Oraclel Configurator

Oracle Configuration Interface Object (ClO) Developer’'s Guide

Release 11i

September 2000
Part No. A81001-04

This document describes Functional Companions, which augment the
functionality of an Oracle SellingPoint application, and the Oracle
Configuration Interface Object (CIO), which is used by Functional Companions
to access the Oracle Configurator Active Model.

ORACLE

Oracle Configuration Interface Object (CIO) Developer’s Guide, Release 11i

Part No. A81001-04

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Mark Sawtelle

Contributors: Brent Benson, Jim Carlson, Ivan Lazarov, Marty Plotkin, Brian Ross

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle SellingPoint Configurator is a trademark or registered
trademark of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

SeNd US YOUT COMMEBNTS ...ttt Xi
PlrOIACE. ...ttt Xiii
| LSS g e LYo BN T S TSl g el <Y Xiii
1] 8 40 ol 101 4 <P T OOURORPRRRTRN Xiii
ReElated DOCUIMEIES.ooieviieieeiie ettt e et e e ra e e e sttt e et e e sateessaaeessnseeessaaeesneeessnteeesnnes Xiv
(@16) 417 4N Te) o L= TR TSRS Xiv

1 Functional Companions

11 What Are Functional Companions?c.ccccceueueururiririrnineinenieeeeeseseeesee s 1-1
111 Types of Functional COmMpanions............coeeorueieiiicieinicce e 1-1
112 Background to Building Functional Companions...........cccceeeeuvenrenrrncnrcncnenee. 1-2
1.2 Functional Companions and the CIO...........ccccccceiiiiiiiiniiincrrreeee e 1-3
121 Using the CIO Interface..........cccoooeiiiiiiiiiiniii s 1-4
122 Implementing Standard Interface Methodscccocoovueviiiinnnnnnee, 1-4
13 Building Functional Companions in Java ..o 1-4
131 Procedure for Building Functional Companions in Javacccccecceveiceieiicceiennnne, 1-4
132 Installation Requirements for Java Functional Companions............cccoceveevrvvcnaee. 1-7
1321 Requirements for Developing Functional Companionsc.cccecevevrvrrunee. 1-7
1.3.2.2 Requirements for Running Functional Companions..........c.c.cccccoeueveiricieininnnen. 1-7
1.3.2.3 Requirements for Testing Java Functional Companionsccccceeeevveevenaee 1-8
133 Minimal Example of a Java Functional Companionccccccccucvcicurieciniennnnene 1-9
14 Incorporating Functional Companions in your Application............ccooeerieieniins 1-10

14.1
1.4.2
1421
1.4.2.2
1423

Associating Functional Companions with your Model...........ccccccovrirnnnnnnaee. 1-10

Testing Functional Companions in the Oracle SellingPoint Application........... 1-14
Testing from the Windows Start Menu.........ccccevvevvvinnncnininieeccccccenes 1-15
Testing from Oracle Configurator Developer...........ccccccccvvennnnnnncnenence. 1-15
Test Functionality in the Oracle SellingPoint Application.............cccceueuc.. 1-15

The Configuration Interface Object (CIO)

21
211
212
2.2
23
2.4
24.1
242
243
24.4
25
251
252
253
254
255
256
257
258
2.6
2.7
27.1
2.7.2
2.7.3
2.8
2.9
29.1
29.2

BackgroUund ..o 2-1
What is the CIO? ..o s 2-1
The CIO and Functional Companions.............cccceueueiiirieiiiiccieeicie e, 2-2

The CIO’s Runtime Node Interface Classes...........ccococvvivniniiiniininiccce, 2-2

Initializing the CIO ... 2-4

Access t0 Configurations ..o s 2-5
Creating and Deleting Configurations..........c.cccooveeieiiiinicieiciceeecc e, 2-6
Saving and Restoring Configurationsccoeevevevrrrinnnnreicnrccccceeecees 2-7
Access to Configuration Parameters ..., 2-7
Logic TransactionS.cccceueueieieiiieieicieicietete e 2-8

Access to Nodes of the Model at RUNtime..........ccccoovviiiiiiviiiiiiees 2-9
Opportunities for Modifying the Model.............ocoooiii 2-9
Accessing COMPONENLSc.coveiiiiiiieiiiieiei s 2-10
Adding and Deleting Optional Components............ccccoceevevvrrrerrnerrenencneecnenennn. 2-10
AccessiNg Features ... 2-10
Getting and Setting Logic Statesccceuoiiiiiiiiicic 2-11
Getting and Setting Numeric Values..........cccccccoeciiiiiinnnniccrreeeecceceee, 2-13
ACCeSSING Propertiesttt 2-14
ACCESS t0 OPLIONS ...ttt 2-14

Introspection through IRuntimeNoOde...........ccccociiiiiiiini e 2-15

Handling Logical Contradictions...........ccouoveeieioiiiiiiiiiciece 2-18
Generating Error Messages from Contradictions..........ccceoeieiiiiiicicicieiieeieenes 2-18
Raising EXCEPHIONScccvvviviuiiiiiiiiiiiiiic s 2-19
Overriding Contradictions............cceiiiieiiicci 2-20

Validating Configurations...........cc.ooeiieiiiii 2-21

Standard Interface Methods for Functional Companions...........c.ceccevvevveccccnncnne 2-22
The initialize() Interface Method.........cccoevrierieieninenincincnernerer e 2-23
The autoConfigure() Interface Methodccccovvviiiniiiie, 2-25

2.9.3 The validate() Interface Method.........cocveevieriiierieieieieire et enens 2-26
29.4 The generateOutput() Interface Method............ccooii 2-27
295 The terminate() Interface Method........ccoveveieiriniiiiiecieeee e 2-28

Reference Documentation for the CIO

Examples

4.1 Initializing the CIO ... 4-1
4.2 Basic Java Functional Companion ... 4-2
4.3 Thin-Client generateOutput() Functional Companion.............cccceeeiiniiicincnnn, 4-8

Glossary of Terms

Glossary of Acronyms

A CIO Package and Related Classes
B Package oracle.apps.cz.cio

C Package oracle.apps.cz.common
D Package oracle.apps.cz.utilities
Index

Vi

List of Examples

1-1 Elementary Java Functional Companion: MyClass.javaccccooeomueniniocrieiiiiciennan. 1-9
2-1 Initializing the CIO (Short ExXample)cccoiiiiiiiiiiiiiciecece e 2-5
2-2 Creating New Configuration ObJects...........ccoeuiueieiiiiiiiiiccce 2-6
2-3 Getting the state of aN0decoouiiiiii 2-12
2-4 Setting the state of @ NOAEo.cvveuiiiiii 2-12
2-5 Setting a NUMETIC VAlUEoouriiiiiiie s 2-13
26 Testing whether an option is selected, or satisfied..........ccccoooriiiiiiiiiic 2-15
2-7 Testing whether a node is selected, or satisfied..........c.c.ccoooriiniiiii 2-17
2-8 Getting a child node by name.........c....oooriiii 2-17
2-9 Collecting all child nodes by type........ccccoviiiiiiiiiiiiiiiiii 2-18
2-10 Handling and overriding Logical EXCEpPtionscccouoviriiiiiiiciciiiicceecce 2-20
4-1 Initializing the CIO (Long Example)cccccooiiiiiiiiciiiccc 4-1
4-2 Basic Functional Companion: FuncCompTest].........ccoooioiiiiiiiiiiiiiiiiice, 4-2
4-3 Thin-client Output Functional Companion............ccccoeeriiiiiieiiinicncccee e 4-10

vii

List of Figures

viii

Associating a Component with a Functional Companioncccccvvviininiicnnn. 1-13
Functional Companion Rule: Detail of the Attributes view...........cccccovvviiiiinininenen. 1-14
Testing Functional Companions in the Oracle SellingPoint application. 1-16
Modifying Functional Companion Buttons.............ccccccevvivniiniininnie, 1-17

List of Tables

1-1 Types of Functional COmMPAanionscccceieiieuieieeueiieeeieeeeereeeeieneneneeeseeenenenes 1-2
1-2 Required Software for Functional Companionscccceevereirinienncciiinccccccenns 1-8
2-1 Runtime node interface classes for the CIOcoooviiiiiniiinicicccceeceeee 2-2
2-2 Methods of the Interface Class IOPHIONc.cccccucucuiiiiciiiiiciiriciccreeeerreeeeeeene 2-15
2-3 Methods of the interface class IRuntimeNoOdecccccoeiieieiiinniiirceeen, 2-15
2-4 Standard methods of the IFunctionalCompanion interface...........cccocevverieieinnnnnnn. 2-23

Send Us Your Comments

Oracle Configuration Interface Object (ClO) Developer’'s Guide, Release 11i
Part No. A81001-04

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

s Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments through your call to Oracle Support
Services or by sending them to:

Oracle Configurator
Oracle Corporation
Documentation

21 North Avenue
Burlington, MA 01803
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

xi

Xii

Preface

You can use Functional Companions to augment the functionality of your Oracle
SellingPoint application beyond what is provided by Oracle Configurator
Developer. You create Functional Companion objects, which use the Configuration
Interface Object (CIO) to perform various tasks, including accessing the Model,
setting and getting logic states, and adding optional components. You can also use
the CIO in your own applications, to interact with the Model.

Intended Audience

Structure

This manual is intended primarily for software developers writing Functional
Companions. The language recommended for developing Functional Companions
is Java.

This manual assumes that you are an experienced programmer and that you
understand Oracle databases, the SQL and Java programming languages, and the
principles of JDBC.

This manual also provides background and reference information on the CIO,
which is needed by developers of applications having customized user interfaces
that need access to the Oracle Configurator Active Model.

This manual contains:
= Chapter 1, "Functional Companions"

= Chapter 2, "The Configuration Interface Object (CIO)"

xiii

= Chapter 3, "Reference Documentation for the CIO"
= Chapter 4, "Examples”

Related Documents

For more information, see the following manuals in Release 11i of the Oracle
Configurator documentation set:

» Oracle SellingPoint Configurator Administration Guide
» Oracle Configurator Developer User’s Guide

» Oracle Configurator Developer Tutorial

The following documents are also relevant:

» Oracle8i JDBC Developer's Guide and Reference

Conventions

Xiv

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement orcommand not directly related to the example
have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

<> Angle brackets enclose user-supplied names.

[1] Brackets enclose optional clauses from which you can choose one or
none.

> The left bracket alone sign represents the MS DOS prompt.

1

Functional Companions

Functional Companions extend your Oracle SellingPoint application by attaching
custom code through established interfaces.

1.1 What Are Functional Companions?

A Functional Companion is a programming object that you attach to your Model in
order to extend the functionality of your Oracle SellingPoint application in ways
that are not provided by Oracle Configurator Developer.

You can write a Functional Companion object in several languages, depending on
the functionality needed by your application. The Functional Companion
communicates with your Model through an API (application programming
interface) called the Configuration Interface Object (CIO). The Oracle Configuration
Interface Object is written in Java. See Chapter 2, "The Configuration Interface
Object (CIO)".

You connect Functional Companions to specific nodes in your Model using Oracle
Configurator Developer. You also specify the type of action that you want the
specified Functional Companion to perform when your end users select its
associated node. Then you generate the logic and user interface, as you normally do
for your Oracle SellingPoint application. This action associates the Functional
Companion with your application so that when your end users select a node in the
Model, the Functional Companion on that node is automatically invoked.

1.1.1 Types of Functional Companions

You can assign a Functional Companion to perform any or all of these three types of
actions:

Functional Companions 1-1

What Are Functional Companions?

Table 1-1 Types of Functional Companions

Type

Description

Auto-configuration

Validation

Output

Configures the state of the Model. You can use this to modify
the shape of the Model tree, and the state of its nodes. For
instance, your application might gather initial needs
assessment information and use it to set up the appropriate set
of choices for your end user to make.

In your Oracle SellingPoint application, your end user will
explicitly choose to run an auto-configuration Functional
Companion

See Section 2.9.2, "The autoConfigure() Interface Method".

Validates the logical choice that the end user has just made.
The Functional Companion can perform complex operations
beyond the scope of what you can develop in Oracle
Configurator Developer. For instance, you can perform
sophisticated numeric comparisons.

A Java Functional Companion returns null if the validation is
successful. If the validation fails, it returns a List of
CompanionValidationFailure objects.

In your Oracle SellingPoint application, all validation
Functional Companions are run every time your end user
chooses an Option. After each action, the end user gets the
collection of strings returned by each Functional Companion
that failed.

Validation companions query the Model to determine validity,
but should not modify the Model. Modifying the Model in a
validation Functional Companion can cause unexpected
application failures.

See Section 2.9.3, "The validate() Interface Method".

Generates some form of output from the configuration. This
output might be a report, a performance graph, a geometric
rendering, or a graphical representation of the configuration.

In your Oracle SellingPoint application, your end user will
explicitly choose to run an output Functional Companion.

See Section 2.9.4, "The generateOutput() Interface Method".

1.1.2 Background to Building Functional Companions

To build a Functional Companion, you implement an object class in the language
that you choose as being most appropriate for the operation that you want to

1-2 Oracle Configuration Interface Object (CIO) Developer's Guide

Functional Companions and the CIO

perform. Oracle recommends using Java for developing Functional Companions.
Java Functional Companions can run on any platform supported by Java.

When an Oracle SellingPoint application runs, it creates an instance of the CIO,
which creates runtime instances of all the Components in the Model. If you used
Oracle Configurator Developer to associate a Functional Companion with a
Component, then the application creates, for each instance of that Component, an
instance of the class that you defined for your Functional Companion and attaches
the Functional Companion instance to the Component.

You can associate more than one Functional Companion with a particular
Component; the CIO will create instances of all of them.

If any Functional Companions cannot be loaded when you create a new
configuration (for instance, due to internal errors or an incorrect CLASSPATH), the
configuration will fail to open.

You can also associate Functional Companions with Products.

= For Functional Companions built with Java, you implement a class that extends
oracl e. apps. cz. ci 0. Funct i onal Conpani on. See Section 1.3, "Building
Functional Companions in Java".

= Forall language choices, you also implement one or more of the standard
interface methods of or acl e. apps. cz. ci 0. | Funct i onal Conpani on,
which are described in Section 2.9, "Standard Interface Methods for Functional
Companions".

In order to communicate with the Model of your application, the Functional
Companion uses Oracle’s CIO API The CIO can also be used to develop a custom
user interface for an Oracle SellingPoint application, in order to access the Model.
As a point of information, both Oracle Configurator Developer and the default user
interface for the Oracle SellingPoint application communicate in just this way with
the Model, using the Oracle Configurator schema to store structure, rules, and user
interface information (in addition to your end user’s data).

1.2 Functional Companions and the CIO

Functional Companions are invoked by the CIO through the Oracle SellingPoint
application, and Functional Companions call the CIO to get information from the
Active Model. The CIO is like a broker for the Active Model, in that it passes
information both ways. Programmers writing Functional Companions need to
know how to use the CIO.

Functional Companions 1-3

Building Functional Companions in Java

Each Functional Companion is an object class. For every Component instance in
your Model that is associated with a Functional Companion, the CIO creates an
instance of this class.

1.2.1 Using the CIO Interface

Your Functional Companion is a client of the CIO. When you program against the
CIO, you create instances of a set of public interface objects, which are defined in
oracl e. apps.cz.cio.

Your code should refer only to these public interface objects. See Section 2.2, "The
CIO’s Runtime Node Interface Classes".

Reference
For reference documentation, see: Package oracle.apps.cz.cio.

1.2.2 Implementing Standard Interface Methods

You provide functionality for your Functional Companion by implementing body
code for the methods:

= initialize

= autoConfigure
= validate

= generat eCut put
= ternminate

These methods are described in Section 2.9, "Standard Interface Methods for
Functional Companions".

For particulars that apply to the languages currently supported by the CIO, and
examples, see Section 1.3, "Building Functional Companions in Java".

1.3 Building Functional Companions in Java

1.3.1 Procedure for Building Functional Companions in Java

Here is an overview of the tasks for Building Functional Companions in Java. See
also Section 1.3.2, "Installation Requirements for Java Functional Companions".

1-4 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in Java

Use a Java development environment or text editor to create a .java file in which
to define a Java class.

Import the classes for the CIO (or acl e. apps. cz. ci 0. *).

i nport oracl e. apps. cz. ci 0. *;

Define a class in which to determine the behavior of your Functional
Companion.

Here is the relevant line from Example 1-1:

public class Md ass extends Functional Gonpanion // line 6

When you define your Functional Companion class, you can do one of the
following:

= Normally: Extend the base class for Functional Companions—
oracl e. apps. cz. ci 0. Funct i onal Conpani on—and override just the
particular methods that you need. In this case, you gain the functionality of
the Funct i onal Conpani on base class. This functionality includes: saving
references to the runtime node with which the Functional Companion is
associated (with the Funct i onal Conpani on. get Runt i neNode()
method), and returning the name of the Functional Companion (with the
Functi onal Conpani on. get Nane() method). See the reference for:
FunctionalCompanion.

= More rarely: Implement the interface class for Functional
Companions—or acl e. apps. cz. ci 0. | Functi onal Conpani on—and
implement all its methods. You do not extend
oracl e. apps. cz. ci 0. Funct i onal Conpani on. In this case, you lose
the functionality of the Funct i onal Conpani on base class. See the
reference for: FunctionalCompanion.

You may want to override
oracl e. apps. cz. ci 0. Functi onal Conpanion.initialize().(See
Section 2.9.1, "The initialize() Interface Method".)

You should ordinarily never directly call

Functi onal Conpani on.initialize(),since the CIO does that for you.
However, if your Functional Companion overrides Functi onal Conpani on
as its base class, then the i ni ti al i ze() method of your class should call
super.initialize().This passes some necessary variables to the superclass
(oracl e. apps. cz. ci 0. Funct i onal Conpani on) so that its methods will
work.

Functional Companions 1-5

Building Functional Companions in Java

For an example in context, see Line 35 in Example 4-2, "Basic Functional
Companion: FuncCompTestl" on page 4-2, which is shown below:

public void initialize(lRunti mneNode conp_node, String nane, String
description, int id)

{

thi s. conp_node = conp_node;

super.initialize(conp_node, nane, description, id); // line 35

}

5. Override one or more of the other interface methods of

oracl e. apps. cz. ci 0. | Functi onal Conpani on (see Section 2.9, "Standard
Interface Methods for Functional Companions"):

aut oConf i gure
val i dat e
gener at eQut put
term nate

For examples in context, see Example 4-2, "Basic Functional Companion:
FuncCompTest1" on page 4-2:

public voi d autoConfi gure()
public List validate()
public String generateQuitput ()

6. Optionally, call the methods of the other interface classes of the CIO (see
Section 2.2, "The CIO’s Runtime Node Interface Classes").

Note: Basic Functional Companions, ones that only use the
standard interface methods listed in step 5, do not need to use the
interface classes of the CIO.

7. Compile the java file into a .class file for example, with JDK 1.1.x:

javac FuncConpTest 1. j ava

8. Put the resulting .class file in your classpath, or into a JAR file in your classpath.
For example:

jar cvf FuncConps.jar FuncConpTest 1. cl ass

set (LASSPATH=YL ASSPATHY D \ conpani ons\ FuncConps. j ar

1-6 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in Java

9. Run Oracle Configurator Developer with this classpath. Associate your
Functional Companion with a Component in your Model. See Section 1.4,
"Incorporating Functional Companions in your Application" on page 1-10.
Generate the Active Model and User Interface.

10. To test your Functional Companion, click the Test button in Oracle Configurator
Developer. When the Oracle SellingPoint application runs, click the buttons that
have been generated in the Ul for activating your Functional Companions. See
Section 1.4.2, "Testing Functional Companions in the Oracle SellingPoint
Application” on page 1-14.

1.3.2 Installation Requirements for Java Functional Companions

1.3.2.1 Requirements for Developing Functional Companions

In order to develop Java Functional Companions, you must install a Java
development environment that enables you to compile Java classes, such as:

= Oracle JDeveloper

= Sun]JDK 1.1.x or JDK 1.2.x (JDK 1.1.x is recommended for compatibility with
Oracle Applications Release 11)

= Microsoft Visual J++

You do not need JDBC drivers or database access to compile a Functional
Companion, although these are required to run one.

1.3.2.2 Requirements for Running Functional Companions

At runtime, an Oracle SellingPoint application using Functional Companions
requires:

s The Microsoft Java Virtual Machine (JVM)
s Microsoft JDBC/ODBC drivers
= An ODBC datasource

The Oracle SellingPoint application automatically sets up a JDBC database
connection for use by the CIO. Custom user interfaces that take the place of the
Oracle SellingPoint application must perform this task. See Section 2.3, "Initializing
the CIO" for details.

Functional Companions 1-7

Building Functional Companions in Java

In order to run Java Functional Companions, the software described in Table 1-2
must be installed and recognized by your operating system environment in the
indicated locations.

Table 1-2 Required Software for Functional Companions

File name Location Required for Source
config.jar CLASSPATH Any use of CIO. Oracle Configurator (OC)
installation.

cz3rdptyjar CLASSPATH Use of the Java classes for OC installation.
collections, the XML
parser, the Swing Ul, and
various fundamentals.

cz.dll PATH CIO and Functional OC installation.
Companion access to the

czjni.dll Oracle Configurator logic

engine.
JDBC OCI PATH Functional Companions Oracle Technology Network
driver (such as using Oracle JDBC OCI download area, under
oci805jdbc.dll) (“thick”)drivers. For use “QOracle 8 JDBC OCI and JDBC

with Javasoft JDK 1.1.x. Thin Drivers”.

classeslll.zip CLASSPATH Functional Companions Oracle Technology Network

using the Oracle JDBC download area, under
Thin drivers. For use with “Oracle 8 JDBC OCI and JDBC
Javasoft JDK 1.1.x. Thin Drivers”.

For background on JDBC drivers, see the Oracle8i JDBC Developer’s Guide and
Reference.

1.3.2.3 Requirements for Testing Java Functional Companions

The class(es) that implement your Functional Companions must be included in
your CLASSPATH environment variable. Otherwise, you are likely to get an error
message like the following when you try to create a new configuration:

New Gonfiguration: Cannot create configuration:
oracl e. apps. cz. ci 0. FuncGonpCr eat i onExcept i on:
j ava. | ang. A assNot FoundExcepti on: cl assnane

Where classname is the name of the first Functional Companion to be loaded.

1-8 Oracle Configuration Interface Object (CIO) Developer's Guide

Building Functional Companions in Java

1.3.3 Minimal Example of a Java Functional Companion

Example 1-1 illustrates the minimal coding required for a Functional Companion
that does not perform any work. (See Section 4.2, "Basic Java Functional
Companion" for a fuller example.)

Example 1-1 Elementary Java Functional Companion: MyClass.java

i nport oracl e. apps. cz. ci 0. *;

inport comsun.java.util.collections.List; Il line 2
i nport javax.servlet.http. HtpServl et Response;

inport java.io.lCException;

public class M/QA ass extends Functi onal Conpani on Il line 6

{

/1 constructor
public Mdass(AOcio, |Runti neNode node) {

}

public void initialize(lRunti reNode node, String nane, Sring description,
int id) {
/1 inplenent body, if necesary
super.initialize(node, nane, description, id);

}

public voi d autoConfigure() throws Logi cal Exception {
/1 inplenent body as desired
}

public List validate() {
/1 inplenent body as desired
return nul | ;

}

/1 for thin client
public voi d generateQut put (H t pSer vl et Response response) throws | CException

/1 inplenent body as desired
}

/1 for thick client
public Sring generateQutput() {
/1 inplenent body as desired

Functional Companions 1-9

Incorporating Functional Companions in your Application

return nul | ;

}

public void termnate() {
/1 inplenent body, if necesary
super.termnate();

}
}

Line 2
inport comsun.java.util.collections.List; // line 2

If you are using JDK 1.1.x, import com sun. java. util.collections. List,
which is provided in cz3rdpty. j ar (see "Installation Requirements for Java
Functional Companions" on page 1-7). If you are using JDK 1.2, then

import java.util.List.

Line 4
public class MA ass extends Functional Gonpanion // line 6

This class extends the base class for Functional Companions:
oracl e. apps. cz. ci 0. Funct i onal Conpani on. See the explanation under
Step 3.

1.4 Incorporating Functional Companions in your Application

1.4.1 Associating Functional Companions with your Model

To enable your Functional Companion to work with your Oracle SellingPoint
application, you must associate it with a Component (or Product) in your Model.
You create this association in Oracle Configurator Developer, as a type of
Configuration Rule that specifies the Functional Companion method(s) that you
have implemented, and the path to be used by the Oracle SellingPoint application
to locate the Functional Companion object.

To create an association between a Component and a Functional Companion:
1. Click on the Rules button on the main toolbar.

A list of the Configuration Rule types appear in the lower-left pane.

1-10 Oracle Configuration Interface Object (CIO) Developer's Guide

Incorporating Functional Companions in your Application

Choose New Functional Companion from the Create menu. You can also
highlight the Functional Companions node, click on the right mouse button,
and select New Functional Companion from the popup menu.

Type a name for the Functional Companion rule.

In the Description section, type a short explanation of the Functional
Companion rule. If necessary, open the Description section by clicking on the
blue arrow to the left of it.

If necessary, open the Definition section by clicking on the blue arrow to the left
of it. In the Model view, select the Component or Product that you want to
include in this rule. Drag it with the left-hand mouse button to the Base
Component field in the Definition section. Only one Base Component may be
specified per rule.

Choose one or more roles for the Functional Companion. The choices are:

Type Associated Functional Companion method
Auto-configuration aut oConfi gure

Validation val i date

Output gener at eQuput

See Section 1.1.1, "Types of Functional Companions" and Section 2.9, "Standard
Interface Methods for Functional Companions” for background. Note that you
do not associate thei ni ti al i ze() andter m nat e() methods, since they
are invoked automatically by the Oracle SellingPoint application.

Indicate how the Functional Companion is implemented:

= Java

s Custom

Type in the Program String that identifies the Functional Companion:

= For Java, this is the name of the class that implements the Functional
Companion, such as:

FuncConpTest 1
The full class specification must be accessible through your CLASSPATH

environment variable. For instance, if FuncConpTest 1 is contained this
wayinaJARfilet ests. jar:

Functional Companions 1-11

Incorporating Functional Companions in your Application

comj ava\t est s\ FuncConpTest 1. cl ass
then you would specify the Functional Companion this way in
Configurator Developer:
comj ava. tests. FuncConpTest 1
See Step 8 under Section 1.3.1, "Procedure for Building Functional
Companions in Java".

9. Choose Generate Active Model from the Tools menu.

10. When the Generate Active Model command completes successfully, click on the
UI button on the main toolbar, then choose Refresh from the Edit menu.

Figure 1-1 shows what the Rules module screen of Oracle Configurator
Developer might look like after you associate a Component with a Functional
Companion.

1-12 Oracle Configuration Interface Object (CIO) Developer's Guide

Incorporating Functional Companions in your Application

Figure 1-1 Associating a Component with a Functional Companion

Mode azzociated with Specifies role(s) of the
Functichal Cempanisn Functiznal Companion

= ANarde § elingPaant Dewelaper- FuseTompT el
bie b Lol Yan lad: Hea
Bon sirds T Fiw | L& 4 BE
" Mucel z
|i ﬂ el 1 'ﬁlFI':
zhotel] Ea-peren:| w Deiciipbian
VEE -
N
Y L T
Dl "
S D [- Lelmulim W
3 Al fa-peren
CE e T9w+
[woierr
e
. Lo gradoor Hdss .";'?. P iy fhtd 3.t
AT 23z ke Ese[:-pmn:)i
IR T e
1230 “repeiser R rE Fad s Lkl
:~-|' 1 Tropeimrbar =g Compatbi s il =
U2 Tun ik Cempelibi e B .
L%_-I':I “auztizas Conomacrs :j'rg. mﬂll:"g’
i :u, azCemp et
' A TC-Zonfig T ebereraia II|'r
E :-# FL- bz e npae
e L ki
ST e O] s
Functional Cormpanion ldentifies the

rule being defined Functicnal Companicn

Figure 1-2 shows details of the Attributes view of the screen in Figure 1-1.

Functional Companions 1-13

Incorporating Functional Companions in your Application

Figure 1-2 Functional Companion Rule: Detail of the Attributes view

Specifiezs role(s) of the
Functicnal Companien

v Deflimtion

@

P

Type:
[*alidation

W Auto-Configuration
V¥ Output

Froduct-1

" Baze Component
[EPrdc
L

| mplermentation:

I-Java j

Program String:

IFunn::En:nmpT ezt

/
i

Mode aszociated with
Functional Cormpanion

1.4.2 Testing Functional Companions in the Oracle SellingPoint Application

After you generate the Active Model and U], you can test your Functional
Companions by running the Oracle SellingPoint application. You can run the Oracle

Idertifies the
Functicnal Companion

The Oracle SellingPoint application is provided with
Release 11i of Oracle Configurator.

SellingPoint application in the ways described below.

1-14 Oracle Configuration Interface Object (CIO) Developer's Guide

Incorporating Functional Companions in your Application

1.4.2.1 Testing from the Windows Start Menu
To run the Oracle SellingPoint application from the Windows Start Menu:

» Follow the instructions in the Oracle Confiqurator and SellingPoint ReadMe on
running the Oracle SellingPoint application.

1.4.2.2 Testing from Oracle Configurator Developer
To run the Oracle SellingPoint application from Oracle Configurator Developer:

1. Use Tools > Options to chose the Oracle SellingPoint application as your test
environment.

2. Click the Test button.

3. Follow the instructions in the Oracle Configurator and SellingPoint ReadMe on
running the Oracle SellingPoint application.

1.4.2.3 Test Functionality in the Oracle SellingPoint Application

The Active User Interface for the Oracle SellingPoint application allows you to test
your Functional Companions as appropriate:

Type User Interface feature

Auto-configuration A button allows the user to run the aut oConf i gur e() method
on the associated Component instance.

Validation The val i dat e() method is called automatically when the user
selects anything.

Output A button allows the user to run the gener at eQuput ()
method on the associated Component instance.

Figure 1-3 illustrates testing several Functional Companions in the Oracle
SellingPoint application. The Functional Companions illustrated are the ones
defined in the example in Section 4.2, "Basic Java Functional Companion" on
page 4-2.

s Clicking the GenerateOutput Functional Companion button produces a
window that displays the current value of several Features. (This uses the "thick
client" version of gener at eCQut put () . For a thin-client example, see
Section 4.3, "Thin-Client generateOutput() Functional Companion".)

= There is no button for the Validate Functional Companion. The val i dat e()
method is run whenever there is a change in the value of an Option. If the value

Functional Companions 1-15

Incorporating Functional Companions in your Application

violates a specified range, or a Configuration Rule, then the application displays
a Configuration Status message.

s Clicking the AutoConfigure Functional Companion button changes the value of

a numeric Feature (not shown here), in this case violating a specified minimum
and thereby triggering the Configuration Status message.

Figure 1-3 Testing Functional Companions in the Oracle SellingPoint application.

i < Oracle SellingPoint - [Configuration-6620]
| Eie Go Teok Help

P meal @ -

B Home

Opportunities
Customers
Contacts

Order Status

configuration

Product-1
EComponenH

Companent-2 1 Add Component-2
Component-2 2

Gen FC-Satisfyhdin

Gen FC-1 [AutoConfigure]

i Some info about t... [H=] B3

I Integer Feature: IF-1 -5

Gen FC-1 [GenerateOutpui] Integer Feature: IF-2 -0
Integer Feature: IF-2 -0

Text Feature: TF-1 - Hi there

Gen FC-tluantityCampare

Gen FC-ConfigFileGeneratar

Configuration Status

The configuration is not valid due to the following
items:

@ Old: Value less than minimum

S0EPM | BM18/99 Y

Each button that runs a Functional Companion is labelled with default text that
identifies the Functional Companion that the button activates. You can use the User
Interface module of Oracle Configurator Developer to modify these labels. The
labels buttons generated by the Functional Companion shown in Figure 1-1 have
been so modified, by adding the self-identifying text [Aut oConfi gur e] and

[Gener at eQuput], as shown in Figure 1-4.

1-16 Oracle Configuration Interface Object (ClO) Developer's Guide

Incorporating Functional Companions in your Application

Figure 1-4 Modifying Functional Companion Buttons

i 2 Oracle SellingPoint Studio: FuncCompT estl
File Edit

Lreate Yiew Tools

Help
@ todel

E“gﬂules UI Test |
[C7 Madel

= Product-1
-] Component-1
-] Component-2

T3 User Interfaces

ED FuncCompTest! Product-1 User Interface
- Product Selection

2 Companents Tree

] Product-1

B Title bitmap

Text-19927

Gen FC-5atisfuMin

Gen FC-1

Gen FC-QuantityCompare

Gen FC-ConfigFileleneratar

Add Component-2

@] Component-2

0= & B2
|GenFCA
w-D iption
- Definition
ToolTip Text: I
Picture: |<n0ne> _I Borders: INone j
Action; I Functional Companion AutaConfigure jl
| =
Compation: I =
W Label !

Text: |Gen FC-1 [AutaConfigure]

Fort: W UseDefault |<default> _I
BaCkglE?Dulgﬁl I~ Use Default | _I
Backapund [Opaque =

b - Layout

Functional Companions 1-17

Incorporating Functional Companions in your Application

1-18 Oracle Configuration Interface Object (ClO) Developer's Guide

2

The Configuration Interface Object (CIO)

2.1 Background

2.1.1 What is the CIO?

The Configuration Interface Object (CIO) is an API (application programming
interface) that provides your programs access to the Model used by a Oracle
SellingPoint application, which you construct with Oracle Configurator Developer.

The CIO is also used by Functional Companions. See Section 1.2, "Functional
Companions and the CIO".

The CIO is a top-level configuration server. The CIO is responsible for creating,
saving and destroying objects representing configurations, which themselves
contain objects representing Products, Components, Features, Options, Totals and
Resources. The runtime configuration model can be completely controlled and
manipulated through these interfaces, using methods for getting and setting logical,
numeric and string values, and creating optional subcomponents.

Internally, the CIO performs its tasks through interfaces to logic net objects (to get
and set logic states), to runtime model subschema objects (to create the appropriate
runtime Model based on the design-time model), and to configuration subschema
objects (to save and restore configurations created by a user).

The Oracle Configuration Interface Object is written in Java, and implemented as a
set of Java packages. The only one that you will usually need to import is:

oracl e. apps.cz.cio

The Configuration Interface Object (CIO) 2-1

The CIO’s Runtime Node Interface Classes

Note: All references in this document to classes, methods, and
properties refer to the package or acl e. apps. cz. ci 0, and all
code examples are in Java, unless otherwise stated.

2.1.2 The CIO and Functional Companions

A Functional Companion is a Java client of the CIO.

Functional Companions are invoked by the CIO through the Oracle SellingPoint
application, and Functional Companions call the CIO to get information from the
running Model. The CIO is like a broker for the Active Model, in that it passes
information both ways. Programmers writing Functional Companions need to have
some knowledge of how to use the CIO.

Each Functional Companion is an object class. For every Component instance in
your Model that is associated with a Functional Companion, the CIO creates an
instance of this class.

2.2 The CIO’s Runtime Node Interface Classes

When you program against the CIO, you only create instances of the classes Cl O
(see Section 2.3, "Initializing the CIO") and Conf i gur at i on (see Section 2.4.1,
"Creating and Deleting Configurations"). You then use the public interfaces listed in
Table 2-1 to access fields in the runtime node objects created by your instances of

Cl O and Confi gurati on. Apart from Cl O and Confi gurati on, your code
should refer only to these public runtime node interface objects. You should not
implement any of the runtime node interface classes, but only use them as
references to runtime node objects.

These interfaces are all defined in the Java package or acl e. apps. cz. ci o.

Table 2-1 Runtime node interface classes for the CIO

Interface Role of implementing classes
IAtp Implemented by objects that can have ATP calculated.
IBomlItem Implemented by all selectable BOM items.

ICompSetEventListener Implemented by objects that want to find out about added
components.

2-2 Oracle Configuration Interface Object (CIO) Developer’'s Guide

The ClO’s Runtime Node Interface Classes

Table 2-1 (Cont.) Runtime node interface classes for the CIO

Interface Role of implementing classes

IConfigEventListener = Implemented by objects that want to find out about added
components. This listener's methods are called as the result of
user interaction, after a functional companion is initialized.

ICount Implemented by objects that have an associated integer count.

IDecimal Implemented by objects that have a decimal value.

IDecimalMinMax Implemented by objects that have a decimal minimum and

IFunctionalCompanion

IInteger
IIntegerMinMax

IOption

IOptionFeature

IPrice
IReadOnlyDecimal

IRuntimeNode

IState

IText

maximum value.

Implemented by Functional Companion objects attached to
Components in order to provide programmatic functionality to
a configuration model.

Implemented by objects that have an integer value.

Implemented by objects that have an integer minimum and
maximum.

Implemented by objects that act as options. The defining
characteristic of an option is that it can be selected and
deselected.

Implemented by objects that contain selectable options. This
interface provides a mechanism for selecting and deselecting
options, and for determining which options are currently
selected.

Implemented by objects that can be priced.
Implemented by objects that have a decimal value.

This interface implements behavior common to all nodes in the
runtime configuration tree, including Components, Features,
Options, Totals, and Resources.

Implemented by objects that have logic state. This interface
contains a set of input states, used to specify a new state for an
object, a set of output states, returned when querying an object
for its state, and a set of methods for getting and setting the
object's state.

Implemented by objects that have a textual value.

The functionality underlying the CIO interfaces is implemented by other classes in

oracl e. apps.cz.cio,

which are subject to revision by Oracle. This

The Configuration Interface Object (CIO) 2-3

Initializing the CIO

interface/implementer architecture protects your code from the effects of such
revisions, since the interfaces will remain constant.

Reference
For reference documentation, see: Package oracle.apps.cz.cio.

2.3 Initializing the CIO

In order to use any of the features of the CIO, an application must initialize it, using
a JDBC driver to make a connection to the Oracle Configurator schema. This
connection enables the CIO to obtain and store data about Model structure,
Configuration Rules, and User Interface.

If you are using the CIO in a custom user interface, you will have to initialize the
CIO.

Note: When you run Functional Companions through the Oracle
SellingPoint application (or test them by using the Test button in
Oracle Configurator Developer), this initialization and connection
work is automatically handled for you by the application; you do
not have to write your own code to initialize the CIO.

1. Import the necessary packages.

i nport java.sql.Connecti on;
i nport java.sql.DriverMnager;
i nport java.sql.SQException;

i nport oracl e. apps. cz. ci 0. *;
i nport oracl e. apps. cz. common. *;

2. Load the database driver that you have installed. For instance, load one of the
following:

A ass. f or Name(" com ns. j dbc. odbe. JdbcQdbeDri ver");
A ass. f or Nanme(" sun. j dbc. odbc. JdbcQdbeDri ver™);
d ass. forName("oracl e. jdbc. dri ver. O acl eDxiver");

3. Create a CZContext context object and pass to it the information needed to

make a database connection: the database URL, the user ID and password of the
current user, and the owner of the database. The context object manages the

2-4 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Configurations

database connection; you should not create a separate connection object (e.g.,
with j ava. sql . Dri ver Manager . get Connecti on).

CZGont ext cont ext (bj ect = new CZCont ext ("] dbc: subpr ot ocol : dat asour ce”,
"user| D', "password", "schenaOaner");

4. Create a CIO object.
AOcioject = newdQq);

Example 2-1 shows how Steps 1 through 4 are combined together. See Section 4.1,
"Initializing the CIO" for a fuller example of initializing the CIO.

Example 2-1 |Initializing the CIO (Short Example)

i nport java.sql.Qonnection;
inport java.sql.DriverMunager;
inport java.sql . SQLExcepti on;

i nport oracl e. apps. cz. ci 0. *;
i nport oracl e. apps. cz. comon. *;

public class InitdO

{
private void Initialized Q) throws SQException

{
aocio;
ZQont ext context;

try{Q ass. f or Nare(" com ns. j dbc. odbc. JdbcGdbeDri ver") ; }
cat ch (A assNot FoundException c){Systemout. println(c);}
context = new CZCont ext ("j dbc: oracl e: t hi n: @er ver 01: 1521: si d01", "appl syspub",
"pub”, "apps");
cio=new A Q);
}
}

2.4 Access to Configurations

The Configuration object, or acl e. apps. cz. ci 0. Confi gur ati on, represents a
complete configuration. You can use the CIO to work with multiple configurations
within the same session.

A configuration communicates through the Configuration object. It supports
accessing the containing CIO, the root Component, the project ID, a collection of

The Configuration Interface Object (CIO) 2-5

Access to Configurations

current validation failures, access to any runtime node based on its runtime ID, and
an indication if the complete configuration is satisfied. In addition, there are
methods for starting, ending, and rolling back configuration-level logic transactions;
these transactions are to maintain logic consistency and are not database
transactions. See Section 2.4.4, "Logic Transactions".

Reference
For reference documentation, see: Conf i gur ati on.

2.4.1 Creating and Deleting Configurations

Use Cl O. cr eat eConfi guration() to create a Configuration object, which is the
top-level entry point to a configuration. There are different ways to create a
Configuration, depending on your requirements.

» To create a Configuration using the name of a Model as specified in Oracle
Configurator Developer, use this form:

createConfiguration(java.lang. String proj ect Nang,
oracl e. apps. f nd. cormon. Gont ext ¢t x)
= To create a Configuration using the ID of the root node of your Model, use this
form:
creat eConfiguration(int rootNodel D,

or acl e. apps. f nd. cormon. Gont ext ct x)

To determine the root node ID, you would query the Oracle Configurator
schema, which is described in the Oracle Configurator Technical Reference Manual.
Such a query might be:

SELECT PS NCIE | D FROM CZ_PS NCDES WERE NAME = ' QND744" ;

Both ways of creating a Configuration object require a database context object, as
discussed in Step 3 of Section 2.3 on page 2-4.

For reference documentation on the database context object, see: CZCont ext .

To delete all runtime structure and memory associated with a configuration, use
Cl O cl oseConfi guration()

To get the CIO that created the configuration, use Confi gurati on. getCl ().

Example 2-2 Creating New Configuration Objects
/] create the database context object

2-6 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Configurations

ctx = new CZQont ext ("j dbc: or acl e: t hi n: @er ver 01: 1521: si d01", "appl syspub”,
"pub”, "apps");

/] create Configuration using Project nane and Gontext

cfg prj = createConfiguration(“Project 10", ctx);

/] create Gonfiguration using I D of root node of Mbddel and Context
cfg id = createConfiguration(1221, ctx);

2.4.2 Saving and Restoring Configurations

Use Confi guration. saveNew() to Save an entirely new Configuration object
into the Oracle Configurator schema.

Use Confi guration. save() tosavesubsequent changes to a Configuration
object created with saveNew(), or to a Configuration object restored with
ClOrestoreConfiguration().

Use Cl O restoreConfiguration() torestore a Configuration object from the
Oracle Configurator schema.

Use Configuration. saveNewRev() tosave a new revision of the restored
Configuration object.

Use Configuration.saveAs(configHeaderl D, revNunber) tosave the
current Configuration object over a different Configuration already saved in the
database. You use the conf i gHeader | D and revNumber toopena
configuration header object and replace the configuration in it.

Note: Do not save a Configuration object during a logic
transaction (see Section 2.4.4). You may miss some validation
messages that are not available until the transaction is committed.

2.4.3 Access to Configuration Parameters

If you are using Oracle Configurator in a web deployment, you can use the CIO to
allow a Functional Companion to obtain a list of the configuration inputs
(initialization parameters) that were passed from your application to your
configuration Model.

Create a Functional Companion that calls
Confi guration. getl nitParaneters(), which returns a NameValuePairSet
object. This object contains all the parameter values stored by the Oracle

The Configuration Interface Object (CIO) 2-7

Access to Configurations

Configurator Ul Server when it processed the initialization message sent by your
application to the Oracle Configurator Ul Servlet.

See the Oracle Configurator Custom Web Deployment Guide for more information.

Reference
For reference documentation, see: NaneVal uePai r Set .

2.4.4 Logic Transactions

In order to help you maintain consistency in interactions with the Oracle
Configurator logic engine, you can use configuration-level logic transactions. A logic
transaction comprises all the logical assertions that constitute a user interaction. At
the end of a transaction, the CIO returns a list of all validation failures. See

Section 2.8, "Validating Configurations".

The Configuration object, or acl e. apps. cz. ci 0. Confi gurati on, provides a
set of methods for starting, ending, and rolling back configuration-level logic
transactions. Note that logic transactions are not database transactions.

Inside a transaction, the normal course of action is to set the logical states and
numeric values of runtime nodes (see Section 2.5.5 and Section 2.5.6).

» UseConfiguration. begi nConfigTransacti on() to create anew
transaction, returning a ConfigTransaction object. After performing the desired
series of operations (e.g., setting states and values), you must end, commit, or
roll back the transaction by passing the ConfigTransaction object to one of the
mutually exclusive methods that finish the transaction:

endConfi gTransacti on
conmi t Confi gTransacti on
rol | backConfi gTransaction

=« Configuration.endConfigTransaction(transacti on) ends the
transaction begun with begi nConf i gTr ansact i on() , without committing it
(thus skipping validation checking).

= Configuration.commtConfigTransaction(transaction) commits
the given transaction or series of nested transactions, propagates the effect of
user selections throughout the configuration Model, and triggers validation
checking (see Section 2.8, "Validating Configurations").

» Configuration.rollbackConfigTransaction(transacti on)rolls
back the unfinished transaction, undoing the operations performed inside it.

2-8 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Nodes of the Model at Runtime

You can nest intermediate transactions with begi nConf i gTr ansacti on() and
endConf i gTransact i on, delaying validation checking until you call

conmi t Confi gTransacti on() . You must end or commit inner transactions
before ending or committing the outer ones that contain them. When rolling back
unfinished transactions, with r ol | backConf i gTr ansacti on(), you can roll
back outer transactions, which automatically rolls back the inner transactions.

When beginning a transaction, you can autocommit it, by setting the optional
boolean aut oConmi t argument to begi nConfi gTransacti on() toTRUE. If
no argument is set, then the transaction inherits the autocommit state of its parent
(outer) transaction. If an outer transaction sets aut oConmi t to TRUE, then inner
transactions can override it to either TRUE or FALSE. If an outer transaction sets
aut oConmi t to FALSE, then inner transactions cannot override it; they will
always inherit FALSE.

Reference
For reference documentation, see: Conf i gur ati on.

2.5 Access to Nodes of the Model at Runtime

The root Component, and every other node in the underlying runtime Model tree,
implements the IRuntimeNode interface. This interface exposes the type of the node
(based on a set of node type constants), its name, the database 1D, the database node
of which this runtime node is an instance, a runtime ID that is unique to this node
across all nodes created by this particular CIO, the parent node (which is null for
the root Component), a (possibly empty) collection of children, and information
about whether this part of the runtime tree has been satisfied. See Section 2.6,
"Introspection through IRuntimeNode".

Use | Runti meNode. get Confi gurati on() to get the configuration to which a
node belongs.

Reference
For reference documentation, see: | Runt i meNode.get Confi guration().

2.5.1 Opportunities for Modifying the Model

There are some restrictions on when you can modify the Model.

= Normally, you should use an Auto-configuration Functional Companion to
perform such modifications. To do so, you perform the actions in the body of
the | Funct i onal Conpani on. aut oConf i gur e() method. Your end user

The Configuration Interface Object (CIO) 2-9

Access to Nodes of the Model at Runtime

invokes the Auto-configuration companion by clicking a button in the User
Interface. See "The autoConfigure() Interface Method" on page 2-25.

= If you want to modify the Model automatically when a configuration instance is
created, restored, or saved (for instance, to perform certain selections when the
configuration session begins or ends), you must use the methods of the class
Aut oFunct i onal Conpani on. For reference, see AutoFunctionalCompanion
on page B-5.

= You should never modify the Model in a Initialization Functional Companion
(i.e.,in the | Functi onal Conpani on.initialize() method). See "The
initialize() Interface Method" on page 2-23.

= You should never modify the Model in a Validation Functional Companion (i.e.,
in the | Funct i onal Conpani on. val i dat e() method). See "The validate()
Interface Method" on page 2-26.

2.5.2 Accessing Components

Use Conponent . get Funct i onal Conpani ons() to return a list of all the
Functional Companions associated with this Component.

2.5.3 Adding and Deleting Optional Components

The Component set represents a set of similar Components that can be added and
deleted dynamically. Each Component set implements the IRuntimeNode interface.

Use Conrponent Set . add() to an optional Component. The add() method can
throw a LogicalException exception if adding the Component causes a logical
contradiction.

Use Corrponent Set . del et e(component) to delete an optional Component.

2.5.4 Accessing Features

There are several specialized types of Features. Each Feature type supports the

| Runt i meNode interface, enabling you to use its general methods for working with
runtime nodes (see "Introspection through IRuntimeNode" on page 2-15). Each type
also supports its own interface with appropriately specialized methods.

BooleanFeatures have a boolean (true/false) value.

CountFeatures have both a boolean value, and an associated integer-valued
numeric count. The minimum value of the count must be greater than or equal to

2-10 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Nodes of the Model at Runtime

zero. The boolean value of a Count Feat ur es object is returned by its methods
hasMax() and hasM n().

IntegerFeatures have an integer numeric value. The value can be positive, negative,
or zero.

DecimalFeatures have a floating point value.
TextFeatures have a string value.

OptionFeatures have a logic value, and a set of options as children. You can use the
methods get M nSel ect ed() and get MaxSel ected(), of | Opti onFeature,
to determine the minimum and maximum number of a Feature’s child Options that
can be selected. If you do, first use hasM nSel ect ed() or hasMaxSel ect ed()
to determine whether there is a minimum or maximum number of Options.

Note: If, in Oracle Configurator Developer, you set the minimum
count of a Feature greater than or equal to zero, then the CIO treats
this as a CountFeature object. If you set the minimum count less
than zero, then the CIO treats this as a IntegerFeature object.

2.5.5 Getting and Setting Logic States

To interact with objects that have logic state, you implement the IState interface.
This interface contains:

= aset of input states, used to specify a new state for an object

FALSE The input state used to set an object to false.
TRUE The input state used to set an object to true.
TOGGLE The input state used to turn an object state to true if it is false or

unknown, and to make it unknown or false if it is true.

= aset of output states, returned when querying an object for its state

LFALSE The logically false output state, indicating that the state is false as a
consequence of a rule.

LTRUE The logically true output state, indicating that the state is true as a
consequence of a rule.

UFALSE The user false output state, indicating that a user has set this object to
false.

The Configuration Interface Object (CIO) 2-11

Access to Nodes of the Model at Runtime

UNKNOWN The unknown output state.

UTRUE The user true output state, indicating that a user has set this object to
true.

= aset of methods for getting and setting the object's state

get State() Gets the current logic state of this object.

setState(int state) Change the current logic state of this object.

The code fragment in Example 2-3, which uses get St at e() with UTRUE, is taken
from Section 4.2, "Basic Java Functional Companion", after the comment "//get the
necessary conponents fromthe configuration // line 61".

Example 2-3 Getting the state of a node

//get the necessary conponents fromthe configuration /1 line 61
baseConponent = (oracl e. apps. cz. ci 0. Gonponent) conp_
node. get Chi | dByNane(" Conponent - 1") ;

of = (Qpti onFeat ur e) baseConponent . get Chi | dByNane(" Feat ure-1");

op = (Qpti on)of .. get Chi | dByNare(" Qpti on-1");

int Feat = (I nt eger Feat ur €) baseGnponent . get Chi | dByNane("1 F-1");

//check if the optionis set to UIRE |If so, set the Integer val ue
to 5

if(op.getSate() == ISate. URE)

i nt Feat. set | nt Val ue(5);

Example 2-4 Setting the state of a node

The following code fragment, which uses set St at e() with TOGGLE, toggles the
state of the selected item in the Model tree.

private void toggl eSel ectedlten{) {
| Sate node = (I Sate)tree. get Last Sel ect edPat hConponent () ;

try {
node. set S ate(l Sate. TAZALE);

}
catch (Logi cal Exception le) {}

catch (Transacti onException te) {}

tree.repaint();

2-12 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Access to Nodes of the Model at Runtime

2.5.6 Getting and Setting Numeric Values

You can use the following methods to get and set the values of objects that have
numeric values.

For decimal values, use:

| Deci mal . set Deci mal Val ue()
| ReadOnl yDeci mal . get Deci nal Val ue()

For integer values, use:

I I nt eger. setl ntVal ue()
I I nt eger. getl ntVal ue()

The code fragment in Example 2-5 uses set | nt Val ue() to change the value of an
Integer Feature. Note that you can use the generalized IRuntimeNode interface for
flexibility in selecting a child node, and then cast the node object to a particular
interface to perform the desired operation on it.

Example 2-5 Setting a numeric value

/] select a node by name
IRunti neNode |imt = baseConp. get Chi | dByNane("Qurrent Linmit");

/] use an interface cast to set the node’ s val ue by the desired type
((I'lnteger)limt).setlntVal ue(5);

To determine whether a numeric value has violated its Minimum or Maximum
range, you may need to iterate through the collection of validation failures returned
by Confi gurati on. get Val i dati onFai | ures() after setting a value, for
instance with | | nt eger. set | nt Val ue() . See Section 2.8, "Validating
Configurations" for more background.

There is a subtlety that you should take note of.

| Deci mal . set Deci mal Val ue() does not throw a LogicalException when setting
the value of a decimal feature that exceeds the feature's Min/Max limits. The
collection of validation failures returned by

Configuration. getValidationFailures() doesnotinclude any failures
that result from setting a numeric value until the logic transaction has been closed,

The Configuration Interface Object (CIO) 2-13

Access to Nodes of the Model at Runtime

so there is no way to roll back a transaction in which a Min/Max violation has
occurred. Here is a suggested method for dealing with this situation:

1. Open a transaction.

2. Set the new value.

3. Close the transaction.

4. Get the collection of validation failures for the configuration.
5

If the last transaction caused a Min/Max violation, then call
Confi gurati on. undo(), which retracts the last transaction.

This situation illustrates why it is a good practice to perform the setting of a single
value inside a logic transaction. You can always undo it if the result is
unsatisfactory.

2.5.7 Accessing Properties

You can determine which Properties belong to a runtime node, then use methods of
the class Property to obtain information about the Properties.

Use | Runt i neNode. get Properties() to geta collection of the properties
associated with a node.

Use | Runt i neNode. get PropertyByNane() to geta particular property of a
node, based on its name.

When you have the Property, use methods of the class Property, such as
get St ri ngVal ue(), to obtain specific information.

2.5.8 Access to Options

Option features have special methods for selecting options and querying for
selected options. The sel ect Qpt i on() method implements mutual exclusion
behavior for option features with a min/max of 1/1 by deselecting a currently
selected option before selecting the new option. The get Sel ect edOpt i on()
method throws the TooManySelectedException if more than one option is selected
in the feature.

An option is a child of an option feature which supports a true/false logic state and
a count. Options implement the IRuntimeNode interface.

2-14 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Introspection through IRuntimeNode

You can use the interface class IOption to select, deselect, and determine the
selection state of Options.

Table 2-2 Methods of the Interface Class 10ption

Method Action

desel ect () Deselect this Option.

i sSel ected() Returns true if this Option is selected, and false otherwise.
sel ect () Select this Option.

The code fragment in Example 2—6 displays a “check” icon if an Option of a runtime
node is selected, and displays an “unsatisfied” icon if the node is logically
unsatisfied:

Example 2-6 Testing whether an option is selected, or satisfied

| Runti neNode rtNode = (I Runti neNode) val ue;
if (value instanceof |Qption) {
| Option optionNode = (1 Qption)val ue;
if (optionNbde.isSelected()) {
set | con(checkl con) ;

}
} elseif (rtNode.islhsatisfied()) {

set | con(unsat | con);

}

return this;

2.6 Introspection through IRuntimeNode

You can get information about a node in a Model at runtime by using methods of
the interface class IRuntimeNode. This helps you to write “generic” Functional
Companions, which can interact with a Model tree dynamically, without having
prior knowledge of its structure.

Table 2-3 Methods of the interface class IRuntimeNode

Method Action

get Chi | dByl D(i d) Gets a particular child identified by its ID.

get Chi | dByNane(nane) Gets a particular child identified by its name.

get Chi l dren() Gets the children of this runtime configuration node.

The Configuration Interface Object (CIO) 2-15

Introspection through IRuntimeNode

Table 2-3 (Cont.) Methods of the interface class IRuntimeNode

Method

Action

get Chi | drenByType(type)

get Confi guration()
get Dat abasel D()

get Description()
get Name()

get Parent ()

get Properties()

get Pr oper t yByNane(nane)

get Runti nel IX()
get Sel ecti onLi nel ()

get Type()
hasCount ()
hasDeci mal Val ue()

hasDescri ption()

hasSel ecti onLi nel D()

hasSt at e()
hasText Val ue()
i sNative()

i sUnsati sfied()

i sUnsati sfi edNode()

Gets all of the children of a particular type.
Gets the configuration to which this node belongs.

Gets the database ID of the node. This is the field CZ_PS_
NODES.PS_NODE_ID in the Oracle Configurator
schema, described in the Oracle Configurator Technical
Reference Manual.

Returns the design-time description of the runtime node.
Gets the name of the node.
Gets the parent of the node.

Returns a collection of the properties associated with this
node. The collection contains items of the type Property.

Returns a particular property of the node, based on its
name. Returns null if a property of the given name does
not exist.

Gets the runtime ID of the node.

Returns selection line ID (configuration output database
ID) for node.

Gets the type of this node.
Returns true if the node has an object count.
Returns true if the node has a decimal value.

Returns true if there is a design-time description of the
runtime node.

Returns true if node has a selection line ID (configuration
output ID), false if no

Returns true if the node has a logical state.
Returns true if the node has a text value
Returns true if this is a native BOM node.

Returns true if this particular node, or any one of its
children, has not been completely configured.

Returns true if this particular node has not been
completely configured.

2-16 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Introspection through IRuntimeNode

Table 2-3 (Cont.) Methods of the interface class IRuntimeNode

Method Action

toString(description) Returns a String representation of this node, based on
whether the client demands a description (if there is one)
or just a name.

Reference
For reference documentation, see the Methods summary for: | Runt i meNode.

The code fragment in Example 27 displays a “check” icon if an Option of a runtime
node is selected, and displays an “unsatisfied” icon if the node is logically
unsatisfied:

Example 2-7 Testing whether a node is selected, or satisfied

| Runti neNode rtNode = (I Runti neNode) val ue;
if (value instanceof |Qption) {
| Option optionNode = (1 Qption)val ue;
if (optionNbde.isSelected()) {
set | con(checkl con) ;

} elseif (rtNode.islhsatisfied()) {
set | con(unsat | con) ;

}

return this;

The code fragment in Example 2-8 creates a Configuration object conf i g, sets
honeTheat er to the root Component of the configuration, and sets user Type to
the child node with the user-visible name “User Type”.

Example 2-8 Getting a child node by name

Gonfigurati on config = mci o. creat eConfiguration(mproduct);
| Runti neNode honeTheat er = confi g. get Root Conponent () ;

| Runti neNode user Type = honeTheat er. get Chi | dByNane(" User Type");
The code fragment in Example 2-9, which uses get Chi | dr enByType() , is taken

from Section 4.2, "Basic Java Functional Companion", after the comment "//get all
the text features // line 167".

The Configuration Interface Object (CIO) 2-17

Handling Logical Contradictions

Example 2-9 Collecting all child nodes by type
//get all the text features /1 line 167
text Feat Li st = conp. get Chi | dr enByType(conp. TEXT_FEATURE) ;
traver seTr ee(conp. get Chi | dren(),
conp. TEXT_FEATURE,
text Feat List);
iter = textFeatList.iterator();

2.7 Handling Logical Contradictions

When you make a request to modify the state of a logic network, for instance by
using | St at e. set St at e(st at e), the result may be a failure of the request
because of a logical contradiction. Such a failure will create and throw a logical
exception, accessed through either the Logi cal Excepti on or

Logi cal Overri dabl eExcepti on objects. A Logi cal Excepti on cannot be
overriden.

See "Overriding Contradictions" for details on using
Logi cal Overri dabl eExcepti on to override the contradiction.

Use Logi cal Excepti on.i sOverri dabl e() todetermine whether the
exception is an instance of Logi cal Overri dabl eExcepti on, which can be
overriden with its overri de() method.

Use Logi cal Excepti on. get Cause() to get the runtime node that caused the
failure.

Use Logi cal Excepti on. get Reasons() to get a list of reason strings for the
failure.

Use Logi cal Excepti on. get Message() to provide a message containing either
the cause or the reasons.

Reference
For reference documentation, see: Logi cal Except i on.

2.7.1 Generating Error Messages from Contradictions

You can use the Reason object to wrap the information returned by a contradiction,
in order to include information about internal error messages.

Reason(int type,
| Runti neNode node,

2-18 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Handling Logical Contradictions

java.lang. Sring nsg)

Constructs a Reason given all of its information:
type What type of reason this is.
node The node that caused the problem.

nsg The message returned.

Use Reason. get Msg() to get the message associated with this reason.
Use Reason. get Node() to get the node associated with this reason.
Use Reason. get Type() to get the type of reason held in this object.

Use Reason. t oSt ri ng() to convert this object to a string.

Reference
For reference documentation, see: Reason.

2.7.2 Raising Exceptions

When a Functional Companion is invoked, the Oracle Configurator UI Server wraps
a transaction around this invocation. A contradiction that is not handled in your
code, and is not rolled back inside the Functional Companion, may result in a fatal
exception. If there is a fatal exception, the Ul Server kills the configuration session
(dropping any open transactions), and displays a message to the end user, who
cannot proceed with the configuration.

In the current version of the CIO, you can raise a FuncConpMessageExcepti on,
which allows you to present a dialog box displaying a specified message, and the
name of the Functional Companion that raised the exception. When the end user
dismisses the dialog box, the UI Server commits the open CIO transaction, and
allows the end user to proceed with the configuration. It is possible that the Model
can be left in an uncertain state.

This situation can be a particular issue for auto-configuration Functional
Companions.

Reference
For reference documentation, see: FuncConpMessageExcept i on.

The Configuration Interface Object (CIO) 2-19

Handling Logical Contradictions

2.7.3 Overriding Contradictions

Your Oracle SellingPoint application or Functional Companion can provide a
message to your user, and ask whether the contradiction should be overridden.

If a logical contraction can be overriden, then a Logi cal Overri dabl eExcepti on
is signalled, instead of a Logi cal Excepti on.

Logi cal Overri dabl eExcepti on isa subclass of Logi cal Excepti on that
addsanoverride() method. Use

Logi cal Overri dabl eExcepti on. overri de() to override the contradiction.

Both types of exceptions (Logi cal Excepti on and

Logi cal Overri dabl eExcepti on) may be thrown back from any of the "set"
methods (like set St at e) or from

Confi guration. comm t ConfigTransaction(transacti on).If youwant to
override the overridable exception you have to call its over ri de() method, which
can also throw a Logi cal Except i on. This means that even when you try to
override the exception you still trigger a contradiction and cannot continue. If the
override succeeds then you still need to call commi t Confi gTr ansacti on() to
close the transaction. If you don't want to override or if you get a

Logi cal Excepti on youneed tocallr ol | backConfi gTransacti on() to
purge it. Example 2-10 is a code fragment that illustrates this point. Note that the
operations represented with <ASK “text”> and <SHOW “text”> are not part of the
CIO but suggest where your own Functional Companion should try to handle the
situation.

Example 2-10 Handling and overriding Logical Exceptions

try {
/] begin a transaction

GonfigTransaction tr = confi g. begi nConfi gTransaction();

[/l call the "set" nethod
optl.setSate();

// commt the transaction
confi g. conmt Gonfi gTransaction(tr);
}
cat ch(Logi cal Overri dabl eException | oe) {
proceed = <ASK "Do you want to override?">;
if (! proceed) {
rol | back@nfi gTransaction();

}

el se {

2-20 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Validating Configurations

try {
// override the contradiction and ...

| ce. override();
/1 ... finish the transaction
commi t Gonfi gTransaction();

}
catch (Logi cal Exception le) {

/1 we cannot do anything
<SHON"Cannot be overri den">
config.roll backGonfi gTransacti on(tr);

}
}

}
catch (Logi cal Exception le) {

/1 we cannot do anything
<SHON" Cannot be overri den">
config.rol | backGonfi gTransacti on(tr);

}

Reference
For reference documentation, see: Logi cal Over ri dabl eExcepti on.

2.8 Validating Configurations

You want to be able to check whether a Configuration is valid (that is, does not
violate the rules associated with it).

The CIO validates a Configuration after all logical assertions that constitute a user
interaction are performed. This corresponds exactly to the length of a logical
transaction. See Section 2.4.4, "Logic Transactions".

Validation checking and reporting occur when a logical transaction is ended by
using Confi guration. commi t Confi gTransaction(transaction) or
Configuration.rol |l backConfi gTransacti on(transacti on).

After a committal or rollback, the CIO traverses the nodes of the Model, checking
for validation failures, selected items and unsatisfied items. These are kept in a set
of collections maintained on the Configuration.

At this point, you can call the following methods of
oracl e. apps. cz.cio. Configuration:

The Configuration Interface Object (CIO) 2-21

Standard Interface Methods for Functional Companions

get Val i dat i onFai | ures() Actually returns a collection of
"ValidationFailure" objects. Call this after
committing or rolling back a transaction, in order
to inspect the list of validation failures.

get Sel ectedl tens() Returns a collection of selected items as a
St at usl nf o structure indicating the set of
selected (true) items in the Configuration.

get Unsatisfiedltens() Returns a collection of unsatisfied items as a
St at usl nf o structure indicating the set of
unsatisfied items in the Configuration.

As nodes become selected they have a status of STATUS_NEW. If they continue to
be selected since the last transaction their status is STATUS_EXISTING. If they
become unselected, their status becomes STATUS_DELETED until the next
transaction at which time they will be removed from the collection.

If you are writing a Functional Companion, the val i dat e() method should return
a list of Conpani onVal i dat i onFai | ur e objects in the event of a validation
failure. This allows you to return more than one failure. Your val i dat e() method
can include several tests; you can track which ones failed, and why. See

Section 2.9.3, "The validate() Interface Method".

Reference
For reference documentation, see: Val i dat i onFai | ur e and Confi gur ati on.

2.9 Standard Interface Methods for Functional Companions

You provide functionality for your Functional Companion by implementing body
code for the methods described in this section. For particulars that apply to the
languages currently supported by the CIO, and examples, see Section 1.3, "Building
Functional Companions in Java".

These methods are invoked by your Oracle SellingPoint application, through the
CIO, in response to program events or the actions of end users. The type of method
invoked for each Component is determined when you associate the Component
with a Functional Companion in Oracle Configurator Developer. See Section 1.4,
"Incorporating Functional Companions in your Application" for details.

These methods are invoked by the CIO for each Functional Companion object that it
creates for the Components in your Model. Note that your code does not invoke

2-22 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Standard Interface Methods for Functional Companions

these methods directly; that is done by the CIO. Rather, you implement the body of
each method, using the API provided by the CIO to communicate with your Model.

The body of any or all of these methods can be empty. Your Functional Companion
object has to implement only those methods indicated in Oracle Configurator
Developer.

The interface class that defines these methods is:

oracl e. apps. cz. cio. | Functi onal Conpani on

Reference
For reference documentation, see: | Funct i onal Conpani on.

Table 2-4 Standard methods of the IFunctionalCompanion interface

Method Purpose Details in
initialize Saves information about the Model and performs any ~ Section 2.9.1
actions needed to initialize the Functional Companion.
aut oConfigure Performs a programmatic configuration step. Section 2.9.2
val i dat e Programmatically checks that a configuration is valid Section 2.9.3
and throws a LogicalException object if the Model is not
valid.

gener at eQut put Generates output for this Component, for either a thick Section 2.9.4
or thin client.

term nate Performs any cleanup on this Functional Companion Section 2.9.5
that needs to occur before the Companion is destroyed.

2.9.1 The initialize() Interface Method

The | Functi onal Conpanion.initialize() method is called when the
companion is created. It connects a Functional Companion object to its
configuration modeling environment (for example, a running instance of the Oracle
SellingPoint application). Be aware that Functional Companions are created and
initialized after all subcomponent instances are created for the current Component
instance.

Your implementation of i ni ti al i ze() can include tasks that you wish to perform
when the Functional Companion is first created. For example, you might wish to
start writing audit messages to a log file, tracking the actions performed by your
end users.

The Configuration Interface Object (CIO) 2-23

Standard Interface Methods for Functional Companions

When an Oracle SellingPoint application runs, it creates runtime instances of all the
Components in the Model and their associated Functional Companions. When a
Functional Companion object is created, the CIO callsi ni ti al i ze() and passes
the following input parameters:

Name Type Description

node IRuntimeNode The node instance associated with the Functional
Companion being created. Specified in Configurator
Developer. Currently, only Components can be specified
in Configurator Developer.

nane String The name of the Functional Companion. Specified in
Configurator Developer.

description String A description of the Functional Companion. Specified in
Configurator Developer.

id int The database ID of the Functional Companion. Created
internally.

Note: Itis worth emphasizing that the node passed as the first
input parameter toi ni ti al i ze() isspecified in Oracle
Configurator Developer, when you create the Functional
Companion rule that associates a Model node with your Functional
Companion.

Your Functional Companion should ordinarily never directly call

Functi onal Conpani on.initialize(),since the CIO does that for you
automatically. However, if your Functional Companion extends

Functi onal Conpani on as its base class, and you wish to perform some
specialized initialization tasks, then the overriding i ni ti al i ze() method in your
class should call super.initialize().This passes some necessary variables to
the superclass (or acl e. apps. cz. ci 0. Funct i onal Conpani on) so that its
methods will work.

It is not normally necessary to implement your owni ni tiali ze() methodin
your Functional Companion. If you need to obtain the values of the input
parameters of Funct i onal Conpani on. i nitialize() foruseelsewherein
your Functional Companion, you can use the set of accessor methods of

Funct i onal Conpani on already provided in the

oracl e. apps. cz. ci 0. Funct i onal Conpani on base class. Each of these
methods returns the value of the corresponding input parameter:

2-24 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Standard Interface Methods for Functional Companions

get Runti nreNode() Returns the runtime node to which this functional is associated.
get Nane() Returns the name of the functional companion.
get Descri ption() Returns the description of the functional companion.

get I D() Returns the database ID of the functional companion.

Note: Currently, in Configurator Developer, you can only
associate a Functional Companion with a Component (which
corresponds to the node parameter ofi ni ti ali ze().However,
to accommodate possible future enhancement of Configurator
Developer, the | Funct i onal Corrpani on interface allows any
runtime node to be associated with your Functional Companion.

Reference

For reference documentation, see: i ni ti al i ze(| Runti neNode, Stri ng,
String, int).

2.9.2 The autoConfigure() Interface Method

The | Funct i onal Conpani on. aut oConf i gur e() method is called at the
request of the controlling User Interface, and can set states in the Model, add
optional Components, and other tasks that modify the Model.

This method performs an automatic configuration on the Model. This action can
include changing the logical state of Options, or adding nodes underneath the
selected Component instance in the Model tree.

Your implementation of aut oConf i gur e() can include configuration actions that
you wish to be performed before your end users arrive at a certain point in a
configuration session, or as the result of certain choices that they make.

The Configuration Interface Object (CIO) 2-25

Standard Interface Methods for Functional Companions

Note: In the current version of Release 11, a contradiction that is
not handled in your code, and is not rolled back, may result in a
fatal exception, since the Oracle Configurator Ul Server may not be
able to commit the overarching transaction, or provide adequate
feedback. This can be an issue for auto-configuration Functional
Companions.

For reference documentation, see:
FuncConpMessageExcepti on.

Warning: Ordinarily, you cannot use an external program to
modify an open configuration asynchronously. Doing so
circumvents the Oracle Configurator Ul Server, which can result in
problems with multi-threading and updating of the display in the
user interface. The key exception to this restriction is the execution
of the body of the aut oConfi gure() method. When you use
aut oConfi gure() tomodify the Model, you must finish all
modifications before returning from the method. This allows the Ul
Server to update the display to reflect any modifications.

Reference
For reference documentation, see: aut oConfi gure().

2.9.3 The validate() Interface Method

The | Functi onal Conpani on. val i dat e() method is called automatically when
a logical transaction takes place, and should returna Li st of
Conpani onVal i dat i onFai | ur e objects if the Model is not valid.

This method performs a functional validation for the selected Component instance
each time the end user selects a node in the Model (for example, in the
Configurations section of the Oracle SellingPoint application).

You should not modify the Model in a validation function. Doing so can cause
unexpected application failures.

Your implementation of val i dat e() can include tasks that you wish to perform
whenever your end users make any selection. For example, you might wish to
perform a calculation based on the object count of the selected Component, and

2-26 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Standard Interface Methods for Functional Companions

present the end user with a notification if the result is outside a range that you
define.

If the validation fails, then information about the failure is gathered by the CIO in a
Li st of Conpani onVal i dat i onFai | ur e objects.

The general structure of your implementation of val i dat e() should be:
1. Collect inputs from the Model.

2. Call a generic validation function that you define outside the body of
val i date().

3. Propagate the result back as the value of the function, either null ora Li st of
Conpani onVal i dat i onFai | ur e objects.

Reference
For reference documentation, see: val i dat e() .

2.9.4 The generateOutput() Interface Method

The gener at eQut put () method is invoked at the request of the controlling User
Interface.

Your implementation of gener at eQut put () might include tasks such as writing
to a database, creating a report, or producing a visualization of the end user’s
configuration choices.

There are two versions of gener at eQut put () :

= “thick client” version
public String generateQutput();
A thick client architecture is one in which the configuration Model, and the user
interface for manipulating it, both reside on the same client machine. The thick

client architecture allows your Functional Companion’s Output method to
produce output windows directly on the client machine.

This version is invoked when your Functional Companion operates with the
Oracle SellingPoint application. (Note: The returned string is ignored.)

s “thin client” version

public void generat eQut put (HtpServl et Response response) throws | CException

The Configuration Interface Object (CIO) 2-27

Standard Interface Methods for Functional Companions

A thin client, browser-based architecture is one in which the configuration
Model resides on a server, and the user interface resides on a client machine's
web browser. The thin-client architecture allows your Functional Companion’s
Output method to produce out in web-browser windows.

This version is invoked when your Functional Companion operates in a web
deployment.

See Section 4.3, "Thin-Client generateOutput() Functional Companion" for an
example.

Currently, there is no mechanism for output generated through
gener at eQut put () to provide feedback to the User Interface or the runtime
Model.

Reference

For reference documentation, see: gener at eCut put () and
gener at eQut put (Ht t pSer vl et Response) .

2.9.5 The terminate() Interface Method

The | Functi onal Conpani on. t er m nat e() method is called automatically by
the CIO when the Component that the Functional Companion is attached to is
deleted from the running Model.

Your implementation of this method can include tasks that you wish to perform
when the Functional Companion is deleted. For example, ifi ni ti al i ze() opens
a file and reads some data, t er m nat e() would close the file.

Your Functional Companion should ordinarily never directly call

Functi onal Conpani on. t er m nat e(), since the CIO does that for you
automatically. However, if your Functional Companion extends

Functi onal Conpani on as its base class, and you wish to perform some
specialized termination tasks, then the overriding t er mi nat e() method in your
class should call super.term nate().

Reference
For reference documentation, see: t er mi nat e() .

2-28 Oracle Configuration Interface Object (CIO) Developer’'s Guide

3

Reference Documentation for the CIO

Reference documentation for the Oracle Configuration Interface Object is provided
in the form of pages generated by the Javadoc tool from the source code for the CIO.

For the main entry point to these pages, follow this link:

s CIO Package and Related Classes

Tips

Here are some tips on using the generated reference documentation:
= Use the Bookmarks pane to navigate through the reference.

= Use the Contents and Index to look up items alphabetically.

» Reminder: Constants are referred to in Java as “static variables,” and are listed
under the heading “Fields” in the class in which they are defined.

Reference Documentation for the CIO 3-1

3-2 Oracle Configuration Interface Object (CIO) Developer’'s Guide

A

Examples

This chapter contains code examples illustrating the use of Functional Companions
and the CIO. These examples are fuller and longer than the examples provided in
the rest of this document, which are often fragments. The examples here can be
compiled and used. See the cited background sections for details.

The examples given here are all in Java, and were compiled with JDK 1.1.8.

4.1 Initializing the CIO

For background, see Section 2.3, "Initializing the CIO". This example is intended for
custom user interfaces that use the CIO.

Example 4-1 |Initializing the CIO (Long Example)
inport java.io.*;

inport java.sql.*;

i nport oracl e. apps. cz. ci 0. *;

i nport oracl e. apps. cz. comon. *;

cl ass ci oExanpl e

{
private dOInitializedQ Q)

{
aoOcio =null;
CZOontext context = nul | ;

Sring jdbcDriver
nane of the JDBC dri ver

Sring dblURL

Sring dbQaner

"oracl e.jdbc.driver.Qacl eDriver"; /] Aass

"jdbc: oracl e: t hi n: @er ver 01: 1521: si dO1";
"apps";

Examples 4-1

Basic Java Functional Companion

Sring dbUsernane
Sring dbPassword

"appl syspub”;
"pub”;

try {
/1 Load the JDBC driver

d ass. f or Nane(j dbcDri ver);

/] BEstablish a connection to the database
context = new CZQont ext (dbUR., dblUser nane, dbPassword, dbOaner);
}
catch (A assNot FoundException cnfe) {
Systemout.printIn("Eror |oading class " + jdbcDriver);
Systemexit(0);

}

catch (SQ.Exception sqgle) {
Systemout.printIn("Eror in creating Gontext");
Systemexit(0);

}

try {
// Initialize the QO
cio=newaqQ);

}

catch (Exception e) {
Systemout. println("Exception in InitializedQO);
cio=null;

}

return cio;

4.2 Basic Java Functional Companion
For background, see Section 1.3, "Building Functional Companions in Java".

Example 4-2 implements all of the types of Functional Companions, which are
described in Section 1.1.1. The example implements the methods described in
Section 2.9, and assumes the structure of the Model shown in Figure 1-1.

Example 4-2 Basic Functional Companion: FuncCompTestl

i nport oracl e. apps. cz. ci 0. *;
inport comsun.java. util.collections.List; Il line 2
inport comsun.java.util.collections.Arraylist;

4-2 Oracle Configuration Interface Object (CIO) Developer’s Guide

Basic Java Functional Companion

inport comsun.java.util.collections.lterator;
inport java.aw.*;
inport java.aw.event.*;

public class FuncQonpTest1 ext ends Functi onal Gonpani on

{

oracl e. apps. cz. cio. | Runti neNode conp_node; // currently, only Conponents

Frane f;
java.awt . Li st uilList;

/**

* (onstructor:

* Can be used for any necessary set up.
*/

publ i ¢ FuncGonpTest 1()

{

}

/**

* Initialize: calls '"super' to get access to its functions.

* @aram conp_node - base node of functional conpanion (currently, only
Gonponent s)

* @aramnane - the name of the conpani on

* @aramdescription - a description of the conpanion

* @aramid - the db id of the conpani on

* Al of these paraneters, except 'id , are specified in the conpani on

* definitionin Developer. idis created internally.

*/

public void initialize(lRunti meNode conp_node, Sring nane, Sring
description, int id)

{

thi s. conp_node = conp_node;

super.initialize(conp_node, nane, description, id); // line 35
}
/**

* Functionality inpl enentation:

* There are three types of functionality for conpani ons

* Any nunber of themcan be inplemented i n each conpani on.
*/

/**

* Type 1. Auto-configuration
* |f this method is defined, a button will appear in the U and the code

Examples 4-3

Basic Java Functional Companion

will
* be run when the button is clicked. It is used to make changes to the
* configuration.
*/
public voi d aut oGonfi gure()
/1 This exanpl e sinply checks if a certain value is true and, if so, sets
/lan integer feature value to 5;

QptionFeature of;

Qption op;

I nteger Feature intFeat;

oracl e. apps. cz. ci 0. Conponent baseConponent ;

try

/1 get the necessary conponents fromthe configuration /1 line 61
baseConmponent = (oracl e. apps. cz. ci 0. Gonponent) conp_

node. get Chi | dByNane(" Conponent - 1") ;
of = (Qpti onFeat ur e) baseCnponent . get Chi | dByNane(" Feat ure-1");
op = (Opti on)of . get Chi | dByNare(" Qpti on-1");
intFeat = (I nteger Feat ur €) baseGnponent . get Chi | dByNane("1 F-1");
//check if the optionis set to UIRE |If so, set the Integer val ue

to 5
if(op.getSate() == I|Sate. U'RE)
i nt Feat . set | nt Val ue(5);
}
cat ch(Exception e){Systemout.printin(e);}
}
/**

* Type 2. Validation
* |f this method is defined, the code will autonatically be run any tine
* a change is nade to the base node or one of its children in the
* configuration. It is used for ensuring that changes nade result in a
* valid configuration. |If not, the nethod returns a list of validation
failures.
*/
public List validate()
/1 This exanpl e defines 'mn' (presunably the nini numanount this
cust orrer
//may order) and checks to see if the value equals at |east this amount.
//ln the real world, you would want to get this value fromyour custoner
/] dat abase. For exanple, custoners in foreign countries nay have hi gher
ni ni muns
/lsince shipping is expensive.

4-4 Oracle Configuration Interface Object (CIO) Developer’s Guide

Basic Java Functional Companion

int mn=S8;

int val =0;

I ntegerFeature intFeat;

ArrayList failures = new ArrayList();

try
{

/1get the value of the integer feature in the configuration

oracl e. apps. cz. ci 0. nponent ¢ = (oracl e. apps. cz. ci 0. Conponent) conp_
node. get Chi | dByNang(" Conponent - 1") ;

intFeat = (IntegerFeature)c.getChil dByNane("IF1");

val = intFeat.getlntVal ue();

}
cat ch(NoSuch(hi | dException e){e. print SackTrace();}

//check to see if the value in the config is not at |east the min val ue
/1 line 102
if(!'(val >>mn))
failures.add(new Conpani onVal i dati onFai | ure("Val ue | ess than
nini munt, conp_node, this));

if(failures.isBEwty())
return nul | ;

el se
return failures;

}

/**
* Type 3: Qut put
* |f this method is defined, a button will appear in the U which, when
* pressed, will run the code below It is used to generate output to the
* user. Note: this uses the "thick client" version of generateQutput().
*/
public Sring generateQutput()
/1 This exanpl e opens up a wndowwth a list of some of the current
/] conponents of the configuration and their values. This exanple is
very basi c but
//the idea here is that data fromthe configuration can be used to
generate reports,
/Il graphs, nodels, etc.
{
I ntegerFeature intFeat;
Text Feature text Feat;

Examples 4-5

Basic Java Functional Companion

comsun.java. util.collections.List intFeatList, textFeatList;
Iterator iter;

//setup the U
if(f = null)
{
f = new Frane("Sone info about this config");
uiList = newjava.aw.List();
f.add(ui List);
f. addW ndowLi st ener (new WndowAdapt er () {
public voi d wi ndowd osi ng(WndowEvent e)

{ f. di spose();
}
s
}
ui List.removeA | ();
try
{

/lget all the integer features
i nt Feat Li st = conp_node. get Chi | dr enByType(conp_node. | NTEGER
FEATURE) ;
traver seTr ee(conp_node. get Chi | dren(),
conp_node. | NTEGER FEATURE,
intFeatList);
iter = intFeatList.iterator();

/ladd the integer features to the U
whi | e(i ter. hasNext ())

{
intFeat = (IntegerFeature)iter.next();
String nane = intFeat. get Nane() ;
int val = intFeat.getlntValue();
uiList.add("Integer Feature: " + name +" - " + val);
}
/lget all the text features /1 line 167

text Feat Li st = conp_node. get Chi | dr enByType(conp_node. TEXT _FEATURE) ;
t raver seTr ee(conp_node. get Chi | dren(),

conp_node. TEXT_FEATURE,

textFeat List);
iter = textFeatList.iterator();

//add the text features to the U

4-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

Basic Java Functional Companion

whi l e(iter.hasNext())

{
text Feat = (TextFeature)iter.next();
String nane = textFeat. get Nane();
Sring str = textFeat. get Text Val ue();
ui Li st.add("Text Feature: " + name + " - " + str);
}
f.setS ze(200, 200);
f.show();
}
cat ch(Exception e){e.printSackTrace();}
return nul | ;
}
/**

* This function is used by generateQutput() to run through the config tree
and

* pull out all of the itens of a specified type. It is not part of the
Funct i onal Conpani on APl ,

* but was witten for this specific conmpanion.

* @aramchildren thisis alist of all the children of the current node

* @aramtype this is the type we are currently searching for

* @aramresultList all itens of the specified type which are found are
added to this list

*/
private void traverseTree(comsun.java. util.collections.List children,
int type,
comsun.java. util.collections.List resultList)
if(!children.isEmpty())
{
Iterator iter = children.iterator();
whi | e(i ter.hasNext ())
{
RuntineNode rtn = (RuntineNode)iter. next();
resul tList.addAl | (rtn. get Chi | drenByType(type));
traverseTree(rtn. get Children(),
type,
resul tList);
}
}
}

Examples 4-7

Thin-Client generateOutput() Functional Companion

Notes on the example

Line 2
inport comsun.java.util.collections.List; // line 2

If you are using JDK 1.1.x, import com sun. java. util.collections. List,
which is provided in cz3r dpt y. j ar (see Section 1.3.2, "Installation Requirements
for Java Functional Companions" on page 1-7). If you are using JDK 1.2, then
import java.util.List.

Line 35
super.initialize(conp_node, nane, description, id); // line 35

Intheinitialize() method, call super.initialize(). This passessome of
the necessary variables to the superclass so that its methods will work.

Lines 61-68
/1 get the necessary conponents fromthe configuration // line 61

This block illustrates how to get the logical state of an Option (with get St at e),
test the logical state (with the expression == | St at e. UTRUE), and set the value of
a Feature (with set | nt Val ue).

Lines 102-109

/lcheck to see if the value in the config is not at least the nmin value // line
102

This block produces the Configuration Status message shown in Figure 1-3,
"Testing Functional Companions in the Oracle SellingPoint application."

4.3 Thin-Client generateOutput() Functional Companion

This Functional Companion uses the "thin-client"” version of gener at eCut put ()
(see Section 2.9.4 on page 2-27). When you invoke the Functional Companion from a
web browser, it produces an HTML representation of the runtime Model tree,
beginning at the node to which the companion is attached.

4-8 Oracle Configuration Interface Object (CIO) Developer’s Guide

Thin-Client generateOutput() Functional Companion

In order to use this type of Functional Companion, you must use Oracle
Configurator in a web deployment. See the Oracle Configurator Custom Web
Deployment Guide for details not covered in this document. Here is a summary of the
tasks:

Compile the Java source code into a class file.

In Configurator Developer, define a Functional Companion rule with these
options:

Option Choice

Type Output

Base Component the Component to which you want to attach the
Functional Companion

Implementation Java

language

Program String the name of the class file

In Configurator Developer’s User Interface module, define a button for the
Component that invokes the Functional Companion.

With your internet server, create an OC servlet.

Add the new class file for the Functional Companion to the CLASSPATH
environment variable for the servlet.

You can test the Functional Companion from Configurator Developer, by
specifying the URL of the servlet (in Tools>Options>Test>Servlet URL) and
clicking the Test button. This opens a web browser, passing it a URL that
includes an XMLmsg parameter containing the necessary OC initialization
message. This message contains database connection and login strings, and
specifies the Model to display, by means of the ui _def _i d parameter that
identifies the User Interface definition you created in Configurator Developer.

You can test the Functional Companion outside Configurator Developer, by
creating an HTML test page that substitutes for your host application.
(Examples are provided in the Oracle Configurator Custom Web Deployment
Guide.) This page sends an OC initialization message that specifies database
connection and login information, and the Model containing the Component.
You can copy these parameters from the URL produced by the Test button in
Configurator Developer. Test the Functional Companion by opening the HTML
test page.

Examples 4-9

Thin-Client generateOutput() Functional Companion

The example first calls the r esponse. set Cont ent Type() method of the
HttpServletResponse class, passing "text/html" as the output type. Then it calls
response. get Witer() togetan outputstream t o which the Functional
Companion can write HTML.

You can also write non-HTML output by setting a different content type (a MIME
type) and writing appropriate data to the output stream.

Example 4-3 Thin-client Output Functional Companion

inport java.io.lCException;

inport java.io.PrintWiter;

inport javax.servlet.http. HtpServl et Response;
inport comsun.java.util.collections.lterator;
i nport oracl e. apps. cz. ci 0. Funct i onal Gonpani on;
i nport oracl e. apps. cz. ci 0. | Runt i neNode;

public class Show&ructure extends Functional Conpani on {

publ i c voi d generat eQut put (H t pSer vl et Response response) throws | GException {
r esponse. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();
out.println("<htn>");
out. println("<head>");
out.printIn("<title>Runtine Mdel Structure</title>");
out.println("</ head>");
out. println("<body>");
out.println("<h3>Runti ne Mbdel Sructure</h3>");
| Runt i neNode root Node = get Runti neNode() ;
gener at eNode(out, root Node, 0);
out. println("</body>");
out.println("</htm>");
}

private static void generateNode(PrintWiter out, |Runti neNbode node, int
level) throws | CException {

for (int i =0; i <level; ++) {
out.print("--");
}
out. printl n(node. get Nane() + "
");
for (Iterator i = node.getChildren().iterator(); i.hasNext();) {

| Runt i neNode chi | dNode = (I Runti neNode)i . next ();
gener at eNode(out, child\ode, (level + 1));
}
}

4-10 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Thin-Client generateOutput() Functional Companion

Examples 4-11

Thin-Client generateOutput() Functional Companion

4-12 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Glossary of Terms

This glossary for Oracle Configurator is followed by a Glossary of Acronyms

Active Model

The part of Oracle Configurator runtime architecture that processes model structure
and rules to create configurations. Interfaces dynamically with the end user Active
Ul and data.

Active User Interface

The part of Oracle Configurator runtime architecture that provides the graphical
views necessary to create configurations interactively. Interfaces with the Active
Model and data to give users access to customer requirements gathering, product
selection, and customer-centric extensions.

Application Architecture

The software structure of an application at runtime. Architecture affects how an
application is used, maintained, extended, and changed.

Architecture

The software structure of a system. Architecture affects how a system is used,
maintained, extended, and changed. See also Application Architecture.

Beta

An external release, delivered as an installable application, and subject to system,
validation, and acceptance testing. Specially selected and prepared end users may
participate in beta testing.

Glossary of Terms-1

Bill of Material

A list of component items associated with a parent item (assembly) and information
about how each item relates to the parent item.

BOM
See Bill of Material.

BOM Item

The nodes imported into the Oracle Configurator Developer Model that correspond
to an Oracle BOM.

BOM Model

The imported Model node in the Oracle Configurator Developer that corresponds
to Standard Model in an Oracle BOM.

BOM OptionClass

The imported Model node in the Oracle Configurator Developer that corresponds
to Option Class in an Oracle BOM.

BOM Standardltem

The imported Model node in the Oracle Configurator Developer that corresponds
to Standard Item in an Oracle BOM.

Boolean Expression

An element of a component in the Model that has two options: true or false.

Bug
See Defect.

Build

A specific instance of an application during its construction. A build must have an
install early in the project so that application implementers can unit test their latest
work in the context of the entire available application.

Clo

See Oracle Configuration Interface Object.

Client

A runtime program using a server to access functionality shared with other clients.

Glossary of Terms-2

Comparison Rule

An Oracle Configurator Developer rule type to establish a relationship that
determines the selection state of a logical item (option, boolean feature, or
list-of-options feature) based on a comparison of two numeric values (numeric
features, totals, resources, option counts, or numeric constants). The numeric values
being compared can be computed or they can be discrete intervals in a continuous
numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type to establish a relationship among
features in the Model that specifies the allowable combinations of options. See also,
Property-based Compatibility Rule.

Compatibility Table

A type of compatibility relationship where the allowable combination of options are
explicitly enumerated.

Component

Represents a configurable element in a product. An element of the Model structure,
typically containing features. May correspond to one screen of selections in an
Oracle runtime configurator.

Component Set

An element of the Model that contains a number of components of the same type,
where each component of the set is independently configured.

Configuration

A specific set of specifications for a product, resulting from selections made in an
Oracle runtime configurator.

Configuration Model

The model structure and rules-based content of an Oracle runtime configurator. The
configuration model is constructed and maintained using Oracle Configurator
Developer, and is interpreted at runtime by the Active Model.

Configuration Rules

The Oracle Configurator Developer logic rules and numeric rules available for
defining configurations.

Glossary of Terms-3

Configurator

The part of an application that provides custom configuration capabilities.

Constraint Rule

An Oracle Configurator Developer rule type to create a logical relationship among
features and options. See also Rules.

Contributes to

An Oracle Configurator Developer numeric rule type for accumulating a total
value.

Consumes from

An Oracle Configurator Developer numeric rule type for specifying the quantity of
a resource used.

CRM

Customer Relationship Management. The aspect of the enterprise that involves
contact with customers, from lead generation to support services.

Customer

The person or persons for whom products are configured by end users of the Oracle
Configurator or other ERP and CRM applications.

Customer-centric Extensions

See Customer-centric Views.

Customer-centric Views

Optional extensions to core functionality that supplement product selection with
rules for pre-selection, validation, and intelligent views. View capabilities include
generative geometry, drawings, sketches and schematics, charts, performance
analyses, and ROI calculations.

Customer Requirements

The needs of the customer that serve as the basis for determining the configuration
of products, systems, and/or services. Also called Needs Assessment.

Data Import

Populating the Oracle Configurator schema with enterprise data from ERP or
legacy systems via import tables.

Glossary of Terms-4

Data Integration Object

Data Integration Object. A server in the runtime application that creates and
manages the interface between the client (usually a user interface like the Active
User Interface) and the Oracle Configurator schema.

Data Maintenance Environment

The environment in which the Oracle runtime configurator data is maintained.

Data Replication

The activity of downloading and uploading configuration, quote, and order data
between the Oracle Configurator schema on the enterprise server and Oracle
Configurator Mobile Database on end-user mobile laptop PCs. See also Data
Synchronization.

Datasource

A programmatic reference to a database. Referred to by a datasource name, or DSN.

Data Synchronization

A process for matching the data in the Oracle Configurator schema and the data
available to client processes such as the Oracle SellingPoint application. See also
Data Replication.

Default

The automatic selection of an option based on the pre-selection rules or the selection
of another option.

Defaults

An Oracle Configurator Developer logic rule to determine the logic state of features
or options in a default relation to other features and options. For instance, if you set
A to True by selecting it, B becomes true (selected) if it is available (not false) and
can be set to True without contradicting a non-default rule or a previous default
setting for B.

Defect

A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a “bug”.

Glossary of Terms-5

Defect Tracking

A system of identifying defects for managing additional tests, testing, and approval
for release to users.

Deliverable

A work product that is specified for review and delivery.

Demonstration

A presentation of the tested application, showing a particular usage scenario.

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compeatibilities interactively in a chart view.

Desigh Review

A technical review that focuses on application or system design.

Developer

The tool (Oracle Configurator Developer) used to create configuration models. The
person who uses Oracle Configurator Developer to create a configurator. See also
Implementer

DIO

See Data Integration Object.

End User

The ultimate user of the Oracle runtime configurator. The types of end users vary
by project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers
directly accessing the application via web or kiosk.

Enterprise

The systems and resources of a business.

Environment

The arena in which software tools are used, such as operating system, applications,
and server processes.

Glossary of Terms-6

ERP

Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

Excludes

An Oracle Configurator Developer rule type for determining the logic state of
features or options in an excluding relation to other features and options. For
instance, if you set A to True, B becomes false, since it is not allowed when A is true.
If you set A to False, there is no effect on B, meaning it could be true, false, or
unknown.

Extended Functionality

A release after delivery of core functionality that extends that core functionality
with customer-centric views, more complex proposal generation, discounting,
quoting, and expanded integration with ERP, CRM, and third-party software.

Feature
An element of the Model structure. A configurable parameter of a component.
Features can either have a value (numeric or boolean) or enumerated options.

Functional Companion

An object associated with a component that supplies methods that can be used to
initialize, validate and generate customer-centric views and outputs for the
configuration.

Functional Specification

Document describing the functionality of the application based on user
requirements.

Incremental Construction

The process of organizing the construction of the application into builds, where
each build is designed to meet a specified portion of the overall requirements and is
unit tested.

Implementation

The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed sales
configuration application. The Implementation stage includes gathering
requirements, defining test cases, designing the application, constructing and
testing the application, and delivering it to users.

Glossary of Terms-7

Implementer

The person who uses Oracle Configurator Developer to build the model structure,
rules, and Ul customizations that make up an Oracle runtime configurator.

Implies

An Oracle Configurator Developer logic rule type that determines the logic state of
features or options in an implied relation to other features and options. For instance,
if you set A to True by selecting it, B becomes true, since selecting A implies that B is
also selected. If you set A to False by deselecting it, there is no effect on B, meaning
it could be true false or unknown based on other relations B participates in. And if
you set B to True by selecting it, there is no effect on A, meaning it could be true
false or unknown based on other relations A participates in. But if you set B to False
by deselecting it, the relation of A implies B is preserved only by having A be false
(deselected) as well.

Import Tables

Tables mirroring the Oracle Configurator schema Item Master structure, but
without integrity constraints. Import Tables allow batch population of the Oracle
Configurator schema Item Master. Import Tables are used in conjunction with
extractions from Oracle Applications or legacy data to create, update, or delete
records in the Oracle Configurator schema Item Master.

Install

A program that sets up the local machine and installs the application for testing and
use.

Integration

The process of combining multiple software components and making them work
together.

Integration Testing

Testing the interaction among software programs that have been integrated into an
application or system.

Intelligent Views

Configuration output, such as reports, graphs, schematics, and diagrams, that help
to illustrate the value proposition of what is being sold.

Glossary of Terms-8

Item Master

A table in the Oracle Configurator schema containing data used to structure the
product. Data in the item master is either entered manually or imported from
Oracle Applications or legacy data.

Item Type

A table in the Oracle Configurator schema containing data used to classify the
product data in the item master table.

Log File
A file containing errors, warnings and other information output by the running
application.

Logic Rules

Logic rules directly or indirectly set the logical state (true, false, or unknown) of
features and options in the Model.

There are four (4) primary logic rules: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of features or options as operands. See also Logic,
Implies, Requires, Excludes, and Negates.

Maintainability

The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

Maintenance

The effort of keeping a system running once it has been deployed, through bug
fixes, procedure changes, infrastructure adjustments, data replication schedules, etc.
Maintenance Guide

A guide for maintaining a specific application or system. The maintenance guide
covers all aspects of maintenance described in the generic Maintenance Plan.
Maintenance Plan

A document that outlines what is required for successful maintenance, and who is
responsible for all the actions and deliverables of carrying out maintenance on a
system.

Glossary of Terms-9

MDUI
See Model-driven UL

Mobile Database
See Oracle Configurator Mobile Database.

Model

The entire hierarchical “tree” view of all the data required for configurations,
including model structure, variables such as resources and totals, and elements in
support of intermediary rules. May consist of BOM Items.

Model-driven Ul

The graphical views of the model structure and rules generated by the Active Ul to
present end users with interactive product selection based on configuration models.
Model Structure

Hierarchical, “tree” view of data in terms of product elements (Models, Products
Components, Features, Options, BOM Models, BOM OptionClasses, BOM
StandardlItems, Resources, and Totals). May include reusable components.

MRP

Manufacturing Resource Planning. A software system and process for monitoring
and maintaining the customer's manufacturing systems.

Negates

An Oracle Configurator Developer logic rule type that determines the logic state of
features or options in a negating relation to other features and options. For instance,
if you set one item in the relationship to True, the other item must be false. And if
you set one item to False, the other item must be true.

Node

The place in a Model occupied by a component, feature, option or variable, BOM
Model, BOM OptionClass, or BOM StandardItem.

Numeric Rules

Rules that are used to set the global parameters specified in product structuring. See
also, Contributes to and Consumes from.

Glossary of Terms-10

ocC

See Oracle Configurator.

Opportunity

The workspace in the Oracle SellingPoint application and Oracle Sales Online in
which products, systems, and/or services are configured, quotes and proposals are
generated, and orders are submitted.

Option
An element of the Model. A choice for the value of an enumerated feature.

A logical selection made by the end user when configuring a component.

Oracle Configurator

The product family consisting of development tools and runtime applications such
as Oracle Configurator schema, Oracle Configurator Developer, Oracle
Configurator window, and Oracle SellingPoint application. Also the Oracle runtime
configurator variously packaged for use in networked, mobile, or web
deployments.

Oracle Configurator Architecture

The application runtime architecture consists of the Active User Interface, the
Active Model, and the Oracle Configurator schema or Oracle Configurator Mobile
Database. The application development architecture consists of Oracle Configurator
Developer and the Oracle Configurator schema, with test instances of an Oracle
runtime configurator.

Oracle Configurator Developer
The suite of tools in the Oracle Configurator product family for constructing and
maintaining configurators.

Oracle Configuration Interface Object (CIO)

A server in the runtime application that creates and manages the interface between
the client (usually a user interface like the Active User Interface) and the underlying
representation of model structure and rules in the Active Model.

CIO protocols support creating and navigating the Model, querying and modifying
selection states, and saving and restoring configurations.

Glossary of Terms-11

Oracle Configurator Mobile Database

The runtime version of the standard Oracle Configurator schema that manages data
for the configuration model in a mobile deployment. The runtime schema includes
customer, product, and pricing data as well as data created during operation of an
Oracle Configurator.

Oracle Configurator Schema

The implementation version of the standard Oracle runtime configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system as
well as specific tables used during the construction of the configurator.

Oracle SellingPoint Application

The test application generated by Oracle Configurator Developer. Also a full
configuration environment with opportunity management, quotes, and proposals
for networked or mobile deployments.

Output

The output generated by a configurator, such as quotes, proposals, bills of material
(BOM), and customer-centric views.

PDM

Product Data Management. A software system that manages the version control of
product data.

Populator

An entity in the Oracle Configurator Developer that defines how to create a Model
from information in the item master.

Pre-selection

The default state in a configurator that defines an initial selection of components,
features, and options for configuration.

A process that is implemented to select the initial element(s) of the configuration.

Principal Design Consultant

Member of the project team responsible for architecting the design of the
application.

Glossary of Terms-12

Product

Whatever is subjected to configuration and is the output of the application.

The root element of the Model.

Product Family

A collection of products or product lines, which are organized as a group by a
provider or manufacturer.

Project

The workspace in Oracle Configurator Developer in which configurators are
constructed

Project Manager

A member of the project team who is responsible for directing the project during
implementation.

Project Plan

A document that outlines the logistics of successfully implementing the project,
including the schedule.

Property

A named value associated with an object in the Model or the item master. A set of
properties may be associated with an item type.

Property-based Compatibility Rule

A kind of compatibility relationship where the allowable combinations of options
are specified implicitly by relationships among property values of the options.

Prototype

A construction technique in which a preliminary version of the application, or part
of the application, is built to facilitate user feedback, to prove feasibility or examine
other implementation issues.

Reference

The use of a reusable component within the Model. Not implemented in Release 11i
or before.

Glossary of Terms-13

Regression Test

An automated test that ensures the newest build still meets previously tested
requirements and functionality.

Requires

An Oracle Configurator Developer logic rule type that determines the logic state of
features or options in a requirement relation to other features and options. For
instance, if you set one item in the relationship to True, the other item is required to
be true as well. And if you set one item to False, the other item must be false as well.
Resource

Staff or materials available or needed within an enterprise.

A variable in the Model used to maintain the balance of features not consuming
more of a specific resource than has been provided by other features.

Reusable Component

A component that is referenced from multiple locations in the Model. Not
implemented in Release 11i or before.

Reusability

The extent to and ease with which parts of a system can be put to use in other
systems.

Rules

Also called business rules or configuration rules. Constraints applied among
elements of the product to ensure that defined relationships are preserved during
configuration. Elements of the product are components, features, and options. Rules
express logic, numeric parameters, implicit compatibility, or explicit compatibility.
Rules are used to provide pre-selection and validation capability in an application.

See also Logic Rules and Numeric Rules.

Runtime

The environment and context in which applications are run or used, rather than
developed.

Sales Configuration

A part of the sales process to which configuration technology has been applied in
order to increase sales effectiveness and decrease order errors. Commonly identifies
needs assessment and product configuration.

Glossary of Terms-14

Server

Centrally located software processes or hardware, shared by clients.

Solution

The deployed system as a response to a problem or problems.

System

The hardware and software components and infrastructure integrated to satisfy
functional and performance requirements.

Test Case

A description of inputs, execution instructions, and expected results, which are
created for the purpose of determining whether a specific software feature works
correctly or a specific requirement has been met.

Total

A variable in the Model used to accumulate a numeric total, such as total price or
total weight.

Undetermined

The logic state that is neither true nor false, but unknown at the time a logic rule is
executed. This logic state is also referred to as Available, especially when considered
from the point of view of the Oracle runtime configurator end user.

Unit Test

Execution of individual routines and modules by the application implementer or by
an independent test consultant for the purposes of finding defects.

Update

Moving a production configurator to a new version of configuration model.

Upgrade

Moving the configurator to a new release of Oracle Configurator.

User

The person using the Oracle Configurator Developer tools and methods to build an
Oracle runtime configurator. See also end user.

Glossary of Terms-15

User Interface

The visible part of the application, including menus, dialog boxes, and other
on-screen elements. The part of a system where the user interacts with the software.
User Requirements

A description of what the Oracle Configurator or Oracle SellingPoint application is
expected to do from the end user's perspective.

User's Guide

Documentation on using the application or configurator to solve the intended
problem.

Validation

Tests that ensure that the configured components will meet specific performance or
acceptance criteria.

A type of functional companion that is implemented to ensure that the configured
components will meet specific performance or acceptance criteria.

Variable

Parts of the Model that are represented by Totals, Resources, or numeric Features.

Verification

Tests that check whether the result agrees with the specification.

Glossary of Terms-16

Glossary of Acronyms

API

Application Programming Interface

ATP

Available to Promise

BOM
Bill of Material

Clo

Configuration Interface Object

CM

Configuration Management

COM
Component Object Model

CRM

Customer Relationship Management

DBMS

Database Management System

DCOM
Distributed Component Object Modeling

Glossary of Acronyms-1

DHTML
Dynamic Hypertext Markup Language

DIO
Data Integration Object

DLL
Dynamically Linked Library

DXF
Drawing Exchange Format (AutoCAD drawings)

ECO
Engineering Change Order

ERM

Enterprise Relationship Management

ERP

Enterprise Resource Planning

ESD

Electronic Software Distribution

ESP

External Service Provider

ESS
Enterprise Selling System

HT
High Tech

HTML
Hypertext Markup Language

P

Industrial Products

Glossary of Acronyms-2

IS

Information Services

ISS

Interactive Selling System

ISV

Independent Software Vendor

LAN
Local Area Network

MAPI

Messaging Application Programming Interface

MC/S
Mobile Client/Server System

MDUI

Model-Driven User Interface

MES
Marketing Encyclopedia System (Catalog)

MIS

Management Information Systems

MRP

Manufacturing Resource Planning

MS

Microsoft

ocC

Oracle Configurator

OCX
Object Control File, OLE custom controls

Glossary of Acronyms-3

ODBC
Open Database Connectivity

OLE
Object linking and embedding

OoMS
Opportunity Management System

OOoD
Object-Oriented Design

ORB
Object Request Broker

PDM

Product Data Management

PIA

Project Impact Assessment

POS
Point of Sale

QA

Quality Assurance

RAD
Rapid Application Development

RDBMS

Relational Database Management System

RFQ
Request for Quote

ROI

Return on Investment

Glossary of Acronyms-4

SAS
Sales Analysis System

SCM
Supply Chain Management

SCS

Sales Configuration System

SE

Sales Engineer

SFA

Sales Force Automation

Sl

System Integrator

SOT
Strategic Options Theory

SQA
Software Quality Assurance

SQL
Structured Query Language

TERM

Technology-Enabled Relationship Management

TES
Technology-Enabled Selling

Ul

User Interface

VAR
Value-Added Reseller

Glossary of Acronyms-5

VB

Microsoft Visual Basic

WAN
Wide Area Network

WIP
Work In Progress

Glossary of Acronyms-6

A

ClO Package and Related Classes

Package Summary

Packages
Package oracle.apps.cz.cio
Package oracle.apps.cz.common

Package oracle.apps.cz.utilities

Provides classes used to create, save and restore configurations.

CIO Package and Related Classes A-1

A-2 Oracle Configuration Interface Object (CIO) Developer’'s Guide

B

Package oracle.apps.cz.cio

Description

Provides classes used to create, save and restore configurations. The top-level entry
point to this package is the configuration integration object, which provides
methods for creating, saving, restoring and deleting configurations. The
configuration can be manipulated by calling methods on the configuration object
and its tree of runtime objects.

Class Summary

Interfaces

|Atp

[Bomltem
ICompSetEventListener
IConfigEventListener
ICount

IDecimal
IDecimalMinMax

IFunctionalCompanion

lInteger
lIntegerMinMax

[Option

Implemented by objects that can have ATP calculated.

Implemented by all selectable BOM items.

Implemented by objects that want to find out about added components.
Implemented by objects that want to find out about added components.
Implemented by objects that have an associated integer count.

Implemented by objects that can both get and set a decimal value.
Implemented by objects that have a decimal minimum and maximum value.

Implemented by functional companion objects attached to components in order to
provide programatic functionality to a configuration model.

Implemented by objects that have an integer value.
Implemented by objects that have an integer minimum and maximum.

Implemented by objects that act as options.

Package oracle.apps.cz.cio B-1

Class Summary

|OptionFeature
[Price
IReadOnlyDecimal
IRuntimeNode
[State

[Text

Classes
AutoFunctionalCompanion
BomModel
BomNode
BomOptionClass
BomStditem
BooleanFeature

ClO

CompanionNode

CompanionRoot

CompanionValidationFailure
Component
ComponentNode
ComponentSet
ConfigTransaction
Configuration

CountFeature
DecimalFeature

DecimalNode

Implemented by objects that contain selectable options.
Implemented by objects that can be priced.

Implemented by objects that have a decimal value.
Implemented by all objects in the runtime configuration tree.
Implemented by objects that have logic state.

Implemented by objects that have a textual value.

Base object on which user Functional Companions can be based.
Represents configurable BOM Models.

Represents configurable BOM option classes.

Represents configurable BOM option classes.

Represents configurable BOM models.

Represents a feature with a boolean value.

Implements a configuration integration object that can be used to create, save,
restore and delete configurations.

Provides methods for extracting values from a model based on property
annotations.

Provides functional companion implementors with property-based feature
extraction.

Failure produced by a functional companion object.

Implements the runtime configuration behavior of products and components.
Represents a set of configurable components.

Represents a set of configurable components.

Represents a configuration transaction.

The top-level entry point to a configuration.

Represents a countable integer feature.

Represents a feature with a decimal value.

An abstract class implementing behavior common to objects with a decimal value.

B-2 Oracle Configuration Interface Object (ClO) Developer’s Guide

Class Summary

Factory

FunctionalCompanion

FunctionalCompanionException

IntegerFeature
IntegerNode

Option

OptionFeature
OptionFeatureNode
OptionNode

Property
ReadOnlyDecimalNode

Reason

Resource
RestoreValidationFailure
RuntimeNode

StateCountNode

StateNode
Statusinfo
TextFeature
TextNode

Total
ValidationFailure
Exceptions

AtpUnavailableException

Provides a class factory for the CIO to clients that do not support arguments to
constructors.

Base object on which user functional companions can be based.

This exception is used to indicate that an error occured somewhere inside the
functional companion.

Represents a feature with an integer value.

Represents a feature with an integer value.

Represents an option of an option feature.

Represents a feature with selectable options.

An abstract class implementing behavior commont to all features with options.
An abstract class implementing behavior common to all option-like objects.
Represents name/value properties associated with runtime nodes.

An abstract class implementing behavior common to objects with a decimal value.

This class wraps the information returned by a contradiction in order to include
information about internal error messages.

Represents a consumable resource.
Failure produced when restoring a configuration over a changed model.
Abstract class implementing common behavior across all runtime nodes.

Abstract class implementing common behavior for nodes with a logic state and
count.

Abstract class implementing common behavior across nodes with logic state.
Contains information about a status change for a particular runtime node.
Represents a feature that has a textual value.

Represents a feature that has a textual value.

Represents a total that has a decimal numeric value.

Implements behavior common to all validation failures.

Signals that the CIO ATP calculation functionality is not available.

Package oracle.apps.cz.cio B-3

Class Summary

BomExplosionException

FuncCompCreationException

FuncCompMessageException

IncompatiblelnputException

LogicalException
LogicalOverridableException
LogicalRuntimeException
MissingFileException
MissingLogicException

NoAtpCalculatedException

NoConfigHeaderException

NonPricedNodeException

NoSuchChildException

NotOneProductException

NotOneProjectException

PricingUnavailableException

SelectionNotMutexedException

TransactionException

Exception which is thrown when a client tries to create a configuration directly from
an Apps bill of material and there is a problem with the explosion of the bill.

Signalled if a functional companion cannot be created.

FuncCompMessageException is designed to be thrown from a functional
companion's autoConfigure() method code when the author of the companion
wants to display a BENIGN message in a dialog box to the end user.

Signalled if a particular input is of different type than the node it is trying to restore
over.

Signalled if a logical failure occurs.

Signalled if a logical contradiction occurs that can be overriden.
Signalled if a fatal logic exception occured.

Signalled if a particular logic file is missing.

Signalled if a particular logic record is missing.

Exception which is thrown when an ATP method is called on an item for which
ATP is not calculated.

Signalled if the configuration hasn't been saved yet.

Exception which is thrown when a pricing method is called on an item which
should not be priced.

Signalled if a requested child does not exist.

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project contains more than one or no
products.

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project name identifies more than one or
no projects.

Signals that the CIO pricing functionality is not available.

Signalled when an mutexed selection operation is performed on an option feature
that does not support mutexed selection.

Signalled if a particular logic file is missing.

B-4 Oracle Configuration Interface Object (ClO) Developer’s Guide

AutoFunctionalCompanion

oracle.apps.cz.cio
AutoFunctionalCompanion

Syntax
public class Aut oFunctional Conpani on ext ends Functi onal Conpani on

j ava. | ang. (oj ect

+--oracl e. apps. cz. ci 0. Funct i onal Gonpani on

+--oracl e. apps. cz. ci 0. Aut oFunct i onal Conpani on

All Implemented Interfaces:
IFunctionalCompanion

Description
Base object on which user Functional Companions can be based.

Provides the ability to modify ("side-effect") a configuration Model when a
configuration instance is initialized or saved. (This functionality is not allowed by
FunctionalCompanion and its interface class
IFunctionalCompanionIFunctional Companion.) To use this functionality, you
extend your own Functional Companion class from AutoFunctionalCompanion.

Member Summary

Constructors

AutoFunctionalCompanion()

Methods

onNew() Does nothing.
onRestore() Does nothing.
onSave() Does nothing.

Package oracle.apps.cz.cio B-5

AutoFunctionalCompanion

Constructors

AutoFunctionalCompanion()
public Aut oFuncti onal Conpani on()

Methods
onNew()
public void onNew()
Does nothing. Called right after the activation of a newly-created configuration.
onRestore()
public void onRestore()
Does nothing. Called after restoring a configuration.
onSave()

public void onSave()
Does nothing. Called before saving a configuration.

B-6 Oracle Configuration Interface Object (ClO) Developer’s Guide

AtpUnavailableException

oracle.apps.cz.cio
AtpUnavailableException

Syntax
public class At plhavai | abl eException extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. At pUnavai | abl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signals that the CIO ATP calculation functionality is not available.

Member Summary

Constructors
AtpUnavailableException(String)

AtpUnavailableException(String,
Object, Log)

Inherited Member Summary

Methods inherited from class java.lang.Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-7

AtpUnavailableException

Constructors

AtpUnavailableException(String)

public Atplhavail abl eException(java.lang. Sring reason)
AtpUnavailableException(String, Object, Log)

public Atplhavail abl eException(java.lang. Sring reason, java.lang. (bject
source, oracl e. apps. f nd. conmon. Log | og)

B-8 Oracle Configuration Interface Object (ClO) Developer’s Guide

BomExplosionException

oracle.apps.cz.cio
BomExplosionException

Syntax
public cl ass BonExpl osi onExcepti on extends java. | ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. BonExpl osi onExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a client tries to create a configuration directly from
an Apps bill of material and there is a problem with the explosion of the bill.

Member Summary

Methods
getExplosionDate()
getlnventoryltemld()

getOrganizationld()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

Package oracle.apps.cz.cio B-9

BomExplosionException

Inherited Member Summary

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods

getExplosionDate()
public java.util.Date get Expl osi onDate()

getinventoryltemid()
public int getlnventoryltemd()

getOrganizationid()
public int getQganizationld()

B-10 Oracle Configuration Interface Object (CIO) Developer's Guide

BomModel

oracle.apps.cz.cio
BomModel

Syntax
public class BonMbdel extends Bom\bde

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

I
+- - BoniNode

+--oracl e. apps. cz. ci 0. Bonmvbdel

All Implemented Interfaces:
|Atp, IBomitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM Models.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Package oracle.apps.cz.cio B-11

BomModel

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), areOptionsCounted(), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(),
getAtpNotifications(), getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getinventoryltemid(), getltemKey(), getListPrice(),
getMaxQuantity(), getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationld(), getPrimaryUomCode(), getState(),
getUomCode(), hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexedy(),
isRequired(), isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int), statesMatch(int,
int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IBomItem

getComponentCode(), getinventoryltemld(), getMaxQuantity(), getMinQuantity(), getOrganizationld(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

areOptionsCounted(), deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(),
hasMinSelected(), isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

B-12 Oracle Configuration Interface Object (CIO) Developer's Guide

BomModel

Inherited Member Summary

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed)(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-13

BomNode

oracle.apps.cz.cio
BomNode

Syntax
public abstract class Borm\bde extends (pti onFeat ureNode inpl enents | Bormtem

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

+--oracl e. apps. cz. ci 0. BomNode

Direct Known Subclasses:
BonMbdel , Bompti ond ass, Bon&tdltem

All Implemented Interfaces:
|Atp, IBonitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM option classes.

Member Summary

Methods
addAtpNotification(String)
areOptionsCounted()
calculateAtpDate()
clearAtpDate()

clearAtpNotifications()

B-14 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Member Summary

deselect()
getAtpDate()
getAtpNotifications()
getComponentCode()
getDefaultQuantity()
getDiscountedPrice()
getinventoryltemld()
getltemKey()
getListPrice()
getMaxQuantity()
getMaxSelected()
getMinQuantity()
getMinSelected()
getOrganizationld()
getPrimaryUomCode()
getState()
getUomCode()
hasDefaultQuantity()
hasMaxQuantity()
hasMaxSelected()
hasMinQuantity()
hasMinSelected()
isOptionMutexed()
isRequired()
isSelected()

isSelectionMutexed()

Package oracle.apps.cz.cio B-15

BomNode

Member Summary

select()
select(IOption)
setAtpDate(Date)
setState(int)

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int), statesMatch(int,
int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IOptionFeature

deselect(IOption), getSelectedOption(), getSelectedOptions()

B-16 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Inherited Member Summary

Methods inherited from interface IState

isUnknown(), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice
getDatabaselD(), getExtendedPrice(), getPricingNotifications()
Methods inherited from interface IAtp
getDatabaselD()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

addAtpNotification(String)
public void addAt pNoti fication(java.lang. Sring nessage)

areOptionsCounted()
publ i ¢ bool ean areQpti onsGount ed()

Specified By:
areOptionsCounted() in interface IOptionFeature

Specified By:
areOptionsCounted() in interface IOptionFeature

calculateAtpDate()
public void cal cul at eAt pDat e()

Package oracle.apps.cz.cio B-17

BomNode

clearAtpDate()
public void cl ear At pDat e()

clearAtpNotifications()
public void clearAt pNotifications()

deselect()
public void desel ect ()

Specified By:

deselect() in interface IOption

getAtpDate()
public java. util.Date get At pDate()

Specified By:
getAtpDate() in interface IAtp

getAtpNotifications()
public java.lang. Sring get A pNotifications()

Specified By:
getAtpNotifications() in interface IAtp

getComponentCode()
public java.lang. Sring get Conponent Gode()

Specified By:

getComponentCode() in interface IBomItem

getDefaultQuantity()
public int getDefaul tQuantity()

getDiscountedPrice()
publ i c doubl e get O scount edPri ce()

B-18 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

Specified By:

getDiscountedPrice() in interface IPrice

Specified By:

getDiscountedPrice() in interface IPrice

Overrides:
getDiscountedPrice() in class StateCountNode

getinventoryltemid)
public int getlnventoryltemd()

Specified By:

getInventoryltemlId() in interface IBomlItem

getltemKey()
public java.lang. Sring getltenkey()

Specified By:

getltemKey() in interface IPrice

Specified By:
getltemKey() in interface IAtp

Specified By:

getltemKey() in interface IPrice

Overrides:
getltemKey() in class StateCountNode

getListPrice()
publ i c doubl e getListPrice()

Specified By:

getListPrice() in interface IPrice

Package oracle.apps.cz.cio B-19

BomNode

Specified By:

getListPrice() in interface IPrice

Overrides:
getListPrice() in class StateCountNode

getMaxQuantity()
public int get MawxQuantity()

Specified By:
getMaxQuantity() in interface IBomltem

getMaxSelected()
public int get MxSel ected()

Specified By:
getMaxSelected() in interface IOptionFeature

Specified By:
getMaxSelected() in interface IOptionFeature

getMinQuantity()
public int getMnQuantity()

Specified By:
getMinQuantity() in interface IBomItem

getMinSelected()
public int getM nSel ected()

Specified By:
getMinSelected() in interface IOptionFeature

Specified By:
getMinSelected() in interface IOptionFeature

B-20 Oracle Configuration Interface Object (CIO) Developer's Guide

BomNode

getOrganizationld()

public int getQganizationld()

Specified By:

getOrganizationld() in interface IBomItem

getPrimaryUomCode()

getState()

getUomCode()

public java.lang. Sring getPri marylUonGode()

Specified By:

getPrimaryUomCode() in interface IBomItem

public int getSate()

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Specified By:
getState() in interface IState

Overrides:
getState() in class StateNode

public java.lang. Sring get UonCode()

Specified By:

getUomCode() in interface IPrice

Package oracle.apps.cz.cio B-21

BomNode

Specified By:
getUomCode() in interface IAtp

Specified By:

getUomCode() in interface IPrice

Overrides:
getUomCode() in class StateCountNode

hasDefaultQuantity()
publ i ¢ bool ean hasDef aul t Quanti ty()

hasMaxQuantity()
publ i ¢ bool ean hasMaxQuanti ty()

Specified By:
hasMaxQuantity() in interface IBomltem

hasMaxSelected()
publ i ¢ bool ean hasvaxSel ect ed()

Specified By:

hasMaxSelected() in interface IOptionFeature

Specified By:

hasMaxSelected() in interface IOptionFeature

hasMinQuantity()
publ i ¢ bool ean hasM nQuanti ty()

Specified By:

hasMinQuantity() in interface IBomItem

hasMinSelected()
publ i ¢ bool ean hasM nSel ect ed()

B-22 Oracle Configuration Interface Object (CIO) Developer’'s Guide

BomNode

Specified By:
hasMinSelected() in interface IOptionFeature

Specified By:
hasMinSelected() in interface IOptionFeature

isOptionMutexed()
publ i ¢ bool ean i sQpti onMut exed()

Specified By:
isOptionMutexed() in interface IOption

isRequired()
publ i ¢ bool ean i sRequi red()

Specified By:

isRequired() in interface IBomltem

isSelected()

publ i ¢ bool ean isSel ect ed()

Specified By:
isSelected() in interface IOption

isSelectionMutexed()
publ i c bool ean isSel ecti onMit exed()

Specified By:

isSelectionMutexed() in interface IOptionFeature

Specified By:

isSelectionMutexed() in interface IOptionFeature

Overrides:
isSelectionMutexed() in class OptionFeatureNode

Package oracle.apps.cz.cio B-23

BomNode

select()
public void sel ect()

Specified By:

select() in interface IOption

select(IOption)
public void sel ect (I Qption option)

Specified By:
select(IOption) in interface IOptionFeature

Specified By:
select(IOption) in interface IOptionFeature

Overrides:
select(IOption) in class OptionFeatureNode

setAtpDate(Date)
public void setAtpDate(java.util.Date atpDate)

setState(int)
public void setSate(int newxtate)

Specified By:

setState(int) in interface IState

Specified By:

setState(int) in interface IState

Specified By:

setState(int) in interface IState

Specified By:
setState(int) in interface IState

B-24 Oracle Configuration Interface Object (CIO) Developer’'s Guide

BomNode

Overrides:
setState(int) in class StateNode

Package oracle.apps.cz.cio B-25

BomOptionClass

oracle.apps.cz.cio
BomOptionClass

Syntax
public class BonQptiond ass extends Boniode

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

I
+- - BoniNode

+--oracl e. apps. cz. ci 0. BonOpti onCl ass

All Implemented Interfaces:
|Atp, IBonitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM option classes.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

B-26 Oracle Configuration Interface Object (CIO) Developer's Guide

BomOptionClass

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), areOptionsCounted(), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(),
getAtpNotifications(), getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getinventoryltemid(), getltemKey(), getListPrice(),
getMaxQuantity(), getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationld(), getPrimaryUomCode(), getState(),
getUomCode(), hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexed(),
isRequired(), isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int), statesMatch(int,
int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IBomItem

getComponentCode(), getinventoryltemld(), getMaxQuantity(), getMinQuantity(), getOrganizationld(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

areOptionsCounted(), deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(),
hasMinSelected(), isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

Package oracle.apps.cz.cio B-27

BomOptionClass

Inherited Member Summary

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed)(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-28 Oracle Configuration Interface Object (CIO) Developer's Guide

BomStdltem

oracle.apps.cz.cio
BomStditem

Syntax
public class Bon&tdltemextends Boribde

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

I
+- - BoniNode

+--oracl e. apps. cz. ci 0. BonStdl tem

All Implemented Interfaces:
|Atp, IBomitem 1Qount, I ption, | (ptionFeature, IPrice, IRunti neNode, | State

Description
Represents configurable BOM models.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Package oracle.apps.cz.cio B-29

BomStditem

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class BomNode

addAtpNotification(String), areOptionsCounted(), calculateAtpDate(), clearAtpDate(), clearAtpNotifications(), deselect(), getAtpDate(),
getAtpNotifications(), getComponentCode(), getDefaultQuantity(), getDiscountedPrice(), getinventoryltemid(), getltemKey(), getListPrice(),
getMaxQuantity(), getMaxSelected(), getMinQuantity(), getMinSelected(), getOrganizationld(), getPrimaryUomCode(), getState(),
getUomCode(), hasDefaultQuantity(), hasMaxQuantity(), hasMaxSelected(), hasMinQuantity(), hasMinSelected(), isOptionMutexedy(),
isRequired(), isSelected(), isSelectionMutexed(), select(), select(IOption), setAtpDate(Date), setState(int)

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions()
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getExtendedPrice(), getPricingNotifications(),
setCount(int), setDiscountedPrice(double), setListPrice(double), toString()

Methods inherited from class StateNode

isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int), statesMatch(int,
int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IBomItem

getComponentCode(), getinventoryltemld(), getMaxQuantity(), getMinQuantity(), getOrganizationld(), getPrimaryUomCode(),
hasMaxQuantity(), hasMinQuantity(), isRequired()

Methods inherited from interface IOptionFeature

areOptionsCounted(), deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(),
hasMinSelected(), isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

B-30 Oracle Configuration Interface Object (CIO) Developer's Guide

BomStdltem

Inherited Member Summary

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed)(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-31

BooleanFeature

oracle.apps.cz.cio
BooleanFeature

Syntax
public class Bool eanFeat ure extends & ateNode

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

+-oracl e. apps. cz. ci 0. Bool eanFeat ur e

All Implemented Interfaces:
| Runti neNode, |Sate

Description
Represents a feature with a boolean value.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateNode

B-32 Oracle Configuration Interface Object (CIO) Developer's Guide

BooleanFeature

Inherited Member Summary

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
setState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IState

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-33

Clo

oracle.apps.cz.cio
ClO

Syntax

public class A O extends java.lang. j ect

j ava. | ang. (hj ect

+--oracl e. apps.cz.cio.ClO

Description

Implements a configuration integration object that can be used to create, save,
restore and delete configurations.

Member Summary

Constructors

ClO()

Methods

clearLogicFile(Object)
clearLogicFileCache()

close()
closeConfiguration(Configuration)
closeTraceFile()

createConfiguration(int, Context)
createConfiguration(int, int, Context)
createConfiguration(int, int, Date,
Context)

createConfiguration(String, Context)

getActiveModelPath()

Constructs a newly allocated configuration integration object.

Clears only the key specified file from the LCE file cache
Clears all LogicFile objects from the logic file cache.
Closes the CIO object and all associated runtime objects.

Deletes all runtime structure and memory associated with a configuration.

Creates a new configuration based on a root model node ID representing a
configurable product or component.

Creates a new BOM explosion configuration based on inventoryltemld,
organizationld, and explosionDate representing a configurable product or
component.

Creates a new configuration based on a project name representing a configurable
product or component.

Gets the current active model path.

B-34 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

Member Summary

initTraceFile(String)
openTraceFile(String)

restoreConfiguration(DbConfigHeade Restores a configuration from the database.
r, Context)

restoreConfiguration(int, int, Context) Restores a configuration from the database.

setActiveModelPath(String) Sets the path to the directory where the CIO will look for logic files, and where it
will store logic files when generating them out of the database.

trace(String)

tracing()

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructors
CIO|)

public 4AQ)

Constructs a newly allocated configuration integration object.
Methods

clearLogicFile(Object)

public void cl earLogi cH | (j ava. | ang. (hj ect key)
Clears only the key specified file from the LCE file cache

clearLogicFileCache()

public voi d cl earLogi cH | eCache()
Clears all LogicFile objects from the logic file cache.

Package oracle.apps.cz.cio B-35

Clo

close()

public void cl ose()
Closes the CIO object and all associated runtime objects.

closeConfiguration(Configuration)

public void cl oseConfi guration(Configuration confi g)
Deletes all runtime structure and memory associated with a configuration.

Parameters:
confi g - the configuration to be deleted.

See Also:
Configuration

closeTraceFile()
public static void closeTraceFi | e()

createConfiguration(int, Context)

public Configuration createConfiguration(int rootNodel D,

oracl e. apps. f nd. coomon. Cont ext ct x)

Creates a new configuration based on a root model node ID representing a
configurable product or component.

Parameters:

r oot Nodel D- the ID of the DIO model node representing the product or
configuration to be configured.

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

B-36 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

See Also:
Configuration

createConfiguration(int, int, Context)

public Configuration createConfiguration(int projectlD int rootNodel D,
oracl e. apps. f nd. coomon. Cont ext ct x)

Deprecated.

Creates a new configuration based on a project ID and root model node ID both
representing a configurable product or component.

Parameters:
proj ect | D- the ID of the DIO project representing the product or configuration to
be configured.

r oot Nodel D- the ID of the DIO model node representing the product or
configuration to be configured.

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:
LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

createConfiguration(int, int, Date, Context)
public Configuration createConfiguration(int inventoryltemd, int
organi zationld, java.util.Date expl osi onDate, oracle. apps. f nd. common. Cont ext
ctx)
Creates a new BOM explosion configuration based on inventoryltemld,
organizationld, and explosionDate representing a configurable product or
component.

Package oracle.apps.cz.cio B-37

Clo

Parameters:
i nventoryltem d - the inventory item id of the BOM explosion model

or gani zat i onl d - the organization id of the BOM explosion model
expl osi onDat e - the effective date of the BOM explosion model

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:

NotOneProductException - if the specified project contains more than one or no
products

LogicalException - if a logic failure is encountered when initializing the
configuration.

See Also:
Configuration

createConfiguration(String, Context)

public Configuration createConfiguration(java.lang.String projectNane,

oracl e. apps. f nd. coomon. Cont ext ct x)

Creates a new configuration based on a project name representing a configurable
product or component.

Parameters:

pr oj ect Nane - the name of the DIO project representing the product or
configuration to be configured.

ct x - the Context object representing the application context

Returns:
a new configuration.

Throws:
NotOneProductException - if the specified project contains more than one or no
products

B-38 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

getActiveModelPath()

public java.lang. Sring getActi veMbdel Pat h()
Gets the current active model path.

Returns:
the active model path.

initTraceFile(String)

public static void initTraceF | e(java.lang. String fil enane)

openTraceFile(String)

public static void openTraceF | e(java.lang. String fil enane)

restoreConfiguration(DbConfigHeader, Context)

public Configuration

rest oreConfi gurati on(oracl e. apps. cz. di 0. confi g. DbConf i gHeader header,
oracl e. apps. f nd. coomon. Cont ext ct x)

Restores a configuration from the database.

Parameters:
t he - header containing information identifying the configuration to be restored.

ct x - the Context object representing the application context

Returns:
the restored configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

Package oracle.apps.cz.cio B-39

Clo

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

restoreConfiguration(int, int, Context)

public Configuration restoreCnfiguration(int configHeaderlID int revNunber,
oracl e. apps. f nd. coomon. Cont ext ct x)
Restores a configuration from the database.

Parameters:

t he - ID of the header containing information identifying the configuration to be
restored.

t he - revision number of the header containing information identifying the
configuration to be restored.

ct x - the Context object representing the application context

Returns:
the restored configuration.

Throws:

LogicalException - if a logic failure is encountered when initializing the
configuration.

MissingFileException - if a logic file cannot be found in the active model path

See Also:
Configuration

setActiveModelPath(String)

public void setActiveMdel Pat h(java.lang. Sring path)
Sets the path to the directory where the CIO will look for logic files, and where it
will store logic files when generating them out of the database.

Parameters:

pat h - the path to the active model directory which should include the trailing path
separator.

B-40 Oracle Configuration Interface Object (CIO) Developer's Guide

ClO

trace(String)

public static void trace(java.lang. String cnd)

tracing()

public static bool ean traci ng()

Package oracle.apps.cz.cio B-41

CompanionNode

oracle.apps.cz.cio
CompanionNode

Syntax

public class Conpani onNode ext ends j ava. | ang. (bj ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. ci 0. Conpani onNode

Description

Provides methods for extracting values from a model based on property
annotations.

Created by a parent CompanionRoot from a functional companion and used to get
property-mapped feature information.

Member Summary

Methods
getBoolean(String)
getBoolean(String, boolean)
getChildren()
getDouble(String)
getDouble(String, double)
getFeature(String)

getinteger(String)
getinteger(String, int)
getString(String)
getString(String, String)
hasFeature(String)

Returns the value of a boolean feature.

Returns the value of a boolean feature, or the default if features is not present.
Returns all of the CompanionNode children of this CompanionNode.
Returns the value of a double feature.

Returns the value of a double feature, or the default if features is not present.

Get the runtime node representing a particular feature based on its property
annotation.

Returns the value of an integer feature.

Returns the value of an integer feature, or the default if features is not present.
Returns the value of a string feature.

Returns the value of a string feature, or the default if the feature is not present.

Returns true if this CompanionNode contains the named feature.

B-42 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionNode

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods

getBoolean(String)

publ i ¢ bool ean get Bool ean(j ava. |l ang. S ring nane)
Returns the value of a boolean feature.

getBoolean(String, boolean)

publ i c bool ean get Bool ean(j ava. |l ang. ring nane, bool ean dflt)
Returns the value of a boolean feature, or the default if features is not present.

getChildren()

public java.util.List getChildren()
Returns all of the CompanionNode children of this CompanionNode.

getDouble(String)

publ i c doubl e get Doubl e(j ava. |l ang. Sring nane)
Returns the value of a double feature.

getDouble(String, double)

publ i c doubl e get Doubl e(j ava.lang. Sring nane, double dflt)
Returns the value of a double feature, or the default if features is not present.

getFeature(String)

public | Runti neNode get Feature(java.lang. Sring nane)
Get the runtime node representing a particular feature based on its property
annotation.

getinteger(String)

public int getlnteger(java.lang. Sring nane)
Returns the value of an integer feature.

Package oracle.apps.cz.cio B-43

CompanionNode

getinteger(String, int)
public int getlnteger(java.lang. Sring nane, int dflt)
Returns the value of an integer feature, or the default if features is not present.

getString(String)

public java.lang. Sring get Sring(java.lang. Sring nane)
Returns the value of a string feature.

getString(String, String)

public java.lang. Sring get Sring(java.lang. Xring nane, java.lang. Sring dflt)
Returns the value of a string feature, or the default if the feature is not present.

hasFeature(String)

publ i ¢ bool ean hasFeat ure(j ava.lang. Sring nane)
Returns true if this CompanionNode contains the named feature.

B-44 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionRoot

oracle.apps.cz.cio
CompanionRoot

Syntax
public abstract class Conpani onRoot extends j ava. | ang. (bj ect

j ava. | ang. (oj ect

+--oracl e. apps. cz. ci 0. Conpani onRoot

Description

Provides functional companion implementors with property-based feature
extraction.

An abstract class to be extended by functional companion implementors which
attaches CompanionNode objects to runtime nodes and makes model features
available to the function companion through a flexible system of property-based
annotations.

In order to use this class, the implementor should provide implementations of
getNodeldentifier() , which returns the name of the property used to identify
runtime nodes to which Conpani onNodes will be attached, getFeatureldentifier()
which returns the name of the property used to identify features of the

Conpani onNode, and getNodeClass(String) which maps the value of the

get Nodel denti fi er property to the subclass of Conpani onNode that should be
instantiated to represent a particular node.

Member Summary

Constructors

CompanionRoot(IRuntimeNode) Creates a tree of companion node objects based on property annotations.
Methods

getFeatureldentifier() Returns the name of the property used to identify companion features.
getNodeClass(String) Maps a node type to the class used to represent the node.

Package oracle.apps.cz.cio B-45

CompanionRoot

Member Summary

getNodeldentifier() Returns the name of the property used to identify companion nodes.

getRootNodes() Returns the root CompanionNode objects.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructors

CompanionRoot(IRuntimeNode)

public Conpani onRoot (I Runti neNode r oot)
Creates a tree of companion node objects based on property annotations.

Methods
getFeatureldentifier()
public abstract java.lang. String get Featurel dentifier()
Returns the name of the property used to identify companion features.
getNodeClass(String)
public abstract java.lang. String get Noded ass(j ava. | ang. S ri ng nodeType)
Maps a node type to the class used to represent the node.
getNodeldentifier()

public abstract java.lang. String get Nodel dentifier()

Returns the name of the property used to identify companion nodes. Runtime
nodes that have a property of this name will be mapped to Conpani onNode
objects. The value of the property will be mapped through the
getNodeClass(String) method to determine which subclass of Conpani onNode to
instantiate.

B-46 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionRoot

getRootNodes()

public java. util.List getRootNodes()
Returns the root CompanionNode objects.

Package oracle.apps.cz.cio B-47

CompanionValidationFailure

oracle.apps.cz.cio
CompanionValidationFailure

Syntax
public class Conpani onVal i dationFail ure extends ValidationFail ure

j ava. | ang. (bj ect

+-Satuslnfo

+--Val idationFail ure

+-oracl e. apps. cz. ci 0. Conpani onVal i dati onFai |l ure

Description
Failure produced by a functional companion object.

Member Summary

Constructors

CompanionValidationFailure(String,
IRuntimeNode,
IFunctionalCompanion)

Methods
equals(Object)
getCompanion() Returns the companion in which this validation failure occurred.

hashCode()

Inherited Member Summary

Fields inherited from class ValidationFailure

COMPANION_FAILURE, MAX_FAILURE, MIN_FAILURE, MINO_FAILURE, MINMAX_FAILURE, RESOURCE_FAILURE, RESTORE_
FAILURE

B-48 Oracle Configuration Interface Object (CIO) Developer's Guide

CompanionValidationFailure

Inherited Member Summary

Fields inherited from class StatusInfo
STATUS_DELETED, STATUS_EXISTING, STATUS_NEW
Methods inherited from class ValidationFailure
getMessage(), getMessage(String), getType(), toString()
Methods inherited from class StatusInfo

getNode(), getStatus(), statusToString(int), toString(boolean)
Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Constructors

CompanionValidationFailure(String, IRuntimeNode, IFunctionalCompanion)

public GConpani onValidationFailure(java.lang. Sring nmessage, |RuntineNode node,
| Funct i onal Conpani on conpani on)

Methods

equals(Object)

publ i ¢ bool ean equal s(j ava. | ang. (bj ect obj)

Overrides:
equals(Object) in class ValidationFailure

getCompanion()

publ i c | Functi onal Conpani on get Gonpani on()
Returns the companion in which this validation failure occurred.

hashCode()
public int hashCode()

Overrides:
hashCode() in class StatusInfo

Package oracle.apps.cz.cio B-49

Component

oracle.apps.cz.cio

Component

Syntax

public class Conponent extends Conponent Node

j ava. | ang. (bj ect

+- - Runt i neNode

+- - Gonponent Node

+-oracl e. apps. cz. ci 0. Conponent

All Implemented Interfaces:
I I nt eger M nMax, | Runti neNode

Description
Implements the runtime configuration behavior of products and components.

Member Summary

Methods

getChildren()

getCount()
getFuncCompByID(int)
getFuncCompByName(String)
getFunctionalCompanions()
getlnstanceNumber()
getMax()

getMin()

getName()

getType()

Returns a list of this node's children.

Returns the count of the associated component set.

Returns a particular functional companion based on its ID, null if no match.
Returns a particular functional companion based on its name, null if no match.
Returns a list of all functional companions associated with this component.
Returns the instance number of this component (1 if not in a component set).
Returns the maximum of the design-time component.

Returns the minimum of the design-time component.

Returns the name of this runtime node.

Returns the type of this runtime node.

B-50 Oracle Configuration Interface Object (CIO) Developer's Guide

Component

Member Summary

hasMax() Returns true if the design-time component has a maximum.
hasMin() Returns true if the design-time component has a minimum.

instanceTypeToString(int)

isRoot() Returns true if this is the root component in the runtime tree.
isVirtual() Returns true if this component is a virtual component.
lookupNodelD(Object) Returns the Runtime Node in this component given the id
setName(String) Sets the name of this component.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ComponentNode
getChildrenByType(int), isActive()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getConfiguration(), getDatabaselD(), getDescription(), getParent(), getProperties(),
getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(), hasDescription(), hasIntegerValue(),
hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(), toString(boolean),
typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(), hasDescription(),
hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Package oracle.apps.cz.cio B-51

Component

Methods

getChildren()

public java. util.List getChildren()
Returns a list of this node's children.

Overrides:
getChildren() in class RuntimeNode

getCount()

public int getCount()

Returns the count of the associated component set.
getFuncCompByID(int)

publ i c | Functi onal Conpani on get FuncConpByl (i nt i d)
Returns a particular functional companion based on its ID, null if no match.

getFuncCompByName(String)

publ i c | Functi onal Conpani on get FuncConpByNane(j ava. | ang. S ri ng nane)
Returns a particular functional companion based on its name, null if no match.

getFunctionalCompanions()

public java. util.List getFunctional Conpani ons()
Returns a list of all functional companions associated with this component.

getinstanceNumber()

public int getlnstanceNunber ()
Returns the instance number of this component (1 if not in a component set).

getMax()

public int getMx()
Returns the maximum of the design-time component.

getMin()

public int getMn()
Returns the minimum of the design-time component.

B-52 Oracle Configuration Interface Object (CIO) Developer's Guide

Component

getName()

public java.lang. Sring get Nang()
Returns the name of this runtime node.

Overrides:
getName() in class RuntimeNode

getType()
public int getType()
Returns the type of this runtime node.

Overrides:
getType() in class RuntimeNode

hasMax()

publ i ¢ bool ean hasiax()
Returns true if the design-time component has a maximum.

hasMin()

publ i ¢ bool ean hasM n()
Returns true if the design-time component has a minimum.

instanceTypeToString(int)

public static java. lang. Sring i nstanceTypeToSring(int instanceType)

isRoot()

publ i ¢ bool ean i sRoot ()

Returns true if this is the root component in the runtime tree.
isVirtual()

public bool ean i sM rtual ()

Returns true if this component is a virtual component.
lookupNodelD(Object)

public | Runti neNode | ookupNodel 0 j ava. | ang. (hj ect i d)
Returns the Runtime Node in this component given the id

Package oracle.apps.cz.cio B-53

Component

Overrides:
lookupNodeID(Object) in class RuntimeNode

setName(String)

public void set Nange(j ava. | ang. Stri ng newNane)
Sets the name of this component. NOTE: The method setName() shouldn't be used
and may be removed in a future release.

B-54 Oracle Configuration Interface Object (CIO) Developer's Guide

ComponentNode

oracle.apps.cz.cio
ComponentNode

Syntax
public abstract class Gonponent Node extends Runti neNode i npl enents
I I nt eger M nMax

j ava. | ang. (bj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. Conponent Node

Direct Known Subclasses:
Gonponent, Conponent Set

All Implemented Interfaces:
I I nteger M nMax, | Runti neNode

Description
Represents a set of configurable components.

Member Summary

Methods
getChildrenByType(int) Returns a list of all children of a given type.
isActive() Returns true if this node has been activated.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Package oracle.apps.cz.cio B-55

ComponentNode

Inherited Member Summary

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaselD(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IIntegerMinMax
getMax(), getMin(), hasMax(), hasMin()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaselD(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(), hasDecimalValug(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getChildrenByType(int)
public java. util.List getChildrenByType(int type)
Returns a list of all children of a given type.

Specified By:
getChildrenByType(int) in interface IRuntimeNode

Overrides:
getChildrenByType(int) in class RuntimeNode

isActive()

publ i c bool ean isActive()
Returns true if this node has been activated.

B-56 Oracle Configuration Interface Object (CIO) Developer's Guide

ComponentSet

oracle.apps.cz.cio
ComponentSet

Syntax
public class Conponent Set ext ends Conponent Node

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+- - Gonponent Node

+-oracl e. apps. cz. ci 0. Conponent Set

All Implemented Interfaces:
I I nt eger M nMax, | Runti neNode

Description
Represents a set of configurable components.

Member Summary

Methods
add()

addConfigEventListener(ICompSetEv Add a listener that is notified when a component is added or deleted.
entListener)

delete(Component)
getChildByInstanceNumber(int)
getCount()

getMax()

getMin()

getType()

hasMax()

Package oracle.apps.cz.cio B-57

ComponentSet

Member Summary

hasMin()

removeConfigEventListener(ICompSe Remove a listener that is notified when a component is added or deleted.
tEventListener)

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ComponentNode
getChildrenByType(int), isActive()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getConfiguration(), getDatabaselD(), getDescription(), getName(), getParent(),
getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(), hasDescription(),
haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), lookupNodelD(Object),
toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

add()
publ i ¢ Conponent add()

addConfigEventListener(ICompSetEventListener)

public voi d addConfi gEvent Li st ener (| GonpSet Event Li st ener i stener)
Add a listener that is notified when a component is added or deleted.

B-58 Oracle Configuration Interface Object (CIO) Developer's Guide

ComponentSet

delete(Component)
public voi d del et e(Conponent conponent)

getChildBylnstanceNumber(int)
publ i ¢ Conponent get Chi | dByl nst anceNunber (i nt i nst Nun)

getCount()

public int getGount()
getMax()

public int getMx()
getMin()

public int getMn()
getType()

public int getType()

Overrides:

getType() in class RuntimeNode
hasMax()

publ i ¢ bool ean hasiax()
hasMin()

publ i ¢ bool ean hasM n()
removeConfigEventListener(ICompSetEventListener)

public voi d renmoveConfi gEvent Li st ener (1 GonpSet Event Li st ener | i st ener)
Remove a listener that is notified when a component is added or deleted.

Package oracle.apps.cz.cio B-59

ConfigTransaction

oracle.apps.cz.cio
ConfigTransaction

Syntax
public class GonfigTransaction extends oracl e. apps. cz. ci 0. Basi cConf i gActi on

j ava. | ang. (hj ect

+--oracl e. apps. cz. ci 0. Basi cConfi gAction

+--oracl e. apps. cz. ci 0. Confi gTransacti on

Description
Represents a configuration transaction.

Inherited Member Summary

Methods inherited from class oracle.apps.cz.cio.BasicConfigAction
setTracing
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

B-60 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

oracle.apps.cz.cio
Configuration

Syntax

public class Gonfiguration

oracl e. apps. cz. ci 0. Confi gurati on

Description
The top-level entry point to a configuration.

Member Summary

Fields
ATP_APPS_107_110
ATP_CALLBACK
ATP_DISABLED
PRICE_APPS_107_110
PRICE_MULT_ITEMS
PRICE_SINGLE_ITEM
PRICING_DISABLED
Methods

addConfigEventListener(IConfigEvent
Listener)

addConfigMessage(String, String)
beginConfigTransaction()
beginConfigTransaction(boolean)
calculateAtpDates()
calculateListPrices()

canPerform()

Represents Oracle Apps 10.7/11.0 ATP mode.

Represents callback ATP mode.

For the case when no valid ATP parameter combination is found.
Represents Oracle Apps 10.7/11.0 pricing mode.

Represents multiple item callback pricing mode.

Represents single item callback pricing mode.

For the case when no valid pricing parameter combination is found.

Add a listener that is notified when a component is added or deleted.

Adds a configuration message to be saved to the cz_config_messages table.
Creates a new transaction.

Creates a new transaction and specifies the auto commit mode.

Calculates ATP dates for all IAtp nodes in the tree.

Calculates list prices of all IPrice nodes within configuration.

Returns true if there is at least one undone or not commited transaction that can be
performed.

Package oracle.apps.cz.cio B-61

Configuration

Member Summary

canUndo() Returns true if there are performed transactions that can be undone.
clearConfigMessages() Removes all configuration messages added by addConfigMessage.
close() Close the Configuration object and all associated runtime objects.

commitConfigTransaction(Configlran Commits the given transaction if it matches with current one in the configuration.
saction)

endConfigTransaction(ConfigTransact Ends the given transaction if it matches with current one in the configuration.
ion)

endDeltaList()
finalizeWorkaround()

getAltPricingAtpContext() Returns context that was added to the configuration through
setAltPricing AtpContext, or null if no alternate pricing/ATP context exists.

getAtpMode() Will return the ATP mode that will be used by the configuration (ATP_APPS_107_
110 or ATP_CALLBACK).

getCIO() Gets the CIO that created this configuration.

getConfigHeaderCheckoutUser() Gets the user who has the config header checked out.

getConfigHeaderDateCreated|() Gets the date when the config header was creaed.
getConfigHeaderDescription() Gets the description of the config header.
getConfigHeaderEffectiveFrom() Gets the date from which the config header is effective.
getConfigHeaderEffectiveTo() Gets the date towhich the config header is effective.
getConfigHeaderld() Gets the id of the config header.

getConfigHeaderLastUpdateDate() ~ Gets the date when the config header was last updated.
getConfigHeaderName() Gets the name of the config header.
getConfigHeaderNote() Gets the note of the config header.

getConfigHeaderNumberQuotesUsed Gets the config header number quotes used in.

In()
getConfigHeaderOpportunityHeaderl ~ Gets the opportunity header id of the config header .

d()
getConfigHeaderRevision() Gets the revision of the config header.
getConfigHeaderStatus() Gets the status of the config header.

B-62 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Member Summary

getConfigHeaderUiDefinitionld()
getConfigHeaderUserldCreated()
getContext()

getInitParameters()
getLastContradiction()
getLogicConfig()
getNodeFromPath(String)
getPathForNode(IRuntimeNode)
getPricingMode()

getProjectID()
getRootBomModel()

getRootBomModel(int, int)

getRootComponent()
getRootComponentDbld()
getRuntimeNode(int)

getSelectedltems()

getStringDeltaList()
getTotalDiscountedPrice()
getTransactionDepth()

getUnsatisfiedltems()

getValidationFailures()

isUnsatisfied()

perform()

Gets the Ul definition id in the config header.

Gets the id of the user who created the config header.

Returns the Context object associated with this configuration

Gets initialization parameters, which are stored in a NameValuePairSet object.

Returns the most recent contradiction.

Will return the pricing mode that will be used by the configuration (PRICE_APPS_
107_110, PRICE_MULT_ITEMS, or PRICE_SINGLE_ITEM).

Gets the database ID of the project from which this configuration was created.
Returns the root BOM Model node, if there is associated with this configuration.

Returns the root BOM Model node with the given inventory item ID and
organization ID

Gets the root product or component of the configuration.
Gets the database id of the root component.
Fetches a runtime node based on a runtime ID.

Gets a collection of status info objects describing all selected items in the
configuration.

Returns rolled up discounted price of the configuration.
Returns the number of nested transactions (depth).

Gets a collection of status info objects describing all unsatisfied items in the
configuration.

Gets a collection of validation failures describing current problems with the
configuration.

Returns t r ue if the configuration is incomplete.

Perform the next pending transaction.

Package oracle.apps.cz.cio B-63

Configuration

Member Summary

removeConfigEventListener(IConfigE
ventListener)

restartConfiguration(boolean)
rollbackConfigTransaction(ConfigTran
saction)

save()

saveAs(int, int)

saveNew()

saveNewRev()

setAltPricingAtpContext(Context)

setConfigHeaderCheckoutUser(String
)

setConfigHeaderDateCreated(Timest
amp)

setConfigHeaderDescription(String)

setConfigHeaderEffectiveFrom(Times
tamp)

setConfigHeaderEffectiveTo(Timesta
mp)

setConfigHeaderName(String)
setConfigHeaderNote(String)

setConfigHeaderOpportunityHeaderl
d(int)

setConfigHeaderUiDefinitionld(int)

setInitParameters(NameValuePairSet

)
startDeltaList()

undo()

Remove a listener that is notified when a component is added or deleted.

Restart the current configuration instance without destroying the objects NOTE:
Currently, it works only for values and states.

Rolls back the given transaction if it matches with current one in the configuration.

Saves the restored configuration.

Saves over the current configuration.

Saves a whole new configuration.

Saves a new revision of the restored configuration.

If pricing and ATP information should be retrieved from an alternate Apps
database, the setAltPricingAtpContext method should be called immediately after
the Configuration is created.

Sets the user who has checked out the config header.

Sets the config header creation date.

Sets the config header description.

Sets the date from which the config header is effective.
Sets the date to which the config header is effective.

Sets the config header name.
Sets the config header note.

Sets the config header opportunity header id.

Sets the config header UI definition id.

Sets configuration initialization parameters, e.g.

Undo the previous transaction.

B-64 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

Fields

ATP_APPS_107_110

public static final int ATP_APPS 107_110
Represents Oracle Apps 10.7/11.0 ATP mode.

ATP_CALLBACK

public static final int ATP_CALLBAKK
Represents callback ATP mode.

ATP_DISABLED

public static final int ATP_D SABLED
For the case when no valid ATP parameter combination is found.

PRICE_APPS_107_110

public static final int PRCE APPS 107_110
Represents Oracle Apps 10.7/11.0 pricing mode.

PRICE_MULT_ITEMS

public static final int PRCE MLT | TEMB
Represents multiple item callback pricing mode.

PRICE_SINGLE_ITEM

public static final int PRCE SINAE | TEM
Represents single item callback pricing mode.

PRICING_DISABLED

public static final int PRRQANGD SABLED
For the case when no valid pricing parameter combination is found.

Methods

addConfigEventListener(IConfigEventListener)

public voi d addConfi gEvent Li st ener (| Gonfi gEvent Li stener i stener)
Add a listener that is notified when a component is added or deleted.

Package oracle.apps.cz.cio B-65

Configuration

addConfigMessage(String, String)

public voi d addConfi gMessage(j ava. | ang. Sring keyword, java.lang. Sring nessage)
Adds a configuration message to be saved to the cz_config_messages table.
Messages are cleared from the Configuration object when the configuration and
messages are saved.

Parameters:
keywor d - keyword describing the type of message, e.g. "CONTRADICTION"

nessage - message string

beginConfigTransaction()

public ConfigTransacti on begi nConfi gTransacti on()
Creates a new transaction.

Returns:
a reference to the newly created transaction.

beginConfigTransaction(boolean)

publ i c ConfigTransacti on begi nConfi gTransact i on(bool ean aut oCormi t)
Creates a new transaction and specifies the auto commit mode.

Returns:
a reference to the newly created transaction.

calculateAtpDates()

public java. util.Date cal cul at eAt pDat es()
Calculates ATP dates for all IAtp nodes in the tree. ATP values can then be retrieved

using [Atp.getAtpDate().

Returns:
configuration level ATP date if calculated, null if not

Throws:

AtpUnavailableException - thrown if configuration initialization parameters
required to run ATP check have not all been provided

B-66 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

calculateListPrices()

public void cal cul ateLi stPrices()
Calculates list prices of all IPrice nodes within configuration. Prices are retrieved
through IPrice.getListPrice.

canPerform()

publ i ¢ bool ean canPerf or n{)

Returns true if there is at least one undone or not commited transaction that can be

performed.
canUndo()

publ i ¢ bool ean canunhdo()

Returns true if there are performed transactions that can be undone.
clearConfigMessages|()

public void cl ear Gonfi gMessages()

Removes all configuration messages added by addConfigMessage.
close()

public void cl ose()
Close the Configuration object and all associated runtime objects.

commitConfigTransaction(ConfigTransaction)

public void comm t Confi gTransacti on(Gonfi gTransacti on transacti on)
Commits the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

endConfigTransaction(ConfigTransaction)

public voi d endCnfi gTransacti on(Confi gTransacti on transacti on)
Ends the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

Package oracle.apps.cz.cio B-67

Configuration

endDeltaList()

public void endDel t aLi st ()

finalizeWorkaround()

public void finalizeVdrkaround()

getAltPricingAtpContext()

getAtpMode()

getCIO()

public oracl e. apps. f nd. conmon. Cont ext get Al t Pri ci ngAt pCont ext ()
Returns context that was added to the configuration through
setAltPricing AtpContext, or null if no alternate pricing/ATP context exists.

public int getA pMde()
Will return the ATP mode that will be used by the configuration (ATP_APPS_107_
110 or ATP_CALLBACK).

Throws:

AtpUnavailableException - thrown if a complete set of ATP parameters has not
been provided through setInitParameters.

public QO getd Q)
Gets the CIO that created this configuration.

Returns:
the CIO that created this configuration.

See Also:
CIO

getConfigHeaderCheckoutUser()

public java.lang. Sring get Confi gHeader Checkout User ()
Gets the user who has the config header checked out.

Returns:
the config header checkout user.

B-68 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

getConfigHeaderDateCreated()

public java.sql. T nestanp get Gonfi gHeader Dat eQr eat ed()
Gets the date when the config header was creaed.

Returns:
the config header creation date.

getConfigHeaderDescription()

public java.lang. Sring get Confi gHeader Descri ption()
Gets the description of the config header.

Returns:
the config header description.

getConfigHeaderEffectiveFrom()

public java.sql.Tinestanp get Confi gHeader & f ecti veFr ong)
Gets the date from which the config header is effective.

Returns:
the config header 'Effective From' date.

getConfigHeaderEffectiveTo()

public java.sql. T nestanp get Gonfi gHeader E f ecti veTo()
Gets the date towhich the config header is effective.

Returns:
the config header 'Effective To' date.

getConfigHeaderld()
public int getConfigHeaderld()
Gets the id of the config header.

Returns:
the config header id.

Package oracle.apps.cz.cio B-69

Configuration

getConfigHeaderLastUpdateDate()

public java.sql.T nestanp get Confi gHeader Last Updat eDat e()
Gets the date when the config header was last updated.

Returns:
the config header last update date.

getConfigHeaderName()

public java.lang. Sring get Confi gHeader Nane()
Gets the name of the config header.

Returns:
the config header name.

getConfigHeaderNote()

public java.lang. Sring get Confi gHeader Not e()
Gets the note of the config header.

Returns:
the config header note.

getConfigHeaderNumberQuotesUsedin()

public int getConfi gHeader Nunber Quot esUsedl n()
Gets the config header number quotes used in.

Returns:
the config header number quotes used in.

getConfigHeaderOpportunityHeaderld()

public int getGonfigHeader Qoport uni t yHeader | d()
Gets the opportunity header id of the config header .

Returns:
the config header opportunity header id.

B-70 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

getConfigHeaderRevision()

public int getConfigHeader Revi si on()
Gets the revision of the config header.

Returns:
the config header revision.

getConfigHeaderStatus()

public java.lang. Sring get Confi gHeader & at us()
Gets the status of the config header.

Returns:
the config header status.

getConfigHeaderUiDefinitionld()

public int getConfigHeader U Definitionl d()
Gets the Ul definition id in the config header.

Returns:
the config header Ul definition id.

getConfigHeaderUserldCreated()

public int getConfigHeader User | dOr eat ed()
Gets the id of the user who created the config header.

Returns:
the config header user id created.

getContext()

public oracl e. apps. f nd. conmon. Cont ext get Cont ext ()
Returns the Context object associated with this configuration

getinitParameters()

publ i ¢ NaneVal uePai r Set get | ni t Par anet er s()
Gets initialization parameters, which are stored in a NameValuePairSet object.

Package oracle.apps.cz.cio B-71

Configuration

Returns:
initParameters object

getLastContradiction()

public Logi cal Exception getLast Gontradi cti on()
Returns the most recent contradiction.

getLogicConfig()
public oracl e. apps. cz. | ogi c. Logi cConfi g getLogi cConfig()

getNodeFromPath(String)
public | Runti neNode get NodeFronPat h(j ava. | ang. String pat h)

getPathForNode(IRuntimeNode)
public java.lang. Sring getPat hFor Node(1 Runti neNode node)

getPricingMode()

public int getPrici ngvde()
Will return the pricing mode that will be used by the configuration (PRICE_APPS_
107_110, PRICE_MULT_ITEMS, or PRICE_SINGLE_ITEM).

Throws:

PricingUnavailableException - thrown if a complete set of pricing parameters has
not been provided through setInitParameters.

getProjectiD()
public int getProjectl))
Gets the database ID of the project from which this configuration was created.
Returns:
the project ID.
getRootBomModel()

publ i ¢ BonMbdel get Root Bonivbdel ()
Returns the root BOM Model node, if there is associated with this configuration.

B-72 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

getRootBomModel(int, int)

publ i ¢ BonMbdel get Root Bonbdel (int inventoryltemid, int organizationld)
Returns the root BOM Model node with the given inventory item ID and
organization ID

getRootComponent()

publ i ¢ Conponent get Root Gonponent ()
Gets the root product or component of the configuration.

Returns:
the root product or component.

See Also:
Component

getRootComponentDbld()

public int get Root Conponent Dbl d()
Gets the database id of the root component.

Returns:
the root component db id.

getRuntimeNode(int)

public | Runti neNode get Runti neNode(i nt runti nel D
Fetches a runtime node based on a runtime ID.

Parameters:
runti mel D- the runtime ID of the desired node.

Returns:
the corresponding runtime node.

See Also:
IRuntimeNode

Package oracle.apps.cz.cio B-73

Configuration

getSelectedltems|()

public java.util.Qollection getSel ectedltens()
Gets a collection of status info objects describing all selected items in the
configuration.

Returns:
the collection of status info objects.

getStringDeltaList()
public java.lang. Sring get SringDel taList()

getTotalDiscountedPrice()

publ i ¢ doubl e get Tot al b scount edPri ce()
Returns rolled up discounted price of the configuration. Discounted prices on
selected items are available after this call through IPrice.getDiscountedPrice.

getTransactionDepth()

public int getTransactionDepth()
Returns the number of nested transactions (depth).

Returns:
the transaction depth.

getUnsatisfiedltems()

public java.util.Qollection getlhsatisfied tens()
Gets a collection of status info objects describing all unsatisfied items in the
configuration.

Returns:
the collection of status info objects.

getValidationFailures()

public java.util.Qollection getValidationFail ures()
Gets a collection of validation failures describing current problems with the
configuration.

B-74 Oracle Configuration Interface Object (CIO) Developer's Guide

Configuration

isUnsatisfied()

perform()

Returns:
the collection of validation failures.

publ i ¢ bool ean i slhsati sfied()
Returns t r ue if the configuration is incomplete.

Returns:
a boolean indicating whether the configuration is unsatisfied.

public void perfornf)
Perform the next pending transaction.

removeConfigEventListener(IConfigEventListener)

public voi d renmoveConfi gEvent Li st ener (1 Gonfi gEvent Li stener |i stener)
Remove a listener that is notified when a component is added or deleted.

restartConfiguration(boolean)

public void restart Gonfi gurati on(bool ean checkVal i dati ons)

Restart the current configuration instance without destroying the objects NOTE:
Currently, it works only for values and states. Additions and deletions are not being
restarted. Therefore, after restart() you get the latest (before the restart) component
instances and cannot undo an instance addition or deletion.

rollbackConfigTransaction(ConfigTransaction)

save()

public void rol | backCnfi gTransacti on(Gonfi gTransacti on transacti on)
Rolls back the given transaction if it matches with current one in the configuration.

Parameters:
a - transaction reference.

public void save()
Saves the restored configuration.

Package oracle.apps.cz.cio B-75

Configuration

saveAs(int, int)

saveNew()

saveNewRev()

Throws:
NoConfigHeaderException - when this configuration hasn't been previously saved.
Consider calling SaveNew().

Confi gOverwrit eNot Al | owedExcept i on - when this configuration is "read
only". Consider calling SaveNewRev() or SaveNew().

public void saveAs(int configHeaderl D int revNunber)
Saves over the current configuration. It uses the passed ID and revision number to
open a ConfigHeader object and to save the configuration int it

Throws:

Confi gOverwriteNot Al | owedExcept i on - when this configuration is "read
only". Consider calling SaveNewRev() or SaveNew().

public void saveNew()
Saves a whole new configuration.

public voi d saveNewRev()
Saves a new revision of the restored configuration.

Throws:

NoConfigHeaderException - when this configuration hasn't been previously saved.
Consider calling SaveNew().

setAltPricingAtpContext(Context)

public void set A tPrici ngAt pQont ext (oracl e. apps. f nd. conmon. Gont ext ¢t x)

If pricing and ATP information should be retrieved from an alternate Apps
database, the setAltPricing AtpContext method should be called immediately after
the Configuration is created.

Parameters:

ct x - Context which represents session on database from which pricing and ATP
information is retrieved

B-76 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Configuration

setConfigHeaderCheckoutUser(String)

public voi d set Confi gHeader Checkout User (j ava. | ang. Sring user)
Sets the user who has checked out the config header.

setConfigHeaderDateCreated(Timestamp)

public voi d set Confi gHeader Dat eQ eat ed(j ava. sql . Ti nest anp dat eQr eat ed)
Sets the config header creation date.

setConfigHeaderDescription(String)

public void set Confi gHeader Descri ption(java.lang. Sring description)
Sets the config header description.

setConfigHeaderEffectiveFrom(Timestamp)

public void set Confi gHeader B f ecti veFrongj ava. sql . Ti nest anp ef f Fron)
Sets the date from which the config header is effective.

setConfigHeaderEffectiveTo(Timestamp)

public void setConfigHeader Ef f ecti veTo(j ava. sql . Ti nest anp ef f To)
Sets the date to which the config header is effective.

setConfigHeaderName(String)

public void set Confi gHeader Nane(j ava. | ang. S ri ng nane)
Sets the config header name.

setConfigHeaderNote(String)

public voi d set Confi gHeader Not e(j ava. | ang. S ring not e)
Sets the config header note.

setConfigHeaderOpportunityHeaderld(int)

public void setConfi gHeader Qpport uni t yHeader | d(int i d)
Sets the config header opportunity header id.

setConfigHeaderUiDefinitionld(int)

public void setConfigHeader U Definitionld(int id)
Sets the config header Ul definition id.

Package oracle.apps.cz.cio B-77

Configuration

setinitParameters(NameValuePairSet)

startDeltaList()

undo()

public void setlnitParaneters(NameVal uePai r Set i nitParanet ers)
Sets configuration initialization parameters, e.g. order header information. All
parameter values should be provided as String objects.

To use the callback pricing mechanism, the following parameters must be provided:
"pricing_package_name" (required), "price_mult_items_proc" or "price_single_
item_proc" (one is required), "configurator_session_key" (required)

To use Apps 10.7/11.0 pricing for BomNodes ("AMNT" pricing method only), the
following parameters must be provided: "price_list_id" (required), "pricing_
attributel" (optional), "pricing_attribute2" (optional), "pricing_attribute3" (optional),
"pricing_attribute4" (optional), "pricing_attribute5" (optional), "pricing_attribute6"
(optional), "pricing_attribute7" (optional), "pricing_attribute8" (optional), "pricing_
attribute9" (optional), "pricing_attributel0" (optional), "pricing_attributell"
(optional), "pricing_attribute12" (optional), "pricing_attribute13" (optional),
"pricing_attribute14" (optional), "pricing_attributel5" (optional), "ship_to_site_use_
id" (optional), "customer_id" (optional), "invoice_to_site_use_id" (optional), "po_
number” (optional), "agreement_id" (optional), "agreement_type_code" (optional),
"order_type_id" (optional), "gsa" (optional).

NOTE: If the callback parameters and price_list_id are both provided, then the
pricing callback will be run to determine prices.

To use the callback ATP mechanism, the following parameters must be provided:
"atp_package_name" (required), "get_atp_dates_proc" (required), "configurator_
session_key" (required), "warehouse_id" (required), "requested_date" (optional),
and either "ship_to_org_id" (required) or "customer_id" and "customer_site_id"
(required),

To use Apps 10.7/11.0 ATP calculation methods, the following parameters must be
provided: "user_id" (required), "application_id" (required), "responsibility_id"
(required), "atp_timeout" (required)

public void startDel taList()

public void undo()
Undo the previous transaction.

B-78 Oracle Configuration Interface Object (CIO) Developer’'s Guide

CountFeature

oracle.apps.cz.cio
CountFeature

Syntax

public class Gount Feature extends S ateCount Node i npl enents | Integer,
I I nt eger M nMax

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - & at eCount Node

+-oracl e. apps. cz. ci 0. Count Feat ure

All Implemented Interfaces:
| Gount, Ilnteger, I|IntegerMnhVax, IPrice, IRuntineNode, |State

Description

Represents a countable integer feature. A count feature is similar to an integer
feature except that its minimum value must be greater than or equal to zero.

Member Summary

Methods
getintValue()
getMax()
getMin()
getType()
hasMax()
hasMin()

setIntValue(int)

Package oracle.apps.cz.cio B-79

CountFeature

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
setState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IInteger

isUnknown(), unset()

Methods inherited from interface ICount

getCount(), setCount(int)

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IState

getState(), setState(int)

Methods inherited from interface IRuntimeNode

B-80 Oracle Configuration Interface Object (CIO) Developer's Guide

CountFeature

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getintValue()

public int getlntVal ue()

Specified By:

getIntValue() in interface IInteger
getMax()

public int getMx()

Specified By:

getMax() in interface IIntegerMinMax
getMin()

public int getMn()

Specified By:

getMin() in interface IIntegerMinMax
getType()

public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

Package oracle.apps.cz.cio B-81

CountFeature

hasMax()

publ i c bool ean hasiax()

Specified By:

hasMax() in interface IIntegerMinMax
hasMin()

publ i ¢ bool ean hasM n()

Specified By:
hasMin() in interface IIntegerMinMax

setintValue(int)
public void setlntVal ue(int newal ue)

Specified By:

setIntValue(int) in interface IInteger

B-82 Oracle Configuration Interface Object (CIO) Developer's Guide

DecimalFeature

oracle.apps.cz.cio
DecimalFeature

Syntax
public class Deci nal Feat ure extends Deci nal Node i npl enent's | Deci nal M nvax

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+- - ReadOnl yDeci nal Node

I
+ - Deci nal Node

+-oracl e. apps. cz. ci 0. Deci nal Feat ure

All Implemented Interfaces:
| Deci nal , | Deci mal M nvax, | ReadOnl yDeci nal , | Runti neNode

Description
Represents a feature with a decimal value.

Member Summary

Methods
getMax()
getMin()
getType()
hasMax()
hasMin()

Package oracle.apps.cz.cio B-83

DecimalFeature

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode
setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue(), isUnknown()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IDecimal
setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal
getDecimalValue(), isUnknown()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getMax()
publ i c doubl e get Max()

B-84 Oracle Configuration Interface Object (CIO) Developer's Guide

DecimalFeature

Specified By:
getMax() in interface IDecimalMinMax

getMin()
public doubl e get Mn()

Specified By:
getMin() in interface IDecimalMinMax

getType()
public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

hasMax()
publ i c bool ean hasiax()

Specified By:

hasMax() in interface IDecimalMinMax

hasMin()

publ i c bool ean hasM n()

Specified By:

hasMin() in interface IDecimalMinMax

Package oracle.apps.cz.cio B-85

DecimalNode

oracle.apps.cz.cio
DecimalNode

Syntax
public abstract class Deci nal Node extends ReadOnl yDeci nal Node i npl enent s
| Deci nal

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+- - Readnl yDeci nal Node

+-oracl e. apps. cz. ci 0. Deci nal Node

Direct Known Subclasses:
Deci mal Feat ure, Resource, Total

All Implemented Interfaces:
| Deci nal , | ReadOnl yDeci nal , | Runt i neNode

Description
An abstract class implementing behavior common to objects with a decimal value.

Member Summary

Methods
setDecimalValue(double)
toString()

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

B-86 Oracle Configuration Interface Object (CIO) Developer's Guide

DecimalNode

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue(), isUnknown()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IReadOnlyDecimal
getDecimalValue(), isUnknown()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

setDecimalValue(double)
public void setDeci nal Val ue(doubl e newal ue)

Specified By:

setDecimalValue(double) in interface IDecimal

toString()
public java.lang. Sring toString()

Overrides:
toString() in class ReadOnlyDecimalNode

Package oracle.apps.cz.cio B-87

DecimalNode

unset()
public void unset ()

Specified By:

unset() in interface IDecimal

B-88 Oracle Configuration Interface Object (CIO) Developer's Guide

Factory

oracle.apps.cz.cio
Factory

Syntax

public class Factory extends java.lang. (bj ect

j ava. | ang. (oj ect

+--oracl e. apps. cz. ci o. Factory

Description

Provides a class factory for the CIO to clients that do not support arguments to
constructors.

Member Summary

Constructors
Factory()
Methods
createCIO()

createContext(String, String, String,
String)

createContext(String, String, String,
String, String, String, String)

loadDriver(String)

Creates an instance of the CIO.

Creates the database context object which is required by most CIO methods.
Creates the database context object which is required by most CIO methods.

Loads the JDBC driver named by the argument.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Package oracle.apps.cz.cio B-89

Factory

Constructors

Factory()
public Factory()

Methods

createCIO()

public A Ocreatedq)
Creates an instance of the CIO.

createContext(String, String, String, String)

public oracl e. apps. f nd. conmon. Cont ext creat eCont ext (j ava.lang. Sring url,
java.lang. String unane, java.lang. Sring pwd, java.lang.Sring owner)

Creates the database context object which is required by most CIO methods. This
method requires a database user and password.

Parameters:

ur | - database connection URL that specifies JDBC driver and datasource
unairre - database username
pwd - database password

owner - SellingPoint schema owner

createContext(String, String, String, String, String, String, String)

public oracl e. apps. f nd. conmon. Cont ext creat eCont ext (j ava.lang. Sring url,
java.lang. Stri ng appslsernane, java.lang. String appsPassword, java.lang. Sring
gat enaylUser nang, java.lang. String gatewayPassword, java.lang. Sring fnd\am
java.lang. String appl Serverl d)

Creates the database context object which is required by most CIO methods. This
method uses Apps FND authentication to validate the user.

Parameters:
url - database connection URL, identifies JDBC driver and data source

appsUser nane - Oracle Applications user name

appsPasswor d - Oracle Applications password for appsUsername

B-90 Oracle Configuration Interface Object (CIO) Developer's Guide

Factory

gat ewayUser nane - gateway user name
gat ewayPasswor d - password for gatewayUsername

f ndNam- Apps schema owner

appl Server | d - application server ID, only used if its security feature is ON (OFF
by default)

loadDriver(String)

public void | oadDxi ver(java.lang. String driver)
Loads the JDBC driver named by the argument.

Throws:
Cl assNot FoundExcept i on - if the driver cannot be loaded.

Package oracle.apps.cz.cio B-91

FuncCompCreationException

oracle.apps.cz.cio
FuncCompCreationException

Syntax
public class FuncConpQ eati onException ext ends java. |l ang. Runti meException

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. FuncConpCr eat i onExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a functional companion cannot be created.

Member Summary

Methods

getDescrption() Returns the description of the failed companion.

getID() Returns the database ID of the failed companion.

getName() Returns the name of the failed companion.

getProgString() Returns the program string used when trying to create the companion.

Inherited Member Summary

Methods inherited from class java.lang. Throwable

filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString

B-92 Oracle Configuration Interface Object (CIO) Developer's Guide

FuncCompCreationException

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods
getDescrption()

public java.lang. Sring getDescrption()

Returns the description of the failed companion.
getlD()

public int getlX)

Returns the database ID of the failed companion.
getName()

public java.lang. Sring get Nane()

Returns the name of the failed companion.
getProgString()

public java.lang. Sring get Progring()
Returns the program string used when trying to create the companion.

Package oracle.apps.cz.cio B-93

FuncCompMessageException

oracle.apps.cz.cio
FuncCompMessageException

Syntax
public class FuncConpMessageException extends java. | ang. Runti neExcepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. FuncConmpMessageExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

FuncCompMessageException is designed to be thrown from a functional
companion's autoConfigure() method code when the author of the companion
wants to display a BENIGN message in a dialog box to the end user. Throwing this
will cause the Ul Server to commit the outermost transaction. To produce a fatal
error message throw RuntimeException

Member Summary

Constructors

FuncCompMessageException(IFuncti Constructs the exception object.
onalCompanion, String)

Inherited Member Summary

Methods inherited from class java.lang. Throwable

B-94 Oracle Configuration Interface Object (CIO) Developer’'s Guide

FuncCompMessageException

Inherited Member Summary

filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

FuncCompMessageException(IFunctionalCompanion, String)

public FuncConpMessageException(| Functional Gonpanion fc, java.lang. String
nessage)
Constructs the exception object.

Parameters:
f ¢ - the Functional Companion from which exception is thrown, not null

nmessage - the message to be shown to the end user

Package oracle.apps.cz.cio B-95

FunctionalCompanion

oracle.apps.cz.cio
FunctionalCompanion

Syntax
public class Functi onal Conpani on extends java.l ang. (bj ect inpl enents
| Funct i onal Gonpani on

j ava. | ang. (bj ect

+--oracl e. apps. cz. ci o. Funct i onal Conpani on

Direct Known Subclasses:
Aut oFunct i onal Gonpani on

All Implemented Interfaces:
| Funct i onal Gonpani on

Description
Base object on which user functional companions can be based.

Member Summary

Constructors

FunctionalCompanion()

Methods
autoConfigure() Does nothing.
generateOutput() Does nothing.

generateOutput(HttpServietResponse Does nothing.

)

getDescription() Returns the description of the functional companion.

getID() Returns the database ID of the functional companion.

getName() Returns the name of the functional companion.

getRuntimeNode() Returns the runtime node to which this functional is associated.

B-96 Oracle Configuration Interface Object (CIO) Developer's Guide

FunctionalCompanion

Member Summary

initialize(IRuntimeNode, String, Saves the parameters in member variables.
String, int)

terminate() Does nothing.

toString()

validate() Does nothing.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

FunctionalCompanion()
public Functi onal Conpani on()

Methods

autoConfigure()

public void autoGonfi gure()
Does nothing.

Specified By:

autoConfigure() in interface IFunctional Companion

generateOutput()

public java.lang. Sring generateQutput ()
Does nothing. Returns null.

Specified By:

generateOutput() in interface IFunctionalCompanion

Package oracle.apps.cz.cio B-97

FunctionalCompanion

generateOutput(HttpServletResponse)

getDescription()

getlD()

getName()

public voi d generat eQut put (j avax. servl et. http. Ht pServl et Response response)
Does nothing.

Specified By:

generateOutput(HttpServletResponse) in interface IFunctional Companion

public java.lang. Sring getDescription()
Returns the description of the functional companion.

Specified By:

getDescription() in interface IFunctionalCompanion

public int getlX)
Returns the database ID of the functional companion.

Specified By:

getID() in interface IFunctional Companion

public java.lang. Sring get Nang()
Returns the name of the functional companion.

Specified By:

getName() in interface IFunctional Companion

getRuntimeNode()

public | Runti neNode get Runti neNode()
Returns the runtime node to which this functional is associated.

Specified By:

getRuntimeNode() in interface I[Functional Companion

B-98 Oracle Configuration Interface Object (CIO) Developer's Guide

FunctionalCompanion

initialize(IRuntimeNode, String, String, int)

terminate()

toString()

validate()

public void initialize(lRuntineNode node, java.lang. Sring nane,
java.lang. String description, int id)
Saves the parameters in member variables.

Specified By:

initialize(IRuntimeNode, String, String, int) in interface IFunctional Companion

public void termnate()
Does nothing.

Specified By:

terminate() in interface IFunctional Companion

public java.lang. Sring toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

public java.util.List validate()
Does nothing.

Specified By:

validate() in interface IFunctional Companion

Package oracle.apps.cz.cio B-99

FunctionalCompanionException

oracle.apps.cz.cio
FunctionalCompanionException

Syntax
public class Functi onal Conpani onExcepti on

oracl e. apps. cz. ci 0. Funct i onal Conpani onExcept i on

Description

This exception is used to indicate that an error occured somewhere inside the
functional companion.

Member Summary

Constructors

FunctionalCompanionException(Thro The message of the original exception will be the message of this exception.
wable)

FunctionalCompanionException(Thro
wable, String)

Constructors

FunctionalCompanionException(Throwable)

public Functi onal Conpani onExcept i on(j ava. | ang. Thr ownabl e ex)
The message of the original exception will be the message of this exception.

FunctionalCompanionException(Throwable, String)

public Functi onal Conpani onExcepti on(j ava. | ang. Throwabl e ex, java.lang. String
nessage)

Parameters:
nmessage - the message of the exception

B-100 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IAtp

oracle.apps.cz.cio
IAtp

Syntax
public interface | Ap extends | Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount

Description

Implemented by objects that can have ATP calculated. This interface contains
methods for getting available-to-promise (ATP) information, and methods to
retrieve ATP errors/warnings/messages.

Member Summary

Methods

getAtpDate() Retrieves last ATP date calculated by Configuration.calculateAtpDates for this item.

getAtpNotifications() Returns string containing any ATP messages, warnings or errors generated for this
node by the latest Configuration.calculateAtpDates call.

getDatabaselD() Returns the database ID of the runtime node.

getltemKey() Returns item key for items imported from Oracle Inventory / BOM.

getUomCode() Returns unit of measure code for items imported from Oracle Inventory/ BOM.

Inherited Member Summary

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Package oracle.apps.cz.cio B-101

IAtp

Methods

getAtpDate()

public java. util.Date get At pDate()
Retrieves last ATP date calculated by Configuration.calculateAtpDates for this item.

Returns:
ATP date

Throws:
AtpUnavailableException - thrown if ATP initialization parameters were not
provided

NoAtpCalculatedException - thrown if ATP was never demanded or if the ATP
procedure did not calculate an ATP date for this node

getAtpNotifications()

getDatabaselD()

getltemKey()

getUomCode()

public java.lang. Sring get A pNotifications()
Returns string containing any ATP messages, warnings or errors generated for this
node by the latest Configuration.calculateAtpDates call.

public int getDatabasel)
Returns the database ID of the runtime node.

public java.lang. Sring getltenkey()

Returns item key for items imported from Oracle Inventory / BOM. Item key is
constructed from BOM_EXPLOSIONS field values: "[COMPONENT_
CODE]:[EXPLOSION_TYPE]:[ORGANIZATION_ID]:[TOP_ITEM_ID]" Item key
may be used by PL/SQL ATP procedures to calculate ATP for nodes. Returns null if
node was not imported from Oracle Inventory / BOM.

public java.lang. Sring get UonCode()

Returns unit of measure code for items imported from Oracle Inventory/ BOM. The
unit of measure may be used by PL/SQL pricing procedures to calculate ATP for
nodes. Returns null if node was not imported from Oracle Inventory / BOM.

B-102 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IBomltem

oracle.apps.cz.cio

IBomltem

Syntax
public interface |Bonmitemextends | QptionFeature, | Qption, IPrice, AP

All Superinterfaces:
|Atp, 1Cunt, |ption, | ptionFeature, IPrice, |Sate

All Known Implementing Classes:
Bomhbde

Description
Implemented by all selectable BOM items.

Member Summary

Methods
getComponentCode()
getlnventoryltemld()
getMaxQuantity()
getMinQuantity()
getOrganizationld()
getPrimaryUomCode()
hasMaxQuantity()
hasMinQuantity()
isRequired()

Returns component code of item.

Returns Oracle Applications inventory_item_id of item.
Gets the maximum quantity.

Gets the minimum quantity.

Returns Oracle Applications organization_id of item.
Gets primary unit of measure code for item.

Reuturns true if the BOM item has maximum quantity
Returns true if the BOM item has minimum quantity

Returns t r ue if this is a required BOM item.

Package oracle.apps.cz.cio B-103

[Bomltem

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Methods inherited from interface IOptionFeature

areOptionsCounted(), deselect(IOption), getMaxSelected(), getMinSelected(), getSelectedOption(), getSelectedOptions(), hasMaxSelected(),
hasMinSelected(), isSelectionMutexed(), select(IOption)

Methods inherited from interface IState

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IOption

deselect(), isOptionMutexed(), isSelected(), select()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IAtp

getAtpDate(), getAtpNotifications(), getDatabaselD(), getltemKey(), getUomCode()

Methods
getComponentCode()
public java.lang. Sring get Conponent Code()
Returns component code of item. Component code is used to identify the item
within an exploded bill of materials.
getinventoryltemid()
public int getlnventoryltemd()
Returns Oracle Applications inventory_item_id of item.
getMaxQuantity()

public int get MxQuantity()

B-104 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IBomltem

Gets the maximum quantity.

getMinQuantity()

public int getMnQiantity()
Gets the minimum quantity.

getOrganizationld()

public int getQganizationld()
Returns Oracle Applications organization_id of item.

getPrimaryUomCode()

public java.lang. Sring getPri nmarylUonGode()
Gets primary unit of measure code for item.

hasMaxQuantity()

publ i ¢ bool ean hasvaxQuanti ty()
Reuturns true if the BOM item has maximum quantity

hasMinQuantity()

publ i ¢ bool ean hasM nQuanti ty()
Returns true if the BOM item has minimum quantity

isRequired()

publ i ¢ bool ean i sRequi red()
Returns t r ue if this is a required BOM item.

Package oracle.apps.cz.cio B-105

ICompSetEventListener

oracle.apps.cz.cio
ICompSetEventListener

Syntax
public interface | ConpSet Event Li st ener extends java. util . EventLi stener

All Superinterfaces:
java. util.EventLi stener

Description
Implemented by objects that want to find out about added components.

Member Summary

Methods
notifyComponentAdded(Component) Called when a component is added to the component set.

notifyComponentDeleted(Component - Called when a component is deleted from the component set.

)

Methods

notifyComponentAdded(Component)

public void notifyConponent Added(Conponent conponent)
Called when a component is added to the component set.

notifyComponentDeleted(Component)

public void notifyConponent Del et ed(Conponent conponent)
Called when a component is deleted from the component set.

B-106 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IConfigEventListener

oracle.apps.cz.cio
IConfigEventListener

Syntax
public interface | Confi gEventLi stener extends java.util.BventLi stener

All Superinterfaces:
java. util.EventLi stener

Description

Implemented by objects that want to find out about added components. This
listener's methods are called as the result of user interaction, after a functional
companion is initialized.

Member Summary

Methods

notifyComponentAdded(Component) Called when a component is added to the configuration as the result of user
interaction, after a functional companion is initialized.

notifyComponentDeleted(Component Called when a component is deleted from the configuration as the result of user
) interaction, after a functional companion is initialized.

Methods

notifyComponentAdded(Component)

public voi d notifyConponent Added(Conponent conponent)
Called when a component is added to the configuration as the result of user
interaction, after a functional companion is initialized.

notifyComponentDeleted(Component)

public voi d notifyConponent Del et ed(Conponent conponent)
Called when a component is deleted from the configuration as the result of user
interaction, after a functional companion is initialized.

Package oracle.apps.cz.cio B-107

[Count

oracle.apps.cz.cio
ICount

Syntax
public interface | Count

All Known Subinterfaces:
|Atp, IBonitem I Qption, | QptionFeature, |Price

All Known Implementing Classes:
S at eCount Node

Description
Implemented by objects that have an associated integer count.

Member Summary

Methods

getCount() Gets the current count of this object.

setCount(int) Sets the count of this object.

unset() Retracts any user selection made toward this node
Methods

getCount()

public int getCount()
Gets the current count of this object.

Returns:
the current count of this object.

setCount(int)
public void setCount (i nt newGount)

B-108 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ICount

Sets the count of this object.
unset()

public void unset ()
Retracts any user selection made toward this node

Package oracle.apps.cz.cio B-109

IDecimal

oracle.apps.cz.cio

IDecimal

Syntax
public interface | Deci mal extends | ReadOnl yDeci nal

All Superinterfaces:
| ReadOnl yDeci nal

All Known Implementing Classes:
Deci nal Node

Description
Implemented by objects that can both get and set a decimal value.

Member Summary

Methods
setDecimalValue(double) Sets the current value of this object.
unset() Retracts any user selection made toward this node

Inherited Member Summary

Methods inherited from interface IReadOnlyDecimal

getDecimalValue(), isUnknown()

Methods

setDecimalValue(double)

public void setDeci nal Val ue(doubl e newal ue)
Sets the current value of this object.

B-110 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IDecimal

unset()

public void unset ()
Retracts any user selection made toward this node

Package oracle.apps.cz.cio B-111

IDecimalMinMax

oracle.apps.cz.cio
IDecimalMinMax

Syntax
public interface I Deci nal M nMax

All Known Implementing Classes:
Deci nal Feat ure

Description
Implemented by objects that have a decimal minimum and maximum value.

Member Summary

Methods
getMax() Get the maximum allowable value.
getMin() Get the minimum allowable value.
hasMax() Returns true if there is a maximum limit.
hasMin() Returns true if there is a minimum limit.
Methods
getMax()

publ i c doubl e get Max()

Get the maximum allowable value.
getMin()

publ i c doubl e get Mn()

Get the minimum allowable value.
hasMax()

publ i ¢ bool ean hasiax()
Returns true if there is a maximum limit.

B-112 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IDecimalMinMax

hasMin()

publ i ¢ bool ean hasM n()
Returns true if there is a minimum limit.

Package oracle.apps.cz.cio B-113

IFunctionalCompanion

oracle.apps.cz.cio
IFunctionalCompanion

Syntax
public interface | Functional Gonpani on

All Known Implementing Classes:
Funct i onal Conpani on

Description

Implemented by functional companion objects attached to components in order to
provide programatic functionality to a configuration model.

Member Summary

Fields Functional Companion event types
FC_ON_AUTO_CONFIGURE 1004

FC_ON_GENERATE_OUTPUT 1006

FC_ON_NEW 1001

FC_ON_RESTORE 1002

FC_ON_SAVE 1003

FC_ON_VALIDATE 1005

Methods

autoConfigure() Performs a programmatic configuration step.
generateOutput() Generates output for this component.

generateOutput(HttpServletResponse Generates output for this component.

)

getDescription() Returns the description of the functional companion.

getlD() Returns the database ID of the functional companion.

getName() Returns the name of the functional companion.

getRuntimeNode() Returns the runtime node to which this component is attached.

B-114 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IFunctionalCompanion

Member Summary

initialize(IRuntimeNode, String, Saves information about the model and performs any actions needed to initialize
String, int) the companion.
terminate() Performs any cleanup on this companion that needs to occur before the companion

is destroyed.

validate() Programatically checks that a configuration is valid and returns a list of
ValidationFailure objects if there are failures, and null otherwise.

Fields

FC_ON_AUTO_CONFIGURE

public static final int FC_ ON AUTO GONFl GURE
Functional Companion event type.

FC_ON_GENERATE_OUTPUT

public static final int FC ON CENERATE QUTPUT
Functional Companion event type.

FC_ON_NEW

public static final int FC ON NEW
Functional Companion event type.

FC_ON_RESTORE

public static final int FC ON RESTGRE
Functional Companion event type.

FC_ON_SAVE

public static final int FC QN SAVE
Functional Companion event type.

FC_ON_VALIDATE

public static final int FC QN VALI DATE
Functional Companion event type.

Package oracle.apps.cz.cio B-115

IFunctionalCompanion

Methods

autoConfigure()

public voi d aut oGonfi gure()
Performs a programmatic configuration step. Any modifications to the model

should be performed here.

generateOutput()

public java.lang. Sring generateQutput ()

Generates output for this component. This version is called in a thick client context
where the user's machine can be addressed directly. Can modify the model, but this
is not recommended practice.

generateOutput(HttpServietResponse)

getDescription()

public voi d generat eQut put (j avax. servl et. http. Ht pServl et Response response)
Generates output for this component. This version is called in a thin client context
where the user's browser is addressed indirectly by writing to the
HttpServletResponse object. Can modify the model, but this is not recommended
practice.

public java.lang. Sring getDescription()
Returns the description of the functional companion.

getlD()

public int getlX)

Returns the database ID of the functional companion.
getName()

public java.lang. Sring get Nang()

Returns the name of the functional companion.
getRuntimeNode()

public | Runti neNode get Runti neNode()
Returns the runtime node to which this component is attached.

B-116 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IFunctionalCompanion

initialize(IRuntimeNode, String, String, int)

terminate()

validate()

public void initialize(lRuntineNode node, java.lang. Sring nane,

java.lang. String description, int id)

Saves information about the model and performs any actions needed to initialize
the companion. Should never attempt to modify the model.

public void termnate()
Performs any cleanup on this companion that needs to occur before the companion
is destroyed.

public java.util.List validate()

Programatically checks that a configuration is valid and returns a list of
ValidationFailure objects if there are failures, and null otherwise. Should never
attempt to modify the model.

Package oracle.apps.cz.cio B-117

lInteger

oracle.apps.cz.cio
linteger

Syntax
public interface Ilnteger

All Known Implementing Classes:
Qount Feat ure, | nt eger Node

Description
Implemented by objects that have an integer value.

Member Summary

Methods
getintValue() Get the current integer value of this object.
isUnknown() Tells whether this feature is in unknown or known state.
setintValue(int) Set the current integer value of this object.
unset() Retracts any user selection made toward this node
Methods
getintValue()
public int getlntVal ue()
Get the current integer value of this object.
isUnknown()

publ i ¢ bool ean i sthknown()
Tells whether this feature is in unknown or known state.

Returns:
true if the feature is unknown.

B-118 Oracle Configuration Interface Object (CIO) Developer’'s Guide

lInteger

setintValue(int)

public void setlntVal ue(int newal ue)
Set the current integer value of this object.

unset()

public void unset()
Retracts any user selection made toward this node

Package oracle.apps.cz.cio B-119

lIntegerMinMax

oracle.apps.cz.cio
lintegerMinMax

Syntax
public interface IIntegerM nMax

All Known Implementing Classes:
Qount Feat ure, I ntegerFeature, Conponent Node

Description
Implemented by objects that have an integer minimum and maximum.

Member Summary

Methods
getMax() Get the maximal allowable value for this object.
getMin() Get the minimal allowable value for this object.
hasMax() Returns true if there is a maximum limit.
hasMin() Returns true if there is a minimum limit.
Methods
getMax()

public int getMx()

Get the maximal allowable value for this object.
getMin()

public int getMn()

Get the minimal allowable value for this object.
hasMax()

publ i ¢ bool ean hasiax()
Returns true if there is a maximum limit.

B-120 Oracle Configuration Interface Object (CIO) Developer’'s Guide

lIntegerMinMax

hasMin()

publ i ¢ bool ean hasM n()
Returns true if there is a minimum limit.

Package oracle.apps.cz.cio B-121

IncompatibleInputException

oracle.apps.cz.cio
IncompatiblelnputException

Syntax
public class I nconpati bl el nput Excepti on extends java. | ang. Exception

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci o. I nconpati bl el nput Excepti on

All Implemented Interfaces:
java.io. Serializable

Description

Signalled if a particular input is of different type than the node it is trying to restore
over.

Member Summary

Methods
getlnput() Returns the input object where the mismatch occured
getModelNode() Returns the corresponding model node where the mismatch occured

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-122 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IncompatibleInputException

Methods

getinput()
publ i c oracl e. apps. cz. di 0. confi g. DbConfi gl nput get | nput ()
Returns the input object where the mismatch occured
Returns:
the failed DbConfigInput object

getModelNode()

publ i c oracl e. apps. cz. di 0. nodel . DoMbdel Node get Mbdel Node()
Returns the corresponding model node where the mismatch occured

Returns:
the failed DbConfigInput object

Package oracle.apps.cz.cio B-123

IntegerFeature

oracle.apps.cz.cio
IntegerFeature

Syntax
public class |IntegerFeature extends |ntegerNode inpl enents |Integer M nivax

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- I nt eger Node

+-oracl e. apps. cz. cio. | ntegerFeature

All Implemented Interfaces:
I Integer, |lntegerMnhax, |RuntineNode

Description
Represents a feature with an integer value.

Member Summary

Methods
getMax()
getMin()
getType()
hasMax()

hasMin()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

B-124 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IntegerFeature

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class IntegerNode
getintValue(), isUnknown(), setintValue(int), unset()
Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IIinteger
getIntValue(), isUnknown(), setintValue(int), unset()
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods
getMax()

public int getMx()

Specified By:

getMax() in interface IIntegerMinMax
getMin()

public int getMn()

Specified By:
getMin() in interface IIntegerMinMax

Package oracle.apps.cz.cio B-125

IntegerFeature

getType()
public int getType()

Specified By:
getType() in interface IRuntimeNode

Overrides:
getType() in class RuntimeNode

hasMax()
publ i ¢ bool ean hasiax()

Specified By:
hasMax() in interface IIntegerMinMax

hasMin()

publ i ¢ bool ean hasM n()

Specified By:
hasMin() in interface IIntegerMinMax

B-126 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IntegerNode

oracle.apps.cz.cio

IntegerNode

Syntax

public abstract class IntegerNode extends RuntineNode i npl enents |1 nteger

j ava. | ang. (oj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. | nt eger Node

Direct Known Subclasses:
I nt eger Feat ure

All Implemented Interfaces:
I Integer, |Runti neNode

Description
Represents a feature with an integer value.

Member Summary

Methods
getintValue()
isUnknown()
setintValue(int)

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-127

IntegerNode

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasIntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods
getintValue()
public int getlntVal ue()
Specified By:
getIntValue() in interface IInteger
isUnknown()
publ i ¢ bool ean i slhknown()
Specified By:
isUnknown() in interface IInteger
setintValue(int)

public void setlntVal ue(int new ntVal ue)

Specified By:
setIntValue(int) in interface IInteger

B-128 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IntegerNode

unset()
public void unset ()

Specified By:

unset() in interface IInteger

Package oracle.apps.cz.cio B-129

[Option

oracle.apps.c
IOption

Z.cio

Syntax
public interface | Qption extends | Sate, |Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount, ISate

All Known Implementing Classes:
ot i onNbde

Description

Implemented by objects that act as options. The defining characteristic of an option
is that it can be selected and deselected.

Member Summary

Methods
deselect()
isOptionMutexed()
isSelected()

select()

Deslect this option.
Returns true if this option is a child of a mutexed parent
Returns t r ue if this option is selected, and f al se otherwise.

Select this option.

Inherited Member

Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Methods inherited from interface IState

B-130 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|Option

Inherited Member Summary

getState(), isUnknown(), setState(int), unset()
Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods
deselect()

public void desel ect()

Deslect this option.
isOptionMutexed()

publ i ¢ bool ean i sQpti onMut exed()

Returns true if this option is a child of a mutexed parent
isSelected()

publ i ¢ bool ean i sSel ect ed()

Returns t r ue if this option is selected, and f al se otherwise.
select()

public voi d sel ect()
Select this option.

Package oracle.apps.cz.cio B-131

[OptionFeature

oracle.apps.cz.cio
IOptionFeature

Syntax
public interface | Opti onFeature extends | State, |Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount, ISate

All Known Implementing Classes:
ot i onFeat ur eNode

Description

Implemented by objects that contain selectable options. This interface provides a
mechansim for selecting and deselecting options, and for determining which
options are currently selected.

Member Summary

Methods
areOptionsCounted()
deselect(IOption)
getMaxSelected()
getMinSelected()
getSelectedOption()
getSelectedOptions()
hasMaxSelected()
hasMinSelected()

isSelectionMutexed()

Returns true if the Feature has counted options.

Deselect a particular option.

Returns the maximum number of selected options.

Returns the minimum number of selected options.

Returns the currently selected option, or nul | if no option is selected.
Returns a, possibly empty, collection of options that are currently selected.
Returns true if the Feature specifies a maximum number of selected options.
Returns true if the Feature specifies a minimum number of selected options.

Returns t r ue if this feature supports mutexed selections.

B-132 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|OptionFeature

Member Summary

select(IOption) Select a particular option.

Inherited Member Summary

Fields inherited from interface IState

FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Methods inherited from interface IState

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods
areOptionsCounted()

publ i ¢ bool ean areQpti onsCount ed()

Returns true if the Feature has counted options.
deselect(IOption)

public void desel ect (1 Qption option)

Deselect a particular option.

Parameters:

opt i on - the option to be de selected.
getMaxSelected()

public int getMixSel ected()

Returns the maximum number of selected options.
getMinSelected()

public int getM nSel ected()
Returns the minimum number of selected options.

Package oracle.apps.cz.cio B-133

[OptionFeature

getSelectedOption()

public | Qption getSel ect edQotion()
Returns the currently selected option, or nul | if no option is selected.

Returns:
the currently selected option.

Throws:

SelectionNotMutexedException - if this feature does not support mutexed
selections.

getSelectedOptions()

public java. util.List getSel ected@ptions()
Returns a, possibly empty, collection of options that are currently selected.

hasMaxSelected()

publ i ¢ bool ean hasvaxSel ect ed()
Returns true if the Feature specifies a maximum number of selected options.

hasMinSelected()

publ i ¢ bool ean hasM nSel ect ed()
Returns true if the Feature specifies a minimum number of selected options.

isSelectionMutexed()

select(IOption)

publ i ¢ bool ean i sSel ecti onMit exed()

Returns t r ue if this feature supports mutexed selections. When a selection is
mutexed, it means that only one of a particular option is selectable at any one time,
and selecting one option automatically deselects any other option that is mutexed
and currently selected.

public void sel ect (I Qption option)
Select a particular option.

Parameters:
opt i on - the option to be selected.

B-134 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|Price

oracle.apps.cz.cio

IPrice

Syntax
public interface | Price extends | Count

All Known Subinterfaces:
| Bom t em

All Superinterfaces:
| Gount

All Known Implementing Classes:
S at eCount Node

Description

Implemented by objects that can be priced. This interface contains methods for
getting list, discount, and extended prices, and methods to retrieve pricing
errors/warnings/messages.

Member Summary

Methods
getDatabaselD()

getDiscountedPrice()

getExtendedPrice()
getltemKey()
getListPrice()
getPricingNotifications()

getUomCode()

Returns the database ID of the runtime node.

Gets discounted price of item based on adjustments associated with price list

specified in initParameters.

Calculates extended price of item (quantity * discounted price).
Returns item key for items imported from Oracle Inventory / BOM.
Gets list price of item on price list specified in initParameters.

Returns string containing any pricing messages, warnings, or errors.

Returns unit of measure code for items imported from Oracle Inventory/ BOM.

Package oracle.apps.cz.cio B-135

IPrice

Inherited Member Summary

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods

getDatabaselD()

public int getDatabasel ()
Returns the database ID of the runtime node.

getDiscountedPrice()

publ i ¢ doubl e get O scount edPri ce()
Gets discounted price of item based on adjustments associated with price list
specified in initParameters.

getExtendedPrice()

publ i ¢ doubl e get Ext endedPri ce()
Calculates extended price of item (quantity * discounted price).

getltemKey()

public java.lang. Sring getltenkey()

Returns item key for items imported from Oracle Inventory / BOM. Item key is
constructed from BOM_EXPLOSIONS field values: "[COMPONENT_
CODE]:[EXPLOSION_TYPE]:[ORGANIZATION_ID]:[TOP_ITEM_ID]" Item key
may be used by PL/SQL pricing procedures to price nodes. Returns null if node
was not imported from Oracle Inventory / BOM.

getListPrice()

publ i c doubl e getListPrice()
Gets list price of item on price list specified in initParameters.

getPricingNotifications()

public java.lang. Sring getPricingNotifications()
Returns string containing any pricing messages, warnings, or errors.

B-136 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|Price

getUomCode()

public java.lang. Sring get UonCode()
Returns unit of measure code for items imported from Oracle Inventory/ BOM. The

unit of measure may be used by PL/SQL pricing procedures to price nodes. Returns
null if node was not imported from Oracle Inventory / BOM.

Package oracle.apps.cz.cio B-137

IReadOnlyDecimal

oracle.apps.cz.cio
IReadOnlyDecimal

Syntax
public interface | ReadOnl yDeci nal

All Known Subinterfaces:
| Deci nal

All Known Implementing Classes:
Readnl yDeci mal Node

Description
Implemented by objects that have a decimal value.

Member Summary

Methods

getDecimalValue() Gets the current value of this object.

isUnknown() Tells whether this feature is in unknown or known state.
Methods

getDecimalValue()

publ i c doubl e get Deci nal Val ue()
Gets the current value of this object.

Returns:
the current value.

isUnknown()

publ i c bool ean i sthknown() -
Tells whether this feature is in unknown or known state.

B-138 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IReadOnlyDecimal

Returns:
true if the feature is unknown.

Package oracle.apps.cz.cio B-139

IRuntimeNode

oracle.apps.cz.cio
IRuntimeNode

Syntax
public interface | Runti neNode

All Known Implementing Classes:
Runt i nreNode

Description

Implemented by all objects in the runtime configuration tree. This interface
implements behavior common to all nodes in the runtime configuration tree,
including components, features, options, totals, etc.

Member Summary

Fields
ALL_FEATURES
BOM_MODEL
BOM_OPTION_CLASS
BOM_STD_ITEM
BOOLEAN_FEATURE
COMPONENT
COMPONENT_SET
COUNT_FEATURE
DECIMAL_FEATURE
INTEGER_FEATURE
OPTION
OPTION_FEATURE
RESOURCE

A pseudo-type that represents all feature types for use in getChildrenByType.

BOM model type.
BOM option class type.
BOM standard item type.
Boolean feature type.
Component type.
Component set type.
Count feature type.
Decimal feature type.
Integer feature type.
Option type.

Option feature type.

Resource type.

B-140 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

Member Summary

TEXT_FEATURE
TOTAL

Methods
getChildBylID(int)
getChildByName(String)
getChildren()
getChildrenByType(int)
getConfiguration()
getDatabaselD()
getDescription()
getName()

getParent()
getProperties()
getPropertyByName(String)
getRuntimelD()
getSelectionLinelD()
getType()

hasCount()
hasDecimalValue()
hasDescription()
hasSelectionLinelD()
hasState()
hasTextValue()
isNative()

isUnsatisfied()

isUnsatisfiedNode()

Text feature type.

Total type.

Gets a particular child identified by its ID.

Gets a particular child identified by its name.

Gets the children of this runtime configuration node.

Gets all of the children of a particular type.

Gets the configuration to which this node belongs.

Gets the database ID of the node.

Returns the design-time description of the runtime node.

Gets the name of the node.

Get the parent of this node.

Returns a collection of the properties associated with this node.
Returns a particular property of this node, based on its name.

Gets the runtime ID of the node.

Returns selection line ID (configuration output database ID) for node.
Gets the type of this node.

Returns true if the node has an object count.

Returns true if the node has a decimal value.

Returns true if there is a design-time description of the runtime node.
Returns true if node has a selection line ID (configuration output ID), false if not.
Returns true if the node has a logical state.

Returns true if the node has a text value.

Returns true if this is a native BOM node

Returns t r ue if this particular node, or any one of its children, has not been
completely configured.

Returns t r ue if this particular node has not been completely configured.

Package oracle.apps.cz.cio B-141

IRuntimeNode

Member Summary

toString(boolean) Returns a String representation of this node, based on whether the client demands a
description (if there is one) or just a name

Fields

ALL_FEATURES

public static final int ALL FEATURES
A pseudo-type that represents all feature types for use in getChildrenByType.

BOM_MODEL

public static final int BOM MIDEL
BOM model type.

BOM_OPTION_CLASS

public static final int BOM CPTI ON ALASS
BOM option class type.

BOM_STD_ITEM

public static final int BOMSID | TEM
BOM standard item type.

BOOLEAN_FEATURE

public static final int BOOLEAN FEATURE
Boolean feature type.

COMPONENT

public static final int GOMPONENT
Component type.

COMPONENT_SET

public static final int COMPONENT_SET
Component set type.

COUNT_FEATURE
public static final int GONT_FEATURE

B-142 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

Count feature type.

DECIMAL_FEATURE

public static final int

Decimal feature type.

INTEGER_FEATURE

public static final int

Integer feature type.

OPTION

public static final int

Option type.

OPTION_FEATURE

public static final int

Option feature type.

RESOURCE

public static final int

Resource type.

TEXT_FEATURE

public static final int

Text feature type.

TOTAL

public static final int

Total type.

Methods

getChildBylD(int)

public | Runti neNode get Chil dByl (i nt id)
Gets a particular child identified by its ID.

DEQ MAL_FEATURE

I NTEGER FEATURE

CPTI N

CPTI ON_FEATURE

TEXT_FEATURE

TOTAL

Package oracle.apps.cz.cio B-143

IRuntimeNode

Returns:
a child of this node.

getChildByName(String)

public | Runti neNode get Chi | dByNane(j ava. |l ang. S ri ng nane)
Gets a particular child identified by its name.

Returns:
a child of this node.

getChildren()

public java. util.List getChildren()
Gets the children of this runtime configuration node.

Returns:
a collection of children.

getChildrenByType(int)
public java.util.List getChildrenByType(int type)
Gets all of the children of a particular type.

Returns:
a collection of children.

getConfiguration()

public Configuration get Gonfiguration()
Gets the configuration to which this node belongs.

Returns:
the configuration to which this node belongs.

See Also:
Configuration

getDatabaselD()
public int getDatabasel)

B-144 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

Gets the database ID of the node.

Returns:
the database ID of the node.

getDescription()

public java.lang. Sring getDescription()
Returns the design-time description of the runtime node.

getName()

public java.lang. Sring get Nane()
Gets the name of the node.

Returns:
the name of the node.

getParent()

public | Runti neNode get Parent ()
Get the parent of this node.

Returns:
the node's parent.

getProperties()

public java.util.Qollection getProperties()
Returns a collection of the properties associated with this node. The collection
contains items of the type Property.

getPropertyByName(String)

public Property getPropertyByNange(j ava.l ang. Sring nane)
Returns a particular property of this node, based on its name. Returns null if a
property of the given name does not exist.

getRuntimelD()

public int getRuntinel ()
Gets the runtime ID of the node. This ID is unique across all other nodes created by
a particular CIO.

Package oracle.apps.cz.cio B-145

IRuntimeNode

Returns:
runtime ID of the node.

getSelectionLinelD()

public int getSel ectionLinel)

Returns selection line ID (configuration output database ID) for node. The
hasSelectionLinelD() method should always be called before this method. A
RuntimeException will be thrown if ID doesn't exist.

Returns:
line ID

getType()
public int getType()
Gets the type of this node.

Returns:
the type of this node.

hasCount()

publ i ¢ bool ean hasCount ()
Returns true if the node has an object count.

hasDecimalValue()

publ i ¢ bool ean hasDeci nal Val ue()
Returns true if the node has a decimal value.

hasDescription()

publ i ¢ bool ean hasDescri pti on()
Returns true if there is a design-time description of the runtime node.

hasSelectionLinelD()

publ i ¢ bool ean hasSel ecti onLi nel ()
Returns true if node has a selection line ID (configuration output ID), false if not.

hasState()

publ i ¢ bool ean hasSt at e()

B-146 Oracle Configuration Interface Object (CIO) Developer’'s Guide

IRuntimeNode

hasTextValue()

isNative()

isUnsatisfied()

Returns true if the node has a logical state.

publ i ¢ bool ean hasText Val ue()
Returns true if the node has a text value.

publ i c bool ean isNative()
Returns true if this is a native BOM node

publ i c bool ean islhsati sfied()

Returns t r ue if this particular node, or any one of its children, has not been
completely configured. The value is cached and is only updated on transaction
commit or rollback.

Returns:
a boolean indicating whether the node is unsatisfied.

isUnsatisfiedNode()

publ i ¢ bool ean islhsati sfi edNode()
Returns t r ue if this particular node has not been completely configured. The value
is cached and is only updated on transaction commit or rollback.

Returns:
a boolean indicating whether the node is unsatisfied.

toString(boolean)

public java.lang. Sring toSring(bool ean descri pti on)
Returns a String representation of this node, based on whether the client demands a
description (if there is one) or just a name

Package oracle.apps.cz.cio B-147

|State

oracle.apps.cz.cio

IState

Syntax

public interface | Sate

All Known Subinterfaces:
IBomitem | Qption, |QptionFeature

All Known Implementing Classes:

S at eNode

Description

Implemented by objects that have logic state. This interface contains a set of input
states, used to specify a new state for an object, a set of output states, returned when
querying an object for its state, and a set of methods for getting and setting the
object's state.

Member Summary

Fields
FALSE
LFALSE

LTRUE

TOGGLE

TRUE
UFALSE
UNKNOWN
UTRUE
Methods

The input state used to set an object to false.

The logically false output state, indicating that the state is false as a consequence of
arule.

The logically true output state, indicating that the state is true as a consequence of a
rule.

The input state used to turn an object state to true if it is false or unknown, and to
make it unknown or false if it is true.

The input state used to set an object to true.
The user false output state, indicating that a user has set this object to false.
The unknown output state.

The user true output state, indicating that a user has set this object to true.

B-148 Oracle Configuration Interface Object (CIO) Developer’'s Guide

|State

Member Summary

getState() Gets the current logic state of this object.
isUnknown() Tells whether this feature is in unknown or known state.
setState(int) Change the current logic state of this object.
unset() Retracts any user selection made toward this node
Fields
FALSE
public static final int FALSE
The input state used to set an object to false.
LFALSE
public static final int LFALSE
The logically false output state, indicating that the state is false as a consequence of
arule.
LTRUE
public static final int LTRE
The logically true output state, indicating that the state is true as a consequence of a
rule.
TOGGLE
public static final int TOGAE
The input state used to turn an object state to true if it is false or unknown, and to
make it unknown or false if it is true.
TRUE
public static final int TRE
The input state used to set an object to true.
UFALSE

public static final int UFALSE
The user false output state, indicating that a user has set this object to false.

Package oracle.apps.cz.cio B-149

|State

UNKNOWN

UTRUE

Methods

getState()

isUnknown()

setState(int)

unset()

public static final int UNKNOMW
The unknown output state.

public static final int URE
The user true output state, indicating that a user has set this object to true.

public int getSate()
Gets the current logic state of this object.

Returns:
the current state.

publ i ¢ bool ean i sthknown()
Tells whether this feature is in unknown or known state.

Returns:
true if the feature is unknown.

public void setState(int state)
Change the current logic state of this object.

public void unset ()
Retracts any user selection made toward this node

B-150 Oracle Configuration Interface Object (CIO) Developer’'s Guide

| Text

oracle.apps.cz.cio
IText

Syntax
public interface | Text

All Known Implementing Classes:
Text Node

Description
Implemented by objects that have a textual value.

Member Summary

Methods
getTextValue() Gets the current textual value of this object.
setTextValue(String) Sets the current textual value of this object.
unset() Retracts any user selection made toward this node
Methods
getTextValue()
public java.lang. Sring get Text Val ue()
Gets the current textual value of this object.
Returns:
the current value.
setTextValue(String)

public voi d set Text Val ue(j ava. | ang. String val ue)
Sets the current textual value of this object.

Package oracle.apps.cz.cio B-151

[Text

unset()

public void unset ()
Retracts any user selection made toward this node

B-152 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalException

oracle.apps.cz.cio
LogicalException

Syntax
public class Logi cal Excepti on extends java. | ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci o. Logi cal Excepti on

Direct Known Subclasses:
Logi cal Overri dabl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a logical failure occurs. This failure could either be a contradiction, or a
more serious problem.

Member Summary

Constructors
LogicalException()

LogicalException(LogicException,
Configuration)

LogicalException(Reason,
Configuration)

LogicalException(String,
Configuration)

Methods

Package oracle.apps.cz.cio B-153

LogicalException

Member Summary

getCause()
getMessage()
getMessageHeader()
getReasons()

isOverridable()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filllnStackTrace, getlLocalizedMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

LogicalException()
public Logi cal Exception()

LogicalException(LogicException, Configuration)

public Logi cal Excepti on(oracl e. apps. cz. | ogi c. Logi cException | e, Gonfiguration
confi g)

LogicalException(Reason, Configuration)
public Logi cal Excepti on(Reason r, Configuration config)

LogicalException(String, Configuration)
public Logical Exception(java.lang. String nsg, Gonfiguration config)

B-154 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalException

Methods
getCause()

public | Runti neNode get Cause()
getMessage()

public java.lang. Sring get Message()

Overrides:

java.lang. Throwable.getMessage() in class java.lang. Throwable
getMessageHeader()

public java.lang. Sring get Messageteader ()
getReasons()

public java. util.List getReasons()
isOverridable()

publ i ¢ bool ean i sQverri dabl e()

Package oracle.apps.cz.cio B-155

LogicalOverridableException

oracle.apps.cz.cio
LogicalOverridableException

Syntax
public class Logi cal Oserridabl eException extends Logi cal Exception

j ava. | ang. (bj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Except i on

+- - Logi cal Excepti on

+-oracl e. apps. cz. ci 0. Logi cal Overri dabl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a logical contradiction occurs that can be overriden.

Member Summary

Constructors

LogicalOverridableException(LogicCo
ntradictionException, Configuration)

Methods
equals(Object)
isOverridable()

override()

B-156 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalOverridableException

Inherited Member Summary

Methods inherited from interface LogicalException

getCause(), getMessage(), getMessageHeader(), getReasons()

Methods inherited from class java.lang. Throwable

filllnStackTrace, getlLocalizedMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

LogicalOverridableException(LogicContradictionException, Configuration)

public
Logi cal Overri dabl eExcept i on(or acl e. apps. cz. | ogi ¢. Logi cCont r adi ct i onExcepti on
Ice, Gonfiguration config)

Methods
equals(Object)
publ i c bool ean equal s(j ava. |l ang. (bj ect |ce)
Overrides:
java.lang.Object.equals(java.lang.Object) in class java.lang.Object
isOverridable()
publ i c bool ean i sOverridabl e()
Overrides:
isOverridable() in class LogicalException
override()

public void override()

Package oracle.apps.cz.cio B-157

LogicalRuntimeException

oracle.apps.cz.cio
LogicalRuntimeException

Syntax
public class Logi cal RuntineException extends java.lang. Runti neExcepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. Logi cal Runti neExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a fatal logic exception occured.

Member Summary

Constructors

LogicalRuntimeException(LogicExcep
tion)

LogicalRuntimeException(String)
Methods
getLogicException()

Inherited Member Summary

Methods inherited from class java.lang. Throwable

B-158 Oracle Configuration Interface Object (CIO) Developer’'s Guide

LogicalRuntimeException

Inherited Member Summary

filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

LogicalRuntimeException(LogicException)

public Logi cal RuntineException(oracl e. apps. cz. | ogi c. Logi cException |e)

LogicalRuntimeException(String)
public Logi cal RuntineException(java.lang. Sring nsg)

Methods

getLogicException()
public oracl e. apps. cz. | ogi c. Logi cExcepti on get Logi cException()

Package oracle.apps.cz.cio B-159

MissingFileException

oracle.apps.cz.cio
MissingFileException

Syntax
public class MssingH | eException extends java.lang. Runti meExcepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. M ssi ngFi | eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a particular logic file is missing.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-160 Oracle Configuration Interface Object (CIO) Developer’'s Guide

MissingLogicException

oracle.apps.cz.cio
MissingLogicException

Syntax
public class M ssingLogi cException extends java. |l ang. Runti neExcepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-java. | ang. Runt i neExcepti on

+-oracl e. apps. cz. ci 0. M ssi ngLogi cExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a particular logic record is missing.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-161

NoAtpCalculatedException

oracle.apps.cz.cio
NoAtpCalculatedException

Syntax
public class NoAt pCal cul at edException extends java. | ang. Excepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NoAt pCal cul at edExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when an ATP method is called on an item for which ATP
is not calculated.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-162 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NoConfigHeaderException

oracle.apps.cz.cio
NoConfigHeaderException

Syntax
public class NoConfi gHeader Excepti on extends j ava. | ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NoConf i gHeader Excepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if the configuration hasn't been saved yet.

Member Summary

Constructors

NoConfigHeaderException()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-163

NoConfigHeaderException

Constructors

NoConfigHeaderException()
public NoGonfi gHeader Exception()

B-164 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NonPricedNodeException

oracle.apps.cz.cio
NonPricedNodeException

Syntax
public class NonPri cedN\bdeException extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NonPri cedNodeExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a pricing method is called on an item which
should not be priced.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-165

NoSuchChildException

oracle.apps.cz.cio
NoSuchChildException

Syntax
public class NoSuchChi | dException extends java. | ang. Exception

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. NoSuchChi | dExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a requested child does not exist.

Member Summary

Constructors

NoSuchChildException(IRuntimeNod
e, int)

NoSuchChildException(IRuntimeNod
e, String)

Methods
getlD()
getName()

getParent()

B-166 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NoSuchChildException

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

NoSuchChildException(IRuntimeNode, int)
public NoSuchhi | dException(l RuntineNode parent, int id)

NoSuchChildException(IRuntimeNode, String)
public NoSuchhi | dException(l RuntineNode parent, java.lang. Sring nane)

Methods
getlD()
public int getlX)
getName()
public java.lang. Sring get Nang()
getParent()

public | Runti neNode get Parent ()

Package oracle.apps.cz.cio B-167

NotOneProductException

oracle.apps.cz.cio
NotOneProductException

Syntax
public class Not neProduct Exception extends java. | ang. Exception

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Not OnePr oduct Excepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project contains more than one or no
products.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-168 Oracle Configuration Interface Object (CIO) Developer’'s Guide

NotOneProjectException

oracle.apps.cz.cio
NotOneProjectException

Syntax
public class Not OneProj ect Exception extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Not OnePr oj ect Excepti on

All Implemented Interfaces:
java.io. Serializable

Description

Exception which is thrown when a client tries to create a configuration by
specifying the name of the project and the project name identifies more than one or
no projects.

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-169

Option

oracle.apps.cz.cio
Option

Syntax
public class ption extends (pti onNode

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+ - (pt i onNode

+--oracl e. apps. cz. cio. Option

All Implemented Interfaces:
| Gount, I Qption, IPrice, IRuntineNode, |Sate

Description
Represents an option of an option feature.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE

Fields inherited from interface IRuntimeNode

B-170 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Option

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionNode
deselect(), isOptionMutexed(), isSelected(), select(), setState(int)
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IOption
deselect(), isOptionMutexed(), isSelected(), select()
Methods inherited from interface IState

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount
getCount(), setCount(int), unset()

Methods inherited from interface IPrice
getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Package oracle.apps.cz.cio B-171

Option

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-172 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeature

oracle.apps.cz.cio
OptionFeature

Syntax
public class ptionFeature extends pti onFeat ur eNode

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

I
+- - (pt i onFeat ur eNode

+--oracl e. apps. cz. ci 0. Opti onFeature

All Implemented Interfaces:
| Gount, | QptionFeature, IPrice, IRuntineNode, | Sate

Description
Represents a feature with selectable options.

Member Summary

Methods
areOptionsCounted()
getMaxSelected()
getMinSelected()
getType()
hasMaxSelected()
hasMinSelected()

Package oracle.apps.cz.cio B-173

OptionFeature

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class OptionFeatureNode
deselect(IOption), getSelectedOption(), getSelectedOptions(), isSelectionMutexed(), select(IOption)
Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
setState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValug(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

deselect(IOption), getSelectedOption(), getSelectedOptions(), isSelectionMutexed(), select(IOption)
Methods inherited from interface IState

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

B-174 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeature

Inherited Member Summary

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

areOptionsCounted)
publ i ¢ bool ean areQpti onsGount ed()

getMaxSelected()
public int getMixSel ected()

getMinSelected()
public int getM nSel ected()

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

hasMaxSelected()
publ i ¢ bool ean hashvaxSel ect ed()

hasMinSelected()
publ i ¢ bool ean hasM nSel ect ed()

Package oracle.apps.cz.cio B-175

OptionFeatureNode

oracle.apps.cz.cio
OptionFeatureNode

Syntax
public abstract class (ptionFeatureNode extends S ateCount Node i npl enent s
| Opt i onFeat ure

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

+-oracl e. apps. cz. ci 0. Opti onFeat ur eNode

Direct Known Subclasses:
Boni\bde, (pti onFeat ure

All Implemented Interfaces:
| Gount, | QptionFeature, IPrice, IRuntineNode, | Sate

Description
An abstract class implementing behavior commont to all features with options.

Member Summary

Methods
deselect(IOption)
getSelectedOption()
getSelectedOptions()
isSelectionMutexed()

select(IOption)

B-176 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeatureNode

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
setState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IOptionFeature

areOptionsCounted(), getMaxSelected(), getMinSelected(), hasMaxSelected(), hasMinSelected()

Methods inherited from interface IState

getState(), isUnknown(), setState(int), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-177

OptionFeatureNode

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods
deselect(IOption)

public void desel ect (1 Qption option)

Specified By:

deselect(IOption) in interface IOptionFeature
getSelectedOption()

public | Qption get Sel ect edotion()

Specified By:

getSelectedOption() in interface IOptionFeature
getSelectedOptions()

public java. util.List getSel ected@otions()

Specified By:

getSelectedOptions() in interface IOptionFeature
isSelectionMutexed()

publ i ¢ bool ean i sSel ecti onMit exed()

Specified By:

isSelectionMutexed() in interface IOptionFeature
select(IOption)

public void sel ect (I Qption option)

B-178 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionFeatureNode

Specified By:
select(IOption) in interface IOptionFeature

Package oracle.apps.cz.cio B-179

OptionNode

oracle.apps.cz.cio
OptionNode

Syntax
public abstract class (ptionNode extends S ateCount Node inpl enents | Qpti on

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

I
+ - S at eCount Node

+-oracl e. apps. cz. ci 0. Opti onNode

Direct Known Subclasses:
otion

All Implemented Interfaces:
| Gount, I Qption, IPrice, IRuntineNode, |Sate

Description
An abstract class implementing behavior common to all option-like objects.

Member Summary

Methods
deselect()
isOptionMutexed()
isSelected()
select()

setState(int)

B-180 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionNode

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateCountNode

addPricingNotification(String), clearDiscountedPrice(), clearPricingNotifications(), getCount(), getDiscountedPrice(), getExtendedPrice(),
getltemKey(), getListPrice(), getPricingNotifications(), getUomCode(), setCount(int), setDiscountedPrice(double), setListPrice(double),
toString()

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface IState

getState(), isUnknown(), unset()

Methods inherited from interface ICount

getCount(), setCount(int), unset()

Methods inherited from interface IPrice

getDatabaselD(), getDiscountedPrice(), getExtendedPrice(), getltemKey(), getListPrice(), getPricingNotifications(), getUomCode()

Methods inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-181

OptionNode

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods
deselect()

public void desel ect ()

Specified By:

deselect() in interface IOption
isOptionMutexed()

publ i ¢ bool ean i sQpti onMut exed()

Specified By:

isOptionMutexed() in interface IOption
isSelected()

publ i ¢ bool ean i sSel ect ed()

Specified By:

isSelected() in interface IOption
select()

public void sel ect()

Specified By:

select() in interface IOption
setState(int)

public void setSate(int newsate)

B-182 Oracle Configuration Interface Object (CIO) Developer’'s Guide

OptionNode

Specified By:
setState(int) in interface IState

Specified By:
setState(int) in interface IState

Overrides:
setState(int) in class StateNode

Package oracle.apps.cz.cio B-183

PricingUnavailableException

oracle.apps.cz.cio
PricingUnavailableException

Syntax
public class Pricinglhavai |l abl eException extends java.l ang. Excepti on

j ava. | ang. (hj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci o. Pri ci ngUnavai | abl eExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signals that the CIO pricing functionality is not available.

Member Summary

Constructors
PricingUnavailableException(String)

PricingUnavailableException(String,
Object, Log)

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-184 Oracle Configuration Interface Object (CIO) Developer’'s Guide

PricingUnavailableException

Constructors

PricingUnavailableException(String)
public Prici nglhavai | abl eException(java. |l ang. String reason)

PricingUnavailableException(String, Object, Log)

public Pricinglhavai |l abl eException(java. |l ang. Sring reason, java.lang. (hject
source, oracl e. apps. f nd. conmon. Log | og)

Package oracle.apps.cz.cio B-185

Property

oracle.apps.cz.cio
Property

Syntax
public class Property extends java.l ang. Qoj ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. cio. Property

Description
Represents name/value properties associated with runtime nodes.

Member Summary

Methods
getBooleanValue() Returns the property's value as a boolean.
getDecimalValue() Returns the property's value as a double.

getDescription()

Returns the property's description.

getintValue() Returns the property's value as an integer.

getName() Returns the property's name.

getStringValue() Returns the property's value as a string.

getUnit() Returns the property's unit of measure.

hasBooleanValue() Returns true if property is a boolean property.
hasDecimalValug() Returns true if property is a decimal property.
hasDefaultValue(Checks to see if property has overridden its default value.

)
haslntegerValue()

hasStringValue()

Returns true if property is an integer property.

Returns true if property is a string property.

B-186 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Property

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods

getBooleanValue()

publ i ¢ bool ean get Bool eanVal ue()
Returns the property's value as a boolean.

getDecimalValue()

publ i ¢ doubl e get Deci nal Val ue()
Returns the property's value as a double.

getDescription()

public java.lang. Sring getDescription()
Returns the property's description.

getintValue()

public int getlntVal ue()

Returns the property's value as an integer.
getName()

public java.lang. Sring get Nane()

Returns the property's name.
getStringValue()

public java.lang. Sring get SringVval ue()

Returns the property's value as a string.
getUnit()

public java.lang. Sring get Lhit()
Returns the property's unit of measure.

Package oracle.apps.cz.cio B-187

Property

hasBooleanValue()

publ i ¢ bool ean hasBool eanVal ue()
Returns true if property is a boolean property.

hasDecimalValue()

publ i ¢ bool ean hasDeci nal Val ue()
Returns true if property is a decimal property.

hasDefaultValue()

publ i ¢ bool ean hasDef aul t Val ue()
Checks to see if property has overridden its default value.

hasintegerValue()

publ i ¢ bool ean hasl nt eger Val ue()
Returns true if property is an integer property.

hasStringValue()

publ i ¢ bool ean hasStri ngVal ue()
Returns true if property is a string property.

B-188 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ReadOnlyDecimalNode

oracle.apps.cz.cio
ReadOnlyDecimalNode

Syntax
public abstract class ReadOnl yDeci nal Node ext ends Runti nmeNode i npl enent's
| ReadOnl yDeci nal

j ava. | ang. (bj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. ReadOnl yDeci nal Node

Direct Known Subclasses:
Deci nal Node

All Implemented Interfaces:
| ReadOnl yDeci nal , | Runti neNode

Description
An abstract class implementing behavior common to objects with a decimal value.

Member Summary

Methods
getDecimalValue()
isUnknown()

toString()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-189

ReadOnlyDecimalNode

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods
getDecimalValue()

publ i c doubl e get Deci nal Val ue()

Specified By:

getDecimalValue() in interface IReadOnlyDecimal
isUnknown()

publ i ¢ bool ean i slhknown()

Specified By:

isUnknown() in interface IReadOnlyDecimal
toString()

public java.lang. Sring toString()

Overrides:
toString() in class RuntimeNode

B-190 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Reason

oracle.apps.cz.cio
Reason

Syntax

public class Reason extends java.l ang. j ect

j ava. | ang. (oj ect

+--oracl e. apps. cz. ci 0. Reason

Description

This class wraps the information returned by a contradiction in order to include
information about internal error messages.

Member Summary

Fields

DEFAULT

INTL_TEXT

MINMAX

ORTHEN

TEXT

TRUEATBIRTH

Constructors

Reason(int, IRuntimeNode, String)

Reason(Message, String,
IRuntimeNode)

Reason(String)
Methods
getFndMessageString(Message)

getMsg()

This reason initiated from inability to set a state, because of a default relation.

The message is an internationalized text string.

This reason initiated from an internal MINMAX relationship.

This reason initiated from an internal ORTHEN relationship.

The message is an unknown format text string.

This reason initiated from an internal relationship for a group.

Construct a reason given all of it's information.

Constructs a reason from an FND message.

Constructs a simple TEXT reason.

Get the message associated with this reason.

Package oracle.apps.cz.cio B-191

Reason

Member Summary

getNode()
getType()
toString()
translate()

translate(String)

Get the node associated with this reason.

Get the type of reason is held in this object.

Convert this object to a string.

This method returns the translated string for the reason.

This method returns the translated reason string using the given name for
substitution variable.

Inherited Member

Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Fields

DEFAULT

INTL_TEXT

MINMAX

ORTHEN

TEXT

public static int DEFALLT
This reason initiated from inability to set a state, because of a default relation.

public static int | NIL_TEXT
The message is an internationalized text string.

public static int MNAX
This reason initiated from an internal MINMAX relationship.

public static int CRTHEN
This reason initiated from an internal ORTHEN relationship.

public static int TEXT

B-192 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Reason

The message is an unknown format text string.

TRUEATBIRTH

public static int TRUEATB RTH
This reason initiated from an internal relationship for a group.

Constructors

Reason(int, IRuntimeNode, String)

public Reason(int type, |RuntineNode node, java.lang. Sring nsg)
Construct a reason given all of it's information.

Parameters:
t ype - What type of reason this is.

node - The node that caused the problem.

msg - The message returned.

Reason(Message, String, IRuntimeNode)

public Reason(oracl e. apps. f nd. connon. Message fndMsg, java.lang. Sring token,
| Runti neNode node)
Constructs a reason from an FND message.

Parameters:
f ndMsg - The FND message object with all but one token substituted.

t oken - The token name left to substitute.

node - The node requiring substitution.

Reason(String)

public Reason(java.lang. String nsg)
Constructs a simple TEXT reason.

Parameters:
Mg - The message string for the reason.

Package oracle.apps.cz.cio B-193

Reason

Methods

getFndMessageString(Message)

public java.lang. Sring get FndMessageS ri ng(or acl e. apps. f nd. common. Message
f ndMsg)

getMsg()

public java.lang. Sring get Msg()
Get the message associated with this reason.

getNode()

public | Runti neNode get Node()
Get the node associated with this reason.

getType()
public int getType()
Get the type of reason is held in this object.

toString()

public java.lang. Sring toString()
Convert this object to a string.

Overrides:
java.lang.Object.toString() in class java.lang.Object

translate()

public java.lang. Sring transl ate()
This method returns the translated string for the reason. If the string has a node
name substitution then the internal name is used.

translate(String)

public java.lang. Sring transl ate(java.lang. Sring nodeNane)
This method returns the translated reason string using the given name for
substitution variable.

Parameters:
nodeNane - The node name to substitute into the string.

B-194 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Resource

oracle.apps.cz.cio
Resource

Syntax
public class Resource extends Deci nal Node

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+- - ReadOnl yDeci nal Node

I
+ - Deci nal Node

+-oracl e. apps. cz. ci 0. Resour ce

All Implemented Interfaces:
| Deci nal , | ReadOnl yDeci nal , | Runt i neNode

Description

Represents a consumable resource. A resource will signal a validation failure when
it is overconsumed (in other words, when its value goes below zero). NOTE: This
class inherits from DecimalNode, but the functionality of a DecimalNode
(specifically the method SetDecimalValue()) is 'deprecated’, meaning that it
shouldn't be used on new projects and may be unsupported in a future release. Use
only methods inherited from ReadOnlyDecimalNode.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-195

Resource

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode
setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue(), isUnknown()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IDecimal
setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal
getDecimalValue(), isUnknown()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-196 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RestoreValidationFailure

oracle.apps.cz.cio
RestoreValidationFailure

Syntax
public class RestoreValidationFail ure extends ValidationFail ure

j ava. | ang. (oj ect

+-Satuslnfo

+--Val idationFail ure

+-oracl e. apps. cz. cio. RestoreVal i dationFail ure

Description
Failure produced when restoring a configuration over a changed model.

Member Summary

Methods
equals(Object)
getlnput() Returns the input object where the validation failure occured

hashCode()

Inherited Member Summary

Fields inherited from class ValidationFailure

COMPANION_FAILURE, MAX_FAILURE, MIN_FAILURE, MINO_FAILURE, MINMAX_FAILURE, RESOURCE_FAILURE, RESTORE _
FAILURE

Fields inherited from class StatusInfo
STATUS_DELETED, STATUS_EXISTING, STATUS_NEW

Methods inherited from class ValidationFailure

Package oracle.apps.cz.cio B-197

RestoreValidationFailure

Inherited Member Summary

getMessage(), getMessage(String), getType(), toString()
Methods inherited from class StatusInfo

getNode(), getStatus(), statusToString(int), toString(boolean)
Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Methods
equals(Object)
publ i c bool ean equal s(j ava. |l ang. (bj ect obj)
Overrides:
equals(Object) in class ValidationFailure
getinput()
public oracl e. apps. cz. di 0. confi g. DbGonfi gl nput get | nput ()
Returns the input object where the validation failure occured
Returns:
the failed DbConfigInput object
hashCode()

public int hashCode()

Overrides:
hashCode() in class StatusInfo

B-198 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

oracle.apps.cz.cio
RuntimeNode

Syntax

public abstract class Runti meNode extends java.lang. (bj ect inpl enents
| Runt i neNode

j ava. | ang. (bj ect

+--oracl e. apps. cz. ci 0. Runti nreNode

Direct Known Subclasses:
Gonponent Nbde, | nt eger Node, ReadOnl yDeci nal Node, S at eNode, Text Node

All Implemented Interfaces:
| Runt i neNode

Description
Abstract class implementing common behavior across all runtime nodes.

Member Summary

Methods
getChildBylID(int)
getChildByName(String)
getChildren()
getChildrenByType(int)
getConfiguration()
getDatabaselD()
getDescription()
getName()

getParent()

Returns the child of this node with a given database ID.
Returns the child of this node with a given name.
Returns a list of all children of this runtime node.
Returns a list of all children of a particular type.

Returns the configuration to which this node belongs.
Returns the database ID of the runtime node.

Returns the design-time description of the runtime node.
Returns the name of the runtime node.

Returns the parent of this runtime node, or nul | if this is the root node.

Package oracle.apps.cz.cio B-199

RuntimeNode

Member Summary

getProperties()
getPropertyByName(String)
getRuntimelD()
getSelectionLinelD()
getType()

hasCount()
hasDecimalValue()
hasDescription()
haslntegerValue()
hasSelectionLinelD()
hasState()
hasTextValue()
isNative()
isUnsatisfied()
isUnsatisfiedNode()
lookupNodelD(Object)
toString()
toString(boolean)

typeToString(int)

Returns a collection of the properties associated with this node.
Returns a particular property of this node, based on its name.

Returns the runtime ID for the node.

Returns the type of the runtime node.

Returns true if the node has an object count.

Returns true if the node has a decimal value.

Returns true if there is a design-time description of the runtime node.

Returns true if the node has a integer value.

Returns true if the node has a logical state.

Returns true if the node has a text value.

Returns true if this is a native BOM node

Returns true if this runtime node, or any of its children, is not fully configured.

Returns true if this particular node is not fully configured.

Returns a string representation of a given runtime node type constant.

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

B-200 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

Methods

getChildBylID(int)
public | Runti neNode get Chil dByl (i nt id)
Returns the child of this node with a given database ID.

Specified By:
getChildByID(int) in interface IRuntimeNode

Throws:
NoSuchChildException - if there is no child with such ID.

getChildByName(String)

public | Runti neNode get Chi | dByNane(j ava. |l ang. S ri ng nane)
Returns the child of this node with a given name.

Specified By:
getChildByName(String) in interface IRuntimeNode

Throws:
NoSuchChildException - if there is no child with such name.

getChildren()

public java.util.List getChildren()
Returns a list of all children of this runtime node.

Specified By:
getChildren() in interface IRuntimeNode

getChildrenByType(int)
public java.util.List getChildrenByType(int type)
Returns a list of all children of a particular type.

Specified By:
getChildrenByType(int) in interface IRuntimeNode

Package oracle.apps.cz.cio B-201

RuntimeNode

getConfiguration()

public Configuration get Gonfiguration()
Returns the configuration to which this node belongs.

Specified By:

getConfiguration() in interface IRuntimeNode

getDatabaselD()

public int getDatabasel ()
Returns the database ID of the runtime node.

Specified By:
getDatabaselD() in interface IRuntimeNode

getDescription()

public java.lang. Sring getDescription()
Returns the design-time description of the runtime node.

Specified By:

getDescription() in interface IRuntimeNode

getName()

public java.lang. Sring get Nang()
Returns the name of the runtime node.

Specified By:
getName() in interface IRuntimeNode

getParent()

public | Runti neNode get Parent ()
Returns the parent of this runtime node, or nul | if this is the root node.

Specified By:

getParent() in interface IRuntimeNode

B-202 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

getProperties()

public java.util.Qollection getProperties()
Returns a collection of the properties associated with this node. The collection
contains items of the type IProperty.

Specified By:

getProperties() in interface IRuntimeNode

getPropertyByName(String)

public Property getPropertyByNange(j ava. |l ang. Sring nane)
Returns a particular property of this node, based on its name. Returns null if a
property of the given name does not exist.

Specified By:
getPropertyByName(String) in interface IRuntimeNode

getRuntimelD()

public int getRuntinel ()
Returns the runtime ID for the node. This ID is unique across all nodes in a
particular configuration.

Specified By:

getRuntimelD() in interface IRuntimeNode

getSelectionLinelD()
public int getSelectionLinel)

Specified By:

getSelectionLinelD() in interface IRuntimeNode

getType()

public abstract int getType()
Returns the type of the runtime node. Must be implemented.

Specified By:
getType() in interface IRuntimeNode

Package oracle.apps.cz.cio B-203

RuntimeNode

hasCount()

publ i ¢ bool ean hasCount ()
Returns true if the node has an object count.

Specified By:

hasCount() in interface IRuntimeNode

hasDecimalValue()

publ i ¢ bool ean hasDeci nal Val ue()
Returns true if the node has a decimal value.

Specified By:

hasDecimalValue() in interface IRuntimeNode

hasDescription()

publ i ¢ bool ean hasDescri pti on()
Returns true if there is a design-time description of the runtime node.

Specified By:

hasDescription() in interface IRuntimeNode

hasintegerValue()

publ i ¢ bool ean hasl nt eger Val ue()
Returns true if the node has a integer value.

hasSelectionLinelD()
publ i ¢ bool ean hasSel ecti onLi nel ()

Specified By:
hasSelectionLinelD() in interface IRuntimeNode

hasState()

publ i c bool ean hasStat e()
Returns true if the node has a logical state.

B-204 Oracle Configuration Interface Object (CIO) Developer’'s Guide

RuntimeNode

Specified By:
hasState() in interface IRuntimeNode

hasTextValue()

publ i ¢ bool ean hasText Val ue()
Returns true if the node has a text value.

Specified By:

hasTextValue() in interface [IRuntimeNode

isNative()

publ i c bool ean i shative()
Returns true if this is a native BOM node

Specified By:

isNative() in interface IRuntimeNode

isUnsatisfied()

publ i ¢ bool ean i slhsati sfied()
Returns true if this runtime node, or any of its children, is not fully configured.

Specified By:

isUnsatisfied() in interface IRuntimeNode

isUnsatisfiedNode()

publ i c bool ean islhsati sfiedNode()
Returns true if this particular node is not fully configured.

Specified By:

isUnsatisfiedNode() in interface IRuntimeNode

lookupNodelD(Object)
public | Runti neNode | ookupNodel 0 j ava. | ang. (bj ect i d)

toString()
public java.lang. Sring toString()

Package oracle.apps.cz.cio B-205

RuntimeNode

Overrides:
java.lang.Object.toString() in class java.lang.Object

toString(boolean)
public java.lang. Sring toSring(bool ean descri pti on)

Specified By:

toString(boolean) in interface IRuntimeNode
typeToString(int)

public static java.lang. Sring typeToString(int type)
Returns a string representation of a given runtime node type constant.

B-206 Oracle Configuration Interface Object (CIO) Developer’'s Guide

SelectionNotMutexedException

oracle.apps.cz.cio
SelectionNotMutexedException

Syntax
public class Sel ectionNot Mit exedExcepti on extends java. | ang. Excepti on

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Sel ecti onNot Mut exedExcepti on

All Implemented Interfaces:
java.io. Serializable

Description

Signalled when an mutexed selection operation is performed on an option feature
that does not support mutexed selection.

Member Summary

Methods
getFeature()

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-207

SelectionNotMutexedException

Methods

getFeature()
public | QptionFeature get Feat ure()

B-208 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateCountNode

oracle.apps.cz.cio
StateCountNode

Syntax
public abstract class S ateCount Node extends S ateNode inpl ements | Gount, |Price

j ava. | ang. (bj ect

I
+- - Runt i neNode

I
+-- S at eNode

+-oracl e. apps. cz. ci 0. St at eCount Node

Direct Known Subclasses:
Qount Feat ure, Qpti onFeat ureNode, (ot i onNode

All Implemented Interfaces:
| Gount, IPrice, |RuntineNode, | Sate

Description

Abstract class implementing common behavior for nodes with a logic state and
count.

Member Summary

Methods
addPricingNotification(String)
clearDiscountedPrice()
clearPricingNotifications()
getCount()
getDiscountedPrice()
getExtendedPrice()
getltemKey()

Package oracle.apps.cz.cio B-209

StateCountNode

Member Summary

getListPrice()
getPricingNotifications()
getUomCode()
setCount(int)
setDiscountedPrice(double)
setListPrice(double)

toString()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class StateNode

getState(), isDefaultState(int), isFalseState(int), isLogicState(int), isTrueState(int), isUnknown(), isUnknownState(int), isUserState(int),
setState(int), statesMatch(int, int), unset()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface ICount

unset()

Methods inherited from interface IPrice

B-210 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateCountNode

Inherited Member Summary

getDatabaselD()

Methods inherited from interface IState

getState(), isUnknown(), setState(int)

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

addPricingNotification(String)

public void addPricingNotification(java.lang. Sring nessage)

clearDiscountedPrice()
public void cl ear D scount edPri ce()

clearPricingNotifications()
public void clearPricingNotifications()

getCount()
public int getCount()

Specified By:

getCount() in interface ICount

Specified By:

getCount() in interface ICount

getDiscountedPrice()
publ i ¢ doubl e get b scount edPri ce()

Package oracle.apps.cz.cio B-211

StateCountNode

Specified By:

getDiscountedPrice() in interface IPrice

getExtendedPrice()
publ i ¢ doubl e get Ext endedPri ce()

Specified By:

getExtendedPrice() in interface IPrice

getltemKey()
public java.lang. Sring getltenkey()

Specified By:

getltemKey() in interface IPrice

getListPrice()
publ i c doubl e getListPrice()

Specified By:

getListPrice() in interface IPrice

getPricingNotifications()
public java.lang. Sring get PricingNotifications()

Specified By:

getPricingNotifications() in interface IPrice

getUomCode()
public java.lang. Sring get UonCode()

Specified By:

getUomCode() in interface IPrice

setCount(int)
public void setCount (i nt newGount)

B-212 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateCountNode

Specified By:

setCount(int) in interface ICount

Specified By:

setCount(int) in interface ICount

setDiscountedPrice(double)
public voi d setD scountedPri ce(doubl e di scountedPrice)

setListPrice(double)
public void setListPrice(double |istPrice)

toString()
public java.lang. Sring toString()

Overrides:
toString() in class RuntimeNode

Package oracle.apps.cz.cio B-213

StateNode

oracle.apps.cz.cio
StateNode

Syntax
public abstract class SateNode extends RuntineNode inpl enents | Sate

j ava. | ang. (bj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. St at eNode

Direct Known Subclasses:
Bool eanFeat ure, St at eCount Node

All Implemented Interfaces:
| Runti neNode, |Sate

Description
Abstract class implementing common behavior across nodes with logic state.

Member Summary

Methods

getState()

isDefaultState(int) Returns true if the given state is default (not unknown, or user, or logic).
isFalseState(int) Returns true if the given state is false (not unknown or true).
isLogicState(int) Returns true if the given state is logic (not unknown, or user, or default).
isTrueState(int) Returns true if the given state is true (not unknown or false).

isUnknown()

isUnknownState(int) Returns true if the given state is unknown (not true or false).
isUserState(int) Returns true if the given state is user (not unknown, or logic, or default).
setState(int)

B-214 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateNode

Member Summary

statesMatch(int, int) Returns true if the two given states match.

unset()

Inherited Member Summary

Fields inherited from interface IState
FALSE, LFALSE, LTRUE, TOGGLE, TRUE, UFALSE, UNKNOWN, UTRUE
Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

getState()
public int getSate()

Specified By:
getState() in interface IState

Package oracle.apps.cz.cio B-215

StateNode

isDefaultState(int)

public static bool ean isDefaul t Sate(int state)
Returns true if the given state is default (not unknown, or user, or logic).

isFalseState(int)

public static bool ean i sFal setate(int state)
Returns true if the given state is false (not unknown or true).

isLogicState(int)
public static bool ean isLogi cState(int state)
Returns true if the given state is logic (not unknown, or user, or default).

isTrueState(int)

public static bool ean i sTrueSate(int state)
Returns true if the given state is true (not unknown or false).

isUnknown()
publ i ¢ bool ean i sthknown()

Specified By:

isUnknown() in interface IState

isUnknownState(int)

public static bool ean i sthknownS ate(int state)
Returns true if the given state is unknown (not true or false).

isUserState(int)

public static bool ean i slserSate(int state)
Returns true if the given state is user (not unknown, or logic, or default).

setState(int)
public void setSate(int newsate)

Specified By:
setState(int) in interface IState

B-216 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StateNode

statesMatch(int, int)

public static bool ean stateshMatch(int inputState, int outputSate)
Returns true if the two given states match.

unset()
public void unset()

Specified By:

unset() in interface [State

Package oracle.apps.cz.cio B-217

StatusInfo

oracle.apps.cz.cio

Statusinfo

Syntax
public class Satuslnfo extends java.l ang. bj ect

j ava. | ang. (hj ect

+--oracl e. apps. cz. cio. Statusl nfo

Direct Known Subclasses:
Val i dationFai |l ure

Description

Contains information about a status change for a particular runtime node. The
status can be STATUS_NEW, STATUS_EXISTING, or STATUS_DELETED. The
condition for which this status holds depends on which list the status exists.
Possibilities include validation failure, selected nodes, and unsatisfied nodes.

Member Summary

Fields
STATUS_DELETED
STATUS_EXISTING
STATUS_NEW
Methods
equals(Object)
getNode()
getStatus()
hashCode()
statusToString(int)
toString()

The node has newly lost this status since the last check.
The already had this status during the last check, and it still does.

The node has newly attained this status since the last check.

Returns the runtime node with which this status is associated.

Returns the current status of the node.

Return a printable representation of a status constant.

B-218 Oracle Configuration Interface Object (CIO) Developer’'s Guide

StatuslInfo

Member Summary

toString(boolean)

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Fields

STATUS_DELETED

public static final int STATUS DE ETED
The node has newly lost this status since the last check.

STATUS_EXISTING

public static final int STATUS EX STI NG
The already had this status during the last check, and it still does.

STATUS_NEW

public static final int STATUS NEW

The node has newly attained this status since the last check.
Methods
equals(Object)

publ i ¢ bool ean equal s(j ava. | ang. (hj ect obj)

Overrides:

java.lang.Object.equals(java.lang.Object) in class java.lang.Object
getNode()

public | Runti neNode get Node()
Returns the runtime node with which this status is associated.

Package oracle.apps.cz.cio B-219

StatusInfo

getStatus()

public int getSatus()
Returns the current status of the node.

hashCode()
public int hashCode()

Overrides:
java.lang.Object.hashCode() in class java.lang.Object

statusToString(int)

public static java.lang. Sring statusToSring(int status)
Return a printable representation of a status constant.

toString()
public java.lang. Sring toString()

Overrides:
java.lang.Object.toString() in class java.lang.Object

toString(boolean)
public java.lang. Sring toSring(bool ean descri ption)

B-220 Oracle Configuration Interface Object (CIO) Developer’'s Guide

TextFeature

oracle.apps.cz.cio
TextFeature

Syntax
public class Text Feature extends Text Node

j ava. | ang. (oj ect

I
+- - Runt i neNode

I
+- - Text Node

+-oracl e. apps. cz. ci 0. Text Feat ure

All Implemented Interfaces:
| Runti neNode, | Text

Description
Represents a feature that has a textual value.

Member Summary

Methods
getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class TextNode
getTextValue(), setTextValue(String), unset()

Methods inherited from class RuntimeNode

Package oracle.apps.cz.cio B-221

TextFeature

Inherited Member Summary

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IText
getTextValue(), setTextValue(String), unset()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-222 Oracle Configuration Interface Object (CIO) Developer’'s Guide

TextNode

oracle.apps.cz.cio
TextNode

Syntax
public abstract class Text Node extends Runti neNode inpl enents | Text

j ava. | ang. (oj ect

I
+- - Runt i neNode

+--oracl e. apps. cz. ci 0. Text Node

Direct Known Subclasses:
Text Feature

All Implemented Interfaces:
| Runti neNode, | Text

Description
Represents a feature that has a textual value.

Member Summary

Methods
getTextValue()
setTextValue(String)

unset()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Package oracle.apps.cz.cio B-223

TextNode

Inherited Member Summary

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasintegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(),
isUnsatisfiedNode(), lookupNodelD(Object), toString(), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), getType(), hasCount(),
hasDecimalValue(), hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
toString(boolean)

Methods

getTextValue()
public java.lang. Sring get Text Val ue()

Specified By:

getTextValue() in interface IText

setTextValue(String)

public void set Text Val ue(j ava. | ang. String newText Val ue)

Specified By:

setTextValue(String) in interface IText

unset()
public void unset()

Specified By:

unset() in interface IText

B-224 Oracle Configuration Interface Object (CIO) Developer’'s Guide

Total

oracle.apps.cz.cio
Total

Syntax

public class Total extends Deci nal Node

j ava. | ang. (oj ect

I
+- - Runt i neNode

+- - ReadOnl yDeci nal Node

+ - Deci nal Node

+-oracl e. apps. cz. cio. Tot al

All Implemented Interfaces:
| Deci nal , | ReadOnl yDeci nal , | Runt i neNode

Description

Represents a total that has a decimal numeric value. NOTE: This class inherits from
DecimalNode, but the functionality of a DecimalNode (specifically the method
SetDecimalValue()) is 'deprecated’, meaning that it shouldn't be used on new
projects and may be unsupported in a future release. Use only methods inherited

from ReadOnlyDecimalNode.

Member Summary

Methods

getType()

Inherited Member Summary

Fields inherited from interface IRuntimeNode

Package oracle.apps.cz.cio B-225

Total

Inherited Member Summary

ALL_FEATURES, BOM_MODEL, BOM_OPTION_CLASS, BOM_STD_ITEM, BOOLEAN_FEATURE, COMPONENT, COMPONENT_SET,
COUNT_FEATURE, DECIMAL_FEATURE, INTEGER_FEATURE, OPTION, OPTION_FEATURE, RESOURCE, TEXT_FEATURE, TOTAL

Methods inherited from class DecimalNode
setDecimalValue(double), toString(), unset()

Methods inherited from class ReadOnlyDecimalNode
getDecimalValue(), isUnknown()

Methods inherited from class RuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), haslntegerValue(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(),
lookupNodelD(Object), toString(boolean), typeToString(int)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface IDecimal
setDecimalValue(double), unset()

Methods inherited from interface IReadOnlyDecimal
getDecimalValue(), isUnknown()

Methods inherited from interface IRuntimeNode

getChildBylID(int), getChildByName(String), getChildren(), getChildrenByType(int), getConfiguration(), getDatabaselD(), getDescription(),
getName(), getParent(), getProperties(), getPropertyByName(String), getRuntimelD(), getSelectionLinelD(), hasCount(), hasDecimalValue(),
hasDescription(), hasSelectionLinelD(), hasState(), hasTextValue(), isNative(), isUnsatisfied(), isUnsatisfiedNode(), toString(boolean)

Methods

getType()
public int getType()

Overrides:
getType() in class RuntimeNode

B-226 Oracle Configuration Interface Object (CIO) Developer’'s Guide

TransactionException

oracle.apps.cz.cio
TransactionException

Syntax
public class Transacti onException extends java. | ang. Exception

j ava. | ang. (oj ect

I
+--j ava. | ang. Thr ownabl e

+--j ava. | ang. Excepti on

+-oracl e. apps. cz. ci 0. Transact i onExcepti on

All Implemented Interfaces:
java.io. Serializable

Description
Signalled if a particular logic file is missing.

Member Summary

Methods

getAction() Returns a String representation of the action that caused the exception

Inherited Member Summary

Methods inherited from class java.lang. Throwable
filinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, toString
Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Package oracle.apps.cz.cio B-227

TransactionException

Methods

getAction()

public java.lang. Sring get Action()
Returns a String representation of the action that caused the exception

B-228 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ValidationFailure

oracle.apps.cz.cio
ValidationFailure

Syntax
public class ValidationFailure extends S atuslnfo

j ava. | ang. (oj ect

Direct Known Subclasses:

+-Satuslnfo

+--oracl e. apps. cz. cio. ValidationFail ure

Gonpani onVal i dati onFai l ure, RestoreValidationFail ure

Description

Implements behavior common to all validation failures.

Member Summary

Fields
COMPANION_FAILURE
MAX_FAILURE
MIN_FAILURE
MINO_FAILURE
MINMAX_FAILURE
RESOURCE_FAILURE
RESTORE_FAILURE
Methods
equals(Object)
getMessage()
getMessage(String)

Package oracle.apps.cz.cio B-229

ValidationFailure

Member Summary

getType()
toString()

Inherited Member Summary

Fields inherited from class StatusInfo

STATUS_DELETED, STATUS_EXISTING, STATUS_NEW

Methods inherited from class StatusInfo

getNode(), getStatus(), hashCode(), statusToString(int), toString(boolean)
Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Fields

COMPANION_FAILURE
public static final int GOMPAN ON FA LURE

MAX_FAILURE

public static final int MAX FA LURE
MIN_FAILURE

public static final int MN FA LURE
MINO_FAILURE

public static final int MNO_FA LURE

MINMAX_FAILURE
public static final int MNVAX FA LURE

RESOURCE_FAILURE
public static final int RESORCE FA LURE

B-230 Oracle Configuration Interface Object (CIO) Developer’'s Guide

ValidationFailure

RESTORE_FAILURE
public static final int RESTGRE FA LURE

Methods
equals(Object)

publ i ¢ bool ean equal s(j ava. | ang. (bj ect obj)

Overrides:

equals(Object) in class StatusInfo
getMessage()

public java.lang. Sring get Message()
getMessage(String)

public java.lang. Sring get Message(j ava. | ang. S ri ng nodeNane)
getType()

public int getType()
toString()

public java.lang. Sring toString()

Overrides:
toString() in class StatusInfo

Package oracle.apps.cz.cio B-231

ValidationFailure

B-232 Oracle Configuration Interface Object (CIO) Developer’'s Guide

C

Package oracle.apps.cz.common

Description
Class Summary
Classes
CZContext Represents the runtime context of a configuration session.

Package oracle.apps.cz.common C-1

CZContext

oracle.apps.cz.common

CZContext

Syntax

public final class CZGont ext

or acl e. apps. cz. conmon. CZCont ext

Description

Represents the runtime context of a configuration session. The context owns the
database connection, resources, and log object. It also maintains apps, user, and
language information. CZContext is a shadow of the
oracle.apps.fnd.common.AppsContext implementation and is designed to operate
outside of the middle-tier Oracle Apps environment. The intent is for the CIO to run
with either the AppsContext or CZContext depending on the runtime environment.

Member Summary

Constructors
CZContext(String, String)
CZContext(String, String, String,
String)

Methods

createConnection(String, String,
String)

getAppld(String)
getCurrLangCode()
getCurrLanglnfo()
getDbOwner()
getEnvStore()

getJDBCConnection()

Creates a new CZContext containing a connection established with the supplied
database url.

Creates a new CZContext containing a connection established with the supplied
database url, user name, and password.

Creates a new JDBC connection.

Returns the application ID for product configuration (CZ).
Returns the current language code.

This method is restricted.

Returns name of SellingPoint schema owner.

CZContext does not contain an environment store, so this method will always
throw a RuntimeException.

C-2 Oracle Configuration Interface Object (CIO) Developer's Guide

CZContext

Member Summary

getJDBCConnection(Object)
getLangCode(String)
getLanglnfo(String, String)
getNLSLang(String)
getSessionManager()
getUrl()

getUser()
releaseJDBCConnection()

setCurrLang(String)

Returns the JDBC connection.
This method is restricted.
This method is restricted.
This method is restricted.
This method is restricted.
Returns the JDBC URL.

Returns the user name.

Sets the current language code.

Constructors

CZContext(String, String)
public CZQontext(java.lang. Sring url, java.lang. Sring dbOaner)

Creates a new CZContext containing a connection established with the supplied
database url.

Parameters:
ur | - The full url of the database.

dbOaner - the schema owner of the SellingPoint tables

CZContext(String, String, String, String)

public CZontext(java.lang.Sring url, java.lang. Sring user, java.lang. String
password, java.lang. String dbOaner)
Creates a new CZContext containing a connection established with the supplied
database url, user name, and password.

Parameters:
ur | - The full url of the database.

user - The database user name.

passwor d - The user password.

Package oracle.apps.cz.common C-3

CZContext

dbOaner - the schema owner of the SellingPoint tables
Methods

createConnection(String, String, String)

public void createConnection(java.lang. Sring url, java.lang. Sring user,
java.lang. String passwor d)
Creates a new JDBC connection.

getAppld(String)

public int getAppld(java.lang. String appl Sht Nane)
Returns the application ID for product configuration (CZ). The parameter signature
is for compatibility with the AppsContext implementation.

getCurrLangCode()

public java.lang. Sring get QurrLangCode()
Returns the current language code.

getCurrLanginfo()

publ i c oracl e. apps. f nd. conmon. Langl nf o get Qurr Langl nf o()
This method is restricted.

getDbOwner()

public java.lang. Sring get DbOaner ()
Returns name of SellingPoint schema owner.

getEnvStore()

public oracl e. apps. f nd. conmon. Envi ronnent St ore get EavS ore()

CZContext does not contain an environment store, so this method will always
throw a RuntimeException. This may need to change in the future if we depend on
an environment store, but CZContext will only be used for testing from now on.

getJDBCConnection()
public java. sql . Gonnecti on get JDBODonnecti on()

getJDBCConnection(Object)
public java.sql.Gonnection get JDBODonnecti on(j ava. | ang. hj ect pThi s)

C-4 Oracle Configuration Interface Object (CIO) Developer's Guide

CZContext

Returns the JDBC connection. The parameter signature includes a reference to the
caller to be compatible with the AppsContext implementation.

getLangCode(String)

public java.lang. Sring get LangCode(j ava. | ang. Stri ng pN_SLang)
This method is restricted.

getLanginfo(String, String)

public oracl e. apps. f nd. conmon. Langl nf o get Langl nf o(j ava. | ang. S ri ng pLangCode,
java.lang. Stri ng pN_SLang)
This method is restricted.

getNLSLang(String)

public java.lang. Sring get NL.SLang(j ava. | ang. S ri ng pLangCode)
This method is restricted.

getSessionManager()

public oracl e. apps. f nd. security. Sessi onManager get Sessi onManager ()
This method is restricted.

getUrl()

public java.lang. Sring get Ul ()
Returns the JDBC URL.

getUser()

public java.lang. Sring getUser ()
Returns the user name.

releaseJDBCConnection()
public void rel easeJOBODonnect i on()

setCurrLang(String)

publ i ¢ bool ean set QurrLang(j ava.l ang. S ring pLangCode)
Sets the current language code.

Package oracle.apps.cz.common C-5

CZContext

C-6 Oracle Configuration Interface Object (CIO) Developer's Guide

D

Package oracle.apps.cz.utilities

Description
Class Summary
Classes
NameValuePair Provides a name-value pair object combination.
NameValuePairSet Implements an object to hold a unique set of name value pairs

Package oracle.apps.cz.utilities D-1

NameValuePair

oracle.apps.cz.utilities
NameValuePair

Syntax
public class NaneVal uePai r ext ends j ava. |l ang. (bj ect

j ava. | ang. (hj ect

+--oracl e.apps.cz.utilities.NaneVal uePair

Description

Provides a name-value pair object combination. The name cannot be changed once
created.

Member Summary

Constructors

NameValuePair(String) Constructs a name-value pair object without a value.
NameValuePair(String, Object) Constructs a name-value pair object.

Methods

getName() Retrieve the name (key).

getValue() Retrieve the value which can be null.

setValue(Object) Replaces the value for this pair.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

D-2 Oracle Configuration Interface Object (ClO) Developer’s Guide

NameValuePair

Constructors

NameValuePair(String)

public NaneVal uePair(java.lang. Sring key)
Constructs a name-value pair object without a value. Key is always stored as a
lowercase string, regardless of the case of the key parameter.

Parameters:
key - - The String name(key) for this pair.

NameValuePair(String, Object)

public NaneVal uePair(java.lang. Sring key, java.lang. (bject val ue)
Constructs a name-value pair object. Key is always stored as a lowercase string,
regardless of the case of the key parameter.

Parameters:

key - - The String name(key) for this pair. String cannot be null or have only
whitespace.

val ue - - The Object for this pair.

Methods
getName()

public java.lang. Sring get Nane()

Retrieve the name (key). Will always be lowercase.
getValue()

public java.lang. (j ect get Val ue()

Retrieve the value which can be null.
setValue(Object)

public void setVal ue(j ava. |l ang. (bj ect val ue)
Replaces the value for this pair.

Parameters:
The - Object for this pair which can be null.

Package oracle.apps.cz.utilities D-3

NameValuePairSet

oracle.apps.cz.utilities
NameValuePairSet

Syntax
public class NaneVal uePai r Set extends j ava. | ang. (bj ect

j ava. | ang. (hj ect

+--oracle.apps.cz.utilities.NaneVal uePai r Set

Description
Implements an object to hold a unique set of name value pairs

Member Summary

Constructors

NameValuePairSet()

Methods

Add(NameValuePair) Add a name value pair object to the set

Add(String, Object) Create a NameValuePair and add it to the set using the name and object.

getValueByName(String) Gets value, which may be null, of the name/value pair identified by the "name"
input.

iterator() Returns the set of keys for the name value pairs

lookupPairByName(String) Look up a name (key) in the set

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

D-4 Oracle Configuration Interface Object (ClO) Developer’s Guide

NameValuePairSet

Constructors

NameValuePairSet()
public NaneVal uePai r Set ()

Methods

Add(NameValuePair)

public void Add(NaneVal uePai r nvp)
Add a name value pair object to the set

Parameters:

naneVal uePai r - - The NameValuePair object to add. The key will provide the
hash.

Add(String, Object)
public void Add(java.lang. Sring nane, java.lang. (bject val ue)
Create a NameValuePair and add it to the set using the name and object.

Parameters:
nane - - The String key of the pair. THe name will provide the hash identifier.

val ue - - The value object which can be null.

getValueByName(String)

public java.lang. (bj ect get Val ueByNane(j ava. | ang. S ri ng nane)
Gets value, which may be null, of the name/value pair identified by the "name"
input. Returns null if pair does not exist.

Parameters:
name - the name string by which to look up the value

Returns:
the value associated with name

iterator()
public java.util.lterator iterator()

Package oracle.apps.cz.utilities D-5

NameValuePairSet

Returns the set of keys for the name value pairs

lookupPairByName(String)

publ i ¢ NaneVal uePai r | ookupPai r ByNane(j ava. | ang. Stri ng nane)
Look up a name (key) in the set

Parameters:
nane - - The String to lookup

Returns:
The NameValuePair which can be null if the string is not in the set

D-6 Oracle Configuration Interface Object (CIO) Developer’s Guide

A

add() -
oracle.apps.cz.cio.ComponentSet.add(), B-58

Add(NameValuePair) -
oracle.apps.cz.utilities. NameValuePairSet. Add(
oracle.apps.cz.utilities. NameValuePair), D-5

Add(String, Object) -
oracle.apps.cz.utilities. NameValuePairSet. Add(j
ava.lang.String, java.lang.Object), D-5

addAtpNotification(String) -
oracle.apps.cz.cio.BomNode.add AtpNotificatio
n(java.lang.String), B-17

addConfigEventListener(ICompSetEventListener) -
oracle.apps.cz.cio.ComponentSet.addConfigEve
ntListener(oracle.apps.cz.cioICompSetEventLis
tener), B-58

addConfigEventListener(IConfigEventListener) -
oracle.apps.cz.cio.Configuration.addConfigEve
ntListener(oracle.apps.cz.cio.IConfigEventListe
ner), B-65

addConfigMessage(String, String) -
oracle.apps.cz.cio.Configuration.addConfigMes
sage(java.lang.String, java.lang.String), B-66

addPricingNotification(String) -
oracle.apps.cz.cio.StateCountNode.addPricingN
otification(java.lang.String), B-211

ALL_FEATURES -
oracle.apps.cz.cio.IRuntimeNode ALL_
FEATURES, B-142

areOptionsCounted() -
oracle.apps.cz.cio.BomNode.areOptionsCounte
d(), B-17

areOptionsCounted() -

Index

oracle.apps.cz.cio.IOptionFeature.areOptionsCo
unted(), B-133

areOptionsCounted() -
oracle.apps.cz.cio.OptionFeature.areOptionsCo
unted(), B-175

ATP_APPS_107_110 -
oracle.apps.cz.cio.Configuration. ATP_APPS_
107_110, B-65

ATP_CALLBACK -
oracle.apps.cz.cio.Configuration. ATP_
CALLBACK, B-65

ATP_DISABLED -
oracle.apps.cz.cio.Configuration. ATP_
DISABLED, B-65

AtpUnavailableException -
oracle.apps.cz.cio.AtpUnavailableException, B
-7

AtpUnavailableException(String) -
oracle.apps.cz.cio.AtpUnavailableException. At
pUnavailableException(java.lang.String), B-8

AtpUnavailableException(String, Object, Log) -
oracle.apps.cz.cio.AtpUnavailableException. At
pUnavailableException(java.lang.String,
java.lang.Object,
oracle.apps.fnd.common.Log), B-8

autoCommit
usage, 2-9

Auto-configuration, 1-2,1-11,1-15,2-9
exceptions, 2-19,2-26

autoConfigure()
usage, 2-9,2-25

autoConfigure() -
oracle.apps.cz.cio.Functional Companion.autoC
onfigure(), B-97

Index-1

autoConfigure() -
oracle.apps.cz.cio.IFunctional Companion.autoC
onfigure(), B-116

AutoFunctional Companion -
oracle.apps.cz.cio.AutoFunctional Companion,
B-5

AutoFunctionalCompanion() -
oracle.apps.cz.cio.AutoFunctional Companion.A
utoFunctionalCompanion(), B-6

B

beginConfigTransaction()
usage, 2-8

beginConfigTransaction() -
oracle.apps.cz.cio.Configuration.beginConfigTr
ansaction(), B-66

beginConfigTransaction(boolean) -
oracle.apps.cz.cio.Configuration.beginConfigTr
ansaction(boolean), B-66

BOM_MODEL -
oracle.apps.cz.cio.IRuntimeNode.BOM_
MODEL, B-142

BOM_OPTION_CLASS -
oracle.apps.cz.cio.IRuntimeNode.BOM_
OPTION_CLASS, B-142

BOM_STD_ITEM -
oracle.apps.cz.cio.IRuntimeNode. BOM_STD_
ITEM, B-142

BomExplosionException -
oracle.apps.cz.cio.BomExplosionException, B-
9

BomModel - oracle.apps.cz.cio.BomModel, B-11

BomNode - oracle.apps.cz.cio.BomNode, B-14

BomOptionClass -
oracle.apps.cz.cio.BomOptionClass, B-26

BomStdItem - oracle.apps.cz.cio.BomStdItem, B-29

BOOLEAN_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. BOOLEAN _
FEATURE, B-142

BooleanFeature -
oracle.apps.cz.cio.BooleanFeature, B-32

Index-2

C

calculateAtpDate() -
oracle.apps.cz.cio.BomNode.calculate AtpDate(),
B-17

calculateAtpDates() -
oracle.apps.cz.cio.Configuration.calculateAtpD
ates(), B-66

calculateListPrices() -
oracle.apps.cz.cio.Configuration.calculateListPri
ces(), B-67

canPerform() -
oracle.apps.cz.cio.Configuration.canPerformy(),
B-67

canUndo() -
oracle.apps.cz.cio.Configuration.canUndo(), B
-67

CIO
See Configuration Interface Object

CIO - oracle.apps.cz.cio.CIO, B-34

CIO() - oracle.apps.cz.cio.CIO.CIO(), B-35

classesl1l.zip, 1-8

CLASSPATH, 1-8

clearAtpDate() -
oracle.apps.cz.cio.BomNode.clearAtpDate(), B
-18

clearAtpNotifications() -
oracle.apps.cz.cio.BomNode.clearAtpNotificatio
nS()/ B-18

clearConfigMessages() -
oracle.apps.cz.cio.Configuration.clearConfigMe
ssages(), B-67

clearDiscountedPrice() -
oracle.apps.cz.cio.StateCountNode.clearDiscou
ntedPrice(), B-211

clearLogicFile(Object) -
oracle.apps.cz.cio.CIO.clearLogicFile(java.lang.
Object), B-35

clearLogicFileCache() -
oracle.apps.cz.cio.CIO.clearLogicFileCache(),
B-35

clearPricingNotifications() -
oracle.apps.cz.cio.StateCountNode.clearPricing
Notifications(), B-211

close() - oracle.apps.cz.cio.CIO.close(), B-36

close() -
oracle.apps.cz.cio.Configuration.close(), B-67

closeConfiguration()
usage, 2-6

closeConfiguration(Configuration) -
oracle.apps.cz.cio.CIO.closeConfiguration(oracl
e.apps.cz.cio.Configuration), B-36

closeTraceFile() -
oracle.apps.cz.cio.CIO.closeTraceFile(), B-36

commitConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.commitConfig
Transaction(oracle.apps.cz.cio.ConfigTransactio
n), B-67

commitConfigTransaction(transaction)
usage, 2-8,2-20,2-21

companion
See Functional Companion

COMPANION_FAILURE -
oracle.apps.cz.cio.ValidationFailure. COMPANI
ON_FAILURE, B-230

CompanionNode -
oracle.apps.cz.cio.CompanionNode, B—-42

CompanionRoot -
oracle.apps.cz.cio.CompanionRoot, B—45

CompanionRoot(IRuntimeNode) -
oracle.apps.cz.cio.CompanionRoot.Companion
Root(oracle.apps.cz.cio.IRuntimeNode), B—46

CompanionValidationFailure -
oracle.apps.cz.cio.CompanionValidationFailure,

B-48

CompanionValidationFailure(String,
IRuntimeNode, IFunctional Companion) -
oracle.apps.cz.cio.CompanionValidationFailure.
CompanionValidationFailure(java.lang.String,
oracle.apps.cz.cio.IRuntimeNode,
oracle.apps.cz.cio.IFunctionalCompanion), B-
49

Component - oracle.apps.cz.cio.Component, B-50

COMPONENT -
oracle.apps.cz.cio.IRuntimeNode. COMPONEN
T, B-142

COMPONENT_SET -
oracle.apps.cz.cio.IRuntimeNode. COMPONEN
T_SET, B-142

ComponentNode -

oracle.apps.cz.cio.ComponentNode, B-55
ComponentSet -
oracle.apps.cz.cio.ComponentSet, B-57
ComponentSet.add()
usage, 2-10
ComponentSet.delete(component)
usage, 2-10
configHeaderID
usage, 2-7
configjar, 1-8
ConfigTransaction -
oracle.apps.cz.cio.ConfigTransaction, B-60
Configuration -
oracle.apps.cz.cio.Configuration, B-61
configuration inputs
obtaining list of, 2-7
Configuration Interface Object, 1-1
configuration subschema objects, 2-1
configuration-level logic transactions, 2-8
configurations, 2-5
constants, 3-1
contradictions, 2-19, 2-26
COUNT_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. COUNT_
FEATURE, B-142
CountFeature -
oracle.apps.cz.cio.CountFeature, B-79
createCIO() -
oracle.apps.cz.cio.Factory.createCIO(), B-90
createConfiguration()
usage, 2-6
createConfiguration(int, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
oracle.apps.fnd.common.Context), B-36
createConfiguration(int, int, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
int, oracle.apps.fnd.common.Context), B-37
createConfiguration(int, int, Date, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(int,
int, java.util.Date,
oracle.apps.fnd.common.Context), B-37
createConfiguration(String, Context) -
oracle.apps.cz.cio.CIO.createConfiguration(java.
lang.String,
oracle.apps.fnd.common.Context), B-38

Index-3

createConnection(String, String, String) -
oracle.apps.cz.common.CZContext.createConne
ction(java.lang.String, java.lang.String,
java.lang.String), C-4

createContext(String, String, String, String) -
oracle.apps.cz.cio.Factory.createContext(java.la
ng.String, java.lang.String, java.lang.String,
java.lang.String), B-90

createContext(String, String, String, String, String,
String, String) -
oracle.apps.cz.cio.Factory.createContext(java.la
ng.String, java.lang.String, java.lang.String,
java.lang.String, java.lang.String,
java.lang.String, java.lang.String), B-90

cz3rdpty.jar, 1-8,1-10,4-8

CZContext -
oracle.apps.cz.common.CZContext, C-2

CZContext(String, String) -
oracle.apps.cz.common.CZContext.CZContext(j
ava.lang.String, java.lang.String), C-3

CZContext(String, String, String, String) -
oracle.apps.cz.common.CZContext.CZContext(j
ava.lang.String, java.lang.String,
java.lang.String, java.lang.String), C-3

cz.dll, 1-8

czjnidll, 1-8

D

DECIMAL_FEATURE -
oracle.apps.cz.cio.IRuntimeNode.DECIMAL _
FEATURE, B-143

DecimalFeature -
oracle.apps.cz.cio.DecimalFeature, B-83

DecimalNode -
oracle.apps.cz.cio.DecimalNode, B-86

DEFAULT -
oracle.apps.cz.cio.Reason.DEFAULT, B-192

delete(Component) -
oracle.apps.cz.cio.ComponentSet.delete(oracle.a
pps.cz.cio.Component), B-59

deselect()
usage, 2-15

deselect() -
oracle.apps.cz.cio.BomNode.deselect(), B-18

Index-4

deselect() -
oracle.apps.cz.cio.IOption.deselect(), B-131

deselect() -
oracle.apps.cz.cio.OptionNode.deselect(), B-1
82

deselect(IOption) -
oracle.apps.cz.cio.IOptionFeature.deselect(oracl
e.apps.cz.cio.lOption), B-133

deselect(IOption) -
oracle.apps.cz.cio.OptionFeatureNode.deselect(
oracle.apps.cz.cio.lOption), B-178

drivers
JDBC, 1-8

E

endConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.endConfigTran
saction(oracle.apps.cz.cio.ConfigTransaction),
B-67

endConfigTransaction(transaction)
usage, 2-8

endDeltaList() -
oracle.apps.cz.cio.Configuration.endDeltaList(),

B-68

equals(Object) -
oracle.apps.cz.cio.CompanionValidationFailure.
equals(java.lang.Object), B—49

equals(Object) -
oracle.apps.cz.cio.LogicalOverridableException.
equals(java.lang.Object), B-157

equals(Object) -
oracle.apps.cz.cio.RestoreValidationFailure.equ
als(java.lang.Object), B-198

equals(Object) -
oracle.apps.cz.cio.StatusInfo.equals(java.lang.O
bject), B-219

equals(Object) -
oracle.apps.cz.cio.ValidationFailure.equals(java.
lang.Object), B-231

exceptions
fatal, 2-19,2-26
logic, 2-18

F

Factory - oracle.apps.cz.cio.Factory, B-89
Factory() -
oracle.apps.cz.cio.Factory.Factory(), B-90
FALSE
usage, 2-11
FALSE - oracle.apps.cz.cio.IState. FALSE, B-149
FC_ON_AUTO_CONFIGURE -
oracle.apps.cz.cio.IFunctional Companion.FC_
ON_AUTO_CONFIGURE, B-115
FC_ON_GENERATE_OUTPUT -
oracle.apps.cz.cio.IFunctional Companion.FC_
ON_GENERATE_OUTPUT, B-115
FC_ON_NEW -
oracle.apps.cz.cio.IFunctional Companion.FC_
ON_NEW, B-115
FC_ON_RESTORE -
oracle.apps.cz.cio.IFunctional Companion.FC_
ON_RESTORE, B-115
FC_ON_SAVE -
oracle.apps.cz.cio.IFunctional Companion.FC_
ON_SAVE, B-115
FC_ON_VALIDATE -
oracle.apps.cz.cio.IFunctional Companion.FC_
ON_VALIDATE, B-115
finalizeWorkaround() -
oracle.apps.cz.cio.Configuration.finalizeWorkar
ound(), B-68
FuncCompCreationException -
oracle.apps.cz.cio.FuncCompCreationException
, B-92
FuncCompMessageException -
oracle.apps.cz.cio.FuncCompMessageException
, B-94
FuncCompMessageException(IFunctional Companio
n, String) -
oracle.apps.cz.cio.FuncCompMessageException
FuncCompMessageException(oracle.apps.cz.ci
o.JFunctionalCompanion,
java.lang.String), B-95
Functional Companions
and Project Structure, 1-10
defined, 1-1
relationship to CIO, 1-3,2-2

types, 1-1,1-2
FunctionalCompanion -
oracle.apps.cz.cio.FunctionalCompanion, B-96
FunctionalCompanion() -
oracle.apps.cz.cio.FunctionalCompanion.Functi
onalCompanion(), B-97
FunctionalCompanionException -
oracle.apps.cz.cio.Functional CompanionExcepti
on, B-100
FunctionalCompanionException(Throwable) -
oracle.apps.cz.cio.FunctionalCompanionExcepti
on.Functional CompanionException(java.lang.T
hrowable), B-100
FunctionalCompanionException(Throwable, String)
oracle.apps.cz.cio.FunctionalCompanionExcepti
on.Functional CompanionException(java.lang.T
hrowable, java.lang.String), B-100

G

generateOutput()
usage, 2-27

generateOutput() -
oracle.apps.cz.cio.Functional Companion.genera
teOutput(), B-97

generateOutput() -
oracle.apps.cz.cio.IFunctional Companion.gener
ateOutput(), B-116

generateOutput(HttpServletResponse) -
oracle.apps.cz.cio.Functional Companion.genera
teOutput(javax.servlet.http. HttpServletRespons
e), B-98

generateOutput(HttpServletResponse) -
oracle.apps.cz.cio.IFunctional Companion.gener
ateOutput(javax.servlet.http. HttpServletRespon
se), B-116

getAction() -
oracle.apps.cz.cio.TransactionException.getActi
on(), B-228

getActiveModelPath() -
oracle.apps.cz.cio.CIO.getActiveModelPath(),
B-39

getAltPricing AtpContext() -
oracle.apps.cz.cio.Configuration.getAltPricingA

Index-5

tpContext(), B-68
getAppld(String) -
oracle.apps.cz.common.CZContext.getAppld(ja
va.lang.String), C—4
getAtpDate() -
oracle.apps.cz.cio.BomNode.getAtpDate(), B-
18
getAtpDate() -
oracle.apps.cz.cio.lAtp.getAtpDate(), B-102
getAtpMode() -
oracle.apps.cz.cio.Configuration.getAtpMode(),
B-68
getAtpNotifications() -
oracle.apps.cz.cio.BomNode.getAtpNotification
s(), B-18
getAtpNotifications() -
oracle.apps.cz.cio.IAtp.getAtpNotifications(),
B-102
getBoolean(String) -
oracle.apps.cz.cio.CompanionNode.getBoolean(
java.lang.String), B—43
getBoolean(String, boolean) -
oracle.apps.cz.cio.CompanionNode.getBoolean(
java.lang.String, boolean), B—43
getBooleanValue() -
oracle.apps.cz.cio.Property.getBooleanValue(),
B-187
getCause()
usage, 2-18
getCause() -
oracle.apps.cz.cio.LogicalException.getCause(),
B-155
getChildBylID(int) -
oracle.apps.cz.cio.IRuntimeNode.getChild ByID(
int), B-143
getChildByID(int) -
oracle.apps.cz.cio.RuntimeNode.getChildByID(i
nt), B-201
getChildByInstanceNumber(int) -
oracle.apps.cz.cio.ComponentSet.getChildBylns
tanceNumber(int), B-59
getChildByName(String) -
oracle.apps.cz.cio.IRuntimeNode.getChildByNa
me(java.lang.String), B-144
getChildByName(String) -

Index-6

oracle.apps.cz.cio.RuntimeNode.getChildByNa
me(java.lang.String), B-201

getChildren() -
oracle.apps.cz.cio.CompanionNode.getChildren
(), B43

getChildren() -
oracle.apps.cz.cio.Component.getChildren(), B
52

getChildren() -
oracle.apps.cz.cio.IRuntimeNode.getChildren(),

B-144

getChildren() -

oracle.apps.cz.cio.RuntimeNode.getChildren(),
B-201

getChildrenByType()
usage, 2-17

getChildrenByType(int) -
oracle.apps.cz.cio.ComponentNode.getChildren
ByType(int), B-56

getChildrenByType(int) -
oracle.apps.cz.cio.IRuntimeNode.getChildrenBy
Type(int), B-144

getChildrenByType(int) -
oracle.apps.cz.cio.RuntimeNode.getChildrenBy
Type(int), B-201

getCIO()
usage, 2-6

getCIO() -
oracle.apps.cz.cio.Configuration.getCIO(), B-6
8

getCompanion() -
oracle.apps.cz.cio.CompanionValidationFailure.
getCompanion(), B—49

getComponentCode() -
oracle.apps.cz.cio.BomNode.getComponentCod
e(), B-18

getComponentCode() -
oracle.apps.cz.cio.IBomItem.getComponentCod
e()) B-104

getConfigHeaderCheckoutUser() -
oracle.apps.cz.cio.Configuration.getConfigHead
erCheckoutUser(), B-68

getConfigHeaderDateCreated() -
oracle.apps.cz.cio.Configuration.getConfigHead
erDateCreated(), B-69

getConfigHeaderDescription() -
oracle.apps.cz.cio.Configuration.getConfigHead
erDescription(), B-69

getConfigHeaderEffectiveFrom() -
oracle.apps.cz.cio.Configuration.getConfigHead
erEffectiveFrom(), B-69

getConfigHeaderEffectiveTo() -
oracle.apps.cz.cio.Configuration.getConfigHead
erEffectiveTo(), B-69

getConfigHeaderlId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erld(), B-69

getConfigHeaderLastUpdateDate() -
oracle.apps.cz.cio.Configuration.getConfigHead
erLastUpdateDate(), B-70

getConfigHeaderName() -
oracle.apps.cz.cio.Configuration.getConfigHead
erName(), B-70

getConfigHeaderNote() -
oracle.apps.cz.cio.Configuration.getConfigHead
erNote(), B-70

getConfigHeaderNumberQuotesUsedIn() -
oracle.apps.cz.cio.Configuration.getConfigHead
erNumberQuotesUsedIn(), B-70

getConfigHeaderOpportunityHeaderId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erOpportunityHeaderld(), B-70

getConfigHeaderRevision() -
oracle.apps.cz.cio.Configuration.getConfigHead
erRevision(), B-71

getConfigHeaderStatus() -
oracle.apps.cz.cio.Configuration.getConfigHead
erStatus(), B-71

getConfigHeaderUiDefinitionId() -
oracle.apps.cz.cio.Configuration.getConfigHead
erUiDefinitionld(), B-71

getConfigHeaderUserldCreated() -
oracle.apps.cz.cio.Configuration.getConfigHead
erUserldCreated(), B-71

getConfiguration()
usage, 2-9

getConfiguration() -
oracle.apps.cz.cio.IRuntimeNode.getConfigurat
ion(), B-144

getConfiguration() -

oracle.apps.cz.cio.RuntimeNode.getConfigurati
on(), B-202

getContext() -
oracle.apps.cz.cio.Configuration.getContext(),
B-71

getCount() -
oracle.apps.cz.cio.Component.getCount(), B-5
2

getCount() -
oracle.apps.cz.cio.ComponentSet.getCount(),
B-59

getCount() -
oracle.apps.cz.cio.ICount.getCount(), B-108

getCount() -
oracle.apps.cz.cio.StateCountNode.getCount(),

B-211

getCurrLangCode() -
oracle.apps.cz.common.CZContext.getCurrLan
gCode(), CH4

getCurrLangInfo() -
oracle.apps.cz.common.CZContext.getCurrLan
glnfo(), C—4

getDatabaselD() -
oracle.apps.cz.cio.IAtp.getDatabaselD(), B-102

getDatabaselD() -
oracle.apps.cz.cio.IPrice.getDatabaselD(), B-13
6

getDatabaselD() -
oracle.apps.cz.cio.IRuntimeNode.getDatabasel
D(), B-144

getDatabaselD() -
oracle.apps.cz.cio.RuntimeNode.getDatabaselD
(), B-202

getDbOwner() -
oracle.apps.cz.common.CZContext.getDbOwne
r(), CH4

getDecimalValue()
usage, 2-13

getDecimalValue() -
oracle.apps.cz.cio.IReadOnlyDecimal.getDecim
alValue(), B-138

getDecimalValue() -
oracle.apps.cz.cio.Property.getDecimalValue(),

B-187
getDecimalValue() -

Index-7

oracle.apps.cz.cio.ReadOnlyDecimalNode.getD
ecimalValue(), B-190

getDefaultQuantity() -
oracle.apps.cz.cio.BomNode.getDefaultQuantit
y(), B-18

getDescription() -
oracle.apps.cz.cio.Functional Companion.getDes
cription(), B-98

getDescription() -
oracle.apps.cz.cio.IFunctional Companion.getDe
scription(), B-116

getDescription() -
oracle.apps.cz.cio.IRuntimeNode.getDescriptio
n(), B-145

getDescription() -
oracle.apps.cz.cio.Property.getDescription(), B
-187

getDescription() -
oracle.apps.cz.cio.RuntimeNode.getDescription
(), B-202

getDescrption() -
oracle.apps.cz.cio.FuncCompCreationException
.getDescrption(), B-93

getDiscountedPrice() -
oracle.apps.cz.cio.BomNode.getDiscountedPric
e(), B-18

getDiscountedPrice() -
oracle.apps.cz.cio.IPrice.getDiscountedPrice(),

B-136

getDiscountedPrice() -
oracle.apps.cz.cio.StateCountNode.getDiscount
edPrice(), B-211

getDouble(String) -
oracle.apps.cz.cio.CompanionNode.getDouble(j
ava.lang.String), B—43

getDouble(String, double) -
oracle.apps.cz.cio.CompanionNode.getDouble(j
ava.lang.String, double), B—43

getEnvStore() -
oracle.apps.cz.common.CZContext.getEnvStore
0, CH4

getExplosionDate() -
oracle.apps.cz.cio.BomExplosionException.getE
xplosionDate(), B-10

getExtendedPrice() -

Index-8

oracle.apps.cz.cio.IPrice.getExtendedPrice(), B
-136

getExtendedPrice() -
oracle.apps.cz.cio.StateCountNode.getExtended
Price(), B-212

getFeature() -
oracle.apps.cz.cio.SelectionNotMutexedExcepti
on.getFeature(), B-208

getFeature(String) -
oracle.apps.cz.cio.CompanionNode.getFeature(j
ava.lang.String), B—43

getFeatureldentifier() -
oracle.apps.cz.cio.CompanionRoot.getFeatureld
entifier(), B-46

getFndMessageString(Message) -
oracle.apps.cz.cio.Reason.getFndMessageString
(oracle.apps.fnd.common.Message), B-194

getFuncCompByID(int) -
oracle.apps.cz.cio.Component.getFuncCompByI
D(int), B-52

getFuncCompByName(String) -
oracle.apps.cz.cio.Component.getFuncCompBy
Name(java.lang.String), B-52

getFunctionalCompanions()
usage, 2-10

getFunctional Companions() -
oracle.apps.cz.cio.Component.getFunctionalCo
mpanions(), B-52

getID() -
oracle.apps.cz.cio.FuncCompCreationException
.getID(), B-93

getID() -
oracle.apps.cz.cio.Functional Companion.getID()
, B-98

getID() -
oracle.apps.cz.cio.JFunctional Companion.getID(
), B-116

getID() -
oracle.apps.cz.cio.NoSuchChildException.getID
(), B-167

getInitParameters()
usage, 2-7

getInitParameters() -
oracle.apps.cz.cio.Configuration.getInitParamet
ers(), B-71

getInput() -
oracle.apps.cz.cio.IncompatibleInputException.
getInput(), B-123

getInput() -
oracle.apps.cz.cio.RestoreValidationFailure.getI
nput(), B-198

getInstanceNumber() -
oracle.apps.cz.cio.Component.getInstanceNum
ber()/ B-52

getInteger(String) -
oracle.apps.cz.cio.CompanionNode.getInteger(j
ava.lang.String), B—43

getInteger(String, int) -
oracle.apps.cz.cio.CompanionNode.getInteger(j
ava.lang.String, int), B-44

getIntValue()

usage, 2-13

getIntValue() -

oracle.apps.cz.cio.CountFeature.getIntValue(),
B-81

getIntValue() -
oracle.apps.cz.cio.llnteger.getIntValue(), B-11
8

getIntValue() -
oracle.apps.cz.cio.IntegerNode.getIntValue(),
B-128

getIntValue() -
oracle.apps.cz.cio.Property.getIntValue(), B-1
87

getInventoryltemId() -
oracle.apps.cz.cio.BomExplosionException.getl
nventoryltemlId(), B-10

getInventoryltemId() -
oracle.apps.cz.cio.BomNode.getInventorylteml
d(), B-19

getInventoryltemId() -
oracle.apps.cz.cio.IBomlItem.getInventoryltemld
(), B-104

getltemKey() -
oracle.apps.cz.cio.BomNode.getltemKey(), B-
19

getltemKey() -
oracle.apps.cz.cio.IAtp.getltemKey(), B-102

getltemKey() -
oracle.apps.cz.cio.IPrice.getltemKey(), B-136

getltemKey() -
oracle.apps.cz.cio.StateCountNode.getItemKey(
), B-212

get]DBCConnection() -
oracle.apps.cz.common.CZContext.get/ DBCCon
nection(), C—+4

get]DBCConnection(Object) -
oracle.apps.cz.common.CZContext.getf DBCCon
nection(java.lang.Object), C—4

getLangCode(String) -
oracle.apps.cz.common.CZContext.getLangCod
e(java.lang.String), C-5

getLangInfo(String, String) -
oracle.apps.cz.common.CZContext.getLangInfo
(java.lang.String, java.lang.String), C-5

getLastContradiction() -
oracle.apps.cz.cio.Configuration.getLastContra
diction(), B-72

getListPrice() -
oracle.apps.cz.cio.BomNode.getListPrice(), B-
19

getListPrice() -
oracle.apps.cz.cio.IPrice.getListPrice(), B-136

getListPrice() -
oracle.apps.cz.cio.StateCountNode.getListPrice(
), B-212

getLogicConfig() -
oracle.apps.cz.cio.Configuration.getLogicConfig
(), B-72

getLogicException() -
oracle.apps.cz.cio.LogicalRuntimeException.get
LogicException(), B-159

getMax() -
oracle.apps.cz.cio.Component.getMax(), B-52

getMax() -
oracle.apps.cz.cio.ComponentSet.getMax(), B-
59

getMax() -
oracle.apps.cz.cio.CountFeature.getMax(), B-8
1

getMax() -
oracle.apps.cz.cio.DecimalFeature.getMax(), B
-84

getMax() -
oracle.apps.cz.cio.IDecimalMinMax.getMax(),

Index-9

B-112
getMax() -
oracle.apps.cz.cio.lIntegerMinMax.getMax(),
B-120
getMax() -
oracle.apps.cz.cio.IntegerFeature.getMax(), B-
125
getMaxQuantity() -
oracle.apps.cz.cio.BomNode.getMaxQuantity(),
B-20
getMaxQuantity() -
oracle.apps.cz.cio.IBomItem.getMaxQuantity(),
B-104
getMaxSelected()
usage, 2-11
getMaxSelected() -
oracle.apps.cz.cio.BomNode.getMaxSelected(),
B-20
getMaxSelected() -
oracle.apps.cz.cio.IOptionFeature.getMaxSelect
ed()/ B-133
getMaxSelected() -
oracle.apps.cz.cio.OptionFeature.getMaxSelecte
d(), B-175
getMessage()
usage, 2-18
getMessage() -
oracle.apps.cz.cio.LogicalException.getMessage
(), B-155
getMessage() -
oracle.apps.cz.cio.ValidationFailure.getMessage
(), B-231
getMessage(String) -
oracle.apps.cz.cio.ValidationFailure.getMessage
(java.lang.String), B-231
getMessageHeader() -
oracle.apps.cz.cio.LogicalException.getMessage
Header(), B-155
getMin() -
oracle.apps.cz.cio.Component.getMin(), B-52
getMin() -
oracle.apps.cz.cio.ComponentSet.getMin(), B-
59
getMin() -
oracle.apps.cz.cio.CountFeature.getMin(), B-8

Index-10

1
getMin() -
oracle.apps.cz.cio.DecimalFeature.getMin(), B
-85
getMin() -
oracle.apps.cz.cio.IDecimalMinMax.getMin(),
B-112
getMin() -
oracle.apps.cz.cio.lIntegerMinMax.getMin(), B
-120
getMin() -
oracle.apps.cz.cio.IntegerFeature.getMin(), B-
125
getMinQuantity() -
oracle.apps.cz.cio.BomNode.getMinQuantity(),
B-20
getMinQuantity() -
oracle.apps.cz.cio.IBomItem.getMinQuantity(),
B-105
getMinSelected()
usage, 2-11
getMinSelected() -
oracle.apps.cz.cio.BomNode.getMinSelected(),
B-20
getMinSelected() -
oracle.apps.cz.cio.IOptionFeature.getMinSelecte
d(), B-133
getMinSelected() -
oracle.apps.cz.cio.OptionFeature.getMinSelecte
d(), B-175
getModelNode() -
oracle.apps.cz.cio.IncompatibleInputException.
getModelNode(), B-123
getMsg()
usage, 2-19
getMsg() -
oracle.apps.cz.cio.Reason.getMsg(), B-194
getName() -
oracle.apps.cz.cio.Component.getName(), B-5
3
getName() -
oracle.apps.cz.cio.FuncCompCreationException
.getName(), B-93
getName() -
oracle.apps.cz.cio.Functional Companion.getNa

me(), B-98

getName() -
oracle.apps.cz.cio.JFunctional Companion.getNa
me(), B-116

getName() -
oracle.apps.cz.cio.IRuntimeNode.getName(),
B-145

getName() -
oracle.apps.cz.cio.NoSuchChildException.getNa
me(), B-167

getName() -
oracle.apps.cz.cio.Property.getName(), B-187

getName() -
oracle.apps.cz.cio.RuntimeNode.getName(), B
-202

getName() -
oracle.apps.cz.utilities. NameValuePair.getNam
e(), D-3

getNLSLang(String) -
oracle.apps.cz.common.CZContext.getNLSLang
(java.lang.String), C-5

getNode()
usage, 2-19

getNode() -
oracle.apps.cz.cio.Reason.getNode(), B-194

getNode() -
oracle.apps.cz.cio.StatusInfo.getNode(), B-219

getNodeClass(String) -
oracle.apps.cz.cio.CompanionRoot.getNodeClas
s(java.lang.String), B—46

getNodeFromPath(String) -
oracle.apps.cz.cio.Configuration.getNodeFromP
ath(java.lang.String), B-72

getNodeldentifier() -
oracle.apps.cz.cio.CompanionRoot.getNodelde
ntifier(), B—46

getOrganizationId() -
oracle.apps.cz.cio.BomExplosionException.getO
rganizationld(), B-10

getOrganizationId() -
oracle.apps.cz.cio.BomNode.getOrganizationId(
), B-21

getOrganizationId() -
oracle.apps.cz.cio.IBomltem.getOrganizationId(
), B-105

getParent() -
oracle.apps.cz.cio.IRuntimeNode.getParent(),
B-145

getParent() -
oracle.apps.cz.cio.NoSuchChildException.getPa
rent(), B-167

getParent() -
oracle.apps.cz.cio.RuntimeNode.getParent(), B
-202

getPathForNode(IRuntimeNode) -
oracle.apps.cz.cio.Configuration.getPathForNo
de(oracle.apps.cz.cio.IRuntimeNode), B-72

getPricingMode() -
oracle.apps.cz.cio.Configuration.getPricingMod
e()) B-72

getPricingNotifications() -
oracle.apps.cz.cio.IPrice.getPricingNotifications
(), B-136

getPricingNotifications() -
oracle.apps.cz.cio.StateCountNode.getPricingN
otifications(), B-212

getPrimaryUomCode() -
oracle.apps.cz.cio.BomNode.getPrimaryUomCo
de(), B-21

getPrimaryUomCode() -
oracle.apps.cz.cio.IBomlItem.getPrimaryUomCo
de(), B-105

getProgString() -
oracle.apps.cz.cio.FuncCompCreationException
.getProgString(), B-93

getProjectID() -
oracle.apps.cz.cio.Configuration.getProjectID(),

B-72
getProperties()
usage, 2-14

getProperties() -
oracle.apps.cz.cio.IRuntimeNode.getProperties(
), B-145

getProperties() -
oracle.apps.cz.cio.RuntimeNode.getProperties()
, B-203

getPropertyByName()

usage, 2-14

getPropertyByName(String) -

oracle.apps.cz.cio.IRuntimeNode.getPropertyBy

Index-11

Name(java.lang.String), B-145

getPropertyByName(String) -
oracle.apps.cz.cio.RuntimeNode.getPropertyBy
Name(java.lang.String), B-203

getReasons()
usage, 2-18

getReasons() -
oracle.apps.cz.cio.LogicalException.getReasons(
), B-155

getRootBomModel() -
oracle.apps.cz.cio.Configuration.getRootBomM
odel(), B-72

getRootBomModel(int, int) -
oracle.apps.cz.cio.Configuration.getRootBomM
odel(int, int), B-73

getRootComponent() -
oracle.apps.cz.cio.Configuration.getRootCompo
nent(), B-73

getRootComponentDbId() -
oracle.apps.cz.cio.Configuration.getRootCompo
nentDbId(), B-73

getRootNodes() -
oracle.apps.cz.cio.CompanionRoot.getRootNod
es(), BH47

getRuntimelD() -
oracle.apps.cz.cio.IRuntimeNode.getRuntimelID
(), B-145

getRuntimelD() -
oracle.apps.cz.cio.RuntimeNode.getRuntimelD(
), B-203

getRuntimeNode() -
oracle.apps.cz.cio.Functional Companion.getRu
ntimeNode(), B-98

getRuntimeNode() -
oracle.apps.cz.cio.IFunctional Companion.getRu
ntimeNode(), B-116

getRuntimeNode(int) -
oracle.apps.cz.cio.Configuration.getRuntimeNo
de(int), B-73

getSelectedItems()
usage, 2-22

getSelectedItems() -
oracle.apps.cz.cio.Configuration.getSelectedIte
ms(), B-74

getSelectedOption()

Index-12

usage, 2-14

getSelectedOption() -
oracle.apps.cz.cio.IOptionFeature.getSelectedO
ption(), B-134

getSelectedOption() -
oracle.apps.cz.cio.OptionFeatureNode.getSelect
edOption(), B-178

getSelectedOptions() -
oracle.apps.cz.cio.IOptionFeature.getSelectedO
ptions(), B-134

getSelectedOptions() -
oracle.apps.cz.cio.OptionFeatureNode.getSelect
edOptions(), B-178

getSelectionLinelD() -
oracle.apps.cz.cio.IRuntimeNode.getSelectionLi
nelD(), B-146

getSelectionLinelD() -
oracle.apps.cz.cio.RuntimeNode.getSelectionLin
elD(), B-203

getSessionManager() -
oracle.apps.cz.common.CZContext.getSessionM
anager(), C-5

getState()
usage, 2-12

getState() -
oracle.apps.cz.cio.BomNode.getState(), B-21

getState() -
oracle.apps.cz.cio.IState.getState(), B-150

getState() -
oracle.apps.cz.cio.StateNode.getState(), B-215

getStatus() -
oracle.apps.cz.cio.StatusInfo.getStatus(), B-220

getString(String) -
oracle.apps.cz.cio.CompanionNode.getString(ja
va.lang.String), B-44

getString(String, String) -
oracle.apps.cz.cio.CompanionNode.getString(ja
va.lang.String, java.lang.String), B—44

getStringDeltaList() -
oracle.apps.cz.cio.Configuration.getStringDelta
List(), B-74

getStringValue()
usage, 2-14

getStringValue() -
oracle.apps.cz.cio.Property.getStringValue(), B

-187

getTextValue() -
oracle.apps.cz.cioIText.getTextValue(), B-151

getTextValue() -
oracle.apps.cz.cio.TextNode.getTextValue(), B
224

getTotalDiscountedPrice() -
oracle.apps.cz.cio.Configuration.getTotalDiscou
ntedPrice(), B-74

getTransactionDepth() -
oracle.apps.cz.cio.Configuration.getTransaction
Depth(), B-74

getType()
usage, 2-19

getType() -
oracle.apps.cz.cio.BomModel.getType(), B-13

getType() -
oracle.apps.cz.cio.BomOptionClass.getType(),
B-28

getType() -
oracle.apps.cz.cio.BomStdItem.getType(), B-3
1

getType() -
oracle.apps.cz.cio.BooleanFeature.getType(), B
-33

getType() -
oracle.apps.cz.cio.Component.getType(), B-53

getType() -
oracle.apps.cz.cio.ComponentSet.getType(), B
-59

getType() -
oracle.apps.cz.cio.CountFeature.getType(), B-
81

getType() -
oracle.apps.cz.cio.DecimalFeature.getType(),
B-85

getType() -
oracle.apps.cz.cio.IntegerFeature.getType(), B
-126

getType() -
oracle.apps.cz.cio.IRuntimeNode.getType(), B
-146

getType() -
oracle.apps.cz.cio.OptionFeature.getType(), B-
175

getType() -
oracle.apps.cz.cio.Option.getType(), B-172

getType() -
oracle.apps.cz.cio.Reason.getType(), B-194

getType() -
oracle.apps.cz.cio.Resource.getType(), B-196

getType() -
oracle.apps.cz.cio.RuntimeNode.getType(), B-
203

getType() -
oracle.apps.cz.cio.TextFeature.getType(), B-22
2

getType() -
oracle.apps.cz.cio.Total.getType(), B-226

getType() -
oracle.apps.cz.cio.ValidationFailure.getType(),

B-231

getUnit() -
oracle.apps.cz.cio.Property.getUnit(), B-187

getUnsatisfiedItems()
usage, 2-22

getUnsatisfiedItems() -
oracle.apps.cz.cio.Configuration.getUnsatisfiedI
tems(), B-74

getUomCode() -
oracle.apps.cz.cio.BomNode.getUomCode(), B
21

getUomCode() -
oracle.apps.cz.cio.IAtp.getUomCode(), B-102

getUomCode() -
oracle.apps.cz.cio.IPrice.getUomCode(), B-137

getUomCode() -
oracle.apps.cz.cio.StateCountNode.getUomCod
e()) B-212

getUrl() -
oracle.apps.cz.common.CZContext.getUrl(), C
-5

getUser() -
oracle.apps.cz.common.CZContext.getUser(),
C-5

getValidationFailures()
usage, 2-13,2-22

getValidationFailures() -
oracle.apps.cz.cio.Configuration.getValidationF
ailures(), B-74

Index-13

getValue() -
oracle.apps.cz.utilities. NameValuePair.getValue
(0, D-3

getValueByName(String) -
oracle.apps.cz.utilities. NameValuePairSet.getVa
lueByName(java.lang.String), D-5

H

hasBooleanValue() -
oracle.apps.cz.cio.Property.hasBooleanValue(),
B-188

hasCount() -
oracle.apps.cz.cio.IRuntimeNode.hasCount(),
B-146

hasCount() -
oracle.apps.cz.cio.RuntimeNode.hasCount(), B
-204

hasDecimalValue() -
oracle.apps.cz.cio.IRuntimeNode.hasDecimalVa
lue(), B-146

hasDecimalValue() -
oracle.apps.cz.cio.Property.hasDecimalValue(),
B-188

hasDecimalValue() -
oracle.apps.cz.cio.RuntimeNode.hasDecimalVal
ue(), B-204

hasDefaultQuantity() -
oracle.apps.cz.cio.BomNode.hasDefaultQuantit
y0, B-22

hasDefaultValue() -
oracle.apps.cz.cio.Property.hasDefaultValue(),
B-188

hasDescription() -
oracle.apps.cz.cio.IRuntimeNode.hasDescriptio
n(), B-146

hasDescription() -
oracle.apps.cz.cio.RuntimeNode.hasDescription
(), B-204

hasFeature(String) -
oracle.apps.cz.cio.CompanionNode.hasFeature(
java.lang.String), B-44

hashCode() -
oracle.apps.cz.cio.CompanionValidationFailure.
hashCode(), B-49

Index-14

hashCode() -
oracle.apps.cz.cio.RestoreValidationFailure.has
hCOde()/ B-198
hashCode() -
oracle.apps.cz.cio.StatusInfo.hashCode(), B-22
0
hasIntegerValue() -
oracle.apps.cz.cio.Property.hasIntegerValue(),
B-188
hasIntegerValue() -
oracle.apps.cz.cio.RuntimeNode.hasIntegerValu
e()) B-204
hasMax()
usage, 2-11
hasMax() -
oracle.apps.cz.cio.Component.hasMax(), B-53
hasMax() -
oracle.apps.cz.cio.ComponentSet.hasMax(), B-
59
hasMax() -
oracle.apps.cz.cio.CountFeature hasMax(), B-8
2
hasMax() -
oracle.apps.cz.cio.DecimalFeature.hasMax(), B
-85
hasMax() -
oracle.apps.cz.cio.IDecimalMinMax.hasMax(),
B-112
hasMax() -
oracle.apps.cz.cio.IIntegerMinMax.hasMax(),
B-120
hasMax() -
oracle.apps.cz.cio.IntegerFeature.hasMax(), B-
126
hasMaxQuantity() -
oracle.apps.cz.cio.BomNode hasMaxQuantity(),
B-22
hasMaxQuantity() -
oracle.apps.cz.cio.IBomItem.hasMaxQuantity(),
B-105
hasMaxSelected()
usage, 2-11
hasMaxSelected() -
oracle.apps.cz.cio.BomNode.hasMaxSelected(),
B-22

hasMaxSelected() -
oracle.apps.cz.cio.IOptionFeature.hasMaxSelect
ed()/ B-134
hasMaxSelected() -
oracle.apps.cz.cio.OptionFeature.hasMaxSelecte
d(), B-175
hasMin()
usage, 2-11
hasMin() -
oracle.apps.cz.cio.Component.hasMin(), B-53
hasMin() -
oracle.apps.cz.cio.ComponentSet.hasMin(), B-
59
hasMin() -
oracle.apps.cz.cio.CountFeature.hasMin(), B-8
2
hasMin() -
oracle.apps.cz.cio.DecimalFeature.hasMin(), B
-85
hasMin() -
oracle.apps.cz.cio.IDecimalMinMax.hasMin(),
B-113
hasMin() -
oracle.apps.cz.cio.lIntegerMinMax.hasMin(),
B-121
hasMin() -
oracle.apps.cz.cio.IntegerFeature.hasMin(), B-
126
hasMinQuantity() -
oracle.apps.cz.cio.BomNode hasMinQuantity(),
B-22
hasMinQuantity() -
oracle.apps.cz.cio.IBomItem.hasMinQuantity(),
B-105
hasMinSelected()
usage, 2-11
hasMinSelected() -
oracle.apps.cz.cio.BomNode.hasMinSelected(),
B-22
hasMinSelected() -
oracle.apps.cz.cio.IOptionFeature.hasMinSelect
ed()/ B-134
hasMinSelected() -
oracle.apps.cz.cio.OptionFeature.hasMinSelecte
d(), B-175

hasSelectionLinelD() -
oracle.apps.cz.cio.IRuntimeNode.hasSelectionLi
nelD(), B-146

hasSelectionLinelD() -
oracle.apps.cz.cio.RuntimeNode.hasSelectionLi
nelD(), B-204

hasState() -
oracle.apps.cz.cio IRuntimeNode.hasState(), B
-146

hasState() -
oracle.apps.cz.cio.RuntimeNode.hasState(), B-
204

hasStringValue() -
oracle.apps.cz.cio.Property.hasStringValue(),
B-188

hasTextValue() -
oracle.apps.cz.cio.IRuntimeNode hasTextValue(
), B-147

hasTextValue() -
oracle.apps.cz.cio.RuntimeNode.hasTextValue()
, B-205

IAtp - oracle.apps.cz.cio.lAtp, B-101

IBomItem - oracle.apps.cz.cio.IlBomltem, B-103

ICompSetEventListener -
oracle.apps.cz.cio.IlCompSetEventListener, B-
106

IConfigEventListener -
oracle.apps.cz.cio.IConfigEventListener, B-10
7

ICount - oracle.apps.cz.cioICount, B-108

IDecimal - oracle.apps.cz.cio.IDecimal, B-110

IDecimalMinMax -
oracle.apps.cz.cio.IDecimalMinMax, B-112

IFunctionalCompanion, 2-9,2-10, 2-23, 2-25, 2-26,
2-28

IFunctionalCompanion -
oracle.apps.cz.cio.IFunctionalCompanion, B-1
14

IInteger - oracle.apps.cz.cio.IInteger, B-118

IIntegerMinMax -
oracle.apps.cz.cio.IlIntegerMinMax, B-120

IncompatibleInputException -

Index-15

oracle.apps.cz.cio.IncompatibleInputException,
B-122
Initialization, 2-10
initialization parameters
obtaining list of, 2-7
initialize()
usage, 2-10,2-23
initialize(IRuntimeNode, String, String, int) -
oracle.apps.cz.cio.Functional Companion.initiali
ze(oracle.apps.cz.cio.IRuntimeNode,
java.lang.String, java.lang.String, int), B-99
initialize(IRuntimeNode, String, String, int) -
oracle.apps.cz.cio.IFunctionalCompanion.initial
ize(oracle.apps.cz.cio.IRuntimeNode,
java.lang.String, java.lang.String, int), B-117
initTraceFile(String) -
oracle.apps.cz.cio.CIO.initTraceFile(java.lang.St
ring), B-39
instanceTypeToString(int) -
oracle.apps.cz.cio.Component.instanceTypeToS
tring(int), B-53
INTEGER_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. INTEGER _
FEATURE, B-143
IntegerFeature -
oracle.apps.cz.cio.IntegerFeature, B-124
IntegerNode -
oracle.apps.cz.cio.IntegerNode, B-127
interface
methods, 2-22
objects, 1-4,2-2
INTL_TEXT - oracle.apps.cz.cio.Reason.INTL _
TEXT, B-192
IOption - oracle.apps.cz.cio.IOption, B-130
IOptionFeature -
oracle.apps.cz.cio.lOptionFeature, B-132
IPrice - oracle.apps.cz.cio.IPrice, B-135
IReadOnlyDecimal -
oracle.apps.cz.cio.IReadOnlyDecimal, B-138
IRuntimeNode -
oracle.apps.cz.cio.IRuntimeNode, B-140
isActive() -
oracle.apps.cz.cio.ComponentNode.isActive(),
B-56
isDefaultState(int) -

Index-16

oracle.apps.cz.cio.StateNode.isDefaultState(int),
B-216

isFalseState(int) -
oracle.apps.cz.cio.StateNode.isFalseState(int),
B-216

isLogicState(int) -
oracle.apps.cz.cio.StateNode.isLogicState(int),
B-216

isNative() -
oracle.apps.cz.cioIRuntimeNode.isNative(), B
-147

isNative() -
oracle.apps.cz.cio.RuntimeNode.isNative(), B-
205

isOptionMutexed() -
oracle.apps.cz.cio.BomNode.isOptionMutexed()
, B-23

isOptionMutexed() -
oracle.apps.cz.cio.IOption.isOptionMutexed(),

B-131

isOptionMutexed() -
oracle.apps.cz.cio.OptionNode.isOptionMutexe
d(), B-182

isOverridable()
usage, 2-18

isOverridable() -
oracle.apps.cz.cio.LogicalException.isOverridab
le(), B-155

isOverridable() -
oracle.apps.cz.cio.LogicalOverridableException.
isOverridable(), B-157

isRequired() -
oracle.apps.cz.cio.BomNode.isRequired(), B-2
3

isRequired() -
oracle.apps.cz.cio.IBomltem.isRequired(), B-1
05

isRoot() -
oracle.apps.cz.cio.Component.isRoot(), B-53

isSelected()
usage, 2-15

isSelected() -
oracle.apps.cz.cio.BomNode.isSelected(), B-23

isSelected() -
oracle.apps.cz.cio.IOption.isSelected(), B-131

isSelected() -
oracle.apps.cz.cio.OptionNode.isSelected(), B-
182

isSelectionMutexed() -
oracle.apps.cz.cio.BomNode.isSelectionMutexe
d(), B-23

isSelectionMutexed() -
oracle.apps.cz.cio.IOptionFeature.isSelectionMu
texed(), B-134

isSelectionMutexed() -
oracle.apps.cz.cio.OptionFeatureNode.isSelectio
nMutexed(), B-178

IState - oracle.apps.cz.cio.IState, B-148

isTrueState(int) -
oracle.apps.cz.cio.StateNode.isTrueState(int),
B-216

isUnknown() -
oracle.apps.cz.cio.llnteger.isUnknown(), B-11
8

isUnknown() -
oracle.apps.cz.cio.IntegerNode.isUnknown(),
B-128

isUnknown() -
oracle.apps.cz.cio.IReadOnlyDecimal.isUnknow
n(), B-138

isUnknown() -
oracle.apps.cz.cio.IState.isUnknown(), B-150

isUnknown() -
oracle.apps.cz.cio.ReadOnlyDecimalNode.isUn
known(), B-190

isUnknown() -
oracle.apps.cz.cio.StateNode.isUnknown(), B-
216

isUnknownState(int) -
oracle.apps.cz.cio.StateNode.isUnknownState(i
nt), B-216

isUnsatisfied() -
oracle.apps.cz.cio.Configuration.isUnsatisfied(),
B-75

isUnsatisfied() -
oracle.apps.cz.cio.IRuntimeNode.isUnsatisfied()
, B-147

isUnsatisfied() -
oracle.apps.cz.cio.RuntimeNode.isUnsatisfied(),
B-205

isUnsatisfiedNode() -
oracle.apps.cz.cio.IRuntimeNode.isUnsatisfied
Node(), B-147

isUnsatisfiedNode() -
oracle.apps.cz.cio.RuntimeNode.isUnsatisfiedN
ode(), B-205

isUserState(int) -
oracle.apps.cz.cio.StateNode.isUserState(int),
B-216

isVirtual() -
oracle.apps.cz.cio.Component.isVirtual(), B-5
3

iterator() -
oracle.apps.cz.utilities. NameValuePairSet.iterat
or(), D-5

IText - oracle.apps.cz.cio.IText, B-151

J

Java
building Functional Companions with, 1-3, 1-4
packages for the CIO, 2-1
recommended for development, 1-3
specifying Functional Companion type, 1-11
JDBC
drivers, 1-8

L

LFALSE
usage, 2-11
LFALSE - oracle.apps.cz.cio.IState. LFALSE, B-149
loadDriver(String) -
oracle.apps.cz.cio.Factory.loadDriver(java.lang.
String), B-91
logic
contradictions, 2-18
exceptions, 2-18
net objects, 2-1
transactions, 2-8,2-21
LogicalException -
oracle.apps.cz.cio.LogicalException, B-153
LogicalException() -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(), B-154

Index-17

LogicalException(LogicException, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(oracle.apps.cz.logic.LogicException,
oracle.apps.cz.cio.Configuration), B-154

LogicalException(Reason, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(oracle.apps.cz.cio.Reason,
oracle.apps.cz.cio.Configuration), B-154

LogicalException(String, Configuration) -
oracle.apps.cz.cio.LogicalException.LogicalExce
ption(java.lang.String,
oracle.apps.cz.cio.Configuration), B-154

LogicalOverridableException -
oracle.apps.cz.cio.LogicalOverridableException,

B-156

LogicalOverridableException(LogicContradictionEx
ception, Configuration) -
oracle.apps.cz.cio.LogicalOverridableException.
LogicalOverridableException(oracle.apps.cz.log
ic.LogicContradictionException,
oracle.apps.cz.cio.Configuration), B-157

LogicalRuntimeException -
oracle.apps.cz.cio.LogicalRuntimeException, B
-158

LogicalRuntimeException(LogicException) -
oracle.apps.cz.cio.LogicalRuntimeException.Lo
gicalRuntimeException(oracle.apps.cz.logic.Log
icException), B-159

LogicalRuntimeException(String) -
oracle.apps.cz.cio.LogicalRuntimeException.Lo
gicalRuntimeException(java.lang.String), B-15
9

lookupNodeID(Object) -
oracle.apps.cz.cio.Component.lookupNodelD(ja
va.lang.Object), B-53

lookupNodeID(Object) -
oracle.apps.cz.cio.RuntimeNode.lookupNodelD
(java.lang.Object), B-205

lookupPairByName(String) -
oracle.apps.cz.utilities. NameValuePairSet.looku
pPairByName(java.lang.String), D-6

LTRUE

usage, 2-11
LTRUE - oracle.apps.cz.cio.IState. LTRUE, B-149

Index-18

M

MAX_FAILURE -
oracle.apps.cz.cio.ValidationFailure MAX_
FAILURE, B-230

MIN_FAILURE -
oracle.apps.cz.cio.ValidationFailure. MIN_
FAILURE, B-230

MINO_FAILURE -
oracle.apps.cz.cio.ValidationFailure. MINO_
FAILURE, B-230

MINMAX -
oracle.apps.cz.cio.Reason. MINMAX, B-192

MINMAX_FAILURE -
oracle.apps.cz.cio.ValidationFailure MINMAX_
FAILURE, B-230

MissingFileException -
oracle.apps.cz.cio.MissingFileException, B-16
0

MissingLogicException -
oracle.apps.cz.cio.MissingLogicException, B-1
61

N

NameValuePair -
oracle.apps.cz.utilities. NameValuePair, D-2
NameValuePair(String) -
oracle.apps.cz.utilities. NameValuePair. NameVa
luePair(java.lang.String), D-3
NameValuePair(String, Object) -
oracle.apps.cz.utilities. NameValuePair. NameVa
luePair(java.lang.String, java.lang.Object), D-3
NameValuePairSet -
oracle.apps.cz.utilities. NameValuePairSet, D-
4
NameValuePairSet() -
oracle.apps.cz.utilities. NameValuePairSet.Nam
eValuePairSet(), D-5
native BOM, 2-16
New Functional Companion command, 1-11
NoAtpCalculatedException -
oracle.apps.cz.cio.NoAtpCalculatedException,
B-162
NoConfigHeaderException -

oracle.apps.cz.cio.NoConfigHeaderException,
B-163

NoConfigHeaderException() -
oracle.apps.cz.cio.NoConfigHeaderException.N
oConfigHeaderException(), B-164

NonPricedNodeException -
oracle.apps.cz.cio.NonPricedNodeException,
B-165

NoSuchChildException -
oracle.apps.cz.cio.NoSuchChildException, B-1
66

NoSuchChildException(IRuntimeNode, int) -
oracle.apps.cz.cio.NoSuchChildException.NoSu
chChildException(oracle.apps.cz.cio.IRuntimeN
ode, int), B-167

NoSuchChildException(IRuntimeNode, String) -
oracle.apps.cz.cio.NoSuchChildException.NoSu
chChildException(oracle.apps.cz.cio.IRuntimeN
ode, java.lang.String), B-167

notifyComponentAdded(Component) -
oracle.apps.cz.cio.ICompSetEventListener.notif
yComponentAdded(oracle.apps.cz.cio.Compon
ent), B-106

notifyComponentAdded(Component) -
oracle.apps.cz.cio.IConfigEventListener.notifyC
omponentAdded(oracle.apps.cz.cio.Component
), B-107

notifyComponentDeleted(Component) -
oracle.apps.cz.cio.ICompSetEventListener.notif
yComponentDeleted(oracle.apps.cz.cio.Compo
nent), B-106

notifyComponentDeleted(Component) -
oracle.apps.cz.cio.IConfigEventListener.notifyC
omponentDeleted(oracle.apps.cz.cio.Componen
t), B-107

NotOneProductException -
oracle.apps.cz.cio.NotOneProductException, B
-168

NotOneProjectException -
oracle.apps.cz.cio.NotOneProjectException, B-
169

O

onNew() -

oracle.apps.cz.cio.AutoFunctional Companion.o
nNew(), B-6
onRestore() -
oracle.apps.cz.cio.AutoFunctional Companion.o
nRestore(), B-6
onSave() -
oracle.apps.cz.cio.AutoFunctional Companion.o
nSave(), B-6
openTraceFile(String) -
oracle.apps.cz.cio.CIO.openTraceFile(java.lang.
String), B-39
OPTION -
oracle.apps.cz.cio.IRuntimeNode. OPTION, B-
143
Option - oracle.apps.cz.cio.Option, B-170
OPTION_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. OPTION_
FEATURE, B-143
OptionFeature -
oracle.apps.cz.cio.OptionFeature, B-173
OptionFeatureNode -
oracle.apps.cz.cio.OptionFeatureNode, B-176
OptionNode -
oracle.apps.cz.cio.OptionNode, B-180
Oracle Configurator Toolkit, 2-7
Oracle JDBC OCI drivers, 1-8
Oracle JDBC Thin drivers, 1-8
Oracle Technology Network, 1-8
oracle.apps.cz.cio, 2-1,2-2
oracle.apps.cz.cio - oracle.apps.cz.cio, B-1
oracle.apps.cz.cio.IFunctionalCompanion, 2-23
oracle.apps.cz.common -
oracle.apps.cz.common, C-1
oracle.apps.cz.utilities -
oracle.apps.cz.utilities, D-1
ORTHEN -
oracle.apps.cz.cio.Reason.ORTHEN, B-192
Output, 1-2,1-11, 1-15
override()
usage, 2-18,2-20
override() -
oracle.apps.cz.cio.LogicalOverridableException.
override(), B-157

Index-19

P
PATH, 1-8
perform() -

oracle.apps.cz.cio.Configuration.perform(), B-
75

PRICE_APPS_107_110 -
oracle.apps.cz.cio.Configuration.PRICE_APPS_
107_110, B-65

PRICE_MULT_ITEMS -
oracle.apps.cz.cio.Configuration.PRICE_
MULT_ITEMS, B-65

PRICE_SINGLE_ITEM -
oracle.apps.cz.cio.Configuration.PRICE_
SINGLE_ITEM, B-65

PRICING_DISABLED -
oracle.apps.cz.cio.Configuration. PRICING_
DISABLED, B-65

PricingUnavailableException -
oracle.apps.cz.cio.PricingUnavailableException,

B-184

PricingUnavailableException(String) -
oracle.apps.cz.cio.PricingUnavailableException.
PricingUnavailableException(java.lang.String),

B-185

PricingUnavailableException(String, Object, Log) -
oracle.apps.cz.cio.PricingUnavailableException.
PricingUnavailableException(java.lang.String,
java.lang.Object,
oracle.apps.fnd.common.Log), B-185

Property - oracle.apps.cz.cio.Property, B-186

R

ReadOnlyDecimalNode -
oracle.apps.cz.cio.ReadOnlyDecimalNode, B-
189

Reason - oracle.apps.cz.cio.Reason, B-191

Reason(int, IRuntimeNode, String) -
oracle.apps.cz.cio.Reason.Reason(int,
oracle.apps.cz.cio.IRuntimeNode,
java.lang.String), B-193

Reason(Message, String, IRuntimeNode) -
oracle.apps.cz.cio.Reason.Reason(oracle.apps.fn
d.common.Message, java.lang.String,

Index-20

oracle.apps.cz.cio.lRuntimeNode), B-193

Reason(String) -
oracle.apps.cz.cio.Reason.Reason(java.lang.Strin
g), B-193

release] DBCConnection() -
oracle.apps.cz.common.CZContext.release] DBC
Connection(), C-5

removeConfigEventListener(ICompSetEventListene
r) -
oracle.apps.cz.cio.ComponentSet.removeConfig
EventListener(oracle.apps.cz.cio.ICompSetEven
tListener), B-59

removeConfigEventListener(IConfigEventListener) -
oracle.apps.cz.cio.Configuration.removeConfig
EventListener(oracle.apps.cz.cio.IConfigEventLi
stener), B-75

RESOURCE -
oracle.apps.cz.cio.IRuntimeNode RESOURCE,

B-143

Resource - oracle.apps.cz.cio.Resource, B-195

RESOURCE_FAILURE -
oracle.apps.cz.cio.ValidationFailure. RESOURC
E_FAILURE, B-230

restartConfiguration(boolean) -
oracle.apps.cz.cio.Configuration.restartConfigu
ration(boolean), B-75

RESTORE_FAILURE -
oracle.apps.cz.cio.ValidationFailure. RESTORE_
FAILURE, B-231

restoreConfiguration()
usage, 2-7

restoreConfiguration(DbConfigHeader, Context) -
oracle.apps.cz.cio.CIO.restoreConfiguration(ora
cle.apps.cz.dio.config. DbConfigHeader,
oracle.apps.fnd.common.Context), B-39

restoreConfiguration(int, int, Context) -
oracle.apps.cz.cio.CIO.restoreConfiguration(int,
int, oracle.apps.fnd.common.Context), B—40

RestoreValidationFailure -
oracle.apps.cz.cio.RestoreValidationFailure, B
-197

revNumber
usage, 2-7

rollbackConfigTransaction()
usage, 2-20

rollbackConfigTransaction(ConfigTransaction) -
oracle.apps.cz.cio.Configuration.rollbackConfig
Transaction(oracle.apps.cz.cio.ConfigTransactio
n), B-75
rollbackConfigTransaction(transaction)
usage, 2-8,2-21
runtime model subschema objects, 2-1
RuntimeNode -
oracle.apps.cz.cio.RuntimeNode, B-199

S

save()
usage, 2-7

save() -
oracle.apps.cz.cio.Configuration.save(), B-75

saveAs(configHeaderID, revNumber)
usage, 2-7

saveAs(int, int) -
oracle.apps.cz.cio.Configuration.saveAs(int,
int), B-76

saveNew()
usage, 2-7

saveNew() -
oracle.apps.cz.cio.Configuration.saveNew(), B
-76

saveNewRev()
usage, 2-7

saveNewRev() -
oracle.apps.cz.cio.Configuration.saveNewRev(),

B-76

select()
usage, 2-15

select() - oracle.apps.cz.cio.BomNode.select(), B-24

select() - oracle.apps.cz.cio.IOption.select(), B-131

select() -
oracle.apps.cz.cio.OptionNode.select(), B-182

select(IOption) -
oracle.apps.cz.cio.BomNode.select(oracle.apps.c
z.cio.IOption), B-24

select(IOption) -
oracle.apps.cz.cio.IOptionFeature.select(oracle.a
pps.cz.cio.IlOption), B-134

select(IOption) -
oracle.apps.cz.cio.OptionFeatureNode.select(or

acle.apps.cz.cio.IOption), B-178

SelectionNotMutexedException -
oracle.apps.cz.cio.SelectionNotMutexedExcepti
on, B-207

selectOption()
usage, 2-14

setActiveModelPath(String) -
oracle.apps.cz.cio.CIO.setActiveModelPath(java
Jang.String), B-40

setAltPricing AtpContext(Context) -
oracle.apps.cz.cio.Configuration.setAltPricing A
tpContext(oracle.apps.fnd.common.Context),
B-76

setAtpDate(Date) -
oracle.apps.cz.cio.BomNode.setAtpDate(java.ut
il.Date), B-24

setConfigHeaderCheckoutUser(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erCheckoutUser(java.lang.String), B-77

setConfigHeaderDateCreated(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erDateCreated(java.sql. Timestamp), B-77

setConfigHeaderDescription(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erDescription(java.lang.String), B-77

setConfigHeaderEffectiveFrom(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erEffectiveFrom(java.sql.Timestamp), B-77

setConfigHeaderEffectiveTo(Timestamp) -
oracle.apps.cz.cio.Configuration.setConfigHead
erEffectiveTo(java.sql.Timestamp), B-77

setConfigHeaderName(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erName(java.lang.String), B-77

setConfigHeaderNote(String) -
oracle.apps.cz.cio.Configuration.setConfigHead
erNote(java.lang.String), B-77

setConfigHeaderOpportunityHeaderld(int) -
oracle.apps.cz.cio.Configuration.setConfigHead
erOpportunityHeaderld(int), B-77

setConfigHeaderUiDefinitionId(int) -
oracle.apps.cz.cio.Configuration.setConfigHead
erUiDefinitionld(int), B-77

setCount(int) -
oracle.apps.cz.cio.ICount.setCount(int), B-108

Index-21

setCount(int) -
oracle.apps.cz.cio.StateCountNode.setCount(int
), B-212

setCurrLang(String) -
oracle.apps.cz.common.CZContext.setCurrLang
(java.lang.String), C-5

setDecimalValue()
usage, 2-13

setDecimalValue(double) -
oracle.apps.cz.cio.DecimalNode.setDecimalVal
ue(double), B-87

setDecimalValue(double) -
oracle.apps.cz.cio.IDecimal.setDecimalValue(do
uble), B-110

setDiscountedPrice(double) -
oracle.apps.cz.cio.StateCountNode.setDiscounte
dPrice(double), B-213

setInitParameters(NameValuePairSet) -
oracle.apps.cz.cio.Configuration.setInitParamet
ers(oracle.apps.cz.utilities. NameValuePairSet),

B-78

setIntValue()
usage, 2-13

setIntValue(int) -
oracle.apps.cz.cio.CountFeature.setIntValue(int)
, B-82

setIntValue(int) -
oracle.apps.cz.cio.llnteger.setIntValue(int), B-
119

setIntValue(int) -
oracle.apps.cz.cio.IntegerNode.setIntValue(int),

B-128

setListPrice(double) -
oracle.apps.cz.cio.StateCountNode.setListPrice(
double), B-213

setName(String) -
oracle.apps.cz.cio.Component.setName(java.lan
g.String), B-54

setState()
usage, 2-12

setState(int state)
usage, 2-12

setState(int) -
oracle.apps.cz.cio.BomNode.setState(int), B-2
4

Index-22

setState(int) -
oracle.apps.cz.cio.IState.setState(int), B-150

setState(int) -
oracle.apps.cz.cio.OptionNode.setState(int), B
-182

setState(int) -
oracle.apps.cz.cio.StateNode.setState(int), B-2
16

setState(state)
usage, 2-18

setTextValue(String) -
oracle.apps.cz.cio.IText.setTextValue(java.lang.
String), B-151

setTextValue(String) -
oracle.apps.cz.cio.TextNode.setTextValue(java.l
ang.String), B-224

setValue(Object) -
oracle.apps.cz.utilities. NameValuePair.setValue
(java.lang.Object), D-3

startDeltaList() -
oracle.apps.cz.cio.Configuration.startDeltaList()
, B-78

StateCountNode -
oracle.apps.cz.cio.StateCountNode, B-209

StateNode - oracle.apps.cz.cio.StateNode, B-214

statesMatch(int, int) -
oracle.apps.cz.cio.StateNode.statesMatch(int,
int), B-217

STATUS_DELETED -
oracle.apps.cz.cio.StatusInfo.STATUS_
DELETED, B-219

STATUS_EXISTING -
oracle.apps.cz.cio.StatusInfo.STATUS_
EXISTING, B-219

STATUS_NEW -
oracle.apps.cz.cio.StatusInfo.STATUS_
NEW, B-219

StatusInfo - oracle.apps.cz.cio.StatusInfo, B-218

statusToString(int) -
oracle.apps.cz.cio.StatusInfo.statusToString(int),

B-220

subschema objects
configuration, 2-1
runtime model, 2-1

T

terminate()
usage, 2-28
terminate() -
oracle.apps.cz.cio.Functional Companion.termin
ate(), B-99
terminate() -
oracle.apps.cz.cio.IFunctional Companion.termi
nate(), B-117
TEXT - oracle.apps.cz.cio.Reason. TEXT, B-192
TEXT_FEATURE -
oracle.apps.cz.cio.IRuntimeNode. TEXT_
FEATURE, B-143
TextFeature - oracle.apps.cz.cio. TextFeature, B-221
TextNode - oracle.apps.cz.cio.TextNode, B-223
TOGGLE
usage, 2-11
TOGGLE -
oracle.apps.cz.cio.IState. TOGGLE, B-149
toString()
usage, 2-19
toString() -
oracle.apps.cz.cio.DecimalNode.toString(), B-
87

toString() -
oracle.apps.cz.cio.Functional Companion.toStrin
g0, B-99

toString() -
oracle.apps.cz.cio.ReadOnlyDecimalNode.toStri
ng(), B-190

toString() -
oracle.apps.cz.cio.Reason.toString(), B-194

toString() -

oracle.apps.cz.cio.RuntimeNode.toString(), B-
205

toString() -
oracle.apps.cz.cio.StateCountNode.toString(),
B-213

toString() -
oracle.apps.cz.cio.StatusInfo.toString(), B-220

toString() -
oracle.apps.cz.cio.ValidationFailure.toString(),

B-231
toString(boolean) -

oracle.apps.cz.cio.IRuntimeNode.toString(boole
an), B-147

toString(boolean) -
oracle.apps.cz.cio.RuntimeNode.toString(boolea
n), B-206

toString(boolean) -
oracle.apps.cz.cio.StatusInfo.toString(boolean),

B-220

TOTAL -
oracle.apps.cz.cio.IRuntimeNode. TOTAL, B-1
43

Total - oracle.apps.cz.cio.Total, B-225

trace(String) -
oracle.apps.cz.cio.CIO.trace(java.lang.String),
B+41

tracing() - oracle.apps.cz.cio.CIO.tracing(), B-41

TransactionException -
oracle.apps.cz.cio.TransactionException, B-22
7

transactions
logic, 2-8

translate() -
oracle.apps.cz.cio.Reason.translate(), B-194

translate(String) -
oracle.apps.cz.cio.Reason.translate(java.lang.Str
ing), B-194

TRUE
usage, 2-11

TRUE - oracle.apps.cz.cio.IState. TRUE, B-149

TRUEATBIRTH -
oracle.apps.cz.cio.Reason.TRUEATBIRTH, B-
193

typeToString(int) -
oracle.apps.cz.cio.RuntimeNode.typeToString (i
nt), B-206

U

UFALSE
usage, 2-11
UFALSE - oracle.apps.cz.cio.IState. UFALSE, B-149
undo()
usage, 2-14
undo() -
oracle.apps.cz.cio.Configuration.undo(), B-78

Index-23

UNKNOWN

usage, 2-12
UNKNOWN -

oracle.apps.cz.cio.IState. UNKNOWN, B-150
unset() -

oracle.apps.cz.cio.DecimalNode.unset(), B-88
unset() - oracle.apps.cz.cio.ICount.unset(), B-109
unset() - oracle.apps.cz.cio.IDecimal.unset(), B-111
unset() - oracle.apps.cz.cio.Ilnteger.unset(), B-119
unset() -

oracle.apps.cz.cio.IntegerNode.unset(), B-129
unset() - oracle.apps.cz.cio.IState.unset(), B-150
unset() - oracle.apps.cz.cioIText.unset(), B-152
unset() -

oracle.apps.cz.cio.StateNode.unset(), B-217
unset() -

oracle.apps.cz.cio.TextNode.unset(), B-224
UTRUE

usage, 2-12
UTRUE - oracle.apps.cz.cio.IState UTRUE, B-150

\Y

validate()
usage, 2-10,2-22,2-26

validate() -
oracle.apps.cz.cio.FunctionalCompanion.validat
e()) B-99

validate() -
oracle.apps.cz.cio.IFunctional Companion.valida
te(), B-117

Validation, 1-2,1-11, 1-15,2-10

ValidationFailure -
oracle.apps.cz.cio.ValidationFailure, B-229

w
web deployment, 2-7,2-28,4-9

Index-24

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	1 Functional Companions
	1.1� What Are Functional Companions?
	1.1.1� Types of Functional Companions
	1.1.2� Background to Building Functional Companions

	1.2� Functional Companions and the CIO
	1.2.1� Using the CIO Interface
	1.2.2� Implementing Standard Interface Methods

	1.3� Building Functional Companions in Java
	1.3.1� Procedure for Building Functional Companions in Java
	1.3.2� Installation Requirements for Java Functional Companions
	1.3.2.1� Requirements for Developing Functional Companions
	1.3.2.2� Requirements for Running Functional Companions
	1.3.2.3� Requirements for Testing Java Functional Companions

	1.3.3� Minimal Example of a Java Functional Companion

	1.4� Incorporating Functional Companions in your Application
	1.4.1� Associating Functional Companions with your Model
	1.4.2� Testing Functional Companions in the Oracle �SellingPoint Application
	1.4.2.1� Testing from the Windows Start Menu
	1.4.2.2� Testing from Oracle Configurator Developer
	1.4.2.3� Test Functionality in the Oracle �SellingPoint Application

	2 The Configuration Interface Object (CIO)
	2.1� Background
	2.1.1� What is the CIO?
	2.1.2� The CIO and Functional Companions

	2.2� The CIO’s Runtime Node Interface Classes
	2.3� Initializing the CIO
	2.4� Access to Configurations
	2.4.1� Creating and Deleting Configurations
	2.4.2� Saving and Restoring Configurations
	2.4.3� Access to Configuration Parameters
	2.4.4� Logic Transactions

	2.5� Access to Nodes of the Model at Runtime
	2.5.1� Opportunities for Modifying the Model
	2.5.2� Accessing Components
	2.5.3� Adding and Deleting Optional Components
	2.5.4� Accessing Features
	2.5.5� Getting and Setting Logic States
	2.5.6� Getting and Setting Numeric Values
	2.5.7� Accessing Properties
	2.5.8� Access to Options

	2.6� Introspection through IRuntimeNode
	2.7� Handling Logical Contradictions
	2.7.1� Generating Error Messages from Contradictions
	2.7.2� Raising Exceptions
	2.7.3� Overriding Contradictions

	2.8� Validating Configurations
	2.9� Standard Interface Methods for Functional Companions
	2.9.1� The initialize() Interface Method
	2.9.2� The autoConfigure() Interface Method
	2.9.3� The validate() Interface Method
	2.9.4� The generateOutput() Interface Method
	2.9.5� The terminate() Interface Method

	3 Reference Documentation for the CIO
	4 Examples
	4.1� Initializing the CIO
	4.2� Basic Java Functional Companion
	4.3� Thin-Client generateOutput() Functional Companion

	Glossary of Terms
	Glossary of Acronyms
	A CIO Package and Related Classes
	B Package oracle.apps.cz.cio
	AutoFunctionalCompanion
	AtpUnavailableException
	BomExplosionException
	BomModel
	BomNode
	BomOptionClass
	BomStdItem
	BooleanFeature
	CIO
	CompanionNode
	CompanionRoot
	CompanionValidationFailure
	Component
	ComponentNode
	ComponentSet
	ConfigTransaction
	Configuration
	CountFeature
	DecimalFeature
	DecimalNode
	Factory
	FuncCompCreationException
	FuncCompMessageException
	FunctionalCompanion
	FunctionalCompanionException
	IAtp
	IBomItem
	ICompSetEventListener
	IConfigEventListener
	ICount
	IDecimal
	IDecimalMinMax
	IFunctionalCompanion
	IInteger
	IIntegerMinMax
	IncompatibleInputException
	IntegerFeature
	IntegerNode
	IOption
	IOptionFeature
	IPrice
	IReadOnlyDecimal
	IRuntimeNode
	IState
	IText
	LogicalException
	LogicalOverridableException
	LogicalRuntimeException
	MissingFileException
	MissingLogicException
	NoAtpCalculatedException
	NoConfigHeaderException
	NonPricedNodeException
	NoSuchChildException
	NotOneProductException
	NotOneProjectException
	Option
	OptionFeature
	OptionFeatureNode
	OptionNode
	PricingUnavailableException
	Property
	ReadOnlyDecimalNode
	Reason
	Resource
	RestoreValidationFailure
	RuntimeNode
	SelectionNotMutexedException
	StateCountNode
	StateNode
	StatusInfo
	TextFeature
	TextNode
	Total
	TransactionException
	ValidationFailure

	C Package oracle.apps.cz.common
	CZContext

	D Package oracle.apps.cz.utilities
	NameValuePair
	NameValuePairSet

	Index

