
Oracle� Process Manufacturing

Inventory APIs User’s Guide

Release 11i

October 2000

Part No. A82921-02

Oracle® Process Manufacturing Inventory APIs User’s Guide, Release 11i

Part No. A82921-02

Copyright © 2000, Oracle Corporation. All rights reserved.

Primary Author: Richard D. Persen

Contributing Authors: Phil Mellows, Paul Schofield, Harminder Verdding

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

Program Documentation is licensed for use solely to support the deployment of the Programs and not
for any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Process Manufacturing is a trademark of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. vii

Preface .. ix

1 OPM Inventory APIs - Introduction

Understanding OPM Inventory APIs ... 1-2
Stored Procedures Technical Requirements .. 1-3
Inventory APIs - Technical Structure and Architecture .. 1-4

Stored Procedure Mechanism... 1-4
API Architecture ... 1-5
API Package Details ... 1-6
Item Master Block Relationship Diagram ... 1-8

Technical Overview of Inventory APIs .. 1-10
API - Input Data Sources ... 1-10
Wrapper Function - Input Data Sources ... 1-11
Stored Procedures Overview .. 1-11
Stored Procedure Execution.. 1-12
Common Stored Procedure Parameters.. 1-14

Error Message Handling.. 1-16
Result Message Handling ... 1-16
Installation and Upgrade... 1-17
Engineering Notes On This Release ... 1-18
iii

2 Item Create API

Item Create API - Business Function .. 2-2
Item Create API - Technical Overview ... 2-2
Item Create API - Parameters and Interface .. 2-3
Item Create API - Table and View Usage ... 2-14
Item Create API - Package/Procedure Names.. 2-16
Item Create API - Special Logic ... 2-17
Item Create API - Error Messages .. 2-22

3 Item Create API Wrapper

Item Create API Wrapper - Business Function.. 3-2
Item Create API Wrapper - Input Structure ... 3-3
Item Create API Wrapper - ASCII Flat File Layout .. 3-3
Item Create API Wrapper - Package and Procedure Names ... 3-7
Item Create API Wrapper - Special Logic ... 3-7
Item Create API Wrapper - Error Messages ... 3-8
Item Create API Wrapper - Code Example ... 3-9

4 Item Lot/Sublot Conversion API

Item Lot/Sublot Conversion API - Business Function... 4-2
Item Lot/Sublot Conversion API - Technical Overview.. 4-2
Item Lot/Sublot Conversion API - Parameters .. 4-3
Item Lot/Sublot Conversion API - Table and View Usage.. 4-6
Item Lot/Sublot Conversion API - Package and Procedure Names .. 4-7
Item Lot/Sublot Conversion API - Special Logic.. 4-7
Item Lot/Sublot Conversion API - Error Messages .. 4-9
Item Lot/Sublot Conversion API - Success Messages.. 4-10

5 Item Lot/Sublot Conversion API Wrapper

Item Lot/Sublot Conversion API Wrapper - Business Function .. 5-2
Item Lot/Sublot Conversion API Wrapper - Technical Requirements 5-2
Item Lot/Sublot Conversion API Wrapper - Input Structure ... 5-2
Item Lot/Sublot Conversion API Wrapper - Special Logic ... 5-2
Item Lot/Sublot Conversion API Wrapper - ASCII Flat File Layout .. 5-3
iv

Item Lot/Sublot Conversion API Wrapper - Package and Procedure Names 5-4
Item Lot/Sublot Conversion API Wrapper - Error Messages ... 5-4
Item Lot/Sublot Conversion API Wrapper - Code Example ... 5-5

6 Inventory Quantities API

Inventory Quantities API - Business Function ... 6-2
Inventory Quantities API - Technical Overview .. 6-2
Inventory Quantities API - Parameters .. 6-3
Inventory Quantities API - Table and View Usage .. 6-7
Inventory Quantities API - Package and Procedure Names... 6-8
Inventory Quantities API - Special Logic .. 6-8
Inventory Quantities API - Error Messages... 6-17
Inventory Quantities API - Success Messages .. 6-19

7 Inventory Quantities API Wrapper

Inventory Quantities API Wrapper - Business Function .. 7-2
Inventory Quantities API Wrapper - Input Structure.. 7-2
Inventory Quantities API Wrapper - ASCII Flat File Layout ... 7-2
Inventory Quantities API Wrapper - Package and Procedure Names 7-4
Inventory Quantities API Wrapper - Special Logic ... 7-4
Inventory Quantities API Wrapper - Error Messages .. 7-5
Inventory Quantities API Wrapper - Code Example ... 7-6

8 Lot Create API

Lot Create API - Business Function... 8-2
Lot Create API - Technical Overview .. 8-2
Lot Create API - Parameters for Create Lot.. 8-2
Lot Create API - Table and View Usage.. 8-9
Lot Create API - Package and Procedure Names .. 8-10
Lot Create API - Special Logic.. 8-10
Lot Create API - Error Messages .. 8-12

9 Lot Create API Wrapper

Lot Create API Wrapper - Business Function .. 9-2
v

Lot Create API Wrapper - ASCII Flat File Layout... 9-2
Lot Create API Wrapper - Package and Procedure Names.. 9-3
Lot Create API Wrapper - Special Logic ... 9-4
Lot Create API Wrapper - Error Messages.. 9-5
Lot Create API Wrapper - Code Example ... 9-6

Index
vi

Send Us Your Comments

Oracle® Process Manufacturing Inventory APIs User’s Guide, Release 11 i

Part No. A82921-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

� FAX: 650-506-7200 Attn: Oracle Process Manufacturing
� Postal service:

Oracle Corporation
Oracle Process Manufacturing
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

� Electronic mail message to appsdoc@us.oracle.com
If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

Welcome to the Oracle Process Manufacturing Inventory APIs User’s Guide. This
user’s guide includes the information you need to work with the Oracle Process
Manufacturing (OPM) application effectively.

This preface explains how this user’s guide is organized and introduces other
sources of information that can help you.

Intended Audience
This guide assumes that you have working knowledge of your business area’s
processes and tools. It also assumes that you are familiar with OPM Inventory APIs.
If you have never used OPM Inventory APIs, we suggest you attend one or more of
the Oracle Process Manufacturing training classes available through Oracle World
Wide Education.

This guide also assumes that you are familiar with the Oracle Applications
graphical user interface. To learn more about Oracle Applications graphical user
interface, read the Oracle Applications User’s Guide.
ix

About This Guide
This guide contains overviews as well as task and reference information. It includes
the following:

Information Sources
You can choose from many sources of information, including documentation,
training, and support services to increase your knowledge and understanding.

Name Description

OPM
Inventory
APIs -
Introduction

Presents Inventory API technical requirements, technical structure,
architecture, and message handling recommendations. This topic
also covers Inventory API installation and upgrade issues, and
provides engineering notes on this release.

Item Create
API

Provides the business function and technical details for the Item
Create API

Item Create
API Wrapper

Provides the business function and technical details for the Item
Create API wrapper

Item
Lot/Sublot
Conversion
API

Provides the business function and technical details for the Item
Lot/Sublot conversion API

Item
Lot/Sublot
Conversion
API Wrapper

Provides the business function and technical details for the Item
Lot/Sublot conversion API wrapper

Inventory
Quantities
API

Provides the business function and technical details for the
Inventory Quantities API

Inventory
Quantities
API Wrapper

Provides the business function and technical details for the
Inventory Quantities API wrapper

Lot Create
API

Provides the business function and technical details for the Lot
Create API

Lot Create
API Wrapper

Provides the business function and technical details for the Lot
Create API wrapper
x

Online Documentation
Oracle Applications documentation is available on CD-ROM, except for technical
reference manuals. User’s guides are available in HTML format and on paper.
Technical reference manuals are available on paper only. Other documentation is
available on paper and sometimes in PDF format.

The content of the documentation remains the same from format to format. Slight
formatting differences could occur due to publication standards, but such
differences do not affect content. For example, page numbers are included on paper,
but are not included in HTML.

The HTML documentation is available from all Oracle Applications windows. Each
window is programmed to start your web browser and open a specific,
context-sensitive section. Once any section of the HTML documentation is open,
you can navigate freely throughout all Oracle Applications documentation.

Related Documents
Oracle Process Manufacturing shares business and setup information with other
Oracle products. You may find the following Oracle Applications user’s guides
useful:

� Oracle Applications User’s Guide

� Oracle Application’s Flexfields Guide

� Oracle Workflow User Guide

� Oracle Applications System Administrator’s Guide

� Oracle General Ledger User’s Guide

� Oracle Payables User’s Guide

� Oracle Receivables User’s Guide

� Oracle Human Resources North American User’s Guide

� Oracle Purchasing User’s Guide

Oracle Process Manufacturing Guides
The following is a list of documentation in each product group for OPM:

Financials

� Oracle Process Manufacturing Accounting Setup User’s Guide

� Oracle Process Manufacturing Cost Management User’s Guide
xi

� Oracle Process Manufacturing Manufacturing Accounting Controller User’s Guide

� Oracle Process Manufacturing and Oracle Financials Integration User’s Guide

Inventory Control

� Oracle Process Manufacturing Intrastat Reporting User’s Guide

� Oracle Process Manufacturing Inventory Management User’s Guide

� Oracle Process Manufacturing Physical Inventory User’s Guide

Logistics

� Oracle Process Manufacturing Order Fulfillment User’s Guide

� Oracle Process Manufacturing Purchase Management User’s Guide

Process Execution

� Oracle Process Manufacturing Process Operation Control User’s Guide

� Oracle Process Manufacturing Production Management User’s Guide

Process Planning

� Oracle Process Manufacturing Capacity Planning User’s Guide

� Oracle Process Manufacturing Integration with Advanced Planning and Scheduling
User’s Guide

� Oracle Process Manufacturing MPS/MRP and Forecasting User’s Guide

Product Development

� Oracle Process Manufacturing Formula Management User’s Guide

� Oracle Process Manufacturing Laboratory Management User’s Guide

� Oracle Process Manufacturing Quality Management User’s Guide

Regulatory

� Oracle Process Manufacturing Regulatory Management User’s Guide

System Administration and Technical Reference

� Oracle Process Manufacturing Implementation Guide

� Oracle Process Manufacturing System Administration User’s Guide

� Oracle Process Manufacturing Technical Reference Manuals
xii

Training
Oracle offers a complete set of formal training courses to help you master Oracle
Process Manufacturing and reach full productivity quickly. We organize these
courses into functional learning paths, so you take only those courses appropriate to
your area of responsibility.

You have a choice of educational environments. You can attend courses offered by
Oracle Education Services at any one of our many Education Centers, or you can
arrange for our trainers to teach at your facility. In addition, Oracle Training
professionals can tailor standard courses or develop custom courses to meet your
needs. For example, you may want to use your organization’s structure,
terminology, and data as examples in a customized training session delivered at
your own facility.

Conventions
The following conventions are used in this guide:

Bolded Text

Buttons, fields, keys, menus, and selections are bolded in procedures only. For
example: To access the next window, click OK. Otherwise, references to these
features appear in regular type.

Additional Menu Options

Only nonstandard menu options are discussed. Standard menu bar options (such as
Save) are not discussed. These standard options are described in the Oracle
Applications User’s Guide. Only menu options unique to the use of the specific
window are discussed.

Field References

References to fields within procedures are in bold type. References within the body
of this guide appear in regular type.

Required Fields

The word Required appears as the last word in the field description of all required
fields. When the field is required contingent on the entry in another field, or only in
specific situations, "Required if..." is the last sentence of the field description.

Fields Reserved for Future Use

Fields with no current processing implications are referenced by the statement "This
field is not currently used" or "Reserved for future use." Do not use these fields for
xiii

your own reference data, because there are plans to link future functionality to
these fields. Fields intended for informational purposes only are referenced by the
statement "This field is for informational purposes only."

Pending/Completed Transactions

Discussions about processing transactions that use the words pending and
completed refer to the status of a transaction. Pending and completed do not refer
to the database tables that are updated as a result of transactions (for example, some
completed transactions are stored in the Pending Transactions table).

Procedures

Most topics contain a procedure with numbered steps. Any actions which are
subordinate to a step are assigned letters. You can customize your Oracle
Application, therefore, all procedures are suggestive only. Navigate to windows
and between responsibilities in a way that works best for your particular setup.
Also note that fields may appear in a different order than they are discussed.

Use of the Word Character

The word character means an alphanumeric character. Characters that are numeric
or alphabetic only are referenced specifically. Depending on your system security
profile, you many not have access to all of the windows and functions described in
this guide. If you do not see a menu option described in this guide, and you want
access to it, contact your System Administrator.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle Applications tables are interrelated. As a result, any change you make using
Oracle Applications can update many tables at once. If you modify the Oracle
Applications data using anything other than Oracle Applications, you could change
a row in one table without making corresponding changes in related tables. If your
tables are not synchronized with each other, you risk retrieving erroneous
information and receiving unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also track
who changes information. If you enter information into database tables using
database tools, you could store invalid information. You also lose the ability to track
who has changed your information because SQL*Plus and other database tools do
not keep a record of changes.
xiv

Consequently, we strongly recommend that you never use SQL*Plus or any other
tool to modify Oracle Applications data unless otherwise instructed by Oracle
Support Services.

About Oracle
Oracle Corporation develops and markets an integrated line of software products
for database management, applications development, decision support, and office
automation, as well as Oracle Applications, an integrated suite of more than 45
software modules for financial management, supply chain management,
manufacturing, project systems, human resources, sales, and service management.

Oracle Products are available for mainframes, minicomputers, personal computers,
network computers, and personal digital assistants, allowing organizations to
integrate different computers, different operating systems, different networks, and
even different database management systems, into a single, unified computing, and
information resource.

Oracle is the world’s leading supplier of software for information management, and
the world’s second largest software company. Oracle offers its database, tools, and
applications products, along with related consulting, education, and support
services in over 140 countries around the world.

Thank You
Thank you for choosing Oracle Process Manufacturing and this user’s guide.

We value your comments and feedback. At the beginning of this guide is a Reader’s
Comment Form that you can use to explain what you like or dislike about this
user’s guide. Mail your comments to the following address or call us directly at
650-506-7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Or, send an electronic mail message to appsdoc@us.oracle.com
xv

xvi

OPM Inventory APIs - Introd
1

OPM Inventory APIs - Introduction

This topic provides a basic understanding of Oracle Process Manufacturing (OPM)
Inventory APIs. It presents the technical requirements for stored procedures. You
will gain an understanding of the technical structure and architecture of the
Inventory APIs. Also included in this topic is a technical overview of Inventory
APIs as well as how to handle error messages and result messages. Installation and
upgrade recommendations are provided with engineering notes on this release.

The following topics are covered:

� Understanding OPM Inventory APIs

� Stored Procedures Technical Requirements

� Inventory APIs - Technical Structure and Architecture

� Technical Overview of Inventory APIs

� Error Message Handling

� Result Message Handling

� Installation and Upgrade

� Engineering Notes on This Release
uction 1-1

Understanding OPM Inventory APIs
Understanding OPM Inventory APIs
Oracle Process Manufacturing (OPM) is a key component to Enterprise Resource
Planning (ERP) solutions. For example, it is a key component to Consumer
Packaged Goods (CPG), Energy and Pharmaceutical industries. In addition, OPM is
deployed within customer implementations integrated to legacy systems and other
solution component products.

Within this environment, the need to converge, integrate or interface to third party
systems together with other Oracle application suites is becoming more of a
business requirement, and a needed development strategy.

With the use of application program interfaces (APIs), OPM is able to integrate with
touch points either as or within an ERP solution. APIs are a documented, supported
method for communicating within or between modules. The APIs support external
interfaces to OPM.

The APIs discussed in this document support the OPM Inventory Control module.
These interfaces make use of the standard functionality and logic implemented in
that module. The APIs provide hooks into which customers can interface their own
programs. This guide describes how the stored procedures should be called, the
parameters that are required (and those that are optional) and the values that are
returned to the calling program. This includes all error conditions that may arise.

The APIs and related functions discussed in this document are:

� Item Create API

� Item Create API Wrapper

� Item Lot/Sublot Conversion API

� Item Lot/Sublot Conversion API Wrapper

� Inventory Quantities API

� Inventory Quantities API Wrapper

� Lot Create API

� Lot Create API Wrapper
1-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Stored Procedures Technical Requirements
Stored Procedures Technical Requirements
The OPM Inventory API stored procedures are designed to operate in an OPM 11i
environment only.

The procedures make use of the following standard Oracle Applications packages
to perform message handling:

� FND_API - the standard Oracle Applications API version checking function.
This is used by the stored procedure to check for a valid API version number
and also contains constant variables such as TRUE and FALSE.

� FND_MESSAGE - the standard Oracle Applications messaging function. This is
used by the stored procedure to report status and error handling. The
application messages are stored in the database table fnd_new_messages.

� FND_PUB_MSG - the standard Oracle Applications message retrieval function,
used to interrogate the procedure messages.

These packages are created and owned by the applications user as part of a
standard Oracle Applications installation. They are not supplied within the OPM
Inventory APIs’ installation.

You should become familiar with the functionality of the procedures and functions
contained in the FND packages. The calling program utilizes these procedures on
return from the API in order to decode and handle messages.
OPM Inventory APIs - Introduction 1-3

Inventory APIs - Technical Structure and Architecture
Inventory APIs - Technical Structure and Architecture
The following topic covers the:

� Stored Procedure Mechanism

� API Architecture

� API Package Details

� Item Master Block Relationship Diagram

Stored Procedure Mechanism
The following is a schematic of the Oracle Process Manufacturing (OPM) stored
procedure API mechanism. It shows the structure of the API and the mechanism
needed to execute it. It also indicates the additional tables and functionality
required to both execute and audit results.
1-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory APIs - Technical Structure and Architecture
API Architecture
APIs use a layered architecture. From top to bottom these layers are:

� Wrappers and third party code - the top layer

� Public layer

� Group layer - callable from the private layer

� Private layer - within which there are validation and database access layers

This structure is illustrated in the following diagram. Arrows indicate permitted
calls between layers.
OPM Inventory APIs - Introduction 1-5

Inventory APIs - Technical Structure and Architecture
API Package Details
Each functional area provided by the APIs has both a public and a private package,
each of which possesses a package specification and a package body.

The APIs use a layered architecture, as described in the API Architecture topic.
Third party and Oracle-supplied wrapper code should only access the functions,
procedures and variables that are contained in the public/group package
specifications. Private packages should only be accessed from the group code and
from nowhere else.

API packages are named according to the function they provide. The names begin
with GMI followed by:

� P (for public)

� V (for private)

� G (for group)

The next three letters define the package use, and result in the following package
names:

� GMIPAPI - for the top level public API routines. These routines take in raw
data in the form of PL/SQL records and make all the required database calls to
find surrogate keys and so forth.

� GMIGAPI - for the group level API routines. These are called by the routines in
the GMIPAPI package and they are also callable by third party code if the
required data is available.

� GMIGUTL - for utility routines called by all layers of the API code. They are
also callable from third party and wrapper programs.

These three packages are the only ones that should be called from application code.
In addition the following packages exist to support them:

� GMIVITM - for all internal processing (for example, validation) to support item
creation

� GMIVLOT - for all internal processing to support lot creation

� GMIVILC - for all internal processing for item/lot conversion

� GMIVQTY - for all internal processing to support item quantity processing

� GMIVXFR - for all internal processing to support transfer processing

� GMIVDBL - for all simple database layer processing
1-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory APIs - Technical Structure and Architecture
Several packages are available for the more complex database processing involving
inventory transactions for the ic_summ_inv, ic_loct_inv, ic_tran_pnd and ic_tran_
cmp tables as follows:

� GMIPTXN - Public transaction engine API routines. These are the only routines
in the transaction processor that should be called publicly.

� GMIVTXN - Private transaction engine processing routines

� GMIVBUS - Business logic for ic_summ_inv manipulation

� GMIVBUL - Business logic for ic_loct_inv manipulation

� GMIVPND - Database routines for ic_tran_pnd

� GMIVCMP - Database routines for ic_tran_cmp

� GMIVSUM - Database routines for ic_summ_inv

� GMIVLOC - Database routines for ic_loct_inv

The API release also includes some wrappers that can be used to process flat data
files. They are included more as an example of how the public APIs are called rather
than a supported product, since they have to be modified to suit a particular
installation.

The wrappers are:

� GMIPITW - Wrapper for item creation

� GMIPLOW - Wrapper for lot creation

� GMIPILW - Wrapper for item/lot UOM conversion creation

� GMIPQTW - Wrapper for quantity transactions

When the intracompany transfer package is finalized there is a wrapper
(GMIPXFW) for these.

The files that contain the packages take the previously stated names and add an S
for the specification or B for the package body. The file type is .pls and it is written
in lower case letters.
OPM Inventory APIs - Introduction 1-7

Inventory APIs - Technical Structure and Architecture
Item Master Block Relationship Diagram
The logical view of the Item Master is represented in the following graphic. This
suggests the business characteristics of the Item Master, not its database design.
1-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory APIs - Technical Structure and Architecture
The Item Master table IC_ITEM_MST holds all attributes of the item.

Lot controlled and quality control attributes are prompted for in the maintenance
form once the appropriate indicators are set. These details are also held against the
item.

Whether an item is defined as lot controlled or not lot controlled, the system always
generates a DEFAULT lot against the item on IC_LOTS_MST.

All lots hold additional attributes for Consumer Packaged Goods (CPG) specific
processing. These are held against IC_LOTS_CPG.

When an item is identified as dual UOM and the alternate UOM is of a different
type (for example, item is defined in type WEIGHT with dual UOM in VOLUME)
the save of the item master prompts for the conversion factor between WEIGHT
and VOLUME for the item. This mechanism and structure supports transactional
processing of the item in any supported UOM. This is handled outside of the Item
Create procedure through an additional function (Insert_Ic_Item_Cnv).
OPM Inventory APIs - Introduction 1-9

Technical Overview of Inventory APIs
Technical Overview of Inventory APIs
This section describes all elements in the structure. The stored procedures may be
called from a user wrapper function which executes the procedures and deal with
the return status and messages from the execution.

API - Input Data Sources
The following are API Data Sources:

Flat File/Batch File - Asynchronous Mode
Input data to the user wrapper function may come from a flat file source. This may
be processed by the wrapper and the details passed, as parameters, to the stored
procedure in asynchronous mode. In this mode if a single record is processed then
the commit flag can be passed to the API so that the API commits if successful. If
multiple records are ‘batched’ for processing then the API is called with the commit
flag not set so the API has no responsibility for committing. In this case the calling
function monitors the success or failure (return code) from the called procedure and
COMMIT based on that result.

Online User Interface (UI) - Synchronous Mode
Input data to the API may come directly from a form or other user interface. This
may be processed by the UI and the details passed, as parameters, to the stored
procedure in synchronous mode. In this mode, the UI calling function monitors the
success or failure (return code) from the called procedure and COMMIT based on
that result.

Wrapper Function
The wrapper function is responsible for collating the details required as input
parameters to the stored procedure, forwarding these in the call and monitoring the
return code.

The stored procedure returns three possible messages:

� Successful

� Error (Unsuccessful)

� Unexpected error

Based on the return, the wrapper function may interrogate the Oracle Messages File
for the stored procedure to determine a COMMIT of the transaction or not.
1-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Technical Overview of Inventory APIs
Wrapper Function - Input Data Sources
The following are input data sources for the wrapper function.

Flat File
Input data to the user wrapper function may come from a flat file source. The flat
file is read record by record. For each record the wrapper builds the necessary
parameters and call the Item Create API. The wrapper assumes no
inter-dependency between the records and therefore instructs the API to commit
each successfully processed record.

Temporary Table
Input data to the user wrapper function may come from a temporary database
table. The table is read row by row. For each row the wrapper builds the necessary
parameters and calls the Item Create API. The wrapper assumes no
interdependency between the rows and therefore instructs the API to commit each
successfully processed row.

Stored Procedures Overview
Stored procedures are held at the database level and consist of PL/SQL-based
routines and functions. These are therefore application independent and are called
from any privileged program function accessing the database. At the functional
level, stored procedures manage both the business rules and the data.

A stored procedure has two parts:

� Specification - declares the procedure or function name with parameters.

� Body - defines the procedure to execute consisting of PL/SQL block statements.

Stored procedures offer a number of benefits:

Compiled Version of PL/SQL in the Database
Stored procedures are compiled and held at the database level. Therefore, they
occur once only and can be called by all privileged users. The compiled version of
the code is compiled the first time the stored procedure is called.

When called there is no parsing of the statement to interpret the PL/SQL. All
dependencies and syntax of the procedure are already defined, aiding in efficiency
and performance.
OPM Inventory APIs - Introduction 1-11

Technical Overview of Inventory APIs
Security Considerations
Grant permissions can be controlled at the stored procedure level–above the
individual database tables. This allows a global level of authorization against the
procedure rather than a table by table grant discipline within an application which
could hold anomalies. If you have grant authority to the procedure then it should
be assumed you have permissions at the database, and permissions at the
application levels.

Platform Independence
Stored procedure, unlike ‘C’ coded functions, are platform independent with no
need to recompile according to hardware and operating platform.

Reduced Network Traffic
Stored procedures reduce network traffic since only the execute statement and
parameter values need to be passed over the network.

Separation from User Interface (UI) Layer
Stored procedures are defined at the database level, and are away from the UI layer
of the application software.

Stored Procedure Execution
The stored procedure may be called with the appropriate parameters forwarded in
a PL/SQL RECORD format as detailed. The procedure validates the RECORD and
then processes the appropriate functional logic as required. The procedure writes
appropriate messages to the Oracle Messages table. These are informational
(succeeded) or error as determined by the logic. These can be interrogated by the
calling wrapper function using the GET MESSAGES functionality.

The stored procedure may call other validation procedures in the course of its
execution - example ‘validate UOM code’.

On successful completion of the procedure, the COMMIT of the database updates is
made. The procedure is viewed as one LOGICAL transaction. The COMMIT should
only be considered if the procedure executes successfully.

Note: Functions called by these procedures do not use IN OUT
parameters. This facility was disapproved from Oracle 8 onward.
1-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Technical Overview of Inventory APIs
The following is an outline of the stored procedure execution.

The Item Master table IC_ITEM_MST holds all attributes of the item.

Lot controlled and QC attributes are prompted for in the maintenance form once
the appropriate indicators are set. These details are also held against the item.

Whether an item is defined as lot controlled or not the system always generates a
DEFAULT lot against the item on IC_LOTS_MST.

All lots hold additional attributes for Consumer Packaged Goods (CPG)-specific
processing. These are held against IC_LOTS_CPG.

1.0 User Call function

1.1 User setup for API call with parameters and RECORD initialized

1.2 Loop start to API call

2.0 Call API

2.1 Accept input parameters

2.2 Perform business logic
2.2.1 IAD Business logic
2.2.2 IAD Customer logic

2.3 Perform database updates
2.3.1 IAD Database updates
2.3.2 IAD Customer database updates

2.4 Set up return codes, pointers, messages

2.5 Return

1.3 Loop end

1.4 Check return status, message code, message count

1.5 Commit or error handling routine

1.6 End User function
OPM Inventory APIs - Introduction 1-13

Technical Overview of Inventory APIs
Common Stored Procedure Parameters
All stored procedure APIs are called with PL/SQL parameters. Some of these
parameters are common to all API activities while others are dependent on the
activity. The following PL/SQL parameters are common to all API activities:

Parameter Type IN/OUT Required Validation

p_api_version number IN Y Used for version compatibility.
The version sent by the calling
function is compared to the
internal version of the API and an
unexpected error is generated if
they do not match.

p_init_msg_list varchar2 IN N Used to specify whether the
message list should be initialized
on entry to the API. It is an
optional parameter, and if not
supplied, defaults to FND_
API.G_FALSE which means that
the API does not initialize the
message list.

p_commit varchar2 IN N Used to specify whether the API
should commit its work before
returning to the calling function.
If not supplied it defaults to
FND_API.G_FALSE.

p_validation_level varchar2 IN N Used internally. Application code
should not specify anything other
than the default.

x_return_status varchar2 OUT Specifies whether the API was
successful or failed:

‘S’ Successful

‘E’ failed due to expected error

‘U’ failed due to unexpected error

x_msg_count number OUT Specifies number of messages
added to message list.

x_msg_data varchar2 OUT This parameter returns the
messages in encoded format.
These messages can then be
processed by the standard
message.
1-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Technical Overview of Inventory APIs
Examination of both the x_return_status and x_msg_count indicates the pass or fail
status of the call.
OPM Inventory APIs - Introduction 1-15

Error Message Handling
Error Message Handling
The parameter x_return_status indicates if the API was successful or failed. The
values are as follows:

� ‘S’ - Successful

� ‘E’ - Expected error

� ‘U’ - Unexpected error

Error Messages for the individual APIs and wrappers are listed at the end of their
respective topics.

Result Message Handling
APIs put result messages into a message list. Programs calling APIs can then get the
messages from the list and process them appropriately. This may done by calling
the API from an interactive process, or by writing messages to database tables or
log files when calling the API from a batch process.

Messages are stored in an encode format to enable API callers to find out message
names by using the standard functions provided by the message dictionary.

The structure of the message list is not public. Neither API developers nor API
callers can access this list except through calling the API message utility routines
identified in the list that follows.

The following utility functions are defined in the FND_MSG_PUB package, in the
file AFASMSGS.pls:

� Initialize - Initializes the API message list.

� Add - Adds a message to the API message list.

� Get - Gets a message from the API message list.

� Count_Msg - Returns the number of messages in the API message list.

� Delete - Deletes one or more messages from the API message list.

� Reset - Resets the index used in getting messages.

� Count_And_Get - Returns the number of messages in the API message list. If
this number is one, it also returns the message data.

Refer to the documentation of these functions and procedures for usage
information.
1-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Installation and Upgrade
To add a message to the API message list, developers should use the regular
message dictionary procedures FND_MESSAGE.SET_NAME and FND_
MESSAGE.SET_TOKEN to set the message name and tokens on the message
dictionary stack. They should then call FND_MSG_PUB.Add to get the messages off
the message dictionary stack and add it to the API message list.

To get a message from the API message list, API callers should use the procedure
FND_MSG_PUB.Get. This procedure operates in five different modes:

� First - gets the first message in the API message list

� Next - gets the next message in the API message list

� Last - gets the last message in the API message list

� Previous - gets the previous message in the API message list

� Specific - gets a specific message from the API message list

Installation and Upgrade
Use the install scripts provided with the OPM patch.
OPM Inventory APIs - Introduction 1-17

Engineering Notes On This Release
Engineering Notes On This Release
In addition to resolving outstanding bugs in the previous releases of the Inventory
APIs, the following issued have been addressed:

Public Code Not Accessed from the Private Layer
While the architecture described in the API Architecture topic was for the most part
the structure used in earlier releases of this API, performance was compromised by
calling public procedures from the private layer. In several cases this resulted in the
same data being selected from the database several times. With this release, public
code is never accessed from the private layer.

Single Retrieval of Profile Options
Repeated retrieval of profile options was identified as a major bottleneck in the API
code. Each procedure always read the options it needed. In this release, all options
are read once in a new setup procedure, which takes a user name as its parameter.
All rows written to the database are tagged with this identity. The user names
within the record structures which are passed to the APIs have been retained to
minimize disruption to existing code, however these are ignored.

Reduced Data Validation
Other improvements, in line with performance analysis, include a reduction in the
amount of validation performed; data that is not needed for a particular API is now
ignored rather than reported as an error.

Reduced Database Access Within Validation Layer
Database access within the validation layer has been reduced. An example is that
when a lot is created, the validation used to check that the same lot did not already
exist. Customer input has indicated that errors are the exception rather than the
norm, therefore, this check has now been postponed. If the lot exists, the error is
trapped when the insertion fails, saving a select per API call.

In keeping with the strategy of minimizing database accesses, the functionality of
the APIs now mirrors more closely the on-line functionality. For example when a lot
is created on-line it inherits the quality control Grade from the item master. The
previous version of the APIs took the value from the input parameters, after
checking that it was valid, which required a database access. This defaulting of data
has been adopted in several places, but the ability to override the default has been
retained. If the input value is specified as NULL, it is defaulted whenever possible.
If a value is specified, it is validated with the consequent overhead.
1-18 Oracle® Process Manufacturing Inventory APIs User’s Guide

Engineering Notes On This Release
Error Reporting Broadened to Entire Input Record
Error reporting is now carried out on an entire input record rather than terminating
at the first error located. However, where it would be useless to continue error
checking, the previous behavior has been retained. Some error messages now cover
several possible errors:

� In item creation, the message ‘One or more classes is/are invalid’ is self
explanatory. It arises from the method used to validate all the classes in a single
database hit, with a consequent positive effect on performance, rather than
individually.

� The message ‘Invalid Organization’ in the quantities transaction validation
means:

� that the organization does not belong to the company, or

� the organization’s company is not the ultimate owner of the warehouse

� that one or both of the warehouse codes does not exist, or

� the company does not exist, or

� that the organization does not exist.

This arises because all of these conditions are checked in a single database
retrieval, and it is therefore impossible to know which particular condition has
not been met.

Checks Account for Nulls
Checks on return values now take account of nulls. In a few places vestigial code
from the GEMMS/OPM 4.1x implementation was still checking for spaces or zero,
which meant that some parts of the code could never be executed.

Intracompany Transfers Supported
New packages to support intracompany transfers have been included, although in
this first release of the package there is no functionality behind the procedures.

PL/SQL Manages Inventory Transactions
A PL/SQL engine manages inventory transactions. This also contains public calls
for use by third party code if this is ever needed.
OPM Inventory APIs - Introduction 1-19

Engineering Notes On This Release
Procedural Interfaces Modified
Most procedural interfaces have changed in line with customer comments. For
example, when the create item API is called, the API now returns the database rows
created as PL/SQL records so that the calling code has immediate knowledge of the
surrogate keys that have been assigned. Previously an extra database call was
needed to find each of these.

Utility Routines Called Internally by API Code
Several utility routines are called internally by the API code. For convenience, these
are also callable by third party code. For the complete list with exact specifications,
refer to the GMIGUTLS.pls file:

� GMIGUTL.Get_Item - reads in item rows according to the key or keyspecified

� GMIGUTL.Get_Lot - reads in lot rows according to the key or keys specified

� GMIGUTL.Get Reason - reads in the reason code for the key specified

� GMIGUTL.Setup - sets up various global constants, and so forth.

Global Variables and Flags Control API Behavior
Also residing in GMIGUTL are several global variables and flags which control API
behavior. These are:

� IC$DEFAULT_LOT - name assigned to the default lot

� IC$DEFAULT_LOCT - name of the default location

� IC$ALLOWNEGINV - flag used to decide if inventory can be driven negative

� IC$MOVEDIFFSTAT - flag that controls how status of lots is transferred in
movements

� IC$API_ALLOW_INACTIVE - flag used to allow or block transactions against
inactive items and/or lots

� SY$INTRASTAT - flag that controls commodity code validation in the Create_
Item API

� SY$CPG_INSTALL - flag that determines whether the CPG tables, ic_lots_cpg
and ic_item_cpg, are read and written to by the APIs

� DEFAULT_USER_ID - the internal ID for the user name specified as a
parameter to GMIGUTL.Setup

� API_VERSION - a constant that is used to ensure compatibility in the API calls
1-20 Oracle® Process Manufacturing Inventory APIs User’s Guide

Engineering Notes On This Release
� DEFAULT_LOGIN - the process ID for the current session

All of the externally callable API routines make calls to routines in the private layer,
either directly or indirectly. If the call succeeds, other routines in the database layer
are called to create or retrieve the rows. The routines in the private layer are not
intended to be called by anything other than the routines in the group layer and are
not supported outside this context.
OPM Inventory APIs - Introduction 1-21

Engineering Notes On This Release
1-22 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Creat
2

Item Create API

This topic provides an explanation of the business function and technical overview
of the Item Create API. The topic presents parameters used and includes table and
view usage, package and procedure names, and special logic used in the Item
Create API. Common error messages are listed.

The following topics are covered:

� Item Create API - Business Function

� Item Create API - Technical Overview

� Item Create API - Parameters and Interface

� Item Create API - Table and View Usage

� Item Create API - Package/Procedure Names

� Item Create API - Special Logic

� Item Create API - Error Messages
e API 2-1

Item Create API - Business Function
Item Create API - Business Function
This stored procedure is concerned with the following function within the Oracle
Process Manufacturing (OPM) Inventory Management Module:

� Creating an inventory item

This topic describes how the stored procedure should be called, mandatory or
optional parameter requirements and the values that are returned to the calling
program. This includes all error conditions that may arise.

The procedure is intended as a create function only, used primarily to load item
data from legacy systems on implementation. The API does not allow Item Update
or Unit of Measure Conversion maintenance. These are handled through additional
stored procedures such as discussed in the Item Lot/Sublot Conversion API -
Special Logic topic.

Item Create API - Technical Overview
The Item Create stored procedure is intended to be used by a user ‘wrapper’ calling
function with item attributes passed to the procedure using a RECORD format
which is detailed in this topic. The wrapper function is responsible for connecting to
the database as an appropriate user with the necessary privileges. It passes the
appropriate parameters into the stored procedure and is responsible for handling
the return code from the procedure.
2-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Parameters and Interface
Item Create API - Parameters and Interface
The public Item Create API has the following call interface:

GMIPAPI.Create_Item
(p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_item_rec IN GMIGAPI.item_rec_typ
, x_ic_item_mst_row OUT ic_item_mst%ROWTYPE
, x_ic_item_cpg_row OUT ic_item_cpg%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);

The first 4, and last 3 parameters are standard across all of the API calls.

If the creation was successful the x_ic_item_mst_row and x_ic_item_cpg_row
parameters are returned with the data set up in the two tables, regardless of
whether it was committed by the procedure.

The contents of the x_ic_item_cpg row are undefined if the system constant
SY$CPG_INSTALL is set to zero, and nothing is written to the ic_item_cpg table.

Parameter Validation

p_api_version Used internally to check that the call is compatible with user code.
The latest patch documentation should be consulted for any
possible changes.

p_init_msg_list Determines if the error message stack should be purged. Usually
this parameter is omitted and defaulted as above

p_commit Determines whether the API should commit the new item after
creation (assuming the creation succeeded). Normally this
parameter is omitted and defaulted as above

p_validation_level Determines whether validation is performed on the input record.
Normally this parameter is omitted and defaulted as above. When
an API is called from third party code no value other than the
default is supported. In some internal calls the APIs call each other
with other values to bypass sections of validation code.

p_item_rec Contains the raw data to construct the item
Item Create API 2-3

Item Create API - Parameters and Interface
x_return_status is returned as FND_API.G_RET_STS_SUCCESS, FND_API.G_RET_
STS_UNEXP_ERR, or FND_API.G_RET_STS_EXP_ERR.

The final two parameters returned contain the message count and message stack.
2-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Parameters and Interface
The p_item_rec parameter is used to pass the item-specific data required to create
an inventory item as described in the following. Please refer to the Item Create API
Wrapper topic for an example of how to populate this parameter and call the stored
procedure.

Field/Column Type Length Default Req’d Validation

item_no varchar2 32 Duplicates not
allowed on ic_
item_mst

item_desc1 varchar2 70 Y Non-blank

item_desc2 varchar2 70 N

alt_itema varchar2 32 N

alt_itemb varchar2 32 N

item_um varchar2 4 Y Must exist on
sy_uoms_mst

dualum_ind number 5 0 Y 0 = Single UOM
control

1 = Fixed
relationship
dual UOM
control

2 = Variable
relationship
dual UOM with
default
conversion

3 = Variable
relationship
dual UOM
control

item_um2 varchar2 4 N Mandatory if
dual UOM > 0.

If non-blank
then must exist
on sy_uoms_
mst
Item Create API 2-5

Item Create API - Parameters and Interface
deviation_lo number 0 N Must not be
negative value.

Must be 0 if
dualum_ind = 0
or 1

deviation_hi number 0 N Must not be
negative value.

Must be 0 if
dualum_ind = 0
or 1

level_code number 5 0 N Not currently
used

lot_ctl number 5 Y 0 = Not lot
controlled

1 = Lot
controlled

lot_indivisible number 5 0 N 0 = Lots are not
indivisible, can
be split

1 = Lots are
indivisible,
cannot be split.

Must be 0 if lot_
ctl = 0

sublot_ctl number 5 0 N 0 = Not sub lot
controlled

1 = Sub lot
controlled

Must be 0 if lot_
ctl = 0

Field/Column Type Length Default Req’d Validation
2-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Parameters and Interface
loct_ctl number 5 0 N 0 = Not location
controlled

1 = Location
controlled with
validation of
location

2 = Location
controlled with
no validation of
location

noninv_ind number 5 0 N 0 = Not a non
inventory item
- inventory
balances
maintained

1 = Non
inventory item,
inventory
balances not
maintained

Must be 0 if lot_
ctl = 0

match_type number 5 1 N Type of invoice
matching done

Blank is no
matching

1 = Invoice only

2 = Two way
matching

3 = Three way
matching

inactive_ind number 5 0 N 0 = Active

1 = Inactive

inv_type varchar2 4 N Must exist on
ic_invn_typ if
non-blank

Field/Column Type Length Default Req’d Validation
Item Create API 2-7

Item Create API - Parameters and Interface
shelf_life number 0 N Must not be
negative.

Must be 0 if
grade_ctl = 0

retest_interval number 0 N Must not be
negative.

Must be 0 if
grade_ctl = 0

item_abccode varchar2 4 N

gl_class varchar2 8 N Must exist on
ic_gled_cls if
supplied

inv_class varchar2 8 N Must exist on
ic_invn_cls if
supplied

sales_class varchar2 8 N Must exist on
ic_sale_cls if
supplied

ship_class varchar2 8 N Must exist on
ic_ship_cls if
supplied

frt_class varchar2 8 N Must exist on
ic_frgt_cls if
supplied

price_class varchar2 8 N Must exist on
ic_prce_cls if
supplied

storage_class varchar2 8 N Must exist on
ic_stor_cls if
supplied

purch_class varchar2 8 N Must exist on
ic_prch_cls if
supplied

tax_class varchar2 8 N Must exist on
ic_taxn_cls if
supplied

Field/Column Type Length Default Req’d Validation
2-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Parameters and Interface
customs_class varchar2 8 N Must exist on
ic_ctms_cls if
supplied

alloc_class varchar2 8 N Must exist on
ic_allc_cls if
supplied

planning_class varchar2 8 N Must exist on
ps_plng_cls if
supplied

itemcost_class varchar2 8 N Must exist on
ic_cost_cls if
supplied

cost_mthd_code varchar2 4 N Must exist on
cm_mthd_mst
if supplied

upc_code varchar2 16 N Not currently
used

grade_ctl number 5 0 N 0 = Not grade
controlled

1 = Grade
controlled

Must be 0 if lot_
ctl = 0

status_ctl number 5 0 N 0 = Not status
controlled

1 = Status
controlled

Must be 0 if lot_
ctl = 0

qc_grade varchar2 4 N Must exist on
qc_grad_mst if
non-blank.
Must be
non-blank if
grade_ctl = 1

Field/Column Type Length Default Req’d Validation
Item Create API 2-9

Item Create API - Parameters and Interface
lot_status varchar2 4 N Must exist on
ic_lots_sts if
non-blank.

Must be
non-blank if
status_ctl = 1

bulk_id number 10 0 N Not currently
used

pkg_id number 10 0 N Not currently
used

qcitem_no varchar2 32 N Must exist on
ic_item_mst if
non-blank

qchold_res_code varchar2 4 N Must exist on
qc_hrec_mst if
non-blank

expaction_code varchar2 4 N Must exist on
qc_actn_mst if
non-blank

fill_qty number 0 N Not currently
used

fill_um varchar2 4 N Not currently
used

expaction_interval number 0 N Must not be
negative value

phantom_type number 5 0 N

whse_item_no varchar2 32 N Must exist on
ic_item_mst if
non-blank

experimental_ind number 5 0 N 0 = Non
experimental
item

1 =
Experimental
item

exported_date date 01-Jan-1970
+ 1 day

N

Field/Column Type Length Default Req’d Validation
2-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Parameters and Interface
seq_dpnd_class varchar2 8 N Must exist on
cr_sqdt_cls if
non-blank

commodity_code varchar2 9 N Must exist on
ic_comd_cds if
non-blank.
Must be
non-blank if
GMI:Intrastat=
“1”

ic_matr_days number 0 N Must not be
negative value

ic_hold_days number 0 N Must not be
negative value

attribute1 varchar2 240 N Descriptive
flexfield
segment

attribute2 varchar2 240 N Descriptive
flexfield
segment

attribute3 varchar2 240 N Descriptive
flexfield
segment

attribute4 varchar2 240 N Descriptive
flexfield
segment

attribute5 varchar2 240 N Descriptive
flexfield
segment

attribute6 varchar2 240 N Descriptive
flexfield
segment

attribute7 varchar2 240 N Descriptive
flexfield
segment

attribute8 varchar2 240 N Descriptive
flexfield
segment

Field/Column Type Length Default Req’d Validation
Item Create API 2-11

Item Create API - Parameters and Interface
attribute9 varchar2 240 N Descriptive
flexfield
segment

attribute10 varchar2 240 N Descriptive
flexfield
segment

attribute11 varchar2 240 N Descriptive
flexfield
segment

attribute12 varchar2 240 N Descriptive
flexfield
segment

attribute13 varchar2 240 N Descriptive
flexfield
segment

attribute14 varchar2 240 N Descriptive
flexfield
segment

attribute15 varchar2 240 N Descriptive
flexfield
segment

attribute16 varchar2 240 N Descriptive
flexfield
segment

attribute17 varchar2 240 N Descriptive
flexfield
segment

attribute18 varchar2 240 N Descriptive
flexfield
segment

attribute19 varchar2 240 N Descriptive
flexfield
segment

attribute20 varchar2 240 N Descriptive
flexfield
segment

Field/Column Type Length Default Req’d Validation
2-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Parameters and Interface
attribute21 varchar2 240 N Descriptive
flexfield
segment

attribute22 varchar2 240 N Descriptive
flexfield
segment

attribute23 varchar2 240 N Descriptive
flexfield
segment

attribute24 varchar2 240 N Descriptive
flexfield
segment

attribute25 varchar2 240 N Descriptive
flexfield
segment

attribute26 varchar2 240 N Descriptive
flexfield
segment

attribute27 varchar2 240 N Descriptive
flexfield
segment

attribute28 varchar2 240 N Descriptive
flexfield
segment

attribute29 varchar2 240 N Descriptive
flexfield
segment

attribute30 varchar2 240 N Descriptive
flexfield
segment

attribute_category varchar2 30 N Descriptive
flexfield
structure
defining
column

user_name varchar2 100 OPM N Ignored, but
retained for
backward
compatibility.

Field/Column Type Length Default Req’d Validation
Item Create API 2-13

Item Create API - Table and View Usage
Item Create API - Table and View Usage
The following OPM tables are referenced by the Item Master. The appropriate
entries in these tables must exist and be non delete marked on the database for
validation usage through the Item Create stored procedure.

Table Name Select Insert Update Delete Base Table

ic_item_mst X X

sy_uoms_mst X

sy_type_mst X

ic_invn_mst X

ic_rank_mst X

ic_gled_cls X

ic_invn_cls X

ic_sale_cls X

ic_ship_cls X

ic_frgt_cls X

ic_prce_cls X

ic_stor_cls X

ic_prch_cls X

ic_taxn_cls X

ic_ctms_cls X

ic_allc_cls X

ps_plng_cls X

qc_grad_mst X

qc_hres_mst X

qc_actn_mst X

ic_item_cpg X

ic_lots_mst X

ic_lots_sts X
2-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Table and View Usage
The Item Master table IC_ITEM_MST holds all attributes of the item.

Lot controlled and quality control attributes are prompted for in the maintenance
form once the appropriate indicators are set. These details are also held against the
item.

Whether an item is defined as lot controlled or not the system always generates a
DEFAULT lot against the item on IC_LOTS_MST.

All lots hold additional attributes for Consumer Packaged Goods (CPG)-specific
processing. These are held against IC_LOTS_CPG.

When an item is identified as dual UOM and the alternate UOM is of a different
type (for example, an item is defined in type WEIGHT with dual UOM in
VOLUME) the save of the item master prompts for the conversion factor between
WEIGHT and VOLUME for the item. This mechanism and structure supports
transactional processing of the item in any supported UOM. This is handled outside
of the Item Create procedure through an additional function.
Item Create API 2-15

Item Create API - Package/Procedure Names
Item Create API - Package/Procedure Names
The Item create API PL/SQL stored procedure code is held in the following:

� GMIPAPI

The stored procedure which is called to create a new inventory item is:

� Create_Item

Please refer to the Item Create API Wrapper for an example of how the above
procedure is executed.
2-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Special Logic
Item Create API - Special Logic

Initialization
Before calling this API, the GMIGUTL.setup procedure must be called to initialize
various system constants.

Validation
No validation is applied to descriptive flexfield segments or to the user name.

Update Logic
When all the validation checks have been performed and no errors are found, a new
item is created within the database. The following steps are followed:

1. Retrieve surrogate key item_id from sequence GEM5_ITEM_ID_S

2. Build row in ic_item_mst as follows:

� All matching column names in PL/SQL record p_item_rec are transferred
directly into the corresponding ic_item_mst columns.

� The following columns on ic_item_mst require further explanation:

Column Name Value

item_id Surrogate key value as obtained above

qcitem_id Item_id of p_item_rec.qcitem_no if not blank

whse_item_id Item_id of p_item_rec.whse_item_no if not blank

created_by Standard who column updated with FND_USER.USER_ID
based on user_name supplied to the setup procedure

creation_date System date

last_updated_by Standard who column updated with FND_USER.USER_ID
based on user_name supplied to the setup procedure

last_update_date System date

last_update_login Login id

trans_cnt 1 (first record update)

delete_mark 0 (not deleted)

text_code Null (no text attached)
Item Create API 2-17

Item Create API - Special Logic
3. Build row in ic_item_cpg as follows if the SY$CPG_INSTALL flag =1

� All matching column names in PL/SQL record p_item_rec are transferred
directly into the corresponding ic_item_cpg columns.

� The following columns on ic_item_cpg require further explanation:

� The default lot is now created in the lot master table (ic_lots_mst). This is
achieved by calling the Create Lot API function (GMI_LOTS_PUB.Create_
Lot). The standard API calling parameters and PL/SQL record are defined.

� The p_init_msg parameter is set to false so that any messages generated by
LotCreate is appended to any messages already generated.

� As the committing of a new item is controlled by the Item Create API, the
p_commit parameter is set to false for the purpose of calling the LotCreate
API.

4. Build p_lot_rec PL/SQL record as follows:

Column Name Value

item_id Surrogate key value as obtained above

created_by Standard who column updated with FND_USER.USER_ID
based on user_name supplied to the setup procedure

creation_date System date

last_updated_by Standard who column updated with FND_USER.USER_ID
based on user_name supplied to the setup procedure

last_update_date System date

last_update_login Login id

Field/Column Type Length Value

item_no varchar2 32 p_item_rec.item_no

lot_no varchar2 32 GMI:Default Lot

sublot_no varchar2 32

lot_desc varchar2 40

qc_grade varchar2 4
2-18 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Special Logic
expaction_code varchar2 4

expaction_date date 01-Jan-1970 00:00:00

lot_created date 01-Jan-1970 00:00:00

expire_date date 31-Dec-2010 00:00:00

retest_date date system date/time

strength number 100

inactive_ind number 5 0

origination_type number 5 0

shipvendor_no varchar2 32

vendor_lot_no varchar2 32

ic_matr_date date p_item_rec.ic_matr_days

ic_hold_date date p_item_rec.ic_hold_days

attribute1 varchar2 240 Descriptive flexfield
segment

attribute2 varchar2 240 Descriptive flexfield
segment

attribute3 varchar2 240 Descriptive flexfield
segment

attribute4 varchar2 240 Descriptive flexfield
segment

attribute5 varchar2 240 Descriptive flexfield
segment

attribute6 varchar2 240 Descriptive flexfield
segment

attribute7 varchar2 240 Descriptive flexfield
segment

attribute8 varchar2 240 Descriptive flexfield
segment

attribute9 varchar2 240 Descriptive flexfield
segment

Field/Column Type Length Value
Item Create API 2-19

Item Create API - Special Logic
attribute10 varchar2 240 Descriptive flexfield
segment

attribute11 varchar2 240 Descriptive flexfield
segment

attribute12 varchar2 240 Descriptive flexfield
segment

attribute13 varchar2 240 Descriptive flexfield
segment

attribute14 varchar2 240 Descriptive flexfield
segment

attribute15 varchar2 240 Descriptive flexfield
segment

attribute16 varchar2 240 Descriptive flexfield
segment

attribute17 varchar2 240 Descriptive flexfield
segment

attribute18 varchar2 240 Descriptive flexfield
segment

attribute19 varchar2 240 Descriptive flexfield
segment

attribute20 varchar2 240 Descriptive flexfield
segment

attribute21 varchar2 240 Descriptive flexfield
segment

attribute22 varchar2 240 Descriptive flexfield
segment

attribute23 varchar2 240 Descriptive flexfield
segment

attribute24 varchar2 240 Descriptive flexfield
segment

attribute25 varchar2 240 Descriptive flexfield
segment

attribute26 varchar2 240 Descriptive flexfield
segment

Field/Column Type Length Value
2-20 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Special Logic
Details of validation and update are contained in the topic on Lot Create API. If the
lot create function is unsuccessful, the whole transaction is rolled back.

attribute27 varchar2 240 Descriptive flexfield
segment

attribute28 varchar2 240 Descriptive flexfield
segment

attribute29 varchar2 240 Descriptive flexfield
segment

attribute30 varchar2 240 Descriptive flexfield
segment

attribute_category varchar2 30 Descriptive flexfield
structure defining column

user_name varchar2 100 Ignored, but retained for
backward compatibility

Field/Column Type Length Value
Item Create API 2-21

Item Create API - Error Messages
Item Create API - Error Messages
Listed below are all expected errors. These are output to the stored procedure
message file and can be monitored through the return x_msg_count. This, in
conjunction with the x_return_status can be used to monitor the success/fail of the
procedure call.

Message Code Narrative

IC_API_ITEM_ALREADY_EXISTS Item number &ITEM already exists

IC_API_INVALID_UOM Invalid unit of measure &UOM for item
number &ITEM

IC_API_INVALID_DUALUM_IND Dual unit of measure indicator not in range 0 -
3 for item number &ITEM

IC_API_INVALID_DEVIATION Invalid deviation factor for item number
&ITEM

IC_API_INVALID_LOT_CTL Invalid lot control flag for item number &ITEM

IC_API_INVALID_LOT_INDIVISIBLE Invalid lot indivisible flag for item number
&ITEM

IC_API_INVALID_SUBLOT_CTL Invalid sublot control flag for item number
&ITEM

IC_API_INVALID_LOCT_CTL Invalid location control flag for item number
&ITEM

IC_API_INVALID_NONINV_IND Invalid non-inventory flag for item number
&ITEM

IC_API_INVALID_MATCH_TYPE Invalid match type for item number &ITEM

IC_API_INVALID_INV_TYPE Invalid inventory type for item number &ITEM

IC_API_INVALID_INACTIVE_IND Invalid inactive flag for item number &ITEM

IC_API_INVALID_SHELF_LIFE Invalid shelf life for item number &ITEM

IC_API_INVALID_RETEST_INTERVAL Invalid retest interval for item number &ITEM

IC_API_INVALID_ABCCODE Invalid ABC code for item number &ITEM

IC_API_INVALID_GL_CLASS Invalid GL class for item number &ITEM

IC_API_INVALID_INV_CLASS Invalid inventory class for item number &ITEM

IC_API_INVALID_SALES_CLASS Invalid sales class for item number &ITEM

IC_API_INVALID_SHIP_CLASS Invalid ship class for item number &ITEM
2-22 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API - Error Messages
IC_API_INVALID_FRT_CLASS Invalid freight class for item number &ITEM

IC_API_INVALID_PRICE_CLASS Invalid price class for item number &ITEM

IC_API_INVALID_STORAGE_CLASS Invalid storage class for item number &ITEM

IC_API_INVALID_PURCH_CLASS Invalid purchase class for item number &ITEM

IC_API_INVALID_TAX_CLASS Invalid tax class for item number &ITEM

IC_API_INVALID_CUSTOMS_CLASS Invalid customs class for item number &ITEM

IC_API_INVALID_ALLOC_CLASS Invalid allocation class for item number &ITEM

IC_API_INVALID_PLANNING_CLASS Invalid planning class for item number &ITEM

IC_API_INVALID_ITEMCOST_CLASS Invalid item cost class for item number &ITEM

IC_API_INVALID_COST_MTHD_CODE Invalid cost method for item number &ITEM

IC_API_INVALID_GRADE_CTL Invalid grade control flag for item number
&ITEM

IC_API_INVALID_STATUS_CTL Invalid status control flag for item number
&ITEM

IC_API_INVALID_QC_GRADE Invalid QC grade for item number &ITEM

IC_API_INVALID_LOT_STATUS_API Invalid lot status for item number &ITEM

IC_API_INVALID_QCITEM_NO Invalid QC reference item number for item
number &ITEM

IC_API_INVALID_QCHOLD_RES_
CODE

Invalid QC hold reason code for item number
&ITEM

IC_API_INVALID_EXPACTION_CODE Invalid expiry action code for item number
&ITEM

IC_API_INVALID_WHSE_ITEM_NO Invalid warehouse item number for item
number &ITEM

IC_API_INVALID_EXPERIMENTAL_
IND

Invalid experimental indicator for item number
&ITEM

IC_API_INVALID_SEQ_DPND_CLASS Invalid sequence dependent class for item
number &ITEM

IC_API_INVALID_COMMODITY_
CODE

Invalid commodity code for item number
&ITEM

IC_API_INVALID_MATR_DAYS Invalid maturity days for item number &ITEM

Message Code Narrative
Item Create API 2-23

Item Create API - Error Messages
IC_API_INVALID_HOLD_DAYS Invalid hold release days for item number
&ITEM

SY_API_UNABLE_TO_GET_
SURROGATE

Failed to get &SKEY surrogate key

Message Code Narrative
2-24 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wr
3

Item Create API Wrapper

This topic provides the business function, input structure, and ASCII flat file layout
for the Item Create API Wrapper. The topic also presents package and procedure
names, special logic, error messages, and a code example for Item Create API
Wrapper.

The following topics are covered:

� Item Create API Wrapper - Business Function

� Item Create API Wrapper - Input Structure

� Item Create API Wrapper - ASCII Flat File Layout

� Item Create API Wrapper - Package and Procedure Names

� Item Create API Wrapper - Special Logic

� Item Create API Wrapper - Error Messages

� Item Create API Wrapper - Code Example
apper 3-1

Item Create API Wrapper - Business Function
Item Create API Wrapper - Business Function
This stored procedure is designed to operate in conjunction with the item create
API which is used to create an inventory item in OPM. It may be required to be
used in both synchronous (on-line) and asynchronous (batch) modes. When used in
synchronous mode, the calling program (for example, an Oracle form) calls the API
directly.

This topic is discusses using the API in asynchronous mode via a wrapper function.
The source of data for the wrapper comes from:

� An ASCII flat file

This topic describes how the wrapper function should be called and the parameters
that are required and optional.
3-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - ASCII Flat File Layout
Item Create API Wrapper - Input Structure
The API wrapper consists of a PL/SQL procedure and PL/SQL function both
named ‘Create_Item’.

Item Create API Wrapper - ASCII Flat File Layout
The ASCII flat file must be ‘character delimited’ (typically, but not necessarily, with
a comma). The following table shows the order in which the data fields should
appear and the maximum length of each data field.

Field Name Type Length Req’d

item number alphanumeric 32 Y

item description 1 alphanumeric 70 Y

item description 2 alphanumeric 70 N

alternative name for item alphanumeric 32 N

second alternative name for item alphanumeric 32 N

unit of measure alphanumeric 4 Y

dual unit of measure indicator number 5 Y

secondary unit of measure alphanumeric 4 N

factor defining the allowable deviation
below the std conversion for type 2/3

number 16 N

factor defining the allowable deviation
above the std conversion for type 2/3

number 16 N

level code number 5 N

lot controlled item indicator number 1 Y

item is lot indivisible indicator number 1 N

sub-lot controlled item indicator number 1 N

location controlled item indicator number 1 N

non-inventory item indicator number 1 N

match type number 5 N

inactive item indicator number 1 N

inventory type alphanumeric 4 N
Item Create API Wrapper 3-3

Item Create API Wrapper - ASCII Flat File Layout
shelf life number 16 N

retest interval number 16 N

item ABC code alphanumeric 4 N

gl class alphanumeric 8 N

inventory class alphanumeric 8 N

sales class alphanumeric 8 N

ship class alphanumeric 8 N

freight class alphanumeric 8 N

price class alphanumeric 8 N

storage class alphanumeric 8 N

purchase class alphanumeric 8 N

tax class alphanumeric 8 N

customs class alphanumeric 8 N

allocation class alphanumeric 8 N

planning class alphanumeric 8 N

cost class alphanumeric 8 N

cost method code (not currently used) alphanumeric 4 N

upc code (not currently used) alphanumeric 16 N

QC grade controlled item indicator number 5 N

lot status controlled item indicator number 5 N

default QC grade alphanumeric 4 N

default lot status alphanumeric 4 N

bulk id (not currently used) number 10 N

pkg id (not currently used) number 10 N

QC reference item alphanumeric 32 N

QC hold reason code alphanumeric 4 N

action code when a lot expires alphanumeric 4 N

fill qty (not currently used) number 16 N

Field Name Type Length Req’d
3-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - ASCII Flat File Layout
fill um (not currently used) alphanumeric 4 N

interval in days between when a lot
expires and when the expiry action
should be taken

number 16 N

phantom type (not currently used) number 5 N

warehouse item number alphanumeric 32 N

experimental item indicator number 5 N

date item was exported to Oracle
Financials

date
(DDMMYYYY)

8 N

sequence dependent class alphanumeric 8 N

commodity code alphanumeric 9 N

lot maturity days number 5 N

lot hold days number 5 N

user name alphanumeric 100 N

attribute1 alphanumeric 240 N

attribute2 alphanumeric 240 N

attribute3 alphanumeric 240 N

attribute4 alphanumeric 240 N

attribute5 alphanumeric 240 N

attribute6 alphanumeric 240 N

attribute7 alphanumeric 240 N

attribute8 alphanumeric 240 N

attribute9 alphanumeric 240 N

attribute10 alphanumeric 240 N

attribute11 alphanumeric 240 N

attribute12 alphanumeric 240 N

attribute13 alphanumeric 240 N

attribute14 alphanumeric 240 N

attribute15 alphanumeric 240 N

Field Name Type Length Req’d
Item Create API Wrapper 3-5

Item Create API Wrapper - ASCII Flat File Layout
Omitting an optional field is achieved by leaving the column positions as spaces
(for fixed format files) or using consecutive delimiters (for delimited files).

attribute16 alphanumeric 240 N

attribute17 alphanumeric 240 N

attribute18 alphanumeric 240 N

attribute19 alphanumeric 240 N

attribute20 alphanumeric 240 N

attribute21 alphanumeric 240 N

attribute22 alphanumeric 240 N

attribute23 alphanumeric 240 N

attribute24 alphanumeric 240 N

attribute25 alphanumeric 240 N

attribute26 alphanumeric 240 N

attribute27 alphanumeric 240 N

attribute28 alphanumeric 240 N

attribute29 alphanumeric 240 N

attribute30 alphanumeric 240 N

attribute category alphanumeric 30 N

Field Name Type Length Req’d
3-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Special Logic
Item Create API Wrapper - Package and Procedure Names
The Item Create API wrapper PL/SQL stored procedure code is held in the
following:

� GMI_ITEM_WRP

The procedure or function to be called to execute this API wrapper is:

� Create_Item

Item Create API Wrapper - Special Logic

Validation
Incorrectly formatted flat files are rejected.

The success or failure of the wrapper may be reported back to the calling function
by means of the return value. This is hierarchically as follows:

� On initial entry to the wrapper the return status are set to success (‘S’)

� If for any record processed an expected error occurs and the return status is
currently set to success then it are updated to expected error (‘E’).

� If for any record processed and unexpected error occurs, then the return status
is set to unexpected error (‘U’).

Update Logic
Updates are only be concerned with the processing of messages (errors and others)
generated by the item create API.

Messages (success and error) are written to a flat file designated by the p_output_
file parameter. A log file is written to the /tmp directory. This details start and
completion times, data retrieved from the ASCII flat file and messages generated.
Item Create API Wrapper 3-7

Item Create API Wrapper - Error Messages
Item Create API Wrapper - Error Messages
The errors listed below may be generated by the API wrapper. These messages are
generally related to the handling of the ASCII flat input and output files. These
messages are sent to the standard output device since it is inappropriate to attempt
to send them to the files that themselves may be causing the erroneous condition.
They are hard-coded in English.

Error Condition Narrative

UTL_FILE.INVALID_OPERATION Invalid operation for ‘FILE’

UTL_FILE.INVALID_PATH Invalid path for ‘FILE’

UTL_FILE.INVALID_MODE Invalid mode for ‘FILE’

UTL_FILE.INVALID_FILEHANDLE Invalid File handle for ‘FILE’

UTL_FILE.WRITE_ERROR Invalid Write Error for ‘FILE’

UTL_FILE.READ_ERROR Invalid Read Error for ‘FILE’

UTL_FILE.INTERNAL_ERROR Internal Error
3-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
Item Create API Wrapper - Code Example
The PL/SQL code for this API wrapper is as follows:

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
CREATE OR REPLACE PACKAGE BODY GMI_ITEM_WRP AS
-- $Header: GMIPITWB.pls 115.6 2000/09/27 19:20:16 mpetrosi gmigapib.pls $
-- Body start of comments
--+==+
--| PROCEDURE NAME |
--| Create_Item |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Create an Inventory Item |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper procedure to call the Create_Item |
--| API wrapper function |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| None |
--| |
--| HISTORY |
--| |
--| 16-AUG-1999 B965832(1) Set lot_status/qc_grade to NULL if |
--| they are read in as spaces |
--+==+
-- Api end of comments
PROCEDURE Create_Item
(p_dir IN VARCHAR2
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
IS
Item Create API Wrapper 3-9

Item Create API Wrapper - Code Example
l_return_status VARCHAR2(1);

BEGIN

l_return_status :=Create_item(p_dir
, p_input_file

, p_output_file
, p_delimiter
);

End Create_Item;

--+==+
--| FUNCTION NAME |
--| Create_Item |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Create an inventory item |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper function to call the FND |
--| Inventory Create Item API. |
--| It reads item data from a flat file and outputs any error |
--| messages to a second flat file. It also generates a Status |
--| called wrapper<session_id>.log in the /tmp directory. |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| VARCHAR2 - ’S’ All records processed successfully |
--| ’E’ 1 or more records errored |
--| ’U’ 1 or more record unexpected error |
--| |
--| HISTORY |
--| |
--+==+
3-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
-- Api end of comments
FUNCTION Create_Item
(p_dir IN VARCHAR2
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
RETURN VARCHAR2
IS

--
-- Local variables
--

l_status VARCHAR2(1);
l_return_status VARCHAR2(1) :=FND_API.G_RET_STS_SUCCESS;
l_count NUMBER ;
l_record_count NUMBER :=0;
l_loop_cnt NUMBER :=0;
l_dummy_cnt NUMBER :=0;
l_data VARCHAR2(2000);
item_rec GMIGAPI.item_rec_typ;
l_ic_item_mst_row ic_item_mst%ROWTYPE;
l_ic_item_cpg_row ic_item_cpg%ROWTYPE;
l_p_dir VARCHAR2(50);
l_output_file VARCHAR2(20);
l_outfile_handle UTL_FILE.FILE_TYPE;
l_input_file VARCHAR2(20);
l_infile_handle UTL_FILE.FILE_TYPE;
l_line VARCHAR2(800);
l_delimiter VARCHAR(1);
l_log_dir VARCHAR2(50);
l_log_name VARCHAR2(20) :=’wrapper’;
l_log_handle UTL_FILE.FILE_TYPE;
l_global_file VARCHAR2(20);

l_session_id VARCHAR2(10);

BEGIN

-- Enable The Buffer
DBMS_OUTPUT.ENABLE(1000000);

l_p_dir :=p_dir;
l_input_file :=p_input_file;
Item Create API Wrapper 3-11

Item Create API Wrapper - Code Example
l_output_file :=p_output_file;
l_delimiter :=p_delimiter;
l_global_file :=l_input_file;

--
-- Obtain The SessionId To Append To wrapper File Name.
--

l_session_id := USERENV(’sessionid’);

l_log_name := CONCAT(l_log_name,l_session_id);
l_log_name := CONCAT(l_log_name,’.log’);

--
-- Directory is now the same same as for the out file
--
l_log_dir := p_dir;

--
-- Open The Wrapper File For Output And The Input File for Input.
--

l_log_handle :=UTL_FILE.FOPEN(l_log_dir, l_log_name, ’w’);
l_infile_handle :=UTL_FILE.FOPEN(l_p_dir, l_input_file, ’r’);

--
-- Loop thru flat file and call Inventory Quantities API
--

dbms_output.put_line(’Start Processing’);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Started at ’
|| to_char(SYSDATE,’DD-MON-YY HH24:MI:SS’));

UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Input Directory ’ || l_p_dir);
UTL_FILE.PUT_LINE(l_log_handle, ’Input File ’ || l_input_file);
UTL_FILE.PUT_LINE(l_log_handle, ’Record Type ’ || l_delimiter);
UTL_FILE.PUT_LINE(l_log_handle, ’Output File ’ || l_output_file);

l_outfile_handle :=UTL_FILE.FOPEN(l_p_dir, l_output_file, ’w’);

LOOP
l_record_count :=l_record_count+1;
3-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
BEGIN
UTL_FILE.GET_LINE(l_infile_handle, l_line);
EXCEPTION

WHEN NO_DATA_FOUND THEN
EXIT;

END;

UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Reading Record ’ || l_record_count);

item_rec.item_no :=Get_Field(l_line,l_delimiter,1);
item_rec.item_desc1 :=Get_Field(l_line,l_delimiter,2);
item_rec.item_desc2 :=Get_Field(l_line,l_delimiter,3);
item_rec.alt_itema :=Get_Field(l_line,l_delimiter,4);
item_rec.alt_itemb :=Get_Field(l_line,l_delimiter,5);
item_rec.item_um :=Get_Field(l_line,l_delimiter,6);
item_rec.dualum_ind :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,7),’ ’),’ ’,’0’));
item_rec.item_um2 :=Get_Field(l_line,l_delimiter,8);
item_rec.deviation_lo :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,9),’ ’),’ ’,’0’));
item_rec.deviation_hi :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,10),’ ’),’ ’,’0’));
item_rec.level_code :=TO_NUMBER(Get_Field(l_line,l_delimiter,11));
item_rec.lot_ctl :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,12),’ ’),’ ’,’0’));
item_rec.lot_indivisible :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,13),’ ’),’ ’,’0’));
item_rec.sublot_ctl :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,14),’ ’),’ ’,’0’));
item_rec.loct_ctl :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,15),’ ’),’ ’,’0’));
item_rec.noninv_ind :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,16),’ ’),’ ’,’0’));
item_rec.match_type :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,17),’ ’),’ ’,’0’));
item_rec.inactive_ind :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,18),’ ’),’ ’,’0’));
item_rec.inv_type :=Get_Field(l_line,l_delimiter,19);
item_rec.shelf_life :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,20),’ ’),’ ’,’0’));
item_rec.retest_interval :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,21),’ ’),’ ’,’0’));
item_rec.item_abccode :=Get_Field(l_line,l_delimiter,22);
Item Create API Wrapper 3-13

Item Create API Wrapper - Code Example
item_rec.gl_class :=Get_Field(l_line,l_delimiter,23);
item_rec.inv_class :=Get_Field(l_line,l_delimiter,24);
item_rec.sales_class :=Get_Field(l_line,l_delimiter,25);
item_rec.ship_class :=Get_Field(l_line,l_delimiter,26);
item_rec.frt_class :=Get_Field(l_line,l_delimiter,27);
item_rec.price_class :=Get_Field(l_line,l_delimiter,28);
item_rec.storage_class :=Get_Field(l_line,l_delimiter,29);
item_rec.purch_class :=Get_Field(l_line,l_delimiter,30);
item_rec.tax_class :=Get_Field(l_line,l_delimiter,31);
item_rec.customs_class :=Get_Field(l_line,l_delimiter,32);
item_rec.alloc_class :=Get_Field(l_line,l_delimiter,33);
item_rec.planning_class :=Get_Field(l_line,l_delimiter,34);
item_rec.itemcost_class :=Get_Field(l_line,l_delimiter,35);
item_rec.cost_mthd_code :=Get_Field(l_line,l_delimiter,36);
item_rec.upc_code :=Get_Field(l_line,l_delimiter,37);
item_rec.grade_ctl :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,38),’ ’),’ ’,’0’));
item_rec.status_ctl :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,39),’ ’),’ ’,’0’));
item_rec.qc_grade :=Get_Field(l_line,l_delimiter,40);

--B965832(1) Check for spaces
IF item_rec.qc_grade = ’ ’
THEN
item_rec.qc_grade := ’’;
END IF;

--B965832(1) End
item_rec.lot_status :=Get_Field(l_line,l_delimiter,41);

--B965832(1) Check for spaces
IF item_rec.lot_status = ’ ’
THEN
item_rec.lot_status :=’’;
END IF;

--B965832(1) End
item_rec.bulk_id :=TO_NUMBER(Get_Field(l_line,l_delimiter,42));
item_rec.pkg_id :=TO_NUMBER(Get_Field(l_line,l_delimiter,43));
item_rec.qcitem_no :=Get_Field(l_line,l_delimiter,44);
item_rec.qchold_res_code :=Get_Field(l_line,l_delimiter,45);
item_rec.expaction_code :=Get_Field(l_line,l_delimiter,46);
item_rec.fill_qty :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,47),’ ’),’ ’,’0’));
item_rec.fill_um :=Get_Field(l_line,l_delimiter,48);
item_rec.expaction_interval :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,49),’ ’),’ ’,’0’));
item_rec.phantom_type :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,50),’ ’),’ ’,’0’));
3-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
item_rec.whse_item_no :=Get_Field(l_line,l_delimiter,51);
item_rec.experimental_ind:=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,52),’ ’),’ ’,’0’));
IF (Get_Field(l_line,l_line,53) IS NULL)
THEN

item_rec.exported_date :=TO_DATE(’02011970’,’DDMMYYYY’);
ELSE

item_rec.exported_date :=TO_DATE(
Get_Field(l_line,l_delimiter,53),’DDMMYYYY’);

END IF;
item_rec.seq_dpnd_class :=Get_Field(l_line,l_delimiter,54);
item_rec.commodity_code :=Get_Field(l_line,l_delimiter,55);
item_rec.ic_matr_days :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,56),’ ’),’ ’,’0’));
item_rec.ic_hold_days :=
TO_NUMBER(TRANSLATE(NVL(Get_Field(l_line,l_delimiter,57),’ ’),’ ’,’0’));
IF ((Get_Field(l_line,l_delimiter,58)) IS NULL)
THEN

item_rec.user_name :=’OPM’;
ELSE

item_rec.user_name :=Get_Field(l_line,l_delimiter,58);
END IF;
item_rec.attribute1 :=Get_Field(l_line,l_delimiter,59);
item_rec.attribute2 :=Get_Field(l_line,l_delimiter,60);
item_rec.attribute3 :=Get_Field(l_line,l_delimiter,61);
item_rec.attribute4 :=Get_Field(l_line,l_delimiter,62);
item_rec.attribute5 :=Get_Field(l_line,l_delimiter,63);
item_rec.attribute6 :=Get_Field(l_line,l_delimiter,64);
item_rec.attribute7 :=Get_Field(l_line,l_delimiter,65);
item_rec.attribute8 :=Get_Field(l_line,l_delimiter,66);
item_rec.attribute9 :=Get_Field(l_line,l_delimiter,67);
item_rec.attribute10 :=Get_Field(l_line,l_delimiter,68);
item_rec.attribute11 :=Get_Field(l_line,l_delimiter,69);
item_rec.attribute12 :=Get_Field(l_line,l_delimiter,70);
item_rec.attribute13 :=Get_Field(l_line,l_delimiter,71);
item_rec.attribute14 :=Get_Field(l_line,l_delimiter,72);
item_rec.attribute15 :=Get_Field(l_line,l_delimiter,73);
item_rec.attribute16 :=Get_Field(l_line,l_delimiter,74);
item_rec.attribute17 :=Get_Field(l_line,l_delimiter,75);
item_rec.attribute18 :=Get_Field(l_line,l_delimiter,76);
item_rec.attribute19 :=Get_Field(l_line,l_delimiter,77);
item_rec.attribute20 :=Get_Field(l_line,l_delimiter,78);
item_rec.attribute21 :=Get_Field(l_line,l_delimiter,79);
item_rec.attribute22 :=Get_Field(l_line,l_delimiter,80);
item_rec.attribute23 :=Get_Field(l_line,l_delimiter,81);
Item Create API Wrapper 3-15

Item Create API Wrapper - Code Example
item_rec.attribute24 :=Get_Field(l_line,l_delimiter,82);
item_rec.attribute25 :=Get_Field(l_line,l_delimiter,83);
item_rec.attribute26 :=Get_Field(l_line,l_delimiter,84);
item_rec.attribute27 :=Get_Field(l_line,l_delimiter,85);
item_rec.attribute28 :=Get_Field(l_line,l_delimiter,86);
item_rec.attribute29 :=Get_Field(l_line,l_delimiter,87);
item_rec.attribute30 :=Get_Field(l_line,l_delimiter,88);
item_rec.attribute_category :=Get_Field(l_line,l_delimiter,89);

UTL_FILE.PUT_LINE(l_log_handle,’item_no = ’||item_rec.item_no);
UTL_FILE.PUT_LINE(l_log_handle,’item_desc1 = ’||item_rec.item_desc1);
UTL_FILE.PUT_LINE(l_log_handle,’item_desc2 = ’||item_rec.item_desc2);
UTL_FILE.PUT_LINE(l_log_handle,’alt_itema = ’||item_rec.alt_itema);
UTL_FILE.PUT_LINE(l_log_handle,’alt_itemb = ’||item_rec.alt_itemb);
UTL_FILE.PUT_LINE(l_log_handle,’item_um = ’||item_rec.item_um);
UTL_FILE.PUT_LINE(l_log_handle,’dualum_ind = ’||item_rec.dualum_ind);
UTL_FILE.PUT_LINE(l_log_handle,’item_um2 = ’||item_rec.item_um2);
UTL_FILE.PUT_LINE(l_log_handle,’deviation_lo = ’||item_rec.deviation_lo);
UTL_FILE.PUT_LINE(l_log_handle,’deviation_hi = ’||item_rec.deviation_hi);
UTL_FILE.PUT_LINE(l_log_handle,’level_code = ’||item_rec.level_code);
UTL_FILE.PUT_LINE(l_log_handle,’lot_ctl = ’||item_rec.lot_ctl);
UTL_FILE.PUT_LINE(l_log_handle,’lot_indivisible= ’||item_rec.lot_indivisible);
UTL_FILE.PUT_LINE(l_log_handle,’sublot_ctl = ’||item_rec.sublot_ctl);
UTL_FILE.PUT_LINE(l_log_handle,’loct_ctl = ’||item_rec.loct_ctl);
UTL_FILE.PUT_LINE(l_log_handle,’noninv_ind = ’||item_rec.noninv_ind);
UTL_FILE.PUT_LINE(l_log_handle,’match_type = ’||item_rec.match_type);
UTL_FILE.PUT_LINE(l_log_handle,’inactive_ind = ’||item_rec.inactive_ind);
UTL_FILE.PUT_LINE(l_log_handle,’inv_type = ’||item_rec.inv_type);
UTL_FILE.PUT_LINE(l_log_handle,’shelf_life = ’||item_rec.shelf_life);
UTL_FILE.PUT_LINE(l_log_handle,’retest_interval= ’||item_rec.retest_interval);
UTL_FILE.PUT_LINE(l_log_handle,’item_abccode = ’||item_rec.item_abccode);
UTL_FILE.PUT_LINE(l_log_handle,’gl_class = ’||item_rec.gl_class);
UTL_FILE.PUT_LINE(l_log_handle,’inv_class = ’||item_rec.inv_class);
UTL_FILE.PUT_LINE(l_log_handle,’sales_class = ’||item_rec.sales_class);
UTL_FILE.PUT_LINE(l_log_handle,’ship_class = ’||item_rec.ship_class);
UTL_FILE.PUT_LINE(l_log_handle,’frt_class = ’||item_rec.frt_class);
UTL_FILE.PUT_LINE(l_log_handle,’price_class = ’||item_rec.price_class);
UTL_FILE.PUT_LINE(l_log_handle,’storage_class = ’||item_rec.storage_class);
UTL_FILE.PUT_LINE(l_log_handle,’purch_class = ’||item_rec.purch_class);
UTL_FILE.PUT_LINE(l_log_handle,’tax_class = ’||item_rec.tax_class);
UTL_FILE.PUT_LINE(l_log_handle,’customs_class = ’||item_rec.customs_class);
UTL_FILE.PUT_LINE(l_log_handle,’alloc_class = ’||item_rec.alloc_class);
UTL_FILE.PUT_LINE(l_log_handle,’planning_class = ’||item_rec.planning_class);
UTL_FILE.PUT_LINE(l_log_handle,’itemcost_class = ’||item_rec.itemcost_class);
UTL_FILE.PUT_LINE(l_log_handle,’cost_mthd_code = ’||item_rec.cost_mthd_code);
3-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
UTL_FILE.PUT_LINE(l_log_handle,’upc_code = ’||item_rec.upc_code);
UTL_FILE.PUT_LINE(l_log_handle,’grade_ctl = ’||item_rec.grade_ctl);
UTL_FILE.PUT_LINE(l_log_handle,’status_ctl = ’||item_rec.status_ctl);
UTL_FILE.PUT_LINE(l_log_handle,’qc_grade = ’||item_rec.qc_grade);
UTL_FILE.PUT_LINE(l_log_handle,’lot_status = ’||item_rec.lot_status);
UTL_FILE.PUT_LINE(l_log_handle,’bulk_id = ’||item_rec.bulk_id);
UTL_FILE.PUT_LINE(l_log_handle,’pkg_id = ’||item_rec.pkg_id);
UTL_FILE.PUT_LINE(l_log_handle,’qcitem_no = ’||item_rec.qcitem_no);
UTL_FILE.PUT_LINE(l_log_handle,’qchold_res_code= ’||item_rec.qchold_res_code);
UTL_FILE.PUT_LINE(l_log_handle,’expaction_code = ’||item_rec.expaction_code);
UTL_FILE.PUT_LINE(l_log_handle,’fill_qty = ’||item_rec.fill_qty);
UTL_FILE.PUT_LINE(l_log_handle,’fill_um = ’||item_rec.fill_um);
UTL_FILE.PUT_LINE(

l_log_handle,’expaction_interval = ’||item_rec.expaction_interval);
UTL_FILE.PUT_LINE(l_log_handle,’phantom_type = ’||item_rec.phantom_type);
UTL_FILE.PUT_LINE(l_log_handle,’whse_item_no = ’||item_rec.whse_item_no);
UTL_FILE.PUT_LINE(

l_log_handle,’experimental_ind = ’||item_rec.experimental_ind);
UTL_FILE.PUT_LINE(l_log_handle,’exported_date = ’||item_rec.exported_date);
UTL_FILE.PUT_LINE(l_log_handle,’seq_dpnd_class = ’||item_rec.seq_dpnd_class);
UTL_FILE.PUT_LINE(l_log_handle,’commodity_code = ’||item_rec.commodity_code);
UTL_FILE.PUT_LINE(l_log_handle,’ic_matr_days = ’||item_rec.ic_matr_days);
UTL_FILE.PUT_LINE(l_log_handle,’ic_hold_days = ’||item_rec.ic_hold_days);
UTL_FILE.PUT_LINE(l_log_handle,’user_name = ’||item_rec.user_name);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute1 = ’||
item_rec.attribute1);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute2 = ’||
item_rec.attribute2);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute3 = ’||
item_rec.attribute3);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute4 = ’||
item_rec.attribute4);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute5 = ’||
item_rec.attribute5);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute6 = ’||
item_rec.attribute6);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute7 = ’||
item_rec.attribute7);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute8 = ’||
item_rec.attribute8);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute9 = ’||
item_rec.attribute9);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute10 = ’||
item_rec.attribute10);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute11 = ’||
Item Create API Wrapper 3-17

Item Create API Wrapper - Code Example
item_rec.attribute11);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute12 = ’||
item_rec.attribute12);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute13 = ’||
item_rec.attribute13);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute14 = ’||
item_rec.attribute14);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute15 = ’||
item_rec.attribute15);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute16 = ’||
item_rec.attribute16);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute17 = ’||
item_rec.attribute17);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute18 = ’||
item_rec.attribute18);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute19 = ’||
item_rec.attribute19);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute20 = ’||
item_rec.attribute20);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute21 = ’||
item_rec.attribute21);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute22 = ’||
item_rec.attribute22);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute23 = ’||
item_rec.attribute23);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute24 = ’||
item_rec.attribute24);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute25 = ’||
item_rec.attribute25);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute26 = ’||
item_rec.attribute26);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute27 = ’||
item_rec.attribute27);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute28 = ’||
item_rec.attribute28);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute29 = ’||
item_rec.attribute29);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute30 = ’||
item_rec.attribute30);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute_Category = ’||
item_rec.attribute_category);

GMIPAPI.Create_Item
(p_api_version => 3.0
, p_init_msg_list => FND_API.G_TRUE
3-18 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
, p_commit => FND_API.G_TRUE
, p_validation_level => FND_API.G_VALID_LEVEL_FULL
, p_item_rec =>item_rec
, x_ic_item_mst_row => l_ic_item_mst_row
, x_ic_item_cpg_row => l_ic_item_cpg_row
, x_return_status =>l_status
, x_msg_count =>l_count
, x_msg_data =>l_data
);

IF l_count > 0
THEN

l_loop_cnt :=1;
LOOP

FND_MSG_PUB.Get(
p_msg_index => l_loop_cnt,
p_data => l_data,
p_encoded => FND_API.G_FALSE,
p_msg_index_out => l_dummy_cnt);

-- dbms_output.put_line(’Message ’ || l_data);

UTL_FILE.PUT_LINE(l_outfile_handle, ’Record = ’ ||l_record_count);
UTL_FILE.PUT_LINE(l_outfile_handle, l_data);
UTL_FILE.NEW_LINE(l_outfile_handle);

IF l_status = ’E’ OR
l_status = ’U’

THEN
l_data := CONCAT(’ERROR ’,l_data);

END IF;

UTL_FILE.PUT_LINE(l_log_handle, l_data);

-- Update error status
IF (l_status = ’U’)
THEN

l_return_status :=l_status;
ELSIF (l_status = ’E’ and l_return_status <> ’U’)
THEN

l_return_status :=l_status;
ELSE

l_return_status :=l_status;
END IF;
Item Create API Wrapper 3-19

Item Create API Wrapper - Code Example
l_loop_cnt := l_loop_cnt + 1;
IF l_loop_cnt > l_count
THEN

EXIT;
END IF;

END LOOP;

END IF;

END LOOP;
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Completed at ’
|| to_char(SYSDATE,’DD-MON-YY HH24:MI:SS’));

--
-- Check if any messages generated. If so then decode and
-- output to error message flat file
--

UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

EXCEPTION
WHEN UTL_FILE.INVALID_OPERATION THEN

dbms_output.put_line(’Invalid Operation For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN UTL_FILE.INVALID_PATH THEN
dbms_output.put_line(’Invalid Path For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN UTL_FILE.INVALID_MODE THEN
dbms_output.put_line(’Invalid Mode For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN UTL_FILE.INVALID_FILEHANDLE THEN
dbms_output.put_line(’Invalid File Handle ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;
3-20 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
WHEN UTL_FILE.WRITE_ERROR THEN
dbms_output.put_line(’Invalid Write Error ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN UTL_FILE.READ_ERROR THEN
dbms_output.put_line(’Invalid Read Error ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN UTL_FILE.INTERNAL_ERROR THEN
dbms_output.put_line(’Internal Error’);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN OTHERS THEN
dbms_output.put_line(’Other Error’);
UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

END Create_Item;

--+==+
--| FUNCTION NAME |
--| Get_Field |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of field n from a delimited line of ASCII data |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a field from |
--| a delimited line of ASCII text |
--| |
--| PARAMETERS |
--| p_line IN VARCHAR2 - line of data |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| p_field_no IN NUMBER - Field occurance to be |
--| returned |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
Item Create API Wrapper 3-21

Item Create API Wrapper - Code Example
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Field
(p_line IN VARCHAR2
, p_delimiter IN VARCHAR2
, p_field_no IN NUMBER
)
RETURN VARCHAR2
IS
--
-- Local variables
--
l_start NUMBER :=0;
l_end NUMBER :=0;

BEGIN

-- Determine start position
IF p_field_no = 1
THEN

l_start :=0;
ELSE

l_start :=INSTR(p_line,p_delimiter,1,(p_field_no - 1));
IF l_start = 0
THEN

RETURN NULL;
END IF;

END IF;

-- Determine end position
l_end :=INSTR(p_line,p_delimiter,1,p_field_no);
IF l_end = 0
THEN

l_end := LENGTH(p_line) + 1;
END IF;

-- Extract the field data
IF (l_end - l_start) = 1
THEN

RETURN NULL;
ELSE

RETURN SUBSTR(p_line,(l_start + 1),((l_end - l_start) - 1));
END IF;
3-22 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Create API Wrapper - Code Example
EXCEPTION
WHEN OTHERS
THEN

RETURN NULL;

END Get_Field;

--+==+
--| FUNCTION NAME |
--| Get_Substring |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of Sub-string from formatted ASCII data file record |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a passed sub-string |
--| of a formatted ASCII data file record |
--| |
--| PARAMETERS |
--| p_substring IN VARCHAR2 - substring data |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Substring
(p_substring IN VARCHAR2
)
RETURN VARCHAR2
IS
--
-- Local variables
--
l_string_value VARCHAR2(200) :=’ ’;

BEGIN

-- Determine start position
Item Create API Wrapper 3-23

Item Create API Wrapper - Code Example
l_string_value :=NVL(RTRIM(LTRIM(p_substring)),’ ’);

RETURN l_string_value;
EXCEPTION

WHEN OTHERS
THEN

RETURN ’ ’;

END Get_Substring;

END GMI_ITEM_WRP;
/
-- show errors;
COMMIT;
EXIT;
3-24 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversio
4

Item Lot/Sublot Conversion API

This topic provides the business function and technical overview for the Item
Lot/Sublot Conversion API. Parameters for Item Lot/Sublot conversion are
included with information on table and view use, and package and procedure
names. The topic also provides information on special logic, error messages, and
success messages.

The following topics are covered:

� Item Lot/Sublot Conversion API - Business Function

� Item Lot/Sublot Conversion API - Technical Overview

� Item Lot/Sublot Conversion API - Parameters

� Item Lot/Sublot Conversion API - Table and View Usage

� Item Lot/Sublot Conversion API - Package and Procedure Names

� Item Lot/Sublot Conversion API - Special Logic

� Item Lot/Sublot Conversion API - Error Messages

� Item Lot/Sublot Conversion API - Success Messages
n API 4-1

Item Lot/Sublot Conversion API - Business Function
Item Lot/Sublot Conversion API - Business Function
This stored procedure is concerned with the following function within the Oracle
Process Manufacturing (OPM) Inventory Management Module:

� Create an item lot/sublot unit of measure conversion

The document describes how the stored procedure should be called, the parameters
that are required (and optional) and the values that are returned to the calling
program. This includes all error conditions that may arise.

The procedure is intended as a create function only. The create function is used
primarily to load item data from legacy systems on implementation.

Item Lot/Sublot Conversion API - Technical Overview
The Item Lot Conversion stored procedure is intended to be used by a user
‘wrapper’ calling function with item attributes passed to the procedure via a
RECORD format which is detailed in this document. The wrapper function is
responsible for connecting to the database as an appropriate user with the necessary
privileges. It passes the appropriate parameters into the stored procedure and is
responsible for handling the return code from the procedure.
4-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API - Parameters
Item Lot/Sublot Conversion API - Parameters
There are two variants of this procedure which have the same name, but reside in
different packages and have different signatures.

The public procedure has the following call interface:

GMIPAPI.Create_Item_Lot_Conv
(

p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_conv_rec IN GMIGAPI.conv_rec_typ
, x_ic_item_cnv_row OUT ic_lots_mst%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);

The first 4, and last 3 parameters are standard across all of the API calls and are
identical to the Create Item API, where they are fully documented. If the creation is
successful, the x_ic_item_cnv_row parameter is returned with the data set up in the
table, regardless of whether it was committed by the procedure.

The group procedure has the following call interface:

GMIGAPI.Create_Item_Lot_Conv
(

p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_conv_rec IN GMIGAPI.conv_rec_typ
, p_ic_item_mst_row IN ic_item_mst%ROWTYPE
, p_ic_lots_mst_row IN ic_lots_mst%ROWTYPE
, x_ic_item_cnv_row OUT ic_lots_mst%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);
Item Lot/Sublot Conversion API 4-3

Item Lot/Sublot Conversion API - Parameters
This procedure takes two additional parameters compared to the ‘P’ variant for use
when item and lot data are already known. If this is the case then p_ic_item_mst_
row and p_ic_lots_mst_row should be passed with the appropriate data. This can
be found by calling the GMIGUTL.Get_Item and GMIGUTL.Get_Lot procedures.
All other IN and OUT parameters are identical to the public API.

This p_conv_rec parameter passes the item-specific data required to create an
inventory item. It is described in the following. Please refer to the section on the
Item Lot/Sublot Conversion API Wrapper for an example of how to populate and
call the stored procedure.

Field/Column Type Length Default Req’d Validation

item_no varchar2 32 Y Must exist on ic_item_
mst

Must not be deleted

Must be active

lot_no varchar2 32 N Must be blank if ic_
item_mst.lot_ctl = 0

If ic_item_mst.sublot_ctl
= 0 then item_no+lot_no
must exist in ic_lots_mst

sublot_no varchar2 32 N Must be blank if ic_
item_mst.sublot_ctl = 0

Must be blank if lot_no
is blank

If supplied then item_
no+lot_no+sublot_no
must exist on ic_lots_mst

from_uom varchar2 4 Y Must exist on sy_uoms_
mst

Must be of same UOM
type as ic_item_
mst.item_um

to_uom varchar2 4 Y Must exist on sy_uoms_
mst

Must be of different
UOM type to ic_item_
mst.item_um
4-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API - Parameters
type_factor number Y Conversion factor. 1
from-uom equals this
number of to_uom

user_name varchar2 100 ‘OPM’ N Ignored but retained for
backward compatibility

Field/Column Type Length Default Req’d Validation
Item Lot/Sublot Conversion API 4-5

Item Lot/Sublot Conversion API - Table and View Usage
Item Lot/Sublot Conversion API - Table and View Usage
The following OPM tables are referenced by the Item Lot Conversion API. The
appropriate entries in these tables must exist and be non-delete marked on the
database for validation usage through the Item Create stored procedure.

The Item Lot UOM conversion table IC_ITEM_CNV holds unit of measure
conversion values for the item/lot.

When an item is identified as dual UOM and the alternate UOM is of a different
type (for example, an item is defined in type WEIGHT with dual UOM in
VOLUME) the save of the item master prompts for the conversion factor between
WEIGHT and VOLUME for the item. This mechanism and structure supports
transactional processing of the item in any supported UOM.

Table Name Select Insert Update Delete Base Table

ic_item_mst X

sy_uoms_mst X

ic_item_cnv X X X

sy_uoms_typ X

ic_lots_mst X
4-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API - Special Logic
Item Lot/Sublot Conversion API - Package and Procedure Names
The Item Lot/Sublot conversion API PL/SQL stored procedure code is held in the
following:

� GMIPAPI

The stored procedure which is called to create a new Item Lot/Sublot conversion is:

� Create_Lot

Please refer to the Item Lot/Sublot conversion API wrapper specification for an
example of how the above procedure is executed.

Item Lot/Sublot Conversion API - Special Logic

Validation
The validation is described in p_item_cnv_rec in the Item Lot/Sublot Conversion
API - Parameters topic.

Update Logic
When all the validation checks have been performed and no errors are found, a new
item/lot conversion is created within the database. The following steps are
followed:

1. Get unit of measure type of from_um from sy_uoms_mst. (A)

2. Get unit of measure type of to_um for sy_uoms_mst (B)

3. Get unit of measure type of primary unit of measure for item (C)

4. If A=C then p_item_cnv_rec.conv_factor = 1 / p_item_cnv_rec.conv_factor.

5. Get standard unit of measure for (A) from sy_uoms_typ.

6. If standard unit of measure differs from the from unit of measure then use the
standard unit of measure conversion routine to convert from p_item_cnv_
rec.from_um to sy_uoms_typ.std_um.

7. Get standard unit of measure for (B) from sy_uoms_typ.

8. If standard unit of measure differs from the to unit of measure then use the
standard unit of measure conversion routine to convert from p_item_cnv_
rec.to_um to sy_uoms_typ.std_um.

9. Build a row in ic_item_cnv as given in the following table:
Item Lot/Sublot Conversion API 4-7

Item Lot/Sublot Conversion API - Special Logic
Column Name Value

item_id ic_item_mst.item_id

lot_id ic_lots_mst.lot_id or zero if lot_no not supplied

um_type sy_uoms_typ.um_type of p_item_cnv_rec.to_um

type_factor Calculated above

creation_date System date

last_update_date System date

created_by FND_USER.user_id based on supplied user_name

last_updated_by FND_USER.user_id based on supplied user_name

trans_cnt 1

delete_mark 0

text_code 0

type_factorrev Reciprocal of type_factor

last_update_login login_id
4-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API - Error Messages
Item Lot/Sublot Conversion API - Error Messages
Listed below are all expected errors. These are output to the stored procedure
message file and can be monitored through the return x_msg_count. This, in
conjunction with the x_return_status can be used to monitor the success or failure of
the procedure call.

Message Code Narrative

IC_API_INVALID_ITEM_NO Invalid item &ITEM_NO

IC_API_INVALID_LOT_NO Invalid lot &LOT_NO - &SUBLOT_NO for
item &ITEM_NO

IC_API_INVALID_LOT_UOM_TYPE Invalid UOM type for item &ITEM_NO lot
&LOT_NO - &SUBLOT_NO UOM &UOM

IC_API_INVALID_LOT_UOM Invalid UOM &UOM for item &ITEM_NO lot
&LOT_NO - &SUBLOT_NO

IC_API_ITEM_CNV_ALREADY_EXISTS Conversion already exists for item &ITEM_NO
lot &LOT_NO - &SUBLOT_NO UOM type
&UM_TYPE

IC_API_INVALID_TYPE_FACTOR Invalid conversion factor for item &ITEM_NO
lot &LOT_NO - &SUBLOT_NO

IC_API_LOT_ITEM_UOM_MISMATCH From UOM is of wrong type for item &ITEM_
NO lot &LOT_NO - &SUBLOT_NO

IC_API_ITEM_LOT_UOM_FAILED Cannot convert from &UM1 to &UM2 for item
&ITEM_NO lot &LOT_NO - &SUBLOT_NO
Item Lot/Sublot Conversion API 4-9

Item Lot/Sublot Conversion API - Success Messages
Item Lot/Sublot Conversion API - Success Messages
If the Item Lot/Sublot conversion create is successful then the API returns a success
message as follows:

Translation of error messages is determined by the value passed to the API in p_
item_cnv_rec.op_code. If this is not supplied then this defaults to the value ‘API’.
The default language for the op_code determines the language in which the
messages are translated. If the op_code does not exist on sy_oper_mst or the
message is not found in the required language, then the message are retrieved in
English (lang_code = ‘ENG’).

The ‘API’ operator are inserted into sy_oper_mst by the installation script with a
default language code of ‘ENG’.

Message Code Narrative

IC_API_ILC_CREATED Conversion created for item &ITEM_NO lot &LOT_NO -
SUBLOT_NO UOM type &UM_TYPE
4-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wr
5

Item Lot/Sublot Conversion API Wrapper

This topic provides the business function, technical requirements, input structure,
special logic, ASCII flat file layout, and package and procedure names for the Item
Lot/Sublot Conversion API Wrapper. Error messages and a code example are also
supplied.

The following topics are covered:

� Item Lot/Sublot Conversion API Wrapper - Business Function

� Item Lot/Sublot Conversion API Wrapper - Technical Requirements

� Item Lot/Sublot Conversion API Wrapper - Input Structure

� Item Lot/Sublot Conversion API Wrapper - Special Logic

� Item Lot/Sublot Conversion API Wrapper - ASCII Flat File Layout

� Item Lot/Sublot Conversion API Wrapper - Package and Procedure Names

� Item Lot/Sublot Conversion API Wrapper - Error Messages

� Item Lot/Sublot Conversion API Wrapper - Code Example
apper 5-1

Item Lot/Sublot Conversion API Wrapper - Business Function
Item Lot/Sublot Conversion API Wrapper - Business Function
This stored procedure is designed to operate in conjunction with the item/lot unit
of measure conversion API. This API is used to create an item/lot unit of measure
conversion within OPM. It may be required to be used in both synchronous (that is,
on-line) and asynchronous (that is, batch) modes. When used in synchronous mode,
the calling program (for example, an Oracle form) calls the API directly.

This specification is concerned with using the API in asynchronous mode using a
wrapper function. The source of data for the wrapper comes from:

� An ASCII flat file

This topic describes how the wrapper function should be called and the parameter
requirements.

Item Lot/Sublot Conversion API Wrapper - Technical Requirements
The Item Lot Conversion API stored procedure is intended to be used by a user
‘wrapper’ calling function with item/lot unit of measure conversion attributes
passed to the procedure via a RECORD format which is detailed in this topic. The
wrapper passes the appropriate parameters into the stored API procedure and is
responsible for handling the return code from the procedure and any associated
messages.

Item Lot/Sublot Conversion API Wrapper - Input Structure
The API wrapper consists of a PL/SQL procedure and PL/SQL function both
named ‘Create_Conv’.

Item Lot/Sublot Conversion API Wrapper - Special Logic

Validation
Incorrectly formatted flat files are rejected.

The success or failure of the wrapper may be reported back to the calling function
by means of the return value. This is hierarchically as follows:

� On initial entry to the wrapper the return status is set to success (‘S’).

� If for any record processed an expected error occurs and the return status is
currently set to success then it is updated to expected error (‘E’).
5-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - ASCII Flat File Layout
� If for any record processed and unexpected error occurs, then the return status
is set to unexpected error (‘U’).

Update Logic
Updates are only concerned with the processing of messages (errors and others)
generated by the item/lot conversion API.

Messages (success and error) are written to a flat file as designated by the p_
output_file parameter. Additionally a log file is written to the /tmp directory. This
details the start and completion times, data retrieved from the ASCII flat file, and
messages generated.

Item Lot/Sublot Conversion API Wrapper - ASCII Flat File Layout
The ASCII flat file may be ‘character delimited’ (typically, but not necessarily, with
a comma) or it can be in fixed position format. The table below shows the order in
which the data fields must appear (for delimited files) and the length of each data
field (for fixed position format files).

Use consecutive delimiters to omit an optional field.

Field Name Type Length Required

item number alphanumeric 32 Y

lot number alphanumeric 32 N

sublot number alphanumeric 32 N

from unit of
measure

alphanumeric 4 Y

to unit of
measure

alphanumeric 4 Y

conversion factor number 16 Y

user name alphanumeric 100 N
Item Lot/Sublot Conversion API Wrapper 5-3

Item Lot/Sublot Conversion API Wrapper - Package and Procedure Names
Item Lot/Sublot Conversion API Wrapper - Package and Procedure
Names

The Item Lot/Sublot conversion API wrapper PL/SQL stored procedures code are
held in the package

� GMI_ITEM_LOT_CONV_WRP

The procedure or function to be called to execute this API wrapper is:

� Create_Conv

Item Lot/Sublot Conversion API Wrapper - Error Messages
Error messages generated by the Item Lot/Sublot Conversion API are written to the
file ‘p_output_file’.

Errors listed below may be generated by the API wrapper. These messages are
generally related to the handling of the ASCII flat input and output files. These
messages are sent to the standard output device as it is inappropriate to attempt to
send them to the files which themselves may be causing the erroneous condition.
They are hard-coded in English.

Error Condition Narrative

UTL_FILE INVALID_OPERATION Invalid operation for ‘FILE’

UTL_FILE.INVALID_PATH Invalid path for ‘FILE’

UTL_FILE.INVALID_MODE Invalid mode for ‘FILE’

UTL_FILE.INVALID_FILEHANDLE Invalid File handle for ‘FILE’

UTL_FILE.WRITE_ERROR Invalid Write Error for ‘FILE’

UTL_FILE.READ_ERROR Invalid Read Error for ‘FILE’

UTL_FILE.INTERNAL_ERROR Internal Error
5-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - Code Example
Item Lot/Sublot Conversion API Wrapper - Code Example
The PL/SQL code for this API wrapper is as follows:

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
CREATE OR REPLACE PACKAGE BODY GMI_ITEM_LOT_CONV_WRP AS
-- $Header: GMIPILWB.pls 115.5 2000/08/10 15:00:08 hverddin gmigapib.pls $
--+==+
--| PROCEDURE NAME |
--| Create_conv |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Create an Item/Lot/Sublot UoM conversion |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper procedure to call the Create_Conv |
--| API wrapper function |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| None |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
PROCEDURE Create_Conv
(p_dir IN VARCHAR2
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
IS

l_return_status VARCHAR2(1);
Item Lot/Sublot Conversion API Wrapper 5-5

Item Lot/Sublot Conversion API Wrapper - Code Example
BEGIN

l_return_status :=Create_conv(p_dir
, p_input_file
, p_output_file
, p_delimiter
);

End Create_Conv;

--+==+
--| FUNCTION NAME |
--| Create_conv |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Create an Item/Lot/Sublot UoM conversion |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper function to call the OPM |
--| Inventory Item Lot/Sublot UOM Conversion Create API. |
--| It reads item data from a flat file and outputs any error |
--| messages to a second flat file. It also generates a Status |
--| called wrapper<session_id>.log in the /Out directory. |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| VARCHAR2 - ’S’ All records processed successfully |
--| ’E’ 1 or more records errored |
--| ’U’ 1 or more record unexpected error |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Create_Conv
(p_dir IN VARCHAR2
5-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - Code Example
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
RETURN VARCHAR2
IS

--
-- Local variables
--

l_status VARCHAR2(1);
l_return_status VARCHAR2(1) :=FND_API.G_RET_STS_SUCCESS;
l_count NUMBER ;
l_dummy_cnt NUMBER :=0;
l_loop_cnt NUMBER :=0;
l_record_count NUMBER :=0;
l_data VARCHAR2(2000);
item_cnv_rec GMIGAPI.conv_rec_typ;
l_p_dir VARCHAR2(50);
l_output_file VARCHAR2(20);
l_outfile_handle UTL_FILE.FILE_TYPE;
l_input_file VARCHAR2(20);
l_infile_handle UTL_FILE.FILE_TYPE;
l_line VARCHAR2(200);
l_delimiter VARCHAR(1);
l_log_dir VARCHAR2(50);
l_log_name VARCHAR2(20) :=’wrapper’;
l_log_handle UTL_FILE.FILE_TYPE;
l_global_file VARCHAR2(20);

l_session_id VARCHAR2(10);
l_ic_item_cnv_row ic_item_cnv%ROWTYPE;

BEGIN

-- Enable The Buffer
DBMS_OUTPUT.ENABLE(1000000);

l_p_dir :=p_dir;
l_input_file :=p_input_file;
l_output_file :=p_output_file;
l_delimiter :=p_delimiter;
l_global_file :=l_input_file;
Item Lot/Sublot Conversion API Wrapper 5-7

Item Lot/Sublot Conversion API Wrapper - Code Example
--
-- Obtain The SessionId To Append To wrapper File Name.
--

l_session_id := USERENV(’sessionid’);

l_log_name := CONCAT(l_log_name,l_session_id);
l_log_name := CONCAT(l_log_name,’.log’);

-- Directory is now the same same as for the out file
--
l_log_dir := p_dir;

--
-- Open The Wrapper File For Output And The Input File for Input.
--

l_log_handle :=UTL_FILE.FOPEN(l_log_dir, l_log_name, ’w’);
l_infile_handle :=UTL_FILE.FOPEN(l_p_dir, l_input_file, ’r’);

--
-- Loop thru flat file and call Item Lot/Sublot UOM Conversion create API
--

UTL_FILE.PUT_LINE(l_log_handle, ’Process Started at ’
|| to_char(SYSDATE,’DD-MON-YY HH:MI:SS’));

UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Input Directory ’ || l_p_dir);
UTL_FILE.PUT_LINE(l_log_handle, ’Input File ’ || l_input_file);
UTL_FILE.PUT_LINE(l_log_handle, ’Record Type ’ || l_delimiter);
UTL_FILE.PUT_LINE(l_log_handle, ’Output File ’ || l_output_file);

l_outfile_handle :=UTL_FILE.FOPEN(l_p_dir, l_output_file, ’w’);

LOOP
l_record_count :=l_record_count+1;

BEGIN
UTL_FILE.GET_LINE(l_infile_handle, l_line);
EXCEPTION

WHEN NO_DATA_FOUND THEN
EXIT;

END;
5-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - Code Example
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Reading Record ’ || l_record_count);

item_cnv_rec.item_no :=Get_Field(l_line,l_delimiter,1);
item_cnv_rec.lot_no :=Get_Field(l_line,l_delimiter,2);
item_cnv_rec.sublot_no :=Get_Field(l_line,l_delimiter,3);
item_cnv_rec.from_uom :=Get_Field(l_line,l_delimiter,4);
item_cnv_rec.to_uom :=Get_Field(l_line,l_delimiter,5);
IF (Get_Field(l_line,l_delimiter,6) IS NULL)
THEN

item_cnv_rec.type_factor:=0;
ELSE

item_cnv_rec.type_factor:=TO_NUMBER(Get_Field(l_line,l_delimiter,6));
END IF;

IF (Get_Field(l_line,l_delimiter,7) IS NULL)
THEN

item_cnv_rec.user_name :=’OPM’;
ELSE

item_cnv_rec.user_name :=Get_Field(l_line,l_delimiter,7);
END IF;

UTL_FILE.PUT_LINE(l_log_handle,’item no = ’||item_cnv_rec.item_no);
UTL_FILE.PUT_LINE(l_log_handle,’lot no = ’||item_cnv_rec.lot_no);
UTL_FILE.PUT_LINE(l_log_handle,’sublot no = ’||item_cnv_rec.sublot_no);
UTL_FILE.PUT_LINE(l_log_handle,’from_uom = ’||item_cnv_rec.from_uom);
UTL_FILE.PUT_LINE(l_log_handle,’to_uom = ’||item_cnv_rec.to_uom);
UTL_FILE.PUT_LINE(l_log_handle,’type_factor= ’||item_cnv_rec.type_factor);
UTL_FILE.PUT_LINE(l_log_handle,’op Code = ’||item_cnv_rec.user_name);

dbms_output.put_line(’Calling creation routine’);

GMIPAPI.Create_Item_Lot_Conv
(p_api_version => 3.0
, p_init_msg_list => FND_API.G_TRUE
, p_commit => FND_API.G_TRUE
, p_validation_level => FND_API.G_VALID_LEVEL_FULL
, p_conv_rec => item_cnv_rec
, x_ic_item_cnv_row => l_ic_item_cnv_row
, x_return_status =>l_status
, x_msg_count =>l_count
, x_msg_data =>l_data
);
Item Lot/Sublot Conversion API Wrapper 5-9

Item Lot/Sublot Conversion API Wrapper - Code Example
IF l_count > 0
THEN

l_loop_cnt :=1;
LOOP

FND_MSG_PUB.Get(
p_msg_index => l_loop_cnt,
p_data => l_data,
p_encoded => FND_API.G_FALSE,
p_msg_index_out => l_dummy_cnt);

-- dbms_output.put_line(’Message ’ || l_data);

UTL_FILE.PUT_LINE(l_outfile_handle, ’Record = ’ ||l_record_count);
UTL_FILE.PUT_LINE(l_outfile_handle, l_data);
UTL_FILE.NEW_LINE(l_outfile_handle);

IF l_status = ’E’ OR
l_status = ’U’

THEN
l_data := CONCAT(’ERROR ’,l_data);

END IF;

UTL_FILE.PUT_LINE(l_log_handle, l_data);

-- Update error status
IF (l_status = ’U’)
THEN

l_return_status :=l_status;
ELSIF (l_status = ’E’ and l_return_status <> ’U’)
THEN

l_return_status :=l_status;
ELSE

l_return_status :=l_status;
END IF;

l_loop_cnt := l_loop_cnt + 1;
IF l_loop_cnt > l_count
THEN

EXIT;
END IF;

END LOOP;

END IF;
5-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - Code Example
END LOOP;
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Completed at ’
|| to_char(SYSDATE,’DD-MON-YY HH:MI:SS’));

--
-- Check if any messages generated. If so then decode and
-- output to error message flat file
--

UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

EXCEPTION
WHEN UTL_FILE.INVALID_OPERATION THEN

dbms_output.put_line(’Invalid Operation For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

WHEN UTL_FILE.INVALID_PATH THEN
dbms_output.put_line(’Invalid Path For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

WHEN UTL_FILE.INVALID_MODE THEN
dbms_output.put_line(’Invalid Mode For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

WHEN UTL_FILE.INVALID_FILEHANDLE THEN
dbms_output.put_line(’Invalid File Handle ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

WHEN UTL_FILE.WRITE_ERROR THEN
dbms_output.put_line(’Invalid Write Error ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

WHEN UTL_FILE.READ_ERROR THEN
dbms_output.put_line(’Invalid Read Error ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;
Item Lot/Sublot Conversion API Wrapper 5-11

Item Lot/Sublot Conversion API Wrapper - Code Example
WHEN UTL_FILE.INTERNAL_ERROR THEN
dbms_output.put_line(’Internal Error’);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

WHEN OTHERS THEN
dbms_output.put_line(’Other Error’);
UTL_FILE.FCLOSE_ALL;
RETURN FND_API.G_RET_STS_UNEXP_ERROR;

END Create_Conv;

--+==+
--| FUNCTION NAME |
--| Get_Field |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of field n from a delimited line of ASCII data |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a field from |
--| a delimited line of ASCII text |
--| |
--| PARAMETERS |
--| p_line IN VARCHAR2 - line of data |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| p_field_no IN NUMBER - Field occurance to be |
--| returned |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Field
(p_line IN VARCHAR2
, p_delimiter IN VARCHAR2
, p_field_no IN NUMBER
)
RETURN VARCHAR2
5-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - Code Example
IS
--
-- Local variables
--
l_start NUMBER :=0;
l_end NUMBER :=0;

BEGIN

-- Determine start position
IF p_field_no = 1
THEN

l_start :=0;
ELSE

l_start :=INSTR(p_line,p_delimiter,1,(p_field_no - 1));
IF l_start = 0
THEN

RETURN NULL;
END IF;

END IF;

-- Determine end position
l_end :=INSTR(p_line,p_delimiter,1,p_field_no);
IF l_end = 0
THEN

l_end := LENGTH(p_line) + 1;
END IF;

-- Extract the field data
IF (l_end - l_start) = 1
THEN

RETURN NULL;
ELSE

RETURN SUBSTR(p_line,(l_start + 1),((l_end - l_start) - 1));
END IF;

EXCEPTION
WHEN OTHERS
THEN

RETURN NULL;

END Get_Field;

--+==+
--| FUNCTION NAME |
Item Lot/Sublot Conversion API Wrapper 5-13

Item Lot/Sublot Conversion API Wrapper - Code Example
--| Get_Substring |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of Sub-string from formatted ASCII data file record |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a passed sub-string |
--| of a formatted ASCII data file record |
--| |
--| PARAMETERS |
--| p_substring IN VARCHAR2 - substring data |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Substring
(p_substring IN VARCHAR2
)
RETURN VARCHAR2
IS
--
-- Local variables
--
l_string_value VARCHAR2(200) :=’ ’;

BEGIN

-- Determine start position
l_string_value :=NVL(RTRIM(LTRIM(p_substring)),’ ’);

RETURN l_string_value;
EXCEPTION

WHEN OTHERS
THEN

RETURN ’ ’;

END Get_Substring;
5-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Item Lot/Sublot Conversion API Wrapper - Code Example
END GMI_ITEM_LOT_CONV_WRP;
/
commit;
exit;
Item Lot/Sublot Conversion API Wrapper 5-15

Item Lot/Sublot Conversion API Wrapper - Code Example
5-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantitie
6

Inventory Quantities API

This topic provides the business function and technical overview for the Inventory
Quantities API. Parameters for Inventory Quantities API are included with
information on table and view use, and package and procedure names. The topic
also provides information on special logic, error messages, and success messages.

The following topics are covered:

� Inventory Quantities API - Business Function

� Inventory Quantities API - Technical Overview

� Inventory Quantities API - Parameters

� Inventory Quantities API - Table and View Usage

� Inventory Quantities API - Package and Procedure Names

� Inventory Quantities API - Special Logic

� Inventory Quantities API - Error Messages

� Inventory Quantities API - Success Messages
s API 6-1

Inventory Quantities API - Business Function
Inventory Quantities API - Business Function
This stored procedure is concerned with the following functions within the Oracle
Process Manufacturing (OPM) Inventory Management module:

� Create inventory

� Adjust inventory

� Move inventory

� Change lot status

� Change QC grade

This topic describes how the stored procedure should be called, the parameters that
are required (and optional) and the values that are returned to the calling program.
This includes all error conditions that may arise.

Inventory Quantities API - Technical Overview
The Inventory Quantities stored procedure is intended to be used by a user
‘wrapper’ calling function with item attributes passed to the procedure via a
RECORD format which is detailed in this topic. The wrapper function is responsible
for connecting to the database as an appropriate user with the necessary privileges.
It passes the appropriate parameters into the stored procedure and is responsible
for handling the return code from the procedure.
6-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Parameters
Inventory Quantities API - Parameters
There are two variants of this procedure – public and group. They have the same
name but are distinguished by residing in separate packages, and they have
different signatures.

The public call interface is:

GMIPAPI.Inventory_Posting
(

p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_qty_rec IN GMIGAPI.qty_rec_typ
, x_ic_jrnl_mst_row OUT ic_jrnl_mst%ROWTYPE
, x_ic_adjs_jnl_row1 OUT ic_adjs_jnl%ROWTYPE
, x_ic_adjs_jnl_row2 OUT ic_adjs_jnl%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);

The first 4, and last 3 parameters are standard across all of the API calls and are
identical to the Create Item API where they are fully documented. If the posting is
successful, the x_ic_jrnl_mst_row and x_ic_adjs_jnl_row parameters are returned
with the data set up in the tables, regardless of whether it was committed by the
procedure. For inventory movements, grade and status changes x_ic_adjs_jnl_row1
contains the ‘from’ and x_ic_adjs_jnl_row2 contains the ‘to’. For all other calls the x_
ic_adjs_jnl_row2 returned s undefined.

The group level call interface is:

GMIGAPI.Inventory_Posting
(

p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_qty_rec IN GMIGAPI.qty_rec_typ
, p_ic_item_mst_row IN ic_item_mst%ROWTYPE
, p_ic_item_cpg_row IN ic_item_cpg%ROWTYPE
, p_ic_lots_mst_row IN ic_lots_mst%ROWTYPE
Inventory Quantities API 6-3

Inventory Quantities API - Parameters
, p_oc_lots_cpg_row IN ic_lots_cpg%ROWTYPE
, x_ic_jrnl_mst_row OUT ic_jrnl_mst%ROWTYPE
, x_ic_adjs_jnl_row1 OUT ic_adjs_jnl%ROWTYPE
, x_ic_adjs_jnl_row2 OUT ic_adjs_jnl%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);

This version takes in extra parameters for use when the appropriate data is known
in the calling program in the same way as above.

The p_qty_rec parameter is used to pass the item-specific data required to create an
inventory item. It is described below. Please refer to the Inventory Quantities API
Wrapper topic for an example of how to populate this parameter and call the stored
procedure.

Field/Column Type Length Default Req’d Validation

trans_type number 2 Y 1 - create inventory

2 - adjust inventory

3 - move inventory

4 - change lot status

5 - change QC grade

No other values allowed

item_no varchar
2

32 Y Must exist on ic_item_mst

Must not be deleted

May be inactive if the
IC$ALLOW_INACTIVE
flag is set to 1, must not be
noninventory

journal_no varchar
2

32 N Must be blank if
automatic document
sequencing

Must not exist in ic_jrnl_
mst if manual document
sequencing
6-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Parameters
from_whse_
code

varchar
2

4 Y May be blank if trans_
type = 5

Must exist on ic_whse_
mst for all other
transaction types

to_whse_code varchar
2

4 NULL N Must exist on ic_whse_
mst if trans_type = 3

item_um varchar
2

4 Y Must exist on sy_uoms_
mst

Must be of same UOM
type as primary UOM of
item

item_um2 varchar
2

4 Y Must exist on sy_uoms_
mst

Must be of same UOM
type as secondary UOM
of item

lot_no varchar
2

32 blank N Must be blank if ic_item_
mst.lot_ctl = 0

Must not equal
GMI:Default Lot

sublot_no varchar
2

32 blank N Must be blank if ic_item_
mst.sublot_ctl = 0

from_location varchar
2

16 N See Validation topic

to_location varchar
2

16 N See Validation topic

trans_qty number N See Validation topic

trans_qty2 number N See Validation topic

qc_grade varchar
2

4 N Must exist on qc_grad_
mst if supplied

lot_status varchar
2

4 N Must exist on ic_lots_mst
if supplied

co_code varchar
2

4 Y Must exist in sy_orgn_mst

Field/Column Type Length Default Req’d Validation
Inventory Quantities API 6-5

Inventory Quantities API - Parameters
orgn_code varchar
2

4 Must exist in sy_orgn_mst
and sy_orgn_mst.co_code
must be co_code above

trans_date date Y Must be in an open
inventory calendar

reason_code varchar
2

4 Y Must exist in sy_reas_cds

user_name varchar
2

100 ‘OPM’ N Ignored but retained for
backward compatibility

Field/Column Type Length Default Req’d Validation
6-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Table and View Usage
Inventory Quantities API - Table and View Usage
The following OPM tables are referenced by the Inventory Quantities API. The
appropriate entries in these tables must exist and be non-delete marked on the
database for validation usage through the Item Create stored procedure.

The Item Lot UOM conversion table IC_ITEM_CNV holds unit of measure
conversion values for the item/lot.

When an item is identified as dual UOM and the alternate UOM is of a different
type (for example, the item is defined in type WEIGHT with dual UOM in
VOLUME) the save of the item master prompts for the conversion factor between
WEIGHT and VOLUME for the item. This mechanism and structure supports
transactional processing of the item in any supported UOM.

Table Name Select Insert Update Delete Base Table

ic_item_mst X

sy_uoms_mst X

ic_item_cnv X X X

sy_uoms_typ X

ic_lots_mst X X

ic_jrnl_mst X

ic_adjs_jnl X

ic_tran_cmp X

ic_loct_inv X X X

ic_summ_inv X X

ic_lots_sts X
Inventory Quantities API 6-7

Inventory Quantities API - Package and Procedure Names
Inventory Quantities API - Package and Procedure Names
The Inventory Quantities API PL/SQL stored procedure code is held in the
following:

GMIPAPI

The stored procedure which is called to post an inventory transaction is:

� Inventory_Posting

Please refer to the Inventory Quantities API Wrapper topic for an example of how
the previous procedure is executed.

Inventory Quantities API - Special Logic

Validation
In addition to the validation described in p_trans_rec table the following validation
is performed. Certain validation is dependent on type of transaction (p_trans_
rec.trans_type).

� For grade change transactions (trans_type=5) the item is validated to be grade
controlled.

� For lot status change transactions (trans_type=4) the item is validated to be
status controlled.

� If the item is lot-controlled or lot/sublot-controlled then for create inventory
transactions (trans_type=1) the item/lot/sublot may not exist. For all other
transaction types the item/lot/sublot must exist.

� For all transactions except change (QC) grade, the "from warehouse" is
validated and the "from location" is validated according to the item/warehouse
location rules.

� For move inventory transactions, the "to warehouse" is validated and the "to
location" is similarly validated.

� For transactions affecting quantity for dual unit of measure items, the
secondary quantity is validated to be within tolerance of the primary quantity.

� For adjustments, movements and change lot status, the inventory location is
validated to ensure an on-hand balance exists at the location. For create
inventory transactions, there should be no location balance.
6-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Special Logic
� If negative inventory is not allowed (GMI:Allow Negative Inventory = 0) then
the on-hand balance at the location is validated to ensure that sufficient stock
exists such that the balance will not become negative after the transaction has
been updated.

� If moving inventory to a location where inventory already exists with a
different lot status, and this is not allowed (GMI:Move Different Status), then an
error is generated.

� Inactive items may be processed if the IC$ALLOW_INACTIVE flag is set to 1.

Update Logic
When all the validation checks have been performed and no errors found, the
transaction can be posted. The following steps are followed:

1. The surrogate key (journal_id) is obtained from the surrogate key generator and
a row is inserted in the journal header table as follows:

2. Insert journal header ic_jrnl_mst as follows:

Column Name Value

journal_id Surrogate key value

journal_no If automatic document numbering then document number from sy_
docs_seq where orgn_code= p_trans_rec.orgn_code and doc_
type=’JRNL’

If manual numbering then p_trans_rec.journal_no

journal_
comment

Blank

posting_id Zero

print_cnt Zero

posted_ind 1

orgn_code from p_trans_rec.orgn_code

creation_date system date

last_update_date system date

created_by FND_USER.user_id based on supplied user_name

last_updated_by FND_USER.user_id based on supplied user_name
Inventory Quantities API 6-9

Inventory Quantities API - Special Logic
3. The inventory adjustment detail table is updated:

� For Create inventory and adjust inventory transactions, one row is inserted
in the inventory adjustment detail table.

� For Move inventory, lot status and (QC) grade change transactions, two
rows are inserted. This value is stored as a loop counter.

4. First the surrogate key (doc_id) is obtained the sequence gem5_doc_id_s

5. The remainder of the update processing is performed either once or twice
depending on the value of the loop counter previously described.

6. Get the surrogate key (line_id) from sequence gem5_line_id_s

7. Insert the following record into the ic_adjs_jnl table:

program_
update_date

System date

last_update_
login

login_id

in_use 0

delete_mark 0

text_code Null

Column Name Value

trans_type CREI if p_trans_rec.trans_type = 1

ADJI if p_trans_rec.trans_type = 2

TRNI if p_trans_rec.trans_type = 3

STSI if p_trans_rec.trans_type = 4

GRDI if p_trans_rec.trans_type = 5

trans_flag Zero

doc_id Surrogate key value obtained above

doc_line Loop counter

journal_id Same as ic_jrnl_mst.journal_id (see above)

completed_ind 1

Column Name Value
6-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Special Logic
whse_code If doc_line = 1 then p_trans_rec.from_whse_code

If doc_line = 2 then p_trans_rec.to_whse_code

reason_code from p_trans_rec.reason_code

doc_date from p_trans_rec.trans_date

item_id ic_item_mst.item_id where item_no=p_trans_rec.item_no

item_um p_trans_rec.item_um

item_um2 p_trans_rec.item_um2

lot_id ic_lots_mst.lot_id where item_no/lot_no/sublot_no from p_trans_rec

location If doc_line = 1 then p_trans_rec.from_location

If doc_line = 2 then p_trans_rec.to_location

qty p_trans_rec.trans_qty

qty2 p_trans_rec.trans_qty2

qc_grade If doc_line = 1 then ic_lots_mst.qc_grade

If doc_line =2 then p_trans_rec.qc_grade

lot_status for doc_line 1 then ic_loct_inv.lot_status

for doc_line 2 then p_trans_rec.lot_status

line_type If trans_type = 1 or trans_type =2 then 0

Else

If doc_line = 1 then -1

If doc_line = 2 then 1

line_id Surrogate key value obtained above

co_code p_trans_rec.co_code

orgn_code p_trans_rec.orgn_code

no_inv Zero

no_trans Zero

creation_date System date

last_update_date System date

created_by FND_USER.user_id based on supplied user_name

Column Name Value
Inventory Quantities API 6-11

Inventory Quantities API - Special Logic
8. For each row inserted into the inventory adjustment detail table, the PL/SQL
record p_cmp_tran_rec defined below is populated and the Completed
Inventory Transaction Processor is called.

Completed Inventory Transaction Processor
The completed inventory transaction processor performs the following updates all
data required is supplied in the PL/SQL record type p_cmp_tran_rec documented
previously.

All Transaction Types
A row is inserted in the completed inventory transaction table.

If the surrogate key (trans_id) supplied is zero then the next value is obtained from
the surrogate key sequence gem5_trans_id_s.

ic_tran_cmp

last_updated_by FND_USER.user_id based on supplied user_name

program_update_
date

System date

trans_cnt 1

last_update_login login_id

Column Name Value

item_id p_cmp_tran_rec.item_id

line_id p_cmp_tran_rec.line_id

trans_id surrogate key obtained above

co_code p_cmp_tran_rec.co_code

orgn_code p_cmp_tran_rec.orgn_code

whse_code p_cmp_tran_rec.whse_code

lot_id p_cmp_tran_rec.lot_id

location p_cmp_tran_rec.location

doc_id p_cmp_tran_rec.doc_id

Column Name Value
6-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Special Logic
Inventory Movement Transactions
If the transaction is a create (p_cmp_tran_rec.doc_type = CREI), an adjust (p_cmp_
tran_rec.doc_type = ADJI) or a move inventory (p_cmp_tran_rec.doc_type = TRNI)
then the ic_loct_inv location inventory table is updated as follows:

where item_id = p_cmp_tran_rec.item_id

and whse_code = p_cmp_tran_rec.whse_code

and lot_id = p_cmp_tran_rec.tran_id

doc_type p_cmp_tran_rec.trans_type

doc_line p_cmp_tran_rec.doc_line

line_type p_cmp_tran_rec.line_type

reason_code p_cmp_tran_rec.reason_code

trans_date p_cmp_tran_rec.doc_date

trans_qty p_cmp_tran_rec.trans_qty

trans_qty2 p_cmp_tran_rec.trans_qty2

qc_grade p_cmp_tran_rec.qc_grade

lot_status p_cmp_tran_rec.lot_status

trans_stat p_cmp_tran_rec.trans_stat

trans_um p_cmp_tran_rec.trans_um

trans_um2 p_cmp_tran_rec.trans_um2

op_code p_cmp_tran_rec.op_code

gl_posted_ind p_cmp_tran_rec.gl_posted_ind

event_id p_cmp_tran_rec.event_id

text_code p_cmp_tran_rec.text_code

creation_date system date

last_update_date system date

created_by FND_USER.user_id based on supplied user_name

last_updated_by FND_USER.user_id based on supplied user_name

last_update_login login_id

Column Name Value
Inventory Quantities API 6-13

Inventory Quantities API - Special Logic
and location = p_cmp_tran_rec.location

The Inventory summary table is then updated. The lot status table is read (ic_lots_
sts.lot_status = p_cmp_tran_rec.lot_status) in order to obtain the lot status
indicators. The ic_summ_inv table is then updated as follows:

where item_id = p_cmp_tran_rec.item_id

and whse_code = p_cmp_tran_rec.whse_code

and qc_grade = p_cmp_tran_rec.qc_grade

Column Name Value

loct_onhand loct_onhand + p_cmp_tran_rec.trans_qty

loct_onhand2 loct_onhand2 + p_cmp_tran_rec.trans_qty2

Column Name Value

onhand_qty if ic_lots_sts.nettable_ind = 1 then

onhand_qty = onhand_qty + p_cmp_tran_rec.trans_qty

onhand_qty2 if ic_lots_sts.nettable_ind = 1 then

onhand_qty2 = onhand_qty2 + p_cmp_tran_rec.trans_qty2

onhand_prod_qty if ic_lots_sts.prod_ind = 1 then

onhand_prod_qty = onhand_prod_qty + p_cmp_tran_rec.trans_qty

onhand_prod_qty2 if ic_lots_sts.prod_ind = 1 then

onhand_prod_qty2= onhand_prod_qty2 + p_cmp_tran_rec.trans_
qty2

onhand_order_qty if ic_lots_sts.order_proc_ind = 1 then

onhand_order_qty = onhand_order_qty + p_cmp_tran_rec.trans_qty

onhand_order_qty2 if ic_lots_sts.order_proc_ind = 1 then

onhand_order_qty2 = onhand_order_qty2 + p_cmp_tran_rec.trans_
qty2

onhand_ship_qty if ic_lots_sts.shipping_ind = 1 then

onhand_ship_qty = onhand_ship_qty + p_cmp_tran_rec.trans_qty

onhand_ship_qty2 if ic_lots_sts.shipping_ind = 1 then

onhand_ship_qty2 = onhand_ship_qty2 + p_cmp_tran_rec.trans_
qty2
6-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Special Logic
If the row is not found in the inventory summary table then it is created with zero
value quantities prior to be updated as above.

Change Lot Status Transactions
For a change lot status transaction the on-hand quantities must be obtained from
the inventory location table (ic_loct_inv). These are used to populate the PL/SQL
record p_cmp_tran_rec as follows:

If p_cmp_tran_rec.line_type = -1 then p_cmp_tran_rec.trans_qty = 0 - ic_loct_
inv.loct_onhand, p_cmp_tran_rec.trans_qty2 = 0 - ic_loct_inv.loct_onhand2

Else p_cmp_tran_rec.trans_qty = ic_loct_inv.loct_onhand, p_cmp_tran_rec.onhand2
= ic_loct_inv.loct_onhand2

For the ‘after’ transaction (p_cmp_tran_rec.line_type = 1) then the lot status is
updated in ic_loct_inv,

where item_id = p_cmp_tran_rec.item_id

and whse_code = p_cmp_tran_rec.whse_code

and lot_id = p_cmp_tran_rec.tran_id

and location = p_cmp_tran_rec.location

The transaction quantity values are then used to update the summary inventory
table (ic_summ_inv) as detailed for inventory movements above.

Change QC Grade transactions
For a change QC grade transaction, the QC grade is updated on the lots master table
(ic_lots_mst) as follows:

loct_onhand2 loct_onhand2 + p_cmp_tran_rec.trans_qty2

Column Name Value

lot_status p_cmp_tran_rec.lot_status

Column Name Value

qc_grade If p_cmp_tran_rec.line_type = 1 then p_cmp_tran_rec.qc_grade
Inventory Quantities API 6-15

Inventory Quantities API - Special Logic
1. The warehouses at which the lot exists and their on-hand quantities must be
obtained from the inventory location table (ic_loct_inv). This are used to
populate the PL/SQL record p_cmp_tran_rec as follows:

� If p_cmp_tran_rec.line_type = -1 then p_cmp_tran_rec.whse_code = ic_loct_
inv.whse_code, p_cmp_tran_rec.trans_qty = 0 - SUM(ic_loct_inv.loct_
onhand), p_cmp_tran_rec.trans_qty2 = 0 - SUM(ic_loct_inv.loct_onhand2)

� Else p_cmp_tran_rec.whse_code = ic_loct_inv.whse_code, p_cmp_tran_
rec.trans_qty = SUM(ic_loct_inv.loct_onhand), p_cmp_tran_rec.onhand2 =
SUM(ic_loct_inv.loct_onhand2)

2. The transaction quantity values are then used to update the summary inventory
table (ic_summ_inv) as detailed for inventory movements above.
6-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Error Messages
Inventory Quantities API - Error Messages
Listed below are all expected errors. These are output to the stored procedure
message file and can be monitored through the return x_msg_count. This, in
conjunction with the x_return_status can be used to monitor the success or failure of
the procedure call.

Message Code Narrative

IC_API_INVALID_TRANS_TYPE Invalid transaction type &TRANS_TYPE

IC_API_INVALID_JOURNAL_
NO

Invalid journal number &JOURNAL_NO

SY_API_UNABLE_TO_GET_
DOC_NO

Failed to get doc number for type &DOC_TYPE
organization &ORGN_CODE

IC_API_INVALID_ITEM_NO Invalid item &ITEM_NO

IC_API_TRANS_TYPE_FOR_
ITEM

Invalid transaction type &TRANS_TYPE for item
&ITEM_NO

IC_API_INVALID_LOT_NO Invalid lot &LOT_NO - &SUBLOT_NO for item
&ITEM_NO

IC_API_INVALID_UOM Invalid unit of measure &UOM for item number
&ITEM_NO

IC_API_SUBLOT_NOT_REQD Sub-lot is not required for item &ITEM_NO as it is not
sub-lot controlled

IC_API_INVALID_WHSE_CODE Invalid warehouse code &WHSE_CODE

IC_API_INVALID_LOCATION Invalid location &LOCATION warehouse code
&WHSE_CODE

IC_API_INVALID_QTY Invalid quantities for item &ITEM_NO lot &LOT_NO -
&SUBLOT_NO

IC_API_LOCT_ONHAND_
EXISTS

Inventory exists item &ITEM_NO lot &LOT_NO -
&SUBLOT_NO at &WHSE_CODE-&LOCATION

IC_API_NO_LOCT_ONHAND No inventory for item &ITEM_NO lot &LOT_NO -
&SUBLOT_NO at &WHSE_CODE-&LOCATION

IC_API_NEG_QTY_NOT_
ALLOWED

Negative qty - item &ITEM_NO lot &LOT_NO -
&SUBLOT_NO at &WHSE_CODE-&LOCATION

IC_API_MOVE_STATUS_ERR Move status error for item &ITEM_NO lot &LOT_NO -
&SUBLOT_NO
Inventory Quantities API 6-17

Inventory Quantities API - Error Messages
IC_API_INVALID_LOT_STATUS Invalid lot status for item number &ITEM_NO

IC_API_INVALID_QC_GRADE Invalid QC grade for item number &ITEM_NO

SY_API_INVALID_REASON_
CODE

Invalid reason code &REASON_CODE

SY_API_INVALID_CO_CODE Invalid company code &CO_CODE

SY_API_INVALID_ORGN_
CODE

Invalid organization code &ORGN_CODE

IC_API_INVALID_TRANS_
DATE

Invalid transaction date &TRANS_DATE

SY_API_UNABLE_TO_GET_
SURROGATE

Failed to get &SKEY surrogate key

SY_API_INVALID_OP_CODE Invalid operator code &OP_CODE

Message Code Narrative
6-18 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API - Success Messages
Inventory Quantities API - Success Messages
If the Item Lot/Sublot conversion create is successful then the API returns a success
message as follows:

Translation of error messages is determined by the environment variable NLS_
LANG. If no value can be determined, a default of ‘US’ is assumed. Message text is
retrieved in accordance with the language setting.

Message Code Narrative

IC_API_TRAN_POSTED Inventory transaction posted for item &ITEM_NO lot &LOT_
NO - &SUBLOT_NO
Inventory Quantities API 6-19

Inventory Quantities API - Success Messages
6-20 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wr
7

Inventory Quantities API Wrapper

This topic provides business function and input structure for the Inventory
Quantities API Wrapper. ASCII flat file layout, package and procedure names,
special logic, and error messages are included. Sample inventory quantities API
wrapper code is shown.

The following topics are covered:

� Inventory Quantities API Wrapper - Business Function

� Inventory Quantities API Wrapper - Input Structure

� Inventory Quantities API Wrapper - ASCII Flat File Layout

� Inventory Quantities API Wrapper - Package and Procedure Names

� Inventory Quantities API Wrapper - Special Logic

� Inventory Quantities API Wrapper - Error Messages

� Inventory Quantities API Wrapper - Code Example
apper 7-1

Inventory Quantities API Wrapper - Business Function
Inventory Quantities API Wrapper - Business Function
This stored procedure is designed to operate in conjunction with the inventory
quantities API. It may be required to be used in both synchronous (that is, on-line)
and asynchronous (that is, batch) modes. When used in synchronous mode, the
calling program (for example, an Oracle form) calls the API directly.

This topic is discusses using the API in asynchronous mode via a wrapper function.
The source of data for the wrapper will come from:

� An ASCII flat file

This topic describes how the wrapper function should be called, and parameters
that are required or optional.

Inventory Quantities API Wrapper - Input Structure
The API wrapper consists of a PL/SQL procedure and PL/SQL function both
named ‘Post’.

Inventory Quantities API Wrapper - ASCII Flat File Layout
As detailed previously, the ASCII flat file may be ‘character delimited’ (typically,
but not necessarily, with a comma) or of fixed position format. The table below
shows the order in which the data fields should appear and the maximum length of
each data field.

Field Name Type Length Required

transaction type number 2 Y

item number alphanumeric 32 Y

journal number alphanumeric 32 N

from warehouse code alphanumeric 4 Y

to warehouse code alphanumeric 4 N

primary unit of measure alphanumeric 4 Y

secondary unit of measure alphanumeric 4 Y

lot number alphanumeric 32 N

sublot number alphanumeric 32 N

from location alphanumeric 16 N
7-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - ASCII Flat File Layout
Omitting an optional field is achieved by using consecutive delimiters.

to location alphanumeric 16 N

primary transaction quantity number N

secondary transaction quantity number N

QC grade alphanumeric 4 N

lot status alphanumeric 4 N

company code alphanumeric 4 Y

organization code alphanumeric 4

transaction date date
(DDMMYYYY)

8 Y

reason code alphanumeric 4 Y

user name alphanumeric 100 N

Field Name Type Length Required
Inventory Quantities API Wrapper 7-3

Inventory Quantities API Wrapper - Package and Procedure Names
Inventory Quantities API Wrapper - Package and Procedure Names
The Inventory Quantities API wrapper PL/SQL stored procedures code are held in
the package:

� GMI_QUANTITY_WRP

The procedure or function to be called to execute this API wrapper is:

� Post

Inventory Quantities API Wrapper - Special Logic

Validation
Incorrectly formatted flat files are rejected.

The success or failure of the wrapper may be reported back to the calling function
by means of the return value. This is hierarchically as follows:

� On initial entry to the wrapper the return status is set to success (‘S’).

� If for any record processed an expected error occurs and the return status is
currently set to success then it is updated to expected error (‘E’).

� If for any record processed and unexpected error occurs, then the return status
is set to unexpected error (‘U’).

Update Logic
Updates are only concerned with the processing of messages (errors and others)
generated by the inventory quantities API.

Messages (success and error) are written to a flat file as designated by the p_
output_file parameter. Additionally a log file are written to the /tmp directory. This
details start and completion times, data retrieved from the ASCII flat file and
messages generated.
7-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - Error Messages
Inventory Quantities API Wrapper - Error Messages
Error messages generated by the inventory quantities API are written to the file ‘p_
output_file’.

Errors listed below may be generated by the API wrapper. These messages are
generally related to the handling of the ASCII flat input and output files. These
messages are sent to the standard output device since it is inappropriate to attempt
to send them to the files which themselves may be causing the erroneous condition.
They are hard-coded in English.

Error Condition Narrative

UTL_FILE.INVALID_OPERATION Invalid operation for ‘FILE’

UTL_FILE.INVALID_PATH Invalid path for ‘FILE’

UTL_FILE.INVALID_MODE Invalid mode for ‘FILE’

UTL_FILE.INVALID_FILEHANDLE Invalid File handle for ‘FILE’

UTL_FILE.WRITE_ERROR Invalid Write Error for ‘FILE’

UTL_FILE.READ_ERROR Invalid Read Error for ‘FILE’

UTL_FILE.INTERNAL_ERROR Internal Error
Inventory Quantities API Wrapper 7-5

Inventory Quantities API Wrapper - Code Example
Inventory Quantities API Wrapper - Code Example
The PL/SQL code for this API wrapper is as follows:

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
CREATE OR REPLACE PACKAGE BODY GMI_QUANTITY_WRP AS
-- $Header: GMIPQTWB.pls 115.7 2000/08/10 15:02:24 hverddin gmigapib.pls $

--+==+
--| PROCEDURE NAME |
--| Post |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Post an inventory transaction |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper procedure to call the Post transaction |
--| API wrapper function |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| None |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
PROCEDURE Post
(p_dir IN VARCHAR2
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
IS
7-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - Code Example
l_return_status VARCHAR2(1);

BEGIN

l_return_status :=Post(p_dir
, p_input_file
, p_output_file
, p_delimiter
);

End Post;

--+==+
--| FUNCTION NAME |
--| Post |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Post an inventory transaction |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper function to call the OPM |
--| Inventory Quantities API. |
--| It reads item data from a flat file and outputs any error |
--| messages to a second flat file. It also generates a Status |
--| called wrapper<session_id>.log in the /tmp directory. |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| None |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Post
(p_dir IN VARCHAR2
Inventory Quantities API Wrapper 7-7

Inventory Quantities API Wrapper - Code Example
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
RETURN VARCHAR2
IS

--
-- Local variables
--

l_status VARCHAR2(1);
l_return_status VARCHAR2(1) :=FND_API.G_RET_STS_SUCCESS;
l_count NUMBER ;
l_loop_cnt NUMBER :=0;
l_dummy_cnt NUMBER :=0;
l_record_count NUMBER :=0;
l_data VARCHAR2(2000);
trans_rec GMIGAPI.qty_rec_typ;
l_p_dir VARCHAR2(50);
l_output_file VARCHAR2(20);
l_outfile_handle UTL_FILE.FILE_TYPE;
l_input_file VARCHAR2(20);
l_infile_handle UTL_FILE.FILE_TYPE;
l_line VARCHAR2(200);
l_delimiter VARCHAR(1);
l_log_dir VARCHAR2(50);
l_log_name VARCHAR2(20) :=’wrapper’;
l_log_handle UTL_FILE.FILE_TYPE;
l_global_file VARCHAR2(20);

l_session_id VARCHAR2(10);

l_ic_jrnl_mst_row ic_jrnl_mst%ROWTYPE;
l_ic_adjs_jnl_row1 ic_adjs_jnl%ROWTYPE;
l_ic_adjs_jnl_row2 ic_adjs_jnl%ROWTYPE;
BEGIN

-- Enable The Buffer
--DBMS_OUTPUT.ENABLE(1000000);
-- Disable The Buffer
--DBMS_OUTPUT.DISABLE;

l_p_dir :=p_dir;
l_input_file :=p_input_file;
7-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - Code Example
l_output_file :=p_output_file;
l_delimiter :=p_delimiter;
l_global_file :=l_input_file;

--
-- Obtain The SessionId To Append To wrapper File Name.
--

l_session_id := USERENV(’sessionid’);

l_log_name := CONCAT(l_log_name,l_session_id);
l_log_name := CONCAT(l_log_name,’.log’);

-- Set the Wrapper file to be placed in the default working directory

l_log_dir := p_dir;

--
-- Open The Wrapper File For Output And The Input File for Input.
--
dbms_output.put_line(l_log_name||’ ’||l_input_file||’ ’||l_log_dir||’ ’||l_p_
dir);
l_log_handle :=UTL_FILE.FOPEN(l_log_dir, l_log_name, ’w’);
l_infile_handle :=UTL_FILE.FOPEN(l_p_dir, l_input_file, ’r’);

--
-- Loop thru flat file and call Inventory Quantities API
--

dbms_output.put_line(’Start Processing’);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Started at ’
|| to_char(SYSDATE,’DD-MON-YY HH:MI:SS’));

UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Input Directory ’ || l_p_dir);
UTL_FILE.PUT_LINE(l_log_handle, ’Input File ’ || l_input_file);
UTL_FILE.PUT_LINE(l_log_handle, ’Record Type ’ || l_delimiter);
UTL_FILE.PUT_LINE(l_log_handle, ’Output File ’ || l_output_file);

l_outfile_handle :=UTL_FILE.FOPEN(l_p_dir, l_output_file, ’w’);
dbms_output.put_line(’Opened Log file: ’||l_p_dir||l_output_file);

LOOP
l_record_count :=l_record_count+1;
Inventory Quantities API Wrapper 7-9

Inventory Quantities API Wrapper - Code Example
BEGIN
UTL_FILE.GET_LINE(l_infile_handle, l_line);
dbms_output.put_line(’LINE IS ’ ||l_line);
EXCEPTION

WHEN NO_DATA_FOUND THEN
EXIT;

END;
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Reading Record ’ || l_record_count);

trans_rec.trans_type :=TO_NUMBER(Get_Field(l_line,l_delimiter,1));
trans_rec.item_no :=Get_Field(l_line,l_delimiter,2);
trans_rec.journal_no :=Get_Field(l_line,l_delimiter,3);
trans_rec.from_whse_code :=Get_Field(l_line,l_delimiter,4);
trans_rec.to_whse_code :=Get_Field(l_line,l_delimiter,5);
trans_rec.item_um :=Get_Field(l_line,l_delimiter,6);
trans_rec.item_um2 :=Get_Field(l_line,l_delimiter,7);
trans_rec.lot_no :=Get_Field(l_line,l_delimiter,8);
trans_rec.sublot_no :=Get_Field(l_line,l_delimiter,9);
trans_rec.from_location :=Get_Field(l_line,l_delimiter,10);
trans_rec.to_location :=Get_Field(l_line,l_delimiter,11);
trans_rec.trans_qty :=TO_NUMBER(Get_Field(l_line,l_delimiter,12));
trans_rec.trans_qty2 :=TO_NUMBER(Get_Field(l_line,l_delimiter,13));
trans_rec.qc_grade :=Get_Field(l_line,l_delimiter,14);
trans_rec.lot_status :=Get_Field(l_line,l_delimiter,15);
trans_rec.co_code :=Get_Field(l_line,l_delimiter,16);
trans_rec.orgn_code :=Get_Field(l_line,l_delimiter,17);
IF Get_Field(l_line,l_delimiter,18) IS NULL
THEN

trans_rec.trans_date :=SYSDATE;
ELSE

trans_rec.trans_date :=TO_DATE(Get_Field(l_line,l_delimiter,18)
,’DDMMYYYY’);

END IF;
trans_rec.reason_code :=Get_Field(l_line,l_delimiter,19);
IF ((Get_Field(l_line,l_delimiter,20)) IS NULL)
THEN

trans_rec.user_name :=’OPM’;
ELSE

trans_rec.user_name :=Get_Field(l_line,l_delimiter,20);
END IF;

UTL_FILE.PUT_LINE(l_log_handle,’trans type = ’||trans_rec.trans_type);
UTL_FILE.PUT_LINE(l_log_handle,’item no = ’||trans_rec.item_no);
UTL_FILE.PUT_LINE(l_log_handle,’journal no = ’||trans_rec.journal_no);
UTL_FILE.PUT_LINE(l_log_handle,’from_whse_code = ’||
7-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - Code Example
trans_rec.from_whse_code);
UTL_FILE.PUT_LINE(l_log_handle,’to_whse_code = ’||

trans_rec.to_whse_code);
UTL_FILE.PUT_LINE(l_log_handle,’item_um = ’||trans_rec.item_um);
UTL_FILE.PUT_LINE(l_log_handle,’item_um2 = ’||trans_rec.item_um2);
UTL_FILE.PUT_LINE(l_log_handle,’lot no = ’||trans_rec.lot_no);
UTL_FILE.PUT_LINE(l_log_handle,’sublot no = ’||trans_rec.sublot_no);
UTL_FILE.PUT_LINE(l_log_handle,’from_location = ’||

trans_rec.from_location);
UTL_FILE.PUT_LINE(l_log_handle,’to_location = ’||

trans_rec.to_location);
UTL_FILE.PUT_LINE(l_log_handle,’trans_qty = ’||trans_rec.trans_qty);
UTL_FILE.PUT_LINE(l_log_handle,’trans_qty2 = ’||trans_rec.trans_qty2);
UTL_FILE.PUT_LINE(l_log_handle,’qc_grade = ’||trans_rec.qc_grade);
UTL_FILE.PUT_LINE(l_log_handle,’lot_status = ’||trans_rec.lot_status);
UTL_FILE.PUT_LINE(l_log_handle,’co code = ’||trans_rec.co_code);
UTL_FILE.PUT_LINE(l_log_handle,’orgn code = ’||trans_rec.orgn_code);
UTL_FILE.PUT_LINE(l_log_handle,’trans_date = ’||trans_rec.trans_date);
UTL_FILE.PUT_LINE(l_log_handle,’reason code = ’||trans_rec.reason_code);
UTL_FILE.PUT_LINE(l_log_handle,’user name = ’||trans_rec.user_name);

-- Allow Default Allocation Of User If NULL.
IF trans_rec.user_name IS NULL THEN

trans_rec.user_name :=’OPM’;
END IF;

GMIPAPI.Inventory_Posting
(p_api_version => 3.0
, p_init_msg_list => FND_API.G_TRUE
, p_commit => FND_API.G_TRUE
, p_validation_level => FND_API.G_valid_level_full
, p_qty_rec => trans_rec
, x_ic_jrnl_mst_row => l_ic_jrnl_mst_row
, x_ic_adjs_jnl_row1 => l_ic_adjs_jnl_row1
, x_ic_adjs_jnl_row2 => l_ic_adjs_jnl_row2
, x_return_status =>l_status
, x_msg_count =>l_count
, x_msg_data =>l_data
);

IF l_count > 0
THEN

l_loop_cnt :=1;
LOOP
Inventory Quantities API Wrapper 7-11

Inventory Quantities API Wrapper - Code Example
FND_MSG_PUB.Get(
p_msg_index => l_loop_cnt,
p_data => l_data,
p_encoded => FND_API.G_FALSE,
p_msg_index_out => l_dummy_cnt);

UTL_FILE.PUT_LINE(l_outfile_handle, ’Record = ’ ||l_record_count);
UTL_FILE.PUT_LINE(l_outfile_handle, l_data);
UTL_FILE.NEW_LINE(l_outfile_handle);

IF l_status = ’E’ OR
l_status = ’U’

THEN
l_data := CONCAT(’ERROR ’,l_data);

END IF;

UTL_FILE.PUT_LINE(l_log_handle, l_data);

-- Update error status
IF (l_status = ’U’)
THEN

l_return_status :=l_status;
ELSIF (l_status = ’E’ and l_return_status <> ’U’)
THEN

l_return_status :=l_status;
ELSE

l_return_status :=l_status;
END IF;

l_loop_cnt := l_loop_cnt + 1;
IF l_loop_cnt > l_count
THEN

EXIT;
END IF;

END LOOP;

END IF;

END LOOP;
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Completed at ’
|| to_char(SYSDATE,’DD-MON-YY HH:MI:SS’));
7-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - Code Example
--
-- Check if any messages generated. If so then decode and
-- output to error message flat file
--

UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

EXCEPTION
WHEN UTL_FILE.INVALID_OPERATION THEN

UTL_FILE.FCLOSE_ALL;
RETURN l_return_status;

WHEN UTL_FILE.INVALID_PATH THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

WHEN UTL_FILE.INVALID_MODE THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

WHEN UTL_FILE.INVALID_FILEHANDLE THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

WHEN UTL_FILE.WRITE_ERROR THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

WHEN UTL_FILE.READ_ERROR THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

WHEN UTL_FILE.INTERNAL_ERROR THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

WHEN OTHERS THEN
UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

END Post;

--+==+
Inventory Quantities API Wrapper 7-13

Inventory Quantities API Wrapper - Code Example
--| FUNCTION NAME |
--| Get_Field |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of field n from a delimited line of ASCII data |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a field from |
--| a delimited line of ASCII text |
--| |
--| PARAMETERS |
--| p_line IN VARCHAR2 - line of data |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| p_field_no IN NUMBER - Field occurance to be |
--| returned |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Field
(p_line IN VARCHAR2
, p_delimiter IN VARCHAR2
, p_field_no IN NUMBER
)
RETURN VARCHAR2
IS
--
-- Local variables
--
l_start NUMBER :=0;
l_end NUMBER :=0;

BEGIN

-- Determine start position
IF p_field_no = 1
THEN

l_start :=0;
7-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Inventory Quantities API Wrapper - Code Example
ELSE
l_start :=INSTR(p_line,p_delimiter,1,(p_field_no - 1));
IF l_start = 0
THEN

RETURN NULL;
END IF;

END IF;

-- Determine end position
l_end :=INSTR(p_line,p_delimiter,1,p_field_no);
IF l_end = 0
THEN

l_end := LENGTH(p_line) + 1;
END IF;

-- Extract the field data
IF (l_end - l_start) = 1
THEN

RETURN NULL;
ELSE

RETURN SUBSTR(p_line,(l_start + 1),((l_end - l_start) - 1));
END IF;

EXCEPTION
WHEN OTHERS
THEN

RETURN NULL;

END Get_Field;

--+==+
--| FUNCTION NAME |
--| Get_Substring |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of Sub-string from formatted ASCII data file record |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a passed sub-string |
--| of a formatted ASCII data file record |
--| |
--| PARAMETERS |
Inventory Quantities API Wrapper 7-15

Inventory Quantities API Wrapper - Code Example
--| p_substring IN VARCHAR2 - substring data |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Substring
(p_substring IN VARCHAR2
)
RETURN VARCHAR2
IS
--
-- Local variables
--
l_string_value VARCHAR2(200) :=’ ’;

BEGIN

-- Determine start position
l_string_value :=NVL(RTRIM(LTRIM(p_substring)),’ ’);

RETURN l_string_value;
EXCEPTION

WHEN OTHERS
THEN

RETURN ’ ’;

END Get_Substring;

END GMI_QUANTITY_WRP;
/
commit;
exit;
7-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Creat
8

Lot Create API

This topic provides the business function, technical overview and parameters for
the Lot Create API. Also included are table and view usage, package and procedure
names, special logic and error messages.

The following topics are covered:

� Lot Create API - Business Function

� Lot Create API - Technical Overview

� Lot Create API - Parameters for Create Lot

� Lot Create API - Table and View Usage

� Lot Create API - Package and Procedure Names

� Lot Create API - Special Logic

� Lot Create API - Error Messages

� Lot Create API - Code Example
e API 8-1

Lot Create API - Business Function
Lot Create API - Business Function
This stored procedure is concerned with the following function within the Oracle
Process Manufacturing (OPM) Inventory Management module:

� Create a lot for an inventory item

This topic describes how the stored procedure should be called, the parameters that
are required (and optional) and the values that are returned to the calling program.
This includes all error conditions that may arise.

The procedure is intended as a create function only, used primarily to load item lot
data from legacy systems on implementation. The Lot Create API does not allow
Lot Update, or Delete.

Lot Create API - Technical Overview
The Lot Create stored procedure is intended to be used by a user wrapper calling
function with lot attributes passed to the procedure using a RECORD format that is
described in this topic. The wrapper function passes the appropriate parameters
into the stored procedure and is responsible for handling the return code from the
procedure.

Lot Create API - Parameters for Create Lot
There are two variants of this procedure, public and group. They have the same
name but reside in separate packages and have different signatures:

The public call interface is:

GMIPAPI.Create_Lot
(p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_lot_rec IN GMIGAPI.lot_rec_typ
, x_ic_lots_mst_rec OUT ic_lots_mst%ROWTYPE
, x_ic_lots_cpg_rec OUT ic_lots_cpg%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);
8-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API - Parameters for Create Lot
The first 4, and last 3 parameters are standard across all of the API calls and are
identical to the Create Item API where they are fully documented. If the lot creation
is successful, x_ic_lots_mst_row and x_ic_lots_cpg_row parameters are returned
with the data set up in the two tables, regardless of whether it was committed by
the procedure.

If the SY$CPG_INSTALL flag is set to zero the contents of the row returned in x_ic_
lots_cpg are undefined and nothing is written to the ic_lots_cpg table.

The group version is as follows:

GMIGAPI.Create_Lot
(p_api_version IN NUMBER
, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
, p_commit IN VARCHAR2 := FND_API.G_FALSE
, p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL
, p_lot_rec IN GMIGAPI.lot_rec_typ
, p_ic_item_mst_row IN ic_item_mst%ROWTYPE
, p_ic_item_cpg_row IN ic_item_cpg%ROWTYPE
, x_ic_lots_mst_rec OUT ic_lots_mst%ROWTYPE
, x_ic_lots_cpg_rec OUT ic_lots_cpg%ROWTYPE
, x_return_status OUT VARCHAR2
, x_msg_count OUT NUMBER
, x_msg_data OUT VARCHAR2
);

This procedure takes two additional parameters compared to the ‘P’ variant for use
when item data is already known. If this is the case then p_ic_item_mst_row and p_
ic_item_mst_cpg should be passed with the appropriate data. This can be found by
calling the GMIGUTL.Get_Item procedure. All other IN and OUT parameters are
identical to the public API, and the SY$CPG_INSTALL flag are treated in the same
way.

The p_lot_rec parameter is used to pass the lot-specific data required to create a lot
for an inventory item. It is described below. Please refer to the Lot Create API
Wrapper topic for an example of how to populate this parameter and call the stored
procedure.
Lot Create API 8-3

Lot Create API - Parameters for Create Lot
Field/Column Type Length Default Req’d Validation

item_no varchar2 32 Y Must exist ic_
item_mst

Must not be
deleted

Must be active

Must be
lot-controlled

lot_no varchar2 32 Y Non-blank

sublot_no varchar2 32 N Must be blank if
ic_item_mst,
sublot_ctl = 0

The item_
no/lot_
no/sublot_no
must not already
exist on ic_lots_
mst

lot_desc varchar2 40 N

qc_grade varchar2 4 ic_item_mst.qc_
grade

N Must be blank if
ic_item_
mst.grade_ctl = 0

Must not be
blank if ic_item_
mst.grade_ctl = 1

Must exist on qc_
grad_mst if
non-blank

expaction_code varchar2 4 ic_item_
mst.expaction_
code

N Must exist on qc_
actn_mst if
non-blank
8-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API - Parameters for Create Lot
expaction_date date IF ic_item_
mst.grade_ctl =
1AND ic_item_
mst.expaction_
interval > 0
THEN expire_
date + ic_item_
mst.expaction_
interval ELSE

31-Dec-2010
00:00:00
(SY$MAX_
DATE)

N Must not be less
than lot_created
date

Must not be less
than expire_date

lot_created date System Date N

expire_date date IF ic_item_
mst.grade_ctl =
1AND ic_item_
mst.shelf_life >
0 THEN lot_
created + ic_
item_mst.shelf_
life ELSE

31-Dec-2010
00:00:00
(SY$MAX_
DATE)

N Must not be less
than lot_created
date

retest_date date IF ic_item_
mst.grade_ctl =
1AND ic_item_
mst.retest_
interval > 0
THEN lot_
created + ic_
item_
mst.retest_
interval ELSE

31-Dec-2010
00:00:00
(SY$MAX_
DATE)

N Must not be less
than lot_created
date

strength number 100 N Must be zero or
positive value

Field/Column Type Length Default Req’d Validation
Lot Create API 8-5

Lot Create API - Parameters for Create Lot
inactive_ind number 5 0 N Must be 0 or 1

origination_
type

number 5 0 N Must exist on sy_
type_mst where
table_name = ‘ic_
lots_mst’ and
field_name =
‘origination_
type’

shipvendor_no varchar2 32 N Must exist on
po_vend_mst if
non-blank

vendor_lot_no varchar2 32 N

ic_matr_date date lot_created +
ic_item_mst.ic_
matr_days

N

ic_hold_date date lot_created +
ic_item_mst.ic_
hold_days

N

attribute1 varchar2 240 N Descriptive
flexfield segment

attribute2 varchar2 240 N Descriptive
flexfield segment

attribute3 varchar2 240 N Descriptive
flexfield segment

attribute4 varchar2 240 N Descriptive
flexfield segment

attribute5 varchar2 240 N Descriptive
flexfield segment

attribute6 varchar2 240 N Descriptive
flexfield segment

attribute7 varchar2 240 N Descriptive
flexfield segment

attribute8 varchar2 240 N Descriptive
flexfield segment

Field/Column Type Length Default Req’d Validation
8-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API - Parameters for Create Lot
attribute9 varchar2 240 N Descriptive
flexfield segment

attribute10 varchar2 240 N Descriptive
flexfield segment

attribute11 varchar2 240 N Descriptive
flexfield segment

attribute12 varchar2 240 N Descriptive
flexfield segment

attribute13 varchar2 240 N Descriptive
flexfield segment

attribute14 varchar2 240 N Descriptive
flexfield segment

attribute15 varchar2 240 N Descriptive
flexfield segment

attribute16 varchar2 240 N Descriptive
flexfield segment

attribute17 varchar2 240 N Descriptive
flexfield segment

attribute18 varchar2 240 N Descriptive
flexfield segment

attribute19 varchar2 240 N Descriptive
flexfield segment

attribute20 varchar2 240 N Descriptive
flexfield segment

attribute21 varchar2 240 N Descriptive
flexfield segment

attribute22 varchar2 240 N Descriptive
flexfield segment

attribute23 varchar2 240 N Descriptive
flexfield segment

attribute24 varchar2 240 N Descriptive
flexfield segment

attribute25 varchar2 240 N Descriptive
flexfield segment

Field/Column Type Length Default Req’d Validation
Lot Create API 8-7

Lot Create API - Parameters for Create Lot
attribute26 varchar2 240 N Descriptive
flexfield segment

attribute27 varchar2 240 N Descriptive
flexfield segment

attribute28 varchar2 240 N Descriptive
flexfield segment

attribute29 varchar2 240 N Descriptive
flexfield segment

attribute30 varchar2 240 N Descriptive
flexfield segment

attribute_
category

varchar2 30 N Descriptive
flexfield
structure
definition

user_name varchar2 100 ‘OPM’ N Ignored but
retained for
backward
compatibility

Field/Column Type Length Default Req’d Validation
8-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API - Table and View Usage
Lot Create API - Table and View Usage
The following OPM tables are referenced by the Lot Create API. The appropriate
entries in these tables must exist and be non-delete marked on the database for
validation usage through the Item Create stored procedure.

The Item Master table IC_ITEM_MST holds all attributes of the item.

Lot controlled and QC attributes are prompted for in the maintenance form once
the appropriate indicators are set. These details are also held against the item.

Whether an item is defined as lot controlled or not the system always generates a
DEFAULT lot against the item on IC_LOTS_MST.

All lots hold additional attributes for Consumer Packaged Goods (CPG) specific
processing. These are held against IC_LOTS_CPG.

When an item is identified as dual UOM and the alternate UOM is of a different
type (for example, an item is defined in type WEIGHT with dual UOM in
VOLUME) saving the item master prompts you for the conversion factor between
WEIGHT and VOLUME for the item. This mechanism and structure supports
transactional processing of the item in any supported UOM. This is handled outside
of the Item Create procedure through an additional function.

Table Name Select Insert Update Delete Base Table

ic_item_mst X

sy_type_mst X

qc_grad_mst X

po_vend_mst X

qc_actn_mst X

ic_item_cpg X

ic_lots_mst X X

ic_lots_cpg X

ic_lots_sts X

sy_oper_mst X
Lot Create API 8-9

Lot Create API - Package and Procedure Names
Additional text can be maintained against the item to hold free format information
on IC_TEXT_TBL. This is handled outside of the Item Create procedure through an
additional function.

Lot Create API - Package and Procedure Names
The Lot Create API PL/SQL stored procedure code is held in the following
package:

� GMIPAPI

The stored procedure which is called to create a new item lot is:

� Create_Lot

Please refer to the Lot Create API Wrapper topic for an example of how the
previous procedure is executed.

Lot Create API - Special Logic

Update Logic
When all the validation checks have been performed and no errors found, a new lot
is created within the database. The following steps are followed:

1. If p_lot_rec.lot_no = GMI:Default Lot then

� set lot_id = 0

� otherwise select the next lot_id from sequence gem5_lot_id_s.

2. Build row in ic_lots_mst as follows:

� All matching column names in PL/SQL record p_item_rec are transferred
directly into the corresponding ic_lots_mst columns.

� The following columns on ic_lots_mst require further explanation:

Column Name Value

item_id ic_item_mst.item_id

lot_id surrogate key as obtained above

shipvend_id po_vend_mst.vend_id

date_added system date
8-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API - Special Logic
3. If SY$CPG_INSTALL_FLAG=1, build row in ic_lots_cpg as follows:

date_modified System date

added_by p_lot_rec.op_code

modified_by p_lot_rec.op_code

trans_cnt 1

delete_mark 0

text_code 0

Column Name Value

item_id ic_item_mst.item_id

lot_id Surrogate key as obtained above

ic_matr_date Calculated as System date + p_lot_rec.ic_matr_days

ic_hold_date Calculated as System date + p_lot_rec.ic_hold_days

created_by Standard who column updated with FND_
USER.USER_ID based on supplied user_name

creation_date System date

last_updated_by Standard who column updated with FND_
USER.USER_ID based on supplied user_name

last_update_date System date

last_update_login login id

Column Name Value
Lot Create API 8-11

Lot Create API - Error Messages
Lot Create API - Error Messages
Listed below are all expected errors. These are output to the stored procedure
message file and can be monitored through the return x_msg_count. This, in
conjunction with the x_return_status can be used to monitor the success or failure of
the procedure call.

Message Code Narrative

IC_API_INVALID_ITEM Invalid item &ITEM

IC_API_ITEM_NOT_LOT_CTL Item &ITEM is not lot controlled

IC_API_SUBLOT_NOT_REQD Sub-lot &SUBLOT supplied for item
&ITEM, lot &LOT which is not sub-lot
controlled

IC_API_LOT_ALREADY_EXISTS Lot &LOT - &SUBLOT for item number
&ITEM already exists

IC_API_INVALID_LOT_QC_GRADE Invalid QC grade for item &ITEM lot
&LOT - &SUBLOT

IC_API_INVALID_LOT_EXPACTION_CODE Invalid expiry action for item &ITEM lot
&LOT - &SUBLOT

IC_API_INVALID_EXPACTION_DATE_API Invalid expiry action date for item
&ITEM lot &LOT - &SUBLOT

IC_API_INVALID_EXPIRE_DATE Invalid expire date for item &ITEM lot
&LOT - &SUBLOT

IC_API_INVALID_RETEST_DATE Invalid retest date for item &ITEM lot
&LOT - &SUBLOT

IC_API_INVALID_LOT_STRENGTH Invalid strength for item &ITEM lot
&LOT - &SUBLOT

IC_API_INVALID_LOT_INACTIVE_IND Invalid inactive indicator for item &ITEM
lot &LOT - &SUBLOT

IC_API_INVALID_LOT_ORIGINATION_
TYPE

Invalid origination type for item &ITEM
lot &LOT - &SUBLOT

IC_API_INVALID_LOT_SHIPVENDOR_NO Invalid ship vendor for item &ITEM lot
&LOT - &SUBLOT

IC_API_INVALID_LOT_MATR_DAYS Invalid maturity days for item &ITEM lot
&LOT - &SUBLOT
8-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API - Error Messages
IC_API_INVALID_LOT_HOLD_DAYS Invalid hold days for item &ITEM lot
&LOT - &SUBLOT

SY_API_UNABLE_TO_GET_SURROGATE Failed to get &SKEY surrogate key

Message Code Narrative
Lot Create API 8-13

Lot Create API - Error Messages
8-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wr
9

Lot Create API Wrapper

This topic provides the business function and ASCII flat file layout for the lot create
API wrapper. Also included are package and procedure names, special logic and
error messages. A code example is included.

The following topics are covered:

� Lot Create API Wrapper - Business Function

� Lot Create API Wrapper - ASCII Flat File Layout

� Lot Create API Wrapper - Package and Procedure Names

� Lot Create API Wrapper - Special Logic

� Lot Create API Wrapper - Error Messages

� Lot Create API Wrapper - Code Example
apper 9-1

Lot Create API Wrapper - Business Function
Lot Create API Wrapper - Business Function
This stored procedure is designed to operate in conjunction with the Lot Create
API. This is used to create an inventory item lot in OPM. It may be required to be
used in both synchronous (that is, on-line) and asynchronous (that is, batch) modes.
When used in synchronous mode, the calling program (for example, an Oracle
form) calls the API directly. Using the API in synchronous mode is not considered
in this topic.

This topic is concerned with using the API in asynchronous mode using a wrapper
function. The source of data for the wrapper comes from:

� An ASCII flat file

This topic describes how the wrapper function should be called and the parameters
that are required (and optional).

Lot Create API Wrapper - ASCII Flat File Layout
The ASCII flat file may be ‘character delimited’ (typically, but not necessarily, with
a comma) or of fixed position format. The table below shows the order in which the
data fields should appear (for delimited files) and the length of each data field (for
fixed position format files).

Field/Column Type Length Required

lot number alphanumeric 32 Y

sublot number alphanumeric 32 N

lot description alphanumeric 40 N

p_init_msg_list

determines if the error
message stack should be
purged. Normally this
parameter is omitted
and defaulted as above
(QC) grade

alphanumeric 4 N

expiry action code alphanumeric 4 N

expiry action date date (DDMMYYYY) 8 N

lot created date date (DDMMYYYY) 8 N

lot expire date date (DDMMYYYY) 8 N
9-2 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Package and Procedure Names
Omitting an optional field is achieved by leaving the column positions as spaces
(for fixed format files) or using consecutive delimiters (for delimited files).

Lot Create API Wrapper - Package and Procedure Names
The Lot Create API wrapper PL/SQL stored procedures code is held in the
package:

� GMI_LOTS_WRP

The procedure or function to be called to execute this API wrapper is:

� Create_Lot

retest date date (DDMMYYYY) 8 N

strength number 16 N

inactive indicator number 5 N

origination type number 5 N

user class1 alphanumeric 16 N

user class2 alphanumeric 16 N

user class3 alphanumeric 16 N

user class4 alphanumeric 16 N

user class5 alphanumeric 16 N

user class6 alphanumeric 16 N

ship vendor number alphanumeric 32 N

vendors lot number alphanumeric 32 N

lot maturity date date (DDMMYYYY) 8 N

lot hold release date date (DDMMYYYY) 8 N

operator code alphanumeric 4 Ignored

Field/Column Type Length Required
Lot Create API Wrapper 9-3

Lot Create API Wrapper - Special Logic
Lot Create API Wrapper - Special Logic

Validation
Incorrectly formatted flat files are rejected.

The success or failure of the wrapper may be reported back to the calling function
by means of the return value. This is hierarchically as follows:

� On initial entry to the wrapper the return status will be set to success (‘S’).

� If for any record processed an expected error occurs and the return status is
currently set to success then it will be updated to expected error (‘E’).

� If for any record processed and unexpected error occurs, then the return status
is set to unexpected error (‘U’).

Update Logic
Updates are only be concerned with the processing of messages (errors and others)
generated by the Lot Create API.

Messages (success and error) are written to a flat file as designated by the p_
output_file parameter. Additionally a log file are written to the /tmp directory. This
details start and completion times, data retrieved from the ASCII flat file and
messages generated.
9-4 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Error Messages
Lot Create API Wrapper - Error Messages
Error messages generated by the Lot Create API are written to the file ‘p_output_
file’.

Errors listed below may be generated by the API wrapper. These messages are
generally related to the handling of the ASCII flat input and output files. These
messages are sent to the standard output device as it is inappropriate to attempt to
send them to the files which themselves may be causing the erroneous condition.
They are hard-coded in English.

Error Condition Narrative

UTL_FILE.INVALID_OPERATION Invalid operation for ‘FILE’

UTL_FILE.INVALID_PATH Invalid path for ‘FILE’

UTL_FILE.INVALID_MODE Invalid mode for ‘FILE’

UTL_FILE.INVALID_FILEHANDLE Invalid File handle for ‘FILE’

UTL_FILE.WRITE_ERROR Invalid Write Error for ‘FILE’

UTL_FILE.READ_ERROR Invalid Read Error for ‘FILE’

UTL_FILE.INTERNAL_ERROR Internal Error
Lot Create API Wrapper 9-5

Lot Create API Wrapper - Code Example
Lot Create API Wrapper - Code Example
The actual PL/SQL code for this API is listed below.

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
CREATE OR REPLACE PACKAGE BODY GMI_LOTS_WRP AS
-- $Header: GMIPLOWB.pls 115.6 2000/10/02 19:06:28 pschofie gmigapib.pls $
--+==+
--| PROCEDURE NAME |
--| Create_Lot |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Create an Item Lot |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper procedure to call the Create_Lot |
--| API wrapper function |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| None |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
PROCEDURE Create_Lot
(p_dir IN VARCHAR2
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
IS

l_return_status VARCHAR2(1);
9-6 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
BEGIN

l_return_status :=Create_Lot(p_dir
, p_input_file
, p_output_file
, p_delimiter
);

End Create_Lot;

--+==+
--| FUNCTION NAME |
--| Create_Lot |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Create a Lot/Sublot |
--| |
--| DESCRIPTION |
--| This is a PL/SQL wrapper function to call the OPM Lot/Sublot Create |
--| API |
--| It reads item data from a flat file and outputs any error |
--| messages to a second flat file. It also generates a Status |
--| called wrapper<session_id>.log in the /tmp directory. |
--| |
--| PARAMETERS |
--| p_dir IN VARCHAR2 - Working directory for input |
--| and output files. |
--| p_input_file IN VARCHAR2 - Name of input file |
--| p_output_file IN VARCHAR2 - Name of output file |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| |
--| RETURNS |
--| VARCHAR2 - ’S’ All records processed successfully |
--| ’E’ 1 or more records errored |
--| ’U’ 1 or more record unexpected error |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Create_Lot
(p_dir IN VARCHAR2
Lot Create API Wrapper 9-7

Lot Create API Wrapper - Code Example
, p_input_file IN VARCHAR2
, p_output_file IN VARCHAR2
, p_delimiter IN VARCHAR2
)
RETURN VARCHAR2
IS

--
-- Local variables
--

l_status VARCHAR2(1);
l_return_status VARCHAR2(1) :=FND_API.G_RET_STS_SUCCESS;
l_count NUMBER ;
l_loop_cnt NUMBER :=0;
l_dummy_cnt NUMBER :=0;
l_record_count NUMBER :=0;
l_data VARCHAR2(2000);
lot_rec GMIGAPI.lot_rec_typ;
l_p_dir VARCHAR2(50);
l_output_file VARCHAR2(20);
l_outfile_handle UTL_FILE.FILE_TYPE;
l_input_file VARCHAR2(20);
l_infile_handle UTL_FILE.FILE_TYPE;
l_line VARCHAR2(200);
l_delimiter VARCHAR(1);
l_log_dir VARCHAR2(50);
l_log_name VARCHAR2(20) :=’wrapper’;
l_log_handle UTL_FILE.FILE_TYPE;
l_global_file VARCHAR2(20);

l_session_id VARCHAR2(10);
l_ic_lots_mst_row ic_lots_mst%ROWTYPE;
l_ic_lots_cpg_row ic_lots_cpg%ROWTYPE;
BEGIN

-- Enable The Buffer
DBMS_OUTPUT.ENABLE(1000000);

l_p_dir :=p_dir;
l_input_file :=p_input_file;
l_output_file :=p_output_file;
l_delimiter :=p_delimiter;
l_global_file :=l_input_file;
9-8 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
--
-- Obtain The SessionId To Append To wrapper File Name.
--

l_session_id := USERENV(’sessionid’);

l_log_name := CONCAT(l_log_name,l_session_id);
l_log_name := CONCAT(l_log_name,’.log’);
--
-- Directory is now the same same as for the out file
--
l_log_dir := p_dir;

--
-- Open The Wrapper File For Output And The Input File for Input.
--

l_log_handle :=UTL_FILE.FOPEN(l_log_dir, l_log_name, ’w’);
l_infile_handle :=UTL_FILE.FOPEN(l_p_dir, l_input_file, ’r’);

--
-- Loop thru flat file and call Inventory Quantities API
--

dbms_output.put_line(’Start Processing’);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Started at ’
|| to_char(SYSDATE,’DD-MON-YY HH:MI:SS’));

UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Input Directory ’ || l_p_dir);
UTL_FILE.PUT_LINE(l_log_handle, ’Input File ’ || l_input_file);
UTL_FILE.PUT_LINE(l_log_handle, ’Record Type ’ || l_delimiter);
UTL_FILE.PUT_LINE(l_log_handle, ’Output File ’ || l_output_file);

l_outfile_handle :=UTL_FILE.FOPEN(l_p_dir, l_output_file, ’w’);

LOOP
l_record_count :=l_record_count+1;

BEGIN
UTL_FILE.GET_LINE(l_infile_handle, l_line);
EXCEPTION

WHEN NO_DATA_FOUND THEN
EXIT;

END;
Lot Create API Wrapper 9-9

Lot Create API Wrapper - Code Example
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Reading Record ’ || l_record_count);

lot_rec.item_no :=Get_Field(l_line,l_delimiter,1);
lot_rec.lot_no :=Get_Field(l_line,l_delimiter,2);
lot_rec.sublot_no :=Get_Field(l_line,l_delimiter,3);
lot_rec.lot_desc :=Get_Field(l_line,l_delimiter,4);
lot_rec.qc_grade :=Get_Field(l_line,l_delimiter,5);
lot_rec.expaction_code :=Get_Field(l_line,l_delimiter,6);
IF (Get_Field(l_line,l_delimiter,7) IS NULL)
THEN

lot_rec.expaction_date :=GMA_GLOBAL_GRP.SY$MAX_DATE;
ELSE

lot_rec.expaction_date :=TO_DATE(
Get_Field(l_line,l_delimiter,7),’DDMMYYYY’);

END IF;
IF (Get_Field(l_line,l_delimiter,8) IS NULL)
THEN

lot_rec.lot_created :=SYSDATE;
ELSE

lot_rec.lot_created :=TO_DATE(
Get_Field(l_line,l_delimiter,8),’DDMMYYYY’);

END IF;
IF (Get_Field(l_line,l_delimiter,9) IS NULL)
THEN

lot_rec.expire_date :=GMA_GLOBAL_GRP.SY$MAX_DATE;
ELSE

lot_rec.expire_date :=TO_DATE(
Get_Field(l_line,l_delimiter,9),’DDMMYYYY’);

END IF;
IF (Get_Field(l_line,l_delimiter,10) IS NULL)
THEN

lot_rec.retest_date :=GMA_GLOBAL_GRP.SY$MAX_DATE;
ELSE

lot_rec.retest_date :=TO_DATE(
Get_Field(l_line,l_delimiter,10),’DDMMYYYY’);

END IF;
IF (Get_Field(l_line,l_delimiter,11) IS NULL)
THEN

lot_rec.strength :=100;
ELSE

lot_rec.strength :=TO_NUMBER(Get_Field(l_line,l_delimiter,11));
END IF;
IF (Get_Field(l_line,l_delimiter,12) IS NULL)
9-10 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
THEN
lot_rec.origination_type :=0;

ELSE
lot_rec.origination_type :=TO_NUMBER(Get_Field(l_line,l_delimiter,12));

END IF;
lot_rec.shipvendor_no :=Get_Field(l_line,l_delimiter,13);
lot_rec.vendor_lot_no :=Get_Field(l_line,l_delimiter,14);
IF (Get_Field(l_line,l_delimiter,15) IS NULL)
THEN

lot_rec.ic_matr_date :=GMA_GLOBAL_GRP.SY$MAX_DATE;
ELSE

lot_rec.ic_matr_date :=TO_DATE(
Get_Field(l_line,l_delimiter,15),’DDMMYYYY’);

END IF;
IF (Get_Field(l_line,l_delimiter,16) IS NULL)
THEN

lot_rec.ic_hold_date :=GMA_GLOBAL_GRP.SY$MAX_DATE;
ELSE

lot_rec.ic_hold_date :=TO_DATE(
Get_Field(l_line,l_delimiter,16),’DDMMYYYY’);

END IF;
IF (Get_Field(l_line,l_delimiter,17) IS NULL)
THEN

lot_rec.user_name :=’OPM’;
ELSE

lot_rec.user_name :=Get_Field(l_line,l_delimiter,17);
END IF;
lot_rec.attribute1 :=Get_Field(l_line,l_delimiter,18);
lot_rec.attribute2 :=Get_Field(l_line,l_delimiter,19);
lot_rec.attribute3 :=Get_Field(l_line,l_delimiter,20);
lot_rec.attribute4 :=Get_Field(l_line,l_delimiter,21);
lot_rec.attribute5 :=Get_Field(l_line,l_delimiter,22);
lot_rec.attribute6 :=Get_Field(l_line,l_delimiter,23);
lot_rec.attribute7 :=Get_Field(l_line,l_delimiter,24);
lot_rec.attribute8 :=Get_Field(l_line,l_delimiter,25);
lot_rec.attribute9 :=Get_Field(l_line,l_delimiter,26);
lot_rec.attribute10 :=Get_Field(l_line,l_delimiter,27);
lot_rec.attribute11 :=Get_Field(l_line,l_delimiter,28);
lot_rec.attribute12 :=Get_Field(l_line,l_delimiter,29);
lot_rec.attribute13 :=Get_Field(l_line,l_delimiter,30);
lot_rec.attribute14 :=Get_Field(l_line,l_delimiter,31);
lot_rec.attribute15 :=Get_Field(l_line,l_delimiter,32);
lot_rec.attribute16 :=Get_Field(l_line,l_delimiter,33);
lot_rec.attribute17 :=Get_Field(l_line,l_delimiter,34);
lot_rec.attribute18 :=Get_Field(l_line,l_delimiter,35);
Lot Create API Wrapper 9-11

Lot Create API Wrapper - Code Example
lot_rec.attribute19 :=Get_Field(l_line,l_delimiter,36);
lot_rec.attribute20 :=Get_Field(l_line,l_delimiter,37);
lot_rec.attribute21 :=Get_Field(l_line,l_delimiter,38);
lot_rec.attribute22 :=Get_Field(l_line,l_delimiter,39);
lot_rec.attribute23 :=Get_Field(l_line,l_delimiter,40);
lot_rec.attribute24 :=Get_Field(l_line,l_delimiter,41);
lot_rec.attribute25 :=Get_Field(l_line,l_delimiter,42);
lot_rec.attribute26 :=Get_Field(l_line,l_delimiter,43);
lot_rec.attribute27 :=Get_Field(l_line,l_delimiter,44);
lot_rec.attribute28 :=Get_Field(l_line,l_delimiter,45);
lot_rec.attribute29 :=Get_Field(l_line,l_delimiter,46);
lot_rec.attribute30 :=Get_Field(l_line,l_delimiter,47);
lot_rec.attribute_category :=Get_Field(l_line,l_delimiter,48);

UTL_FILE.PUT_LINE(l_log_handle,’item no = ’||lot_rec.item_no);
UTL_FILE.PUT_LINE(l_log_handle,’lot_no = ’||lot_rec.lot_no);
UTL_FILE.PUT_LINE(l_log_handle,’sublot_no = ’||lot_rec.sublot_no);
UTL_FILE.PUT_LINE(l_log_handle,’lot_desc = ’||lot_rec.lot_desc);
UTL_FILE.PUT_LINE(l_log_handle,’qc_grade = ’||lot_rec.qc_grade);
UTL_FILE.PUT_LINE(l_log_handle,’expaction_code = ’||

lot_rec.expaction_code);
UTL_FILE.PUT_LINE(l_log_handle,’expaction_date = ’||

lot_rec.expaction_date);
UTL_FILE.PUT_LINE(l_log_handle,’lot_created = ’||

lot_rec.lot_created);
UTL_FILE.PUT_LINE(l_log_handle,’expire_date = ’||

lot_rec.expire_date);
UTL_FILE.PUT_LINE(l_log_handle,’retest_date = ’||

lot_rec.retest_date);
UTL_FILE.PUT_LINE(l_log_handle,’strength = ’||lot_rec.strength);
UTL_FILE.PUT_LINE(l_log_handle,’origination_type= ’||

lot_rec.origination_type);
UTL_FILE.PUT_LINE(l_log_handle,’shipvendor_no = ’||lot_rec.shipvendor_no);
UTL_FILE.PUT_LINE(l_log_handle,’vendor_lot_no = ’||lot_rec.vendor_lot_no);
UTL_FILE.PUT_LINE(l_log_handle,’ic_matr_date = ’||lot_rec.ic_matr_date);
UTL_FILE.PUT_LINE(l_log_handle,’ic_hold_date = ’||lot_rec.ic_hold_date);
UTL_FILE.PUT_LINE(l_log_handle,’user name = ’||lot_rec.user_name);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute1 = ’||
lot_rec.attribute1);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute2 = ’||
lot_rec.attribute2);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute3 = ’||
lot_rec.attribute3);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute4 = ’||
lot_rec.attribute4);
9-12 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
UTL_FILE.PUT_LINE(l_log_handle,’Attribute5 = ’||
lot_rec.attribute5);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute6 = ’||
lot_rec.attribute6);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute7 = ’||
lot_rec.attribute7);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute8 = ’||
lot_rec.attribute8);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute9 = ’||
lot_rec.attribute9);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute10 = ’||
lot_rec.attribute10);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute11 = ’||
lot_rec.attribute11);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute12 = ’||
lot_rec.attribute12);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute13 = ’||
lot_rec.attribute13);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute14 = ’||
lot_rec.attribute14);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute15 = ’||
lot_rec.attribute15);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute16 = ’||
lot_rec.attribute16);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute17 = ’||
lot_rec.attribute17);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute18 = ’||
lot_rec.attribute18);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute19 = ’||
lot_rec.attribute19);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute20 = ’||
lot_rec.attribute20);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute21 = ’||
lot_rec.attribute21);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute22 = ’||
lot_rec.attribute22);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute23 = ’||
lot_rec.attribute23);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute24 = ’||
lot_rec.attribute24);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute25 = ’||
lot_rec.attribute25);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute26 = ’||
lot_rec.attribute26);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute27 = ’||
Lot Create API Wrapper 9-13

Lot Create API Wrapper - Code Example
lot_rec.attribute27);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute28 = ’||
lot_rec.attribute28);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute29 = ’||
lot_rec.attribute29);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute30 = ’||
lot_rec.attribute30);
UTL_FILE.PUT_LINE(l_log_handle,’Attribute_Category = ’||
lot_rec.attribute_category);

GMIPAPI.Create_Lot
(p_api_version => 3.0
, p_init_msg_list => FND_API.G_TRUE
, p_commit => FND_API.G_TRUE
, p_validation_level => FND_API.G_VALID_LEVEL_FULL
, p_lot_rec =>lot_rec
, x_ic_lots_mst_row => l_ic_lots_mst_row
, x_ic_lots_cpg_row => l_ic_lots_cpg_row
, x_return_status =>l_status
, x_msg_count =>l_count
, x_msg_data =>l_data
);

IF l_count > 0
THEN

l_loop_cnt :=1;
LOOP

FND_MSG_PUB.Get(
p_msg_index => l_loop_cnt,
p_data => l_data,
p_encoded => FND_API.G_FALSE,
p_msg_index_out => l_dummy_cnt);

-- dbms_output.put_line(’Message ’ || l_data);

UTL_FILE.PUT_LINE(l_outfile_handle, ’Record = ’ ||l_record_count);
UTL_FILE.PUT_LINE(l_outfile_handle, l_data);
UTL_FILE.NEW_LINE(l_outfile_handle);

IF l_status = ’E’ OR
l_status = ’U’

THEN
l_data := CONCAT(’ERROR ’,l_data);

END IF;
9-14 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
UTL_FILE.PUT_LINE(l_log_handle, l_data);

-- Update error status
IF (l_status = ’U’)
THEN

l_return_status :=l_status;
ELSIF (l_status = ’E’ and l_return_status <> ’U’)
THEN

l_return_status :=l_status;
ELSE

l_return_status :=l_status;
END IF;

l_loop_cnt := l_loop_cnt + 1;
IF l_loop_cnt > l_count
THEN

EXIT;
END IF;

END LOOP;

END IF;

END LOOP;
UTL_FILE.NEW_LINE(l_log_handle);
UTL_FILE.PUT_LINE(l_log_handle, ’Process Completed at ’
|| to_char(SYSDATE,’DD-MON-YY HH:MI:SS’));

--
-- Check if any messages generated. If so then decode and
-- output to error message flat file
--

UTL_FILE.FCLOSE_ALL;

RETURN l_return_status;

EXCEPTION
WHEN UTL_FILE.INVALID_OPERATION THEN

dbms_output.put_line(’Invalid Operation For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;

WHEN UTL_FILE.INVALID_PATH THEN
dbms_output.put_line(’Invalid Path For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;
Lot Create API Wrapper 9-15

Lot Create API Wrapper - Code Example
WHEN UTL_FILE.INVALID_MODE THEN
dbms_output.put_line(’Invalid Mode For ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;

WHEN UTL_FILE.INVALID_FILEHANDLE THEN
dbms_output.put_line(’Invalid File Handle ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;

WHEN UTL_FILE.WRITE_ERROR THEN
dbms_output.put_line(’Invalid Write Error ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;

WHEN UTL_FILE.READ_ERROR THEN
dbms_output.put_line(’Invalid Read Error ’|| l_global_file);
UTL_FILE.FCLOSE_ALL;

WHEN UTL_FILE.INTERNAL_ERROR THEN
dbms_output.put_line(’Internal Error’);
UTL_FILE.FCLOSE_ALL;

WHEN OTHERS THEN
dbms_output.put_line(’Other Error’);
UTL_FILE.FCLOSE_ALL;

END Create_Lot;

--+==+
--| FUNCTION NAME |
--| Get_Field |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of field n from a delimited line of ASCII data |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a field from |
--| a delimited line of ASCII text |
--| |
--| PARAMETERS |
--| p_line IN VARCHAR2 - line of data |
--| p_delimiter IN VARCHAR2 - Delimiter character |
--| p_field_no IN NUMBER - Field occurance to be |
9-16 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
--| returned |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Field
(p_line IN VARCHAR2
, p_delimiter IN VARCHAR2
, p_field_no IN NUMBER
)
RETURN VARCHAR2
IS
--
-- Local variables
--
l_start NUMBER :=0;
l_end NUMBER :=0;

BEGIN

-- Determine start position
IF p_field_no = 1
THEN

l_start :=0;
ELSE

l_start :=INSTR(p_line,p_delimiter,1,(p_field_no - 1));
IF l_start = 0
THEN

RETURN NULL;
END IF;

END IF;

-- Determine end position
l_end :=INSTR(p_line,p_delimiter,1,p_field_no);
IF l_end = 0
THEN

l_end := LENGTH(p_line) + 1;
END IF;

-- Extract the field data
IF (l_end - l_start) = 1
Lot Create API Wrapper 9-17

Lot Create API Wrapper - Code Example
THEN
RETURN NULL;

ELSE
RETURN SUBSTR(p_line,(l_start + 1),((l_end - l_start) - 1));

END IF;

EXCEPTION
WHEN OTHERS
THEN

RETURN NULL;

END Get_Field;

--+==+
--| FUNCTION NAME |
--| Get_Substring |
--| |
--| TYPE |
--| Public |
--| |
--| USAGE |
--| Get value of Sub-string from formatted ASCII data file record |
--| |
--| DESCRIPTION |
--| This utility function will return the value of a passed sub-string |
--| of a formatted ASCII data file record |
--| |
--| PARAMETERS |
--| p_substring IN VARCHAR2 - substring data |
--| |
--| RETURNS |
--| VARCHAR2 - Value of field |
--| |
--| HISTORY |
--| |
--+==+
-- Api end of comments
FUNCTION Get_Substring
(p_substring IN VARCHAR2
)
RETURN VARCHAR2
IS
--
-- Local variables
--
9-18 Oracle® Process Manufacturing Inventory APIs User’s Guide

Lot Create API Wrapper - Code Example
l_string_value VARCHAR2(200) :=’ ’;

BEGIN

-- Determine start position
l_string_value :=NVL(RTRIM(LTRIM(p_substring)),’ ’);

RETURN l_string_value;
EXCEPTION

WHEN OTHERS
THEN

RETURN ’ ’;

END Get_Substring;

END GMI_LOTS_WRP;
/
commit;
exit;
Lot Create API Wrapper 9-19

Lot Create API Wrapper - Code Example
9-20 Oracle® Process Manufacturing Inventory APIs User’s Guide

Index

A
ABC code, 3-4
action code, lot expiry, 3-4
Add utility function, 1-16
added_by, 8-11
ADJI, 6-10, 6-13
adjust inventory, 6-2
adjusting inventory, table, 6-10
adjustments, 6-8
AFASMSGS.pls, 1-16
alloc_class, 2-9
allocation class, 3-4
allowable deviation, factor, 3-3
alt_itema, 2-5
alt_itemb, 2-5
alternate UOM, 8-9
alternative name for item, 3-3
API

architecture, 1-4, 1-5
mechanism, 1-4
package details, 1-4
structure, 1-4

API architecture, 1-5
API message utility routines, 1-16
API, definition, 1-2
API_VERSION, 1-20
application code calls, 1-6
application program interfaces, 1-2
architecture, API, 1-4
architecture, layered, 1-6
ASCII flat file, 3-2, 3-3, 3-7, 3-8, 5-2, 7-2, 9-2
ASCII flat file layout, 5-3
asynchronous mode, 3-2

attribute_category, 2-13, 8-8
attributes, 2-11, 2-19, 3-5, 8-6

CPG lot, 1-8
item master, 1-8

authorization, to a procedure, 1-12

B
between-layer calls, 1-5
block relationship diagram, API, 1-8
block relationship diagram, item master, 1-4
bulk id, 3-4
bulk_id, 2-10
business characteristics, API, 1-8

C
c_item_mst.grade_ctl, 8-5
callable API routines, external, 1-21
calling program, 1-2, 1-3
calling wrapper interrogation, 1-12
calls, between layers, 1-5
calls, from application code, 1-6
calls, permitted between layers, 1-5
change lot status, 6-2, 6-8
changing lot status transactions, 6-15
changing quality control grade, 6-2, 6-15
character delimited, 3-3
co_code, 6-5, 6-6, 6-11, 6-12
code calls, from the application, 1-6
code example, 3-9, 5-5, 7-6, 9-6
commit, 1-12
commodity code, 3-5
commodity_code, 2-11
Index-1

company code, 7-3
completed_ind, 6-10
consumer packaged goods, 1-13
conversion factor, 5-3, 8-9
conversion, UOM, 1-8
cost class, 3-4
cost method code, 3-4
cost_mthd_code, 2-9
Count_And_Get utility function, 1-16
Count_Msg utility function, 1-16
CPG, 1-2, 1-9, 1-13, 8-9
CPG lot attributes, 1-8
create inventory, 6-2
Create_Conv, 5-4
Create_Item, 2-16, 3-7
Create_Lot, 4-7, 8-10, 9-3
created_by, 2-17, 2-18, 4-8, 6-9, 6-11, 6-13, 8-11
creating a lot, 8-2
creating an inventory item, 2-2
creation_date, 2-17, 2-18, 4-8, 6-9, 6-11, 6-13, 8-11
CREI, 6-10
customs class, 3-4
customs_class, 2-9

D
D_USER.USER_ID, 2-18
data from legacy systems, 8-2
database layer, 1-21
database tables, 1-3, 1-12
date, system, 2-19
date_added, 8-10
date_modified, 8-11
decoding and handling messages, 1-3
decoding messages, 1-3
default lot, 1-8, 1-9
default lot status, 3-4
default quality control grade, 3-4
DEFAULT_LOGIN, 1-21
DEFAULT_USER_ID, 1-20
definition, API, 1-2
Delete utility function, 1-16
delete_mark, 2-17, 4-8, 6-10, 8-11
dependencies and syntax, procedural, 1-11
descriptive flexfield segment, 2-11, 2-17, 2-19

deviation_hi, 2-6
deviation_lo, 2-6
doc_date, 6-11
doc_id, 6-10, 6-12
doc_line, 6-10, 6-11, 6-13
doc_type, 6-9, 6-13
document type, JRNL, 6-9
dual unit of measure, 6-8
dual unit of measure indicator, 3-3
dual UOM, 2-5, 2-15, 6-7, 6-8, 8-9
dualum_ind, 2-5

E
encode format, for message storage, 1-16
ERP, 1-2
error messages, 1-16, 2-22, 6-17, 7-5, 9-5
errors, 2-22
event_id, 6-13
executing a stored procedure, 1-12, 1-13
expaction_code, 2-10, 2-19, 8-4
expaction_date, 2-19, 8-5
expaction_interval, 2-10
experimental item indicator, 3-5
experimental_ind, 2-10
expire_date, 2-19, 8-5
expiry action code, 9-2
expiry action date, 9-2
expiry action interval, 3-5
export to Oracle financials date, 3-5
exported_date, 2-10

F
file type, nomenclature, 1-7
file type, .pls, 1-7
fill qty, 3-4
fill um, 3-5
fill_qty, 2-10
fill_um, 2-10
Financials (Oracle), date exported to, 3-5
First, (API) mode, 1-17
flat file, 1-11
flat file, layout, 5-3
flexfields, descriptive, 2-17
Index-2

FND packages, 1-3
FND_API, 1-3
FND_API.G_RET_STS_EXP_ERR, 2-4
FND_API.G_RET_STS_SUCCESS, 2-4
FND_API.G_RET_STS_UNEXP_ERR, 2-4
FND_MESSAGE, 1-3
FND_MESSAGE.SET_NAME, 1-17
FND_MESSAGE.SET_TOKEN, 1-17
FND_MSG_PUB, 1-16
FND_MSG_PUB.Add, 1-17
FND_MSG_PUB.Get, 1-17
fnd_new_messages database table, 1-3
FND_PUB_MSG, 1-3
FND_USER.USER_ID, 2-17, 2-18, 8-11
FND_USER.user_id, 4-8, 6-9, 6-11, 6-12
FND_USER.user_id based on supplied user_

name, 6-13
freight class, 3-4
from location, 7-2
from unit of measure, 5-3
from warehouse code, 7-2
from_location, 6-5
from_um, 4-7
from_uom, 4-4
from_whse_code, 6-5
frt_class, 2-8

G
GEM5_ITEM_ID_S, 2-17
gem5_line_id_s, 6-10
gem5_lot_id_s, 8-10
gem5_trans_id_s, 6-12
GET MESSAGES, 1-12
Get utility function, 1-16
gl class, 3-4
gl_class, 2-8
gl_posted_ind, 6-13
GMI

Allow Negative Inventory, 6-9
Default Lot, 2-18, 6-5, 8-10
Intrastat, 2-11
Move Different Status, 6-9

GMI_ITEM_LOT_CONV_WRP, 5-4
GMI_ITEM_WRP, 3-7

GMI_LOTS_PUB.Create_Lot, 2-18
GMI_LOTS_WRP, 9-3
GMI_QUANTITY_WRP, 7-4
GMIGAPI, 1-6
GMIGAPI.Create_Item_Lot_Conv, 4-3
GMIGAPI.Create_Lot, 8-3
GMIGUTL, 1-6
GMIGUTL.Get Reason, 1-20
GMIGUTL.Get_Item, 1-20, 4-4, 8-3
GMIGUTL.Get_Lot, 1-20, 4-4
GMIGUTL.Setup, 1-20
GMIGUTL.setup, 2-17
GMIPAPI, 1-6, 2-16, 4-7, 6-8, 8-10
GMIPAPI.Create_Item_Lot_Conv, 4-3
GMIPAPI.Create_Lot, 8-2
GMIPAPI.Inventory_Posting, 6-3
GMIPILW, 1-7
GMIPITW, 1-7
GMIPLOW, 1-7
GMIPQTW, 1-7
GMIPTXN, 1-7
GMIPXFW, 1-7
GMIVBUL, 1-7
GMIVBUS, 1-7
GMIVCMP, 1-7
GMIVDBL, 1-6
GMIVILC, 1-6
GMIVITM, 1-6
GMIVLOC, 1-7
GMIVLOT, 1-6
GMIVPND, 1-7
GMIVQTY, 1-6
GMIVSUM, 1-7
GMIVTXN, 1-7
GMIVXFR, 1-6
grade, 6-10
grade change transactions, 6-8
grade, quality control, changing, 6-15
grade_ctl, 2-9
GRDI, 6-10
group layer, 1-5, 1-21

H
handling
Index-3

errors, 1-16
messages, 1-3
result messages, 1-16

I
IC$ALLOW_INACTIVE, 6-4, 6-9
IC$ALLOWNEGINV, 1-20
IC$API_ALLOW_INACTIVE, 1-20
IC$DEFAULT_LOCT, 1-20
IC$DEFAULT_LOT, 1-20
IC$MOVEDIFFSTAT, 1-20
ic_adjs_jnl, 6-7
ic_allc_cls, 2-14
IC_API_ILC_CREATED, 4-10
IC_API_INVALID_ABCCODE, 2-22
IC_API_INVALID_ALLOC_CLASS, 2-23
IC_API_INVALID_COMMODITY_CODE, 2-23
IC_API_INVALID_CUSTOMS_CLASS, 2-23
IC_API_INVALID_DEVIATION, 2-22
IC_API_INVALID_DUALUM_IND, 2-22
IC_API_INVALID_EXPACTION_CODE, 2-23
IC_API_INVALID_EXPACTION_DATE_API, 8-12
IC_API_INVALID_EXPERIMENTAL_IND, 2-23
IC_API_INVALID_EXPIRE_DATE, 8-12
IC_API_INVALID_FRT_CLASS, 2-23
IC_API_INVALID_GL_CLASS, 2-22
IC_API_INVALID_GRADE_CTL, 2-23
IC_API_INVALID_HOLD_DAYS, 2-24
IC_API_INVALID_INACTIVE_IND, 2-22
IC_API_INVALID_INV_CLASS, 2-22
IC_API_INVALID_INV_TYPE, 2-22
IC_API_INVALID_ITEM, 8-12
IC_API_INVALID_ITEM_NO, 4-9, 6-17
IC_API_INVALID_ITEMCOST_CLASS, 2-23
IC_API_INVALID_JOURNAL_NO, 6-17
IC_API_INVALID_LOCATION, 6-17
IC_API_INVALID_LOCT_CTL, 2-22
IC_API_INVALID_LOT_CTL, 2-22
IC_API_INVALID_LOT_EXPACTION_

CODE, 8-12
IC_API_INVALID_LOT_HOLD_DAYS, 8-13
IC_API_INVALID_LOT_INACTIVE_IND, 8-12
IC_API_INVALID_LOT_INDIVISIBLE, 2-22
IC_API_INVALID_LOT_MATR_DAYS, 8-12

IC_API_INVALID_LOT_NO, 4-9, 6-17
IC_API_INVALID_LOT_ORIGINATION_

TYPE, 8-12
IC_API_INVALID_LOT_QC_GRADE, 8-12
IC_API_INVALID_LOT_SHIPVENDOR_NO, 8-12
IC_API_INVALID_LOT_STATUS, 6-18
IC_API_INVALID_LOT_STATUS_API, 2-23
IC_API_INVALID_LOT_STRENGTH, 8-12
IC_API_INVALID_LOT_UOM, 4-9
IC_API_INVALID_LOT_UOM_TYPE, 4-9
IC_API_INVALID_MATCH_TYPE, 2-22
IC_API_INVALID_MATR_DAYS, 2-23
IC_API_INVALID_NONINV_IND, 2-22
IC_API_INVALID_PLANNING_CLASS, 2-23
IC_API_INVALID_PRICE_CLASS, 2-23
IC_API_INVALID_PURCH_CLASS, 2-23
IC_API_INVALID_QC_GRADE, 2-23, 6-18
IC_API_INVALID_QCHOLD_RES_CODE, 2-23
IC_API_INVALID_QCITEM_NO, 2-23
IC_API_INVALID_QTY, 6-17
IC_API_INVALID_RETEST_DATE, 8-12
IC_API_INVALID_RETEST_INTERVAL, 2-22
IC_API_INVALID_SALES_CLASS, 2-22
IC_API_INVALID_SEQ_DPND_CLASS, 2-23
IC_API_INVALID_SHIP_CLASS, 2-22
IC_API_INVALID_STATUS_CTL, 2-23
IC_API_INVALID_STORAGE_CLASS, 2-23
IC_API_INVALID_SUBLOT_CTL, 2-22
IC_API_INVALID_TAX_CLASS, 2-23
IC_API_INVALID_TRANS_DATE, 6-18
IC_API_INVALID_TRANS_TYPE, 6-17
IC_API_INVALID_TYPE_FACTOR, 4-9
IC_API_INVALID_UOM, 2-22, 6-17
IC_API_INVALID_WHSE_CODE, 6-17
IC_API_INVALID_WHSE_ITEM_NO, 2-23
IC_API_ITEM_ALREADY_EXISTS, 2-22
IC_API_ITEM_CNV_ALREADY_EXISTS, 4-9
IC_API_ITEM_LOT_UOM_FAILED, 4-9
IC_API_ITEM_NOT_LOT_CTL, 8-12
IC_API_LOCT_ONHAND_EXISTS, 6-17
IC_API_LOT_ALREADY_EXISTS, 8-12
IC_API_LOT_ITEM_UOM_MISMATCH, 4-9
IC_API_MOVE_STATUS_ERR, 6-17
IC_API_NEG_QTY_NOT_ALLOWED, 6-17
IC_API_NO_LOCT_ONHAND, 6-17
Index-4

IC_API_NVALID_SHELF_LIFE, 2-22
IC_API_SUBLOT_NOT_REQD, 6-17, 8-12
IC_API_TRAN_POSTED, 6-19
IC_API_TRANS_TYPE_FOR_ITEM, 6-17
ic_ctms_cls, 2-14
ic_frgt_cls, 2-14
ic_gled_cls, 2-14
ic_hold_date, 2-19, 8-6, 8-11
ic_hold_days, 2-11
ic_invn_cls, 2-14
ic_invn_mst, 2-14
ic_item_cnv, 4-6, 4-7, 6-7
ic_item_cpg, 2-14, 2-18, 8-9
ic_item_cpg table, 2-3
IC_ITEM_MST, 8-9
ic_item_mst, 1-13, 2-14, 2-15, 2-17, 4-6, 6-7, 8-4, 8-5,

8-9
ic_item_mst.expaction_code, 8-4
ic_item_mst.expaction_interval, 8-5
ic_item_mst.grade_ctl, 8-4
ic_item_mst.ic_hold_days, 8-6
ic_item_mst.ic_matr_days, 8-6
ic_item_mst.item_id, 4-8, 6-11, 8-10, 8-11
ic_item_mst.lot_ctl, 6-5
ic_item_mst.qc_grade, 8-4
ic_item_mst.shelf_life, 8-5
ic_item_mst.sublot_ctl, 6-5
ic_jrnl_mst, 6-4, 6-7, 6-9
ic_jrnl_mst.journal_id, 6-10
ic_loct_inv, 1-7, 6-7, 6-13, 6-15, 6-16
ic_loct_inv.loct_onhand, 6-16
ic_loct_inv.loct_onhand2, 6-16
ic_loct_inv.lot_status, 6-11
ic_loct_inv.whse_code, 6-16
IC_LOTS_CPG, 1-13
ic_lots_cpg, 1-13, 2-15, 8-3, 8-9
IC_LOTS_MST, 1-13, 2-15, 8-9
ic_lots_mst, 1-9, 1-13, 2-14, 2-15, 4-6, 6-5, 6-7, 8-4,

8-6, 8-9, 8-10
ic_lots_mst.lot_id, 4-8, 6-11
ic_lots_mst.qc_grade, 6-11
ic_lots_sts, 2-14, 6-7, 8-9
ic_lots_sts.nettable_ind, 6-14
ic_lots_sts.order_proc_ind, 6-14
ic_lots_sts.prod_ind, 6-14

ic_lots_sts.shipping_ind, 6-14
ic_matr_date, 2-19, 8-6, 8-11
ic_matr_days, 2-11
ic_prce_cls, 2-14
ic_prch_cls, 2-14
ic_rank_mst, 2-14
ic_sale_cls, 2-14
ic_ship_cls, 2-14
ic_stor_cls, 2-14
ic_summ_inv, 1-7, 6-7, 6-14, 6-15, 6-16
ic_taxn_cls, 2-14
ic_text_tbl, 8-10
ic_tran_cmp, 1-7, 6-7, 6-12
ic_tran_pnd, 1-7
ic_whse_mst, 6-5
in_use, 6-10
inactive indicator, 9-3
inactive item indicator, 3-3
inactive_ind, 2-7, 2-19, 8-6
indicator, lot indivisibility, 3-3
initialization

item create API, 2-17
Initialize utility function, 1-16
installation, 1-17
interrogation, by calling wrapper, 1-12
intracompany transfer package, 1-7
intracompany transfers, 1-19
inv_class, 2-8
inv_type, 2-7
Invalid Organization, message, 1-19
inventory (negative), profile option, 6-9
inventory adjustment detail table, 6-10
inventory calendar, 6-6
inventory class, 3-4
inventory item, creation, 2-2
inventory item, lot creation, 8-2
inventory location, 6-8
inventory movement, lot status issues, 6-9
inventory quantities, 1-2
inventory transaction packages, 1-7
inventory type, 3-3
inventory, negative balance, 6-9
Inventory_Posting, 6-8
item creation, 1-2, 2-2
item description 1, 3-3
Index-5

item description 2, 3-3
Item Lot/Sublot Conversion, 1-2
item lot/sublot unit of measure conversion, 4-2
item master, 1-8
item master, block relationship diagram, 1-4
item number, 3-3, 5-3, 7-2
item_abccode, 2-8
item_desc1, 2-5
item_desc2, 2-5
item_id, 2-17, 2-18, 4-8, 6-11, 6-12, 6-13, 6-14, 6-15,

8-10, 8-11
item_no, 2-5, 2-18, 4-4, 6-4, 6-11, 8-4
item_um, 2-5, 6-5, 6-11
item_um2, 2-5, 6-5, 6-11
itemcost_class, 2-9
items, 1-8
items, lot controlled, 1-9

J
journal number, 7-2
journal_comment, 6-9
journal_id, 6-9, 6-10
journal_no, 6-4, 6-9
JRNL document type, 6-9

L
lang_code, 4-10
Last (API) mode, 1-17
last_update_date, 2-17, 2-18, 4-8, 6-9, 6-11, 6-13,

8-11
last_update_login, 2-17, 2-18, 4-8, 6-10, 6-12, 6-13,

8-11
last_updated_by, 2-17, 2-18, 4-8, 6-9, 6-12, 6-13,

8-11
layer

database access, 1-5
group, 1-5
private, 1-5
public, 1-5
validation, 1-5
wrapper, 1-5

layered architecture, 1-5, 1-6
level code, 3-3

level_code, 2-6
line_id, 6-11, 6-12
line_type, 6-11, 6-13
location, 6-11, 6-12, 6-14, 6-15
location control, 3-3
location control issues, 6-9
loct_ctl, 2-7
loct_onhand, 6-14
loct_onhand2, 6-14, 6-15
logic, special, 3-7
logic, update, 4-7
logical transaction, 1-12
login id, 8-11
login_id, 4-8, 6-10, 6-13
lot attributes, CPG, 1-8
lot controlled item indicator, 3-3
lot controlled items, 1-9
Lot Create, 1-2
Lot Create API wrapper, 8-3
Lot Create stored procedure, 8-2
lot created date, 9-2
lot creation, 8-2
lot description, 9-2
lot expiration, action code for, 3-4
lot expire date, 9-2
lot hold days, 3-5
lot hold release date, 9-3
lot indivisibility, 3-3
lot maturity date, 9-3
lot maturity days, 3-5
lot number, 5-3, 7-2, 9-2
lot status, 7-3
lot status change, 6-8
lot status controlled item indicator, 3-4
lot status, changing, 6-15
lot status, inventory movement, 6-9
lot, default, 1-8
lot_created, 2-19, 8-5, 8-6
lot_ctl, 2-6
lot_desc, 2-18, 8-4
lot_id, 4-8, 6-11, 6-12, 6-13, 6-15, 8-10, 8-11
lot_indivisible, 2-6
lot_no, 2-18, 4-4, 4-8, 6-5, 8-4
lot_status, 2-10, 6-5, 6-11, 6-13, 6-15
lot/sublot-controlled, 6-8
Index-6

M
match type, 3-3
match_type, 2-7
mechanism, stored procedure, 1-4
message count, 2-4
message decoding, 1-3
message dictionary, 1-16
message handling, 1-3
message list, 1-16
message list, getting messages from, 1-17
message stack, 2-4
messages, error, 2-22
messages, result, 1-16
messaging, errors, 1-16
mode

First (API), 1-17
Last (API), 1-17
Next (API), 1-17
Previous (API), 1-17
Specific (API), 1-17

modified_by, 8-11
move inventory, 6-2
movements, 6-8
moving inventory, lot status issues, 6-9

N
negative inventory, 6-9
negative inventory, profile option, 6-9
network traffic, 1-12
Next (API) mode, 1-17
no_inv, 6-11
no_trans, 6-11
noninv_ind, 2-7
non-inventory item, 3-3

O
on-hand balances, 6-8
onhand_order_qty, 6-14
onhand_order_qty2, 6-14
onhand_prod_qty, 6-14
onhand_prod_qty2, 6-14
onhand_qty, 6-14
onhand_qty2, 6-14

onhand_ship_qty, 6-14
onhand_ship_qty2, 6-14
op_code, 4-10, 6-13
operator code, 9-3
OPM item master, 1-8
Oracle Financials, 3-5
Oracle Messages table, 1-12
Oracle-supplied wrapper code, 1-6
organization code, 7-3
orgn_code, 6-6, 6-9, 6-11, 6-12
origination type, 9-3
origination_type, 2-19, 8-6

P
p_api_version, 1-14, 2-3
p_cmp_tran_rec, 6-12, 6-15, 6-16
p_cmp_tran_rec.co_code, 6-12
p_cmp_tran_rec.doc_date, 6-13
p_cmp_tran_rec.doc_id, 6-12
p_cmp_tran_rec.doc_line, 6-13
p_cmp_tran_rec.doc_type, 6-13
p_cmp_tran_rec.event_id, 6-13
p_cmp_tran_rec.gl_posted_ind, 6-13
p_cmp_tran_rec.item_id, 6-12, 6-13, 6-14, 6-15
p_cmp_tran_rec.line_id, 6-12
p_cmp_tran_rec.line_type, 6-13, 6-15, 6-16
p_cmp_tran_rec.location, 6-12, 6-14, 6-15
p_cmp_tran_rec.lot_id, 6-12
p_cmp_tran_rec.lot_status, 6-13, 6-15
p_cmp_tran_rec.onhand2, 6-16
p_cmp_tran_rec.op_code, 6-13
p_cmp_tran_rec.orgn_code, 6-12
p_cmp_tran_rec.qc_grade, 6-13, 6-14, 6-15
p_cmp_tran_rec.reason_code, 6-13
p_cmp_tran_rec.text_code, 6-13
p_cmp_tran_rec.tran_id, 6-13, 6-15
p_cmp_tran_rec.trans_qty, 6-13, 6-14, 6-16
p_cmp_tran_rec.trans_qty2, 6-13, 6-14, 6-15, 6-16
p_cmp_tran_rec.trans_stat, 6-13
p_cmp_tran_rec.trans_type, 6-13
p_cmp_tran_rec.trans_um, 6-13
p_cmp_tran_rec.trans_um2, 6-13
p_cmp_tran_rec.whse_code, 6-12, 6-13, 6-14, 6-15,

6-16
Index-7

p_commit, 1-14, 2-3
p_conv_rec, 4-4
p_ic_item_mst_cpg, 8-3
p_ic_item_mst_row, 4-4, 8-3
p_ic_lots_mst_row, 4-4
p_init_msg, 2-18
p_init_msg_list, 1-14, 2-3, 9-2
p_item_cnv_rec, 4-7
p_item_cnv_rec.conv_factor, 4-7
p_item_cnv_rec.from_um, 4-7
p_item_cnv_rec.op_code, 4-10
p_item_cnv_rec.to_um, 4-7, 4-8
p_item_rec, 2-3, 2-5, 2-17, 2-18
p_item_rec.ic_hold_days, 2-19
p_item_rec.ic_matr_days, 2-19
p_item_rec.item_no, 2-18
p_item_rec.qcitem_no, 2-17
p_item_rec.whse_item_no, 2-17
p_lot_rec.ic_hold_days, 8-11
p_lot_rec.ic_matr_days, 8-11
p_lot_rec.lot_no, 8-10
p_lot_rec.op_code, 8-11
p_output_file, 3-7, 5-4, 7-4, 7-5, 9-5
p_qty_rec, 6-4
p_trans_rec.co_code, 6-11
p_trans_rec.from_whse_code, 6-11
p_trans_rec.item_no, 6-11
p_trans_rec.item_um, 6-11
p_trans_rec.item_um2, 6-11
p_trans_rec.lot_status, 6-11
p_trans_rec.orgn_code, 6-9, 6-11
p_trans_rec.qc_grade, 6-11
p_trans_rec.reason_code, 6-11
p_trans_rec.trans_date, 6-11
p_trans_rec.trans_qty, 6-11
p_trans_rec.trans_qty2, 6-11
p_trans_rec.trans_type, 6-10
p_validation_level, 1-14, 2-3
package body, 1-6
package body, nomenclature, 1-7
package details, API, 1-4
package specification, 1-6
packages, inventory transactions, 1-7
parameters, 1-2
permissions, 1-12

phantom type, 3-5
phantom_type, 2-10
pkg id, 3-4
pkg_id, 2-10
planning class, 3-4
planning_class, 2-9
platform independence, 1-12
.pls file type, 1-7
PL/SQL, 1-11

engine, 1-19
parameters, 1-14
record, 1-12

po_vend_mst, 8-6, 8-9
po_vend_mst.vend_id, 8-10
Post, 7-2, 7-4
posted_ind, 6-9
posting_id, 6-9
Previous (API) mode, 1-17
price class, 3-4
price_class, 2-8
primary transaction quantity, 7-3
primary unit of measure, 7-2
print_cnt, 6-9
private layer, 1-5, 1-21
private package, 1-6
procedure, 1-6
procedure execution, 1-12
procedure, stored, 1-4, 1-11
procedures stored, 1-11
program_update_date, 6-10, 6-12
ps_plng_cls, 2-14
public calls, 1-19
public layer, 1-5
public package, 1-6
purch_class, 2-8
purchase class, 3-4

Q
qc_actn_mst, 2-14, 8-9
qc_grad_mst, 2-14, 6-5, 8-4, 8-9
qc_grade, 2-9, 2-18, 6-5, 6-11, 6-13, 6-14, 6-15, 8-4
qc_hres_mst, 2-14
qchold_res_code, 2-10
qcitem_id, 2-17
Index-8

qcitem_no, 2-10
qty, 6-11
qty2, 6-11
quality control

grade, 7-3
grade controlled item indicator, 3-4
grade, changing, 6-15
hold reason code, 3-4
reference item, 3-4

quality control attributes, 1-8
quantities, 6-7
quantities transaction, validation of, 1-19

R
reason code, 7-3
reason_code, 6-6, 6-11, 6-13
record validation, 1-12
record, PL/SQL, 1-12
requirements, technical, 1-3, 4-2, 5-2, 6-2, 8-2
Reset utility function, 1-16
result messages, 1-16
retest date, 9-3
retest interval, 3-4
retest_date, 2-19, 8-5
retest_interval, 2-8

S
sales class, 3-4
sales_class, 2-8
second alternative name for item, 3-3
secondary transaction quantity, 7-3
secondary unit of measure, 3-3, 7-2
security, 1-12
separation, relating to user interface, 1-12
seq_dpnd_class, 2-11
sequence dependent class, 3-5
shelf life, 3-4
shelf_life, 2-8
ship class, 3-4
ship vendor number, 9-3
ship_class, 2-8
shipvend_id, 8-10
shipvendor_no, 2-19, 8-6

special logic, 7-4, 8-10
Specific (API) mode, 1-17
specification, nomenclature, 1-7
status, lot, changing, 6-8
status, lots, 6-15
status_ctl, 2-9
storage class, 3-4
storage_class, 2-8
stored procedure, 1-4, 1-11

body, 1-11
execution, 1-12, 1-13
mechanism, 1-4
specification, 1-11

strength, 2-19, 8-5, 9-3
structure of the API, 1-4
STSI, 6-10
sublot control, 3-3
sublot number, 5-3, 7-2, 9-2
sublot_ctl, 2-6, 8-4
sublot_no, 2-18, 4-4, 6-5, 8-4
success messages, 6-19
summary inventory table, 6-16
SY$CPG_INSTALL, 1-20, 2-3, 8-3
SY$INTRASTAT, 1-20
SY$MAX_DATE, 8-5
SY_API_INVALID_CO_CODE, 6-18
SY_API_INVALID_OP_CODE, 6-18
SY_API_INVALID_ORGN_CODE, 6-18
SY_API_INVALID_REASON_CODE, 6-18
SY_API_UNABLE_TO_GET_DOC_NO, 6-17
SY_API_UNABLE_TO_GET_SURROGATE, 2-24,

6-18, 8-13
sy_oper_mst, 4-10, 8-9
sy_orgn_mst, 6-5, 6-6
sy_orgn_mst.co_code, 6-6
sy_reas_cds, 6-6
sy_type_mst, 2-14, 8-6, 8-9
sy_uoms_mst, 2-14, 4-6, 4-7, 6-5, 6-7
sy_uoms_typ, 4-6, 4-7, 6-7
sy_uoms_typ.std_um, 4-7
sy_uoms_typ.um_type, 4-8
synchronous mode, 3-2
system date, 2-19, 4-8, 6-9, 6-11, 6-12, 8-11
system time, 2-19
Index-9

T
table, Oracle Messages, 1-12
table_name, 8-6
tax class, 3-4
tax_class, 2-8
technical requirements, 1-3, 4-2, 5-2, 6-2, 8-2
temporary table, 1-11
text_code, 2-17, 4-8, 6-10, 6-13, 8-11
third party code, 1-5
third party code, and public calls, 1-19
third party code, callable utility routines, 1-20
time, system, 2-19
/tmp, directory, 7-4
to location, 7-3
to unit of measure, 5-3
to warehouse code, 7-2
to_location, 6-5
to_um, 4-7
to_uom, 4-4
to_whse_code, 6-5
traffic, network, 1-12
trans_cnt, 2-17, 4-8, 6-12, 8-11
trans_date, 6-6, 6-13
trans_flag, 6-10
trans_id, 6-12
trans_qty, 6-5, 6-13
trans_qty2, 6-5, 6-13
trans_stat, 6-13
trans_type, 6-4, 6-5, 6-8, 6-10, 6-11
trans_um, 6-13
trans_um2, 6-13
transaction date, 7-3
transaction packages, inventory, 1-7
transaction type, 7-2
transaction, logical, 1-12
transactions, changing lot status, 6-15
transactions, grade (QC), 6-8
TRNI, 6-10, 6-13
type_factor, 4-5, 4-8
type_factorrev, 4-8

U
um_type, 4-8
unit of measure, 3-3, 4-7

unit of measure, conversion, 1-8
UOM, 1-9, 2-15, 6-7, 8-9
UOM conversion, 1-8
UOM, standard, 4-7
UOM, validation, 6-8
upc code, 3-4
upc_code, 2-9
update logic, 6-9

inventory quantities API wrapper, 7-4
item create API, 2-17
item create API wrapper, 3-7
item lot/sublot conversion API, 4-7
item lot/sublot conversion API wrapper, 5-3
lot create API, 8-10
lot create API wrapper, 9-4

upgrade, 1-17
user class1, 9-3
user class2, 9-3
user class3, 9-3
user class4, 9-3
user class5, 9-3
user class6, 9-3
user interface layer, 1-12
user name, 3-5, 5-3, 7-3
user_name, 2-13, 4-5, 4-8, 6-6, 6-11, 8-8
utility function

Add, 1-16
Count_And_Get, 1-16
Count_Msg, 1-16
Delete, 1-16
Get, 1-16
Initialize, 1-16
Reset, 1-16

utility routines, internal, 1-20
UTL_FILE INVALID_OPERATION, 5-4
UTL_FILE.INTERNAL_ERROR, 3-8, 5-4, 7-5, 9-5
UTL_FILE.INVALID_FILEHANDLE, 3-8, 5-4, 7-5,

9-5
UTL_FILE.INVALID_MODE, 3-8, 5-4, 7-5, 9-5
UTL_FILE.INVALID_OPERATION, 3-8, 7-5, 9-5
UTL_FILE.INVALID_PATH, 3-8, 5-4, 7-5, 9-5
UTL_FILE.READ_ERROR, 3-8, 5-4, 7-5, 9-5
UTL_FILE.WRITE_ERROR, 3-8, 5-4, 7-5, 9-5
Index-10

V
validating a record, 1-12, 3-7, 6-8
validation

inventory quantities API wrapper, 7-4
item create API, 2-17
item create API wrapper, 3-7
item lot/sublot conversion API, 4-7
item lot/sublot conversion API wrapper, 5-2
lot create API wrapper, 9-4

variables, 1-6
vendor_lot_no, 2-19, 8-6
vendors lot number, 9-3

W
warehouse item number, 3-5
whse_code, 6-11, 6-12, 6-13, 6-14, 6-15
whse_item_id, 2-17
whse_item_no, 2-10
wrapper, 1-7

GMIPILW, 1-7
GMIPITW, 1-7
GMIPLOW, 1-7
GMIPQTW, 1-7
item creation, 1-7
item/lot UOM conversion, 1-7
lot creation, 1-7
quantity transactions, 1-7

wrapper code, 1-5, 1-6
wrapper function, 2-2, 2-16, 3-2, 3-3, 4-2, 4-7, 5-2,

6-2, 7-2, 9-2
wrappers, 1-5

X
x_ic_adjs_jnl_row, 6-3
x_ic_adjs_jnl_row1, 6-3
x_ic_adjs_jnl_row2, 6-3
x_ic_item_cnv_row, 4-3
x_ic_item_cpg row, 2-3
x_ic_item_cpg_row, 2-3
x_ic_item_mst_row, 2-3
x_ic_jrnl_mst_row, 6-3
x_ic_lots_cpg, 8-3
x_ic_lots_cpg_row, 8-3

x_ic_lots_mst_row, 8-3
x_msg_count, 1-14, 1-15, 2-22, 4-9, 6-17, 8-12
x_msg_data, 1-14
x_return_status, 1-14, 1-15, 1-16, 2-22, 4-9, 6-17,

8-12
Index-11

Index-12

	Inventory APIs User’s Guide
	Send Us Your Comments
	Preface
	1 OPM Inventory APIs - Introduction
	Understanding OPM Inventory APIs
	Stored Procedures Technical Requirements
	Inventory APIs - Technical Structure and Architecture
	Stored Procedure Mechanism
	API Architecture
	API Package Details
	Item Master Block Relationship Diagram

	Technical Overview of Inventory APIs
	API - Input Data Sources
	Wrapper Function - Input Data Sources
	Stored Procedures Overview
	Stored Procedure Execution
	Common Stored Procedure Parameters

	Error Message Handling
	Result Message Handling
	Installation and Upgrade
	Engineering Notes On This Release

	2 Item Create API
	Item Create API - Business Function
	Item Create API - Technical Overview
	Item Create API - Parameters and Interface
	Item Create API - Table and View Usage
	Item Create API - Package/Procedure Names
	Item Create API - Special Logic
	Item Create API - Error Messages

	3 Item Create API Wrapper
	Item Create API Wrapper - Business Function
	Item Create API Wrapper - Input Structure
	Item Create API Wrapper - ASCII Flat File Layout
	Item Create API Wrapper - Package and Procedure Names
	Item Create API Wrapper - Special Logic
	Item Create API Wrapper - Error Messages
	Item Create API Wrapper - Code Example

	4 Item Lot/Sublot Conversion API
	Item Lot/Sublot Conversion API - Business Function
	Item Lot/Sublot Conversion API - Technical Overview
	Item Lot/Sublot Conversion API - Parameters
	Item Lot/Sublot Conversion API - Table and View Usage
	Item Lot/Sublot Conversion API - Package and Procedure Names
	Item Lot/Sublot Conversion API - Special Logic
	Item Lot/Sublot Conversion API - Error Messages
	Item Lot/Sublot Conversion API - Success Messages

	5 Item Lot/Sublot Conversion API Wrapper
	Item Lot/Sublot Conversion API Wrapper - Business Function
	Item Lot/Sublot Conversion API Wrapper - Technical Requirements
	Item Lot/Sublot Conversion API Wrapper - Input Structure
	Item Lot/Sublot Conversion API Wrapper - Special Logic
	Item Lot/Sublot Conversion API Wrapper - ASCII Flat File Layout
	Item Lot/Sublot Conversion API Wrapper - Package and Procedure Names
	Item Lot/Sublot Conversion API Wrapper - Error Messages
	Item Lot/Sublot Conversion API Wrapper - Code Example

	6 Inventory Quantities API
	Inventory Quantities API - Business Function
	Inventory Quantities API - Technical Overview
	Inventory Quantities API - Parameters
	Inventory Quantities API - Table and View Usage
	Inventory Quantities API - Package and Procedure Names
	Inventory Quantities API - Special Logic
	Inventory Quantities API - Error Messages
	Inventory Quantities API - Success Messages

	7 Inventory Quantities API Wrapper
	Inventory Quantities API Wrapper - Business Function
	Inventory Quantities API Wrapper - Input Structure
	Inventory Quantities API Wrapper - ASCII Flat File Layout
	Inventory Quantities API Wrapper - Package and Procedure Names
	Inventory Quantities API Wrapper - Special Logic
	Inventory Quantities API Wrapper - Error Messages
	Inventory Quantities API Wrapper - Code Example

	8 Lot Create API
	Lot Create API - Business Function
	Lot Create API - Technical Overview
	Lot Create API - Parameters for Create Lot
	Lot Create API - Table and View Usage
	Lot Create API - Package and Procedure Names
	Lot Create API - Special Logic
	Lot Create API - Error Messages

	9 Lot Create API Wrapper
	Lot Create API Wrapper - Business Function
	Lot Create API Wrapper - ASCII Flat File Layout
	Lot Create API Wrapper - Package and Procedure Names
	Lot Create API Wrapper - Special Logic
	Lot Create API Wrapper - Error Messages
	Lot Create API Wrapper - Code Example

	Index

