Oracle® iPayment

Implementation Guide

Release 11i for Sun Sparc Solaris and Windows

August 2000
Part No. A86047-01

ORACLE

Oracle iPayment Implementation Guide, Release 11i for Sun Sparc Solaris
Part No. A86047-01
Copyright © 2000, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

SENA US YOUT COMIMENTES oo ee e e e et e e e ee e eseeeeseeeeseseeessseseseseessesasesseesesatasesees vii
g =Y - o3 <Y iX

1 Overview

Planning Your IMpIlementation ... srere s 1-2
Which APIs Should Electronic Commerce Applications Handle?............ccccocoiiiienninnne. 1-2
Which Bank Account Transfer Operations Should You Implement?...........ccccceoeninennnn. 1-3
Which Credit Card and Purchase Card Operations to Implement?...........c.cooevvvinnencnn 1-3
Which Risk Factors Should You IMpIement?..........cooiiiiiiiiiiee e 1-3
Which Payment System Should YOU USE?........ccociiiiiii it 1-4
Is Your Merchant Terminal Based or HOSt BaSEA?.........ccccvriiieiininiie e 1-4
Does Your Application Need to Present Information in Different Languages? 1-5

INSTAITING TPAYIMENT ...t bbb st b e ettt e e bbb e 1-6

2 Configuring iPayment Payment Engine

Overview of iPayment Implementation StePS.........coiiiiiiriie i e 2-2
Creating an iPayment AdminiStrative USEr ... s 2-4
Configuring IPAYMENT SEIVIETS........coi i et ebe e e 2-6
Configuring the ECAPP SEIVIETcouoiiiieie et 2-7
Configuring the Scheduler SErVIEL ..o e 2-7
Configuring iPayment CyberCash SErvIet...........cooiiiiiiiiiiie e 2-8
Registering Electronic Commerce APPLICALIONS ..ot 2-14
Loading RISKY INSTFUMENTScc.iiiiiiiiiieieee ettt 2-15

Configuring the SCEAUIET ... ettt eb e 2-16
Setting up IPayment USEr INTErface ..ot 2-19

3 Implementing APIs

OVerview OF IPAYMENT APIS ..ottt 3-2
Implementing Electronic Commerce Applications APIS ... 3-2
Payment INSITUMENT APIS ..o e e 3-4
Payment ProCeSSING APIS ..ottt sttt 3-5
RISK MaN@QEMENT APIS ...ttt bbb ettt st bbb e 3-7
Credit Card Validation APIS ... 3-8
STALUS UPAALE AP ..ottt 3-10
Java APIs for Electronic Commerce APPlicationc.cociiiiiiniiinnc e 3-13
PL/SQL APIs for Electronic Commerce APpPliCatioNSccovevveiieineseeee e 3-20
Overview of Payment SYStEM APIS ... e e 3-23
Configuring CYDEICASIcc.iiiii e e 3-23
IMPIEMENTING CRECKFTEE ... et seebe e 3-23
Implementing Payment SYStEMS APISccoiiiiiiie e e 3-29
SEtHING UP SSL SECUTTLY ...ttt bbb et ettt eb s 3-29

A Risk Management

Utilizing RISK MaNagEMENT ..ot bbb e b A-1
Risk Management TESE SCENAITOScuiiiiiirieiiere sttt bbb ae e eneneens A-3

B Error Handling

Error Handling During Payment ProCeSSING..........ccurueiiiiiiinieiieisiecsee s B-1

C iPayment PL/SQL APIs

Electronic Commerce PL/ISQL APIS.......oiiece e sne e sre e C-1
AFCRITECTUTNAl OVEIVIEW ...ttt sttt se et es e e st enaereeneaneerensennens C-2
PL/SQL APIs Procedure DefiNitiONS........c.cciiiiiiiiii e C-3
OFBPIMTREQ ...ttt ettt b et h e r et ee e n e e C-5
L0 =14 2111, o o C-12
(O] 1o 1 01 (07 1 [T TSRS T TP PTUPTPPTPO C-19
OFAPIMECAPTUIE ...ttt r bbb et b et b bt an e nenn s C-21

(@12 0 1R {=] U 1 o o [P C-23

OFAPIMEVOIT ..ottt sttt bbb et en b C-25
OFaPMECTEAIT. ...t bbb bbbt C-27
(O] 1o 1 0100 Y I 07 (o F T TS OTEOO U P PR OPPTUPTOTTRN C-32
OraPMECIOSEBALCHc.oiiiieiiiicie bbbt C-35
OraPMEQUETYBATCI ...t bbb ettt eb e C-38
OFBPIMITING ... et e bbb r e C-40
PL/SQL Record/Table Types DefinitioNS ..o e C-43
Payments Related Generic RECOId TYPES ..c.coiiiiiiiiiie ettt st C-44
Payment Operations Related RECOrd TYPEScccviiiiiriiie ettt C-48
Risk Management RECOI TYPES......couiiiiiieriie ettt st s C-55
Payment Operations Response Record/Table TYPES ..o e C-55
Batch Payment Operations Response Record/Table TYPeS......cccoovveireieneieneienenenieenenen, C-65
SAMPIE PL/ISQL COUE..... .ottt ettt sb et b bbb b b e bt abe st b C-67

D Back-End Processing APIs

Payment SyStem SErVIEt APT (SSL)cuiiiiiiiiiieiie sttt snene s D-1
PaymMeNnt SENVIEE OVEIVIBW......c..ciiiiriiiiiee ettt bbbttt D-2
Payment System Serviet OPerations...........ccovieiiiiiienieiiere e D-2
AULNOTIZALION AP ..ottt ettt ettt et D-3
Purchase Card AUthOFZation AP ... D-5
Authorization APl Output Name-Value Pairs..........cccoeviiiiiniineeenee e D-5
CAPTUIE AP ...t h ettt b et b h bbb h et b et en e ne D-6
WO APt bbbt bbb Rt D-10
RETUINZCIEAIT AP ..ottt sb bbb e sbe e D-12
ClOSE BALCH APttt D-15
Query Transaction STATUS AP ..ot b D-19
QUENY BAtCh STATUS AP ...t D-21

Transaction Status aNd IMESSAGEScviuiiiiiiirieii ittt bbbt ene s D-22
L= o) 131 £= 1L OSSP URTRORR D-22
L@ =T o) = ¢ o o Tox=1 A To] o HUO ST D-23
OAPTVENAEITCOUE. ..ottt ettt bbb en et D-23
O =T o) AV /=T ol | = 50 41T TSRS US TSR D-24
OAPTBALCNSIALEc.oiciieee bbb D-24
L@ =01 (0] o [[0 FN SOOI D-24

vi

Transaction Types

OapfTrxnType: SSL Transactions and Commerce Applications.........cc.ccocevevevevicevennennn,

Send Us Your Comments

Oracle iPayment Implementation Guide, Release 11i for Sun Sparc Solaris and Windows
Part No. A86047-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: Shalini.Narang@oracle.com

FAX: (650) 654-6223 Attn: Oracle iPayment Documentation
Postal service:

Oracle Corporation

Oracle iPayment Documentation

500 Oracle Parkway, 659603

Redwood City, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Vii

viii

Preface

This guide provides general descriptions of the setup and configuration tasks
required to implement Oracle iPayment successfully.

Intended Audience

This guide is intended for anyone who is implementing Oracle iPayment.

Related Documents

For more information, see the following manuals.

iPayment JavaDoc (Available on Metalink)

Apache Server Documentation (http:///www.apache.com)

Oracle Applications Developer’s Guide (Part No.A75545-02)

Oracle Applications System Administrator’s Guide (Part No.A75396-01)
CRM Foundation Components Implementation Guide (Part No.A86159-01)
CRM Foundation Components Concepts and Procedures (Part No.A6099-01)
Apache’s mod-ssl documentation (http://www.mod-ssl.org/docs).

Java Developer’s Guide (http://www.sun.com)

Merchant Connection Kit (MCK) Documentation
(http://www.cybercash.com/cashregister/download.html)

CheckFree Implementation Guide (http://www.checkfree.com)

1

Overview

Topics include:

Planning Your Implementation

Which APIs Should Electronic Commerce Applications Handle?

Which Bank Account Transfer Operations Should You Implement?

Which Credit Card and Purchase Card Operations to Implement?

Which Risk Factors Should You Implement?

Is Your Merchant Terminal Based or Host Based?

Does Your Application Need to Present Information in Different Languages?

Installing iPayment

Overview 1-1

Planning Your Implementation

Planning Your Implementation

Before you begin implementing iPayment, you must make several key business and
application decisions.

The following sections help you find answers to these questions. Your answers
determine which APIs you should use, which parameters you must pass, and which
code samples are relevant to your applications to help you implement iPayment.

Which APIs Should Electronic Commerce Applications Handle?

1-2

iPayment provides payment instrument registration APIs for registering payment
instruments such as credit cards, bank accounts, and purchase cards. It also
provides payment transaction APIls that can perform credit card and purchase card
operations, such as, authorization, capture, and bank account transfer operations.
Risk evaluation APIs are provided to perform risk analysis. Based on your
requirements, you have to decide which operations your electronic commerce
applications need to implement.

Payment Instrument APIs

These APIs are mandatory if you decide to use the offline payment processing
feature of iPayment Payment APIs in your electronic commerce application.
Electronic commerce applications can implement registration of payment
instruments using Payment Instrument Registration APIs, and instrument
identifiers, that are generated, during payment requests with iPayment.

Payment Processing APls
You have to decide whether to
= Implement online or offline payment processing or both

= Accept credit card payments, purchase cards, or bank account transfers or a
combination

= Implement the risk functionality to detect fraudulent transactions

Risk APIs

iPayment provides two Risk APIs. If you want to perform risk evaluation
independently and not as part of the Authorization API, then these independent
APIs can be called from your electronic commerce application.

Implementation Guide

Planning Your Implementation

The following information describes some of the decisions you have to make in case
you are accepting bank account transfer payments or in case you are accepting
credit card or purchase card payments.

Which Bank Account Transfer Operations Should You Implement?

iPayment only supports offline bank account payment requests. Besides payment
requests for bank account transfers, iPayment also supports modification,
cancellation, and inquiry operations. There is no need for any special settlement
operations.

Which Credit Card and Purchase Card Operations to Implement?

iPayment provides APIs for authorization, settlement, and reconciliation. You do
not have to use all these APIs. You can choose to have your electronic commerce
application handle only authorization, thus reducing development costs but
requiring the payee to do more work for settlement and reconciliation.

The following table compares the two approaches.

Table 1-1 Comparison of Authorization Only with Authorization and Settlement

Authorization Only Authorization and Settlement

The integration effort is relatively minimal The integration effort is significant because
because you have to use no more than two you have to use several APIs.
APIs.

The payee has to settle transactions through The payee can settle transactions directly

the native payment system administration through the electronic commerce application.
tool. (For example, by going to the payment

system’s web page).

Which Risk Factors Should You Implement?

iPayment provides risk management functionality for credit card and purchase card
transactions for electronic commerce applications for both business-to-business and
business-to-consumer models. iPayment includes a number of built-in risk factors
and provides the option to the payees to run or not run the risk evaluation
functionality for each payment operation. Payees can also run the risk evaluation
for operations which handle amounts exceeding a specified amount.

Overview 1-3

Planning Your Implementation

A risk factor includes any information which a payee wants to use to evaluate the
risk of the customer wanting to buy goods or services from the payee. Examples of
risk factors are: address verification, time of purchase, payment amount, etc. These
risk factors can be configured for each payee (merchant or biller).

Risk management functionality enables payees and electronic commerce service
providers to manage the risk involved in processing transactions online. It allows
businesses to have any number of predefined risk factors to verify the identity of
their customers, assess their customer credit rating, and risk rating in a secure
environment. For more information, see Oracle iPayment Concepts and Procedures
(Part No. A 83641-01).

Which Payment System Should You Use?

iPayment requires partnering with a third party payment system for
communicating to bank processors and acquirer’s banks. Some of the factors which
may help you decide are:

= Do you want to use an existing integration or build your own?
= Do you want to integrate with a vendor offering a product or a service?

= Does the payment system support the payment methods that you are
implementing, e.g, CheckFree only supports bank account transfers?

Is Your Merchant Terminal Based or Host Based?

1-4

The choice of being a terminal-based or a host-based merchant is generally
determined by the business type, number of transactions per day, and the model
supported by the acquiring bank. As a developer of an electronic commerce
application, you only need to know the type of payee for which you’re developing
the application, so that you can choose the appropriate APIs.

If your payee is terminal-based, then you may integrate the Close Batch API into the
electronic commerce application, thus enabling the payee to do close batches
through the electronic commerce application instead of the payment system’s native
interface. If your payee is host-based, then you may want to ignore the Close Batch
API because the processor automatically closes batches at predetermined intervals.

If the payee is host-based, then payment capture takes care of getting the payment,
and reconciliation is not necessary. Therefore, the Close Batch APl and the Query
Batch Status API are not required for host-based payees.

Implementation Guide

Planning Your Implementation

Does Your Application Need to Present Information in Different Languages?

If your application needs to present information in different languages or character
sets, then you need to know about national language Support (NLS).

Would Your Application Need National Language Support (NLS)?
Your application may need to use NLS if either of the following is true:

= The electronic commerce application and the payment system use different
languages or character sets. For example, the electronic commerce application
may use a Japanese EUC character set while the payment system uses a
Japanese Shift-JIS character set.

= Clients of the electronic commerce application use different languages. For
example, a web site that is expecting customers from all over the world might
want to present its electronic commerce application in different languages for
different customers.

To enable character conversion in all these environments, the electronic commerce
application and the payment system must convey the language and character set
information to iPayment.

How Do Applications Convey Language Information to iPayment?

To communicate information about the language and character set to iPayment, an
electronic commerce application and payment system servlet must pass a special
parameter (N1sLang). This parameter is a part of every API included in this guide.

NlsLang is an optional parameter. If your electronic commerce application does not
need to handle non-Latinl character set parameters and does not need to
communicate to clients or payment systems in different languages, you do not need
to use this parameter.

How does iPayment Use NIsLang?

If the electronic commerce application does not pass the N1sLang parameter,
iPayment passes information from the electronic commerce application to the
payment service servlet without performing any conversion of character sets.

If the electronic commerce application does pass a value for N1sLang to iPayment,
then iPayment tries to convert parameters based on the value of N1sLang before
sending those parameters to the payment system servlet.

To do so, iPayment first checks its database for the list of preferred and optional
languages for that payment system. The information in the database reflects what

Overview 1-5

Installing iPayment

the iPayment administrator entered using the iPayment administration user
interface.

Second, iPayment does one of the following, depending on what it finds in the
database:

= If the database lists a language that matches the value of N1sLang, iPayment
keeps the value of N1sLang and passes it to the payment system servlet.

= If the database does not list a language matching the value of N1sLang,
iPayment uses the language specified as the preferred language for that
payment system, thus changing the value of N1sLang before sending it to the
payment system servlet.

Finally, iPayment converts the values of other parameters so that they are sent to the
payment system servlet in the language specified by N1sLang.

This conversion process works only in one direction. From the electronic commerce
application to the payment system servlet. If the payment system sets up N1sLang
when it sends the data back, iPayment uses that information only to store the value
of DapfVvendErrmsg in its database. iPayment does not convert data sent from the
payment system servlet back to the electronic commerce application.

Format of the NLS_LANG Parameter

The value of this parameter follows the same format as Oracle Server’s NLS LANG
environment variable:

language territory.charset

For example, JAPANESE JAPAN.JA16EUC is a valid value for N1sLang.

Format of the Response Body Data From Payment System Servlets

iPayment does not convert the response received from the payment system servlet
in the response body. It only treats the data as binary and sends it directly to the
electronic commerce application.

However, if any binary information is sent (such as wallet data), then iPayment
converts the character set of the binary data to that specified by the value of
NlsLang.

Installing iPayment
To install iPayment, See Installing Oracle Applications 11i (Part No. A69409-01).

1-6 Implementation Guide

2

Configuring iPayment Payment Engine

Topics include:

= Overview of iPayment Implementation Steps

= Creating an iPayment Administrative User

= Configuring iPayment Servlets

= Configuring the Scheduler Servlet

= Configuring iPayment CyberCash Servlet

= Registering Electronic Commerce Applications
= Loading Risky Instruments

= Configuring the Scheduler

= Setting up iPayment User Interface

Configuring iPayment Payment Engine 2-1

Overview of iPayment Implementation Steps

Overview of iPayment Implementation Steps

The following table gives you an overview about the steps that are required for
implementing iPayment in different scenarios.

Table 2-1 iPayment Implementation Steps

Standalone new install or 3i iPayment with other
Implementation standalone implementation preintegrated Oracle 3i implementation
Steps upgrading to 11i standalone Applications? upgrading to 11i?
Creating an iPayment Mandatory Mandatory Mandatory
Administrative User
Configuring the Mandatory if you are using Mandatory Mandatory
ECApp Servlet PL/SQL APIs
Configuring the Mandatory if you are processing Not Utilized. The integrated Not Applicable
Scheduler Servlet offline payments applications do not utilize this

functionality

Configuring iPayment Mandatory if you are using Mandatory if you are using Mandatory if you
CyberCash Servlet Cybercash as a payment system Cybercash as a payment are using Cybercash
system as a payment system
Registering Electronic Mandatory Not Necessary Not Necessary
Commerce
Applications
Loading Risky Optional Not Utilized.The integrated Not Applicable
Instruments applications do not utilize this
functionality
Configuring the Mandatory if you are processing Not Utilized. The integrated Not Applicable
Scheduler Offline payments applications do not utilize this

functionality

2-2 Implementation Guide

Overview of iPayment Implementation Steps

Table 2-1 iPayment Implementation Steps

Standalone new install or 3i iPayment with other
Implementation standalone implementation preintegrated Oracle 3i implementation
Steps upgrading to 11i standalone Applications? upgrading to 11i2
Implementing Mandatory Not Necessary-has already Not Applicable
Electronic Commerce been implemented
Applications APIs
Implementing Mandatory is you are using Bank Account Transfers are Not Applicable
CheckFree CheckFree as a payment system not utilized
Implementing Mandatory if you are not using Mandatory if you are not Implement as a
Payment Systems either Cybercash or CheckFree. using either Cybercash or servlet and not as a
APIs CheckFree cartridge

1 Preintegrated Oracle Applications include iStore, Order Capture, Telesales, Order Management, Account Receivables, and
Collections.

2 3i Implementation upgrading to 11i but retaining existing functionality (same as a non-Oracle client).

Configuring iPayment Payment Engine 2-3

Creating an iPayment Administrative User

Creating an iPayment Administrative User

You can access the iPayment user interface with a separate administrative user. By
using this procedure, the iPayment administrator is separated from the sysadmin
user and is allowed better security. You can then login as this created administrative
user,

Prerequisites
s Oracle 11i installed.

= iPayment with responsibility, menu, security roles, and permissions should be

installed.

Steps

1. Access the iPayment user interface through the Oracle Admin Console at the
following URL:

http://<machine>:<port>/html/jtflogin.jsp or
http://<machine>:<port>/htmi/jtfdefaultlogin.jsp

Replace the machine and the port with the name of the machine and the port
where the Apache server is installed.

2. Login as:
Username: SYSADMIN
Password: SYSADMIN

3. Navigate to the Users tabs on the Admin Console. Click Add. Create an End
User. This user will be your new iPayment administrative user.

Note: An End User is an individual not representing an
organization. A Business User is an individual who represents an
organization.

4. Navigate to Self Service Applications Login screen to access Oracle ERP
Applications or Oracle Applications Forms screen from the following URL:
http://<webdb 2.5 hostname>:<web port id>/QA_HTML/<LANGUAGE_
CODE>/ICXINDEX.htm

Login to Oracle Applications as:
Username: SYSADMIN

2-4 Implementation Guide

Creating an iPayment Administrative User

© © N o

10.
11.

12.

13.

Password: SYSADMIN
Select System Administrator responsibility.

Navigate to the Security/Responsibility/Define Form and find the Payment
Administrator responsibility. On the Help menu, point to Diagnostics and then
click Examine. Write down the Responsibility ID number for the
Responsibility _ID field.

Navigate to the Profile/System Profile Option in the form.

Click User and Type in the newly created user name field.

Search for JTF_PROFILE_DEFAULT% profile option using wildcards.

Edit the profile fields for the user id that was created.
JTF_PROFILE_DEFAULT_APPLICATION: applID (for iPayment it is 673).
JTF_PROFILE_DEFAULT_RESPONSIBILITY: respID. (This is the responsibility
ID of the Payment Administrator responsibility).

There are additional, less important profiles which can also be set up (ie,ICX_
LANGUAGE). If these profiles are not set up, the site’s default profiles are
used. For a complete list of profile options, see the section about System Profile
Options in CRM Foundation Components Implementation Guide (Part No.
86159-01). For more information, see the section on Setting User Responsibilities
for an existing AOL User in CRM Foundation Components Concepts and Procedures
(Part No.A 86099-01).

Exit from Self Service Applications.

Login to the Admin Console from the following URL:
http://<machine>:<port>/htmli/jtflogin.jsp
Log on as a sysadmin. Click User/Assign Roles.

Find and select the user that you created. Add IBY_PAYMENT_MANAGER_
ROLE in the Assigned Role field and click Update. For more information, See
the section on Assigning Roles to the User in CRM Foundation Components
Implementation Guide (Part No. 86159-01).

Log off as sysadmin and login to the admin console using the newly created
user as the iPayment Administrator.

Configuring iPayment Payment Engine 2-5

Configuring iPayment Servlets

Troubleshooting

Table 2-2 Common Errors in Creating an Admin User

Error Description

Currently you do not have The user was not assigned the correct role. Again Log on to
the appropriate Admin Console as SYSADMIN and reassign the IBY_
permissions to access the PAYMENT_MANAGER_ROLE to the user.

page.

Wrong menu tree or the Set up the JTF_PROFILE_DEFAULT_APPLICATION and JTF_
wrong application loaded PROFILE_DEFAULT_RESPONSIBILITY profile values for the
during log in. user to iPayment values.

Configuring iPayment Servlets

iPayment has several Java Servlets which are not configured as a part of Oracle
Applications Rapid Installation process. Follow the instructions given below to
configure them.

These instructions assume that you know how to configure Java Servlets with
Apache Web Server. In particular, we assume you know where to find Apache and
JServ configuration files on the node where the Apache Web Server is installed. For
more information, see Apache documentation available at http://www.apache.org.

Note: This guide includes instructions for several platforms. We
assume you are familiar with the particular platform you are
configuring. For example, environment variables in UNIX look like
$ABC/lib. In Windows NT, the environment variables will look like
%ABC%\lib.

Logon to Web Server Node

Log on to your Web Server node as the applmgr user and run the environment file
to set up the Oracle Applications environment. Your environment should have the
following variable defined:

$IBY_TOP refers to the top-level directory of Oracle iPayment installation. In
Windows NT or 2000, iPayment top level directory is located in %APPL_TOP%\iby.

2-6 Implementation Guide

Configuring iPayment Servlets

Note: Apache and Jserv may not interpret environment variables
in their configuration files. Expand any environment variables of
the type $ABC to the values they actually contain on your
installation. For example, if $IBY_TOP is defined at
/u03/apps/iby/11.5, you need to replace $IBY_TOP with
/u03/apps/iby/11.5 in the instructions below.

Verify That a Common Servlet Zone is Configured in Your Environment.

A servlet zone should already exist in your Apache Web Server installation. Check
the jserv.properties file for a line beginning with "zones=". If you see such a line, a
servlet zone has been set up. By default this zone is called "root". The root zone is
associated with the zone.properties file. It you are using a different zone and not the
root zone, you may have to make the changes listed below in a different
<SERVLET_ZONE>.properties file. Similarly, your servlets will be invoked as:

http://<hostname>:<port>/<SERVLET_ZONE>/<servlet_name>

Configuring the ECApp Servlet

An ECApp servlet is needed to use the PL/SQL API of iPayment and for iPayment
3i Backward Compatibility API.

Set up the Virtual Path Mapping for ECApp Servlet

Add the following line to your zone.properties file in the Servlet Aliases section:
servlet.ecapp.code=oracle.apps.iby.ecservlet.ECServlet

This allows the ECAppservlet to be invoked as:
http://<hostname>:<port>/servlet/ecapp

Where <hostname> is the name of the server on which you are running iPayment.
<port> is the port number where ECAppservlet has been installed.

Configuring the Scheduler Servlet

This section is required if you want to set up a Scheduler in iPayment. A Scheduler
is required if you process off-line payment operations.

Set up the virtual path mapping for the Scheduler servlet.

Add the following line to the zone.properties file in the Servlet Aliases section.

Configuring iPayment Payment Engine 2-7

Configuring iPayment Servlets

servlet.scheduler.code=oracle.apps.iby.scheduler.PSRegHandler

This allows the servlet to be invoked as:
http://<hostname>:<port>/servilet/scheduler

Configuring iPayment CyberCash Servlet

2-8

CyberCash is a Secure Socket Layer (SSL) payment system supporting credit card
transactions using Merchant Connection Kit (MCK) and bank account transfers
using CyberCash’s PayNow services. It supports all iPayment core operations.

CyberCash Payment System Servlet is only needed if you are planning to process
the credit card and Bank Transfer payments through the CyberCash Service. For
more information see the section on Payment Systems in Understanding iPayment
in iPayment Concepts and Procedures (A86141-01).

iPayment integrates with MCK version 3 which connects to CyberCash. Use the
following parameters in the iPayment administration user interface while setting up
CyberCash as the payment system:

Table 2-3 Parameters for setting up CyberCash as the payment system

Property Value

Name CyberCash

Suffix cyb (do not use CYB or Cyb)

Base URL http://<machine_name>.com:<port>

The machine where CyberCash servlet is to be installed, and any
active port, for example:

http://www.merchant.com:9997

Admin URL http://amps.CyberCash.com

Installing the CyberCash Servlet
Use the following procedure to configure CyberCash Merchant Connection Kit, also
known as MCK to work with Oracle iPayment

1. Set up a merchant account with CyberCash at http://www.CyberCash.com if
you do not have one.

Implementation Guide

Configuring iPayment Servlets

2. Download CyberCash’s Merchant Connection Kit (MCK) from
http://www.CyberCash.com. Follow CyberCash’s instructions to install the
MCK.

Note: If your MCK is located inside the firewall and your firewall
requires a proxy for outbound communication, then add the
following parameters to the MCK merchant_conf file. The
merchant_conf file is located in the

<MCK_HOME>/<merchant-name>/mck-cgi/conf directory:
HTTP_PROXY_HOST=<hostname>
HTTP_PROXY_PORT=<port>

3. Go to the directory where the MCK C libraries are located. The installation
directory should be named mck-<version>-<operating system>. For example, if
you installed MCK version 3.2.0.6 on Solaris under the Zusr/oracle directory,
you should do the following:

% cd /Zusr/oracle/mck-3.2.0.6-sparc-sun-solaris2.6/c-api/lib
On Windows NT, the location may be:
D:\>cd \mck-3.2.0.6-nt\c-api\lib

4. Copy the three MCK libraries mentioned below into the $IBY_TOP/lib (or
%IBY_TOP%\Iib on Windows NT) directory:

% cp libCCMck.a $IBY_TOP/Ilib

% cp libmckcrypto.a $IBY_TOP/lib

% cp libmd5hash.a $IBY_TOP/lib

On Windows NT, the commands will be:

D:\> copy libCCMck.lib %APPL_TOP%\iby\11.5.0\lib
D:\> copy libmckerypto.lib %APPL_TOP%\iby\11.5.0\lib
D:\> copy libmd5hash.lib %APPL_TOP%\iby\11.5.0\lib

Configuring iPayment Payment Engine 2-9

Configuring iPayment Servlets

2-10

Note: The version number 11.5.0 may differ if you have a different
version. Replace 11.5.0 with your specific version number.

Go to the $IBY_TOP/lib directory: % cd $IBY_TOP/lib
(or >cd %APPL_TOP%\iby\11.5.0\lib on Windows NT/2000)

Run the Adrelink program to link the libcybnv.so library, which is necessary for
the iPayment CyberCash Servlet

% adrelink.sh force=y "iby libcybnv.so"

On Windows NT or 2000, you have to also perform the following steps to set up
the environment to run the adrelink utility.

a. Generate environment variable file by running adregenv.exe in Microsoft
DOS command promt window.
C:\> adregenv.exe <APPL_CONFIG> For example: C:\> adregenv.exe
pl151
It will generate two environment variable files in % APPL_TOP% apps.sh
and apps.cmd

b. Open the Kron Shell window. Click Start -> Program -> MKS Toolkit ->
Kron Shell.

c. Set up the environment variables by running apps.sh in Kron Shell window.
[C:/] cd $SAPPL_TOP
[C:/]. ./apps.sh

d. Build libcybnv.dll [C:/] sh adrelink.sh force=y "iby libcybnv.dll"

Set up the wrapper.env variable in the file jserv.properties as follows:

.properties files are generally located in etc directory of your top Jserv engine
directory (e.g. /d1/testcomn/util/apache/1.3.9/Apache/Jserv/etc):

wrapper.env=LD_LIBRARY_PATH=$IBY_TOP/bin

In Windows NT or 2000, set wrapper.env=PATH=%APPL _
TOP%N\iby\11.5.0\bin

If there is already a line wrapper.env=LD_LIBRARY_PATH=..., then append the
above location as you would append the LD_LIBRARY_PATH environment
variable. For example, if you have the following line

Implementation Guide

Configuring iPayment Servlets

wrapper.env=LD_LIBRARY_PATH=$ABC/lib

then, add ":$IBY_TOP/bin" at the end of the line:

wrapper.env=LD_LIBRARY_PATH=$ABC/Ilib:$IBY_TOP/bin

For Windows NT, it should be

wrapper.env=PATH=%ABC%\Ilib;%APPL_TOP%\iby\11.5.0\bin
8. Set up a virtual path mapping for the CyberCash servlet.

Insert the following line in the zone.properties file, in the Servlet Aliases
section.

servlet.oramipp_cyb.code=oracle.apps.iby.bep.CyberCash.CybServlet.

This allows the servlet to be invoked as:
http://<hostname>:<port>/serviet/oramipp_cyb.

9. Setthe servlet init parameters. There are several initialization parameters that
are recognized by the Oracle iPayment CyberCash Servlet. Set these
initialization parameters by inserting the following line in the zone property file
<SERVLET_ZONE>.properties file in the Aliased Servlet parameters section.

Note: Replace $SMCK_HOME with the absolute path of the MCK
installation and replace $IBY_TOP with the absolute path of the
iPayment installation.

servlet.oramipp cyb.initArgs=mckhome=$MCK HOME, debug=false,logfile=$IBY
TOP/log/ibycybserv.log

In Windows NT, set it to:

servlet.oramipp cyb.initArgs=mckhome=%MCK HOME%,debug=false, logfile=%APPL
TOP%\iby\log\ibycybserv. log

The following initialization parameters are recognized by the CyberCash Servlet:

= Mckenna: This parameter is mandatory. It’s the directory path that points to the
location where the CyberCash Merchant Connection Kit is installed. For
example, if a merchant named, test-mck has been installed in such a way that its
associated files can be found under the directory Zusr/oracle/mck/test-mck,

Configuring iPayment Payment Engine 2-11

Configuring iPayment Servlets

2-12

then mckhome should be set to Zusr/oracle/mck. Transaction requests to
iPayment will fail if mckhome is not set correctly.

= debug: This parameter is optional. If set to true, then the servlet will print
debugging information to the body of its responses in plain text. This
information includes the inputs sent to the servlet during the request, and the
outputs the servlet sends for its response. If an exception is thrown during the
processing of the request, then a stack trace is also printed.

= logfile: This parameter is optional. It’s a string which specifies the fully
qualified path name of the log file location. The input and output values of each
transaction are written to this file, and a stack trace if an exception is thrown. If
this parameter is not set, logging will be turned off.

Performance Considerations for iPayment CyberCash Servlet

The CyberCash servlet makes calls via JNI to CyberCash’s C-implemented
Merchant Connection Kit (MCK). The MCK is not thread-safe. CyberCash servlet
must synchronize access to it, in effect serializing concurrent requests so that each
one begins only after a previous one finishes. To improve performance, it is
necessary to take advantage of a new feature in JServ called load balancing. Load
balancing allows requests sent to a single servlet zone to be serviced by multiple
JServ instances. Since each JServ instance is a separate process, calls to the MCK
occur in distinct memory spaces, allowing multiple concurrent requests to the
CyberCash servlet to be successfully processed.

Installing a Load Balanced Servlet Zone
To load balance a servlet zone, make the following changes to your jserv.conf file:

1. Foreach JServ instance you will reference, include a directive of the form:
AplServHost <INSTANCE_NAME> <PROTOCOL>://<HOST>:<PORT>
For example: ApJServHost PC1 ajpv12://localhost:7777

Note: Only one protocol is allowed within a zone. You should
choose the default one, such as ajpvi2.

2. Group JServ instances into sets with the following directive:
ApJServBalance <SET_NAME> <INSTANCE_NAME>

Implementation Guide

Configuring iPayment Servlets

For example: ApJServBalance setl PC1

ApJServBalance setl SUN1

Define the load-balanced servlet zone with the directive:

ApJServMount <URL> balance://<SET_NAME >/<SERVLET_ZONE_NAME>
For example: ApJServMount /cybserv balance://setl/cybserv

Note: Each JServ instance within the set must have a servlet zone
of the given name defined. Using the example above, each JServ
instance must have a cybserv zone.

Define the shared memory file used by Apache HTTP listeners to keep track of
the status of JServ instances use the directive: ApJServShmFile <MEM_FILE>

Note: Note that you may wish to over-write the memory file
between Apache restarts to flush old status information.

After jserv.conf is modified to reflect your installation, restart Apache and make
sure each JServ instance within the load balanced zone is running. To manually
start a JServ instance, do the following steps:

Make a copy of your jserv.properties file, assumed to be correctly configured for
the CyberCash servlet, for each JServ instance you will run in the new zone.

For each properties file, set port to a value correct for that instance.

Set your shell environment variables CLASSPATH and LD_LIBRARY_PATH to
the values the variables have in your jserv.properties file.

From the command line run the command:

java -classpath $CLASSPATH org.apache.jserv.JServ <PROPERTY_FILE>
<LOG_FILE>2>&1

The property file is the jserv.properties file you have correctly configured for
that particular instance.

Configuring iPayment Payment Engine 2-13

Registering Electronic Commerce Applications

Load Balancing Recommendations

The maximum number of concurrent requests that the CyberCash servlet will be
able to process without blocking is equal to the number of JServ instances running
in its servlet zone. You should have a number of JServ instances running equal to
the average number of concurrent requests, if not slightly more since, under load
balancing, JServ instances are randomly chosen, making it possible that two
concurrent requests could be sent to a JServ instance when an idle one is already
available.

Running multiple JServ instances within a zone will not add significantly to your
CPU load versus running a single instance. It will, however, add to your memory
load as each instance requires its own JVM. On Solaris, each JVM requires over 6MB
of main memory though less than 4MB are actually used since JVMs will share
common libraries.

Registering Electronic Commerce Applications

2-14

All the APIs that an electronic commerce application calls must pass its identifier.
This allows iPayment to track the application from where the requests are coming.
The identifier generated during registration must be stored by the application. The
electronic commerce application needs to pass the identifier in the API calls.
iPayment provides an ECConfig utility, to add, modify, or list electronic commerce
applications.

Requirements for Setting up and Using the ECConfig Utility
= Javaexecutable in your application environment.

= apps.zip in your CLASSPATH environment variable. The apps.zip is included
in the classpath after you set up the applications environment

Using the EcConfig Utility
= To add an electronic commerce application, use the following command:

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common. filename=<logfile> oracle.apps.iby.ecapp.EcConfig
add “Ec App Name” “Short Name”
Example: java-DJITFDBCFILE=<dbc file
location>-Dframework.Logging.system. filename=<log file>
-Dservice.Logging.common. filename=<logfile> oracle.apps.iby.ecapp.EcConfig add
“my ec application” “myapp”

Implementation Guide

Loading Risky Instruments

= To modify a registered electronic commerce application, use the following
command:

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common. filename=<logfile> oracle.apps.iby.ecapp.EcConfig
modify <id> ‘Ec App Name’ ’‘Short Name’

<id> is the identifier of the electronic commerce application that was generated
while adding the electronic commerce application. You can also retrieve the
identifiers of applications using the list command.

Example: java-DJTFDBCFILE=<dbc file

location>-Dframework.Logging.system. filename=<log file>
-Dservice.Logging.common. filename=<logfile> oracle.apps.iby.ecapp.EcConfig
modify 1234 “ec app name” “ecapp”

= Tolist all the registered electronic commerce applications use the following
command:

java-DJTFDBCFILE=<dbc file location>-Dframework.logging.system.filename=<log
file> -Dservice.Logging.common. filename=<logfile> oracle.apps.iby.ecapp.EcConfig
list

Loading Risky Instruments

The Risky Instruments upload utility is a Java application used to store risky
payment instruments. It is called RiskylInstrUtil.

Requirements
= Java executable in your application environment

= apps.zip in the CLASSPATH. The apps.zip is included in the classpath after you
set up the applications environment.

Java Commands

java-DJTFDBCFILE=<dbc file location> -Dframework.logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile>
oracle.apps.iby.irisk.admin.RiskyInstrUtil [ADD/DELETE] [filename]

This command requires an operation and a filename. It modifies the risky
instruments table in the database depending on the entries in the file.

Or

Configuring iPayment Payment Engine 2-15

Configuring the Scheduler

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile>
oracle.apps.iby.irisk.admin.RiskyInstrUtil DELETE all

This command deletes all the risky instruments in the table.

File Format
= Each line corresponds to one risky instrument.

= The fields are comma separated and are in the following order: Payee identifier,
instrument type, and creditcard number. Instrument type has to be a
CREDITCARD. For example:

= payeel, CREDITCARD, 4500234023453345

= For the add operation, each risky instrument in the file, that has a valid payee
identifier, instrument type, and a new credit card number, is added to the table.

= For the delete operation, each risky instrument that matches the payee
identifier, instrument type, and the credit card fields, is deleted from the table.

= The command prints the results of the operation on each risky instrument in the
file.

Configuring the Scheduler

The scheduler is based on a servlet architecture and can be configured as a
concurrent program. The scheduler runs at configured intervals to send payment
requests to the payment systems. Use the following procedure to configure the
scheduler correctly.

1. Setup alava concurrent program. For more information, see the Oracle
Applications Developer’s Guide A75545-02. Also see, Oracle Applications System
Administrator’s Guide A75396-01 to setup the Responsibility, the Request Group,
and the User for iPayment, which will be used for setting up this concurrent
program.

2. While setting up the executable, you can use the values in Concurrent Program
Executable window See "Values for Concurrent Program Executable Window".
You have to enter the values that are shown in bold and any appropriate values
for the fields that are not in bold in this table.

2-16 Implementation Guide

Configuring the Scheduler

Table 2-4 Values for Concurrent Program Executable Window

Prompt Name Value

Executable iPayment Scheduler
Short Name Scheduler

Application iPayment

Description iPayment Scheduler
Execution Method Java Concurrent program
Execution File Name SchedInitiator

Subroutine Name

Executable Path oracle.apps.iby.scheduler

3. While setting up the concurrent program, you can enter the values in the
Concurrent Program window See "Values in the Concurrent Program Window".
You have to enter the values that are shown in bold and any appropriate values
for the fields that are not in bold in this table. You can leave other fields in this
window to the default values or configure as needed.

Table 2-5 Values in the Concurrent Program Window

Prompt Name Value

Program iPayment Scheduler (should match the value entered in
the Description field in Concurrent Program Executable
window).

Short Name Scheduler (should match the short name value in
Concurrent Program Executable window)

Application iPayment

Description iPayment Scheduler

Name in Executable Group Box Scheduler (should match the short name that is entered
above)

Method in Executable Group Box Java Concurrent program

Options in Executable Group Box -cp<AU_TOP>/java/apps.zip

Configuring iPayment Payment Engine 2-17

Configuring the Scheduler

2-18

Table 2-5 Values in the Concurrent Program Window

Prompt Name

Value

Priority in Executable Group Box

AU_TOP/Java points to where apps.zip is located.

4. While setting up the concurrent program parameters, you can enter the
following values in the Concurrent Program Parameters window. See "Values
for Concurrent Program Parameters Window". You have to enter the values that
are shown in bold and any appropriate values for those that are not in bold in

this table.

Table 2-6 Values for Concurrent Program Parameters Window

Prompt Name

Value

Program
Application
Conflicts Domain
Security Group
Seq

Parameter
Description
Enabled

Value Set in Validation Group
Box

Required in Validation Group
Box

Leave to Default value for others
in this validation group box

Display in Display Group Box
Display Size

Enter any appropriate values for
other fields in this display group
box

Token

iPayment Scheduler

iPayment

1

URL

Enter the URL for SchedInitiator
Check this check box
FND_CHAR?240

Check this check box

Enable Display
Make sure that the display size is 240

Any appropriate value

Implementation Guide

Setting up iPayment User Interface

5. Once these values are set up, you can schedule this concurrent program to run
as you need.

6. When you are scheduling this executable created using the above steps, you
need to enter the value for the URL that will be used by SchedInitiator to
initiate iPayment scheduler. This value should be of the format:
http://<Apache listener’s host and domain><port number>/jsp/scheduler

7. Test to ensure that iPayment scheduler is invoked as desired.

Setting up iPayment User Interface

To set up iPayment user interface, See Oracle iPayment Concepts and Procedures 11i
(part Number: A83641-01).

Configuring iPayment Payment Engine 2-19

Setting up iPayment User Interface

2-20 Implementation Guide

3

Implementing APIs

Topics include:

= Overview of iPayment APIs

= Implementing Electronic Commerce Applications APIs
= Overview of Payment System APIs

= Implementing Payment Systems APIs

= Setting Up SSL Security

Implementing APIs 3-1

Overview of iPayment APIs

Overview of iPayment APIs

iPayment provides two sets of APIs which can be implemented.
= Electronic Commerce APIs: these APIs are mainly used for payment processing.

= Payment System APIs: these APIs allow connection to the back end payment
systems.

Figure 3-1 iPayment Architecture

BEP APis

Serviet

Field Installed
Payment
Systemn

= HTTP(S) o
= Adapter o
) HTTPReq | % | Cybercash
a & servet
=T 1] @ e
= Z B[ArTPReg
(O ; o m
o | = | iPayment | w ZE€
o i (o m
I Engine | Z |F 2
w — [o —
s |7 = | 3z
5| =< & X |Em
[} ab]} =] Pl)
= | -l 0 o | EE
o | O < | Tk
o | N HTTP Reg] (R
= b4 il = =
O T 0=
i

Scheduler

Implementing Electronic Commerce Applications APIs

iPayment provides various types of APIs to integrate electronic commerce
applications with iPayment.

Electronic commerce applications can embed the iPayment functionality within
their application. This eliminates the need to access iPayment as a stand-alone
application and hence improves performance and simplifies setup.

This section describes the various APIs that are provided to electronic commerce
applications for using the features of iPayment. The APIs have been categorized
into the following categories:

3-2 Implementation Guide

Implementing Electronic Commerce Applications APIs

Payment Instrument APIs

Payment Processing APIs

Risk Management APls
Credit Card Validation APIs
Status Update API

iPayment provides APIs in the following programming languages:

Java APIs for Electronic Commerce Application

PL/SQL APIs for Electronic Commerce Applications

The following diagram shows the integration of APIs with iPayment.

Figure 3-2 iPayment integrating with APIs
iPayment
Repositary
M 11iECAPP
PLISGL APls
Scheduler
AP HTTP Payment
cals System
Cartridge
EC AR ECZerviet
KUSIH'EPT;BQL iPayment iPayment
11i ; 11i
iPayment
EC App N Payment
EC App Java Engine Syystem HTTR
[using
Java AFI) APls APls

Implementing APIs 3-3

Implementing Electronic Commerce Applications APIs

Payment Instrument APIs

3-4

Payment Instrument APIs provide the functionality to register a payor’s bank,
credit card, or purchase card.

OralnstrAdd

This API is provided to register a user’s bank, credit card, or purchase card account
information with iPayment. iPayment generates a Pmtinstld if this registration is
successful. This identifier is used for payment transactions or for deleting,
modifying, or inquiring about this account. Instrument number (credit card
number, purchase card number, or bank account number) and payor identifier
together have to be unique.

OralnstrMod

This API is provided to modify registered payment instrument account information
with iPayment.

OralnstrDel
This API is provided to delete registered payment instrument account information.

Oralnstring

There are two inquiry APIls. One queries instrument information for a single given
instrument. The other queries all registered payment instruments for a given payor.
The result may contain a mix of credit cards, purchase cards, or bank accounts.

Implementation Guide

Implementing Electronic Commerce Applications APIs

Payment Processing APIs

These APIs are the transactional APIs that support various payment operations. The
electronic commerce applications use these APIs to process various transaction
types. For example, authorization of credit cards and purchase cards, transfer of
funds from one bank account to another, capture, cancel, return, and others. A list of
such APIs are provided below.

OraPmtReq

When an electronic commerce application is ready to invoke a payment request
(possibly due to a user action), it calls this API. If the operation is successful, a
transaction identifier is generated by iPayment and is returned as part of the result.
This transaction identifier can be used later by the electronic commerce application
to initiate any other operation on a payment. For example, to modify a payment or
capture a payment, the electronic commerce application sends this identifier with
other information that is needed to perform the operation requested.

Note: This API supports authorization and authorization with capture
for credit card and purchase card payments.

If a payment is either a credit card payment or a purchase card payment, and the
request is online, iPayment can perform risk analysis with the payment request
(Authorization).

To enable risk analysis with authorization, either setup the payment request with
risk flag set to true in one of its input objects (Refer to Java Documentation for
details) or check the Enabled radio button in the Risk Management Status screen for
that payee. If any of these two conditions are satisfied, the electronic commerce
application will check the Riskresp object that is returned as part of the payment
response object to the Payment Request API. Electronic commerce applications can
also invoke the Payment Request API to evaluate a specific formula by passing the
PaymentRisklInfo object.

OraPmtCanc

A scheduled payment can be canceled by an electronic commerce application using
this API.

OraPmtQryTrxn

This API provides interface for inquiring the status or history of a payment to
electronic commerce application. If a payment has been scheduled and the payment

Implementing APIs 3-5

Implementing Electronic Commerce Applications APIs

3-6

system supports an inquiry operation, the latest status is obtained from the
payment system. Otherwise it sends the latest status of the payment as it is in
iPayment. History of a payment can also be obtained.

OraPmtCapture

When a credit card o purchase card is used as part of a payment request and only
an authorization is requested, the electronic commerce application has to capture
the payment at a later time. The following APIs allow the electronic commerce
application to capture all such payments.

OraPmtReturn

This API is used for credit card and purchase card specific operations. It allows
processing returns from the payor.

OraPmting

This API retrieves the payment related information that was sent at the time of a
payment request (OraPmtReq API). This information includes payment instrument,
payee, tangible id (bill or order), and payor. If the electronic commerce application
does not store the payment information, then this is a useful API to support
modification of payment requests. It can retrieve the payment information and
display it to the end user for modification.

OraPmtVoid

This API allows electronic commerce application to void operations submitted
earlier. OraPmtVoid API is supported only to void certain credit card and purchase
card operations. iPayment supports both online and offline OraPmt\Void API calls.

OraPmtCredit

This API provides a credit operation. Electronic commerce applications can use this
API to give stand-alone credit to the customer. If the operation is successful, a
transaction identifier is generated by iPayment. This Identifier is used later to
initiate any other operation on the payment. For example, to cancel the credit,
electronic commerce application sends this identifier with other information that is
needed to perform the cancellation.

OraPmtCloseBatch

The Close Batch API allows a payee or an electronic commerce application to close a
batch of previously performed credit card or purchase card transactions. The
transaction types that are included in a batch are: capture, return, and credit. This

Implementation Guide

Implementing Electronic Commerce Applications APIs

operation is mandatory for a terminal-based merchant. A host-based merchant may
not have to explicitly close the batch because the batch is generally closed at
predetermined intervals automatically by the processor. An electronic commerce
application has to get this information from its merchant’s acquirer.

OraPmtQueryBatch

This API provides an interface to the electronic commerce application to query the
status of an existing batch and a closed batch.

Risk Management APIs

These APIs allow electronic commerce applications to do risk analysis
independently. These APIs together can evaluate any risk formula that is configured
for a payee.

A risk formula can contain any number of risk factors with different weights
associated with them. When Risk API 1 is called, it evaluates all the factors
configured in the formula except the AVS Code risk factor. If a risk formula has an
AVS Code risk factor, then, Risk API 1, in the response object, indicates that the
formula has an AVS Code risk factor. This allows electronic commerce applications
to completely or partially check the risk formula and decide whether to perform an
authorization or not.

If the response of the first Risk API 1 indicates that the payment is not risky, then
electronic commerce application can perform the authorization and complete the
rest of the evaluation by calling Risk API 2.

Electronic commerce applications can call Risk API 2 by passing the same payee id,
the formula name, and the AVS code that was returned during the authorization
response and the risk score that was returned as part of the response in Risk API 1.
The response object of Risk API 2 contains the finally evaluated risk score.

Risk API 1

This API evaluates the risk formula associated with the payee id passed as part of
the input object, PmtRiskinfo. This API can evaluate a specific formula or the
implicit formula depending on the input object. After evaluation, this API
constructs the response object indicating if the AVS Code risk factor is a part of the
formula or not by setting the flag, AVSCodeFlag. If this flag is set to true, then
electronic commerce applications need to call the Risk API 2 to complete the risk
evaluation of the formula.

Implementing APIs 3-7

Implementing Electronic Commerce Applications APIs

Risk API 2

This API needs to be called when the AVSCodeFlag in RiskAPI 1 response object
indicates that the formula contains AVS Code factor. When this API is called, it only
evaluates the AVS code factor. The input object of this API contains the same payee
id and the formula name that was passed in Risk API 1 and the AVS Code that was
returned by the payment system for the payment request. The response object that
this API returns, contains the final risk score of the formula.

Credit Card Validation APIs

3-8

The Credit Card Validation APIs provide methods for determining the credit card
type of a credit card number and for doing basic authentication. Since most credit
card types specify the number of digits and a prefix for all valid credit card accounts
in their company name, it is possible to determine the credit card types of most
credit card numbers. Also, since the digits of most credit card types must (using a
special algorithm) be evenly divisible by 10, it is possible to determine if a credit
card number is valid or not. These APIs do not perform some of the more advanced
credit card verification techniques available to back-end payment systems, such as
billing address verification. These APls allow many common errors to be caught,
such as wrongly typed or truncated credit card digits. By allowing common errors
to be caught by the electronic commerce application, performance is improved,
since the cost of calling these APls is much less than sending a request to the back
end payment system.

The Credit Card Validation APIs are created as part of the IBY CC VALIDATE
package and this package is installed in the APPS schema.

Main Methods of Credit Card Validation APIs
The Credit Card Validation APIs consist of three main methods.

1. Method stripcc is used to format a raw credit card number input by the
customer. stripCc removes common filler characters such as hyphens and
spaces until it produces a credit card number consisting only of digits. StripcCC
must be called before the credit card number is passed to the other methods.

2. Method GetCCType returns the credit card type of a credit card number, where
each credit card type, including values for invalid and unknown types is a
constant in the package.

3. Method validatecc, which takes both a credit card number and date. It
returns a boolean value indicating whether the credit card can still be used or
not.

Implementation Guide

Implementing Electronic Commerce Applications APIs

Note: The IN parametersp api version andp_ init msg_
list and the OUT parameters x msg_count andx msg data
are ignored. If an unexpected error occurs, x_return_status
will be setto FND_API.G RET STS UNEXP ERROR. This will
happen if the credit card number has invalid characters in it.

DECLARE

-- each character specifies a possible filler characters in the credit
-- card number; i.e. a character that can safely be stripped away

p fill chars VARCHAR(3) := '* -#';

p_cc number VARCHAR (20) := ‘4111+%1111 1111-1111#';

p _api version NUMBER := 1.0;

p_init msg list VARCHAR2(2000) := ' ’;

X return status VARCHAR2 (2000) ;

X _msg_count NUMBER;

x msg_data VARCHAR2 (2000) ;

-- will hold the credit card number stripped of all characters except
-- digits; credit card numbers must be of this form for the GetCCType
-- and ValidateCC methods

v_clean cc VARCHAR(20) ;

-- variable to be set by GetCCType method

v_cc type IBY CC VALIDATE.CCType;

-- variable set by ValidateCC method; indicates if the credit card is
-- still usable

v_cc_valid BOOLEAN;

-- credit card expr date; rolled to the end of the month
-- by the ValidateCC method
v_expr date DATE := SYSDATE();
BEGIN
-- the credit card number must first be stripped of all non-digits!!
IBY CC VALIDATE.StripCC(p_api version, p_init msg list, p cc_number,
p fill chars, x return status, x msg count, x msg data,
v _clean cc);
-- check that illegal characters were not found
IF X return status != FND API.G RET STS UNEXP ERROR THEN
IBY CC VALIDATE.GetCCType(p api version, p init msg list, v clean cc,
X return status, x msg count, x msg data, v_cc type);
IF x return status != FND API.G RET STS UNEXP ERROR THEN
IF v_cc type=IBY CC VALIDATE.c InvalidCC THEN
DBMS OUTPUT.PUT LINE(’Credit card number not a valid one.’);
ELSE
DBMS OUTPUT.PUT LINE(’'Credit card number OK.');

Implementing APIs 3-9

Implementing Electronic Commerce Applications APIs

END TIF;
IBY CC VALIDATE.ValidateCC(p api version, p init msg list, v clean cc,
v_expr date, x return status, x msg _count, x msg data, v_cc valid);
IF v_cc valid THEN
DBMS OUTPUT.PUT LINE(’'Credit card is valid.’);
ELSE
DBMS OUTPUT.PUT LINE(’'Credit card number invalid or has expired.’);
END TIF;
END IF;
END;

Note: An overloaded version of the StripCC method exists. It
takes all the same arguments as the version used above exceptp
£i1l chars. It gets its filler characters from the package constant
c¢_FillercChars, which allows spaces and hyphens to be
interspersed within the credit card number.

Status Update API

iPayment has defined a PL/SQL API that must be implemented by electronic
commerce applications when offline payment processing is performed. This API
allows the electronic commerce application to receive a status update. This API
must be defined in a package. The naming convention of the package and signature
of the API are defined below. Electronic commerce applications must implement the
package according to the syntax defined and create the package in the APPS schema
if they have offline payments.

The package name has to be of the format <application_short_name>_ecapp_pkg.
The application_short_name is a three-letter short name that was given in electronic
commerce application registration. The package should have defined update_status
procedure with the following signature:

PROCEDURE UPDATE STATUS (

totalRows IN NUMBER,

txn_id Tab IN APPS.JTF VARCHAR2 TABLE 100,
req_type Tab IN APPS.JTF VARCHAR2 TABLE 100,
Status Tab IN APPS.JTF NUMBER TABLE,
updatedt Tab IN APPS.JTF DATE TABLE,

refcode Tab IN APPS.JTF VARCHAR2 TABLE 100,
o _status our VARCHARZ,

o_errcode ouT VARCHAR2,

O_errmsg ouT VARCHARZ,

3-10 Implementation Guide

Implementing Electronic Commerce Applications APIs

o_statusindiv_Tab IN OUT APPS.JTF VARCHAR2 TABLE 100) ;

The following list describes the field names in the above signature:
1. totalRows: total number of rows being passed for the update.
2. txn_id_Tab: table of transaction identifiers for which the update is sent.

3. req_type_Tab: table of request types corresponding to the Transaction
Identifier. For each transaction, there might be a req_type associated with it and
the electronic commerce application has to update the correct transaction, based
on txn_id and req_type. The reason for having a reg-type is to uniquely identify
the transaction. For the same transaction identifiers, there can be multiple
transactions. E.g. Authorization and Capture. Electronic commerce application
can uniquely identify the transaction based on the values in trxnid and req_

type.
The various kinds of req_type are listed in the following table.

Table 3-1 Request Types and their Descriptions

req_type Description
ORAPMTCAPTURE Capture transaction
ORAPMTCREDIT Credit transaction
ORAPMTREQ Authorize transaction
ORAPMTRETURN Return transaction
ORAPMTVOID Void transaction

4. Status_Tab: table of statuses corresponding to each transaction.

The various values and their statuses are listed in the following table.

Table 3—2 Values and their Status

Value Status

0 Paid

5 Payment failed
13 Scheduled

15 Failed

17 Unpaid

Implementing APIs 3-11

Implementing Electronic Commerce Applications APIs

3-12

Table 3—2 Values and their Status

Value Status

18 Submitted

5. updatedt_Tab: table for the last update date for each transaction.
6. refcode_Tab: table for the reference code for each transaction.

7. o0_status: the overall status of the procedure. If there are errors in trying to
execute the procedure, electronic commerce application should set up an
appropriate value in this field.

8. 0_errcode: the error code for any errors which might have occurred during
processing.

9. 0_errmsg: the error message for the error.

10. o_statusindiv_Tab: table of status values which have been updated. If the status
value has been updated by the electronic commerce application for a particular
transaction, it should set the value to TRUE for that transaction, otherwise, it
should set the value to FALSE.

Note: In the above procedure, for each transaction there will be an
entry in the table parameters. If there were ten transactions of this
electronic commerce application, whose status has changed, there
will be ten entries in each table parameters.

When Does the Scheduler Invoke the API?

The Scheduler picks up all the offline payment transactions to be scheduled every
time it is run. After all the offline payment transactions are processed either
successfully or unsuccessfully, the Scheduler has to update the status changes, if
any, of each transaction, to the appropriate electronic commerce application. To
update the electronic commerce application, the Scheduler calls the PL/SQL API,
which is implemented by that electronic commerce application.

Pseudo Code for Implementing the PL/SQL API by Electronic Commerce
Application

For each row update, the status is based on the request type and the transaction
identifier. If the update is successful, then set up the status value appropriately.

for i in 1..totalRows

Implementation Guide

Implementing Electronic Commerce Applications APIs

;update the tables with status, updatedate, and refinfo information

update tables using status Tab[i], updatedt Tab[i], refCode Tab[i] for
the transaction with id txn id Tab[i] and req type tabl[i]

if update is successful

o _statusindiv Tab[i] := ’'TRUE’
else

o _statusindiv Tab[i] := ’'FALSE’
end for;
return

Java APIs for Electronic Commerce Application

All administration and payment processing functionality are provided via the Java
PaymentService interface. The following information describes how to access and
use Java APls. Refer to iPayment JavaDoc for more details.

Note: Guest user properties need to be setup in the database
before any operation can be performed. Please refer to the Setup
Document provided by CRM Foundation for more details.

Obtaining /Releasing the Payment Service Handle

The OraPmt class offers convenient ways to obtain Payment Service handle
(PaymentService) for the user. The application can call various APIs using this
handle.

= To obtain the payment service handle, use the following method:

static public PaymentService init () throws PSException

This API provides Payment Service handle to the user and takes care of all the
necessary session initialization steps.

= Torelease a Payment Service handle with the session, use the following
method:

static public void end() throws PSException

Sample code
The following code gives an example of how these APIs are used.

public static void main(String[] args) {

Implementing APIs 3-13

Implementing Electronic Commerce Applications APIs

3-14

try {
PaymentService paymentService = OraPmt.init();
// now you can call all kinds of APIs
//PSResult result = paymentService.OraPmtReq(...);

} catch (PSException pe) {
// exception handling
System.out .println("Error code is: " + pe.getCode());
System.out .println ("Error message is: " + pe.getMessage());

}

finally {

try {
OraPmt.end() ;

} catch (PSException pe) {
// exception handling
System.out .println("Error code is: " + pe.getCode());
System.out .println ("Error message is: " +

pe.getMessage ()) ;

Checking Returned Result from Payment Service API

PSResult is the returned object of all PaymentService APls. To obtain the status of
the operation, use the following API:

public String getStatus();

This API returns one of the following constants:

PSResult.IBY SUCCESS// action succeeded

PSResult.IBY WARNING// action succeeded with warning
PSResult.IBY INFO// not yet in use

PSResult.IBY FATLURE// action failed

If SUCCESS or WARNING is invoked, a result object can always be obtained by
using the following API:

public Cbject getResult () ;

If FAILURE is invoked, a result object may be returned for payment operation APIs,
if this failure occurred with back end payment system.

Implementation Guide

Implementing Electronic Commerce Applications APIs

The actual object returned varies with each API. It could be an integer or one of the
payment response objects. You need to clearly cast it. For a list of castings, refer to
the iPayment Java Documentation for the PaymentService interface.

If WARNING or FAILURE is invoked, a warning or error message is returned. Use
the following two APIs to retrieve error codes and error messages.

public String getCode();// get the error code ’'IBY XXXXXX'
public String getMessage(); // get the error message text
The following sample code illustrates the behavior of PSResult object.

public Object checkResult (PSResult pr) {
String status = pr.getStatus() ;
if (status.equals(PSResult.IBY FAILURE)) {
// in case of failure, only error message is expected
System.out .println("error code is : " + pr.getCode());
System.out .println("error message is : " + pr.getMessage()) ;
Object res=pr.getResult();
if (res!=null) System.out.printIn ("failure occured with backend
Payment system") ;
return res;
}

if (status.equals(PSResult.IBY SUCCESS)) {
// in case of success, only result cbject is expected
Object res = pr.getResult();
return res; // you need cast this to specific object
// based on the APIs you called

if (status.equals(PSResult.IBY WARNING)) {
// in case of warning, both result object and message are
// expected
// warning is returned only for Payment APIs in case of
// offline scheduling
System.out.println("warning code is : " + pr.getCode()) ;
System.out .println("warning message is : " + pr.getMessage()) ;
Object res = pr.getResult();
return res; // you need cast it here too

}

// currently IBY INFO is not yet returned by any PaymentService API
System.out .println("Illegal status VALUE in PSResult! " +
pr.getStatus()) ;

return null;

Implementing APIs 3-15

Implementing Electronic Commerce Applications APIs

Using Payment Service API

After a payment service handle is obtained via the OraPmt class, you can call any of
the following APIs in Payment Service interface. For details, refer to JavaDoc.

Here is some sample code for Payment Instrument API, and Payment Processing
APIs. These codes use the checkResult call.

Registering a Credit Card

public void instrAPISample (PaymentService paymentService,
int ecappId) {
PSResult pr;
Cbject obj;
CreditCard cc;
Address addr;
int instrid cc;
String payerid = "payerl";

addr = new Address("Linel", "Line2", "Line3", "Redwood Shores",
"SaIl Mateoll , IICAII , IIUSII , n 94065") ’.

// credit card

cc = new CreditCard() ;

cc.setName ("My Credit Card") ;

cc.setFIName ("CitiBank") ;

cc.setInstrBuf ("This is my credit card description.");
cc.setInstrNum("4111111111111111"); // the credit card number
cc. setCardType (Constants.CCTYPE VISA); // the credit card type, should
// match the credit card number, if set

cc.setExpDate (new java.sgl.Date (101, 0, 10)); // Jan 10, 2001
cc.setHolderName ("Mary Smith") ;

cc.setHolderAddress (addr) ;

// add the credit card

pr = paymentService.oralnstrAdd(ecappld, payerid, cc);
obj = checkResult (pr) ;

if (obj == mnull) return; // registration failure
instrid cc = ((Integer) obj) .intValue();

System.out .println("Credit card registered successfully " +
"with instrument id " + instrid cc);

3-16 Implementation Guide

Implementing Electronic Commerce Applications APIs

Sending a Credit Card Authorization Request

// perform an ONLINE credit card authorization with payment service
public void paymentAPISample (PaymentService paymentService, int ecAppId) {
Bill t;
CoreCreditCardReq reqTrxn;
CreditCard cc;
PSResult pr;
CoreCreditCardAuthResp resp;

// set up the tangible object
t = new Bill();
t.setId("orderIdl") ;
t.setAmount (new Double (21.00)) ;
t.setCurrency ("USD") ;
t.setRefInfo("refInfo") ;
t.setMemo ("memo") ;
t.setUserAccount ("userAcct") ;

// set up the transaction object

reqTrxn = new CoreCreditCardReq() ;
reqTrxn.setNLSLang ("American America.US7ASCII") ;

reqgTrxn.setMode (Transaction.ONLINE) ;

reqTrxn.setSchedDate (new java.sgl.Date (100, 5, 10)); //June 10, 2000
reqTrxn. setAuthType (Constants . AUTHTYPE AUTHONLY) ;

// set up the payment instrument

cc = new CreditCard() ;

cc.setId(100); // assuming we have previously registered credit
// card with instrument id 100

pr = // assuming payeel has already been configured with the payment
// service
paymentService.oraPmtReq (ecAppld, '"payeel", "", cc, t,
reqgTrxn) ;

resp = (CoreCreditCardAuthResp) checkResult (pr);

if (resp == null) return;

System.out .println("Request finished with transaction id: " +
resp.getTID()) ;

Implementing APIs 3-17

Implementing Electronic Commerce Applications APIs

3-18

Registering a Purchase Card

Implementation Guide

public void instrAPISample (PaymentService paymentService,

int ecappId) {
PSResult pr;
Object obj;
PurchaseCard pc;
Address addr;
int instrid pc;
String payerid = "payerl";

addr = new Address ("Linel", "Line2", "Line3",
"Redwood Shores", "San Mateo", "CA",
"US", ll94065ll) ’.

// purchase card
pc = new PurchaseCard() ;
pc.setName ("My Purchase Card") ;
pc.setFIName ("CitiBank") ;
pc.setInstrBuf ("This is my purchase card description.");
pc.setInstrNum("4111111111111111"); // the purchase card

// number
pc.setCardType ("Constants.CCTYPE VISA"); // the purchase
// card type, should match the purchase card number, if
// set
pc.setCardSubtype ("P") ;
pc.setExpDate (new java.sql.Date (101, 0, 10));

// Jan 10, 2001

pc.setHolderName ("Mary Smith") ;
pc.setHolderAddress (addr) ;

// add the purchase card

pr = paymentService.oralnstrAdd(ecappld, payerid, pc);
obj = checkResult (pr) ;

if (obj == null) return; // registration failure
instrid pc = ((Integer) cbj).intValue();

System.out .println ("Purchase Card registered " +
"successfully with instrument id " +
instrid pc);

Implementing Electronic Commerce Applications APIs

Sending a Purchase Card Authorization Request

// perform an ONLINE purchase card authorization with
// payment service
public void paymentAPISample (PaymentService paymentService,
int echAppIld)

Bill t;
PurchaseCardReq reqgTrxn;
PurchaseCard pc;
PSResult pr;
CoreCreditCardAuthResp resp; // since purchase card
// authorization responses are identical to credit card
// responses. See javadoc for details.

// set up the tangible object
t = new Bill();
t.setId("orderIdl") ;

t . setAmount (new Double (21.00)) ;
t.setCurrency ("USD") ;
t.setRefInfo ("refInfo") ;
t.setMemo ("memo") ;

t .setUserAccount ("userAcct") ;

// set up the transaction object

reqTrxn = new PurchaseCardReq() ;

regTrxn.setNLSLang ("American America.US7ASCII") ;

reqTrxn. setMode (Transaction.ONLINE) ;

reqgTrxn.setSchedDate (new java.sqgl.Date (100, 5, 10));
// June 10, 2000

regTrxn. setAuthType (Constants . AUTHTYPE AUTHONLY) ;

reqTrxn. set PONum ("PONum") ;

reqTrxn. setTaxAmount ("1.50") ;

reqTrxn.setShipToZip ("94065") ;

reqgTrxn.setShipFromZip ("94404") ;

// set up the payment instrument

pc = new PurchaseCard() ;

pc.setId(100); // assuming we have previously registered
// purchase card with instrument id 100

pr = // assuming payeel has already been configured with
// the payment service
paymentService.oraPmtReq (ecAppld, "payeel", "", pc,

t, reqTrxn) ;

resp = (CoreCreditCardAuthResp) checkResult (pr) ;

Implementing APIs 3-19

Implementing Electronic Commerce Applications APIs

if (resp == null) return;
System.out .println("Request finished with " +
"transaction id: " + resp.getTID());

PL/SQL APIs for Electronic Commerce Applications

3-20

iPayment provides PL/SQL APIs to those electronic commerce applications that
require or prefer PL/SQL interfaces for processing payment operations. There is an
additional HTTP call when PL/SQL APIs are called. When electronic commerce
applications invoke these PL/SQL APIs, the APIs in return call the electronic
commerce servlet through HTTP.

iPayment PL/SQL APIs provide all payment related processing and two Risk APls.
The functionality of these APIs is the same as the Java APIs. iPayment does not
provide Payment Instrument APIs in PL/SQL.

PL/SQL APIs are created as part of IBY PAYMENT_ADAPTER_PUB package and
these packages are installed in the APPS schema.

Requirements

1. PL/SQL Package IBY_PAYMENT_ADAPTER_PUB must be installed in the
APPS schema.

2. Anadministrator must set up iPayment URL property to iPayment electronic
commerce servlet’s URL using the iPayment administration user interface
before invoking the APIs.

The following PL/SQL code helps you to understand how iPayment PL/SQL APls
can be invoked. This example code invokes the Payment Request API using a credit
card. It also passes risk related information for risk evaluation.

DECLARE
P _api version NUMBER := 1.0;

--To initialize message list.

p_init msg list VARCHAR2(2000) := FND API.G TRUE;

p_commit VARCHAR2 (2000) := FND API.G FALSE;

p validation level NUMBER := FND API.G VALID LEVEL FULL;

P _ecapp id NUMBER := 0;

p_payee rec IBY PAYMENT ADAPTER PUB.Payee rec type;
p_payer rec IBY PAYMENT ADAPTER PUB.Payer rec type;
p pmtinstr rec IBY PAYMENT ADAPTER PUB.PmtInstr rec type;
p_tangible rec IBY PAYMENT ADAPTER PUB.Tangible rec type;

p pmtregtrxn rec IBY PAYMENT ADAPTER PUB.PmtReqTrxm rec type;

Implementation Guide

Implementing Electronic Commerce Applications APIs

p_riskinfo rec IBY PAYMENT ADAPTER PUB.RiskInfo rec type;
X return status VARCHAR2 (2000) ;
-- output/return status
X msg_count NUMBER;
-- output message count
x msg data VARCHARZ (2000) ;

-- reference string for getting output
message text
X reqgresp rec IBY PAYMENT ADAPTER PUB.RegResp rec type;
-- request specific output response

abject
1 msg count NUMBER;
1 msg data VARCHARZ (2000) ;
BEGIN
p ecapp id := 66; -- iPayment generated ECAppID
p payee rec.Payee ID := 'ipay-payeel'; -- payee’s ID
p_payer rec.Payer ID := 'ipay-custl'; -- payer’s ID
p_payer rec.Payer Name := 'Custl'; -- Payer’s (Customer’s name)
p_pmtregtrxn rec.PmtMode := 'ONLINE';
-- Payment mode (Can be
ONLINE/OFFLINE)
p_tangible rec.Tangible ID := 'tangible idl'; -- Tangible ID / order ID
p_tangible rec.Tangible Amount := 25.50; -- Amount for the transaction
p tangible rec.Currency code := 'USD'; -- Currency for the transaction
p tangible rec.RefInfo := 'test refinfo3';
p_pmtregtrxn rec.Auth Type := upper ('authonly'); -- request type
p _pmtinstr rec.CreditCardInstr.CC Type := 'Visa';

payment instrument type
p pmtinstr rec.CreditCardInstr.CC Num := '4111111111111111';

payment instrument number
p _pmtinstr rec.CreditCardInstr.CC ExpDate := to char (sysdate+300) ;

payment instr. Expiration date

--5. RISK INPUTS

p riskinfo rec.Formula Name := 'test3'; -- Risk formula name
p riskinfo rec.ShipToBillTo Flag := 'TRUE';
-- Flag showing if ship to address same as Bill
to address
p_riskinfo rec.Time Of Purchase := '08:45';

-- Time of purchase

Implementing APIs 3-21

Implementing Electronic Commerce Applications APIs

3-22

IBY PAYMENT ADAPTER PUB.OraPmtReq
(p_api version,
p_init msg list,
p_commit,
p validation level,
p ecapp id ,
P payee rec,
P _payer rec,
p _pmtinstr rec,
p_tangible rec,
p_pmtregtrxn rec,
p_riskinfo rec ,
X return status,
X msg_count ,
x msg_data ,
X regresp rec) ;
END;
Payment Request Related Response. Printing Only If Status Is Success
If (Char (X Regresp Rec.Response.Status = ‘S’) Then

-- Offline Mode Related Response
If P Pmtregtrxn Rec.Pmtmode = 'OFFLINE' Then

Dbms Output.Put Line('Transaction ID = ' || To Char (X Reqresp
Rec.Trxn ID)) ;

Dboms_Output.Put Line (' X Reqresp
Rec.Offlineresp.Earliestsettlement Date = ' ||

To Char (X Regresp

Rec.Offlineresp.Earliestsettlement Date)) ;

Dbms_Output.Put Line('X Reqgresp Rec.Offlineresp.Scheduled Date = '
|

To Char (X Regresp Rec.Offlineresp.Scheduled Date)) ;

Else
Dbms Output.Put Line('Transaction ID = ' || To Char (X Reqresp
Rec.Trxn ID)) ;
Dbms Output.Put Iine('X Regresp Rec.Authcode = ' || X Reqresp
Rec.Authcode) ;
Dbms_Output.Put Line ('X Regresp Rec.Avscode = ' || X Regresp

Rec.Avscode) ;
Dbms_Output.Put Line('----=-=-=---=-——-—-——-——-————— -~ " ;
-- Risk Related Response
If (X Regresp Rec.Riskrespincluded = ‘YES’) Then
Dbms Output.Put

Dboms_Output.Put Line(' X Regresp Rec.Riskresponse.Risk Score=
'"|| X Regresp Rec.Riskresponse.Risk Score) ;

Implementation Guide

Overview of Payment System APIs

Dboms_Output.Put Line ('X Regresp Rec.Riskresponse.Risk
Threshold Val= ' ||
X Reqgresp
Rec.Riskresponse.Risk Threshold Val) ;
Endif;
Endif;
End If;

Overview of Payment System APIs

iPayment provides a complete payment solution. Payment System APIs allow
integration with third party payment systems for credit card, purchase card, and
bank account transfer processing. The payment systems communicate with the
payment processors and the acquirers/banks to process payment transactions.

There are three options for integrating with third party payment systems, also
known as back end payment systems.

= Use the payment system integration provided by iPayment. iPayment provides
payment integration with CyberCash and CheckFree.

= Use payment integration provided by the vendor. Many payment system
vendors have partnered with Oracle to build integration with iPayment. These
field installable servlets are available from Oracle’s payment system partners.

= Build integration by using published Payment System APIs for credit cards and
purchase cards. See Back-End Processing APIs for instructions on how to build
your own field installable servlets.

Configuring CyberCash
See Configuring iPayment CyberCash Servlet.

Implementing CheckFree

iPayment is integrated with Checkfree to provide account transfer functionality.
Checkfree’s Direct Payment Model is provided by Checkfree for account transfer.
iPayment is integrated with this model.

How the Direct Payment Model Works
= Checkfree has defined a set of file formats for the Direct Payment Model.

= iPayment and Checkfree generate files complying to these formats.

Implementing APIs 3-23

Overview of Payment System APIs

= The generated files are transmitted between iPayment and Checkfree via a
secured mechanism suggested by Checkfree. From all the available file formats,
only three file formats are used in iPayment integration. The file formats are:

s Debit Order file
s Transaction Journal file
s Returnfile

For more information about these files, see Checkfree’s Direct Payment Model File
Specifications documentation.

Processing Payments for a Payee using Checkfree

1. A payee must have an external setup with Checkfree to use the Direct Payment
Model.

2. A payee must be configured in iPayment with the information that Checkfree
provides during the setup. For a detailed description about the configuration
process, see Configuring a Payee for Checkfree.

3. After configuration, iPayment can start accepting bank account transfer
payments for that payee. These payments can be routed to Checkfree.

Payment Process Flow

1. The Scheduler works at regular intervals and picks up all pending payments for
Checkfree.

2. The Scheduler writes all those requests to a Debit Order file conforming to the
specifications of the Direct Payment Model. The name and directory location of
this file are configured through the configfile.

3. The Scheduler creates one file for each payee and each file is in a different
directory. Location of the file depends on the payee configuration in Checkfree.

4. All Debit Order files generated by the Scheduler get transmitted to Checkfree
gateway using a process suggested by Checkfree. Refer to Checkfree
Implementation Guide for more information.

5. Checkfree sends a Confirmation Output file and a Transaction Journal file in
response to the Debit Order file. iPayment only processes Transaction Journal
file.

6. Confirmation Output file shows if the Debit Order file has a proper syntax or
not and the Transaction Journal file contains responses for all the accepted
payment requests that were submitted in the Debit Order file. iPayment does

3-24 Implementation Guide

Overview of Payment System APIs

not process the Confirmation Output file to verify if there were any errors or
not. You should monitor the Confirmation Output file to detect any syntax
errors in the Debit Order file.

7. Checkfree also returns, Return file if there are any exceptions during processing
of the payment requests. iPayment processes Return file.

8. iPayment notifies electronic commerce applications of all status changes of the
payment requests throughout the cycle.

The following diagram depicts how the payment status changes after iPayment
processes different files.

Implementing APIs 3-25

Overview of Payment System APIs

Figure 3-3 Different Payment States

hodify

eCommerce Applicstion .
submitz a payment request F'endlng

Generates Dehit Order file.
Forwards request to
CheckFree

After processing

Scheduled §———— Tranzaction
Journal file

‘

After processing
Tranzsaction Journal file

After Processingj

Returns file

‘

Adfter Processing
Returns file

‘

Installation of Checkfree

1. Integrated components are installed automatically during installation of
iPayment. When iPayment is installed, the files related to iPayment and
CheckFree integration are installed in the following directory:
oracle/apps/iby/bep_impl/ckf.

3-26 Implementation Guide

Overview of Payment System APIs

The other component to be installed is the component that transfers files from
iPayment to Checkfree. There are different models that Checkfree suggests to
transfer files in a secure mode. A model can be selected depending on the need
and should be installed before making iPayment Checkfree enabled.

Configuring a Payee for Checkfree
Use the following procedure to configure a payee for Checkfree.

Prerequisites

1. Install the File Transfer module as suggested by Checkfree.

Steps

1. Set up CheckFree as a payment system via the administration user interface.

2. Each payee that wants CheckFree as one of their back end payment processing
systems must set up a configuration file in the following directory:
$IBY_TOP/config/checkfree/payment system identifier>.
Payment System Identifier is the key value that is entered for Checkfree in the
Payee administration screens for this payee. The key value is the same as the
payee short name that is given by CheckFree for this payee. A template config
file (config.cfg) is provided for reference and is available in $IBY_TOP/config
directory.

3. Create adirectory in $IBY_TOP/config with name as the Payment System
Identifier.

4. Copy the template config file to this new directory and rename the file as

<BEP-Key>.cfg. For example, if BEP key is abc_key, then the template file
config.cfg is copied to $IBY_TOP/config/abc_key/abc_key.cfg. This file should
be edited with valid values as specified in the Guidelines on the Valid Values
for the Configuration File.

Note: Ensure that $IBY_TOP is present in the CLASSPATH environment
variable of the Scheduler servlet.

Implementing APIs 3-27

Overview of Payment System APIs

Guidelines on the Valid Values for the Configuration File
The following table lists the valid values for the configuration file.

Table 3-3 Valid Values for the Configuration File

Name

CLIENT_ID

PAYEE_ID

PAYEE_SHORT_NAME

DIR_TO_SEND_TO_
CHECKFREE

TO_FILE_BASE_NAME

DIR_TO_GET_FROM_
CHECKFREE

JOURNAL _FILE_BASE_
NAME

RETURNS_FILE_BASE_
NAME

MERCHANT _
ADDRESS_LINE_1
MERCHANT_CITY
MERCHANT _STATE

MERCHANT_ZIP

MERCHANT_
COUNTRY

Implementation Guide

Description

CheckFree implementation is custom built for merchants
needs. Merchants who need CheckFree’s account transfer
support, have to contact CheckFree to obtain this identifier.
This identifier is provided specifically for each merchant by
CheckFree. Checkfree also calls this Client ID.

The identifier provided specifically for each merchant by
CheckFree.Checkfree calls this a Payee Number.

Short name of the merchant.This is provided by Checkfree
and is the same as Payee short name.

Name of the directory in which iPayment generates all files
(relating to this merchant) to be transferred to CheckFree.

iPayment prepends this name while generating files (relating
to this merchant) to be transferred to CheckFree.

Name of the directory in which CheckFree generates all files
(relating to this merchant) to be transferred to iPayment.

CheckFree prepends this name while generating journal files
(relating to this merchant) to be transferred to iPayment.

CheckFree prepends this name while generating returns files
(relating to this merchant) to be transferred to iPayment.

Street address for this merchant. This is only to be in the
format accepted by CheckFree.

City name for this merchant. This should only be in the
format accepted by CheckFree.

State name for this merchant. This should only be in the
format accepted by CheckFree.

Zip code for this merchant. This should only be in the format
accepted by CheckFree.

Country name for this merchant. This should only be in the
format accepted by CheckFree.

Implementing Payment Systems APIs

Administrative Tips

= Monitor the Confirmation Output files generated by Checkfree to check if any
exceptions or errors were generated. If any errors or exceptions were generated,
file a bug with Oracle Support.

= Archive the files that are generated by CheckFree and iPayment.

Implementing Payment Systems APIs

iPayment supports field-installable servlets. These are payment system servlets not
bundled with iPayment. This feature allows a payee to acquire a new, additional, or
upgraded payment system servlet and configure it in the same way as the payment
system servlets bundled with iPayment.

The ability to add field-installable servlets provides payment flexibility and allows
new releases of iPayment and the payment systems to be independent of each other.
It also enables electronic commerce applications to customize the payment system
for their specific needs and regions.

Field-installable payment system servlets for iPayment are usually available from
Oracle’s payment system partners.

Setting Up SSL Security

When iPayment communicates with payment system servlets, the information
exchanged may be sensitive information such as credit card numbers. If the
communication is not secure, it poses a security risk.

The security risk increases in the following circumstances:
= IfiPayment and the payment systems are installed on separate machines

= IfiPayment is running outside your firewall

Steps

= To set up a back-end payment system servlet with secured sockets layer follow
the procedures in Apache’s mod-ssl documentation
(http://www.mod-ssl.org/docs). Make sure that your SSL server has a
complete certificate chain to the root certificate. SSL’s client toolkit requires it.

= Set up the BASE URL parameter of back-end payment system using https as the
protocal.

Implementing APIs 3-29

Implementing Payment Systems APIs

3-30

Setting Up SSL Runtime for iPayment

iPayment requires a set of runtime libraries for supporting SSL communication.
These runtime SSL libraries are included with the Oracle 8i distribution, but are not
installed on an applications tier by default. If you are using iPayment, you must
follow these steps to manually configure SSL on your web server.

Configuring SSL
1. Copy SSL runtime libraries to $JAVA_TOP.

2. Log on to your web server as the applmgr user and run the environment file for
the appropriate product group.

3. Gotothe $JAVA_TOP directory, create a subdirectory “ssl”, and enter that
subdirectory. For example:

% cd $JAVA_TOP
% mkdir ssl
% cd ssl
4. Copy the following three files from any 8i installation to the current directory:
$ORACLE_HOME/jlib/javax-ssl-1_1.jar
$ORACLE_HOME/jlib/jssI-1_1.jar
$ORACLE_HOME/Ilib/libnjssl8.so

Note: $ORACLE_HOME in this case refers to your 8i directory,
not the default Oracle Home, which is based on 8.0.6.

Note: If you do not have an 8i installation on your web server, you
can copy these files from your database server using the ftp
command.

5. Set up runtime environment variables.

If you are building your electronic commerce application as a servlet, you need
to modify CLASSPATH and LD_LIBRARY_PATH in your servlet engine’s
servlet configuration.

Implementation Guide

Implementing Payment Systems APIs

Here is an example for modifying these variables in the Apache servlet engine
(JServ) configuration file. For Apache JServ, you have to edit the jserv.properties
file to set the CLASSPATH and LD_LIBRARY_PATH environment variables. To
add the two SSL jar files from step 1 to the CLASSPATH, add the following lines
to jserv.properties:

wrapper.classpath=$JAVA_TOP/ssl/javax-ssl-1_1.jar
wrapper.classpath=$JAVA_TOP/ssl/jssI-1_1.jar

To add the shared library from step 1 to the LD_LIBRARY_PATH, you must
find the line in jserv.properties that begins with:

wrapper.env=LD_LIBRARY_PATH=
and add the following to the end of that line:
$IAVA_TOP/ssl

Note: Use a colon to separate the directory you are adding from
the ones that are already present.

If there is no such LD_LIBRARY_PATH line, create one by adding the following
line to jserv.properties:

wrapper.env=LD_LIBRARY_PATH=$JAVA_TOP/ssl

If you have a stand-alone application, you need to modify CLASSPATH and
LD_LIBRARY_PATH. Append:$JAVA_TOP/ssl/javax-ssl-1_1.jar: $JAVA _
TOP/ssl/javax-ssl-1_1.jar to CLASSPATH and append:$JAVA_TOP/ssl to LD_
LIBRARY_PATH environment variable.

Note: You may not have defined $JAVA_TOP environment
variable in your environment. In that case, you should include the
fully qualified physical path.

Implementing APIs 3-31

Implementing Payment Systems APIs

3-32 Implementation Guide

A

Risk Management

Topics Include:
= Utilizing Risk Management

= Risk Management Test Scenarios

Utilizing Risk Management

iPayment supports risk management. Electronic commerce applications can
incorporate this feature and detect fraudulent payments. The following information
describes how electronic commerce applications can utilize the risk management
functionality of iPayment.

Risk Factors and Risk Formulas

iPayment is bundled with a set of risk factors. Payees can configure these factors
depending on their business model. The payees can create multiple formulas using
different factors and weights depending on their specific requirements. The ability
to create multiple formulas provides flexibility to payees to accommodate different
business scenarios. Each formula must be set up so that the sum of the weights is
equal to 100. If a risk factor value is missing at the time of risk evaluation, the risk
for the missing factor is considered very high in the formula.

iPayment also defines an implicit formula for each payee with default factors and
weights. Administrators have the flexibility to modify the implicit formula. The
following information describes how and where the implicit formula is used.

Risk Management A-1

Utilizing Risk Management

A-2

Process Flow of Risk Evaluation

1.

To enable risk analysis during authorization, either set up the explicit risk flag
in the input transaction object or check Enabled radio button in the Risk
Management Status screen for that payee.

When an electronic commerce application makes a Payment Request API call,
iPayment first checks the risk flag and depending on its value, decides if the
payee involved in the payment request is risk enabled or not. If the risk analysis
field indicates that iPayment should perform risk analysis, or if a default value
is added in the field and a payee is risk enabled, iPayment evaluates either the
risk formula passed in the Payment Request API or the implicit formula
associated with that payee.

Electronic commerce application can pass a specific risk formula name by
calling the overloaded Payment Request API. This API takes PmtRiskinfo object
in which electronic commerce application can set up the formula name and
additional information. If PmtRiskInfo object is not passed and the payee is risk
enabled, iPayment evaluates the implicit formula of that payee.

iPayment returns the Risk Response (RiskResp) object as part of the payment
response. If risk evaluation is done successfully, Risk Response object contains
the risk score obtained after evaluation and the threshold value that is set up
with the payee. Electronic commerce application can decide whether payment
can be accepted or not, based on the risk score and the threshold value.

If the risk score is more than the threshold value, the payment request is risky.

Process Flow of Independent Risk APIs

Risk API 1

1.

When an electronic commerce application invokes Risk API 1, iPayment
evaluates the risk formula sent in the request or the implicit formula associated
with that payee.

iPayment evaluates all the risk factors that are configured as part of this
formula, except the AVS Code risk factor.

After evaluation, iPayment returns Risk response (RiskResp) object as a
response to this API. This response object contains, the status of the API call,
AVSCodeFlag indicating if AVS Code risk factor was part of the formula or not,
risk score, and the risk threshold value that is setup for the payee. Depending
on the AVSCodeFlag value, it is be decided whether to call Risk API 2 or not.

Implementation Guide

Risk Management Test Scenarios

Note: Partial risk score is returned if AVS Code risk factor is part
of the risk formula.

Risk API 2

1. Electronic commerce applications need to call this APl with the same PayeelD
and formula name that were used to call Risk API 1. The risk score that was
returned as part of the Risk API 1 response also needs to be sent. When
electronic commerce applications call this API, iPayment checks again if the
formula has AVS Code risk factor configured in it or not. If it is configured,
iPayment evaluates the AVS Code risk factor.

2. After evaluating the AVS Code risk factor, iPayment calculates the final risk
score of the formula using the previous risk score that was sent and the AVS
Code risk factor score. This risk score is sent back to the electronic commerce
application as part of the response object of this API.

Risk Management Test Scenarios

The following information includes three business scenarios to describe how a
merchant can use the Risk Management functionality.

Merchant Selling Books and Low Priced Goods

In a small business, risky instruments risk factor is a critical risk factor. If a customer
is using a stolen credit card, the merchant should consider this transaction risky and
assign this risk factor a higher weight than the other risk factors. Ship to/bill to
address matching and payment history are also important risk factors. To include
AVS Code risk factor, a merchant can set up a formula with weights as shown in
Weight B column in the Risk Formula Setup-First Case table. The total of all the
weights should be 100. For a formula that a merchant would set up in this case, see
Risk Formula Setup for the First Case.

Risk Formula Setup for the First Case

The following table shows the risk formula setup for a merchant selling books and
low priced goods.

Table A-1 Risk Formula Setup-First Case

Factors Weight A Weight B

Risky Instruments 30 30

Risk Management A-3

Risk Management Test Scenarios

A-4

Table A-1 Risk Formula Setup-First Case

Factors Weight A Weight B
Payment Amount 15 15

Limit

Transaction Amount 15 15

Ship to/Bill to 20 10
Payment History 20 10

AVS Code 0 20

Risk Factor Setup
= Payment Amount Limit

The following table shows the risk levels and the associated payment amounts.

Table A—2 Risk Levels and Associated Payment Amount

Risk Levels Greater than or Equal To
Low 0

Low medium 100

Medium 200

Medium high 300

High 400

s Transaction Amount

A transaction is high risk if the transaction amount exceeds 500 in one week.

Otherwise there is no risk.

= Payment History

The following table shows the risk levels and the number of payments made in

the last six months by a particular customer.

Implementation Guide

Risk Management Test Scenarios

Risk Management

Table A-3 Risk Levels and the Number of Payments

Risk Levels Greater than or Equal To

Low 6
Low medium
Medium
Medium high
High

o N oW b

s AVS Code

The following table shows the risk levels and the associated AVS Codes. AVS
Code risk factor evaluation is useful only for customers in the United States.

Table A—4 Risk Levels and Associated AVS Codes

Risk Level AVS Code
No risk S,Y,UXR,E
Low AZW

Low medium

Medium

Medium high

High N

No risk S,Y,UXR,E

= Ship To/bill To and Risky Instruments

These risk factors do not require any setup. The evaluation will be done with
the data already existing in the database.

s Risk Score

A typical threshold value would be between medium and medium high risk
score.

Risk Management module evaluates the payment request and returns an
overall risk score. If an overall risk score exceeds the threshold value set up by

A-5

Risk Management Test Scenarios

A-6

the merchant, then the merchant has to decide whether to process the request or
to block the request.

Merchant Selling Electronic Goods

Risky instruments is a critical factor in this case. If a customer is using a stolen
credit card, the merchant should consider this transaction risky and assign it a
higher weight.

Frequency of purchase is the next important risk factor. Usually customers do not
buy electronic goods frequently, and if they do, the purchases could be a fraudulent.

In this scenario, time of purchase is also to be considered as an important risk factor.
If someone buys many goods after 2:00 AM, it might be a fraudulent purchase.

To include an AVS Code risk factor, a merchant sets up a formula with weights as
shown in column Weight B in Risk Formula Setup-Second Case table. The total of all
the weights are 100. The AVS Code risk factor evaluation will be useful only for
customers in the United States.

Risk Formula Setup for the Second Case

The following table shows the risk formula set up for a merchant selling electronic
goods.

Table A-5 Risk Formula Setup-Second Case

Factor Weight A Weight B
Risky Instruments 30 30

Ship to/Bill to 15 12

Time of Purchase 15 12
Frequency of Purchase 20 10
Payment Amount 10 8
Transaction Amount Limit 10 8

AVS Code 0 20

Risk Factor Setup
= Payment Amount Limit

The following table shows the risk levels and the associated payment amounts.

Implementation Guide

Risk Management Test Scenarios

Table A—6 Risk Levels And Associated Payment Amounts

Risk Levels Greater Than or Equal To
Low 500

Low medium 1000

Medium 1500

Medium high 2000

High 2500

s Transaction Amount

This risk factor is considered high risk if the amount exceeds 5,000 in one week.
Otherwise there is no risk.

= Frequency of Purchase

This risk factor is considered high risk if the frequency of purchase exceeds ten
times in the previous one week.

s AVS Codes

The following table shows the risk levels and the associated AVS codes. AVS
codes risk factor evaluation is only useful for customers in the United States.

Table A—7 Risk Levels and Associated AVS Codes

Risk Level AVS Code (Comma Separated)
No risk S,Y,UXR,E
Low AZW

Low medium

Medium

Medium high

High N

No risk S,Y,UXR,E

= Ship To/Bill To and Risky Instruments

These risk factors do not require any setup. The evaluation will be done
through the data already existing in the database.

Risk Management A-7

Risk Management Test Scenarios

A-8

s Risk Score

A typical threshold value is to be between medium and medium high risk
score.

The risk management module evaluates the payment request and returns an
overall risk score. If an overall risk score exceeds the threshold value set up by
the merchant, the merchant has to decide whether to process the request or to
block the request.

Business to Business Customer

In a business to business scenario, a merchant has an established relationship with
his customer. In this scenario, the Oracle Receivables risk factors take higher
precedence. The merchant is interested in the customer’s payment history, his credit
rating, etc. All Oracle Receivables risk factors are set up through Oracle Receivables
interface.

Risk Formula Setup in the Third Case

The following table shows a Risk Formula setup for a business to business
customer.

Table A-8 Risk Formula Setup-Third Case

Factors Weight
Overall Credit Limit 30
Transaction Credit Limit 30
Risk Codes 15
Credit Rating Codes 15
Payment History 10

Risk Factor Setup
s Overall Credit Limit: 100,000

= Transaction Credit Limit: 50,000
= Risk Codes are set up through Oracle Receivables codes.

The following table shows the risk codes and the associated risk scores set up
through iPayment administration user interface.

Implementation Guide

Risk Management Test Scenarios

Table A-9 Risk Factor Setup

Risk Codes Risk Score
Low Low
Average Medium
Excellent No risk

= Credit Rating Codes are set up through Oracle Receivables interface

The following table shows the set up of credit rating codes and the associated
risk scores.

Table A-10 Credit Rating Codes and Associated Risk Scores

Credit Rating Codes Risk Score
Low Low
Average Medium
Poor High
Excellent No risk

= Risk Score
A typical threshold value is between medium and medium high.

Risk management module evaluates the payment request and returns an overall
risk score. If an overall risk score exceeds the threshold value set up by the
merchant, then the merchant decides whether to process the request or block it.

Risk Management A-9

Risk Management Test Scenarios

A-10 Implementation Guide

B

Error Handling

Error Handling During Payment Processing

iPayment returns a response object to each API that an electronic commerce
application calls. If the operation fails, then the response object contains status value
(IBY_FAILURE), indicating that there was a failure while processing the request. In
these cases, electronic commerce application can get more information about the
failure by checking the error code and the error message. Errors can happen in
iPayment for various reasons. For example, wrong or duplicate data passed by the
electronic commerce application, time out while communicating with Payment
Systems, etc. All the errors that can occur in iPayment can be categorized in groups.
These groups are:

s« Common Errors
s Errors Due to Invalid or Duplicate Data
s Communication Errors

= Configuration Errors

Common Errors
The following table contains the most common errors.

Table B-1 Error Codes and their Description

Error Code Description

IBY_0001 Communications error. The payment system, the processor, or
iPayment electronic commerce servlet is not accessible. You
should resubmit the request at a later time.

IBY_0002 Duplicate order identifier.

Error Handling B-1

Error Handling During Payment Processing

B-2

Table B-1 Error Codes and their Description

Error Code Description

IBY_0003 Duplicate batch identifier.

IBY_0004 Mandatory fields are required.

IBY_0005 Payment system specific error. Check BEPErrCode and
BEPErrMsg in response objects for more information.

IBY_0006 Batch partially succeeded. Some transactions in the batch failed
and some were processed correctly.

IBY_0007 The batch failed. You should correct the problem and resubmit
the batch.

IBY_0008 Requested action is not supported by the payment system.

IBY_0017 Insufficient funds.

IBY_0019 Invalid credit card or bank account number.

Errors Due to Invalid or Duplicate Data

In each payment request, a payment instrument from which the money is
transferred to the payee’s account is involved. Generally this information i given by
the end user of the electronic commerce application. Sometimes the end user might
enter wrong instrument number or an instrument number that does not have
enough funds. To detect these errors, iPayment provides two error codes that help
electronic commerce applications to prompt the end user for correct information.

The error codes due to invalid or duplicate data and their descriptions are given in
the following table.

Table B-2 Error codes and their description due to invalid data or duplicate data

Error Code Description
IBY_0017 Insufficient funds
IBY_0019 Invalid credit card/bank account number

Communication Errors

Since payment processing requests involve a number of different components that
are not tightly integrated, timeout errors or communication errors are possible. For
example, a processor successfully processes a payment request, but the network

connection between the payment system and iPayment, or the network connection

Implementation Guide

Error Handling During Payment Processing

between iPayment’s PL/SQL API package and iPayment electronic commerce
servlet break down, causing the electronic commerce application not to receive the
result. In some cases, electronic commerce application might crash before receiving
a response. Before the crash, payment processing may have completed. Therefore,
when electronic commerce application calls the API with the same information,
iPayment considers this a duplicate request and raises an error. To recover from
such errors, iPayment provides two approaches.

In the first approach, which is applicable to OraPmtReq and OraPmtCredit, the
electronic commerce application can try the request with the retry flag set up to
TRUE. This makes iPayment retry the request if it has not processed the request.
Otherwise iPayment sends the same response that was sent when this request was
first made.

In the second approach, which is applicable to all other operations except
OraPmtReq and OraPmtCredit, the electronic commerce application needs to find
out if the transactions went through successfully to reexecute any lost transactions.
To enable the merchant or business to query the status of a transaction, you need to
integrate the Query Transaction Status API in the electronic commerce application.
This API returns all existing records for a particular transaction identifier on a
payment system.

The following table describes a communication error code and its description.

Table B-3 Communication Error code

Error Code Description

IBY_0001 The payment system, the processor, or iPayment’s electronic
commerce servlet is not accessible. You should resubmit the
request at a later time.

Configuration Errors

These errors occur if payees or payment systems are not configured properly. Make
sure that the URLSs are entered correctly and the payee’s payment system identifiers
are configured properly.

Error Handling B-3

Error Handling During Payment Processing

B-4 Implementation Guide

C

IPayment PL/SQL APIs

Electronic Commerce PL/SQL APIs

This appendix describes iPayment 11i PL/SQL API specifications for electronic
commerce applications (EC-Apps) that require/prefer PL/SQL interfaces for
processing credit card and bank account transfer payment related operations. These
APIs could be invoked by EC-Apps with appropriate values to perform payment
operations.

The following sections contain architectural overview of iPayment PL/SQL APIs,
the signatures of each API, and definitions for each in/out parameters.

iPayment PL/SQL APIs C-1

Architectural Overview

Architectural Overview

C-2

EC Application

PL/SQL APls

The following diagram shows the overall architecture of iPayment 11i and where
the PL/SQL APIs fit inside this architecture.

Figure C-1 iPayment Architecture

BEP APis

Field Installed
Payment
Systemn

- H-l—l—P(S) - Serviet
(=]
= Adapter o
) HTTPReq | % | Cybercash
e _ % senvlet
3 Q—LT _ Z 3 Hrerey
o | = | iPayment | w ég
o i (o m
= Engine z |PE
3|8 E
= |8
o7 = |2 o
= 0 o | = g
HTTPReq | () L8z
T =
L 6 =

Scheduler

PL/SQL based EC-Apps can invoke the PL/SQL APIs which are stored in the
applications database. These APIs in turn pass the payment related request, via
HTTP, to the iPayment middle tier through iPayment, receives the response and
passes this response to the calling application through response records.

EC-Apps can invoke the APIs either in an offline or online mode depending on the
requirements of the applications.

(For more information on different modes of payment, please refer to
Understanding Offline and Online Payments in the Oracle iPayment Concepts and
Procedures A86141-01. For the offline requests, the scheduler is invoked periodically
to send appropriate requests to the Back End Payment Systems and the status
returned is passed back to the ECApp.For more information on how scheduler and
offline operations work, See How the Scheduling System Works in Oracle iPayment

Implementation Guide

PL/SQL APIs Procedure Definitions

Concepts and Procedures A86141-01. For more information on how status is updated,

please refer to Status Update API.

PL/SQL APIs Procedure Definitions

This section consists of the iPayment PL/SQL APIs which are supported in the 11i
release. All the procedures described below are declared public and are stored in the
PL/SQL Package IBY_PAYMENT_ADAPTER_PUB as part of the applications
database. All these procedures share some common IN and OUT parameters which

are described below.

Table C-1 Common IN Parameters

p_api_version IN NUMBER
p_init_msg_list IN VARCHAR2
p_commit IN VARCHAR2

p_validation_level IN NUMBER

p_ecapp_id IN NUMBER

This parameter is to conform to the Oracle
applications API standard. It is the version to be
used for the API. The current supported version
is 1.0 and so use 1.0

This parameter is to conform to the Oracle
Applications API standard. Use FND_API.G_
FALSE which is also the default value.

This parameter is to conform to the Oracle
Applications API standard and hasn’t been
implemented for these APIs. Use FND_API.G_
FALSE which is also the default value.

This parameter is to conform to the Oracle
Applications API standard. Use FND_API.G_
VALID_LEVEL _FULL which is also the default
value.

The id of EC-App which is invoking the API.

Table C—2 Common OUT Parameters

X_return_status OUT VARCHAR?2

X_msg_count OUT NUMBER

Used to indicate the return status of the
procedure. This parameter is to conform to the
Oracle applications API standard.

The error message count holds the number of
error messages in the APl message list. This
parameter is to conform to the Oracle
applications API standard

iPayment PL/SQL APIs C-3

PL/SQL APIs Procedure Definitions

C-4

Table C-2 Common OUT Parameters

X_msg_data OUT VARCHAR2 Contains the error messages. This parameter
is to conform to the Oracle applications API
standard

Note: These APIs return a single x_return_status as ‘S’ for overall success, and ‘U’
for any type of errors (both API internal errors and iPayment processing errors
included).

If the value of x_return_status is not ‘S’, then the calling program needs to check
both the APl message list parameter x_msg_data and the iPayment response objects
to identify whether it is an APl implementation error or an iPayment related error.
The API message list messages will hold all APl implementation errors, while the
API response objects will hold iPayment related success/errors.

The error message from iPayment may include messages from the BEPs (Back End
Payment Systems) in special response object fields (BEPErrCode, BEPErrMessage,
ErrLocation). Hence the error messages from iPayment are not added into the
message list, consistent with the Java APIs.

The following PL/SQL APIs are described in this section:
= OraPmtReq

= OraPmtMod

s OraPmtCanc

= OraPmtCapture

s OraPmtReturn

= OraPmtVoid

= OraPmtCredit

s OraPmtQryTrxn

= OraPmtCloseBatch

= OraPmtQueryBatch

= OraPmting

For more information on Error Codes and their meaning, see Error Handling.

For all the APIs, for description of the PL/SQL records with possible values, see to
"PL/SQL Record/Table Types Definitions" in this appendix.

Implementation Guide

PL/SQL APIs Procedure Definitions

OraPmtReq

API type: Public
Prerequisites for calling the API: None
Function(s) performed by the API:

This API handles new Payment requests from EC-Apps. EC-Apps can make an
offline or online payment requests by setting “PmtMode” attribute in “p_
pmtreqtrxn_rec” “OFFLINE” or “ONLINE”. If the attribute of the record is not set
explicitly then, by default, payment is considered as “ONLINE” request. If
“PmtMode” is set to “OFFLINE”, then attribute “Settlement_date” in “p_
pmtreqtrxn_rec” must be set to proper value.

This API returns a transaction ID if payment request is processed successfully,
which can be used later to initiate follow on operation on the payment. For
example, to modify a payment or capture the payment, the EC-App will need to
pass this transaction ID along with other information that is needed to perform the
operation requested.

Response object of the API contains risk response if the payee involved in the
payment(on-line) request is risk enabled. EC-Apps can check RiskResplIncluded
field in the response to verify if there is a Risk response from iPayment, and if so,
check the RiskResponse record for details. This API also accepts additional
OPTIONAL risk-related input parameters for evaluating risk of an on-line payment
request.

For more information on using Risk Management, see Utilizing Risk Management.
In summary, this API can be used to:

= Authorize credit transactions

= Transfer funds from a bank account transfer

= Do risk analysis

= Schedule payments to be made in future (Offline payments)

Note: This APl is also available in an overloaded form, without the Risk related
input parameter to enable EC-Apps that may not need risk evaluation functionality
to call the OraPmtReq API directly without any Risk related input. All the other
inputs and outputs are identical to the above API. Only the input parameter p_
riskinfo_rec is absent in the overloaded API’s signature definition.

iPayment PL/SQL APIs C-5

PL/SQL APIs Procedure Definitions

C-6

Signature

Procedure OraPmtReq (p_api_version IN

p_init_msg_list IN
p_commit IN

p_validation level IN

p_ecapp_id IN
p_payee_rec IN
p_payer_rec IN
p_pmtinstr_rec IN
p_tangible_rec IN
p_pmitregtrxn_rec IN
p_riskinfo_rec IN
X_return_status OUT
X_msg_count OUT
X_msg_data ouT
X_reqgresp_rec OUT

NUMBER,
VARCHAR2:=FND_API.G_FALSE
VARCHAR2:=FND_API.G_FALSE
NUMBER=FND_APIL.G_VALID
LEVEL _FULL

NUMBER,

Payee rec_type,

Payer_rec_type,
Pmtinstr_rec_type,
Tangible_rec_type,
PmtReqTrxn_rec type,
Riskinfo_rec_type,

VARCHAR?2,

NUMBER,

VARCHAR?2,

RegResp_rec_type)

Overloaded API Signature (without risk objects):
Procedure OraPmtReq (p_api_version IN

Implementation Guide

p_init_msg_list IN
p_commit IN

p_validation level IN

p_ecapp_id IN
p_payee_rec IN
p_payer_rec IN
p_pmtinstr_rec IN

p_tangible_rec IN

NUMBER,
VARCHAR2:=FND_API.G_FALSE,
VARCHAR2:=FND_API.G_FALSE,
NUMBER:=FND_API.G_VALID_
LEVEL_FULL,

NUMBER,

Payee_rec_type,

Payer_rec_type,
Pmtinstr_rec_type,

Tangible_rec_type,

PL/SQL APIs Procedure Definitions

p_pmtreqgtrxn_rec IN PmtReqTrxn_rec type,
x_return_status OUT VARCHAR?2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR2,
x_reqresp_rec OUT ReqResp_rec_type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_payee_rec IN Payee_rec_type Required
Payee_ID VARCHAR?2 Required
p_payer_rec IN Payer_rec_type - Optional
Payer_ID VARCHAR?2 Optional
p_pmtinstr_rec IN Pmtlnstr_rec_type - Required
1. Pmtinstr_ID NUMBER Mandatory
if2and 3
are both
null
Note: Address 2. CreditCardInstr CreditCardInstr_rec_type Mandatory
record is optional if Land 3
overall, but if are null
passed, then the 4
fields Addr1, City,
State, Postal Code
(1,2,3,4)* are
together
Mandatory.
CC_Num Required

iPayment PL/SQL APIs C-7

PL/SQL APIs Procedure Definitions

C-8

IN/ Required/

Parameter OUT DataType SubType Optional
CC_ExpDate Required
1.CC_BillingAddr.Addressl Optional*
2.CC_BillingAddr.City Optional*
3.CC_BillingAddr.State Optional*
4.CC_BillingAddr.PostalCode Optional*
5.CC_BillingAddr.Address2 Optional
6. CC_BillingAddr.Address3 Optional
7.CC_BillingAddr.County Optional
8.CC_BillingAddr.Country Optional
9. CC_Type Optional
10.CC_HolderName Optional
11. FIName Optional

Note: Address 3.PurchasetCardIin PurchaseCardInstr_rec_type Mandatory

record is optional str if1and 3

overall, but if are null

passed, then the 4

fields Addrl, City,

State, Postal Code

(1,2,3,4)* are

together

Mandatory.
PC_Num Required
PC_ExpDate Required
1.PC_BillingAddr.Addressl Optional*
2.PC_BillingAddr.City Optional*
3.PC_BillingAddr.State Optional*
4.PC_BillingAddr.PostalCode Optional*
5.PC_BillingAddr.Address2 Optional
6. PC_BillingAddr.Address3 Optional
7.PC_BillingAddr.County Optional
8.PC_BillingAddr.Country Optional

Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
9. PC_Type Optional
10.PC_HolderName Optional
11. FIName Optional
12. PC_SubType Mandatory
4. BankAcctinstr ~ BankAcctInstr_rec_type Mandatory
if 1and 2
are both
null
Bank_ID Required
BankAcct_Num Required
BankAcct_Type Required
Branch_ID Optional
FIName Optional
BankAcct_HolderName Required
5. Pmtinstr_ VARCHAR?2 Optional
ShortName
p_tangible_rec IN Tangible_rec_type Required
1. Tangible_ID VARCHAR?2 Required
2. Tangible_ NUMBER Required
Amount
3. Currency_Code VARCHAR?2 Required
4. RefInfo VARCHAR2 Optional
5. Memo VARCHAR?2 Optional
6. Acct_Num VARCHAR?2 Optional
p_pmtreqtrxn_rec IN PmtReqTrxn_rec_ Required
type
IN PmtMode VARCHAR2 Required

iPayment PL/SQL APIs C-9

PL/SQL APIs Procedure Definitions

C-10

IN/ Required/
Parameter OUT DataType SubType Optional
IN Settlement_Date DATE Mandatory
for
PmtMode
OFFLINE
IN Check_Flag VARCHAR?2 Optional
with
default
value =
‘TRUE’ for
PmtMode
OFFLINE
IN Auth_Type VARCHAR2 Mandatory
for
CreditCard
IN Retry_Flag VARCHAR?2 Optional
IN Org_ID NUMBER Optional
IN NLS_LANG VARCHAR?2 Optional
IN PONum NUMBER Mandatory
for
Purchase
Card
IN TaxAmount NUMBER Optional
IN ShipFromZip VARCHAR?2 Optional
IN ShipToZip VARCHAR2 Optional
IN AnalyzeRisk VARCHAR2 Optional
p_riskinfo_rec IN RiskInfo_rec_type Optional
Formula_Name VARCHAR?2 Optional
ShipToBillTo_Flag VARCHAR2 Optional
Time_Of Purchase VARCHAR2 Optional
Customer_Acct VARCHAR?2 Optional

X_return_status

Implementation Guide

Num

OUT VARCHAR2

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
X_reqresp_rec OUT ReqgResp_rec_type
(GENERIC OUT Response: Response_rec_type:
SQE\I\I/IEERNT Status NUMBER
RESPONSE) ErrCode VARCHAR?2

ErrMessage VARCHAR?2
NLS_LANG VARCHAR?2

OUT Trxn_ID NUMBER

OUT RefCode VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR?2

OUT BEPErrMessage VARCHAR?2
(OPERATION
RELATED
RESPONSE)

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT Authcode VARCHAR2

OUT AVSCode VARCHAR2

OUT Pmtinstr_Type VARCHAR2

OUT Acquirer VARCHAR?2

OUT VpsBatch_ID VARCHAR?2

OUT AuxMsg VARCHAR?2

iPayment PL/SQL APIs C-11

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT DataType SubType Optional
(RISK RELATED OUT RiskRespincluded VARCHAR?2
RESPONSE) RiskResponse RiskResp_rec_type

Status NUMBER

ErrCode VARCHAR2

ErrMessage VARCHAR2

Additional _

ErrMessage VARCHAR?

Rfsk_Score NUMBER

'FIELSrI;EhoId_ NUMBER

Val

Risk_Flag VARCHAR2
(OFFLINE MODE OUT OffLineResp
EES_I?(-I)—EIES)E) EarliestSettle DATE

ment_Date

Scheeduled_ DATE

OraPmtMod
API type: Public
Prerequisites for calling the API: Existing scheduled Off-line payment request
Function(s) performed by the API:

This API handles modifications to existing Payment request. A payment that was
requested earlier by an EC-App can be modified using this APl. Payment
modification is relevant in case of Scheduled (i.e., OFFLINE) payments. Users may
decide to modify a payment before it is sent to the payment system.

The payee and tangible_id cannot be modified. The payment instrument can be
modified, but the modified/new payment instrument should be of the same type as
the original request. (If original instrument is a credit card, the modified instrument
should be a credit card.)

C-12 Implementation Guide

PL/SQL APIs Procedure Definitions

Signature

Procedure OraPmtMod (p_api_versionIN

p_init msg_list IN
p_commit IN
p validation level IN

p_ecapp_id IN
p_payee_rec IN
p_payer_rec IN
p_pmtinstr_rec IN
p_tangible_rec IN

p_modtrxn_rec IN

X_return_status OUT
ouT
ouT

X_msg_count

X_msg_data

X_modresp_rec OUT

NUMBER,

VARCHAR2 :=FND_API.G_FALSE,
VARCHAR?2 .= FND_API.G_FALSE,
NUMBER = FND_APIG VALID
LEVEL FULL,

NUMBER,

Payee_rec_type,
Payer_rec_type,
Pmtinstr_rec_type,
Tangible_rec_type,
ModTxn_rec_type,
VARCHAR?2,

NUMBER,

VARCHAR?2,
ModResp_rec_type)

Parameters
IN/ Required/

Parameter OUT Data Type Sub Type Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR?2 Optional
p_commit IN VARCHAR?2 Optional
p_validation_level IN NUMBER Optional
p_ecapp_id IN NUMBER Required
p_payee_rec IN Payee_rec_type Required

Payee ID VARCHAR?2 Required
p_payer_rec IN Payer_rec_type Optional

iPayment PL/SQL APIs C-13

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
Payer_ID VARCHAR?2 Optional
Payer_Name VARCHAR2 Optional
p_pmtinstr_rec IN Pmtlnstr_rec_type Required
1. Pmtinstr_ID NUMBER Mandatory
if2and 3
are both
null
Note: Address 2. CreditCardInstr CreditCardInstr_rec_type Mandatory
record is optional if Land 3
overall, but if are null
passed, then the 4
fields Addr1, City,
State, Postal Code
(1,2,3,4)* are
together
Mandatory:.
CC_Num Required
CC_ExpDate Required
1.CC Optional*

BillingAddr.Address1
2.CC_BillingAddr.City Optional*
3.CC_BillingAddr.State Optional*

4.CC_ Optional*
BillingAddr.PostalCode

5.CC_ Optional
BillingAddr.Address2
6.CC_ Optional

BillingAddr.Address3

7.CC_BillingAddr.County Optional
8.CC_BillingAddr.Country Optional
9. CC_Type Optional

C-14 Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT Data Type Sub Type Optional
10.CC_HolderName Optional
11. FIName Optional

Note: Address 3.PurchasetCardInst PurchaseCardInstr_rec_ Mandatory

record is optional r type if Land 3

overall, but if are null

passed, then the 4

fields Addr1, City,

State, Postal Code

(1,2,3,4)* are

together

Mandatory.
PC_Num Required
PC_ExpDate Required
1.PC_ Optional*
BillingAddr.Address1
2.PC_BillingAddr.City Optional*
3.PC_BillingAddr.State Optional*
4.PC_ Optional*
BillingAddr.PostalCode
5.PC_ Optional
BillingAddr.Address2
6. PC Optional

BillingAddr.Address3
7.PC_BillingAddr.County Optional
8.PC_BillingAddr.Country Optional

9. PC_Type Optional
10.PC_HolderName Optional
11. FIName Optional
12. PC_SubType Mandatory

iPayment PL/SQL APIs C-15

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
4. BankAcctInstr BankAcctInstr_rec_type Mandatory
if1land 2
are both
null
Bank_ID Required
BankAcct_Num Required
BankAcct_Type Required
Branch_ID Optional
FIName Optional
BankAcct_HolderName Required
5. Pmtinstr_ VARCHAR?2 Optional
ShortName
p_pmtinstr_rec IN Pmtlnstr_rec_type Required
1. Pmtinstr_ID NUMBER Mandatory
if2and 3
are both
null
Note: Address 2. CreditCardlnstr CreditCardInstr_rec_typ Mandatory
record is optional if1and 3
overall, but if are null
passed, then the 4
fields Addr1, City,
State, Postal Code
(1,2,3,4)* are
together
Mandatory.
CC_Num Required
CC_ExpDate Required
1.CC_ Optional*
BillingAddr.Address1
2.CC_BillingAddr.City Optional*
3.CC_BillingAddr.State Optional*
4.CC Optional*

C-16 Implementation Guide

BillingAddr.PostalCode

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
5.CC_ Optional
BillingAddr.Address2
6.CC Optional

BillingAddr.Address3
7.CC_BillingAddr.County Optional
8.CC_BillingAddr.Country Optional

9. CC_Type Optional
10.CC_HolderName Optional
11. FIName Optional
3. BankAcctlInstr BankAcctInstr_rec_type Mandatory
if1land 2
are both
null
Bank_ID Required
BankAcct_Num Required
BankAcct_Type Required
Branch_ID Optional
FIName Optional

BankAcct_HolderName Required

p_tangible_rec IN Tangible_rec_type Required
1.Tangible_ID VARCHAR?2 Required
2 Tangible_Amount NUMBER Required
3.Currency_Code VARCHAR?2 Required
4.RefInfo VARCHAR?2 Optional
5. Memo VARCHAR?2 Optional
6. Acct_Num VARCHAR?2 Optional
p_modtrxn_rec IN ModTrxn_rec_type Required
PmtMode VARCHAR?2 Required
Trxn_ID NUMBER Required

iPayment PL/SQL APIs C-17

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
Auth_Type VARCHAR?2 Mandatory
for
CreditCard
Settlement_Date DATE Mandatory
for
PmtMode=
OFFLINE
Check_Flag VARCHAR?2 Optional
with default
value =
‘TRUE’ for
PmtMode =
OFFLINE
IN PONum NUMBER Mandatory
for Purchase
Card
IN TaxAmount NUMBER Optional
IN ShipFromzZip VARCHAR?2 Optional
IN ShipToZip VARCHAR?2 Optional
X_return_status OUT VARCHAR?
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR?2

X_modresp_rec OUT ModResp_rec_type

(GENERIC OUT Response Response_rec_type
PAYMENT
SERVER Status NUMBER
RESPONSE) ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR2
OUT Trxn_ID NUMBER

C-18 Implementation Guide

PL/SQL APIs Procedure Definitions

OraPmtCanc

IN/
Parameter OUT Data Type

(OFFLINE MODE OUT OffLineResp
RELATED

RESPONSE) EarliestSettlement_

Date
Scheduled_Date

Required/
Sub Type Optional
DATE
DATE

API type: Public

Prerequisites for calling the API: Existing scheduled Offline payment operation that
should be canceled. The payment operations that can be canceled are payment

request, capture etc.

Function(s) performed by the API:

This APl handles cancellations of offline payment operations. For offline operations,
since the operation information is maintained in the database, this API can cancel
the entire operation before it gets to reach the payment system. If the payment
operation is already submitted to payment system, then cancellation will not

happen.

Signature
Procedure OraPmtCanc (p_api_versionIN

p_init_msg_list IN
p_commit IN

p_validation_level IN

p_ecapp_id IN
p_canctrxn_rec IN
X_return_status OUT
X_msg_count OUT
X_msg _data OUT

NUMBER,

VARCHAR?2 := FND_API.G_FALSE,
VARCHAR?2 :=FND_API.G_FALSE,
NUMBER := FND_API.G_VALID
LEVEL_FULL,

NUMBER,

CancelTrxn_rec type,

VARCHAR?2,

NUMBER,

VARCHAR?2,

iPayment PL/SQL APIs C-19

PL/SQL APIs Procedure Definitions

X_cancresp_rec OUT

CancelResp_rec_type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_canctrxn_rec IN CancelTrxn_rec_type Required
IN Trxn_ID NUMBER Required
Reqg_Type VARCHAR?2 Required
IN NLS_LANG VARCHAR2 Optional
X_return_status OUT VARCHAR?2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
X_cancresp_rec OUT CancelResp_rec_type
(GENERIC OUT Response Response_rec_type
g’é‘g\'\//lEERNT Status NUMBER
RESPONSE) ErrCodeErr VARCHAR2
Message VARCHAR?2
NLS_LANG VARCHAR2
(CANCEL
OPERATION
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2
OUT BEPErrMessage VARCHAR?2

C-20 Implementation Guide

PL/SQL APIs Procedure Definitions

OraPmtCapture
API type: Public
Prerequisites for calling the API: Previously authorized payment request operation.
Function(s) performed by the API:

The Capture API is invoked by the EC-App to perform capture of a previously
authorized operation. The captured amount may or may not be the same as the
authorized amount. An authorized operation can only be captured once.

Each authorization operation is valid for a limited time (3-30 days depending on the
cardholder’s bank) before expiring. If capture cannot be performed before the
authorization expires, the merchant must reauthorize the payment, with a different
tangible_id.

Sighature
Procedure OraPmtCapture (p_api_version IN NUMBER,

p_init msg_list IN VARCHARZ:=FND_API.G_FALSE,

p_commit IN VARCHAR2:=FND_API.G_FALSE,
p_validation_levellN NUMBER :=FND_API.G_VALID _
LEVEL_FULL,

p_ecapp_id IN NUMBER,
p_capturetrxn_rec IN CaptureTrxn_rec type,

X return_status OUT VARCHARZ,
X_msg_count OUT NUMBER,

X_msg_data OUT VARCHAR?2,
x_capresp_rec OUT CaptureResp_rec_type)

Parameters

IN/ Required/
Parameter ouT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional

iPayment PL/SQL APIs C-21

PL/SQL APIs Procedure Definitions

C-22

IN/ Required/
Parameter ouT DataType SubType Optional
p_commit IN VARCHAR?2 - Optional
p_validation_ IN NUMBER - Optional
level
p_ecapp_id IN NUMBER - Required
p_capturetrxn_ IN CaptureTrxn_rec_type Required
rec
Trxn_ID NUMBER Required
PmtMode VARCHAR?2 Required
Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE
Currency VARCHAR?2 Required
Price NUMBER Required
NLS_LANG VARCHAR2 Optional
X_return_status ouT VARCHAR?2
X_msg_count ouT NUMBER
X_msg_data OUT VARCHAR2
X_capresp_rec ouT CaptureResp_rec_type
(GENERIC ouT Response Response_rec_type
PAYMENT
SERVER Status NUMBER
RESPONSE) ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR2
(CAPTURE
OPERATION
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
ouT Trxn_Type NUMBER
ouT Trxn_Date DATE
ouT Pmtinstr_Type VARCHAR?2

Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter ouT DataType SubType Optional

OUT RefCode VARCHAR?2

ouT ErrorLocation NUMBER

ouT BEPErrCode VARCHAR?2

ouT BEPErrMessage VARCHAR?2
(OFFLINEMODE OUT OffLineResp
EES_I?(-I)—EIES)E) EarliestSettlement_Date DATE

Scheduled_Date DATE

OraPmtReturn
API type: Public

Prerequisites for calling the API: Previous payment capture operation

Function(s) performed by the API:

This API is invoked by the EC-App to credit a customer account in the case where
customer returns goods purchased through a previously captured payment
operation. Only one return can be applied against each order, subsequent returns
must be treated as standalone credits. The operation takes in the transaction 1D of
the initial payment operation, and returns the same transaction ID as part of the

output.

Signature

Procedure OraPmtReturn (p_api_version [N

p_init_ msg_list IN
p_commit IN

p_validation_level IN

p_ecapp_id IN

p_returntrxn_rec IN

NUMBER,
VARCHAR? :=FND_API.G_FALSE,
VARCHAR? := FND_API.G_FALSE,
NUMBER = FND_API.G VALID_
LEVEL FULL,

NUMBER,

ReturnTrxn_rec_type,

X_return_status OUT VARCHAR2,
X_msg_count OUT NUMBER,

iPayment PL/SQL APIs C-23

PL/SQL APIs Procedure Definitions

C-24

X_msg_data

X_retresp_rec

OUT VARCHAR?Z,

OUT ReturnResp_rec_type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_returntrxn_rec IN ReturnTrxn_rec_type Required
Trxn_ID NUMBER Required
PmtMode VARCHAR?2 Required
Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE
Currency VARCHAR?2 Required
Price NUMBER Required
NLS_LANG VARCHAR2 Optional
X_return_status OUT VARCHAR?
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
X_returnresp_rec OUT ReturnResp_rec_type
(GENERIC OUT Response Response_rec_type
g@ggﬂoEll\l\gE)SERVER Status NUMBER
ErrCode VARCHAR?2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR2

Implementation Guide

PL/SQL APIs Procedure Definitions

OraPmtVoid

IN/ Required/
Parameter OUT DataType SubType Optional
(RETURN
OPERATION
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Pmtinstr_Type VARCHAR2
OUT RefCode VARCHAR?2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2
OUT BEPErrMessage VARCHAR?2
(OFFLINE MODE OUT OffLineResp
RELATED .
RESPONSE) EarliestSettlement_Date DATE

Scheduled_Date DATE

API type: Public
Prerequisites for calling the API:Existing payment operations
Function(s) performed by the API:

The Void API voids a capture or return operation for an order before the operation
is settled. It takes in the transaction ID of the initial payment request and returns the
same transaction ID as part of the output. Void Operations can be performed on
“Capture”, “Return” and “Credit” Operations for all back-end Payment Systems,
and on “Authorization” operations for certain back-end payment systems.

The Void operation has to be used to void the most recent operation for the
designated Order ID. For example, you perform a capture and then a return
operation for a particular Order ID, if you try to void the capture, it'll result in an
error.

iPayment PL/SQL APIs C-25

PL/SQL APIs Procedure Definitions

Signature
Procedure OraPmt\Void (p_api_version IN NUMBER,

p_init msg_list ~ IN VARCHAR2:=FND_APL.G_FALSE,

p_commit IN VARCHAR2:=FND_APIL.G_FALSE,

p_validation_level IN NUMBER:= FND_APL.G_VALID_
LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_voidtrxn_rec IN VoidTrxn_rec_type,
x_return_status OUT VARCHAR?2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR?2,
x_voidresp_rec OUT VoidResp_rec_type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_voidtrxn_rec IN VoidTrxn_rec_type Required
Trxn_ID NUMBER Required
PmtMode VARCHAR2 Required
Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE
Trxn_Type VARCHAR?2 Required
NLS_LANG VARCHAR?2 Optional
X_return_status OUT VARCHAR?

C-26 Implementation Guide

PL/SQL APIs Procedure Definitions

OraPmtCredit

IN/ Required/
Parameter OUT DataType SubType Optional
X_msg_count OUT NUMBER
Xx_msg_data OUT VARCHAR2
x_voidresp_rec OUT VoicResp_rec_type
(GENERIC OUT Response Response_rec_type
PAYMENT SERVER Status NUMEER
ErrCode VARCHAR?2
ErrMessage VARCHAR2
NLS_LANG VARCHAR?2
(VOID OPERATION
ONLINE MODE
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Pmtinstr_Type VARCHAR?2
OUT RefCode VARCHAR?2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2
(OFFLINE MODE OUT OffLineResp
EEIS‘PASEEE) EarliestSettlement_Date = DATE
Scheduled_Date DATE

API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

iPayment PL/SQL APIs C-27

PL/SQL APIs Procedure Definitions

This API is invoked by the EC-App to credit a customer account in the case that the
merchant wants to issue a “standalone credit”(i.e., a credit not associated with any
previous order). It returns the transaction ID as part of the output.

Sighature
Procedure OraPmtCredit (p_api_version IN NUMBER,

p_init msg list IN VARCHAR2 :=FND_API.G_FALSE,

p_commit IN VARCHAR2:=FND_APILG_FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_
LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_payee_rec IN Payee_rec_type,

p_pmtinstr_rec IN Pmtinstr_rec_type,
p_tangible_rec IN Tangible rec_type,
p_credittrxn_rec IN CreditTrxn_rec_type,
Xx_return_status OUT VARCHAR?2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR?2,
x_creditresp_rec OUT CreditResp_rec_type)

Parameters
IN/ Required/

Parameter OUT Data Type Sub Type Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_ IN NUMBER - Optional
level

p_ecapp_id IN NUMBER - Required
p_payee_rec IN Payee_rec_type Required

C-28 Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
Payee_ID VARCHAR?2 Required
p_pmtinstr_rec IN Pmtlnstr_rec_type Required
1. Pmtinstr_ID NUMBER Mandatory
if2and 3
are both
null
Note: Address 2. CreditCardInstr CreditCardlInstr_rec_type Mandatory
record is ifland 3
optional overall, are null
but if passed,
then the 4 fields
Addri, City,
State, Postal
Code (1,2,3,4)*
are together
Mandatory:.
CC_Num Required
CC_ExpDate Required
1.CC_BillingAddr.Address1l Optional*
2.CC_BillingAddr.City Optional*
3.CC_BillingAddr.State Optional*
4.CC_ Optional*
BillingAddr.PostalCode
5.CC_BillingAddr.Address2 Optional
6. CC_BillingAddr.Address3 Optional
7.CC_BillingAddr.County Optional
8.CC_BillingAddr.Country Optional
9. CC_Type Optional
10.CC_HolderName Optional
11. FIName Optional

iPayment PL/SQL APIs C-29

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT Data Type Sub Type Optional

Note: Address 3.PurchasetCardInstr PurchaseCardlInstr_rec_type Mandatory

record is if1and 3

optional overall, are null

but if passed,

then the 4 fields

Addr1, City,

State, Postal

Code (1,2,3,4)*

are together

Mandatory.
PC_Num Required
PC_ExpDate Required
1.PC_BillingAddr.Addressl Optional*
2.PC_BillingAddr.City Optional*
3.PC_BillingAddr.State Optional*
4.PC_ Optional*
BillingAddr.PostalCode
5.PC_BillingAddr.Address2 Optional
6. PC_BillingAddr.Address3 Optional
7.PC_BillingAddr.County Optional
8.PC_BillingAddr.Country Optional
9. PC_Type Optional
10.PC_HolderName Optional
11. FIName Optional
12. PC_SubType Mandatory

Note: This 4. BankAcctlInstr BankAcctInstr_rec_type Mandatory

operation if land 2

(Credit) is not are both

supported for null

bank accounts
in this release.
This record will
be ignored.

C-30 Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
Bank_ID Required
BankAcct_Num Required
BankAcct_Type Required
Branch_ID Optional
FIName Optional
BankAcct_HolderName Required
5. Pmtinstr_ VARCHAR?2 Optional
ShortName
p_tangible_rec IN Tangible_rec_type Required
1.Tangible_ID VARCHAR?2 Required
2 Tangible_Amount NUMBER Required
3.Currency_Code VARCHAR?2 Required
4.RefInfo VARCHAR?2 Optional
5. Memo VARCHAR2 Optional
6. Acct_Num VARCHAR2 Optional
p_credittrxn_rec IN CreditTrxn_rec_type Required
IN PmtMode VARCHAR?2 Required
Settlement_Date DATE Mandatory
for
PmtMode=
OFFLINE
Org_ID NUMBER Optional
NLS_LANG VARCHAR?2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2

x_creditresp_rec OUT

CreditResp_rec_type

iPayment PL/SQL APIs C-31

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
(GENERIC OUT Response Response_rec_type
PAYMENT
SERVER Status NUMBER
RESPONSE) ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR?2
(CREDIT
OPERATION
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Pmtinstr_Type VARCHAR?2
OUT RefCode VARCHAR?2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2
OUT BEPErrMessage VARCHAR2
(OFFLINE OUT OffLineResp
MODE .
RELATED gz;rtlelestSettlement_ DATE
RESPONSE)
Scheduled_Date DATE
OraPmtQryTrxn

C-32

API type: Public

Prerequisites for calling the APl:None

Function(s) performed by the API:

This API provides an interface for querying payment operations details. This API
will return either all the operations performed on the queried transaction id or the
latest operation, based on the value of the History_Flag which is one of the input

parameters. Payment Mode is always ‘ONLINE’ for this operation.

Implementation Guide

PL/SQL APIs Procedure Definitions

Signature
Procedure OraPmtQryTrxn (p_api_versionIN NUMBER,

p_init msg_list IN VARCHAR?Z:=FND_API.G_FALSE,

p_commit IN VARCHAR2 :=FND_API.G_FALSE,
p_validation_levelIN NUMBER = FND_API.G_VALID_
LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_querytrxn_rec IN QueryTrxn_rec_type,

X_return_status OUT VARCHAR?2,

x_msg_count OUT NUMBER,

X_msg_data OUT VARCHAR?2,
x_qrytrxnrespsum_rec OUT QryTrxnRespSum_rec_type,
x_grytrxnrespdet_tbl OUT QryTrxnRespDet_tbl_type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_querytrxn_rec IN QueryTrxn_rec_type Required
Trxn_ID NUMBER Required
History_Flag VARCHAR?2 Required
NLS_LANG VARCHAR?2 Optional
X_return_status OUT VARCHAR?
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2

iPayment PL/SQL APIs C-33

PL/SQL APIs Procedure Definitions

C-34

IN/ Required/
Parameter OUT DataType SubType Optional
X_grytrxnrespsum_rec OUT QryTrxnRespSum_rec_
type
OUT Response Response_rec_type
Status NUMBER
ErrCode VARCHAR?2
ErrMessag VARCHAR2
NLS_LANG VARCHAR?2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2
x_grytrxnrespdet_tbl OUT QryTrxnRespDet_tbl_
N.B.: All detail type
records name-value
pairs will have ‘-n’
suffixed to show the
index value ‘n’
OUT Status NUMBER
OUT StatusMsg VARCHAR?2
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
Trxn_Date DATE
ouT
OUT Pmtinstr_Type VARCHAR?2
OUT Currency VARCHAR?2
OUT Price NUMBER
OUT RefCode VARCHAR2
OUT AuthCode VARCHAR2
OUT AVSCode VARCHAR2
OUT Acquirer VARCHAR?2
OUT VpsBatch_ID VARCHAR?2
OUT AuxMsg VARCHAR?2

Implementation Guide

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType

OUT ErrorLocation
OUT BEPErrCode
OUT BEPErrMessage

Required/
SubType Optional
NUMBER
VARCHAR?2
VARCHAR?2

OraPmtCloseBatch
API type: Public

Prerequisites for calling the API: Existing current batch of operations

Function(s) performed by the API:

This API allows a merchant or business to close a batch of previously performed
operations. The operation types that can be included in a batch are capture, return
and credit. This operation is mandatory for a terminal-based merchant; a host-based
merchant may not need to explicitly close the batch since the batch is generally
closed at predetermined intervals automatically by the processor.

For more information on terminal-based merchant, please refer to “Understanding
Terminal Based Merchant” in the Oracle iPayment Concepts and Procedures manual.

Sighature
Procedure OraPmtCloseBatch (p_api_version IN

p_init_ msg_list IN

p_commit IN

p_validation_levellN

p_ecapp_id IN
p_batchtrxn_rec IN

NUMBER,

VARCHAR?2 :=FND_APIL.G_
FALSE,

VARCHAR2 :=FND_APIL.G_
FALSE,

NUMBER = FND_API.G_VALID_
LEVEL_FULL,

NUMBER,

BatchTrxn_rec_type,

X_return_status OUT VARCHARZ,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR?2,

iPayment PL/SQL APIs C-35

PL/SQL APIs Procedure Definitions

C-36

x_closebatchrespsum_rec

x_closebatchrespdet_tbl

OUT BatchRespSum_rec_type,
OUT BatchRespDet_tbl_type

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optional
p_commit IN VARCHAR2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_batchtrxn_rec IN BatchTrxn_rec_type Required
IN PmtMode VARCHAR?2 Required
PmtType VARCHAR?2 Optional
IN Settlement_Date DATE Mandator
yif
PmtMode
is
OFFLINE
IN Payee_ID VARCHAR?2 Required
IN MerchBatch_ID VARCHAR?2 Required
IN NLS_LANG VARCHAR2 Optional
X_return_status OUT VARCHAR?2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR?2

x_closebatchrespsum_rec OUT

Implementation Guide

ouT

BatchRespSum_rec_type

Response
Status
ErrCode
ErrMessage
NLS_LANG

Response_rec_type
NUMBER
VARCHAR?2
VARCHAR?2

VARCHAR?2

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT DataType SubType Optional

(OFFLINE MODE OUT OffLineResp OffLineResp_rec_

RELATED RESPONSE) type
OUT EarliestSettlement_Date DATE

Scheduled_Date DATE

OUT NumTrxns NUMBER
OUT MerchBatch_ID VARCHAR2
OUT BatchsState NUMBER
OUT BatchDate DATE
OUT Payee_ID VARCHAR?2
OUT Credit_ Amount NUMBER
OUT Sales_ Amount NUMBER
OUT Batch_Total NUMBER
OUT Currency VARCHAR?2
OUT VpsBatch_ID VARCHAR?2
OUT GWBatch_ID VARCHAR?2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2
OUT BEPErrMessage VARCHAR?2

x_closebatchrespdet_ OUT BatchRespDet_tbl_type

tbIN.B.: All detail records

name-value pairs will

have ‘-n’ suffixed to

show the index value ‘n’
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Status NUMBER
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2

iPayment PL/SQL APIs C-37

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType

OUT BEPErrMessage
OUT NLSLANG

Required/
SubType Optional
VARCHAR?2
VARCHAR?2

OraPmtQueryBatch

C-38

API type: Public
Prerequisites for calling the API: None

Function(s) performed by the API:

This API provides an interface to query the status of any previous batch of
operations by providing the Batch ID (i.e., MerchBatch_ID) as part of the input.

Payment Mode is always ‘ONLINE’ for this operation.

Signature
Procedure OraPmtQueryBatch (p_api_version IN

p_init_msg_list IN

p_commit IN

p_validation_level IN

p_ecapp_id IN
p_batchtrxn_rec IN
X_return_status OUT
Xx_msg_count OUT
X_msg_data ouT
X_grybatchrespsum_rec OUT
X_grybatchrespdet_tbl OUT

Implementation Guide

NUMBER,

VARCHAR2 :=FND_API.G_
FALSE,

VARCHAR2 :=FND_APILG_
FALSE,

NUMBER :=FND_API.G_
VALID_LEVEL_FULL,
NUMBER,
BatchTrxn_rec_type,
VARCHAR?2,

NUMBER,

VARCHAR?2,
BatchRespSum_rec_type,
BatchRespDet_tbl_type)

PL/SQL APIs Procedure Definitions

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_batchtrxn_rec IN BatchTrxn_rec_type Required
IN PmtMode VARCHAR?2 Required
(will be NULL since IN Settlement_Date DATE Mandatory
always PmtMode ifPmtMode
=‘ONLINE") is OFFLINE
IN Payee ID VARCHAR?2 Required
IN MerchBatch_ID VARCHAR2 Required
IN NLS_LANG VARCHAR?2 Optional
X_return_status OUT VARCHAR?
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
x_grybatchrespsum_rec OUT BatchRespSum_rec_type
OUT Response Response_rec_type
Status NUMBER
ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR2
OUT NumTrxns NUMBER
MerchBatch_ID VARCHAR?2
BatchState NUMBER
BatchDate DATE
Payee_ID VARCHAR2

iPayment PL/SQL APIs C-39

PL/SQL APIs Procedure Definitions

OraPmting

IN/ Required/
Parameter OUT DataType SubType Optional
Credit Amount NUMBER
Sales_ Amount NUMBER
Batch_Total NUMBER
Currency VARCHAR?2
VpsBatch_ID VARCHAR2
GWaBatch_ID VARCHAR2
ErrorLocation NUMBER
BEPErrCode VARCHAR?2
BEPErrMessage VARCHAR?2
X_grybatchrespdet_ OUT BatchRespDet_tbl_type
tbIN.B.: All detail
records name-value
pairs will have ‘-n’
suffixed to show the
index value ‘n’
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Status NUMBER
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2
OUT BEPErrMessage VARCHAR?2
OUT NLS_LANG VARCHAR?2

API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

This API provides high-level payment information such as Payee, Payer,
Instrument, and Tangible related information. It can be used when all the

C-40 Implementation Guide

PL/SQL APIs Procedure Definitions

information regarding a payment is needed. So an EC-App which does not store all
the payment related information locally, can invoke this API to find all the
information pertaining to the payment operation. Typically used to display the
information to the end user for editing in case of OFFLINE operation in an
application like internet payments.

It takes in the ECApp ID and the transaction ID as input parameters.

Sighature
Procedure OraPmtinq(p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR?2 :=FND_API.G_FALSE,

p_commit IN VARCHAR?2 := FND_API.G_FALSE,

p_validation_level IN NUMBER = FND_API.G_

VALID_LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_tid IN NUMBER,

Xx_return_status OUT VARCHAR?2,

X_msg_count OUT NUMBER,

X_msg_data OUT VARCHAR?2,

X_ingresp_rec OUT IngResp_rec_type)
Parameters

IN/ Required/

Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR?2 - Optional
p_commit IN VARCHAR?2 - Optional
p_validation_level IN NUMBER - Optional
p_ecapp_id IN NUMBER - Required
p_tid IN NUMBER - Required

X_return_status ouT

VARCHAR?2

iPayment PL/SQL APIs C-41

PL/SQL APIs Procedure Definitions

C-42

IN/ Required/
Parameter OUT DataType SubType Optional
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
X_ingresp_rec OUT IngResp_rec_type
(GENERIC OUT Response Response_rec_type
SQE\I\I/IEERNT Status NUMBER
RESPONSE) ErrCode VARCHAR?2
ErrMessage VARCHAR2
NLS_LANG VARCHAR?2
(INQUIRY
OPERATION
RELATED
RESPONSE)
OUT Payer Payer_rec_type
Payer_ID VARCHAR2
Payer_Name VARCHAR2
OUT Payee Payee_rec_type
Payee_ID VARCHAR?2
OUT Tangible Tangible_rec_type
Tangible_ID VARCHAR?2
Tangible_Amount NUMBER
Currency_Code VARCHAR2
Reflnfo VARCHAR?2
Memo VARCHAR?2
Acct_Num VARCHAR?2

Implementation Guide

PL/SQL Record/Table Types Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
OUT Pmtlinstr Pmtlnstr_rec_type
Pmtinstr_ID

Pmtinstr_ShortName

CreditCardInstr CreditCardInstr_rec_type
CC_Num
CC_ExpDate
CC_BillingAddr.Address1
CC_BillingAddr.Address?2
CC_BillingAddr.Address3
CC_BillingAddr.City
CC_BillingAddr.County
CC_BillingAddr.State
CC_BillingAddr.Country
CC_BillingAddr.PostalCode
CC_Type
CC_HolderName
FIName

BankAcctinstr BankAcctInstr_rec_type
Bank_ID
BankAcct_Num
BankAcct_Type
Branch_ID
FIName
BankAcct_HolderName

PL/SQL Record/Table Types Definitions

The following PL/SQL record/table types are defined to store the objects (entities)
necessary for the ECApp PL/SQL APIs. For information on Mandatory,
Conditionally Mandatory, and Optional fields in these records/tables, please refer
to the ensuing API descriptions, where these requirements are tabulated.

iPayment PL/SQL APIs C-43

PL/SQL Record/Table Types Definitions

Payments Related Generic Record Types

1. TYPE Payee_rec_type IS RECORD (

Payee_ ID

VARCHAR2(80)

C-44

);

Payee_ID: ID of the payee

2. TYPE Payer_rec_type IS RECORD (
Payer_ID VARCHAR2(80),
Payer_Name VARCHAR2(80)

);

Payer_ID: ID of the payer

Payee_Name: Name of the payer

3. TYPE Address_rec_type IS RECORD (

Addressl VARCHAR2(80),
Address2 VARCHARZ2(80),
Address3 VARCHARZ2(80),
City VARCHAR?2(80),
County VARCHARZ2(80),
State VARCHAR?2(80),
Country VARCHAR2(80),
PostalCode VARCHARZ2(40),
Phone VARCHAR2(40),
Email VARCHAR2(40)

);

Addressl: The first line of the street address.
Address2: The second line of the street address.
Address3: The third line of the street address.
City: City in the address

State: State in the address

Implementation Guide

PL/SQL Record/Table Types Definitions

County: County in the address

Country: Country code in the address.

Postalcode: Zip for the address

Phone: Phone for that address. It is for informational purposes only.
Email: It is not supported right now.

4. TYPE CreditCardInstr_rec_type IS RECORD (

FIName VARCHAR2(80),
CC_Type VARCHAR2(80),
CC_Num VARCHAR2(80),
CC_ExpDate DATE,
CC_HolderName VARCHAR2(80),
CC_BillingAddr Address_rec_type

);
Financial Institution Name (FIName): Optional, should be at least of non-trivial
length 3.

CC_Type: Type of credit card (MASTERCARD, VISA, AMEX, ...)

CC_Num: For credit card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

CC_ExpDate: Credit Card expiration date.

CC_HolderName: Credit card holder name

CC_BillingAddr: Address type record for the billing address of the credit card.
5. TYPE PurchaseCardlInstr_rec_type IS RECORD (

FIName VARCHAR2(80),
PC_Type VARCHAR2(80),
PC_Num VARCHAR2(80),
PC_ExpDate DATE,
PC_HolderName VARCHAR2(80),
PC_BillingAddr Address_rec_type,

iPayment PL/SQL APIs C-45

PL/SQL Record/Table Types Definitions

C-46

PC_Subtype VARCHAR2(80)
);

Financial Institution Name (FIName): Optional, should be at least of non-trivial
length 3.

PC_Type: Type of purchase card (MASTERCARD, VISA, AMEX; ...)

PC_Num: For purchase card number, it should be numeric other than dashes and
spaces. However, it will be stored without any spaces or dashes.

PC_ExpDate: Purchase Card expiration date.
PC_HolderName: Purchase card holder name
PC_BillingAddr: Address type record for the billing address of the purchase card.

PC_Subtype: The subtype for purchase card. Possible values are (‘B’/’C’'/’P’/’U")
which are for BUSINESS / CORPORATE / PURCHASE / UNKNOWN.

6. TYPE BankAcctinstr_rec_type IS RECORD (

FIName VARCHAR?2(80),
Bank_ID NUMBER,
Branch_ID NUMBER,
BankAcct_Type VARCHAR2(80),
BankAcct_ Num VARCHAR2(80),

BankAcct_HolderName VARCHAR2(80)
);

Financial Institution Name (FIName): Required, should be at least of non-trivial
length 3.

Bank_ID: Routing number of the bank. Should be at least of non-trivial length 2.
Branch_ID: ID of the branch.
BankAcct_Type: Should be of at least non-trivial length 3. Such as CHECKING
BankAcct_Num: For bank account number, should be at least of non-trivial length 3.
BankAcct_HolderName: Name of the bank account holder
7. TYPE Pmtlnstr_rec_type IS RECORD (

Pmtinstr_ID NUMBER,

Implementation Guide

PL/SQL Record/Table Types Definitions

Pmtinstr_ShortName VARCHAR2(80),

CreditCardInstrCredit CardInstr_rec_type,

BankAcctlInstr BankAcctlInstr_rec_type,

PurchaseCardInstr PurchaseCardlnstr_rec_type
);

Pmtinstr_ID: The payment instrument ID of an already registered payment
instrument.

Pmtinstr_ShortName: Short name for the payment instrument.
CreditCardInstr: Credit card instrument type record. Refer #4 for details.
BankAcctlnstr: Bank account instrument type record. Refer #6 for details.
PurchaseCardInstr: Purchase card instrument type record. Refer #5 for details.

Note: The Payment Instrument Type (i.e., CREDITCARD / PURCHASECARD /
BANKACCOUNT / UNREGISTERED) is derived from the input data, by verifying
which of the input instrument records (i.e., CreditCardInstr, PurchaseCardInstr,
BankAcctlInstr, Pmtinstr_ID) are provided with input values. That particular
instrument type and its component fields are then passed to the iPayment11i
EC-Servlet. So, either Pmtinstr_ID alone is provided for registered instruments, OR
one of the other two (i.e., CreditCardInstr, PurchaseCardInstr, BankAcctlnstr) is
provided as part of payment instrument input.

8. TYPE Tangible_rec_type IS RECORD (

Tangible_ID VARCHAR2(80),
Tangible_Amount NUMBER,

Currency_Code VARCHAR2(80),
Reflnfo VARCHAR2(80),
Memo VARCHAR2(80),
Acct_Num VARCHAR2(80)

)i
Tangible_ID: It is the order id or bill id. It should be unique for a given payee
Tangible_Amount: Should be a positive number.

Currency_Code: The 3 letter currency code.

iPayment PL/SQL APIs C-47

PL/SQL Record/Table Types Definitions

RefInfo: Reference information for this bill/order
Memo: Memo for this bill/order.

Acct_Num: Account number of the customer, if applicable.

Payment Operations Related Record Types
1. TYPE PmtReqTrxn_rec_type IS RECORD (

PmtMode VARCHAR2(30),
Settlement_Date DATE:=,
Auth_Type VARCHAR2(80),
Check_Flag VARCHAR2(30),
Retry_Flag VARCHAR2(30),
Org_ID NUMBER,
NLS_LANG VARCHAR2(80),
PONum NUMBER,
TaxAmount NUMBER,
ShipFromZip VARCHAR2(80),
ShipToZip VARCHAR2(80),
AnalyzeRisk VARCHAR2(80)

);
PmtMode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Check flag: Ignored for ONLINE requests, optional for OFFLINE requests. It is
meaningful only for OFFLINE Bank Account transfer operations when the user
requested settle date is earlier the earliest date it can be settled by the system. When
check flag is set to true, the operation will be rejected if it cannot be settled by user
specified settle date, otherwise, the operation will get scheduled with the earliest
settle date available by the system, and a warning message will be returned saying
unable to meet user specified date.

Retry flag: Should be either 'Y’ or 'N’.

C-48 Implementation Guide

PL/SQL Record/Table Types Definitions

Applicable for ONLINE Credit Card Request and Credit operations.

You should set this flag to 'Y’ when previous request when the same operation may
have been processed by the back payment system. For example, when first request
returns with a time out status, or when OraPmtQryTrxn failed to retrieve the
information. This flag is passed as is to the backend payment system. Check with
individual backend payment system for further details.

Org_ID: The identifier for the organization submitting the request.

Applicable for new operations (Request, Modify, Credit). Should be a positive
integer.

Auth_Type: Applicable for credit card authorization(request), modify, and credit operation
only. Takes one of the following values:

AUTHONLY: terminal-based/host-based authorization only
AUTHCAPTURE: host-based authorization and capture together

AUTHANDCAPTURE: authorization followed by capture. When this is used, it’s
equivalent of doing ‘'oraPmtReq with authonly’ followed by 'oraPmtCapture’ on the
same transaction for authorization and capture

NLSLang: The NLS language code

PONum: Purchase order number for this transaction

TaxAmount: Amount of transaction that is tax

ShipFromZip: The ZIP code from which merchandise will be shipped.
ShipToZip: The ZIP code to which merchandise will be shipped.
AnalyzeRisk: ***need description here***

2. TYPE ModTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,
Check_Flag VARCHAR2(30),
Auth_Type VARCHAR2(80),
PONum NUMBER,
TaxAmount NUMBER,

iPayment PL/SQL APIs C-49

PL/SQL Record/Table Types Definitions

C-50

ShipFromZip VARCHAR2(80),

ShipToZip VARCHAR2(80)
);
Trxn_ID:. The transaction id for the operation which has to be modified.
PmtMode:. Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Check flag: Ignored for ONLINE requests, optional for OFFLINE requests. It is
meaningful only for OFFLINE operations when the user requested settle date is
earlier the earliest date it can be settled by the system. When check flag is set to true,
the operation will be rejected if it cannot be settled by user specified settle date,
otherwise, the operation will get scheduled with the earliest settle date available by
the system, and a warning message will be returned saying unable to meet user
specified date.

Auth_Type: Applicable for credit card authorization(request), modify, and credit operation
only. Takes one of the following values:

AUTHONLY: terminal-based/host-based authorization only
AUTHCAPTURE: host-based authorization and capture together

AUTHANDCAPTURE: authorization followed by capture. When this is used, it’s
equivalent of doing 'oraPmtReq with authonly’ followed by 'oraPmtCapture’ on the
same transaction for authorization and capture

PONum: Purchase order number for this transaction

TaxAmount: Amount of transaction that is tax

ShipFromZip: The ZIP code from which merchandise will be shipped.
ShipTozZip: The ZIP code to which merchandise will be shipped.

3. TYPE CaptureTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,

Currency VARCHAR2(80),
Price NUMBER,

Implementation Guide

PL/SQL Record/Table Types Definitions

NLS_LANG VARCHAR2(80)
);
Trxn_ID:. The transaction id for the operation which has to be captured.
PmtMode:. Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.
NLSLang: The NLS language code

4. TYPE ReturnTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,

Currency VARCHAR2(80),
Price NUMBER,
NLS_LANG VARCHAR2(80)

);
Trxn_ID:. The transaction id for the operation which has to be returned.
PmtMode:. Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.
NLSLang: The NLS language code

5. TYPE CancelTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,
Req_Type VARCHAR2,
NLS_LANG VARCHAR2(80)

iPayment PL/SQL APIs C-51

PL/SQL Record/Table Types Definitions

);
Trxn_ID:. The transaction id for the operation which has to be returned.

Req_Type: optional field provides the option of canceling other operations (such as
Void, Return, etc.), in addition to scheduled payment requests. By Default, this Req_
Type field is set to ‘ORAPMTREQ’ to cancel the authorization operation.

NLSLang: The NLS language code
6. TYPE QueryTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,
History_Flag VARCHAR2(30),
NLS_LANG VARCHARZ2(80)

)i
Trxn_ID:. The transaction id for the operation which has to be queried.

History_Flag: takes in values => ‘TRUE’ or ‘FALSE’. When set to TRUE, it retrieves
the entire history, otherwise it retrieves the latest one only.

NLSLang: The NLS language code
7. TYPE VoidTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,
Trxn_Type NUMBER,
NLS_LANG VARCHAR2(80)

);

Trxn_ID:. The transaction id for the operation which has to be voided. The type of
the operation will be specified in Trxn_Type

PmtMode:. Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

NLSLang: The NLS language code

Trxn_Type: takes the following numeric values:

C-52 Implementation Guide

PL/SQL Record/Table Types Definitions

Lookup Code Meaning Description
2 AuthOnly Online authorization requested for an order
3 AuthCapture Online authorization & capture for an order
4 VoidAuthOnly Void an order authorized but not captured
5 Return Return on an order which is authorized &
captured
6 ECRefund Refund on a purchase done using EC cash/coin
7 VoidAuthCapture Voids a previously authorized & captured trxn
8 Capture Capture funds for previously authorized trxn.
9 MarkCapture Marked for capture by terminal based system
10 MarkReturn Marked for return by terminal based system
11 Credit Refund money to customer
13 VoidCapture Void operation captured by host based system
14 VoidMarkCapture Void operation marked for capture by terminal
based system
17 VoidReturn Void return operation for host based system
18 VoidMarkReturn Void operation marked for return by terminal
based system
102 Batch Admin Used f_or open, purge, query, and close batch
operations
8. TYPE CreditTrxn_rec_type IS RECORD (
PmtMode VARCHAR2(30),
Settlement_Date DATE,
Retry _Flag VARCHAR2(30),
Org_ID NUMBER,
NLS_LANG VARCHAR2(80)
);

PmtMode:. Its value should be either ONLINE or OFFLINE.

iPayment PL/SQL APIs C-53

PL/SQL Record/Table Types Definitions

C-54

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Retry flag: Should be either 'Y’ or 'N’.
Applicable for ONLINE Credit Card Request and Credit operations.

You should set this flag to 'Y’ when previous request when the same operation may
have been processed by the back payment system. For example, when first request
returns with a time out status, or when OraPmtQryTrxn failed to retrieve the
information. This flag is passed as is to the backend payment system. Check with
individual backend payment system for further details.

Org_ID: The identifier for the organization submitting the request.
NLSLang: The NLS language code
9. TYPE BatchTrxn_rec_type IS RECORD (

PmtMode VARCHAR2(30),
PmtType VARCHAR2(30),
Settlement_Date DATE,

Payee ID NUMBER,
MerchBatch_ID VARCHAR2(80),
NLS_LANG VARCHAR?2(80)

);
PmtMode:. Its value should be either ONLINE or OFFLINE.

PmtType: optional, defaulted to empty string. You need specify it if you wish to
operate on a back end payment system rather than the default one.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Payee_ ID: It’s the payee identifier for whom the batch operation is performed.

MerchBatch_ID: It’s the user selected identifier for this operation. Should be a
non-empty string, and should be unique across all merchant batch ids from a
particular payee.

NLSLang: The NLS language code

Implementation Guide

PL/SQL Record/Table Types Definitions

Risk Management Record Types
1. TYPE Riskinfo_rec_type IS RECORD (

Formula_Name VARCHAR2(80),
ShipToBillTo_Flag VARCHAR2(255),
Time_Of_Purchase VARCHAR2(80),
Customer_Acct_ Num NUMBER

);

Formula_Name: Name of the formula to be used.

ShipToBillTo_Flag: used to notify whether the “Ship_To” and the “Bill_To”
addresses match or not (‘TRUE’/’FALSE’).

Time_Of_Purchase: represents the time duration passed in ‘HH:MI’ format in 24
Hours notation. For example, 11 pm will be denoted as ‘23:00°.

Customer_Acct_Num: represents the payer’s account number in Oracle Accounts
Receivables. This field is needed in AR - risk factors evaluation.

Note: For more information on using Risk Management, please refer to the
documentation for the “Integrating Risk Management” under the section
“Implementing iPayment”.

Payment Operations Response Record/Table Types
1. TYPE Response_rec_type ISRECORD (

Status NUMBER,
ErrCode VARCHAR2(80),
ErrMessage VARCHAR2(255),
NLS_LANG VARCHAR2(80)

);

Status: The status for the request. Possible values are (0,1,2 or 3).
ErrCode: The IBY_XXXX error code for the error, if any.
ErrMessage: The error message associated with the error
NLS_LANG: The NLS code.

iPayment PL/SQL APIs C-55

PL/SQL Record/Table Types Definitions

C-56

NOTE: This record is included in all the responses and the status of the operation can be
found by looking at the value of status. Possible values for Status are: (0 => ‘Success’,
1=> ‘Information’, 2=> '"Warning’, 3=> "Error’).

For more information on Error Codes and their meaning, please refer to “Error
Handling during Payment Processing” in this document.

2. TYPE OffLineResp_rec_type IS RECORD (
EarliestSettlement_Date DATE,
Scheduled_Date DATE

);

If the payment operation cannot be settled by the settlement date specified in input,
due to lead time of the BEP, then

EarliestSettlement_Date: specifies the earliest date by which the operation can be
settled

Scheduled_Date: specifies the date on which scheduler will pick up the operation.

The OffLineResp_rec_type record outputs can be looked into for payment
operations sent in OFFLINE Mode.

For more information on how the status values are propagated back to the ECApp,
please refer to “Status Update API for Offline Request” in this document.

3. TYPE RiskResp_rec_type ISRECORD (

Status NUMBER,
ErrCode VARCHAR2(80),
ErrMessage VARCHAR2(255),
Additional_ErrMessage VARCHAR2(255),
Risk_Score NUMBER,
Risk_Threshold_Val NUMBER,

Risky_ Flag VARCHAR2(30)

);
Status: The status for the request. Possible values are (0,1,2 or 3).
ErrCode: The IBY_XXXX error code for the error, if any.

ErrMessage: The error message associated with the error

Implementation Guide

PL/SQL Record/Table Types Definitions

Additional_ErrMessage: if multiple factors have failed, this field contains
additional messages about why the factors failed.

Risk_Score: represents the overall risk score of the payment request.

Risk_Threshold_Val: the threshold value that is set for the payee involved in the

payment request.

Risky Flag: indicates whether payment is risky or not.

4. TYPE RegResp_rec_type IS RECORD (

Response
OffLineResp
RiskResplncluded
RiskResponseRisk
Trxn_ID
Trxn_Type
Trxn_Date
Authcode
RefCode
AVSCode
Pmtinstr_Type
Acquirer
VpsBatch_ID
AuxMsg
ErrorLocation
BEPErrCode
BEPErrMessage

);

Response_rec_type,
OffLineResp_rec_type,
VARCHAR2(30),
Resp_rec_type,
NUMBER,
NUMBER,

DATE,
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(255),
NUMBER,
VARCHAR2(80),
VARCHAR2(255)

Response: The response record. Refer #1 for details.

OffLineResp: The offline response record. Refer #2 for details.

RiskResplncluded: Flag used to indicate whether risk response included or not.

Possible values (‘YES'/’NO’)/

iPayment PL/SQL APIs C-57

PL/SQL Record/Table Types Definitions

C-58

RiskResponse: The risk response record. Refer #3 for details.
Trxn_ID: The new id generated for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation

AuthCode: Authorization code that is returned by back end payment system
RefCode: Reference code that is returned by back end payment system
AVSCode: AVS code that is returned by back end payment system
Pmtlinstr_Type: Credit card type of the operation, such as "Visa’.

Acquirer: Acquirer information that is returned by back end payment system
VPSBatch_ID: VPSBatchld that is returned by back end payment system
AuxMsg: Auxiliary message that is returned by back end payment system

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.

Note: RiskResplIncluded is a flag ("YES’'/’NO’) that tells the ECAPP that the
RiskResponse Record contains some valid Risk response information.

5. TYPE ModResp_rec_type IS RECORD (

Response Response_rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER

);
Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: The new id generated for this request
6. TYPE VoidResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

Implementation Guide

PL/SQL Record/Table Types Definitions

Trxn_ID NUMBER,
Trxn_Type NUMBER,
Trxn_Date DATE,

RefCode VARCHAR2(80),
Pmtinstr_Type VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHARZ2(255)

);

Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: The transaction id for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation
RefCode: Reference code that is returned by back end payment system
Pmtinstr_Type: Credit card type of the operation, such as Visa’.

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
7. TYPE CancelResp_rec_type IS RECORD (

Response Response_rec_type,
Trxn_ID NUMBER,
ErrorLocation NUMBER,
BEPErrCode VARCHARZ2(80),
BEPErrMessage VARCHARZ2(255)

iPayment PL/SQL APIs C-59

PL/SQL Record/Table Types Definitions

C-60

Response: The response record. Refer #1 for details.
Trxn_ID: The transaction id for this request

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
8. TYPE CaptureResp_rec_type IS RECORD (

Response Response_rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

Pmtinstr_Type VARCHAR2(80),
RefCode VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHARZ2(80),
BEPErrMessage VARCHARZ2(255)

);

Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: The transaction id for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation
Pmtinstr_Type: Credit card type of the operation, such as "Visa’.

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.

Implementation Guide

PL/SQL Record/Table Types Definitions

9. TYPE ReturnResp_rec_type IS RECORD (

Response Response_rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,
Pmtinstr_TypeV ARCHAR2(80),
RefCode VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: The transaction id for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation
Pmtinstr_Type: Credit card type of the operation, such as 'Visa’.
RefCode: Reference code that is returned by back end payment system

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
10. TYPE CreditResp_rec_type IS RECORD (

Response Response_rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

iPayment PL/SQL APIs C-61

PL/SQL Record/Table Types Definitions

C-62

Trxn_Type NUMBER,
Trxn_Date DATE,
Pmtinstr_Type VARCHAR2(80),
RefCode VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHARZ2(80),
BEPErrMessage VARCHARZ2(255)

);

Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: The transaction id for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation
Pmtlinstr_Type: Credit card type of the operation, such as "Visa’.
RefCode: Reference code that is returned by back end payment system

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
11. TYPE IngResp_rec_type IS RECORD (

Response Response_rec_type,
Payer Payer_rec_type,
Payee Payee_rec_type,
Tangible Tangible_rec_type,
Pmtinstr Pmtinstr_rec_type

);

Response: The response record. Refer #1 for details.

Implementation Guide

PL/SQL Record/Table Types Definitions

Payer: The payer record. Refer 1.4.1#2 for details.
Payee: The payee record. Refer 1.4.1#1 for details.
Tangible: The tangible record. Refer 1.4.1#6 for details.
Pmtinstr: The pmtinstr record. Refer 1.4.1#7 for details.
12. TYPE QryTrxnRespSum_rec_type IS RECORD (

Response Response_rec_type,
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);
Response: The response record. Refer #1 for details.

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
13. TYPE QryTrxnRespDet_rec_type IS RECORD (

Status NUMBER,
StatusMsg VARCHAR2(255),
Trxn_ID NUMBER,
Trxn_Type NUMBER,
Trxn_Date DATE,
Pmtinstr_Type VARCHAR2(80),
Currency VARCHAR2(80),
Price NUMBER,
RefCode VARCHAR2(80),
AuthCode VARCHARZ2(80),
AVSCode VARCHAR2(80),
Acquirer VARCHAR2(80),

iPayment PL/SQL APIs C-63

PL/SQL Record/Table Types Definitions

VpsBatch_ID VARCHAR2(80),
AuxMsg VARCHAR2(255),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);

Status: The status for this request

StatusMsg: The status message for this request.
Trxn_ID: The transaction id for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation

Pmtinstr_Type: Credit card type of the operation, such as "Visa’.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.
RefCode: Reference code that is returned by back end payment system
AuthCode: Authorization code that is returned by back end payment system
AVSCode: AVS code that is returned by back end payment system

Acquirer: Acquirer information that is returned by back end payment system
VPSBatch_ID: VPSBatchld that is returned by back end payment system
AuxMsg: Auxiliary message that is returned by back end payment system

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.

14. TYPE QryTrxnRespDet_tbl_type IS TABLE OF QryTrxnRespDet_rec_type
INDEX BY BINARY_INTEGER;

C-64 Implementation Guide

PL/SQL Record/Table Types Definitions

Batch Payment Operations Response Record/Table Types
1. TYPE BatchRespSum_rec_type IS RECORD (

Response
OffLineResp
NumTrxns
MerchBatch_ID
BatchState
BatchDate
Credit_ Amount
Sales_ Amount
Batch_Total
Payee_ID
VpsBatch_ID
GWBatch_ID
Currency
ErrorLocation
BEPErrCode
BEPErrMessage

);

Response_rec_type,
OffLineResp_rec_type,
NUMBER,
VARCHAR2(80),
NUMBER,

DATE,

NUMBER,
NUMBER,
NUMBER,
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
NUMBER,
VARCHAR2(80),
VARCHAR2(255)

Response: The response record. Refer #1 for details.

OffLineResp: The offline response record. Refer #2 for details.

NumTrxns: Total number of individual operations in this batch

Merch Batch_ID: Merchant-specified unique batch id for this batch operation

BatchState: The state of the batch operation

BatchDate: The date of the batch operation

Credit_ Amount: Total amount of credits.

Sales_Amount: Total amount of charges.

iPayment PL/SQL APIs C-65

PL/SQL Record/Table Types Definitions

C-66

Batch_Total: Total amount of the entire batch.

VPSBatch_ID: VPSBatchld returned by the backend payment system
GWBatch_ID: GWBatchld returned by the backend payment system
Currency: The currency code used

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
2. TYPE BatchRespDet_rec_type IS RECORD (

Trxn_ID NUMBER,
Trxn_Type NUMBER,
Trxn_Date DATE,

Status NUMBER,
ErrorLocation NUMBER,
BEPErrCode VARCHARZ2(80),
BEPErrMessage VARCHARZ2(255),
NLS_LANG VARCHAR?2(80)

);
Trxn_ID: The transaction id for this request

Trxn_Type: The type of the capture operation. Backend system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation
Status: The status for this request

ErrorLocation: The error location, if applicable. It is a number which indicates what
place the error has occurred, like middle tier or the Back End Payment(BEP) system.

BEPErrCode: The error code, if applicable, returned by the BEP
BEPErrMessage: The error message, if applicable, returned by the BEP.
NLSLang: The NLS language code

Implementation Guide

Sample PL/SQL Code

3. TYPE BatchRespDet_tbl_type IS TABLE OF BatchRespDet_rec_type
INDEX BY BINARY_INTEGER;

Sample PL/SQL Code

The following PL/SQL code helps you in understanding how iPayment PL/SQL
APIs can be invoked. This example code invokes the Payment Request API using a
credit card. It also passes risk related information for risk evaluation. After invoking
the PL/SQL API, it prints out all the elements in the response objects.

DECLARE
p_api_version
--To initialize message list.
p_init_msg_list
p_commit
p_validation_level
p_ecapp_id
p_payee_rec
p_payer_rec
p_pmtinstr_rec
p_tangible_rec

p_pmtregtrxn_rec

p_riskinfo_rec
X_return_status
X_msg_count

X_msg_data

X_reqresp_rec

NUMBER :=1.0;

VARCHAR2(2000) := FND_API.G_TRUE;
VARCHAR2(2000) := FND_API.G_FALSE;
NUMBER := FND_API.G_VALID_LEVEL_FULL;
NUMBER := 0;
IBY_PAYMENT_ADAPTER_PUB.Payee_rec_type;
IBY_PAYMENT_ADAPTER_PUB.Payer_rec_type;
IBY_PAYMENT_ADAPTER_PUB.Pmtinstr_rec_type;
IBY_ PAYMENT_ADAPTER_PUB.Tangible_rec_type;
IBY_PAYMENT_ADAPTER_PUB.PmtReqTrxn_rec_
type;
IBY_PAYMENT_ADAPTER_PUB.RiskInfo_rec_type;
VARCHARZ2(2000);-- output/return status
NUMBER;-- output message count
VARCHARZ2(2000);-- reference string for output
message text
IBY_PAYMENT_ADAPTER_PUB.ReqResp_rec_type;
-- request specific output

-- response object

iPayment PL/SQL APIs C-67

Sample PL/SQL Code

I_msg_count NUMBER;
I_msg_data VARCHAR2(2000);
BEGIN

-- Common inputs

p_ecapp_id := 66;-- iPayment generated ECAppID

-- Payee related inputs

p_payee_rec.Payee ID :=’ipay-payeel’;-- payee’s ID

-- Payer related inputs

p_payer_rec.Payer_ID :=’ipay-custl’;-- payer’s ID
p_payer_rec.Payer Name := 'Custl’;-- Payer’s (Customer’s name)

-- Payment request operation related input
p_pmtregtrxn_rec.PmtMode := 'ONLINE’;-- Payment mode (Can be
--ONLINE/ZOFFLINE)

-- Tangible/Bill related inputs

p_tangible_rec.Tangible_ID :=tangibleidl’;-- Tangible ID / orderID
p_tangible_rec.Tangible_Amount := 25.50; -- Amount for the operation
p_tangible_rec.Currency_code :='USD’; -- Currency for the operation
p_tangible_rec.RefInfo := 'test_refinfo3’;
p_pmtregtrxn_rec.Auth_Type := upper(authonly’);-- request type

-- Payment instrument related inputs
p_pmtinstr_rec.CreditCardinstr.CC_Type := 'Visa’,

-- payment instrument type
p_pmtinstr_rec.CreditCardinstr.CC_Num :=4111111111111111"

-- payment instrument number
p_pmtinstr_rec.CreditCardInstr.CC_ExpDate :=to_char(sysdate+300);
-- payment instr. Expiration date

-- Risk related inputs

p_riskinfo_rec.Formula_Name :="test3’;-- Risk formula name

C-68 Implementation Guide

Sample PL/SQL Code

p_riskinfo_rec.ShipToBillTo_Flag := "TRUE’;
-- Flag showing if ship to address same as Bill to address
p_riskinfo_rec.Time_Of_Purchase := '08:45-- Time of purchase
-- invoking the API
IBY_PAYMENT_ADAPTER_PUB.OraPmtReq(

p_api_version,

p_init_msg_list,

p_commit,

p_validation_level,

p_ecapp_id,

p_payee_rec,

p_payer_rec,

p_pmtinstr_rec,

p_tangible_rec,

p_pmtreqtrxn_rec,

p_riskinfo_rec,

X_return_status,

X_msg_count,

X_msg_data,

X_reqresp_rec);
END;
-- After invoking the API, printing/interpreting the results
-- API status response
-- The status for the API. The value of this status has to be used to
-- find out whether the call was successful or not.

dbms_output.put_line(’x_return_status =’ | | x_return_status);

-- Payment Request Related Response. Printing Only If Status Is Success

If(Char(X_Reqresp_Rec.Response.Status = ‘S’) Then

iPayment

PL/SQL APIs C-69

Sample PL/SQL Code

-- Offline Mode Related Response
If P_Pmtreqtrxn_Rec.Pmtmode = 'OFFLINE’ Then

dbms_output.put_line('Transaction ID =’ | | To_Char(X_Reqresp_
Rec.Trxn_ID));

dbms_output.put_line (‘X_Reqgresp_Rec.Offlineresp.Earliestsettlement_Date
="]] To_Char(X_Reqresp_Rec.Offlineresp.Earliestsettlement_Date));

dbms_output.put_line('X_Reqresp_Rec.Offlineresp.Scheduled Date =" |
To_Char(X_Reqresp_Rec.Offlineresp.Scheduled_Date));

Else

dbms_output.put_line("Transaction ID ="' | | To_Char(X_Reqgresp_
Rec.Trxn_ID));

dbms_output.put_line('X_Reqresp_Rec.Authcode =" | | X_Reqresp_
Rec.Authcode);

dbms_output.put_line('X_Reqresp_Rec.Avscode ="' | | X_Reqresp_
Rec.Avscode);

dbms_output.put_line(' ;
-- Risk Related Response
If(X_Reqgresp_Rec.Riskrespincluded = ‘YES’) Then

dbms_output.put_line(" %

dbms_output.put_line(' X_Reqresp_Rec.Riskresponse.Risk_Score= '] | X_
Reqgresp_Rec.Riskresponse.Risk_Score);

dbms_output.put_line('X_Regresp_Rec.Riskresponse.Risk_Threshold_Val=
'| | Regresp_Rec.Riskresponse.Risk_Threshold_Val);

Endif;
Endif;
End If;
-- printing the error messages, if any from the APl message list.
for i in 1..x_msg_count loop
dbms_output.put('msg # '] |to_char(i) | | fnd_msg_pub.get(i));

dbms_output.new_line();

C-70 Implementation Guide

Sample PL/SQL Code

end loop;
EXCEPTION
when others then
dbms_output.put_line('In When others Exception’);
dbms_output.put_line(’'SQlerr is :’] | substr(SQLERRM,1,200));

end;

iPayment PL/SQL APIs C-71

Sample PL/SQL Code

C-72 Implementation Guide

D

Back-End Processing APIs

Payment System Servlet API (SSL)

Topics in this section include:

Payment Servlet Overview
Authorization API

Capture API

Void API

Return/Credit API

Close Batch API

Query Transaction Status API
Query Batch Status API

Back-End Processing APIs D-1

Payment System Servlet API (SSL)

Payment Servlet Overview

iPayment provides a set of APIs for interfacing with the payment system servlets,
including APIs for authorization, capture, return, void, close batch, query batch
status, and query transaction status. iPayment makes requests to these APIs using
HTTP.

This section provides information to enable SSL payment system servlet developers
(those who perform traditional credit-card processing) to create an interface for
communication between iPayment and their payment systems. Also provided is the
informationthat iPayment sends to payment system servlets, and the format and
method of passing the data.

Payment System Servlet Development Prerequisites

Before you build a payment system servlet, you will need a basic understanding of
iPayment. For additional information, see Oracle iPayment Concepts and Procedures
Guide A86141-01 to get an understanding of iPayment and its architecture.

Test Payment System Servlet
After building a payment system servlet, complete the following steps:

1. Add the payment system to iPayment by following the steps of Creating a New
Payment System in the Oracle iPayment Concepts and Procedures Guide A86141-01.

2. Test and refine your servlet.

Payment System Servlet Operations

D-2

To perform the Payment System Servlet APl operations, iPayment passes data to the
payment system servlet in the form of HTTP name-value pairs.

Servlet Virtual Path Mapping
The following example shows the name-value pair format:

http://host name:port/servlet virtual path
?name-value pair (1)

&name-value pair(2)

&name-value pair(n)

&name-value pair (n+l)

Implementation Guide

Payment System Servlet APl (SSL)

where:
host name

port

servlet virtual
path

Authorization API

The name of the computer where the payment system is
located, for example, payment.com.

The listener’s port number

The virtual path to the payment system servlet. This must
always end in oramipp xxx, where xxx is the three letter
suffix chosen for this payment system.

When the payment system servlet receives the authorization request from
iPayment, it formats the request into the payment system’s native format and
requests that the payment system perform an online authorization. When the
payment system returns the authorization result, the payment system servlet will
reformat the response into the iPayment’s format.

Authorization API Input Name-Value Pairs
To perform the Authorization operation, use the following name value pairs:

Table D-1 Authorization API Input Name-Value Pairs

Name

Value

OapfAction
OapfOrderld

OapfCurr

OapfPrice

OapfAuthType

Value=oraauth

Order number for the transaction. OapfOrderld can contain
only letters, numbers, dashes, underlines, and dots.

ISO 4217 three-letter currency code. For example, usd (US
Dollar).

Transaction amount in the format prescribed for the three-letter
1SO 4217 currency code

The authorization type for the transaction: AuthOnly or
AuthCapture.

= Use AuthOnly transactions when customers purchase
"hard goods." The funds for these transactions are not
captured until after the goods are shipped.

= Use AuthCapture transactions when customers purchase
"soft goods" such as software "downloadable" from a Web
page. The funds for these transactions are authorized and
captured at the same time.

Back-End Processing APIs D-3

Payment System Servlet API (SSL)

Table D-1 Authorization API Input Name-Value Pairs

Name

Value

OapfPmtinstrID

OapfPmtinstrExp

OapfStoreld

Identification (card) number for the selected OapfPmtType

Expiration date for the selected OapfPmtType in the format
MMZ/YY or MM/YYYY. The payment system servlet should be
able to accept both formats.

Merchant or business identification. The maximum length is 80
characters. It may consist of Id and password in the following
format: <Storeld>:<Password>

In addition to the values above the following name-value pairs are also required if AVS is
required (except for OapfPhone, OapfEmail, and OapfCnty):

OapfCustName
OapfAddrl

OapfAddr2

OapfAddr3

OapfCity
OapfCnty
OapfState
OapfCntry
OapfPostalCode
OapfPhone
OapfEmail
OapfRetry

OapfNIsLang

The customer’s name

The customer’s billing address (1st line). The portion of the
address before city, state, and zip code.

The customer’s billing address (2nd line). The portion of the
address before city, state, and zip code.

The customer’s billing address (3rd line). The portion of the
address before city, state, and zip code.

The customer’s city name for billing
The customer’s county name for billing
The customer’s state for billing

The customer’s country for billing

The customer’s zip code for billing

The customer’s telephone number

The customer’s e-mail address

Specifies if this operation is a retry. Values include yes or no. If
this flag is incorrectly turned on, then the servlet should
attempt this transaction a second time as a non-retry
transaction.

(Optional.) Language and character-set information for the
electronic commerce application. The format is the same as for
the Oracle Server NLS_LANG environment variable.

Implementation Guide

Payment System Servlet APl (SSL)

Purchase Card Authorization API

The Purchase Card Authorization API is the same as the Authorization API, with
the addition of a few parameters. To perform the Purchase Card Authorization
operation, use name value pairs defined by the Authorization API, and the
following name value pairs:

Table D-2 Authorization API Input Name-Value Pairs

Name

Value

OapfCommCard

OapfPONum
OapfTaxAmount
OapfShipToZip
OapfShipFromZip

The type of card being used for the transaction. Possible values
are:

= P for Purchase cards
= Cfor Corporate cards
= B for Business cards

Purchase Order number
Tax amount
The ZIP code to which merchandise is to be shipped

The ZIP code from which merchandise is to be shipped

Authorization API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP
headers consisting of the following name-value pairs.

Table D-3 Authorization API Output Name-Value Pairs

Name

Value

OapfOrderld

OapfTrxnType

OapfStatus
OapfAuthcode
OapfTrxnDate

OapfPmtinstrType

Order number for the transaction. OapfOrderld can contain
only letters, numbers, dashes, underlines, and dots.

The transaction type from the payment system. See
"Transaction Types" for a list of values.

The transaction status. See "OapfStatus” for more information.
The string for the authorization (approval) code.

The time stamp showing when the transaction is processed in
YYYYMMDDHHMMSS format.

The payment instrument type. For example, Visa or
MasterCard.

Back-End Processing APIs D-5

Payment System Servlet API (SSL)

Table D-3 Authorization APl Output Name-Value Pairs

Name Value

OapfErrLocation The error location. See "OapfErrLocation” for more
information.

OapfVendErrCode The payment system error code. See the payment system

documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:

OapfAcquirer Name of the acquirer or bank

OapfRefcode The retrieval reference number

OapfAVScode The AVS code

OapfAuxMsg Additional message from the processor

OapfNIsLang Language and character-set information for the electronic

commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Note: If an optional field does not have a value, do not include the
optional field in the header.

Capture API
iPayment invokes the Capture API to perform online capture of previously
authorized transactions.
Capture API Input Name-Value Pairs
To perform the Capture operation, use the following hame-value pairs.
Table D-4 Capture APl Input Name-Value Pairs
Name Value
OapfAction Value=oracapture.
OapfOrderld Order number for the transaction. OapfOrderld can contain
only letters, numbers, dashes, underlines, and dots.
D-6 Implementation Guide

Payment System Servlet APl (SSL)

Table D-4 Capture APl Input Name-Value Pairs

Name Value

OapfPrice Transaction amount in the format prescribed for the three-letter
1SO 4217 currency code.

OapfCurr ISO 4217 three-letter currency code. For example, usd (US

OapfStoreld

Dollar).

Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry
OapfNIsLang

Specifies if this operation is a retry. Values include yes or no.

Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Capture API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP
headers consisting of the following name-value pairs.

Table D-5 Capture API Output Name-Value Pairs

Name Value

OapfStatus The transaction status. See "OapfStatus” for more information.

OapfTrxnType The transaction type from the payment system. See
"Transaction Types" for a list of values.

OapfTrxnDate The time stamp for the time when the transaction is processed.
This is in YYYYMMDDHHMMSS format.

OapfErrLocation The error location. See "OapfErrLocation" for more
information.

Oapf\VendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system

documentation for more information.

The following name-value pairs are optional:

OapfRefcode

The retrieval reference number.

Back-End Processing APIls D-7

Payment System Servlet API (SSL)

D-8

Table D-5 Capture API Output Name-Value Pairs

Name Value

OapfNIsLang Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Capture API for Terminal-Based Merchant

For a terminal-based merchant, the Capture operation marks the transaction for
capture in the local batch. If the operation completes successfully, it returns the
following parameters:

OapfStatus Setto 0000.
OapfTrxnType Set to MarkCapture, 9
OapfTrxnDate Set to the appropriate transaction date.

If the operation fails, it returns the following parameters:
= OapfStatus

s OapfTrxnType

= OapfTrxnDate

= OapfErrLocation

= OapfVendErrCode

= OapfVendErrmsg

Capture API for Host-Based Merchant

For a host-based merchant, the Capture operation communicates with the processor
to capture the transaction. If the operation completes successfully, it returns the
following parameters:

OapfStatus Setto 0000.

OapfTrxnType Set to MarkCapture, 8

OapfTrxnDate Set to the appropriate transaction date.
OapfRefcode Set to the appropriate retrieval reference number

If the operation fails, it returns:

Implementation Guide

Payment System Servlet APl (SSL)

OapfStatus
OapfTrxnType
OapfTrxnDate
OapfErrLocation
OapfVendErrCode

Back-End Processing APIs D-9

Payment System Servlet API (SSL)

Void API

D-10

The Void API allows the merchant or business to void the following transaction
types:

= Credit transactions

= Return transactions

= Capture transactions

The Void API voids the most recent transaction type for an order. For example, the

merchant or business performs authorization--and later capture-- for a transaction.

If the merchant or business performs a void on this order, the capture transaction is
voided.

Void API Input Name-Value Pairs
To perform the Void operation, use the following name-value pairs:

Table D-6 Void API Input Name-Value Pairs

Name Value

OapfAction Value = oravoid.

OapfTrxnType The transaction type to void from the payment system. See
"Transaction Types" for a list of values.

OapfOrderld Order number for the transaction. OapfOrderld can contain
only letters numbers dashes underlines and dots.

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:
OapfRetry Specifies if this operation is a retry. Values include yes or no.

OapfNIsLang Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Note: For a terminal-based merchant, the OapfTrxnType should
be set to MarkCapture (9) or MarkReturn (10).Fora
host-based merchant, the OapfTrxnType should be set to Capture
(8) or Return (5).

Implementation Guide

Payment System Servlet APl (SSL)

Void API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP
headers and consists of the following name-value pairs.

Table D-7 Void API Output Name-Value Pairs

Name Value

OapfStatus The transaction status. See "OapfStatus” for more information.

OapfTrxnDate The time stamp for the time when the transaction is processed.
Thisis in YYYYMMDDHHMMSS format.

OapfTrxnType The transaction type from the payment system. See
"Transaction Types" for a list of values.

OapfErrLocation The error location. See "OapfErrLocation" for more
information.

OapfVendErrCode The payment system error code. See the payment system

documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:
OapfRefcode The retrieval reference number.

OapfNIsLang Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Void API for Terminal-Based Merchant

For a terminal-based merchant, the Void operation voids the transaction in the local
batch. If the Void operation completes successfully, it returns the following
parameters:

OapfStatus Setto 0000.
OapfTrxnType Setto VoidMarkCapture, 14 or VoidMarkReturn, 18
OapfTrxnDate Set to the appropriate transaction date.

If the operation fails, it returns the following parameters:
= OapfStatus
s OapfTrxnType

Back-End Processing APIs D-11

Payment System Servlet API (SSL)

= OapfTrxnDate

= OapfErrLocation

= OapfVendErrCode
» OapfVendErrmsg

Void API for Host-Based Merchant

For a host-based merchant, the Void operation communicates with the processor to
void the specified transaction. If the Void operation completes successfully, it
returns the following parameters:

OapfStatus Setto 0000.

OapfTrxnType Setto VoidCapture, 13 or VoidReturn, 17
OapfTrxnDate Set to the appropriate transaction date.

OapfRefcode (Optional) Set to the appropriate retrieval reference number

If the operation fails, it returns:
= OapfStatus

s OapfTrxnType

= OapfTrxnDate

= OapfErrLocation

= OapfVendErrCode

s OapfVendErrMsg

Return/Credit API

D-12

The electronic commerce application invokes the Return/Credit APl when goods
are returned. If the authorization and capture transaction records still exist, the
merchant or business will use the existing Order ID to perform a return. If there is
no previous authorization or capture records, the merchant or business will create a
new Order ID and provide the credit card information.

Return/Credit API Input Name-Value Pairs
To perform the Return/Credit operation, use the following name-value pairs:

Implementation Guide

Payment System Servlet APl (SSL)

Table D-8 Return/Credit APl Input Name-Value Pairs

Name

Value

OapfAction
OapfOrderld

OapfPrice

OapfCurr

OapfPmtinstriD

OapfPmtinstrExp

OapfStoreld

Value=orareturn

Order number for the transaction. OapfOrderld can contain
only letters, numbers, dashes, underlines, and dots.

Transaction amount in the format prescribed for the three-letter
1SO 4217 currency code.

ISO 4217 three-letter currency code. For example usd (US
Dollar).

Identification number (card number). OapfPmtinstriD will be
supplied only for credits.

Expiration date for the selected OapfPmtType in the format
MM/ZYY or MM/YYYY. OapfPmtinstrExp will be supplied
only for credits.

Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry

OapfNIsLang

Specifies if this operation is a retry. Values include yes or no. If
this flag is incorrectly turned on for a stand-alone retry (i.e.,
one which includes payment instrument information) the
servlet should attempt this transaction a second time as a
non-retry transaction.

Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Return/Credit API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP
headers and consists of the following name-value pairs.

Table D-9 Return/Credit APl Output Name-Value Pairs

Name Value
OapfStatus The transaction status. See "OapfStatus” for more information.
OapfTrxnType The transaction type from the payment system. See

"Transaction Types" for a list of values.

Back-End Processing APIs D-13

Payment System Servlet API (SSL)

D-14

Table D-9 Return/Credit APl Output Name-Value Pairs

Name Value

OapfTrxnDate The time stamp of when the transaction is processed. This is in
YYYYMMDDHHMMSS format.

OapfPmtinstrType The payment instrument type such as Visa or MasterCard

OapfErrLocation The error location. See "OapfErrLocation" for more
information.

OapfVendErrCode The payment system error code. See the payment system

documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:
OapfRefcode The retrieval reference number

OapfNIsLang Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Return/Credit API for Terminal-Based Merchant

For a terminal-based merchant, the Return/Credit operation marks the transaction
for return in the local batch. If the operation completes successfully, it returns the
following parameters:

OapfStatus Setto 0000.
OapfTrxnType Set to MarkReturn, 10
OapfTrxnDate Set to the appropriate transaction date

If the operation fails, it returns the following parameters:
= OapfStatus

s OapfTrxnType

= OapfTrxnDate

= OapfErrLocation

= OapfVendErrCode

» OapfVendErrmsg

Implementation Guide

Payment System Servlet APl (SSL)

Return/Credit API for Host-Based Merchant

For a host-based merchant, the Return/Credit operation communicates with the
processor to return/credit the transaction. If the operation completes successfully, it
returns the following parameters:

OapfStatus Setto 0000.
OapfTrxnType Setto Return, 5
OapfTrxnDate Set to the appropriate transaction date.

OapfPmtinstrType (Optional) Set to the appropriate payment instrument type
OapfRefcode (Optional) Set to the appropriate retrieval reference number

If the operation fails, it returns the following parameters:
= OapfStatus

s OapfTrxnType

= OapfTrxnDate

= OapfErrLocation

= OapfVendErrCode

» OapfVendErrmsg

Close Batch API

The merchant or business uses the Close Batch API to close a batch of previously
performed transactions. The transaction types that can be included in a close batch
are:

= Capture transactions

s Return/Credit transactions

Close Batch API Input Name-Value Pairs
To perform this operation you need the following parameters (name-value pairs):

Table D-10 Close Batch API Input Name-Value Pairs

Name Value

OapfAction Value=oraclosebatch

Back-End Processing APIs D-15

Payment System Servlet API (SSL)

Table D-10 Close Batch API Input Name-Value Pairs

Name Value
OapfStoreld Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry Specifies if this operation is a retry. Values include yes or no.
OapfVpsBatchiD The payment system batch identification
OapfNIsLang Language and character-set information for the electronic

commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Close Batch API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP
headers and consists of the following name-value pairs:

Table D-11 Close Batch API Output Name-Value Pairs

Name Value

OapfStatus The transaction status. See "OapfStatus” for more information.

OapfBatchDate The date for this batch

OapfCreditAmount The credit amount. This is the total outflow including
return/credit and void.

OapfSalesAmount The total amount captured

OapfBatchTotal The total amount in this batch

OapfCurr ISO 4217 three-letter currency code. For example, usd (US
Dollar).

OapfNumTrxns The number of transactions in this batch

OapfStorelD Merchant or business identification. The maximum length is 26
characters.

OapfVpsBatchiD The payment system batch identification

OapfGWBatchID The gateway batch identification

OapfBatchState State of the batch. For example, sent, queued, accept, etc. See
"OapfBatchState" for more information.

OapfErrLocation The error location. See "OapfErrLocation" for more
information.

D-16 Implementation Guide

Payment System Servlet APl (SSL)

Table D-11 Close Batch API Output Name-Value Pairs

Name Value

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

OapfNIsLang (Optional) Language and character-set information for the
electronic commerce application. The format is the same as for
the Oracle Server NLS_LANG environment variable.

Close Batch API Additional Output

Additional output for the Close Batch API includes the status of individual
transactions. This output differs based on transaction type. The Capture and
Return/Credit transaction types return the following parameters:

s OapfOrderld-count=<>

= OapfTrxnType-count=<>

= OapfStatus-count=<>

» OapfErrLocation-count=<>
= OapfVendCode-count=<>

= OapfVendErrmsg-count=<>

Note: OapfErrLocation, Oapf\VendCode, and OapfVendErrmsg are
only returned if the OapfStatus field is non-zero. They are returned
when there is some failure for the Order ID during batch close.

The OapfNumTrxns field indicates the number of transactions included in the
batch. Each output name-value pair should be appended with a counter to indicate
to which transaction it belongs. The counter should start from 0. For example,
assume there are two transactions in a batch. The output of this batch is:

OapfVpsBatchID: 1234
OapfStatus: PMT-0000
OapfBatchDate: 19970918091000
OapfCreditAmount: 10.00
OapfSalesAmount: 20.00
OapfBatchTotal: 10.00

Back-End Processing APls D-17

Payment System Servlet API (SSL)

D-18

OapfCurr: usd
OCapfNunTrxns: 2
OapfStoreID: abcd
OapfGWBatchID: 5678

OapfOrderId-0=1111
OapfTr=nType-0=8
OapfStatus-0=0000

OapfOrderId-1=2222
OapfTrxnType-1=5
OapfStatus-1=0000

Note: The OapfTrxnType should be set to Capture (8) or
Return (5).

Close Batch API for Terminal-Based Merchant

For a terminal-based merchant, this operation attempts to close out an open batch
and cause funds to change hands. If the batch closes successfully, batch summary as
well as transaction details should be returned. If the close batch fails, the merchant
or business, optionally, fixes offending transactions in the batch and retries. For
payment systems that implement retry logic, use OapfRetry and OapfVpsBatchID
for retry. For payment systems that do not include retry logic, this operation
attempts to close out the existing open batch again.

Close Batch API for Host-Based Merchant

For a host-based merchant, if you use the auto close option, this operation returns
OapfStatus=0000. If you use the manual close option, the payment system sends the
total to the processor. The processor checks against its total and closes the batch. If
the batch closes successfully, OapfStatus should be set to 0000 and OapfBatchTotal
should be returned. If batch does not close successfully, error messages are returned
in OapfStatus and optionally in OapfErrLocation, Oapf\endErrCode, and
OapfVendErrmsg.

Implementation Guide

Payment System Servlet APl (SSL)

Query Transaction Status API

The merchant or business uses the Query Transaction Status API to query the status
of a transaction. Both the iPayment database and the payment system database
maintain a record of completed transactions, and these databases may become out
of synch due to a communication link breakdown. Similarly, the electronic
commerce application database and the iPayment database may become out of
synch due to a similar condition. This API returns all existing records for a
particular Order ID on a payment system.

Query Transaction Status API Input Name-Value Pairs
To perform this operation, use the following name-value pairs.

Table D-12 Query Transaction Status API Input Name-Value Pairs

Name Value

OapfAction Value=oragrytxstatus

OapfOrderld Order ID to query

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

OapfNIsLang (Optional) Language and character-set information for the

electronic commerce application. The format is the same as for
the Oracle Server NLS_LANG environment variable.

Query Transaction Status API Output Name-Value Pairs

Output from the Query Transaction Status APl may consist of multiple records for
the same Order ID, depending on the transaction type. OapfNumTrxns provides the
number of transactions for this Order ID. The output for various transaction types
includes the following parameters:

Auth/AuthCapture:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfAuthcode-count=<>
OapfRefcode-count=<>
OapfAVScode-count=<>
OapfTrxnDate-count=<>
OapfPmtInstrType-count=<>

Back-End Processing APIs D-19

Payment System Servlet API (SSL)

OapfErrLocation-count=<>
OapfVendCode-count=<>
OapfVendErrmsg-count=<>
OapfAcquirer-count=<>
OapfAuxMsg-count=<>

Capture:

OapfOrderId-count=<>
OapfTr=nType-count=<>
OapfStatus-count=<>
OapfPrice-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfTrxnDate-count=<>
OapfRefcode-count=<>
OapfVpsBatchID-count=<>
OapfErrLocation-count=<>
OapfVendCode-count=<>
OapfVendErrmsg-count=<>

Credit/Return:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfTrxnDate-count=<>
OapfPmtInstrType-count=<>
OapfRefcode-count=<>
OapfVpsBatchID-count=<>
OapfErrLocation-count=<>
OapfVendCode-count=<>
OapfVendErrmsg-count=<>
OapfAuxMsg-count=<> (optional)

\Void:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfTrxnDate-count=<>
OapfRefcode-count=<>
OapfErrLocation-count=<>
OapfVendCode-count=<>

D-20 Implementation Guide

Payment System Servlet APl (SSL)

OapfVendErrmsg-count=<>
OapfAuxMsg-count=<>

Query Batch Status API

The merchant or business uses the Query Batch Status API to query the status of an
existing batch. Terminal-based merchants also use the Query Batch Status API to
verify the transactions for submission to batch close by iPayment. The merchant or
business can use the output from the Query Batch Status API to cross-check the
transaction records in the merchant or business database.

Query Batch Status API Input Name-Value Pairs
To perform the Query Batch Status operation, use the following name-value pairs:

Table D-13 Query Batch Status API Input Name-Value Pairs

Name Value
OapfAction Value=oragrybatchstatus
OapfVpsBatchlD The payment system batch identification if querying for an

existing batch. If a value is not included, the output is pending
batch transactions.

OapfStoreld Merchant or business identification. The maximum length is 26
characters.
OapfNIsLang (Optional) Language and character-set information for the

electronic commerce application. The format is the same as for
the Oracle Server NLS_LANG environment variable.

Query Batch Status APl Output Name-Value Pairs

Output from the Query Batch Status API is similar to the output of the Close Batch
APl when you provide the OapfVpsBatchID. When you do not provide the
OapfVpsBatchlID, the output is all transactions for the terminal-based merchant for
a subsequent batch close. OapfNumTrxns provides the number of transactions for
the batch. The output for transaction types includes the following parameters:

Capture, Return, Credit:

OapfOrderId-count=<>
OapfTr=nType-count=<>
OapfPrice-count=<>
OapfCurr-count=<>

Back-End Processing APls D-21

Transaction Status and Messages

OapfTrxnDate-count=<>

Transaction Status and Messages

This section describes the various transaction status codes and error messages
returned by iPayment payment system servlet.

Topics include:

s OapfStatus

s OapfErrLocation

s OapfVendErrCode
s OapfVendErrmsg
s OapfBatchState

s OapfOrderld

OapfStatus
Each transaction (including authorize, capture, return, credit, and void) returns the
status in the OapfStatus field. A value of 0000 or 0 indicates a successfully
completed transaction. A non-zero value indicates that the transaction failed.
OapfErrLocation, OapfVendErrCode, and OapfVendErrmsg provide additional
error information.
SSL Payment System Servlet
SSL payment systems must return the following values to iPayment in the
OapfStatus parameter:
Table D-14 OapfStatus Values
Value Definition
0000 Transaction completed successfully
0001 Communications error: the payment system or the processor is

out of reach. You should resubmit the request at a later time.

0002 Duplicate Order ID
0003 Duplicate Batch ID
0004 Mandatory fields are required.

D-22 Implementation Guide

Transaction Status and Messages

Table D-14 OapfStatus Values

Value Definition

0005 Payment system specific error. Refer to OapfVendErrCode and
Oapf\VendErrmsg for more information.

0006 Batch partially succeeded. Some transactions in the batch failed
and some processed correctly.

0007 The batch failed. You should correct the problem and resubmit
the batch.

0008 Requested action not supported

0017 Card has insufficient funds

0019 Invalid credit card

OapfErrLocation

The OapfErrLocation parameter contains the following values:

Table D-15 OapfErrLocation Values

Value Definition

0 Transaction completed successfully at all levels

1 Transaction failed at the payment system cartridge code

2 Transaction failed at the payment system engine or the payment
system server code

3 Transaction failed at the payment system gateway or equivalent
to the interface that communicates with the bank

4 Transaction failed at the acquirer bank gateway or equivalent to
the bank interface that communicates with the payment system
interface

5 Transaction failed at the payment system

6 Transaction failed at iPayment

OapfVendErrCode

OapfVendErrCode contains the payment system’s error code. See the
documentation that came with the payment system for more information. This
parameter is required only if the transaction failed at the payment system.

Back-End Processing APIs D-23

Transaction Status and Messages

OapfVendErrmsg

OapfVendErrmsg contains the payment system’s message for the error. See the
documentation that came with the payment system for more information. This
parameter is required only if the transaction failed at the payment system.

OapfBatchState

The OapfBatchState parameter indicates the state of the batch based on the
processor. If the state is set to "sent," the merchant needs to query the batch again to
find out if the batch is accepted and also to retrieve transaction details.

The OapfBatchState parameter contains the following values:

Table D-16 OapfBatchState Values

Value Definition

Batch accepted
Batch sent

Batch queued
Batch rejected.
Batch processed.
Batch error

Batch not found

~N o o0 A W N P O

Batch unknown

Note: The close batch operation returns its status in OapfStatus,
and has the following possible values: 0000, 0003, 0006, and 0007.
See "OapfStatus" for more information.

OapfOrderld

iPayment uses the Order ID to uniquely identify each transaction. In the Core API,
if the merchant tries to authorize a previously authorized transaction, the payment
system will not accept the authorization. The payment system returns the status
"Duplicate Order ID."

D-24 Implementation Guide

Transaction Status and Messages

How iPayment Uses OapfNIsLang

If the electronic commerce application does not pass the OapfNIsLang parameter,
iPayment passes information from the electronic commerce application to the
payment service cartridge without performing any conversion of character sets.

If the commerce application does pass a value for OapfNIsLang to iPayment,
iPayment tries to convert parameters based on the value of OapfNIsLang before
sending those parameters to the payment system cartridge.

To do so, iPayment first checks its database for the list of preferred and optional
languages for that payment system. (The information in the database reflects what
the iPayment administrator entered using the iPayment Administration user
interface.)

Secondly, iPayment does one of the following, depending on what it finds in the
database:

» If the database lists a language that matches the value of OapfNIsLang,
iPayment keeps the value of OapfNIsLang and passes it to the payment system
cartridge.

= If the database does not list a language matching the value of OapfNIsLang,
iPayment uses the language specified as the preferred language for that
payment system, thus changing the value of OapfNIsLang before sending it to
the payment system cartridge.

Finally, iPayment converts the values of other parameters so that they are sent to the
payment system cartridge in the language specified by OapfNIsLang.

Notice that this conversion process works in only one direction: from the electronic
commerce application to the payment system cartridge. If the payment system sets
OapfNIsLang when it sends the data back, iPayment uses that information only to
store the value of Oapf\VendErrmsg in its database. iPayment does not convert data
sent from the payment system cartridge back to the electronic commerce
application.

Format of the NLS_LANG Parameter

The value of this parameter follows the same format as Oracle Server’s NLS_LANG
environment variable:

language territory.charset

For example, JAPANESE_JAPAN.JAL16EUC is a valid value for OapfNIsLang.

Back-End Processing APIs D-25

Transaction Types

Transaction Types

This section defines the values for OapfTrxnType and includes a discussion of
transaction states.

OapfTrxnType:

D-26

SSL Transactions and Commerce Applications

iPayment returns OapfTrxnType transaction types for the SSL payment system
servlet API:

Table D-17 OapfTrxnType Transaction Types (SSL)

Value Type Definition

2 AuthOnly An authorization only requested for an order.

3 AuthCapture An online authorization and capture for an order.

4 VoidAuthOnly Void of an order that was successfully authorized but not
captured. (Electronic Commerce application API only.)

5 Return Perform a return or credit on an order that was successfully
authorized and captured online.

6 ECRefund Perform a refund on an electronic cash/coin purchase.

7 VoidAuthCapture Void a previous authorization and capture online.

8 Capture Capture performed by a host-based or a terminal-based
(closed batch) processor system.

9 MarkCapture Transaction that was marked for capture by a terminal-based
processor system.

10 MarkReturn Transaction that was marked for return by a terminal-based
processor system.

13 VoidCapture Void a transaction captured by a host-based or
terminal-based (close batch) processor system.

14 VoidMarkCapture Void a transaction marked for capture by a terminal-based
processor system.

17 VoidReturn Void a transaction that was returned by a host-based or
terminal-based (close batch) processor system.

18 VoidMarkReturn Void a transaction that was marked for return by a
terminal-based system.

101 SplitAuth A subsequent authorization (Electronic Commerce

application API only.)

Implementation Guide

	Contents
	Send Us Your Comments
	Preface
	1 1 Overview
	Planning Your Implementation
	Which APIs Should Electronic Commerce Applications Handle?
	Which Bank Account Transfer Operations Should You Implement?
	Which Credit Card and Purchase Card Operations to Implement?
	Which Risk Factors Should You Implement?
	Which Payment System Should You Use?
	Is Your Merchant Terminal Based or Host Based?
	Does Your Application Need to Present Information in Different Languages?

	Installing iPayment

	2 2 Configuring iPayment Payment Engine
	Overview of iPayment Implementation Steps
	Creating an iPayment Administrative User
	Configuring iPayment Servlets
	Configuring the ECApp Servlet
	Configuring the Scheduler Servlet
	Configuring iPayment CyberCash Servlet

	Registering Electronic Commerce Applications
	Loading Risky Instruments
	Configuring the Scheduler
	Setting up iPayment User Interface

	3 Implementing APIs
	Overview of iPayment APIs
	Implementing Electronic Commerce Applications APIs
	Payment Instrument APIs
	Payment Processing APIs
	Risk Management APIs
	Credit Card Validation APIs
	Status Update API
	Java APIs for Electronic Commerce Application
	PL/SQL APIs for Electronic Commerce Applications

	Overview of Payment System APIs
	Configuring CyberCash
	Implementing CheckFree

	Implementing Payment Systems APIs
	Setting Up SSL Security

	A Risk Management
	Utilizing Risk Management
	Risk Management Test Scenarios

	B Error Handling
	Error Handling During Payment Processing

	C iPayment PL/SQL APIs
	Electronic Commerce PL/SQL APIs
	Architectural Overview
	PL/SQL APIs Procedure Definitions
	OraPmtReq
	OraPmtMod
	OraPmtCanc
	OraPmtCapture
	OraPmtReturn
	OraPmtVoid
	OraPmtCredit
	OraPmtQryTrxn
	OraPmtCloseBatch
	OraPmtQueryBatch
	OraPmtInq

	PL/SQL Record/Table Types Definitions
	Payments Related Generic Record Types
	Payment Operations Related Record Types
	Risk Management Record Types
	Payment Operations Response Record/Table Types
	Batch Payment Operations Response Record/Table Types

	Sample PL/SQL Code

	D D Back-End Processing APIs
	Payment System Servlet API (SSL)
	Payment Servlet Overview
	Payment System Servlet Operations
	Authorization API
	Purchase Card Authorization API
	Authorization API Output Name-Value Pairs
	Capture API
	Void API
	Return/Credit API
	Close Batch API
	Query Transaction Status API
	Query Batch Status API

	Transaction Status and Messages
	OapfStatus
	OapfErrLocation
	OapfVendErrCode
	OapfVendErrmsg
	OapfBatchState
	OapfOrderId

	Transaction Types
	OapfTrxnType: SSL Transactions and Commerce Applications

