_api_hook_call

    (p_validate              => false

    ,p_effective_date        =>

                  to_date(’01–01–1997’, ’DD–MM–YYYY’)

    ,p_api_hook_id           => l_api_hook_id

    ,p_api_hook_call_type    => ’PP’

    ,p_sequence              => 3000

    ,p_enabled_flag          => ’Y’

    ,p_call_package          =>

                  ’CUS_EXTRA_PERSON_RULES’

    ,p_call_procedure        => ’EXTRA_NAME_CHECKS’

    ,p_api_hook_call_id      => l_api_hook_call_id

    ,p_object_version_number =>

                  l_object_version_number

    );

  commit;

end;

In this example, the previous_last_name, sex and marital_status values
can be updated.  If you want to perform the same checks when the
marital_status is changed, then the same validation will need to be
executed from the PER_ALL_PEOPLE_F After Update user hook.  As the
same data values are available for this user hook, the same custom
package procedure can be used. Another API hook call definition should



3 – 48 Implementing Oracle HRMS

be created in HR_API_HOOK_CALLS by calling the create_api_hook_call
API again. This time the p_api_hook_id parameter needs to be set to the
ID of the PER_ALL_PEOPLE_F After Update user hook.

The API User Hook Pre–processor Program

Adding rows to the HR_API_HOOK_CALLS table does not mean the
extra logic will be called automatically from the user hooks.  You must
run the API user hooks pre–processor program after the definition and
the custom package procedure have both been created in the database.
This looks at the calling definitions in the HR_API_HOOK_CALLS table
and the parameters listed on the custom server–side package
procedures.

Note:  Another package body will be dynamically built in the
database. This is known as the hook package body.

There is no operating system file that contains a creation script for the
hook package body. It is dynamically created by the API user hook
pre–processor program.  Assuming the various validation checks
succeed, this package will contain hard coded calls to the custom
package procedures.

If no extra logic is implemented, the corresponding hook package body
will still be dynamically created. It will have no calls to any other
package procedures.

The pre–processor program is automatically executed at the end of some
server–side Oracle install and upgrade scripts. This ensures versions of
hook packages bodies exist in the database. If you do not want to use
API user hooks then no further setup steps are required.

The user hook mechanism is used by Oracle to provide extra logic for
some legislations and vertical versions of the products.  Calls to this
PL/SQL are also generated into the hook package body.

Warning:  It is IMPORTANT that you do not make any direct
edits to the generated hook package body. Any changes you
make may affect product functionality and may invalidate your
support agreement with Oracle.

If you choose to make alternations, these will be lost the next
time the pre–processor program is run. This will occur when the
Oracle install or upgrade scripts are executed. Other developers
in the implementation team could execute the pre–processor
program.

If any changes are required, modify the custom packages or the calling
definition data in the HR_API_HOOK_CALLS table. Then rerun the
pre–processor program to generate a new version of the hook package



3 – 49APIs in Oracle HRMS

body. For example, if you want to stop calling a particular custom
package procedure then:

1. Call the hr_api_hook_call_api.update_api_hook_call API, setting the
p_enabled_flag parameter to ’N’.

2. Execute the API user hook pre–processor program so the latest
definitions are read again and the hook package body is
dynamically recreated.

If you want to include the call again, then repeat these steps and set the
p_enabled_flag parameter in the hr_api_hook_call_api.update_api_hook_call
API to ’Y’.

If you want to permanently remove a custom call from a user hook then
remove the corresponding calling definition.  Call the
hr_api_hook_call_api.delete_api_hook_call API.

Remember that the actual call from the user hook package body will be
removed only when the pre–processor program is rerun.

Running the Pre–processor Program

The pre–processor program can be run in two ways.

• Execute the hrahkall.sql script in SQL*Plus

This creates the hook package bodies for all of the different API
code modules.

• Execute the hrahkone.sql script in SQL*Plus

This creates the hook package bodies for just one API code
module – one main API or one internal row handler module.

An api_module_id must be specified with this script. The required
ID values are found in the HR_API_MODULES table.

Both the hrahkall.sql and hrahkone.sql scripts are stored in the
$PER_TOP/admin/sql operating system directory.

Example

Continuing the previous example:  After the calling definitions and
custom package procedure have been successfully created in the
database the api_module_id can be found with the following SQL
statement:

select api_module_id

  from hr_api_modules

 where api_module_type = ’RH’

       and module_name = ’PER_ALL_PEOPLE_F’;

Then execute the hrahkone.sql script. When prompted, enter  the
api_module_id returned by the SQL statement above.  This will generate



�

3 – 50 Implementing Oracle HRMS

the hook package bodies for all of the PER_ALL_PEOPLE_F row
handler module user hooks After Insert, After Update and After Delete.

Log Report

Both pre–processor programs produce a log report. The hrahkall.sql
script only lists errors. So if no text is shown after the ’Created on’
statement, all the hook package bodies have been created without any
PL/SQL or application errors. The hrahkone.sql script outputs a
successful comment or error details. If any errors occurred, a PL/SQL
exception is deliberately raised at the end of both scripts. This highlights
to the calling program that a problem has occurred.

When errors do occur the hook package body code may still be created
with valid PL/SQL. For example, if a custom package procedure lists a
parameter that is not available, the hook package body is still
successfully created. No code is created to execute that particular
custom package procedure. If other custom package procedures need to
be executed from the same user hook, code to perform those calls is still
created – assuming they pass all the standard PL/SQL checks and
validation checks.

Attention:  It is important that you check these log reports to
confirm the results of the scripts.  If a call could not be built the
corresponding row in the HR_API_HOOK_CALLS table will
also be updated. The STATUS column will be set to ’I’ for
Invalid Call and the ENCODED_ERROR column will be
populated with the AOL application error message in the
encoded format.

The encoded format can be converted into translated text by the
following PL/SQL:

declare

  l_encoded_error varchar2(2000);

  l_user_read_text varchar2(2000);

begin

  –– Substitute ??? with the value held in the

  –– HR_API_HOOK_CALLS.ENCODED_ERROR column.

  l_encoded_error := ???;

  fnd_message.set_encoded(encoded_error);

  l_user_read_text := fnd_message.get;

end;

It is your responsibility to review and resolve any problems recorded in
the log reports.  Options:

• Alter the parameters in the custom package procedures.

• If required, change the data defined in the
HR_API_HOOK_CALLS table.



�

3 – 51APIs in Oracle HRMS

When you have resolved any problems, rerun the pre–processor
program.

The generated user hook package bodies must be less than 32K in size.
This restriction is a limit in PL/SQL.  If you reach this limit, you should
reduce the number of separate package procedures called from each
user hook. Try to combine your custom logic into fewer procedures.

Note:  Each linked custom package procedure can be greater
than 32K in size.  Only the user hook package body that is
dynamically created in the database must be less than 32K.

One advantage of implementing the API user hook approach is that
your extra logic is called every time the APIs are called.  This includes
any HRMS Forms or Web pages that perform their processing logic by
calling the APIs.

Attention:  The user hook mechanism that calls your custom
logic is supported as part of the standard product.  However the
logic in your own custom PL/SQL procedures cannot be
supported by Oracle Support.

Recommendations for Using the Different Types of User Hook

Consider your validation rules in two categories:

• Data Item Rules

Rules associated with a specific field in a form or column in a
table.  For example, grade assigned must always be valid for the
Job assigned.

• Business Process Rules

Rules associated with a specific transaction or process.  For
example, when you create a secondary assignment you must
include a special descriptive segment value.

Data Item Rules

The published APIs are designed to support business processes.  This
means that individual data items can be modified by more than one API.
To perform extra data validation on specific data items (table columns),
use the internal row handler module user hooks.

By implementing any extra logic from the internal row handler code
user hooks, you will cover all of the cases where that column value can
change.  Otherwise you will need to identify all the APIs that can set or
alter that database column.

Use the After Insert, After Update or After Delete user hooks for data
validation.  These hooks are preferred because all of the validation



3 – 52 Implementing Oracle HRMS

associated with the database table row must be completed successfully
before these user hooks are executed. Any data values passed to custom
logic will be valid as far as the core product is concerned.

If the hook call definition is created with a sequence number greater
than 1999, then any Oracle legislation or vertical market specific logic
will also have been successfully executed.

Note:  If extra validation is implemented on the After Insert user
hook, and the relevant data values can be updated, then you
should consider excluding similar logic from the After Update
user hook.

Old values – before DML, are available from the After Update
and After Delete user hooks.

Business Process Rules

If you want to detect that a particular business event has occurred, or
you only want to perform some extra logic for a particular published
API, use the Before Process and After Process user hooks.

Where possible, use the After Process user hook, as all core product
validation for the whole API will have been completed. If you use the
Before Process user hook you must consider that all data values could be
invalid in your custom logic.  None of the core product validation has
been carried out at that point.

Data values provided at the Before Process and After Process user hooks
will be the same as the values passed into the API.  For update type
business processes the API caller has to specify only the mandatory
parameters and the values they actually want to change. When the API
caller does not explicitly provide a parameter value, the system reserved
default values will be used:

  Data Type  Default value

  –––––––––  –––––––––––––––––

  varchar2   hr_api.g_varchar2

  number     hr_api.g_number

  date       hr_api.g_date

Depending on the parameters specified by the API caller, these default
values may be provided to Before Process and After Process user hooks.
That is, the existing column value in the database is only provided if the
API calling code happens to pass the same new value. If the real
database value is required then the custom package procedures must
select it explicitly from the database.

This is another reason why After Update and After Delete user hooks are
preferred. At the row handler user hooks the actual data value is always
provided. Any system default values will have been reset with their



�

3 – 53APIs in Oracle HRMS

existing database column value in the row handler modules. Any extra
logic from these user hooks does need to be concerned with the system
reserved default values.

If any After Process extra logic must access the old database values then a
different user hook needs to be used. It will not be possible to use the
After Process user hook because all the relevant database rows will have
been modified and the old values will not be provided by the user hook
mechanism. Where API specific extra logic requires the old values, they
will need to be explicitly selected in the Before Process user hook.

User Hooks and Alternative Interface APIs

Alternative Interface APIs provide an alternative version of the generic
APIs.  Currently there are legislative or vertical specific versions of the
generic APIs.

For example, create_us_employee and create_gb_employee are two
alternative interfaces to the generic create_employee API.  These
alternatives make clear how specific legislative parameters are mapped
onto the parameters of the generic API.

In the future other alternative APIs may be provided to support specific
implementations of generic features, such as elements and input values.

Attention:  User hooks are not provided in alternative interface
APIs. User hooks are provided only in the generic APIs.  In this
example the user hooks are provided in the create_employee API
and not in the create_us_employee and create_gb_employee APIs.

Alternative interface APIs always perform their processing by executing
the generic API and any extra logic in the generic API user hooks is
executed automatically when the alternative APIs are called. This
guarantees consistency in executing any extra logic and reduces the
administrative effort to set up and maintain the links.

Example 1

You want to perform extra validation on the job and payroll components
of employee assignments to make sure only ‘Machine Workers’ are
included in the ‘Weekly’ payroll. There is more than one published API
that allows the values to be set when a new assignment is created or an
existing assignment is updated.

Suggestion. Implement the extra validation in a custom server–side
package procedure. Link this to the two user hooks, After Insert and After
Update, in the PER_ALL_ASSIGNMENTS_F table internal row handler
module.

Example 2

You have a custom table and you want to create data in this table when a
new employee is created in the system, or an existing applicant is



3 – 54 Implementing Oracle HRMS

converted into an employee. The data in the custom table does not need
to be created in any other scenario.

Suggestion.  Implement the third party table; insert DML statements in a
custom server–side package procedure. Link this to two user hooks:
After Process in the create_employee API module and After Process in the
hire_applicant API module.

Comparison with Database Triggers

User hooks have a number of advantages over database triggers for
implementing extra logic.

• Database triggers can only be defined against individual table
DML statements. The context of a particular business event may
be unavailable at the table level because the event details are not
held in any of the columns on that table.

• Executing a database trigger is inefficient compared with
executing a server–side package procedure.

• The mutating table restriction stops values being selected from
table rows that are being modified. This prevents complex
multi–row validation being implemented from database triggers.
This complex validation can be implemented from API user
hooks, as there are no similar restrictions.

• On DateTrack tables it is extremely difficult to implement any
useful logic from database triggers. With many DateTrack modes,
a single transaction may affect more than one row in the same
database table. Each dated instance of a DateTrack record is
physically held on a different database row.

For example, a database trigger that fires on insert cannot tell the
difference between a new record being created or an insert row
from a DateTrack ’UPDATE’ operation.

Note:  DateTrack ’UPDATE’ carries out one insert and one
update statement. The context of the DateTrack mode is lost at
the database table level. You cannot re–derive this in a database
trigger due to the mutating table restriction.

• With DateTrack table row handler user hooks more context and
data values are available. The After Insert user hook is only
executed when a new record is created. The DateTrack mode
name is available at After Update and After Delete user hooks. The
date range over which the record is being modified is also
available at these user hooks. The validation_start_date value is the
first day the record is affected by the current DateTrack operation.
The last day the record is affected is known as the
validation_end_date.



3 – 55APIs in Oracle HRMS

API User Hook Support Scripts

You can create a complete list of available user hooks and the data
values provided by executing the hrahkpar.sql script in SQL*Plus. This
script can be found in the $PER_TOP/admin/sql operating system
directory. As the output is long, it is recommended to spool the output
to an operating system text file.

The user hook pre–processor program can be executed in two ways. To
create the hook package bodies for all of the different API code modules,
execute the hrahkall.sql script in SQL*Plus. To create the hook package
bodies for just one API code module, such as one main API or one
internal row handler module, execute the hrahkone.sql script in SQL*Plus.
An api_module_id must be specified with this second script. The required
api_module_id value can be obtained from the HR_API_MODULES table.
Both the hrahkall.sql and hrahkone.sql scripts can be found in the
$PER_TOP/admin/sql operating system directory.

Using APIs as Building Blocks

The API code files supplied with the product must not be edited directly
for any custom use.

Warning:  Any changes you make may affect product
functionality and may invalidate your support agreement with
Oracle, and prevent product upgrades.

Oracle Applications supports direct calls to the published APIs. Direct
calls to any other server–side package procedures or functions written
as part of the Oracle HRMS product set are not supported, unless
explicitly specified.

There are supported methods for adding custom logic, using the APIs
provided. In addition to the API user hook mechanism, you can use the
published APIs as building blocks to construct custom APIs.

Example

Suppose you always obtain a new employee’s home address when they
join your enterprise. The address details must be recorded in the HR
system because you run reports that expect every employee to have an
address.

You could write your own API to create new employees with an
address.  This API would call the standard create_employee API and then
immediately afterwards call the standard create_address API.



3 – 56 Implementing Oracle HRMS

                   

                                | last_name

                                | first_name

                                | ...

                                | address_line1

                                | address_line2

                                | ...

                                V

 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

|                     create_company_employee                    |

|                    (Customer specific PL/SQL)                  |

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

         |               ^                  |

         | last_name     | person_id        | person_id

         | first_name    | ...              | address_line1

         | ...           |                  | address_line2

         |               |                  | ...

         V               |                  V

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

|     create_employee API     |    |     create_address API  |

|      (Standard HR API)      |    |     (Standard HR API)   |

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

With API user hooks it is not possible to change any of the data values.
So the building block approach can be used to default or set any values
before the published API is called.

The major disadvantage with the building block approach is that any
Forms or Web pages supplied by Oracle will NOT call any custom APIs.
If a user interface is required then you must also create your own
custom Forms or Web pages to implement calls to your custom APIs.

Handling Object Version Numbers in Oracle Forms

If you intend to write your own Forms that call the APIs, you will need
to implement additional Forms logic to correctly manage the object
version number. This is required because of the way Forms can process
more than one row in the same commit unit.

Example

Consider the following example of what can happen if only one form’s
block item is used to hold the object version number:



3 – 57APIs in Oracle HRMS

1. The user queries two rows and updates both.
      OVN in

Row   Database   OVN in Form

–––   ––––––––   –––––––––––

A     6          6 

B     3          3

2. The user presses commit.

Row A has no user errors and is validated in the API.  The OVN is
updated in the database and the new OVN is returned to the form.

      OVN in

Row   Database   OVN in Form

–––   ––––––––   ––––––––––– 

A     7          7 

B     3          3

3. The form calls the API again for row B.

This time there is a validation error on the user–entered change. An
error message is raised in the form and Forms issues a rollback to
the database. However, the OVN for row A in the form is now
different from the OVN in the database.

      OVN in

Row   Database   OVN in Form

–––   ––––––––   ––––––––––– 

A     6          7 

B     3          3

4. The user corrects the problem with row B and commits again.

Now the API will error when it validates the changes to row A. The
two OVNs are different.

Solution

The solution to this problem is to use a non–basetable item to hold the
new version number. This item is not populated at query time.

1. The user queries two rows and updates both.
      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     6          6 

B     3          3

2. The user presses commit.

Row A is valid, so the OVN is updated in the database and the new
OVN is returned to the form.

Note:  The actual OVN in the form is not updated.



3 – 58 Implementing Oracle HRMS

      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     7          6             7 

B     3          3

3. The forms calls the API again for row B.

The validation fails and an error message is raised in the form.
Forms issues a rollback to the database.

      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     6          6             7 

B     3          3

4. The user corrects the problem with row B and commits again.

The API is called to validate row A again. The OVN value is passed,
not the NEW_OVN.  There is no error because the OVN in the
database now matches the OVN it was passed. The API passes back
the updated OVN value.

      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     7          6             7 

B     3          3

5. The API is called again to validate row B.

The validation is successful; the OVN is updated in the database
and the new OVN value is returned to the form. The commit in the
form and the database is successful.

      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     7          6             7 

B     4          3             4

What would happen when the user updates the same row again without
re–querying? Following on from the previous step:

6. When the user starts to update row A, the on–lock trigger will fire.

The trigger updates the OVN when New_OVN is not null.
(Theoretically the on–lock trigger will only fire if the previous
commit has been successful. Therefore the New_OVN is the OVN
value in the database.)

      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     7          7             7



3 – 59APIs in Oracle HRMS

7. The on–lock trigger then calls the API to take out a lock using OVN.

The lock is successful as the OVN values match.
      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

–––   ––––––––   –––––––––––   –––––––

A     7          7             7

8. The user continues with the update, the update API is called, and
the commit is successful.

      OVN in                   New_OVN

Row   Database   OVN in Form   in Form

A     8          7             8

If user does delete instead of update, the on_lock will work in the same
way. When key_delrec is pressed, the delete API should be called with
p_validate set to true. Doing so ensures that the delete is valid without
removing the row from the database.

Therefore, the OVN value in the form should be set with the New_OVN,
when New_OVN is not null. This ensure that the delete logic is called
with the OVN value in the database.

However, there is another special case that has to be taken into
consideration. It is possible for the user to update a row (causing a new
OVN value to be returned from the API), the update of the next row in
the same commit unit fails, the user navigates back to the first row and
decides to delete it. To stop the new_OVN from being copied into the
OVN in the form, only do the copy in key_delrec if the record_status is
query.

Example Code Using the Grade Rate Values

The above descriptions are handled in the following example. In this
example, <block_name>.object_version_number is a basetable item and 
             <block_name>.new_object_version_number is non–basetable.

Forms Procedure Called from the ON–INSERT Trigger

  procedure insert_row is 

  begin 

    –– 

    –– Call the api insert routine 

    –– 

    hr_grade_api.create_grade_rate_value 

      (<parameters> 

      ,p_object_version_number =>

:<block_name>.object_version_number 

      ,p_validate              => false 

      ); 

  end insert_row;



3 – 60 Implementing Oracle HRMS

  Forms Procedure Called from the ON–UPDATE Trigger

  procedure update_row is 

    l_api_ovn  number; 

  begin 

    –– Send the old object version number to the API 

    l_api_ovn := :<block_name>.object_version_number; 

    –– 

    –– Call the api update routine 

    –– 

    hr_grade_api.update_grade_rate_values 

      (<parameters> 

      ,p_object_version_number => l_api_ovn 

      ,p_validate              => false 

      ); 

    –– Remember the new object version number returned from the

API 

    :<block_name>.new_object_version_number := l_api_ovn; 

  end update_row;

Forms Procedure Called from the ON–DELETE Trigger

  procedure delete_row is 

  begin 

    –– 

    –– Call the api delete routine 

    –– 

    hr_grade_api.delete_grade_rate_values 

      (<parameters> 

      ,p_object_version_number =>

:<block_name>.object_version_number 

      ,p_validate              => false 

      ); 

  end delete_row;

Forms Procedure Called from the KEY–DELREC Trigger

  procedure key_delrec_row is 

    l_api_ovn     number;

    l_rec_status  varchar2(30); 

  begin 

    –– Ask user to confirm they really want to delete this row.

    ––

    –– Only perform the delete checks if the

    –– row really exists in the database.

    ––

    l_rec_status := :system.record_status;

    if (l_rec_status = ‘QUERY’) or (l_rec_status = ‘CHANGED’) then

      –– 

      –– If this row just updated then the

      –– new_object_version_number will be not null.



3 – 61APIs in Oracle HRMS

      –– If that commit was successful then the

      –– record_status will be QUERY, therefore use

      –– the new_object_version_number. If the commit

      –– was not successful then the user must have

      –– updated the row and then decided to delete

      –– it instead. Therefore just use the

      –– object_version_number.

      ––(Cannot just copy the new_ovn into ovn

      –– because if the new_ovn does not match the

      –– value in the database the error message will

      –– be displayed twice. Once from key–delrec and

      –– again when the on–lock trigger fires.)

      –– 

      if (:<block_name>.new_object_version_number is not null)

and 

         (l_rec_status = ’QUERY’) then 

        l_api_ovn := :<block_name>.new_object_version_number; 

      else 

        l_api_ovn := :<block_name>.object_version_number; 

      end if; 

      –– 

      –– Call the api delete routine in validate mode 

      –– 

      hr_grade_api.delete_grade_rate_values 

        (p_validate              => true

        ,<parameters> 

        ,p_object_version_number => l_api_ovn 

        ,p_validate              => true 

        );

    end if; 

    –– 

    delete_record; 

  end key_delrec_row;

Forms Procedure Called from the ON–LOCK Trigger

  procedure lock_row is 

    l_counter  number; 

  begin 

    l_counter := 0; 

    LOOP 

      BEGIN 

       l_counter := l_counter + 1; 

       –– 

       –– If this row has just been updated then 

       –– the new_object_version_number will be not null. 

       –– That commit unit must have been successful for the 

       –– on_lock trigger to fire again, so use the 

       –– new_object_version_number. 

       –– 



3 – 62 Implementing Oracle HRMS

       if :<block_name>.new_object_version_number is not null then

          :<block_name>.object_version_number := 

             :<block_name>.new_object_version_number; 

        end if; 

        –– 

        –– Call the table handler api lock routine 

        –– 

        pay_grr_shd.lck 

          (<parameters> 

          ,p_object_version_number =>

:<block_name>.object_version_number 

          ); 

        return; 

      EXCEPTION 

        When APP_EXCEPTIONS.RECORD_LOCK_EXCEPTION then 

          APP_EXCEPTION.Record_Lock_Error(l_counter); 

      END; 

    end LOOP; 

  end lock_row;



C H A P T E R

4

4 – 1Oracle HRMS Data Pump

Oracle HRMS Data
Pump



4 – 2 Implementing Oracle HRMS

Oracle HRMS Data Pump

This essay provides the information that you need to understand and
use the Oracle HRMS Data Pump.  To understand this information you
should already have a good functional and technical knowledge of the
Oracle HRMS product architecture, including:

• The data model for Oracle HRMS and the importance of
DateTrack.

• The API strategy and how to call APIs directly.

• How to code PL/SQL. Some PL/SQL code is normally required
to convert legacy data for use with Data Pump.

• The HRMS parameters that control the running of concurrent
processes (for example, to make the process run in parallel).

Restrictions

This document does not describe the entire Data Pump schema in detail.
Details are given as needed for some of the tables and in most cases you
will use the PL/SQL routines to insert data to these batch interface
tables.  Full details are provided in the Oracle HRMS Technical Reference
Manual.

The Oracle HRMS Data Pump does not support all of the APIs that are
delivered with Oracle HRMS. For the list of supported APIs, see: APIs
Supported by Data Pump: page 4 – 36.  Support for other APIs is
planned in future releases.

When purging data from the Data Pump tables, take extra care that you
do not delete information on User Keys that you might need for future
loading of external data. See: User Key Values: page 4 – 28.

Contents

This essay includes the following sections:

• Overview: page 4 – 3

Provides an overview of the Data Pump, including its key
components and special features.

• Using Data Pump: page 4 – 7

Describes the steps for using Data Pump, at a high level. Each
step is explained in more detail in the following sections:

– Running the Meta–Mapper: page 4 – 8.



4 – 3Oracle HRMS Data Pump

– Loading Data Into the Batch Tables: page 4 – 14.

– Running the Data Pump Process: page 4 – 17.

– Finding and Fixing Errors: page 4 – 18

– Purging Data: page 4 – 22

• Sample Code: page 4 – 23

Illustrates how you could call the batch lines procedures.

• Notes on Using the Generated Interfaces: page 4 – 26

Explains some of the factors you should consider when using the
view and PL/SQL packages generated by the Meta–Mapper
process for each API.

• Utility Procedures Available with Data Pump: page 4 – 29

Describes the utility procedures that are provided in the
HR_PUMP_UTILS package.

• Table and View Descriptions: page 4 – 31

Describes the specific tables and views you use with Data Pump.

• APIs Supported by Data Pump: page 4 – 36

Lists the API modules supported by this release of Data Pump.

Overview

Oracle HRMS has a set of predefined APIs that are business process
related and you are strongly advised always to use these APIs to load
data.  The predefined APIs enforce all the business rules in the system
and guarantee the integrity of any data loaded into the system.

The Oracle HRMS Data Pump supports rapid implementation by
simplifying and standardizing the common tasks associated with
loading batch data into the Oracle HRMS tables.  This is done by
providing a set of predefined batch tables and standard processes that
simplify the tasks of data–loading using the supported APIs.

With the Oracle Data Pump you:

1. Map the data items from your external system to the parameter
values of the appropriate APIs.

Because you map data to the parameters of the APIs you do not
need to know the complexity of the HRMS data model.   For
example, to create an employee you need to co–ordinate inserting
data into multiple tables.  The create_employee API does this
automatically, using the parameter values you pass in.



4 – 4 Implementing Oracle HRMS

A special feature of the Data Pump is that you can use user values in
place of system IDs for the API parameters.  These are translated
automatically by the Data Pump.

2. Load your data into a single generic batch lines table.   (There is also
a single batch header table to help you manage your batch loading
processes.)

The Data Pump works with a single generic batch lines table.  It
generates a specific view for each API so that you can easily review
and update the data for each API using the parameter names for the
API.

Also, there are PL/SQL interface routines to insert your external
data into the generic batch lines table.

3. Run a standard process that automatically calls the appropriate API
for each line of data in the batch table.

Components of Data Pump

Data Pump consists of the following components:

Meta–Mapper Process

This process generates the specific PL/SQL procedures and views for
each of the supported API modules you want to use.

Use the Meta–Mapper to generate a set of views that you can use to
examine or update data in the batch tables.  For example you might
want to correct data or change the order in which data is loaded.

Note:  The Meta–Mapper is similar to an install process and you
must run it before you try to do any data validation or loading
using the predefined APIs.

Batch Header Table and Batch Lines Table

Use these two tables to hold the header and lines information from your
external data.

• HR_PUMP_BATCH_HEADERS

• HR_PUMP_BATCH_LINES

Note:  The Meta–Mapper creates views based on the batch lines
table called HRDPV_<API Procedure Name>, for example,
HRDPV_CREATE_EMPLOYEE.

PL/SQL Routines

Use the predefined and generated PL/SQL routines to insert your
external or legacy data into the batch lines table.  Meta–Mapper



4 – 5Oracle HRMS Data Pump

generates a separate routine for each API that is supported by the Data
Pump.

• HR_PUMP_UTILS.CREATE_BATCH_HEADER(...)

• HRDPP_<API Procedure Name>.INSERT_BATCH_LINES

For example, HRDPP_ CREATE_EMPLOYEE
.INSERT_BATCH_LINES

There is also a help routine to provide detailed information on the
parameter options for specific procedures.

• HR_PUMP_META_MAPPER.HELP (
                      <package_name>, <procedure_name>)

The Data Pump Engine Process

The Data Pump Engine process is a standard concurrent process that
performs the actual data validation and loading operations.  It takes two
parameters:

• Batch name

• Processing mode

Special Features of Data Pump

The following is a list of the special features provided with Data Pump:

User Keys

Data Pump enables you to define the combination of data items that
uniquely identify records for loading into Oracle HRMS.  For example,
when you are loading data for a Person, you could use a combination of
Last Name, First Name, Date of Birth, and Gender to identify that
person uniquely in Oracle HRMS.

You store these user key definitions in the table
HR_PUMP_BATCH_LINES_USER_KEYS.

Use Actual Values

In nearly all cases you can load data using actual names or values
without having to identify a system value in Oracle HRMS.  The
conversion of name to ID is transparent to the user.  For example, you
can use a real Job Name without needing to identify the JOB_ID in
Oracle HRMS;  or you can use the value ‘Male’ for gender without
needing to know that the code value is ‘M’.

Automatic Parallel Processing Of Batch Load Process

Data Pump automatically supports parallel processing on
multi–processor systems without any extra code.  You turn this on by



4 – 6 Implementing Oracle HRMS

inserting or updating a row for THREADS in the
PAY_ACTION_PARAMETERS table.

This is the same parameter that controls parallel processing for the
Payroll Run and other processes in Oracle HRMS.

Note:  When you are using parallel processing, use the
P_LINK_VALUE parameter in the batch lines to group
transactions that must be run within the same thread.

Explicit User Ordering of Operations

When loading batch lines with related data you must perform some
operations in a strict sequence.  For example, entering salary
information for an employee must take place after the employee record
has been created.

With Data Pump, you use the P_USER_SEQUENCE parameter to
control the order of processing of batch lines.

Note:  Data Pump cannot validate the sequence numbers you
enter.  It accepts the sequence and tries to process as instructed.
If you use incorrect numbers the process may return validation
errors when it tries to load your data in the wrong sequence.
See: Running the Data Pump: page 4 – 17.

Validation Mode Operation

When you submit the Data Pump concurrent process you can choose to
run it in validation mode.  This enables you to review errors in batches
or in related records in a batch and to change them before any of them
are committed to the HRMS database.

Processing Batches

When you run Data Pump the process only loads data that has not
already been processed successfully.  This means that you can run a
batch, review and correct errors for any specific lines, and then rerun the
same batch.  You can repeat this process until you have successfully
loaded all lines in the batch.

To do this you submit the concurrent process with the same batch name.
All unprocessed or errored lines are reprocessed automatically.

Logging Options

There are many logging options with Data Pump that help you find
errors when running the process.



4 – 7Oracle HRMS Data Pump

Using Data Pump

To use Data Pump, follow this sequence of tasks:

1. Decide which of the supported API modules you require for loading
your external data and run the Meta–Mapper to generate interface
procedures for these APIs.

See: Running the Meta–Mapper: page 4 – 8.

2. Use the predefined PL/SQL routines and those created by the
Meta–Mapper to transfer your external data into the Data Pump
tables.

See: Loading Data Into the Batch Tables: page 4 – 14.

Note:  For each entity that requires a User Key you must include
the value you want to use as a unique identifier.  For example,
the parameters P_PERSON_USER_KEY and
P_ASSIGNMENT_USER_KEY for create_employee.

3. Optional.  Run Data Pump in validation mode to check and correct
data before it is loaded.

See: Running the Data Pump Process: page 4 – 17.

4. Run Data Pump to load data from batch tables into the Oracle
HRMS tables.

Note:  When you load a record for the first time, Data Pump
automatically inserts your user key value from the batch lines,
and the unique key id generated by the API into the
HR_PUMP_BATCH_LINE_USER_KEYS table.  This
combination is used for all further data loads that update
existing records in Oracle HRMS.

For example, P_PERSON_USER_KEY = USER_KEY_VALUE
and PERSON_ID = UNIQUE_KEY_ID.

5. Review any errors and correct causes.

See: Finding and Fixing Errors: page 4 – 18.

6. If necessary, rerun Data Pump to load corrected batch lines.

See: Rerunning the Data Pump Process: page 4 – 22.

Repeat 5 and 6 until all lines are successfully loaded.

7. Optional.  Purge data from the batch tables.

See: Purging Data: page 4 – 22.



4 – 8 Implementing Oracle HRMS

Running the Meta–Mapper

Based on your implementation you might decide that you do not need
to use all of the predefined APIs to load external data. Run the
Meta–Mapper for all APIs or for each single API that you select. The
Meta–Mapper generates a specific PL/SQL package and view for each
API.

Note:  For APIs with overloaded interfaces, the Meta–Mapper
will only generate code for the latest interface. The latest
interface is the interface that has the greatest number of
mandatory parameters.

Use the following SQL*PLUS command to generate packages and views
for all APIs:

sql> execute hr_pump_meta_mapper.generateall;

Use the following SQL*PLUS command to generate packages and views
for one API:

sql> execute hr_pump_meta_mapper.generate(

<package_name>,<procedure_name>);

For example:

sql> execute hr_pump_meta_mapper.generate( ’hr_employee_api’,

’create_employee’ );

The naming convention for the view is hrdpv_<api_module_name> and
the naming convention for the PL/SQL package is hrdpp_<api module
name>. This applies unless the name would exceed 30 bytes, in which
case the name is truncated to 30 bytes.  In the example, the name of the
view is hrdpv_create_employee, and the name of the package is
hrdpp_create_employee.

You can use the view to insert legacy data into the HRMS schema or the
batch tables, or to update data already in the batch lines table. The
PL/SQL package contains an insert_batch_lines procedure to make it
easy to insert data from your external systems into the batch lines table;
and a call procedure that executes the API on the rows in the batch lines
table.

Note:  You must call the Meta–Mapper before using the Data
Pump to load any data. After calling the Meta–Mapper for all
the required APIs, restart the concurrent manager before
running the Data Pump.



4 – 9Oracle HRMS Data Pump

View Generated by the Meta–Mapper

For each API the Meta–Mapper generates a view on the
HR_PUMP_BATCH_LINES table that reflects the parameters of the API.
This makes it easier to examine and update row values.  The name of the
view reflects the API name.  For example,
HRDPV_CREATE_EMPLOYEE.  For a full listing of this view see: Table
and View Descriptions: page 4 – 31 .

In addition to the parameters for the API, the Meta–Mapper always
creates the following columns in the view:

Column Description

––––––––––––––––––––––––––––––––––––––––––––––––––––

BATCH_ID Foreign key to HR_PUMP_BATCH_HEADERS

BATCH_LINE_ID Foreign key to HR_PUMP_BATCH_LINES.

Primary key generated using the

hr_pump_batch_lines_s sequence.

API_MODULE_ID Foreign key to HR_API_MODULES.

This tells Data Pump which api to 

call for each row.

LINE_STATUS Load status of this API:

 ‘U’ – Unprocessed. 

  This must be the initial value for all

lines

 ’C’ – Complete.

  The API call was successful and the

changes have been committed.

 ’E’ – Error.

 ’V’ – Validated 

The API call was successful but the

changes have not been committed.

USER_SEQUENCE Used to control processing order.

For example, to make sure that address

for an employee is loaded after the

employee record has been created.

LINK_VALUE Use a unique link_value to link multiple

rows in a single batch.

Set this value when using parallel

processing to make sure that related

 rows in a batch are processed together.

Meta–Mapper also creates other columns for specific APIs.  For
example, some of the columns on the create employee view are:

• P_EFFECTIVE_DATE

• P_MANAGER_FLAG

• P_ASSIGNMENT_USER_KEY



4 – 10 Implementing Oracle HRMS

Other columns are created to reflect the PL/SQL OUT values returned
from the API so that you can examine these values.  For example:

• P_NO_MANAGERS_WARNING

You do not need to know which columns of the batch lines table hold
specific parameters for the API.

Required Columns

If you use the view to insert data to the batch lines table then remember
that in addition to the data required for the insert batch line procedure
you also need :

• batch_line_id

Primary key generated using the hr_pump_batch_lines_s
sequence.

• line_status

Must be set to ’U’ (unprocessed).

• api_module_id

Foreign key to hr_api_modules.

The following query gets the api_module_id for create employee:

        SELECT API_MODULE_ID

        FROM HR_API_MODULES

        WHERE UPPER(MODULE_NAME) = ’CREATE_EMPLOYEE’

        AND   UPPER(MODULE_PACKAGE) = ’HR_EMPLOYEE_API’;

PL/SQL Package Generated by the Meta–Mapper

The Meta–Mapper also generates a separate package for each API to
make it easier for you to load data to the batch lines table or to review
the content of the table for specific APIs.

For example,  the create_employee package hrdpp_create_employee
contains two procedures:

• insert_batch_lines

• call

Insert Batch Lines Procedure

Use this procedure to simplify loading data into the batch lines table.

A call to this procedure creates one row in the batch lines table, complete
with all the parameters.  For create employee, some of the parameters
are:



4 – 11Oracle HRMS Data Pump

p_batch_id                      number      in

p_user_sequence                 number      in     default

p_link_value                    number      in     default

p_hire_date                     date        in

p_last_name                     varchar2    in

p_sex                           varchar2    in

p_per_comments                  varchar2    in     default

p_date_employee_data_verified   date        in     default

p_date_of_birth                 date        in     default

p_email_address                 varchar2    in     default

p_employee_number               varchar2    in

p_expense_check _send_to_addres varchar2    in     default

p_first_name                    varchar2    in     default

p_known_as                      varchar2    in     default

p_marital_status                varchar2    in     default

p_middle_names                  varchar2    in     default

p_nationality                   varchar2    in     default

p_national_identifier           varchar2    in     default

p_previous_last_name            varchar2    in     default

p_registered_disabled_flag      varchar2    in     default

p_title                         varchar2    in     default

p_attribute1                    varchar2    in     default

p_attribute2                    varchar2    in     default

p_attribute3                    varchar2    in     default

p_attribute4                    varchar2    in     default

p_attribute5                    varchar2    in     default

p_attribute6                    varchar2    in     default

p_attribute7                    varchar2    in     default

p_attribute8                    varchar2    in     default

    ...

    ...

p_resume_exists                 varchar2    in     default

p_resume_last_updated           date        in     default

p_second_passport_exists        varchar2    in     default

p_student_status                varchar2    in     default

p_work_schedule                 varchar2    in     default

p_suffix                        varchar2    in     default

p_person_user_key               varchar2    in

p_assignment_user_key           varchar2    in

p_user_person_type              varchar2    in     default

p_vendor_name                   varchar2    in     default

p_correspondence_language       varchar2    in     default

This example does not show all the parameters as there are many more.

Note:  This procedure requires two user key values
p_person_user_key and p_assignment_user_key.  You must supply
values for these keys.  If you use Data Pump to create records in
Oracle HRMS then Data Pump automatically inserts your key
values and the HRMS key values generated by the APIs into the



4 – 12 Implementing Oracle HRMS

user keys table.  For subsequent actions Data Pump can use
these keys to match records from your external system with the
Oracle HRMS records.  A more detailed explanation and
example is included in a later section of this document.

Call Procedure

This is the actual ’wrapper’ procedure executed by the Data Pump
process to call the API and pass in the appropriate parameter values.
The procedure takes two arguments: p_business_group_id and
p_batch_line_id.

Note:  Direct calls to this procedure are NOT supported.  You
must use the Data Pump concurrent process to execute the
procedures.

Meta–Mapper Help Procedure

The Meta–Mapper package also includes a help procedure
hr_pump_meta_mapper help that returns information on the generated
PL/SQL package and view names, and the batch lines table parameter
values for a given API.

The help procedure has two parameters:

• p_module_package

The name of API PL/SQL package

• p_module_name

The name of API PL/SQL procedure

You must set server output on before calling this procedure.

For example, use the following SQL*PLUS to get help for
hr_employee_api.create_employee:

sql> set serveroutput on size 1000000;

sql> execute hr_pump_meta_mapper.help( ’hr_employee_api’,

’create_employee’ );

The output is as follows:

Generated package: hrdpp_create_employee

Generated view: hrdpv_create_employee



4 – 13Oracle HRMS Data Pump

Parameter Name              Type    In/Out Default? Lookup Type

–––––––––––––––             –––––   –––––– –––––––– –––––––––––

P_HIRE_DATE                 DATE      IN

P_LAST_NAME                 VARCHAR2  IN

P_SEX                       LOOKUP    IN   SEX

P_PER_COMMENTS              VARCHAR2  IN   DEFAULT

P_DATE_EMPLOYEE

  _DATA_VERIFIED            DATE      IN   DEFAULT

P_DATE_OF_BIRTH             DATE      IN   DEFAULT

P_EMAIL_ADDRESS             VARCHAR2  IN   DEFAULT

P_EMPLOYEE_NUMBER           VARCHAR2  IN

P_EXPENSE_CHECK

  _SEND_TO_ADDRES           LOOKUP    IN   DEFAULT  HOME_OFFICE

P_FIRST_NAME                VARCHAR2  IN   DEFAULT

P_KNOWN_AS                  VARCHAR2  IN   DEFAULT

P_MARITAL_STATUS            LOOKUP    IN   DEFAULT  MAR_STATUS

P_MIDDLE_NAMES              VARCHAR2  IN   DEFAULT

P_NATIONALITY               LOOKUP    IN   DEFAULT  NATIONALITY

 

P_NATIONAL_IDENTIFIER       VARCHAR2  IN   DEFAULT

P_PREVIOUS_LAST_NAME        VARCHAR2  IN   DEFAULT

P_REGISTERED_DISABLED_FLAG  LOOKUP    IN   DEFAULT  YES_NO

P_TITLE                     LOOKUP    IN   DEFAULT  TITLE

P_WORK_TELEPHONE            VARCHAR2  IN   DEFAULT

P_ATTRIBUTE_CATEGORY        VARCHAR2  IN   DEFAULT

P_ATTRIBUTE1                VARCHAR2  IN   DEFAULT

P_ATTRIBUTE2                VARCHAR2  IN   DEFAULT

P_ATTRIBUTE3                VARCHAR2  IN   DEFAULT

P_ATTRIBUTE4                VARCHAR2  IN   DEFAULT

P_ATTRIBUTE5                VARCHAR2  IN   DEFAULT

P_ATTRIBUTE6                VARCHAR2  IN   DEFAULT

...

P_ASSIGNMENT_SEQUENCE       NUMBER    OUT

P_ASSIGNMENT_NUMBER         VARCHAR2  OUT

P_NAME_COMBINATION_WARNING  BOOLEAN   OUT

P_ASSIGN_PAYROLL_WARNING    BOOLEAN   OUT

P_USER_PERSON_TYPE          VARCHAR2  IN   DEFAULT

P_VENDOR_NAME               VARCHAR2  IN   DEFAULT

P_CORRESPONDENCE_LANGUAGE   VARCHAR2  IN   DEFAULT

...

The following is an explanation of the help output:

• In the above example, the insert_batch_lines procedure is:
hrdpp_create_employee.insert_batch_lines.

• The Parameter Name column shows the name of the parameter as
it appears in the insert_batch_lines procedure and generated
view.



4 – 14 Implementing Oracle HRMS

• A parameter can have type USER_KEY which means that it is a
user key (see the section User Key Values: page 4 – 28 for more
details).  For example,  P_SUPERVISOR_USER_KEY USER_KEY
IN DEFAULT. User key parameters are implicitly of type
VARCHAR2.

• DATE parameter values are passed to the insert_batch_lines
procedure as VARCHAR2 strings in YYYY/MM/DD format.

Note:  The correct format for all dates is now YYYY/MM/DD.

• BOOLEAN parameter values are passed to the insert_batch_lines
procedure as VARCHAR2 strings with the values TRUE or
FALSE’.

• The In/Out column has the value IN for parameters that are
PL/SQL IN or IN/OUT when passed to the API, or are user key
parameters. If the parameter is an API PL/SQL OUT parameter,
then the In/Out column value is OUT.

• Only IN parameters are arguments to the insert_batch_lines
procedure. OUT parameters appear in the generated view.

• The Default column has the value DEFAULT if the parameter’s
value is not required in the batch lines table. For mandatory
parameters this column is empty.

• Mandatory parameter values must be passed to the
insert_batch_lines procedure.

• If the parameter is a lookup parameter, the Lookup Type column
contains the name of the parameter’s lookup type.

Loading Data Into the Batch Tables

The Meta–Mapper generates a specific PL/SQL package and view for
each API. Use these PL/SQL interface procedures and views for loading
data into the batch tables, except where stated otherwise in this
document.

It is particularly important that inserts are performed exclusively
through the interfaces.  There are two reasons for this:

• Using the PL/SQL procedure insulates you from the complexities
of the underlying schema.

• Using the PL/SQL procedure insulates you from any schema
changes that might be made in any future release.  This is
important if you intend to use Data Pump on a continuing basis.



4 – 15Oracle HRMS Data Pump

Suggestion:  Test the validity of the legacy data capture code on
a subset of the batch to be loaded. For example, if you plan to
load details for 100000 people, test your routines to validate and
load a subset of 100 representative people.  This should help
you to identify and resolve any obvious problems with your
capture code before you attempt to load the bulk of your data.

The Batch Interface Tables

The main objective of the interface design was to keep everything as
simple as possible.  The result is that Data Pump only has one batch
header and one batch lines table for loading data for all APIs.  Views are
generated by the Meta–Mapper with specific column names for each
API.

Each row of the batch lines table holds the reference to an API and data
values.  Data Pump executes each API with the data passed in as
parameters.

How to Control Processing Order

There are many instances where you need to control the order in which
batch lines are loaded into the database.  For example, Data Pump
would generate an error if it tried to create an address for a person
before it created the person.

To control the order in which operations are performed, use the
p_user_sequence parameter to set the order manually.  Choose some
appropriate numeric values for this parameter when you insert the data
to the batch lines table. Data Pump uses these numbers to determine
processing order.

Different Approaches to Batch Loading

There are a number of approaches you can take when setting the order
for processing batch lines.

One approach would be to load disparate data in separate batches.  For
example load personal information in one batch and address
information in a second batch.

Another approach would be to create a batch containing lines with
related API calls.  For example, you could load person, address, and
assignment information for one employee as part of one batch.  In this
approach, if you are using the parallel processing option, you would use
the p_link_value parameter to make sure all the lines are processed in the
same chunk.  Use the default or p_user_sequence parameter to make sure
that the different API calls are made in the correct order within the
linked group.



4 – 16 Implementing Oracle HRMS

Processing Order When Running Parallel

The Data Pump process has been optimized to take advantage of
parallel processing options.  If you want to run a multi–threaded process
there are some special considerations for ordering batch lines.

When you run the Data Pump process in parallel, the concurrent
manager generates multiple threads, each of which processes a defined
number of batch lines before it commits them to the database.  The
number of lines is controlled by the CHUNK_SIZE payroll action
parameter – see Other Parameters: page 4 – 17 for details.

With parallel processing and chunking of lines, in theory a transaction
that includes more than one line could be split between processes.  This
would mean that lines might not be processed in the order set by the
p_user_sequence parameter.

You can prevent this by using the p_link_value parameter.  This
parameter tells Data Pump that a set of batch lines must be processed in
the same chunk.   Use the same link value for all the lines that must be
processed by the same thread – this will automatically extend the
number of rows processed by a single thread when necessary.

Note:  When running Data Pump in parallel you may find that
performance does not scale as expected.  Remember that
running business process APIs in parallel may cause lock
contention because of extended validation.  For example, the
personal payment method and element entry APIs are known to
have problems in this area.

Default Values for API Parameters

Part of the design for the APIs in Oracle HRMS is that many parameters
have default values set for them.  This means that they can be called
directly without having to pass values for all parameters.

When you use Data Pump there is a similar mechanism that means you
do not have to supply values for all parameters.

The following rules apply:

• If an insert batch lines parameter is passed NULL or is not passed
a value and can be defaulted, the appropriate default value will
be passed to the API module itself.

• If you want to set up an explicit NULL value for a parameter, use
the special reserved string <NULL>.  You may want to do this to
update to a null value.

Any other value passed as a parameter will be the value inserted into
the batch line and subsequently passed to the appropriate API process.



4 – 17Oracle HRMS Data Pump

Running the Data Pump Process

Use the Submit Reports and Processes form to start the Data Pump
Engine process.  It takes two parameters:

• BATCH NAME

The batch_name is one of the batches inserted via the
create_batch_header procedure.

• VALIDATE FLAG

Default value for this flag is No.  This commits all valid lines to
the database.

If the validate flag is set to Yes, the process runs in validation
mode.  The APIs are called, but their results are rolled back.  Use
this mode to check and correct data before committing changes to
the database.

Note:  Before running the Data Pump process you should
decide whether to use parallel threads and whether you want to
turn on any logging options.

Running In Parallel

To enable parallel processing you set a value for the THREADS
parameter in PAY_ACTION_PARAMETERS.

The threads value includes the starting process. That means that if you
set a value of 2, the main engine code starts with one slave process to
make a total of two concurrent processes.  When running in parallel, the
’master’ process may finish before the slave processes.  This is normal.

Note:  The THREADS parameter also controls the parallel
execution of the other Oracle Payroll processes. When you have
completed Data Pump processing you should reset the
THREADS parameter so that the parameters for Data Pump are
not transferred to normal payroll processing.

Other Parameters

There are three other payroll action parameters you can set for Data
Pump.

CHUNK_SIZE

Default = 10

Controls how many batch API calls are processed at a time per thread
when running in parallel.  It also controls the number of API calls per



4 – 18 Implementing Oracle HRMS

commit.  Note that there are certain circumstances under which the
actual number can vary from this number. For example, it can be higher
if the p_link_value parameter is set.

MAX_ERRORS_ALLOWED

Default = 20

Controls how many errors in calling an API will be tolerated before the
entire Data Pump engine fails. This is the number of errors per parallel
thread.

PUMP_DEBUG_LEVEL

Use this parameter to turn on logging for tracking errors generated by
the Data Pump process. For a list of valid values for this parameter, see
Logging Options: page 4 – 18.

Checking Run Status

The Data Pump runs as a concurrent process so you can check its status
at any time using the View Concurrent Requests window.  Failure is
reported by the concurrent manager only if the entire process has failed.
Usually this happens because the number of errors exceeded the value
set by the MAX_ERRORS_ALLOWED parameter.

Note:  Even if the concurrent process completes successfully
there may be some data errors encountered by the process.  You
should always check for batch line errors.

Finding and Fixing Errors

This section deals with the logging options available for tracking errors
generated by the Data Pump process, as well as hints and tips on how to
deal with these.

Logging Options

You enable logging options for Data Pump by inserting appropriate
values in the PAY_ACTION_PARAMETERS table for the
PUMP_DEBUG_LEVEL parameter.

Note:  Turning logging on always affects the overall
performance of the data pump process.  You should only use
logging to help track down problems when they occur.



4 – 19Oracle HRMS Data Pump

Remember also to switch logging off after you have solved your
problem.

Valid values for PUMP_DEBUG_LEVEL are as follows.

Suggestion:  These first three options are likely to be the most
useful to you.

Option Description

AMD API Module Debug (enables trace output from API)

RRP Range Row Processing logging (logs the number of errors
that occurred for each unit of work, or range)

GID Get_id function failure information (logs failures in func-
tions that map user values to IDs)

MSG Output specific logging messages

ROU Routing information (entry to and exit from procedures)

WCD Wrapper cache debug logging

STK Stack dump logging (trace information on failure)

EXT Exit information (trace information on success)

RRI Range row insert logging

You can combine any number of these options by concatenating the
values, separated by a colon.  For example:

  update pay_action_parameters

  set    parameter_value = ’MSG:RRI:RRP’

  where  parameter_name  = ’PUMP_DEBUG_LEVEL’;

How to View Logging Output

When you enable logging options, output is produced for every thread
that may be running.  Use the PYUPIP command to view this output.

To use this command you will need to know the ID for the concurrent
process you are logging.  Online you can use the View My Requests
window to find the Concurrent Request IDs.  Alternatively, you can
query from the HR_PUMP_REQUESTS table. One row is inserted for
each process that is running.  For example:

select * from hr_pump_requests;

Typical output would be:



4 – 20 Implementing Oracle HRMS

BATCH_ID    REQUEST_ID      PROCESS_TYPE

––––––––––– ––––––––––––––– –––––––––––––––––

8437        98533           MASTER

8437        98534           SLAVE

This tells us that there are two processes running, and the request_id
values are 98533 and 98534.

Use PYUPIP to trace the output in a separate command line window.
For example:

PYUPIP <user/password>@database REQID98533

PYUPIP <user/password>@database REQID98534

Note:  If you are running multiple threads, you should trace all
the threads, or the processing halts when the database trace pipe
fills up. It may be advisable to run a single thread only when
tracing.

How to Find Errors in Batch Lines

When an error occurs during processing, Data Pump generates a row in
the HR_PUMP_BATCH_EXCEPTIONS table.  In this release you must
use SQL*PLUS to view this information.

Additionally, you can use SQL*PLUS to query rows in
HR_PUMP_BATCH_LINES where the LINE_STATUS has a value of E –
error.

Note:  In validation mode LINE_STATUS is set to V– validated,
for a successful API call. In update mode LINE_STATUS is set to
to C – connected,  for a successful API call.

Investigating the Cause of Errors

Investigation strategies depend on the type of error and the indications
of its origin.  For some errors you may need experience with the use of
APIs and the Oracle HRMS application to recognize what might be
wrong.

Some specific advice for Data Pump follows:

• Start with the columns of the HR_PUMP_BATCH_EXCEPTIONS
table to identify which batch line has caused the error.  Use this to
check the parameters and values of the batch line itself.

• One common error is ’no data found’.  This is most likely to
happen because of an error in one of the functions called to
convert user meaning to id values.  In this case, the exact cause of
the error will not be obvious from looking in the exceptions table.



4 – 21Oracle HRMS Data Pump

More information can be gained from using the GID logging
value.  When failure occurs, the name of the function that failed,
plus the argument values passed in, is displayed in the trace.

• The AMD logging value can be used to help track down
problems.  It activates the logging in the API modules themselves
– providing copious output to examine.

• Another common cause of errors is incorrect ordering of the data
load.  For instance, attempting to load a person’s address before
the person.  An associated error may occur if you are using
parallel processing and do not use LINK_VALUE to associate
multiple batch lines.

• When running in validation mode, ordering errors will occur if
the batch is not split up into chunks that are independent of the
results of other chunks. This will occur even if the validation is
done with a single thread. The reason is that the results of APIs
over a single chunk are rolled back to release rollback segments.
This is another reason to use the p_link_value parameter to control
the running of a load.

How to Fix Errors

The most common cause of errors is likely to be that incorrect values
have been loaded via the insert_batch_lines procedure and that these
need to be corrected.

Using The Views To Correct Data

Use the HRDPV_ views on HR_PUMP_BATCH_LINES to correct values
in the appropriate columns.  You can use normal update statements on
these views and this makes fixing data problems much simpler.

Warning:  When using the views to make changes to problem
data, you must not alter the LINE_STATUS on the
HR_PUMP_BATCH_LINES table. The Data Pump engine uses
this for processing.

Note:  Views on HR_PUMP_BATCH_LINES display rows only
for the APIs for which they were generated. Any attempt to
update the API_MODULE_ID column with an incorrect value
will fail with an ORA–1402 error.  The views are generated with
a WITH CHECK OPTION on the where–clause to prevent you
from using a view to generate any row that the view could not
select.

(The same warning applies to inserting rows into
HR_PUMP_BATCH_LINES using the generated views.)



�

4 – 22 Implementing Oracle HRMS

Rerunning The Data Pump Process

After you have fixed any problems you can rerun the batch by
submitting the Data Pump process again using the same batch name.
You can submit the process any number of times until all lines are
successfully completed.   Batch lines with a status of E – error; U–
unprocessed; or V –validated are automatically reprocessed.

You do not have to take any action to remove rows from the exception
table.  Data Pump automatically deals with this.

Lines validated in previous Data Pump runs are reprocessed even if the
Data Pump is run in validation mode because the results of the
associated API calls would have been rolled back in the previous runs.
Only lines with a status of C –complete are not reprocessed.

Purging Data
Currently there is no purge process provided with Data Pump to
remove data automatically from batch tables, other than the automatic
removal of rows in the exception tables. In all other instances, you
should consider what data needs to be purged and when.

Attention:  You should take extra care when purging any data
from the user key values table.  For example, deleting
assignment and person user keys would mean that you could
not create a secondary assignment for that employee unless you
first use the add_user_key procedure to recreate the purged user
keys. We therefore recommend that the USER_KEYS table is
only purged when Data Pump processing has been completed.

How To Purge

In all cases you should start with the following actions:
TRUNCATE TABLE HR_PUMP_REQUESTS;

TRUNCATE TABLE HR_PUMP_RANGES;

Simple Purge Of All Rows

If you want to purge all rows regardless of status then use the following:
TRUNCATE TABLE HR_PUMP_BATCH_EXCEPTIONS;

TRUNCATE TABLE HR_PUMP_BATCH_LINE_USER_KEYS;

TRUNCATE TABLE HR_PUMP_BATCH_LINES;

TRUNCATE TABLE HR_PUMP_BATCH_HEADERS;

Purge Of All Successful Rows

This is more complicated.  You should purge data only when all loads
have been successful.  This avoids the danger of purging rows that are
still needed.  Perform the following actions:



4 – 23Oracle HRMS Data Pump

• Use the HR_PUMP_BATCH_LINES.LINE_STATUS column to tell
which rows have been successful, and therefore can be purged.

– Look for a status of C.  Of course, if all rows in a batch have
status C then simply purge all rows in that batch.

• Remove all appropriate rows in the following tables, in the order
shown below:

– HR_PUMP_BATCH_EXCEPTIONS

– HR_PUMP_BATCH_LINE_USER_KEYS

– HR_PUMP_BATCH_LINES

If all rows in HR_PUMP_BATCH_LINES have been deleted, remove the
appropriate batch from the HR_PUMP_BATCH_HEADER table.

Sample Code

This section contains some sample code showing how you could call the
batch lines procedures.

This example is artificial in that the data for the API calls is generated.
However, it shows how we can prepare the Data Pump to create a
number of batch lines that:

• Create an employee

• Create an address for the employee

• Update the default assignment criteria

• Create a secondary assignment

The example also illustrates the use of p_link_value to make sure that the
separate transactions for each employee and assignment are processed
by the same thread.

–––––––––––––––––––––––– start of example –––––––––––––––––––––––

create or replace package hrdp_cre_emp as

procedure hrdp_cre_emp (p_start in number, p_end in number);

end hrdp_cre_emp;

/

create or replace package body hrdp_cre_emp as

/*

 *  Insert a number of batch lines in preparation for

 *  running the data pump engine, which will then

 *  – create an employee

 *  – create an address for the employee

 *  – update the criteria of the default assignment

 *  – create a secondary assignment



4 – 24 Implementing Oracle HRMS

 */

procedure hrdp_cre_emp (p_start in number, p_end in number) is

   l_last_name    varchar2(40);

   l_hire_date    date;

   l_birthday     date;

   l_first_name   varchar2(40);

   l_asgno        varchar2(40);

   –– These are the ’out’ values.

   l_special_ceiling_step_id     number;

   l_person_user_key             varchar2(100);

   l_address_user_key            varchar2(100);

   l_assignment_user_key         varchar2(100);

   l_assignment_user_key2        varchar2(100);

   l_link_value                  number;

   l_commit_count number;

   l_commit_limit number;

   l_emp_count    number;

   l_address_line1 varchar2(256);

begin

   l_commit_limit := 10;   –– commit after every 10 employees.

   l_commit_count := 0;

   l_first_name   := ’David’;

   l_hire_date    := to_date(’1997/12/01’, ’YYYY/MM/DD’);

   l_birthday   := to_date(’1970/01/01’, ’YYYY/MM/DD’);

   l_link_value := 0;

   for emp_count in p_start..p_end loop

      –– Prepare to create an employee.

     l_last_name := ’DUMP’ || lpad(emp_count, 5, ’0’);

     l_person_user_key     := l_last_name || ’ : PER USER KEY’;

     l_assignment_user_key := l_last_name || ’ : ASG USER KEY’;

     l_address_user_key := l_last_name || ’ : ADDR USER KEY’;

     l_address_line1 := to_char(emp_count) || ’, Union Square’;

     hr_utility.trace(’Last Name : ’ || l_last_name);

     –– Allow linking together so that these API calls process

     –– by the same thread.

     l_link_value := l_link_value + 1;

     hrdpp_create_employee.insert_batch_lines

     (

         p_batch_id             => 3,

         p_user_sequence        => null,

         p_link_value           => l_link_value,

         p_person_user_key      => l_person_user_key,

         p_assignment_user_key  => l_assignment_user_key,

         p_hire_date            => l_hire_date,

         p_last_name            => l_last_name,

         p_sex                  => ’Male’,

         p_employee_number      => null,

         p_per_comments         => ’Comments for : ’ ||

l_last_name,



4 – 25Oracle HRMS Data Pump

         p_date_of_birth        => l_birthday,

         p_email_address        => ’somebody@us.oracle.com’,

         p_first_name           => l_first_name,

         p_user_person_type     => ’Employee’

      );

      –– Create an address for the person.

      hrdpp_create_us_person_address.insert_batch_lines

      (

         p_batch_id             => 3,

         p_user_sequence        => null,

         p_link_value           => l_link_value,

         p_effective_date       => l_hire_date,

         p_primary_flag         => ’Yes’,

         p_date_from            => l_hire_date,

         p_address_type         => ’Home’,

         p_address_line1        => l_address_line1,

         p_city                 => ’Golden Valley’,

         p_county               => ’Los Angeles’,

         p_state                => ’California’,

         p_zip_code             => ’91350’,

         p_country              => ’US’,

         p_person_user_key      => l_person_user_key,

         p_address_user_key     => l_address_user_key

      );

      –– Let’s update some criteria.

      l_special_ceiling_step_id := hr_api.g_number;

      hrdpp_update_emp_asg_criteria.insert_batch_lines

      (

         p_batch_id                     => 3,

         p_user_sequence                => null,

         p_link_value                   => l_link_value,

         p_effective_date               => l_hire_date,

         p_datetrack_update_mode        => ’CORRECTION’,

         p_assignment_user_key          => l_assignment_user_key,

         p_payroll_name                 => ’Monthly’,

         p_special_ceiling_step_id      =>

l_special_ceiling_step_id

      );

      l_assignment_user_key2 := l_assignment_user_key || ’2’;

      hrdpp_create_secondary_emp_asg.insert_batch_lines

      (

         p_batch_id                  => 3,

         p_user_sequence             => null,

         p_link_value                => l_link_value,

         p_assignment_user_key       => l_assignment_user_key2,

         p_person_user_key           => l_person_user_key,

         p_effective_date            => l_hire_date,

         p_assignment_number         => l_asgno,



4 – 26 Implementing Oracle HRMS

         p_comments                  => ’asg created by data

pump’,

         p_organization_name         => ’Setup Business Group’,

         p_grade_name                => ’faz1’,

         p_job_name                  => ’TEST’,

         p_payroll_name              => ’Monthly’

      );

      l_hire_date    := l_hire_date + 1;

      l_commit_count := l_commit_count + 1;

      if(l_commit_count = l_commit_limit) then

         –– Commit after so many employees.

         hr_utility.trace(’Commit after ’ || l_commit_limit || ’

employees.’);

         commit;

         l_commit_limit := 1;

      end if;

   end loop;

end hrdp_cre_emp;

/

Notes on Using The Generated Interfaces

The Meta–Mapper process generates a view and PL/SQL packages for
each API.  This section explains some of the factors that you should keep
in mind when using them.

Finding System IDs from Names or Values

When you use APIs you must supply lookup codes and surrogate
primary keys for many parameters.  For example:

  ...

  p_sex        => ’M’,

  p_payroll_id => 13456,

  ...

Without Data Pump you would need to write additional code to convert
values from your external system to Oracle HRMS system IDs for each
API.

However, with Data Pump you have a set of predefined procedures for
each of the supported APIs that automatically convert user names or
values into lookups and system IDs.  For example:

  ...

  p_sex          => ’Male’,

  p_payroll_name => ’Monthly Payroll’,

  ...



4 – 27Oracle HRMS Data Pump

Note:  For lookup parameters, you can use the meaning or the
lookup code itself.  For non–lookup type IDs you will find an
alternative parameter to use.

Exceptions

There are three major exceptions to the use of names for parameter
values:

• Flexfield Attribute Parameters

• PL/SQL IN/OUT Parameters

• Legislation Specific Lookup Parameters

Flexfield Attribute Parameters

Most of the API processes include flexfield attribute parameters with
names like P_SEGMENT18 or P_ATTRIBUTE20.  Data Pump cannot
know what the mappings of these values are in your specific
implementation and therefore value conversion is not supported.

This means that you must take responsibility for passing the correct
lookup code or other value as appropriate.

PL/SQL IN/OUT Parameters

When an API performs a combination of different actions then you need
to provide the appropriate id or code values for the parameters rather
than the user meanings.  This should not be a great problem where the
values for these items can be derived before the Data Pump run.

For example, in hr_assignment_api.update_emp_asg ,
p_special_ceiling_step_id must be passed in as an id, even though other
APIs require it to be a user key.

Note:  You cannot provide user keys for PL/SQL IN/OUT
parameters of the API because the Data Pump code that calls the
specific API has no way to determine whether the user key
existed before the API call and therefore whether it is to be
created or its id value updated after the API call.

Many APIs generate a comment_id as an output parameter. However,
you are not required to supply a user key value for the comment_id.
This avoids the generation of a lot of meaningless user keys.

Note:  A comment_id user key is required for the comment_id
parameters to the element entry creation and update APIs. You
must add these user keys if you require them for the element
entry API calls.

Legislation Specific Lookup Parameters

A similar situation arises with legislation–specific business process API
calls where a specific lookup in the legislation–specific API call



4 – 28 Implementing Oracle HRMS

corresponds to a generic parameter in the generic business process API
call.

For example, the p_region_1 parameter in the
hr_person_address_api.create_person_address API corresponds to
p_county lookup parameter in the
hr_person_address_api.create_gb_person_address  API.

When calling hr_person_address_api.create_person_address for a GB
address via Data Pump, you would have to pass the ’GB_COUNTY’
lookup code for the p_region_1 parameter.  Alternatively you could use
the ’GB_COUNTY’ lookup meaning if you used
hr_person_address_api.create_gb_person_address.

Note:  You should use legislation–specific APIs where these are
available.

User Key Values

When you are mapping data from your external system to Oracle HRMS
you will find that there are some cases where an id value for an Oracle
entity cannot be derived from a logical unique key or name.  Examples
of this are Person, Assignment and Address.  Consider the unique
identifier for a person.  It is very difficult, if not impossible, to identify a
person uniquely.  In theory different people may share the same first
and last names, gender, birth date, marital status, and so forth.

There are similar problems if an entity does not have a logical key, and
its surrogate id cannot be derived easily from the names of any of its
component entities. For example, it isn’t easy to identify a unique
Element Link by looking simply at names of its components – Payroll,
Job, Position etc.

Or, the entity may be an abstract entity specific to the Oracle
Applications products and is only identifiable using an id value.  For
example an ID_FLEX_NUM.

The solution provided by Data Pump is to enable you to set a ’User Key’
value.  This value must be a unique character string.  It could be a
unique id taken from your external system or it could be a concatenation
of multiple values.  For example a user key for a person could be the
person’s name concatenated with the existing employee number from
your legacy system.  An illustration would be:

p_person_user_key => ’Joe Bloggs’ || ’2345’,  –– name + emp no

You must define user key values for any parameters with a name that
ends ’user_key’.   Data Pump uses these user key values to identify IDs
for the records in the Oracle HRMS system.



4 – 29Oracle HRMS Data Pump

Note:  User key values must be unique across all entities. For
example, it is not possible to have a Person user key value of
’SMITH1001’, and an Assignment user key value also of
’SMITH1001’.

In most cases you will have one user key value for each system id.
However, with Data Pump you can define many different user keys for
the same system id.  This is important if you are loading data from
different external systems and the unique keys do not match.

User keys are held as rows in the
HR_PUMP_BATCH_LINE_USER_KEYS table.

Creating User Key Values

User keys are created in one of two ways:

• Data Pump inserts new user keys

Using Data Pump you must specify user keys for several API
parameters. After a successful call to an API that creates a new
record, Data Pump inserts a new row in the user keys table with
the name you specified and the system id value returned from the
API. The returned id value is a PL/SQL  OUT parameter to the
API.

• Manually insert a new user key

If you have already loaded data from an external system, or you
want to create multiple user keys for the same system id you can
manually insert rows into
HR_PUMP_BATCH_LINE_USER_KEYS using the add_user_key
utility procedure.

Once the user keys have been created you can use the same key with
other APIs to update an existing entity, or to specify another entity.  For
example, two person user keys can be used to specify a contact
relationship.

Utility Procedures Available With Data Pump

This section lists the utility procedures that are provided with the Data
Pump.

All the procedures are in the HR_PUMP_UTILS package.



4 – 30 Implementing Oracle HRMS

create_batch_header

Parameters :

    p_batch_name            : unique batch name.

    p_business_group_name   : name of business group (optional)

    p_reference             : user reference value (optional)

Returns

    The hr_pump_batch_headers.batch_id.

Description :

    Creates a batch header row.  This should be used to create

    the row rather than direct insert.

An example of a call to this procedure is:

  declare

     l_batch_id number;

  begin

     l_batch_id := hr_pump_utils.create_batch_header

                 (’Employees for Dept 071’, ’AKA Enterprises’);

  end;

add_user_key

Procedure  : add_user_key

Parameters :

    p_user_key_value        : unique user key value.

    p_unique_key_id         : id associated with the user key.

Description :

  Creates a user key for use with Data Pump API calls.

  add_user_key is used to add a user key when the object

  referred to by the id value has not been created by Data

  Pump. This may happen when the object has no creation API but

  is required as a user key parameter to an API called by Data

  Pump, or if the object was created before Data Pump was

  available.

modify_user_key

Procedure  : modify_user_key

Parameters :

    p_user_key_value        : unique user key value identifying

                              the user key to be changed.

    p_new_user_key_value    : new unique user key value.

    p_unique_key_id         : new id associated with the user

                              key.

Description :

    The main purpose of modify_user_key is to fix an incorrect

    user key created by add_user_key. If either

    p_new_user_key_value or p_unique_key_id are null then the

    corresponding column is not updated for the user key.



4 – 31Oracle HRMS Data Pump

Table and View Descriptions

The following section provides more detailed descriptions of the specific
tables and views you use with Data Pump.

HR_API_MODULES

API modules supported by Data Pump

Name                      Description

––––––––––––––––––––––––– ––––––––––––––––––––

API_MODULE_ID             Sequence generated unique id.

API_MODULE_TYPE           Type of the API represented by:

                          ’RH’ – Row Handler

                           (not of interest to Data Pump).

                          ’BP’ – Business Process API.

                          ’AI’ – Alternative Interface API.

MODULE_NAME               API procedure name.

MODULE_PACKAGE            API package name when the

                          module type is ’BP’ or ’AI’.

HR_PUMP_BATCH_LINE_USER_KEYS

This table holds key mappings between your external system and the
Oracle HRMS system.  These keys are required for specific entities
where it may be difficult to identify the record uniquely in Oracle HRMS
from a single field in the batch line table.  For example, you might want
to use Name||National Identifier from the external system to map to
Person ID in Oracle HRMS.

This table is populated automatically by the Data Pump process when
you create new records in Oracle HRMS.  For example when you load
your legacy data.  You can insert new lines to this table if you have
already loaded your legacy data.

You can have multiple external key mappings to the same
unique_key_id in Oracle HRMS.  For example, if you want to interface
data from an external payroll system and an external benefits system to
Oracle HR where the unique IDs are different.



4 – 32 Implementing Oracle HRMS

Name                        Null?    Type          Description

––––––––––––––––––––––––––– –––––––– ––––         –––––––––––––

USER_KEY_ID                 NOT NULL NUMBER(9)

BATCH_LINE_ID                        NUMBER(9)

USER_KEY_VALUE              NOT NULL VARCHAR2(240) User Defined

                                                   key to identify

                                                   a record.

UNIQUE_KEY_ID               NOT NULL NUMBER(15)    Unique Key in

                                                   Oracle HRMS

LAST_UPDATE_DATE                     DATE

LAST_UPDATED_BY                      NUMBER(15)

LAST_UPDATE_LOGIN                    NUMBER(15)

CREATED_BY                           NUMBER(15)

CREATION_DATE                        DATE

HR_PUMP_BATCH_HEADERS

This table holds batch header information for Data Pump.
BATCH_NAME is a parameter for the Data Pump concurrent process.

 Name                   Null?    Type         Description

––––––––––––––––––––––– –––––––– –––––        –––––––––––––

 BATCH_ID               NOT NULL NUMBER(9)

 BATCH_NAME             NOT NULL VARCHAR2(80) Unique name for

                                              the batch

 BATCH_STATUS           NOT NULL VARCHAR2(30) Status can be

                                              decoded using

                                              ’ACTION STATUS’

                                              lookup type

 REFERENCE                       VARCHAR2(80)

 BUSINESS_GROUP_NAME             VARCHAR2(80)

 LAST_UPDATE_DATE                DATE

 LAST_UPDATE_LOGIN               NUMBER(15)

 LAST_UPDATED_BY                 NUMBER(15)

 CREATED_BY                      NUMBER(15)

 CREATION_DATE                   DATE

HR_PUMP_BATCH_LINES

This table holds the individual batch lines that will be loaded by Data
Pump



4 – 33Oracle HRMS Data Pump

Name                 Null?    Type        Description

––––––––––––––––––– –––––––– ––––         –––––––––––––

BATCH_LINE_ID       NOT NULL NUMBER(9)    Sequence generated id

BATCH_ID            NOT NULL NUMBER(9)    Foreign key to

                                          HR_PUMP_BATCH_HEADERS

API_MODULE_ID       NOT NULL NUMBER(9)    Foreign key to

                                          HR_API_MODULES

LINE_STATUS         NOT NULL VARCHAR2(1)  Load status of this API

                                          ’U’ Unprocessed (initial

                                           value)

                                          ’V’ – Validated but

                                          record not committed

                                          ’C’ – Complete and

                                          record

                                          committed

                                          ’E’ – Error

PROCESS_SEQUENCE              NUMBER(9)

USER_SEQUENCE                 NUMBER(9)

LINK_VALUE                    NUMBER

PVAL001                       VARCHAR2(2000)

PVAL002                       VARCHAR2(2000)

PVAL003                       VARCHAR2(2000)

PVAL004                       VARCHAR2(2000)

PVAL005                       VARCHAR2(2000)

PVAL006                       VARCHAR2(2000)

PVAL007                       VARCHAR2(2000)

PVAL008                       VARCHAR2(2000)

PVAL009                       VARCHAR2(2000)

PVAL010                       VARCHAR2(2000)

PVAL230                       VARCHAR2(2000)

PLONGVAL                      LONG

HR_PUMP_BATCH_EXCEPTIONS

Holds exception information.

Name                        Description

––––––––––––––––––––––––    ––––––––––––

EXCEPTION_SEQUENCE          Sequence generated unique id.

EXCEPTION_LEVEL             Decode using ’MESSAGE_LEVEL’ lookup.

SOURCE_ID                   BATCH_ID or BATCH_LINE_ID.

SOURCE_TYPE                 Indicates what SOURCE_ID holds:

                                 ’BATCH_HEADER’ : BATCH_ID

                                 ’BATCH_LINE’ : BATCH_LINE_ID

EXCEPTION_TEXT              Text of exception.



4 – 34 Implementing Oracle HRMS

HRDPV_CREATE_EMPLOYEE

Name                        Null?    Type

–––––––––––––––––––––––––––––––––––– ––––

BATCH_ID                    NOT NULL NUMBER(9)

BATCH_LINE_ID               NOT NULL NUMBER(9)

API_MODULE_ID               NOT NULL NUMBER(9)

LINE_STATUS                 NOT NULL VARCHAR2(1)

USER_SEQUENCE                        NUMBER(9)

LINK_VALUE                           NUMBER

P_HIRE_DATE                          VARCHAR2(2000)

P_LAST_NAME                          VARCHAR2(2000)

P_SEX                                VARCHAR2(2000)

P_PER_COMMENTS                       VARCHAR2(2000)

P_DATE_EMPLOYEE_DATA_VERIFIED        VARCHAR2(2000)

P_DATE_OF_BIRTH                      VARCHAR2(2000)

P_EMAIL_ADDRESS                      VARCHAR2(2000)

P_EMPLOYEE_NUMBER                    VARCHAR2(2000)

P_EXPENSE_CHECK_SEND_TO_ADDRES       VARCHAR2(2000)

P_FIRST_NAME                         VARCHAR2(2000)

P_KNOWN_AS                           VARCHAR2(2000)

P_MARITAL_STATUS                     VARCHAR2(2000)

P_MIDDLE_NAMES                       VARCHAR2(2000)

P_NATIONALITY                        VARCHAR2(2000)

P_NATIONAL_IDENTIFIER                VARCHAR2(2000)

P_PREVIOUS_LAST_NAME                 VARCHAR2(2000)

P_REGISTERED_DISABLED_FLAG           VARCHAR2(2000)

P_TITLE                              VARCHAR2(2000)

P_WORK_TELEPHONE                     VARCHAR2(2000)

P_ATTRIBUTE_CATEGORY                 VARCHAR2(2000)

P_ATTRIBUTE1                         VARCHAR2(2000)

P_ATTRIBUTE2                         VARCHAR2(2000)

P_ATTRIBUTE3                         VARCHAR2(2000)

...

P_ATTRIBUTE30                        VARCHAR2(2000)

P_PER_INFORMATION_CATEGORY           VARCHAR2(2000)

P_PER_INFORMATION1                   VARCHAR2(2000)

P_PER_INFORMATION2                   VARCHAR2(2000)

P_PER_INFORMATION3                   VARCHAR2(2000)

...

P_PER_INFORMATION30                  VARCHAR2(2000)

P_BACKGROUND_CHECK_STATUS            VARCHAR2(2000)

P_BACKGROUND_DATE_CHECK              VARCHAR2(2000)

P_BLOOD_TYPE                         VARCHAR2(2000)

P_FAST_PATH_EMPLOYEE                 VARCHAR2(2000)

P_FTE_CAPACITY                       VARCHAR2(2000)

P_HONORS                             VARCHAR2(2000)

P_INTERNAL_LOCATION                  VARCHAR2(2000)

P_LAST_MEDICAL_TEST_BY               VARCHAR2(2000)



4 – 35Oracle HRMS Data Pump

P_LAST_MEDICAL_TEST_DATE             VARCHAR2(2000)

P_MAILSTOP                           VARCHAR2(2000)

P_OFFICE_NUMBER                      VARCHAR2(2000)

P_ON_MILITARY_SERVICE                VARCHAR2(2000)

P_PRE_NAME_ADJUNCT                   VARCHAR2(2000)

P_PROJECTED_START_DATE               VARCHAR2(2000)

P_RESUME_EXISTS                      VARCHAR2(2000)

P_RESUME_LAST_UPDATED                VARCHAR2(2000)

P_SECOND_PASSPORT_EXISTS             VARCHAR2(2000)

P_STUDENT_STATUS                     VARCHAR2(2000)

P_WORK_SCHEDULE                      VARCHAR2(2000)

P_SUFFIX                             VARCHAR2(2000)

P_PERSON_USER_KEY                    VARCHAR2(2000)

P_ASSIGNMENT_USER_KEY                VARCHAR2(2000)

P_PER_OBJECT_VERSION_NUMBER          VARCHAR2(2000)

P_ASG_OBJECT_VERSION_NUMBER          VARCHAR2(2000)

P_PER_EFFECTIVE_START_DATE           VARCHAR2(2000)

P_PER_EFFECTIVE_END_DATE             VARCHAR2(2000)

P_FULL_NAME                          VARCHAR2(2000)

P_PER_COMMENT_ID                     VARCHAR2(2000)

P_ASSIGNMENT_SEQUENCE                VARCHAR2(2000)

P_ASSIGNMENT_NUMBER                  VARCHAR2(2000)

P_NAME_COMBINATION_WARNING           VARCHAR2(2000)

P_ASSIGN_PAYROLL_WARNING             VARCHAR2(2000)

P_USER_PERSON_TYPE                   VARCHAR2(2000)

P_VENDOR_NAME                        VARCHAR2(2000)

P_CORRESPONDENCE_LANGUAGE            VARCHAR2(2000)

PAY_ACTION_PARAMETERS

Name                       Null?    Type

––––––––––––––––––––––––––––––––––– ––––

PARAMETER_NAME             NOT NULL VARCHAR2(30)

PARAMETER_VALUE            NOT NULL VARCHAR2(80)



4 – 36 Implementing Oracle HRMS

APIs Supported by Data Pump
This list shows the API modules supported by the first release of Data
Pump.

Package Name Procedure Name

HR_EMPLOYEE_API CREATE_EMPLOYEE

CREATE_GB_EMPLOYEE

CREATE_US_EMPLOYEE

HR_ASSIGNMENT_API ACTIVATE_EMP_ASG

ACTUAL_TERMINATION_EMP_ASG

CREATE_SECONDARY_EMP_ASG

CREATE_GB_SECONDARY_EMP_ASG

CREATE_US_SECONDARY_EMP_ASG

UPDATE_EMP_ASG

UPDATE_GB_EMP_ASG

UPDATE_US_EMP_ASG

UPDATE_EMP_ASG_CRITERIA

SUSPEND_EMP_ASG

HR_JOB_API CREATE_JOB

HR_POSITION_API CREATE_POSITION

UPDATE_POSITION

HR_VALID_GRADE_API CREATE_VALID_GRADE

HR_PERSON_ADDRESS
_API

CREATE_PERSON_ADDRESS

CREATE_GB_PERSON_ADDRESS

CREATE_US_PERSON_ADDRESS

UPDATE_PERSON_ADDRESS

UPDATE_GB_PERSON_ADDRESS

UPDATE_US_PERSON_ADDRESS



4 – 37Oracle HRMS Data Pump

Procedure NamePackage Name

HR_CONTACT_API CREATE_PERSON

HR_CONTACT_REL_
API

CREATE_CONTACT

PY_ELEMENT_ENTRY_
API

CREATE_ELEMENT_ENTRY

UPDATE_ELEMENT_ENTRY

DELETE_ELEMENT_ENTRY

HR_GRADE_API CREATE_GRADE_RATE_VALUE

UPDATE_GRADE_RATE_VALUE

DELETE_GRADE_RATE_VALUE

HR_PERSONAL_PAY_
METHOD_API

CREATE_PERSONAL_PAY_METHOD

CREATE_GB_PERSONAL_PAY_METHOD

CREATE_US_PERSONAL_PAY_METHOD

UPDATE_PERSONAL_PAY_METHOD

UPDATE_GB_PERSONAL_PAY_METHOD

UPDATE_US_PERSONAL_PAY_METHOD

HR_SIT_API CREATE_SIT

HR_APPLICANT_API CREATE_APPLICANT

CREATE_GB_APPLICANT

CREATE_US_APPLICANT

HR_JOB_
REQUIREMENT_API

CREATE_JOB_REQUIREMENT

HR_POSITION_
REQUIREMENT_API

CREATE_POSITION_REQUIREMENT

HR_PERSON_API UPDATE_PERSON

UPDATE_GB_PERSON

UPDATE_US_PERSON



4 – 38 Implementing Oracle HRMS

Procedure NamePackage Name

HR_PAY_SCALE_API CREATE_PAY_SCALE_VALUE

UPDATE_PAY_SCALE_VALUE

DELETE_PAY_SCALE_VALUE

HR_EX_EMPLOYEE_API ACTUAL_TERMINATION_EMP

FINAL_PROCESS_EMP



C H A P T E R

5

5 – 1DateTrack

DateTrack



5 – 2 Implementing Oracle HRMS

How DateTrack Works
DateTrack adds the dimension of time to an application’s database.
The value of a DateTracked record depends on the date from which
you are viewing the data.  For example, querying an employee’s annual
salary with an effective date of 12–JUL–1992 might give a different
value than a query with an effective date of 01–DEC–1992.  However,
the application and the user see the employee’s pay as a single record.

Behavior of DateTracked Forms

This section describes the behavior of forms that incorporate
DateTracking.

When you begin to update or delete a record on a DateTracked form,
you are prompted with a number of choices.  This section describes the
choices and their effect on the DateTracked table.

The term ”today” refers to the effective date set by the user.

Update

When a user first alters a field in a DateTracked block in the current
Commit unit, he or she sees a choice of Update prompts as follows:

• UPDATE – Updated values are written to the database as a new
row, effective from today until 31–DEC–4712.  The old values
remain effective up to and including yesterday.

• CORRECTION – The updated values override the old record
values and inherit the same effective dates.

If the user selects UPDATE, DateTrack checks whether the record being
updated starts today.  If it does, a message warns that the previous
values will be lost (because DateTrack can only store information on a
day by day basis).  DateTrack then changes the mode for that record to
CORRECTION.

Next, if UPDATE was selected, DateTrack checks whether the record
being updated has already had future updates entered.  If it has been
updated in the future, the user is further prompted for the type of
update, as follows:

• UPDATE_CHANGE_INSERT (Insert) – The changes that the
user makes remain in effect until the effective end date of the
current record.  At that point the future scheduled changes take
effect.



5 – 3DateTrack

• UPDATE_OVERRIDE (Replace) – The user’s changes take effect
from now until the end date of the last record in the future.  All
future dated changes are deleted.

In most forms, users are prompted for the update mode for each record
they update.  In some forms, they are asked for the update mode for
only the first record they update.  Any other rows updated take the
same update mode.  Users are not prompted again, until they have
committed or cleared any outstanding changes.

Delete

When deleting a record, the user is prompted for the type of delete.
There are four options, as follows:

• DELETE (End Date) – This is the DateTracked delete.  The record
that the user is currently viewing has its effective end date set to
today’s date.  The record disappears from the form although the
user can requery it.

• ZAP (Purge) – This is the total delete.  All records matching the
key value, whatever their date stamps, are deleted.

• FUTURE CHANGE (All) – This choice causes any future dated
changes to the current record, including a future DateTracked
delete, to be removed.  The current record has its effective end
date set to 31–DEC–4712.

The record can again be displayed by requerying.

• DELETE NEXT CHANGE (Next Change) – This choice causes
the next change to the current DateTracked record to be
removed.

Where another future dated DateTracked row exists for this
record, it is removed and the current row has its effective end
date set to the effective end date of the deleted row.

Where no future DateTracked row exists, but the current row has
an end date other than 31–DEC–4712, then this option causes the
effective end date to be set to 31–DEC–4712.  This means that a
date effective end is considered to be a change.

Notice that this option again removes the current row from the
form, though it can be displayed again by requerying.



5 – 4 Implementing Oracle HRMS

Insert

The user is not prompted for any modes when inserting a record. The
effective start date is always set to today (Effective Date). The effective
end date is set as late as possible. Usually this is 31–DEC–4712,
although it can be earlier especially when the record has a parent
DateTracked record.

Table Structure for DateTracked Tables
A DateTracked (DT) record is what the application and the user see:  a
single DT record for each key value.  However, this DT record may
change over time, so it may correspond to one or more physical rows in
the database.  The history for the record is held by storing a row when
the record is created, and an extra row every time the record changes.
To control these rows, every DateTracked table must include these
columns:

EFFECTIVE_START_DATE DATE NOT NULL

EFFECTIVE_END_DATE DATE NOT NULL

The effective start date indicates when the record was inserted.  The
effective end date indicates when the record was deleted or updated.
A deleted record has the highest end date of all the rows with that key,
but for an updated record there will be at least one row for this key
with a higher effective end date.

As time support is not provided, the effective start date commences at
0000 hours and the effective end date finishes at 2359 hours.  This
means that a DT record can change at most once per day.

Example

EMPID EMPNAME SALARY EFFECTIVE_
START_DATE

EFFECTIVE_
END_DATE

3203 SMITH 17,000 12–MAR–1989 19–JUL–1989

3203 SMITH 18,200 20–JUL–1989 20–JUL–1989

3203 SMITH 18,400 21–JUL–1989 01–DEC–1989

Example of DateTracked Table Contents  

The table above shows the physical table after the user has done the
following:

• Set the effective date to 12–MAR–1989.  Inserted record for
SMITH.



5 – 5DateTrack

• Set the effective date to 20–JUL–1989.  Updated SMITH record
with new salary.

• Set the effective date to 21–JUL–1989.  Again updated SMITH
record with new salary.

• Set the effective date to 1–DEC–1989.  Deleted record for SMITH.

The table below shows what the user sees on querying the SMITH
record at different effective dates.

EFFECTIVE
DATE

EMPID EMPNAME SALARY

11–MAR–1989 ** no rows retrieved

12–JUN–1989 3203 SMITH 17,000

21–JUL–1989 3203 SMITH 18,400

02–DEC–1989 ** no rows retrieved

Example of Query Results for a DateTracked Table  

Because the primary key column in the table is no longer unique, any
indexes on the table that included the primary key column must now
also include the EFFECTIVE_START_DATE and
EFFECTIVE_END_DATE columns.

List of DateTracked Tables

To get a list of the DateTracked tables used in Oracle Human
Resources, select from the data dictionary where the table name is like 
Application Short Name%F. Substitute in the HRMS application short
code you are interested in (such as PER or BEN).

For each of the DateTracked tables there is a DateTracked view called
<TABLE NAME> and a synonym pointing to the full table called
<TABLE NAME_F>.

Creating a DateTracked Table and View

The previous section described the table structure of a DateTracked
table.  This section describes the steps to go through to create a
DateTracked table and view.

You must use the following nomenclature for DateTracked tables:

Base table: <TABLE NAME_F>

DateTracked view: <TABLE NAME>



5 – 6 Implementing Oracle HRMS

In addition to the DateTracked view, there is another view that shows
the rows in the table as of SYSDATE.  The name of this view is derived
by replacing the _F at the end of the table name by _X.

Example

To incorporate DateTrack on to an existing table called EMPLOYEES,
follow these steps:

1. Create a new table called EMPLOYEES_F that is identical to
EMPLOYEES but with the columns EFFECTIVE_START_DATE
and EFFECTIVE_END_DATE added.  Normally you would set the
EFFECTIVE_START_DATE and EFFECTIVE_END_DATE columns
to the maximum range.
CREATE TABLE EMPLOYEES_F AS 

SELECT EMPLOYEES.*, 

TO_DATE(’01–01–0001’,’DD–MON–YYYY’) EFFECTIVE_START_DATE,

    TO_DATE(’31–12–4712’,’DD–MON–YYYY’) EFFECTIVE_END_DATE 

FROM EMPLOYEES; 

ALTER TABLE EMPLOYEES_F 

MODIFY (EFFECTIVE_START_DATE NOT NULL, 

EFFECTIVE_END_DATE   NOT NULL);

Remove the old table.
DROP TABLE EMPLOYEES

If the old table already has the two new columns, just rename it.
RENAME EMPLOYEES TO EMPLOYEES_F;

2. Create the New Unique Indexes of the DateTracked Table by
dropping the old indexes, creating the new unique indexes as old
unique index + EFFECTIVE_START_DATE +
EFFECTIVE_END_DATE, and creating the new non–unique
indexes the same as the old non–unique indexes.

3. Create a DateTracked view called EMPLOYEES.  This view uses
the entry in FND_SESSIONS for the current user effective id for the
effective date.
CREATE VIEW EMPLOYEES AS 

SELECT * 

FROM EMPLOYEES_F 

WHERE EFFECTIVE_START_DATE <= 

(SELECT EFFECTIVE_DATE 

FROM FND_SESSIONS 

WHERE  FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’)) 

AND EFFECTIVE_END_DATE >= 

(SELECT EFFECTIVE_DATE 

FROM   FND_SESSIONS 

WHERE  FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))



5 – 7DateTrack

4. To create the view EMPLOYEES_X based on the table
EMPLOYEES_F, use the following SQL:
CREATE VIEW EMPLOYEES_X AS 

SELECT * 

FROM EMPLOYEES_F 

WHERE EFFECTIVE_START_DATE  <= SYSDATE 

AND EFFECTIVE_END_DATE    >= SYSDATE

Restricting Datetrack Options Available to Forms Users 
When a user edits or deletes a datetracked record, the system displays
a window asking the user what type of update or deletion to perfom.
Before it displays this window, the system calls a custom library event
(called DT_SELECT_MODE). It passes in the list of buttons that
DateTrack would normally display (such as Update and Correction).

Your custom code can restrict the buttons displayed. If necessary, it can
require that the user is given no update or delete options, and receives
an error message instead. However, it cannot display buttons that
DateTrack would not normally display for the entity, effective date, and
operation the user is performing.

If the user chooses Update and future changes exist, the custom library
event point may be executed a second time so your custom code can
determine whether the user is given the two update options: Insert and
Replace.

Global Variables

The following global variables can be used at the DT_SELECT_MODE
event. They are not available at any other CUSTOM library event.

Global Variable Name Read/Write Description

g_dt_update Read and write Set to TRUE when the product would
normally display the Update button
on the mode selection window.
Otherwise set to FALSE.

g_dt_correction Read and write Set to TRUE when the product would
normally display the Correction
button on the mode selection
window. Otherwise set to FALSE.

g_dt_update_change_insert Read and write Set to TRUE when the product would
normally display the Insert button on
the mode selection window.
Otherwise set to FALSE.

Global Variables at DT_SELECT_MODE Event  



�

5 – 8 Implementing Oracle HRMS

DescriptionRead/WriteGlobal Variable Name

g_dt_update_override Read and write Set to TRUE when the product would
normally display the Replace button
on the mode selection window.
Otherwise set to FALSE.

g_dt_zap Read and write Set to TRUE when the product would
normally display the Purge button on
the mode selection window.
Otherwise set to FALSE.

g_dt_delete Read and write Set to TRUE when the product would
normally display the End Date button
on the mode selection window.
Otherwise set to FALSE.

g_dt_future_change Read and write Set to TRUE when the product would
normally display the All button on
the mode selection window.
Otherwise set to FALSE.

g_dt_delete_next_change Read and write Set to TRUE when the product would
normally display the Next button on
the mode selection window.
Otherwise set to FALSE.

Global Variables at DT_SELECT_MODE Event  

Attention:  Custom code can change a TRUE value to FALSE.
However, if it tries to change a FALSE value to TRUE, the
system ignores this change.

Enabling the DT_SELECT_MODE Event

To enable the DT_SELECT_MODE event, add the following code to the
STYLE procedure in the CUSTOM package, CUSTOM library:

  if event_name = ’DT_SELECT_MODE’ then

    return custom.after;

  else

    return custom.standard;

  end if;

Example Custom Code

Suppose you wanted to stop the Delete mode button from being
displayed on the Mode Selection window when DateTrack would
normally make it available. You could add the following code to the
EVENT procedure in the CUSTOM package, CUSTOM library:



5 – 9DateTrack

  if (event_name = ’DT_SELECT_MODE’) then

    if name_in(’GLOBAL.G_DT_DELETE’) = ’TRUE’ then

      copy(’FALSE’, ’GLOBAL.G_DT_DELETE’);

    end if;

  end if;



5 – 10 Implementing Oracle HRMS

How to Create and Modify DateTrack History Views
DateTrack History is available in most windows where DateTrack is
available to enter information.  It lets you track when changes have
been made to a record, which fields were changed, and by whom.  You
can select the fields you want to focus on and view the changing values
of these fields over time.

DateTrack History is available from a button on the toolbar.

Additional Information:  For more information on DateTrack,
refer to Using Oracle HRMS – The Fundamentals.

When you request DateTrack History, the information is extracted
either from the base table or the DateTrack History view for the table, if
one exists.  You can create new views or modify the existing views to
customize the information displayed.  For example:

• You can create a view to join to other tables.  This enables you to
use a meaningful table name as a column header.  By contrast,
the base table can only display an ID of another table.

• You can decide which fields are displayed, by modifying the
views.

• You can modify views so that column names display an alias for
the meaningful names you have defined for descriptive flexfield
segments.

• You can determine which view to use depending on criteria of
your choice, such as the Business Group ID.

This essay provides the background information you require before
modifying or creating DateTrack History views.

What Happens When You Request DateTrack History

When you request DateTrack History from a DateTracked window, the
window passes the name of the base table, the name of the unique id
field, and the value of the unique id to DateTrack History.

Before the DateTrack History Change Field Summary window displays,
the code checks whether the expected DateTrack History view exists.
Usually the name of the view is the same as that of the base table,
except that the suffix _F is replaced by _D.  For example, if the base
table is PER_ALL_PEOPLE_F, the code looks for a view called
PER_ALL_PEOPLE_D.

Note:  It is possible to define more than one History view for
each datetracked table, so there may be examples where the
History view name does not follow this naming convention.



5 – 11DateTrack

If the expected view does exist, the code uses it; otherwise, in some
cases, it attempts to extract information from the base table.

When a view exists, information about the entity name and column
prompts is read from the DateTrack tables. These are:

• DT_TITLE_PROMPTS_TL

• DT_DATE_PROMPTS_TL

• DT_COLUMN_PROMPTS_TL

If the column information is not available in the
DT_COLUMN_PROMPTS_TL table, the information is obtained from
the view definition. The DateTrack History code modifies the column
names of the table or view before presenting them.  Underscores are
replaced by spaces and the first letter of each word appears in upper
case.

Change Field Summary

Rules for Creating or Modifying DateTrack History Views

Where possible all DateTrack History views should adopt the naming
convention described above.  That is, they should have the same name
as the corresponding base table, except that the suffix _F is replaced by
_D. If you are using custom library to specify an alternative view, the
view name can be different, but you should still use the _D suffix.

All views must contain the following columns:

• The primary key of the base table

• The effective start date of the base table

• The effective end date of the base table

• The last updated date column

• The last updated by column.  (Obtain the actual user name by an
outer join to FND_USER_VIEW).



5 – 12 Implementing Oracle HRMS

Note:  There is a limit of 35 columns in Date Track History
views. The primary key, effective start date, and effective end
date columns must be present in the view but cannot be seen in
the DateTrack History windows.

You must not edit the supplied DateTrack History view creation
scripts.  If you want to customize the supplied DateTrack History
views, copy the scripts and modify the copies.  After an upgrade, you
should check that your customizations are consistent with the new
views supplied with the upgrade.  If so, you can rerun your customized
view creation scripts to recreate your customized views.

Example of a DateTrack History View

In this example, the base table is pay_grade_rules_f.

create or replace view pay_grade_rules_d

(grade_rule_id,

 effective_start_date,

 effective_end_date,

 maximum,

 mid_value,

 minimum,

 grade,

 rate_type,

 last_update_date,

 last_updated_by)

AS 

select GRULE.grade_rule_id,

       GRULE.effective_start_date,

       GRULE.effective_end_date,

       GRULE.maximum,

       GRULE.mid_value,

       GRULE.minimum,

       GRADE.name,

       HR1.meaning,

       GRULE.last_update_date,

       FUSER.user_name

from   pay_grade_rules_f         GRULE

,      per_grades                GRADE

,      hr_lookups                HR1

,      fnd_user_view             FUSER

where  GRADE.grade_id          = GRULE.grade_or_spinal_point_id

and    HR1.lookup_code          (+)= GRULE.rate_type

and    HR1.lookup_type          (+)= ’RATE_TYPE’

and    FUSER.user_id            (+)= GRULE.last_updated_by



5 – 13DateTrack

Using Alternative DateTrack History Views

Before the DateTrack History Change Field Summary window displays,
the system calls a custom library event (called DT_ CALL_HISTORY).
It passes in details of the current record and which DateTrack view the
product normally uses. You can write custom code to change the name
of the view DateTrack History should use. Your code can include IF
statements that determine which view to use in different circumstances.

Note:  It is your responsibility to ensure that the alternative
view exists in your database and the relevant users have select
access to it.

For each additional view, you need to insert extra rows into the
DT_TITLE_PROMPTS_TL and DT_COLUMN_PROMPTS_TL tables,
based on the view name. Use SQL*Plus scripts to maintain the extra
table contents and view definitions.

Global Variables

The following global variables can used at the DT_CALL_HISTORY
event. They are not available at any other CUSTOM library event.

Global Variable Name Read/Write Description

g_dt_basetable Read only Name of the database table
where the data is held. For
example: PER_ALL_PEOPLE_F

g_dt_uidfield Read only Name of the surrogate ID on the
database table. For example:
PERSON_ID

g_dt_uidvalue Read only The surrogate ID value for the
current record.

g_dt_alternative_history_view Read and Write Usually DateTrack History
queries the history data from a
database view that has the same
name as the database table,
except the _F suffix is changed to
_D. In that case this global
variable is null. For example
when the database table is
PER_ALL_PEOPLE_F, the
PER_ALL_PEOPLE_D view is
used. If you want to use a
different view, set this global
variable to the actual view name
(even if the variable is initially
null).



5 – 14 Implementing Oracle HRMS

Enabling the DT_ CALL_HISTORY Event

To enable the DT_CALL_HISTORY event add the following code to the
STYLE procedure in the CUSTOM package, CUSTOM library:

  if event_name = ’DT_CALL_HISTORY’ then

    return custom.after;

  else

    return custom.standard;

  end if;

Example Custom Code

Suppose you want to use a different view whenever the standard
product would normally use the PER_ALL_PEOPLE_D view. Add the
following code to the EVENT procedure in the CUSTOM package,
CUSTOM library:

  if (event_name = ’DT_CALL_HISTORY’) then

    if name_in(’global.g_dt_basetable’) = ’PER_ALL_PEOPLE_F’ then

      copy

       (’NAME_OF_OTHER_VIEW’

       ,’global.g_dt_alternative_history_view’

       );

    end if;

  end if;

List of DateTrack History Views

The supplied views and view creation scripts are as follows:

View Name Based on (table) View Creation Script

BEN_BENEFIT_CONTRIBUTIONS_D BEN_BENEFIT_CONTRIBUTIONS_F pedtbbcf.sql

HXT_ADD_ASSIGN_INFO_D HXT_ADD_ASSIGN_INFO_F hxtdtaas.sql

HXT_ADD_ELEM_INFO_D HXT_ADD_ELEM_INFO_F hxtdtael.sql

HXT_SUM_HOURS_WORKED_D HXT_SUM_HOURS_WORKED_F hxtdtsum.sql

HXT_TIMECARDS_D HXT_TIMECARDS_F hxtdttim.sql

PAY_ALL_PAYROLLS_D PAY_ALL_PAYROLLS_F pydtpayr.sql

PAY_BALANCE_FEEDS_D PAY_BALANCE_FEEDS_F pydtbalf.sql

DateTrack History Views  



5 – 15DateTrack

View Creation ScriptBased on (table)View Name

PAY_CA_EMP_FED_TAX_INFO_D PAY_CA_EMP_FED_TAX_INFO_F pycadtfd.sql

PAY_CA_EMP_PROV_TAX_INFO_D PAY_CA_EMP_PROV_TAX_INFO_F pycadtpv.sql

PAY_COST_ALLOCATIONS_D PAY_COST_ALLOCATIONS_F pydtpcst.sql

PAY_ELEMENT_LINKS_D PAY_ELEMENT_LINKS_F pydtelin.sql

PAY_ELEMENT_TYPES_D PAY_ELEMENT_TYPES_F pydtetyp.sql

PAY_FORMULA_RESULT_RULES_D PAY_FORMULA_RESULT_RULES_F pydtfmrr.sql

PAY_GRADE_RULES_D PAY_GRADE_RULES_F pydtgrdt.sql

PAY_INPUT_VALUES_D PAY_INPUT_VALUES_F pydtinpv.sql

PAY_LINK_INPUT_VALUES_D PAY_LINK_INPUT_VALIES_F pydtliiv.sql

PAY_ORG_PAYMENT_METHODS_D PAY_ORG_PAYMENT_METHODS_F pydtpaym.sql

PAY_PERSONAL_PAYMENT_METHODS_D PAY_PERSONAL_PAYMENT_METHODS_F pydtppym.sql

PAY_STATUS_PROCESSING_RULES_D PAY_STATUS_PROCESSING_RULES_F pydtstpr.sql

PAY_USER_COLUMN_INSTANCES_D PAY_USER_COLUMN_INSTANCES_F pydtucin.sql

PAY_USER_ROWS_D PAY_USER_ROWS_F pydtussrr.sql

PER_ALL_ASSIGNMENTS_D PER_ALL_ASSIGNMENTS_F pedtasgn.sql

PER_ALL_PEOPLE_D PER_ALL_PEOPLE_F pedtpepl.sq

PER_ASSIGNMENT_BUDGET_VALUES_D PER_ASSIGNMENT_BUDGET_VALUES_F pedtabv.sql

PER_COBRA_COVERAGE_BENEFITS_D PER_COBRA_COVERAGE_BENEFITS_F pedtccbf.sql

PER_GRADE_SPINES_D PER_GRADE_SPINES_F pedtgrsp.sql

PER_SPINAL_POINT_PLACEMENTS_D PER_SPINAL_POINT_PLACEMENTS_F pedtsppp.sql

PER_SPINAL_POINT_STEPS_D PER_SPINAL_POINT_STEPS_F pedtspst.sql

PER_PERSON_TYPE_USAGES_D PER_PERSON_TYPE_USAGES_F pedtptu.sql

PER_CONTRACTS_D PER_CONTRACTS_F pedtctc.sql

DateTrack History Views  



5 – 16 Implementing Oracle HRMS



C H A P T E R

6

6 – 1FastFormula

FastFormula



6 – 2 Implementing Oracle HRMS

The FastFormula Application Dictionary
The FastFormula Application Dictionary is designed to hide the
complexity of the application database from the FastFormula user.
When you write a formula, you reference database items.  The
Dictionary contains the information that FastFormula requires to
generate the SQL and PL/SQL error checking code that extracts these
database items.

For example, in a formula you might refer to the database item
EMPLOYEE_LAST_NAME.  When the formula is run, FastFormula
uses information in the Dictionary to build up a complete SELECT
statement to extract the name from the database.

Normally, you do not need to be aware of the contents of the
Dictionary.  For example, when you define a new element, several
database items are generated automatically.  The information that
enables FastFormula to extract these new items is generated at the
same time.

However, if you do need to define new database items directly in the
Dictionary, you must also load the associated information.  The next
section describes the entities that you must create in the Dictionary.
The following section gives step–by–step instructions for defining new
database items.

Entities in the Dictionary
Suppose FastFormula is running a formula that references the database
item EMPLOYEE_LAST_NAME from the table PER_PEOPLE.  The
SQL required to extract EMPLOYEE_LAST_NAME is as follows:

SELECT TARGET.last_name

FROM per_people             TARGET

,    per_assignments        ASSIGN

WHERE TARGET.person_id    = ASSIGN.person_id

AND ASSIGN.assignment_id  = &B1

This section explains where this information is stored in the Dictionary
and how FastFormula builds it up to form the SQL statement.

Note that the Dictionary stores information at the physical level.  That
is, it stores parts of the text of SQL statements, which are used by
FastFormula to build up the complete statements.  It does not store
information about entities and relationships.

Database Items and User Entities

EMPLOYEE_LAST_NAME is a value in the USER_NAME column of
table FF_DATABASE_ITEMS in the Dictionary.  When FastFormula



6 – 3FastFormula

runs a formula in which EMPLOYEE_LAST_NAME is a variable, it
accesses this table for two reasons:

• It gets the value in the DEFINITION_TEXT column.  This is the
value that appears in the SELECT clause of the SQL.  In our
example, it is PER_PEOPLE.LAST_NAME.  (TARGET is an alias
for PER_PEOPLE.)

• It identifies the user entity of which the database item is a part.
A user entity is a group of one or more database items that can
be accessed by the same route.  In our example, the user entity
might be EMPLOYEE_DETAILS.

Routes and Route Parameters

Using the user entity ID, FastFormula checks the table
FF_USER_ENTITIES to identify the route associated with the user
entity.  The route is the text of the SQL statement following the FROM
keyword.  It is held in the table  FF_ROUTES.  In our example, the
route is:

per_people                 TARGET,

per_assignments            ASSIGN

WHERE TARGET.person_id   = ASSIGN.person_id

AND ASSIGN.assignment_id = &B1

If several user entities use the same route, the route contains one or
more placeholders of the form &U# (where # is a sequence number).
Each placeholder references a parameter in table
FF_ROUTE_PARAMETERS.  FastFormula identifies the parameter ID
from this table.

The values of the parameters are different for each user entity.  Using
the parameter ID, FastFormula accesses the value of the parameter for
the relevant user entity in table FF_ROUTE_PARAMETER_VALUES.
Since each user entity has a different set of parameter values, the text of
the route is different for each user entity.

In our example, only one user entity uses the route so there are no route
parameters.

Contexts and Route Context Usage

The route may contain another type of placeholder of the form &B#
(where # is a sequence number).  These placeholders reference contexts
in the table FF_ROUTE_CONTEXT_USAGES.  FastFormula identifies
the ID of the context from this table, and then the name of the context
from table FF_CONTEXTS.  Contexts are predefined in FF_CONTEXTS



6 – 4 Implementing Oracle HRMS

and you should not change them.  Examples are Payroll ID,
Organization ID, and Date Earned.

The value of the context is not fixed.  It is passed through by the
formula at run time.

In our example, the route requires one context, which is Assignment
ID.

Formula Types and Formula Type Context Usage

When you define a formula, you assign it to a formula type, such as
Payroll formulas or QuickPaint formulas.  The type of the formula
determines the contexts for which it provides values.  This is defined in
table FF_FTYPE_CONTEXT_USAGES.

For example, a QuickPaint formula feeds through values for the
contexts Assignment ID and Date Earned.  Thus, when you define a
QuickPaint formula, you can use database items that require the
contexts Assignment ID and Date Earned.  However, any database
items that use the other contexts in their routes are not available to you.
They do not appear in the list of values.

This is a mechanism to restrict the database items that a formula can
use.  It can only use database items that are appropriate to the formula
context.

It follows that if a database item is based on a route that does not
require any contexts (for example, a SELECT from DUAL), then every
formula type in the system is able to access the database item.

Summary of How FastFormula Uses the Dictionary

1. FastFormula gets the value in the DEFINITION_TEXT column of
FF_DATABASE ITEMS and puts it in the SELECT clause of the
SQL.

2. It gets the user entity ID from FF_DATABASE ITEMS and uses it to
get the route ID from FF_USER_ENTITIES.

3. It uses the route ID to get the route text from FF_ROUTES and puts
it in the FROM clause of the SQL.

4. If the route contains a placeholder of the form &U#, FastFormula
accesses FF_ROUTE_PARAMETERS to identify the parameter ID.
Then it uses the parameter ID to get the value of the parameter for
the relevant user entity in table
FF_ROUTE_PARAMETER_VALUES.

5. If the route contains a placeholder of the form &B#, FastFormula
accesses FF_ROUTE_CONTEXT_USAGES to identify the context



6 – 5FastFormula

ID.  Then it uses the context ID to get the name of the context in
table FF_CONTEXTS.  This must be one of the contexts for which
the formula passes through values (determined by the formula type
in table FF_FTYPE_CONTEXT_USAGES).

Defining New Database Items

Before defining new items, you should consider the following issues:

• To which business group and legislation should the database
item be available?

• Can the database item have a null value?  Can it be non–existent?

Availability of Database Items

The two attributes Business Group ID and Legislation Code are
associated with each user entity.  These attributes determine the
availability of the database items belonging to the user entity.  If the
Business Group ID is set to a particular value, then only formulas
operating under that business group can ’see’ the database item.  If the
Business Group ID is set to null, the database item can be ’seen’ by all
business groups.  The same principle applies to Legislation Code.

New database items that you define must be associated with a specific
business code and legislation.  Generic startup items supplied as part of
the core system are available to all formulas.  Your localization group
has added legislation–specific items that are available to all business
groups under that legislation.

Note:  The name of the database item must be unique within a
business group.

Null & Not Found Conditions

To enable validation, you must define two flags in the FastFormula
Application Dictionary:

• The NULL_ALLOWED_FLAG is a column on the table
FF_DATABASE_ITEMS, and hence applies to each database
item.  If the SQL statement to extract the database item may
return a null value, you must set this flag to yes (Y).  If you set
the flag to no and a null value is returned, FastFormula will
report an error.

• The NOTFOUND_ALLOWED_FLAG is a column on the table
FF_USER_ENTITIES, and hence applies to all the database items



6 – 6 Implementing Oracle HRMS

belonging to a particular user entity.  If the SQL statement to
extract database items may return no rows for any of the items,
you must set this flag to yes (’Y’).  If you set the flag to no and
the SQL statement fails to return a row, FastFormula will report
an error.

The formula writer must provide a default for a database item used in
a formula, unless both of these flags are set to no.  For more
information on defaults, refer to the guide Using Oracle FastFormula.

Steps To Generate A Database Item

To illustrate the steps to generate database items, we will use the
example of a user entity called GRADE_RATE_USER_ENTITY, which
comprises three database items:

• GRADE_VALUE

• GRADE_MINIMUM

• GRADE_MAXIMUM

This user entity may share its route (GRADE_ROUTE) with other user
entities.  Each user entity uses a unique value for the route parameter
RATE_ID, so that the WHERE clause for each entity is different.  If the
entities are in the same business group, the USER_NAME of each
database item must be unique.  One way to achieve this is to include
the rate name in the USER_NAME; for example:
<RATE_NAME>_GRADE_VALUE.

In this example, we suppose that the value of RATE_ID for
GRADE_RATE_USER_ENTITY is 50012.  For simplicity we consider
only one user entity for the route.

The three database items are stored in table PAY_GRADE_RULES.  To
extract these items, FastFormula uses an assignment ID passed by the
formula.  This is the formula context.

This is the SQL required to extract these database items:

SELECT <DEFINITION_TEXT>

FROM   pay_grade_rules                     TARGET

,      per_assignments                     ASSIGN

WHERE  TARGET.grade_or_spinal_point_id   = ASSIGN.grade_id

AND    TARGET.rate_type                  = ’G’

AND    ASSIGN.assignment_id              = &B1

AND    TARGET.rate_id                    = &U1

<DEFINITION_TEXT> may be one of the three database items listed
below:



Step 1

Step 2

Step 3

6 – 7FastFormula

Database Item Name <DEFINITION_TEXT>

GRADE_VALUE TARGET.value

GRADE_MINIMUM TARGET.minimum

GRADE_MAXIMUM TARGET.maximum

The following steps describe how to load the information into the
Dictionary so that FastFormula can generate this SQL.  An example of
PL/SQL that loads the information is given at the end of this section.

Write the SQL

Write and test the SQL statement using SQL*Plus to ensure that the
statement is correct.  The SQL statement must not return more than one
row because FastFormula cannot process multiple rows.

Load the Route

This is best done using a PL/SQL routine.  Wherever possible, use the
sequence value for the primary keys (such as
FF_ROUTES_S.NEXTVAL) to populate the table.  The route is held in
the table FF_ROUTES as a ’long’ data type.  So, using the example
above, you could assign the route to a long variable as follows:

set escape \

DECLARE

  l_text   long;

BEGIN

    l_text := ’/* route for grade rates */

       pay_grade_rules                          TARGET,

       per_assignments                          ASSIGN

WHERE  TARGET.grade_or_spinal_point_id        = ASSIGN.grade_id

AND    TARGET.rate_type                       = ’’G’’

AND    ASSIGN.assignment_id                   = \&B1

AND    TARGET.rate_id                         = \&U1’;

END;

Note the following changes from the original SQL that was given
earlier:

• Each ’&’ is preceded with the escape character.

• The single quote mark is replaced with two single quote marks.

• A comment may be placed at the start of the route if required.

Load the Contexts

The next step is to load the contexts into the table
FF_ROUTE_CONTEXT_USAGES.  The columns in this table are as
follows:



Step 4

Step 5

6 – 8 Implementing Oracle HRMS

Name                            Null?    Type

–––––––––––––––––––––––––––––––––––––––––––––

ROUTE_ID                        NOT NULL NUMBER(9)

CONTEXT_ID                      NOT NULL NUMBER(9)

SEQUENCE_NO                     NOT NULL NUMBER(9)

Use the current sequence number for the route ID.  This is
FF_ROUTES_S.CURRVAL if you used the sequence
FF_ROUTES_S.NEXTVAL to populate the table FF_ROUTES.  You can
obtain the context ID for the particular formula context (assignment ID
in our example) from the table FF_CONTEXTS.  The sequence number
is simply the ’B’ number.

For the example, you would insert one row for the route into the table
FF_ROUTE_CONTEXT_USAGES (see the PL/SQL for the example, at
the end of this section).

Insert Rows in the User Entity Table

For each route, insert at least one row in the table FF_USER_ENTITIES.
This table holds the Business Group ID, Legislation Code, the
ROUTE_ID, and the NOTFOUND_ALLOWED_FLAG.

Insert Rows for Route Parameters

For each placeholder of the form &U# in the route, you must insert a
row into two tables:

• FF_ROUTE_PARAMETERS, which references the route, and

• FF_ROUTE_PARAMETER_VALUES, which contains the actual
value for the route parameter, and references the user entity.

The columns in these tables are as follows:

SQL> desc ff_route_parameters

 Name                            Null?    Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 ROUTE_PARAMETER_ID              NOT NULL NUMBER(9)

 ROUTE_ID                        NOT NULL NUMBER(9)

 DATA_TYPE                       NOT NULL VARCHAR2(1)

 PARAMETER_NAME                  NOT NULL VARCHAR2(80)

 SEQUENCE_NO                     NOT NULL NUMBER(9)



Step 6

6 – 9FastFormula

SQL> desc ff_route_parameter_values

 Name                            Null?    Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 ROUTE_PARAMETER_ID              NOT NULL NUMBER(9)

 USER_ENTITY_ID                  NOT NULL NUMBER(9)

 VALUE                           NOT NULL VARCHAR2(80)

 LAST_UPDATE_DATE                         DATE

 LAST_UPDATED_BY                          NUMBER(15)

 LAST_UPDATE_LOGIN                        NUMBER(15)

 CREATED_BY                               NUMBER(15)

 CREATION_DATE                            DATE

The data type held in FF_ROUTE_PARAMETERS is either a number
(N) or a text value (T).

In our example, the route parameter is RATE_ID.  For
GRADE_RATE_USER_ENTITY, its value is 50012.  The values you
would insert into these tables for the example are shown in the sample
PL/SQL at the end of this section.

Insert the Database Item

You can now insert the database items.  For our example, there are
three rows in the table FF_DATABASE_ITEMS that refer to the same
user entity.  The columns in this table are as follows:

SQL> desc ff_database_items

 Name                            Null?    Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 USER_NAME                       NOT NULL VARCHAR2(80)

 USER_ENTITY_ID                  NOT NULL NUMBER(9)

 DATA_TYPE                       NOT NULL VARCHAR2(1)

 DEFINITION_TEXT                 NOT NULL VARCHAR2(240)

 NULL_ALLOWED_FLAG               NOT NULL VARCHAR2(1)

 DESCRIPTION                              VARCHAR2(240)

 LAST_UPDATE_DATE                         DATE

 LAST_UPDATED_BY                          NUMBER(15)

 LAST_UPDATE_LOGIN                        NUMBER(15)

 CREATED_BY                               NUMBER(15)

 CREATION_DATE                            DATE

The USER_NAME must be unique within the business group.

The values you would insert into this table for the three example
database items are shown in the sample PL/SQL at the end of this
section.

When you create the database items, it is useful to populate the other
columns, such as LAST_UPDATE_DATE, and CREATION_DATE.



Example

6 – 10 Implementing Oracle HRMS

The following PL/SQL creates the database items in the example::

set escape \

DECLARE

  l_text                long;

  l_user_entities_seq   number;

  l_route_id            number;

BEGIN

 ––

 –– assign the route to a local variable

 –– 

l_text := ’/* route for grade rates */

       pay_grade_rules                          TARGET,

       per_assignments                          ASSIGN

WHERE  TARGET.grade_or_spinal_point_id        = ASSIGN.grade_id

AND    TARGET.rate_type                       = ’’G’’

AND    ASSIGN.assignment_id                   = \&B1

AND    TARGET.rate_id                         = \&U1’;

––

–– insert the route into the table ff_routes

––

insert into ff_routes

       (route_id,

        route_name,

        user_defined_flag,

        description,

        text,

        last_update_date,

        creation_date)

values (ff_routes_s.nextval,

        ’GRADE_ROUTE’,

        ’Y’,

        ’Route for grade rates’,

        l_text,

        sysdate,

        sysdate);

––

–– load the context

–– 

insert into ff_route_context_usages

       (route_id,

        context_id,

        sequence_no)

select ff_routes_s.currval,

       context_id,

       1

from   ff_contexts

where  context_name = ’ASSIGNMENT_ID’;

––



6 – 11FastFormula

–– create a user entity

––

select ff_user_entities_s.nextval

into   l_user_entities_seq

from   dual;

––

select ff_routes_s.currval

into   l_route_id

from   dual;

––

insert into ff_user_entities

       (user_entity_id,

        business_group_id,

        legislation_code,

        route_id,

        notfound_allowed_flag,

        user_entity_name,

        creator_id,

        creator_type,

        entity_description,

        last_update_date,

        creation_date)

values (l_user_entities_seq,

        1,                            –– example business group id

        ’GB’,                         –– example legislation

        l_route_id,

        ’Y’,

        ’GRADE_RATE_USER_ENTITY’,

        50012,                        –– example creator id

        ’CUST’,

        ’Entity for the Grade Rates’,

        sysdate,

        sysdate);

––

–– insert the route parameters

––

insert into ff_route_parameters

       (route_parameter_id,

        route_id,

        data_type,

        parameter_name,

        sequence_no)

select  ff_route_parameters_s.nextval,

        l_route_id,

        ’N’,

        ’Grade Rate ID’,

        1

from    dual;

––



6 – 12 Implementing Oracle HRMS

insert into ff_route_parameter_values

       (route_parameter_id,

        user_entity_id,

        value,

        last_update_date,

        creation_date)

select ff_route_parameters_s.currval,

       l_user_entities_seq,

       50012,

       sysdate,

       sysdate

from   dual;

––

–– insert the three database items

––

insert into ff_database_items

       (user_name,

        user_entity_id,

        data_type,

        definition_text,

        null_allowed_flag,

        description,

        last_update_date,

        creation_date)

values (’GRADE_VALUE’,

        l_user_entities_seq,

        ’T’,

        ’TARGET.value’,

        ’Y’,

        ’Actual value of the Grade Rate’,

        sysdate,

        sysdate);

––

insert into ff_database_items

       (user_name,

        user_entity_id,

        data_type,

        definition_text,

        null_allowed_flag,

        description,

        last_update_date,

        creation_date)

values (’GRADE_MINIMUM’,

        l_user_entities_seq,

        ’T’,

        ’TARGET.minimum’,

        ’Y’,

        ’Minimum value of the Grade Rate’,



6 – 13FastFormula

        sysdate,

        sysdate);

––

insert into ff_database_items

       (user_name,

        user_entity_id,

        data_type,

        definition_text,

        null_allowed_flag,

        description,

        last_update_date,

        creation_date)

values (’GRADE_MAXIMUM’,

        l_user_entities_seq,

        ’T’,

        ’TARGET.maximum’,

        ’Y’,

        ’Maximum value of the Grade Rate’,

        sysdate,

        sysdate);

END;

/



6 – 14 Implementing Oracle HRMS

Calling FastFormula from PL/SQL
Oracle FastFormula provides an easy to use tool for professional users.
Using simple commands and syntax, users can write their own
validation rules or payroll calculations.

Until R11 the execution engine for calling formulas and dealing with
the outputs has been hidden within the Oracle HR and Payroll
products.  The original engine for calling PL/SQL was written in
Pro*C. It is complex and can be called only from user exits or directly
from another ’C’ interface.

Now, there is a new execution engine or interface that lets you call
formulas directly from Forms, Reports or other PL/SQL packages.
This interface means that you can call existing validation or payroll
formulas and include them in online or batch processes.  It also means
that you can define and call your own formulas for other types of
validation and calculation.  With FastFormula you automatically have
access to the database items (DBIs) and functions of Oracle HRMS and
you automatically have calculations and business rules that are
datetracked.

The basic concepts of FastFormula remain the same as before:

Inputs –> Process –> Outputs

As you now have complete freedom to decide the inputs you provide
and what happens to the outputs produced by a formula you must
write the calling code to handle both inputs and outputs.

This essay provides an overview and technical details to show you how
to call FastFormula from PL/SQL.  You should be familiar with
PL/SQL coding techniques and with Oracle FastFormula but you will
not need to understand the internal working of the execution engine.

The Execution Engine Interface

There are two interfaces to the execution engine for FastFormula.

• Server–side

Use this interface for any formulas to be executed by batch
processes or on the server. See: Server Side Interface: page 6 – 16

• Client–side

Use this interface only when a direct call is required from forms
and reports to execute a formula immediately.  You could also
write a custom ’wrapper’ package to call the server engine from
the client. See: Client Side Call Interface: page 6 – 21



�

6 – 15FastFormula

Note:  Some Oracle tools currently use PL/SQL V1.x only.  This
version does not support the table of records data structure
needed by the server interface. The client–side version was
written to get around this current limitation.

Location of the Files

The execution engine files are stored in $FF_TOP/admin/sql

• ffexec.pkh and ffexec.pkb

Server side execution engine package header and body files.

• ffcxeng.pkh and ffcxeng.pkb

Client side versions of execution engine package header and
body files.

Note:  There is a special interface in the ff_client_engine module
that is designed specifically for the forms client.  This interface
avoids the overhead of a large number of network calls using a
fixed number of parameters. See: Special Forms Call Interface:
page 6 – 24

Datetracked Formulas

All formulas in Oracle HRMS products are datetracked, enabling you
to use DateTrack to maintain a history of changes to your validation
rules or calculations.

In the predefined interfaces to the execution engine the system
automatically manages the setting or changing of the effective date.
When you execute your own formulas you must also manage the
setting of the effective date for the session.  This means that before
calling any of the execution engine interfaces you may need to insert a
row into the FND_SESSIONS table.  This is required if there is no row
in FND_SESSIONS for the current SQL*PLUS session_id or the formula
or formulas to be executed access database items that reference
datetracked tables.

Attention:  Always check the effective date for the formula to
be executed.  This date affects the values of the database items
and any functions that you include in the formula.

Changes in R11i

Server Side and Client Side Interfaces

In R11i the client side interfaces are provided for backwards
compatibility. The client side PL/SQL environments used with R11i are
able to use the server side interface.



6 – 16 Implementing Oracle HRMS

NUMBER and DATE Inputs and Outputs

Input values must be passed in as strings in the correct formats. In
R11i, use the routine FND_NUMBER.NUMBER_TO_CANONICAL to
format NUMBER inputs. Use FND_DATE.DATE_TO_CANONICAL to
format DATE inputs.

Output values are passed back as strings formatted as described above.
To convert a NUMBER output to a NUMBER value, use the routine
FND_NUMBER.CANONICAL_TO_NUMBER. Use
FND_DATE.CANONICAL_TO_DATE to convert DATE outputs to
DATE values.

For forms code, using the corresponding routines from the
APP_NUMBER and APP_DATE packages may result in improved
performance.

This set of changes applies to all the interfaces to the FastFormula
execution engine.

DATE_EARNED and BALANCE_DATE Contexts

In R11i, the datatype of DATE_EARNED and BALANCE_DATE
contexts is DATE. Prior to R11i, these contexts had a datatype of TEXT.

Server Side Interface

This section describes the interface to the server execution engine and
how to call the module from other PL/SQL.

This version of the interface is preferred.  It combines maximum
flexibility with relatively low network demands.  However, it can only
be used with PL/SQL V2.3 and above as it requires support for the
table of records data structure.

User Data Structures

There are two important user data structures when you use the server
side interface.  These are the inputs table and the outputs table:

Inputs Table

NAME The input name, such as RATE, or ASSIGN-
MENT_ID

DATATYPE Can be DATE, NUMBER, or TEXT

Inputs Table  



�

6 – 17FastFormula

Inputs Table

CLASS The type of input : CONTEXT or INPUT

This field is not required, as it is not necessary to
know if an input is a context or a normal input val-
ue to call the formula correctly.

VALUE The actual value to pass to the formula as a Context
or an Input.

This field is a type of varchar2(240).  This means
that for NUMBER and DATE datatypes the value
passed in has to be in the appropriate format. See
the example code for how this works.

Inputs Table  

Outputs Table

NAME The output name, such as RESULT1, or MESSAGE

DATATYPE Can be DATE, NUMBER, or TEXT

VALUE The actual value returned from the formula

 Outputs table 

Note:  The names of all inputs and outputs must be in upper
case and the same name can appear in both the inputs and the
outputs tables, for example where an input value is also a
return value from the formula.  However, a CONTEXT can
only appear in the inputs table.

Both inputs and outputs tables are initialized by a call to the
ff_exec.init_formula procedure and then contain details of all the inputs,
including contexts that are needed to execute the formula and all the
outputs that will be returned.

You are responsible for holding these tables between the initialization
and execution calls.

Attention:  Although the index values for these tables are
positive in value, the caller should not assume that they start at
1.  Always use the ”first” and ”last” table attributes when
accessing and looping through these tables.  See also:
Examples: page 6 – 19.



6 – 18 Implementing Oracle HRMS

Available Calls

The following procedure calls are available.  They are described below
with some detail on the parameters that can be passed to them.

Note:  Refer to the appropriate package header for information
on the class of parameter (in, out or in/out).

Procedure :    init_formula

This call initializes the execution engine for a specific formula.   That is,
it declares to the engine that a formula is about to be run.  It must be
called before a formula is executed, but that formula can then be
executed as many times as desired without having to call the
initialization procedure again.  This will be understood from the
examples further on.

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective date to execute

p_inputs ff_exec.inputs_t Input variable information

p_outputs ff_exec.outputs_t Output variable information

Parameters to init_formula  

Procedure :    run_formula

This call actually executes the formula, taking inputs as specified and
returning any results from the formula.  The init_formula procedure
must have been called before this is used (see examples).

Parameter Name Data Type Comments

p_inputs ff_exec.inputs_t Inputs to the formula

p_outputs ff_exec.outputs_t Outputs from the formula

p_use_dbi_cache boolean If TRUE, the database item cache will be
active during execution, else will not.
Defaults to TRUE

Parameters to run_formula  



6 – 19FastFormula

Further Comments

The p_inputs and p_outputs parameters could be NULL if the formula
does not have any inputs and/or outputs (although the latter is rather
unlikely).

The p_use_dbi_cache would only be set to FALSE under unusual
circumstances requiring the disabling of the cacheing of database item
values.  This might be required if the engine is called from code that
would invalidate the values for fetched database items.

For instance, if the database item ASG_STATUS was accessed from
within a  formula used in business rule validation used in turn to alter
the Assignment’s status, we might want to disable the Database Item
cache in case we attempted to read that database item in a subsequent
formula.

Examples

The following examples assume we are going to execute the following
formula.  Note that the DATABASE_ITEM requires an
ASSIGNMENT_ID context.

The formula itself does not represent anything meaningful, it is for
illustration only.

inputs are input1, input2 (date), input3 (text)

dbi = DATABASE_ITEM

ret1 = input1 * 2

return ret1, input2, input3

The following anonymous block of PL/SQL could be used to execute
the formula.  In this case, it is called a number of times, to show how
we can execute many times having initialized the formula once.

declare

  l_input1         number;

  l_input2         date;

  l_input3         varchar2(80);

  l_assignment_id  number;

  l_formula_id     number;

  l_effective_date date;

  l_inputs         ff_exec.inputs_t;

  l_outputs        ff_exec.outputs_t;

  l_loop_cnt       number;

  l_in_cnt         number;

  l_out_cnt        number;

begin

  –– Set up some the values we will need to exec formula.

  l_formula_id     := 100;



6 – 20 Implementing Oracle HRMS

  l_effective_date := to_date(’06–05–1997’, ’DD–MM–YYYY’);

  l_input1         := 1000.1;

  l_input2         := to_date(’01–01–1990’, ’dd–mm–yyyy’);

  l_input3         := ’INPUT TEXT’;

  l_assignment_id  := 400;

  –– Insert FND_SESSIONS row.

  insert into fnd_sessions (

 session_id,

 effective_date)

  values (userenv(‘sessionid’),

 l_effective_date);

  –– Initialise the formula.

  ff_exec.init_formula(l_formula_id, l_effective_date, l_inputs,

l_outputs);

  –– We are now in a position to execute the formula.

  –– Notice that we are illustrating here that the formula can

  –– be executed a number of times, in this case setting a new

  –– input value for input1 each time.

  for l_loop_cnt in 1..10 loop

    –– The input and output table have been initialized.  We now

have

    –– to set up the values for the inputs required.  This

includes

    –– those for the ’inputs are’ statement and any contexts.

    for l_in_cnt in l_inputs.first..l_inputs.last loop

      if(l_inputs(l_in_cnt).name = ’INPUT1’) then

        –– Deal with input1 value.

        l_inputs(l_in_cnt).value :=

fnd_number.number_to_canonical(l_input1);

      elsif(l_inputs(l_in_cnt).name = ’INPUT2’) then

        –– Deal with input2 value.

        l_inputs(l_in_cnt).value :=

fnd_date.date_to_canonical(l_input2);

      elsif(l_inputs(l_in_cnt).name = ’INPUT3’) then

        –– Deal with input3 value.

        l_inputs(l_in_cnt).value := l_input3;

        –– no conversion required.

      elsif(l_inputs(l_in_cnt).name = ’ASSIGNMENT_ID’) then

        –– Deal with the ASSIGNMENT_ID context value.

        l_inputs(l_in_cnt).value := l_assignment_id;

      end if;

    end loop;

    ff_exec.run_formula(l_inputs, l_outputs);

    –– Now we have executed the formula. We are able

    –– to display the results.

    for l_out_cnt in l_outputs.first..l_outputs.last loop

      hr_utility.trace(’output name     : ’ ||

l_outputs(l_out_cnt).name);



6 – 21FastFormula

      hr_utility.trace(’output datatype : ’ ||

l_outputs(l_out_cnt).datatype);

      hr_utility.trace(’output value    : ’ ||

l_outputs(l_out_cnt).value);

    end loop;

  end loop;

  –– We can now continue to call as many formulas as we like,

  –– always remembering to begin with a ff_exec.init_formula call.

  –– Note: There is no procedure to be called to

  –– shut down the execution engine.

end;

/

As noted earlier, if you are attempting to call the execution engine from
a client that is not running the appropriate version of PL/SQL, it will
be necessary to create a package that ’covers’ calls to the engine or
consider calling the client engine, specified below.

Client Side Call Interface

This section attempts to describe in detail the interface to the client
execution engine from a user perspective, and how to call the module
from other PL/SQL.

Note:  These client side calls are designed to avoid any use of
overloading, which causes problems when procedures are
called from forms.

When Should I Use This Interface?

This interface can be used when the version of PL/SQL on the client is
prior to V2.3 (does not support tables of records).  It is probably the
easiest interface to use.  However, it is not recommended where high
performance is required, due to the greater number of network
round–trips.  In these cases, consider using the special forms interface.

User Data Structures

There are no user visible data structures in the client side call.

Available Calls

The following procedure calls are available.  They are described below
with some detail on the parameters that can be passed to them.

Note:  Refer to the appropriate package header for information
on the class of parameter (in, out, or in/out).



6 – 22 Implementing Oracle HRMS

Procedure :   init_formula

This call initializes the execution engine for a specific formula.   That is,
it declares to the engine that a formula is about to be run.  It must be
called before a formula is executed, but that formula can then be
executed as many times as desired without having to call the
initialization procedure again.  This will be understood from the
examples further on.

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective execution date

Parameters to init_formula  

Procedure :  set_input

This call sets the value of an input to a formula.  To cope with the
different datatypes that FastFormula can handle, the values have to be
converted to the appropriate character strings.

Parameter Name Data Type Comments

p_input_name varchar2 Name of input to set

p_value varchar2 Input value to set

Parameters to set_input  

Procedure :   run_formula

This call actually executes the formula, taking inputs as specified and
returning any results from the formula.  The init_formula procedure
must have been called before this is used (see examples).

There are no parameters to run_formula.

Procedure :   get_output

This call gets the output values returned from a formula.  To cope with
the different datatypes that FastFormula can handle, the output has to
be converted as appropriate.



6 – 23FastFormula

Parameter Name Data Type Comments

p_input_name varchar2 Name of input to set

p_return_value varchar2 Value of varchar2 output

Parameters to get_output  

Examples

The following examples rely on the same formula used above.

inputs are input1, input2 (date), input3 (text)

dbi = DATABASE_ITEM

ret1 = input1 * 2

return ret1, input2, input3

The following anonymous block of PL/SQL can be used to run the
formula.

declare

  l_input1         number;

  l_input2         date;

  l_input3         varchar2(80);

  l_output1        number;

  l_output2        varchar2(12);

  l_output3        varchar2(80);

  l_assignment_id  number;

  l_formula_id     number;

  l_effective_date date;

  l_loop_cnt       number;

begin

–– Set up the values we need to execute the formula.

  l_formula_id     := 100;

  l_effective_date := to_date(’06–05–1997’, ’DD–MM–YYYY’);

  l_input1         := 1000.1;

  l_input2         := to_date(’01–01–1990’, ’dd–mm–yyyy’);

  l_input3         := ’INPUT TEXT’;

  l_assignment_id  := 400;

–– Insert FND_SESSIONS row.

insert into fnd_sessions (

    session_id,

    effective_date)

values (userenv(‘sessionid’),

     l_effective_date);

–– Initialize the formula.

ff_client_engine.init_formula(l_formula_id,l_effective_date);

–– We are not in a position to execute the formula.

–– Notice that we are illustrating here that the formula can



6 – 24 Implementing Oracle HRMS

–– be executed a number of times, in this case setting a new

–– input value for input1 each time.

  for l_loop_cnt in 1..10 loop

–– The input and output tables have been initialized.

–– We now have to set up the values for the inputs required.

–– This includes those for the ’inputs are’ statement

–– and any contexts.

–– Note how the user has to know the number of inputs the

–– formula has.

    ff_client_engine.set_input(’INPUT1’,

fnd_number.number_to_canonical(l_input1));

    ff_client_engine.set_input(’INPUT2’,

fnd_date.date_to_canonical(l_input2));

    ff_client_engine.set_input(’INPUT3’, l_input3);

    ff_client_engine.set_input(’INPUT3’, l_input3);

    ff_client_engine.set_input(’ASSIGNMENT_ID’, l_assignment_id);

    ff_client_engine.run_formula;

–– Now we have executed the formula. Get the results.

    ff_client_engine.get_output(’RET1’,   l_output1);

    ff_client_engine.get_output(’INPUT2’, l_output2);

    ff_client_engine.get_output(’INPUT3’, l_output3);

–– OK. Finally, display the results.

    hr_utility.trace(’RET1 value   : ’ || output1);

    hr_utility.trace(’INPUT2 value : ’ || l_output2);

    hr_utility.trace(’INPUT3 value : ’ || output3)

  end loop;

–– We can now continue to call as many formulas as we like,

–– always remembering to begin with a

–– ff_client.init_formula call.

–– Note: There is no procedure to be called to

–– shut down the execution engine.

end;

/

Special Forms Call Interface

This section attempts to describe in detail the interface to the special
forms client execution engine interface from a user perspective, and
how to call the module from forms.

When Should I Use This Interface?

This interface is recommended for use when you want to execute a
formula directly from a form or report client that does not support
PL/SQL V2.3 or above (that is, does not allow PL/SQL tables of
records).



6 – 25FastFormula

User Data Structures

There are no user visible data structures in the client side call.

Available Calls

The following procedure calls are available.  They are described below
with some detail on the parameters that can be passed to them.

Note:  Refer to the appropriate package header for information
on the class of parameter (in, out, or in/out).

Procedure : run_id_formula

This call initializes the execution engine for a specific formula, then
runs the formula taking the input and context arguments specified.
Finally it returns the appropriate results to the user via a further set of
arguments.  This form of call therefore requires only one network
round–trip.  The disadvantage is that it is limited to the number of
inputs and returns that it can cope with (this is based round the
PL/SQL V1.0 limitations).

Note:  Use this procedure call when the formula_id for the
formula to execute is known.  Another procedure call
(run_name_formula – see below) is used where only the name
is known.

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective execution date

p_input_name01 . . . 10 varchar2 input name 01 . . . 10

p_input_value01 . . . 10 varchar2 input value 01 . . . 10

p_context_name01 . . . 14 varchar2 context name 01 . . . 14

p_context_value01 . . . 14 varchar2 context value 01 . . . 14

p_return_name01 . . . 10 varchar2 return name 01 . . . 10

p_return_value01 . . . 10 varchar2 return value 01 . . . 10

Parameters to run_id_formula  

Procedure : run_name_formula

This call initializes the execution engine for a specific formula, then
runs the formula taking the input and context arguments specified.



6 – 26 Implementing Oracle HRMS

Finally it returns the appropriate results to the user via a further set of
arguments.  This form of call therefore requires only one network
round–trip.  The disadvantage is that it is limited to the number of
inputs and returns that it can cope with (this is based round the
PL/SQL V1.0 limitations).

Note:  Use this procedure call when you know the name and
type for the formula to execute.  Use the run_id_formula call
(see above) when only the id is known.

Parameter Name Data Type Comments

p_formula_type_name number Formula type

p_formula_name varchar2 Name of formula to execute

p_effective_date date Effective execution date

p_input_name01 . . . 10 varchar2 input name 01 . . . 10

p_input_value01 . . . 10 varchar2 input value 01 . . . 10

p_context_name01 . . . 14 varchar2 context name 01 . . . 14

p_context_value01 . . . 14 varchar2 context value 01 . . . 14

p_return_name01 . . . 10 varchar2 return name 01 . . . 10

p_return_value01 . . . 10 varchar2 return value 01 . . . 10

Parameters to run_name_formula  

Logging Options

Sometimes things may go wrong when attempting to execute formulas
via the PL/SQL engine.  In many cases, the error messages raised will
make it obvious where the problem is.  However, there are cases where
some more information is needed.

You can set the execution engine to output logging information. This
section explains how to activate and use the logging options

Note:  The logging output makes use of the standard Oracle
HR trace feature.

Enabling Logging Options

You set logging options for the execution engine by calling the
ff_utils.set_debug procedure.  This procedure has the definition:



6 – 27FastFormula

procedure set_debug

(

  p_debug_level in binary_integer

);

Since the numeric values for the options are power of two values, each
represented by a constant, the appropriate values are added together.

For instance, to set the routing and dbi cache debug options (see below)
use the following call (from SQLPLUS).
SQL> execute ff_utils.set_debug(9)

The value 9 is (1 + 8).

If preferred, you can use the constants that have been defined.  For
example:
SQL> execute ff_utils.set_debug(ff_utils.ROUTING +

ff_exec.DBI_CACHE_DBG)

FF_DEBUG Profile Option

If the execution engine is being called from a form, you can enable
logging options using the FF_DEBUG profile option.

You use a series of characters to indicate which logging options you
want to set. You must specify X, as this enables user exit logging. For
example, if you set the profile option to XDR, you initiate the database
item cache and routing information.

The full list of characters you can specify is as follows (see Summary of
Available Information for a description of each logging option).

Character Equivalent to . . .

R ff_utils.ROUTING

F ff_exec.FF_DBG

C ff_exec.FF_CACHE_DBG

D ff_exec.DBI_CACHE_DBG

M ff_exec.MRU_DBG

I ff_exec.IO_TABLE_DBG

Values for FF_DEBUG Profile Option  

Summary Of Available Information

What follows is a brief discussion of each logging option, with its
symbolic and equivalent binary value used to set it.



6 – 28 Implementing Oracle HRMS

Note:  To interpret the output of many of these options, you
require some familiarity with the workings of the execution
engine code.

ff_utils.ROUTING     : 1

Routing.  Outputs information about the functions and procedures that
are accessed during an execution engine run.  An example of the visible
output would be:

• In  : run_formula

• Out : run_formula

ff_exec.FF_DBG  : 2

This debug level, although defined in the header, is not currently used.

ff_exec.FF_CACHE_DBG : 4

Formula Cache Debug.  Displays information about the currently
executing formula, including its data item usage rows.

ff_exec.DBI_CACHE_DBG : 8

Database Item Cache Debug.  Displays information about those items
held in the database item cache.  These items are not constrained to a
particular formula.

ff_exec.MRU_DBG : 16

Most Recently Used Formula chain.  Displays information about those
formulas currently held in the MRU chain.  The information displayed
includes the table index, formula_id, sticky flag and formula name.

ff_exec.IO_TABLE_DBG : 32

Input and Output Table Debug.  Shows information about items
currently held in the input and output tables.  This includes both
information set by the user and the formula engine.

How Should the Options Be Used?

Only general advice can be given, since there is no way of predicting
what the problem may be.  Some hints are:

ROUTING is useful only for those who understand the code.  Tracing
the procedures may illuminate a problem – perhaps an error is being
raised and it is not obvious where from.



6 – 29FastFormula

FF_CACHE_DBG will confirm what basic formula information is held
by the execution engine.  This is useful to see if it looks as you expect.

IO_TABLE_DBG will confirm what is really being passed to and from a
formula.



6 – 30 Implementing Oracle HRMS



C H A P T E R

7

7 – 1Extending Security in Oracle HRMS

Extending Security in
Oracle HRMS



7 – 2 Implementing Oracle HRMS

Extending Security in Oracle Human Resources
Oracle Human Resources provides a flexible approach to controlling
access to tables, records, fields, forms and functions.  You can match
each employee’s level of access to their responsibilities.

For a discussion of security in Oracle HRMS and how to set it up to
meet your requirements, refer to the chapter on Security in Customizing,
Reporting and System Administration in Oracle HRMS, and to the setup
steps in Implementing Oracle HRMS.

This essay does not repeat the definitions and description in the setup
steps and security chapter..  It builds on that information to describe
the objects and processes that implement the security system.  Read
this essay if you need to:

• Add custom tables to the standard security system

• Integrate your own security system with the supplied
mechanisms

Security Profiles

All Oracle Applications users access the system through a
responsibility that is linked to a security group and a security profile.
The security group determines which Business Group the user can
access. The security profile determines which records (related to
organizations, positions and payrolls) the user can access within the
Business Group.

There are two types of security profile:

• Unrestricted

• Restricted

Restricted security profiles are available only to users of Oracle Human
Resources, Oracle Payroll, and Oracle Advanced Benefits. Notice that
Oracle Training Administration does not make use of restricted
security profiles.

A Responsibility with an unrestricted security profile has unrestricted
access to data in Oracle HRMS tables. It connects to the APPS Oracle
User. If you connect to an unrestricted security profile, the data you see
when you select from a secure view is the same data you see if you
select from the table on which the secure view is based.

When you connect to the APPS Oracle User with a restricted security
profile you can access the secure tables directly if you want to bypass



7 – 3Extending Security in Oracle HRMS

the security restrictions defined in your security profile. You might
want to do this to perform uniqueness checks, or to resolve foreign
keys.

Restricted security profiles can optionally make use of read–only, or
reporting users. These are separate Oracle Users, one per restricted
security profile, that have read–only access to Oracle tables and views.
Reporting users do not have execute privilege on Oracle HRMS
PL/SQL packages, and do not have direct access to the secured Oracle
HRMS tables.

Restricted security profiles may restrict access to the following entities
(the exact restrictions are determined by the definition of the security
profiles):

• Organizations

• People

• Assignments

• Positions

• Vacancies

• Payrolls

All other entities are unrestricted; that is, restricted security profiles can
access all records of tables, views and sequences associated with these
entities.

Secure Tables and Views

The following Oracle HRMS tables are secured:

• HR_ALL_ORGANIZATION_UNITS

• PER_ALL_POSITIONS

• HR_ALL_POSITIONS_F

• PER_ALL_VACANCIES

• PER_ALL_PEOPLE_F

• PER_ALL_ASSIGNMENTS_F

• PAY_ALL_PAYROLLS_F

Some of these tables (namely PER_ALL_PEOPLE_F,
PER_ALL_ASSIGNMENTS_F, HR_ALL_POSITIONS_F, and
PAY_ALL_PAYROLLS_F) are datetracked. The following table details
the views that are based on the secured tables listed above.



7 – 4 Implementing Oracle HRMS

Table or View Description

HR_ORGANIZATION_UNITS Secure view of Organization table

HR_ALL_ORGANIZATION_UNITS Organization table

PER_ORGANIZATION_UNITS Secure view of Organization view (HR Orgs only)

PER_ALL_ORGANIZATION_UNITS Unsecured view of Organization view (HR Orgs only)

HR_ALL_POSITIONS Unrestricted view of datetracked Positions table, effective
at session date

HR_ALL_POSITIONS_F Datetracked Positions table

HR_POSITIONS Secure view of datetracked Positions table, effective at
session date

HR_POSITIONS_F Secure view of datetracked Positions table

HR_POSITIONS_X Secure view of datetracked Positions table, effective at
system date

PER_POSITIONS Secure view of non–datetracked Positions table

PER_ALL_POSITIONS Non–datetracked Positions table

PER_VACANCIES Secure view of Vacancies table

PER_ALL_VACANCIES Vacancies table

PER_ASSIGNMENTS Secure view of Assignments table, effective at session date

PER_ASSIGNMENTS_F Secure view of Assignments table

PER_ASSIGNMENTS_X Secure view of Assignments table, effective at system date

PER_ALL_ASSIGNMENTS Unrestricted view of Assignments table, effective at session
date

PER_ALL_ASSIGNMENTS_F Assignments table

PER_PEOPLE Secure view of Person table, effective at session date

PER_PEOPLE_F Secure view of Person table

PER_PEOPLE_X Secure view of Person table, effective at system date

PER_ALL_PEOPLE Unrestricted view of Person table, effective at session date

PER_ALL_PEOPLE_F Person table

PAY_PAYROLLS Secure view of Payrolls table, effective at session date

PAY_PAYROLLS_F Secure view of Payrolls table

Secure Table and Views



7 – 5Extending Security in Oracle HRMS

DescriptionTable or View

PAY_PAYROLLS_X Secure view of Payrolls table, effective at system date

PAY_ALL_PAYROLLS Unrestricted view of Payrolls table, effective at session
date

PAY_ALL_PAYROLLS_F Payrolls table

Secure Table and Views

Accessing Oracle HRMS Data Through Restricted Security Profiles

When you connect to the APPS Oracle User you can access all Oracle
HRMS database objects without having to perform any additional
setup.

This is not the case for reporting users: two conditions must be met to
enable reporting users to access Oracle HRMS tables and views:

• A public synonym must exist for each table and view. Public
synonyms have the same name as the tables and views to which
they point. They are created during installation of Oracle HRMS.

• The reporting user must have been granted permissions to access
the tables and views by the SECGEN process. Reporting users
are granted SELECT permission only. See below for more
information about SECGEN.

How Secure Views Work

The information that is visible through a secure view is dependent on
the definition of the security profile through which the view is being
accessed.

If you have connected with a restricted security profile the information
you can see is derived from denormalized lists of organizations,
positions, people and payrolls.

The lists are used only when required. For example, the payroll list will
be empty for a security profile that can see all payrolls. And in the case
of a security profile that can see all applicants but a restricted set of
employees, the Person list contains employees but no applicants.

Here is the text of the HR_ORGANIZATION_UNITS secure view:
CREATE OR REPLACE VIEW HR_ORGANIZATION_UNITS AS

SELECT *

FROM HR_ALL_ORGANIZATIONS HAO

WHERE DECODE(HR_SECURITY.VIEW_ALL, ’Y’, ’Y’,

HR_SECURITY.SHOW_RECORD

(’HR_ALL_ORGANIZATION_UNITS’,HAO.ORGANIZATION_ID))=’Y’



7 – 6 Implementing Oracle HRMS

Most HR security logic is encapsulated in a PL/SQL package,
HR_SECURITY.

HR_SECURITY.VIEW_ALL returns the value of the VIEW_ALL_FLAG
for the current security profile.

HR_SECURITY.SHOW_RECORD is called if the current security profile
is a restricted security profile. It validates whether the row in question
is visible through the current security profile.

Security Context

The HR security context contains values for all the attributes of the
current security profiles. It is implemented using PL/SQL globals. The
current security profile is derived as follows:

1. If you have logged onto Oracle Applications using the Oracle
Applications sign–on screen, your security context is automatically
set as part of the Oracle Applications sign–on procedure. Your
current security_profile_id is derived from the responsibility and
security group you select during sign–on.

2. If you have connected to an HR reporting user your current
security_profile_id is taken from the PER_SECURITY_PROFILES
table, where REPORTING_ORACLE_USERNAME matches the
name of the Oracle User to which you have connected.

3. If it is not possible to derive a security_profile_id by either of the
above two methods, the system looks for the default view–all
security profile created for the Business Group. This gives you
unrestricted access to the Business Group. If it cannot find this, the
current security_profile_id is set to null, which prevents you from
accessing any records.

So, if you connect directly to the APPS Oracle User through SQL*Plus,
you will have unrestricted access to the HRMS tables. But if you
connect to an HR reporting user, your access is restricted according to
the definition of your security profile.

You can simulate the security context for an Oracle Applications
session by calling FND_GLOBAL.APPS_INITIALIZE (user_id, resp_id,
resp_appl_id, and security_group_id), passing the IDs of the user,
responsibility, application, and security group for the sign–on session
you want to simulate. The security_group_id is defaulted to zero (that
is, the setup Business Group).

Note:  FND_GLOBAL is not accessible from HR reporting
users.



7 – 7Extending Security in Oracle HRMS

Security Lists

The security profile list tables contain denormalized lists of people,
positions, organizations and payrolls.  An additional security profile
list table (PER_PERSON_LIST_CHANGES) is populated on employee
and applicant termination to enable terminated employees and
applicants to continue to be visible; the PERSON_LIST table references
only current employees and applicants.

Security profile lists are intersection tables between a security profile
and secured tables, as follows:

Security List Table Name Columns

PER_PERSON_LIST SECURITY_PROFILE_ID, PERSON_ID

PER_POSITION_LIST SECURITY_PROFILE_ID, POSITION_ID

PER_ORGANIZATION_LIST SECURITY_PROFILE_ID, ORGANIZATION_ID

PAY_PAYROLL_LIST SECURITY_PROFILE_ID, PAYROLL_ID

PER_PERSON_LIST_CHANGES SECURITY_PROFILE_ID, PERSON_ID

These tables are periodically refreshed by the LISTGEN process. They
are also written to when some relevant business processes are
performed through Oracle HR, for employee, employee hire or transfer.

Security Processes

Three processes are used to implement Oracle HRMS security:

• Grant Secure Role Permission (ROLEGEN)

• Generate Secure User (SECGEN)

• Create Security Lists (LISTGEN)

ROLEGEN runs automatically as part of an installation or upgrade. If
you are not setting up reporting users, you need not run SECGEN.

Refer to the chapter on Security in Customizing, Reporting and System
Administration in Oracle HRMS for details of how to submit SECGEN
and LISTGEN from the Submit Requests window.  This section
describes how the processes work.



7 – 8 Implementing Oracle HRMS

Note:  There is another security process called GLISTGEN. Use
this to generate lists for global security profiles. These are
security profiles that are not associated with a Business Group.
They secure organizations and people through a global
(cross–Business Group) organization hierarchy.

Global security profiles cannot be used in Oracle HRMS at
present. They can be used for other Oracle applications.

ROLEGEN: Grant Secure Role Permission Process

A role is a set of permissions that can be granted to Oracle users or to
other roles.  Roles are granted to users by the SECGEN process (see
below).

The ROLEGEN process must run before you run SECGEN. ROLEGEN
dynamically grants select permissions on Oracle HRMS tables and
views to the HR_REPORTING_USER role.  This role must exist before
ROLEGEN runs.

The HR_REPORTING_USER role is created during the install of Oracle
HRMS. And ROLEGEN is run during the install of Oracle HRMS.

Note:  As ROLEGEN runs as part of the installation and
upgrade processes, you do not need to run ROLEGEN
manually.

ROLEGEN performs the following actions:

• Creates public synonyms for HRMS tables and views, excluding
unsecured tables (%_ALL_%)

• Revokes all existing permissions from HR_REPORTING_USER
roles

• Grants SELECT permissions to HR_REPORTING_USER role for
HRMS tables and views

SECGEN – Generate Secure User Process

You run SECGEN for a specified security profile. It grants the
HR_REPORTING_USER role to the Oracle User associated with the
security profile.

SECGEN must be run after ROLEGEN. However, once SECGEN has
been run for a particular security profile, you need nor rerun it even if
ROLEGEN is run again.

SECGEN is a PRO*C process with embedded SQL statements.  You
initiate it from the Submit Requests window.



7 – 9Extending Security in Oracle HRMS

LISTGEN – Create Security Lists Process

You should run LISTGEN periodically (for example, nightly) to refresh
the security lists upon which the secure views are built.

LISTGEN is a PL/SQL procedure that you submit from the Submit
Requests window.

LISTGEN builds the security lists from the organization and position
hierarchies by performing tree walks on the
PER_ORG_STRUCTURE_ELEMENTS and
PER_POS_STRUCTURE_ELEMENTS tables.  It uses the parent–child
relationship between the nodes and starts with the specified top node.
It uses the current version of the hierarchy, as of the date passed to the
process as the effective run date.

For each security profile, LISTGEN checks that the organization named
as the top organization exists in the current version of the hierarchy. If
it does not, LISTGEN writes an error message to a log file and fails
with an error status. This might happen if a new version of a hierarchy
did not contain an organization referenced as a top organization in a
security profile.

A similar check is made for the top position, if specified.

For each security profile, LISTGEN performs the following steps:

1. If the View All flag is Y, LISTGEN ends leaving all security lists
empty for the specified security profile.

2. Builds a payroll list.

If the View All Payrolls flag is Y, LISTGEN leaves the payroll list
empty.  If the View All Payrolls flag is N, LISTGEN checks the
Include Payroll flag.  If this flag is Y, LISTGEN makes a list of all
payrolls in the pay_security_payrolls list.  If the flag is N, LISTGEN
makes a list of all payrolls except those in the pay_security_payrolls
list.  The pay_security_payrolls list is populated when you enter
payrolls on the Define Security Profile screen.

3. Builds an organization list.

If the View All Organizations flag is Y, LISTGEN leaves the
organization list empty.  If this flag is N, LISTGEN builds a list of
all organizations below the top one you specified for the
organization hierarchy you chose on the Define Security Profile
screen.  If the Include Top Organization flag is Y, the top
organization you specified is included in the list.  The Business
Group is always included in the list to allow newly entered
employees and applicants to be visible before they are assigned to
an organization.



7 – 10 Implementing Oracle HRMS

4. Builds a position list.

If the View All Positions flag is Y, LISTGEN builds a list of all
positions within the organizations on the organization list.  If this
flag is N, LISTGEN builds a list of all positions below the top one
you specified for the position hierarchy you chose on the Define
Security Profile screen.  If the Include Top Position flag is Y, the top
position you specified is included in the list.  The list of positions is
built up for all organizations on the organization list, or for all
organizations if the View All Organizations flag is Y.

5. Builds a person list.

If the View All Positions flag is N, LISTGEN builds a list of all
employees or applicants with current assignments to positions in
the position list, unless they are also assigned to a payroll excluded
from the payroll list.  LISTGEN also includes people who are not
assigned to a position but are assigned to a payroll in the payroll
list, or to any payroll if the View All Payrolls flag is Y.

The people in the list have current assignments as of the date
passed into LISTGEN, or are the first assignments for a person
starting in the future who does not have a previously terminated
assignment.  New starters in the future are therefore visible
through the secure view.

If the View All Organizations flag is N and the View All Positions
flag is Y, LISTGEN builds a list of all people with current
assignments to organizations in the organization list.  If the View
All Payrolls flag is N, the list is restricted to people with
assignments to payrolls in the payroll list, or with no payroll
assignments.

People not yet assigned are included in the person list for every
security profile.

6. Adds person list changes.

Employees or applicants visible to security profiles at the point of
their termination should continue to be visible after termination.
To enable this, the termination forms insert a row into the person
list changes table for each security profile that can see the person at
termination.

LISTGEN adds a person to the person list if an entry exists in the
PER_PERSON_LIST_CHANGES TABLE, there is no current period
of service, and no current application for the person.  It only adds
people if they are not already in the list.



7 – 11Extending Security in Oracle HRMS

Securing Custom Tables

If you have created your own custom tables, perform the following
steps to make them accessible to reporting users:

1. Create table.

Select a table name that does not conflict with any tables or views
that might exist in Oracle Applications.

Do not use two or three character prefixes such as HR, PER, PAY,
FF, DT, SSP, GHR, BEN, OTA or HXT.

Consult Oracle Applications Coding Standards for information on
valid prefixes for custom code.

2. Grant select access on the table to HR_REPORTING_USER role,
from the user that owns the custom table.

GRANT SELECT ON custom_table TO hr_reporting_user;

You must repeat this step every time you perform an installation or
upgrade.  However, you do not need to rerun SECGEN as existing
reporting users that have already been granted access to the
HR_REPORTING_USER role will automatically receive any new
permissions added to the role.

3. Create a synonym to the table.

If you use public synonyms, remember that the Oracle user from
which you create the public synonym must have CREATE PUBLIC
SYNONYM system privilege.

CREATE PUBLIC SYNONYM custom_table

  FOR base_table_account.custom_table;



7 – 12 Implementing Oracle HRMS



C H A P T E R

8

8 – 1Batch Element Entry

Batch Element Entry



8 – 2 Implementing Oracle HRMS

Creating Control Totals for the Batch Element Entry Process

Batch control totals provide a mechanism for customizing the validation
of batch contents to meet particular user requirements. This validation
may be done for example, by doing total, or average operations on the
batch lines and matching the values with values entered by the user.

Batches can be entered and viewed using the Batch Header window, and
other windows available from it.

Setting Up Control Totals

This is done in three parts:

1. Create a control total type in Lookup Values under the type
CONTROL_TYPE. See: Adding Lookup Types and Values,
Customizing, Reporting, and System Administration in Oracle HRMS.

2. Create the SQL code necessary to perform the validation.

3. Add the control total name and expected value into the Control
Totals screen for the batch. See: Entering a Batch Header, Managing
Compensation and Benefits Using Oracle HRMS.

Task 2 is the most complex and is elaborated below.

Creating the SQL Code

The following procedure is delivered with a null statement in it. Replace
the null statement with your customized control total validation code.

• Procedure: check_control

• Package: user_check

• File: pyusrchk.pkb

Parameters

The check_control procedure is executed during the batch validation
phase of the BEE process. The parameters passed to this procedure are:

• p_batch_id The batch ID.

• p_control_type The name of the control total.

• p_control_total The user entered value to match.



8 – 3Batch Element Entry

Two other parameters (p_status, p_message) are used in this procedure
to return an error code and message to the system if the batch control
total validation fails.

Batch Lines

Each line of batch data is stored as a record in the pay_batch_lines table.
The data is stored in the fields value_1 – value_15. The number of the
field corresponds to the column in the Batch Lines window.

For example, if you want to check the total value of the first column of
the lines, you could use the following PL/SQL code as a basis:

PROCEDURE check_control

  (

    p_batch_id          IN      NUMBER,

    p_control_type      IN      VARCHAR2,

    p_control_total     IN      VARCHAR2,

    p_status            IN OUT  VARCHAR2,

    p_message           OUT     VARCHAR2

  ) IS

  total NUMBER;

BEGIN

–– Check the control type is the one we’re expecting

  IF p_control_type = ’TOT1’ THEN

–– Calculate the total

    SELECT SUM(value_1) INTO total FROM pay_batch_lines

      WHERE batch_id = p_batch_id;

–– Compare with the user entered value

    IF total <> p_control_total THEN

–– Create the error message to return and set the status to

E(rror)

      p_message := ’Control total TOT1 (’ || p_control_total ||

                   ’does not match calculated value (’ || total ||

                   ’)’;

      p_status := ’E’;

    ENDIF;

  ENDIF;

END check_control;

This, however, is a very simplistic example. If batch lines within the
same batch are entered for more than one element then the value
columns may vary between elements. Here is a more complex example
to total ”Pay Value”:



8 – 4 Implementing Oracle HRMS

PROCEDURE check_control

  (

    p_batch_id          IN      NUMBER,

    p_control_type      IN      VARCHAR2,

    p_control_total     IN      VARCHAR2,

    p_status            IN OUT  VARCHAR2,

    p_message           OUT     VARCHAR2

  ) IS

    CURSOR c1 IS

      SELECT DISTINCT element_name

        FROM pay_batch_lines

        WHERE batch_id = p_batch_id;

––

    r1 c1%ROWTYPE;

    gtotal NUMBER;

    total NUMBER;

    value_num NUMBER;

    sqlstr VARCHAR2(200);

    c2 INTEGER;

    ret INTEGER;

  BEGIN

––

–– Check the control type is the one we’re expecting

    IF p_control_type = ’TOT2’ THEN

      gtotal := 0;

––

–– Loop through each element in the batch lines

      FOR r1 IN c1 LOOP

––

–– Find out the value number that ’Pay Value’ is in

        SELECT display_sequence

          INTO value_num

          FROM pay_input_values iv,

               pay_batch_headers bh,

               pay_element_types_f et

          WHERE bh.batch_id = p_batch_id AND

                iv.business_group_id = bh.business_group_id AND

                et.element_name = r1.element_name AND

                iv.element_type_id = et.element_type_id AND

                iv.name = ’Pay Value’;

––

–– Create an SQL string to add the values

        sqlstr := ’SELECT SUM(value_’ || value_num || ’) ’ ||

                    ’FROM pay_batch_lines ’ ||

                    ’WHERE batch_id = ’ || p_batch_id || ’ AND ’

||

                          ’element_name = ’’’ || r1.element_name

|| ’’’’;

––



8 – 5Batch Element Entry

–– Call the string using dynamic SQL and put the value in ’total’

        c2 := dbms_sql.open_cursor;

        dbms_sql.parse (c2,sqlstr,dbms_sql.v7);

        dbms_sql.define_column (c2,1,total);

        ret := dbms_sql.execute (c2);

        ret := dbms_sql.fetch_rows (c2);

––

–– Check we got some values back

        if ret > 0 then

          dbms_sql.column_value (c2,1,total);

        else

          total := 0;

        end if;

––

        dbms_sql.close_cursor (c2);

––

–– Add the total to the grand total of all Pay Values

        gtotal := gtotal+total;

      END LOOP;

––

–– Check the grand total matches the user entered value and create

an error message

–– if it doesn’t

      IF gtotal <> p_control_total THEN

        p_message := ’Control Total ’ || p_control_type || ’

expected ’ ||

                     p_control_total || ’ but got ’ || gtotal;

        p_status := ’E’;

      END IF;

    END IF;

  END check_control;



8 – 6 Implementing Oracle HRMS



C H A P T E R

9

9 – 1Validation of Flexfield Values

Validation of Flexfield
Values



9 – 2 Implementing Oracle HRMS

Validation of Flexfield Values

Oracle Self Service HR, Application Data Exchange, and some forms
use the HRMS APIs to record data in the database. Custom programs
at your site, such as data upload programs, may also use the APIs.

From Release 11i (and R11.0 Patch Set D), the APIs validate flexfield
values using value sets (in the same way as the professional Forms user
interface). This provides the benefit that value set definitions only need
to be implemented and maintained in one location. In previous
releases, the APIs validated flexfield values using PL/SQL callouts to
Skeleton Flexfield Validation server–side packages. These packages are
no longer used.

This essay explains how to solve some problems you may encounter
when the APIs use flexfield value sets. These problems occur when the
value sets refer to objects that are not automatically available to API
validation.

In summary, problems may occur when value sets refer to:

• User profile options

• Form block.field items

• A row in the FND_SESSIONS database table

Problems may also be caused by:

• Incomplete context field value lists

• Using the segment separator in data

The rest of this essay explains these five issues in more detail with
recommended solutions. For all of these solutions, the changes are not
apparent to end users and it is not necessary to change where the data
is physically held in the database.

Referencing User Profile Options 

Referencing profile options in value sets does not cause a problem in
the Professional Forms UI or Self Service HR. When a user logs on to
these interfaces, the profiles are available, defined at site, application,
responsibility, or user level.

However, when the APIs are executed directly in a SQL*Plus database
session, there is no application log–on. If the profile is not defined at
site level, its value will be null. Even if the profile is defined at site
level, this may not give the appropriate values. For example, the



9 – 3Validation of Flexfield Values

PER_BUSINESS_GROUP_ID profile is defined at site level with a value
of zero, for the Setup Business Group. If you do not use the Setup
Business Group, the flexfield validation finds no rows and all data
values are rejected as invalid.

Recommended Solution

Ensure any profiles you reference in value sets are set to the
appropriate values before the flexfield validation is performed. You can
do this using API user hooks.  The following example uses the
PER_BUSINESS_GROUP_ID profile.

Using API User Hooks to
Set Business Group ID

V

Program call sets

API parameters

API

V V V
Before Process

user hook

Core product-
processing 

including flexfield
validation

After Process
user hook

Define a Before Process user hook call to set the
PER_BUSINESS_GROUP_ID profile. Where the API user hook
provides a mandatory p_business_group_id parameter, the profile can
be set directly from this parameter value. Otherwise first derive the
business_group_id value from the database tables using the API’s
mandatory primary key parameter value.

The PER_BUSINESS_GROUP_ID profile must only be populated when
it is undefined or set to zero. If the profile is defined with a non–zero
value then it should not be changed. This is to ensure there is no impact
on the Professional UI and Self Service HR.

The Before Process user hook package should also remember when it
has actually set the PER_BUSINESS_GROUP_ID profile. This can be
done with a package global variable.



9 – 4 Implementing Oracle HRMS

The second part of the solution is to define an After Process user hook
to reset the PER_BUSINESS_GROUP_ID profile back to its original zero
or null value. This is only necessary when the Before Process actually
changed the value. This is to ensure the profile will be populated with
the correct value when the API is called a second time.

For further information on using API user hooks, see the ”APIs in
Oracle HRMS” essay.

Alternative Solution

If you have only one program experiencing this problem, you could
modify the program to set the PER_BUSINESS_GROUP_ID profile
immediately before each API call. However, if you introduce any other
programs in the future calling the same API, you would have to
remember to set the PER_BUSINESS_GROUP_ID profile in these
programs too.

Referencing Form block.field Items 

If a value set references Form block.field items, an error is raised when
the API executes the flexfield validation because the Form item values
cannot be resolved on the server–side. This problem affects Oracle Self
Service HR and any custom code that calls the API.

Recommended Solution

There are three parts to this solution:

1. Modify the value sets so all block.item references are changed to
custom profile names. These profiles do not have to be defined
within the Oracle Applications data dictionary because profiles can
be created and set dynamically at run–time.

2. To ensure the modified value sets work, the profiles must be
populated before the APIs execute the flexfield validation. As with
the PER_BUSINESS_GROUP_ID profile problem, this requires an
API Before Process user hook to populate the profile values. Some
of the required values will not be immediately available from the
user hook package parameters. However any missing values can be
derived from the HRMS tables.

3. To ensure the flexfield validation continues to work in the
Professional UI, the profile values need to be populated before the
flexfield pop–up window is displayed. This can be done using the
CUSTOM library. For the specific Forms when certain events occur,
read the Form items to populate the custom profiles.



�

9 – 5Validation of Flexfield Values

Attention:  There may be some instances in the Self Service screens
where it is not possible to display these flexfield values. This is
because their is no Web page equivalent to the Forms’ CUSTOM
library to ensure the custom profiles are correctly populated. This
will not be resolved until a future Release.

Alternative Solution

Another method would be to extend the value set Where clauses to
obtain the required values from the database. This may require joins to
additional database tables. This removes the need to reference Form
block.field items. However, this solution is only suitable where values
can be obtained from records already in the database. Attempting to
reference columns on the record being processed by the current API call
will fail. During an insert operation those values will not be available
from the database table when the flexfield validation executes. During
an update operation the pre–update values will be obtained.

Referencing FND_SESSIONS Row 

The FND_SESSIONS database table is used to obtain the current user’s
DateTrack effective date. This table is only maintained by the
Professional UI.  The APIs and Self Service modules do not insert or
update any rows in this table. So when the value set is executed from
these modules, the join fails to find any rows.

Recommended Solution

Using an API Before Process user hook, if a row does not already exist
in the FND_SESSIONS table for this database session, then insert one.
The EFFECTIVE_DATE column should be set from the p_effective_date
parameter made available at the user hook. It is important to ensure the
EFFECTIVE_DATE column is set to a date value with no time
component, that is, trunc(<date>). Otherwise some join conditions will
still fail to find valid table rows.

When the API Before Process user hook has inserted a row into
FND_SESSIONS, the After Process user hook should delete it. This
ensures that when a second call to the same API is made, the
FND_SESSIONS.EFFECTIVE_DATE column is set to the correct value.

If performance is a concern for batch uploading of data, it may be more
efficient for the batch upload program to insert the FND_SESSIONS
row before the first API call. That will only be acceptable if the set of
records will be processed with the same effective date.  The API user
hooks will still need to be defined to ensure that other programs and
interfaces work as required.



9 – 6 Implementing Oracle HRMS

Alternative Solution

Another method would be to follow the same approach as the
referencing Form block.field items solution. Instead of the value set
using the FND_SESSIONS  table to obtain the effective date, it could
use a custom profile. This avoids the insert and delete DML steps.
However, there is an impact on the Professional UI so the CUSTOM
library will need to be changed to set the profile value.

Incomplete Context Field Value Lists 

Using the APIs, you might see the following error if a flexfield’s
reference value does not appear in the flexfield Context Field Values
list:

ORA–20001: Column ATTRIBUTE_CATEGORY, also known as
CONTEXT, cannot have value X.

Suppose a flexfield uses the business_group_id as the reference field.
When the API is called, the p_attribute_category parameter should be
set to the business_group_id value. When the API validates the
Flexfield Context Field (ATTRIBUTE_CATEGORY), it checks whether
the business_group_id being used exists in the Flexfield Context Field
Values list. If not, the API raises an error.

Recommended Solution

Ensure that the flexfield Context Field Values lists contain all possible
values.

Alternative Solution

In some flexfield structures, there are some contexts where only the
global data elements apply (there are no context–specific segments).
You might consider setting the p_attribute_category parameter to null
for these context values. This avoids the need to list these context
values in the Context Field Values list. However, this is not
recommended because it may cause other data errors to go undetected.
For example, if the context field is set to null when a more specific
value should be used, any mandatory segment validation associated
with that other value will not be executed.



9 – 7Validation of Flexfield Values

Using Segment Separator in Data 

The API flexfield validation logic does not support using the character
selected as the flexfield segment separator within the data itself. For
example, if you use a period as the segment separator, you cannot use
periods within your data. A data value such as “Sales N. Region” will
be interpreted as two segments: Sales N and Region. You may see
errors of the type “ORA–20001: Too many segment values entered.” or
validation errors because the truncated value (Sales N) is not valid.

Recommended Solution

This is a data or configuration problem for you to resolve in one of the
following ways:

• Changing the segment separator to another character. Care needs
to be taken to ensure existing data is modified to contain the
same value.

• Removing the segment separator characters from the data. This
may involve making other changes to the flexfield definition to
avoid the need to use the segment separator in the data. For
example, the flexfield definition could use organization ID
instead of organization name (while still displaying the name to
end users).



9 – 8 Implementing Oracle HRMS



C H A P T E R

10

10 – 1Payroll Processes

Payroll Processes



10 – 2 Implementing Oracle HRMS

Overview

Oracle Payroll provides you with the flexibility you require to run your
regular pay cycle in the best way to meet your business needs. To do
this, we provide you with a modular batch process called PYUGEN.

PYUGEN

PYUGEN is a generic process that can perform several actions. The
Oracle Payroll system administrator specifies which actions it can
perform by registering it with certain parameter sets and defaults.

The parameter identifies the specific payroll process to execute. These
are predefined in Oracle Payroll; the values are not visible to the user.

The following figure illustrates the payroll processes executed by
PYUGEN, and the typical sequence in which they are performed. Each
process performs specific actions required to calculate and generate
your employees’ pay.



10 – 3Payroll Processes

Pay Cycle Sequence

Payroll Run

Step 1

Pre–Payments

Step 2

Payment 
(Magnetic Tape, such as

NACHA; Cheque/
check; or Cash)

Step 3

Costing

Step 4

Transfer to General 
Ledger

Step 5

PYUGEN

Checking Registration Details

You can check the registration details for each payroll process using the
Concurrent Programs window. These details are predefined and are
protected from change. During implementation you can add your own
versions of these payroll processes to simplify the running of a pay cycle
for your users. For example, you might want to define a separate payroll
run process for each payroll, with different:

• Names

• Security

• Default values for different users

Consult your Oracle Applications System Administator’s Guide for more
information on registering concurrent programs.



10 – 4 Implementing Oracle HRMS

Payroll Action Parameters

Payroll action parameters are system–level parameters that control
aspects of the Oracle Payroll batch processes. It is important to recognize
that the effects of setting values for specific parameters may be system
wide.

See: Payroll Action Parameters: page 10 – 64

Overview of the Payroll Processes

The first process you run in your pay cycle is the Payroll Run process.
This process calculates the gross to net payment for your employees.
After the successful completion of the Payroll Run, you start the
Pre–Payments process. This process distributes employees’ pay over the
payment methods employees have requested. It also allocates payments
to third parties.

The next step is to start one of the payment processes to produce
payments for employees:

• MAGTAPE (for example BACS in the UK or NACHA in the US)

• CHEQUE (Cheque Writer or Check Writer)

• CASH (Cash) – for UK only

The payment processes take the unpaid prepayment values allocated to
each payment type and produce the required payment file. It is these
processes that actually produce payments for employees.

The Costing process allocates payroll run results to cost segments. The
Transfer to the General Ledger process transfers cost information to
Oracle General Ledger interface tables.

See Also

Payroll Run Process: page 10 – 6

Pre–Payments Process: page 10 – 58

Payment Processes: page 10 – 18

• Magnetic Tape Process: page 10 – 19

• Cheque Writer/Check Writer Process: page 10 – 38

• Cash Process: page 10 – 47

Costing Process: page 10 – 48

Transfer to General Ledger Process: page 10 – 52



10 – 5Payroll Processes

Supporting Processes

In addition to this regular cycle of activities there are other processes
that support the correction and completion of each cycle. These include:

• Mark for Retry

• Retry

• Rollback

• QuickPay

• RetroPay

• Advance Pay

• Archive

See the guide Running Your Payroll Using Oracle HRMS for more
information about these supporting processes. See: The Payroll Archive
Reporter (PAR) Process: page 11 – 2 for information about the Archive
process.

Assignment Level Interlocks

The sequence in which the PYUGEN calculates payment is critical to the
success of processing. This is because each process builds upon the
results of the previous process in the sequence. The sequence of the
processing is also determined by issues of data integrity. For example,
the Pre–Payments process (which prepares the payments according to
the payment methods) uses the results of the Payroll Run process
(which calculates the gross to net payment).

To ensure correct payments, you cannot change Payroll Run results
without also changing the prepayment results.  Oracle Payroll uses
assignment level interlock rules to enforce this.

See: Assignment Level Interlocks: page 10 – 53.



10 – 6 Implementing Oracle HRMS

Payroll Run Process
The Payroll Run process calculates the gross to net payment for your
employees.

This process uses payroll actions to represent each payroll run. It
identifies which assignments have payroll actions performed on them –
that action is an assignment action of the type payroll.

The results from processing each element for an assignment are the run
result values. These individual results are accumulated into balances
that summarize gross to net, and in particular the payment balances.
Payment balances are taken forward by Pre–Payments, which is the
next process in the regular pay cycle.

Determine Assignments and Elements

The first phase of the Payroll Run process is to determine the
assignments and elements to be included in the current batch. The user
specifies these by selecting an assignment set and element set when
initiating the run. The default is All.

The Payroll Run accesses a number of specific entities for processing. It
identifies whether they are used for select, update, delete or insert.
Where an entity is datetracked, the Payroll Run process also identifies
any datetracked information that has changed, and actions it
accordingly. For example, an update of a datetracked entity may
require an actual insert into the table.

The following list indicates the main entities for processing:

Key: S = Select, U = Update, D = Delete, I = Insert.

Entity Name Datetracked? Processing

Payroll Action No S, U, I

Assignment Action No S, U, I

Element Entry Yes S, U

Element Entry Value Yes S, U

Person Latest Balance No S, U, I

Assignment Latest Balance No S, U, I

Balance Context No S, U, I

Action Context No S, I

Run Result No S, U, I

Run Result Value No S, U, I



10 – 7Payroll Processes

Process Each Assignment

The Payroll Run applies the appropriate processing to each assignment.
For a specific payroll run, this is identified by an assignment action.
The following ’pseudo code’ represents the processing that occurs:

get assignment status();

if assignment status is ’Process’ then

load element entries and values ();

load latest balances ();

while(entries to process)

create run results if necessary ();

set up User Defined Context Area ();

/* third party hook */

get processing mode for entry ();

if(we are not skipping) then

look for formula to run ();

if(there is formula to execute) then

execute formula ();

if(error detected) then

handle error ();

end if

end if

post run results and feed balances ();

end if

end while

flush run results and values ();

write / update latest balances ();

end if

Element Entry Processing

Element entries hold the entry values that are input to the gross to net
calculations. The result of processing each entry value is a run result
value. Before processing each assignment, Payroll Run loads all entries



10 – 8 Implementing Oracle HRMS

for that assignment into memory. This includes any pre–inserted run
results and values.

By default, nonrecurring entries are only fetched if they are
unprocessed in the current pay period. Recurring entries are always
fetched and processed when you submit a payroll run. You must use
frequency rules, element skip formulas, or element sets to limit the
inclusion of recurring entries.

If you make an additional entry of a recurring element, the Payroll Run
processes the additional entry as a nonrecurring entry. (Additional
entries are not used by Oracle Payroll in the US.)

Processing Priority

The sequence of processing entries for each assignment is determined
by the processing priority of the element, and the subpriority order of
each entry. When the subpriority is null, entries are ordered by:

1. processing priority

2. element_type_id

3. entry type

Payroll Run checks for Overrides and Replacement entries before
calculating normal entries and additional entries for non–US
legislations.

If subpriority is specified, the in–memory list is reordered to reflect
this. Adjustments and target entries are kept together.

Termination Processing

Payroll Run implements the entry processing rules for a terminated
assignment.

For the US legislation, this means that if the date earned of Payroll Run
is between the actual date of termination and the final process date for an
assignment, the assignment is processed only when there exists an
unprocessed nonrecurring entry for the assignment.

For non–US legislations, a user can also enter a last standard process
date. This means that if the date earned of Payroll Run is between the
last standard process date and the final process date for an assignment,
the assignment is processed only when there exists an unprocessed
nonrecurring entry for the assignment.

An additional entry counts as nonrecurring for termination purposes.



10 – 9Payroll Processes

Create Run Results and Values

For every entry that is processed there must be a run result; for each
entry value there must be a run result value. If these do not already
exist, by pre–insertion, then the appropriate run results and values are
created in memory and are inserted into the database, ready for Payroll
Run to process.

For example, a nonrecurring entry may have pre–inserted run results
and values if you have entered the Pay Value.

Pre–inserted values are automatically deleted by a rollback or mark for
retry operation, and Payroll Run re–establishes them. However on the
rollback of a reversal, nonrecurring pre–inserted values are
re–established.

At the same time, Payroll Run uses the current exchange rate for the
payroll to perform any currency conversions. This happens if the input
and output currency codes of the element are different. You can define
an element with any input currency.

If the element contributes to a payment balance for the employee the
output currency must be the base currency of the Business Group.
Payment balances can be converted into other currencies as part of the
PrePayments process linked to payment methods.

Set Up Contexts

Before an entry is processed, Payroll Run sets up the contexts that are
needed by FastFormula for Payroll and Element Skip formulas. This
may include legislative specific contexts. The values of all the contexts
are held in a special data structure, known as the User Defined Context
Area (UDCA). The generic contexts that are always created provide
additional route information for the formula. These are:

• ORIGINAL_ENTRY_ID

• ELEMENT_ENTRY_ID

• BUSINESS_GROUP_ID

• PAYROLL_ACTION_ID

• PAYROLL_ID, ASSIGNMENT_ID

• ASSIGNMENT_ACTION_ID

• DATE_EARNED

• ELEMENT_TYPE_ID



10 – 10 Implementing Oracle HRMS

• TAX_UNIT

• JURISDICTION

• SOURCE_ID

A special third party interface is called so that the value of legislative
specific contexts can be set. This has been used extensively for US
legislations.

Run Element Skip Rules

Element Skip Rules enable you to define specific formula criteria to
determine whether an entry is processed or not. A skip rule formula
must return a skip_flag value of Y or N.

Where appropriate, a skip formula is fired and any input values are
taken from the in memory run result values (to allow for any currency
conversion). When looking at the skipping of an adjustment, the
formula inputs are taken from the entry values of the normal target
entry, not the adjustment entry itself.

There may also be legislative–specific skip rules predefined for specific
elements. This additional third party skip hook is called at the same
time that the internal function looks for a normal skip formula. This
legislative specific skip rule is defined in ’C’ code.

Element Entry Processing Modes

Payroll Run uses processing modes to control whether entries of an
element are processed. At first, the mode is set to indicate that it should
process. Then, depending on the entry type and whether a skip rule has
fired, a different mode may be set. This controls the processing of the
current entry and (possibly) other entries of the same element. For
example, when processing an Override entry, the mode is set to
Override. This mode persists throughout the processing of this
element, so no other entries are processed.

Create and Maintain Balances

Payroll Run needs to be able to access and maintain balances and latest
balances. In summary, the Payroll Run:

• Loads any existing assignment– or person–level latest balances
into memory



10 – 11Payroll Processes

• Checks all loaded balances for expiry, and sets them to zero if
they have expired

• Creates new in memory latest balances, where required

• Adds the appropriate run results to the current value of balances
in memory

• Writes the new balances to the database (for some balance
dimensions types only)

For more information about latest balances, see: Balances in Oracle
Payroll: page 12 – 2.

Loading Balances Into Memory

Any existing assignment–level or person–level latest balances (and any
associated balance contexts) are loaded into memory before any entries
are processed. The basic data structure for this is a doubly linked list,
kept ordered by balance_type_id. The balance values themselves are
held and manipulated as Oracle Numbers. The fetch is a union, in this
case because the two types of balances are held in separate tables.

Expiry Checking of Latest Balances

Latest balances should expire (that is, return to zero) at a time
determined by their dimension. For example, a YTD (Year to Date)
balance expires at the end of the year.

All loaded balances are checked for expiry. If they have expired, they
are set to zero. The expiry step is entirely separate from the loading
step, due to the need to deal with balance context values.

To process expiry checking, the Payroll Run calls Expiry Checking code
that is held in a PL/SQL package. To prevent performance from being
degraded, the number of accesses required is cut down by making
certain assumptions about the different expiry checking levels. The
assumptions made are determined by the balance’s expiry checking
type. See: Expiry Checking Type: page 12 – 8.

Creation of In Memory Latest Balances

Not all balances are loaded from the database, some have to be created.
Once they have been created, they have to be maintained.

For some dimension types, the newly created or updated balances must
be written to the tables.

A balance’s dimension type determines how it is treated by the payroll
run. For example, balances with the dimension type F are fed but not



10 – 12 Implementing Oracle HRMS

stored, so the Payroll Run creates a balance in memory. For a
description of the dimension types, see: Dimension Type: page 12 – 7.

There are three places in the code where in memory balances are created.
One place is for dimension types A, P and F, and two places are for
type R.

• An in memory balance is created when a formula has just
accessed a defined balance with the dimension type A, P or F
and which is not already held as an in memory balance. The in
memory balance is created using the value accessed by the
formula.

• An in memory balance with a value of zero is created before the
execution of a formula, if the formula accesses a defined balance
with the run level balance dimension type (R). (A run level
balance must be zero, by definition.)

• In memory balances with a value of zero are created before
balance feeding time if the code is attempting to feed defined
balances with run level dimension types (R).

The corollary of the above rules is that, except for the Run Level
dimension type, a latest balances can only be created for a particular
defined balance when that balance is accessed by an executed formula.

Run Results Added to In Memory Balances

Next, the appropriate run results are added to the current value of the
balance.

A summary of the algorithm that is used is:

1. For each processed run result, look at the balance feeds, which
identify the balance types that are potentially fed by each run result
value.

2. Scan the in memory balances to see if there are any potential feeds.

3. If there are, perform feed checking.

The feed checking strategy is determined by the feed checking type
on the appropriate balance dimension.  See: Feed Checking Type:
page 12 – 7.

4. If the result of feed checking is that the run result should feed the
balance, then: balance value = balance value + (result value * scale).

In the case of run result values that might feed run level balances,
Payroll Run might need to create them in memory, before feed checking
occurs. Since Payroll Run cannot identify which balances might be
required at this point, it has to create all those it might need.



10 – 13Payroll Processes

In practice, this means it creates balances for each of the run level
defined balances that might potentially be fed by the run result being
examined.

Note:  If the dimension type is R and the feed checking type is
set to S, this represents a special case for United States
legislation. A different algorithm is used in this case.

Writing of In Memory Balances

The contents of the in memory balances (and any associated contexts)
need to be written to the database as appropriate, that is, where the
replace flag on the in memory balance is set. Only balances with a
dimension type of A or P are written. This occurs after all entries have
been processed for the current assignment action.

After all element entries have been processed for the assignment, the in
memory balance list is scanned, data is moved to an array buffer and
then array inserted or updated on the database.

Run Formulas

Payroll Run calls FastFormula to enable it to perform its complex
calculations.

Note:  Even if a formula has been defined against an element
using a formula processing rule, it does not fire if the Pay Value
is not null.

The FastFormula Interface

The interface used by Payroll Run to access FastFormula is made up of
two sections, which are:

• The common part of the interface (available to any product)

This sets up pointers from Formula’s internal data structures to
the data to be input to the formula (contexts and inputs) and
output from the formula (formula results).

• A special interface

This is designed especially for Payroll Run, and allows access to
Formula’s database item cache.



10 – 14 Implementing Oracle HRMS

Execution of FastFormula by Payroll Run

Payroll Run goes through the following steps:

1. Declares that a new formula is executed.

2. Formula tells the run code what formula contexts, inputs and
outputs are required.

3. The in memory balance chain is scanned.

If the formula might access any of the defined balances held as
latest balances, it writes the current value of the balance to the
FastFormula database item cache.

4. Any formula contexts are satisfied. All the values are taken from
the User Defined Context Area (UDCA).

5. Values that are passed to the formula as ’inputs are’ variables are
satisfied. This is done by looking for a run result value that has an
associated Input Value name matching the input variable name.

6. The outputs that FastFormula has told the run code about are
directed to a buffer area.

Execute the Formula

The third party post formula hook is called. This enables special
legislative dependent functions to manipulate the formula results
before they are processed by Payroll Run. For instance, it enables
certain run results to be suppressed.

The formula results are processed.

Processing the Formula Results

Following the execution of a formula, Payroll Run loops through any
returned results, processing them as required by the formula result
rules. It looks for a formula result rule name that matches the formula
result that has been returned. There are several types of result rule, and
they are summarized below, from an internal processing point of view.

Message Rule

If the severity level of the message is fatal, it causes an assignment level
error. Otherwise, the message is written to the messages table. Note
that the length of a message is restricted to the size that can be held in
the run result values table (currently 60 characters).

Direct Rule

If the Unit Of Measure is Money, the value is rounded as necessary.
Then the run result value chain is searched for the entry holding the
Pay Value and is updated. The replace flag is set to indicate this.



10 – 15Payroll Processes

Indirect and Order Indirect Rule

These two types are grouped together, because they cause very similar
processing. During the processing of the current element entry, all
indirects are held on a temporary chain, and merged into the main
entry chain later.

First of all the temporary chain is searched. If there is no existing entry
for the element, a new one is created and added to the chain. Then, in
the indirect rule case only, the appropriate entry value is located and
updated with the new value. In the Order Indirect case, the subpriority
of the indirect entry is set to the formula result value.

Note:  If two formula result rules target the same input value,
the second result to be processed takes precedence.

Following the processing of all formula results, the chain of indirects is
merged into the main element entry chain at the appropriate point.
What is appropriate depends on the main processing priority and the
subpriority (which can be set using the Order Indirect rule).

Payroll Run prevents the processing priority of an indirect element
from being the same as the element that gives rise to the indirect.
However, the form continues to disallow this. Same priority indirects
was provided specifically for United States legislative requirements.

Same priority indirects can cause problems, however, because they
create an endless loop.

Update Recurring Rule

Payroll Run calls a PL/SQL procedure to find the appropriate element
entry to update. This procedure then performs the date effective
update. If this entry happens to exist further down the entry chain, its
value is updated to reflect the change.

Stop Recurring Rule

Payroll Run calls a PL/SQL procedure to find the appropriate element
entry to stop. This procedure then performs the date effective delete.

Run Result Processing

The run result and their associated run result values form the corollary
of element entries and element entry values. The entries express
eligibility to certain elements, whilst the results and values contain the
after effect of processing those entries.

During processing, run results and values are held in memory, hung off
the in memory element entry chain. This reflects their close connection
in database terms.



10 – 16 Implementing Oracle HRMS

Creation of Run Results and Run Result Values

Results and values are created internally in one of three ways:

• Loaded when entries and entry values are loaded – as
pre–inserted results, arising from nonrecurring element entries.

• Created by Payroll Run before processing the appropriate
element entry if there are any missing results and values.

• Created via indirect results.

Defaulting of Run Result Values

Payroll Run handles Hot and Cold defaulting while it checks that
results and values exist. If results and values do already exist, and are
null, Payroll Run attempts to default them.

If currency conversion is required, it is performed at the same time.
Internally, it uses Oracle Numbers for the calculation. Following this, if
it is processing an input value with a ’Money’ Unit of Measure, it
performs rounding on the result as necessary.

Writing Results and Values to the Database (Flushing)

The process moves the results and values to a special buffer and then
writes the run results and values to the database (update or insert). It
uses array processing techniques (similar to the technique used by
latest balances).

This process is usually referred to as flushing the results and there are
two circumstances that may trigger it:

• If the process is about to execute a formula that accesses a
database item not held in memory. The route for that database
item might need to access run results that have been generated
so far in Payroll Run itself. This assumption is made because
there is no way of finding out for sure.

• When all the element entries for the assignment action have been
processed, any remaining results and values are flushed.

Payroll Data Cache

During processing, Payroll Run has to access attributes of certain
entities that represent static definition data. For instance, it may need to
know the element name or the balance feeds for a particular input
value. Furthermore, the same data typically requires access many times



10 – 17Payroll Processes

over. If this data were selected from the database every time it was
needed, it would cause severe performance degradation.

To resolve this problem, a special static payroll data cache was
introduced. All the appropriate data for the entity is loaded into
memory the first time it is accessed. From then on, any subsequent
accesses to the data can go straight to memory.



10 – 18 Implementing Oracle HRMS

Payment Processes

After running the Pre–Payments process to prepare the results for
payment (according to the payment methods), you produce payments
for your employees.

With Oracle Payroll, there are three types of payment process that you
can run:

• The Magnetic Tape process – MAGTAPE

See: Magnetic Tape Process: page 10 – 19

• The Cheque process – CHEQUE

See: Cheque Writer/Check Writer Process: page 10 – 38

• The Cash Payments process – CASH (UK only)

See: Cash Process: page 10 – 47

The payment processes take the unpaid prepayment values allocated to
each payment type and produce the required payment file.

You can also record any manual payments you make to a specific
employee. These payments are not handled by the Payments processes.
Recording a manual payment has the effect of marking the prepayment
as paid.



10 – 19Payroll Processes

Magnetic Tape Process
The Magnetic Tape process generates the payment due and writes the
data to a file on magnetic tape. It is this tape that is taken to the bank
for payment.

There are two types of magnetic tape file, which are created differently:

• Payments

• End of year tax reporting

The actual format of these tapes is legislation specific.

The tape process is a simple ’C’ harness which calls Oracle stored
procedures and FastFormula formulas to produce the required tape
file. The routine is generic: you can use it for any task that requires
magnetic tape reporting. The actual structure and content of the tape is
defined entirely by the stored procedure and a series of formulas.

Some examples that use the routine are:

• BACS

• NACHA

• W2

• P35 submissions (and equivalent in other countries)

Note:  The order of the entries in the magnetic file is critical.
Therefore the Magnetic Tape process cannot run with multiple
threads (unlike the PrePayments or Cheque/Check Writer
processes).

See Also

The Payroll Archive Reporter (PAR) Process: page 11 – 2

Running the Magnetic Tape Payments Process

The payroll assignment action creation code is the entry point to the
Magnetic Tape Payments process. Employee magnetic tape payments
are recorded in Oracle HRMS as payroll and assignment actions with
interlocks to the relevant pre–payment assignment actions. The
interlocks prevent the pre–payments actions being rolled back while the
magnetic tape actions exist.

Third party payments (such as the company’s health plan
contributions) do not result in payroll and assignment actions, and
therefore would use the magnetic tape report interface.



10 – 20 Implementing Oracle HRMS

Batch Process Parameters

You run PYUGEN with the following parameters:

consolidation_set_id Mandatory

Defines which set of unpaid pre–payments are paid.

payment_type_id Mandatory

Defines the driving PL/SQL procedure.

effective_date Optional

Identifies the effective date for processing.

payroll_id Optional

Restricts the assignments processed to those on the specified payroll on
the effective date

start_date Optional

Specifies how far back the process searches for target prepayments. If
this parameter is not specified, then the process scans back to the
beginning of time.

organisation_payment_method_id Optional

Creates assignment actions interlocking to unpaid prepayments for that
payment.

legislative Optional

Free–format parameters, available to all payroll actions. Your
localization team may use these to pass in a number of
legislation–specific parameters, made accessible to the payroll action
through the entity horizon.

PL/SQL Procedure for the Payment Type

The system uses the PL/SQL driving procedure specified for the
payment type on the database (for example, <package
name>.<procedure name>). The PL/SQL procedure for the Magnetic
Tape Writer process must drive off the assignment actions and not
further restrict the assignments processed. Further restricting the



10 – 21Payroll Processes

assignments presents the danger of leaving some magnetic tape
assignment actions never processed. When the process first runs the
PL/SQL, one of the parameters passed is the payroll action id
(PAYROLL_ACTION_ID).

The Magnetic Tape process actions prepayments with an effective date
on or before the effective date of the magnetic tape action. The
magnetic tape effective date defaults to session date in an AOL
environment, and sysdate outside AOL.

Output Filenames

The magnetic tape file generated is named as per the normal
file–naming standards:

p<trunc(conc_request_id, 5)>.mf

The file name is padded with zeros if the length of the request id is
shorter than five characters, (for example, p03451.mf).

It is written to the $APPLCSF/$APPLOUT directory, if $APPLCSF is
defined, and otherwise to $PAY_TOP/$APPLOUT.

Several other files can be produced by this process. You can use these
files to audit the assignments that are being processed. The audit files
are created in the same way, except that the file extension
.a<file_number>. So if a formula returns a value for audit file 6 then a
file with the extension .a6 is created in the correct directory using the
concurrent request id as described above.

Running Magnetic Tape Reports

Magnetic Tape reports are not recorded as payroll and assignment
actions. The entry point is the specific Magnetic Tape code, PYUMAG.
The PL/SQL determines which assignments to process.

Mandatory Parameters

• Driving PL/SQL procedure (<package name>.<procedure
name>)

• Output file (full pathname included)

Optional Parameters

• Audit file prefix (the prefix to the extension, plus the full path)

• Effective date (the parameters to the driving PL/SQL procedure)



10 – 22 Implementing Oracle HRMS

The optional parameters to the PL/SQL must be tokenised, so that the
generic tape writer process can populate the PL/SQL tables for
parameter name and parameter value. These tables constitute the
interface between the generic writer process and the driving PL/SQL
procedure.

See: The PL/SQL Driving Procedure: page 10 – 25

The magnetic tape action only processes formulas with an effective
date on or before the effective date of the magnetic tape action. The
magnetic tape effective date defaults to session date, in an AOL
environment, and sysdate outside AOL.

Output Filenames

The magnetic tape filename is generated if it is not supplied to the
process. The filename is in the format:

o<trunc(conc_request_id, 5)>.mf

When an audit file prefix is not set but the process tries to write to an
audit, the concurrent request id is used as the prefix and .out used as
the extension. In these circumstances all audit returns are written to
this file.

SRS Definitions

Using SRS, the generic tape writer process is defined once as an
executable. You can then define any number of concurrent programs
that invoke that executable. Each concurrent program can have its own
set of parameters, its own hidden parameters, defaults and so on. For
example, we can define two concurrent programs:

• W2 report

• Illinois Quarterly State Tax report

They would both use the magnetic tape writer executable PYUMAG,
each with a hidden parameter specifying the appropriate PL/SQL
procedure, and possibly, each with specific parameters. They appear as
completely distinct reports to the user. This would be set up in the SRS
process interface.

Similarly, magnetic payments can be made to appear as distinct
processes to the user – the only difference is that the payment type is
the hidden parameter, and the generic code determines the driving
PL/SQL procedure from that.



10 – 23Payroll Processes

How the Magnetic Tape Process Works

Magnetic tapes are usually broken down into:

• Records

• Fields

The sequence in which the process writes the records to tape follows
strictly defined rules. As a result, you can write a piece of code to
return the name of the next record to write to tape.

Similarly, the actual records have strict field place and length
requirements. For example:

Record Fields

Tape Header Batch Id, Company Name, Batch Record
Length, and so on

Employee Employee Id, Salary, Age, Job, and so on

Tape Footer No. of Records Processed, Salary Total, and
so on

C Harness, PL/SQL, and Formulas

The following figure illustrates the Magnetic Tape process.

The Magnetic Tape 
Process

Record Details

Open files
Call PL*SQL

Call Formula

Write record

Formula

Formula Name

C
Harness

PL*SQL

A C code harness performs the file handling (opening, closing and
writing to files), and enables the PL/SQL and the formulas to interface.

The driving PL/SQL code sequences records by returning the name of
a formula.

Each formula writes one type of record, such as the Tape Header, to
tape. It defines the contents of the record.



10 – 24 Implementing Oracle HRMS

The process of getting the formula and record name, then writing the
record to tape is repeated until all the records are processed.

Context and Parameter Values

The driving PL/SQL determines which type of record is required at
any stage of the processing, and uses context and parameter values to
communicate with the formula.

The following figure illustrates how the C code acts as an interface
between the PL/SQL and formula, and how the data is passed as
context values.

C Code Interface

Open files
Call PL*SQL

Call Formula

Write record

Formula Name

loop

Set Contexts

end

Context Values

Parameter Values

Record Details

Parameter Values

C
Harness

PL*SQL

Formula

Context Values

Formulas use database items to reference variable values. For example,
the employee and assignment number could be different for each run of
the formula and record.

The database item is held within the database, which consists of
components to make up a SQL statement. As the value could be
different for each run of the formula, the ’where’ clause of the



10 – 25Payroll Processes

statement is slightly different. This is done by substituting key values
into the ’where’ clause that uniquely select the required value. These
substitution values are known as context values.

Context values are set by the driving PL/SQL procedure that places the
values into a PL/SQL table. The PL/SQL table is passed back to the C
code, which in turn places it in the formula structure.

Parameter Values

Parameter values are used to store the variable data to be transferred
between the formula and the PL/SQL.  For example, the running totals
are passed to the formula in this way.

The parameters can be:

• Passed into the C process from the command line

• Created by the driving PL/SQL procedure

• Created by the formula

Only the driving PL/SQL procedure and the formula can update the
values.

The PL/SQL Driving Procedure

The PL/SQL driving procedure determines the format of the magnetic
tape file. You can write this procedure from scratch by opening cursors
processing a particular formula for each fetch of the cursor, or you can
use the generic PL/SQL. The generic PL/SQL drives off the magnetic
tape batch tables.

The interface between the ’C’ process and the stored procedure makes
extensive use of PL/SQL tables. PL/SQL tables are single column
tables that are accessed by an integer index value. Items in the tables
use indexes beginning with 1 and increasing contiguously to the
number of elements. The index number is used to match items in the
name and value tables.

The names of the tables used to interface with the PL/SQL procedure
are:

• pay_mag_tape.internal_prm_names

• pay_mag_tape.internal_prm_values

• pay_mag_tape.internal_cxt_names

• pay_mag_tape.internal_cxt_values



10 – 26 Implementing Oracle HRMS

The first two tables (pay_mag_tape.internal_prm_names and
pay_mag_tape.internal_prm_values) are used to pass parameter details
to the PL/SQL and formula. These are reserved for the number of
entries in the parameter tables and the formula ID that is to be
executed. The second two tables (pay_mag_tape.internal_cxt_names
and pay_mag_tape.internal_cxt_values) are used to set the context
rules for the database items in the formula. These are reserved for the
number of entries in the context tables.

The Generic PL/SQL

The Magnetic Tape process uses generic PL/SQL that drives off several
tables that contain cursor names. These cursors and tables control the
format of the magnetic tape.

These cursors retrieve three types of data:

• Data that is used in subsequent cursors

• Data that is to be used as context value data

• Data to be held as parameter/variable data

Example

Here are two select statements as examples:

cursor business is

select business_group_id,

’DATE_EFFECTIVE=C’, effective_start_date

from per_business_groups

cursor assignment is

select ’ASSIGN_NO=P’, assignment_id

from pay_assignments

In the above example, the first select (DATE_EFFECTIVE) is a context
value that is passed to a subsequent formula. The business_group_id
column is retrieved for use in subsequent cursors. It is accessed by
using a function described later.

The second select (ASSIGN_NO=P) is used as a parameter.

When the cursor is opened, it assigns rows in a retrieval table that it
can select into (the number of rows depends on the number of columns
retrieved by the cursor). For example, if the above cursors were used,
and the previous example was run, the retrieval table would look like
this:



10 – 27Payroll Processes

After First Run After Second Run

50000 50000

DATE_EFFECTIVE= DATE_EFFECTIVE=C

16–MAR–1997 16–MAR–1997

ASSIGN_NO=P

50367

Functions to Access Data

Some cursors require access to data previously selected. This can be
achieved in two ways:

• If the column was selected as a context or an individual column
(like business group in the previous example), use the
get_cursor_return function. It returns the value, given the cursor
name and the column position in the select statement. For
example, to get the business group in the above select statement
use the following command:

pay_magtape_generic.get_cursor_return(’business’, 1)

• Or, select the value as a parameter and access a function that
retrieves that value given the parameter name. For example to
get the ASSIGN_NO parameter value use the following
command:

pay_magtape_generic.get_parameter_value(’ASSIGN_NO’)

Context and Parameter Data

The formula requires two types of data:

• Context

• Parameter

The context data is held in PL/SQL tables, which are filled by the
PL/SQL with data retrieved by the cursors, as described above. The
context rules are inherited to lower levels unless the lower level cursor
retrieves a different value for that context name. The PL/SQL always
uses the lowest level context value for a particular context. For
example, if the second cursor above retrieved a context value for
DATE_EFFECTIVE, this value would be used for the formula until the
cursor is closed. It is at a lower level in the retrieval table than the



10 – 28 Implementing Oracle HRMS

previous DATE_EFFECTIVE. When the cursor is closed, the rows in the
retrieval table are reclaimed and the DATE_EFFECTIVE context reverts
to the first one.

The Parameter data is also held in tables, but unlike context values the
values are not level dependent. The formula can access these values by
selecting the parameter on the input line. If the formula returns a value
for that parameter, it overwrites the entry in the table. If the formula
returns a parameter that does not exist, the parameter is entered in the
table.

Cursor/Block Table

The driving structure for the package procedure is held in two database
tables:

• PAY_MAGNETIC_BLOCKS

• PAY_MAGNETIC_RECORDS (the Formula/Record table, see
below)

The PAY_MAGNETIC_BLOCKS table is as follows:

Name Null? Type

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

BLOCK_NAME NOT NULL VARCHAR2 (80)

MAIN_BLOCK_FLAG NOT NULL VARCHAR2 (30)

REPORT_FORMAT NOT NULL VARCHAR2 (30)

CURSOR_NAME VARCHAR2 (80)

NO_COLUMN_RETURNED NUMBER (5)

Example

block_id
 

cursor_name block_name no_of_
select_
values

main_
block

type

1 company_curs companies 2 Y CA

2 employee_curs employees 2 N CA

3 assignment_curs assignments 1 N CA

• Block_id is system generated.

• No_of_select_values is the number of columns retrieved by the
select statement specified by cursor_name.



10 – 29Payroll Processes

• Main_block signifies the starting block to use. Only one of these
can be set to Y for a given report.

• Type refers to the type of report that the select statement
represents.

Formula/Record Table

The PAY_MAGNETIC_RECORDS table is as follows:

Name Null? Type

FORMULA_ID NOT NULL NUMBER (9)

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

NEXT_BLOCK_ID NUMBER (9)

LAST_RUN_EXECUTED_MODE NOT NULL VARCHAR2 (30)

OVERFLOW_MODE NOT NULL VARCHAR2 (30)

SEQUENCE NOT NULL NUMBER (5)

FREQUENCY NUMBER (5)

Example

formula_name block
_id

seq next_
block

frequency O/F exec.last

formula 1 1 1 – – N N

formula 2 1 2 2 – N N

formula 3 2 1 – – N N

formula 4 2 2 3 – N N

formula 5 3 1 – – N N

formula 6 2 3 – – N N

formula 7 1 3 – – N N

Formulas/records can be of three general types:

• Standard formulas executed for every row returned from cursor

• Intermediate formulas executed once every x number of rows

• Formula executed depending on the result of the previous
formula (overflow formula)

The table columns are as follows:

• Block id refers to the block that this formula is part of.

• Seq refers to the sequence in the block.



10 – 30 Implementing Oracle HRMS

• Next_block column signifies that after this formula has run, the
cursor defined by next_block should be opened and that block’s
formula should be run until there are no more rows for that
cursor.

• Frequency is used by the intermediate formula to specify the
number of rows to be skipped before the formula is run.

• O/F (overflow) specifies whether the formula is an overflow. If it
is (set to Y), and if the last formula returned the
TRANSFER_RUN_OVERFLOW flag set to Y, then the formula
runs.

Similarly, if the formula is a Repeated overflow (set to R), and
the TRANSFER_RUN_OVERFLOW flag is set to Y then that
formula is continually repeated until the formula does not return
TRANSFER_RUN_OVERFLOW set to Y.

• Exec.last can apply to all the types of formula but most
commonly the intermediate formulas. This column specifies that
the formula can run one extra time after the last row has been
retrieved from the cursor.

For intermediate formula this column can be set to 4 different
values:

– N – Never run after last row returned

– A – Always run after last row returned

– R – Run only if the intermediate formula has run for this
cursor

– F – Run only if this is the first run of the formula for this
cursor

Note:  For overflow and standard formula only N and A are
valid.

Using the above specification the formulas could be retrieved in the
following sequence:



10 – 31Payroll Processes

Formula Sequencing

1,    2,    3,    4,    5,    5,    5,    6,    3,    4,    5,    5,    6,    7

1 row from the company_curs

2 rows from the
employee_curs

3 rows from the
assignment_curs

2 rows from the
assignment_curs

The generic PL/SQL procedure identifies which type of report to
process. It does this by passing the parameter MAGTAPE_REPORT_ID
when calling the process. The previous figure illustrates how
MAGTAPE_REPORT_ID=CA is passed when calling the process.

The Formula Interface

Typically, a magnetic tape consists of a number of record types. Oracle
suggests having a formula associated with (generating) each record
type. The formulas do the following:

• Define the field positions in the records

• Perform calculations

• Report on the details written to tape (auditing)

• Raise different levels of error messages

A PL/SQL stored procedure provides the main control flow and
determines the order in which the formulas are called.

The routine uses FastFormula to prepare records The records are
written to an ASCII file in preparation for transfer to magnetic tape. To
implement the required actions, there are more formula result rule
types. These are listed below:



10 – 32 Implementing Oracle HRMS

TRANSFER This transfers the output parameter to the
input of the stored procedure. The
parameter may or may not be modified by
the stored procedure before being used in
the next execution of the formula.

WRITE TO TAPE This instructs the process to write the result
to the magnetic tape file. This is always a
character string that represents the desired
record. The writes are performed in the
order in which they are returned from the
formula.

REPORT FILE This writes the string result to an ”audit”
file.

ERROR This instructs the process that an
ERROR/WARNING has been detected
within the formula. Thus the process
should handle the error appropriately.

Naming Convention

These are not implemented in the traditional manner using the formula
result rules table. They use the naming convention:

WRITE TO TAPE results are named WRITE_<result_name>.

TRANSFER results follow a similar convention, but the result_name
part must be the name of the parameter. For example, a result
company_total_income would be named
transfer_company_total_income.

The REPORT result must identify which file is to be written to. The file
number is embedded in the formula return name For example:
REPORT1_<result_name> –  this writes to report/audit file 1.

Reports

Reports can be written during the production of the magnetic tape file.
These reports could be used to check the details that are produced. A
number of reports can be created in the same run. The number can be
limited by using the ADD_MAG_REP_FILES action parameter in the
PAY_ACTION_PARAMETERS table.

Each report is accessed by using a prefix that denotes the file, for
example, REPORT1_ to denote report number 1, REPORT2_to denote
report number 2, and so on. If a report number is outside the range of
the ADD_MAG_REP_FILES value, an invalid return error is reported.



10 – 33Payroll Processes

The report files are opened as and when needed with the names of the
files previously described.

FastFormula Errors  

Errors can be of three types:

• Payroll errors

These are identified by a return of ERROR_PAY_<error_name>.

• Assignment errors

These are denoted by ERROR_ASS_<error_name>.

• Warning errors

These are denoted by ERROR_WARN_<error_name>.

The actual messages themselves have to be prefixed with the
assignment action id or payroll action id. This is done to insert the
messages into the PAY_MESSAGE_LINES table. Warning messages are
regarded as being at the assignment action level and require the
assignment action id. If no id is supplied, the message is only written to
the log file. No id must be supplied when running a magnetic tape
report, since no actions exist for reports. Only payments have actions.

Example

Here are some examples of the format to use:

ERROR_PAY_TEXT1 = ’50122: Unexpected value’ – Payroll action id
50122 with message
’Unexpected Value’

ERROR_PAY_TEXT1 = ’:Unexpected value’ – No payroll action id
just a message

ERROR_ASS_TEXT1 = ’56988: Unexpected value’

ERROR_ASS_TEXT1 = ’Unexpected value’

ERROR_WARN_TEXT1 = ’56988: Unexpected value’

ERROR_WARN_TEXT1 = ’:Unexpected value’

Error Handling

Magnetic tape either fully completes the process, or marks the whole
run with a status of error.

Within this there are two types of errors:



10 – 34 Implementing Oracle HRMS

• Payroll action level errors, which are fatal

If this form of error is encountered, the error is reported and the
process terminates.

• Assignment action level

These can be set up in formulas and result in the error message
being reported and the process continuing to run. This can be
used to report on as many errors as possible during the
processing so that they can be resolved before the next run.

The payroll action errors at the end of the run if assignment action level
errors are encountered.

A description of the error message is written to the Log file. Also an
entry is placed in the PAY_MESSAGE_LINES table if the action id is
known.

Example PL/SQL

The following piece of PL/SQL code could be used to format a
magnetic tape payment (drives off assignment actions). An alternative
to writing a PL/SQL procedure would be to use the generic procedure
and populate the batch magnetic tape tables.

Note:  This example only works for a business group of ’MAG
Test GB’ (the legislative formula is for GB only).

create or replace package body pytstm1

 as

 CURSOR get_assignments( p_payroll_action_id NUMBER)

 IS

 SELECT ppp.org_payment_method_id,ppp.personal_pay-
ment_method_id,

ppp.value, paa.assignment_id

 FROM pay_assignment_actions paa, pay_pre_payments ppp

 WHERE paa.payroll_action_id = p_payroll_action_id

 AND ppp.pre_payment_id = paa.pre_payment_id

 ORDER BY ppp.org_payment_method_id;

Also need to:

Test that the assignment are date effective?

Order by name or person_number or other ?



10 – 35Payroll Processes

p_business_grp NUMBER;

––

––

PROCEDURE new_formula

IS

––

p_payroll_action_id NUMBER;

assignment      NUMBER;

p_org_payment_method_id NUMBER;

p_personal_payment_method_id NUMBER;

p_value NUMBER;

––

––

FUNCTION get_formula_id ( p_formula_name IN VARCHAR2)

   RETURN NUMBER IS

p_formula_id NUMBER;

BEGIN

 SELECT formula_id

 INTO p_formula_id

 FROM ff_formulas_f

 WHERE formula_name = p_formula_name

 AND (business_group_id = p_business_grp

OR (business_group_id IS NULL

  AND legislation_code = ’GB’)

OR (business_group_id IS NULL AND legisla-
tion_code IS NULL)

);

––   RETURN p_formula_id;

––

END get_formula_id;

––

BEGIN



10 – 36 Implementing Oracle HRMS

––

pay_mag_tape.internal_prm_names(1) :=

’NO_OF_PARAMETERS’; –– Reserved positions

pay_mag_tape.internal_prm_names(2) := ’NEW_FORMULA_ID’;–– ––

Number of parameters may be greater than 2 because formulas

may be –– keeping running totals.––

pay_mag_tape.internal_cxt_names(1)  := ’Number_of_contexts’;

pay_mag_tape.internal_cxt_values(1) := 1;            ––

Initial value–––– IF NOT get_assignments%ISOPEN  THEN

–– New file––   pay_mag_tape.internal_prm_values(1) := 2;

pay_mag_tape.internal_prm_values(2) := get_formula_id

(’REPORT_HEADER_1’);––   if

pay_mag_tape.internal_prm_names(3) = ’PAYROLL_ACTION_ID’

  then p_payroll_action_id :=

to_number(pay_mag_tape.internal_prm_values(3));   end if;––

OPEN get_assignments (p_payroll_action_id);–– ELSE––––

FETCH get_assignments INTO

p_org_payment_method_id,

p_personal_payment_method_id,           p_value,

assignment;––   IF get_assignments%FOUND THEN

–– New company

pay_mag_tape.internal_prm_values(1) := 2;

pay_mag_tape.internal_cxt_names(2)  := ’ASSIGNMENT_ID’;

pay_mag_tape.internal_cxt_values(2) := assignment;

pay_mag_tape.internal_cxt_names(3)  := ’DATE_EARNED’;

pay_mag_tape.internal_cxt_values(3) := to_char

(sysdate,’DD–MON–YYYY’);

pay_mag_tape.internal_cxt_values(1) := 3;

pay_mag_tape.internal_prm_values(2) := get_formula_id

(’ENTRY _DETAIL’);

ELSE––       pay_mag_tape.internal_prm_values(1) := 2;



10 – 37Payroll Processes

pay_mag_tape.internal_prm_values(2) := get_formula_id

(’REPORT_CONTROL_1’);

CLOSE get_assignments;

––  END IF;

––END IF;––

END new_formula;

BEGIN

–– ’MAG test BG’ used as an example. The business group could be

–– retrieved using the payroll action id.

 select business_group_id

 into p_business_grp

 from per_business_groups

 where name = ’MAG test BG’;

––END pytstm1;



10 – 38 Implementing Oracle HRMS

Cheque Writer/Check Writer Process
Note:  For ease, we refer to the Cheque Writer/Check Writer
process as Cheque Writer throughout this technical essay.

You run the Cheque Writer process to produce cheque payments for
unpaid pre–payment actions. Before you run the process, you need to
set up certain things, for example, the SRW2 report and the ’order by’
option to sequence cheques (if required).

You run Cheque Writer through Standard Reports Submission (SRS).
Unlike the Magnetic Tape process, you can have multiple threads in
Cheque Writer.

The Process

The Cheque Writer process has two distinct steps:

Cheque Writer Steps

Create Cheque 
Assignment Actions

Step 1

Submit the SRW2 
Report

Step 2

Step 1 – Create Cheque Assignment Actions

Cheque Writer creates cheque assignment actions for each of the target
pre–payments, subject to the restrictions of the parameters specified.
The target pre–payments must be unpaid—that is, never been paid—or
if they have been paid, then voided.

Cheque Writer creates assignment actions in two stages:

1. Multiple threads insert ranges of assignment actions, which
interlock back to previous actions.

This happens in the same way as Pre–Payments and Magnetic Tape
create assignment actions.

See: The Process: page 10 – 62 (Pre–Payments)

See: Running the Magnetic Tape Payments Process: page 10 – 19



10 – 39Payroll Processes

2. A single thread runs through all the assignment actions in a specific
order to update the chunk and cheque number.

The order is specified by a PL/SQL procedure that you can
customize. The thread divides the assignment actions equally into
chunks, one chunk per thread. It assigns each action a cheque
number.

See: Using or Changing the PL/SQL Procedure: page 10 – 45

At this stage, the status of the assignment actions is ’Unprocessed’.

Note:  Cheque Writer creates an assignment action and cheque
for each target pre–payment of the assignment. Consequently, a
single Cheque Writer run can produce more than one cheque
for a single assignment.

Step 2 – Submit SRW2 Report

When Cheque Writer has created the assignment actions and interlocks,
each thread submits the specified SRW2 report as a synchronously
spawned concurrent process. The reports produce files in a specific
cheque format.

If the spawned concurrent process is successful, the status of the
assignment actions is changed to ’Complete’. If the process fails, the
status of the assignment actions is changed to ’In Error’. So, if you
resubmit Cheque Writer, it can start at the point of submitting the
report.

In this respect, Cheque Writer is similar to the magnetic tape process:
the whole process must be successful before the payroll action is
Complete. But, while the Magnetic Tape process can mark individual
assignment actions In Error, Cheque Writer marks all assignment
actions In Error.

Batch Process Parameters

The batch process has a number of parameters users can enter. The
definition of the printer type (for example, laser or line printer for the
report output) is not a parameter. The default for this is specified as
part of the registration of the concurrent process for the report. Consult
your Oracle Applications System Administrators Guide for more
information on printers and concurrent programs.



10 – 40 Implementing Oracle HRMS

payroll_id Optional

This parameter restricts the cheques generated according to the current
payroll of the assignment. It is a standard parameter to most payroll
processes.

consolidation_set_id Mandatory

This parameter restricts the target pre–payments for Cheque Writer to
those which are for runs of that consolidation set.

start_date Optional

This parameter specifies how far back, date effectively, Cheque Writer
searches for target pre–payments. If this parameter is not specified,
Cheque Writer scans back to the beginning of time.

effective_date Optional

This parameter specifies the effective date for the execution of Cheque
Writer. If it is null, the effective date is taken to be the effective date
held in FND_SESSIONS. If there is no such row, then it is defaulted to
SYSDATE.

payment_type_id Mandatory

This parameter specifies which payment type is being paid. For UK
legislation, it must be a payment type which is of payment category
Cheque. For US legislation, it must be a payment type which is of
payment category Check.

org_payment_method_id Optional

This parameter restricts the target prepayments to those which are for
that organization payment method. It would be used where different
cheque styles are required by organization payment method.

order_by_option Mandatory

This parameter specifies which order by option is called to create and
order the cheque assignment actions. By providing this as a parameter,
the user can specify what ordering they want to take effect for the
generated cheques.

report_name Mandatory

This parameter is the name of the SRW2 report that is synchronously
spawned by Cheque Writer to generate the print file of cheques and
any attached pay advices, and such.

A user–extensible lookup is provided.



10 – 41Payroll Processes

start_cheque_number Mandatory

This parameter specifies the contiguous range of numbers to be
assigned to cheques generated.

end_cheque_number Optional

This parameter specifies the contiguous range of numbers to be
assigned to cheques generated. If this parameter is specified, this range
constrains how many cheque assignment actions are created. Cheque
Writer is the only payroll action that does not necessarily process, what
would otherwise be, all of its target actions.

If the end number is not specified, Cheque Writer assigns numbers
sequentially from the start number onwards for all generated cheque
assignment actions.

If cheques must be printed for different contiguous ranges (as may
occur when using up the remnants of one box of cheque stationery,
before opening another box), then the Cheque Writer process must be
invoked separately for each contiguous range.

Cheque Numbering

The cheque stationery onto which the details are printed is typically
authorized, and has the cheque number preprinted on it. It is common
in the UK for there to be a further cheque number box which is
populated when the cheque is finally printed. It is this number that the
generating payroll system uses.

Usually, these two numbers are the same. It is not known whether any
clearing system invalidates the cheque if they are not. However, it
seems likely that if you need to trace the path of a cheque through a
clearing system, the preprinted cheque number would prove most
useful, and hence, it should be the number recorded for the cheque
payment on the payroll system.

It is a user’s responsibility to ensure that the cheque numbers used by
Cheque Writer (and recorded on the system) are identical to those on
the preprinted stationery. In certain circumstances, you might want to
use numbers that are not the same. In this case, the cheque number
recorded by the payroll system is simply a different cheque identifier
from the preprinted cheque number.



10 – 42 Implementing Oracle HRMS

Note:  Preprinted stationery usually comes in batches, for
example, boxes of 10000. Therefore, you may want to use
different ranges of cheque numbers when printing off cheques
at the end of the pay period. For example, you may have to
print off 2500 cheques using the remains of one box  (numbered
9500 – 10000) and then an unopened box (numbered 20001 –
30000). Cheque Writer uses the start and end cheque number
parameters to enforce these ranges.

Voiding and Reissuing Cheques

Under some circumstances, users might need to void a cheque and
optionally issue a replacement. For example, an employee loses their
cheque and requests a replacement, or you discover that the employee
has previously left employment and should not have been paid. In both
cases the first step is to void the cheque. This activity may also involve
contacting the bank that holds the source account and cancelling the
cheque.

Note:  Voiding a cheque does not prevent the payment from
being made again.

Voiding and reissuing a cheque is different from rolling back and
reprinting a cheque. You void a cheque when it has actually been
issued and you need to keep a record of the voided cheque. You
rollback when a cheque has not yet been issued. For example, during a
print run your printer might jam on a single cheque and think it has
printed more than one. These cheques have not been issued and the
batch process should be rolled back and restarted for those actions.

Depending on the reason for voiding, a user may want to issue another
cheque. This is known as ’reissuing’. This requires no extra
functionality. The user has the choice of issuing a manual cheque and
recording the details online, or of resubmitting the batch process for
automatic printing.

You cannot reprocess actions that have already been paid. The process
only creates payments for those actions that have never been paid, or
have been voided.



10 – 43Payroll Processes

Mark for Retry

Cheque Writer actions can be marked for retry. As with the rollback
process, when marking a Cheque Writer payroll action for retry, the
user can determine which assignment actions are to be marked by
specifying an assignment set parameter.

Marking cheque assignment actions for retry does not remove the
assignment actions, but simply updates their status to ’Marked For
Retry’ (standard behaviour for all action types). The assigned cheque
numbers are left unaltered. Hence, on retry, Cheque Writer generates a
new print file.

The reason for this is that we cannot reassign cheque numbers for
assignment actions of a cheque payroll action. The payroll action stores
the start and end cheque numbers specified. If different ranges of
numbers could be used on several retries of the payroll action, then
some of its assignment actions could be assigned numbers outside the
range held on the payroll action.

Rolling Back the Payments

If a user wants to assign new cheque numbers, they must rollback the
Cheque Writer payroll and assignment actions, and submit a separate
batch request.

Note:  It usually makes sense to roll back all of the cheques. If
you mark individual cheques for retry, their cheque numbers
are unlikely to be contiguous and it would be difficult to print
these on the correct preprinted cheque stationery.

SRW2 Report

You may need to set up the format for the cheque stationery. The SRW2
report, invoked by Cheque Writer is passed in two parameters:

• payroll_action_id (of the cheque action)

• chunk number (to be processed)

For this purpose, the report must take the parameters named PACTID
and CHNKNO.

By the time the report is run, the appropriate assignment actions have
been created and cheque numbers assigned according to the order
specified in the order by parameter.



10 – 44 Implementing Oracle HRMS

The report must drive off the assignment actions for the cheque payroll
action and chunk number specified. It must generate one cheque for
each assignment action. The cheque number is held directly on the
assignment action, while the amount to be paid is retrieved from the
associated pre–payment.

The report must maintain the order of the cheques when printed out,
the report must process the assignment actions in order of cheque
number.

Example SELECT statement

The following select statement illustrates how to drive a report:

select to_number(ass.serial_number),

ass.assignment_action_id,

round(ppa.value,2),

ppf.last_name,

ppf.first_name

from per_people_f ppf,

per_assignments_f paf,

pay_assignment_actions ass,

pay_pre_payments ppa

where ass.payroll_action_id =:PACTID

and ass.chunk_number =:CHNKNO

and     ppa.pre_payment_id = ass.pre_payment_id

and     ass.assignment_id = paf.assignment_id

and     ass.status <>’C’

and     paf.person_id = ppf.person_id

order by  to_number(ass.serial_number)

Registering the Report

Once the SRW2 report is written, you must register it as a Cheque
Writer report. This is similar to registering ’Cash Analysis Rules’ for the
Pre–Payments process.

You must also define a new Lookup Value for the Type of
’CHEQUE_REPORT’. Enter the report name and description.



10 – 45Payroll Processes

In a similar way to the Magnetic Tape process, the file generated by the
report is named:

p<trunc(conc_request_id,5)>.c<chunk_number>

The file name is padded with zeros if the length of the request id is
shorter than five characters, for example, p03451.cl.

It is written to the $APPLCSF/$APPLOUT directory, if $APPLCSF is
defined, and otherwise to $PAY_TOP/$APPLOUT.

If Cheque Writer is run with multiple threads, it produces several files.
This is because Cheque Writer assignment actions are split into several
chunks, one chunk per thread. So, each thread can pick a chunk and
process it. This is done to improve performance on machines with
multiple processors. For example, if there are four threads processing,
there would be four files produced:

• p03451.c1

• p03451.c2

• p03451.c3

• p03451.c4

Cheque Writer creates a fifth file (by the process that concatenates the
four files into one). The name of this file is p03451.ch.

Using or Changing the PL/SQL Procedure

Cheque Writer updates the assignment actions with the cheque and
chunk number in the sequence determined by a PL/SQL procedure,
called anonymously from the process. A default PL/SQL procedure is
provided with the generic product – pay_chqwrt_pkg.chqsql.

The default sort order is:

1. Organization

2. Department

3. Surname

4. First name

You can change this procedure to set up several different sorting orders
by criteria, denoted by a flag passed to the procedure. You should copy
the core select statement, and alter the subquery to order according to
your own business needs.

The advantage of giving access to the whole SQL statement is that the
cheques can be ordered by any criteria. If we had only allowed



10 – 46 Implementing Oracle HRMS

specification of an ORDER BY clause, then the ordering would have
been restricted to attributes on those tables already in the FROM clause
of the core SQL statement.

To set up new order by requirements, change the
pay_chqwrt_pkg.chqsql package procedure. You could add the
following IF statement when checking the procname variable:

else if procname = ’NEW ORDER BY’ then

   sqlstr := ’select ....’

The select statement could be a copy of the existing select statement but
with the order by clause changed. The select statement must return the
assignment action’s rowid.

Based on this information the assignment action can be given a
serial/cheque number and assigned to a chunk.

Similarly, as with the SRW2 report the new order by option has to be
registered before it can be used. This is done in a similar manner except
that the Lookup Type is CHEQUE PROCEDURE. Enter a meaningful
description in the Meaning field and the name of the option, for
example NEW ORDER BY, in the Description field.



10 – 47Payroll Processes

Cash Process 

The Cash process indicates to the system that payment has been made,
and prevents pre–payments from being rolled back.

Note:  This is a UK–only process.



10 – 48 Implementing Oracle HRMS

Costing Process

After running the payroll processes, you start the post–run process,
Costing. The Costing process accumulates results for transfer to the
General Ledger and other applications.  This process sorts the run
results in accordance with the information you have selected from the
Cost Allocation flexfield at all levels, by the following:

• Company

• Set of Books

• Cost Center

• General Ledger

• Labour Distribution Accounts

Examples of the cost allocation of payroll results and of the distribution
of employer charges over selected employee earnings appear in the
following table.

If your installation also includes Oracle General Ledger, run the
Transfer to the General Ledger process after you have run the Costing
process.  This transfers the results from the Costing process to Oracle
General Ledger.

Example of Payroll Costs Allocation

The following table displays payroll run results for four employees,
using accounts and work structures identified using the Cost
Allocation key flexfield.  The example Costing Process Results table
illustrates how the Costing process allocates these payroll results to:

• Accounts and cost centers for the General Ledger

• Accounts for cost centers and product lines within cost centers,
for labour distribution purposes



10 – 49Payroll Processes

Sample Payroll Results

Employee Work Structure Earnings and Deductions

Cost Center Product
Line

Salary Wages Overtime Union
Dues

Employee 1 Production H201
100%

1,000 400 20

Employee 2 Sales H305
100%

1,500

Employee 3 Production H201 50%
H202 50%

2,000 600 30

Employee 4 Sales H305 20%
H310 40%

1,000

The following table illustrates the allocation of costs from these sample
run results.

Example Costing Process Results

Account
Code

Cost Center Product Line

Production Sales H201 H202 H305 H307 H310

Salaries 2,500 1,700 400 E400

Wages 3,000 2,000 1,000

Overtime 1,000 700 300

Union
Dues
Liability

50

Clearing Account contains balancing credits for earnings Salary, Wages and
Overtime, and balancing debits for deduction Union Dues

Example of Employer Charge Distribution

When you give links for elements representing employer charges and
the costable type Distributed, the Costing process distributes the
employer charges as overhead for each employee over a set of
employees’ earnings.  This example shows how employer payments
totalling 100 dollars are distributed over a set of earnings including
wages and overtime, for the cost center Production and the product
lines H201 and H202.



10 – 50 Implementing Oracle HRMS

Overhead Distribution for the Production Cost Center

Total paid to Production Cost Center as Wages run

result: $3,000.00

Total paid to Production Cost Center as Overtime run

result: $1,000.00

Total for Earnings types specified for Distribution:

$4,000.00

Ratio for Wages distribution, Production Cost Center

= 3000/4000 = .75

Wages overhead = Pension Charge 100 x .75 = 75.00

Ratio for Overtime distribution, Production Cost

Center = 1000/4000 = .25

Overtime overhead = Pension Charge 100 x .25 = 25.00

Overhead Distribution for the Product Lines H210 and H202

Total paid for Product Line H201 as Wages run result:

$2,000.00

Total paid for Product Line H202 as Wages run result:

$1,000.00

Total paid for Product Lines H201 and H202 as Wages:

$3,000.00

Ratio for Wages distribution, Product Line H201 =

2000/3000 = 0.6667

Product Line H201 overhead = Total Wages overhead $75

x .6667 = $50.00

Ratio for Wages distribution, Product Line H202 =

1000/3000 = 0.3334

Product Line H202 overhead = Total Wages overhead $75

x .3334 = $25.00

Total paid for Product Line H201 as Overtime run

result: $700.00

Total paid for Product Line H202 as Overtime run

result: $300.00

Total paid for Product Lines H201 and H202 as

Overtime: $1,000.00



10 – 51Payroll Processes

Ratio for Overhead distribution, Product Line H201 =

700/1000 = .7

Product Line H201 overhead = Total Overtime overhead

$25 x .7 = $17.50

Ratio for Overhead distribution, Product Line H202 =

300/1000 = 0.3

Product Line H202 overhead = Total Overtime overhead

$25 x .3 = $7.50

Distribution of Overhead Over Cost Center and Production Line Totals

Account Code Cost Center Product Line

Production H201 H202

Wages 3,000 2,000 1,000

Employer Liability
Distribution

75 50 25

Overtime 1,000 700 300

Employer Liability
Distribution

25 17.50 7.50



10 – 52 Implementing Oracle HRMS

Transfer to the General Ledger Process

After you have run the post–run process Costing (which accumulates
costing results), you are ready to transfer the results to the General
Ledger or other systems.

This process can be submitted using multiple threads, in the same way
as the Payroll Run.



10 – 53Payroll Processes

Assignment Level Interlocks
When you process a payroll, you run a sequence of processes that each
perform an action on the assignments.

The sequence in which you run the processes is critical to the success of
processing, as each process uses, and builds upon, the results of the
previous process in the sequence. The sequence of the processing is also
determined by issues of data integrity. For example, the Pre–Payments
process (which prepares the payments according to the payment
methods) uses the results of the Payroll Run process (which calculates
the gross to net payment).

It is essential for correct payments that the results cannot be changed
without also changing the prepayment results. To prevent this from
occurring (and for data integrity), Oracle Payroll uses assignment level
interlock rules.

Action Classifications

The payroll processes (such as Payroll Run and Costing) and action
types (such as QuickPay) are classified as Sequenced or Unsequenced.
The action classification determines how interlock processing rules are
applied.

Processes and
Action Types Classification Insert Interlock Rows?

Payroll Run Sequenced No

QuickPay Sequenced No

Reversal Sequenced Yes

Balance Adjustment Sequenced No

Balance Initialization Sequenced No

Pre–Payments Unsequenced Yes

QP PrePayments Unsequenced Yes

Ext/Manual
Payments

Unsequenced Yes

Magnetic Tape
Transfer

Unsequenced Yes

Advance Pay Sequenced No

Cheque Writer Unsequenced Yes



10 – 54 Implementing Oracle HRMS

Insert Interlock Rows?Classification
Processes and
Action Types

Cash Unsequenced Yes

Costing Unsequenced Yes

Transfer to GL Unsequenced Yes

Retropay by Action Sequenced No

Retropay by
Aggregate

Sequenced No

Sequenced Actions

These actions exist at the same level and must be processed in strict
sequence, for example, Payroll Run before QuickPay. The general rule
is that you cannot insert a sequenced action for an assignment if there
is another sequenced action in the future, or if there is an incomplete
sequenced action in the past.

There are exceptions for Process Reversal and Balance Adjustment.
And, there may be specific legislative requirements that have
implications for this rule. For more information, see Pay Period
Dependent Legislation: page 10 – 54.

The sequence rule uses the effective date of the payroll action. If there
is more than one action with the same effective date, the action
sequence number determines the sequence of processing.

Unsequenced Actions

You can insert unsequenced actions for an assignment even when there
are other assignment actions for that assignment in the future or in the
past. For example, you can run the Costing process before or after you
run the PrePayments process.

Pay Period Dependent Legislation

The rules that govern the calculation of tax for employees with multiple
assignments vary between legislations, and this determines how the
rules for interlocking are applied.

For example, in the UK when you calculate tax, you must take account
of all earnings for all assignments in a pay period. For this type of
legislation, the interlock rules check the sequence of actions for all
assignments and a failure on one assignment in a pay period may be
caused by an action that applies to another assignment.



10 – 55Payroll Processes

For example, if you process an employee who is on both a monthly and
a weekly payroll, you cannot roll back the monthly pay run for that
employee if you have subsequently processed and paid them on the
weekly payroll. You would have to roll back the payments process for
the weekly assignment before you could roll back their monthly payroll
action.

In other legislations, for example in the US, each assignment is
considered separately and interlock failure for one assignment does not
cause failure for any others.

Action Interlock Rows

When interlocks are inserted for an assignment action, they lock the
action that is being processed. For example, a pre–payment interlock
points to the payroll run action to be paid, thus locking the run from
being deleted. The existence of a sequenced action prevents the
insertion of sequenced actions prior to that action. That is, sequenced
actions have to happen in order.

Checking for Marked For Retry Actions

There is one special rule for assignment actions that are marked for
retry. If you attempt to retry a Payroll Run or QuickPay action, the
system checks there are no sequenced assignment actions marked for
retry existing in the past for any assignments (or people, in some
legislations) that you are attempting to process.

Specific Rules for Sequenced Actions

An assignment action is not inserted if any of the following situations
exist:

• There is an incomplete sequenced action for the assignment with
a date on or before the insertion date

• There is a sequenced action for the assignment with any action
status, at a date after the insertion date

• There is a non removable action at a date after the insertion date

There are two exceptions:

• Reversal

• Balance Adjustment.

When a reversal or balance adjustment is inserted, the system
maintains the action sequence by changing the action sequence
numbers for any assignment actions that exist later in the pay period.



10 – 56 Implementing Oracle HRMS

Specific Rules for Unsequenced Actions

An unsequenced assignment action is not inserted if there is an
interlock for the assignment action currently being processed from
another unsequenced assignment action.

For example, if we had performed a QuickPay followed by a QuickPay
Pre–Payment, a subsequent Pre–Payments process would not insert an
assignment action/interlock to the QuickPay. This is because the
QuickPay Pre–Payment would have inserted an action and an
interlock, and Pre–Payments has the same action classification.

Rules For Rolling Back and Marking for Retry

This table summarizes the rules for retry and rollback of payroll and
assignment actions. For some processes, you cannot roll back actions
only for an individual assignment. For example you cannot roll back an
individual from the Magnetic Transfer process. This process actually
produces the magnetic tape file so you must roll back the whole
process, and then redo it.

Payroll Action Assignment Action

Action Type Name Retry Rollback Retry Rollback

Payroll Run Yes Yes Yes Yes

QuickPay Yes Yes Yes No

Reversal No Yes No No

Balance Adjustment No Yes No No

Balance Initialization No Yes No No

Purge Yes No No No

Pre–Payments Yes Yes Yes Yes

QP PrePayments Yes Yes Yes No

Ext/Manual
Payment

No Yes No No

Magnetic Tape
Transfer

Yes Yes No Yes

Cheque Writer Yes Yes Yes Yes

Cash No Yes No Yes



10 – 57Payroll Processes

RollbackRetryRollbackRetryAction Type Name

Costing Yes Yes Yes Yes

Transfer to GL Yes Yes No No

Advance Pay Yes Yes Yes Yes

Retropay by
Aggregate

Yes Yes Yes Yes

Retropay by Action Yes Yes Yes Yes

Rolling Back Sequenced Actions

You cannot roll back a sequenced action if there is a later sequenced
action for the assignment, except for Balance Adjustments or Reversals.
For example, you cannot roll back a payroll run in one period, if you
have already processed another payroll run in the next pay period.

Marking Actions For Retry

You cannot mark a sequenced action for retry if there is a later
sequenced action for the assignment, except for Balance Adjustments
or Reversals. However, you can do this if the future action causing the
lock is itself marked for retry.

You can retry an unsequenced action if the locking action is itself
marked for retry.



10 – 58 Implementing Oracle HRMS

Pre–Payments Process

The Pre–Payments process prepares the payments generated by the
Payroll Run for payment. It prepares payments for each assignment
and inserts the results into PAY_PRE_PAYMENTS for each payment
method for an assignment.

The Pre–Payments process also:

• Calculates the amount of money to pay through each payment
method for an assignment, and converts any currency if the
payment method is in a foreign currency.

• Handles the preparation of third party payments.

For example, garnishments, court orders and child maintenance.
Third party payments are managed through the definition of
special payment methods for the employee.

Setting Up Payment Methods

During implementation, you set up your own specific payment
methods with source account details. When you hire an employee, you
can record one or more payment methods for the employee, and
apportion payment by percentage or amount. You can also record
payment methods in different currencies.

The Pre–Payments process prepares payments following the payment
methods for each assignment. There are three predefined payment
types that Oracle Payroll processes:

• Cheque/Check

• Magnetic Tape (such as NACHA/BACS)

• Cash (UK only)

You can set up as many payment methods as you require (based on the
three predefined payment types) to support your business needs.

Every payroll has a default payment method. Pre–payments uses the
default method when there is no personal payment method entered for
a specific assignment.

Note:  You cannot have a default method of type Magnetic
Tape. This is because Magnetic Tape payment methods require
knowledge of the employee’s bank account details, including
prenotification details in the US. See Prenotification: page
10 – 60



10 – 59Payroll Processes

Payment methods are processed in order of their priority for an
assignment. For example, an employee may want:

1. 50% of the salary to be paid directly into their bank account by
Magnetic Tape payment

2. 100 dollars paid by Cheque/Check

3. 100 dollars paid in Cash

Pre–Payments prepares the payments in priority order, provided that
the amount to be paid covers the payments. If there is less to be paid
than the payment methods specify, the system pays up to 100% and
stops. If there is more to be paid than the payment methods specify, the
system adds the excess to the last payment method.

Preparing Cash Payments (UK Only)

If you are using Oracle Payroll to prepare cash payments, you can
calculate the banknote and coinage requirements for each employee.
Pre–Payments breaks down the amount into the individual monetary
units for payment and insert the results into the
PAY_COIN_ANAL_ELEMENTS table.

You can define the monetary units for each currency you pay for cash
payments administered through Oracle Payroll. You can also define
cash analysis rules to specify minimum numbers of each denomination
of the currency.

Setting Up a Cash Rule

The are two steps to setting up a cash rule:

1. Alter the package body hr_cash_rules

The alteration should test for the name of the cash rule you want to
set up and then perform the payment. For example, if the rule
name is ’TENS AND FIVES’ then enter the following:

if cash_rule = ’TENS AND FIVES’ then

––

hr_pre_pay.pay_coin(6, 10)

hr_pre_pay.pay_coin(3, 5)

––

–– number to pay –––^  ^––– unit value of currency

––

end if;\



10 – 60 Implementing Oracle HRMS

Using this cash rule with a currency of dollar results in a minimum
of 6 ten dollars and 3 five dollars being paid (given sufficient
funds).

2. Register the rule.

• Enter the Lookup Values window and query the Lookup type of
CASH ANALYSIS.

• Add the new Cash rule with the meaning and description fields
set to TENS AND FIVES.

• Use the cash rule when setting up an organization payment
method.

Prenotification (US Only)

Prenotification validation (also known as prenoting) applies to payment
methods of the type Magnetic Tape. This validation is performed when
bank details require checking before a payment can be made. For
example, when an employee has changed banks or changed bank
details, a payment value of zero is made to the employee’s bank
account. The payment is then made by subsequent methods, or by the
default method.

Consolidation Sets

Pre–Payments is run for a consolidation set. A consolidation set is a tag
that ties groups of actions together. You can use a consolidation set to
prepay all assignment actions in the set that have not yet been prepaid.
These assignment actions can be for different payrolls and different
time periods.  For example, you could use a consolidation set to force
the magnetic tape process to pay both of a company’s payrolls where
one is monthly and one is weekly.

Third Party Payments

Third party payments are post tax deductions from an employee’s
salary, that are paid to organizations or individuals. For example, court
orders are payable to a municipal court whereas child support orders
may be directly payable to a spouse, or other individual.



10 – 61Payroll Processes

These payments are processed in a slightly different way. The element
entry that produces the run result value for the payment holds details
of which payment method to use. This enables you to make more than
one entry of a third party payment element to an assignment, with each
entry representing a payment to a different party. For example, an
employee can pay a third party element of Child Support to two
different people.

Third party payments can only be made by magnetic tape or
cheque/check. Cash payments are not allowed. In addition, these
methods pay the full amount of the payments, so only one method is
used. There is no default method for these payments, so a payment
method must always be specified. US: If the magnetic tape prenote
validation fails, the process creates an error for that assignment.

Exchange Rates

Pre–Payments calculates the currency conversion if the payment is in a
different currency to that of the remuneration balance (the element
output currency in the case of third party payments). If the process
cannot find the exchange rate for the two currencies, it creates an error
for the assignment.

Overriding Payment Method

You can specify an overriding payment method when making a
prepayments run. This method overrides the personal payment
methods, so the full amount of the payment is made by the overriding
method. The only exceptions are the third party payments; these are
paid by the method specified in the element entry.

The overriding payment method can be either:

• Cash

• Cheque/check

You cannot specify magnetic tape payments as an override method, as
this type of payment requires prior knowledge of bank account details.



10 – 62 Implementing Oracle HRMS

The Process

The Pre–Payments process creates payroll actions and assignment
actions. The assignment actions are based on assignment actions of the
payroll/consolidation set specified that do not have interlocks to a
prepayment process. The interlocks guarantee that Payroll Run cannot
be rolled back until Pre–Payments is rolled back. Thus, the new
assignment actions are created with interlocks to the run’s assignment
actions.

See: Assignment Level Interlocks: page 10 – 53

Chunking

The assignment actions are split into groups called chunks, the size of
which are denoted by the CHUNK_SIZE action parameter in the
PAY_ACTION_PARAMETERS table. The process could spawn several
threads (child processes), depending on the THREADS action
parameter. Each thread then picks a chunk to process, processes the
assignment actions and then picks another chunk until all the chunks
are processed. The number of threads can be used to enhance
performance on multiprocessor machines.

PL/SQL Procedures

The main part of the C process (the section that performs the payment),
is a harness for PL/SQL procedures. The PL/SQL procedures create
the entries in the Pre–Payment table.

The threads process the assignment actions by:

• Retrieving the third party details and recording third party
payments as defined by the personal payment methods

• Retrieving the value for the assignment’s remuneration balance
using the PL/SQL balance functions

• Recording payment of this value as defined by the payment
methods

Error Handling

Errors encountered while processing can be at two levels:

• Payroll action level

These errors are fatal.

• Assignment level



10 – 63Payroll Processes

These errors occur while processing assignment actions. If an
error is encountered at this level, it marks the assignment
action’s status as in Error, and continues processing. If the
process then completes, it marks the payroll action status as
Complete.

Using the MAX_ERRORS_ALLOWED action parameter you can set the
number of assignment errors that can be processed before an error
should be raised at payroll action level. If MAX_ERRORS_ALLOWED
is not found then the chunk size is used as a default.

All the error messages are written to the PAY_MESSAGE_LINES table
with a more detailed explanation in the log file.

This method of handling errors enables Pre–Payments to continue
processing if minor errors are encountered. For example, if
Pre–Payments has thousands of assignments to process and a few are
paid by cash but the currency details have not been loaded, the process
creates an error for the assignments with cash payments (”Process
unable to perform the cash breakdown”). Most assignment actions
complete, only the assignments with errors have to be rerun.



10 – 64 Implementing Oracle HRMS

Payroll Action Parameters
Payroll action parameters are system–level parameters that control
aspects of the Oracle Payroll batch processes. It is important to recognize
that the effects of setting values for specific parameters may be system
wide. The text indicates where parameters are related to specific
processes. For some parameters you should also understand the concept
of array processing and how this affects performance.

Action Parameter Values

Predefined values for each parameter are supplied with the system, but
you can override these values as part of your initial implementation and
for performance tuning.

Action parameter values are specified by inserting the appropriate rows
into the following table: PAY_ACTION_PARAMETERS, which has two
columns:

PARAMETER_NAME   NOT NULL VARCHAR2(30)

PARAMETER_VALUE  NOT NULL VARCHAR2(80)

The payroll batch processes read values from this table on startup, or
provide appropriate defaults, if specific parameter values are not
specified.

Summary of Action Parameters

The following list shows user enterable action parameters and values
with any predefined default value.

Note:  Case is significant for these parameters.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁ
ÁÁÁÁÁ

Value ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Default

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ADD_MAG_REP_FILES ÁÁÁÁÁ
ÁÁÁÁÁ

1 or more ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁBAL BUFFER SIZE ÁÁÁÁÁ1 or more ÁÁÁÁÁÁÁÁ30ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CHUNK SHUFFLE
ÁÁÁÁÁ
ÁÁÁÁÁ

Y or N
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

N
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CHUNK_SIZE ÁÁÁÁÁ
ÁÁÁÁÁ

1 – 16000 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

20
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

EE BUFFER SIZE ÁÁÁÁÁ
ÁÁÁÁÁ

1 or more ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

40

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

LOG_AREA ÁÁÁÁÁ
ÁÁÁÁÁ

See later ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLOG_ASSIGN_END ÁÁÁÁÁSee later ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
LOG_ASSIGN_START

ÁÁÁÁÁ
ÁÁÁÁÁ

See later
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
LOGGING ÁÁÁÁÁ

ÁÁÁÁÁ
See later ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ



�

10 – 65Payroll Processes

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

MAX_ERRORS_ALLOWEDÁÁÁÁÁ
ÁÁÁÁÁ

1 or moreÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CHUNK_SIZE or 20
(if no chunk size)ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
MAX_SINGLE_UNDO

ÁÁÁÁÁ
ÁÁÁÁÁ

1 or more
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

50
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

RR BUFFER SIZE ÁÁÁÁÁ
ÁÁÁÁÁ

1 or moreÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

20
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

RRV BUFFER SIZE ÁÁÁÁÁ
ÁÁÁÁÁ

1 or moreÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

30
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

COST BUFFER ÁÁÁÁÁ
ÁÁÁÁÁ

1 or moreÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

20

ÁÁÁÁÁÁÁÁÁÁTHREADS ÁÁÁÁÁ1 or moreÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁTRACE

ÁÁÁÁÁ
ÁÁÁÁÁY or N

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁNÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
USER_MESSAGING ÁÁÁÁÁ

ÁÁÁÁÁ
Y or N ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
N

Note:  All parameter names without underscores also have an
alias with underscores (except CHUNK SHUFFLE).

Parallel Processing Parameters

THREADS

Parameter Name: THREADS

Parameter Value: 1 or more

Default Value:1

Oracle Payroll is designed to take advantage of multiprocessor
machines. This means that you can improve performance of your batch
processes by splitting the processing into a number of ‘threads’. These
threads, or sub–processes, will run in parallel.

When you submit a batch process to a concurrent manager the
THREADS parameter determines the total number of sub–processes that
will run under the concurrent manager. The master process will submit
(THREADS – 1) sub–processes.

Set this parameter to the value that provides optimal performance on
your server. The default value, 1, is set for a single processor machine.
Benchmark tests on multiprocessor machines show that the optimal
value is around two processes per processor. So, for example, if the
server has 6 processors, you should set the initial value to 12 and test the
impact on performance of variations on this value.

Attention:  The concurrent manager must be defined to allow
the required number of sub–processes to run in parallel. This is
a task for your Applications System Administrator.



10 – 66 Implementing Oracle HRMS

CHUNK_SIZE

Parameter Name: CHUNK_SIZE

Parameter Value: 1 – 16000

Default Value: 20

Size of each commit unit for the batch process. This parameter
determines the number of assignment actions that are inserted during
the initial phase of processing and the number of assignment actions
that are processed at one time during the main processing phase.

Note:  This does not apply to the Cheque Writer/Check Writer,
Magnetic Tape or RetroPay processes.

During the initial phase of processing this parameter defines the array
size for insert. Large chunk size values are not desirable and the default
value has been set as a result of benchmark tests.

Each thread processes one chunk at a time.

Array Select, Update and Insert Buffer Size Parameters

The following parameters control the buffer size used for ’in–memory’
array processing. The value determines the number of rows the buffer
can hold.

Note:  These parameters apply to the Payroll Run process only.

When you set values for these parameters you should note that there is a
trade–off between the array size, performance and memory
requirements. In general, the greater the number of rows fetched,
updated or inserted at one time, the better the performance. However,
this advantage declines at around 20.

Therefore, the improvement between values 1 and 20 is large, while
between 20 and 100 it is small. Note also that a higher value means
greater memory usage. For this reason, it is unlikely that you will gain
any advantage from altering the default values.

CHUNK_SIZE

Parameter Name: CHUNK_SIZE

Parameter Value: 1 – 16000

Default Value: 20

Size of each commit unit for the batch process. As before.



10 – 67Payroll Processes

RR BUFFER SIZE

Parameter Name: RR BUFFER SIZE

Parameter Value: 1 or more

Default Value: 20

Size of the Run Result buffer used for array inserts and updates: one row
per Run Result.

RRV BUFFER SIZE

Parameter Name: RRV BUFFER SIZE

Parameter Value: 1 or more

Default Value: 30

Size of the Run Result Value buffer used for array inserts and updates:
one row per Run Result Value. Typically this will be set to (RR BUFFER
SIZE * 1.5).

BAL BUFFER SIZE

Parameter Name: BAL BUFFER SIZE

Parameter Value: 1 or more

Default Value: 30

Size of the Latest Balance buffer used for array inserts and updates: 1 row
per Latest Balance.

EE BUFFER SIZE

Parameter Name: EE BUFFER SIZE

Parameter Value: 1 or more

Default Value: 40

Size of the buffer used in the initial array selects of Element Entries,
Element Entry Values, Run Results and Run Result Values per
assignment.

Costing Specific Parameters

COST BUFFER SIZE

Parameter Name: COST BUFFER SIZE

Parameter Value: 1 or more

Default Value: 20

Size of the buffer used in the array inserts and selects within the Costing
process.



10 – 68 Implementing Oracle HRMS

Magnetic Tape Specific Parameters

ADD_MAG_REP_FILES

Parameter Name: ADD_MAG_REP_FILES

Parameter Value: 1 or more

Default Value: 4

The maximum number of additional audit or report files the magnetic
tape process can produce.

Error Reporting Parameters

In every pay cycle you would expect some errors to occur in processing
individual assignments, especially in the Payroll Run. These errors are
usually caused by incorrect or missing data in the employee record. For
practical reasons, you would not want the entire run to fail on a single
assignment failure. However, if many assignments generate error
conditions one after the other, this will usually indicate a serious
problem, and you will want to stop the entire process to investigate the
cause. For processes that support assignment level errors you can use
the MAX_ERRORS_ALLOWED parameter to control the point at which
you want to stop the entire process to investigate these errors.

The processes that use this feature are:

• Payroll Run

• Pre–Payments

• Costing

• Rollback

MAX_ERRORS_ALLOWED

Parameter Name: MAX_ERRORS_ALLOWED

Parameter Value: 1 or more

Default Value: CHUNK_SIZE or 20 (if no chunk size)

The number of consecutive actions that may have an error before the
entire process is given a status of ’Error’.



�

10 – 69Payroll Processes

Rollback Specific Parameters

Rollback of specific payroll processes can be executed in two ways. A
batch process can be submitted from the Submit Requests window.
Alternatively, you can roll back a specific process by deleting it from the
Payroll Process Results window or the Assignment Process Results
window. When you roll back from a window this parameter controls the
commit unit size.

MAX_SINGLE_UNDO

Parameter Name: MAX_SINGLE_UNDO

Parameter Value: 1 or more

Default Value: 50

The maximum number of assignment actions that can be rolled back in a
single commit unit when rollback is executed from a form. Although
you can change the default limit, you would usually use the Rollback
process from the SRS screen if it is likely to be breached.

Payroll Process Logging

During installation and testing of your Oracle Payroll system you may
need to turn on the detailed logging options provided with the product.
Use the LOGGING parameter to provide a large volume of detailed
information that is useful for investigating problems.

Detailed logging options should only be switched on when you need to
investigate problems that are not easily identified in other ways. The
logging activities will have an impact on the overall performance of the
process you are logging. Usually, this feature is needed during your
initial implementation and testing before you go live. In normal
operation you should switch off detailed logging.

Attention:  If you need to contact Oracle Support for assistance
in identifying or resolving problems in running your payroll
processes, you should prepare your log file first. Define the
Logging Category, Area and range of Assignments and then
resubmit the problem process.

Logging Categories

Logging categories define the type of information included in the log.
This lets you focus attention on specific areas that you consider may be
causing a problem. You can set any number of these by specifying
multiple values:



10 – 70 Implementing Oracle HRMS

• G General (no specific category) logging information

Output messages from the PY_LOG macro for general
information. This option does not sort the output and you should
normally choose a list of specific categories.

• M Entry or exit routing information

Output information to show when any function is entered and
exited, with messages such as ’In: pyippee’, ’Out : pyippee’. The
information is indented to show the call level, and can be used to
trace the path taken through the code at function call level. Often,
this would be useful when attempting to track down a problem
such as a core dump.

• P Performance information

Output information to show the number of times certain
operations take place at the assignment and run levels and why
the operation took place. For example, balance buffer array
writes.

• E Element entries information

Output information to show the state of the in–memory element
entry structure, after the entries for an assignment have been
fetched, and when any item of the structure changes; for example,
addition of indirects or updates. This also shows the processing of
the entry.

• L Balance fetching information

Output information to show the latest balance fetch and
subsequent expiry stage.

• B Balance maintenance information

Output information to show the creation and maintenance of
in–memory balances

• I Balance output information

Output information to show details of values written to the
database from the balance buffers.

• R Run results information

Output information to show details of run results and run result
values written to the database from the Run Results or Values
buffer.

• F Formula information

Output information to show details of formula execution. This
includes formula contexts, inputs and outputs.



10 – 71Payroll Processes

• C C cache structures information.

Output information to show details of the payroll cache structures
and changes to the entries within the structure.

• Q C cache query information

Output information to show the queries being performed on the
payroll cache structures.

• S C Cache ending status information

Output information to show the state of the payroll cache before
the process exits, whether ending with success or error. Since
much of the logging information includes id values, this can be
used to give a cross reference where access to the local database is
not possible.

Logging Parameters

LOGGING

Parameter Name: LOGGING

Parameter Value: G, M, P, E, L, B, I, R, F, C, Q

Default Value: No logging

LOG_AREA

Parameter Name: LOG_AREA

Parameter Value: Function to start logging

Default Value: No default

LOG_ASSIGN_START

Parameter Name: LOG_ASSIGN_START

Parameter Value: Assignment to start logging

Default Value: All assignments

LOG_ASSIGN_END

Parameter Name: LOG_ASSIGN_END

Parameter Value: Assignment to end logging, including this one

Default Value: All assignments

Output Log File

When you enable the logging option the output is automatically
included in the log file created by the concurrent manager. You can
review or print the contents of this log file.



10 – 72 Implementing Oracle HRMS

Except for the General category, the log file will contain information in a
concise format using id values. This keeps the size of the log file to a
minimum while providing all the technical detail you need.

To help you understand the output for each logging category, other than
’G’ and ’M’, the log file contains a header indicating the exact format.

Miscellaneous Parameters

USER_MESSAGING

Parameter Name: USER_MESSAGING

Parameter Value: Y/N

Default Value: N

Set this to parameter to ’Y’ to enable detailed logging of user readable
information to the pay_message_lines table. This information includes
details about the elements and overrides that are processed during the
Payroll Run.

Note:  This information is useful when you are investigating
problems, but you may find that it is too detailed for normal
working.

TRACE

Parameter Name: TRACE

Parameter Value: Y/N

Default Value: N

Set this parameter to ’Y’ to enable the database trace facility. Oracle trace
files will be generated and saved in the standard output directory for
your platform.

Warning:  Only use the trace facility to help with the
investigation of problems. Setting the value to ‘Y’ will cause a
significant deterioration in database performance. If you
experience a significant problem with the performance of your
payroll processes, you should always check that you have reset
this parameter to the default value – ’N’.



10 – 73Payroll Processes

System Management of QuickPay Processing

When users initiate a QuickPay run or a QuickPay prepayments process,
the screen freezes until the process finishes. QuickPay is set up to
manage any cases in which the concurrent manager fails to start the
process within a specified time period, or starts it but fails to complete it
within the specified period. This situation can sometimes arise when, for
example, many high priority processes hit the concurrent manager at the
same time.

The system’s management of the screen freeze occurring when a user
initiates a QuickPay process involves:

• Checking the concurrent manager every few seconds for the
process completion.

• Unfreezing the screen and sending an error message to the user
when the process has not completed within a maximum wait
time.

The error message includes the AOL concurrent request ID of the
process. The user must requery the process to see its current
status.

System administrators can improve the speed of QuickPay processing at
their installation by:

• Changing the default for the interval at which checks for process
completion occur.

By default, the check of the concurrent manager occurs at 2
second intervals. The parameter row
QUICKPAY_INTERVAL_WAIT_SEC in the table
PAY_ACTION_PARAMETERS sets this default.

• Changing the default for the maximum wait time.

The maximum wait time allowed for a QuickPay process to
complete defaults to 300 seconds (5 minutes), after which the
system issues an error message. The parameter row
QUICKPAY_MAX_WAIT_SEC in the
PAY_ACTION_PARAMETERS table sets this default.

• Defining a new concurrent manager exclusively for the QuickPay
run and prepayments processes.

� To change the defaults for the interval at which checks occur or for the
maximum wait time:

� Insert new rows (or update existing rows) in the table
PAY_ACTION_PARAMETERS.



10 – 74 Implementing Oracle HRMS

Notice that QUICKPAY_INTERVAL_WAIT_SEC and
QUICKPAY_MAX_WAIT_SEC are codes for the Lookup type
ACTION_PARAMETER_TYPE.

� To define a new concurrent manager exclusively for the two QuickPay
processes:

1. Exclude the two QuickPay processes from the specialization rules
for the standard concurrent manager.

2. Include them in the specialization rules for the new QuickPay
concurrent manager to be fewer than those of the standard
concurrent manager. Doing so reduce the time it takes to start
requests for the QuickPay processes.



C H A P T E R

11

11 – 1Payroll Archive Reporter Process

Payroll Archive
Reporter Process



11 – 2 Implementing Oracle HRMS

The Payroll Archive Reporter (PAR) Process
Using the Payroll Archive Reporting (PAR) process, you can produce
complex payroll reports on employee assignments on a periodic basis,
for example at the end of the tax year, or for each tax quarter.  You can
submit these reports to a tax authority or other governmental body
using magnetic tape.

If necessary, you can archive the data reported on exactly as it appears
in the reports.  This covers the possibility that the payroll department,
or external authorities receiving the reports, may need to review the
data at some future time.

If archiving is not required, you can still retain a record of the
production of the reports and which employee assignments were
included in them.

The primary use of the PAR process is for magnetic tape reporting, but
you can also use it (in Archive mode) for reports delivered using Oracle
Report Writer.

The generic PAR process described here may not meet the payroll
reporting requirements of all HRMS payroll localizations.  Therefore
your localization team may have made changes such as extending the
data reported on to include payroll actions, payrolls, or organizations.

PAR Modes

To support flexibility in its use, PAR can be run in three different
modes:

• Magnetic Tape with Archive

In this mode, PAR archives the values needed for reporting in
the FastFormula archive tables (FF_ARCHIVE_ITEMS and
FF_ARCHIVE_ITEM_CONTEXTS).  It then produces a report on
magnetic tape based on the archived values.

• Archive

In this mode, PAR only archives values needed for reporting in
the FastFormula archive tables.

Having run the PAR process in Archive mode, you can extract
data from the FastFormula archive tables using either Oracle
Report Writer or a magnetic tape process.

• Magnetic Tape without Archive

In this mode, PAR produces a report on magnetic tape and
maintains a record of the report production (in the table



11 – 3Payroll Archive Reporter Process

PAY_PAYROLL_ACTIONS) and/or records of the individual
assignments reported on (in the table
PAY_ASSIGNMENT_ACTIONS).

Note:  When you produce magnetic tape reports using the
alternative process PYUMAG, there is no record of the report
production.

Notice that running PAR in Archive mode and then in Magnetic Tape
without Archive mode is convenient if you need to produce a number
of reports by magnetic tape, each of which requires a subset of a large
set of data.  All the data can be archived at once in Archive mode, and
then the individual reports can be produced for magnetic tape delivery
in Magnetic Tape without Archive mode.

Overview of the PAR Process

The PAR process operates as follows:

1. It creates a payroll action with associated assignment actions.  In
these actions, PAR code evaluates live database items (that is, items
that point to live tables) representing the data needed for a payroll
report. The PAR code uses contexts for the database items as
necessary.

2. When run in the Archiver or Magnetic Tape with Archiver modes,
PAR then stores the results of the database evaluations in the
FastFormula archive tables (FF_ARCHIVE_ITEMS and
FF_ARCHIVE_ITEM_CONTEXTS).

3. When run in the Magnetic Tape with Archiver or Magnetic Tape
without Archiver modes, PAR code retrieves values from the
archive tables by evaluating archive database items, and includes
the values in reports delivered by magnetic tape.

Overview of the Setup Steps

� To set up the PAR process:

1. Decide on the employee data to report on and to archive, and the
formatting of the reports.

2. Create the archive and live database items that are needed to
produce the data in the reports, setting contexts for them as
necessary.



11 – 4 Implementing Oracle HRMS

See: Create Database Items for Archiving: page 11 – 4.

3. For Archive mode or Magnetic Tape with Archive mode, write
formulas that determine which database items are to be archived.
For Magnetic Tape with Archiver and Magnetic Tape without
Archiver modes, write formulas that format strings as required by
tape formats, and provide error and warning messages to users.

See: Write Formulas: page 11 – 8

4. Write package procedures that determine the assignments and
assignment actions for PAR to process for the reports.

See: Write Package Procedures for Assignments and Assignment
Actions: page 11 – 8.

5. Provide a SRS (Standard Report Submission) definition from which
users can launch the PAR process.

See: Provide an SRS Definition for the PAR Process: page 11 – 10.

6. Identify your custom reports, formulas and package procedures to
the system by making the appropriate entries in the table
PAY_REPORT_FORMAT_MAPPINGS_F.

See: Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F
Table: page 11 – 11.

Create Database Items for Archiving

For its archiving function, PAR uses both live database items (which
point at live tables), and archive database items (which point at the
archive tables to retrieve archived data).  For each archive database
item, there must be a corresponding live database item.  You are
responsible for creating the archive database items, and for any live
database items you need that do not already exist.

For example, for the archive database item A_INCOME_TAX_YTD
referenced in a formula, there must be a live database item
INCOME_TAX_YTD.  PAR runs this live database item and places the
value in the archive table FF_ARCHIVE_ITEMS.



11 – 5Payroll Archive Reporter Process

Archive Database Item Creation:  Background

The entity relationship diagram below shows the relationship of the
PAR tables to other tables in generic HRMS:

The FF_ARCHIVE_ITEMS table records a snapshot of what particular
database items evaluate to on a run of PAR.

The creation of archive database items includes the creation of archive
routes.  You define these in FF_ROUTES, with definition texts that are
simple select statements from the two tables
FF_ARCHIVE_ITEM_CONTEXTS and FF_ARCHIVE_ITEMS.  Notice
however that you must define these based on the number of contexts
being passed into the routes, and the data type of the contexts. There
are however, seeded Archive Routes, which you may be able to make
use of  rather than defining your own; these are detailed in the next
section.

You define the route context usages in the table
FF_ROUTE_CONTEXT_USAGES.  The recommended way to do this is
to retrieve from FF_CONTEXTS the context IDs that the live and
archive routes require, and then define new route context usages based
on the new archive routes.  The route parameter is always defined
based on the new archive route and a parameter name of User Entity
ID.

Here is an example of a more complex archive route:



11 – 6 Implementing Oracle HRMS

l_text := ’ff_archive_items target,

ff_archive_item_contexts fac,

ff_archive_item_contexts fac1

where target.user_entity_id = &U1

and target.context1 = &B1 /* context assignment action id */

and fac.archive_item_id = target.archive_item_id

and fac.context = to_char(&B2) /* 2nd context of source_id

*/

and fac1.archive_item_id = target.archive_item_id

The simple structure underlying this relatively complex route is still
evident.  Each context added just represents a further join to
FF_ARCHIVE_ITEM_CONTEXTS.

Seeded Generic Archive Routes

The seeded generic archive routes fall into two categories: routes that
have only one context (using ASSIGNMENT_ACTION_ID) and routes
that have two contexts.

Routes with One Context

For the generic archive routes with one context, three datatypes are
supported for that context, and therefore three such routes are
automatically created when you run the automatic database item
generator:

• A Character Context route, mapping onto a FF_CONTEXT of
datatype ’T’ (Text). This is named
ARCHIVE_SINGLE_CHAR_ROUTE.

• A Numeric Context route, mapping onto a FF_CONTEXT of
datatype ’N’ (Number). This is named
ARCHIVE_SINGLE_NUMBER_ROUTE.

• A Date Context route, mapping onto a FF_CONTEXT of
datatype ’D’ (Date). This is named
ARCHIVE_SINGLE_DATE_ROUTE.

Here is the text for ARCHIVE_SINGLE_CHAR_ROUTE:

  ff_archive_items target 

      where target.user_entity_id = &U1 

      and target.context1 = &B1

Routes with Two Contexts

For the generic archive routes that have two contexts, the automatic
database item generator references the table



11 – 7Payroll Archive Reporter Process

FF_ARCHIVE_ITEM_CONTEXTS, whose column CONTEXT is stored
as a Varchar2(30).  It makes the assumption that the first context stored
in FF_ARCHIVE_ITEMS is a number, and is an assignment action ID.
It can seed only one such ’two–context archive route’ by decoding the
where clause of the generic archive route as follows:

ff_archive_items target,

ff_archive_item_contexts context

ff_contexts ffc

where target.user_entity_id = &U1

and target.context1 = &B1

and target.archive_item_id = context.archive_item_id

and ffc.context_id = context.context_id

and context.context = decode(ffc.data_type,’T’, &B2, ’D’,

fnd_date.date_to_canonical(&B2),

to_char(&B2));

Running the Archive Database Item Generator

You make several calls to the procedure for running the interface to the
archive database item generator, one for each of the database items that
you want to archive.  The procedure is as follows:

procedure pay_archive_utils.create_archive_dbi(

p_live_dbi_name IN VARCHAR2(30),

p_archive_route_name IN VARCHAR2(30) DEFAULT NULL,

p_secondary_context_name IN VARCHAR2(30));

Contexts for Database Items

Using the standard set_context procedure, you set global contexts or
assignment level contexts for those database items that require
contexts.  INITIALIZATION_CODE sets the global contexts for
formulas, for example, PAYROLL_ID.  ARCHIVE_CODE sets the
context for the assignment level contexts, such as ASSIGNMENT_ID.

See: Examples: INITIALIZATION_CODE and ARCHIVE_CODE: page
11 – 13.



11 – 8 Implementing Oracle HRMS

Write Formulas
To run PAR in Archive or Magnetic Tape with Archive mode, you write
formulas that identify the database items used in the archiving process.
To run PAR in Magnetic Tape with Archive or Magnetic Tape without
Archive modes, you must write formulas to format strings as required,
and to provide warnings and errors.

The PAR process uses the entry existing for a report in the column
REPORT_FORMAT of the table PAY_REPORT_FORMAT_MAPPING_F
to find the formulas associated with the appropriate magnetic tape
format in the table PAY_MAGNETIC_BLOCKS.

See also: Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F
Table: page 11 – 11.

Write Package Procedures For Assignments And Assignment Actions
You must code two package procedures as follows:

• The RANGE_CODE procedure, to specify ranges of assignments
to be processed in the archive.

• The ASSIGNMENT_ACTION_CODE procedure, to create the
assignment actions to be processed.

RANGE_CODE Example

This package procedure returns a select statement.  This select
statement returns the person_id that has the assignment for which PAR
must create an assignment action.
–– 

procedure range_cursor (pactid in number, 

sqlstr out varchar2) is 

begin 

–– 

sqlstr := ’select distinct person_id 

           from per_people_f ppf, 

           pay_payroll_actions ppa 

           where ppa.payroll_action_id = :payroll_action_id 

           and ppa.business_group_id = ppf.business_group_id

           order by ppf.person_id’; 

–– 

end range_cursor;

Note:  There must be one and only one entry of
:payroll_action_id in the string, and the statement must be,
order by person_id.



11 – 9Payroll Archive Reporter Process

ASSIGNMENT_ACTION_CODE Example

This package procedure further restricts and creates the assignment
action.

––

procedure action_creation(pactid in number, 

                          stperson in number, 

                          endperson in number, 

                          chunk in number) is 

–– 

CURSOR c_state IS 

   SELECT ASG.assignment_id assignment_id 

     FROM per_assignments_f ASG, 

          pay_payroll_actions PPA 

    WHERE PPA.payroll_action_id = pactid 

      AND ASG.business_group_id = PPA.business_group_id

      AND ASG.person_id between stperson and endperson 

      AND PPA.effective_date between

ASG.effective_start_date

                                 and ASG.effective_end_date 

 ORDER BY ASG.assignment_id; 

–– 

lockingactid number; 

begin 

  for asgrec in c_state loop 

     –– 

     –– Create the assignment action to represent the person

/ tax unit 

     –– combination. 

     –– 

     select pay_assignment_actions_s.nextval 

       into lockingactid 

       from dual; 

      –– 

      –– insert into pay_assignment_actions. 

 

hr_nonrun_asact.insact(lockingactid,asgrec.assignment_id,

pactid,chunk, NULL); 

   end loop; 

end action_creation;

––



11 – 10 Implementing Oracle HRMS

Note:  Four values are passed into the procedure.  Start and
End person MUST be used to restrict the creation here, as these
are used for multithreading.  Similarly, chunk must also be
used and passed to the insact procedure.  This actually creates
the action.

Provide an SRS Definition for the PAR Process

The PAR process is a batch process that users start from the Submit
Requests window.  You need to set up the SRS definition for your
process. The parameters for this definition are as follows:

Parameter Name Mandatory?

report_type Yes

report_qualifier Yes

start_date No *

effective_date No *

report_category Yes

business_group_id Yes

magnetic_file_name No

report_file_name No

legislative_parameters No *

Parameters for the PAR Process

* The PAR process requires the start_date and effective_date.  However,
these can be set either by entries to the standard parameters or by using
special legislative parameters START_DATE and END_DATE.  These
special parameters are passed to the parameter legislative_parameters
in the form START_DATE=<date> and END_DATE=<date>.



11 – 11Payroll Archive Reporter Process

Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table

You control PAR processing by entries you make in the table
PAY_REPORT_FORMAT_MAPPINGS_F.  The columns for this table are
as follows:

Column Name Type Comments

REPORT_TYPE NOT NULL
VARCHAR2(30)

A short name of the report.
Example:  SQWL (for State
Quarterly Wage Listing)

REPORT_QUALIFIER NOT NULL
VARCHAR2(30)

A qualifying name for the
report.  Example: for SQWL it
could be the state name (such as
Texas or California).

REPORT_FORMAT NOT NULL
VARCHAR2(30)

A foreign key to the
PAY_MAGNETIC_BLOCKS
table.  Needed when running in
ALL modes.

EFFECTIVE_START_DATE NOT NULL
DATE

EFFECTIVE_END_DATE NOT NULL
DATE

RANGE_CODE VARCHAR2(60) The name of a package
procedure that you code to
specify ranges of assignments to
be processed in the archive. For
example code, see: Write
Package Procedure for
Assignments and Assignment
Actions: page 11 – 8.

ASSIGNMENT_ACTION_CODE VARCHAR2(60) The name of a package
procedure that you code to
create the assignment actions to
be processed. For example code,
see: Write Package Procedure
for Assignments and
Assignment Actions: page
11 – 8.

Columns of the PAY_REPORT_FORMAT_MAPPINGS_F Table  



11 – 12 Implementing Oracle HRMS

CommentsTypeColumn Name

INITIALIZATION_CODE VARCHAR2(60) A package procedure that sets
any global contexts needed for
the lifetime of the archiving.
Will likely be used infrequently,
but you must create the
procedure (see: Contexts for
Database Items: page 11 – 7
and Examples:
INITIALIZATION_CODE and
ARCHIVE_CODE: page
11 – 13).  If no value is entered
in this column, PAR performs
no archiving.

ARCHIVE_CODE VARCHAR2(60) Sets contexts at the assignment
action level to be used during
the archive.  Will likely be used
instead of
INITIALIZATION_CODE. See:
Contexts for Database Items:
page 11 – 7 and Examples:
INITIALIZATION_CODE and
ARCHIVE_CODE: page 11 – 13.

MAGNETIC_CODE VARCHAR2(60) The standard generic magnetic
tape driving PL/SQL procedure
(see: Magnetic Tape Process:
page 10 – 19).  To produce the
magnetic tape, PAR uses
REPORT_FORMAT as a foreign
key to the table
PAY_MAGNETIC_BLOCKS. If
no value is entered for
MAGNETIC_CODE, PAR does
not produce a magnetic tape.

REPORT_CATEGORY NOT NULL
VARCHAR2(30)

Indicator of the media type.
Naming standards are:
     RT – Reel to Reel Tape 
     SD – Floppy Disk 
     REPORT – Paper Report 
     ARCHIVE – Archive

Columns of the PAY_REPORT_FORMAT_MAPPINGS_F Table  



11 – 13Payroll Archive Reporter Process

CommentsTypeColumn Name

REPORT_NAME VARCHAR2(60) This remains null for runs in the
Magnetic Tape with Archive,
Archive, and Magnetic Tape
without Archive modes.
Available for future use with
other possible modes.

SORT_CODE VARCHAR2(60) Entered only when processing a
report for which the delivery
vehicle is Oracle Report Writer.
Enter the name of a package
procedure, which you have
coded, that returns the
assignment actions in the order
they should be processed in.

Columns of the PAY_REPORT_FORMAT_MAPPINGS_F Table  

The key to this table is REPORT_TYPE, REPORT_QUALIFIER,
REPORT_CATEGORY, EFFECTIVE_START_DATE and
EFFECTIVE_END_DATE.

Examples:   INITIALIZATION_CODE and ARCHIVE_CODE

INITIALIZATION_CODE

/* Name : archinit 

Purpose : This performs the US specific initialization

  section. 

 */ 

 procedure archinit(p_payroll_action_id in number) is 

  jurisdiction_code   pay_state_rules.jurisdiction_code%TYPE; 

  l_state             VARCHAR2(30); 

begin 

null; 

end archinit;

ARCHIVE_CODE

Note:  This code sets the contexts by assignment action.  There
are two ways of setting contexts, one using the set_context
function, the other using the PL/SQL context table. The context
table is used only when contexts can have multiple values, as in
this example for SOURCE_ID and SOURCE_TEXT.



11 – 14 Implementing Oracle HRMS

/* Name : archive_data 

   Purpose : This performs the ZA specific employee

   context setting. 

   */

procedure archive_data(p_assactid in number, p_effective_date in

date) is

    asgid          pay_assignment_actions.assignment_id%type; 

    l_count        number; 

    l_context_no   number; 

    aaseq          number; 

    aaid           number; 

    paid           number;

  cursor cursars is 

    select distinct code 

      from pay_za_irp5_bal_codes 

     where code in (4001, 4002, 4003, 4004, 4005, 4006, 4007); 

  cursor curclr is 

    select distinct nvl(pet.element_information1, ’&&&’)

                                         element_information1 

      from pay_element_types_f pet, 

           pay_element_classifications pec, 

           pay_assignment_actions paa, 

           pay_payroll_actions    ppa 

     where paa.assignment_action_id = p_assactid 

       and pec.classification_name = ’Deductions’ 

       and pec.classification_id = pet.classification_id 

       and ppa.payroll_action_id = paa.payroll_action_id 

       and exists (select ’’ 

                  from pay_assignment_actions paa2, 

                       pay_payroll_actions    ppa2, 

                       pay_run_results        prr 

                 where paa2.assignment_id = paa.assignment_id 

                   and paa2.payroll_action_id = 

                                          ppa2.payroll_action_id 

                   and paa2.assignment_action_id = 

                                          prr.assignment_action_id

                   and prr.element_type_id = pet.element_type_id 

                   and ppa2.effective_date between ppa.start_date 

                                          and ppa.effective_date 

                ); 

  begin 

      SELECT aa.assignment_id 

             into asgid 

        FROM pay_assignment_actions aa 

       WHERE aa.assignment_action_id = p_assactid;

      l_context_no :=  pay_archive.g_context_values.sz;



11 – 15Payroll Archive Reporter Process

      for i in 1..l_context_no loop

          pay_archive.g_context_values.name(i) := NULL; 

          pay_archive.g_context_values.value(i) := NULL;

      end loop; 

      pay_archive.g_context_values.sz := 0; 

      l_count := 0;

/* Set up the assignment id, date earned and tax unit id contexts

*/ 

  

      l_count := l_count + 1; 

      pay_archive.g_context_values.name(l_count) := 

                                           ’ASSIGNMENT_ID’; 

      pay_archive.g_context_values.value(l_count) := asgid; 

  

      SELECT MAX(paa.action_sequence) 

        INTO aaseq 

        FROM pay_assignment_actions paa, 

             pay_payroll_actions ppa, 

             pay_action_classifications pac, 

             pay_payroll_actions        ppa_arch, 

             pay_assignment_actions     paa_arch 

        WHERE 

          paa_arch.assignment_action_id = p_assactid 

          and paa_arch.payroll_action_id =

                                        ppa_arch.payroll_action_id

          and paa.assignment_id = paa_arch.assignment_id 

          AND paa.payroll_action_id = ppa.payroll_action_id 

          AND ppa.action_type = pac.action_type 

          AND pac.classification_name = ’SEQUENCED’ 

          AND ppa.effective_date between ppa_arch.start_date 

                                     and ppa_arch.effective_date 

          and exists (select ’’ 

                        from pay_payroll_actions ppa2, 

                             pay_assignment_actions paa2, 

                             pay_run_results prr, 

                             pay_element_types_f pet 

                       where ppa2.time_period_id =

                                          ppa.time_period_id 

                         and ppa2.payroll_action_id =

                                          paa2.payroll_action_id 

                         and paa2.assignment_action_id =

                                          prr.assignment_action_id

                         and prr.element_type_id =

                                          pet.element_type_id 

                         and ppa2.effective_date between

                                      pet.effective_start_date and



11 – 16 Implementing Oracle HRMS

                                          pet.effective_end_date 

                         and paa2.assignment_id =

paa.assignment_id

                         and pet.element_name =

                                          ’ZA_Tax_On_Lump_Sums’) 

          and not exists (select ’’ 

                             from pay_assignment_actions paa3, 

                                  ff_archive_items fai, 

                                  ff_user_entities fue 

                            where paa3.assignment_id =

                                          paa_arch.assignment_id 

                              and paa_arch.payroll_action_id =

                                          paa3.payroll_action_id

                              and paa3.assignment_action_id =

                                          fai.context1 

                              and fai.user_entity_id =

                                          fue.user_entity_id 

                              and fue.user_entity_name =

                                          ’A_PAY_PROC_PERIOD_ID’ 

                              and fai.value = ppa.time_period_id);

      if aaseq is null then 

        SELECT MAX(paa.action_sequence) 

          INTO aaseq 

          FROM pay_assignment_actions paa, 

               pay_payroll_actions ppa, 

               pay_action_classifications pac 

          WHERE 

            paa.assignment_id = asgid 

            AND paa.payroll_action_id = ppa.payroll_action_id 

            AND ppa.action_type = pac.action_type 

            AND pac.classification_name = ’SEQUENCED’ 

            AND ppa.effective_date <= p_effective_date; 

      end if; 

      SELECT assignment_action_id, payroll_action_id 

        INTO aaid, paid 

        FROM pay_assignment_actions 

       WHERE 

         assignment_id = asgid 

         AND action_sequence = aaseq; 

 

      l_count := l_count + 1; 

      pay_archive.g_context_values.name(l_count) :=

                                          ’ASSIGNMENT_ACTION_ID’; 

      pay_archive.g_context_values.value(l_count) :=aaid ; 

      pay_archive.balance_aa := aaid; 

 

      l_count := l_count + 1; 

      pay_archive.g_context_values.name(l_count) :=

                                          ’PAYROLL_ACTION_ID’; 



11 – 17Payroll Archive Reporter Process

      pay_archive.g_context_values.value(l_count) :=paid ; 

      for clrrev in curclr loop 

        l_count := l_count + 1; 

        pay_archive.g_context_values.name(l_count) :=

                                           ’SOURCE_TEXT’; 

        pay_archive.g_context_values.value(l_count) := 

                                   clrrev.element_information1; 

      end loop;

      for sarrec in cursars loop 

        l_count := l_count + 1; 

        pay_archive.g_context_values.name(l_count) := ’SOURCE_ID’;

        pay_archive.g_context_values.value(l_count) :=

sarrec.code; 

      end loop; 

–– 

      pay_archive.g_context_values.sz := l_count; 

–– 

  end archive_data;



11 – 18 Implementing Oracle HRMS



C H A P T E R

12

12 – 1Balances in Oracle Payroll

Balances in Oracle
Payroll



12 – 2 Implementing Oracle HRMS

Balances in Oracle Payroll
This essay deals with the definition and use of balances and balance
dimensions in Oracle Payroll.  It also explains how to deal with the issue
of loading initial balances.  This essay does not provide any detail on
how to add balance dimensions to the system.

Terms

This essay assumes that you are already familiar with the database
design diagrams and tables contained in the Oracle HRMS Technical
Reference Manual.

If you are not already familiar with the setup and use of balances, or the
concepts of employee assignment, assignment actions, database items,
or payroll processing in Oracle FastFormula you should refer to your
Oracle HRMS user guides for more information.

For additional information on how the Payroll Run processes balances,
see also: Payroll Run Process – Create and Maintain Balances: page
10 – 10.

Overview of Balances
In Oracle Payroll a balance is defined as the accumulation of the results
of a payroll calculation.  The balance has a name, feeds and dimensions.

For example, the balance GROSS PAY is the accumulation of the results
of processing all ‘Earnings’.  However, the idea of a dimension is unique
to Oracle Payroll. Dimensions enable you to view the value of a balance
using a combination of different criteria.   So, you might want to view
the value of Gross Pay for one employee for the current pay period, or
for the year to date.  The actual balance and dimension you would use
in a formula or a report would be the GROSS_PAY_ASG_PTD or the
GROSS_PAY_ASG_YTD.

In general, balances in Oracle Payroll can be thought of as the
‘calculation rules’ for obtaining the balance value. Most values are not
held explicitly in the database.  This approach has many advantages:
New balances can be defined and used at any time with any feeds and
dimensions; balance values do not need to be stored explicitly in the
database, taking up valuable storage space and causing problems with
data archiving and purging.

Balance Types

These are the balance names, for example Gross Pay and Net Pay.
Balance types always have a numeric Unit Of Measure, and in some
instances a currency code.



�

12 – 3Balances in Oracle Payroll

Balance Feeds

Balance feeds define the input values that contribute to a balance.  For
example the pay values of all earnings types contribute to the Gross Pay
balance.  Feeds can add to (+) or subtract from (–) a balance

Balance Dimensions

The balance dimension is identified by the database item suffix for the
balance.  For example,  ’_YTD’ indicates the balance value is for the year
to date.  Balance dimensions are predefined in Oracle Payroll.

Defined Balances

The defined balance is the name used to identify the combination of
Balance Type and Balance Dimension.  For example,
GROSS_PAY_ASG_YTD.   When you use the Balance window to define
a new balance, Oracle Payroll automatically generates database items
for every balance dimension you select.  You can then access the value
directly within any formula.  In any detailed calculation or report on
balances you always refer to the ‘defined balance’ to return a value.

Latest Balances

To optimize the performance of payroll processing, some balance values
are held explicitly in the database and these are referred to as Latest
Balance Values.  The payroll process accesses and updates latest balance
values as it runs. In some cases it clears and then resets values, for
example when you do a rollback.  All of this is invisible to the user and
is managed by the payroll process.

Note:  If you need to return the value of a balance in a report
you should use the balance function
pay_balance_pkg.get_value.  See: Including Balance Values in
Reports: page 12 – 24.

Expiry

An important concept for latest balances is that of ‘expiry’.   For
example,  consider the GROSS_PAY_YTD balance.  When you cross the
tax year boundary you would expect the value to return to zero.  This
‘expiry’ of a balance is maintained internally by Oracle Payroll and there
is code to work out if we have crossed such a boundary.

Attention:  Even if a defined balance has expired in theory for a
payroll run, it is not actually zeroed on the database unless it is



12 – 4 Implementing Oracle HRMS

subsequently updated by the same payroll run.  Thus, following
a Payroll Run, you may well see balances that you would have
expected to have expired, but have their old values.

Balance Contexts

There is occasionally a requirement to report balances where the
combination of ASSIGNMENT_ACTION_ID and BALANCE_TYPE_ID
does not uniquely identify the individual balance values that should be
reported.  For example in the US legislation you need to maintain
balance dimensions for particular states, while in the UK legislation you
need to maintain balance dimensions for distinct tax offices.

Both of these requirements are met by the definition of special balance
contexts.  These are legislative specific ’C’ code and appear to you as
part of the balance dimensions.

User definition of additional balance contexts is not yet supported
because of the major impact these may have on the overall performance
of the payroll process.  Bad code in the definition of these contexts can
run exceptionally slowly, especially when you accumulate a large
number of run results.

Context Balances – a UK Example

To report on context balances, we must define the relevant balances with
the ELEMENT_PTD and ELEMENT_ITD dimensions. The further
context that is required to identify the values is taken from the
PAY_RUN_RESULTS.SOURCE_ID. This is obtained from the balance
feed joining to the PAY_RUN_RESULT_VALUES table, then to
PAY_RUN_RESULTS.

Using this value, we can select via the
PAY_ASSIGNMENT_LATEST_BALANCES –>
PAY_BALANCE_CONTEXT_VALUES method. Or, if there is no latest
balance, by the route code call, which in the UK can be done with a
function call:

hr_gbbal.calc_element_ptd_bal(ASSIGNMENT_ACTION_ID,

                              BALANCE_TYPE_ID,

                              SOURCE_ID);

(or calc_element_itd_bal with the same parameters).



12 – 5Balances in Oracle Payroll

Balance Dimensions 
This essay describes what a balance dimension is and what it does, and
how the various parts interact with formulas and the Payroll Run.

A balance dimension defines how the value of a specific balance should
be calculated.   The balance dimension is also an entity with its own
attributes that are associated with balance calculations.

Database Item Suffix

The database item suffix identifies the specific dimension for any named
balance. The ‘defined balance’ name is the combination of the balance
and the suffix.  For example,  the suffix ’_ASG_YTD’ in
’GROSS_SALARY_ASG_YTD’ identifies that the value for the gross
salary balance is calculated for one assignment, for the year to date.

Routes

The balance dimension route is a foreign key to the FF_ROUTES table.
A route is a fragment of SQL code that defines the value to be returned
when you access a balance.  As with other database items, the text is
held in the DEFINITION_TEXT column of the FF_DATABASE_ITEMS
table.

The select clause of the statement is always:

select nvl(sum(fnd_number.canonical_to_number(TARGET.result_value)

* FEED.scale), 0)

Thus, a balance could be defined as the sum of those run result values
that feed the balance type (‘Gross Salary’ in our example), across a
certain span of time (in our example, this is since the start of the current
tax year).

The SQL statement itself must follow a number of rules, and an example
appears below:

        pay_balance_feeds_f      FEED

       ,pay_run_result_values    TARGET

       ,pay_run_results          RR

       ,pay_payroll_actions      PACT

       ,pay_assignment_actions   ASSACT

       ,pay_payroll_actions      BACT

       ,pay_assignment_actions   BAL_ASSACT

where  BAL_ASSACT.assignment_action_id = \&B1

and    BAL_ASSACT.payroll_action_id    = BACT.payroll_action_id

and    FEED.balance_type_id            = \&U1

and    FEED.input_value_id             = TARGET.input_value_id



12 – 6 Implementing Oracle HRMS

and    TARGET.run_result_id            = RR.run_result_id

and    RR.assignment_action_id         = ASSACT.assign_action_id

and    ASSACT.payroll_action_id        = PACT.payroll_action_id

and    PACT.effective_date between

          FEED.effective_start_date and FEED.effective_end_date

and    RR.status in (’P’,’PA’)

and    PACT.effective_date >=

          (select to_date(’06–04–’ || to_char( to_number(

                  to_char( BACT.effective_date,’YYYY’))

           +  decode(sign( BACT.effective_date – to_date(’06–04–’

               ||

to_char(BACT.effective_date,’YYYY’),’DD–MM–YYYY’)),–1,–1,0)),’DD–M

M–YYYY’)

           from dual)

and    ASSACT.action_sequence <= BAL_ASSACT.action_sequence

and    ASSACT.assignment_id = BAL_ASSACT.assignment_id’);

This example is the route for a UK based assignment level year to date
balance that uses the 6th of April as the start of the tax year.

Comments

The route is made up of the following parts:

1. Return all possible actions for the assignment

2. Identify the possible feeds to the balance

– feed checking

3. Restrict the period for which you sum the balance

– expiry checking

Note:  The expiry and feed checking parts have a special
significance that will become obvious later.

Specific table aliases should be used as they have a particular meaning.

• The BAL_ASSACT table is the ‘source’ assignment action, that is,
the current action for this assignment.

• The ASSACT table is the ‘target’ assignment action, that is, the
action for those results that feed the balance.

• The PACT table is the ‘target’ payroll action, that is, used to define
the date of the ASSACT assignment actions.

• We join to the BACT table, getting all the Payroll Actions in which
the assignment appears.

• We join to the FEED table for the balance type and get all the
TARGET input values that could possibly feed this balance.

• The run results that feed must be processed (’P’ or ’PA’).



12 – 7Balances in Oracle Payroll

• The complicated looking sub–query returns the start of the
current tax year, which is from when we are summing the
balance. That is, the results that feed the balance will be between
the start of the current tax year and the current action sequence.

Dimension Type

Dimension type determines how a balance is treated by the Payroll Run,
and for predefined dimensions this is optimized for performance of the
payroll run.

The dimension type can take one of the following values:

• N – Not fed and not stored.  This dimension type does not create
a latest balance at any time. A balance with this dimension will
always have its SQL re–executed whenever that balance is
executed.

• F – Fed but not stored.  This dimension type creates a balance ‘in
memory’ during the Payroll Run.  This balance is fed by the run
code but it does not store a latest balance on the database.

• R – Run Level balance.  This dimension type is used specifically
for those balances that total for the current run and must be used
with the appropriate route. No latest balance value is stored on
the database.

• A – Fed and stored at assignment level.  This dimension type
creates an assignment level latest balance and stores it in the
PAY_ASSIGNMENT_LATEST_BALANCES table.

• P – Fed and stored at person level.  This dimension type creates a
person level latest balance and stores it in the
PAY_PERSON_LATEST_BALANCES table.

Feed Checking Type

The feed checking type controls the feed checking strategy used during
the payroll run.  This type is used to keep the in memory balance up to
date by deciding whether a run result should feed the balance.  It can
have the following values:

• Null  This is the default value, and means that all the run result
values included by the existing balance feeds will feed the
balance.

• P  Payroll Run executes the package procedure defined in the
expiry_checking_code column on the dimension. An expiry flag
parameter indicates whether feeding should occur or not.



12 – 8 Implementing Oracle HRMS

• E   Equality feed checking is done.  That is, feeding occurs if there
is a match between the in memory balance context values and the
contexts held in the UDCA (User Defined Context Area).

The following additional types are for US legislative balances only:

• J   Jurisdiction checking is done.

• S   Subject Feed Checking is done.

• T  A combination of ’E’ and ’S’ feed checking types.

• M  A combination of feed checking types ’S’, ’J’ and ’E’.

Expiry Checking Type

Latest balances should expire (that is, return to zero) at a time
determined by their dimension. For example, a YTD (Year to Date)
balance expires at the end of the year.

All loaded balances are checked for expiry by the Payroll Run, according
to their expiry checking type:

• N – Never expires: balances are never set to zero.

• P – Payroll Action Level: for these types, a list of the expiry check
results for each owning action/balance dimension are kept.

Once expiry checking code has been called for such a
combination, it does not need to be checked again for other
balances that have the same combination, thus avoiding multiple
calls to the database.

The expiry checking is balance context independent – the list of
balance contexts is not passed to the expiry checking code.

• A – Assignment Action Level: no assumptions can be made,
expiry checking code is always called. The expiry checking is
balance context dependent – the list of the balance contexts is
passed to the expiry checking code.

• D – Date Expiry: the date expiry checking mechanism looks at the
balance dimension/balance contexts combination of the balance
being expiry checked, and scans the in–memory list to see if a
balance with the same combination has already been expiry
checked.

If so, the expiry date is taken from that stored on the in–memory
balance.

The expiry checking is balance context dependent—the list of the
balance contexts is passed to the expiry checking code.



12 – 9Balances in Oracle Payroll

Initial Balance Loading for Oracle Payroll
This essay describes the functionality available with Oracle Payroll to
assist in the loading of initial balance values from an existing payroll
system.

Introduction

Whether you are implementing Oracle Payroll for the first time, or
upgrading from an earlier release you will need to set initial values for
your legislative balances.  It is essential for the accurate calculation of
legislated deductions in Oracle Payroll that the initial values for these
balances are correct.

This section shows you how to set up and load these initial balance
values before you begin to process payrolls.  After you have begun
processing payrolls you may need to repeat this process for additional
user balances you define in the future.

Warning:  The steps you follow to load initial balances are
completely different from the steps an end user follows to adjust
a balance. You must not use the balance loading method to
make balance adjustments.

Balances and Balance Adjustments in Oracle Payroll

In Oracle Payroll a balance is the accumulation of the results of a payroll
calculation.  The balance has a name, feeds and dimensions.  The results
that feed a specific balance are known as the ‘balance feeds’ and these
can add or subtract from the total.  The balance loading process
calculates and inserts the correct run results to set the initial values with
effect from the upload date.

Balances are calculated directly from the run results that are designated
as feeding the balance.  This approach ensures run results and balance
values are always in step and it removes the need to store and maintain
extra information in the database.  In effect, the definition of a balance is
really the definition of the ‘calculation’ that is performed to return the
balance value.

The run results that feed a defined balance are usually the results of
processing elements during a payroll run.  However, there may be times
when balance values have to be adjusted manually.  You do this by
making an entry of an element as a ‘balance adjustment’.  When you
make a balance adjustment online, the effect is to create a single
processed run result for the element.  This run result automatically



�

12 – 10 Implementing Oracle HRMS

feeds, or adjusts, all the balances that are normally fed by the element.
In this way, you are able to cascade the adjustment to all affected
balances.

Attention:  When performing an online balance adjustment you
must be careful to choose the right element and input value.
However, if you make a mistake you can always go back and
delete and re–enter the adjustment.  You delete balance
adjustments from the Payroll or Assignment Actions windows.

Steps

There are three basic steps involved in loading initial balance values:

1. Define an element and input value to feed each specific balance

2. Set up the initial balance values in the tables

PAY_BALANCE_BATCH_HEADERS
PAY_BALANCE_BATCH_LINES

3. Run the Initial Balance Upload process

• Use the SRS window.

• Use Validate, Transfer, Undo and Purge modes as needed.

Balance Loading Process

When you run the initial balance loading process you set values for each
balance relative to a specific date – the Upload Date.  The process
creates datetracked balance entries, or ‘adjustments’, to ensure your
legislative balances are correct from the upload date.  Maintenance of
balance information after this date is managed by the system, or by
using the balance adjustments.

Consider the following example of three dimensions for gross pay
balance values for one employee.

• Gross Pay Ptd  1000.00

• Gross Pay Qtd  3250.00

• Gross Pay Ytd  6250.00

The balance loading process must calculate the actual values required
for each entry and the effective date for these entries.  The result of the
calculation is the creation of 3 balance entries.



12 – 11Balances in Oracle Payroll

• _PTD balance entry  value is 1000.00

• _QTD balance entry value is 2250.00

• _YTD balance entry value is 3000.00

Balance Loading

Balance Upload Process
creates separate entries to
make sure all balances are

correct at upload date

Balance Upload Date

PTD
start

QTD
start

3000 2250 1000

Normal processing after the
upload date uses and

maintains balance values

The result is that the cumulative values of the individual entries match
the initial requirement for each balance.

– Gross Pay Ptd = 1000.00

– Gross Pay Qtd = 1000.00 + 2250.00 = 3250.00

– Gross Pay Ytd = 1000.00 + 2250.00 + 3000.00 = 6250.00

Latest Balances 

To improve payroll run performance Oracle Payroll sets and maintains
’Latest Balance Values’.  If these values are not set, the balance value is
created by summing the run results for the balance.  If a large number of
assignments have no value then there could be a significant impact on
the first payroll run.  Therefore, loading the latest balances prior to the
first payroll run has significant implications for performance.

Note:  Some balances cannot have latest balances, such as those
that are used in–memory but not stored.

When you are deciding which balances and dimensions you should
include in the initial loading process, consider the balances that are used
in the payroll run.  For example, if the payroll run uses the balance



�

�

12 – 12 Implementing Oracle HRMS

bal_YTD, but the upload process loads bal_PTD only, then the latest
balance value for bal_PTD exists but not for bal_YTD.  The first payroll
run would have to evaluate bal_YTD.

In the normal payroll run the latest balance value is associated with the
last assignment action that uses the defined balance.  The balance
upload process attempts to simulate this action by creating a number of
balance adjustment entries prior to the upload date.

Attention:  If the defined balance includes contexts then the
latest balance can only be created on a balance adjustment
payroll action that has context values that do not contradict the
latest balance that is to be created.

In Oracle Payroll, each balance adjustment entry is considered to be a
separate assignment action.  These adjustments are performed in date
order – earliest first.  The last balance adjustment, with the highest
assignment action number, is used to create the latest balance.

Setting Up an Element to Feed Initial Balances 

Because of the complex web of feeds that can exist for any specific
balance there is a simple mechanism to let you set the initial value for
any specific balance.  The basic principle is that you require a special
element input value to feed each specific balance; and you set each
balance separately.

Elements to Initialize Legislative Balances

Oracle Payroll comes with the predefined elements and input values
you need to set initial values for all your legislative balances.

Attention:  US users should run a special PL/SQL script
(paybalup.pkb) to create the elements and inputs needed to feed
the predefined legislative balances.  This script has been
registered as an SRS process – Initial Balance Structure Creation.
You will need to create batch lines for each of these elements.

Users in other legislations need only link the predefined elements that
feed the legislative balances that must be initialized.

Elements to Initialize User–defined Balances

For all other balances you need to set up the elements that will provide
the entry values for each of your initial balances. There are some rules
for setting up elements for initial balance feeds.



12 – 13Balances in Oracle Payroll

Element

• Must have a start date 01–JAN–0001

This rule simplifies the validation by making sure that the
element and input value to feed the balance are always available.

• Must have a classification of ’Initial Balance Feed’

This classification is excluded from the list of classifications
available when you define a balance.  You can only set up manual
balance feeds for this type of element.

• Must be ‘Adjustment Only’

• Must be a nonrecurring type

• Must be processable in a payroll run

Input Values

• Must have a start date 01–JAN–0001

• Each input value must feed only one balance

If you need to set initial values for a large number of balances you
can define multiple input values for a single element with each
input value feeding a different balance.

Element Link

• Must have a start date 01–JAN–0001

• Criteria must be only Link To All Payrolls – ’Yes’

Supported Balances

All the balances supported by the initialization process are set at the
assignment level.  Balances at the person level are set indirectly by
accumulating the values from all the assignments.

Setting Up the Initial Balance Values

There can be many different sources for the initial balance value to be
loaded.  For example, you may be migrating from a previous version of
Oracle Payroll, or from another payroll system, or you may hold this
information in another system.

Two batch interface tables are supplied with Oracle HRMS to
standardize the process of loading the initial balance values.  You can



12 – 14 Implementing Oracle HRMS

load information directly into these tables and you can also review,
update and insert values manually.   This gives you total flexibility for
setting values. It also enables you to define and manage the loading of
separate batches as logical groups.

PAY_BALANCE_BATCH_HEADERS

Name Null? Type

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBUSINESS_GROUP_ID

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(15)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_ID

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBATCH_ID

ÁÁÁÁÁ
ÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_NAME

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_STATUS
ÁÁÁÁÁ
ÁÁÁÁÁ

NOT NULL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

UPLOAD_DATE

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DATE

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_REFERENCE
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_SOURCE

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BUSINESS_GROUP_NAME
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(60)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_NAME

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(80)

Each batch identifies the payroll that is being uploaded and the date of
the upload. Other identifiers can be set to identify uniquely each batch
as shown, for example, in the following table.

Batch Name Batch Ref
Batch
Source Payroll Upload Date

ÁÁÁÁÁÁ
ÁÁÁÁÁÁWeekly Payroll

ÁÁÁÁÁ
ÁÁÁÁÁ0001

ÁÁÁÁÁ
ÁÁÁÁÁSQL*Loader

ÁÁÁÁ
ÁÁÁÁPay1

ÁÁÁÁÁ
ÁÁÁÁÁ01–Jan–1995ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Weekly Payroll

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0002

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SQL*Loader

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pay1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

01–Jan–1995



12 – 15Balances in Oracle Payroll

Upload DatePayroll
Batch
SourceBatch RefBatch Name

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Monthly Payroll
ÁÁÁÁ
ÁÁÁÁ

0003
ÁÁÁÁÁ
ÁÁÁÁÁ

SQL*Loader
ÁÁÁÁ
ÁÁÁÁ

Pay2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

01–Jan–1995
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Semi Monthly
Payroll

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0001

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Screen

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pay3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

01–Aug–1995

PAY_BALANCE_BATCH_LINES

Name Null? Type

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ID ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(10)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_DIMENSION_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BALANCE_TYPE_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁPAYROLL_ACTION_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBATCH_LINE_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_LINE_STATUS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁVALUE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBERÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_NUMBER

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_NAME

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁVARCHAR2(80)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DIMENSION_NAME

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(80)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

GRE_NAME
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(60)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

JURISDICTION_CODE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ORIGINAL_ENTRY_ID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(15)

Each batch has a set of batch lines that include details of the assignment,
the balance and the value for each dimension.  You can also include
other contexts for a specific balance.



12 – 16 Implementing Oracle HRMS

Assignment Balance Dimension Value

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ101

ÁÁÁÁÁ
ÁÁÁÁÁGross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁPTD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ1000.00ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

101

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

QTD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3250.00

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ101

ÁÁÁÁÁ
ÁÁÁÁÁGross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁYTD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ6250.00ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

101–2

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PTD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

750.00

Note:  The tables provide support for either a system ID (such
as assignment_id) or a user ID (such as assignment_number) for
each piece of information. This allows maximum flexibility
when you are populating the batch tables.

The rule is that if both are specified then the system ID
overrides the user ID. Here is a list of the system IDs and user
IDs that can be specified when setting up the tables:

System ID User ID

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBUSINESS_GROUP_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBUSINESS_GROUP_NAMEÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PAYROLL_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_NAME

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁASSIGNMENT_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁASSIGNMENT_NUMBERÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BALANCE_DIMENSION_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DIMENSION_NAME

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBALANCE_TYPE_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_NAMEÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ORIGINAL_ENTRY_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁGRE_NAME (US only)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

JURISDICTION_CODE (US only)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

If an error occurs during the processing of the batch, the error message
is written to the PAY_MESSAGE_LINES table with a source_type of H
(header) or L (line).



12 – 17Balances in Oracle Payroll

Running the Initial Balance Upload Process

You run the Initial Balance Upload process from the SRS window to
upload values from the batch tables.  You can run this process in one of
four modes:

• Validate

• Transfer

• Undo Transfer

• Purge

Prerequisites

On the upload date, every assignment in the batch must belong to the
payroll identified in the batch header.

The payroll must have a sufficient number of time periods prior to the
upload date to allow the setting of the initial balances.

Other specific criteria, such as the GRE or Legal Company, are not
validated by the initial balance loading process. It is your responsibility
to validate this information.

Note:  The validation process contains a predefined hook to
enable you to apply your own additional validation procedure
to your own balances.  The procedure should be named
validate_batch_line.

The process will check for valid data but will not set it.

Modes

Validate Mode

There is no validation of the batch tables prior to running this process.
The process validates data in PAY_BALANCE_BATCH_LINES, but does
not transfer these to the Oracle HRMS database.  It marks valid lines
with V (Validated), and lines in error with E (Error), and sends error
messages to the PAY_MESSAGE_LINES table.

The validation process is split into two phases:

• The first phase checks the integrity of the data in the batch tables.

• The second phase checks that it is possible to create all the
required balance adjustment entries.

The validate process also populates the system ID entries in the table.
This ensures that all subsequent processing has access to the system IDs.



12 – 18 Implementing Oracle HRMS

All batch lines are validated independently and are marked with their
individual status at the end of the process.

Transfer Mode

Transfer mode repeats the first phase of the validation check to ensure
the integrity of the data in the batch tables and the existence of all
system IDs.

The process calculates the balance adjustment entries required for each
assignment. This list is checked and aggregated where values are shared
and actual entries are then created for the assignment.  This is repeated
for each assignment in the batch.  Successful transfer is marked with a
status of T – Transferred.

Note:  If any line for an assignment is in error, none of the lines
for the assignment are transferred into the HRMS database.
Failures are logged in the messages table against the batch line
being processed and the batch line is marked as I –  Invalid.

If the value of the adjustment is zero then no entry is created.  For
example:

Balance_PTD = 500

Balance_QTD = 500

There is no need for an adjustment to the QTD dimension since the
value is already set by the PTD.

It is likely that there will be large volumes of data to load, so the work is
periodically committed to preserve successful work and to reduce the
number of rollback segments required.

Note:  The commit size is specified by the CHUNK_SIZE
parameter in PAY_ACTION_PARAMETERS. The default for
CHUNK_SIZE is 20 successful assignments.

This is the same parameter used by other payroll processes to
determine commit frequency.

If a batch has been processed with partial success, you can resubmit the
batch and only those assignments with batch lines that have not been
Transferred are processed again.  You can also restart the batch process if
it failed during processing, for example if it ran out of tablespace.

Undo Transfer

This mode removes all the balance adjustment entries created by the
transfer process and return the status of the batch lines to U.

Note:  The data in the batch tables is kept.  You can correct any
batch lines with incorrect values and repeat the transfer.



12 – 19Balances in Oracle Payroll

Purge

Purges all data in a batch regardless of current status. When a batch is
purged all the messages, batch lines and the batch header are removed.
This enables you to reclaim space once a batch is successfully
transferred.

Use Purge mode only when you are sure that the balances for all
assignments in a batch have been successfully entered into the HRMS
database.

Warning:  Once you have purged a batch, all the entries for that
batch are deleted.  This action cannot be undone.

Process Flow

The normal sequence for using these modes to load initial balances is
shown in the following diagram:

Process Flow

Load Batch Tables

Validate Batch

Transfer Batch

Are balances correct ?

Yes

Normal Processing

Purge Batch Tables

Undo Batch Transfer

Correct Batch Tables

No

Error Statuses

Any errors encountered are recorded in the messages table against the
object being validated: either the batch itself or an individual batch line.
The status set against the batch or batch lines is dependent on the mode
the process is running in as well as the status of other batch lines.

Batch Line Status

The status of each batch line can be one of the following :



12 – 20 Implementing Oracle HRMS

• V – Valid; the batch line is OK

• E – Invalid; the batch line has an error

• T – Transferred; the batch line has been successfully transferred

Batch Status

The status of the batch is dependent on the statuses of the batch lines
within the batch:

• T – Transferred; all lines in the batch have been transferred

• P – Partially Transferred; some lines in the batch have been
transferred

• V – Valid; all the lines in the batch are valid and none have been
transferred

• E – Invalid; some of the lines in the batch are invalid and none
have been transferred

Validation Problems

There are two common problems you should check.

The adjustment request for a balance dimension may be incorrect.  For
example, suppose an assignment has the following upload requests:

• <Balance>_QTD  = 1500.00

• <Balance>_YTD  = 1000.00

The YTD value is lower than the QTD value.  This may be valid, if the
balance decreases over time. However, balances normally increase so it
is advisable to check a balance that has been decreased.

Secondly, an invalid adjustment error may occur, where the process
could not find the correct date to do the adjustment.  The cause of this
error depend on the balance dimension that is being processed.

However, it is always good practice to make sure that all the business
group details are correct, and there are enough payroll periods for the
balance to be set. To check which date is being used for each assignment
balance, use the following SQL:

select BL.dimension_name,

pay_balance_upload.dim_expiry_date

(BH.business_group_id

,BH.upload_date

,BL.dimension_name

,BL.assignment_id

,BL.gre_name



�

12 – 21Balances in Oracle Payroll

,BL.jurisdiction_code

,BL.original_entry_id)    expiry_date

from pay_balance_batch_headers BH

,pay_balance_batch_lines   BL

where BH.batch_name    = ’&Batch_Name’

and BL.batch_id      = BH.batch_id

and BL.assignment_number = ’&Assignment_Number’

and BL.balance_name  = ’&Balance_Name’

;

If the expiry date is set to ’31–DEC–4712’ then the adjustment date could
not be found.

Balance Initialization Steps

Here’s a simple check list on how to set up the data:

1. Create payrolls in Oracle Payroll with periods going back to the
start of the year.  Enter all employees into Oracle HRMS and give
them assignments to these payrolls.

Attention:  The next step applies to US users only.  Users in
other legislations need only define links for the predefined
balance loading elements.

2. From the Submit Requests window, run the Initial Balance Structure
Creation process, selecting a batch name as the parameter.  For each
batch, this process creates:

• An input value to hold the amount of each balance and of any
context, and enough elements with the special classification
Balance Initialization to hold all the input values created

• The necessary links and balance feeds for these elements

3. Create any other elements you need to initialize balances for your
own earnings and deductions.

• Follow the requirements listed above. See: Setting Up an Element
to Feed Initial Balances: page 12 – 12.

• Use multiple input values to reduce the number of elements

• Define one balance feed for each input value

Note:  Each balance must have one initial balance feed only.

Multiple input values for one element must feed balances that
have the same ’upload date’.

4. Group employees into batches for managing initialization of their
balances.  Enter an identifying header for each batch (these headers



�

12 – 22 Implementing Oracle HRMS

go into the PAY_BALANCE_BATCH_HEADERS table).  Each
header contains the following information:

• Business Group name and payroll name

• Batch name and ID number

• Upload date: the date on which the balances in the current system
will be correct and ready for transfer

For example:

    Batch Name   Business Group   Payroll Name   Upload Date

    Upload 1     BG name          Full Time 1    13–AUG–1995

5. Create a batch line for each balance to be transferred (these lines go
into the PAY_BALANCE_BATCH_LINES table).  A batch line
includes the following information:

• Employee assignment number

• Balance name and dimension, such as quarter to date or year to
date

• Balance value

• Balance context where appropriate.  For US users the context may
include a GRE and a jurisdiction (federal, state or local).

Note:  The process uses your balance feed definitions to
determine which element input value to use.

For example:

    Asg. Number   Balance     Dimension         Value

    60001         Salary      PTD               700 

    60001         Salary      QTD               1400 

    60001         Salary      YTD               2400 

    60001         Tax Paid    PTD               2200 

    60001         Tax Paid    QTD               2400 

    60001         Tax Paid    YTD               2400

Attention:  The Tax Paid YTD value is not required because it
has the same value as the QTD.  However, this balance is
included to create a value for the latest balance, and improve the
performance of the first payroll run.

6. From the Submit Requests window, run the Initial Balance Upload
process.  Select the mode in which to run this process as a
parameter.  Available modes are:

• Validate

– Validate batch lines but do not transfer

– Send error messages to PAY_MESSAGE_LINES



12 – 23Balances in Oracle Payroll

• Transfer

– Validate and transfer batch lines

– If any line for an assignment is in error, none of the lines for
the assignment are transferred

• Undo

Removes balance initialization entries from the database and
marks the lines as U in the batch lines table.

• Purge

Purges all lines in the batch lines table, regardless of how they are
marked.

Note:  Use Purge mode only when you are sure that the
balances for all assignments in a batch have been successfully
entered into the HRMS database.



12 – 24 Implementing Oracle HRMS

Including Balance Values in Reports

This section describes the PL/SQL interface for the balance function that
enables you to access balance values for inquiry and reporting tools.

UK users – see: Including Balance Values in Reports (UK Only): page
12 – 27

Suggestion:  If you need to report the same balance value many
times in different reports you might consider creating a
reporting table.  You would simply include the balance function
in your PL/SQL script to populate this table.

Advantages

Using this PL/SQL function to retrieve balance values has several
advantages:

• You can easily call the function from a form or SRW2 report.

• You can access latest balance values, where they exist.  This will
optimize performance automatically.

The Balance Function

The interface to the balance function is flexible and easy to use.  Hard
coded knowledge of contexts within the function are kept to a minimum
and the balance function is controlled as follows:

• Before the function is called, calls are made to another PL/SQL
function to set up the contexts to be used.  These are held in
package level PL/SQL tables. This enables the balance function to
operate without hard coded knowledge of the contexts, and
reduces client–server calls for several balances.

• The ’C’ balance user exit works in two modes: date and
assignment action.  The balance function does not pass a mode
parameter; instead the mode is resolved by using the PL/SQL
overloading feature.  This simplifies the interface.

The PL/SQL code resides in one package.

pay_balance_pkg

Procedure : Initialize the contexts:

procedure set_context (p_context_name  in varchar2,

p_context_value in varchar2);



12 – 25Balances in Oracle Payroll

For example:

pay_balance_pkg.set_context (’TAX_UNIT_ID’, p_tax_unit_id);

This is called to set up ALL contexts required for a balance, with the
exclusion of assignment action id.  Context values are maintained
throughout the entire session.  Subsequent calls with the same context
name update the value.

Note:  The context name can be specified in any case.  The
routine converts all context names to upper case.

Function : Get balance value (Assignment action mode):

function get_value (p_defined_balance_id    in number, 

p_assignment_action_id  in number, 

p_always_get_db_item   in boolean default false)

return number;

Function : Get balance value (Date mode):

function get_value  (p_defined_balance_id    in number, 

p_assignment_id         in number, 

p_virtual_date          in date, 

p_always_get_db_item   in boolean default false) 

return number;

The balance value is returned by this function.  The parameters required
for the function have been kept to a minimum.  Legislation code and
business group id are derived by the PL/SQL function when the balance
SQL has to be built up from ff_routes.

Note:  If the balance uses business_group_id as a context then
this must be set up using the set_context routine.

The parameter ’p_always_get_db_item’ can be ignored.  It is
used for testing purposes.  If this value is set to ’true’ then the
function will not even look for a latest balance value, and will
always derive the balance from the database item.

Example

This example shows how to access parameterized balances supporting
jurisdiction– and GRE–based taxation (US specific).

In the UK, with the exception of court orders, no use is made of
parameterized balances.

Note:  For balances that are not parameterized, no calls to
pay_balance_pkg.set_context are necessary.



12 – 26 Implementing Oracle HRMS

1. Set up the contexts

pay_balance_pkg.set_context (’TAX_UNIT_ID’,  1);

pay_balance_pkg.set_context (’JURISDICTION_CODE’, ’01–123–4567’);

2. Retrieve the balance value

bal_value := pay_balance_pkg.get_value (p_def_balance_id,

p_asg_action_id);

3. Retrieve the balance for a different jurisdiction code but using the
same value for tax unit id

pay_balance_pkg.set_context (’JURISDICTION_CODE’, ’99–999–1234’);

bal_value := pay_balance_pkg.get_value (p_def_balance_id,

p_asg_action_id);



12 – 27Balances in Oracle Payroll

Including Balance Values in Reports (UK Only)
This section describes the PL/SQL interface for the GB balance function
that enables you to access balance values for inquiry and reporting
tools.

Advantages

Using this PL/SQL function to retrieve balance values has several
advantages:

• You can easily call the function from a form or report.

• The function accesses latest balance values, where they exist.

This optimizes performance automatically.

• You can call the function from a user–defined view.

This is because the function has pragma levels WNPS and
WNDS set (Write No Package State, and Write No DML).

The Balance Function

The interface to the function is flexible and easy to use. Hard coded
knowledge of contexts within the function are kept to a minimum and
the balance function is controlled as follows:

• The GB Balance User Exit works in two modes: date and
assignment action mode.

For the balance function the interface is simplified using the
PL/SQL  overloading feature. The same function name is used,
but different parameters are passed in according to the mode. If
in Date Mode, the function calculates the values using the
assignment action previous to the date passed in. The value
obtained is checked to make sure it hasn’t  expired between the
assignment action that it represents and the date passed in.

• The function uses the rubric of ’quickest value first’.

If a value can be retrieved from the latest balances table, it will
be. This is so that performance of the code is optimized.

Although one interface is used to directly call the GB Balance value
function, the PL/SQL code resides in three packages:

• hr_dirbal

• hr_gbbal



12 – 28 Implementing Oracle HRMS

• hr_routes

Function: Get balance value (Assignment Action mode):

function get_balance (p_assignment_action_id in number,

p_defined_balance_id in number)

return number;

Function: Get balance value (Date mode):

function get_balance (p_assignment_id in number,

p_defined_balance_id in number,

p_effective_date in date)

return number;

The balance value is returned by these functions. The parameters
required for the function have been kept to a minimum.

Example

Supposing we take an assignment action id of 12345 and a defined
balance id of 111:

l_balance := hr_dirbal.get_balance (12345, 111);

This would return a balance value, using the Assignment Action mode
call to the package.

Supposing we take an assignment id of 2, the same defined balance id,
and an arbitrary date:

l_balance := hr_dirbal.get_balance

(2,111,to_date(’01/01/1998’,’DD/MM/YYYY’));

This would return a balance value, using the Date mode call to the
package.



12 – 29Balances in Oracle Payroll

Legislative Balance Initialization (UK Only)

Balance Initialization Elements

The following elements need to be linked to all payrolls from the date
01–Jan–0001 in order to permit balance initialization of predefined
balances.

• Setup Court Order Balance

• Setup NI Balance 1

• Setup NI Balance 2

• Setup NI Car Balance

• Setup Tax Balance

The inputs from these elements provide the initial balance feeds for
predefined balances.

Supported Dimensions

The following dimensions are currently supported:

• ASG_PROC_YTD

• ASG_YTD

• ASG_TD_YTD

• ASG_STAT_YTD

• PER_TD_DIR_YTD

• ASG_PROC_PTD

• ASG_ITD

Predefined Balances That May Need Initializing

The following predefined balances may need initializing if you migrate
to Oracle Payroll in the middle of the financial year.

Note that the statutory balances need to be initialized as they are
reported on the P35 End of Year return. For this purpose the Dimensions
ASG_TD_YTD and ASG_STAT_YTD are used.  NI Category balances
such as NI A Able, NI A Employee, NI A Employer, NI A Total should
be kept in step. For example:

• If you load the NI A Able balance you must also load the NI A
Employee balance.



12 – 30 Implementing Oracle HRMS

• If you load the NI A Employer balance  you must also load the NI
Employer balance.

Similarly Taxable Pay and PAYE should be kept in step. NI Y is reported
a year in arrears – either set up the NI Y in the year that it was accrued
or set up NI Y Last Year in the year it is reported.

For directors the dimension PER_TD_DIR_YTD only needs to be
initialized if it differs from the ASG_TD_YTD figure (that is, the director
has been appointed part way through the financial year). Some of the
Court Order elements use the ELEMENT_ITD dimension, which is tied
to a particular element entry via an ORIGINAL_ENTRY_ID. You will
need first to set up the element entry and enter the Element_entry_id
from that as the ORIGINAL_ENTRY_ID on pay_balance_batch_lines.

Balance Name Dimension
On EOY
Return

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

CAO Scotland Payments EAS
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
Court Order ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ELEMENT_ITD ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Court Order Arrears Deduction
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ELEMENT_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Court Order Arrears Protected
Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ELEMENT_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Court Order Non Priority
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ELEMENT_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
EAS Scotland

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_ITD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

EAS Scotland Payments

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_ITD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁGAYE
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

GAYE Taxed

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Gross Pay
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI A Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes



12 – 31Balances in Oracle Payroll

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI A Employee

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI A Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI A Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Arrears

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI B Able
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI B Employee
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI B Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI B Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C Able
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C CO
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C CO Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ



12 – 32 Implementing Oracle HRMS

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C Employee

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI C Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Car Payment

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI Car Payment Secondary
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_STAT_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Car Primary

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Car Secondary
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI D Able ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ASG_TD_YTD ÁÁÁÁ

ÁÁÁÁ
Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI D CO
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D CO Able
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D Employee
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes



12 – 33Balances in Oracle Payroll

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁNI E Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI E CO
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI E CO Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI E Employee

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI E Employer ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ASG_TD_YTD ÁÁÁÁÁ

ÁÁÁÁÁ
Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI E Total
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Employee Arrears

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Employer
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI Employer Arrears ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ASG_TD_YTD ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Y
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁNI Y Last Year

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_STAT_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ YesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NIable Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ



12 – 34 Implementing Oracle HRMS

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Net Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁPAYE
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

PAYE Dispute Refund
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
PAYE Starter Refund

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

SMP Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁSSP Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Superannuation Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Taxable Pay
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Total Deductions ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Widows and Orphans

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes



12 – 35Balances in Oracle Payroll

Balance View Usage

The balance view provided, PAY_GB_BALANCES_BY_ACTION_V,
enables you to query balances, their dimensions and values either by
Assignment ID or by Assignment Action ID.  Each row returned
represents a single balance dimension and value.

Name Null? Type
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ACTION_ID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(15)

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

BALANCE_TYPE_ID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

BALANCE_NAME

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(80)
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁDEFINED_BALANCE_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

DATABASE_ITEM_SUFFIX

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(30)
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

VALUE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER

If, for example, you wanted to retrieve values for a particular balance,
for an assignment action of ’5268’, for the balance type of ’Gross Pay’,
you would issue the following SQL query:

select balance_name, database_item_suffix, value

from pay_gb_balances_by_action_v

where assignment_action_id = 5268

and balance_name = ’Gross Pay’

As long as there were relevant balance values, the query might for
example yield the following results:

Balance Name Database Item Suffix Value

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

_ASG_PROC_PTD

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4100
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁGross Pay

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ_ASG_RUN

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ4100ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

16700



12 – 36 Implementing Oracle HRMS

ValueDatabase Item SuffixBalance Name

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

_ASG_YTD
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

16700ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

_ASG_ITD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
16700

You can see that the database item suffix column relates to the relevant
dimensions of the particular balance.

You can use the view to find out which balances are relevant for a
particular assignment. You can do this by using the following SQL
query:

Using an example assignment ID of 662;

select distinct balance_name

from pay_gb_balances_by_action_v

where assignment_id = 662

This would, for example, yield the result in the following format:

BALANCE_NAME
––––––––––––––––––––
Attachable
Gross Pay
NI B Able
NI B Employee
NI B Employer
NI B Total
NI D Able
NI D CO
NI D CO Able
NI D Employee
NI D Employer

BALANCE_NAME
––––––––––––––––––––
NI D Total
NI E Able
NI E CO
NI E CO Able
NI E Employee
NI E Employer
NI E Total
NI Employer
NIable Pay
NW Earns
Net Pay



12 – 37Balances in Oracle Payroll

BALANCE_NAME
––––––––––––––––––––
PAYE
Taxable Pay
Total Deductions
Total Pay

Note:  Only balances relevant to the assignment are shown.



12 – 38 Implementing Oracle HRMS



C H A P T E R

13

13 – 1Payroll Advice Report (UK Only)

Payroll Advice Report
(UK Only)



13 – 2 Implementing Oracle HRMS

Pay Advice Report
The Pay Advice Report produces the Pay Advice document on
preprinted stationery. Part of the report is based on views for efficiency
and to reduce complexity.

A complex dynamic sort is a feature of this report.

Parameter Values

The following are the parameters users can enter to generate the report:

p_payroll_id Number (9)

p_time_period_id Number (9)

p_pay_advice_date Date

p_assignment_id Number (20)

p_bus_grp_id Number (15)

p_sort_order1/6 Char (60)

p_sort_order7 Char (20)

Queries

There are five queries in the report.

Q_Personel This is the driving query based on the view
PAY_ASSIGNMENT_ACTIONS_V2.

Q_Payment This query is based on the view
PAY_ELEMENT_TYPES_V1. It is linked to
the main query by assignment_action_id.

Q_Deduction This query is based on the view
PAY_ELEMENTS_TYPES_V1. It is linked to
the main query by assignment_action_id.

Q_Accounts This query is based on the view
PAY_EXTERNAL_ACCOUNTS_V. It is
linked to the main query by
assignment_action_id.

Q_Messaes This query is based on the
PAY_PAYROLL_ACTIONS table. It is
linked to the main query by
run_payroll_action_id.



13 – 3Payroll Advice Report (UK Only)

Groups

The following are formula type fields in the Personnel group:

c_name Concatenates the person’s title, initials and last name.

c_get_address Fetches the home or work address depending upon the
value in the expense_check_send_to_address field. The
address id is found from the package
pay_gb_payroll_actions.get_home_address or
.get_work_add.

c_ff Gets the tax details from the package
pay_gb_payroll_actions_pkg.get_report_db_items and
.get_report_balances.

Triggers

The following triggers are used:

Before Report This trigger sets the session id and date into the
fnd_session table.

After Form This trigger checks if the parameter has been left
defaulted, and if so, sets it to null. This is part of
dynamic sort order.

Layout

The layout is a complex grouping of the various groups and summaries.
It is possible to overflow in some of the groups, thus producing extra
pages. Not all the fields are printed on the extra pages (only fields such
as Person Name). When you run the report in the designer, not all fields
are correctly aligned. However, when you run it in the correct
environment with the correct.prt file, it aligns correctly.

Dynamic Sort Order

You can dynamically change the sort order of the report. The last
parameter (sort_order7) is mandatory, and consists of either the
employee’s last name or assignment number.

The working of the sort is as follows:



13 – 4 Implementing Oracle HRMS

1. The sort is defaulted to Not Sort by the first six parameters, and
only by the last name.

2. You can enter the required parameters, for example, Segment1,
Segment2, when running the report.

3. The Post Form trigger checks whether you have entered a
parameter. If not, the parameter default is lost and the parameter is
set to null.

4. The main query begins and checks the send
expense_check_send_to_address field. If it is set, the person’s home
address is used to address the pay advice, and the dynamic sort
order is not used. If it is not set, the dynamic sort order is used to
order the pay advices.

Warning:  The design of the sort order means that you cannot
change the main query without compile errors resulting. This is
because the lexical parameter in the query uses the default sort
order value segmentx. If you want to change the query, you first
need to change segmentx to segment1, and so on. The query
now complies. You then must change it back to segmentx in
order for the trigger to work.



A P P E N D I X

A

A – 1Post Install Steps

Post Install Steps



Step 1

A – 2 Implementing Oracle HRMS

Post Install Steps

There are three post install utilities for Oracle HRMS in Release 11i:

• DataInstall allows you to specify all the legislations that you want
to install for  HR and Payroll, and HR only.  This means that
when you subsequently perform an installation or upgrade, you
can install your legislations in a single operation. DataInstall
provides a series of menus from which you can specify the
legislation and product combinations.

• AutoPatch (adpatch) applies the installation or upgrade
combinations that you have previously specified in DataInstall.

• Installing Quantum. Quantum is a third party taxation product,
produced by Vertex, that is used by Oracle Payroll (US). This step
should only be performed when installing Oracle Payroll for a
United States legislation.

Note:  If you are performing an upgrade you will have
completed the first two steps as part of your upgrade process.

DataInstall

Run the DataInstall Utility (Required)

To specify legislations using DataInstall:

1. Run the Java utility DataInstall to select legislations using the
command:

java oracle.apps.per.DataInstall <APPS Username> <APPS

password>

Note:  In multiple sets of book installs, supply the username and
password of the first APPS account.

The DataInstall Main Menu will be displayed.

2. Choose option 1. This displays a screen showing a list of product
localization combinations that you can choose.

For each product or localization that already has legislation data on
the database, the Action will be defaulted to upgrade. This cannot
be changed.

3. Select any new installations that you want to implement. For
example, if you wanted to install Canada Payroll, number 3, you
would type 3I. This would also set the action on Canada Human
Resources to Install as dependencies are maintained.



Step 2

A – 3Post Install Steps

If you are installing an additional legislation, to correct a mistake
use the Clear option. If you have selected to install an additional
Payroll and HR legislation, clearing the Payroll legislation will clear
the HR legislation also.

You cannot use Force Install for upgrades. You only need to use
Force Install if you want to reapply steps in the Global Legislation
Driver that have already been applied.

4. If you select a localization other than US or GB, you are returned to
the main menu.

If you select a US or GB localization the DataInstall – College Data
Option screen is displayed showing whether college data is
currently installed for US and GB localizations. The install option is
onyl available if you have no existing college data. If you have
exisiting data then the localization will default to Upgrade, though
this can be changed.

Choose Remain if you want to keep the existing data and not apply
the upgrade, or choose Clear to set the action to null.

You cannot use Force Install at this point.

Press Return to display the main menu. Here you can select choose
option 1 to make further changes, or option 2 to exit.

5. When you have chosen to exit the DataInstall Actions Confirmation
screen is displayed.

Select Y to save your changes and exit, or select N to exit without
saving your changes.

When you have exited, the DataInstall Actions Summary screen is
displayed. This summarizes the actions that will be taken when the
program exits, or when ADPATCH is run with the Global
Legislation driver.

AutoPatch (adpatch)

Run the Global Legislation Driver (Required)

The Generic HR Post Install Driver delivers the generic entity horizon
and all the selected localizations.  To run it, type in the following
commands:

$ cd $PER_TOP/admin/driver

$ adpatch

Then apply the driver hrglobal.drv



Step 3

A – 4 Implementing Oracle HRMS

After applying the Global Legislation Driver

Examine the out file hrlegend.lst. This logs any localizations selected in
the Java utility but have not been applied by this driver. Refer to the
Installation Manual to ensure that everything has been applied correctly,
or contact World–wide Support.

If the Legislation is UK

Examine the following out files:

• pegbutcl.lst. This file logs the step that removes previously
seeded user tables for the UK legislation before delivering the
latest version. It may also show where seed data names have been
changed between releases.

• perleggb.lst. This file logs the housekeeping step that gets rid of
redundant UK seed data after delivery of the latest version. It also
records the new balance feeds that have been inserted following
an upgrade from Oracle Human Resources to Oracle HRMS.

• The log file produced by the FFXBCP formula compilation step.
The name of the FFXBCP log follows the naming convention of
the <request_id> log, and is included in the last section of the
adpatch log.

These files are used by Oracle Support Services to diagnose problems
with seed data following an upgrade. SQL errors indicate severe
problems. Keep these files for reference in the event of any future
problems with UK seed data.

Installing Quantum

Install Quantum for Oracle Payroll (US) (Conditionally Required)

1. Set up a directory structure to hold the Quantum product.

By default, Oracle Payroll looks for the Quantum product in the
$PAY_TOP/vendor/quantum directory, however, you can choose
where it is placed and override the default location.

Suggestion:  You could create a
$PAY_TOP/vendor/quantum_versions directory and a
$PAY_TOP/vendor/quantum symbolic link pointing to the
correct version of Quantum, since the Quantum products
release cycle may be different from Oracle Payroll.

2. Unpack the Quantum Components from the CD.



A – 5Post Install Steps

Oracle Applications provide a CD on which will be a ZIP file called
pyvendor.zip in a directry called pay. On the ZIP file will be one
directory per operating system that is supported by Oracle Payroll
(US). Uncompresss the pyvendor.zip file and move the required
version into the directory structure created in Step 1. For example,
uncompress the file then do the following:

$ mv SOLARIS/2.2.4 $PAY_TOP/vendor/quantum_versions

$ ln –s $PAY_TOP/vendor/quantum_versions/2.2.4 $PAY_TOP/vendor/quantum

The extraction from the compressed file will create a directory called
(<operating system>/2.2.4) and two sub directories (lib and utils)
along with a number of files in each directory. One of the files
created is devenv, this devenv file is the same as the
$FND_TOP/usrxit/devenv file except that some of the lines are
uncommented. The uncommented lines relate to instructions on
how the Oracle Payroll process PYUGEN should be linked. The
lines that are uncommented are:

VND_VERTEX=’$(PAY_TOP)/vendor/quantum’

VND_LINK=’$(VND_VERTEX)/lib/libvprt.a \

          $(VND_VERTEX)/lib/libqutil.a \

          $(VND_VERTEX)/libloc.a \

          $(VND_VERTEX)/lib/libcb63.a’

$ ln –s $PAY_TOP/vendor/quantum_versions/2.2.4 $PAY_TOP/vendor/quantum

VNDPAYSL=’$(PAY_TOP)/lib/py3c.o $(PAY_TOP)/lib/py3v.o $(VND_LINK)’

VNDPAYPL=’$(PAY_TOP)/lib/py3c.o $(PAY_TOP)/lib/py3v.o $(VND_LINK)’

export VND_VERTEX VND_LINK VNDPAYPL VNDPAYSL

Note:  Some of these settings relate to the location of the Quantum
product, thus if the Quantum product is not in
$PAY_TOP/vendor/quantum this file needs to be edited.

If you have made any changes to your $FND_TOP/usrxit/devenv
file, you must merge these differences into the file. If you have not
already made any changes then you can simply copy 2.2.4/devenv
to $FND_TOP_usrxit/devenv.

3. Relink the Oracle Payroll executable PYUGEN using adrelink.

$ adrelink force=y ranlib=y ”pay PYUGEN”

Ensure that the adrelink completed successfully by checking the log
file.

4. Build the Quantum product’s data files.

To build Quantum’s data files, firstly create a directory to hold the
data files. Oracle Payroll assumes that these data files are in
$PAY_TOP/vendor/quantum/data.



A – 6 Implementing Oracle HRMS

Secondly, run the utility dbcreate that is in the Quantum utils
directory. This utility will show a menu of either Payroll or
Geocoder. Choose the Payroll option and at the prompt ”Enter the
Payroll datasource name:” enter the directory into which the data
files are to be placed, for example,
/apps/pay/11.5/vendor/quantum/data. Once the processing is
complete, the menu will reappear and the utility can be exited.

Note:  Ensure that the file permissions of the data files are set to
readable for all the relevant users. If this is not done then Oracle
Payroll will not be able to access these files.

5. Populate the Quantum data files.

Once the data files have been created they need to be populated
with taxation data. The taxation data is held in a file called qfpt.dat,
which will be delivered in the pyvendor.zip file. Copy this file into
the Quantum product area. Once this has been done the data file
update utility can be run. This is located in the utils directory called
vprtmupd. Select the Update Payroll Tax option from the menu, and
answer the displayed questions. The first prompts for the
datasource, this should be the location of the data files created in the
previous step. The second is the location of the qfpt.dat file. For
example:

Enter Datasource: /apps/[ay/11.5/vendor/quantum/data

Enter the path of the update file:  /apps/pay/11.5/vendor/quantum

Note:  The update file supplied is a default file, it is not guaranteed
to calculate taxes correctly. Its purpose is to allow you to perform
testing prior to contacting Vertex to request the correct update file.

6. Register the Quantum Data Files location.

If the data files for Quantum have not been placed in the default
location ($PAY_TOP/vendor/quantum/data), then the location of
these files must be supplied to Oracle Payroll. This is performed by
placing a row in the PAY_ACTION_PARAMETERS table:

SQL> insert into pay_action_parameters

2 values (’TAX_DATA’, ’/apps/quantum/data’);



Glossary – 1

Glossary

360 Degree Appraisal  Part of the SSHR
Appraisal function and also known as a
Group Appraisal. This is an employee
appraisal undertaken by managers with
participation by reviewers.

360 Degree Self Appraisal  Part of the SSHR
Appraisal function and also known as a
Group Appraisal. This is a 360 Degree
appraisal initiated by an employee. The
employee (initiator) can add managers and
reviewers to the appraisal.

A
Absence Types  Categories of absence, such as

medical leave or vacation leave, that you
define for use in absence windows.

Accrual Band  A range of values that
determines how much paid time off an
employee accrues. The values may be years
of service, grades, hours worked, or any
other factor.

Accrual Plan   See: PTO Accrual Plan

Accrual Period  The unit of time, within an
accrual term, in which PTO is accrued. In
many plans, the same amount of time is
accrued in each accrual period, such as two
days per month. In other plans, the amount
accrued varies from period to period, or the
entitlement for the full accrual term is given
as an up front amount at the beginning of
the accrual term.

Accrual Term  The period, such as one year,
for which accruals are calculated. In most
accrual plans, unused PTO accruals must
be carried over or lost at the end of the
accrual term. Other plans have a rolling
accrual term which is of a certain duration
but has no fixed start and end dates.

Activity Rate  The monetary amount or
percentage associated with an activity, such
as $12.35 per pay period as an employee
payroll contribution for medical coverage.
Activity rates can apply to participation,
eligibility, coverages, contributions, and
distributions.



Glossary – 2 Implementing Oracle HRMS

Actual Premium  The per–participant
premium an insurance carrier charges the
plan sponsor for a given benefit.

Administrative Enrollment  A type of
scheduled enrollment caused by a change
in plan terms or conditions and resulting in
a re–enrollment.

Applicant  A candidate for employment in a
Business Group.

Appraisee  A person being appraised by an
appraiser..

Appraiser  A person, usually a manager, who
appraises an employee.

Appraisal  An appraisal is a process where an
employee’s work performance is rated and
future objectives set.  See also: Assessment.

Appraising Manager  The person who initiates
and performs an Employee–Manager or 360
Degree Appraisal. An appraising manager
can create appraisal objectives.

Apply for a Job An SSHR function that
enables an employee to, apply, search and
prepare applications for an internally
advertised vacancy.

Arrestment Scottish court order made out for
unpaid debts or maintenance payments.
See also: Court Order 

Assessment  An information gathering
exercise, from one or many sources, to
evaluate a person’s ability to do a job.  See
also: Appraisal.

Assignment  An employee’s assignment
identifies his or her role and payroll within
a Business Group.  The assignment is made
up of a number of assignment components.
Of these, organization is mandatory, and
payroll is a required component for
payment purposes.

Assignment Number  A number that uniquely
identifies an employee’s assignment.  An
employee with multiple assignments has
multiple assignment numbers.

Assignment Set  A grouping of employees
and/or applicants that you define for
running QuickPaint reports and processing
payrolls.  See also: QuickPaint Report

Assignment Status  For employees, used to
track their permanent or temporary
departures from your enterprise, and to
control the remuneration they receive.  For
applicants, used to track the progress of
their applications.

B
BACS  Banks Automated Clearing System.

This is the UK system for making direct
deposit payments to employees.

Balances  Positive or negative accumulations
of values over periods of time normally
generated by payroll runs.  A balance can
sum pay values, time periods or numbers.
See also: Predefined Components 

Balance Adjustment  A correction you make
to a balance. You can adjust user balances
and assignment level predefined balances
only.

Balance Dimension  The period for which a
balance sums its balance feeds, or the set of
assignments/transactions for which it sums
them.  There are five time dimensions: Run,
Period, Quarter, Year and User.  You can
choose any reset point for user balances.

Balance Feeds  These are the input values of
matching units of measure of any elements
defined to feed the balance.



Glossary – 3

Bargaining Unit  A bargaining unit is a legally
organized group of people which have the
right to negotiate on all aspects of terms
and conditions with employers or employer
federations. A bargaining unit is generally a
trade union or a branch of a trade union.

Base Currency  The currency in which Oracle
Payroll performs all payroll calculations for
your Business Group.  If you pay
employees in different currencies to this,
Oracle Payroll calculates the amounts based
on exchange rates defined in the system.

Behavioral Indicators  Characteristics that
identify how a competence is exhibited in
the work context. See also: Proficiency Level 

Benefit  Any part of an employee’s
remuneration package that is not pay.
Vacation time, employer–paid medical
insurance and stock options are all
examples of benefits.  See also: Elements

Block  The largest subordinate unit of a
window, containing information for a
specific business function or entity.  Every
window consists of at least one block.
Blocks contain fields and, optionally,
regions.  They are delineated by a bevelled
edge.  You must save your entries in one
block before navigating to the next.  See
also: Region, Field

Budget Value  In Oracle Human Resources
you can enter staffing budget values and
actual values for each assignment to
measure variances between actual and
planned staffing levels in an organization or
hierarchy.

Business Group  The highest level
organization in the Oracle HRMS system.
A Business Group may correspond to the
whole of your enterprise or to a major
grouping such as a subsidiary or operating
division.  Each Business Group must
correspond to a separate implementation of
Oracle HRMS.

Business Number (BN) In Canada, this is the
employer’s account number with Revenue
Canada.  Consisting of 15 digits, the first 9
identify the employer, the next 2 identify
the type of tax account involved (payroll vs.
corporate tax), and the last 4 identify the
particular account for that tax.

C
Cafeteria Benefits Plan  See: Flexible Benefits

Program
Calendars  In Oracle Human Resources you

define calendars that determine the start
and end dates for budgetary years, quarters
and periods.  For each calendar you select a
basic period type. In Oracle SSP/SMP you
define calendars to determine the start date
and time for SSP qualifying patterns.

Calendar Exceptions  In Oracle SSP/SMP you
define calendar exceptions for an SSP
qualifying pattern, to override the pattern
on given days.  Each calendar exception is
another pattern which overrides the usual
pattern.



Glossary – 4 Implementing Oracle HRMS

Canada/Quebec Pension Plan (CPP/QPP)
Contributions Contributions paid by
employers and employees to each of these
plans provide income benefits upon
retirement.

Candidate Offers An SSHR function used by a
line manager to offer a job to a candidate.
This function is supplied with its own
responsibility.

Career Path  This shows a possible progression
from one job or position from any number
of other jobs or positions within the
Business Group. A career path must be
based on either job progression or position
progression; you cannot mix the two.

Carry Over  The amount of unused paid time
off entitlement an employee brings forward
from one accrual term to the next. It may be
subject to an expiry date i.e. a date by
which it must be used or lost. See also:
Residual

Cash Analysis  A specification of the different
currency denominations required for
paying your employees in cash.  Union
contracts may require you to follow certain
cash analysis rules.

Certification  Documentation required to
enroll or change elections in a benefits plan
as the result of a life event, to waive
participation in a plan, to designate
dependents for coverage, or to receive
reimbursement for goods or services under
an FSA.

Ceiling  The maximum amount of unused
paid time off an employee can have in an
accrual plan. When an employee reaches
this maximum, he or she must use some
accrued time before any more time will
accrue.

Child/Family Support payments In Canada,
these are payments withheld from an
employee’s compensation to satisfy a child
or family support order from a Provincial
Court.  The employer is responsible for
withholding and remitting the payments to
the court named in the order.

Collective Agreement  A collective agreement is
a form of contract between an employer or
employer representative, for example, an
employer federation, and a bargaining unit
for example, a union or a union branch.

Communications  Benefits plan information
that is presented in some form to
participants. Examples include a
pre–enrollment package, an enrollment
confirmation statement, or a notice of
default enrollment.

Compensation  The pay you give to
employees, including wages or salary, and
bonuses.  See also: Elements

Competence  Any measurable behavior
required by an organization, job or position
that a person may demonstrate in the work
context. A competence can be a piece of
knowledge, a skill, an attitude or an
attribute.

Competence Evaluation A method used to
measure an employees ability to do a
defined job.

Competence Profile  Where you record
applicant and employee accomplishments,
for example, proficiency in a competence.

Competence Requirements  Competencies
required by an organization, job or position.
See also: Competence,  Core Competencies

Competence Type  A group of related
competencies.



Glossary – 5

Consolidation Set  A grouping of payroll runs
within the same time period for which you
can schedule reporting, costing, and
post–run processing.

Contact  A person who has a relationship to an
employee that you want to record.
Contacts can be dependents, relatives,
partners or persons to contact in an
emergency.

Contract  A contract of employment is an
agreement between an employer and
employee or potential employee that
defines the fundamental legal relationship
between an employing organization and a
person who offers his or her services for
hire. The employment contract defines the
terms and conditions to which both parties
agree and those that are covered by local
laws.

Contribution  An employer’s or employee’s
monetary or other contribution to a benefits
plan.

Core Competencies  Also known as Leadership
Competencies or Management Competencies.
The competencies required by every person
to enable the enterprise to meet its goals.
See also: Competence

Costable Type  A feature that determines the
processing an element receives for
accounting and costing purposes.  There are
four costable types in Oracle HRMS:
costed, distributed costing, fixed costing,
and not costed.

Costing  Recording the costs of an assignment
for accounting or reporting purposes.
Using Oracle Payroll, you can calculate and
transfer costing information to your general
ledger and into systems for project
management or labor distribution.

Court Order  A ruling from a court that
requires an employer to make deductions
from an employee’s salary for maintenance
payments or debts, and to pay the sums
deducted to a court or local authority.  See
also:  Arrestment

Cross Business Group Responsibility
Security  This security model uses security
groups and enables you to link one
responsibility to many Business Groups.

Customizable Forms  Forms that your system
administrator can modify for ease of use or
security purposes by means of Custom
Form restrictions.  The Form Customization
window lists the forms and their methods
of customization.

D
Database Item  An item of information in

Oracle HRMS that has special
programming attached, enabling Oracle
FastFormula to locate and retrieve it for use
in formulas.

Date To and Date From  These fields are used
in windows not subject to DateTrack.  The
period you enter in these fields remains
fixed until you change the values in either
field.  See also: DateTrack, Effective Date 

DateTrack  When you change your effective
date (either to past or future), DateTrack
enables you to enter information that takes
effect on your new effective date, and to
review information as of the new date.  See
also: Effective Date

Deployment Factors  See: Work Choices



Glossary – 6 Implementing Oracle HRMS

Derived Factor  A factor (such as age, percent
of fulltime employment, length of service,
compensation level, or the number of hours
worked per period) that is used in
calculations to determine Participation
Eligibility or Activity Rates for one or more
benefits.

Descriptive Flexfield  A field that your
organization can customize to capture
additional information required by your
business but not otherwise tracked by
Oracle Applications. See also: Key Flexfield 

Developer Descriptive Flexfield  A flexfield
defined by your localization team to meet
the specific legislative and reporting needs
of your country. See also: Extra Information
Types

Direct Deposit The electronic transfer of an
employee’s net pay directly into the
account(s) designated by the employee.

Distribution  Monetary payments made from,
or hours off from work as allowed by, a
compensation or benefits plan.

E
Effective Date  The date for which you are

entering and viewing information.  You set
your effective date in the Alter Effective
Date window.  See also: DateTrack

EIT  See: Extra Information Type
Elements  Components in the calculation of

employee pay.  Each element represents a
compensation or benefit type, such as
salary, wages, stock purchase plans, and
pension contributions.

Element Classifications  These control the
order in which elements are processed and
the balances they feed.  Primary element
classifications and some secondary
classifications are predefined by Oracle
Payroll.  Other secondary classifications can
be created by users.

Element Entry  The record controlling an
employee’s receipt of an element, including
the period of time for which the employee
receives the element and its value.  See also:
Recurring Elements, Nonrecurring Elements 

Element Link  The association of an element to
one or more components of an employee
assignment.  The link establishes employee
eligibility for that element.  Employees
whose assignment components match the
components of the link are eligible for the
element.  See also: Standard Link

Element Set  A group of elements that you
define to process in a payroll run, or to
control access to compensation information
from a customized form, or for distributing
costs.

Employee Histories An SSHR function for an
employee to view their, Training History, 
Job Application History, Employment
History, Absence History, or Salary History.
A manager can also use this function to
view information on their direct reports.

Employment Category  A component of the
employee assignment.  Four categories are
defined: Full Time – Regular, Full Time –
Temporary, Part Time – Regular, and Part
Time – Temporary.

Employment Insurance (EI) Benefit plan run
by the federal government to which the
majority of Canadian employers and
employees must contribute.

Employment Insurance Rate In Canada, this is
the rate at which the employer contributes
to the EI fund.  The rate is expressed as a
percentage of the employee’s contribution.
If the employer maintains an approved
wage loss replacement program, they can
reduce their share of EI premiums by
obtaining a reduced contribution rate.
Employers would remit payroll deductions
under a different employer account number
for employees covered by the plan.



Glossary – 7

Employment Equity Occupational Groups
(EEOG) In Canada, the Employment Equity
Occupational Groups (EEOG) consist of 14
classifications of work used in the
Employment Equity Report.  The EEOGs
were derived from the National
Occupational Classification system.

Enroll in a Class An SSHR function which
enables an employee to search and enroll in
an internally published class. An employee
can also use this function to maintain their
competencies.

Enrollment Action Type  Any action required
to complete enrollment or de–enrollment in
a benefit.

ESS Employee Self Service. A predefined
SSHR responsibility.

Event  An activity such as a training day,
review, or meeting, for employees or
applicants.

Expected Week of Confinement  (EWC)  In
the UK, this is the week in which an
employee’s baby is due.  The Sunday of the
expected week of confinement is used in
the calculations for Statutory Maternity Pay
(SMP).

Extra Information Type  (EIT)  A type of
developer descriptive flexfield that enables
you to create an unlimited number of
information types for six key areas in
Oracle HRMS. Localization teams may also
predefine some EITs to meet the specific
legislative requirements of your country.
See also: Developer Descriptive Flexfield

F
Field  A view or entry area in a window where

you enter, view, update, or delete
information.  See also: Block, Region

Flex Credit  A unit of ”purchasing power” in a
flexible benefits program. An employee
uses flex credits, typically expressed in
monetary terms, to ”purchase” benefits
plans and/or levels of coverage within
these plans.

Flexible Benefits Program  A benefits
program that offers employees choices
among benefits plans and/or levels of
coverage. Typically, employees are given a
certain amount of flex credits or moneys
with which to ”purchase” these benefits
plans and/or coverage levels.

Flexible Spending Account  (FSA) Under US
Internal Revenue Code Section 125,
employees can set aside money on a pretax
basis to pay for eligible unreimbursed
health and dependent care expenses.
Annual monetary limits and use–it–or–lose
it provisions exist. Accounts are subject to
annual maximums and forfeiture rules.

Form  A predefined grouping of functions,
called from a menu and displayed, if
necessary, on several windows.  Forms
have blocks, regions and fields as their
components.  See also: Block, Region, Field

G
Global Value  A value you define for any

formula to use.  Global values can be dates,
numbers or text.

Goods or Service Type  A list of goods or
services a benefit plan sponsor has
approved for reimbursement.

Grade  A component of an employee’s
assignment that defines their level and can
be used to control the value of their salary
and other compensation elements.



Glossary – 8 Implementing Oracle HRMS

Grade Comparatio  A comparison of the
amount of compensation an employee
receives with the mid–point of the valid
values defined for his or her grade.

Grade Rate  A value or range of values
defined as valid for a given grade.  Used
for validating employee compensation
entries.

Grade Scale  A sequence of steps valid for a
grade, where each step corresponds to one
point on a pay scale.  You can place each
employee on a point of their grade scale
and automatically increment all placements
each year, or as required. See also: Pay Scale

Grade Step  An increment on a grade scale.
Each grade step corresponds to one point
on a pay scale.  See also: Grade Scale

Grandfathered  A term used in Benefits
Administration. A person’s benefits are
said to be grandfathered when a plan
changes but they retain the benefits
accrued.

Group  A component that you define, using
the People Group key flexfield, to assign
employees to special groups such as
pension plans or unions.  You can use
groups to determine employees’ eligibility
for certain elements, and to regulate access
to payrolls.

H
Hierarchy  An organization or position

structure showing reporting lines or other
relationships.  You can use hierarchies for
reporting and for controlling access to
Oracle HRMS information.

I
Imputed Income  Certain forms of indirect

compensation that US Internal Revenue
Service Section 79 defines as fringe benefits
and taxes the recipient accordingly.
Examples include employer payment of
group term life insurance premiums over a
certain monetary amount, personal use of a
company car, and other non–cash awards.

Initiator   In SSHR a person who starts a 360
Degree appraisal (Employee or Self) on an
individual. An initiator and the appraisee
are the only people who can see all
appraisal information.

Input Values  Values you define to hold
information about elements.  In Oracle
Payroll, input values are processed by
formulas to calculate the element’s run
result.  You can define up to fifteen input
values for an element.

Instructions  An SSHR user assistance
component displayed on a web page to
describe page functionality.

K
Key Flexfield  A flexible data field made up of

segments.  Each segment has a name you
define and a set of valid values you specify.
Used as the key to uniquely identify an
entity, such as jobs, positions, grades, cost
codes, and employee groups. See also:
Descriptive Flexfield



Glossary – 9

L
Leaver’s Statement In the UK, this Records

details of Statutory Sick Pay (SSP) paid
during a previous employment (issued as
form SSP1L) which is used to calculate a
new employee’s entitlement to SSP.  If a
new employee falls sick, and the last date
that SSP was paid for under the previous
employment is less than eight calendar
weeks before the first day of the PIW for
the current sickness, the maximum liability
for SSP is reduced by the number of weeks
of SSP shown on the statement.

Life Event  A significant change in a person’s
life that results in a change in eligibility or
ineligibility for a benefit.

Life Event Collision  A situation in which the
impacts from multiple life events on
participation eligibility, enrollability, level of
coverage or activity rates conflict with each
other.

Life Event Enrollment  A benefits plan
enrollment that is prompted by a life event
occurring at any time during the plan year.

Linking Interval  In the UK, this is the number
of days that separate two periods of
incapacity for work.  If a period of
incapacity for work (PIW) is separated from
a previous PIW by less than the linking
interval, they are treated as one PIW
according to the legislation for entitlement
to Statutory Sick Pay (SSP).  An employee
can only receive SSP for the maximum
number of weeks defined in the legislation
for one PIW.

Linked PIWs  In the UK, these are linked
periods of incapacity for work that are
treated as one to calculate an  employee’s
entitlement to Statutory Sick Pay (SSP).  A
period of incapacity for work (PIW) links to
an earlier PIW if it is separated by less than
the linking interval.  A linked PIW can be
up to three years long.

LMSS  Line Manager Self Service. A
predefined SSHR responsibility.

Lookup Types  Categories of information,
such as nationality, address type and tax
type, that have a limited list of valid values.
You can define your own Lookup Types,
and you can add values to some predefined
Lookup Types.

Lower Earnings Limit (LEL)  In the UK, this is
the minimum average weekly amount an
employee must earn to pay National
Insurance contributions.  Employees who
do not earn enough to pay National
Insurance cannot receive Statutory Sick Pay
(SSP) or Statutory Maternity Pay (SMP).

M
Manager–Employee Appraisal   Part of the

SSHR Appraisal function. A manager
appraisal of an employee. However, an
appraising manager does not have to be a
manager.



Glossary – 10 Implementing Oracle HRMS

Maternity Pay Period  In the UK, this is the
period for which Statutory Maternity Pay
(SMP) is paid.  It may start at any time from
the start of the 11th week before the
expected week of confinement and can
continue for up to 18 weeks.  The start date
is usually agreed with the employee, but
can start at any time up to the birth.  An
employee is not eligible to SMP for any
week in which she works or for any other
reason for ineligibility, defined by the
legislation for SMP.

Menus  You set up your own navigation
menus, to suit the needs of different users.

N
NACHA  National Automated Clearing House

Association.  This is the US system for
making direct deposit payments to
employees.

Net Accrual Calculation  The rule that defines
which element entries add to or subtract
from a plan’s accrual amount to give net
entitlement.

Net Entitlement  The amount of unused paid
time off an employee has available in an
accrual plan at any given point in time.

Nonrecurring Elements  Elements that process
for one payroll period only unless you
make a new entry for an employee.  See
also: Recurring Elements

North American Industrial Classification
(NAIC) code The North American
Industrial Classification system (NAICs)
was developed jointly by the US, Canada
and Mexico to provide comparability in
statistics regarding business activity across
North America.  The NAIC replaces the US
Standard Industrial Classification (SIC)
system, and is used in the Employment
Equity Report.

National Occupational Classification (NOC)
code In Canada, the National Occupational
Classification (NOC) System was
developed to best reflect the type of work
performed by employees.  Occupations are
grouped in terms of particular tasks, duties
and responsibilities.  The use of this
standardized system ensures consistency of
data from year to year within the same
company as well as between companies.
These codes are used in the Employment
Equity Report.

Not in Program Plan  A benefit plan that you
define outside of a program.

O
Open Enrollment  A type of scheduled

enrollment in which participants can enroll
in or alter elections in one or more benefits
plans.

Oracle FastFormula  An Oracle tool that
allows you to write Oracle HRMS formulas
without using a programming language.

Organization  A required component of
employee assignments.  You can define as
many organizations as you want within
your Business Group.  Organizations can be
internal, such as departments, or external,
such as recruitment agencies.  You can
structure your organizations into
organizational hierarchies for reporting
purposes and for system access control.

OSSWA Oracle Self Service Web Applications.
OTM Oracle Training Management.

P
Pattern   A pattern comprises a sequence of

time units that are repeated at a specified
frequency.  Oracle SSP/SMP uses SSP
qualifying patterns to determine employees
entitlement to Statutory Sick Pay (SSP).



Glossary – 11

Pattern Time Units   A sequence of time units
specifies a repeating pattern.  Each time
unit specifies a time period of hours, days
or weeks.

Pay Scale  A set of progression points that can
be related to one or more rates of pay.
Employee’s are placed on a particular point
on the scale according to their grade and,
usually, work experience.  See also: Grade
Scale

Payment Type  There are three standard
payment types for paying employees:
check, cash and direct deposit.  You can
define your own payment methods
corresponding to these types.

Payroll   A group of employees that Oracle
Payroll processes together with the same
processing frequency, for example, weekly,
monthly or bimonthly.  Within a Business
Group, you can set up as many payrolls as
you need.

People List An SSHR line manager utility used
to locate an employee.

Performance (within Assessment)  An
expectation of ”normal” performance of a
competence over a given period. For
example, a person may exceed performance
expectation in the communication
competence. See also: Proficiency (within
Assessment),  Competence, Assessment

Period of Incapacity for Work (PIW) In the
UK, this is a period of sickness that lasts
four or more days in a row, and is the
minimum amount of sickness for which
Statutory Sick Pay can be paid.  If a PIW is
separated by less then the linking interval, a
linked PIW is formed and the two PIWs are
treated as one.

Period Type  A time division in a budgetary
calendar, such as week, month, or quarter.

Person Search An SSHR function which
enables a manager to search for a person.
There are two types of search, Simple and
Advanced.

Person Type  There are eight system person
types in Oracle HRMS.  Seven of these are
combinations of employees, ex–employees,
applicants, and ex–applicants.  The eighth
category is ’External’.  You can create your
own user person types based on the eight
system types.

Personal Tax Credits Return (TD1) A Revenue
Canada form which each employee must
complete.  Used by the employee to reduce
his or her taxable income at source by
claiming eligible credits and also provides
payroll with such important information as
current address, birth date, and SIN.  These
credits determine the amount to withhold
from the employee’s wages for
federal/provincial taxes.

Plan Design  The functional area that allows
you to set up your benefits programs and
plans. This process involves defining the
rules which govern eligibility, available
options, pricing, plan years, third party
administrators, tax impacts, plan assets,
distribution options, required reporting,
and communications.

Plan Sponsor  The legal entity or business
responsible for funding and administering a
benefits plan. Generally synonymous with
employer.

Position  A specific role within the Business
Group derived from an organization and a
job.  For example, you may have a position
of Shipping Clerk associated with the
organization Shipping and the job Clerk.



Glossary – 12 Implementing Oracle HRMS

Predefined Components  Some elements and
balances, all primary element classifications
and some secondary classifications are
defined by Oracle Payroll to meet
legislative requirements, and are supplied
to users with the product.  You cannot
delete these predefined components.

Professional Information An SSHR function
which allows an employee to maintain their
own professional details or a line manager
to maintain their direct reports professional
details.

Proficiency (within Assessment)  The
perceived level of expertise of a person in a
competence, in the opinion of the assessor,
over a given period. For example, a person
may demonstrate the communication
competence at Expert level.  See also:
Performance (within Assessment), Competence,
Assessment

Proficiency Level A system for expressing and
measuring how a competence is exhibited
in the work context.  See also: Behavioral
Indicators.

Progression Point  A pay scale is calibrated in
progression points, which form a sequence
for the progression of employees up the pay
scale. See also: Pay Scale

Provincial/Territorial Employment Standards
Acts In Canada, these are laws covering
minimum wages, hours of work, overtime,
child labour, maternity, vacation,
public/general holidays, parental and
adoption leave, etc., for employees
regulated by provincial/territorial
legislation.

Provincial Health Number In Canada, this is
the account number of the provincially
administered health care plan that the
employer would use to make remittances.
There would be a unique number for each
of the provincially controlled plans i.e.
EHT, Quebec HSF, etc.

PTO Accrual Plan  A benefit in which
employees enroll to entitle them to accrue
and take paid time off. The purpose of
absences allowed under the plan, who can
enroll, how much time accrues, when the
time must be used, and other rules are
defined for the plan.

Q
QPP (See Canada/Quebec Pension Plan)
Qualification Type   An identified

qualification method of achieving
proficiency in a competence, such as an
award, educational qualification, a license
or a test. See also: Competence

Qualifying Days   In the UK, these are days on
which Statutory Sick Pay (SSP) can be paid,
and the only days that count as waiting
days.  Qualifying days are normally work
days, but other days may be agreed.

Qualifying Pattern See: SSP Qualifying Pattern
Qualifying Week In the UK, this is the week

during pregnancy that is used as the basis
for the qualifying rules for Statutory
Maternity Pay (SMP). The date of the
qualifying week is fifteen weeks before the
expected week of confinement and an
employee must have been continuously
employed for at least 26 weeks continuing
into the qualifying week to be entitled to
SMP.

Quebec Business Number In Canada, this is
the employer’s account number with the
Ministere du Revenu du Quebec, also
known as the Quebec Identification
number. It consists of 15 digits, the first 9
identify the employer, the next 2 identify
the type of tax account involved (payroll vs.
corporate tax), and the last 4 identify the
particular account for that tax.



Glossary – 13

Questionnaire An SSHR function which
records the results of an appraisal.

QuickPaint Report  A method of reporting on
employee and applicant assignment
information. You can select items of
information, paint them on a report layout,
add explanatory text, and save the report
definition to run whenever you want.  See
also: Assignment Set

R
Rates  A set of values for employee grades or

progression points.  For example, you can
define salary rates and overtime rates.

Rating Scale  Used to describe an enterprise’s
competencies in a general way.  You do not
hold the proficiency level at the competence
level.  See also:  Proficiency Level

Record of Employment (ROE) A Human
Resources Development Canada form that
must be completed by an employer
whenever an interruption of earnings
occurs for any employee. This form is
necessary to claim Employment Insurance
benefits.

Recruitment Activity  An event or program to
attract applications for employment.
Newspaper advertisements, career fairs
and recruitment evenings are all examples
of recruitment activities.  You can group
several recruitment activities together
within an overall activity.

Recurring Elements  Elements that process
regularly at a predefined frequency.
Recurring element entries exist from the
time you create them until you delete them,
or the employee ceases to be eligible for the
element.  Recurring elements can have
standard links.  See also: Nonrecurring
Elements, Standard Link 

Region  A collection of logically related fields
in a window, set apart from other fields by
a rectangular box or a horizontal line across
the window.  See also: Block, Field

Registered Pension Plan (RPP)  This is a
pension plan that has been registered with
Revenue Canada.  It is a plan where funds
are set aside by an employer, an employee,
or both to provide a pension to employees
when they retire.  Employee contributions
are generally exempt from tax.

Registered Retirement Savings Plan (RRSP)
This is an individual retirement savings
plan that has been registered with Revenue
Canada.  Usually, contributions to the
RRSP, and any income earned within the
RRSP, is exempt from tax.

Report Parameters  Inputs you make when
submitting a report to control the sorting,
formatting, selection, and summarizing of
information in the report.

Report Set  A group of reports and concurrent
processes that you specify to run together.

Requisition The statement of a requirement
for a vacancy or group of vacancies.

Request Groups  A list of reports and
processes that can be submitted by holders
of a particular responsibility.  See also:
Responsibility

Residual  The amount of unused paid time off
entitlement an employee loses at the end of
an accrual term. Typically employees can
carry over unused time, up to a maximum,
but they lose any residual time that exceeds
this limit.  See also:  Carry Over



Glossary – 14 Implementing Oracle HRMS

Responsibility  A level of authority in an
application.  Each responsibility lets you
access a specific set of Oracle Applications
forms, menus, reports, and data to fulfill
your business role.  Several users can share
a responsibility, and a single user can have
multiple responsibilities.  See also: Security
Profile, User Profile Options,  Request Groups,
Security Groups

Retry  Method of correcting a payroll run or
other process before any post–run
processing takes place.  The original run
results are deleted and the process is run
again.

Revenue Canada  Department of the
Government of Canada which, amongst
other responsibilities, administers,
adjudicates, and receives remittances for all
taxation in Canada including income tax,
Employment Insurance premiums, Canada
Pension Plan contributions, and the Goods
and Services Tax (legislation is currently
proposed to revise the name to the Canada
Customs and Revenue Agency).  In the
province of Quebec the equivalent is the
Ministere du Revenu du Quebec.

Reviewer (SSHR)  A person invited by an
appraising manager to add review
comments to an appraisal.

Reversal  Method of correcting payroll runs or
QuickPay runs after post–run processing
has taken place.  The system replaces
positive run result values with negative
ones, and negative run result values with
positive ones.  Both old and new values
remain on the database.

Rollback  Method of removing a payroll run
or other process before any post–run
processing takes place.  All assignments
and run results are deleted.

S
Search by Date  An SSHR sub–function used

to search for a Person by Hire date,
Application date, Job posting date or search
by a Training event date.

Salary Basis  The period of time for which an
employee’s salary is quoted, such as hourly
or annually.  Defines a group of employees
assigned to the same salary basis and
receiving the same salary element.

Scheduled Enrollment  A benefits plan
enrollment that takes place during a
predefined enrollment period, such as an
open enrollment. Scheduled enrollments
can be administrative, open, or
unrestricted.

Security Group Security groups enable HRMS
users to partition data by Business Group.
Only used for Cross Business Group
Responsibility security. See also:
Responsibility, Security Profile, User Profile
Options 

Security Profile  Security profiles control
access to organizations, positions and
employee and applicant records within the
Business Group.  System administrators use
them in defining users’ responsibilities.  See
also: Responsibility

Self Appraisal  Part of the SSHR Appraisal
function. This is an appraisal undertaken by
an employee to rate their own performance
and competencies.

SMP See: Statutory Maternity Pay 
Social Insurance Number (SIN) A unique

number provided by Human Resources
Development Canada (HRDC) to each
person commencing employment in
Canada. The number consists of 9 digits in
the following format (###–###–###).



Glossary – 15

Source Deductions Return (TP 1015.3) A
Ministere du Revenu du Quebec form
which each employee must complete.  This
form is used by the employee to reduce his
or her taxable income at source by claiming
eligible credits and also provides payroll
with such important information as current
address, birth date, and SIN.  These credits
determine the amount of provincial tax to
withhold from the employee’s wages.

Special Information Types  Categories of
personal information, such as skills, that
you define in the Personal Analysis key
flexfield.

SSHR  Oracle Self–Service Human Resources.
An HR management system using an
intranet and web browser to deliver
functionality to employees and their
managers.

SSP See: Statutory Sick Pay 
SSP Qualifying Pattern  In the UK, an SSP

qualifying pattern is a series of qualifying
days that may be repeated weekly, monthly
or some other frequency.  Each week in a
pattern must include at least one qualifying
day.  Qualifying days are the only days for
which Statutory Sick Pay (SSP) can be paid,
and you define SSP qualifying patterns for
all the employees in your organization so
that their entitlement to SSP can be
calculated.

Standard Link  Recurring elements with
standard links have their element entries
automatically created for all employees
whose assignment components match the
link.  See also: Element Link, Recurring
Elements

Statement of Commissions and Expenses for
Source Deduction Purposes (TP
1015.R.13.1) A Ministere du Revenu du
Quebec form which allows an employee
who is paid partly or entirely by
commissions to pay a constant percentage
of income tax based on his or her estimated
commissions for the year, less allowable
business expenses.

Statement of Remuneration and Expenses
(TD1X) In Canada, the Statement of
Remuneration and Expenses allows an
employee who is paid partly or entirely by
commission to pay a constant percentage of
income tax, based on his or her estimated
income for the year, less business-related
expenses.

Statutory Maternity Pay   In the UK, you pay
Statutory Maternity Pay (SMP) to female
employees who take time off work to have
a baby, providing they meet the statutory
requirements set out in the legislation for
SMP.

 Standard HRMS Security  The standard
security model. Using this security model
you must log on as a different user to see a
different Business Group. See: Multiple
Responsibility Security 

Statutory Sick Pay   In the UK, you pay
Statutory Sick Pay (SSP) to employees who
are off work for four or more days because
they are sick, providing they meet the
statutory requirements set out in the
legislation for SSP.

Succession Planning An SSHR function which
enables a manager to prepare a succession
plan.



Glossary – 16 Implementing Oracle HRMS

Suitability Matching An SSHR function which
enables a manager to compare and rank a
persons competencies.

T
Tabbed Regions  Parts of a window that

appear in a stack so that only one is visible
at any time.  You click on the tab of the
required region to bring it to the top of the
stack.

Task Flows  A sequence of windows linked by
buttons to take you through the steps
required to complete a task, such as hiring a
new recruit.  System administrators can
create task flows to meet the needs of
groups of users.

Terminating Employees  You terminate an
employee when he or she leaves your
organization.  Information about the
employee remains on the system but all
current assignments are ended.

Termination Rule  Specifies when entries of an
element should close down for an employee
who leaves your enterprise.  You can define
that entries end on the employee’s actual
termination date or remain open until a
final processing date.

Tips An SSHR user assistance component that
provides information about a field.

U
User Assistance Components SSHR online

help comprising tips and instructions.
User Balances  Users can create, update and

delete their own balances, including
dimensions and balance feeds.  See also:
Balances

User Profile Options  Features that allow
system administrators and users to tailor
Oracle HRMS to their exact requirements.
See also: Responsibility, Security Profile

V
Viewer (SSHR)  A person with view only

access to an appraisal. An appraising
manager or an employee in a 360 Degree
Self appraisal can appoint view only access
to an appraisal.

W
WCB Account Number  In Canada, this is the

account number of the provincially
administered Worker’s Compensation
Board that the employer would use to make
remittances.  There would be a unique
number for each of the provincially
controlled boards i.e. Workplace Safety &
Insurance Board of Ontario, CSST, etc.

Waiting Days In the UK, statutory Sick Pay is
not payable for the first three qualifying
days in period of incapacity for work
(PIW), which are called waiting days.  They
are not necessarily the same as the first
three days of sickness, as waiting days can
be carried forward from a previous PIW if
the linking interval between the two PIWs
is less than 56 days.

Work Choices  Also known as Work
Preferences, Deployment Factors, or Work
Factors. These can affect a person’s capacity
to be deployed within an enterprise, such
willingness to travel or relocate. You can
hold work choices at both job and position
level, or at person level.



Glossary – 17

Worker’s Compensation Board In Canada,
this is a provincially governed legislative
body which provides benefits to employees
upon injury, disability, or death while
performing the duties of the employer.
Worker’s Compensation Board premiums
are paid entirely by the employer.

Workflow  An Oracle application which uses
charts to manage approval processes and in
addition is used in SSHR to configure
display values of sections within a web
page and instructions.

Work Structures The fundamental definitions
of organizations, jobs, positions, grades,
payrolls and other employee groups within
your enterprise that provide the framework
for defining the work assignments of your
employees.



Glossary – 18 Implementing Oracle HRMS



Index – 1

Index

A
ABSENCE_REASON, 2 – 34
Action classifications (for payroll processes

and actions), 10 – 53
Adjustment element entries, 10 – 10
APIs

errors and warnings, 3 – 28
legislative versions, 3 – 26
loading legacy data, 4 – 3
supported by Data Pump, 4 – 36
user hooks, 3 – 34
uses of, 3 – 4

Applicant assignment statuses, 2 – 56
Appraisal, 2 – 58 to 2 – 61
Archiving, payroll reports, 11 – 2
Assessment, 2 – 58 to 2 – 61
Assignment level interlocks, 10 – 53

overview, 10 – 5
rolling back/mark for retry, 10 – 56

Assignment sets, 10 – 6
Assignment statuses, defining, 2 – 49, 2 – 56
AuditTrail, 2 – 78 to 2 – 79

B
Balance adjustments, 12 – 9
Balances

balance dimensions, 12 – 2, 12 – 5

contexts, 12 – 4
dimension types, 10 – 11
feed checking types, 10 – 12
including values in reports, 12 – 24
initial values for UK legislative balances, 

12 – 29
initialization steps, 12 – 21
latest balances, 12 – 3
loading initial values, 12 – 9
overview, 12 – 2
reporting (UK only), 12 – 27
using the balance view, 12 – 35

Balances and latest balances, processing by
Payroll Run, 10 – 10

Batch Element Entry (BEE), creating control
totals, 8 – 2

Budgets, implementing, 2 – 53
Business Groups, defining, 2 – 19 to 2 – 22

C
Career planning, 2 – 59
Cash payments, 10 – 59

process, 10 – 47
Cash Payments Process, 10 – 47
Cheque Writer

cheque numbering, 10 – 41
mark for retry, 10 – 43
PL/SQL, 10 – 45
rolling back payments, 10 – 43



Index – 2 Implementing Oracle HRMS

sorting the cheques/checks, 10 – 45
SRW2 report, 10 – 43
voiding and reissuing cheques, 10 – 42

Cheque/Check Writer process, 10 – 38
Consolidation sets, 10 – 60
Context field values list for flexfields, 9 – 6
Contexts

and formula types, 6 – 4
for archive database items, 11 – 7
for payroll run formulas, 10 – 9
of balances, 12 – 4
set by Magnetic Tape process, 10 – 24
used by FastFormula, 6 – 3

Correction, in a datetracked block, 5 – 2
Costing process, 10 – 48
Currencies

conversion by Prepayments process, 10 – 61
processing by Payroll Run, 10 – 9

Custom Library events
DT_ CALL_HISTORY, 5 – 13
DT_SELECT_MODE, 5 – 7

Custom tables, making available to reporting
users, 7 – 11

Customization
using API user hooks, 3 – 34
using database triggers, 3 – 54

D
Data Install Utility, A – 2 to A – 7
Data Pump, 4 – 2

logging options, 4 – 18
Database items

and routes, 6 – 2
defining, 6 – 5
for archiving, 11 – 4

Database triggers, 3 – 54
DateTrack, 5 – 2

creating a datetracked table, 5 – 5
restricting options available to users, 5 – 7

DateTrack History views, 5 – 10
changing the view displayed, 5 – 13
list of, 5 – 14

Deadlocks, avoiding, 3 – 23

Defined balances, 12 – 3
Deleting a datetracked record, 5 – 3
Descriptive flexfields, defining, 2 – 12 to 2 – 18
Dimension types (of balances), 10 – 11, 12 – 7
Dimensions (of balances), 12 – 2

E
Element entries, processing by Payroll Run, 10

– 7
Element sets, 10 – 6
Element skip rules, 10 – 10
Elements, to feed initial balances, 12 – 12
Employee assignment statuses, defining, 2 – 49
End of year reports, 11 – 2
Error reporting, payroll action parameters, 

10 – 68
Evaluation systems, implementing, 2 – 54
Exchange rates, Pre–Payments, 10 – 61
Expiry checking

of latest balances, 10 – 11, 12 – 3
types, 12 – 8

F
FastFormula, calling from PL/SQL, 6 – 14
FastFormula Application Dictionary, 6 – 2
Feed checking types (of balances), 10 – 12, 

12 – 7
Flexfields

and APIs, 3 – 24
Cost Allocation, 10 – 48
segment separator, 9 – 7
validation by APIs, 9 – 2

FND_SESSIONS table, 9 – 5
Form block.field items, referenced in flexfield

value sets, 9 – 4
Formula errors, Magnetic Tape, 10 – 33
Formula interface, Magnetic Tape, 10 – 31
Formula processing, Payroll Run, 10 – 13
Formula result rules, 10 – 14



Index – 3

Formula types, and contexts, 6 – 4
Formulas, for archiving payroll reports, 11 – 8

G
Global Legislation Driver, A – 2 to A – 7
Grade scales, defining, 2 – 25
Grades, defining, 2 – 24

I
Implementation Planning, 1 – 2
Implementing Oracle HRMS

checklists, 1 – 4
flowcharts, 1 – 5
setup steps, 1 – 2 to 1 – 3
steps, 2 – 2

In memory latest balances, creation by Payroll
Run, 10 – 11

Initial Balance Structure Creation process, 
12 – 21

Initial Balance Upload process, 12 – 17
Input values, validation, 2 – 27 to 2 – 28
Interlocks, 10 – 53

J
Jobs, defining, 2 – 22 to 2 – 24

K
Key flexfields, setting up, 2 – 2 to 2 – 12

L
Latest balances, 12 – 3

initial loading, 12 – 11
Legacy data, loading using Data Pump, 4 – 3
Letters, generating, 2 – 63
LISTGEN, 7 – 9
Logging, payroll action parameter, 10 – 69

Lookups, creating Lookup values, 2 – 20 to 
2 – 22

M
Magnetic Tape

formula errors, 10 – 33
formula interface, 10 – 31
PL/SQL, 10 – 26
reports, 10 – 21
structure, 10 – 23

Magnetic Tape process, 10 – 19
Mark for retry

Cheque Writer, 10 – 43
interlock rules, 10 – 55, 10 – 56

Menus, defining, 2 – 71
Meta–Mapper process, 4 – 4

running, 4 – 8
Multilingual support APIs, 3 – 25

O
Object version number, 3 – 6

handling in Oracle Forms, 3 – 56
Oracle Human Resources, post install, A – 2 to

A – 7
Organizations, defining, 2 – 19 to 2 – 22
Override element entries, 10 – 10

P
Parallel processing, 10 – 65
Parameters

CHUNK_SIZE, 10 – 62, 10 – 64, 12 – 18
for APIs, 3 – 8
for Cheque/Check Writer process, 10 – 39
for Data Pump, 4 – 17
for Magnetic Tape process, 10 – 20
MAX_ERRORS_ALLOWED, 10 – 62
Payroll Action, 10 – 64
THREADS, 10 – 62, 10 – 64

Pay Advice report, 13 – 2
Pay scales, defining, 2 – 24



Index – 4 Implementing Oracle HRMS

PAY_BALANCE_BATCH_HEADERS, 12 – 14
PAY_BALANCE_BATCH_LINES, 12 – 15
Payment methods, 10 – 58

overriding, 10 – 61
Payment process, 10 – 18
Payroll action parameters, 10 – 64

error reporting, 10 – 68
logging, 10 – 69, 10 – 71
parallel processing, 10 – 65
rollback, 10 – 69

Payroll Archive Reporter process, 11 – 2
Payroll data cache, 10 – 16
Payroll processes, overview, 10 – 2
Payroll Run

balances and latest balances, 10 – 10
create run results and values, 10 – 9
element skip rules, 10 – 10
entities for processing, 10 – 6
expiry checking of latest balances, 10 – 11
formula processing, 10 – 13
in memory latest balances, 10 – 11
processing each assignmrent, 10 – 7
processing element entries, 10 – 7
processing priority, 10 – 8
set up contexts, 10 – 9

Payroll Run process, 10 – 6
Payrolls, defining, 2 – 25 to 2 – 27
Person types, 2 – 49
Positions, defining, 2 – 22 to 2 – 24
Post install steps, Oracle HRMS, A – 2 to A – 7
Pre–Payments

exchange rates, 10 – 61
overriding payment method, 10 – 61
preparing cash payments, 10 – 59
setting up payment methods, 10 – 58
third party payments, 10 – 60

Prenotification validation, 10 – 60
Printing on preprinted stationery, P45 and Pay

Advices, 2 – 62
Processes

Cheque/Check Writer, 10 – 38
Costing, 10 – 48
Initial Balance Structure Creation, 12 – 21
Initial Balance Upload, 12 – 10, 12 – 17
Magnetic Tape, 10 – 19

Payment, 10 – 18
Payroll Archive Reporter, 11 – 2
Payroll Run, 10 – 6
Pre–Payments, 10 – 58
PYUGEN, 10 – 2
Transfer to General Ledger, 10 – 52

Processing priority, of entries in Payroll Run,
10 – 8

PYUGEN, 10 – 2
PYUMAG, 10 – 21, 11 – 3

Q
Quantum, Installing for Oracle Payroll (US), 

A – 2 to A – 7
QuickPay, system administration, 10 – 73

R
Reports

defining, 2 – 62
Magnetic Tape, 10 – 21
Pay Advice (UK), 13 – 2
payroll, 11 – 2

ROLEGEN, 7 – 8
Rollback, payroll action parameters, 10 – 69
Rolling back

cheque/check payments, 10 – 43
interlock rules, 10 – 56

Routes
for archive database items, 11 – 5
of balance dimensions, 12 – 5
used by FastFormula, 6 – 3

Run results and values, 10 – 9
creation by Payroll Run, 10 – 16

S
SECGEN, 7 – 8
Secure tables and views, 7 – 3
Security

customizing, 7 – 2
setting up, 2 – 72 to 2 – 78



Index – 5

Security profiles, 7 – 2
Skills matching, defining requirements, 2 – 54
Special information types, setting up, 2 – 50 to

2 – 52
SRW2 report, 10 – 39, 10 – 43
Standard letters, setting up, 2 – 63 to 2 – 80
Startup data, 1 – 2
Steps, post install, HRMS, A – 2 to A – 7

T
Termination of assignments, processing by

Payroll Run, 10 – 8
Third party payments, 10 – 60
Transfer to General Ledger process, 10 – 52

U
Update, in a datetracked block, 5 – 2
User hooks

in APIs, 3 – 34
to populate custom profiles, 9 – 4
to set user profile options, 9 – 2

User interfaces, and APIs, 3 – 4
User keys, for Data Pump, 4 – 5
User profile options, referenced in flexfield

value sets, 9 – 2

V
Voiding and reissuing cheques, 10 – 42



Index – 6 Implementing Oracle HRMS



Reader’s Comment Form

Implementing Oracle HRMS
A73313–01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication.  Your input is an important part of the information we use for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information?  If so, where?

• Are the examples correct?  Do you need more examples?

• What features did you like most about this manual?  What did you like least about it?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA  94065
Phone: (650) 506–7000     Fax: (650) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.


	Contents
	Preface
	Audience for This Guide
	How To Use This Guide
	Finding Out What’s New
	Other Information Sources
	Do Not Use Database Tools to Modify Oracle Applications Data
	About Oracle
	Your Feedback

	Implementation
	Planning Your Implementation
	Implementation Steps
	Implementation Checklist
	Implementation Flowchart

	Implementation Steps
	Administration
	Work Structures
	Compensation and Benefits
	Total Compensation
	People and Assignments
	Specific Business Functions
	Career and Succession Management
	Control


	Technical Essays
	APIs in Oracle HRMS
	APIs in Oracle HRMS
	API Overview
	Understanding the Object Version Number (OVN)
	API Parameters
	API Features
	Flexfields with APIs
	Multilingual Support
	Alternative APIs
	API Errors and Warnings
	Example PL/SQL Batch Program
	WHO Columns and Oracle Alert
	API User Hooks
	Using APIs as Building Blocks
	Handling Object Version Numbers in Oracle Forms


	Oracle HRMS Data Pump
	Oracle HRMS Data Pump
	Overview
	Using Data Pump
	Running the Meta–Mapper
	Loading Data Into the Batch Tables
	Running the Data Pump Process
	Finding and Fixing Errors
	Purging Data
	Sample Code
	Notes on Using The Generated Interfaces
	Utility Procedures Available With Data Pump
	Table and View Descriptions
	APIs Supported by Data Pump


	DateTrack
	How DateTrack Works
	Behavior of DateTracked Forms
	Table Structure for DateTracked Tables
	Creating a DateTracked Table and View
	Restricting Datetrack Options Available to Forms Users

	How to Create and Modify DateTrack History Views
	What Happens When You Request DateTrack History
	Rules for Creating or Modifying DateTrack History Views
	Using Alternative DateTrack History Views
	List of DateTrack History Views


	FastFormula
	The FastFormula Application Dictionary
	Entities in the Dictionary
	Defining New Database Items

	Calling FastFormula from PL/SQL
	The Execution Engine Interface
	Changes in R11i
	Server Side Interface
	Client Side Call Interface
	Special Forms Call Interface
	Logging Options


	Extending Security in Oracle HRMS
	Extending Security in Oracle Human Resources
	Security Profiles
	Security Processes
	Securing Custom Tables


	Batch Element Entry
	Creating Control Totals for the Batch Element Entry Process
	Setting Up Control Totals
	Creating the SQL Code


	Validation of Flexfield Values
	Validation of Flexfield Values
	Referencing User Profile Options
	Referencing Form block.field Items
	Referencing FND_SESSIONS Row
	Incomplete Context Field Value Lists
	Using Segment Separator in Data


	Payroll Processes
	Overview
	PYUGEN
	Payroll Action Parameters
	Overview of the Payroll Processes
	Assignment Level Interlocks

	Payroll Run Process
	Determine Assignments and Elements
	Process Each Assignment
	Create Run Results and Values
	Set Up Contexts
	Run Element Skip Rules
	Create and Maintain Balances
	Run Formulas

	Payment Processes
	Magnetic Tape Process
	Running the Magnetic Tape Payments Process
	Running Magnetic Tape Reports
	SRS Definitions
	How the Magnetic Tape Process Works
	The PL/SQL Driving Procedure
	The Generic PL/SQL
	The Formula Interface
	Error Handling
	Example PL/SQL

	Cheque Writer/Check Writer Process
	The Process
	Cheque Numbering
	Voiding and Reissuing Cheques
	Mark for Retry
	Rolling Back the Payments
	SRW2 Report
	Using or Changing the PL/SQL Procedure

	Cash Process
	Costing Process
	Example of Payroll Costs Allocation
	Example of Employer Charge Distribution

	Transfer to the General Ledger Process
	Assignment Level Interlocks
	Action Classifications
	Rules For Rolling Back and Marking for Retry

	Pre–Payments Process
	Setting Up Payment Methods
	Preparing Cash Payments (UK Only)
	Prenotification (US Only)
	Consolidation Sets
	Third Party Payments
	Exchange Rates
	Overriding Payment Method
	The Process

	Payroll Action Parameters
	Action Parameter Values
	Summary of Action Parameters
	Parallel Processing Parameters
	Array Select, Update and Insert Buffer Size Parameters
	Costing Specific Parameters
	Magnetic Tape Specific Parameters
	Error Reporting Parameters
	Rollback Specific Parameters
	Payroll Process Logging
	Logging Parameters
	Miscellaneous Parameters
	System Management of QuickPay Processing


	Payroll Archive Reporter Process
	The Payroll Archive Reporter (PAR) Process
	PAR Modes
	Overview of the PAR Process
	Overview of the Setup Steps
	Create Database Items for Archiving
	Write Formulas
	Write Package Procedures For Assignments And Assignment Actions
	Provide an SRS Definition for the PAR Process
	Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table
	Examples: INITIALIZATION_CODE and ARCHIVE_CODE


	Balances in Oracle Payroll
	Balances in Oracle Payroll
	Overview of Balances
	Latest Balances

	Balance Dimensions
	Initial Balance Loading for Oracle Payroll
	Introduction
	Steps
	Balance Loading Process
	Latest Balances
	Setting Up an Element to Feed Initial Balances
	Setting Up the Initial Balance Values
	Running the Initial Balance Upload Process
	Balance Initialization Steps

	Including Balance Values in Reports
	The Balance Function

	Including Balance Values in Reports (UK Only)
	The Balance Function

	Legislative Balance Initialization (UK Only)
	Balance Initialization Elements

	Balance View Usage

	Payroll Advice Report (UK Only)
	Pay Advice Report
	Parameter Values
	Queries
	Groups
	Triggers
	Layout
	Dynamic Sort Order



	Post Install Steps
	Post Install Steps

	Glossary
	Index
	Reader's Comment Form

