Oracle9i

Application Developer’'s Guide - Object-Relational Features

Release 1 (9.0.1)

June 2001
Part No. A88878-01

ORACLE

Oracle9i Application Developer’s Guide - Object-Relational Features, Release 1 (9.0.1)
Part No. A88878-01

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Author: Bill Gietz

Contributors: G. Arora, S. Abraham, S. Banerjee, S. Chandrasekar, R. Dani, R. Govindarajan, T. Hoang,
C. lyer, J. Kalogeropoulos, G. Lee, S. Muralidhar, R. Murthy, M. Morsi, H. Yeh, Q. Yu

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net,
SQL*Plus, Designer/2000, Developer/2000, Oracle Net, Oracle Call Interface, Oracle7, Oracle8, Oracle8i,
Oracle9i, Oracle Forms, Real Application Clusters, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Send Us Your Comments

Contents

.. XV
PIETACE.o Xvii
New Object-Relational FEAtUIES ... XXV
1 Introduction to Oracle Objects

About Oracle Objects and ODJECE TYPES.....cvciiviiireriere et erenees 1-2
AAVANTAGES OF ODJECTS ...ttt st e ettt be e 1-2
Key Features of the Object-Relational Model.............cocooiiiiiii e 1-4

2 Basic Components of Oracle Objects
Object-Relational EIEBMENTS ...t et 2-2
(O] o=t A 1Y 0 1= 2-2
TYPE INNEIILANCE ... ettt b e bbbt bbb sae e 2-3
(0] o] 1= £SO U TSROSO 2-3
IMIBENODS ...t e 2-3
ODBJECT TADIES ...ttt bbb b et et e et eneebesneene 2-3
Row Objects and Column ODJECLScccoiiiiiiiiiie e 2-4
(O 1=t AV A 1= SRS 2-4
REF DATALYIE ...ttt ettt sttt et btk ekt h e bt st nb e et s bt e e e he e b aeebenbe e b 2-5
SCOPEA REFS ...ttt bbbt bbb et e et e se et b e ebesreebe s 2-5
[L o [T T I = PSRRI 2-5
DEreferenCiNG REFS.. ..ottt b et 2-6

OBLAINING REFS ...ttt ettt sb e bbb et ne et 2-6

1001 | [=To1 1o TP POOTRSOPPPPRPPN 2-6
Defining Object and COHECtION TYPESccuiiiiiiiiiie et 2-7
Object TYPES AN RETEIENCES........ooiiiiiiee et bbb e e e b e 2-8

NUIl Objects and ALLFIDULESccvieieiecceeeec et se e 2-8

Default Values for Objects and CoOlECLIONScccooiiiiiiiiiiie s 2-9

Constraints for ObJECt TABIEScoviiiiee s 2-10

Indexes for Object Tables and Nested Tables..........ccocvvviiverircrciecce e 2-11

Triggers fOor ODJECT TADIES.c.oi et 2-12

Rules for REF Columns and AttriDULESccoieiiiiiie e 2-12

NAME RESOIULION ...ttt b b b st ne bt ne bt es 2-13

When Table Aliases are REQUITEdccooiiiiiiiiiie e 2-13

Restriction on Using User-Defined Types with a Remote Database.........cc.cccccocevvervevernnne, 2-15
IMIBENOTS ...ttt bbb bbb bbbt ettt b b nae 2-15

MEMDBDEE IMEENOAS ...ttt e 2-16

Methods for Comparing OBJECEScccveiiiici i 2-17

1Y E=T o BNV =1 g T T SRS 2-17
Order METNOGS.ottt eenea 2-18
GUIBIINES ...ttt bbb bbbttt et e st e e e e et e ers 2-19
Comparison Methods in Type HierarChies.........ccccceoevieieisie e 2-19

R3] -1 o Y, =1 d g o o LSOO 2-20

CONSLIUCLOr IMELNOMS ... ettt et 2-20
(070] 1 1=To1 (o] o K- OSSPSR 2-21

V=L -\ V£ T TP P PRSPPSO 2-21

NESTEA TADIES ...ttt ettt b s 2-22

Y [0 R YT B @do] | [=Tod A o] g T Y o 1TSS 2-23

Nested Table Storage TabIes ... 2-24
VAITAY STOTAQGE ...oiiiiiiiieitie ettt ettt b et esbe e seb e st e e s bb e e nb e e sneesbeenbes 2-25
Assignment and Comparison of Multi-Level Collections...........ccccccvvveveivninvniiennannns 2-26

Creating a VARRAY or Nested Table.........coiiiiiiiice e 2-26

Constructors for Multi-Level ColleCtiONS............cci i 2-27

(@18 (=T V4T 0o [@10 1 1-Tox £ To] o 3R 2-27

Nesting Results of Collection QUETIES ..o 2-28
Unnesting Results of Collection QUETIESc.ccvvieievesicicieec e 2-28
Unnesting Queries Containing Table Expression Subqueries...........cccceevvieiivennennn, 2-30

Unnesting Queries with Multi-Level Collections...........cccociiiiiiininincecece e 2-31

Performing DML Operations on ColeCtiONS..........cccovciviiiiniine i 2-31
Performing DML on Multi-Level COHECIONScccooiiiiiiiiiiirecee e 2-32
TYPE INNEIITANCE ... ettt b e bbb e b et e et ebe e e b anea 2-33
I 0 LT= Lo ST U o) Y/ o =TSSP 2-34
FINAL and NOT FINAL Types and Methods ...t 2-36
(1T UL To TS0 o] 174 o 1= 2-36
NOT INSTANTIABLE Types and Methodscccccvvciriiiciscesese e 2-37
Inheriting, Overloading, and Overriding Methods...........c.ccoeiiiiiiiiii e 2-38
(@)7=1 g (o= To [T aTo N 1Y, 1=1 4 To o LS 2-38

(@ /=1 ¢ g To [T TN 1Y 1=1 1 o o LSS 2-39
Restrictions on Overriding Methods ...t 2-40
Dynamic Method DiSPatChcoveiiieiicc e enens 2-40
Substituting Types in a Type HIerarchy ... 2-41
Attribute SUDSTITULADIIITYcooiiiie e 2-42
Column and RoOW SUBSHITULADITITY........cvciiiiicces e 2-43
Subtypes Having Supertype AttribBULeS ... 2-44
REF Columns and AttriDULES..........cooi e 2-45
COlIECtION EIBMENTS ...t bbb 2-45
Turning Off SUDSEITULADITITYccce i 2-45
Constraining SUDSTITULADTTITYc.oiiiiie e 2-46
ASSIGNMENTS ACIOSS TYPES 1.vvviiiiieiieriesistese e stes e ses e s s e e st tesa e testesr e besaesessearesteseeeeneaneanes 2-46
Objects and REFS 10 ODJECES.......coiiiiiiiieirire sttt s 2-46
COolleCtion ASSIGNIMENTSottt sttt see et r e ebe e 2-48
Comparisons: Objects, REF Variables, and ColleCtions............cccccvovvevivevincice e 2-48
Comparing ODbJECt INSTANCESccviv et sr e eens 2-48
Comparing REF Variables....... ... 2-49
Comparing COIECIONS.ooviicieice ettt e eens 2-49
Functions and Predicates Useful with ODBJects.........ccccccoviiiiiiiic e 2-49
WALUE ... ettt bttt bbb bbbttt ettt e rns 2-49
REF ettt ettt bbb bR E R bbbt b et ekt be ekttt be e ere e 2-50
DEREF ..ottt bbb bbbt E et E et bt b ettt nnns 2-50
LI {7 2N SRS 2-51
IS OF LY ettt bbb bbb bbbt nene 2-52
SYS_TYPEID ...ttt ettt bttt ben b s 2-54

vi

Object Support in Oracle Programmatic Environments

1S] OSSOSO USSR PRSOPR 3-2
o IS @] IR 3-2
Oracle Call INTErface (OC) ..ot bbb et e et eb e 3-2
Associative AcCeSS IN OCI ProgramiS.......cocvcivviieiinesereeseseeeeesesiese e stes e ssessesessessessessnsessens 3-3
Navigational Access iN OCI PrOogramiScccoiiiiiiiiiniiie et e 3-4

(0 o=t A OF=Tod o 1= TSR 3-4
Building an OCI Program that Manipulates ObJECtS..........ccccrererveieiesinesees e 3-5
Oracle C++ Call INterface (OCCI)......oiiiiiite e e 3-6
OCCI Associative Relational and Object INterfaces........cccccovvvevivreiercrieieseee e 3-6
The OCCI Navigational INTErfaCe........cccivvii it e 3-7

o o 1 OF O3 OSSPSR 3-7
ASSOCIAtiVE ACCESS IN PIO*C/CH .ttt 3-8
Navigational ACCESS IN PrO*C/CH+ ..ottt sne e 3-8
Converting Between Oracle TYPeS anNd C TYPEScoviueiririeineie et sre e 3-8
Oracle TYPe Translator (OTT) .. i iccieeeeisiesiese et a et ese e stesresaesre e neens 3-9
Oracle Objects FOr OLE (OO40).......coiiiieiieiiiesiesiesesiesesaesiesse e ssa e ste e stesse st snessessesassesssssessenns 3-9
Representing Objects in Visual Basic (OraODbjJect)cccooveiireieiiiirecieeee e 3-10
Representing REFs in Visual Basic (OraRef)........cccceviiiiiiieieiccesesie s 3-11
Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)................... 3-11
Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object TYPES.....ccccerieirerereneieieeseie i 3-11
JDBC Access t0 Oracle ObJECt Dat@.........ccceieieiiieeieieie s sre ettt es 3-12
SQLJ Access to Oracle ODJECt DAta........cc.ccvevrieiiiiieii et ere s 3-12
Choosing a Data Mapping STrateOYcoceeererererieie et nes 3-13
Using JPublisher to Create Java Classes for JDBC and SQLJ Programs.........cccccevevvvennne 3-13
What JPUBIISNEr PrOQUCES.........cviiiiiiecc e e 3-13

A WO oL Tot] (o] - o OSSOSO 3-14
Representing SQLJ TYPES 10 the SEIVETcccciiieviiieicecise et 3-15
Creating SQLJ ODJECE TYPESciiieiieeeiee ettt et aesee e e eneas 3-16

Sample SQLJ Object TYPE MaPPINGc.coviiriiiriiiiieieeieete et 3-16

V(0] (AN oTo T8 L AV, - o] o 11 s o [SRS 3-22
Ao AT oo TR 1 @ H R 1Y o TS 3-22
(070] 01511 = 11 0| TSSOSO USRS 3-23
QUETYING SQLJ ODJECLS ...viiiiiiiiiere ettt snesneneas 3-23
INSErtiNg JAVA ODJECTS.....c.uiiiiiieceeeire st ettt b e sa e enee s 3-24

UpPdating SQLI ODJECTS........cuiiiiitieieiie sttt b et e e ebe e sbesnea 3-24

Managing Oracle Objects

Privileges on Object Types and Their Methods ... 4-2
YA (=L B LV 1 =T TSP 4-2
SChema ODJECT PriVIIEOES.co ittt bbb 4-2
Using Types in NeW TYPES OF TabIES.......cccv it 4-3
LD 10 0] o] PSS 4-3
Privileges on Type Access and ODJECT ACCESScuiuiruirirerierieie et s e s 4-4

Dependencies and INCOMPIETE TYPESocvcviiiieiiiere ettt sre s 4-5
Completing INCOMPIELE TYPES ...vcvveirieceiiserie sttt a e er e e e enens 4-7
Type Dependencies of Substitutable Tables and Columns ... 4-7

The FORCE OPLION ..ottt st sa et ss e ene e enesrenresnens 4-8

L0 0] SO SOTTSOUTSOTSPO 4-8

BB V] (o] o 1= SO P TP USRS 4-8
Business Components for Java (BCAJ)ccooviieieiiicce e 4-9
JPUBIISNIET ... ettt 4-9

L0 1] L) =SSOSR 4-10

IMPOrt/EXPOrt Of ODJECT TYPES . .cuiiieieieieese ettt sttt sre e e 4-10
1574 1= TSRS 4-10
Object VieW HIBFarChies. e 4-10

1@] B o Lo [T OO ORI 4-10

Applying an Object Model to Relational Data

WY 10 USE ODJECE VIBWS......eiieiiiieiieeete et sttt sttt st sa et eneenennesnens 5-2
(- T YT g To J @ o] 1= A A TSP 5-3
Using Object Views iN APPHICATIONS........coooi it 5-4
Nesting ODbjJects iN ODJECE VIBWS.......ccciv it ne s 5-4
Identifying Null Objects in OBJECt VIBWS........ccocoiviiiiieceese et ene s 5-6
Using Nested Tables and Varrays in ODJECt VIEWS ... 5-6

Single-Level Collections in OBJECt VIBWS........ccvviiiiiieie s 5-6

Multi-Level Collections in ODJECT VIBWS.......cccciveiiiicicicise s e s nnens 5-8
Specifying Object Identifiers for ODJeCt VIEWS ..o 5-9
Creating References to VIieW ODJECTS ..o 5-11
Modelling Inverse Relationships with ObjJect VIEWSccccvcvvvviie s 5-12

Vii

UPAAting ODJECT VIBWUS. ..ottt ettt bttt s besb e bt b e 5-13

Updating Nested Table Columns iN VIEBWSccccviiiiieiiicsec s 5-14
Using INSTEAD OF Triggers to Control Mutating and Validation.............cccccccoovinennne. 5-14
Applying the Object Model to Remote Tables..........cooiiiiiiii e 5-15
Defining Complex Relationships in ObJeCt VIEWS.........ccovviiiriiiicsce e 5-16
Tables and Types to Demonstrate Circular View Referencescocoocverniiieiencie e, 5-17
Creating Object Views with Circular REfErenCes.........ccocovvveiviiiice v 5-18
ODbJECt VIEW HIBIAICNIES......uiiiice ettt sa et ena e eraenen 5-21
Creating an Object VIeW HIBrarchy ... e 5-22
TRE FIAE MOTEL ... 5-23

The HOrizontal MOGEL.............cco i 5-25

The Vertical MOAElcoo bbb b 5-27
Querying a View in a HIerarchy ... 5-28
Privileges for Operations on View HierarChies..........cccovvvveiiiiinsinsie s 5-29

6 Advanced Topics for Oracle Objects

viii

] (o] To [= TN o 1 H@] o [=T o1 £ SR 6-2
Leaf-LeVel ATTFIDULES.ottt bbb ene 6-2
How Row Obijects are Split ACross COIUMNScoviviiiiie e 6-2
Hidden Columns for Tables with Column ODbBJECEScccevvveieiiicre e 6-2
Hidden Columns for Substitutable Columns and Tables...........ccocoiiiniiii i, 6-3
REFS .ottt bbb R AR R bbb bbbt r ettt 6-4
Internal Layout of NeSted TabIEScccieiiiiieieiri e nnens 6-4
INnternal Layout Of VARRAYS ...ttt bbbttt ettt b 6-5

Creating Indexes on Typeids OF AFDULES ... 6-5
Indexing a Type Discriminant COIUMNccooiiiiniie e 6-5
Indexing Subtype Attributes of a Substitutable Column.............ccoooiiiiiiiiii 6-6

(@] o] T=Tot gl Vo =T a1) (7= ST 6-7

LY/ 0 L3 SV LU 4o o T RSOSSN 6-8
Changes Required by a Change to @ TYPEcoiiiiiiieiiriree e e 6-10
) T O (o N @1 o T= T o L= T 1Y o 1= TR 6-11
AV LT Fo U a T o - W Y4 o1 TSRS 6-12
If a Type Change Validation FailS ... e 6-15
ALTER TYPE Options for Type EVOIULIONccccciiiiiiiiie e 6-16
ALTER TABLE Option for Type EVOIULIONccvcov i 6-19

OCI Tips and TechNiqUES TOr ODJECEScoviiiiiiieiire e 6-20

Initializing an OCI Program in ObjeCt MOAEcccvveieiieieiese e 6-20
Creating @ NEW ODJECT ..ot bbb bbb eb e 6-21
UPdating an ODJECTc.oouiiiiiiiiee ettt st bbbt enea 6-22
(1T =) T =T T @ o] =Tt SRS 6-22
Controlling ODbJECt CACNE SIZEccuiiiiiiiiie et 6-22
Retrieving Objects into the Client Cache (PiNNiNG)ccccovvvienieiie i 6-22
Specifying which Version of an Object to REtreVecccccvvvvievivcie s 6-23
Specifying How Long to Keep the Object PiNNed ... 6-24
Specifying Whether to Lock the Object on the Server.........ccccocviviiiicnvcccsecc, 6-24

How to Choose the Locking TEChNIQUEcvoveieiiiecc e 6-25
Flushing an Object from the Object CaChe........cccooiiiiiiiii e 6-25
Pre-Fetching Related Objects (Complex Object Retrieval)c.ccccvevvinieiiencnercneccee 6-25
Demonstration of OCIl and Oracle ODJECESccvevviveiiiire e 6-27
Using the OCI Object Cache with View ODJECES ... 6-28
TransieNnt aNA GENETIC TYPES ..viiviiieiieeieieise et ste et ste et e e e e see e s seatestestestessesteseensesaesenneanens 6-30
User-Defined Aggregate FUNCLIONS..........ccccv ittt e 6-31
Partitioning Tables that Contain Oracle ODJECtS ... 6-32
Parallel Query With ODJECT VIBWScceieiiieiicieece et 6-33
How Locators Improve the Performance of Nested Tablescccccoovvovviieiciciciines 6-34

Frequently Asked Questions About Using Oracle Objects

General Questions about Oracle ODJECTS........ccciiiiirieicecse e 7-2
Are the object-relational features a separate OPtioN?ccocoviriiiiiiiicine e 7-2
What are the design goals of Oracle9i Object-Relational & Extensibility technologies? ... 7-2

(@ o T=To1 S)Y 01 SRS 7-2
What iS SEFUCTUFE TALA?.......c.eiuiiiiieie ettt bbbt st 7-2
Where are the user-defined types, user-defined functions, and abstract data types?........ 7-3
What iS @n ODJECT LYY ...veeecce et et e enens 7-3
Why are obJect types USETUI? ... s 7-3
How is object data stored and managed in Oracle9i?cccccoovvvvivevivne e 7-3
Is inheritance supported iN Oraclei?........ccoviiieiieiiicc s 7-4

(@] o] [=To1 81 1Y/ L] 1 o To o LSS USSR PRUROR 7-4
What language can | use to write my object Methods?.........ccccevviriv i 7-4
How do | decide between using PL/SQL and Java for my object methods?...................... 7-4

When should | use external ProCRAUIES? ..ottt 7-5

What are definer and inVOKEr FIghtS? ..o 7-5
ODJECE RETEIEINCES ...ttt sttt e et e et ke eb e s bt ebe et e besb et et e e eans 7-5
What iS an ODJECE FEFEIENCEToieii i e 7-5
When should I use object references? How are they different from foreign keys? 7-6
Can | construct object references based on primary Keys? ... 7-6
What is a scoped REF and when should 1 USE it?.........ccccocovvviiiini i 7-6
Can | manipulate objects using object references in PL/SQL and Java?..........cc.ccocevveevnnnnnn. 7-7
(070] I [Tt 1 o] o 1< JH OSSOSO TSP 7-7
What kinds of collections are supported by Oracle9i?.........ccccovvvviviiviieninivcse e 7-7
Do Oracle Objects support collections within collections?...........cccccccvivevicicrcie s, 7-7
How do | decide between using varrays and nested tables for modeling collections?...... 7-7
What is & COHECTION I0CATOI? ..o 7-7
What is cOllection UNNESLING?cvov ettt sne s 7-8
(@] o] =Tot A AT OSSR UR 7-8
What are the differences between object views and object tables? ..o 7-8
Are object VIewWs UPAateable? ... s 7-8
(@] o] [=To1 SO Tod o 1= 2SSOSR 7-9
Why do we need the 0DJECt CACNE?c..ocii s 7-9
Does the object cache support 0bject [0CKING?.......ccovvvieiiiiec s 7-9
(BT [@] o JT=Tod 3 (I] 2 ISR 7-10
How can | manage large objects using Oracle?.........ccceeiveiiiiinie s 7-10
O =T g B oY T a1 To W@ 0= L o] TS 7-10
What is @ user-defined OPErator? ...t e 7-10
Why are user-defined operators USEfUI? ..o 7-11

Design Considerations for Oracle Objects

Representing Objects as COIUMNS OF ROWS.........cccoviiiiiciiinie st sne s 8-3
(000] 8T 0| @] o TTet d] (o] - e -SSR 8-3
Row Object Storage in ODJECt TABIESc.ooeiiiiii s 8-7

Performance of Object COMPAIiSONSccvciiviricieierr et aens 8-8

Storage Considerations for Object Identifiers (OIDS)cccoceceiieciesiesie s 8-9

STOrage SIZE OF REFSottt bbbt b et e e eneenes 8-10

Integrity Constraints for REF COIUMNS ... 8-10

Performance and Storage Considerations for Scoped REFS..........ccccoviviivincnniescnse e 8-10

INAEXING SCOPEA REFS ...ttt ettt b ettt s b e sb e bt b e sne e enea 8-11

Speeding up Object Access using the WITH ROWID OpPtioN.......cccocoovieveveieinsiescesesenenn 8-12
Viewing Object Data in Relational Form with Unnesting QUEries..........ccccocvviiiiiiinnenne 8-12
Using Procedures and Functions in UnNNesting QUEKIES........ccccuoiiieiiiiine e 8-14
Storage Considerations fOr Varrays........cccccveiriiiieiisesiese e eeese s st seenaese e ens 8-15
Performance of Varrays Versus Nested TabIes..........cccoiiiiiiiine e 8-15
NESTEA TABIES.... .ot 8-16
NeSted TabIe SEOFAGEoviieeeece et e e aesrentesre e enens 8-16
Nested Table in an Index-Organized Table (IOT) ... 8-17

NEStEd TaDIE INAEXEScoeiieieiieiiree e bbb 8-19
NESEEA TADIE LOCALOIS.c.iiieiiiieiicieiesice ettt bbb bbb 8-20
Optimizing Set Membership QUETIEScoi i 8-21
DML Operations on Nested TabIes ... 8-21
MUILI-LEVEL COIECLIONS ..ottt 8-23
Choosing a Language for Method FUNCLIONS ... 8-29
STALIC IMIBENOMS ...ttt bbb en e ne s 8-30
Writing Reusable Code using INVOKer RIgNtS ..o 8-31
Function-Based Indexes on the Return Values of Type Methodscccociiiiiiiiniicenne 8-33
Converting to the Current ObjJect FOrMaAL.........ccccviviiiiiiieieiee e 8-34
Replicating Object Tables and COIUMNS..........ccccoiiiiiiii e 8-35
Replicating Columns of Object, Collection, or REF TYPE.....ccccooeiiieieiiieceere e 8-35
Replicating ObJECt TADIESccocviiecccc e 8-35
CoNStraiNts 0N ODJECTS. ... ettt re st e sae e neens 8-36
TYPE EVOIULION ..ottt bttt et b et se e et b e ebe b e e beneene £an 8-37
Pushing a Type Change OULt t0 CHENTScccovueieieiciesce e 8-37
Changing Default CONSIIUCTOIS........ccciiieieec et ens 8-37
Altering the FINAL Property Of @ TYPE ..ot 8-38
Performance TUNINGoouoieieecee et ettt b e te b st et et e e e e enaereaneens 8-38
Parallel Queries With Oracle ODJECESc.cccovviiiiiiie e 8-39
TIPS AN TECHNTQUES. ...ttt bbbttt bbb 8-39
Deciding Whether to Evolve a Type or Create a Subtype Instead............ccccoeoevevevenrennne. 8-39
How ANYDATA Differs from User-Defined TYPEScccvvverieiiiiicisese e 8-40
Polymorphic Views: An Alternative to an Object View Hierarchy ... 8-40

LI LI 1O L I @ o] =Tot f 1Y/ o -SSR 8-41
What is the intended use of SQLJ ObJECt TYPE? ...cvvcviieiiriieieseee e 8-41

Xi

What is involved in creating a SQLJ Object TYPE?oooveiiiiiiiieiereeere e 8-42

When would you use SQLJ ObJECt TYPE? ...vvvciiiieiirere ettt 8-42
When would you use Custom ODJECt TYPE?cviiiieiiiie st 8-42
What are the differences between the SQLJ and Custom Object Types through JDBC?.....
8-43

Y ESot=T | PV g T To LU T o 1 8-44
Column Substitutability and the Number of Attributes in a Hierarchy 8-44
Circular DependencieS AMONG TYPES...cvciueieirireeirieaereaesessesseseseessessessessessesessesessesses 8-44
PL/ZSQL and TREAT and IS OF ..ot 8-44

9 A Sample Application Using Object-Relational Features

1A oTe (U o1 { o] o [P OSOTSO TP SO T SO VSO TSOTROTRO 9-2
A Purchase Order EXaMPIE ...ttt bbb ene 9-3
Implementing the Application Under The Relational Modelc..ccoovviiiveniicicceccee, 9-4
Entities and RelatioNSNIPScviviiiiiice et srene e 9-5
Creating Tables Under the Relational Model ... 9-5
(OTUES] (o] g =1 g €] | 7= o 1 9-6
PUrchaseOrder _reltab ... 9-7
LiNeItemMS_Feltabc..ooviie e e 9-7

STOCK _FEITAD ... e ns 9-8
Inserting Values Under the Relational Model ..o 9-8
Querying Data Under The Relational Model ... 9-9
Updating Data Under The Relational Modelccoovoviiviiviiiieieseceeece e 9-10
Deleting Data Under The Relational Modelccocovviiiiicciecc e 9-10
Implementing the Application Under The Object-Relational Model.............ccccoceiiinnnnn 9-10
1= VLT RN 54 1= SRS 9-12
MEthOd DefiNItIONS.......ooiiiiie bbbttt 9-19
The getPONO MELNOMot 9-19

The suMLINEIteMS MEtROCcooiiiiiiieee e 9-19

The compareCustOrders Method ... 9-20
Creating ODJECT TADIESoc.i ittt b et eer s 9-21
The Object Table Customer_objtab ... 9-21

Object Datatypes as a Template for Object Tables.......c.ccccviveiiicieie s 9-23
Object Identifiers and REfErENCESciiiiiii s 9-24
Object Tables with Embedded ODJECEScccviiiiiiieieccee e 9-24

Xii

The Object Table Stock_objtab. ... 9-25

The Object Table PurchaseOrder_objtab...........cccocveiiiiiiiiii e 9-25
INSEITING VAIUEBS ...t bbb ettt et see e 9-32

(O 1811 541 o To TSRO PR 9-35
Average Discount across all Line Items of all Purchase Orders...........ccccoevevvvvrvrnenn 9-36

(B 1CT =) o o OSSPSR TPTURURON 9-37
Manipulating Objects TRrough JAVaccccveiveiciiececese e s 9-37
Using oracle.sql.* Classes (Weak TYPING)ccvciverurireeeieiiinesnsieseniesieseeieseesessesreseessesseseeseeses 9-37
Using Strong Typing (SQLData or CustombDatum)cccciiiiininieniienene e 9-39
Generating Wrapper Classes With JPUBIISNEccccv e 9-39

HOW to Use the Wrapper CIaSSESccccviieieieiieisesie st sresse e snennes 9-40

Sample Program Using the SQLData Interface.........c.cccoceoiiiiniiiiiiiiiene e 9-41
Manipulating Objects with Oracle Objects for OLEccccoviviieiv i 9-42
1= [Tt (] o T - SO 9-43
INSEITING DATA.......oeieieiieieeet ettt ettt ae bt e e be e et ese e s s ebeeneebeabebesaenee e 9-44

L0 oo F= L [T [N - - RSP 9-46
Calling a Method FUNCLION.........ccoo i 9-47

Index

Xiii

Xiv

Send Us Your Comments

Oracle9i Application Developer’s Guide - Object-Relational Features, Release 1 (9.0.1)
Part No. A88878-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX - (650) 506-7227 Attn: Oracle Server Documentation
Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

Oracle9i Application Developer’s Guide - Object-Relational Features describes how to use
the object-relational features of the Oracle Server, Release 1 (9.0.1). Information in
this guide applies to versions of the Oracle Server that run on all platforms, and
does not include system-specific information.

This preface contains these topics:
« Audience

« Organization

« Related Documentation

« Conventions

« Documentation Accessibility

XVii

Audience

Oracle9i Application Developer’s Guide - Object-Relational Features is intended for
programmers developing new applications or converting existing applications to
run in the Oracle environment. The object-relational features are often used in
multimedia, Geographic Information Systems (GIS), and similar applications that
deal with complex data. The object views feature can be valuable when writing new
applications on top of an existing relational schema.

This guide assumes that you have a working knowledge of application
programming and that you are familiar with the use of Structured Query Language
(SQL) to access information in relational database systems.

Organization

Xviii

This document contains:

Chapter 1, "Introduction to Oracle Objects"

Introduces the key features and explains the advantages of the object-relational
model.

Chapter 2, "Basic Components of Oracle Objects"

Explains the basic concepts and terminology that you need to work with Oracle
Objects.

Chapter 3, "Object Support in Oracle Programmatic Environments”

Summarizes the object-relational features in SQL and PL/SQL; Oracle Call Interface
(OCI); Pro*C/C++; Oracle Objects For OLE; and Java, JDBC, and Oracle SQLJ. The
information in this chapter is high-level, for education and planning. The following
chapters explain how to use the object-relational features in greater detail.

Chapter 4, "Managing Oracle Objects"
Explains how to perform essential operations with objects and object types.

Chapter 5, "Applying an Object Model to Relational Data"

Explains object views, which allow you to develop object-oriented applications
without changing the underlying relational schema.

Chapter 6, "Advanced Topics for Oracle Objects"

Discusses features that you might need to manage storage and performance as you
scale up an object-oriented application.

Chapter 7, "Frequently Asked Questions About Using Oracle Objects"
Provides helpful hints for people getting started with object-oriented programming,
or coming to Oracle with a background in some other database system or
object-oriented language.

Chapter 8, "Design Considerations for Oracle Objects"

Explains the implementation and performance characteristics of Oracle’s
object-relational model.

Chapter 9, "A Sample Application Using Object-Relational Features"

Demonstrates how a relational program can be rewritten as an object-oriented one,
schema and all.

Related Documentation
For more information, see these Oracle resources:

« PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle
Corporation’s procedural extension to SQL

« Oracle9i Application Developer’s Guide - Fundamentals for general information
about developing applications

« Oracle9i JDBC Developer’s Guide and Reference and Oracle9i Java Stored Procedures
Developer’s Guide to use Oracle’s object-relational features through Java

« Oracle Call Interface Programmer’s Guide describes how to use the the Oracle Call
Interface (OCI) to build third-generation language (3GL) applications that
access the Oracle Server

« Pro*C/C++ Precompiler Programmer’s Guide for information on Oracle’s Pro*
series of precompilers, which allow you to embed SQL and PL/SQL in 3GL
application programs written in Ada, C, C++, COBOL, or FORTRAN

« Oracle Developer/2000 is a cooperative development environment that
provides several tools including a form builder, reporting tools, and a
debugging environment for PL/SQL. If you use Developer/2000, then refer to
the appropriate Oracle Tools documentation.

XiX

« Oracle9i SQL Reference and Oracle9i Database Administrator’s Guide for
information on SQL.

« Oracle9i Database Concepts for information on basic Oracle concepts

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cond

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: / / waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://technet. oracl e. comt menber shi p/ i ndex. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://technet. oracl e. com docs/ i ndex. ht m

Conventions

XX

This section describes the conventions used in the text and code examples of the
documentation set. It describes:

= Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles, Oracle9i Database Concepts
emphasis, syntax clauses, or placeholders. You can specify the parallel_clause.
Run Uol d_rel ease.SQL where old_release
refers to the release you installed prior to
upgrading.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width font)

lowercase
monospace
(fixed-width font)

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

You can back up the database using the BACKUP
command.

Query the TABLE_NAMEolumn in the USER _
TABLESdata dictionary view.

Specify the ROLLBACK_SEGMENTarameter.
Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and

provides examples of their use.

XXi

Convention

Meaning

Example

[]

{}

Other notation

Italics

UPPERCASE

| oner case

XXii

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

Italicized text indicates variables for
which you must supply particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

DECI MAL (digits [, precision])

{ENABLE | Dl SABLE}
{ENABLE | DI SABLE}
[COWPRESS | NOCOWPRESS]
CREATE TABLE ... AS subquery;
SELECT col 1, col2, ... , coln FROM
enpl oyees;

acct bal NUMBER(11, 2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em passwor d

SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_id FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_id FROM

sql plus hr/hr

Documentation Accessibility

Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program web site at

htt p: // waw or acl e. comi accessi bi | ity/
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

XXiii

XXiV

New Object-Relational Features

This section describes the new object-relational features of Oracle9i Release 1 (9.0.1).

XXV

Oracle9i New Object-Relational Features

XXVi

SQL type inheritance

Specialized versions of user-defined types can be defined as subtypes in a SQL
type hierarchy.

See Also: Chapter 2, section "Type Inheritance"

Object view hierarchies

Hierarchies can be created of object views based on some or all of the types in a
type hierarchy. Object view hierarchies simplify targeting a particular subtype
(and perhaps its subtypes) in queries and other operations.

See Also: Chapter 5, section "Object View Hierarchies"

Type evolution

User-defined SQL types can be changed, or evolved, instead of having to be
recreated.

See Also: Chapter 6, section "Type Evolution”

User-defined aggregate functions

Custom aggregate functions can be defined for working with complex data.

See Also: Chapter 6, section "User-Defined Aggregate Functions"

Generic and transient datatypes

External procedures can be given fields or parameters of a generic type that can
contain values of any scalar or user-defined type, making it unnecessary to
implement multiple versions of the same external procedure just to handle
multiple datatypes.

See Also: Chapter 6, section "Transient and Generic Types"

Function-based indexes

Function-based indexes can be built on type method functions.

See Also: Chapter 8, section "Function-Based Indexes on the
Return Values of Type Methods"

Multi-level collections

Collections (varrays and nested tables) can contain elements that are themselves
collections or have attributes that are.

See Also: Chapter 2 and Chapter 5

C++ interface to Oracle

A C++ interface (OCCI) to Oracle, built on top of OCI, enables you to use the
object-oriented features, native classes, and methods of the C++ programing
language to access the Oracle database.

See Also: Chapter 3, section "Oracle C++ Call Interface (OCCI)"

Java object storage

You can now create SQL types mapped to existing Java classes to provide
persistent storage for Java objects. Such SQL types are called SQL types of
Language Java, or SQLJ types.

See Also: Chapter 3, section "Java: JDBC, Oracle SQLJ, JPublisher,
and SQLJ Object Types"

XXVii

XXViii

1

Introduction to Oracle Objects

This chapter describes the advantages and key features of the Oracle9i
object-relational model. The chapter contains these topics:

« About Oracle Objects and Object Types
« Advantages of Objects
« Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-1

About Oracle Objects and Object Types

About Oracle Objects and Object Types

Oracle object types are user-defined data types that make it possible to model
complex real-world entities such as customers and purchase orders as unitary
entities—"objects"—in the database.

Oracle object technology is a layer of abstraction built on Oracle’s relational
technology. New object types can be created from any built-in database types
and/or any previously created object types, object references, and collection types.
Meta-data for user-defined types is stored in a schema that is available to SQL,
PL/SQL, Java, and other published interfaces.

Object types and related object-oriented features such as variable-length arrays and
nested tables provide higher-level ways to organize and access data in the database.
Underneath the object layer, data is still stored in columns and tables, but you are
able to work with the data in terms of the real-world entities—customers and
purchase orders, for example—that make the data meaningful. Instead of thinking
in terms of columns and tables when you query the database, you can simply select
a customer. Objects help you see the forest as well as the trees.

Internally, statements about objects are still basically statements about relational
tables and columns, and you can continue to work with relational data types and
store data in relational tables as before. But now you have the option to take
advantage of object-oriented features too. You can begin to use object-oriented
features while continuing to work with most of your data relationally, or you can go
over to an object-oriented approach entirely. For instance, you can define some
object data types and store the objects in columns in relational tables. You can also
create object views of existing relational data to represent and access this data
according to an object model. Or you can store object data in object tables, where
each row is an object.

Advantages of Objects

In general, the object-type model is similar to the class mechanism found in C++
and Java. Like classes, objects make it easier to model complex, real-world business
entities and logic, and the reusability of objects makes it possible to develop
database applications faster and more efficiently. By natively supporting object
types in the database, Oracle enables application developers to directly access the
data structures used by their applications. No mapping layer is required between
client-side objects and the relational database columns and tables that contain the
data. Object abstraction and the encapsulation of object behaviors also make
applications easier to understand and maintain.

1-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Advantages of Objects

Below are listed several other specific advantages that objects offer over a purely
relational approach.

Objects Can Encapsulate Operations Along with Data

Database tables contain only data. Objects can include the ability to perform
operations that are likely to be needed on that data. Thus a purchase order object
might include a method to sum the cost of all the items purchased. Or a customer
object might have methods to return the customer’s name, reference number,
address, or even his buying history and payment pattern. An application can
simply call the methods to retrieve the information.

Objects Are Efficient
Using object types makes for greater efficiency:

= Object types and their methods are stored with the data in the database, so they
are available for any application to use. Developers can benefit from work that
is already done and do not need to recreate similar structures in every
application.

= You can fetch and manipulate a set of related objects as a single unit. A single
request to fetch an object from the server can retrieve other objects that are
connected to it by object references. For example, you select a customer object
and get the customer’s name, phone, and the multiple parts of his address in a
single round-trip between the client and the server.

Objects Can Represent Part-Whole Relationships

In a relational system, it is awkward to represent complex part-whole relationships.
A piston and an engine have the same status in a table for stock items. To represent
pistons as parts of engines, you must create complicated schemas of multiple tables
with primary key-foreign key relationships. Object types, on the other hand, give
you a rich vocabulary for describing part-whole relationships. An object can have
other objects as attributes, and the attribute objects can have object attributes too.
An entire parts-list hierarchy can be built up in this way from interlocking object

types.

Objects Are Organic

Object types let you capture the "thingness" of an entity, that is, the fact that its parts
make up a whole. For example, an address may need to contain a number, street,
city, state, and zip code. If any of these elements is missing, the address is

Introduction to Oracle Objects 1-3

Key Features of the Object-Relational Model

incomplete. Unlike an address object type, a relational table cannot express that the
columns in the table collectively make up an organic whole.

Key Features of the Object-Relational Model

Oracle implements the object-type system as an extension of the relational model.
The object-type interface continues to support standard relational database
functionality such as queries (SELECT...FROM...WHER& commits, backup and
recovery, scalable connectivity, row-level locking, read consistency, partitioned
tables, parallel queries, cluster database, export/import, loader, and so forth. But
SQL and various programmatic interfaces to Oracle—including PL/SQL, Java,
Oracle Call Interface, Pro*C/C++, OO40—have been enhanced with new
extensions to support objects. The result is an object-relational model, which offers
the intuitiveness and economy of an object interface while preserving the high
concurrency and throughput of a relational database.

Type Inheritance

Type inheritance adds to the usefulness of objects by enabling you to create type
hierarchies by defining successive levels of increasingly specialized subtypes that
derive from a common ancestor object type. Derived subtypes inherit the features of
the parent object type but extend the parent type definition. For example,
specialized types of customers—a corporate Customer type or a government
Customer type—might be derived from a general Customer object type. The
specialized types can add new attributes or redefine methods inherited from the
parent. The resulting type hierarchy provides a higher level of abstraction for
managing the complexity of an application model.

Type Evolution

Using an ALTER TYPE statement, you can modify—"evolve"—an existing
user-defined type to make the following changes:

« Add and drop attributes

« Add and drop methods

« Modify a numeric attribute to increase its length, precision, or scale
« Modify a varying length character attribute to increase its length

« Change a type’s FI NAL and | NSTANTI ABLE properties

Dependencies of a type to be changed are checked using essentially the same
validations applied for a CREATE TYPE statement. If a type or any of its dependent

1-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Key Features of the Object-Relational Model

types fails the type validations, the ALTER TYPE statement rolls back; no new type
version is created, and dependent schemna objects remain unchanged.

Metadata for all tables and columns that use an altered type are updated for the
new type definition so that data can be stored in them in the new format. Existing
data can be converted to the new format either all at once or piecemeal, as it is
updated. In either case, data is always presented in the format of the new type
definition even if it is still stored in the format of the older one.

Object Views

In addition to natively storing object data in the server, Oracle allows the creation of
an object abstraction over existing relational data through the object view
mechanism. You access objects that belong to an object view in the same way that
you access row objects in an object table. Oracle materializes view objects of
user-defined types from data stored in relational schemas and tables. By using
object views, you can develop object-oriented applications without having to
modify existing relational database schemas.

Object views also let you exploit the polymorphism that a type hierarchy makes
possible. A polymorphic expression can take a value of the expression’s declared
type or any of that type’s subtypes. If you construct a hierarchy of object views that
mirrors some or all of the structure of a type hierarchy, you can query any view in
the hierarchy to access data at just the level of specialization you are interested in. If
you query an object view that has subviews, you can get back polymorphic
data—rows for both the type of the view and for its subtypes.

SQL Object Extensions

To support the new object-related features, SQL extensions—including new
DDL—have been added to create, alter, or drop object types; to store object types in
tables; and to create, alter, or drop object views. There are DML and query
extensions to support object types, references, and collections.

PL/SQL Object Extensions

PL/SQL is Oracle’s database programming language that is tightly integrated with
SQL. With the addition of user-defined types and other SQL types introduced in
Oracle8i, PL/SQL has been enhanced to operate on user-defined types seamlessly.
Thus, application developers can use PL/SQL to implement logic and operations on
user-defined types that execute in the database server.

Introduction to Oracle Objects 1-5

Key Features of the Object-Relational Model

Java Support for Oracle Objects

Oracle’s Java VM is tightly integrated with the RDBMS and supports access to
Oracle Objects through object extensions to Java Database Connectivity (JDBC),
which provides dynamic SQL, and SQLJ, which provides static SQL. Thus,
application developers can use the Java to implement logic and operations on
user-defined types that execute in the database server. With Oracle9i, you can now
also create SQL types mapped to existing Java classes to provide persistent storage
for Java objects.

External Procedures

Database functions, procedures, or member methods of an object type can be
implemented in PL/SQL, Java, or C as external procedures. External procedures are
best suited for tasks that are more quickly or easily done in a low-level language
such as C, which is more efficient at machine-precision calculation. External
procedures are always run in a safe mode outside the address space of the RDBMS
server. "Generic" external procedures can be written that declare one or more
parameters to be of a system-defined generic type. The generic type permits a
procedure that uses it to work with data of any built-in or user-defined type.

Object Type Translator

The Object Type Translator (OTT) provides client-side mappings to object type
schemas by using schema information from the Oracle data dictionary to generate
header files containing Java classes and C structures and indicators. These
generated header files can be used in host-language applications for transparent
access to database objects.

Client-Side Cache

Oracle provides an object cache for efficient access to persistent objects stored in the
database. Copies of objects can be brought into the object cache. Once the data has
been cached in the client, the application can traverse through these at memory
speed. Any changes made to objects in the cache can be committed to the database
by using the object extensions to Oracle® Call Interface programmatic interfaces.

Oracle Call Interface Object Extensions

Oracle Call Interface provides a comprehensive application programming interface
for application and tool developers seeking to use the object capabilities of Oracle.
Oracle Call Interface provides a run-time environment with functions to connect to
an Oracle server, and control transactions that access objects in the server. It allows
application developers to access and manipulate objects and their attributes in the

1-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Key Features of the Object-Relational Model

client-side object cache either navigationally, by traversing a graph of inter-connected
objects, or associatively by specifying the nature of the data through declarative SQL
DML. Oracle Call Interface also provides a number of functions for accessing
meta-data information at run-time about object types defined in the server. Such a
set of functions facilitates dynamic access to the object meta-data and the actual
object data stored in the database.

Pro*C/C++ Object Extensions

The Oracle Pro*C™ precompiler provides an embedded SQL application
programming interface and offers a higher level of abstraction than Oracle Call
Interface. Like Oracle Call Interface, the Pro*C precompiler allows application
developers to use the Oracle client-side object cache and the Object Type Translator
Utility. Pro*C supports the use of "C" bind variables for Oracle9i object types.
Furthermore, Pro*C provides new simplified syntax to allocate and free objects of
SQL types and access them by either SQL DML, or through the navigational
interface. Thus, it provides application developers many benefits, including
compile-time type checking of (client-side) bind variables against the schema in the
server, automatic mapping of object data in an Oracle9i server to program bind
variables in the client, and simple ways to manage and manipulate database objects
in the client process.

0040 Object Extensions

Oracle9i Oracle Objects For OLE (O040) is a set of COM Automation
interfaces/objects for connecting to Oracle9i database servers, executing queries
and managing the results. Automation interfaces in OO40 provide easy and
efficient access to Oracle9i features and can be used from virtually any
programming or scripting language that supports the Microsoft COM Automation
technology. This includes Visual Basic, Visual C++, VBA in Excel, VBScript and
JavaScript in 1S Active Server Pages.

Introduction to Oracle Objects 1-7

Key Features of the Object-Relational Model

1-8 Oracle9i Application Developer’s Guide - Object-Relational Features

2

Basic Components of Oracle Objects

This chapter provides basic information about working with objects. It explains
what object types, methods, and collections are and describes how to create and
work with a hierarchy of object types that are derived from a shared root type and
are connected by inheritance.

This chapter contains these topics:

Object-Relational Elements

Defining Object and Collection Types
Object Types and References
Methods

Collections

Type Inheritance

Functions and Predicates Useful with Objects

Basic Components of Oracle Objects 2-1

Object-Relational Elements

Object-Relational Elements

Object-relational functionality introduces a number of new concepts and resources.
These are briefly described in the following sections.

Object Types

An object type is a kind of datatype. You can use it in the same ways that you use
more familiar datatypes such as NUMBER or VARCHAR2. For example, you can
specify an object type as the datatype of a column in a relational table, and you can
declare variables of an object type. You use a variable of an object type to contain a
value of that object type. A value of an object type is an instance of that type. An
object instance is also called an object.

Object types also have some important differences from the more familiar datatypes
that are native to a relational database:

« A set of object types does not come ready-made with the database. Instead, you
define the object types you want.

« Object types are not unitary: they have parts, called attributes and methods.

Attributes hold the data about an object’s features of interest. For example, a
soldier object type might have the attributes nane, r ank, and seri al nunber.
An attribute has a declared datatype which can in turn be another object type.
Taken together, the attributes of an object instance contain that object’s data.

Methods are procedures or functions provided to enable applications to
perform useful operations on the attributes of the object type. Methods are an
optional element of an object type. They define the behavior of objects of that
type and determine what (if anything) that type of object can do.

« Object types are less generic than native datatypes. In fact, this is one of their
major virtues: you can define object types to model the actual structure of the
real-world entities—such as customers and purchase orders—that application
programs deal with. This can make it easier and more intuitive to manage the
data for these entities. In this respect object types are like Java and C++ classes.

You can think of an object type as a structural blueprint or template and an object as
an actual thing built according to the template.

Object types are database schema objects, subject to the same kinds of
administrative control as other schema objects (see Chapter 4, "Managing Oracle
Objects").

2-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Object-Relational Elements

You can use object types to model the actual structure of real-world objects. Object
types enable you to capture the structural interrelationships of objects and their
attributes instead of flattening this structure into a two-dimentional, purely
relational schema of tables and columns. With object types you can store related
pieces of data in a unit along with the behaviors defined for that data. Application
code can then retrieve and manipulate these units as objects.

Type Inheritance

Objects

Methods

Object Tables

You can specialize an object type by creating subtypes that have some added,
differentiating feature, such as an additional attribute or method. You create
subtypes by deriving them from a parent object type, which is called a supertype of
the derived subtypes.

Subtypes and supertypes are related by inheritance: as specialized versions of their
parent, subtypes have all the parent’s attributes and methods plus any
specializations that are defined in the subtype itself. Subtypes and supertypes
connected by inheritance make up a type hierarchy.

When you create a variable of an object type, you create an instance of the type: the
result is an object. An object has the attributes and methods defined for its type.
Because an object instance is a concrete thing, you can assign values to its attributes
and call its methods.

Methods are functions or procedures that you can declare in an object type
definition to implement behavior that you want objects of that type to perform.

A principal use of methods is to provide access to an object’s data. You can define
methods for operations that an application is likely to want to perform on the data
so that the application does not have to code these operations itself. To perform the
operation, an application calls the appropriate method on the appropriate object.

You can also define methods to compare object instances and to perform operations
that do not use any particular object’s data but instead are global to an object type.

An object table is a special kind of table in which each row represents an object.

Basic Components of Oracle Objects 2-3

Object-Relational Elements

Object Views

For example, the following statements create a per son object type and define an
object table for per son objects:

CREATE TYPE person AS (BIECT (
nane VARCHAR2(30) ,
phone VARCHAR2(20));

CREATE TABLE person_tabl e CF person;

You can view this table in two ways:

« Asasingle-column table in which each row is aper son object, allowing you to
perform object-oriented operations

« Asamulti-column table in which each attribute of the object type per son,
namely nare and phone, occupies a column, allowing you to perform
relational operations

For example, you can execute the following instructions:

I NSERT | NTO person_t abl e VALUES (
"John Smth",
"1- 800- 555-1212");

SELECT VALUH p) FROM person_tabl e p
WHERE p. nane = "John Smth";

The first statement inserts a per son object into per son_t abl e, treating per son_
t abl e as a multi-column table. The second selects from per son_t abl e asa
single-column table, using the VALUE function to return rows as object instances.

See Also: "VALUE" on page 2-49 for information on the VALUE
function

Row Objects and Column Objects

Obijects that occupy complete rows in object tables are called row objects. Objects that
occupy table columns in a larger row, or are attributes of other objects, are called
column objects.

An object view (see Chapter 5, "Applying an Object Model to Relational Data") is a
way to access relational data using object-relational features. It lets you develop
object-oriented applications without changing the underlying relational schema.

2-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Object-Relational Elements

REF Datatype

A REF is a logical "pointer" to a row object. It is an Oracle built-in datatype. REFs
and collections of REFs model associations among objects—particularly
many-to-one relationships—thus reducing the need for foreign keys. REFs provide
an easy mechanism for navigating between objects. You can use the dot notation to
follow the pointers. Oracle does joins for you when needed, and in some cases can
avoid doing joins.

You can use a REF to examine or update the object it refers to. You can also use a
REF to obtain a copy of the object it refers to. You can change a REF so that it points
to a different object of the same object type or assign it a null value.

Scoped REFs

In declaring a column type, collection element, or object type attribute to be a REF,
you can constrain it to contain only references to a specified object table. Such a REF
is called a scoped REF. Scoped REF types require less storage space and allow more
efficient access than unscoped REF types.

The following example shows REF column addr ess_r ef scoped to an object table
of addr ess_obj t yp.

CREATE TABLE peopl e (
id NUMBER(4)
nane_obj nane_obj typ,
address_ref REF address_objtyp SOOPE | S address_obj t ab,
phones_ntab phone_nt abt yp)
NESTED TABLE phones_ntab STCRE AS phone_store_ntab2 ;

A REF can be scoped to an object table of the declared type (addr ess_obj typ in
the example) or of any subtype of the declared type. If scoped to an object table of a
subtype, the REF column is effectively constrained to hold references only to
instances of the subtype (and its subtypes, if any) in the table.

Subtypes are a feature of type inheritance.

See Also: "Type Inheritance" on page 2-33

Dangling REFs

It is possible for the object identified by a REF to become unavailable—through
either deletion of the object or a change in privileges. Such a REF is called dangling.
Oracle SQL provides a predicate (called | S DANGLI NG) to allow testing REFs for
this condition.

Basic Components of Oracle Objects 2-5

Object-Relational Elements

Collections

Dereferencing REFs

Accessing the object referred to by a REF is called dereferencing the REF. Oracle
provides the DEREF operator to do this.

Dereferencing a dangling REF returns a null object.

Oracle also provides implicit dereferencing of REFs. For example, consider the
following:

CREATE TYPE person AS (BIECT (
nane VARCHARY(30),
nanager REF person);

If X represents an object of type PERSON, then the SQL expression:

X. nanager . namne,;

follows the pointer from the person X to another person, X’s manager, and retrieves
the manager’s name. (Following the REF like this is allowed in SQL, but not in
PL/SQL.)

Obtaining REFs

You can obtain a REF to a row object by selecting the object from its object table and
applying the REF operator. For example, you can obtain a REF to the purchase order
with identification number 1000376 as follows:

CEAQARE Order Ref REF to purchase_order;

SELECT REF(po) | NTO Q der Ref
FRCM pur chase_or der _t abl e po
WHERE po.id = 1000376;

The query must return exactly one row.

For more on storage of objects and REFs, see "Collections" on page 2-21.

For modeling one-to-many relationships, Oracle supports two collection datatypes:
varrays and nested tables. Collection types can be used anywhere other datatypes
can be used: you can have object attributes of a collection type, columns of a
collection type, and so forth. For example, you might give a purchase order object
type a nested table attribute to hold the collection of line items for a given purchase
order.

2-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Defining Object and Collection Types

See Also: "Collections" on page 2-21.

Defining Object and Collection Types
You use the CREATE TYPE statement to define object types and collection types.

The CREATE TYPE statements shown below define the object types per son,
lineitemlineitemtabl e, andpurchase order.lineitemtableisa
collection type—a nested table type. The pur chase_or der object type has an
attribute | i nei t ens of this type. Each row in this nested table is an object of type
lineitem

The indented elements nane, phone, i t em name, and so on in the CREATE TYPE
statements are attributes. Each has a datatype declared for it.

CREATE TYPE person AS (BIECT (
nane VARCHAR2(30) ,
phone VARCHAR2(20));

CREATE TYPE |inei tem AS CBIECT (
itemnane VARCHAR2(30),

quantity NUMBER
unit_price NMER12 2));

CREATE TYPE lineitemtabl e AS TABLE CF |ineitem

CREATE TYPE purchase_order AS CBIECT (

id NUMBER
cont act per son,
lineitens lineitemtable,

MEMBER FUNCTI ON
get_value RETURN NUMBER);

This is a simplified example. It does not show how to specify the body of the
method get _val ue, which you do with the CREATE OR REPLACE TYPE BODY
statement.

Defining an object type does not allocate any storage.

Basic Components of Oracle Objects 2-7

Object Types and References

Once they are defined as types, | i nei t em per son, and pur chase_or der can be
used in SQL statements in most of the same places you can use types like NUVBER
or VARCHAR2.

For example, you might define a relational table to keep track of your contacts:

CREATE TABLE contacts (
cont act per son
dat e DATE);

The CONTACTS table is a relational table with an object type as the datatype of one
of its columns. Objects that occupy columns of relational tables are called column
objects (see "Row Objects and Column Objects" on page 2-4).

Object Types and References
This section describes object types and references, including:
« Null Objects and Attributes
« Default Values for Objects and Collections
« Constraints for Object Tables
« Indexes for Object Tables and Nested Tables
« Triggers for Object Tables
= Rules for REF Columns and Attributes

=« Name Resolution

Null Objects and Attributes

A table column, object, object attribute, collection, or collection element is NULL if it
has been initialized to NULL or has not been initialized at all. Usually, a NULL value
is replaced by an actual value later on.

An object whose value is NULL is called atomically null. An atomically null object is
different from one that simply happens to have null values for all its attributes.
When all the attributes of an object are null, these attributes can still be changed,
and the object’s methods can be called. With an atomically null object, you can do
neither of these things.

For example, consider the CONTACTS table defined as follows:
CREATE TYPE person AS (BIECT (

2-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Object Types and References

nane VARCHAR2(30),

phone VARCHAR2(20));
CREATE TABLE contacts (

cont act per son

date DATE) ;

The statement

I NSERT | NTO contacts VALUES (
person (NULL, NUL),
'24 Jun 1997');

gives a different result from

INSERT INTO contacts VALUES (
NULL,
24.3un 1997');

In both cases, Oracle allocates space in CONTACTS for a new row and sets its DATE
column to the value given. But in the first case, Oracle allocates space for an object
in the PERSON column and sets each of the object’s attributes to NULL. In the second
case, Oracle sets the PERSON field itself to NULL and does not allocate space for an
object.

In some cases, you can omit checks for null values. A table row or row object cannot
be null. A nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null
collection is different from an empty one, that is, a collection containing no
elements.

Default Values for Objects and Collections

When you declare a table column to be of an object type or collection type, you can
include a DEFAULT clause. This provides a value to use in cases where you do not
explicitly specify a value for the column. The default clause must contain a literal
invocation of the constructor method for that object or collection.

A literal invocation of a constructor method is a call to the constructor method in
which any arguments are either literals, or further literal invocations of constructor
methods. No variables or functions are allowed.

For example, consider the following statements:
CREATE TYPE person AS (BIECT (

Basic Components of Oracle Objects 2-9

Object Types and References

id NUMBER
nane VARCHAR2(130) ,
address VARCHAR2(30));

CREATE TYPE peopl e AS TABLE CF per son;

The following is a literal invocation of the constructor method for the nested table
type PEOPLE:

people (person(1, 'John Smith', '5 Cheny Lang)),
person(2, 'Diane Smith’, NULL))

The following example shows how to use literal invocations of constructor methods
to specify defaults:

CREATE TABLE department
d no CHAR()PRIMARY KEY,
d_name CHAR(20),
d _mgr person DEFAULT person(1,John Doe’,NULL),

d_emps people DEFAULT people())
NESTED TABLEd_emps STOREAS d_emps _tab;

Note that the term PEOPLE() is a literal invocation of the constructor method for
an empty PEOPLE table.

Constraints for Object Tables
You can define constraints on an object table just as you can on other tables.

You can define constraints on the leaf-level scalar attributes of a column object, with
the exception of REFs that are not scoped.

The following examples illustrate the possibilities.

The first example places a primary key constraint on the SSNOcolumn of the object
table PERSON_EXTENT:

CREATE TYPE location (
building_no NUMBER,
cty VARCHAR2(40));

CREATE TYPE person (
ssno NUMBER,
name VARCHAR2(100),
address VARCHAR2(100),
office location);

2-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Object Types and References

CREATE TABLE person_extent CF person (
sSsno PR MARY KEY);

The DEPARTMENT table in the next example has a column whose type is the object
type LOCATI ON defined in the previous example. The example defines constraints
on scalar attributes of the LOCATI ON objects that appear in the DEPT_LOC column
of the table.

CREATE TABLE depart nent (
dept no HAR(5) PR MARY KEY,
dept_nane CHAR 20),
dept _ngr per son,
dept _| oc | ocat i on,
QONSTRAI NT dept _| oc_cons1
UN QUE (dept _| oc. bui | di ng_no, dept_Il oc.city),
QONSTRAI NT dept _| oc_cons2
CHECK (dept _|oc.city IS NOT NULL));

Indexes for Object Tables and Nested Tables

You can define indexes on an object table or on the storage table for a nested table
column or attribute just as you can on other tables.

You can define indexes on leaf-level scalar attributes of column objects, as shown in
the following example. You can only define indexes on REF attributes or columns if
the REF is scoped.

Here, DEPT_ADDR is a column object, and Cl TY is a leaf-level scalar attribute of
DEPT_ADDR that we want to index:

CREATE TABLE depart nent (
dept no HAR(5) PR MARY KEY,
dept_namre CHAR 20),
dept _addr address);

CREATE | NCEX i _dept _addr 1
ON departnent (dept_addr.city);

Wherever Oracle expects a column name in an index definition, you can also specify
a scalar attribute of an object column.

Basic Components of Oracle Objects 2-11

Object Types and References

Triggers for Object Tables

You can define triggers on an object table just as you can on other tables. You cannot
define a trigger on the storage table for a nested table column or attribute.

You cannot modify LOB values in a trigger body. Otherwise, there are no special
restrictions on using object types with triggers.

The following example defines a trigger on the PERSON_EXTENT table defined in an
earlier section:

CREATE TABLE novenent (
SsNno NUMBER

old office location,
new office location);

CREATE TRGER trigl
BEFCRE UPDATE
G- office
ON person_ext ent
FOR EACH ROV
WHEN new.office.city ='REDWOOD SHORES'
BEGIN
IF :new.office.building_no =600 THEN
INSERT INTO movement (ssno, old_office, new_office)
VALUES (:0ld.ssno, :0ld.office, :new.office);
ENDIF,
END;

Rules for REF Columns and Attributes

In Oracle, a REF column or attribute can be unconstrained or constrained using a
SCOPE clause or a referential constraint clause. When a REF column is
unconstrained, it may store object references to row objects contained in any object
table of the corresponding object type.

Oracle does not ensure that the object references stored in such columns point to
valid and existing row objects. Therefore, REF columns may contain object
references that do not point to any existing row object. Such REF values are referred
to as dangling references. Currently, Oracle does not permit storing object references
that contain a primary-key based object identifier in unconstrained REF columns.

A REF column may be constrained to be scoped to a specific object table. All the
REF values stored in a column with a SCOPE constraint point at row objects of the
table specified in the SCOPE clause. The REF values may, however, be dangling.

2-12 Oracle9i Application Developer’s Guide - Object-Relational Features

Object Types and References

A REF column may be constrained with a REFERENTI AL constraint similar to the
specification for foreign keys. The rules for referential constraints apply to such
columns. That is, the object reference stored in these columns must point to a valid
and existing row object in the specified object table.

v or PRI MARY KEY constraints cannot be specified for REF columns. However, you
can specify NOT NULL constraints for such columns.

Name Resolution

Oracle SQL lets you omit qualifying table names in some relational operations. For
example, if ASSI GNVENT is a column in PROJECTS and TASK is a column in DEPTS,
you can write:

SHECT *
FROM proj ect s
WHERE EX STS
(SELECT * FROM depts
WHERE assi gnmrent = task);

Oracle determines which table each column belongs to.

Using the dot notation, you can qualify the column names with table names or table
aliases to make things more maintainable:

SELECT * FROM proj ects WHERE EX STS
(SELECT * FROM depts WHERE proj ect s. assi gnnent = dept s. t ask) ;

SELECT * FROMprojects pj WHERE BEX STS
(SELECT * FROM depts dp WHERE pj . assi gnnent = dp. task);

In some cases, object-relational features require you to specify the table aliases.

When Table Aliases are Required

Using unqualified names can lead to problems. If you add an ASSI GNVENT column
to DEPTS and forget to change the query given above, Oracle automatically
recompiles the query such that the inner SELECT uses the ASSI GNVENT column
from the DEPTS table. This situation is called inner capture.

To avoid inner capture and similar problems resolving references, Oracle requires
you to use a table alias to qualify any dot-notational reference to methods or
attributes of objects. Use of a table alias is optional when referencing top-level
attributes of an object table directly, without using the dot notation.

Basic Components of Oracle Objects 2-13

Object Types and References

For example, the following statements define an object type PERSON and two tables.
pt ab1l is an object table for objects of type PERSON, and pt ab2 is a relational table
that contains a column of an object type.

CREATE TYPE person AS (BIECT (ssno VARCHAR(20));
CREATE TABLE ptabl CF person;
CREATE TABLE ptab2 (cl person);

The following queries show some correct and incorrect ways to reference attribute

ssno:

SHLECT ssno FROM pt abl ;. --Correct
SELECT cl. ssno FROM pt ab2 ;o --1llega
SELECT ptab2. cl.ssno FROM pt ab2 ;o --1llega
SH ECT p.cl.ssno FRMptab2 p ; --Correct

« Inthe first SELECT statement, ssno is the name of a column of pt ab1. It
references this top-level attribute directly, without using the dot notation, so no
table alias is required.

« Inthe second SELECT statement, ssno is the name of an attribute of the
PERSON object in the column named c 1. This reference uses the dot notation
and so requires a table alias, as shown in the fourth SELECT statement.

« The third SELECT uses the table name itself to qualify this the reference. This is
incorrect; a table alias is required.

You must qualify a reference to an object attribute or method with a table alias
rather than a table name even if the table name is itself qualified by a schema name.

For example, the following expression tries to refer to the scot t schema,
pr oj ect s table, assi gnnment column, and duedat e attribute of that column. But
the expression is incorrect because pr oj ect s is a table name, not an alias.

scott. proj ect s. assi gnrent . duedat e

The same requirement applies to attribute references that use REFs.

Table aliases should uniquely pick out the same table throughout a query and
should not be the same as schema names that could legally appear in the query.

Note: Oracle recommends that you define table aliases in all
UPDATE, DELETE, and SELECT statements and subqueries and use
them to qualify column references whether or not the columns
contain object types.

2-14 Oracle9i Application Developer’s Guide - Object-Relational Features

Methods

Restriction on Using User-Defined Types with a Remote Database

Methods

User-defined types (specifically, types declared with a SQL CREATE TYPE
statement, as opposed to types declared within a PL/SQL package) are currently
useful only within a single database. You cannot use a database link to do any of the
following:

« Connect to a remote database to query, insert, or update a user-defined type or
an object REF on a remote table

« Use database links within PL/SQL code to declare a local variable of a remote
user-defined type

« Convey a user-defined type argument or return value in a PL/SQL remote
procedure call.

Methods are functions or procedures that you can declare in an object type
definition to implement behavior that you want objects of that type to perform. An
application calls the methods to invoke the behavior.

For example, you might declare a method get _sum() to get a purchase order
object to return the total cost of its line items. The following line of code calls such a
method for purchase order po and returns the amount into sum | i ne_i t ens:

sumline_itens = po.get_sung);

The parentheses are required. Unlike with PL/SQL functions and procedures,
Oracle requires parentheses with all method calls, even ones that do not have
arguments.

Methods can be written in PL/SQL or virtually any other programming language.
Methods written in PL/SQL or Java are stored in the database. Methods written in
other languages, such as C, are stored externally.

Two general kinds of methods can be declared in a type definition:
« Member
« Static

There is also a third kind of method, called a constructor method, that the system
defines for every object type. You call a type’s constructor method to construct or
create an object instance of the type.

Basic Components of Oracle Objects 2-15

Methods

Member Methods

Member methods are the means by which an application gains access to an object
instance’s data. You define a member method in the object type for each operation
that you want an object of that type to be able to perform. For example, the method
get _sun() mentioned above that sums the total cost of a purchase order’s line
items operates on the data of a particular purchase order and is a member method.

Member methods have a built-in parameter named SELF that denotes the object
instance on which the method is currently being invoked. Member methods can
reference the attributes and methods of SELF without a qualifier. This makes it
simpler to write member methods. For example, the following code shows a
method declaration that takes advantage of SELF to omit qualification of the
attributes numand den:

CREATE TYPE Rational AS CBIECT (
num | NTECER

den | NTEEER
MEVBER PROCEDURE nor nal i ze,

o

CREATE TYPE BCODY Rational AS

MEMBER PROCEDURE nornal i ze |'S
g | NTEGER

BEA N
g := gcd(SELF. num SHLF. den);
g := gcd(num den); -- equivalent to previous |ine
num:= num/ g;
den :=den/ g;

END nor nal i ze;

B

SELF does not need to be explicitly declared, although it can be. It is always the first
parameter passed to the method. In member functions, if SELF is not declared, its
parameter mode defaults to | N. In member procedures, if SELF is not declared, its
parameter mode defaults to | N OUT.

You invoke a member method using the "dot" notation obj ect _

vari abl e. met hod() . The notation specifies first the object on which to invoke the
method and then the method to call. Any parameters occur inside the parentheses,
which are required.

2-16 Oracle9i Application Developer’s Guide - Object-Relational Features

Methods

Methods for Comparing Objects

The values of a scalar datatype such as CHAR or REAL have a predefined order,
which allows them to be compared. But an object type, such as a cust oner _t yp,
which can have multiple attributes of various datatypes, has no predefined axis of
comparison. To be able to compare and order variables of an object type, you must
specify a basis for comparing them.

Two special kinds of member methods can be defined for doing this: map methods
and order methods.

Map Methods

A map method is an optional kind of method that provides a basis for comparing
objects by mapping object instances to one of the scalar types DATE, NUVBER,
VARCHAR2 or to an ANSI SQL type such as CHARACTER or REAL. With a map
method, you can order any number of objects by calling each object’s map method
once to map that object to a position on the axis used for the comparison (a number
or date, for example).

From the standpoint of writing one, a map method is simply a parameterless
member function that uses the MAP keyword and returns one of the datatypes just
listed. What makes a map method special is that, if an object type defines one, the
method is called automatically to evaluate such comparisonsasobj 1 > obj 2
and comparisons implied by the DI STI NCT, GROUP BY, and ORDER BY clauses.
Where obj _1 and obj _2 are two object variables that can be compared using a
map method nap() , the comparison:

obj 1 >o0bj_2

is equivalent to:

obj _1.map() > obj _2. nap()

And similarly for other relational operators besides ">".

The following example defines a map method ar ea() that provides a basis for
comparing rectangle objects by their area:

CREATE TYPE Rectangl e typ AS CBIECT (
| en NUMBER
wid NUMBER
VAP MEMBER FUNCTI ON ar ea RETURN NUMBER

)y

Basic Components of Oracle Objects 2-17

Methods

CREATE TYPE BADY Rectangl e _typ AS
MAP MEMBER FUNCTI ON ar ea RETURN NUMBER | S
BEA N
RETURN | en * wi d;
END areaq;

BND,
An object type can declare at most one map method (or one order method). A
subtype can declare a map method only if its root supertype declares one.

Order Methods

Order methods make direct object-to-object comparisons. Unlike map methods,
they cannot map any number of objects to an external axis. They simply tell you
that the current object is less than, equal to, or greater than the other object that it is
being compared to, with respect to the criterion used by the method.

An order method is a function with one declared parameter for another object of the
same type. The method must be written to return either a negative number, zero, or
a positive number. The return signifies that the object picked out by the SELF
parameter is respectively less than, equal to, or greater than the other parameter’s
object.

As with map methods, an order method, if one is defined, is called automatically
whenever two objects of that type need to be compared.

Order methods are useful where comparison semantics may be too complex to use a
map method. For example, to compare binary objects such as images, you might
create an order method to compare the images by their brightness or number of
pixels.

An object type can declare at most one order method (or one map method). Only a
type that is not derived from another type can declare an order method: a subtype
cannot define one.

The following example shows an order method that compares customers by
customer ID:

CREATE TYPE Qust oner _typ AS (BIECT (
id NMER
nane VARCHAR2(20),
addr VARCHAR2(130),
CROER MEMBER FUNCTI ON nat ch (¢ Qustoner _typ) RETURN | NTEGER

2-18 Oracle9i Application Developer’s Guide - Object-Relational Features

Methods

CREATE TYPE BCADY Qustoner _typ AS
CROER MEMBER FUNCTI ON nat ch (¢ Qustoner _typ) RETURN INTEER | S
BEA N
IFid <c.id THEN
RETURN -1; -- any negative nunber wll do
BSFid>c.id THEN
RETURN 1; -- any positive nunber will do
B.SE
RETURN O;
END | F;

END,
BND,

Guidelines

A map method maps object values into scalar values and can order multiple values
by their position on the scalar axis. An order method directly compares values for
two particular objects.

You can declare a map method or an order method but not both. If you declare a
method of either type, you can compare objects in SQL and procedural statements.
However, if you declare neither method, you can compare objects only in SQL
statements and only for equality or inequality. (Two objects of the same type count
as equal only if the values of their corresponding attributes are equal.)

When sorting or merging a large number of objects, use a map method. One call
maps all the objects into scalars, then sorts the scalars. An order method is less
efficient because it must be called repeatedly (it can compare only two objects at a
time).

Comparison Methods in Type Hierarchies

In a type hierarchy, where definitions of specialized types are derived from
definitions of more general types, only the root type—the most basic type, from
which all other types are derived—can define an order method. If the root type does
not define one, its subtypes cannot define one either.

If the root type specifies a map method, any of its subtypes can define a map
method that overrides the map method of the root type. But if the root type does not
specify a map method, no subtype can specify one either.

So if the root type does not specify either a map or an order method, none of the
subtypes can specify either a map or order method.

Basic Components of Oracle Objects 2-19

Methods

See Also: "Type Inheritance" on page 2-33

Static Methods

Static methods are invoked on the object type, not its instances. You use a static
method for operations that are global to the type and do not need to reference the
data of a particular object instance. A static method has no SELF parameter.

You invoke a static method by using the "dot" notation to qualify the method call
with the name of the object type: t ype_name. net hod() .

Constructor Methods

Every object type has an implicit, system-defined constructor method, that is, a
method that makes a new object and sets up the values of its attributes. The
constructor method is a function; it returns the new object as its value. The name of
the constructor method is just the name of the object type. Its parameters have the
names and types of the object type’s attributes.

For example, suppose we have a type Cust oner _t yp:

CREATE TYPE Qust oner _typ AS (BIECT (
id NUMBER

nane VARCHAR2(20),

phone VARCHAR2(30),

);

The following example creates a new object instance of Cust oner _t yp, specifies
values for its attributes, and sets the object into a variable:

cust = Qustoner_typ(103, "Ravi", "1-800-555-1212")

The | NSERT statement in the next example inserts a customer object that has an
attribute of Addr ess_t yp object type. The constructor method Addr ess_typ

constructs an object of this type having the attribute values shown in the
parentheses:

2-20 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

Collections

Varrays

I NSERT | NTO Qust oner _obj t ab
VALUES (
1, 'Jean Nance’,
Address_typ(’ 2 Avocet Drive', 'Redwood Shores’, 'CA, '95054'),

)

Oracle supports two collection datatypes: varrays and nested tables.

« Avarray is an ordered collection of elements: the position of each element has an
index number, and you use this number to access particular elements. When
you define a varray, you specify the maximum number of elements it can
contain, although you can change this number later. Varrays are stored as
opaque objects (that is, RAWor BLOB).

« A nested table can have any number of elements: no maximum is specified in
the definition of the table; also, the order of the elements is not preserved. You
select, insert, delete, and so on, in a nested table just as you do with ordinary
tables. Elements of a nested table are actually stored in a separate storage table
that contains a column that identifies the parent table row or object to which
each element belongs.

If you need to store only a fixed number of items, or to loop through the elements in
order, or you will often want to retrieve and manipulate the entire collection as a
value, then use a varray.

If you need to run efficient queries on a collection, handle arbitrary numbers of
elements, or do mass insert/update/delete operations, then use a nested table.

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element’s position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to
be of variable size, which is why they are called varrays. You must specify a
maximum size when you declare the array type.

For example, the following statement declares an array type:
CREATE TYPE prices AS VARRAY(10) OF NUMBER(12, 2);

Basic Components of Oracle Objects 2-21

Collections

The VARRAYs of type PRI CES have no more than ten elements, each of datatype
NUMBER(12, 2) .

Creating an array type does not allocate space. It defines a datatype, which you can
use as:

« The datatype of a column of a relational table.
= An object type attribute.
« Thetype of a PL/SQL variable, parameter, or function return value.

A varray is normally stored in line, that is, in the same tablespace as the other data
in its row. If it is sufficiently large, Oracle stores it as a BLOB.

A varray cannot contain LOBs. This means that a varray also cannot contain
elements of a user-defined type that has a LOB attribute.

See Also: "Storage Considerations for Varrays" on page 8-15.

Nested Tables

A nested table is an unordered set of data elements, all of the same datatype. It has a
single column, and the type of that column is a built-in type or an object type. If the
column in a nested table is an object type, the table can also be viewed as a
multi-column table, with a column for each attribute of the object type.

For example, in the purchase order example, the following statement declares the
table type used for the nested tables of line items:

CREATE TYPE lineitemtabl e AS TABLE CF |ineitem

A table type definition does not allocate space. It defines a type, which you can use
as

« The datatype of a column of a relational table.
= An object type attribute.
« APL/SQL variable, parameter, or function return type.

When a column in a relational table is of nested table type, Oracle stores the nested
table data for all rows of the relational table in the same storage table. Similarly,
with an object table of a type that has a nested table attribute, Oracle stores nested
table data for all object instances in a single storage table associated with the object
table.

2-22 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

For example, the following statement defines an object table for the object type
PURCHASE_ORDER:

CREATE TABLE pur chase_order _tabl e G- purchase_or der
NESTED TABLE | ineitens STARE AS |ineitens table;

The second line specifies LI NEI TEMS_TABLE as the storage table for the
LI NEI TEMS attributes of all of the PURCHASE ORDER objects in PURCHASE _
ORDER_TABLE.

A convenient way to access the elements of a nested table individually is to use a
nested cursor.

See Also: See Oracle9i SQL Reference for information about nested
cursors, and see"Nested Tables" on page 8-16 for more information
on using nested tables.

Multi-Level Collection Types

Multi-level collection types are collection types whose elements are themselves
directly or indirectly another collection type. Possible multi-level collection types
are:

« Nested table of nested table type
= Nested table of varray type

« Varray of nested table type

« Varray of varray type

= Nested table or varray of a user-defined type that has an attribute that is a
nested table or varray type

Like ordinary, single-level collection types, multi-level collection types can be used
with columns in a relational table or with object attributes in an object table.

The following example creates a multi-level collection type that is a nested table of
nested tables. The example models a system of stars in which each star has a nested
table collection of the planets revolving around it, and each planet has a nested
table collection of its satellites.

CREATE TYPE satellite t AS CBIECT (
nane VARCHAR2(20),

di anet er NUMBER) ;

CREATE TYPE nt_sat _t AS TABLE CF satellite_t;

Basic Components of Oracle Objects 2-23

Collections

CREATE TYPE pl anet _t AS CBIECT (
nane VARCHAR(20)

nass NUMBER
satellites nt_sat_t);

CREATE TYPE nt_pl _t AS TABLE CF pl anet _t;

Nested Table Storage Tables

A nested table type column or object table attribute requires a storage table where
rows for all nested tables in the column are stored. Similarly with a multi-level
nested table collection of nested tables: the inner set of nested tables requires a
storage table just as the outer set does. You specify one by appending a second
nested-table storage clause.

For example, the following code creates a table st ar s that contains a column

pl anet s whose type is a multi-level collection (a nested table of an object type that
has a nested table attribute sat el | i t es). Separate nested table clauses are
provided for the outer pl anet s nested table and for the inner sat el | i t es one.

CREATE TABLE stars (
nane VARCHAR2(20),
age NUMBER
planets nt_pl _t)
NESTED TABLE pl anets STCRE AS pl anets_tab
(NESTED TABLE satel lites STCRE AS satellites_tab);

The example above can refer to the inner sat el | i t e nested table by name because
this nested table is a named attribute of an object. However, if the inner nested table
is not an attribute, it has no name. The keyword COLUVN_VALUE is provided for
this case: you use it in place of a name for an inner nested table. For example:

CREATE TYPE i nner_tabl e AS TABLE OF NUMBER
CREATE TYPE outer _table AS TABLE CF inner_tabl e;

CREATE TABLE tabl (
col 1 NUMBER
col 2 outer_tabl e)
NESTED TABLE col 2 STGRE AS col 2 ntab
(NESTED TABLE COLUMN_VALUE STGRE AS cv_nt ab);

2-24 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

Physical attributes for the storage tables can be specified in the nested table clause.
For example:

CREATE TABLE stars (
nane VARCHAR2(20),
age NUMBER
planets nt_pl _t)
NESTED TABLE pl anets STCRE AS pl anets_tab
(PRMARY KEY (NESTED TABLE | D nane)
CRGAN ZATI ON | NDEX QOWPRESS
NESTED TABLE satel lites STCRE AS satellites_tab);

Every nested table storage table contains a column, referenceable by NESTED _
TABLE | D, that keys rows in the storage table to the associated row in the parent
table. A parent table that is itself a nested table has two system-supplied ID
columns: one, referenceable by NESTED TABLE | D, that keys its rows back to rows
in its own parent table, and one hidden column referenced by the NESTED TABLE
| Dcolumn in its nested table children.

In the example above, nested table pl anet s is made an IOT (index-organized
table) by adding the ORGANI ZATI ON | NDEX clause and assigning the nested table
a primary key in which the first column is NESTED _TABLE | D. This column
contains the ID of the row in the parent table with which a storage table row is
associated. Specifying a primary key with NESTED TABLE | Das the first column
and index-organizing the table cause Oracle to physically cluster all the nested table
rows that belong to the same parent row, for more efficient access.

See Also: "Nested Table Storage" on page 8-16 and "Object Tables
with Embedded Objects" in Chapter 9

Each nested table needs its own table storage clause, so you must have as many
nested table storage clauses as you have levels of nested tables in a collection.

Varray Storage

Multi-level varrays are stored in one of two ways, depending on whether the varray
is a varray of varrays or a varray of nested tables.

« Inavarray of varrays, the entire varray is stored inline (that is, in the row itself)
unless it is too large (about 4000 bytes) or LOB storage is explicitly specified.

« Inavarray of nested tables, the entire varray is stored in a LOB, with only the
LOB locator stored in the row. There is no storage table associated with nested

Basic Components of Oracle Objects 2-25

Collections

table elements of a varray. The entire nested table collection is stored inside the
varray.

You can explicitly specify LOB storage for varrays. The following example does this
for the varray elements of a nested table. As the example also shows, you can use
the COLUWN_VAL UE keyword with varrays as well as nested tables.

CREATE TYPE val AS VARRAY(10) CF NUMBER
CREATE TYPE nt3 AS TABLE (F val,;

CREATE TABLE tab2 (c1 NUMBER c2 nt3)
NESTED TABLE c2 STCRE AS c2_tab2 nt
(VARRAY col um_val ue STGRE AS LB tab2 lob);

The example below shows explicit LOB storage specified for a varray of varray type:

CREATE TYPE t2 AS (BJECT (a NUMBER b val);
CREATE TYPE va2 AS VARRAY(2) CFt2;

CREATE TABLE tab5 (c1 NOMBER c2 va2)
VARRAY c2 STCRE AS tabs | ob;

Assignment and Comparison of Multi-Level Collections

As with single-level collections, both the source and the target must be of the same
declared data type in assignments of multi-level collections.

Items whose data types are collection types, including multi-level collection types,
cannot be compared.

Creating a VARRAY or Nested Table

You create an instance of a collection type in the same way that you create an
instance of any other object type, namely, by calling the type’s constructor method.
The name of a type’s constructor method is simply the name of the type. You
specify the elements of the collection as a comma-separated list of arguments to the
method.

Calling a constructor method with an empty list creates an empty collection of that
type. Note that an empty collection is an actual collection that happens to be empty;
it is not the same as a null collection.

2-26 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

Constructors for Multi-Level Collections

Like single-level collection types, multi-level collection types are created by calling
the respective type’s constructor method. Like the constructor methods for other
user-defined types, a constructor for a multi-level collection type is a
system-defined function that has the same name as the type and returns a new
instance of it—in this case, a new multi-level collection. Constructor parameters
have the names and types of the object type’s attributes.

The example below calls the constructor for the multi-level collection type nt _pl _
t . This type is a nested table of planets, each of which contains a nested table of
satellites as an attribute. The constructor for the outer nested table calls the

pl anet _t constructor for each planet to be created; each planet constructor calls
the constructor for the satellites nested table type to create its nested table of
satellites; and the satellites nested table type constructor calls thesatel lite_t
constructor for each satellite instance to be created.

INSERT INTO stars
VALUES(" Sun’, 23,
nt_pl_t(
pl anet _t (
" Nept une’,
10,
nt_sat_t(
satellite t(' Proteus’, 67),
satellite t('Triton', 82)

)
)
pl anet _t (
"Jupiter’,
189,
nt_sat_t(
satellite t("Gllisto,97),
satellite t(’ Ganynede’, 22)
)
)

Querying Collections

There are two general ways to query a table that contains a column or attribute of a
collection type. One way returns the collections nested in the result rows that

Basic Components of Oracle Objects 2-27

Collections

contain them. The other way distributes or unnests collections such that each
collection element appears on a row by itself.

Nesting Results of Collection Queries

In the following query, column pr oj ect s is a nested table collection of

proj ects_list_nt type. The proj ect s collection column appears in the
SELECT list like an ordinary, scalar column. Querying a collection column in the
SELECT list like this nests the elements of the collection in the result row with which
the collection is associated.

For example, the following query gets the name of each employee and the collection
of projects for that employee. The collection of projects is nested:

SELECT e. enpnane, e.projects
FRCM enpl oyees e;

’ Bob' PROJECTS LI ST_NT(14, 23, 144)
' Daphne’ PROJECTS LI ST NT(14, 35)

If project values or instances are a user-defined type—for example, Proj _t , with
two attributes, i d and name—a result row looks something like this:

PROJECTS LI ST NT(PRQJ_T(14, 'Wiite Horse'), PR _T(23, ’Excalibur’), ...)

Results are also nested if an object-type column in the SELECT list contains a
collection attribute, even if that collection is not explicitly listed in the SELECT list
itself. For example, the query SELECT * FROM enpl oyees would produce a
nested result.

Unnesting Results of Collection Queries

Not all tools or applications are able to deal with results in a nested format. To view
Oracle collection data using tools that require a conventional format, you must
unnest, or flatten, the collection attribute of a row into one or more relational rows.
You can do this by using a TABLE expression with the collection. A TABLE
expression enables you to query a collection in the FROMclause like a table. In effect,
you join the nested table with the row that contains the nested table.

The TABLE expression can be used to query any collection value expression,
including transient values such as variables and parameters.

2-28 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

Note: The TABLE expression takes the place of THE subquer y
expression. THE subquer y will eventually be deprecated.

Like the preceding example, the following query gets the name of each employee
and the collection of projects for that employee, but the collection is unnested:

SH ECT e. enpnane, p.*
FRCM enpl oyees e, TABLE e. proj ects) p;

' Bob’ 14
Bob’ 23
Bob’ 144
Daphne’ 14

"Daphne’ 35

The collection column in the TABLE expression uses a table alias to identify the
containing table. In the following example, the containing table is listed in the FROM
clause solely to introduce a table alias for use by the collection:

SHECT *
FRCM enpl oyees e, TABLE e. proj ects);

144
35

A TABLE expression in the FROMclause can also have its own table alias:

SHECT p.*
FRCM enpl oyees e, TABLE e. projects) p
WHERE e. enpi d = 100;

144

Basic Components of Oracle Objects 2-29

Collections

Or:

SH ECT e. enpnane, p.*
FRCM enpl oyees e, TABLE(e. projects) p
WHERE e. enpi d = 100;

The preceding examples produce rows only for employees who have projects. To
get rows for employees with no projects, you can use outer-join syntax:

SELECT e.*, p.*
FRCM enpl oyees e, TABLE e. projects)(+) p;

The (+) indicates that the dependent join between enpl oyees and e. proj ect s
should be NULL-augmented. That is, there will be rows of enpl oyees in the output
for which e. proj ect s is NULL or empty, with NULL values for columns
corresponding to e. pr oj ect s.

Unnesting Queries Containing Table Expression Subqueries
The preceding examples show a TABLE expression that contains the name of a
collection. Alternatively, a TABLE expression can contain a subquery of a collection.

The following example returns the collection of projects for the employee whose id
is 100.

SHECT *
FRCOM TABLE SELECT e. proj ects
FRCM enpl oyees e
WHERE e. enpi d = 100);

There are these restrictions on using a subquery in a TABLE expression:
« The subquery must return a collection type
« The SELECT list of the subquery must contain exactly one item

« The subquery must return only a single collection: that is, it cannot return
collections for multiple rows. For example, the subquery SELECT pr oj ect s
FROM enpl oyees succeeds in a TABLE expression only if table enpl oyees
contains just a single row. If the table contains more than one row, the subquery
produces an error.

2-30 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

Here is an example showing a TABLE expression used in the FROMclause of a
SELECT embedded in a CURSOR expression:

SELECT e. enpi d, QURSCR(SELECT * FROM TABLE €. proj ects))
FRCM enpl oyees e;

Unnesting Queries with Multi-Level Collections

Unnesting queries can be used with multi-level collections, too, for both varrays
and nested tables. The following example shows an unnesting query on a
multi-level nested table collection of nested tables. From a table st ar s in which
each star has a nested table of planets and each planet has a nested table of
satellites, the query returns the names of all satellites from the inner set of nested
tables.

SELECT t. nane
FROMstars s, TABLEs.planets) p, TABLEp.satellites) t;

See Also: "Viewing Object Data in Relational Form with
Unnesting Queries" on page 8-12

Performing DML Operations on Collections
Oracle supports the following DML operations on nested table columns:

« Inserts and updates that provide a new value for the entire collection
« Piecewise Updates

« Inserting new elements into the collection

« Deleting elements from the collection

« Updating elements of the collection.

Oracle does not support piecewise updates on VARRAY columns. However, VARRAY
columns can be inserted into or updated as an atomic unit.

For piecewise updates of nested table columns, the DML statement identifies the
nested table value to be operated on by using the TABLE expression.

The following DML statements demonstrate piecewise operations on nested table
columns.

| NSERT | NTO TABLE(SHLECT e. proj ects
FRoM enpl oyees e

Basic Components of Oracle Objects 2-31

Collections

WHERE e.eno = 100)
VALUES (1, Project Neptune’);

UPDATE TABLE(SELECT e.projects
FROM employeese
WHERE eeno=100)p
SET VALUE(p) = project_typ(1, 'Project Pluto’)
WHERE ppno=1;

DELETE FROM TABLE(SELECT e.projects
FROM employeee
WHERE eeno=100)p
WHERE ppno=1,

Performing DML on Multi-Level Collections

For multi-level nested table collections, DML can be done atomically, on the
collection as a whole, or piecewise, on selected elements. For multi-level varray
collections, DML operations can be done only atomically.

Collections as Atomic Data Iltems The section "Constructors for Multi-Level
Collections" above shows an example of inserting an entire multi-level collection
with an | NSERT statement. Multi-level collections can also be updated atomically
with an UPDATE statement. For example, suppose v_pl anet s is a variable declared
to be of the planets nested table type nt _pl _t . The following statement updates

st ar s by setting the pl anet s collection as a unit to the value of v_pl anet s.

UPDATE stars s
SET s.planets =:v_planets
WHERE s.name = 'Aurora Borealis’,

Piecewise Operations on Nested Tables Piecewise DML is possible only on nested
tables, not on varrays.

The following example shows a piecewise insert operation on the pl anet s nested
table of nested tables: the example inserts a new planet, complete with its own
nested table of satel lite t:

INSERT INTO TABLE(SELECT planets FROM stars WHERE name = 'Sun)
VALUES (Saturm, 56,
nt_sat._{(
satelite_t(Rhea!, 83)
)

2-32 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

)

The next example performs a piecewise insert into an inner nested table to add a
satellite for a planet. Like the preceding, this example uses a TABLE expression
containing a subquery that selects the inner nested table to specify the target for the
insert.

I NSERT | NTO TABLE(SH ECT p.satellites
FROM TABLE SELECT s. pl anet s
FROMstars s
WHERE s.name = "Sun’) p
WHERE p. nane = ' Uranus’)
VALUES (' Mranda’', 31);

Type Inheritance

Object types enable you to model the real-world entities such as customers and
purchase orders that your application works with. But this is just the first step in
exploiting the capabilities of objects. With objects, you can not only model an entity
such as a customer, you can also define different specialized types of customers in a
type hierarchy under the original type. You can then perform operations on a
hierarchy and have each type implement and execute the operation in a special way.

A type hierarchy is a sort of family tree of object types. It consists of a parent base
type, called a supertype, and one or more levels of child object types, called
subtypes, derived from the parent.

Subtypes in a hierarchy are connected to their supertypes by inheritance. This
means that subtypes automatically acquire the attributes and methods of their
parent type. It also means that subtypes automatically acquire any changes made to
these attributes or methods in the parent: any attributes or methods updated in a
supertype are updated in subtypes as well.

A subtype becomes a specialized version of the parent type by adding new
attributes and methods to the set inherited from the parent or by redefining
methods it inherits. Redefining an inherited methods gives a subtype its own way
of executing the method. Add to this that an object instance of a subtype can
generally be substituted for an object instance of any of its supertypes in code, and
you have polymorphism.

Polymorphism is the ability of a slot for a value in code to contain a value of either a
certain declared type or any of a range of the declared type’s subtypes. A method

Basic Components of Oracle Objects 2-33

Type Inheritance

called on whatever value occupies the slot may execute differently depending on
the value’s type because the various types might implement the method differently.

Types and Subtypes

A subtype can be derived from a supertype either directly, or indirectly through
intervening levels of other subtypes.

A subtype can directly derive only from a single supertype: it cannot derive jointly

from more than one. A supertype can have multiple sibling subtypes, but a subtype
can have at most one direct parent supertype. In other words, Oracle supports only
single inheritance, not multiple inheritance.

A subtype is derived from a supertype by defining a specialized variant of the
supertype. For example, from a cust orer object type you might derive the
specialized types govt _cust oner and cor p_cust omer . Each of these subtypes is
still at bottom a cust omer, but a special kind of customer. What makes a subtype
special and distinguishes it from its parent supertype is some change made in the
subtype to the attributes or methods that the subtype received from its parent.

A
Supertype of all

B
Subtype of A;
supertype of C

1

C
Subtype of B

D
Subtype of A;

An object type's attributes and methods make the type what it is: they are its
essential, defining features. If a cust oner object type has the three attributes

cust omer _i d, name, and addr ess and the method get _i d() , then any object
type that is derived from cust oner will have these same three attributes and a
method get _i d() . A subtype is a special case of its parent type, not a totally
different kind of thing. As such, it shares with its parent type the features that make
the general type what it is.

2-34 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

You can specialize the attributes or methods of a subtype in these ways:
« Add new attributes that its parent supertype does not have.

For example, you might specialize cor p_cust omer as a special kind of
cust omer by adding to its definition an attribute for account _ngr _i d. A
subtype cannot drop or change the type of an attribute it inherited from its
parent; it can only add new attributes.

= Add entirely new methods that the parent does not have.

« Change the implementation of some of the methods a subtype inherits from
its parent so that the subtype’s version executes different code from the
parent’s.

For example, a shape object type might define a method cal cul at e_ar ea() .
Two subtypes of shape, recti |l i near_shape andci r cul ar _shape, might
each implement this method in a different way.

Attributes and methods that a subtype gets from its parent type are said to be
inherited. This means more than just that the attributes and methods are patterned
on the parent’s when the subtype is defined. With object types, the inheritance link
remains live. Any changes made later on to the parent type’s attributes or methods
are also inherited so that the changes are reflected in the subtype as well. Unless a
subtype reimplements an inherited method, it always contains the same core set of
attributes and methods that are in the parent type, plus any attributes and methods
that it adds.

Remember, a child type is not a different type from its parent: it's a particular kind of
that type. If the general definition of cust omer ever changes, the definition of
cor p_cust ormer changes too.

The live inheritance relationship that holds between a supertype and its subtypes is
the source of both much of the power of objects and much of their complexity. It is a
very powerful feature to be able to change a method in a supertype and have the
change take effect in all the subtypes downstream just by recompiling. But this
same capability means that you have to think about such things as whether you
want to allow a type to be specialized or a method to be redefined. Similarly, it is a
powerful feature for a table or column to be able to contain any type in a hierarchy,
but then you must decide whether to allow this in a particular case, and you may
need to constrain DML statements and queries so that they pick out from the type
hierarchy just the range of types that you want. The following sections address
these aspects of working with objects.

Basic Components of Oracle Objects 2-35

Type Inheritance

FINAL and NOT FINAL Types and Methods

An object type’s definition determines whether subtypes can be derived from that
type. To permit subtypes, the object type must be defined as not final. This is done
by including the NOT FI NAL keyword in its type declaration. For example:

CREATE TYPE Person_typ AS CBJIECT

(ssn NUMBER
name VARCHAR2(30),
addr ess VARCHAR2(100)) NOT FI NAL;

The statement above declares Per son_t yp to be a not final type such that subtypes
of Per son_t yp can be defined. By default, an object type is final—that is, subtypes
cannot be derived from it.

You can change a final type to a not final type and vice versa with an ALTER TYPE
statement. For example, the following statement changes Per son_t yp to a final

type:
ALTER TYPE Person_typ H NAL;

You can alter a type from NOT FI NAL to FI NAL only if the target type has no
subtypes.

Methods, too, can be declared to be final or not final. If a method is declared to be
final, subtypes cannot override it by providing their own implementation. Unlike
types, methods are not final by default and must be explicitly declared to be final.

The following statement creates a not final type containing a final member function:

CREATE TYPE T AS CBIECT (...,

MEVBER PROCEDURE Print (),

FI NAL MEMBER FUNCTI ON f00(Xx NUMBER). . .
) NOT A NAL;

See Also: "Overriding Methods" on page 2-39

Creating Subtypes

You create a subtype using a CREATE TYPE statement that specifies the immediate
parent of the subtype with an UNDER parameter:

CREATE TYPE Student _typ UNDER Person_typ
(deptid NUMBER
naj or VARCHAR2(30)) NOT FI NAL;

2-36 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

The statement above creates St udent _t yp as a subtype of Per son_typ. Asa
subtype of Per son_t yp, St udent _t yp inherits all the attributes declared in or
inherited by Per son_t yp and any methods inherited by Per son_t yp or declared
in Per son_typ.

The statement that defines St udent _t yp specializes Per son_t yp by adding two
new attributes. New attributes declared in a subtype must have names that are
different from the names of any attributes or methods declared in any of its
supertypes, higher up in its type hierarchy.

A type can have multiple child subtypes, and these can also have subtypes. The
statement below creates another subtype Enpl oyee_t yp under Per son_t yp.

CREATE TYPE Enpl oyee_typ UNDER Person_typ
(enpi d NUMBER
myr VARCHAR2(30));

A subtype can be defined under another subtype. Again, the new subtype inherits
all the attributes and methods that its parent type has, both declared and inherited.
For example, the statement below defines a new subtype Part Ti neSt udent _typ
under St udent _t yp. The new subtype inherits all the attributes and methods of
St udent _t yp and adds another attribute.

CREATE TYPE Part Ti neSt udent _typ UNDER Student _typ
(' nurmhours NUMBER);

NOT INSTANTIABLE Types and Methods

A type can be declared to be NOT | NSTANTI ABLE. If a type is not instantiable,
there is no constructor (default or user-defined) for it, and you cannot instantiate
instances of that type (objects, in other words). You might use this option with types
that you intend to use solely as supertypes of specialized subtypes that you do
instantiate. For example:

CREATE TYPE Address_typ AS CGBIECT(...) NOT | NSTANTI ABLE NOT Fl NAL;
CREATE TYPE USAddress_typ UNDER Address_typ(...);
CREATE TYPE Intl Address_typ UNDER Address_typ(...);

A method can also be declared to be not instantiable. Use this option when you
want to declare a method in a type without implementing the method there. A type
that contains a non-instantiable method must itself be declared not instantiable. For
example:

CREATE TYPE T AS BIECT (

Basic Components of Oracle Objects 2-37

Type Inheritance

X NUMBER
NOT | NSTANTI ABLE MEMBER FUNCTI ON funcl() RETURN NUMBER
) NOT | NSTANTI ABLE NOT FI NAL;

A non-instantiable method serves as a placeholder. You might define a
non-instantiable method when you expect every subtype to override the method in
a different way. In such a case, there is no point in defining the method in the
supertype.

If a subtype does not provide an implementation for every inherited
non-instantiable method, the subtype itself, like the supertype, must be declared not
instantiable.

A non-instantiable subtype can be defined under an instantiable supertype.

You can alter an instantiable type to a non-instantiable type and vice versa with an
ALTER TYPE statement. For example, the following statement makes Exanpl e_
t yp instantiable:

ALTER TYPE Exanpl e_typ | NSTANTI ABLE,

You can alter an instantiable type to a non-instantiable type only if the type has no
columns, views, tables, or instances that reference that type, either directly, or
indirectly through another type or subtype.

You cannot declare a non-instantiable type to be FI NAL (which would be pointless
anyway).

Inheriting, Overloading, and Overriding Methods

A subtype automatically inherits all methods (both member and static methods)
declared in or inherited by its supertype.

A subtype can redefine methods it inherits, and it can also add new methods. It can
even add new methods that have the same names as methods it inherits, such that
the subtype ends up containing more than one method with the same name.

Giving a type multiple methods with the same name is called method overloading.
Redefining an inherited method to customize its behavior for a subtype is called
method overriding.

Overloading Methods

Overloading is useful when you want to provide a variety of ways of doing
something. For example, a shape object might overload a dr aw() method with
another dr aw() method that adds a text label to the drawing and contains an
argument for the label’s text.

2-38 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

When a type has several methods with the same name, the compiler uses the
methods’ signatures to tell them apart. A method's signature is a sort of structural
profile. It consists of the method's name and the number, types, and order of the
method's formal parameters (including the implicit sel f parameter). Methods that
have the same name but different signatures are called overloads (when they exist
in the same type).

Subtype MySubType_t yp in the following example creates an overload of f oo() :

CREATE TYPE M/Type_typ AS CBIECT (...,
MEMBER PROCEDURE foo(x NUVBER), ...) NOT FINAL;

CREATE TYPE M/SubType_typ UNDER M/ Type_typ (...,
MEMBER PROCEDURE f oo(x DATE),
STATIC ANCTION bar (...). ..

)

MySubType_t yp contains two versions of f oo() : one inherited version, with a
NUVBER parameter, and a new version with a DATE parameter.

Overriding Methods

Overriding redefines an inherited method to make it do something different in the
subtype. For example, a subtype ci r cul ar _shape derived from a shape
supertype might override a method cal cul at e_ar ea() to customize it
specifically for calculating the area of a circle.

When a subtype overrides a method, the new version is executed instead of the
overridden one whenever an instance of the subtype invokes the method. If the
subtype itself has subtypes, these inherit the override of the method instead of the
original version.

It’s possible that a supertype may contain overloads of a method that is overridden
in a subtype. Overloads of a method all have the same name, so the compiler uses
the signature of the subtype’s overriding method to identify the version in the
supertype to override. This means that, to override a method, you must preserve its
signature.

In the type definition, precede a method declaration with the OVERRI DI NG
keyword to signal that you are overriding the method. For example, in the
following code, the subtype signals that it is overriding method Pri nt () :

Basic Components of Oracle Objects 2-39

Type Inheritance

CREATE TYPE M/Type_typ AS GBIECT (...,

MEMBER PROCEDURE Print (),
FI NAL MEMBER FUNCTI ON f00(x NUMBER). . .

) NOT FI NAL;

CREATE TYPE M/SubType_typ UNDER M/Type_typ (...,

OVERR DI NG MEMBER PROCEDURE Print (),
)

As with new methods, you supply the declaration for an overridden method in a
CREATE TYPE BQODY statement.

Restrictions on Overriding Methods

You can override only methods that are not declared to be final in the
supertype.

Order methods may appear only in the root type of a type hierarchy: they may
not be redefined (overridden) in subtypes.

A static method in a subtype may not redefine a member method in the
supertype.

A member method in a subtype may not redefine a static method in the
supertype.

If a method being overridden provides default values for any parameters, then
the overriding method must provide the same default values for the same
parameters.

Dynamic Method Dispatch

As a result of method overriding, a type hierarchy can define multiple
implementations of the same method. For example, in a hierarchy of the types

2-40 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

ellipse_typ,circle_typ,sphere_typ,each type might define a method
cal cul at e_ar ea() differently.

ellipse_typ Base type
_ Subtype of
circle_typ ellipse_type
Subtype of
sphere_typ circlg_ptype

When such a method is invoked, the type of the object instance that invokes it is
used to determine which implementation of the method to use. The call is then
dispatched to that implementation for execution. This process of selecting a method
implementation is called "virtual" or "dynamic method dispatch" because it is done
at run time, not at compile time.

A method call is dispatched to the nearest implementation, working back up the
inheritance hierarchy from the current or specified type. If the call invokes a
member method of an object instance, the type of that instance is the current type,
and the implementation defined or inherited by that type is used. If the call invokes
a static method of a type, the implementation defined or inherited by that specified
type is used.

For example, if c1 is an object instance of ci r cl e_t yp, c1. f oo() looks first for
an implementation of f oo() defined incircl e_t yp. If none is found, it looks up
the supertype chain for an implementation in el | i pse_t yp. The fact that

spher e_t yp also defines an implementation is irrelevant because the type
hierarchy is searched only upwards, toward the top. Subtypes of the current type
are not searched.

Similarly, a call to a static method ci rcl e_t yp. bar () looks firstincircl e_typ
and then, if necessary, in the supertype(s) of ci r cl e_t yp. The subtype sphere_
t yp is not searched.

Substituting Types in a Type Hierarchy

In a type hierarchy, the subtypes are variant kinds of the root, base type. For
example, a St udent _t yp type and an Enpl oyee_t yp are kinds of a Per son_
t yp. The base type includes these other types.

Basic Components of Oracle Objects 2-41

Type Inheritance

When you work with types in a type hierarchy, sometimes you want to work at the
most general level and, for example, select or update all persons. But sometimes
you want to select or update only students, or only persons who are not students.

The (polymorphic) ability to select all persons and get back not only objects whose
declared type is Per son_t yp but also objects whose declared (sub)type is

St udent _typ or Enpl oyee_t yp is called substitutability. A supertype is
substitutable if one of its subtypes can substitute or stand in for it in a slot (a
variable, column, etc.) whose declared type is the supertype.

In general, types are substitutable. This is what you would expect, given that a
subtype is, after all, just a specialized kind of any of its supertypes. Formally,
though, a subtype is a type in its own right: it is not the same type as its supertype.
A column that holds all persons, including all persons who are students and all
persons who are employees, actually holds data of multiple types.

Substitutability comes into play in attributes, columns, and rows (namely, of an
object view or object table) declared to be an object type, a REF to an object type, or
a collection type.

In principle, object attributes, collection elements and REFs are always
substitutable: there is no syntax at the level of the type definition to constrain their
substitutability to some subtype. You can, however, turn off or constrain
substitutability at the storage level, for specific tables and columns.

See Also: "Turning Off Substitutability" and "Constraining
Substitutability" on page 2-45

Attribute Substitutability

Object attributes, collection elements and REFs are substitutable. Where My Type is
an object type:

« REF type attributes: An attribute defined as REF My Type can hold a REF to an
instance of My Type or to an instance of any subtype of My Type.

« Object type attributes: An attribute defined to be of type My Ty pe can hold an
instance of My Type or of any subtype of My Type.

« Collection type elements: A collection of elements of type My Type can hold
instances of My Type and instances of any subtype of My Type.

For example, the aut hor attribute is substitutable in the Book_t yp defined below:

CREATE TYPE Book_typ AS CBIECT
(title VARCHAR(30),

2-42 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

aut hor Person_typ /* substitutable */);

An instance of Book_t yp can be created by specifying a title string and an author
of Per son_t yp or of any subtype of Per son_t yp. The following example specifies
an author of type Enpl oyee_t yp:

Book_typ(My Oracle Experience’,
Employee_typ(12345, ‘Joe’, 'SF, 1111, NULL))

Attributes in general can be accessed using the dot notation. Attributes of a subtype
of a row or column’s declared type can be accessed with the TREAT function. For
example, in an object view Books_v of Book _t yp, you can use TREAT to get the
employee id of authors of Enpl oyee_t yp. (The aut hor column is of Per son_
typ.)

SELECT TREAT(aut hor AS Enpl oyee_typ). enpi d FROM Books_v;

See Also: "TREAT" on page 2-51

Column and Row Substitutability

Object type columns are substitutable, and so are object-type rows in object tables
and views. In other words, a column or row defined to be of type T can contain
instances of T and any of its subtypes.

For example, here again is the Per son_t yp type hierarchy introduced earlier:

CREATE TYPE Person_typ AS CBJIECT

(ssn NUMBER
name VARCHAR2(30),
addr ess VARCHAR2(100)) NOT Fl NAL;

CREATE TYPE Student _typ UNDER Person_typ
(deptid NUMBER
naj or VARCHAR2(30)) NOT FI NAL;

CREATE TYPE Part Ti neSt udent _typ UNDER Student _typ
(' nurmhours NUMBER) ;

An object table of Per son_t yp can contain rows of all three types. You insert an
instance of a given type using the constructor for that type in the VALUES clause of
the | NSERT statement:

CREATE TABLE persons CF Person_typ;

Basic Components of Oracle Objects 2-43

Type Inheritance

| NSERT | NTO per sons
VALUES (Person_typ(1243, 'Bob’, '121 Front X'));

| NSERT | NTO per sons
VALUES (Student _typ(3456, 'Joe’, '34 Miew, 12, "HSTCRY'));

I NSERT | NTO per sons
VALUES (PartTi neStudent _typ(5678, 'Tim, 13, 'PHYSICS, 20));

Similarly, in a relational table or view, a substitutable column of type Per son_t yp
can contain instances of all three types. The following example inserts a person, a
student, and a part-time student in the Per son_t yp column aut hor :

CREATE TABLE books (title varchar2(100), author Person_typ);

| NSERT | NTO books
VALUES(" An Aut obi ography’, Person_typ(1243, 'Bob’));

I NSERT | NTO books
VALUES(’ Busi ness Riules’, Student _typ(3456, 'Joe’, 12, 'H STCRY'));

| NSERT | NTO books
VALLES(" M xi ng School and Verk’,
Part Ti neS udent _typ(5678, 'Tim, 13, 'PHYS CS, 20));

A newly created subtype can be stored in any substitutable tables and columns of
its supertype, including tables and columns that existed before the subtype was
created.

Subtypes Having Supertype Attributes
A subtype can have an attribute that is a supertype. For example:

CREATE TYPE Student _typ UNDER Person_typ (..., advisor Person_typ);

However, columns of such types are not substitutable. Similarly, a subtype ST can
have a collection attribute whose element type is one of ST’s supertypes, but, again,
columns of such types are not substitutable. For example, if St udent _t yp had a
nested table or varray of Per son_t yp, the St udent _t yp column would not be
substitutable.

You can, however, define substitutable columns of subtypes that have REF
attributes that reference supertypes.

See Also: "Turning Off Substitutability" on page 2-45

2-44 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

REF Columns and Attributes

REF columns and attributes are substitutable in both views and tables. For example,
in either a view or a table, a column declared to be REF Per son_t yp can hold
references to instances of Per son_t yp or any of its subtypes.

Collection Elements

Collection elements are substitutable in both views and tables. For example, a
nested table of Per son_t yp can contain object instances of Per son_t yp or any of
its subtypes.

Turning Off Substitutability

You can turn off all substitutability on a column or attribute, including embedded
attributes and collections nested to any level, with the clause NOT SUBSTI TUTABLE
AT ALL LEVELS.

In the following example, the clause confines column book of a relational table to
storing only Per son_t yp instances as authors and disallows any subtype
instances:

CREATE TABLE cat al og (book Book_typ, price NUMBER

QGALUWN book NOT SUBSTI TUTABLE AT ALL LEVELS;
With object tables, the clause can be applied to the table as a whole, like this:
CREATE TABLE Student _books GF Book_typ NOT SUBSTI TUTABLE AT ALL LEVELS,
You can specify that the element type of a collection is not substitutable using
syntax like this:

CREATE TABLE depart nent s(nane VARCHAR2(10), enps enp_set)
NESTED TABLE (enps)
NOI SUBSTI TUTABLE AT ALL LEVELS STCRE AS ...
Some things to note about turning off substitutability:
« There is no mechanism to turn off substitutability for REF columns.

« Acolumn must be a top-level column for the clause NOT SUBSTI TUTABLE AT
ALL LEVELSto be applied to it: the clause cannot be applied to an object-type
attribute.

Basic Components of Oracle Objects 2-45

Type Inheritance

Constraining Substitutability

You can impose a constraint that limits the range of subtypes permitted in an object
column or attribute to a particular subtype in the declared type’s hierarchy. You do
thisusingan| S OF t ype constraint.

For example, the following statement creates a table of Book_t yp in which authors
are constrained to just those persons who are students:

CREATE TABLE S udent _books CF Book_typ
QOLUW author IS CF (ALY Sudent _typ);

Although the type Book _t yp allows authors to be of type Per son_t yp, the
column declaration imposes a constraint to store only instances of St udent _t yp.

You can only use the | S OF t ype operator to constrain row and column objects to
a single subtype (not several), and you must use the ONLY keyword, as in the
example above.

You can use either | S OF t ypeor NOT SUBSTI TUTABLE AT ALL LEVELSto
constrain an object column, but you cannot use both.

Assignments Across Types

The assignment rules described in this section apply to | NSERT/ UPDATE
statements, the RETURNI NGclause, function parameters, and PL/SQL variables.

Objects and REFs to Objects

Substitutability is the ability of a subtype to stand in for one of its supertypes. An
attempt to perform a substitution in the other direction—to substitute a supertype
for a subtype—raises an error at compile time.

An assignment of a source of type Sour ce_t yp to a target of type Tar get _typ
must be of one of the following two patterns:

« Casel: Source_typand Tar get _t yp are the same type
« Case 2: Sour ce_t yp isasubtype of Tar get _t yp ("widening")

Case 2 above illustrates widening. Widening is an assignment in which the declared
type of the source is more specific than the declared type of the target. For example,
assigning an employee instance to a variable of person type.

Intuitively, the idea here is that you are regarding an employee as a person. An
employee is a more narrowly defined, specialized kind of person, so you can put an
employee in a slot meant for a person if you do not mind ignoring whatever extra

2-46 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Inheritance

specialization makes that person an employee. All employees are persons, so a
widening assignment always works.

To illustrate widening, suppose that you have the following table:

TABLE T(perscol Person_typ, enpcol Enpl oyee typ, stucol Sudent_typ)

The assignments below show widening. The assignments are valid unless per scol
has been defined to be not substitutable.

UPDATE T set perscol = enpcol ;

PL/SQL:

decl are
varl Person_typ;
var 2 Enpl oyee_typ;
begi n
varl := var2;
end;

Besides widening, there is also narrowing. Narrowing is the reverse of widening. It
involves regarding a more general, less specialized type of thing, such as a person,
as a more narrowly defined type of thing, such as an employee. Not all persons are
employees, so a particular assignment like this works only if the person in question
actually happens to be an employee.

To do a narrowing assignment, you must use the TREAT function to explicitly
change the declared type of the source value to the more specialized target type, or
one of its subtypes, in the hierarchy. The TREAT function checks at runtime to verify
that the change can be made; then TREAT either makes the change or returns NULL
if the source value—the person in question—is not of the target type or one of its
subtypes.

For example, the following UPDATE statement sets values of Per son_t yp in
column per scol into column enpcol of Enpl oyee_t yp. For each value in

per scol , the assignment succeeds only if that person is also an employee. If
person George is not an employee, TREAT returns NULL, and the assignment returns
NULL.

UPDATE T set enpcol = TREAT(perscol AS Enpl oyee typ);

The following statement attempts to do a narrowing assignment without explicitly
changing the declared type of the source value. The statement will return an error:

UPDATE T set enpcol = perscol;

Basic Components of Oracle Objects 2-47

Type Inheritance

See Also: "TREAT" on page 2-51

Collection Assignments

In assignments of expressions of a collection type, the source and target must be of
the same declared type. Neither widening nor narrowing is permitted. However, a
subtype value can be assigned to a supertype collection.

For example, suppose we have the following collection types:

CREATE TYPE PersonSet AS TABLE CF Person_typ;

CREATE TYPE Student Set AS TABLE CF Student _typ;

Expressions of these different collection types cannot be assigned to each other, but
a collection element of S udent _t yp can be assigned to a collection of Per sonSet type:

decl are
varl PersonSet; var2 S udent Set;
el enl Person_typ; elen2 Student_typ;

begi n
varl := var2; /* ILLEGAL - coll ections not of sane type */
varl := PersonSet (eleni, elen?); /* LEGAL : Henent is of subtype */

Comparisons: Objects, REF Variables, and Collections

Comparing Object Instances

Two object instances can be compared if, and only if, they are both of the same
declared type, or one is a subtype of the other.

Map methods and order methods provide the mechanism for comparing objects.
You optionally define one or the other of these in an object type to specify the basis
on which you want objects of that type to be compared. If a method of either sort is
defined, it is called automatically whenever objects of that type or one of its
subtypes need to be compared.

If a type does not define either a map method or an order method, object variables
of that type can be compared only in SQL statements and only for equality or
inequality. (Two objects of the same type count as equal only if the values of their
corresponding attributes are equal.)

See Also: "Methods for Comparing Objects" on page 2-17

2-48 Oracle9i Application Developer’s Guide - Object-Relational Features

Functions and Predicates Useful with Objects

Comparing REF Variables

Two REF variables can be compared if, and only if, the targets that they reference
are both of the same declared type, or one is a subtype of the other.

Comparing Collections.
There is no mechanism for comparing collections.

Functions and Predicates Useful with Objects

VALUE

Several functions and predicates are particularly useful for working with objects
and references to objects:

= VALUE
- REF

- DEREF
= TREAT

« |S OF TYPE
« SYS TYPEID
Examples are given below and throughout this book.

In PL/SQL the VALUE, REF and DEREF functions can appear only in a SQL
statement.

In a SQL statement, the VALUE function takes as its argument a correlation variable
(table alias) for an object table or object view and returns object instances
corresponding to rows of the table or view. For example, the following statement
selects all persons whose name is John Smith:

SELECT VALUHp) FROM person_table p
WHERE p. nane = "John Smth";

The VALUE function may return instances of the declared type of the row or any of
its subtypes. For example, the following query returns all persons, including
students and employees, from an object view Per son_v of persons:

SELECT VALUHp) FROM Person_v p;

Basic Components of Oracle Objects 2-49

Functions and Predicates Useful with Objects

To retrieve only persons—that is, instances whose most specific type is person, use
the ONLY keyword to confine the selection to the declared type of the view or
subview that you are querying:

SELECT VALUE(p) FROM O\LY(Person_v) p;

The following example shows VALUE used to return object instance rows for

updating:

UPDATE TABLE SHLECT e. proj ects
FRCoM enpl oyees e
WHERE e.eno = 100) p

SET VALUE(p) = project_typ(1, "Project Piuto)
WHERE ppno=1;

REF
The REF function in a SQL statement takes as an argument a correlation name for
an object table or view and returns a reference (a REF) to an object instance from
that table or view. The REF function may return references to objects of the declared
type of the table/view or any of its subtypes. For example, the following statement
returns the references to all persons, including references to students and
employees:
SELECT REF(p) FROM Person_vp;
The example below returns a REF to the person (or student or employee) whose i d
attribute is 0001:
SELECT REF(p)
FROM Person_vp
WHERE p.id =0001;
DEREF

The DEREF function in a SQL statement returns the object instance corresponding to
a REF. The object instance returned by DEREF may be of the declared type of the
REF or any of its subtypes.

For example, the following statement returns person objects from the object view
Per son_v, including persons who are students and persons who are employees.

SELECT DEREF(REF(p)) FROM Person vp;

2-50 Oracle9i Application Developer’s Guide - Object-Relational Features

Functions and Predicates Useful with Objects

TREAT

The TREAT function attempts to modify the declared type of an expression to a
specified type—normally, a subtype of the expression’s declared type. In other
words, the function attempts to treat a supertype instance as a subtype instance—to
treat a person as a student, for example. Whether this can be done in a given case
depends on whether the person in question actually is a student (or student
subtype, such as a part-time student). If the person is a student, then the person is
returned as a student, with the additional attributes and methods that a student
may have. If the person happens not to be a student, TREAT returns NULL.

The two main uses of TREAT are:

« In narrowing assignments, to modify the type of an expression so that the
expression can be assigned to a variable of a more specialized type in the
hierarchy: in other words, to set a supertype value into a subtype.

= To access attributes or methods of a subtype of the declared type of a row or
column

The following example shows TREAT used in an assignment: a column of person
type is set into a column of employee type. For each row in per scol , TREAT
returns an employee type or NULL, depending on whether the given person
happens to be an employee.

UPDATE T set enpcol = TREAT(perscol AS Enpl oyee typ);

In the next example, TREAT returns all (and only) St udent _t yp instances from
object view Per son_v of type Per son_t yp, a supertype of St udent _t yp. The
statement uses TREAT to modify the type of p from Per son_t yp to St udent _t yp.

SELECT TREAT(VALUE(p) AS S udent _typ)
FROM Per son_v p;

For each p, The TREAT modification succeeds only if the most specific or specialized
type of the value of p is St udent _t yp or one of its subtypes. If p is a person who is
not a student, or if p is NULL, TREAT returns NULL in SQL.

You can also use TREAT to modify the declared type of a REF expression. For
example:

SELECT TREAT(RER(p) AS REF Student _typ)
FROM Per son_v p;

The example above returns REFs to all St udent _t yp instances. It returns NULL
REFs for all person instances that are not students.

Basic Components of Oracle Objects 2-51

Functions and Predicates Useful with Objects

Perhaps the most important use of TREAT is to access attributes or methods of a
subtype of a row or column’s declared type. For example, the following query
retrieves the maj or attribute of all persons who have this attribute (namely;,
students and part-time students). NULL is returned for persons who are not
students:

SELECT nane, TREAT(VALUE(p) AS Sudent typ).nmaj or naj or
FRCOM per sons p;

NAVE MR

Bob nul |
Joe H STCRY
Tim PHYS CS

The following query will not work because maj or is an attribute of St udent _typ
but not of Per son_t yp, the declared type of table per sons:
SELECT nane, VALUEp).naj or naj or

FROM per sons p;

A substitutable object table or column of type T has a hidden column for every
attribute of every subtype of T. These hidden columns are not listed by a DESCRI BE
statement, but they contain subtype attribute data. TREAT enables you to access
these columns.

The following example shows TREAT used to access a subtype method:

SELECT nane, TREAT(VALUE(p) AS Sudent typ).najor() najor
FRCOM per sons p;

See Also: "Assignments Across Types" on page 2-46 for
information on using TREAT in assignments.

Currently, TREAT is supported only for SQL; it is not supported for PL/SQL.

IS OF type

Thel S OF type predicate tests object instances for the level of specialization of
their type.

For example, the following query retrieves all student instances (including any
subtypes of students) stored in the persons table.

SELECT VALUH p) FROM persons p

2-52 Oracle9i Application Developer’s Guide - Object-Relational Features

Functions and Predicates Useful with Objects

WHERE VALUE(p) |S CGF (Sudent _typ);

Sudent _typ(’ Joe’, 3456, 12, 10000)
PartTi neStudent _typ(’ Tim, 5678, 13, 1000, 20)

For any object that is not of a specified subtype, or a subtype of a specified subtype,
I S OF returns FALSE. (Subtypes of a specified subtype are just more specialized
versions of the specified subtype). If you want to exclude such subtypes, you can
use the ONLY keyword. This keyword causes | S OF to return FALSE for all types
except the specified type(s).

For example, the query below retrieves only books authored by students. It
excludes books authored by any student subtype (such as Par t Ti neSt udent _

typ).

SHECT b.title title, b.author author FROM books b
WHERE b.author IS GF (ALY Student _typ);

Busi ness Rl es Student _typ(’'Joe’, 3456, 12, 10000)

In the next example, the statement tests objects in object view Per son_v, which
contains persons, employees, and students, and returns REFs just to objects of the
two specified person subtypes Enpl oyee_t yp and St udent _t yp (and their
subtypes, if any):

SELECT REF(p) FROM Person_v P
WHERE VALUE(p) |'S GF (BEnpl oyee typ, Sudent _typ);

The statement below returns only students whose most specific or specialized type
is St udent _t yp. If the view contains any objects of a subtype of St udent _

t yp—for example, Par t Ti neSt udent _t yp—these are excluded. The example
uses the TREAT function to convert objects that are students to St udent _t yp from
the declared type of the view (namely, Per son_t yp):

SELECT TREAT(VALUE(p) AS Sudent _t)
FROM Person_v p
WHERE VALUE(p) |S GF(Q\LY Student _t);

To test the type of the object that a REF points to, you can use the DEREF function to
dereference the REF before testing withthe | S OF t ype predicate.

Basic Components of Oracle Objects 2-53

Functions and Predicates Useful with Objects

For example, if Per sRef Col is declared to be REF Per son_t yp, you can get just
the rows for students as follows:

SELECT * FROM vi ew
WHERE DERE(PersRef @ol) 1S OF (S udent _typ);

I S OFis currently supported only for SQL, not for PL/SQL.

SYS_TYPEID

The SYS_TYPEI D function can be used in a query to return the typeid of the most
specific type of the object instance passed to the function as an argument.

The most specific type of an object instance is the type to which the instance
belongs that is farthest removed from the root type. For example, if Tim is a
part-time student, he is also a student and a person, but his most specific type is
part-time student.

The function returns the typeids from the hidden type discriminant column that is
associated with every substitutable column. The function returns a null typeid for a
final, root type.

The syntax of the function is:
SYS TYPH 0 obj ect_t ype val ue)
Function SYS_TYPEI D may be used only with arguments of an object type. Its

primary purpose is to make it possible to build an index on a hidden type
discriminant column.

All types that do belong to a type hierarchy are assigned a non-null typeid that is
unique within the type hierarchy. Types that do not belong to a type hierarchy have
a null typeid.

Every type except a final, root type belongs to a type hierarchy. A final, root type
has no types related to it by inheritance:

« It cannot have subtypes derived from it (because it’s final)

« Itis notitself derived from some other type (it’s a root type), so it does not have
any supertypes.

See Also: "Hidden Columns for Substitutable Columns and
Tables" on page 6-3 for more information about type discriminant
columns

2-54 Oracle9i Application Developer’s Guide - Object-Relational Features

Functions and Predicates Useful with Objects

For an example of SYS_TYPEI D, consider the substitutable object table per sons, of
Per son_t yp. Person_t yp is the root type of a hierarchy that has St udent _typ
as a subtype and Par t Ti meSt udent _t yp as a subtype of St udent _t yp:

CREATE TABLE persons CF Person_typ;

| NSERT | NTO per sons
VALUES (Person_typ(1243, 'Bob’, '121 Front X'));

I NSERT | NTO per sons
VALLES (Student _typ(3456, 'Joe’, '34 Mew, 12, "HSTCRY'));

| NSERT | NTO per sons
VALUES (PartTi neStudent _typ(5678, 'Tim, 13, 'PHYSCS, 20));

The following query uses SYS_TYPEI D. It gets the name attribute and typeid of the
object instances in the per sons table. Each of the instances is of a different type:

SELECT nane, SYS TYPH O(VALUK p)) typei d FROM persons p;

NAME TYPEID
Bob 01
Joe 02
Tim 03

The query below returns the most specific types of authors stored in the books table.
aut hor is a substitutable column of Per son_t yp:

SELECT b.title, b.author.nane, SYS TYPH X author) typei d FROM books b;

T TLE AUTHR TYPE D
An Aut obi ogr aphy Bob 01
Busi ness Rul es Joe 02
M xi ng School and Vérk Tim 03

See Also: "Hidden Columns for Substitutable Columns and
Tables" in Chapter 6 for information about the type discriminant
and other hidden columns

Basic Components of Oracle Objects 2-55

Functions and Predicates Useful with Objects

2-56 Oracle9i Application Developer’s Guide - Object-Relational Features

3

Object Support in Oracle Programmatic

Environments

In Oracle9i, you can create object types with SQL data definition language (DDL)
commands, and you can manipulate objects with SQL data manipulation language
(DML) commands. Object support is built into Oracle’s application programming
environments:

SQL

PL/SQL

Oracle Call Interface (OCI)

Oracle C++ Call Interface (OCCI)

Pro*C/C++

Oracle Type Translator (OTT)

Oracle Objects For OLE (O040)

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Object Support in Oracle Programmatic Environments 3-1

sQL

SQL
Oracle SQL DDL provides the following support for object types:
« Defining object types, nested tables, and arrays
« Specifying privileges
« Specifying table columns of user-defined types
« Creating object tables
Oracle SQL DML provides the following support for object types:
« Querying and updating objects and collections

« Manipulating REFs

See Also: For a complete description of Oracle SQL syntax, see
Oracle9i SQL Reference.

PL/SQL

Object types and subtypes can be used in PL/SQL procedures and functions in
most places where built-in types can appear.

The parameters and variables of PL/SQL functions and procedures can be of object
types.

You can implement the methods associated with object types in PL/SQL. These
methods (functions and procedures) reside on the server as part of a user’s schema.

See Also: For a complete description of PL/SQL, see the PL/SQL
User’s Guide and Reference.

Oracle Call Interface (OCl)

OCl is a set of C library functions that applications can use to manipulate data and
schemas in an Oracle database. OCI supports both traditional 3GL and
object-oriented techniques for database access, as explained in the following
sections.

An important component of OCI is a set of calls to manage a workspace called the
object cache. The object cache is a memory block on the client side that allows
programs to store entire objects and to navigate among them without additional
round trips to the server.

3-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Oracle Call Interface (OCI)

The object cache is completely under the control and management of the application
programs using it. The Oracle server has no access to it. The application programs
using it must maintain data coherency with the server and protect the workspace
against simultaneous conflicting access.

OCI provides functions to
= Access objects on the server using SQL.

« Access, manipulate and manage objects in the object cache by traversing
pointers or REFs.

« Convert Oracle dates, strings and numbers to C data types.
= Manage the size of the object cache’s memory.

OCI improves concurrency by allowing individual objects to be locked. It improves
performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C datatypes
corresponding to a Oracle object types.

See Also: Oracle Call Interface Programmer’s Guide for more
information about using objects with OCI

Associative Access in OCI Programs

Traditionally, 3GL programs manipulate data stored in a relational database by
executing SQL statements and PL/SQL procedures. Data is usually manipulated on
the server without incurring the cost of transporting the data to the client(s). OCI
supports this associative access to objects by providing an API for executing SQL
statements that manipulate object data. Specifically, OCI enables you to:

« Execute SQL statements that manipulate object data and object type schema
information

« Pass object instances, object references (REFs), and collections as input variables
in SQL statements

« Return object instances, REFs, and collections as output of SQL statement
fetches

« Describe the properties of SQL statements that return object instances, REFs,
and collections

« Describe and execute PL/SQL procedures or functions with object parameters
or results

Object Support in Oracle Programmatic Environments 3-3

Oracle Call Interface (OCI)

« Synchronize object and relational functionality through enhanced commit and
rollback functions

See Also: "Associative Access in Pro*C/C++" on page 3-8

Navigational Access in OCI Programs

In the object-oriented programming paradigm, applications model their real-world
entities as a set of inter-related objects that form graphs of objects. The relationships
between objects are implemented as references. An application processes objects by
starting at some initial set of objects, using the references in these initial objects to
traverse the remaining objects, and performing computations on each object. OCI
provides an API for this style of access to objects, known as navigational access.
Specifically, OCI enables you to:

« Cache objects in memory on the client machine

« De-reference an object reference and pin the corresponding object in the object
cache. The pinned object is transparently mapped in the host language
representation.

= Notify the cache when the pinned object is no longer needed

« Fetch a graph of related objects from the database into the client cache in one
call

« Lock objects
« Create, update, and delete objects in the cache

« Flush changes made to objects in the client cache to the database

See Also: "Navigational Access in Pro*C/C++" on page 3-8

Object Cache

To support high-performance navigational access of objects, OCI runtime provides
an object cache for caching objects in memory. The object cache supports references
(REFs) to database objects in the object cache, the database objects can be identified
(that is, pinned) through their references. Applications do not need to allocate or
free memory when database objects are loaded into the cache, because the object
cache provides transparent and efficient memory management for database objects.

3-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Oracle Call Interface (OCI)

Also, when database objects are loaded into the cache, they are transparently
mapped into the host language representation. For example, in the C programming
language, the database object is mapped to its corresponding C structure. The object
cache maintains the association between the object copy in the cache and the
corresponding database object. Upon transaction commit, changes made to the
object copy in the cache are propagated automatically to the database.

The object cache maintains a fast look-up table for mapping REFs to objects. When
an application de-references a REF and the corresponding object is not yet cached in
the object cache, the object cache automatically sends a request to the server to fetch
the object from the database and load it into the object cache. Subsequent
de-references of the same REF are faster because they become local cache access and
do not incur network round-trips. To notify the object cache that an application is
accessing an object in the cache, the application pins the object; when it is finished
with the object, it unpins it. The object cache maintains a pin count for each object in
the cache. The count is incremented upon a pin call and decremented upon an
unpin call. When the pin count goes to zero, it means the object is ho longer needed
by the application. The object cache uses a least-recently used (LRU) algorithm to
manage the size of the cache. When the cache reaches the maximum size, the LRU
algorithm frees candidate objects with a pin count of zero.

Building an OCI Program that Manipulates Objects

When you build an OCI program that manipulates objects, you must complete the
following general steps:

1. Define the object types that correspond to the application objects.

2. Execute the SQL DDL statements to populate the database with the necessary
object types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you
must represent these types in the C host language format. You can do this by
representing the object types as C structs. You can use a tool provided by Oracle
called the Object Type Translator (OTT) to generate the C mapping of the object
types. The OTT puts the equivalent C structs in header (*.h) files. You include
these *.h files in the *.c files containing the C functions that implement the
application.

4. Construct the application executable by compiling and linking the application’s
*.c files with the OCI library.

Object Support in Oracle Programmatic Environments 3-5

Oracle C++ Call Interface (OCCI)

See Also: "OCI Tips and Techniques for Objects" on page 6-20

Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is a C++ API that enables you to use the
object-oriented features, native classes, and methods of the C++ programing
language to access the Oracle database.

The OCCI interface is modeled on the JDBC interface and, like the JDBC interface, is
easy to use. OCClI itself is built on top of OCI and provides the power and
performance of OCI using an object-oriented paradigm.

OCl is a C API to the Oracle database. It supports the entire Oracle feature set and
provides efficient access to both relational and object data, but it can be challenging
to use—particularly if you want to work with complex, object datatypes. Object
types are not natively supported in C, and simulating them in C is not easy. OCCI
addresses this by providing a simpler, object-oriented interface to the functionality
of OCI. It does this by defining a set of wrappers for OCI. By working with these
higher-level abstractions, developers can avail themselves of the underlying power
of OCI to manipulate objects in the server through an object-oriented interface that
is significantly easier to program.

The Oracle C++ Call Interface, OCCI, can be roughly divided into three sets of
functionalities, namely:

= Associative relational access
= Associative object access

« Navigational access

OCCI Associative Relational and Object Interfaces

The associative relational APl and object classes provide SQL access to the database.
Through these interfaces, SQL is executed on the server to create, manipulate, and
fetch object or relational data. Applications can access any dataype on the server,
including the following:

« Large objects
= Objects/Structured types
« Arrays

= References

3-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Pro*C/C++

The OCCI Navigational Interface

Pro*C/C++

The navigational interface is a C++ interface that lets you seamlessly access and
modify object-relational data in the form of C++ objects without using SQL. The
C++ objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate
through references from that object to other objects. Server objects are materialized
as C++ class instances in the application cache.

An application can use OCCI object navigational calls to perform the following
functions on the server’s objects:

« Create, access, lock, delete, and flush objects

« Getreferences to the objects and navigate through them

See Also: Oracle C++ Call Interface Programmer’s Guide for a
complete account of how to build applications with the Oracle C++
API

The Oracle Pro*C/C++ precompiler allows programmers to use user-defined
datatypes in C and C++ programs.

Pro*C developers can use the Object Type Translator to map Oracle object types and
collections into C datatypes to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and
automatic type conversion from database types to C datatypes.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two
ways to access objects in the server:

« SQL statements and PL/SQL functions or procedures embedded in Pro*C
programs.

= Aninterface to the object cache (described under "Oracle Call Interface (OCI)"
on page 3-2), where objects can be accessed by traversing pointers, then
modified and updated on the server.

See Also: For a complete description of the Pro*C precompiler,
see Pro*C/C++ Precompiler Programmer’s Guide.

Object Support in Oracle Programmatic Environments 3-7

Pro*C/C++

Associative Access in Pro*C/C++
For background information on associative access, see "Associative Access in OCI
Programs" on page 3-3.
Pro*C/C++ offers the following capabilities for associative access to objects:
= Support for transient copies of objects allocated in the object cache

« Support for transient copies of objects referenced as input host variables in
embedded SQL | NSERT, UPDATE, and DELETE statements, or in the WHERE
clause of a SELECT statement

= Support for transient copies of objects referenced as output host variables in
embedded SQL SELECT and FETCH statements

« Support for ANSI dynamic SQL statements that reference object types through
the DESCRI BE statement, to get the object’s type and schema information

Navigational Access in Pro*C/C++

For background information on navigational access, see "Navigational Access in
OCI Programs"” on page 3-4.

Pro*C/C++ offers the following capabilities to support a more object-oriented
interface to objects:

« Support for de-referencing, pinning, and optionally locking an object in the
object cache using an embedded SQL OBJECT DEREF statement

« Allowing a Pro*C/C++ user to inform the object cache when an object has been
updated or deleted, or when it is no longer needed, using embedded SQL
OBJECT UPDATE, OBJECT DELETE, and OBJECT RELEASE statements

« Support for creating new referenceable objects in the object cache using an
embedded SQL OBJECT CREATE statement

« Support for flushing changes made in the object cache to the server with an
embedded SQL OBJECT FLUSH statement

Converting Between Oracle Types and C Types

The C representation for objects that is generated by the Oracle Type Translator
(OTT) uses OCI types whose internal details are hidden, such as OCl St ri ng and
COCl Number for scalar attributes. Collection types and object references are similarly
represented using OCl Tabl e, OCl Arr ay, and OCl Ref types. While using these
"opaque" types insulates you from changes to their internal formats, using such

3-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Oracle Objects For OLE (0040)

types in a C or C++ application is cumbersome. Pro*C/C++ provides the following
ease-of-use enhancements to simplify use of OCI types in C and C++ applications:

« Object attributes can be retrieved and implicitly converted to C types with the
embedded SQL OBJECT GET statement.

« Object attributes can be set and converted from C types with the embedded
SQL OBJECT SET statement.

= Collections can be mapped to a host array with the embedded SQL
COLLECTI ONGET statement. Furthermore, if the collection is comprised of
scalar types, then the OCI types can be implicitly converted to a compatible C

type.
« Host arrays can be used to update the elements of a collection with the
embedded SQL COLLECTI ONSET statement. As with the COLLECTI ON GET

statement, if the collection is comprised of scalar types, C types are implicitly
converted to OCI types.

Oracle Type Translator (OTT)

The Oracle type translator (OTT) is a program that automatically generates C
language structure declarations corresponding to object types. OTT makes it easier
to use the Pro*C precompiler and the OCI server access package.

See Also: For complete information about OTT, see Oracle Call
Interface Programmer’s Guide and Pro*C/C++ Precompiler
Programmer’s Guide.

Oracle Objects For OLE (0040)

Oracle Objects for OLE (O040)—for Visual Basic, Excel, ActiveX, and Active Server
Pages—provides full support for accessing and manipulating instances of REFs,
value instances, variable-length arrays (VARRAYSs), and nested tables in an Oracle
database server.

See Also: 0040 online help for detailed information about using
0040 with Oracle objects.

Figure 3-1 illustrates the containment hierarchy for value instances of all types in
0040.

Object Support in Oracle Programmatic Environments 3-9

Oracle Objects For OLE (0O040)

Figure 3-1 Supported Oracle Datatypes

—(OraObject H OraAttribute

[

[OraField —(OraRef H OraAttribute]D
OraParameter —[OraCollection H Element Values]D

}
—[OraCLOB }
}

—(Value of all other scalar types }

Instances of these types can be fetched from the database or passed as input or
output variables to SQL statements and PL/SQL blocks, including stored
procedures and functions. All instances are mapped to COM Automation Interfaces
that provide methods for dynamic attribute access and manipulation. These
interfaces may be obtained from:

The value property of an OraField object in a Dynaset

The value property of an OraParameter object used as an input or an output
parameter in SQL Statements or PL/SQL blocks

An attribute of an object (REF)

An element in a collection (varray or a nested table)

Representing Objects in Visual Basic (OraObject)

The OraObject interface is a representation of an Oracle embedded object or a value
instance. It contains a collection interface (OraAttributes) for accessing and
manipulating (updating and inserting) individual attributes of a value instance.
Individual attributes of an OraAttributes collection interface can be accessed by
using a subscript or the name of the attribute.

3-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

The following Visual Basic example illustrates how to access attributes of the
Addr ess object in the per son_t ab table:

O m Address O aChj ect

Set Person = O aDat abase. O eat eDynaset ("sel ect * from person_tab", 0&)
Set Address = Person. Fi el ds("Addr"). Val ue

nsgbox Address. Z p

nsgbox. Address. d ty

Representing REFs in Visual Basic (OraRef)

The OraRef interface represents an Oracle object reference (REF) as well as
referenceable objects in client applications. The object attributes are accessed in the
same manner as attributes of an object represented by the OraObject interface.
OraRef is derived from an OraObiject interface by means of the containment
mechanism in COM. REF objects are updated and deleted independent of the
context they originated from, such as Dynasets. The OraRef interface also
encapsulates the functionality for navigating through graphs of objects utilizing the
Complex Object Retrieval Capability (COR) in OCI, described in "Pre-Fetching
Related Objects (Complex Object Retrieval)" on page 6-25.

Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)

The OraCollection interface provides methods for accessing and manipulating
Oracle collection types, namely variable-length arrays (VARRAYS) and nested tables
in O040. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the
EnaneLi st object from the depar t ment table:

O m Enaneli st G aQol | ection
Set Person = QraDat abase. O eat eDynaset ("sel ect * fromdepartnent”, 0&)
set EnaneLi st = Departnent. F el ds("Enames"). Val ue
"access all elements of the EnameList VAray
for I=1 to I=EnameList.Size
msghox EnameList(l)
Nextl

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Java has emerged as a powerful, modern object-oriented language that provides
developers with a simple, efficient, portable, and safe application development

Object Support in Oracle Programmatic Environments 3-11

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

platform. Oracle provides two ways to integrate Oracle object features with Java:
JDBC and Oracle SQLJ. These interfaces enable you both to access SQL data from
Java and to provide persistent database storage for Java objects.

JDBC Access to Oracle Object Data

JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.
Oracle provides tight integration between objects and JDBC. You can map SQL
types to Java classes with considerable flexibility.

Oracle’s JDBC:

= Allows access to objects and collection types (defined in the database) in Java
programs through dynamic SQL.

« Translates types defined in the database into Java classes through default or
customizable mappings.

Version 2.0 of the JDBC specification supports object-relational constructs such as
user-defined (object) types. JDBC materializes Oracle objects as instances of
particular Java classes. Using JDBC to access Oracle objects involves creating the
Java classes for the Oracle objects and populating these classes. You can either:

« Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the
classes for the attributes and populates them for you.

« Manually specify the mappings between Oracle objects and Java classes; that is,
customize your Java classes for object data. The driver then populates the
customized Java classes that you specify, which imposes a set of constraints on
the Java classes. To satisfy these constraints, you can choose to define your
classes according to either the SQLDat a interface or the Cust onDat um
interface.

See Also: For complete information about JDBC, see the Oracle9i
JDBC Developer’s Guide and Reference.

SQLJ Access to Oracle Object Data

3-12

SQLJ provides access to server objects using SQL statements embedded in the Java
code:

= You can use user-defined types in Java programs.

= You can use JPublisher to map Oracle object and collection types into Java
classes to be used in the application.

Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

= The object types and collections in the SQL statements are checked at compile
time.

See Also: For complete information about SQLJ, see the Oracle9i
Java Developer’s Guide.

Choosing a Data Mapping Strategy

Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types (REFs), and collection types (varrays and nested tables)
to be used in iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a
particular object type, REF type, or collection type and must implement the
interface or acl e.sql .Cust onDat um The Oracle JPublisher utility can
automatically generate such custom Java classes.

Weakly typed representations use the class or acl e.sql .STRUCT (for objects),
or acl e.sql .REF (for references), or or acl e.sql .ARRAY (for collections).

See Also: "Manipulating Objects Through Java" on page 9-37 for
sample code showing both techniques.

Using JPublisher to Create Java Classes for JDBC and SQLJ Programs

Oracle lets you map Oracle object types, reference types, and collection types to
Java classes and preserve all the benefits of strong typing. You can:

« Use JPublisher to automatically generate custom Java classes and use those
classes without any change.

= Subclass the classes produced by JPublisher to create your own specialized Java
classes.

« Manually code custom Java classes without using JPublisher if the classes meet
the requirements stated in the Oracle9i SQLJ Developer’s Guide and Reference.

We recommend that you use JPublisher and subclass when the generated classes do
not do everything you need.

What JPublisher Produces

When you run JPublisher for a user-defined object type, it automatically creates the
following:

Object Support in Oracle Programmatic Environments 3-13

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

= A custom object class to act as a type definition to correspond to your Oracle
object type

This class includes getter and setter methods for each attribute. The method
names are of the form get Foo() and set Foo() for attribute f 0o.

Also, you can optionally instruct JPublisher to generate wrapper methods in
your class that invoke the associated Oracle object methods executing in the
server.

« Arelated custom reference class for object references to your Oracle object type

This class includes a get Val ue() method that returns an instance of your
custom object class, and a set Val ue() method that updates an object value in
the database, taking as input an instance of the custom object class.

When you run JPublisher for a user-defined collection type, it automatically creates
the following:

« A custom collection class to act as a type definition to correspond to your
Oracle collection type

This class includes overloaded get Array() and set Array() methods to
retrieve or update a collection as a whole, a get El enent () method and
set El enent () method to retrieve or update individual elements of a
collection, and additional utility methods.

JPublisher-produced custom Java classes in any of these categories implement the
Cust onDat uminterface, the Cust onDat unfact or y interface, and the
get Fact ory() method.

See Also: The Oracle9i JPublisher User’s Guide for more
information about using JPublisher.

Java Object Storage

JPublisher enables you to construct Java classes that map to existing SQL types. You
can then access the SQL types from a Java application using JDBC.

With Oracle9i, you can now also go in the other direction: that is, you can create
SQL types that map to existing Java classes. This capability enables you to provide
persistent storage for Java objects. Such SQL types are called SQL types of Language
Java, or SQLJ object types. They can be used as the type of an object, an attribute, a
column, or a row in an object table. You can navigationally access objects of such
types—Java objects—through either object references or foreign keys, and you can
query and manipulate such objects from SQL.

3-14 Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

You create SQLJ types with a CREATE TYPE statement as you do other user-defined
SQL types. For SQLJ types, two special elements are added to the CREATE TYPE
statement:

=« An EXTERNAL NAME phrase, used to identify the Java counterpart for each
SQLJ attribute and method and the Java class corresponding to the SQLJ type
itself

« A USI NGclause, to specify how the SQLJ type is to be represented to the server.
The USI NGclause specifies the interface used to retrieve a SQLJ type and the
kind of storage.

For example:

CREATE TYPE person_t AS CBJIECT
EXTERNAL NAME 'Person’ LANGUAGE JAVA

USI NGSQLData (
ss_no NUMBER (9) EXTERNAL NAME 'socialSecurityNo),
name varchar(100) EXTERNAL NAME'name),

address full_address EXTERNAL NAME ‘addrs,

birth_date date EXTERNAL NAME 'birthDate’,

MEMBER FUNCTION age () RETURN NUMBER EXTERNAL NAME 'age () retum int,

MEMBER FUNCTION address RETURN full_address EXTERNAL NAME ‘get_address ()
retum long_address,

STATIC create RETURN person_t EXTERNAL NAME ‘create () retum Person,

STATIC create (name VARCHAR(100), addrs full_address, bDate DATE)
RETURN person_t EXTERNAL NAME ‘create (java.lang.String, Long_address,
oracle.sgl.date) retum Person’,

ORDER FUNCTION compare (in_person person_t) RETURN NUMBER
EXTERNAL NAME ‘isSame (Person) retum int

)
/

SQLIJ types use the corresponding Java class as the body of the type; you do not
specify a type body in SQL to contain implementations of the type’s methods as you
do with ordinary object types.

Representing SQLJ Types to the Server

How a SQLJ type is represented to the server and stored depends on the interfaces
implemented by the corresponding Java class. Currently, Oracle supports a
representation of SQLJ types only for Java classes that implement a SQLDat a,
Cust onmDat um or ORADat a interface. These are represented to the server and are
accessible through SQL. A representation for Java classes that implement the
java.io. Serial i zabl e interface is not currently supported.

Object Support in Oracle Programmatic Environments 3-15

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

In a SQL representation, the attributes of the type are stored in columns like
attributes of ordinary object types. With this representation, all attributes are public
because objects are accessed and manipulated through SQL statements, but you can
use triggers and constraints to ensure the consistency of the object data.

For a SQL representation, the USI NG clause must specify either SQ_Dat a,
Cust onDat um or ORADat a, and the corresponding Java class must implement one
of those interfaces. The EXTERNAL NAME clause for attributes is optional.

Creating SQLJ Object Types

The SQL statements to create SQLJ types and specify their mappings to Java are
placed in a file called a deployment descriptor. Related SQL constraints and
privileges are also specified in this file. The types are created when the file is
executed.

Below is an overview of the process of creating SQL versions of Java types/classes:
Design the Java types.
Generate the Java classes.
Create the SQLJ object type statements.

1

2

3

4. Construct the JAR file. This is a single file that contains all the classes needed.
5. Usingthe | oadj ava utility, install the Java classes defined in the JAR file.

6

Execute the statements to create the SQLJ object types.

Sample SQLJ Object Type Mapping

The code below defines two Java classes. Then follows code that shows
corresponding CREATE TYPE statements of the sort that go in a deployment
descriptor. The code defines a one-to-one mapping of Java classes to SQL types,
with all Java fields mapped to attributes in the SQL types.

package Exanpl es;

inport java.sql.*;
/linport oracle.jdbc2.*;

/1 Java Address class based on SQJ part 2
public class Address inplenents SQData {
protected Sring street;

protected Sring city;
protected Sring state;

3-16 Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

protected int zi pCode;
protected String sql _type;

public static int reconmendedWdth = 250;

public Address () {
street = "Uhknown";
city = "sonewhere";
state = "nowhere";
zi pCode = 0;

}

public Address (Sring st, String cit, Sring stt, int zip) {

street = st;

state = stt;

city =cit;

zi pCode = zi p;
}

protected static String strip(String in) {

int len;
int i;
if (in=null) returnin;
if (in.charA (0) '=" ") returnin;
len =in.length();
for (i =0; i <len & incharA(i) =" "; i+ {}
if (i = 1len) return null;
return in.substring (i, len);
}
public Sring get SQ TypeNane() throws SQException
{
return sql _type;
}

public void readSQ(SQInput stream String typeNane)

throws SQException

{
sql _type = typeNang;

Object Support in Oracle Programmatic Environments 3-17

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

street = streamreadString();
city = streamreadString();
state = streamreadString();
zi pCode = streamreadint();

}

public void witeSQ(SQQutput strean)
throws SQLException

{
streamwiteString(street);
streamwiteString(city);
streamwiteString(state);
streamw i telnt (zi pCode);

}

public static Address create () {
return new Address() ;

}

public static Address create (String st, String cit, Sring stt, int zp) {
return new Address(st, cit, stt, zp);

}

public Sring toring() {
return "Street" + street + "Aty" + city + "Sate" + state + zi pCode ;

}

publ i c Address renoveleadi ngBl anks () {
/] The definition of the Msc class has been onitted in this exanpl e.
/1 Msc is fully described in the SQJ part 2 specification.

street = strip (street);
city =strip (city) ;
state = strip (state);
return this;
}
}

/] create LongAddress as subcl ass of Address
public class LongAddress extends Address {
protected String street2;

protected String country;
protected Sring addrCode ;

3-18 Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

public LongAddress () {

}

super () ;

street2 =" ";
country =" "
addrCode = " "

publ i ¢ LongAddr ess

(Sring st, Sring st2, Sring ct, String stt, String cntry,

}

street = st;
street2 = st2;
state = stt;
country = cntry;
city =ct;

zi pCode = 0;
addr Gode = cd;

public void readSQ(SQ@I nput stream String typeNane)

{

}

throws SQException
sql _type = typeNang;

street = streamreadString();
city = streamreadString();
state = streamreadString();

Zi pCode = streamreadint();
street2 = streamreadString();
country = streamreadString();
addr Code = streamreadString();

public void witeSQ(SQ@QQutput streamn)

{

throws SQException

streamwiteString(street);
streamwiteString(city);
streamwiteString(state);
streamwitelnt(zi pCode);
streamwiteString(street?2);
streamwiteSring(country);
streamw iteSring(addr Code);

Object Support in Oracle Programmatic Environments 3-19

Sring cd){

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

public static Address create () {
return new LongAddress();

}

public static Address create (
Sring st, Sring st2, Sring ct, Sring stt, Sring cntry, Sring cd){
return new LongAddress (st, st2, ct, stt, cntry, cd);

}

public Sring toring () {
if (zipQode != 0)
return "Sreet " + street + "dty " +city + "State " + state +
"Zip" + zi pCode + "UA';
el se
return "Street " + street + street2 + "dty " +city + "Sate " +
state + "Qountry " + country + addr Code ;

}

publ i c Address renoveleadi ngBl anks () {
/] Msc class is not defined please refer to the SQJ specs
street = strip (street);
street2 = strip (street?2);
city =strip (city) ;
state = strip (state);
country = strip (country);
addr Code = strip (addrCode);
return this;

}

}

The following code might go in a deployment descriptor to create SQLJ types to
correspond to the Java classes defined in the preceding code.

CREATE TYPE address_t AS (BIECT
EXTERNAL NAME ' Exanpl es. Address’ LANGUAGE JAVA
USI NG SQ Dat a(
street_attr varchar(250) EXTERNAL NAME 'street’,
city attr varchar(50) EXTERNAL NAME 'city’,
state varchar (50) EXTERNAL NAME 'state’,
Zi p_code_attr nunber EXTERNAL NAME ' zi pCode’,
STATI C FUNCTI ON recom wi dt h RETURN NUMBER
EXTERNAL VAR ABLE NAME ' r ecommendedWdt h'
STATI C FUNCTI ON creat e_address RETURN addr ess_t
EXTERNAL NAME ' create() return Exanpl es. Address’,

3-20 Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

STATI C FUNCTI ON construct RETURN addr ess_t
EXTERNAL NAME ’create() return Exanpl es. Address’,
STATI C FUNCTI ON create_address (street VARCHAR city VARCHAR
state VARCHAR zip NUMBER RETURN address_t
EXTERNAL NAME 'create (java.lang. Sring, java.lang. Sring,
java.lang. String, int) return Exanpl es. Address’,
STATI C FUNCTI ON construct (street VARCHAR city VARGHAR
state VARCHAR zip NUMBER) RETURN address_t
EXTERNAL NAME
"create (java.lang. String, java.lang. Sring, java. lang. String, int)
return Exanpl es. Address’,
MEMBER FUNCTI ON to_stri ng RETURN VARCHAR
EXTERNAL NAME 'toj ava.lang. String() return java.lang. String ,
MEMBER FUNCTI ON strip RETURN SHLF AS RESULT
EXTERNAL NAME ' r enoveleadi ngBl anks () return Exanpl es. Addr ess’
) NOT FI NAL;
/
CREATE (R REPLACE TYPE | ong_address_t
UNDER addr ess_t
EXTERNAL NAME ' Exanpl es. LongAddress’ LANGUAGE JAVA
USI NG SQLDat a(
street2 attr VARCHAR(250) EXTERNAL NAME 'street?2’,
country attr VARCHAR (200) EXTERNAL NAME ’country’,
address_code_attr VARCHAR (50) EXTERNAL NAME ' addr Code’
STATI C FUNCTI ON creat e_address RETURN | ong_addr ess_t
EXTERNAL NAME ' create() return Exanpl es. LongAddress’,
STATI C FUNCTI N construct (street VARCHAR city VARCHAR
state VARCHAR country VARCHAR addrs_cd VARCHAR
RETURN | ong_addr ess_t
EXTERNAL NAME
"create(java.lang. Sring, java.lang. Sring, java.lang. Sring,
java.lang. String, java.lang. Sring) return Exanpl es. LongAddress’,
STATI C FUNCTI ON construct RETURN | ong_addr ess_t
EXTERNAL NAME ’ Exanpl es. LongAddr ess() return Exanpl es. LongAddress’,
STATI C FUNCTI ON creat e_| ongaddr ess (
street VARCHAR city VARCHAR state VARCHAR country VARCHAR
addrs_cd VARC(HAR) return | ong_address_t
EXTERNAL NAME
" BExanpl es. LongAddress (java.lang. Sring, java.lang. Sring,
java.lang. String, java.lang. Sring, java.lang.String)
return Exanpl es. LongAddr ess’
MEMBER FUNCTI ON get _country RETURN VARCHAR
EXTERNAL NAME ' country with _code () return java.lang. String

Object Support in Oracle Programmatic Environments 3-21

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

More About Mapping

You can map a SQLJ static function to a user-defined constructor in the Java
class. The return value of this function is of the user-defined type in which the
function is locally defined.

Java static variables are mapped to SQLJ static methods that return the value of
the corresponding static variable identified by EXTERNAL NANME. The
EXTERNAL NANME clause for an attribute is optional with a SQLDat a,

Cust onDat um or ORADat a representation.

Every attribute in a SQLJ type of a SQL representation must map to a Java field,
but not every Java field must be mapped to a corresponding SQLJ attribute: you
can omit Java fields from the mapping.

You can omit classes: you can map a SQLJ type to a non-root class in a Java class
hierarchy without also mapping SQLJ types to the root class and intervening
superclasses. Doing this enables you to hide the superclasses while still
including attributes and methods inherited from them.

However, you must preserve the structural correspondence between nodes in a
class hierarchy and their counterparts in a SQLJ type hierarchy. In other words,
for two Java classesj _Aandj _Bthat are related through inheritance and are
mapped to two SQL types s_Aand s_B, respectively, there must be exactly one
corresponding node on the inheritance path from s_Ato s_B for each node on
the inheritance path fromj Atoj _B.

You can map a Java class to multiple SQLJ types as long as you do not violate
the restriction in the preceding paragraph. In other words, no two SQLJ types
mapped to the same Java class can have a common supertype ancestor.

If all Java classes are not mapped to SQLJ types, it is possible that an attribute of
a SQLJ object type might be set to an object of an unmapped Java
class—namely, a class occurring above or below the class to which the attribute
is mapped in an inheritance hierarchy. If the object’s class is a superclass of the
attribute’s type/class, an error is raised. If it is a subclass of the attribute’s
type/class, the object is mapped to the most specific type in its hierarchy for
which a SQL mapping exists

Evolving SQLJ Types

The ALTER TYPE statement enables you to evolve a type by, for example, adding or
dropping attributes or methods.

3-22 Oracle9i Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

When a SQLJ type is evolved, an additional validation is performed to check the
mapping between the class and the type. If the class and the evolved type match,
the type is marked valid. Otherwise, the type is marked as pending validation.

Being marked as pending validation is not the same as being marked invalid. A
type that is pending validation can still be manipulated with ALTER TYPE and
GRANT statements, for example.

If a type that has a SQL representation is marked as pending evaluation, you can
still access tables of that type using any DML or SELECT statement that does not
require a method invocation.

You cannot, however, execute DML or SELECT statements on tables of a type that
has a serializable representation and has been marked as pending validation. Data
of a serializable type can be accessed only navigationally, through method
invocations. These are not possible with a type that is pending validation. However,
you can still re-evolve the type until it passes validation.

See Also: "Type Evolution" on page 6-8

Constraints

For SQLJ types having a SQL representation, the same constraints can be defined as
for ordinary object types.

Constraints are defined on tables, not on types, and are defined at the column level.
The following constraints are supported for SQLJ types having a SQL
representation:

= Unique constraints

« Primary Key

« Check constraints

=« NOT NULL constraints on attributes
« Referential constraints

The |l S OF TYPE constraint on column substitutability is supported, too, for SQLJ
types having a SQL representation.

See Also: "Constraining Substitutability" on page 2-46

Querying SQLJ Objects
SQLJ types can be queried just like ordinary SQL object types.

Object Support in Oracle Programmatic Environments 3-23

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Methods called in a SELECT statement must not attempt to change attribute values.

Inserting Java Objects
Inserting a row in a table containing a column of a SQLJ type requires a call to the
type’s constructor function to create a Java object of that type.

The implicit, system-generated constructor can be used, or a static function can be
defined that maps to a user-defined constructor in the Java class.

Updating SQLJ Objects

SQLJ objects can be updated either by using an UPDATE statement to modify the
value of one or more attributes, or by invoking a method that updates the attributes
and returns SELF—that is, returns the object itself with the changes made.

For example, suppose that r ai se() is a member function that increments the
sal ary field/attribute by a specified amount and returns SELF. The following
statement gives every employee in the object table enpl oyee_obj t ab a raise of
1000:

UPDATE enpl oyee_objtab SET c=c. rai se(1000);
A column of a SQLJ type can be set to NULL or to another column using the same

syntax as for ordinary object types. For example, the following statement assigns
column d to column c:

UPDATE enpl oyee reltab SET c=d ;

3-24 Oracle9i Application Developer’s Guide - Object-Relational Features

A4

Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the
database, and how to perform DML and DDL operations on them. It contains the
following major sections:

= Privileges on Object Types and Their Methods
« Dependencies and Incomplete Types
« Tools

= Utilities

Managing Oracle Objects 4-1

Privileges on Object Types and Their Methods

Privileges on Object Types and Their Methods

Privileges for object types exist at the system level and the schema object level.

System Privileges

Oracle defines the following system privileges for object types:

CREATE TYPE enables you to create object types in your own schema
CREATE ANY TYPE enables you to create object types in any schema
ALTER ANY TYPE enables you to alter object types in any schema
DROP ANY TYPE enables you to drop named types in any schema

EXECUTE ANY TYPE enables you to use and reference nhamed types in any
schema

UNDER ANY TYPE enables you to create subtypes under any non-final object
types

UNDER ANY VI EWenables you to create subviews under any object view

The CONNECT and RESQURCE roles include the CREATE TYPE system privilege.
The DBA role includes all of the above privileges.

Schema Object Privileges
Two schema object privileges apply to object types:

EXECUTE on an object type enables you to use the type to:

» Define a table.

= Define a column in a relational table.

« Declare a variable or parameter of the named type.

EXECUTE lets you invoke the type’s methods, including the constructor.

Method execution and the associated permissions are the same as for stored
PL/SQL procedures.

UNDER enables you to create a subtype/subview under the type/view on which
the privilege is granted

The UNDER privilege on a subtype or subview can be granted only if the grantor
has the UNDER privilege on the direct supertype or superview W TH GRANT
OPTI ON.

4-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Privileges on Object Types and Their Methods

The phrase W TH HI ERARCHY OPTI ONgrants a specified object privilege on all
subobjects of the object. This option is meaningful only with the SELECT object
privilege granted on an object view in an object view hierarchy. In this case, the
privilege applies to all subviews of the view on which the privilege is granted.

Using Types in New Types or Tables

Example

In addition to the permissions detailed in the previous sections, you need specific
privileges to:

= Create types or tables that use types created by other users.
« Grant use of your new types or tables to other users.

You must have the EXECUTE ANY TYPE system privilege, or you must have the
EXECUTE object privilege for any type you use in defining a new type or table. You
must have received these privileges explicitly, not through roles.

If you intend to grant access to your new type or table to other users, you must have
either the required EXECUTE object privileges with the GRANT option or the
EXECUTE ANY TYPE system privilege with the option W TH ADM N OPTI ON. You
must have received these privileges explicitly, not through roles.

Assume that three users exist with the CONNECT and RESOURCE roles: USER1,
USER?2, and USERS.

USER1 performs the following DDL in the USER1 schema:

CREATE TYPE typel AS (BIECT (attrl NUMBER);
CREATE TYPE type2 AS (BIECT (attr2 NUMBER);
GRANT EXEQUTE ON typel TO user 2;

GRANT EXEQUTE ON type2 TO user 2 WTH GRANT CPTI O\

USER2 performs the following DDL in the USER2 schema:

CREATE TABLE tabl CF userl.typel;
CREATE TYPE type3 AS (BIECT (attr3 userl.type2);
CREATE TABLE tab2 (col 1 userl.type2);

The following statements succeed because USER2 has EXECUTE on USER1’s TYPE2
with the GRANT option:

GRANT EXEQUTE ON type3 TO user 3;
GRANT SELECT on tab2 TO user3;

Managing Oracle Objects 4-3

Privileges on Object Types and Their Methods

However, the following grant fails because USER2 does not have EXECUTE on
USER1. TYPE1 with the GRANT option:

GRANT SELECT ON tabl TO user3;

USER3 can successfully perform the following actions;

CREATE TYPE type4d AS (BIECT (attr4 user?2.type3);
CREATE TABLE tab3 CF type4;

Privileges on Type Access and Object Access

While object types only make use of EXECUTE privilege, object tables use all the
same privileges as relational tables:

« SELECT lets you access an object and its attributes from the table.
« UPDATE lets you modify attributes of objects in the table.

« | NSERT lets you add new obijects to the table.

« DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of object
types.

Selecting columns of an object table does not require privileges on the type of the
object table. Selecting the entire row object, however, does.

Consider the following schema:

CREATE TYPE enp_type as obj ect (
eno NUMBER

enane CHAR(31),
eaddr addr_t);

CREATE TABLE enp CF enp_t ype;

and the following two queries:

SELECT VALUH e) FRMenp €;
SH ECT eno, enane FRCM enp;

For either query, Oracle checks the user’s SELECT privilege for the enp table. For
the first query, the user needs to obtain the enp_t ype type information to interpret
the data. When the query accesses the enp_t ype type, Oracle checks the user’s
EXECUTE privilege.

4-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Dependencies and Incomplete Types

Execution of the second query, however, does not involve named types, so Oracle
does not check type privileges.

Additionally, using the schema from the previous section, USER3 can perform the
following queries:

SH ECT tabl.col 1. attr2 fromuser2.tabl tabl;
SHECT t.attr4.attr3. attr2 FROMtab3 t;

Note that in both selects by USER3, USER3 does not have explicit privileges on the
underlying types, but the statement succeeds because the type and table owners
have the necessary privileges with the GRANT option.

Oracle checks privileges on the following requests, and returns an error if the
requestor does not have the privilege for the action:

« Pinning an object in the object cache using its REF value causes Oracle to check
SELECT privilege on the object table containing the object and EXECUTE
privilege on the object type. (For more information about the OCI object cache,
see "OCI Tips and Techniques for Objects" on page 6-20.)

« Modifying an existing object or flushing an object from the object cache, causes
Oracle to check UPDATE privilege on the destination object table. Flushing a
new object causes Oracle to check | NSERT privilege on the destination object
table.

« Deleting an object causes Oracle to check DELETE privilege on the destination
table.

« Invoking a method causes Oracle to check EXECUTE privilege on the
corresponding object type.

Oracle does not provide column level privileges for object tables.

Dependencies and Incomplete Types

Types can depend upon each other for their definitions. For example, you might
want to define object types enpl oyee and depar t nent in such a way that one
attribute of enpl oyee is the department the employee belongs to and one attribute
of depar t nent is the employee who manages the department.

Types that depend on each other in this way, either directly or through intermediate
types, are called mutually dependent. A diagram of mutually dependent types, with
arrows representing the dependencies, always reveals a path of arrows starting and
ending at one of the types.

Managing Oracle Objects 4-5

Dependencies and Incomplete Types

To define such a circular dependency, you must use REFs for at least one segment of
the circle.

For example, you can define the following types:

CREATE TYPE depart nent ;

CREATE TYPE enpl oyee AS CBIECT (
nane VARCHAR2(30) ,
dept REF departnent,
supv REF enpl oyee);

CREATE TYPE enp_l i st AS TABLE CF enpl oyee;

CREATE TYPE departnent AS CBIECT (
nane VARCHAR2(30) ,
ngr REF enpl oyee,
staff enp_list);

This is a legal set of mutually dependent types and a legal sequence of SQL DDL
statements. Oracle compiles it without errors. The first statement:

CREATE TYPE depart nent ;

is optional. It makes the compilation proceed without errors. It establishes
depart nent as an incomplete object type. A REF to an incomplete object type
compiles without error, so the compilation of enpl oyee proceeds.

When Oracle reaches the statement that completes the definition of depar t nent ,
all of the components of depar t ment have compiled successfully, so the
compilation finishes without errors.

Without the optional declaration of depar t nent as an incomplete type, enpl oyee
compiles with errors. Oracle then automatically adds enpl oyee to its library of
schema objects as an incomplete object type. This makes the declarations of enp_

| i st and depart nent compile without errors. When enpl oyee is recompiled
after enp_I| i st and depart nent are complete, enpl oyee compiles without
errors and becomes a complete object type.

Incomplete types also enable you to create types that contain REF attributes to a
subtype, which has not yet been created. To create such a supertype, first create an
incomplete type of the subtype to be referenced. Create the complete subtype after
you create the supertype.

4-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Dependencies and Incomplete Types

A subtype is just a specialized version of its direct supertype and consequently has
an explicit dependency on it. To avoid leaving behind subtypes that lack a
supertype, a supertype cannot be dropped unless all its subtypes are dropped first.

Completing Incomplete Types

Once you have declared an incomplete object type, you must complete it as an
object type. You cannot, for example, declare it to be a table type or an array type.
The only alternative is to drop the type.

This is also true if Oracle has made the type an incomplete object type for you—as it
did when EMPLOYEE failed to compile in the previous section.

Type Dependencies of Substitutable Tables and Columns

A substitutable table or column of type T is dependent not only on T but on all
subtypes of T as well. This is because a hidden column is added to the table for each
attribute added in a subtype of T. The hidden columns are added even if the
substitutable table or column contains no data of that subtype.

So, for example, a persons table of type Per son_t yp is dependent not only on
Per son_t yp but also on the Per son_t yp subtypes St udent _t yp and
Part Ti meSt udent _typ.

If you attempt to drop a subtype that has a dependent type, table, or column, the
DROP TYPE statement returns an error and aborts. For example, trying to drop
Part Ti meSt udent _t yp will raise an error because of the dependent per sons
table.

If dependent tables or columns exist but contain no data of the type that you want
to drop, you can use the VALI DATE keyword to drop the type. The VALI DATE
keyword causes Oracle to check for actual stored instances of the specified type and
to drop the type if none are found. Hidden columns associated with attributes
unique to the type are removed as well.

For example, the first DROP TYPE statement below will fail because

Part Ti meSt udent _t yp has a dependent table (per sons). But if per sons
contains no instances of Par t Ti neSt udent _t yp (and no other dependent table or
column does, either), the VALI DATE keyword will cause the second DROP TYPE
statement to succeed:

Managing Oracle Objects 4-7

Tools

Tools

JDeveloper

DRCP TYPE Part Ti neStudent _typ; -- Eror due to presence of Persons table
DRCP TYPE Part Ti neStudent _typ VALIDATE -- Succeeds if there are no stored
-- instances of PartTi neStudent_typ

Note: Oracle recommends that you always use the VALI DATE
option while dropping subtypes.

The FORCE Option

The DROP TYPE statement also has a FORCE option that causes the type to be
dropped even though it may have dependent types or tables. The FORCE option
should be used only with great care, as any dependent types or tables that do exist
are marked invalid and become inaccessible when the type is dropped. Data in a
table that is marked invalid because a type it depends on has been dropped can
never be accessed again. The only action that can be performed on such a table is to
drop it.

See Also: "Type Evolution" in Chapter 6 for information about
how to alter a type

This section describes several Oracle tools that provide support for Oracle objects.

JDeveloper is a full-featured, integrated development environment for creating
multitier Java applications. It enables you to develop, debug, and deploy Java client
applications, dynamic HTML applications, web and application server components
and database stored procedures based on industry-standard models.

JDeveloper provides powerful features in the following areas:
« Oracle Business Components for Java

« Web Application Development

« Java Client Application Development

= Javain the Database

« Component-Based Development with JavaBeans

« Simplified Database Access

4-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Tools

= Visual Integrated Development Environment
« Java Language Support

JDeveloper runs on Windows NT. It provides a standard GUI based Java
development environment that is well integrated with Oracle’s Application Server
and Database.

Business Components for Java (BC4J)

Supporting standard EJB and CORBA deployment architectures, Oracle Business
Components for Java simplifies the development, delivery, and customization of
Java business applications for the enterprise. Oracle Business Components for Java
is an application component framework providing developers a set of reusable
software building blocks that manage all the common facilities required to:

= Author and test business logic in components which integrate with relational
databases

« Reuse business logic through multiple SQL-based views of data

« Access and update the views from servlets, JavaServer Pages (JSPs), and
thin-Java Swing clients

« Customize application functionality in layers without requiring modification of
the delivered application

JPublisher

JPublisher is a utility, written entirely in Java, that generates Java classes to
represent the following user-defined database entities in your Java program:

« Database object types

« Database reference (REF) types

« Database collection types (varrays or nested tables)
« PL/SQL packages

JPublisher enables you to specify and customize the mapping of database object
types, reference types, and collection types (varrays or nested tables) to Java classes,
in a strongly typed paradigm.

See Also: Oracle9i JPublisher User’s Guide

Managing Oracle Objects 4-9

Utilities

Utilities

Import/Export of Object Types

The Export and Import utilities move data into and out of Oracle databases. They
also back up or archive data and aid migration to different releases of the Oracle
RDBMS.

Export and Import support object types. Export writes object type definitions and
all of the associated data to the dump file. Import then re-creates these items from
the dump file.

Types

The definition statements for derived types are exported. On an Import, a subtype
may be created before the supertype definition has been imported. In this case, the
subtype will be created with compilation errors, which may be ignored. The type
will be revalidated after its supertype is created.

Object View Hierarchies
View definitions for all views belonging to a view hierarchy are exported

SQL*Loader

The SQL*Loader utility moves data from external files into tables in an Oracle
database. The files may contain data consisting of basic scalar datatypes, such as

| NTEGER, CHAR, or DATE, as well as complex user-defined datatypes such as row
and column objects (including objects that have object, collection, or REF attributes),
collections, and LOBs. Currently, SQL*Loader supports single-level collections only:
you cannot yet use SQL*Loader to load multi-level collections, that is, collections
whose elements are, or contain, other collections.

SQL*Loader uses control files, which contain SQL*Loader Data Definition
Language (DDL) statements, to describe the format, content, and location of the
datafile(s).

SQL*Loader provides two approaches to loading data:

« Conventional path loading, which uses the SQL | NSERT statement and a bind
array buffer to load data into database tables

« Direct path loading, which uses the Direct Path Load API to write data blocks
directly to the database on behalf of the SQL*Loader client.

4-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Utilities

Direct path loading does not use a SQL interface and thus avoids the overhead
of processing the associated SQL statements. Consequently, direct path loading
tends to provide much better performance than conventional path loading.

Either approach can be used to load data of supported object and collection
datatypes.

See Also: Oracle9i Database Utilities for instructions on how to use
SQL*Loader

Managing Oracle Objects 4-11

Utilities

4-12 Oracle9i Application Developer’s Guide - Object-Relational Features

D

Applying an Object Model to Relational Data

This chapter shows how to write object-oriented applications without changing the
underlying structure of your relational data.

The chapter contains these topics:

=« Why to Use Object Views

« Defining Object Views

« Using Object Views in Applications

« Nesting Objects in Object Views

« Identifying Null Objects in Object Views

« Using Nested Tables and Varrays in Object Views
« Specifying Object Identifiers for Object Views

« Creating References to View Objects

« Modelling Inverse Relationships with Object Views
« Updating Object Views

« Applying the Object Model to Remote Tables

« Defining Complex Relationships in Object Views

« Object View Hierarchies

Applying an Object Model to Relational Data 5-1

Why to Use Object Views

Why to Use Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object: you can call its methods, access its attributes using the dot
notation, and create a REF that points to it.

Object views are useful in prototyping or transitioning to object-oriented
applications because the data in the view can be taken from relational tables and
accessed as if the table were defined as an object table. You can run object-oriented
applications without converting existing tables to a different physical structure.

Object views can be used like relational views to present only the data that you
want users to see. For example, you might create an object view that presents
selected data from an employee table but omits sensitive data about salaries.

Using object views can lead to better performance. Relational data that make up a
row of an object view traverse the network as a unit, potentially saving many round
trips.

You can fetch relational data into the client-side object cache and map it into C
structs or C++ or Java classes, so 3GL applications can manipulate it just like native
classes. You can also use object-oriented features like complex object retrieval with
relational data.

« By synthesizing objects from relational data, you can query the data in new
ways. You can view data from multiple tables by using object de-referencing
instead of writing complex joins with multiple tables.

= Since the objects in the view are processed within the server, not on the client,
this can result in significantly fewer SQL statements and much less network
traffic.

= The object data from object views can be pinned and used in the client side
object cache. When you retrieve these synthesized objects in the object cache by
means of specialized object-retrieval mechanisms, you reduce network traffic.

= You gain great flexibility when you create an object model within a view in that
you can continue to develop the model. If you need to alter an object type, you
can simply replace the invalidated views with a new definition.

« Using objects in views does not place any restrictions on the characteristics of
the underlying storage mechanisms. By the same token, you are not limited by
the restrictions of current technology. For example, you can synthesize objects
from relational tables which are parallelized and partitioned.

= You can create different complex data models from the same underlying data.

5-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Defining Object Views

See Also:

« Oracle9i SQL Reference for a complete description of SQL syntax and
usage.

« PL/SQL User’s Guide and Reference for a complete discussion of PL/SQL
capabilities

« Oracle9i Java Stored Procedures Developer’s Guide for a complete
discussion of Java.

« Oracle Call Interface Programmer’s Guide for a complete discussion of
those facilities.

Defining Object Views
The procedure for defining an object view is:

1. Define an object type, where each attribute of the type corresponds to an
existing column in a relational table.

2. Write a query that specifies how to extract the data from relational tables.
Specify the columns in the same order as the attributes in the object type.

3. Specify a unique value, based on attributes of the underlying data, to serve as
an object identifier, which enables you to create pointers (REFs) to the objects in
the view. You can often use an existing primary key.

If you want to be able to update an object view, you may have to take another step,
if the attributes of the object type do not correspond exactly to columns in existing
tables:

4. Write an | NSTEAD OF trigger procedure (see "Updating Object Views" on
page 5-13) for Oracle to execute whenever an application program tries to
update data in the object view.

After these steps, you can use an object view just like an object table.

For example, the following SQL statements define an object view, where each row
in the view is an object of type enpl oyee_t:

CREATE TABLE enp_table (
enpnum NUMBER (5),
enane VARCHAR? (20),
salary NMER (9, 2),

j ob VARCHAR2 (20));

CREATE TYPE enpl oyee t (
enpno NUMBER (5),

Applying an Object Model to Relational Data 5-3

Using Object Views in Applications

enane VARCHARZ (20),
salary NMER (9, 2),
job VARCHAR? (20));

CREATE M EWVenp_vi ewl CF enpl oyee_t
WTH CBJECT | DENTI FI ER (enpno) AS
SHECT e.enphum e.enane, e.salary, e.job
FRoM enp_table e
WHERE job ='Developer;

To access the data from the enpnumcolumn of the relational table, you would
access the enpno attribute of the object type.

Using Object Views in Applications

Data in the rows of an object view may come from more than one table, but the
object still traverses the network in one operation. The instance appears in the client
side object cache as a C or C++ structure or as a PL/SQL object variable. You can
manipulate it like any other native structure.

You can refer to object views in SQL statements in the same way you refer to an
object table. For example, object views can appear in a SELECT list, in an
UPDATE- SET clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use
for objects from object tables. For example, you can use OCIObjectPin() for pinning a
REF and OCIObjectFlush() for flushing an object to the server. When you update or
flush to the server an object in an object view, Oracle updates the object view.

Additional Information: See Oracle Call Interface Programmer’s
Guide for more information about OCI calls.

Nesting Objects in Object Views

An object type can have other object types nested in it as attributes.

If the object type on which an object view is based has an attribute that itself is an
object type, then you must provide column objects for this attribute as part of the
process of creating the object view. If column objects of the attribute type already
exist in a relational table, you can simply select them; otherwise, you must

5-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Nesting Objects in Object Views

synthesize the object instances from underlying relational data just as you
synthesize the principal object instances of the view. You "synthesize" or create these
objects by calling the respective object type’s constructor method to create the object
instances, and you populate their attributes with data from relational columns that
you specify in the constructor.

For example, consider the department table dept :

CREATE TABLE dept

(
dept no NUMBER PR MARY KEY,

dept nane VARCHAR2(20),

deptstreet VARCHAR2(20),

deptcity VARCHAR2(10) ,

deptstate AR 2),

deptzip VARCHAR2(10)
);

You might want to create an object view where the addresses are objects inside the
department objects. That would allow you to define reusable methods for address
objects, and use them for all kinds of addresses.

1. Create the type for the address object:

CREATE TYPE address t AS (BIECT

(
street VARCHAR2(20),

city VARCHARZ(10) ,

state OHAR2),

zip VARCHAR2(10)
);

2. Create the type for the department object:

CREATE TYPE dept_t AS CBIECT

(
dept no NUMVBER,
deptnane VARHCAR2(20),
addr ess address_t

)

3. Create the view containing the department number, name and address. The
addr ess objects are constructed from columns of the relational table.

Applying an Object Model to Relational Data 5-5

Identifying Null Objects in Object Views

CREATE M EWdept _vi ew CF dept _t WTH CBIECT | DENTI Fl ER (dept no) AS
SELECT d. dept no, d. dept nane,
address_t(d.deptstreet, d.deptcity, d. deptstate, d.deptzip) AS
dept addr
FROM dept d;

Identifying Null Objects in Object Views

Because the constructor for an object never returns a null, none of the address
objects in the above view can ever be null, even if the city, street, and so on columns
in the relational table are all null. The relational table has no column that specifies
whether the department address is null. If we define a convention so that a null
dept st reet column indicates that the whole address is null, then we can capture
the logic using the DECODE function, or some other function, to return either a null
or the constructed object:

CREATE M BNV dept _vi ew AS
SH ECT d. dept no, d. dept nane,
DECDE(d. dept street, NULL, NULL,
address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS
dept addr
FROM dept d;

Using such a technique makes it impossible to directly update the department
address through the view, because it does not correspond directly to a column in the
relational table. Instead, we would define an | NSTEAD OF trigger over the view to
handle updates to this column.

Using Nested Tables and Varrays in Object Views

Collections, both nested tables and VARRAYS, can be columns in views. You can
select these collections from underlying collection columns or you can synthesize
them using subqueries. The CAST- MULTI SET operator provides a way of
synthesizing such collections.

Single-Level Collections in Object Views

Taking the previous example as our starting point, we represent each employee in
an enp relational table that has the following structure:

CREATE TABLE enp
(

5-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Using Nested Tables and Varrays in Object Views

enpno NUMBER PR MARY KEY,
enpnane VARCHAR2(20),

salary NUMBER
deptno NUMBER REFERENCES dept (dept no)

)

Using this relational table, we can construct a dept _vi ew with the department
number, name, address and a collection of employees belonging to the department.

1. Define an employee type and a nested table type for the employee type:

CREATE TYPE enpl oyee t AS (BIECT

(
eno NUMBER
enane VARCHARZ2(20),

salary NUMBER
)

CREATE TYPE enpl oyee |ist_t AS TABLE CF enpl oyee t;

2. Define a department type having a department number, name, address, and a
nested table of employees:

CREATE TYPE dept _t AS CBIJECT
(deptno NUMBER
deptnane VARHCAR2(20),
addr ess address_t,
enp list enployee list_t
);

3. Define the object view dept _vi ew.

CREATE M BEWdept _view CF dept _t WTH CBIECT | DENTI FHl ER (dept no) AS
SELECT d. dept no, d. dept nane,
address_t (d. deptstreet, d.deptcity, d. deptstate, d. deptzip) AS deptaddr,
CAST(MLTI SET (
SELECT e. enpno, e.enpnane, e.salary
FROMenp e
WHERE e. dept no = d. dept no)
AS enpl oyee_list_t)
AS enp_list
FROM dept d;

The SELECT subquery inside the CAST- MULTI SET block selects the list of
employees that belong to the current department. The MULTI SET keyword
indicates that this is a list as opposed to a singleton value. The CAST operator casts

Applying an Object Model to Relational Data 5-7

Using Nested Tables and Varrays in Object Views

the result set into the appropriate type, in this case to the enpl oyee_|i st _t
nested table type.

A query on this view could give us the list of departments, with each department
row containing the department number, name, the address object and a collection of
employees belonging to the department.

Multi-Level Collections in Object Views

Multi-level collections and single-level collections are created and used in object
views in the same way. The only difference is that, for a multi-level collection, you
must create an additional level of collections.

The following example builds an object view containing a multi-level collection.
The view is based on flat relational tables (that contain no collections). As a
preliminary to building the object view, the example creates the object and
collection types it uses. An object type (for example, enp_t) is defined to
correspond to each relational table, with attributes whose types correspond to the
types of the respective table columns. In addition, the employee type has a nested
table (attribute) of projects, and the department type has a nested table (attribute) of
employees. The latter nested table is a multi-level collection. The CAST- MULTI SET
operator is used in the CREATE VI EWstatement to build the collections.

These are the underlying relational tables:

CREATE TABLE dept s
(deptno NUMBER
, deptnane VARHCAR2(20));

CREATE TABLE enp
(enane VARCHAR2(20),
, salary NUMBER
, deptnane VARHCAR2(20));

CREATE TABLE proj ects
(projnane VARHCAR2(20)
, ngr VARHCARZ(20)) ;
These are the object and collection types the view will use:

CREATE TYPE project _t AS (BIECT
(projnane VARHCAR2(20)
, nogr VARHCARZ(20)) ;

CREATE TYPE nt_project _t AS TABLE GF project _t;

5-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Specifying Object Identifiers for Object Views

CREATE TYPE enp_t AS CBIECT
(enanme VARCHAR2(20)
, salary NUMBER
, deptnane VARHCAR2(20)
, projects nt_project_t);

CREATE TYPE nt_enp_t AS TABLE CF enp_t;

CREATE TYPE dept _t AS (BIECT
(deptno NUMBER
, deptnane VARHCARZ2(20)
, enps nt_enp_t);

The following statement creates the object view:

CREATE M EWvV_depts CF dept _t AS
SH ECT d. dept no, d. dept nane,
CAST(MLTI SET(SELECT e. enane, e.sal ary, e.deptnane,
CAST(MLTI SET(SELECT p. proj nane, p. ngr
FROM proj ect s
WHERE p. ngr = e. enane)
AS nt_project_t)
FROM enp
WHERE e. dept nane = d. dept nane)
AS nt_enp_t)
FROM dept s d;

Specifying Object Identifiers for Object Views

You can construct pointers (REFs) to the row objects in an object view. Since the
view data is not stored persistently, you must specify a set of distinct values to be
used as object identifiers. The notion of object identifiers allows the objects in object
views to be referenced and pinned in the object cache.

If the view is based on an object table or an object view, then there is already an
object identifier associated with each row and you can reuse them. Either omit the
W THOBJECT | DENTI FI ER clause, or specify W TH OBJECT | DENTI FI ER
DEFAULT.

However, if the row object is synthesized from relational data, you must choose
some other set of values.

Applying an Object Model to Relational Data 5-9

Specifying Object Identifiers for Object Views

Oracle lets you specify object identifiers based on the primary key. The set of unique
keys that identify the row object is turned into an identifier for the object. These
values must be unique within the rows selected out of the view, since duplicates
would lead to problems during navigation through object references.

The object view created with the W TH OBJECT | DENTI FI ER clause has an object
identifier derived from the primary key. If the W THOBJECT | DENTI FI ER
DEFAULT clause is specified, the object identifier is either system generated or
primary key based, depending on the underlying table or view definition.

Continuing with our department example, we can create a dept _vi ewobject view
that uses the department number as the object identifier:

Define the object type for the row, in this case the dept _t department type:

CREATE TYPE dept_t AS CBIECT

(
dno NUMBER,
dnane VARCHAR2(20) ,
dept addr address t,
enpl i st enpl oyee |ist_t
E

Because the underlying relational table has dept no as the primary key, each
department row has a unique department number. In the view, the dept no column
becomes the dno attribute of the object type. Once we know that dno is unique
within the view objects, we can specify it as the object identier:

CREATE M BEWdept _vi ew CF dept _t WTH CBIECT | CENTI Fl ER dno)
AS SH ECT d. deptno, d. dept nane,
address_t (d. deptstreet, d. deptcity, d. deptstate, d. deptzip),
CAST(MULTI SET (
SELECT e. enpno, e.enpnang, e.salary
FROMenp e
WHERE e. dept no = d. dept no)
AS enpl oyee_list_t)
FROM dept d;

See Also: Object Identifiers on page 6-7

5-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Creating References to View Objects

Creating References to View Objects

In the example we have been developing, each object selected out of the dept _

Vi ewview has a unique object identifier derived from the department number
value. In the relational case, the foreign key dept no in the enrp employee table
matches the dept no primary key value in the dept department table. We used the
primary key value for creating the object identifier in the dept _vi ew This allows
us to use the foreign key value in the enp_vi ewin creating a reference to the
primary key value in dept _vi ew

We accomplish this by using MAKE REF operator to synthesize a primary key object
reference. This takes the view or table name to which the reference points and a list
of foreign key values to create the object identifier portion of the reference that will
match with a particular object in the referenced view.

In order to create an enp_vi ewview which has the employee’s number, name,
salary and a reference to the department in which she works, we need first to create
the employee type enp_t and then the view based on that type

CREATE TYPE enp_t AS CBJECT
(

eno NUMBER

enane VARCHAR2(20),
salary NJMBER
deptref REF dept_t

)

CREATE M EWenp_view GF enp_t WTH CBIECT | DENTI Fl ER eno)
AS SH ECT e.enpno, e.enpnane, e.salary,
MMKE REF(dept _vi ew, e. dept no)
FRMenp e;

The dept r ef column in the view holds the department reference. We write the
following simple query to determine all employees whose department is located in
the city of San Francisco:

SELECT e.eno, e.sal ary, e.deptref.dno
FROM enp_vi ew e
WHERE e. dept r ef . dept addr . ci t y ='San Francisco’;

Note that we could also have used the REF modifier to get the reference to the
dept _vi ewobjects:

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
AS SELECT e.empno, e.empname, e.saary, REF(d)

Applying an Object Model to Relational Data 5-11

Modelling Inverse Relationships with Object Views

FROMenp e, dept_viewd
WHERE e. dept no = d. dno;

In this case we join the dept _vi ewand the enp table on the dept no key. The
advantage of using MAKE REF operator instead of the REF modifier is that in using
the former, we can create circular references. For example, we can create employee
view to have a reference to the department in which she works, and the department
view can have a list of references to the employees who work in that department.

Note that if the object view has a primary key based object identifier, the reference
to such a view is primary key based. On the other hand, a reference to a view with
system generated object identifier will be a system generated object reference. This
difference is only relevant when you create object instances in the OCI object cache
and need to get the reference to the newly created objects. This is explained in a
later section.

As with synthesized objects, we can also select persistently stored references as
view columns and use them seamlessly in queries. However, the object references to
view objects cannot be stored persistently.

Modelling Inverse Relationships with Object Views

Views with objects can be used to model inverse relationships.

One-to-One Relationships

One-to-one relationships can be modeled with inverse object references. For
example, let us say that each employee has a particular computer on her desk, and
that the computer belongs to that employee only. A relational model would capture
this using foreign keys either from the computer table to the employee table, or in
the reverse direction. Using views, we can model the objects so that we have an
object reference from the employee to the computer object and also have a reference
from the computer object to the employee.

One-to-Many and Many-to-One Relationships

One-to-many relationships (or many-to-many relationships) can be modeled either
by using object references or by embedding the objects. One-to-many relationship
can be modeled by having a collection of objects or object references. The
many-to-one side of the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, we
have the foreign key in the employee table. Using collections in views, we can
model the relationship between departments and employees. The department view

5-12 Oracle9i Application Developer’s Guide - Object-Relational Features

Updating Object Views

can have a collection of employees, and the employee view can have a reference to
the department (or inline the department values). This gives us both the forward
relation (from employee to department) and the inverse relation (department to list
of employees). The department view can also have a collection of references to
employee objects instead of embedding the employee objects.

Updating Object Views

You can update, insert, and delete data in an object view using the same SQL DML
you use for object tables. Oracle updates the base tables of the object view if there is
no ambiguity.

A view is not directly updatable if its view query contains joins, set operators,
aggregate functions, or GROUP BY or DI STI NCT clauses. Also, individual columns
of a view are not directly updatable if they are based on pseudocolumns or
expression in the view query.

If a view is not directly updatable, you can still update it indirectly using

I NSTEAD OF triggers. To do so, you define an | NSTEAD OF trigger for each kind of
DML statement you want to execute on the view. In the | NSTEAD CF trigger, you
code the operations that must take place on the underlying tables of the view to
accomplish the desired change in the view. Then, when you issue a DML statement
for which you have defined an | NSTEAD OF trigger, Oracle transparently runs the
associated trigger.

See Also: "Using INSTEAD OF Triggers to Control Mutating and
Validation" on page 5-14 for an example of an | NSTEAD OF trigger

Something you want to be careful of: In an object view hierarchy, UPDATE and

DEL ETE statements operate polymorphically just as SELECT statements do: the set
of rows picked out by an UPDATE or DELETE statement on a view implicitly
includes qualifying rows in any subviews of the specified view as well.

For example, the following statement, which deletes all persons from Per son_v,
also deletes all students from St udent _v and all employees from the Enpl oyee_v
view.

DELETE FROM Per son_v;
To exclude subviews and restrict the affected rows just to those in the view actually

specified, use the ONLY keyword. For example, the following statement updates
only persons and not employees or students.

Applying an Object Model to Relational Data 5-13

Updating Object Views

UPDATE ONLY(Person_v) SET address = ...

Updating Nested Table Columns in Views

A nested table can be modified by inserting new elements and updating or deleting
existing elements. Nested table columns that are virtual or synthesized, as in a view,
are not usually updatable. To overcome this, Oracle allows | NSTEAD OF triggers to
be created on these columns.

Thel NSTEAD OF trigger defined on a nested table column (of a view) is fired when
the column is modified. Note that if the entire collection is replaced (by an update
of the parent row), the | NSTEAD OF trigger on the nested table column is not fired.

Using INSTEAD OF Triggers to Control Mutating and Validation

| NSTEAD OF triggers provide a way of updating complex views that otherwise
could not be updated. They can also be used to enforce constraints, check privileges
and validate the DML. Using these triggers, you can control mutation of the objects
created though an object view that might be caused by inserting, updating and
deleting.

For instance, suppose we wanted to enforce the condition that the number of
employees in a department cannot exceed 10. To enforce this, we can write an
I NSTEAD OF trigger for the employee view. The trigger is not needed for doing the
DML since the view can be updated, but we need it to enforce the constraint.

We implement the trigger by means of the following code:

CREATE TRIGEER enp_i nstr | NSTEAD CF | NSERT on enp_vi ew
FCR EACH ROV
DEQLARE
dept _var dept_t;
enp_count i nteger;
BEG N
-- Enforce the constraint..!
-- Frst get the departnent nunber fromthe reference
UTL_REF. SH.ECT_CBIECT(: NEWdept ref , dept _var) ;

SH.ECT GANT(*) | NTO enp_count
FRCOM enp
WHERE dept no = dept _var . dno;

IF enp_count < 9 THEN
-- let us do the insert

5-14 Oracle9i Application Developer’s Guide - Object-Relational Features

Applying the Object Model to Remote Tables

I NSERT | NTO enp VALLES (: NEWeno, : NEWenane, : NEWsal ary, dept _var. dno);
END I F;
END,

Applying the Object Model to Remote Tables

Although you cannot directly access remote tables as object tables, object views let
you access remote tables as if they were object tables.

Consider a company with two branches — one in Washington D.C., and another in
Chicago. Each site has an employee table. The headquarters in Washington has a
department table with the list of all the departments. To get a total view of the entire
organization, we can create views over the individual remote tables and then a
overall view of the organization.

First, we create an object view for each employee table:

CREATE M EWenp_washi ngt on_vi ew (eno, enang, sal ary)
AS SH ECT e.enpno, e.enpnane, e.sal ary
FROM enp@ashi ngton_|ink e;

CREATE M EWenp_chi cago_vi ew
AS SHECT e.eno, e.nane, e.salary
FROM enp_t ab@hi cago_link e;

We can now create the global view:

CREATE M EWorgnzn view CF dept_t WTH CBIECT | DENTI H ER (dno)
AS SH ECT d. deptno, d.dept nare,
address_t(d.deptstreet,d.deptcity,d.deptstate, d.deptzip),
CAST(MLTI SET (
SELECT e.eno, e.enane, e.salary
FROM enp_washi ngt on_vi ew €)
AS enpl oyee_list_t)
FROM dept d
WHERE d.deptcity = Washington’
UNION ALL
SELECT d.deptno, d.deptname,
addr ess_t (d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
CAST(MLTI SET (
SELECT e.eno, e.name, e.salary
FROM emp_chicago_view €)
AS employee _list f)
FROM deptd

Applying an Object Model to Relational Data 5-15

Defining Complex Relationships in Object Views

WHERE d.deptcity = ‘Chicago’;

This view has the list of all employees for each department. We use UNI ONALL
since we cannot have two employees working in more than one department. If we
had to deal with that eventuality, we could use a UNI ON of the rows. However, one
caveat in using the UNI ON operator is that we need to introduce an ORDER BY
operator within the CAST- MULTI SET expressions so that the comparison of two
collections is performed properly.

Defining Complex Relationships in Object Views

You can define circular references in object views using the MAKE REF operator;
vi ew_Acan refer to vi ew_Bwhich in turn can refer to vi ew_A. This allows an
object view to synthesize a complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object
currently includes a list of employees. To conserve space, we may want to put
references to the employee objects inside the department object, instead of
materializing all the employees within the department object. We can construct
("pin") the references to employee objects, and later follow the references using the
dot notation to extract employee information.

Because the employee object already has a reference to the department in which the
employee works, an object view over this model contains circular references
between the department view and the employee view.

You can create circular references between object views in two different ways.

Method 1: Recreate First View After Creating Second View
1. Create view A without any reference to view B.

2. Create view B, which includes a reference to view A.

3. Replace view A with a new definition that includes the reference to view B.

Method 2: Create First View Using FORCE Keyword
1. Create view A with the reference to view B using the FORCE keyword.

2. Create view B with reference to view A. When view A is used, it is validated
and re-compiled.

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view
creation. You need to query the USER_ERRORS catalog view to see if there were any

5-16 Oracle9i Application Developer’s Guide - Object-Relational Features

Defining Complex Relationships in Object Views

errors during the view creation. Use this method only if you are sure that there are
no errors in the view creation statement.

Also, if errors prevent the views from being recompiled upon use, you must
recompile them manually using the ALTER VI EWCOWPI LE command.

We will see the implementation for both the methods.

Tables and Types to Demonstrate Circular View References

First, we set up some relational tables and associated object types. Although the
tables contain some objects, they are not object tables. To access the data objects, we
will create object views later.

The enp table stores the employee information:

CREATE TABLE enp

(
enpno NUMBER PR MARY KEY,

enpnare VARCHAR2(20) ,
salary NMBER
deptno NUMBER

)

The emp_t type contains a reference to the department. We need a dummy
department type so that the emp_t type creation succeeds.

CREATE TYPE dept _t;
/

The employee type includes a reference to the department:

CREATE TYPE enp_t AS CBIECT
(
eno NUMBER
enane VARCHARZ2(20),
salary NMBER
deptref REF dept _t
);
/

We represent the list of references to employees as a nested table:

CREATE TYPE enpl oyee list_ref_t AS TABLE CF REF enp_t;
/

Applying an Object Model to Relational Data 5-17

Defining Complex Relationships in Object Views

The department table is a typical relational table:

CREATE TABLE dept
(

dept no NUMBER PR MARY KEY,
dept nane VARCHARZ(20) ,

dept street VARCHARZ(20) ,
deptcity VARCHAR2(10) ,
deptstate AR 2),

deptzip VARCHAR2(10)

)s
To create object views, we need object types that map to columns from the relational
tables:

CREATE TYPE address t AS BIECT
(

street VARCHAR2(20),
city VARCHAR2(10) ,
state AR 2),
zip VARCHAR2(10)

);
/
We earlier created an incomplete type; now we fill in its definition:

CREATE CR REPLACE TYPE dept_t AS CBJECT
(

dno NUMBER,

dnane VARCHAR2(20) ,

dept addr address_t,
enpreflist enpl oyee |ist_ref t

Creating Object Views with Circular References

Now that we have the underlying relational table definitions, we create the object
views on top of them.

Method 1: Recreate First View After Creating Second View

We first create the employee view with a null in the deptref column. Later, we will
turn that column into a reference.

CREATE M EWVenp_vi ew GF enp_t WTH CBIECT | DENTI Fl ER eno)

5-18 Oracle9i Application Developer’s Guide - Object-Relational Features

Defining Complex Relationships in Object Views

AS SH ECT e.enpno, e.enpnane, e.salary,
NULL
FRMenp e;

Next, we create the department view, which includes references to the employee
objects.

CREATE M EWdept _vi ew CF dept _t WTH CBIECT | DENTI Fl ER dno)
AS SH ECT d. deptno, d. dept nane,
address_t (d. deptstreet, d. deptcity, d. deptstate, d. deptzip),
CAST(MULTI SET (
SH ECT MNKE_REF(enp_vi ew, e. enpno)
FROMenp e
WHERE e. dept no = d. dept no)
AS enpl oyee list_ref_t)
FROM dept d;

We create a list of references to employee objects, instead of including the entire
employee object. We now re-create the employee view with the reference to the
department view.

CREATE (R REPLACE VI EWenp_view CF enp_t WTH GBIECT | DENTI Fl ER eno)
AS SH ECT e.enpno, e.enpnane, e.salary,
MAKE _REF(dept _vi ew, e. dept no)
FRMenp e;

This creates the views.

Method 2: Create First View Using FORCE Keyword

If we are sure that the view creation statement has no syntax errors, we can use the
FORCE keyword to force the creation of the first view without the other view being
present.

First, we create an employee view that includes a reference to the department view,
which does not exist at this point. This view cannot be queried until the department
view is created properly.

CREATE FORCE VI EWenp_vi ew CF enp_t WTH CBIECT | DENTI Fl ER eno)
AS SH ECT e.enpno, e.enpnane, e.salary,
MAKE _REF(dept _vi ew; e. dept no)
FRMenp e;

Applying an Object Model to Relational Data 5-19

Defining Complex Relationships in Object Views

Next, we create a department view that includes references to the employee objects.
We do not have to use the FORCE keyword here, since enp_vi ewalready exists.

CREATE M EWdept _vi ew CF dept _t WTH CBIECT | DENTI Fl ER dno)
AS SH ECT d. deptno, d. dept nane,
address_t (d. deptstreet, d. deptcity, d. deptstate, d. deptzip),
CAST(MULTI SET (
SH ECT MNKE_REF(enp_vi ew, e. enpno)
FRMenp e
WHERE e. dept no = d. dept no)
AS enpl oyee list_ref_t)
FROM dept d;

This allows us to query the department view, getting the employee object by
de-referencing the employee reference from the nested table enprefli st:

SELECT DERER(e. COLUWN VALLE)
FROM TABLE SHLECT e.enpreflist FROMdept _view e WHERE e. dno = 100) e;

COLUMN_VALUE is a special name that represents the scalar value in a scalar nested
table. In this case, COLUVMN_VAL UE denotes the reference to the employee objects in
the nested table enrpref | i st.

We can also access only the employee number of all those employees whose name
begins with “John”.

SH ECT e. CLUWN VALLE eno
FRCOM TABLE SELECT e. enpreflist FROM dept_vi ew e WHERE e. dno = 100) e
WHERE e.COLUMN_VALUE ename like John% ;

To get a tabular output, unnest the list of references by joining the department table
with the items in its nested table:

SELECT d. dno, e. GCOLUMN VALLE eno, e. GCCLUW VALLE enane
FROM dept _vi ew d, TABLE(d.emprefist) e

WHERE e.COLUMN_VALUE.ename like ‘John%’

AND d.dno=100;

Finally, we can rewrite the above query to use the enp_vi ewinstead of the dept _
Vi ewto show how you can navigate from one view to the other:

SELECT e. dept r ef . dno, DEREF(f.COLUMN_VALUE)
FROMemp_viewe, TABLE(e. deptref. enpreflist)f
WHEREe. dept r ef . dno =100

AND fCOLUMN_VALUE.ename like ‘John?%;

5-20 Oracle9i Application Developer’s Guide - Object-Relational Features

Object View Hierarchies

Object View Hierarchies

An object view hierarchy is a set of object views each of which is based on a
different type in a type hierarchy. Subviews in a view hierarchy are created under a
superview, analogously to the way subtypes in a type hierarchy are created under a
supertype.

Each object view in a view hierarchy is populated with objects of a single type, but
queries on a given view implicitly address its subviews as well. Thus an object view
hierarchy gives you a simple way to frame queries that can return a polymorphic
set of objects of a given level of specialization or greater.

For example, suppose you have the following type hierarchy, with Per son_t yp as
the root:

Person_typ

T

1 1
Student_typ Employee_typ

1

ParTimeStudent_typ

If you have created an object view hierarchy based on this type hierarchy, with an
object view built on each type, you can query the object view that corresponds to
the level of specialization you are interested in. For instance, you can query the
view of St udent _t yp to get a result set that contains only students, including
part-time students.

You can base the root view of an object view hierarchy on any type in a type
hierarchy: you do not need to start the object view hierarchy at the root type. Nor
do you need to extend an object view hierarchy to every leaf of a type hierarchy or
cover every branch. However, you cannot skip intervening subtypes in the line of
descent. Any subview must be based on a direct subtype of the type of its direct
superview.

Just as a type can have multiple sibling subtypes, an object view can have multiple
sibling subviews. But a subview based on a given type can participate in only one

Applying an Object Model to Relational Data 5-21

Object View Hierarchies

object view hierarchy: two different object view hierarchies cannot each have a
subview based on the same subtype.

A subview inherits the object identifier (OID) from its superview. An OID cannot be
explicitly specified in any subview.

A root view can explicitly specify an object identifier using the W TH OBJECT | D
clause. If the OID is system-generated or the clause is not specified in the root view,
then subviews can be created only if the root view is based on a table or view that
also uses a system generated OID.

The query underlying a view determines whether the view is updatable. For a view
to be updatable, its query must contain no joins, set operators, aggregate functions,
GROUP BY, DI STI NCT, pseudocolumns, or expressions. The same applies to
subviews.

If a view is not updatable, you can define | NSTEAD OF triggers to perform
appropriate DML actions. Note that | NSTEAD OF triggers are not inherited by
subviews.

All views in a view hierarchy must be in the same schema.

Note: In Oracle9i you can create views of types that are
non-instantiable.

A non-instantiable type cannot have instances, so ordinarily there
would be no point in creating an object view of such a type.
However, a non-instantiable type can have subtypes that are
instantiable. The ability to create object views of non-instantiable
types enables you to base an object view hierarchy on a type
hierarchy that contains a non-instantiable type.

Creating an Object View Hierarchy

5-22

You build an object view hierarchy by creating subviews under a root view. You do
this by using the UNDER keyword in the CREATE VI EWstatement.

CREATE M BV S udent _v CF Sudent _typ UNDER Per son_v
AS
SH ECT ssn, nane, address, deptid, najor
FROM Al | Per sons
WERE typeid = 2;

Oracle9i Application Developer’s Guide - Object-Relational Features

Object View Hierarchies

The same object view hierarchy can be based on different underlying storage
models. In other words, a variety of layouts or designs of underlying tables can
produce the same object view hierarchy. The design of the underlying storage
model has implications for the performance and updatability of the object view
hierarchy.

The examples below show three possible storage models. In the first, "flat" model,
all views in the object view hierarchy are based on the same table. In the second,
"horizontal” model, each view has a one-to-one correspondence with a different
table. And in the third, "vertical" model, the views are constructed using joins.

The Flat Model

In the "flat" model, all the views in the hierarchy are based on the same table. In the
following example, the single table Al | Per sons contains columns for all the
attributes of Per son_t yp, St udent _t yp, or Enpl oyee_typ.

Applying an Object Model to Relational Data 5-23

Object View Hierarchies

Figure 5-1 Flat Storage Model for Object View Hierarchy

Table AllPersons

TYPEID
1,2,0r3

Person attributes (columns) Student attributes Employee attributes

View Person_v l

Person attributes

View Student_v

Person attributes Student attributes

View Employee_v

Person attributes Employee attributes | «@————

CREATE TABLE Al | Persons
(typeid NOMBER(1),
ssn NUMBER
nane VARCHAR2(30),
addr ess VARCHAR2(100),
depti d NUMBER
nmaj or VARCHAR2(30) ,
enpi d NUMBER
ngr VARCHAR2(30)) ;

The t ypei d column identifies the type of each row. Possible values are:

1 = Person_typ
2 = Student _typ
3 = Enpl oyee_typ

The following statements create the views that make up the object view hierarchy:

CREATE M EWPerson_v CF Person_typ
WTH CBJECT A (ssn) AS
SH ECT ssn, nane, address
FROM Al | Per sons
WHERE typeid = 1;

5-24 Oracle9i Application Developer’s Guide - Object-Relational Features

Object View Hierarchies

CREATE M EWSt udent _v OF Sudent _typ UNDER Person_v

AS

SH ECT ssn, nane, address, deptid, najor
FROM Al | Per sons
WERE typeid = 2;

CREATE M EWEnpl oyee_v CF Enpl oyee_typ UNDER Per son_v

AS

SH ECT ssn, nane, address, enpid, ngr
FROM Al | Per sons
WHERE typeid = 3;

The flat model has the advantage of simplicity and poses no obstacles to supporting
indexes and constraints. Its drawbacks are:

= Asingle table cannot contain more than 1000 columns, so the flat model
imposes a 1000-column limit on the total number of columns that the object
view hierarchy can contain.

« Each row of the table will have NULLSs for all the attributes not belonging to its
type. Such non-trailing NULLSs can adversely affect performance.

The Horizontal Model

On the horizontal model, each view or subview is based on a different table. (In the
example, the tables are relational, but they could just as well be object tables for
which column substitutability is turned off.)

Figure 5-2 Horizontal Storage Model for Object View Hierarchy

Table only_person

Person attributes

View Person_v

Table only_students

P | Person attributes

View Student_v

Person attributes

Student attributes

P | Person attributes

Student attributes

Table only_employees

View Employee_v

Person attributes

Employee attributes

| Person attributes

Employee attributes

CREATE TABLE onl y_per sons

Applying an Object Model to Relational Data 5-25

Object View Hierarchies

(ssn NUMBER
nane VARCHAR2(30),
addr ess VARCHAR2(1100)) ;

CREATE TABLE onl y_student s
(ssn NUMBER
nane VARCHAR2(30),
addr ess VARCHAR2(100),
depti d NUMBER
naj or VARCHAR2(30));

CREATE TABLE onl y_enpl oyees
(ssn NUMBER
nane VARCHAR2(30),
addr ess VARCHAR2('100) ,
enpi d NUMBER
nmyr VARCHAR2(30));

These are the views:

CREATE M EWPerson_v CF Person_typ
WTH CBJECT A (ssn) AS
SH ECT *
FRCM onl y_per sons

CREATE M EWSt udent _v F Sudent _typ UNDER Person_v
AS
SH ECT *
FRCM onl y_st udent s;

CREATE M EVEnpl oyee_v CF Enpl oyee_typ UNDER Person_v
AS
SHECT *
FRCM onl y_enpl oyees;

The horizontal model is very efficient at processing queries of the form:
SELECT VALUH p) FROM Person_v p
WHERE VALUE(p) |S GF (ALY Student _typ);

Such queries need access only a single physical table to get all the objects of the
specific type. The drawbacks of this model are that queries of the sort SELECT *
FROM vi ewrequire performing a UNI ONover all the underlying tables and
projecting the rows over just the columns in the specified view. (See "Querying a

5-26 Oracle9i Application Developer’s Guide - Object-Relational Features

Object View Hierarchies

View in a Hierarchy" on page 5-28.) Also, indexes on attributes (and unique
constraints) must span multiple tables, and support for this does not currently exixt.

The Vertical Model

In the vertical model, there is a physical table corresponding to each view in the
hierarchy, but each physical table stores only those attributes that are unique to its
corresponding subtype.

Figure 5-3 Vertical Storage Model for Object View Hierarchy

Table all_personattrs View Person_v

typeid Person attributes:
1,2, 0r 3 | ssn, name, address

Person attributes

4

Table all_studentattrs View Student_v
Student attributes:) .
snn deptid, major Person attributes Student attributes
Table all_employeeattrs View Employee_v
Employee attributes: . .
snn empid, mgr Person attributes Employee attributes

A

CREATE TABLE al | _personattrs
(typeid NUMBER

ssn NUMBER

nane VARCHAR2(30),

addr ess VARCHAR2(1100)) ;

CREATE TABLE al | _studentattrs
(ssn NUMBER

deptid NUMBER

maj or VARCHAR2(30));

CREATE TABLE al | _enpl oyeeattrs

(ssn NUMBER
enpi d NUMBER

Applying an Object Model to Relational Data 5-27

Object View Hierarchies

ngr VARCHAR2(30)) ;

CREATE M EWPerson_ v CF Person_t
WTH GBIECT A OO(ssn) AS
SH ECT ssn, nane, address
FROM al | _personattrs
WHERE typeid = 1,

CREATE M EWStudent v OF Sudent _t UNDER Person_v
AS
SH ECT x.ssn, x.nane, X.address, y.deptid, y.najor
FROMal | _personattrs x, all_studentattrs y
WHERE x.typeid = 2 AND x.ssn = y.ssn;

CREATE M EVEnpl oyee v CF Enpl oyee_t UNDER Person_v
AS
SH ECT x.ssn, X.nane, X.address, y.enpid, y.ngr
FROMal | _personattrs x, all_studentattrs y
WHERE x.typeid = 3 AND x.ssn = y. ssn;

The vertical model can efficiently process queries of the kind SELECT * FROM
root _vi ewand it is possible to index individual attributes and impose unique
contraints on them. However, to recreate an instance of a type, a join over OIDs
must be performed for each level that the type is removed from the root in the
hierarchy.

Querying a View in a Hierarchy

You can query any view or subview in an object view hierarchy; rows are returned
for the declared type of the view that you query and for any of that type’s subtypes.
So, for instance, in an object view hierarchy based on the Per son_t yp type
hierarchy, you can query the view of Per son_t yp to get a result set that contains
all persons, including students and employees; or you can query the view of

St udent _t yp to get a result set that contains only students, including part-time
students.

In the SELECT list of a query, you can include either functions such as REF() and
VALUE() that return an object instance, or you can specify object attributes of the
view’s declared type, such as the nane and ssn attributes of Per son_t yp.

If you specify functions, to return object instances, the query returns a polymorphic
result set: that is, it returns instances of both the view’s declared type and any
subtypes of that type.

5-28 Oracle9i Application Developer’s Guide - Object-Relational Features

Object View Hierarchies

For example, the following query returns instances of persons, employees, and
students of all types, as well as REFs to those instances.

SELECT REF(p), VALUHp) FROM Person v p;

If you specify individual attributes of the view’s declared type in the SELECT list or
doa SELECT * , again the query returns rows for the view’s declared type and any
subtypes of that type, but these rows are projected over columns for the attributes of
the view’s declared type, and only those columns are used. In other words, the
subtypes are represented only with respect to the attributes they inherit from and
share with the view’s declared type.

So, for example, the following query returns rows for all persons and rows for
employees and students of all types, but the result uses only the columns for the
attributes of Per son_t yp—namely, nane, ssn, and addr ess. It does not show
rows for attributes added in the subtypes, such as the dept i d attribute of

St udent _typ.

SH ECT * FRCM Person_v;

To exclude subviews from the result, use the ONLY keyword. The ONLY keyword
confines the selection to the declared type of the view that you are querying:

SELECT VALUH(p) FROM Q\LY(Person_v) p;

Privileges for Operations on View Hierarchies

Generally, a query on a view with subviews requires only the SELECT privilege on
the view being referenced and does not require any explicit privileges on subviews.
For example, the following query requires only SELECT privileges on Per son_v
but not on any of its subviews.

SH ECT * FROM Person_v;

However, a query that selects for any attributes added in subtypes but not used by
the root type requires the SELECT privilege on all subviews as well. Such subtype
attributes may hold sensitive information that should reasonably require additional
privileges to access.

The following query, for example, requires SELECT privileges on Per son_v and
also on St udent _v, Enpl oyee_v (and on any other subview of Per son_v)
because the query selects object instances and thus gets all the attributes of the
subtypes.

Applying an Object Model to Relational Data 5-29

Object View Hierarchies

SELECT VALUHp) FROM Person_v p;

To simplify the process of granting SELECT privileges on an entire view hierarchy,
you can use the H ERARCHY option. Specifying the H ERARCHY option when
granting a user SELECT privileges on a view implicitly grants SELECT privileges on
all current and future subviews of the view as well. For example:

GRANT SELECT ON Person_v TO scott WTH H ERARCHY CPTI O\

A query that excludes rows belonging to subviews also requires SELECT privileges
on all subviews. The reason is that information about which rows belong
exclusively to the most specific type of an instance may be sensitive, so the system
requires SELECT privileges on subviews for queries (such as the following one) that
exclude all rows from subviews.

SELECT * FROM O\LY(Person_v);

5-30 Oracle9i Application Developer’s Guide - Object-Relational Features

S

Advanced Topics for Oracle Objects

The other chapters in this book discuss the topics that you need to get started with
Oracle objects. The topics in this chapter are of interest once you start applying
object-relational techniques to large-scale applications or complex schemas.

The chapter contains these topics:

Storage of Objects

Object Identifiers

Type Evolution

OCI Tips and Techniques for Objects

Transient and Generic Types

User-Defined Aggregate Functions
Partitioning Tables that Contain Oracle Objects

Advanced Topics for Oracle Objects 6-1

Storage of Objects

Storage of Objects

Oracle automatically maps the complex structure of object types into the simple
rectangular structure of tables.

Leaf-Level Attributes

An object type is like a tree structure, where the branches represent the attributes.
Attributes that are objects sprout subbranches for their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type (such as NUMBER,
VARCHAR2, or REF) or a collection type (such as VARRAY or nested table). Each of
these leaf-level attributes of the original object type is stored in a table column.

The leaf-level attributes that are not collection types are called the leaf-level scalar
attributes of the object type.

How Row Objects are Split Across Columns

In an object table, Oracle stores the data for every leaf-level scalar or REF attribute
in a separate column. Each VARRAY is also stored in a column, unless it is too large
(see "Internal Layout of VARRAYs" on page 6-5). Oracle stores leaf-level attributes
of nested table types in separate tables associated with the object table. You must
declare these tables as part of the object table declaration (see "Internal Layout of
Nested Tables" on page 6-4).

When you retrieve or change attributes of objects in an object table, Oracle performs
the corresponding operations on the columns of the table. Accessing the value of
the object itself produces a copy of the object, by invoking the default constructor
for the type, using the columns of the object table as arguments.

Oracle stores the system-generated object identifier in a hidden column. Oracle uses
the object identifier to construct REFs to the object.

Hidden Columns for Tables with Column Objects

When a table is defined with a column of an object type, Oracle adds hidden
columns to the table for the object type’s leaf-level attributes. Each object-type
column also has a corresponding hidden column to store the NULL information for
the column objects (that is, the atomic nulls of the top-level and the nested objects).

6-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Storage of Objects

Hidden Columns for Substitutable Columns and Tables

A substitutable column or object table has a hidden column not only for each
attribute of the column’s object type but also for each attribute added in any
subtype of the object type. These columns store the values of those attributes for
any subtype instances inserted in the substitutable column.

For example, a substitutable column of Per son_t yp will have associated with it a
hidden column for each of the attributes of Per son_t yp, hamely: ssn, nane,
addr ess. It will also have hidden columns for attributes of the subtypes of

Per son_t yp: for example, the attributes dept i d and naj or (for St udent _typ)
and nunhour s (for Part Ti neSt udent _typ).

When a subtype is created, hidden columns for attributes added in the subtype are
automatically added to tables containing a substitutable column of any of the new
subtype’s ancestor types. These retrofit the tables to store data of the new type. If,
for some reason, the columns cannot be added, creation of the subtype is rolled
back.

When a subtype is dropped with the VALI DATE option to DROP TYPE, all such
hidden columns for attributes unique to the subtype are automatically dropped as
well if they do not contain data.

A substitutable column also has associated with it a hidden type discriminant
column. This column contains an identifier, called a typeid, that identifies the most
specific type of each object in the substitutable column. Typically, a typeid (RAW is
one byte, though it can be as big as four bytes for a large hierarchy.

You can find the typeid of a specified object instance using the function—SYS _
TYPEI D. For example, suppose that the substitutable object table per sons contains
three rows, as follows:

CREATE TABLE persons CF Person_typ;

| NSERT | NTO per sons
VALUES (Person_typ(1243, 'Bob’, '121 Front X'));

I NSERT | NTO per sons
VALLES (Student _typ(3456, 'Joe’, '34 Mew, 12, "HSTCRY'));

| NSERT | NTO per sons
VALUES (PartTi neStudent _typ(5678, 'Tim, 13, 'PHYS CS, 20));

The following query gets typeids of object instances stored in the table:
SELECT nane, SYS TYPH O(VALUE p)) typei d FROM persons p;

Advanced Topics for Oracle Objects 6-3

Storage of Objects

NAME TYPEID
Bob 01
Joe 02
Tim 03

The catalog views USER_TYPES, DBA TYPES and ALL_TYPES contain a TYPEI D
column (not hidden) that gives the typeid value for each type. You can join on this
column to get the type names corresponding to the typeids in a type discriminant
column.

See Also: "SYS_TYPEID" in Chapter 2 for more information about
SYS TYPEI Dand typeids

REFs

When Oracle constructs a REF to a row object, the constructed REF is made up of
the object identifier, some metadata of the object table, and, optionally, the ROWID.

The size of a REF in a column of REF type depends on the storage properties
associated with the column. For example, if the column is declared as a REF WITH
ROWID, Oracle stores the ROWID in the REF column. The ROWID hint is ignored
for object references in constrained REF columns.

If column is declared as a REF with a SCOPE clause, the column is made smaller by
omitting the object table metadata and the ROW D. A scoped REF is 16 bytes long.

If the object identifier is primary-key based, Oracle may create one or more internal
columns to store the values of the primary key depending on how many columns
comprise the primary key.

Note: When a REF column references row objects whose object
identifiers are derived from primary keys, we refer to it as a
primary-key-based REF or pkREF. Columns containing pkREFs must
be scoped or have a referential constraint.

Internal Layout of Nested Tables

The rows of a nested table are stored in a separate storage table. Each nested table
column has a single associated storage table, not one for each row. The storage table
holds all the elements for all of the nested tables in that column. The storage table

6-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Creating Indexes on Typeids or Attributes

has a hidden NESTED_TABLE | Dcolumn with a system-generated value that lets
Oracle map the nested table elements back to the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table
index-organized. Include the ORGANI ZATI ON | NDEX clause inside the STORE AS

clause.
A nested table type can contain objects or scalars:

« If the elements are objects, the storage table is like an object table: the top-level
attributes of the object type become the columns of the storage table. But
because a nested table row has no object identifier column, you cannot
construct REFs to objects in a nested table.

« If the elements are scalars, the storage table contains a single column called
COLUWN_VALUE that contains the scalar values.

For more information, see Nested Table Storage on page 8-16.

Internal Layout of VARRAYS

All the elements of a VARRAY are stored in a single column. Depending upon the
size of the array, it may be stored inline or in a BLOB. See Storage Considerations

for Varrays on page 8-15 for details.

Creating Indexes on Typeids or Attributes

Indexing a Type Discriminant Column

Using the SYS_TYPEI D function, you can build an index on the hidden type
discriminant column that every substitutable column has. The type discriminant
column contains typeids that identify the most specific type of every object instance
stored in the substitutable column. This information is used by the system to
evaluate queries that use the | S OF predicate to filter by type, but you can access
the typeids for your own purposes using the SYS_TYPEI D function.

Note: Generally, a type discriminant column contains only a small
number of distinct typeids: at most, there can be only as many as
there are types in the related type hierarchy. The low cardinality of
this column makes it a good candidate for a bitmap index.

Advanced Topics for Oracle Objects 6-5

Creating Indexes on Typeids or Attributes

For example, the following statement creates a bitmap index on the type
discriminant column underlying the substitutable aut hor column of table books.
Function SYS_TYPEI Dis used to reference the type discriminant column:

CREATE Bl TMAP | NDEX typeid i ON books (SYS TYPH X aut hor));

Indexing Subtype Attributes of a Substitutable Column

You can build an index on attributes of any of the types that can be stored in a
substitutable column. Attributes of subtypes can be referenced in the CREATE

| NDEX statement by using the TREAT function to filter out types other than the
desired subtype (and its subtypes); you then use the dot notation to specify the
desired attribute.

For example, the following statement creates an index on the maj or attribute of all
student authors in the books table. The declared type of the aut hor columnis
Per son_t yp, of which St udent _t yp is a subtype, so the column may contain
instances of Per son_t yp, St udent _t yp, and subtypes of either one:

CREATE | NCEX ngj or _i ON books
(TREAT(aut hor AS Student _typ).najor);

St udent _t yp is the type that first defined the naj or attribute: the Per son_t yp
supertype does not have it. Consequently, all the values in the hidden column for
the nmaj or attribute are values for St udent _typ or Part Ti neSt udent _typ
authors (a St udent _t yp subtype). This means that the hidden column’s values are
identical to the values returned by the TREAT expression, which returns maj or
values for all students, including student subtypes: both the hidden column and the
TREAT expression list majors for students and nulls for authors of other types. The
system exploits this fact and creates index maj or _i as an ordinary btree index on
the hidden column.

Values in a hidden column are identical to the values returned by a TREAT
expression like the one above only if the type named as the target of the TREAT
function (St udent _t yp, above) is the type that first defined the attribute. If the
target of the TREAT function is a subtype that merely inherited the attribute, as in
the example below, the TREAT expression will return non-null maj or values for the
subtype (part-time students) but not for its supertype (other students).

CREATE | NCEX n@j or _func_i ON books
(TREAT(aut hor AS PartTi neStudent _typ).najor);

6-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Object Identifiers

Here the values stored in the hidden column for maj or may be different from the
results of the TREAT expression. Consequently, an ordinary btree index cannot be
created on the underlying column.

In a case like this, Oracle treats the TREAT expression like any other function-based
expression and tries to create the index as a function-based index on the result.
However, creating a function-based index requires some privileges and session
settings beyond those required to create a btree index.

The following example, like the previous one, creates a function-based index on the
maj or attribute of part-time students, but in this case the hidden column for rmaj or
is associated with a substitutable object table per sons:

CREATE | NCEX maj or _func_i 2 ON persons p
(TREAT(VALUE(p) AS PartTi neStudent _typ). najor);

Object Identifiers

Every row object in an object table has an associated logical object identifier (OID).
By default, Oracle assigns each row object a unique system-generated OID, 16 bytes
in length. Oracle provides no documentation of or access to the internal structure of
object identifiers. This structure can change at any time.

The OID column of an object table is a hidden column. Once it is set up, you can
ignore it and focus instead on fetching and navigating objects through object
references.

The OID for a row object uniquely identifies it in an object table. Oracle implicitly
creates and maintains an index on the OID column of an object table. In a
distributed and replicated environment, the system-generated unique identifier lets
Oracle identify objects unambiguously .

Primary-key Based Object Identifiers

In an environment where a locally unique identifier can be assumed to be globally
unique (in other words, where the table is not distributed or replicated), you can use
the primary key value of a row object as its object identifier. Doing this saves the 16
bytes of storage for each object that a system-generated identifer requires.

Primary-key based identifiers also make it faster and easier to load data into an
object table. By contrast, system-generated object identifiers need to be remapped
using some user-specified keys, especially when references to them are also stored.

Advanced Topics for Oracle Objects 6-7

Type Evolution

Type Evolution

Changing a user-defined type is called type evolution. You can make the following
changes to a user-defined type:

« Add and drop attributes

« Add and drop methods

« Modify a numeric attribute to increase its length, precision, or scale
« Modify a varying length character attribute to increase its length

« Change a type’s FI NAL and | NSTANTI ABLE properties

Changes to a type affect things that reference the type. For example, if you add a
new attribute to a type, data in a column of that type must be presented so as to
include the new attribute.

Schema objects that directly or indirectly reference a type and are affected by a
change to it are called dependents of the type. A type can have these kinds of
dependents:

« Table

« Type or subtype

« Program unit (PL/SQL block): procedure, function, package, trigger
« Indextype

« View (including object view)

« Function-based index

« Operator

How a dependent schema object is affected by a change to a type depends on the
dependent object and on the nature of the change to the type.

All dependent program units, views, operators and indextypes are marked invalid
when a type is modified. The next time one of these invalid schema objects is
referenced, it is revalidated using the new type definition. If the object recompiles
successfully, it becomes valid and can be used again. (Depending on the change to
the type, function-based indexes may be dropped or disabled and need to be
rebuilt.)

If a type has dependent tables, then, for each attribute added to a type, one or more
internal columns are added to the table depending on the new attribute’s type. New
attributes are added with NULL values. For each dropped attribute, the columns

6-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

associated with that attribute are dropped. For each modified attribute, the length,
precision, or scale of its associated column is changed accordingly.

These changes mainly involve updating the tables’ metadata (information about a
table’s structure, describing its columns and their types) and can be done quickly.
However, the data in those tables must be updated to the format of the new type
version as well. Updating this data can be time-consuming if there is a lot of it, so
Oracle provides options in the ALTER TYPE command to let you choose whether to
convert the table data all at once or leave it as is to be converted piecemeal as it is
updated.

The CASCADE option for ALTER TYPE propagates a type change to dependent
types and tables. CASCADE itself has options (see "ALTER TYPE Options for Type
Evolution" on page 6-16) that let you choose whether to convert table data to the
new type format as part of the propagation: the option | NCLUDI NG TABLE DATA
converts the data; the option NOT | NCLUDI NG TABLE DATA does not convert it.
By default, the CASCADE option converts the data. In any case, table data is always
returned in the format of the latest type version. If the table data is stored in the
format of an earlier type version, Oracle converts the data to the format of the latest
version before returning it, even though the format in which the data is actually
stored is not changed until the data is rewritten.

The definition of the latest type can be retrieved from the system view USER_
SOURCE. You can view definitions of all versions of a type in the USER_TYPE_
VERSI ONS view.

The following example changes Per son_t yp by adding one attribute and
dropping another. The CASCADE keyword propagates the type change to dependent
types and tables, but the phrase NOT | NCLUDI NG TABLE DATA prevents
conversion of the related data.

CREATE TYPE person_typ AS GBIECT (
first_nane VARCHAR 30),
| ast _nane VARCHAR(30) ,
age NUMBER(3)) ;

CREATE TABLE person_tab of person_typ;

I NSERT | NTO person_tab VALUES
(person_typ (John', 'Doe’, 50));

SELECT value(p) FROM person_tab p;

VALUE(P)FIRST_NAME, LAST NAME, AGE)

Advanced Topics for Oracle Objects 6-9

Type Evolution

PERSON_TYP(John','Doe’, 50)

ALTER TYPE person _typ
ADD ATTRIBUTE (dob DATE),
DROP ATTRIBUTE age CASCADE NOT INCLUDING TABLE DATA;

— The data of table person_tab has not been converted yet, but
—when the data is retrieved, Oracle retums the data based on
—the latest type version. The new attribute is initialized to NULL.

SELECT value(p) FROM person_tab p;
VALUE(P)(FIRST_NAME, LAST_NAME, DOB)

PERSON_TYP(John,'Doe’, NULL)

During SELECT statements, even though column data may be converted to the
latest type version, the converted data is not written back to the column. If a certain
user-defined type column in a table is retrieved often, you should consider
converting that data to the latest type version to eliminate redundant data
conversions. Converting is especially beneficial if the column contains a VARRAY
attribute since a VARRAY typically takes more time to convert than an object or
nested table column.

You can convert a column by issuing an UPDATE statement to set the column to
itself. For example:

UPDATE dept_tab SET emp_array_col=emp_array _col;

You can convert all columns in a table by using ALTER TABLE UPGRADE DATA.
For example:

ALTER TYPE person_typ ADD ATTRIBUTE (photo BLOB)
CASCADE NOT INCLUDING TABLE DATA;
ALTER TABLE dept_tab UPGRADE INCLUDING DATA;

Changes Required by a Change to a Type

Only structural changes to a type affect dependent data. Changes that are confined
to a type’s method definition or behavior (for example, to the type body, where the
type’s methods are implemented) do not.

These possible changes to a type are structural:

« Adding an attribute

6-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

« Dropping an attribute
« Modifying the length, precision, or scale of an attribute

« Changing the finality of a type (which determines whether subtypes can be
derived from it) from FI NAL to NOT FI NAL or from NOT FI NAL to FI NAL.

These changes result in new versions of the altered type and all its dependent types
and require the system to add, drop, or modify internal columns of dependent
tables as part of the process of converting to the new version.

When you make any of these kinds of changes to a type that has dependent types or
tables, the effects of propagating the change are not confined only to metadata but
affect data storage arrangements. You must choose whether to let the schema object
conversions at the storage level happen as data is rewritten for unrelated reasons, or
to initiate the conversions for their own sake for particular columns, particular
tables, or globally.

You may also need to make other changes. For example, if a new attribute is added
to a type, and the type body invokes the type’s constructor, then each constructor in
the type body must be modified to specify a value for the new attribute. Similarly, if
a new method is added, then the type body must be replaced to add the
implementation of the new method. The type body can be modified by using the
CREATE OR REPLACE TYPE BODY statement.

Steps to Change a Type
Below are the steps required to make a change to a type:
Assume we have the following schema:

CREATE TYPE Person_typ AS CBJIECT
(name HAR 20),

ssn HAR(12),

address VARCHAR2(1100));

CREATE TYPE Person_nt 1S TABLE CF Person_typ;
CREATE TYPE dept _typ AS CBIECT
(nor Person_typ,
enps Person nt);
CREATE TABLE dept CF dept _typ;

1. Issue an ALTER TYPE statement to alter the type.

Advanced Topics for Oracle Objects 6-11

Type Evolution

Validating a Type

When the system executes an ALTER TYPE statement, it first validates the
requested type change syntactically and semantically to make sure it is legal. The
system performs the same validations as for a CREATE TYPE statement plus some
additional ones. For example, it checks to be sure an attribute being dropped is not

The default behavior of an ALTER TYPE statement without any option
specified is to check if there is any object dependent on the target type. The
statement aborts if any dependent object exists. Optional keywords allow
cascading the type change to dependent types and tables.

In the following code, conversion of table data is deferred by adding the phrase
NOT | NCLUDI NG TABLE DATA.

-- Add new attributes to Person_typ and propagate the change

-- to Person_nt and dept_typ

ALTER TYPE Person_typ ADD ATTR BUTE (pi cture BLCB, dob DATE)
CASCADE NOT | NOLUDI NG TABLE DATA

Use CREATE OR REPLACE TYPE BODY to update the corresponding type
body to make it current with the new type definition.

Upgrade dependent tables to the latest type version and convert the tables’
data.

ALTER TABLE dept UPGRADE | NOLUD NG DATA

Alter dependent PL/SQL program units as needed to take account of changes
to the type.

Use OTT or JPUB (or another tool) to generate new header files for applications,
depending on whether the application is written in C or Java.

Adding a new attribute to a supertype also increases the number of attributes in
all its subtypes because these inherit the new attribute. Inherited attributes
always precede declared (locally defined) attributes, so adding a new attribute
to a supertype causes the ordinal position of all declared attributes of any
subtype to be incremented by one recursively. The mappings of the altered type
must be updated to include the new attributes. OTT and JPUB do this. If you
use some other tool, you must be sure that the type headers are properly
synchronized with the type definition in the server; otherwise, unpredictable
behavior may result.

Modify application code as needed and rebuild the application.

6-12 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

used as a partitioning key. If the new spec of the target type or any of its dependent
types fails the type validations, the ALTER TYPE statement aborts. No new type
version is created, and all dependent objects remain unchanged.

If dependent tables exist, further checking is done to ensure that restrictions relating
to the tables and any indexes are observed. Again, if the ALTER TYPE statement
fails the check of table-related restrictions, then the type change is aborted, and no
new version of the type is created.

When multiple attributes are added in a single ALTER TYPE statement, they are
added in the order specified. Multiple type changes can be specified in the same
ALTER TYPE statement, but no attribute name or method signature can be specified
more than once in the statement. For example, adding and modifying the same
attribute in a single statement is not allowed.

For example:

CREATE TYPE nytype AS CBJECT (attrl NUWMBER attr2 NMBER;
ALTER TYPE nytype ACD ATTR BUTE (attr3 NUMBER),

DRCP ATTR BUTE attr?2,

ADD ATTR BUTE attr4 NJUMBER CASCALKE;

The resulting definition for mytype becomes:
(attrl NOMBER attr3 NUMBER attr4 NUMBER;

The following ALTER TYPE statement, which attempts to make multiple changes to
the same attribute (at t r 5), is invalid:

-- invalid ALTER TYPE st at enent
ALTER TYPE nytype ADD ATTR BUTE (attr5 NUMBER attr6 CHAR 10)),
DRCP ATTR BUTE attr5;

Below are other notes on validation constraints, table restrictions, and assorted
information about the various kinds of changes that can be made to a type.

Dropping an attribute

« Dropping all attributes from a root type is not allowed. You must instead drop
the type. Since a subtype inherits all the attributes from its supertype, dropping
all the attributes from a subtype does not reduce its attribute count to zero;
thus, dropping all attributes declared locally in a subtype is allowed.

« Only an attribute declared locally in the target type can be dropped. You cannot
drop an inherited attribute from a subtype. Instead, drop the attribute from the
type where it is locally declared.

Advanced Topics for Oracle Objects 6-13

Type Evolution

« Dropping an attribute which is part of a table partitioning or sub-partitioning
key in a table is not allowed.

« Dropping an attribute of a primary key OID of an object table or an
index-organized table (I0OT) is not allowed.

= When an attribute is dropped, the column corresponding to the dropped
attribute is dropped.

« Indexes, statistics, constraints, and any referential integrity constraints
referencing a dropped attribute are removed.

Modifying attribute type (to increase the length, precision or scale)

« Expanding the length of an attribute referenced in a function-based index,
clustered key or domain index on a dependent table is not allowed.

Dropping a method

= You can drop a method only from the type in which the method is defined or
overridden: You cannot drop an inherited method from a subtype, and you
cannot drop an override from a supertype.

« Ifamethod is not overridden, dropping it using the CASCADE option removes
the method from the target type and all subtypes. However, if a method is
overridden in a subtype, the CASCADE will fail and roll back. For the CASCADE
to succeed, you must first drop each override from the subtype that defines it
and only then drop the method from the supertype.

You can consult the USER_DEPENDENCI ES table to find all the schema objects,
including types, that depend on a given type.

= You can use the | NVALI DATE option to drop a method that has overrides, but
the overrides in the subtypes must still be dropped manually. The subtypes will
remain in an invalid state until they are explicitly altered to drop the overrides.
(Until then, an attempt to recompile the subtypes for revalidation will produce
the error, "Method does not override.")

Unlike CASCADE, | NVALI DATE bypasses all the type and table checks and
simply invalidates all schema objects dependent on the type. The objects are
revalidated the next time they are accessed. This option is faster than using
CASCADE, but you must be certain that no problems will be encountered
revalidating dependent types and tables. Table data cannot be accessed while a
table is invalid; if a table cannot be validated, its data remains inaccessible.

See Also: "If a Type Change Validation Fails" on page 6-15

6-14 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

Modifying the FINAL or INSTANTIABLE property

« Altering a user-defined type from NOT FI NAL to FI NAL is allowed only if the
target type has no subtypes.

« Altering a user-defined type from | NSTANTI ABLE to NOT | NSTANTI ABLE is
allowed only if the type has no table dependents.

« Altering a user-defined type from FI NAL to NOT FI NAL affects dependent
tables and so requires schema object conversion of columns and tables because
a new column must be added for the Typel d now that the type can have
subtypes.

« Altering a user-defined type from NOT | NSTANTI ABLE to | NSTANTI ABLE is
allowed anytime. This change does not affect tables.

If a Type Change Validation Fails

The | NVALI DATE option of the ALTER TYPE statement lets you alter a type
without propagating the type change to dependent objects. In this case, the system
does not validate the dependent types and tables to ensure that all the ramifications
of the type change are legal. Instead, all dependent schema objects are marked
invalid. The objects, including types and tables, are revalidated when next
referenced. If a type cannot be revalidated, it remains invalid, and any tables
referencing it become inaccessible until the problem is corrected.

A table may fail validation because, for example, adding a new attribute to a type
has caused the number of columns in the table to exceed the maximum allowable
number of 1000, or because an attribute used as a partitioning or clustering key of a
table was dropped from a type.

To force a revalidation of a type, users can issue the ALTER TYPE COWPI LE
statement. To force a revalidation of an invalid table, users can issue the ALTER
TABLE UPGRADE statement and specify whether the data is to be converted to the
latest type version. (Note that, in a table validation triggered by the system when a
table is referenced, table data is always updated to the latest type version: you do
not have the option to postpone conversion of the data.)

If a table is unable to convert to the latest type version, then | NSERT, UPDATE and
DELETE statements on the table are not allowed and its data becomes inaccessible.
The following DDLs can be executed on the table, but all other statements which
reference an invalid table are not allowed until the table is successfully validated:

= DROP TABLE
= TRUNCATE TABLE

Advanced Topics for Oracle Objects 6-15

Type Evolution

All PL/SQL programs containing variables defined using ROM YPE of a table or
% YPE of a column or attribute from a table are compiled based on the latest type
version. If the table fails the revalidation, then compiling any program units that
reference that table will also fail.

ALTER TYPE Options for Type Evolution

Below is a synopsis of the options in the ALTER TYPE statement for altering the
attribute or method definition of a type:

ADD method_spec
DROP method_spec

ADD ATTRI BUTE
DROP ATTRI BUTE
MODI FY ATTRI BUTE

| NVALI DATE

CASCADE

I NCLUDI NG TABLE
DATA

Adds specified method to a type

Drops the method with the specified spec from the
target type

Adds specified attribute to the target type
Drops specified attribute from the target type

Modifies the type of the specified attribute to increase
its length, precision or scale

Invalidates all dependent objects. Using this option
bypasses all the type and table checks, to save time.

Use this option only if you are certain that problems
will not be encountered validating dependent types
and tables. Table data cannot be accessed again until it
is validated,; if it cannot be validated, it remains
inaccessible.

Propagates the type change to dependent types and
tables. The statement aborts if an error is found in
dependent types or tables unless the FORCE option is
specified.

If CASCADE is specified with no other options, then
the | NCLUDI NG TABLE DATA option for CASCADE is
implied, and Oracle converts all table data to the
latest type version.

Converts data stored in all user-defined columns to
the most recent version of the column’s type

6-16 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

NOT | NCLUDI NG Leaves column data as is, associated with the current

TABLE DATA type version. If an attribute is dropped from a type
referenced by a table, then the corresponding column
of the dropped attribute is not removed from the
table. Only the metadata of the column is marked
unused. If the dropped attribute is stored out-of-line
(e.g., VARRAY, LOB or nested table attribute) then the
out-of-line data is not removed. (Unused columns can
be removed afterward by using an ALTER TABLE
DROP UNUSED COLUMNS statement.)

This option is useful when you have many large
tables and may run out of rollback segments if you
convert them all in one transaction. This option
enables you to convert the data of each dependent
table later in a separate transaction (using an ALTER
TABLE UPGRADE | NCLUDI NG DATA statement).

Specifying this option will speed up the table upgrade
because the table’s data is left in the format of the old
type version. However, selecting data from this table
will require converting the images stored in the
column to the latest type version. This is likely to
affect performance during subsequent SELECT
statements.

FORCE Forces the system to ignore errors from dependent
tables and indexes. Errors are logged in a specified
exception table so that they can be queried afterward.
This option must be used with caution because
dependent tables may become inaccessible if some
table errors occur.

Figure 6-1 graphically summarizes the options for ALTER TYPE | NVALI DATE and

their effects. In the figure, T1 is a type, and T2 is a dependent type. Also see the
notes beneath the figure.

Advanced Topics for Oracle Objects 6-17

Type Evolution

Figure 6-1 ALTER TYPE Options

Alter Type Invalidate
Options

Target type

o

Cascade Not Including
Table Data

Dependent types F==-=F---x r===F=-==a

g | Metadata I | Metadata I

Cascade Including
TableData ~ —°7°==°°°

Dependent tables

(3]

Other dependent objects A A

Notes on the figure:

1. Invalidate: All objects below line (1) are marked invalid

2. Cascade Not Including Table Data: All objects below line (2) are marked
invalid. Metadata of all dependent tables are upgraded to the latest type
version, but the table data are not converted.

6-18 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

3. Cascade Including Table Data: All objects below line (3) are marked invalid.
All dependent tables are upgraded to the latest type version, including the table
data.

ALTER TABLE Option for Type Evolution

You can use ALTER TABLE to convert table data to the latest version of referenced
types. For example, the following statement converts the data in table benefit s to
the latest type version.

ALTER TABLE benefits UPCRADE | NOLLDI NG DATA

The ALTER TABLE st at enent contains the following options for converting table
data to the latest type version:

UPGRADE Converts the metadata of the target table to conform
with the latest version of each referenced type. If the
target table is already valid, then the table metadata
remains unchanged.

Specifying | NCLUDI NG DATA converts the data in the
table to the latest type version format. The default is

| NCLUDI NG DATA. You can determine which table
contains data based on older type version by referring
to the USER_TAB_CCOLUMNS view.

| NCLUDI NG DATA Converts data stored in all user-defined columns to
the most recent version of the column’s type. For each
new attribute added to the column’s type, a new
attribute is added to the data and is initialized to
NULL. For each attribute dropped from the
referenced type, the corresponding attribute data is
removed from each row in the table. All tablespaces
containing the table’s data must be in read write
mode; otherwise, the statement will not succeed.

Advanced Topics for Oracle Objects 6-19

OCI Tips and Techniques for Objects

NOT | NCLUDI NG
DATA

COLUMN_STORAGE._
CLAUSE

Leaves column data as is and does not update its type
version. If an attribute is dropped from a type
referenced by the target table, then the corresponding
column of the dropped attribute is not removed from
the table. Only the metadata of the column is marked
unused. If the dropped attribute is stored out-of-line
(for example, a varray, LOB or nested table attribute)
then the out-of-line data is not removed. To remove
the data of those attributes, you can re-submit this
statement with | NCLUDI NG DATA option specified.

Specifying this option will speed up the table upgrade
because the table’s data is left in the format of the old
type version. However, data selected from this table
will require converting to the latest type version, so
performance may be affected during subsequent
SELECT statements.

This option is useful when there are not enough
rollback segments to convert the entire table at once.
In this case, you can upgrade the table’s metadata first
without converting the data, and then issue UPDATE
statements to set each user-defined column to itself.
The UPDATE statement will convert the data in the
target column to the latest type version.

Since this option only requires updating the table’s
metadata all tablespaces are not required to be on-line
in read/write mode for the statement to succeed.

Specifies the storage for new VARRAY, nested table,
or LOB attributes to be added to the table.

OCI Tips and Techniques for Objects

The following sections introduce tips and techniques for using OCI effectively by
showing common operations performed by an OCI program that uses objects.

Initializing an OCI Program in Object Mode

To enable object manipulation, the OCI program must be initialized in object mode.
The following OCI code initializes a program in object mode:

6-20 Oracle9i Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects

err = Initialize(Gd_CBIECT, 0, 0, 0, 0);

When the program is initialized in object mode, the object cache is initialized.
Memory for the cache is not allocated at this time; instead, it is allocated only on
demand.

Creating a New Object

The OCIObjectNew() function creates transient or persistent objects. A transient
object’s lifetime is the duration of the session in which it was created. A persistent
object is an object that is stored in an object table in the database. The
OCIObjectNew() function returns a pointer to the object created in the cache, and the
application should initialize the new object by setting the attribute values directly.
The object is not created in the database yet; it will be created and stored in the
database when it is flushed from the cache.

When OCIObjectNew() creates an object in the cache, it sets all the attributes to
NULL. The attribute null indicator information is recorded in the parallel null
indicator structure. If the application sets the attribute values, but fails to set the
null indicator information in the parallel null structure, then upon object flush the
object attributes will be set to NULL in the database.

If you want to set all of the attributes to NOT NULL during object creation, you can
use the OCI _OBJECT_NEW NOTNULL attribute of the environment handle using the
OCIAttrSet() function. When set, this attribute creates a non-null object. That is, all
the attributes are set to default values provided by Oracle and their null status
information in the parallel null indicator structure is set to NOT NULL. Using this
attribute eliminates the additional step of changing the indicator structure. You
cannot change the default values provided by Oracle. Instead, you can populate the
object with your own default values immediately after object creation.

When OCIObjectNew() is used to create a persistent object, the caller must identify
the database table into which the newly created object is to be inserted. The caller
identifies the table using a table object. Given the schema name and table name, the
OCIObjectPinTable() function returns a pointer to the table object. Each call to
OCIObjectPinTable() results in a call to the server to fetch the table object
information. The call to the server happens even if the required table object has been
previously pinned in the cache. When the application is creating multiple objects to
be inserted into the same database table, Oracle Corporation recommends that the
table object be pinned once and the pointer to the table object be saved for future
use. Doing so improves performance of the application.

Advanced Topics for Oracle Objects 6-21

OCI Tips and Techniques for Objects

Updating an Object
Before you can update an object, the object must be pinned in the cache. After
pinning the object, the application can update the desired attributes directly. You
must make a call to the OCIObjectMarkUpdate() function to indicate that the object
has been updated. Objects which have been marked as updated are placed in a dirty
list and are flushed to the server upon cache flush or when the transaction is
committed.

Deleting an Object

You can delete an object by calling the OClObjectMarkDelete() function or the
OCIObjectMarkDeleteByRef() function.

Controlling Object Cache Size

You can control the size of the object cache by using the following two OCI
environment handle attributes:

« OCl _ATTR _CACHE MAX_SI ZE controls the maximum cache size
« OCl _ATTR_CACHE_OPT_SI ZE controls the optimal cache size

You can get or set these OCI attributes using the OCIAttrGet() or OCIAttrSet()
functions. Whenever memory is allocated in the cache, a check is made to determine
whether the maximum cache size has been reached. If the maximum cache size has
been reached, the cache automatically frees (ages out) the least-recently used objects
with a pin count of zero. The cache continues freeing such objects until memory
usage in the cache reaches the optimal size, or until it runs out of objects eligible for
freeing. The object cache does not limit cache growth to the maximum cache size.
The servicing of the memory allocation request could cause the cache to grow
beyond the specified maximum cache size. The above two parameters allow the
application to control the frequency of object aging from the cache.

Retrieving Objects into the Client Cache (Pinning)

Pinning is the process of retrieving an object from the server to the client cache,
laying it in memory, providing a pointer to it for an application to manipulate, and
marking the object as being in use. The OCIObjectPin() function de-references the
given REF and pins the corresponding object in the cache. A pointer to the pinned
object is returned to the caller and this pointer is valid as long as the object is pinned
in the cache. This pointer should not be used after the object is unpinned because the
object may have aged out and therefore may no longer be in the object cache.

6-22 Oracle9i Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects

The following are examples of OCIObjectPin() and OCIObjectUnpin() calls:

status = GO (oj ect P n(envh, errh, enpRef, (A0 Gonpl ex(hj ect *) 0O,
Q0 _PIN RECENT, QO _DURATI ON TRANSACTI ON
Q0 _LOK NONE, (dvoi d**) &enp) ;

/* nani pul ate enp object */

status = AJ (oj ect Lhpi n(envh, errh, enp);

The enpRef parameter passed in the pin call specifies the REF to the desired
employee object. A pointer to the employee object in the cache is returned in the
enp parameter.

You can use the OCIObjectPinArray() function to pin an array of objects in one call.
This function de-references an array of REFs and pins the corresponding objects in
the cache. Objects that are not already cached in the cache are retrieved from the
server in one network round-trip. Therefore, calling OCIObjectPinArray() to pin an
array of objects improves application performance. Also, the array of objects you
are pinning can be of different types.

Specifying which Version of an Object to Retrieve

When pinning an object, you can use the pin option argument to specify whether
the recent version, latest version, or any version of the object is desired. The valid
options are explained in more detail in the following list:

« The OCl _PI N _RECENT pin option instructs the object cache to return the object
that is loaded into the cache in the current transaction; in other words, if the
object was loaded prior to the current transaction, the object cache needs to
refresh it with the latest version from the database. Succeeding pins of the object
within the same transaction would return the cached copy and would not result
in database access. In most cases, you should use this pin option.

« The OCl _PI N _LATEST pin option instructs the object cache to always get the
latest copy of the object. If the object is already in the cache and not-locked, the
object copy is refreshed with the latest copy from the database. On the other
hand, if the object in the cache is locked, Oracle assumes that it is the latest
copy, and the cached copy is returned. You should use this option for
applications that must display the most recent copy of the object, such as
applications that display stock quotes, current account balance, etc.

« The OCl _PI N_ANY pin option instructs the object cache to fetch the object in the
most efficient manner; the version of the returned object does not matter. The
pin any option is appropriate for objects which do not change often, such as

Advanced Topics for Oracle Objects 6-23

OCI Tips and Techniques for Objects

product information, parts information, etc. The pin any option also is
appropriate for read-only objects.

Specifying How Long to Keep the Object Pinned

When pinning an object, you can specify the duration for which the object is pinned
in the cache. When the duration expires, the object is unpinned automatically from
the cache. The application should not use the object pointer after the object’s pin
duration has ended. An object can be unpinned prior to the expiration of its
duration by explicitly calling the OCIObjectUnpin() function. Oracle supports two
pre-defined pin durations:

« The session pin duration (OCl _ DURATI ON_SESSI ON) lifetime is the duration of
the database connection. Objects that are required in the cache at all times
across transactions should be pinned with session duration.

« The transaction pin duration (OCl _ DURATI ON_TRANS) lifetime is the duration
of the database transaction. That is, the duration ends when the transaction is
rolled back or committed.

Specifying Whether to Lock the Object on the Server

When pinning an object, the caller can specify whether the object should be locked
using lock options. When an object is locked, a server-side lock is acquired, which
prevents any other user from modifying the object. The lock is released when the
transaction commits or rolls back. The following list describes the available lock
options:

« The OCl _LOCK _NONE lock option instructs the cache to pin the object without
locking.

« The OCl _LOCK Xlock option instructs the cache to pin the object only after
acquiring a lock. If the object is currently locked by another user, the pin call
with this option waits until it can acquire the lock before returning to the caller.
Using the OCI _LOCK_X lock option is equivalent to executing a SELECT FOR
UPDATE statement.

« TheOCl _LOCK X NOWAI T lock option instructs the cache to pin the object only
after acquiring a lock. Unlike the OCI _LOCK_X option, the pin call with OCl _
LOCK_X_NOWAI T option will not wait if the object is currently locked by
another user. Using the OCI _LOCK_ X NOWAI T lock option is equivalent to
executing a SELECT FOR UPDATE W TH NOWAI T statement.

6-24 Oracle9i Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects

How to Choose the Locking Technique

Depending upon how frequently objects are updated, you can choose which locking
options from the previous section to use.

If objects are updated frequently, you can use the pessimistic locking scheme. This
scheme presumes that contention for update access is frequent. Objects are locked
before the object in the cache is modified, ensuring that no other user can modify
the object until the transaction owning the lock performs a commit or rollback. The
object can be locked at the time of pin by choosing the appropriate locking options.
An object that was not locked at the time of pin also can be locked by the function
OCl bj ect Lock() . The locking function OCl (bj ect LockNoWai t () does not
wait to acquire the lock if another user holds a lock on the object.

If objects are updated infrequently, you can use the optimistic locking scheme. This
scheme presumes that contention for update access is rare. Objects are fetched and
modified in the cache without acquiring a lock. A lock is acquired only when the
object is flushed to the server. Optimistic locking allows for a higher degree of
concurrent access than pessimistic locking. To use optimistic locking most
effectively, the Oracle object cache detects if an object is changed by any other user
since it was fetched into the cache. By turning on the object change detection mode,
object modifications are made persistent only if the object has not been changed by
any other user since it was fetched into the cache. This mode is activated by setting
OCl _ OBJECT_DETECTCHANGE attribute of the environment handle using the

OCl Attr Set () function.

Flushing an Object from the Object Cache

Changes made to the objects in the object cache are not sent to the database until the
object cache is flushed. The OCl CacheFl ush() function flushes all changes in a
single network round-trip between the client and the server. The changes may
involve insertion of new objects into the appropriate object tables, updating objects
in object tables, and deletion of objects from object tables. If the application commits
a transaction by calling the OCl Tr ansConmi t () function, the object cache
automatically performs a cache flush prior to committing the transaction.

Pre-Fetching Related Objects (Complex Object Retrieval)

Complex Object Retrieval (COR) can significantly improve the performance of
applications that manipulate graphs of objects. COR allows applications to pre-fetch
a set of related objects in one network round-trip, thereby improving performance.
When pinning the root object(s) using OCl Cbj ect Pi n() or

OCl bj ect Pi nArray(), you can specify the related objects to be pre-fetched

Advanced Topics for Oracle Objects 6-25

OCI Tips and Techniques for Objects

along with the root. The pre-fetched objects are not pinned in the cache; instead,
they are put in the LRU list. Subsequent pin calls on these objects result in a cache
hit, thereby avoiding a round-trip to the server.

The application specifies the set of related objects to be pre-fetched by providing the
following information:

« A REF to the root object

= One or more pairs of object type and depth information to specify the content
and boundary of objects to be pre-fetched. The type information indicates
which REF attributes should be de-referenced and which resulting object should
be pre-fetched. The depth defines the boundary of objects pre-fetched. The
depth level is the shortest number of references that need to be traversed from
the root object to a related object.

For example, consider a purchase order system with the following properties:

« Each purchase order object includes a purchase order number, a REF to a
customer object, and a collection of REFs that point to line item objects.

« Each customer object includes information about the customer, such as the
customer’s name and address.

« Each line item object includes a reference to a stock item and the quantity of the
order.

« Each stock item object includes the name of the item, its price, and other
information about the item.

Suppose you want to calculate the total cost of a particular purchase order. To
maximize efficiency, you want to fetch only the objects necessary for the calculation
from the server to the client cache, and you want to fetch these objects with the least
number of calls to the server possible.

If you do not use COR, your application must make several server calls to retrieve
all of the necessary objects. However, if you use COR, you can specify the objects
that you want to retrieve and exclude other objects that are not required. To
calculate the total cost of a purchase order, you need the purchase order object, the
related line item objects, and the related stock item objects, but you do not need the
customer objects.

Therefore, as shown in Figure 6-2, COR enables you to retrieve the required
information for the calculation in the most efficient way possible. When pinning the
purchase order object without COR, only that object is retrieved. When pinning it
with COR, the purchase order and the related line item objects and stock item

6-26 Oracle9i Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects

objects are retrieved. However, the related customer object is not retrieved because
it is not required for the calculation.

Figure 6-2 Difference Between Retrieving an Object Without COR and With COR

Pinning of Purchase Order Object without COR

PONO
Cust_Ref

Nested Table
of Line ltems

REF

Pinning of Purchase Order Object with COR

Line ltem Object

Stock Item Object

PONO
Cust_Ref |Quantity | Ref |Name | Price
Nested Table
of Line ltems Line ltem Object Line ltem Object
Ref _'|Quantity | Ref |Name | Price

Line ltem Object

Line ltem Object

i | Quantity | Ref

| Name | Price

Line Item Object

Line Item Object

| | Quantity | Ref

| Name | Price

Demonstration of OCI and Oracle Objects

For a demonstration of how to use OCI with Oracle objects, see the cdenocor 1.c
file in $ORACLE_HOWE/ r dbms/ den.

Advanced Topics for Oracle Objects 6-27

OCI Tips and Techniques for Objects

Using the OCI Object Cache with View Objects

We can pin and navigate objects synthesized from object views in the OCI Object
Cache similar to the way we do this with object tables. We can also create new view
objects, update them, delete them and flush them from the cache. The flush
performs the appropriate DML on the view (such as insert for newly created objects
and updates for any attribute changes). This fires any | NSTEAD- OF triggers on the
view and stores the object persistently.

There is a minor difference between the two approaches with regard to getting the
reference to a newly created instance in the object cache.

In the case of object views with primary key based reference, the attributes that
make up the identifier for the object need to be initialized before the

OCl Obj ect Get Obj ect Ref call can be called on the object to get the object
reference. For example, to create a new object in the OCI Object cache for the
purchase order object, we need to take the following steps:

. /* Initialize all the settings including creating a connection, getting a
environnment handl e etc. V& do not check for error conditions to nake
the exanpl e eai ser to read. */

Q0 Type *purchaseQder_tdo = (G Type *) 0; /* This is the type object for the
pur chase order */
dvoi d * purchaseQ der_viewobj = (dvoid *) O; /* This is the view object */

/* The purchaseQrder struct is a structure that is defined to have the sane
attributes as that of PurchaseQder_objtyp type. This can be created by the
user or generated autonatically using the OIT generator. */

pur chaseQ der _struct *pur chaseQ der_aobj ;

/* This is the null structure corresponding to the purchase order object's
attbutes %/
pur chaseQ der _nul | struct *purchaseQ der_nul | obj ;

/* This is the variable containing the purchase order number that we need to
create ¥/
int PONo = 1003;

/* This is the reference to the purchase order object ¥/
Q0 Ref *purchaseQ der_ref = (A Ref *)O0;

/*Pin the object type first ¥/
Q0 TypeByNane(envhp, errhp, svchp,
(CONST text®) *, (ubd) strlen(*),
(CONST text*) “PURCHASEORDER _OBJTYP”,

6-28 Oracle9i Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects

(ub4) strien(‘PURCHASEORDER_OBJTYP"),

(CONST char*) 0, (ub4)0,

OCI_DURATION_SESSION, OCI_TYPEGET_ALL,
&purchaseOrder_tdo);

/* Anthe table object - inthis case it is the purchase order view */
OCIObjectPinObjectTable(envhp, errhp, svchp, (CONST text*)

(ub4) strlen(*),

(CONST text *) “PURCHASEORDER_OBJVIEW’,

(ub4) strlen(PURCHASEORDER_OBJIVIEW),

(CONST OCIRef*) NULL,

OC|_DURATION_SESSION,

&purchaseOrder_viewoh));

/* Nowcreate a new object in the cache. This is a purchase order object */
OCIObjectNew(envhp, errhp, svchp, OCITYPECODE_OBJECT, purchaseOrder_tdo,
purchaseOrder_viewobj, OCl_DURATION_DEFAULT, FALSE,
(dvoid **) *purchaseQrder_ohj);

/* Nowwe caninitialize this object, and use it as a regul ar object. But before
getting the reference to this object we need to initialize the PONo attribute of
the object which makes up its object identifier in the view */

/* Initialize the null identifiers */
OCIObjectGetind(envhp, errhp, purchaseOrder_obj, purchaseQrder_nullobj);

purchaseOrder_nullobj->purchaseOrder = OCI_IND_NOTNULL;
purchaseOrder_nullobj->PONo =0OC|_IND_NOTNULL;

/* This sets the PO\b attribute */
OCINumberFromint(erhp, (CONST dvoid *) &PoNo, sizeof(PoNo), OCI NUMBER_SIGNED,
&(purchaseOrder_obj->PONo));

/* Qreate an object reference */

OClObjectNew(envhp, erhp, svchp, OCl_TYPECODE_REF, (OCIType*) 0,
(cdvoid*) O, (dvoid *) 0, OCI_DURATION_DEFAULT, TRUE,
(dvoid **) &purchaseOrder_ref);

/* Now get the reference to the newy created obj ect */
OClObjectGetObjectRef(envhp, erhp, (dvoid *) purchaseOrder_obj, purchaseOrder_
ref);

/* This reference may be used in the rest of the program */

FWe can flush the changes to the disk and the newly instantiated purchase

Advanced Topics for Oracle Objects 6-29

Transient and Generic Types

order object in the object cache will becone pernanent. In the case of the
purchase order object, the insert wll fire the INSTEAD-CF trigger defined over
the purchase order viewto do the actual processing */

Q0 CGacheH ush(envhp, errhp, svchp, (dvoid *) 0, 0, (OO Ref **) 0);

Transient and Generic Types

Oracle has three special SQL datatypes that enable you to dynamically encapsulate
and access type descriptions, data instances, and sets of data instances of any other
SQL type, including object and collection types. You can also use these three special
types to create anonymous (that is, unnamed) types, including anonymous
collection types.

The three SQL types are implemented as opaque types. In other words, the internal
structure of these types is not known to the database: their data can be queried only
by implementing functions (typically 3GL routines) for the purpose. Oracle
provides both an OCI and a PL/SQL API for implementing such functions.

The three generic SQL types are:

SYS. ANYTYPE A type description type. A SYS. ANYTYPE can contain a type
description of any SQL type, named or unnamed, including
object types and collection types.

An ANYTYPE can contain a type description of a persistent
type, but an ANYTYPE itself is transient: in other words, the
value in an ANYTYPE itself is not automatically stored in the
database. To create a persistent type, use a CREATE TYPE
statement from SQL.

SYS. ANYDATA A self-describing data instance type. A SYS. ANYDATA
contains an instance of a given type, with data, plus a
description of the type. In this sense, a SYS. ANYDATA is
self-describing. An ANYDATA can be persistently stored in
the database.

SYS. ANYDATASET A self-describing data set type. A SYS. ANYDATASET type
contains a description of a given type plus a set of data
instances of that type. An ANYDATASET can be persistently
stored in the database.

6-30 Oracle9i Application Developer’s Guide - Object-Relational Features

User-Defined Aggregate Functions

Each of these three types can be used with any built-in type native to the database
as well as with object types and collection types, both named and unnamed. The
types provide a generic way to work dynamically with type descriptions, lone
instances, and sets of instances of other types. Using the APIs, you can create a
transient ANYTYPE description of any kind of type. Similarly, you can create or
convert (cast) a data value of any SQL type to an ANYDATA and can convert an
ANYDATA (back) to a SQL type. And similarly again with sets of values and
ANYDATASET.

The generic types simplify working with stored procedures. You can use the generic
types to encapsulate descriptions and data of standard types and pass the
encapsulated information into parameters of the generic types. In the body of the
procedure, you can detail how to handle the encapsulated data and/or type
descriptions of whatever type.

You can also store encapsulated data of a variety of underlying types in one table
column of type ANYDATA or ANYDATASET. For example, you can use ANYDATA with
Advanced Queuing to model queues of heterogenous types of data. You can query
the data of the underlying datatypes like any other data.

Corresponding to the three generic SQL types are three OCI types that model them.
Each has a set of functions for creating and accessing the respective type:

« OCl Type, corresponding to SYS. ANYTYPE
« OCl AnyDat a, corresponding to SYS. ANYDATA
« OCl AnyDat aSet , corresponding to SYS. ANYDATASET

See Also: Oracle Call Interface Programmer’s Guide for the

OCl Type, OCl AnyDat a, and OCl AnyDat aSet APIs and details on
how to use them. See Oracle9i Supplied PL/SQL Packages and Types
Reference for information about the interfaces to the ANYTYPE,
ANYDATA, and ANYDATASET types and about the DBVS_TYPES
package, which defines constants for built-in and user-defined
types, for use with ANYTYPE, ANYDATA, and ANYDATASET.

User-Defined Aggregate Functions

Oracle provides a number of pre-defined aggregate functions such as MAX; M N, SUM
for performing operations on a set of records. These pre-defined aggregate
functions can be used only with scalar data. However, you can create your own
custom implementations of these functions, or define entirely new aggregate

Advanced Topics for Oracle Objects 6-31

Partitioning Tables that Contain Oracle Objects

functions, to use with complex data—for example, with multimedia data stored
using object types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like Oracle’s
own built-in aggregates. Once such functions are registered with the server, Oracle
simply invokes the aggregation routines that you supplied instead of the native
ones.

User-defined aggregates can be used with scalar data as well. For example, it may
be worthwhile to implement special aggregate functions for working with complex
statistical data associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You
implement them using ODCl Aggr egat e interface routines.

See Also: Oracle9i Data Cartridge Developer’s Guide for information
on using the ODCl Aggr egat e interface routines to implement
user-defined aggregate functions

Partitioning Tables that Contain Oracle Objects

Partitioning addresses the key problem of supporting very large tables and indexes
by allowing you to decompose them into smaller and more manageable pieces
called partitions. Oracle extends partitioning capabilities by letting you partition
tables that contain objects, REFs, varrays, and nested tables. Varrays stored in LOBs
are equipartitioned in a way similar to LOBs.

The following example partitions the purchase order table along zip codes (ToZi p),
which is an attribute of the Shi pToAddr embedded column object. For the
purposes of this example, the Li nel t enLi st nested table was made a varray to
illustrate storage for the partitioned varray.

Restriction: Nested tables are allowed in tables that are
partitioned; however, the storage table associated with the nested
table is not partitioned.

Assuming that the Li nel t enli st is defined as a varray:
CREATE TYPE Linelteniist_vartyp as varray(10000) of Lineltemobjtyp;
CREATE TYPE PurchaseQ der _typ AS CBIECT (

PONo NUMBER
Qust _ref REF Qust oner _obj typ,

6-32 Oracle9i Application Developer’s Guide - Object-Relational Features

Partitioning Tables that Contain Oracle Objects

Q derDate DATE,

Shi pbat e DATE,

Q der Form BLCB,

Li nel t enti st Li nel tenki st_vartyp,
Shi pToAddr Addr ess_obj typ,

MAP MEMBER FUNCTI ON
ret_val ue RETURN NUMBER

MEMBER FUNCTI ON
total val ue RETURN NUMBER
E

CREATE TABLE Pur chaseQrders_tab of PurchaseQ der_typ
L3B (O derForm store as (nocache | oggi ng)
PARTI Tl ON BY RANGE (Shi pToAddr . zi p)
(PARTI TI ON Pur O der Zonel part
VALUES LESS THAN (' 59999’)
LGB (OderForm store as (
storage (INTIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
VARRAY Lineltenkist store as LB (
storage (INTIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI Tl ON Pur O der Zone6_part
VALUES LESS THAN (' 79999’)
LGB (OderForm store as (
storage (INTIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
VARRAY Lineltenkist store as LB (
storage (INTIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI Tl ON Pur O der ZoneQ part
VALUES LESS THAN (' 99999’)
LB (OGderForm store as (
storage (INTIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
VARRAY Lineltenki st store as LB (
storage (INTIAL 10 M NEXTENTS 10 MAXEXTENTS 100)));

Parallel Query with Object Views
Parallel query is supported on the objects synthesized in views.

To execute queries involving joins and sorts (using the ORDER BY, GROUP BY, and
SET operations) in parallel, a MAP function is needed. In the absence of a MAP
function, the query automatically becomes serial.

Advanced Topics for Oracle Objects 6-33

Partitioning Tables that Contain Oracle Objects

Parallel queries on nested table columns are not supported. Even in the presence of
parallel hints or parallel attributes for the view, the query will be serial if it involves
the nested table column.

Parallel DML is not supported on views with | NSTEAD- OF trigger. However, the
individual statements within the trigger may be parallelized.

How Locators Improve the Performance of Nested Tables

Collection types do not map directly to a native type or structure in languages such
as C++ and Java. An application using those languages must access the contents of
a collection through Oracle interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by
fetching the containing object), Oracle returns the entire collection value to the client
process. For performance reasons, a client may wish to delay or avoid retrieving the
entire contents of the collection. Oracle handles this case for you by using a locator
instead of the real nested table value. When you really access the contents of the
collection, they are automatically transferred to the client.

A nested table locator is like a handle to the collection value. It attempts to preserve
the value or copy semantics of the nested table by containing the database snapshot
as of its time of retrieval. The snapshot helps the database retrieve the correct
instantiation of the nested table value at a later time when the collection elements
are fetched using the locator. The locator is scoped to a session and cannot be used
across sessions. Since database snapshots are used, it is possible to get a "snapshot
too old" error if there is a high update rate on the nested table. Unlike a LOB locator,
the nested table locator is truly a locator and cannot be used to modify the collection
instance.

6-34 Oracle9i Application Developer’s Guide - Object-Relational Features

v

Frequently Asked Questions About Using
Oracle Objects

Here are some questions and answers that new users often have about Oracle’s
object-relational features:

« General Questions about Oracle Objects
« Object Types

« Object Methods

« Object References

« Collections

« Object Views

« Object Cache

« Large Objects (LOBs)

« User-Defined Operators

You can use this chapter as introductory information, or refer here if you still have
questions after reading the rest of the book.

Frequently Asked Questions About Using Oracle Objects 7-1

General Questions about Oracle Objects

General Questions about Oracle Objects

Are the object-relational features a separate option?
Not anymore. As of Version 8.1, they are part of the base server product.

What are the design goals of Oracle9i Object-Relational & Extensibility technologies?
The design goals of Oracle9i Objects and Extensibility technologies are to:

Provide users with the ability to model their business objects in the database by
enhancing the type system to support user-defined types. These types are
meant to closely model application objects and are treated as built-in types,
such as number and character, by the database server.

Provide an infrastructure to facilitate object-based access to data stored in an
Oracle database and minimize the potential mismatch between the data model
used in an application and the data model supported by a database.

Provide built-in support for new data types needed in multi-media, financial
and spatial applications.

Provide a framework for database extensibility so that new multimedia and
complex data types can be supported and managed natively in the database.
This framework provides the infrastructure needed to allow extensions of the
data server by third parties, using data cartridges.

This book talks about the object-relational technologies. For details about
extensibility, see Oracle9i Data Cartridge Developer’s Guide.

Object Types

What is structured data?

The SQL 92 standard defines the 19 atomic datatypes that are used in most database
programming. We refer to these kinds of data as "simple structured".

Oracle Objects introduces the ideas of REFs and collections. We refer to these kinds
of data as "complex structured".

LOBs provide another way to store information. We refer to them as "unstructured".

7-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Object Types

Where are the user-defined types, user-defined functions, and abstract data types?

The Oracle equivalent of a user-defined type or an abstract data type is an object
type.

The Oracle equivalent of a user-defined function is an object type method.

We use these terms because their semantics are different from the common industry
usage. For example, an Oracle object can be null, while an object of an abstract data
type cannot.

What is an object type?

Oracle9i supports a form of user-defined data types called object types. Object types
are abstractions of real-world entities. An object type is a schema object with the
following components:

= A name, which identifies the object type uniquely within a schema
« Attributes, which model the structure and state of the real-world entity

« Methods, which implement the behavior of the real-world entity

Why are object types useful?

An object type is similar to the class mechanism supported by C++ and Java. Object
reusability provides faster and more efficient database application development.
Object support makes it easier to model complex, real-world business entities and
logic. By supporting object types natively in the database, Oracle relieves
application developers from having to write a mapping layer between client-side
objects and database objects. Object abstraction and encapsulation also make
applications easier to understand and maintain.

How is object data stored and managed in Oracle9i?

Objects are managed natively by the data server. Object types can be used as the
type of a column (column objects) or as type of each row in an object table (row
objects). When used as column objects, object types serve as classical relational
domains. Each row object has a unique identity, called an object identifier (OID).

Objects are first-class citizens and are fully integrated with the database
components. They can be indexed and partitioned. For example, queries involving
objects can be parallelized and are optimized by the cost-based optimizer using
statistics.

Frequently Asked Questions About Using Oracle Objects 7-3

Object Methods

By building on the proven foundation of the Oracle data server, objects are
managed with the same reliability, availability, and scalability as relational data.

s inheritance supported in Oracle9i?

Oracle supports single inheritance of user-defined SQL types. You can derive one or
more subtypes from a single supertype. Subtypes can themselves be further
specialized, enabling you to construct type hierarchies having any number of levels.
Keywords are provided to let you control whether a given type can be subtyped or
instantiated.

Oracle also provides support for client-side inheritance through its C++ and Java
mappings. For C++, use the Object Modelling Option of Oracle Designer to produce
DDL and C++ code based on diagrams in the Universal Modelling Language
(UML). For Java, use the "custom datum" feature of the Oracle JDBC driver.

Server-side method inheritance is provided in Java by the Oracle9i Java VM.

Object Methods

What language can | use to write my object methods?

Methods can be implemented in PL/SQL, Java, C or C++. C & C++ support is
provided through the external procedure functionality in Oracle, whereas PL/SQL
and Java methods run within the address space of the server. De-coupling of the
specification of a method in SQL from its implementation provides a uniform way
to invoke methods on object types, even though these object types can be
implemented in various programming languages. Oracle provides a safe and secure
environment for invoking PL/SQL methods, Java methods, and external C
procedures from the server. Programming errors in user methods will not crash the
server or corrupt the database, thus ensuring the reliability and availability of the
server in a mission critical environment.

How do | decide between using PL/SQL and Java for my object methods?

In Oracle, PL/SQL and Java can be used interchangeably as a server programming
language. PL/SQL is a seamless extension of SQL and is the language of choice for
doing SQL intensive operations in the database. Java is the emerging language of
choice for writing portable applications that run in multiple tiers, including the
database server.

7-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Object References

When should | use external procedures?

External procedures are typically used for computationally intensive operations
that are best written in a low-level language such as C. External procedures are also
useful for invoking routines in some existing libraries that cannot be easily
rewritten in Java or PL/SQL to run in the data server.

The IPC (inter-process communication) overhead of invoking an external procedure
is an order of magnitude higher than that of invoking PL/SQL or Java procedure.
However, the overhead of invoking an external procedure become insignificant if
the computation done in the external procedure is complex and is in the order of
tens of thousands of instructions.

What are definer and invoker rights?

The distinction between definer and invoker rights applies to more than just objects.
You may find invoker rights especially useful for object-oriented programs because
they typically contain reusable modules.

An object method can be executed with the privileges of its owner (definer rights)
or with the privileges of the current user (invoker rights), based on the method
definition. Invoker rights are useful for writing reusable objects because users of
these objects do not have to grant access privileges to their tables to the
implementor of the objects. Definer rights are useful when the as part of the object
implementation, the object methods need to access some meta-data maintained by
the object implementor. Methods that access the meta-data are executed using the
definer rights so that the object implementor does not have to expose the
proprietary meta-data to the users.

Object References

What is an object reference?

An object reference (REF) uniquely identify a row object stored in an object table or
an object constructed from an object view. Typically, a REF value is comprised of the
object’s unique identifier, the unique identifier associated with the object table, and
the ROWID of the row in the object table in which the object is stored. The optional
ROWID is used as a hint to provide fast access to the object.

Frequently Asked Questions About Using Oracle Objects 7-5

Object References

When should | use object references? How are they different from foreign keys?

Object references, like foreign keys, are useful in modeling complex relationships.
Object references are more flexible than foreign keys for modeling complex
relationships because:

Object references are strongly typed and this provides better compile-time type
checking

One-to-many relationships can be modeled using a collection of object
references

Application can easily navigate and retrieve objects using object references
without having to construct SQL statements

REF navigation in SQL avoids the need to do complicated multi-table joins

Obiject references allow applications to retrieve objects connected by REFs in a
single request to the server

Can | construct object references based on primary keys?
Yes, object references can be constructed based on foreign keys to reference objects

n:

Object views: When constructing objects from relational tables using an object
view, the OIDs of the constructed objects are typically based on the primary
keys on the underlying relational tables.

Object tables with primary key-based OIDs: When defining an object table,
Oracle provides the option of specifying the primary keys as the OIDs of the
row objects instead of using the system generated OIDs.

What is a scoped REF and when should | use it?

In general, a column may contain references to objects of a particular declared type
regardless of the object table(s) in which the objects are stored. However, a REF type
column may be scoped (constrained) to only contain references to objects from a
specified object table. One should use scoped REFs whenever possible because
scoped REFs are smaller in size than regular REFs on disk because the system does
not have to store the table identifier with the scoped REFs. Also, queries containing
navigation of scoped REFs can be optimized into joins when appropriate.

7-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Collections

Can | manipulate objects using object references in PL/SQL and Java?

Yes, both PL/SQL and Java support object references. In PL/SQL, an object can be
retrieved and updated using the UTL_REF package given its object references. In
Java, object references are mapped to reference classes with get and set methods to
retrieve and update the objects.

Collections

What kinds of collections are supported by Oracle9i?

Oracle9i supports two types of collections: variable-length arrays (varrays) and
nested tables. Attributes of object types and columns of tables can be of collection
types, and so can collections themselves. By using varrays and nested tables,
applications can model one-to-many and many-to-many relationships natively in
their database schema.

Do Oracle Objects support collections within collections?

Yes. A varray can contain another varray or a nested table, and a nested table can
contain another nested table or a varray. Similarly, you can have a collection of an
object type that has an attribute of a collection type. Such multi-level collections can
be nested to any number of levels.

How do | decide between using varrays and nested tables for modeling collections?

Varrays are useful when you need to maintain ordering of your collection elements.
Varrays are very efficient when you always manipulate the entire collection as a
unit, and that you don’t require querying on individual elements of the collections.
Varrays are stored inline with the containing row if it is small and automatically
stored as a LOBs by the system when its size is beyond a certain threshold.

Nested tables are useful when there is no ordering among the collection elements
and that efficient querying on individual elements are important. Elements of a
collection type column are stored in a separate table, similar to parent-child tables in
a relational schema.

What is a collection locator?

Collection locators allow applications to retrieve large collections without
materializing the collections in memory. This allows for efficient transfer of large

Frequently Asked Questions About Using Oracle Objects 7-7

Object Views

collections across interfaces. A collection will be transparently materialized when
the application first accesses its elements. Also, applications can query and retrieve
subsets of the collection using its locator.

The specification of retrieval of collection locators is done in CREATE and ALTER
TABLE DDL. Since access to a collection is encapsulated, applications will use the
same interface to retrieve a nested table specified to be returned as a locator as one
specified to be returned as a value.

What is collection unnesting?

Collection unnesting allows applications to efficiently query over a set of collections
in some specified rows, similar to query on the child rows in a relational schema for
some specified parent rows. Collection unnesting allows applications the flexibility
to view one-to-many relationships in the collection form or in the flat parent-child
form.

Object Views

What are the differences between object views and object tables?

Like the similarity between relational views and tables, an object view has
properties similar to an object table:

« It contains objects in rows. The columns of the view map to top-level attributes
of the object type.

« Each object has an identifier associated with it. The identifier is specified by the
view definer; in most cases, the primary key of the base table serves as the
identifier.

Are object views updateable?

It is easy to update an object view where every attribute maps back to a real column
in a table. For views that derive some attributes by more complex techniques, such
as CAST-MULTISET, INSTEAD-OF triggers can be used to do the updates. When
such a view is updated (or inserted into or deleted from), rather than attempting to
implicitly modify any base tables, the system simply invokes the INSTEAD-OF
trigger specified for the view. You can encapsulate whatever update semantics you
want in the trigger body.

7-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Object Cache

Object Cache

Why do we need the object cache?
The object cache gives applications the following benefits:

Transparent mapping of database objects to host language objects in memory.

Transparent, efficient memory management for persistent objects. Applications
do not have to worry about allocation of memory for accessing database objects.

Transactional semantics for client-side objects. Modified persistent objects in the
object cache can be propagated (flushed) to the database in a single round-trip
between the client and the server.

Navigational object access. The object cache allows for navigational style object
access. Using OCI’s object functions, objects can be fetched into the object cache
by pinning object REFs. Navigational object access may be more suitable when
operating on a graph of objects that are inter-connected through object REFs.

Complex object retrieval. That is, a single request to fetch an object from the
server can be used to retrieve other objects, which are connected through REFs
to the object being fetched, in a single round-trip between the client and the
server.

Does the object cache support object locking?

The object cache supports both a pessimistic locking scheme and an optimistic
locking scheme.

In the pessimistic locking scheme, objects are locked up-front in the server prior
to modifying the object in the cache. This ensures no other user can modify the
object until the transaction owning the lock commits/rollbacks.

In the optimistic locking scheme, an object is fetched and modified in the cache
without acquiring a lock. The lock is acquired only when the object is flushed to
the server. Optimistic locking allows for a higher degree of concurrent access
than pessimistic locking. To use optimistic locking effectively, the object cache
provides the ability for detecting if an object was changed by any other user
since it was fetched into the cache. By turning on the "object change detection
mode", object modifications will be made persistent if the nobody else has
changed the object since it was fetched into the cache.

Frequently Asked Questions About Using Oracle Objects 7-9

Large Objects (LOBs)

Large Objects (LOBS)

How can | manage large objects using Oracle?

Support for multimedia data types like text, images, audio, and video requires
robust support for binary and character data. The data in these domains tends to be
large and requires direct access to different pieces of the binary data. To address this
need, Oracle provides significantly improved support for large-scale binary and
character data. It introduces the Large Object type (LOB) which can be used to store
large, domain-specific data from various domains, including images, audio files,
text and spatial data.

Oracle supports three kinds of large data objects: binary, character-based, and
file-based. In addition to providing the ability to create LOBs, Oracle server
provides several other improvements in managing binary data. These
improvements can be summarized as follows:

= Support for defining more than one LOB column in a table
=« Random, piece-wise access to LOB data

« Support for transferring LOB data as a single stream

= Support for disabling logging and/or caching for LOB data

« Support for transparently moving LOBs from "in-line" row storage to
"out-of-line" storage in another segment or even another tablespace

For more information about LOBs, see Oracle9i Application Developer’s Guide - Large
Objects (LOBs).

User-Defined Operators

What is a user-defined operator?

Oracle allows developers of object-oriented applications to extend the list of built-in
relational operators (for example, +, -, /, *, LIKE) with domain specific operators
(for example, Contains, Within_Distance, Similar) called user-defined operators. A
user-defined operator can be used anywhere built-in operators can be used, for
example, in the select list or the where clause. Similar to built-in operators, a
user-defined operator may support arguments of different types, and that it may be
evaluated using an index.

7-10 Oracle9i Application Developer’s Guide - Object-Relational Features

User-Defined Operators

For more information about user-defined operators, see CREATE OPERATOR in the
Oracle9i SQL Reference, and the Oracle8 Data Cartridge Developer’s Guide.

Why are user-defined operators useful?

Similar to built-in operators, user-defined operators allow efficient content-based
querying and sorting on object data. For example, to find a resume containing
certain qualifications, one may specify the Contains operator as part of the SQL
where clause. The optimizer may choose to use a Text index on the resume column
to perform the query efficiently, similar to using a B-tree index to evaluate a
relational operator.

Frequently Asked Questions About Using Oracle Objects 7-11

User-Defined Operators

7-12 Oracle9i Application Developer’s Guide - Object-Relational Features

8

Design Considerations for Oracle Objects

This chapter explains the implementation and performance characteristics of
Oracle’s object-relational model. Use this information to map a logical data model
into an Oracle physical implementation, and when developing applications that use
object-oriented features.

This chapter covers the following topics:

« Representing Objects as Columns or Rows

« Performance of Object Comparisons

« Storage Considerations for Object Identifiers (OIDs)

« Storage Size of REFs

« Integrity Constraints for REF Columns

« Performance and Storage Considerations for Scoped REFs

« Speeding up Object Access using the WITH ROWID Option

« Viewing Object Data in Relational Form with Unnesting Queries
« Storage Considerations for Varrays

« Performance of Varrays Versus Nested Tables

= Nested Tables

= Muilti-Level Collections

« Choosing a Language for Method Functions

« Writing Reusable Code using Invoker Rights

« Function-Based Indexes on the Return Values of Type Methods

« Converting to the Current Object Format

Design Considerations for Oracle Objects 8-1

Replicating Object Tables and Columns
Constraints on Objects

Type Evolution

Performance Tuning

Parallel Queries with Oracle Objects

Tips and Techniques

You should be familiar with the basic concepts behind Oracle objects before you
read this chapter.

See Also:

« Oracle9i Database Concepts for conceptual information about Oracle
objects

« Oracle9i SQL Reference for information about the SQL syntax for using
Oracle objects.

8-2 Oracle9i Application Developer’s Guide - Object-Relational Features

Representing Objects as Columns or Rows

Representing Objects as Columns or Rows

You can store objects in columns of relational tables as column objects, or in object
tables as row objects. Objects that have meaning outside of the relational database
object in which they are contained, or objects that are shared among more than one
relational database object, should be made referenceable as row objects. That is,
such objects should be stored in an object table instead of in a column of a relational
table.

For example, an object of object type cust oner has meaning outside of any
particular purchase order, and should be referenceable; therefore, cust oner objects
should be stored as row objects in an object table. An object of object type addr ess,
however, has little meaning outside of a particular purchase order and can be one
attribute within a purchase order; therefore, addr ess objects should be stored as
column objects in columns of relational tables or object tables. So, addr ess might
be a column object in the cust oner row object.

Column Object Storage

The storage of a column object is the same as the storage of an equivalent set of
scalar columns that collectively make up the object. The only difference is that there
is the additional overhead of maintaining the atomic null values of the object and its
embedded object attributes. These values are called null indicators because, for every
column object, a null indicator specifies whether the column object is null and
whether each of its embedded object attributes is null. However, null indicators do
not specify whether the scalar attributes of a column object are null. Oracle uses a
different method to determine whether scalar attributes are null.

Consider a table that holds the identification number, name, address, and phone
numbers of people within an organization. You can create three different object
types to hold the name, address, and phone number. First, to create the nane_
obj t yp object type, enter the following SQL statement:

CREATE TYPE nane_obj typ AS CBIECT (

first VARCHAR?(15),
niddl e VARCHARZ2(15) ,
| ast VARCHAR2(15)) ;

Design Considerations for Oracle Objects 8-3

Representing Objects as Columns or Rows

Figure 8-1 Object Relational Representation for the name_objtyp Type

Type NAME_OBJTYP

FIRST MIDDLE LAST

Text Text Text
VARCHAR2(15) | VARCHAR2(15) | VARCHAR2(15)

Next, to create the addr ess_obj t yp object type, enter the following SQL

statement:
CREATE TYPE address_objtyp AS CBIECT (
street VARCHAR2(200) ,
city VARCHAR2(200) ,
state HAR(2),
Zi pcode VARCHAR2(20)) ;

Figure 8-2 Object Relational Representation of the address_objtyp Type

Type ADDRESS_OBJTYP

STREET CITY STATE ZIP
Text Text Text Number
VARCHAR2(200) | VARCHAR2(200) | CHAR(2) VARCHAR2(20)

Finally, to create the phone_obj t yp object type, enter the following SQL
statement:

CREATE TYPE phone_obj typ AS BIECT (
| ocati on VARCHARZ(15) ,
num VARCHAR2(14)) ;

8-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Representing Objects as Columns or Rows

Figure 8-3 Object Relational Representation of the phone_objtyp Type

Type PHONE_OBJTYP

LOCATION NUM

Text Number
VARCHAR2(15) | VARCHAR2(14)

Because each person may have more than one phone number, create a nested table
type phone_nt abt yp based on the phone_obj t yp object type:

CREATE TYPE phone_ntabtyp AS TABLE CF phone_obj typ;

See Also: "Nested Tables" on page 8-16 for more information
about nested tables.

Once all of these object types are in place, you can create a table to hold the
information about the people in the organization with the following SQL statement:

CREATE TABLE peopl e_reltab (
id NUMBER(4) GONSTRAINT pk_peopl e_rel tab PR MARY KEY,
nane_obj nane_obj t yp,
addr ess_obj addr ess_obj typ,
phones_ntab phone_nt abt yp)
NESTED TABLE phones_ntab STGRE AS phone_st ore_nt ab;

Design Considerations for Oracle Objects 8-5

Representing Objects as Columns or Rows

Figure 8-4 Representation of the people_reltab Relational Table

Table PEOPLE_RELTAB

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Number Object Type Object Type Nested Table
NUMBER(4) NAME_OBJTYP | ADDRESS_OBJTYP | PHONE_NTABTYP

PK

‘Nested Table PHONES_NTAB (of PHONE_NTABTYP)
LOCATION NUM

Text Number
VARCHAR(15) | VARCHAR(14)

—Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)
STREET CITY STATE ZIPCODE

Text Text Text Text
VARCHAR2(200) | VARCHAR(200) | CHAR(2) VARCHAR(20)

Column Object NAME_OBJ (of NAME_OBJTYP)
FIRST MIDDLE LAST

Text Text Text
VARCHAR2(15) VARCHAR2(15) VARCHAR2(15)

The peopl e_r el t ab table has three column objects: name_obj , addr ess_obj ,
and phones_nt ab. The phones_nt ab column object is also a nested table.

8-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Representing Objects as Columns or Rows

Note: The peopl e_r el t ab table and its columns and related
types are used in examples throughout this chapter.

The storage for each object stored in the peopl e_r el t ab table is the same as that
of the attributes of the object. For example, the storage required for a nane_obj
object is the same as the storage for the fi rst, m ddl e, and | ast attributes
combined, except for the null indicator overhead.

If the COVPATI BLE parameter is set to 8.1.0 or higher, the null indicators for an
object and its embedded object attributes occupy one bit each. Thus, an object with
n embedded object attributes (including objects at all levels of nesting) has a storage
overhead of CEl L(n/ 8) bytes. In the peopl e_r el t ab table, for example, the
overhead of the null information for each row is one byte because it translates to
CEl L(3/8) or CElI L(.37), which rounds up to one byte. In this case, there are
three objects in each row: nane_obj , addr ess_obj , and phones_nt ab.

If, however, the COVPATI BLE parameter is set to a value below 8.1.0, such as 8.0.0,
the storage is determined by the following calculation:

GHL(n/8) + 6
Here, n is the total number of all attributes (scalar and object) within the object.
Therefore, in the peopl e_r el t ab table, for example, the overhead of the null

information for each row is seven bytes because it translates to the following
calculation:

CHL(4/8) +6=7
CEl L(4/8) is CEl L(.5),which rounds up to one byte. In this case, there are three
objects in each row and one scalar.

Therefore, the storage overhead and performance of manipulating a column object
is similar to that of the equivalent set of scalar columns. The storage for collection
attributes are described in the "Viewing Object Data in Relational Form with
Unnesting Queries" section on page 8-12.

See Also: Oracle9i SQL Reference for more information about
CEl L.

Row Object Storage in Object Tables

Row objects are stored in object tables. An object table is a special kind of table that
holds objects and provides a relational view of the attributes of those objects. An

Design Considerations for Oracle Objects 8-7

Performance of Object Comparisons

object table is logically and physically similar to a relational table whose column
types correspond to the top level attributes of the object type stored in the object
table. The key difference is that an object table can optionally contain an additional
object identifier (OID) column and index.

Object Identifier (OID) Storage and OID Index By default, Oracle assigns every row object
a unique, immutable object identifier, called an OID. An OID allows the
corresponding row object to be referred to from other objects or from relational
tables. A built-in datatype called a REF represents such references. A REF
encapsulates a reference to a row object of a specified object type.

By default, an object table contains a system-generated OID column, so that each
row object is assigned a globally unique OID. This OID column is automatically
indexed for efficient OID-based lookups. The OID column is the equivalent of
having an extra 16-byte primary key column.

Primary-Key Based OIDs If a primary key column is available, you can avoid the
storage and performance overhead of maintaining the 16-byte OID column and its
index. Instead of using the system-generated OIDs, you can use a CREATE TABLE
statement to specify that the system use the primary key column(s) as the OIDs of
the objects in the table. Therefore, you can use existing columns as the OIDs of the
objects or use application generated OIDs that are smaller than the 16-byte globally
unique OIDs generated by Oracle.

Performance of Object Comparisons

You can compare objects by invoking the map or order methods defined on the object
type. A map method converts objects into scalar values while preserving the
ordering of the objects. Mapping objects into scalar values, if it can be done, is
preferred because it allows the system to efficiently order objects once they are
mapped.

The way objects are mapped has significant performance implications when sorting
is required on the objects for ORDER BY or GROUP BY processing because an object
may need to be compared to other objects many times, and it is much more efficient
if the objects can be mapped to scalar values first. If the comparison semantics are
extremely complex, or if the objects cannot be mapped into scalar values for
comparison, you can define an order method that, given two objects, returns the
ordering determined by the object implementor. Order methods are not as efficient
as map methods, so performance may suffer if you use order methods. In any one
object type, you can implement either map or order methods, but not both.

8-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Storage Considerations for Object Identifiers (OIDs)

Once again, consider an object type addr ess consisting of four character attributes:
street,city,state,andzi pcode. Here, the most efficient comparison method
is a map method because each object can be converted easily into scalar values. For
example, you might define a map method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In
this case, the comparison semantics may be too complex to use a map method; if so,
you can use an order method to perform comparisons. For example, you could
create an order method that compares images according to brightness or the
number of pixels in each image.

If an object type does not have either a map or order method, only equality
comparisons are allowed on objects of that type. In this case, Oracle performs the
comparison by doing a field-by-field comparison of the corresponding object
attributes, in the order they are defined. If the comparison fails at any point, a
FALSE value is returned. If the comparison matches at every point, a TRUE value is
returned. However, if an object has a collection of LOB attributes, then Oracle does
not compare the object on a field-by-field basis. Such objects must have a map or
order method to perform comparisons.

Storage Considerations for Object Identifiers (OIDs)

REFs use object identifiers (OIDs) to point to objects. You can use either
system-generated OIDs or primary-key based OIDs. The differences between these
types of OIDs are outlined in "Row Object Storage in Object Tables" on page 8-7. If
you use system-generated OIDs for an object table, Oracle maintains an index on
the column that stores these OIDs. The index requires storage space, and each row
object has a system-generated OID, which requires an extra 16 bytes of storage for
each row.

You can avoid these added storage requirements by using the primary key for the
object identifiers, instead of system-generated OIDs. You can enforce referential
integrity on columns that store references to these row objects in a way similar to
foreign keys in relational tables.

However, if each primary key value requires more than 16 bytes of storage and you
have a large number of REFs, using the primary key might require more space than
system-generated OIDs because each REF is the size of the primary key. In addition,
each primary-key based OID is locally (but not necessarily globally) unique. If you
require a globally unique identifier, you must ensure that the primary key is
globally unique or use system-generated OIDs.

Design Considerations for Oracle Objects 8-9

Storage Size of REFs

Storage Size of REFs
A REF contains the following three logical components:

« OID of the object referenced. A system-generated OID is 16 bytes long. The size
of a primary-key based OID depends on the size of the primary key column(s).

« OID of the table or view containing the object referenced, which is 16 bytes
long.

« Rowid hint, which is 10 bytes long.

Integrity Constraints for REF Columns

Referential integrity constraints on REF columns ensure that there is a row object for
the REF. Referential integrity constraints on REFs create the same relationship as
specifying a primary key/foreign key relationship on relational data. In general,
you should use referential integrity constraints wherever possible because they are
the only way to ensure that the row object for the REF exists. However, you cannot
specify referential integrity constraints on REFs that are in nested tables.

Performance and Storage Considerations for Scoped REFs

A scoped REF is constrained to contain only references to a specified object table.
You can specify a scoped REF when you declare a column type, collection element,
or object type attribute to be a REF.

In general, you should use scoped REFs instead of unscoped REFs because scoped
REFs are stored more efficiently. Whereas an unscoped REF takes at least 36 bytes to
store (more if it uses rowids), a scoped REF is stored as just the OID of its target
object and can take less than 16 bytes, depending on whether the referenced OID is
system-generated or primary-key based. A system-generated OID requires 16 bytes;
a PK-based OID requires enough space to store the primary key value, which may
be less than 16 bytes. (However, a REF to a PK-based OID, which must be
dynamically constructed on being selected, may take more space in memory than a
REF to a system-generated OID.)

Besides requiring less storage space, scoped REFs often enable the optimizer to
optimize queries that dereference a scoped REF into more efficient joins. This
optimization is not possible for unscoped REFs because the optimizer cannot
determine the containing table(s) for unscoped REFs at query-optimization time.

Unlike referential integrity constraints, scoped REFs do not ensure that the
referenced row object exists; they only ensure that the referenced object table exists.

8-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Performance and Storage Considerations for Scoped REFs

Therefore, if you specify a scoped REF to a row object and then delete the row
object, the scoped REF becomes a dangling REF because the referenced object no
longer exists.

Note: Referential integrity constraints are scoped implicitly.

Unscoped REFs are useful if the application design requires that the objects
referenced be scattered in multiple tables. Because rowid hints are ignored for
scoped REFs, you should use unscoped REFs if the performance gain of the rowid
hint, as explained below in the "Speeding up Object Access using the WITH
ROWID Option" section, outweighs the benefits of the storage saving and query
optimization of using scoped REFs.

Indexing Scoped REFs

You can build indexes on scoped REF columns using the CREATE | NDEX command.
Then, you can use the index to efficiently evaluate queries that dereference the
scoped REFs. Such queries are turned into joins implicitly. For certain types of
queries, Oracle can use an index on the scoped REF column to evaluate the join
efficiently.

For example, suppose the object type addr ess_obj t yp is used to create an object
table named addr ess_obj t ab:

CREATE TABLE address_objtab OF address_objtyp ;
Then, a peopl e_r el t ab2 table can be created that has the same definition as the

peopl e_r el t ab table discussed in "Column Object Storage" on page 8-3, except
that a REF is used for the address:

CREATE TABLE peopl e_reltab2 (
id NUMBER(4) GONSTRAI NT pk_peopl e rel tab2 PR MARY KEY,
nane_obj nane_obj t yp,
address_ref REF address_objtyp SCOPE | S address_objt ab,
phones_ntab phone_nt abt yp)
NESTED TABLE phones_ntab STCRE AS phone_store_ntab2 ;

Now, an index can be created on the addr ess_r ef column;

CREATE | NDEX address_ref _i dx ON peopl e_rel tab2 (address_ref) ;

The following query dereferences the addr ess_r ef :
SELECT id FROM peopl e_rel tab2 p

Design Considerations for Oracle Objects 8-11

Speeding up Object Access using the WITH ROWID Option

WHERE p. address_ref.state = "CA

When this query is executed, the addr ess_r ef _i dx index is used to efficiently
evaluate it. Here, addr ess_r ef is a scoped REF column that stores references to
addresses stored in the addr ess_obj t ab object table. Oracle implicitly transforms
the above query into a query with a join:

SELECT p.id FROM peopl e_rel tab2 p, address_objtab a
WHERE p. address_ref =ref(a) AND a.state =" CA ;

Oracle’s optimizer might create a plan to perform a nested-loops join with
addr ess_obj t ab as the outer table and look up matching addresses using the
index on the addr ess_r ef scoped REF column.

Speeding up Object Access using the WITH ROWID Option

If the W TH ROW D option is specified for a REF column, Oracle maintains the rowid
of the object referenced in the REF. Then, Oracle can find the object referenced
directly using the rowid contained in the REF, without the need to fetch the rowid
from the OID index. Therefore, you use the W TH ROW D option to specify a rowid
hint. Maintaining the rowid requires more storage space because the rowid adds 10
bytes to the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal
(navigational access) in applications. The actual performance gain may vary from
application to application depending on the following factors:

« How large the OID indexes are.
=« Whether the OID indexes are cached in the buffer cache.
« How many REF traversals an application does.

The W THROW D option is only a hint because, when you use this option, Oracle
checks the OID of the row object with the OID in the REF. If the two OIDs do not
match, Oracle uses the OID index instead. The rowid hint is not supported for
scoped REFs, for REFs with referential integrity constraints, or for primary
key-based REFs.

Viewing Object Data in Relational Form with Unnesting Queries

An unnesting query on a collection allows the data to be viewed in a flat (relational)
form. You can execute unnesting queries on single- and multi-level collections of
either nested tables or varrays. This section contains examples of unnesting queries.

8-12 Oracle9i Application Developer’s Guide - Object-Relational Features

Viewing Object Data in Relational Form with Unnesting Queries

Nested tables can be unnested for queries using the TABLE syntax, as in the
following example:

SELECT p. nane_obj, n.num
FROM peopl e_reltab p, TABLE p. phones_ntab) n ;

Here, phones_nt ab specifies the attributes of the phones_nt ab nested table. To
retrieve even parent rows that have no child rows (no phone numbers, in this case),
use the outer join syntax, with the "+". For example:

SELECT p. nane_obj, n.num
FROM peopl e_reltab p, TABLK p. phones_ntab) (+) n ;

If the SELECT list of a query does not refer to any columns from the parent table
other than the nested table column, the query is optimized to execute only against
the nested table’s storage table.

The unnesting query syntax is the same for varrays as for nested tables. For
instance, suppose the phones_nt ab nested table is instead a varray named
phones_var. The following example shows how to use the TABLE syntax to query
the varray:

SELECT p. nane_obj, n.num
FROM peopl e _reltab p, TABLE p. phones_var) n ;

The next example shows an unnesting query on a multi-level nested table collection
of nested tables. From a table of stars where each star has a nested table of planets,
and each planet has a nested table of satellites, the query returns the names of all
satellites.

CREATE TYPE satel lite t AS GBIECT (
nane VARCHAR2(20) ,

di anet er NUMBER) ;
CREATE TYPE nt_sat _t AS TABLE CF satellite_t;

CREATE TYPE pl anet _t AS CBIECT (
nane VARCHAR2(20) ,
nass NUMBER,

satellites nt_sat_t);

CREATE TYPE nt_pl _t AS TABLE CF pl anet _t;

CREATE TABLE stars (
nane VARCHAR2(20) ,
age NUMBER

Design Considerations for Oracle Objects 8-13

Viewing Object Data in Relational Form with Unnesting Queries

planets nt_pl _t)
NESTED TABLE pl anets STCRE AS pl anets_tab
(NESTED TABLE satellites STCRE AS satel lites_tab);

SELECT t.nane FROMstars s, TABLE(s.planets) p, TABLEp.satellites) t;

Because no columns of the base table st ar s appear in the SELECT list, the query is
optimized to run directly against the sat el | i t es storage table.

Outer-join syntax can also be used with queries of multi-level collections.

Using Procedures and Functions in Unnesting Queries

8-14

You can create procedures and functions that you can then execute to perform
unnesting queries. For example, you can create a function called hone_phones()
that returns only the phone numbers where | ocat i on is "home." To create the
hone_phones() function, you enter code like the following:

CREATE (R REPLACE FUNCTI ON hone_phones(al | phones | N phone_nt abt yp)
RETURN phone_ntabtyp 1S
honephones phone_nt abt yp : = phone_nt abt yp();
i ndx1 nunber ;
i ndx2 nunber := 0,
BEA N
FCR indx1 IN 1..al | phones. count LOOP
IF
al | phones(i ndx1) .l ocation =" horne’
THEN
honephones. ext end; -- extend the local collection
indx2 :=indx2 + 1,
honephones(i ndx2) : = al | phones(i ndx1);
B\D | F,
B\D LQCP,

RETURN hornephones;
END,
/

Now, to query for a list of people and their home phone numbers, enter the
following:

SELECT p. nane_obj, n.num
FRCM peopl e_reltab p, TABLE
CAST(hone_phones(p. phones_nt ab) AS phone_ntabtyp)) n ;

Oracle9i Application Developer’s Guide - Object-Relational Features

Performance of Varrays Versus Nested Tables

To query for a list of people and their home phone numbers, including those people
who do not have a home phone number listed, enter the following:

SELECT p. nane_obj, n.num
FRCOM peopl e_reltab p,
TABLE CAST(hone_phones(p. phones_nt ab) AS phone_ntabtyp))(+) n ;

See Also: Oracle9i SQL Reference for more information about
using the TABLE syntax.

Storage Considerations for Varrays

The size of a stored varray depends only on the current count of the number of
elements in the varray and not on the maximum number of elements that it can
hold. The storage of varrays incurs some overhead, such as null information.
Therefore, the size of the varray stored may be slightly greater than the size of the
elements multiplied by the count.

Varrays are stored in columns either as raw values or BLOBs. Oracle decides how to
store the varray when the varray is defined, based on the maximum possible size of
the varray computed using the LI M T of the declared varray. If the size exceeds
approximately 4000 bytes, then the varray is stored in BLOBs. Otherwise, the varray
is stored in the column itself as a raw value. In addition, Oracle supports inline
LOBs; therefore, elements that fit in the first 4000 bytes of a large varray (with some
bytes reserved for the LOB locator) are stored in the column of the row itself.

Performance of Varrays Versus Nested Tables

If the entire collection is manipulated as a single unit in the application, varrays
perform much better than nested tables. The varray is stored "packed" and requires
no joins to retrieve the data, unlike nested tables.

Varray Querying

The unnesting syntax can be used to access varray columns similar to the way it is
used to access nested tables.

See Also: "Viewing Object Data in Relational Form with
Unnesting Queries" on page 8-12 for more information.

Design Considerations for Oracle Objects 8-15

Nested Tables

Varray Updates

Piece-wise updates of a varray value are not supported. Thus, when a varray is
updated, the entire old collection is replaced by the new collection.

Nested Tables

The following sections contain design considerations for using nested tables.

Nested Table Storage

Oracle stores the rows of a nested table in a separate storage table. A system
generated NESTED TABLE | D, which is 16 bytes in length, correlates the parent
row with the rows in its corresponding storage table.

Figure 8-5 shows how the storage table works. The storage table contains each
value for each nested table in a nested table column. Each value occupies one row in
the storage table. The storage table uses the NESTED TABLE | Dto track the nested
table for each value. So, in Figure 8-5, all of the values that belong to nested table A
are identified, all of the values that belong to nested table B are identified, etc.

8-16 Oracle9i Application Developer’s Guide - Object-Relational Features

Nested Tables

Figure 8-5 Nested Table Storage

DATAL | DATA2 | DATA3 | DATA4 | NT_DATA

mjo|O|w|>

\ Storage Table RS

NESTED_TABLE_ID | Values
B21
B22
C33
A1l
E51
B25
E52
A12
E54
B23
C32
A13
D41
B24
E53

mlm|O|>|O|me|m|>|m|e|m|>|O|wm|m

Nested Table in an Index-Organized Table (I0T)

If a nested table has a primary key, you can organize the nested table as an
index-organized table (I0T). If the NESTED _TABLE | Dcolumn is a prefix of the
primary key for a given parent row, Oracle physically clusters its child rows
together. So, when a parent row is accessed, all its child rows can be efficiently
retrieved. When only parent rows are accessed, efficiency is maintained because the
child rows are not inter-mixed with the parent rows.

Figure 8-6 shows how the storage table works when the nested table is in an IOT.
The storage table groups by NESTED TABLE | Dthe values for each nested table in
a nested table column. In Figure 8-6, for each nested table in the NT_DATA column
of the parent table, the data is grouped in the storage table: all of the values in
nested table A are grouped together, all of the values in nested table B are grouped
together, and so on.

Design Considerations for Oracle Objects 8-17

Nested Tables

Figure 8-6 Nested Table in IOT Storage

DATAL | DATA2 | DATA3 | DATA4 | NT_DATA
B
C
D
E
\ AN N
\ > ~
\ S ~
\ S ~
\\ N R
| Storage Table Y
i NESTED_TABLE_ID | Values
Storage for A All
nested — A Al2
[[B B21
Storage for B B22
nested — B B23
table B B B24
B B25
Storage for =
nested — C €3l
Storage for table C c C32
nested . | D D41
table D . . T T E E51
orage for
nested — E E52
table E E E53
- [E E54

In addition, the COMPRESS clause enables prefix compression on the IOT rows. It
factors out the key of the parent in every child row. That is, the parent key is not
repeated in every child row, thus providing significant storage savings.

In other words, if you specify nested table compression using the COMPRESS clause,
the amount of space required for the storage table is reduced because the NESTED _

TABLE | Dis not repeated for each value in a group. Instead, the NESTED TABLE _

I Dis stored only once for each group, as illustrated in Figure 8-7.

8-18 Oracle9i Application Developer’s Guide - Object-Relational Features

Nested Tables

Figure 8-7 Nested Table in IOT Storage with Compression

DATA1 | DATA2 | DATA3 | DATA4 | NT_DATA
B
C
D
E
\ AN N
\ > ~
\ S ~
\ AN
\\ ~. R
| Storage Table Y
[[NESTED_TABLE_ID | Values
Storage for All
nested — A Al2
table A | A13
B21
Storage for B22
nested — B B23
table B B24
Storage for — 2?;1’
nested — C
Storage for tableC L_ C32
nested —— | | D D41
table D . . _ E51
orage for
nested — E E52
table E E53
L E54

In general, Oracle Corporation recommends that nested tables be stored in an 10T
with the NESTED_TABLE_| Dcolumn as a prefix of the primary key. Further, prefix
compression should be enabled on the IOT. However, if you usually do not retrieve
the nested table as a unit and you do not want to cluster the child rows, do not store
the nested table in an IOT and do not specify compression.

Nested Table Indexes

For nested tables stored in heap tables (as opposed to 10Ts), you should create an
index on the NESTED_TABLE | D column of the storage table. The index on the
corresponding ID column of the parent table is created by Oracle automatically
when the table is created. Creating an index on the NESTED _TABLE | D column
enables Oracle to access the child rows of the nested table more efficiently, because

Design Considerations for Oracle Objects 8-19

Nested Tables

Oracle must perform a join between the parent table and the nested table using the
NESTED_TABLE_| D column.

Nested Table Locators

For large child sets, the parent row and a locator to the child set can be returned so
that the child rows can be accessed on demand; the child sets also can be filtered.
Using nested table locators enables you to avoid unnecessary transporting of child
rows for every parent.

You can perform either one of the following actions to access the child rows using
the nested table locator:

« Call the OCI collection functions. This action occurs implicitly when you access
the elements of the collection in the client-side code, such as OCIColl* functions.
The entire collection is retrieved implicitly on the first access.

See Also: Oracle Call Interface Programmer’s Guide for more
information about OCI collection functions.

« Use SQL to retrieve the rows corresponding to the nested table. This action is
described in "The Object Table PurchaseOrder_objtab" on page 9-25.

In a multi-level collection, you can use a locator with a specified collection at any
level of nesting. Below are described two ways in which to specify that a collection
is to be retrieved as a locator.

At table creation time

When the collection type is being used as a column type and the NESTED TABLE
storage clause is used, you can use the RETURN LOCATOR clause to specify that a
particular collection is to be retrieved as a locator.

For instance, suppose thatt hi rd_| evel is a collection type consisting of three
levels of nested tables. In the following example, the RETURN LOCATOR clause
specifies that the second, middle level of nested tables is always to be retrieved as a
locator.

CREATE TABLE tabl (
a NMER
b third|evel)
NESTED TABLE b STCRE AS b_ntab
(NESTED TABLE COLUWN VALUE STCRE AS cvl _ntab RETURN LOCATOR
(NESTED TABLE COLUWN VALLE STCRE AS cv2 ntab));

8-20 Oracle9i Application Developer’s Guide - Object-Relational Features

Nested Tables

As a HINT during retrieval

A query can retrieve a collection as a locator by means of the hint NESTED TABLE
CET_REFS. Here is an example of retrieving the column b from the table t ab1 as a
locator:

SHLECT /*+ NESTED TABLE GET REFS +*/ b
FROM t abl
WERE a = 2;

Unlike with the RETURN LOCATOR clause, however, you cannot specify a particular
inner collection to return as a locator when using the hint.

Optimizing Set Membership Queries

Set membership queries are useful when you want to search for a specific item in a
nested table. For example, the following query tests the membership in a child-set;
specifically, whether the location hore is in the nested table phones_nt ab, which
is in the parent table peopl e_rel t ab:

SELECT * FROM peopl e_reltab p
WHERE 'home’ IN (SELECT location FROM TABLE(p.phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently
by transforming it internally into a semi-join. However, this optimization only
happens if the ALMAYS_SEM _JO Ninitialization parameter is set. If you want to
perform semi-joins, the valid values for this parameter are MERGE and HASH; these
parameter values indicate which join method to use.

Note: Inthe example above, horre and | ocat i on are child set
elements. If the child set elements are object types, they must have
a map or order method to perform a set membership query.

DML Operations on Nested Tables

You can perform DML operations on nested tables. Rows can be inserted into or
deleted from a nested table, and existing rows can be updated, by using the
appropriate SQL command against the nested table. In these operations, the nested
table is identified by a TABLE subquery. The following example inserts a new
person into the peopl e_r el t ab table, including phone numbers into the phones_
nt ab nested table:

INSERT INTO people_reltab values (
0001,

Design Considerations for Oracle Objects 8-21

Nested Tables

nane_obj t yp(
johr', willian', foster’),
address_objtyp(
111 Maple Road', 'Fairfax, VA, '22033),
phone_ntabtyp(
phone_objtyp(home’, '650.331.1222),
phone_objtyp(work, '650.945.4389Y))) ;

The following example inserts a phone number into the nested table phones_nt ab
for an existing person in the peopl e_r el t ab table whose identification number is
0001:

INSERT INTO TABLE(SELECT p.phones_ntab FROM people._reftab p WHERE pid ='0001)
VALUES (cell, '650.331.9337)

To drop a particular nested table, you can set the nested table column in the parent
row to NULL, as in the following example:

UPDATE people_relftab SET phones_ntab =NULL WHERE id ='0001’;

Once you drop a nested table, you cannot insert values into it until you recreate it.
To recreate the nested table in the phones_nt ab nested table column object for the
person whose identification number is 0001, enter the following SQL statement:

UPDATE people_relftab SET phones_ntab = phone_ntabtyp() WHERE id ="0001;

You also can insert values into the nested table as you recreate it:

UPDATE peaople_reltab
SET phones_ntab = phone_ntabtyp(phone_objtyp(home’, '650.331.1222))
WHERE id="0001';

DML operations on a nested table lock the parent row. Therefore, only one
modification at a time can be made to the data in a particular nested table, even if
the modifications are on different rows in the nested table. However, if only part of
the data in your nested table must support simultaneous modifications, while other
data in the nested table does not require this support, you should consider using
REFs to the data that requires simultaneous modifications.

For example, if you have an application that processes purchase orders, you might
include customer information and line items in the purchase orders. In this case, the
customer information does not change often and so you do not need to support
simultaneous modifications for this data. Line items, on the other hand, might
change very often. To support simultaneous updates on line items that are in the

8-22 Oracle9i Application Developer’s Guide - Object-Relational Features

Multi-Level Collections

same purchase order, you can store the line items in a separate object table and
reference them with REFs in the nested table.

Multi-Level Collections

Chapter 2 describes how to nest collection types to create a true multi-level
collection—a nested table of nested tables, a nested table of varrays, a varray of
nested tables, a varray of nested tables, or a varray or nested table of an object type
that has an attribute of a collection type.

You can also nest collections indirectly using REFs. For example, you can create a
nested table of an object type that has an attribute that references an object that has a
nested table or varray attribute. If you do not actually need to access all elements of
a multi-level collection, then nesting a collection with REFs may provide better
performance because only the REFs need to be loaded, not the elements themselves.

True multi-level collections (specifically multi-level nested tables) perform better for
queries that access individual elements of the collection. Using nested table locators
can improve the performance of programmatic access if you do not need to access
all elements.

For an example of a collection that uses REFs to nest another collection, suppose
you want to create a new object type called per son_obj t yp using the object types
described in "Column Object Storage" on page 8-3, which are name_obj t yp,

addr ess_obj typ, and phone_nt abt yp. Remember that the phone_nt abt yp
object type is a nested table because each person may have more than one phone
number.

To create the per son_obj t yp object type, issue the following SQL statement:

CREATE TYPE person_obj typ AS CBIECT (
id NUMBER 4) ,
nane_obj nane_obj typ,
addr ess_obj address_obj typ,
phones_ntab phone_nt abt yp);

To create an object table called peopl e_obj t ab of per son_obj t yp object type,
issue the following SQL statement:

CREATE TABLE peopl e_objtab CF person_objtyp (id PR MARY KEY)
NESTED TABLE phones_nt ab STGRE AS phones_store_ntab ;

The peopl e_obj t ab table has the same attributes as the peopl e_r el t ab table
discussed in "Column Object Storage" on page 8-3. The difference is that the

Design Considerations for Oracle Objects 8-23

Multi-Level Collections

peopl e_obj t ab is an object table with row objects, while the peopl e_rel t ab
table is a relational table with three column objects.

8-24 Oracle9i Application Developer’s Guide - Object-Relational Features

Multi-Level Collections

Figure 8-8 Object Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB
Number Object Type Object Type Nested Table
NUMBER(4) NAME_OBJTYP | ADDRESS_OBJTYP | PHONE_NTABTYP
PK

' Nested Table PHONES_NTAB (of PHONE_NTABTYP)

LOCATION NUM
Text Number
VARCHAR(15) | VARCHAR(14)

—rColumn Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

STREET CITY STATE ZIPCODE
Text Text Text
VARCHAR2(200) | VARCHAR(200) | CHAR(2) VARCHAR2(20)

Column Object NAME_OBJ (of NAME_OBJTYP)

FIRST MIDDLE LAST
Text Text Text
VARCHAR2(15) VARCHAR2(15) VARCHAR2(15)

Now you can reference the row objects in the peopl e_obj t ab object table from
other tables. For example, suppose you want to create a pr oj ect s_obj t ab table
that contains:

A project identification number for each project.

Design Considerations for Oracle Objects 8-25

Multi-Level Collections

« Thetitle of each project.

« The project lead for each project.

« A description of each project.

= Nested table collection of the team of people assigned to each project.

You can use REFs to the peopl e_obj t ab for the project leads, and you can use a
nested table collection of REFs for the team. To begin, create a nested table object
type called per sonr ef _nt abt yp based on the per son_obj t yp object type:

CREATE TYPE personref_ntabtyp AS TABLE OF REF per son_obj typ;

Now you are ready to create the object table pr oj ect s_obj t ab. First, create the
object type pr oj ect s_obj t yp by issuing the following SQL statement:

CREATE TYPE proj ects_objtyp AS GBIECT (
id NUMBER(4) ,
title VARCHAR?(15) ,
proj | ead ref REF person_obj typ,
description a
teamntab per sonref _ntabtyp);

Next, create the object table pr oj ect s_obj t ab based on the pr oj ect s_obj t yp:

CREATE TABLE proj ects_objtab CF projects_objtyp (id PR MARY KEY)
NESTED TABLE teamntab STCRE AS teamstore ntab ;

8-26 Oracle9i Application Developer’s Guide - Object-Relational Features

Multi-Level Collections

Figure 8-9 Object Relational Representation of the projects_objtab Object Table

Table PROJECTS_OBJTAB (of PROJECTS _OBJTYP)
ID TITLE PROJLEAD_REF DESCRIPTION TEAM_NTAB
Number Text Reference Text Nested Table Reference
NUMBER(4) | VARCHAR2(15)| PERSON_OBJTYP CcLOB PERSONREF_NTABTYP
PK

| |

|
Refers to a
row of the
object table

|
Refers to multiple rows
of the object table

L: Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB
Number Object Type Object Type Nested Table
NUMBER(4) | NAME_OBJTYP | ADDRESS_OBJTYP PHONE_NTABTYP
PK

Once the peopl e_obj t ab object table and the pr oj ect s_obj t ab object table are
in place, you indirectly have a nested collection. That is, the pr oj ect s_obj t ab
table contains a nested table collection of REFs that point to the people in the

peopl e_obj t ab table, and the people in the peopl e_obj t ab table have a nested
table collection of phone numbers.

You can insert values into the peopl e_obj t ab table in the following way:

I NSERT | NTO peopl e_obj tab VALUES (
0001,
name_objtyp(JOHN','JACOB','SCHMIDT),
address_objtyp(1252 Maple Road), 'Fairfax, VA, 22033,
phone_ntabtyp(
phone_objtyp(home’, '650.339.9922),
phone_objtyp(work', '510.563.8792))) ;

Design Considerations for Oracle Objects 8-27

Multi-Level Collections

I NSERT | NTO peopl e_obj tab VALUES (
0002,
name_objtyp(MARY’, ELLEN', MILLER)),
address_objtyp(33 Spruce Street, 'McKees Rocks), 'PA, '15136)),
phone_ntabtyp(
phone_objtyp(home’, '415.642.6722),
phone_objtyp(work', '650.891.7766))) ;

INSERT INTO people_objtab VALUES (
0003,
name_objtyp(SARAH', MARIE,'SINGER)),
address_objtyp(525 Pine Avenue', 'San Mateo', 'CA', '94403),
phone_ntabtyp(
phone_objtyp(home’, '510.804.4378),
phone_objtyp(work, '650.345.9232),
phone_obijtyp('cell','650.854.9233))) ;

Then, you can insert into the pr oj ect s_obj t ab relational table by selecting from
the peopl e_obj t ab object table using a REF operator, as in the following
examples:

INSERT INTO projects_ohjtab VALUES (

1101,

'Demo Product,

(SELECT REF(p) FROM people_objtab p WHERE id = 0001),

'Demo the product, show all the great features.’,

personref_ntabtyp(
(SELECT REF(p) FROM people_ohjtab p WHERE id = 0001),
(SELECT REF(p) FROM people_ohjtab p WHERE id = 0002),
(SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

INSERT INTO projects_objtab VALUES (

1102,

'Create PRODDB;,

(SELECT REF(p) FROM people_objtab p WHERE id = 0002),

'Create a database of our products.’,

personref_ntabtyp(
(SELECT REF(p) FROM people_ohjtab p WHERE id = 0002),
(SELECT REF(p) FROM people_ohjtab p WHERE id = 0003))) ;

Note: This example uses nested tables to store REFs, but you also
can store REFs in varrays. That is, you can have a varray of REFs.

8-28 Oracle9i Application Developer’s Guide - Object-Relational Features

Choosing a Language for Method Functions

Choosing a Language for Method Functions

Method functions can be implemented in any of the languages supported by Oracle,
such as PL/SQL, Java, or C. Consider the following factors when you choose the
language for a particular application:

« Easeofuse

« SQL calls

= Speed of execution

« Same/different address space

In general, if the application performs intense computations, C is preferable, but if
the application performs a relatively large number of database calls, PL/SQL or
Java is preferable.

A method implemented in C executes in a separate process from the server using
external routines. In contrast, a method implemented in Java or PL/SQL executes in
the same process as the server.

Example: Implementing a Method

The example described in this section involves an object type whose methods are
implemented in different languages. In the example, the object type | mageType has
an | Dattribute, which is a NUMBER that uniquely identifies it, and an | MGattribute,
which is a BLOB that stores the raw image. The object type | nageType has the
following methods:

« The method get _nane() fetches the name of the image by looking it up in the
database. This method is implemented in PL/SQL.

« The methodr ot at e() rotates the image. This method is implemented in C.

« The method cl ear () returns a new image of the specified color. This method
is implemented in Java.

For implementing a method in C, a LI BRARY object must be defined to point to the
library that contains the external C routines. For implementing a method
implemented in Java, this example assumes that the Java class with the method has
been compiled and uploaded into Oracle.

Here is the object type specification and its methods:
CREATE TYPE | nageType AS (BIECT (

id NMER

ing BLCB

Design Considerations for Oracle Objects 8-29

Choosing a Language for Method Functions

MEMBER FUNCTI ON get _nane() return VARCHARR,
MEMBER FUNCTI ON rotate() return BLCB,
STATI C FUNCTI ON cl ear (col or NUMBER) return BLCB

)i

CREATE TYPE BADY | nageType AS

MEMBER FUNCTI ON get _nane() RETURN VARCHAR2

AS

i mgnane VARCHAR2(100) ;

BEG N
SELECT nane I NTO i ngnane FROMingtab WHERE imgid = i d;
RETURN i ngnane;

END,

MEMBER FUNCTI ON rot at e() RETURN BLCB
AS LANGAGE C

NAME "Qr ot ate”

LI BRARY nyCf uncs;

STATI C FUNCTI ON cl ear (col or NUMBER) RETURN BLCB
AS LANGUACE JAVA
NAME 'myJavaClass.clear(color oracle.sg.NUMBER) RETURN oracle.sgl.BLOB';

END;
/

Restriction: Type methods can be mapped only to static Java
methods.

See Also:

« Oracle9i Java Stored Procedures Developer’s Guide for more information.

« Chapter 3, "Object Support in Oracle Programmatic Environments" for
more information about choosing a language.

Static Methods

8-30

Static methods differ from member methods in that the SELF value is not passed in
as the first parameter. Methods in which the value of SELF is not relevant should be
implemented as static methods. Static methods can be used for user-defined
constructors.

Oracle9i Application Developer’s Guide - Object-Relational Features

Writing Reusable Code using Invoker Rights

The following example is a constructor-like method that constructs an instance of
the type based on the explicit input parameters and inserts the instance into the
specified table:

CREATE (R REPLACE TYPE atype AS CBJECT(al NJMVBER
STATI C PROCEDURE neva (
pl NUMBER
tabnane VARCHAR?,
schname VARCHAR?));

CREATE (R REPLACE TYPE BCDY atype AS
STATI C PROCEDURE newa (pl NUMBER tabname VARCHARZ2, schnane VARCHAR?)
IS
sql stmt VARCHAR2(100) ;
BEA N
sqistmt ;= INSERT INTO ’||schname|"[tabname]| ' VALUES (atype(:1));
EXECUTE IMMEDIATE sglstmt USING p1;
END;
END;
/

CREATE TABLE atab OF atype;
BEGIN

atype.newa(l, ‘ataby, 'scott);
END;

Writing Reusable Code using Invoker Rights

To create generic object types that can be used in any schema, you must define the
type to use invoker-rights, through the AUTHI D CURRENT _USER option of
CREATE OR REPLACE TYPE. In general, use invoker-rights when both of the
following conditions are true:

= There are type methods that access and manipulate data.
« Users who did not define these type methods must use them.

For example, you can grant user SARA execute privileges on type at ype created by
SCOTT in "Static Methods" on page 8-30, and then create table at ab based on the
type:

GRANT EXECUTE ON atype TO SARA ;

CONNECT SARATPK101 ;
CREATE TABLE atab OF scott.atype ;

Design Considerations for Oracle Objects 8-31

Writing Reusable Code using Invoker Rights

Now, suppose user SARA tries to use at ype in the following statement:

BEG N

scottatype.newa(l, ‘ataly’,'SARA)); — raises an error
END;
/

This statement raises an error because the definer of the type (SCOTT) does not have
the privileges required to perform the insert in the newa procedure. You can avoid
this error by defining at ype using invoker-rights. Here, you first drop the at ab
table in both schemas and recreate at ype using invoker-rights:

DROP TABLE atab ;
CONNECT SCOTT/TIGER;
DROP TABLE atab ;

CREATE ORREPLACE TYPE atype AUTH D AURRENT_USERAS OBJECT(al NUMBER,
STATIC PROCEDURE newa(pl NUMBER, tabname VARCHAR?Z, schname VARCHAR?));

CREATE OR REPLACE TYPE BODY atype AS
STATIC PROCEDURE newa(pl NUMBER, tabname VARCHAR?Z, schname VARCHAR2)

IS
sqistmt VARCHAR2(100);
BEGIN
sgistmt = INSERT INTO ’|schname]|. [jabname]| VALUES
(scottatype(:1));
EXECUTE IMMEDIATE sgistmt USING pL;
END;
END;

/

Nowy, if user SARA tries to use at ype again, the statement executes successfully:

GRANT EXECUTE ON atype TO SARA ;
CONNECT SARATPK101 ;
CREATE TABLE atab OF scottatype;

BEGIN

scottatype.newa(l, ‘atab’,'SARAY); — executes successfully
END;
/

The statement is successful this time because the procedure is executed under the
privileges of the invoker (SARA), not the definer (SCOTT).

8-32 Oracle9i Application Developer’s Guide - Object-Relational Features

Function-Based Indexes on the Return Values of Type Methods

In a type hierarchy, a subtype has the same rights model as its immediate
supertype. That is, it implicitly inherits the rights model of the supertype and
cannot explicitly specify one. Furthermore, if the supertype was declared with
definer’s rights, the subtype must reside in the same schema as the supertype.
These rules allow invoker rights type hierarchies to span schemas. However, type
hierarchies that use a definer rights model must reside within a single schema.

Examples :

CREATE TYPE deftypel AS CBIECT (...); -- Definer rights type

CREATE TYPE subt ypel UNDER deftypel(...); -- subtype in sane schena as supertype
CREATE TYPE schenma2. subt ype2 UNDER deftypel(...); -- ERRR

CREATE TYPE i nvtypel AUTH D QURRENT_USER AS (BIECT (...); -- Invoker rights type
CREATE TYPE schema2. subt ype2 UNDER i nvtypel (...); -- LEGAL

Function-Based Indexes on the Return Values of Type Methods

A function-based index is an index based on the return values of an expression or
function. The function may be a method function of an object type.

A function-based index built on a method function precomputes the return value of
the function for each object instance in the column or table being indexed and stores
those values in the index. There they can be referenced without having to evaluate
the function again.

Function-based indexes are useful for improving the performance of queries that
have a function in the WHERE clause. For example, the code below contains a query
of an object table enps:

CREATE TYPE enp_t AS CBIECT

(

nane VARCHARZ

sal ary NUMBER

MEMBER FUNCTI ON bonus RETURN NUMBER DETERM N STIC

)i

CREATE (R REPLACE TYPE B(DY enp_t IS
MEMBER FUNCTI ON bonus RETURN NUMBER | S
BEG N

RETURN sel f.salary * .1,

END
BEND,

CREATE TABLE enps CF enp_t ;

Design Considerations for Oracle Objects 8-33

Converting to the Current Object Format

SHECT e
FROM enps
WHERE e. bonus() > 2000 ;

To evaluate this query, Oracle must evaluate bonus() for each row object in the
table. If there is a function-based index on the return values of bonus() , then this
work has already been done, and Oracle can simply look up the results in the index.
This enables Oracle to return a result from the query more quickly.

Return values of a function can be usefully indexed only if those values are
constant, that is, only if the function always returns the same value for each object
instance. For this reason, to use a user-written function in a function-based index,
the function must have been declared with the DETERM NI STI Ckeyword, as in the
preceding example. This keyword promises that the function always returns the
same value for each object instance’s set of input argument values.

The following example creates a function-based index on the method bonus() in
the table enps:

CREATE | NCEX enps_bonus_i dx ON enps x (x. bonus()) ;

See Also: Oracle9i Database Conceptsand Oracle9i SQL Reference for
detailed information about function-based indexes.

Converting to the Current Object Format

Tables created in release 8.1 or higher store objects in a new format that uses less
storage space and has better performance characteristics than the previous (relase
8.0) format. A more efficient transport protocol is used as well. If the COVPATI BLE
parameter is set to 8.1.0 or higher, all objects in new tables and columns that you
create are automatically stored in release 8.1 format, and all objects (new or old) are
transported in the release 8.1 format. Tables created in release 8.0 will continue to
store objects in the release 8.0 format unless explicitly converted.

You can convert objects created in a release 8.0 database to the format introduced in
release 8.1. To do so, do the following steps:

1. Recreate the tables using a CREATE TABLE...AS SELECT... statement.
2. Export/import the data in the tables.

See Also: Oracle9i Database Migration for more information about
compatibility and the COVPATI BLE initialization parameter.

8-34 Oracle9i Application Developer’s Guide - Object-Relational Features

Replicating Object Tables and Columns

Note: The release 8.0 format will be deprecated in a future release.

Replicating Object Tables and Columns

Object tables and object views can be replicated as materialized views. You can also
replicate relational tables that contain columns of an object, collection, or REF type.
Such materialized views are called object-relational materialized views.

All user-defined types required by an object-relational materialized view must exist
at the materialized view site as well as at the master site. They must have the same
object type IDs and versions at both sites.

Replicating Columns of Object, Collection, or REF Type

To be updatable, a materialized view based on a table that contains an object
column must select the column as an object in the query that defines the view: if the
query selects only certain attributes of the column’s object type, then the
materialized view is read-only.

The view-definition query can also select columns of collection or REF type. REFs
can be either primary-key based or have a system-generated key, and they can be
either scoped or unscoped. Scoped REF columns can be rescoped to a different table
at the site of the materialized view—for example, to a local materialized view of the
master table instead of the original, remote table.

Replicating Object Tables

A materialized view based on an object table is called an object materialized view.
Such a materialized view is itself an object table. An object materialized view is
created by adding the OF <t ype> keyword to the CREATE MATERI ALI ZED VI EW
statement. For example:

CREATE MATER ALl ZED M EWcust oner GF cust _obj typ
AS SHECT * FROM Scott. Qust oner _obj t ab@lbs1;

As with an ordinary object table, each row of an object materialized view is an
object instance, so the view-definition query that creates the materialized view must
select entire objects from the master table: the query cannot select only a subset of
the object type’s attributes. For example, the following materialized view is not
allowed:

CREATE MATER ALl ZED M EWcust oner CF cust _obj typ

Design Considerations for Oracle Objects 8-35

Constraints on Objects

AS SH ECT Qust No FROM Scott. Qust oner _obj t ab@bs1;

You can create an object-relational materialized view from an object table by
omitting the OF <t ype> keyword, but such a view is read-only: you cannot create
an updatable object-relational materialized view from an object table.

For example, the following CREATE MATERI ALI ZED VI EWstatement creates a
read-only object-relational materialized view of an object table. Even though the
view-definition query selects all columns/attributes of the object type, it does not
select them as attributes of an object, so the view created is object-relational and
read-only:

CREATE MATER ALl ZED M BEW cust oner

AS SHECT * FROM Scott. Qust oner _obj t ab@lbs1;

For both object-relational and object materialized views that are based on an object
table, if the type of the master object table is not FI NAL, the FROMclause in the
materialized view definition query must include the ONLY keyword. For example:

CREATE MATER ALl ZED M EWcust oner CF cust _obj typ
AS SH ECT Qust No FROM Q\LY Scott. Qust oner _obj t ab@lbs1;

Otherwise, the FROMclause must omit the ONLY keyword.

See Also: Oracle9i Replication for more information on replicating
object tables and columns

Constraints on Objects

Oracle does not support constraints and defaults in type specifications. However,
you can specify the constraints and defaults when creating the tables:

CREATE (R REPLACE TYPE cust oner _t ype AS CBIECT(
cust_id INTEGR);

CREATE (R REPLACE TYPE departnent _type AS CBIECT(
deptno | NTEGER) ;

CREATE TABLE cust oner_tab GF cust oner _t ype (
cust_id default 1 NOI NLLL);

CREATE TABLE departnent _tab COF departnent _type (
dept no PR MARY KEY);

CREATE TABLE cust oner_tabl (

8-36 Oracle9i Application Developer’s Guide - Object-Relational Features

Type Evolution

cust custoner_type DEFALLT cust oner _type(1)
CGHEXK (cust.cust_id 1S NOT NLLL),
sone_ot her _col um VARCHAR2(32));

Type Evolution

The following sections contain design considerations relating to type evolution.

Pushing a Type Change Out to Clients

Once a type has evolved on the server side, all client applications using this type
need to make the necessary changes to structures associated with the type. You can
do this with OTT/JPUB. You also may need to make programmatic changes
associated with the structural change. After making these changes, you must
recompile your application and relink.

Types may be altered between releases of a third-party application. To inform client
applications that they need to recompile to become compatible with the latest
release of the third-party application, you can have the clients call a release-oriented
compatibility initialization function. This function could take as input a string that
tells it which release the client application is working with. If the release string
mismatches with the latest version, an error is generated. The client application
must then change the release string as part of the changes required to become
compatible with the latest release.

For example:

FUNCTI ON conpatibility_init(rel INVARCHAR?, errnsg QUT VARCHAR?)
RETURN NUMBER

where:
r el isarelease string that is chosen by the product—for example,’ Rel ease 8. 2’
err msg is any error message that may need to be returned

The function returns 0 on success and a non-zero value on error.

Changing Default Constructors

When a type is altered, its default constructors need to be changed in order (for
example) to include newly added attributes in the parameter list. If you are using
default constructors, you need to modify them in your program. Alternatively, you
can use your own static functions instead of the default constructors to construct

Design Considerations for Oracle Objects 8-37

Performance Tuning

and initialize object instances. The strategy to do this is slightly different depending
on whether the altered type is a subtype.

With types that are not subtypes, you can define a single static function within the
type to construct an instance of the type and initialize it. For example:

CREATE TYPE address_t AS (BIECT
(

STATI C FUNCTI ON new address(...) RETURN address_t,
)

However, this approach does not work well if the type is a subtype. If the type is a
subtype, the function defined in the subtype typically needs to delegate the work of
initializing the inherited attributes to some function defined within its supertype. To
address this, each subtype in a hierarchy can define two functions: one to construct
an instance, and another initialize the instance attributes. The initialization function
can invoke the supertype’s initialization function to initalize inherited attributes.

Altering the FINAL Property of a Type

When you alter a type T1 from FI NAL to NOT FI NAL, any attribute of type T1 in
the client program changes from being an inlined structure to a pointer to T1. This
means that you need to change the program to use dereferencing when this
attribute is accessed.

Conversely, when you alter a type from NOT FI NAL to FI NAL, the attributes of that
type change from being pointers to inlined structures.

For example, say that you have the types T1(a int) and T2(b T1),where T1’s
property is FI NAL. The C/JAVA structure corresponding to T2 is T2(T1 b) . But if
you change T1’s property to NOT FI NAL, then T2’s structure becomes T2(T1 *b).

Performance Tuning

See Oracle9i Database Performance Guide and Reference for details on measuring and
tuning the performance of your application. In particular, some of the key
performance factors are the following:

« ANALYZE command to collect statistics.
« tkprof to profile execution of SQL commands.

« EXPLAI N PLANto generate the query plans.

8-38 Oracle9i Application Developer’s Guide - Object-Relational Features

Tips and Techniques

Parallel Queries with Oracle Objects
Oracle lets you perform parallel queries with objects, when you follow these rules:

= To make queries involving joins and sorts parallel (using the ORDER BY, GROUP
BY, and SET operations), a MAP function is required. In the absence of a MAP
function, the query automatically becomes serial.

« Parallel queries on nested tables are not supported. Even if there are parallel
hints or parallel attributes for the table, the query is serial.

« Parallel DML and parallel DDL are not supported with objects. DML and DDL
are always performed in serial.

Tips and Techniques

The following sections provide assorted tips on various aspects of working with
Oracle object types.

Deciding Whether to Evolve a Type or Create a Subtype Instead

As an application goes through its life cycle, the question often arises whether to
change an existing user-defined type or to create a specialized subtype to meet new
requirements. The answer depends on the nature of the new requirements and their
context in the overall application semantics. Here are two examples:

Changing a Widely Used Base Type

Suppose that we have a user-defined type addr ess with attributes St r eet ,
St at e, and ZI P:

CREATE TYPE address AS (BJECT

(
Street VARCHARY(80),

Sate VARCHARY(20),
ZIP VARCHARY(10)
)

We later find that we need to extend the addr ess type by adding a Count ry
attribute to support addresses internationally. Is it better to create a subtype of
addr ess or to evolve the addr ess type itself?

With a general base type that has been widely used throughout an application, it is
better to implement the change using type evolution.

Design Considerations for Oracle Objects 8-39

Tips and Techniques

Adding Specialization

Suppose that an existing type hierarchy of Graphic types (for example, curve, circle,
square, text) needs to accommodate an additional variation, namely, Bezier curve.
To support a new specialization of this sort that does not reflect a shortcoming of
the base type, we should use inheritance and create a new subtype Bezi er Cur ve
under the Cur ve type.

To sum up, the semantics of the required change dictates whether we should use
type evolution or inheritance. For a change that is more general and affects the base
type, use type evolution. For a more specialized change, implement the change
using inheritance.

How ANYDATA Differs from User-Defined Types

ANYDATA is an Oracle-supplied type that can hold instances of any Oracle datatype,
whether built-in or user-defined. ANYDATA is a self-describing type and supports a
reflection-like API that you can use to determine the shape of an instance.

While both inheritance, through the substitutability feature, and ANYDATA provide
the polymorphic ability to store any of a set of possible instances in a placeholder,
the two models give the capability two very different forms.

In the inheritance model, the polymorphic set of possible instances must form part
of a single type hierarchy. A variable can potentially hold instances only of its
defined type or of its subtypes. You can access attributes of the supertype and call
methods defined in the supertype (and potentially overridden by the subtype). You
can also test the specific type of an instance using the IS OF and the TREAT
operators.

ANYDATA variables, however, can store heterogeneous instances. You cannot access
attributes or call methods of the actual instance stored in an ANYDATA variable
(unless you extract out the instance). You use the ANYDATA methods to discover and
extract the type of the instance. ANYDATA is a very useful mechanism for parameter
passing when the function/procedure does not care about the specific type of the
parameter(s).

Inheritance provides better modeling, strong typing, specialization, and so on. Use
ANYDATA when you simply want to be able to hold one of any number of possible
instances that do not necessarily have anything in common.

Polymorphic Views: An Alternative to an Object View Hierarchy

Chapter 5 describes how to build up a view hierarchy from a set of object views
each of which contains objects of a single type. Such a view hierarchy enables

8-40 Oracle9i Application Developer’s Guide - Object-Relational Features

Tips and Techniques

queries on a view within the hierarchy to see a polymorphic set of objects contained
by the queried view or its subviews.

As an alternative way to support such polymorphic queries, you can define an
object view based on a query that returns a polymorphic set of objects. This
approach is especially useful when you want to define a view over a set of tables or
views that already exists.

For example, an object view of Per son_t can be defined over a query that returns
Per son_t instances, including Enpl oyee_t instances. The following statement
creates a view based on queries that select persons from a per sons table and
employees from an enpl oyees table.

CREATE M EWPersons_vi ew GF Person_t AS
SELECT Person_t(...) FROM persons
UN QN ALL
SHL ECT TREAT(Enpl oyee t(...) AS Person_t) FROM enpl oyees;

An | NSTEAD OF trigger defined for this view can use the VALUE function to access
the current object and to take appropriate action based on the object’s most specific

type.
Polymorphic views and object view hierarchies have these important differences:

« Addressability: In a view hierarchy, each subview can be referenced
independently in queries and DML statements. Thus, every set of objects of a
particular type has a logical name. However, a polymorphic view is a single
view, so you must use predicates to obtain the set of objects of a particular type.

« Evolution: If a new subtype is added, a subview can be added to a view
hierarchy without changing existing view definitions. With a polymorphic view,
the single view definition must be modified by adding another UNI ON branch.

« DML Statements: In a view hierarchy, each subview can be either inherently
updatable or can have its own | NSTEAD OF trigger. With a polymorphic view,
only one | NSTEAD OF trigger can be defined for a given operation on the view.

The SQLJ Object Type

What is the intended use of SQLJ Object Type?

According to the Information Technology - SQLJ - Part 2 document (SQLJ Standard), a
SQLJ object type is a database object type designed for Java. A SQLJ object type
maps to a Java class. Once the mapping is “registered” through the extended SQL
CREATE TYPE command (a DDL statement), the Java application can insert or

Design Considerations for Oracle Objects 8-41

Tips and Techniques

select the Java objects directly into or from the database through an Oracle9i JDBC
driver. This enables the user to deploy the same class in the client, through JDBC,
and in the server, through SQL method dispatch.

What is involved in creating a SQLJ Object Type?
The extended SQL CREATE TYPE command:

« Populates the database catalog with the external names for attributes, functions,
and the Java class. Also, depdencies between the Java class and its
corresponding SQLJ object type are maintained.

« Validates the existence of the Java class and validates that it implements the
interface corresponding to the value of the USI NGclause.

« Validates the existence of the Java fields (as specified in the EXTERNAL NAME
clause) and whether these fields are compatible with corresponding SQL
attributes.

« Generates an internal class to support constructors, external variable names,
and external functions that return sel f as a result.

When would you use SQLJ Object Type?

The SQLJ object type is a special case of SQL object type in which all methods are
implemented in a Java class(es). The mapping between a Java class and its
corresponding SQL type is managed by the SQLJ object type specification. That is,
the SQLJ Object type specification cannot have a corresponding type body
specification.

Also, the inheritance rules among SQLJ object types specify the legal mapping
between a Java class hierarchy and its corresponding SQLJ object type hierarchy.
These rules ensure that the SQLJ Type hierarchy contains a valid mapping. That is,
the supertype and/or subtype of a SQLJ object type has to be another SQLJ object

type.

When would you use Custom Object Type?

The custom object type is the Java interface for accessing SQL object type. A SQL
object type may include methods that are implemented in languages such as
PLSQL, Java, and C. Methods implemented in Java in a given SQL object type can
belong to different unrelated classes. That is, the SQL object type does not map to a
specific Java class.

In order for the client to access these objects, JPub can be used to generate the
corresponding Java class. Furthermore, the user has to augment the generated

8-42 Oracle9i Application Developer’s Guide - Object-Relational Features

Tips and Techniques

classes with the code of the corresponding methods. Alternatively, the user can
create the class corresponding to the SQL object type.

At runtime, the JDBC user has to register the correspondence between a SQL Type
name and its corresponding Java class in a map.

What are the differences between the SQLJ and Custom Object Types through

JDBC?

The following table summarizes the differences between SQLJ object types and

custom object types.

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the Or acl eTypes. JAVA _STRUCT Use the Or acl eTypes. STRUCT typecode
typecode to register a SQLJ object type as a to register a custom object type as a SQL
SQL OUT parameter. The QOUT parameter. The
O acl eTypes. JAVA STRUCT typecodeis Or acl eTypes. STRUCT typecode is also
also used in the _SQL_TYPECCDE field ofa used in the _SQL_TYPECODE field of a
class implementing the ORADat a or class implementing the ORADat a or
SQLDat a interface. SQLDat a interface.

Creation Create a Java class implementing the Issue the extended SQL CREATE TYPE

Method Support

Type Mapping

Type Mapping

Inheritance

SQLDat a or ORADat a and

ORADat aFact ory interfaces first and then
load the Java class into the database. Next,
you issue the extended SQL CREATE TYPE
command for SQLJ object type.

Supports external names, constructor calls,
and calls for member functions with side
effects.

Type mapping is automatically done by the
extended SQL CREATE TYPE command.
However, the SQLJ object type must have a
defining Java class on the client.

Type mapping is automatically done by the
extended SQL CREATE TYPE command.
However, the SQLJ object type must have a
defining Java class on the client.

There are rules for mapping SQL hierarchy to
a Java class hierarchy. See the Oracle9i SQL
Reference for a complete description of these
rules.

command for a custom object type and then
create the SQLDat a or ORADat a Java
wrapper class using JPublisher or do this
manually.

There is no default class for implementing
type methods as Java methods. Some
methods may also be implemented in SQL.

Register the correspondence between SQL
and Java in a type map. Otherwise, the type
is materialized as or acl e. sql . STRUCT.

Register the correspondence between SQL
and Java in a type map. Otherwise, the type
is materialized as or acl e. sql . STRUCT.

There are no mapping rules.

Design Considerations for Oracle Objects 8-43

Tips and Techniques

Miscellaneous Tips

Column Substitutability and the Number of Attributes in a Hierarchy

If a column or table is of type T, Oracle adds a hidden column for each attribute of
type T and, if the column or table is substitutable, for each attribute of every
subtype of T, to store attribute data. A hiddent ypei d column is added as well, to
keep track of the type of the object instance in a row.

The number of columns in a table is limited to 1,000. A type hierarchy with a
number of total attributes approaching 1,000 puts you at risk of running up against
this limit when using substitutable columns of a type in the hierarchy. To avoid
problems as a result of this, consider one of the following options for dealing with a
hierarchy that has a large number of total attributes:

« Use views
« UseREFs
« Break up the hierarchy

Circular Dependencies Among Types

Avoid creating circular dependencies among types. In other words, do not create
situations in which a method of type T returns a type T1, which has a method that
returns a type T.

PL/SQL and TREAT and IS OF

PL/SQL does not currently support the TREAT and | S OF operators (see
Chapter 2), but SQL does. To use these operators, use SQL.

8-44 Oracle9i Application Developer’s Guide - Object-Relational Features

9

A Sample Application Using
Object-Relational Features

This chapter has an extended example of how to use user-defined datatypes (Oracle
objects). The example shows how a relational model might be transformed into an
object-relational model that better represents the real-world entities that are
managed by an application.

This chapter contains the following sections:

= Introduction

« A Purchase Order Example

« Implementing the Application Under The Relational Model

« Implementing the Application Under The Object-Relational Model
« Manipulating Objects Through Java

« Manipulating Objects with Oracle Objects for OLE

A Sample Application Using Object-Relational Features 9-1

Introduction

Introduction

User-defined types are schema objects in which users formalize the data structures
and operations that appear in their applications.

The example in this chapter illustrates the most important aspects of defining and
using user-defined types. One important aspect of using user-defined types is
creating methods that perform operations on objects. In the example, definitions of
object type methods use the PL/SQL language. Other aspects of using user-defined
types, such as defining a type, use SQL.

PL/SQL and Java provide additional capabilities beyond those illustrated in this
chapter, especially in the area of accessing and manipulating the elements of
collections.

Client applications that use the Oracle Call Interface (OCI), Pro*C/C++, or Oracle
Objects for OLE (O040) can take advantage of its extensive facilities for accessing
objects and collections, and manipulating them on clients.

See Also:

« Oracle9i SQL Reference for a complete description of SQL syntax and
usage for user-defined types.

« PL/SQL User’s Guide and Reference for a complete discussion of PL/SQL
capabilities

. Oracle9i Java Stored Procedures Developer’s Guide for a complete
discussion of Java.

. Oracle Call Interface Programmer’s Guide,
« Pro*C/C++ Precompiler Programmer’s Guideo

9-2 Oracle9i Application Developer’s Guide - Object-Relational Features

A Purchase Order Example

A Purchase Order Example

This example is based on a typical business activity: managing customer orders. We
demonstrate how the application might evolve from relational to object-relational,
and how you could write it from scratch using a pure object-oriented approach.

« First, we show how to implement the schema — Implementing the
Application Under The Relational Model — using only Oracle’s built-in
datatypes. You can build an object-oriented application on top of this relational
schema using object views, as described in Chapter 5

« Implementing the Application Under The Object-Relational Model uses
Oracle’s object types to represent the entities and relationships of the
application domain. It uses object tables to hold the underlying data, and
encapsulates the behavior of objects in method functions.

A Sample Application Using Object-Relational Features 9-3

Implementing the Application Under The Relational Model

Implementing the Application Under The Relational Model

Figure 9-1 Entity-Relationship Diagram for Purchase Order Application

—O_ Customer

VUV U U UV

1
\(customer number
customer name
street
city
Zip
phonel
places bhone?
purchase order number)
phone3
N j customer number)
Purchase Order ord.er date)
ship date D)
1 tostreet D)
tocity D)
tostate D)
tozip D)
N
Line Items
N
O
1
Stock Item

\(stocknumber D)
price

tax rate D)

/

9-4 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model

Entities and Relationships
The basic entities in this example are:
= Customers
« The stock of products for sale
= Purchase orders

As you can see from Figure 9-1, a customer has contact information, so that the
address and set of telephone numbers is exclusive to that customer. The application
does not allow different customers to be associated with the same address or
telephone numbers. If a customer changes her address, the previous address ceases
to exist. If someone ceases to be a customer, the associated address disappears.

A customer has a one-to-many relationship with a purchase order: a customer can
place many orders, but a given purchase order is placed by one customer. Because a
customer can be defined before they place an order, the relationship is optional
rather than mandatory.

Similarly, a purchase order has a many-to-many relationship with a stock item.
Because this relationship does not show which stock items appear on which
purchase orders, the entity-relationship has the notion of a line item. A purchase
order must contain one or more line items. Each line item is associated only with
one purchase order.

The relationship between line item and stock item is that a stock item can appear on
zero, one, or many line items, but each line item refers to exactly one stock item.

Creating Tables Under the Relational Model

The relational approach normalizes everything into tables. The table names are
Cust oner _rel tab, PurchaseOrder _reltab,and St ock reltab.

Each part of an address becomes a column in the Cust orrer _r el t ab table.

Structuring telephone numbers as columns sets an arbitrary limit on the number of
telephone numbers a customer can have.

A Sample Application Using Object-Relational Features 9-5

Implementing the Application Under The Relational Model

The relational approach separates line items from their purchase orders and puts
each into its own table, named Pur chaseOrder _reltabandLi neltens_

rel t ab. As depicted in Figure 9-1, a line item has a relationship to both a purchase
order and a stock item. These are implemented as columnsinLi neltens_rel t ab
table with foreign keys to Pur chaseOrder _rel t ab and St ock_rel t ab.

Note: We have adopted a convention in this section of adding the
suffix _r el t ab to the names of relational tables. Such a
self-describing notation can make your code easier to maintain.

You may find it useful to make distinctions between tables (_t ab)
and types (_t yp). But you can choose any names you want; one of
the main advantages of object-relational methods is that the names
of software entities can closely model real-world objects.

The relational approach results in the following tables:

Customer _reltab
The Cust oner _r el t ab table has the following definition:

CREATE TABLE Qustoner_reltab (

Qust Nb NUMBER NOT' NLLL,

Qust Nane VARCHAR2(200) NOT NLLL,
Sreet VARCHAR2(200) NOT NLLL,
dty VARCHAR2(200) NOT NLLL,
Sate CHAR(2) NOT NLLL,

Zip VARCHAR2(20) NOT NULL,
Phonel VARCHAR2(20) ,

Phone2 VARCHAR2(20) ,

Phone3 VARCHAR2(20) ,

PR MARY KEY (Qust Nb)
)

This table, Cust orrer _r el t ab, stores all the information about customers, which
means that it fully contains information that is intrinsic to the customer (defined
with the NOT NULL constraint) and information that is not as essential. According to
this definition of the table, the application requires that every customer have a
shipping address.

Our Entity-Relationship (E-R) diagram showed a customer placing an order, but the
table does not make allowance for any relationship between the customer and the
purchase order. This relationship must be managed by the purchase order.

9-6 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model

PurchaseOrder_reltab
The Pur chaseOr der _r el t ab table has the following definition:

CREATE TABLE PurchaseQder_reltab (
PO\b NUMBER /* purchase order no */
Qust no NUMBER ref erences Qustoner_reltab, /* Foreign KEY referenci ng
cust oner */
QderDate DATE /* date of order */
Shi pDat e DATE, /* date to be shipped */
Totr eet VARCHAR2(200), /* shipto address */

Tod ty VARCHAR(200)
ToS ate AR 2),

ToZi p VARCHAR2(20) ,
PR MARY KEY(PO\b)

)

Pur chaseOr der _r el t ab manages the relationship between the customer and the
purchase order by means of the foreign key (FK) column Cust No, which references
the Cust No key of the Pur chaseOr der _r el t ab. Because the table makes no
allowance for the relationship between the purchase order and its line items, the list
of line items must handle this.

Lineltems_reltab
The Li nel t ens_r el t ab table has the following definition:

CREATE TABLE Lineltens_reltab (

Li nel t eni\o NUMVBER

PO\ NUMBER REFERENCES Pur chaseQrder _rel t ab,
S ockNo NUMBER REFERENCES St ock_rel tab,
Quantity NUMBER

D scount NUMVBER

PR MARY KEY (PQO\b, Lineltenib)

)

Note: The St ock_rel t ab table, describe in "Stock_reltab" on
page 9-8, must be created before the Li nel t ens_r el t ab table.

The table name is in the plural form Li nel t ens_r el t ab to emphasize to someone
reading the code that the table holds a collection of line items.

As shown in the E-R diagram, the list of line items has relationships with both the
purchase order and the stock item. These relationships are managed by
Li nel t emrs_r el t ab by means of two foreign key columns:

A Sample Application Using Object-Relational Features 9-7

Implementing the Application Under The Relational Model

« PONo, which references the PONo column in Pur chaseOrder _rel tab

« St ockNo, which references the St ockNo column in St ock_rel tab

Stock_reltab
The St ock_r el t ab table has the following definition:

CREATE TABLE Stock reltab (

S ockNo NUMBER PR MARY KEY,
Price NUMBER
TaxRat e NUMBER

)

Inserting Values Under the Relational Model
In our application, statements like these insert data into the tables:

Establish Inventory

I NSERT | NTO Sock _reltab VALUES(1004, 6750.00, 2) ;
I NSERT | NTO Sock_reltab VALUES(1011, 4500.23, 2) ;
I NSERT | NTO Sock_reltab VALUES(1534, 2234.00, 2) ;
I NSERT | NTO Sock_reltab VALUES(1535, 3456.23, 2) ;

Register Customers

I NSERT | NTO Qust oner_rel tab
VALUES (1, 'Jean Nance', 2 Avocet Drive,
'Redwood Shores’,'CA', 95054,
'415-555-1212", NULL, NULL) ;

INSERT INTO Customer_reltab
VALUES (2, 'John Nike', 323 College Drive',
‘Edison’, 'NJ, ‘08820,
'609-555-1212', '201-555-1212", NULL) ;

Place Orders
INSERT INTO PurchaseOrder_reltab

VALUES (1001, 1, SYSDATE, '10-MAY-1997,
NULL, NULL, NULL, NULL) ;

INSERT INTO PurchaseOrder_reltab

VALUES (2001, 2, SYSDATE, 20-MAY-1997,
'55 Madison Ave','Madison', WI', '53715) ;

9-8 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model

Detail Line Items

I NSERT I NTO Li neltens_rel tab VALLES(01, 1001, 1534, 12, O0) ;
I NSERT | NTO Li neltens_rel tab VALLES(02, 1001, 1535, 10, 10) ;
I NSERT | NTO Li neltens_rel tab VALLES(01, 2001, 1004, 1, O) ;
INSERT INTO Li neltens_rel tab VALLES(02, 2001, 1011, 2, 1) ;

Querying Data Under The Relational Model

The application can execute queries like these:

Get Customer and Line Iltem Data for a Specific Purchase Order

SEHLECT C QustNo, C QustNane, C Sreet, Cdty, CSate,
C Z p, Cphonel, C phone2, C phone3,
P. PO\o, P.Qderate,
L. SockNo, L.Lineltenio, L. Quantity, L.D scount
FROM Qustoner_reltab G
PurchaseQder reltab P,
Lineltens_reltab L
WHERE C QustNo = P. QustNo
AND P. PO\b = L. PO\b
AND P. PO\b = 1001 ;

Get the Total Value of Purchase Orders

SELECT P.PONo, SUMS Price * L. Quantity)
FROM PurchaseQder _reltab P,
Lineltens_reltab L,
Sock reltab S
WHERE P.PO\b = L. PO\b
AND L. SockNo = S. S ockNo
GROP BY P. PO\ ;

Get the Purchase Order and Line Item Data for those Lineltems that Use a

Stock Item Identified by a Specific Stock Number

SH ECT P. PO\b, P. Qust N,
L. StockNo, L.Lineltem\o, L. Quantity, L.D scount

FRQM PurchaseQ der _reltab P,

Lineltens_reltab L

WHERE P.PONb = L. PO\b

AND L. SockNo = 1004 ;

A Sample Application Using Object-Relational Features 9-9

Implementing the Application Under The Object-Relational Model

Updating Data Under The Relational Model

The application can execute statements like these to update the data:

Update the Quantity for Purchase Order 1001 and Stock Item 1534
UPDATE Lineltens reltab

SET Quantity = 20
WHERE PO\b = 1001
AND SockNo = 1534 ;

Deleting Data Under The Relational Model
The application can execute statements like these to delete data:

Delete Purchase Order 1001

DA ETE
FROM Lineltens reltab
WERE POb = 1001 ;

CALETE

FROM PurchaseQrder_rel tab
WERE PO\Nb = 1001 ;

Implementing the Application Under The Object-Relational Model

The object-relational (O-R) approach begins with the same entity relationships as in
"Entities and Relationships" on page 9-5. Viewing these from the object-oriented
perspective, as in the class diagram below, allows us to translate more of the

real-world structure into the database schema.

9-10 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Figure 9-2 Class Diagram for Purchase Order Application

Customer ‘—has Phone
CustNo 1 0..10 Number
CustName
has
]
1 1 Address
1 Street
City
- State
) Zip
(]
i
1
*
Purchase Order
PONo
OrderDate * ShipTo
ShipDate &
getPONo()
sumLineltems()
1
(]
o
=
=5
>
*|o
Line Iltem refers to Stock Item
LineltemNo 1 1 StockNo
Price
TaxRate

A Sample Application Using Object-Relational Features 9-11

Implementing the Application Under The Object-Relational Model

Rather than breaking up addresses or multiple phone numbers into unrelated
columns in relational tables, the O-R approach defines types to represent them.
Rather than breaking line items out into a separate table, the O-R approach allows
them to stay with their respective purchase orders as nested tables.

The main entities — customers, stock, and purchase orders — become objects.
Object references express the relationships between them. Collection types model
their multi-valued attributes.

There are two approaches to an object-relational implementation;
« Create and populate object tables.
= Use object views to represent virtual object tables from existing relational data.

Following sections of this chapter develop the O-R schema and show how to
implement it with object tables. Chapter 5, "Applying an Object Model to Relational
Data" implements the same schema with object views.

Defining Types
The following statements set the stage by defining incomplete object types:
CREATE TYPE S ockl t em obj typ;

CREATE TYPE Li nel t em obj typ;
CREATE TYPE Pur chaseQ der _obj typ;

The incomplete definitions notify Oracle that full definitions are coming later.
Incomplete definitions enable Oracle to compile other types that refer to the
incomplete types. Incomplete type declarations are like forward declarations in C
and some other programming languages.

9-12 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

The following statement defines an array type:

CREATE TYPE PhonelLi st_vartyp AS VARRAY(10) OF VARCHAR2(20);

Figure 9-3 Object Relational Representation of PhonelList_vartyp Type

Type PHONELIST_VARTYP
(PHONE)

Number
NUMBER

The preceding statement defines the type PhonelLi st _vart yp. Any data unit of
type PhonelLi st _vart yp is a varray of up to 10 telephone numbers, each
represented by a data item of type VARCHAR2.

A list of phone numbers could occupy a varray or a nested table. In this case, the list
is the set of contact phone numbers for a single customer. A varray is a better choice
than a nested table for the following reasons:

« The order of the numbers might be important: varrays are ordered while nested
tables are unordered.

« The number of phone numbers for a specific customer is small. Varrays force
you to specify a maximum number of elements (10 in this case) in advance.
They use storage more efficiently than nested tables, which have no special size
limitations.

= There is no reason to query the phone number list, so the nested table format
offers no benefit.

In general, if ordering and bounds are not important design considerations, then
designers can use the following rule of thumb for deciding between varrays and
nested tables: If you need to query the collection, then use nested tables; if you
intend to retrieve the collection as a whole, then use varrays.

See Also: Chapter 8, "Design Considerations for Oracle Objects”
for more information about the design considerations for varrays
and nested tables.

A Sample Application Using Object-Relational Features 9-13

Implementing the Application Under The Object-Relational Model

The following statement defines the object type Addr ess_obj t yp to represent

addresses:
CREATE TYPE Address_objtyp AS CBIECT (
Street VARCHAR2(200) ,
dty VARCHAR(200)
Sate AR 2),
Zip VARCHAR(20)
)

/

Figure 9-4 Object Relational Representation of Address_objtyp Type

Type ADDRESS_OBJTYP

STREET CITY STATE ZIP
Text Text Text Number
VARCHAR2(200) VARCHAR2(200) | CHAR(2) VARCHAR2(20)

All of the attributes of an address are character strings, representing the usual parts
of a simplified mailing address.

The following statement defines the object type Cust oner _obj t yp, which uses
other user-defined types as building blocks.

CREATE TYPE Qust oner _obj typ AS GBIECT (

Qust No NUMBER,

Qust Nane VARCHAR2(200) ,
Addr ess_obj Address_obj t yp,
PhonelLi st _var PhonelLi st _vartyp,

CGRDER MEMBER FUNCTI ON
conpar eQust O der s(x | N Qust oner_obj typ) RETURN | NTEGER

)
/

Instances of the type Cust orrer _obj t yp are objects that represent blocks of
information about specific customers. The attributes of a Cust onmer _obj t yp object
are a number, a character string, an Addr ess_obj t yp object, and a varray of type
PhonelLi st _vartyp.

9-14 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Every Cust orer _obj t yp object also has an associated order method, one of the
two types of comparison methods. Whenever Oracle needs to compare two

Cust omrer _obj t yp objects, it implicitly invokes the conpar eCust Or der s
method to do so.

Note: The PL/SQL to implement the comparison method appears
in "The compareCustOrders Method" on page 9-20.

The two types of comparison methods are map methods and order methods. This
application uses one of each for purposes of illustration.

An ORDER method must be called for every two objects being compared, whereas a
MAP method is called once for each object. In general, when sorting a set of objects,
the number of times an ORDER method is called is more than the number of times a
MAP method would be called.

See Also:
« Chapter 2 for more information about map and order methods

. PL/SQL User’s Guide and Reference for details about how to use
pragma declarations

A Sample Application Using Object-Relational Features 9-15

Implementing the Application Under The Object-Relational Model

The following statement completes the definition of the incomplete object type
Li nel t em obj t yp declared at the beginning of this section.

CREATE TYPE Linel temobjtyp AS GBIECT (
Lineltenhb NJUMBER
S ock_ref REF S ockl t em obj typ,
Quantity NUMBER
O scount NUMBER

)
/

Figure 9-5 Object Relational Representation of Lineltem_objtyp Type

Type LINEITEM_OBJTYP

LINEITEMNO STOCK_REF QUANTITY DISCOUNT
Number Reference Number Number
NUMBER STOCKITEM_OBJTYP | NUMBER NUMBER

Instances of type Li nel t em obj t yp are objects that represent line items. They
have three numeric attributes and one REF attribute. The Li nel t em obj typ
models the line item entity and includes an object reference to the corresponding
stock object.

The following statement defines the nested table type Li nel t enli st _nt abt yp,
which will represent an arbitrary set of line items inside a purchase order:

CREATE TYPE Linelteniki st_ntabtyp AS TABLE CF Li nel temobjtyp
/

A data unit of this type is a nested table, each row of which contains an object of
type Li nel t em obj t yp. A nested table of line items is a better choice to represent
the multivalued line item list than a varray of Li nel t em_obj t yp objects, because:

= Most applications will need to query the contents of line items. This is an
inefficient operation for varrays because their storage representation is not the
same as the table representation.

« If an application needs to index on line item data, this can be done with nested
tables but not with varrays.

9-16 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

« The order of line items is usually unimportant; the line item number can
identify an order when necessary.

= There is no practical upper bound on the number of line items on a purchase

order. Using a varray requires specifying an arbitrary upper bound on the
number of elements.

The following statement completes the definition of the incomplete object type
Pur chaseOr der _obj t yp declared at the beginning of this section:

CREATE TYPE PurchaseQ der _objtyp AUTH D QURRENT_USER AS (BIECT (

PO\ NUMBER

Qust _ref REF Qust oner _obj typ,
QO derDate DATE,

Shi pbat e DATE,

Li nel tenki st_ntab Li nel tenki st_nt abt yp,
Shi pToAddr _obj Addr ess_obj typ,

MAP MEMBER FUNCTI CN
get PONo RETURN NUMBER

MEVBER FUNCTI ON
sunii nel t ens RETURN NUMBER

)
/

Figure 9-6 Object Relational Representation of the PuchaseOrder_objtyp

Type PURCHASEORDER_OBJTYP

PONO CUST_REF ORDERDATE | SHIPDATE | LINEITEMLIST_NTAB SHIPTOADDR_OBJ

Number Reference Date Date Nested Table Object Type

NUMBER | CUSTOMER_ | DATE DATE LINEITEMLIST_ ADDRESS_
OBJTYP NTABTYP OBJTYP

PK FK

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineltems RETURN NUMBER

A Sample Application Using Object-Relational Features 9-17

Implementing the Application Under The Object-Relational Model

The preceding statement defines the object type Pur chaseOr der _obj t yp.
Instances of this type are objects representing purchase orders. They have six
attributes, including a REF to Cust oner _obj t yp, an Addr ess_obj t yp object,
and a nested table of type Li nel t erLi st _nt abt yp, which is based on type

Li nel tem obj typ.

Objects of type Pur chaseOr der _obj t yp have two methods: get PONo and

sunli nel t enms. One, get PONo, is a MAP method, one of the two kinds of
comparison methods. A MAP method returns the relative position of a given record
within the order of records within the object. So, whenever Oracle needs to compare
two Pur chaseOr der _obj t yp objects, it implicitly calls the get PONo method to
do so.

The two pragma declarations provide information to PL/SQL about what sort of
access the two methods need to the database.

The statement does not include the actual PL/SQL programs implementing the
methods get PONo and sunLi nel t ens. Those appear in "Method Definitions" on
page 9-19.

The following statement completes the definition of St ockl t em obj t yp, the last
of the three incomplete object types declared at the beginning of this section.

CREATE TYPE Stockltemobjtyp AS CBIECT (
S ockNo NUMBER
Price NUMBER,
TaxRat e NUMBER

)
/

Figure 9-7 Object Relational Representation of the Stockltem_objtyp

Type STOCKITEM_OBJTYP

STOCKNO PRICE TAXRATE
Number Number Number
NUMBER NUMBER NUMBER
PK

Instances of type St ockl t em obj t yp are objects representing the stock items that
customers order. They have three numeric attributes.

9-18 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Method Definitions

This section shows how to specify the methods of the Pur chaseOr der _obj typ
and Cust oner _obj t yp object types. The following statement defines the body of
the Pur chaseOr der _obj t yp object type (the PL/SQL programs that implement
its methods):

CREATE (R REPLACE TYPE BCDY Pur chaseQr der _obj typ AS

MAP MEMBER FUNCTI ON get PONo RETURN NUMBER i s

BEA N
RETURN PONb;
BND
MEMBER FUNCTI ON sunii nel tens RETURN NUMBER i s
i | NTECER
S ockVal S ockl t em obj t yp;
Tot al NUMBER : = 0;

BEG N
FCRi in 1..SHF Lineltenii st_ntab. CONT LOP
UTL_REF. SELECT _(BIECT(Li nel tenbi st_ntab(i). Stock_ref, St ockVal);
Total := Total + SELF.Lineltenkist_ntab(i).Qantity * SockVal.Price;
END LOP,
RETURN Tot al ;
BND,
END,
/

The getPONo Method

The get PONo method is simple; use it to return the purchase order number of its
associated Pur chaseOr der _obj t yp object. Such "get" methods allow you to
avoid reworking code that uses the object if its internal representation changes.

The sumLineltems Method

The sunli nel t ens method uses a number of object-relational features:

« Asalready noted, the basic function of the sunii nel t ens method is to return
the sum of the values of the line items of its associated Pur chaseOr der _

obj t yp object. The keyword SELF, which is implicitly created as a parameter to
every function, lets you refer to that object.

« The keyword COUNT gives the count of the number of elements in a PL/SQL
table or array. Here, in combination with LOOR, the application iterates through

A Sample Application Using Object-Relational Features 9-19

Implementing the Application Under The Object-Relational Model

all the elements in the collection — in this case, the items of the purchase order.
In this way SELF.Li nel t emLi st _nt ab.COUNT counts the number of elements
in the nested table that match the Li nel t enLi st _nt ab attribute of the

Pur chaseOr der _obj t yp object, here represented by SELF.

=« A method from package UTL_REF is used in the implementation. The UTL_REF
methods are necessary because Oracle does not support implicit dereferencing
of REFs within PL/SQL programs. The UTL_REF package provides methods
that operate on object references. Here, the SELECT _OBJECT method is called
to obtain the St ockl t em obj t yp object corresponding to the St ock_r ef .

« The AUTHI D CURRENT _USER syntax specifies that the Pur chaseOr der _
obj t yp is defined using invoker-rights: the methods are executed under the
rights of the current user, not under the rights of the user who defined the type.

« The PL/SQL variable St ockVal is of type St ocklt em obj typ. The UTL_
REF.SELECT _OBJECT sets it to the object whose reference is the following:

(Lineltenki st_ntab(i). S ock _ref)

This object is the actual stock item referred to in the currently selected line item.

« Having retrieved the stock item in question, the next step is to compute its cost.
The program refers to the stock item’s cost as St ockVal .Pri ce, the Pri ce
attribute of the St ockl t em_obj t yp object. But to compute the cost of the item,
you also need to know the quantity of items ordered. In the application, the
termLi nel tenli st _ntab(i).Quantity represents the Quant ity attribute
of the currently selected Li nel t em obj t yp object.

The remainder of the method program is a loop that sums the extended values of
the line items. The method returns the total as its value.

The compareCustOrders Method

The following statement defines the conpar eCust Or der s method of the
Cust omrer _obj t yp object type.

CREATE (R REPLACE TYPE BCDY Qustoner_objtyp AS
CGRDER MEMBER FUNCTT ON
conpareQust O ders (x I N Qustoner_objtyp) RETURN INTEGER | S
BEQ N
RETURN Qust Nb - x. Qust No;
END
BND,
/

9-20 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

As mentioned earlier, the order method conpar eCust Or der s operation compares
information about two customer orders. It takes another Cust oner _obj t yp object
as an input argument and returns the difference of the two Cust No numbers. The
return value is:

= anegative number, if its own object has a smaller value of Cust No
« apositive number, if its own object has a larger value of Cust No

= zero, if the two objects have the same value of Cust No—in which case both
orders are associated with the same customer.

Whether the return value is positive, negative, or zero signifies the relative order of
the customer numbers. For example, perhaps lower numbers are created earlier in
time than higher numbers. If either of the input arguments (SELF and the explicit
argument) to an ORDER method is NULL, Oracle does not call the ORDER method
and simply treats the result as NULL.

This completes the definition of the user-defined types used in the purchase order
application. None of the declarations creates tables or reserves data storage space.

Creating Object Tables

To this point, the example is the same whether you plan to create and populate
object tables or implement the application with object views on top of the relational
tables that appear in "Implementing the Application Under The Relational Model"
on page 9-4. The remainder of this chapter continues the example using object
tables. Chapter 5, "Applying an Object Model to Relational Data", picks up from this
point and continues the example with object views.

In general, you can think of the relationship between the "objects" and "object
tables" in the following way:

« Classes, which represent entities, map to object tables
« Attributes map to columns
= Objects map to rows

Viewed in this way, each object table is an implicit type whose objects (specific
rows) each have the same attributes (columns). The creation of explicit user-defined
datatypes and object tables introduces a new level of functionality.

The Object Table Customer_objtab

The following statement defines an object table Cust onmer _obj t ab to hold objects
of type Cust oner _obj typ:

A Sample Application Using Object-Relational Features 9-21

Implementing the Application Under The Object-Relational Model

CREATE TABLE Qust oner_obj tab CF Qust oner _obj typ (Qust No PR NARY KEY)
(BJECT |1 D PR MARY KEY ;

As you can see, the term "OF" makes the create statement different for object tables
as opposed to relational tables. We earlier defined the attributes of Cust orrer _
obj t yp objects as:

Qust No NUVBER
Qust Nane VARCHAR(200)
Addr ess_obj Address_obj typ

PhonelLi st_var PhoneLi st_vartyp

This means that the object table Cust oner _obj t ab has columns of Cust No,

Cust Nanme, Addr ess_obj , and PhonelLi st _var, and that each row is an object of
type Cust oner _obj t yp. As you will see, this notion of row object offers a
significant advance in functionality.

9-22 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Figure 9-8 Object Relational Representation of Table Customer_objtab

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNO | CUSTNAME ADDRESS_OBJ PHONELIST_VAR

Number Text Object Type Varray
NUMBER | VARCHAR2(200) | ADDRESS_OBJTYP PHONELIST_VARTYP

PK

L_Varray PHONELIST_VAR (of PHONELIST_VARTYP)
(PHONE)

Number
NUMBER

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

STREET CITY STATE ZIP

Text Text Text Number
VARCHAR2(200) | VARCHAR2(200) | CHAR(2) VARCHAR2(20)
PK

Object Datatypes as a Template for Object Tables

Because there is a type Cust onmer _obj t yp, you could create numerous object
tables of the same type. For example, you could create an object table Cust oner _
obj t ab2 also of type Cust oner _obj t yp. Without this ability, you would need to
define each table individually.

You can introduce variations when creating multiple tables. The statement that
created Cust onmer _obj t ab defined a primary key constraint on the Cust No
column. This constraint applies only to this object table. Another object table of the
same type might not have this constraint.

A Sample Application Using Object-Relational Features 9-23

Implementing the Application Under The Object-Relational Model

Object Identifiers and References

Cust oner _obj t ab contains customer objects, represented as row objects. Oracle
allows row objects to be referenceable, meaning that other row objects or relational
rows may reference a row object using its object identifier (OID). For example, a
purchase order row object may reference a customer row object using its object
reference. The object reference is an opaque system-generated value represented by
the type REF and is composed of the row object’s unique OID.

Oracle requires every row object to have a unique OID. You may specify the unique
OID value to be system-generated or specify the row object’s primary key to serve
as its unique OID. You indicate this when you execute the CREATE TABLE statement
by specifying OBJECT | D PRI MARY KEY or OBJECT | D SYSTEMGENERATED. The
latter is the default. Using the primary key as the object identifier can be more
efficient in cases where the primary key value is smaller than the default 16 byte
system-generated identifier. For our example, the primary key is used as the row
object identifier.

Object Tables with Embedded Objects

Examining the definition of Cust omer _obj t ab, you can see that the Addr ess__
obj column contains Addr ess_obj t yp objects. In other words, an object type may
have attributes that are themselves object types. These embedded objects represent
composite or structured values, and are also referred to as column objects. They
differ from row objects because they are not referenceable and can be NULL.

Addr ess_obj t yp objects have attributes of built-in types, which means that they
are leaf-level scalar attributes of Cust onmer _obj t yp. Oracle creates columns for
Addr ess_obj t yp objects and their attributes in the object table Cust oner _

obj t ab. You can refer to these columns using the dot notation. For example, if you
want to build an index on the Zi p column, then you can refer to it as Addr ess.Zi p.

The PhonelLi st _var column contains varrays of type PhonelLi st _vartyp. We
defined each object of type PhonelLi st _vart yp as a varray of up to 10 telephone
numbers, each represented by a data item of type VARCHARZ:

CREATE TYPE PhoneLi st_vartyp AS VARRAY(10) CF VARCHAR2(20)
/

9-24 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Because each varray of type PhonelLi st _vart yp can contain no more than 200
characters (10 x 20), plus a small amount of overhead, Oracle stores the varray as a
single data unit in the PhoneLi st _var column. Oracle stores varrays that do not
exceed 4000 bytes in "inline" BLOBs, which means that a portion of the varray value
could potentially be stored outside the table.

The Object Table Stock_objtab

The next statement creates an object table for St ockl t em obj t yp objects:

CREATE TABLE Stock objtab OF Stockltemobjtyp (St ockNo PR MARY KEY)
GBIECT |1 D PR MARY KEY ;

Each row of the table is a St ockl t em obj t yp object having three numeric

attributes:

S ockNo NUMBER
Price NUVBER
TaxRat e NUMBER

Oracle creates a column for each attribute. The CREATE TABLE statement places a
primary key constraint on the St ockNo column and specifies that the primary key
be used as the row object’s identifier.

The Object Table PurchaseOrder_objtab
The next statement defines an object table for Pur chaseOr der _obj t yp objects:

CREATE TABLE Pur chaseQrder_objtab G- PurchaseQder_objtyp (/* Line 1 */

PR MARY KEY (PON\D), /* Line 2 */
FCRE QN KEY (Qust _ref) REFERENCES Qust oner _obj t ab) /* Line 3 */
QBIECT |1 D PR MARY KEY /* Line 4 */
NESTED TABLE Linelteniist_ntab STGRE AS PoLine_ntab (/* Line 5 */

(PRIMARY KEY(NESTED TABLE | D, Lineltenio)) /* Line 6 */

CRGAN ZATI ON | NDEX COMPRESS) /* Line 7 */
RETURN AS LGCATCR /* Line 8 */

/

The preceding CREATE TABLE statement creates the Pur chaseOr der _obj t ab
object table. The significance of each line is as follows:

Line 1:
CREATE TABLE Pur chaseQrder_obj tab CF PurchaseQ der_objtyp (

A Sample Application Using Object-Relational Features 9-25

Implementing the Application Under The Object-Relational Model

This line indicates that each row of the table is a Pur chaseOr der _obj t yp object.
Attributes of Pur chaseOr der _obj t yp objects are:

PO\ NUMBER

Qust _ref REF Qust oner_obj typ
QderDate DATE

Shi pbat e DATE

Li nel t enii st _nt ab Li nel t enki st_nt abt yp
Shi pToAddr _obj Address_obj typ

Figure 9-9 Object Relational Representation of Table PurchaseOrder_objtab

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

PONO CUST_REF ORDERDATE | SHIPDATE | LINEITEMLIST_NTAB SHIPTOADDR_OBJ

Number Reference Date Date Nested Table Object Type

NUMBER | CUSTOMER_ | DATE DATE LINEITEMLIST_ ADDRESS_
OBJTYP NTABTYP OBJTYP

PK FK

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineltems RETURN NUMBER
| | | | |
|
Reference

to a row of
the table

|
|
Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNO | CUSTNAME ADDRESS_OBJ PHONELIST_VAR
Number Text Object Type Varray
NUMBER | VARCHAR2(200) | ADDRESS_OBJTYP PHONELIST_VARTYP
PK

Line 2:

PR MARY KEY (PON\D),

This line specifies that the PONo attribute is the primary key for the table.

9-26 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Line 3:
FCRE QN KEY (Qust _ref) REFERENCES Qust oner _obj t ab)

This line specifies a referential constraint on the Cust _r ef column. This referential
constraint is similar to those specified for relational tables. When there is no
constraint, the REF column allows you to reference any row object. However, in this
case, the Cust _r ef REFs can refer only to row objects in the Cust oner _obj t ab
object table.

Line 4:
CBIECT | D PR MARY KEY

This line indicates that the primary key of the Pur chaseOr der _obj t ab object
table be used as the row’s OID.

Line5-8:

NESTED TABLE Lineltentist_ntab STGRE AS PoLine_ntab (
(PRIMARY KEY(NESTED TABLE | D, Lineltenio))
CRGAN ZATI ON | NDEX COMPRESS)

RETURN AS LGCATCR

These lines pertain to the storage specification and properties of the nested table
column, Li nel t enli st _nt ab. The rows of a nested table are stored in a separate
storage table. This storage table is not directly queryable by the user but can be
referenced in DDL statements for maintenance purposes. A hidden column in the
storage table, called the NESTED _TABLE | D, matches the rows with their
corresponding parent row. All the elements in the nested table belonging to a
particular parent have the same NESTED TABLE | Dvalue. For example, all the
elements of the nested table of a given row of Pur chaseOr der _obj t ab have the
same value of NESTED TABLE | D. The nested table elements that belong to a
different row of Pur chaseOr der _obj t ab have a different value of NESTED _
TABLE_I D.

In the CREATE TABLE example above, Line 5 indicates that the rows of

Li nel t erLi st _nt ab nested table are to be stored in a separate table (referred to
as the storage table) named PoLi ne_nt ab. The STORE AS clause also allows you to
specify the constraint and storage specification for the storage table. In this
example, Line 7 indicates that the storage table is an index-organized table (I OT). In
general, storing nested table rows in an IOT is beneficial because it provides
clustering of rows belonging to the same parent. The specification of COWPRESS on
the | OT saves storage space because, if you do not specify COVPRESS, the NESTED _

A Sample Application Using Object-Relational Features 9-27

Implementing the Application Under The Object-Relational Model

TABLE | Dpart of the | OT’s key is repeated for every row of a parent row object. If,
however, you specify COVWPRESS, the NESTED _TABLE_| Dis stored only once for
each parent row object.

The SCOPE FOR constraint on a REF is not allowed in a CREATE TABLE statement.
Therefore, to specify that St ock_r ef can reference only the object table St ock _
obj t ab, issue the following ALTER TABLE statement on the PoLi ne_nt ab storage
table:

ALTER TABLE PoLi ne_ntab
ADD (SOCPE FCR (Stock_ref) 1S stock objtab) ;

Note that this statement is executed on the storage table, not the parent table.

See Also: "Nested Table Storage" on page 8-16 for information
about the benefits of organizing a nested table as and IOT and
specifying nested table compression, and for more information
about nested table storage.

In Line 6, the specification of NESTED _TABLE | Dand Li nel t enNo attribute as the
primary key for the storage table serves two purposes: first, it specifies the key for
the | OT; second, it enforces uniqueness of the column Li nel t emNo of the nested
table within each row of the parent table. By including the Li nel t emNo column in
the key, the statement ensures that the Li nel t enNo column contains distinct
values within each purchase order.

Line 8 indicates that the nested table, Li nel t enli st _nt ab, is returned in the
locator form when retrieved. If you do not specify LOCATOR, the default is VAL UE,
which causes the entire nested table to be returned instead of just a locator to it. If a
nested table collection contains many elements, it is inefficient to return the entire
nested table whenever the containing row object or the column is selected.

Specifying that the nested table’s locator is returned enables Oracle to send the
client only a locator to the actual collection value. An application can find whether a
fetched nested table is in the locator or value form by calling the

OCl Col | I sLocat or or UTL_COLL.I S_LOCATCR interfaces. Once you know that
the locator has been returned, the application can query using the locator to fetch
only the desired subset of row elements in the nested table. This locator-based
retrieval of the nested table rows is based on the original statement’s snapshot, to
preserve the value or copy semantics of the nested table. That is, when the locator is
used to fetch a subset of row elements in the nested table, the nested table snapshot
reflects the nested table when the locator was first retrieved.

9-28 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Recall the implementation of the surLi nel t enrs method of Pur chaseOr der _
obj t yp in "Method Definitions" on page 9-19. That implementation assumed that
the Li nel t enLi st _nt ab nested table would be returned as a VALUE. In order to
handle large nested tables more efficiently, and to take advantage of the fact that the
nested table in the Pur chaseOr der _obj t ab is returned as a locator, the

suniLi nel t ens method must be rewritten as follows:

CREATE (R REPLACE TYPE BCDY PRur chaseQr der _obj typ AS

MAP MEMBER FUNCTI ON get PONo RETURN NUMBER i s

BEG N
RETURN PON\D;
BND
MEMBER FUNCTI N sunii nel t ens RETURN NUMBER | S
i | NTECER,
S ockVal S ockl t em obj t yp;
Tot al NUMBER : = 0;
BEG N
IF (UTL_CAL. IS LOCATCR Li nel tenkist_ntab)) -- check for |ocator
THEN
SELECT SUML. Quantity * L. Stock ref.Price) | NIO Total
FROM TABLE CAST(Li nelteniist_ntab AS Lineltenki st_ntabtyp)) L;
B.SE

FCRi in 1..SAF Lineltenii st_ntab. CONI LOP
UTL_RE-. SELECT_(BIECT(Li nel tenki st_ntab(i). Stock_ref, StockVval);
Total := Total + SELF.Lineltenkist_ntab(i).Qantity *
S ockVal . Pri ce;
B\D LQCP,
B\D I F,
RETURN Tot al ;
END,
B\D,
/

The rewritten sunLi nel t ems method checks whether the nested table attribute,
Li nel tenlLi st _nt ab, is returned as a locator using the UTL_COLL.I S_LOCATOR
function. If the condition evaluates to TRUE, the nested table locator is queried
using the TABLE expression.

A Sample Application Using Object-Relational Features 9-29

Implementing the Application Under The Object-Relational Model

Note: The CAST expression is currently required in such TABLE
expressions to tell the SQL compilation engine the actual type of the
collection attribute (or parameter or variable) so that it can compile
the query.

The querying of the nested table locator results in more efficient processing of the
large line item list of a purchase order. The previous code that iterates over the

Li nel tenLi st _nt ab is kept to deal with the case where the nested table is
returned as a VALUE.

After the table is created, the following ALTER TABLE statement is issued:

ALTER TABLE PoLi ne_ntab
ADD (SOCPE FCOR (Stock_ref) 1S stock_objtab);

This statement specifies that the St ock_r ef column of the nested table is scoped to
St ock_obj t ab. This indicates that the values stored in this column must be
references to row objects in St ock_obj t ab. The SCOPE constraint is different from
the referential constraint in that the SCOPE constraint has no dependency on the
referenced object. For example, any referenced row object in St ock_obj t ab may
be deleted, even if it is referenced in the St ock_r ef column of the nested table.
Such a deletion renders the corresponding reference in the nested table a

DANGLI NG REF.

9-30 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Figure 9-10 Object Relational Representation of Nested Table LineltemList_ntab

Column LINEITEMLIST_NTAB (of LINEITEMLIST _NTABTYP
(as table of LINEITEM_OBJTYP))

LINEITEMNO | STOCK_REF QUANTITY DISCOUNT
Number Reference Number Number
NUMBER STOCKITEM_OBJTYP | NUMBER NUMBER

Refers to a row
of the table

L-Table STOCK_OBJTAB (of STOCKITEM_OBJTYP)

STOCKNO PRICE TAXRATE
Number Number Number
NUMBER NUMBER NUMBER
PK

Oracle does not support referential constraint specification for storage tables. In this
situation, specifying the SCOPE clause for a REF column is useful. In general,
specifying scope or referential constraints for REF columns has several benefits:

« Itsaves storage space because it allows Oracle to store just the row object’s
unique identifier as the REF value in the column.

« Itenables an index to be created on the storage table’s REF column.

« Itallows Oracle to rewrite queries containing dereferences of these REFs as joins
involving the referenced table.

At this point, all of the tables for the purchase order application are in place. The
next section shows how to operate on these tables.

A Sample Application Using Object-Relational Features 9-31

Implementing the Application Under The Object-Relational Model

Figure 9-11 Object Relational Representation of Table PurchaseOrder_objtab

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineltems RETURNNUMBER

PONO CUST_REF ORDERDATE | SHIPDATE | LINEITEMLIST_NTAB SHIPTOADDR_OBJ

Number Reference Date Date Nested Table Object Type

NUMBER | CUSTOMER_ | DATE DATE LINEITEMLIST_ ADDRESS_
OBJTYP NTABTYP OBJTYP

PK FK

[
Column Object
of the defined type

- Column Object SHIPTOADDR_OBJ (of ADDR_OBJTYP)

STREET CITY STATE ZIP
Text Text Text Number
VARCHAR2(200) | VARCHAR2(200) | CHAR(2) VARCHAR2(20)

Inserting Values

Here is how to insert the same data into the object tables that we inserted earlier
into relational tables. Notice how some of the values are actually calls to the

constructors for object types.

Stock_objtab

I NSERT | NTO S ock_obj t ab VALUES(1004,
I NSERT | NTO S ock_obj tab VALUES(1011,
I NSERT | NTO S ock_objtab VALUES(1534,
I NSERT | NTO S ock_objtab VALUES(1535,

6750. 00,
4500. 23,
2234. 00,
3456. 23,

2) ;
2) ;

2)

9-32 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

Customer_objtab

I NSERT | NTO Qust oner _obj t ab
VALUES (
1, 'Jean Nance',
Address_objtyp('2 Avocet Drive’, 'Redwood Shores', 'CA’, '95054),
PhoneList_vartyp(415-555-1212)
);

INSERT INTO Customer_objtab
VALUES (
2,’John Nike',
Address_objtyp('323 College Drive’, 'Edison’, 'NJ, '08320),
PhonelList_vartyp(609-555-1212'201-555-1212))
);

PurchaseOrder_objtab
INSERT INTO PurchaseQrder_objtab
SELECT 1001, REF(C),
SYSDATE, '10-MAY-1999,
LineltemList_ntabtyp(),
NULL
FROM Customer_objtab C
WHERE C.CustNo=1;

The preceding statement constructs a Pur chaseOr der _obj t yp object with the
following attributes:

PONo 1001

Cust_ref REF to customer number 1
OrderDate SYSDATE

ShipDate 10-MAY-1999
LineltemList_ntab an empty Lineltem_ntabtyp
ShipToAddr_obj NULL

The statement uses a query to construct a REF to the row object in the Cust oner _
obj t ab object table that has a Cust No value of 1.

A Sample Application Using Object-Relational Features 9-33

Implementing the Application Under The Object-Relational Model

The following statement uses a TABLE expression to identify the nested table as the
target for the insertion, namely the nested table in the Li nel t enlLi st _nt ab
column of the row object in the Pur chaseOr der _obj t ab table that has a PONo
value of 1001.

Note: The "flattened subquery" or "THE (subquery)" expression
supported in Oracle release 8.0 to identify a nested table is now
deprecated in favor of the TABLE expression illustrated below.

I NSERT | NTO TABLE (

SHECT P.Lineltenkist ntab
FROM PurchaseQr der_objtab P
WERE P.PONo = 1001

)

SHECT 01, REKS), 12, O
FROM Stock objtab S
WERE S SockNo = 1534 ;

The preceding statement inserts a line item into the nested table identified by the
TABLE expression. The inserted line item contains a REF to the row object with a
St ockNo value of 1534 in the object table St ock_obj t ab.

The following statements follow the same pattern as the previous ones:

I NSERT | NTO Pur chaseQ der _obj t ab
SHECT 2001, REH(Q),
SYSDATE, '20-MAY-1997',
LineltemList_ntabtyp(),
Address_objtyp('55 Madison Ave’,Madison’,WI',53715)
FROM Customer_objtab C
WHERE C.CustNo=2;

INSERT INTO TABLE (
SELECT P.LineltemList_ntab
FROM PurchaseOrder_ohjtab P
WHERE P.PONo =1001
)
SELECT 02, REF(S), 10,10
FROM Stock _objtab S
WHERE S.StockNo=1535;

9-34 Oracle9i Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model

| NSERT | NTO TABLE (

SHECT P.Lineltenkist ntab
FROM PurchaseQ der_objtab P
WERE P. PO\ = 2001

)

SHECT 10, REHS), 1, O
FROM Stock objtab S
WERE S SockNo = 1004 ;

I NSERT | NTO TABLE (
SHECT P.Lineltenkist ntab
FROM PurchaseQrder_objtab P
WERE P.PO\b = 2001

)
VALUES(11, (SELECT REH(9

FROM Sock objtab S
WHERE S S ockNo = 1011), 2, 1) ;

Querying

The following query statement implicitly invokes a comparison method. It shows
how Oracle orders objects of type Pur chaseOr der _obj t yp using that type’s
comparison method:

SHECT p.PONb
FROM PurchaseQrder_objtab p
CROER BY VALUE(p) ;

Oracle invokes the map method get PONo for each Pur chaseOr der _obj typ
object in the selection. Because that method returns the object’s PONo attribute, the
selection produces a list of purchase order numbers in ascending numerical order.

The following queries correspond to the queries executed under the relational
model.

Customer and Line Item Data for Purchase Order 1001
SELECT DEREH(p. Qust _ref), p. Shi pToAddr_obj, p. PON\b,
p. OderDate, Lineltenkist _ntab
FROM PurchaseQrder_objtab p
WHERE p. PO\ = 1001 ;

A Sample Application Using Object-Relational Features 9-35

Implementing the Application Under The Object-Relational Model

Total Value of Each Purchase Order

SELECT p. PON\o, p. sunii nel t ens()
FROM PurchaseQ der_objtab p ;

Purchase Order and Line Item Data Involving Stock Item 1004
SELECT po. PONb, po. Qust _ref. Qust N,
QURSCR (
SHECT *
FROM TABLE (po. Linelteniist_ntab) L
WHERE L. Sock ref.SockNo = 1004

)
FROM PurchaseQ der _objtab po ;

The query above returns a nested cursor for the set of Li nel t em obj objects
selected from the nested table. The application can fetch from the nested cursor to
get the individual Li nel t em obj objects. The query can also be expressed by
unnesting the nested set with respect to the outer result:

SELECT po. PONb, po.Qust_ref.QustNo, L.*
FROM PurchaseQ der _objtab po, TABLE (po.Linelteniist_ntab) L
WHERE L. Sock ref.SockNo = 1004 ;

The above query returns the result set as a "flattened"” form (or First Normal Form).
This type of query is useful when accessing Oracle collection columns from
relational tools and APIs, such as ODBC. In the unnesting example above, only the
rows of the Pur chaseOr der _obj t ab object table that have any Li nel t enli st _
nt ab rows are returned. To fetch all rows of the Pur chaseOr der _obj t ab table,
regardless of the presence of any rows in their corresponding Li nel t enli st _

nt ab, then the (+) operator is required:

SELECT po. PONb, po.Qust_ref.QustNo, L.*
FROM PurchaseQ der _objtab po, TABLE (po.Linelteniist_ntab) (+) L
WHERE L Sock ref.SockNo = 1004 ;

Average Discount across all Line Items of all Purchase Orders

This request requires querying the rows of all Li nel t enli st _nt ab nested tables
of all Pur chaseOr der _obj t ab rows. Again, unnesting is required:

SELECT AV L. DI SOOLNT)
FROM PurchaseQ der_objtab po, TABLE (po.Linelteniist_ntab) L ;

9-36 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects Through Java

Deleting

The following example has the same effect as the two deletions needed in the
relational case (see "Deleting Data Under The Relational Model" on page 9-10). In
this case, Oracle automatically deletes all line items belonging to the deleted
purchase order. The relational case requires an additional step.

Delete Purchase Order 1001

DELETE
FROM PurchaseQ der _obj t ab
WHERE PONo = 1001 ;

Manipulating Objects Through Java

Using the schema that we have already defined for the purchase order example, we
can manipulate objects within the database through the Java Database Connectivity
(JDBC) API or by using embedded SQL with SQLJ. Although we use JDBC in this
example, the coding for both is similar, and you can use either technique for
object-oriented programs.

The first decision you have to make is how closely you want to map the object types
in the database to Java classes. The following sections show the two choices.

Using oracle.sgl.* Classes (Weak Typing)
In this example:

« We map the data types and objects from the customer table to predefined object
classes provided in the ORACLE.SQL package.

« We create only a single class with all the application logic instead of a separate
class for each object type.

= We treat the objects as the generic type or acl e. sql . STRUCT, collection types
as or acl e. sql . ARRAY, and the scalar values as predefined types such as
oracl e. sgl . NUMBER.

« We dynamically retrieve the attributes from the STRUCT class, pulling them into
a single array. We must know the internal details of the class, such as that the
first attribute is a number, and cast each element of the array into an object of
the right type.

A Sample Application Using Object-Relational Features 9-37

Manipulating Objects Through Java

This technique lets us essentially write a procedural Java program that can easily
interact with a particular class as long as the definition of that class stays the same.

inport java. sql.*;
inport oracle.sql.*;

public class Defaul t Mappi ngDeno

{
public static void main(Sring[] args)
{
Systemout . println("*** JAVA CBIECTS DEMD ***");
try {

Dri ver Manager . regi sterDri ver (new oracl e. j dbc. driver. Oracl eDriver());

Gonnecti on conn = Dxi ver Manager . get Connect i on
("j dbc: oracl e: t hi n: @t pc90. us. or acl e. com 1521: st pc90",
"scott", "tiger") ;

Satenment stnt = conn.createStatenent();

Resul t Set rs = stnt. execut eQiery
("sel ect val ue(c) from QUSTCMER TAB ¢ order by val ue(c)");

while (rs.next ())
{

Il retrieve the STRICT
oracl e. sgl . STRUCT cust _struct = (STRIT)rs. get (hj ect(1);

oracle.sql . Datumcust _attrs[] = cust_struct.getQacl eAttributes();
oracl e. sgl . NOMBER num = (NUMBER cust _attrs[0];

[l string attribute in (hj ect
oracle.sql. GHAR nane = (CHAR cust_attrs[1];

/1 enbedded obj ect

oracl e. sgl . STRUCT address_struct = (STRUCT)cust _attrs[2];

oracl e.sql . Datumaddress_attrs[] = address_struct.get Qacl eAtributes();
oracle.sql . GHAR street = (CHAR) address_attrs[0];

oracle.sqgl.GHAR city = (GHAR address_attrs[1];

oracle.sqgl. HAR state = (HAR address_attrs[2];

oracl e.sql . GHAR zi p = (HAR address_attrs[3];

Systemout. println("Nunber: " + numstringValue() + ", Nane: " + nane +

9-38 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects Through Java

", Address: " + street +", " +city +", " + state +
"+ zip);

/l enbedded array

oracl e. sgl . ARRAY phone_list = (ARRAY)cust _attrs[3];

}

rs.close();

stnt. close();

}

catch (SQLException exn)

{

}
}
}

Systemout . printl n("SQLException: "+exn);

Using Strong Typing (SQLData or CustomDatum)

If you want to model the database object types using multiple Java classes, you can
construct a strongly typed model. The classes all implement some common
behavior to do the underlying database operations. Now you have another choice,
namely, whether to model the classes on the JDBC 2.0 API (the SQLData interface)
or on Oracle’s API (the CustomDatum interface).

The SQLData interface is standards-based and potentially offers portability between
different database systems. The CustomDatum interface is derived from JDBC but
offers additional enhancements: it can encapsulate REFs, collection types, and other
object-oriented features not supported by JDBC.

You can generate wrapper classes for either interface by using JPublisher with
different options.

Generating Wrapper Classes with JPublisher

In the strongly typed model, we need a Java class for each object type in the schema.
The easiest way to get these classes is to let Oracle read the type definitions from the
database and generate the Java code for us. To do this, we can use the following file
as input to the JPublisher tool:

SQ. SQAOIT. " ADDRESS (BITYP' AS JAddress

S SAOIT. " QUSTAMER ABITYP' AS JQust oner I nfo

SQ SCOIT. "LI NA TBEMLI ST_NTABTYP' AS JLi nel t enki st
S SQOIT. "LINA TEM GBITYP' AS JLi neltem

SQL SQOIT. " PHONELI ST_VARTYP' AS JPhoneli st

S SAOIT. " PURCHASECRDER (BITYP' AS JPur chaseQ der

A Sample Application Using Object-Relational Features 9-39

Manipulating Objects Through Java

SQ SOOIT. " STAXK TEM CBITYP' AS JSt ockl nf o

How to Use the Wrapper Classes

The wrapper classes all look much like the one below, JCust oner, which
corresponds to the CUSTOVER | NFO _T type in the database schema. For our
example, we would also need the JAddr ess wrapper class because one of the
attributes of JCust omrer is a JAddr ess object.

You can read or write instances of this type using regular Java I/0 streams. To
implement additional member functions, you can subclass JCust oner so that your
code is preserved whenever that class is regenerated.

inport java.sql.*;
i nport oracl e.jdbc2. *;
inport oracle.sql.*;

public class JQustoner inplenents SQAData
{

private Sring sql _type;

public int custNb;

public Sring cust Nang;

publ i c JAddress address;

public Array phoneli st;

public Sring get SQ TypeNane() throws SQException { return sql _type; }

public void readSQ (SQ@Input stream String typeNane) throws SQException

{
sql _type = typeNang;
custNo = streamreadint();
cust Nane = streamreadString();
address = (JAddress) streamread(ject();

phoneLi st = streamreadArray();

}
public void witeSQ (SQQutput streanm) throws SQException
{

streamwitelnt (custNo);

streamw iteSring(cust Nane);

streamw i teChj ect (address);

streamwiteArray(phoneList);

9-40 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects Through Java

In this example, we do not show member functions being derived from the method
functions of the database type. Calling such member functions causes traffic as
object data is passed back and forth to the database server, and you must follow
certain conventions for input and output parameters. For information on this
subject, see Oracle9i SQLJ Developer’s Guide and Reference (Objects and Collections)
and Oracle9i JDBC Developer’s Guide and Reference (Working with Oracle Object

Types).

Sample Program Using the SQLData Interface
In the following program:

« We work with the JCust onmer and JAddr ess classes that are produced by
JPublisher. JAddr ess is needed because it is the type for one of JCust oner ’s
attributes.

« We let the database know which Java classes correspond to which SQL object
types. For example, JCust oner corresponds to CUSTOVER | NFO T. That
information allows Oracle to substitute object data into SQL statements such as
the | NSERT in the example.

= Once we cast an object from the result set to JCust oner, we can access its data
and functions as with any other Java class.

« We update the object in Java, then substitute the Java object into an SQL
statement that updates the database.

inport java.sql.*;

inport oracle.sql.*;

inport oracle.jdbc.driver.*;
i nport oracl e.jdbc2. *;
inport java.util.*;

public class SQ.Dat aDeno

{
public static void main(String[] args) throws Exception, SQException

{
Systemout . println("*** JAVA GBJECTS DEMD : USI NG SQ.Data | NTERFACE ***");
Dri ver Manager . regi sterDri ver (new oracl e. j dbc. dri ver. Qacl eDriver());
Q acl eConnection conn = (O acl eConnection) Dri ver Manager . get Gonnect i on
("j dbc: oracl e: thi n: @t pc90. us. or acl e. com 1521: st pc90",
"scott", "tiger");

Satenent stmt = conn.createStatenent();

A Sample Application Using Object-Relational Features 9-41

Manipulating Objects with Oracle Objects for OLE

[lput an entry in the typenap
try

{
D ctionary map = conn. get TypeMap() ;

nap. put ("AQBTAMER_INFO T', d ass. forNane("JQustoner"));
nap. put ("ACDRESS T', d ass. for Nane(" JAddress"));

}
cat ch (d assNot FoundException exn) { }
Resul tSet rs = stnt. execut eQuery("sel ect VALLE (p) from QSTOMER TAB p");

while (rs.next())

{
[lretrieve the object using standard AP
JQustoner jc = (JQustoner) rs.getject(1);
int custNo = jc.custNp;
Sring custNane = jc. cust Nang;
j c.cust Nane = "Geoff Lee";
PreparedStatenent pstm = conn. prepar eS at enent

("I NSERT | NTO QUSTOMER TAB VALUES (?)");

pstni.setject(1, jc);
pst n . execut elpdat e() ;
rs.close();
stm.close();

}

}

Manipulating Objects with Oracle Objects for OLE

On Windows systems, you can use Oracle Objects for OLE (O040) to write
object-oriented database programs in Visual Basic or other environments that
support the COM protocol, such as Excel.

The following examples all begin with a similar header section that connects to the
database. Then each shows how to perform a different operation on object data.

9-42 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE

Selecting Data
Here is an event handler for a button that performs a SELECT operation.

« W get a set of rows from the database, each row containing some relational
columns and some columns that are objects.

« Using the name of the CUSTREF column, we retrieve its value, which is an
object.

= Then we can use the dot notation to access the attributes of the object. We define
the variable as a generic object type, Or aCbj ect . After it is instantiated with a
real object, it takes on the properties of the corresponding object type.

Private Sub obj _sel ect_Qick()
D m O01CBessi on As O aSessi on
D mlInvDB As O aDat abase
O m PurchaseQ der As Q aDynaset
D mQustonerlnfo As O aRef
D mLineltensList As OaQllection
D mLineltemAs Qaject
D m Shi pToAddr As QO a(hj ect
D mSocklnfo As O aRef
O m Qust oner Addr As O aChj ect

'Create the OraSession Object.
Set O040Session = CreateObject("OraclelnProcServer.XOraSession”)

'Create the OraDatabase Object by opening a connection to Oracle.
Set InvDB = O040Session.OpenDatabase('exampledb”, "scotifiger”, 0&)

'Select from purchase_tab
Set PurchaseOrder = InvDB.CreateDynaset("'select * from purchase_tab", 0&)

'Get the custref attribute from PurchaseOrder
Set Customerinfo = PurchaseOrder.Fields("custref’).Value

' Accessing attributes Customerinfo object

‘Display custno,custname phonelist attibutes of Customerinfo
MsgBox Customerinfo.custno

MsgBox Customerinfo.custname

'Get address and phonelist attibutes of Customerinfo
Set CustomerAddr = Customerinfo.Address

A Sample Application Using Object-Relational Features 9-43

Manipulating Objects with Oracle Objects for OLE

Inserting Data

‘Display all the atributes of CustomerAddr
MsgBox CustomerAddr.Street

MsgBox CustomerAddr.State

MsgBox CustomerAddr.Zip

" Accessing elements of LineltemsList Object

'Getline_item_list attribute from PurchaseOrder
Set LineltemsList = PurchaseOrder.Fields('line_item _list").Value

'Get Lineltem object element from LineltemList collection
Set Lineltem = LineltemsList(1)

'Display lineitemno,quantity,discount attibutes
MsgBox Lineltem.lineitemno

MsgBox Lineltem.quantity

MsgBox Lineltem.discount

'Access stockref attribute of Lineltem
Set Stockinfo = Lineltem.Stockref

‘Display stockno,costtax_code of Stockinfo
MsgBox Stockinfo.stockno

MsgBox Stockinfo.cost

MsgBox Stockinfo.tax_code

End Sub

Here is a program that retrieves a set of rows from the database, then adds a new

row.

= We create some objects of the appropriate object types.

« We populate the objects with sample values.

« We create a new row for the purchase order table, and fill in the values for its
columns. The columns that are not objects can be set directly. The columns that

are objects must be set using the VALUE field.

Dim O040Session As OraSession
Dim InvDB As OraDatabase

Dim PurchaseOrder As OraDynaset
Dim Customerinfo As OraRef

9-44 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE

O mLineltensList As OaCollection
O mLineltemAs Qa(j ect

O m Shi pToAddr As O a(bj ect
OmSocklnfo As O aRef

O m Qust oner Addr As O aChj ect

'Create the OraSession Object.
Set O040Session = CreateObject("OraclelnProcServer.XOraSession”)

'Create the OraDatabase Object by opening a connection to Oracle.
Set InvDB = O040Session.OpenDatabase('exampledb”, "scotifiger”, 0&)

'Select from purchase_tab
Set PurchaseOrder = InvDB.CreateDynaset("'select * from purchase_tab", 0&)

' Step 1 - Creating Customerinfo ref object

'select a ref from customer_tab for custono 2

Set CustomerDyn = InvDB.CreateDynaset("select REF(C) from customer_tabc
where c.custno =2",0&)

'get the Customerinfo ref object
Set Customerinfo = CustomerDyn.Fields(0).Value

'Step 2 - Creating LineltemsList object

' Create anew line_items list object
Set LineltemsList = InvDB.CreateOraObject(ine_item_list t)

' Create anew line_items object
Set Lineltem = InvDB.CreateOraOhject('ine_item_t)

'set attributes of Lineltemn object
Lineltem.lineitemno =2
Lineltemn.quantity = 15
Lineltem.discount =30
Lineltem.Stockref = Null

'set the Lineltem to first element of LineltemList
LineltemnsList(1) = Lineltem

' Step 3 - Creating ShipToAddr object

' create a shiptoaddr object
Set ShipToAddr = InvDB.CreateOraObject(‘address t')

A Sample Application Using Object-Relational Features 9-45

Manipulating Objects with Oracle Objects for OLE

'set the attributes of ShipToAddr Object
ShipToAddr.city ="Belmont’
ShipToAddr.Street = "Continentals way'"
ShipToAddr.Zip ="94002"
ShipToAddr.State ="CA"

' Start the AddNew operation on PurchaseOrder dynaset
PurchaseOrder. AddNew

PurchaseOrder.Fields("pono").Value = 1002
PurchaseOrder.Fields('orderdate”).Value = "5/15/99"
PurchaseOrder.Fields('shipdate”).Value = "6/15/99"

'set the custreffield to Customerinfo object created in stepl
PurchaseOrder.Fields("custref’).Value = Customerinfo

'setthe line_item _list field to Lineltemslist object created in step2
PurchaseOrder.Fields('line_item _list").Value = LineltemsList

'set the shiptoaddr field to ShipToAddr object created in step3
PurchaseOrder.Fields("shiptoaddr”).Value = ShipToAddr

' Call the update method on Purchaseorder Dynaset which inserts a new row
"in purchase_tab table

PurchaseOrder.Update

Updating Data

Here is a program that retrieves some rows from the database, then updates a
specific one.

= We select the purchase order using a query that returns a single row.

« We get individual data items to manipulate from other tables and from the
original purchase order.

« We lock the purchase order row for updating, and put in the new values.

Dim O040Session As OraSession
Dim InvDB As OraDatabase

Dim PurchaseOrder As OraDynaset
Dim Customerinfo As OraRef

9-46 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE

O mLineltensList As OaCollection
O mLineltemAs Qa(j ect

O m Shi pToAddr As O a(bj ect
OmSocklnfo As O aRef

O m Qust oner Addr As O aChj ect

‘Create the OraSession Object.
Set O040Session = CreateObject("OraclelnProcServer.XOraSession'”)

‘Create the OraDatabase Object by opening a connection to Oracle.
Set InvDB = 0040Session.OpenDatabase(‘exampledb”, "scottftiger”, 0&)

'Select from purchase_tab for pono 1002
Set PurchaseQrder = InvDB.CreateDynaset('select * from purchase_tab where
pono = 1002", 0&)

‘Create a Stockinfo from stock_tab for stockno 1535

Set StockDyn = InvDB.CreateDynaset('select REF(s) from stock_tab s where
s.stockno=1535", 0&)

Set Stockinfo = StockDyn.Fields(0).Value

‘Getline_item _list attribute from PurchaseOrder
Set LineltemsList = PurchaseOrder.Fields('line_item _list").Value

'Get Lineltem object element from LineltemList collection
Set Lineltem = LineltemsList(1)

'Start the edit operation on PurchaseOrder dynaset
PurchaseOrder.Edit

' Set the Stockinfo object created in Stepl to stockref attribute
' of Lineltem

Lineltem.Stockref = Stockinfo

PurchaseOrder.Update

Calling a Method Function

Here is a program that retrieves a purchase order, and calls its member function
TOTAL_VALUE to sum the cost of the line items that are part of the purchase order.

« We select one row from the purchase order table. Notice we select the VALUE so
that the result comes back as an object.

A Sample Application Using Object-Relational Features 9-47

Manipulating Objects with Oracle Objects for OLE

« We get a pointer to the purchase order object (the zero’th column of the result
row). Later this pointer is passed to a PL/SQL stored procedure, to simulate the
SELF pointer in Java or C++ methods.

« We build a list of parameters corresponding to the implicit SELF parameter and
the return value of the method function. For each, we specify the bind variable,
its value, its mode, and its type.

= We call the stored procedure corresponding to the method function, storing the
result in the TOTALVALUE bind variable.

« To use the result, we retrieve the return value from the parameter list.

O m Q4Csessi on As O aSessi on
O mlnvDB As O abat abase
O m PurchaseQ der j As O aDynaset

‘Create the OraSession Object.
Set O040Session = CreateObject("OraclelnProcServer.XOraSession'”)

‘Create the OraDatabase Object by opening a connection to Oracle.
Set InvDB = O040Session.OpenDatabase(‘exampledb”, "scottftiger”, 0&)

'Select from purchase_tab
Set PurchaseQrderDyn = InvDB.CreateDynaset("select VALUE(p) from
purchase_tab p where p.pono =1001", 0&)

'Get the PurchaseQOrderObj
Set PurchaseOrderObj = PurchaseOrderDyn.Fields(0).Value

'Create a OraParameter object for purchase_order_t objectand setitto

PurchaseOrder

InvDB.Parameters.Add "PURCHASEORDER", PurchaseOrderObj, ORAPARM_BOTH,
ORATYPE_OBJECT, "PURCHASE _ORDER_T"

‘Create a parameter for total_value retum
InvDB.Parameters.Add "TOTALVALUE", ™', ORAPARM_OUTPUT

‘Execute a member method
InvDB.ExecuteSQL ('BEGIN :-TOTALVALUE :=
PURCHASE_ORDER T.TOTAL VALUE(PURCHASEORDER); END;")

‘Display the totalvalue
MsgBox InvDB.Parameters(TOTALVALUE").Value

9-48 Oracle9i Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE

A Sample Application Using Object-Relational Features 9-49

Manipulating Objects with Oracle Objects for OLE

9-50 Oracle9i Application Developer’s Guide - Object-Relational Features

Symbols

,methods
final, 2-36

A

Active Server Pages, 3-9
ActiveX, 3-9
ADMIN OPTION

with EXECUTE ANY TYPE, 4-3
aggregate functions

See user-defined aggregate functions
ALTER ANY TYPE privilege, 4-2

See also privileges
ALTER TABLE, 6-19

See also object types, evolving
ALTER TYPE

See also object types, evolving
ALTER TYPE statement, 3-22, 6-16
ANYDATA datatype, 6-30, 8-40
ANYDATASET datatype, 6-30
ANYTYPE datatype, 6-30
arrays, 9-24

size of VARRAYs, 2-21

variable (VARRAYs), 2-21
ASP, 3-9
atomic nulls, 2-8
attributes

leaf-level, 6-2

leaf-level scalar, 6-2

modifying, 6-14

of object types, 2-2

B

Index

bind variables
user-defined types, 3-2

C

caches
object cache, 3-2, 3-7,4-5
object views, 5-4
capture avoidance rule, 2-13
collections, 2-6, 2-21 to 2-33
assigning, 2-48
comparing, 2-26, 2-49
constructing, 2-7
creating, 2-26
DML on, 2-31
multi-level, 2-23,8-12
constructing, 2-27
creating, 2-27
creating with REFs, 8-23
DML, 2-32
object views containing, 5-8
nested tables, 2-22
querying, 2-27,8-12
See also varrays, nested tables
substituting in, 2-42
variable arrays (VARRAYs), 2-21
column objects
Versus row objects, 8-3
COLUMN_VALUE keyword, 2-24
columns
column names
qualifying in queries, 2-14

Index-1

column objects, 2-4
indexes, 2-11
hidden, 6-2,6-5
qualifying in queries, 2-13
comparison methods, 2-17,9-18
compilation of object types, 4-6
complex object retrieval
for Oracle Call Interface, 6-25
COMPRESS clause
nested tables, 8-18
CONNECT role
user-defined types, 4-2,4-3
constraints, 9-23
object tables, 2-10
on Oracle objects, 8-36
REFs, 8-10
SCOPE FOR constraint, 9-28, 9-30
constructor methods, 2-15, 2-20, 6-2
literal invocation of, 2-9
COUNIT attribute of collection types, 9-19
CREATE ANY TYPE privilege, 4-2
See also privileges
CREATE INDEX statement
object types, 2-11
CREATE TABLE statement
examples
column objects, 2-8, 2-14
nested tables, 2-23
object tables, 2-4, 2-11, 2-14, 2-23
CREATE TRIGGER statement
examples
object tables, 2-12
CREATE TYPE privilege, 4-2
See also privileges
CREATE TYPE statement, 8-43
incomplete types, 4-6
nested tables, 2-10, 2-22
object types, 2-4,2-7, 2-8, 2-9, 2-14,9-12
object views, 5-3
varrays, 2-21,9-13
CREATE TYPEstatement
nested tables, 2-7
CREATE VIEW statement
examples
object views, 5-4

Index-2

CustomDatum interface, 3-16

D

dangling REFs, 2-5, 2-6
database administrators (DBAS)

DBA role, 4-2
database links, 2-15
datatypes

array types, 2-21
nested tables, 2-22
See also object types, user-defined types
transient and generic, 6-30
DBA role
user-defined types, 4-2
default values
collections, 2-9
user-defined types, 2-9
DELETE privilege for object tables, 4-4, 4-5
DEREF function, 2-50
dereferencing, 2-6,9-20
implicit, 2-6,9-20
dot notation, 2-16
DROP ANY TYPE privilege, 4-2
See also privileges
DROP TYPE statement, 4-8
dump files
Export and Import, 4-10

E

Excel, 3-9
EXECUTE ANY TYPE privilege, 4-2,4-3
See also privileges
EXECUTE privilege
user-defined types, 4-3
See also privileges
Export utility
user-defined types, 4-10
EXTERNAL NAME phrase, 3-15

F

FAQ
for Oracle objects, 7-1

features, new, Xxxvi
files

Export and Import dump file, 4-10
FINAL keyword, 2-36

modifying finality, 6-15, 8-38
FORCE keyword, 5-19
FORCE option, 4-8
foreign keys

representing many-to-one entity relationship

with, 9-7
frequently asked questions
about Oracle objects, 7-1
function-based indexes
on type methods, 8-33

G

GRANT option for EXECUTE privilege, 4-3
granting
execute user-defined type, 4-3

implicit dereferencing, 2-6, 9-20
Import utility

user-defined types, 4-10
incomplete object types, 4-6, 9-12
indexes

on REFs, 2-11

type-discriminant column, 6-5

user-defined types, 2-11
index-organized tables

storing nested tables as, 2-25, 8-17
inheritance, 2-3

See<$Default Para Font
inner capture, 2-13
INSERT privilege for object tables, 4-4, 4-5
INSTANTIABLE keyword, 2-37

modifying instantiability, 6-15
INSTEAD OF triggers

nested tables, 5-14
invoker-rights

object types, 8-31
IS OF type predicate, 2-52

J

Java
Oracle JDBC and Oracle objects, 3-12
Oracle SQLJ and Oracle objects, 3-12
with Oracle objects, 3-11

Java object storage, 3-14

JDBC
See Oracle JDBC

JPublisher, 3-13

K

keys
foreign keys, 9-7

L

leaf-level attributes, 6-2
leaf-level scalar attributes, 6-2
literal invocation
constructor methods, 2-9
locators, 9-28
returning nested tables as, 6-34, 8-20
locks
object level locking, 3-3

M

map methods, 2-17, 8-8, 9-15
materialized views, 8-35
method dispatch, 2-40
methods, 2-3,2-15, 9-19

execution privilege for, 4-2
choosing a language for, 8-29
comparison, 9-18
comparison methods, 2-17

in a type hierarchy, 2-19
constructor methods, 2-20, 6-2

literal invocation, 2-9
dropping, 6-14
function-based indexes, 8-33
inheriting, 2-38
instantiability, 2-37
invoking, 2-16

Index-3

map, 2-17,8-8,9-15

member, 2-16

of object types, 2-2

order, 2-18,8-8,9-15, 9-21

overloading, 2-38

overriding, 2-36, 2-38, 2-39

PL/SQL, 3-2

SELF parameter, 2-16

static, 2-20, 8-30
multi-level collections

See collections, multi-level

N

narrowing, 2-47,2-51
nested tables, 2-22,8-16
COMPRESS clause, 8-18
creating, 2-26
creating indexes on, 8-19
DML operations on, 8-21

in an index-organized table, 2-25, 8-17

indexes, 2-11

INSTEAD OF triggers, 5-14

querying, 2-27,9-16
unnesting results, 2-28

returning as locators, 8-20, 9-28

storage, 2-24,8-16, 9-27

uniqueness in, 9-28

updating in views, 5-14

vs VARRAY, 9-16

vs varrays, 9-13

NESTED_TABLE_ID keyword, 2-25, 8-19, 9-27

new features, Xxvi
nulls
atomic, 2-8
object types, 2-8

O

objec viewts
OIDs with, 5-9
object cache
flushing an object, 6-25
object views, 5-4
ocCl, 3-2

Index-4

privileges, 4-5
Pro*C, 3-7

object identifiers, 6-7,9-24

for object types, 6-2

primary-key based, 8-8

REFs, 8-9

storage, 8-8

WITH OBJECT IDENTIFIER clause,

object instances, 2-2, 2-3

comparing, 2-48

object tables, 2-3, 8-7,9-21

constraints, 2-10
deleting values, 9-37
indexes, 2-11
inserting values, 9-32
querying, 9-35
replicating, 8-35

row objects, 2-4
triggers, 2-12

virtual object tables, 5-2

object types

assignments across, 2-46
attributes of, 2-2
column objects, 2-4
indexes, 2-11
column objects vs. row objects, 8-3
comparison methods for, 2-17,9-18
constructor methods for, 2-20, 6-2
creating, 2-7
creating subtypes of, 2-37
dependents, 4-5, 6-8
evolving, 6-8to 6-20, 8-39
design considerations, 8-37
SQLJ types, 3-22
final/not final, 2-36, 8-38
incomplete, 4-6, 4-7,9-12
indexing, 6-5
instantiable/not instantiable, 2-37
invoker-rights, 8-31
locking in cache, 3-3
methods of, 2-2,9-19
PL/SQL, 3-2
mutually dependent, 4-5
Oracle type translator, 3-9
remote access to, 2-15, 5-15

5-4

row objects, 2-4

See also type inheritance
specializing, 2-3

SQLJ types, 3-14
substituting, 2-41

use of table aliases, 2-14

object views, 5-1t05-20

advantages of, 5-2
circular references, 5-17
defining, 5-3
hierarchies, 5-21, 8-40
privileges, 5-29
querying in, 5-28
modeling relationships, 5-12, 5-16
multi-level collections in, 5-8
nested tables, 5-14
null objects in, 5-6
REFsto, 5-11
replicating, 8-35
updating through INSTEAD OF triggers, 5-13

object-relational model, 9-1

comparing objects, 8-8

constraints, 8-36

design considerations, 8-1
embedded objects, 9-24
implementing with object tables, 9-12
limiations of relational model, 1-2
methods, 2-3, 2-15

new object format, 8-34

partitioning, 6-32

programmatic environments for, 3-1to 3-11
replication, 8-35

objects

collection objects, 5-6

comparing, 2-48

incolumns, 5-4

object references, 5-11

row objects and object identifiers, 5-6

OCCI, 3-6
OCl

associative access, 3-3

complex object retrieval (COR), 6-25
creating a new object, 6-21

deleting an object, 6-22

for Oracle objects

building a program, 3-5
initializing object manipulation, 6-20
lock options, 6-24
navigational access, 3-4
object cache, 3-4, 6-28

flushing an object, 6-25
OCIlObjectFlush, 5-4
OCIlObjectPin, 5-4
pinning and unpinning objects, 6-22
updating an object, 6-22

OIDs
See object identifiers
Oracle Call Interface
controlling object cache size, 6-22
Oracle JDBC
accessing Oracle object data, 3-12
Oracle objects
See object-relational model
Oracle Objects for OLE
OraCollection interface, 3-11
OraObject interface, 3-10
OraRef interface, 3-11
Oracle SQLJ
creating custom Java classes, 3-13
JPublisher, 3-13
support for Oracle objects, 3-12
Oracle type translator (OTT), 3-9
OraCollection interface, 3-11
ORAData interface, 3-16
OraObject interface, 3-10
OraRef interface, 3-11
order methods, 2-18, 8-8, 9-15, 9-21
OTT, 3-9

P

parallel query
restrictions for Oracle objects, 8-39
view objects, 6-33
partitioning
tables containing Oracle objects, 6-32
pKREFs, 6-4
PL/SQL
bind variables
user-defined types, 3-2

Index-5

object views, 5-4
polymorphism, 2-33, 8-40
See also substitutability
pragma RESTRICT_REFERENCES, 9-18
primary-key-based REFs, 6-4
privileges
system
user-defined types, 4-2
user-defined types
acquired by role, 4-2
ALTER ANY TYPE, 4-2
checked when pinning, 4-5
column level for object tables, 4-5
CREATE ANY TYPE, 4-2
CREATE TYPE, 4-2
DELETE, 4-4,4-5
DROP ANY TYPE, 4-2
EXECUTE, 4-3
EXECUTE ANY TYPE, 4-2,4-3
EXECUTE ANY TYPE with ADMIN
OPTION, 4-3
EXECUTE with GRANT option, 4-3
INSERT, 4-4,4-5
SELECT, 4-4,4-5
system privileges, 4-2
UPDATE, 4-4,4-5
using, 4-3
Pro*C/C++
associative access, 3-8
converting between Oracle and C types, 3-8
navigational access, 3-8
user-defined datatypes, 3-2
programmatic environments
for Oracle objects, 3-1to 3-11

Q

queries
set membership, 8-21
unnesting, 8-12
varrays, 8-15

R

REF function, 2-50

Index-6

REFs, 2-5
comparing, 2-49
constraints on, 2-12, 8-10
constructing from object identifiers, 6-2
dangling, 2-5, 2-6, 2-12
dereferencing of, 2-6, 9-20
for rows of object views, 5-3
implicit dereferencing of, 2-6, 9-20
indexes on, 2-11
indexing, 8-11
object identifiers, 9-24
obtaining, 2-6
pinning, 4-5,5-4
scoped, 2-5,2-12, 6-4, 8-10
size of, 6-4
storage, 8-10
substitutability and, 2-42, 2-45
use of table aliases, 2-14
WITH ROWID option, 8-12
RESOURCE role
user-defined types, 4-2,4-3
returning nested tables as, 9-28
roles
CONNECT role, 4-2,4-3
DBA role, 4-2
RESOURCE role, 4-2,4-3
row objects, 2-4
storage, 8-7
rows
row objects, 2-4

S

schema names
qualifying column names, 2-14
schemas
user-defined datatypes, 3-2
user-defined types, 2-2
SCOPE FOR constraint, 9-28, 9-30
scoped REFs, 2-5,6-4
SELECT privilege for object tables, 4-4, 4-5
SELF parameter, 2-16
SQL
user-defined datatypes, 3-2
embedded SQL, 3-7

ocCl, 3-3
SQLData interface, 3-16
SQLUJ
See Oracle SQLJ
SQLJ object types, ??to 3-11, 8-41
creating, 3-16
mapping Java classes, 3-16, 3-22
SQLJ types, 3-14to 3-24
See also object types, Oracle SQLJ
storage
column objects, 8-3
nested tables, 6-4
object tables, 6-2
REFs, 6-4
STORE AS clause, 9-27
substitutability, 2-41
attribute, 2-42
collections and, 2-42
column and row, 2-43,6-5
constraining, 2-46
dependencies, 4-7
narrowing, 2-47
turning off, 2-45
views and, 2-43, 8-40
widening, 2-46
subtypes, 2-33,2-44
creating, 2-36
indexing attributes of, 6-6
specializing, 8-39
supertypes, 2-33,2-44
SYS_TYPEID function, 2-54, 6-5
system privileges
ADMIN OPTION, 4-3
user-defined types, 4-2
See also privileges

T

table aliases, 2-13
TABLE expressions, 2-28, 8-12
tables
nested tables, 2-22
indexes, 2-11
object
See object tables

object tables, 2-3
constraints, 2-10

indexes, 2-11
triggers, 2-12
virtual, 5-2

qualifying column names, 2-13, 2-14
TREAT, 2-43
TREAT function, 2-47,2-51
triggers
INSTEAD OF triggers
object views and, 5-13
user-defined types, 2-12
type dependencies, 4-7
type evolution
See object types
type hierarchies, 2-33
methods in, 2-19
type hierarchy, 2-3
type inheritance, 2-33to 2-49
finality, 2-36
instantiability, 2-37
See<$Default Para Font
specializing subtypes, 2-34
typeids, 2-54,6-5
types
See datatypes, object types

U

UNDER keyword, 2-36
unnesting queries, 8-12
UPDATE privilege for object tables, 4-4, 4-5
updates
object views, 5-13
user-defined aggregate functions, 6-31
user-defined datatypes, 4-1to??
and remote databases, 2-15
collections
nested tables, 2-22
variable arrays (VARRAYs), 2-21
Export and Import, 4-10
incomplete types, 4-5
object types
use of table aliases, 2-14
privileges, 4-2

Index-7

See also object-relational model
storage, 6-2
USING clause, 3-15

\Y,

validatation, 6-15
validation, 6-12
VALUE function, 2-49
variables

bind variables

user-defined types, 3-2

object variables, 5-4
VARRAY

vs nested tables, 9-16
varrays, 2-21

accessing, 8-15

creating, 2-26

querying, 8-15

See also arrays, collections

storage, 2-25,8-15

updating, 8-16

vs nested tables, 9-13
views

See also object views

substitutability, 2-43

updatability, 5-13
Visual Basic, 3-9

w

widening, 2-46
WITH OBIJECT IDENTIFIER clause,

Index-8

5-4

	Contents
	Send Us Your Comments
	Preface
	New Object-Relational Features
	1 Introduction to Oracle Objects
	About Oracle Objects and Object Types
	Advantages of Objects
	Key Features of the Object-Relational Model

	2 Basic Components of Oracle Objects
	Object-Relational Elements
	Object Types
	Type Inheritance
	Objects
	Methods
	Object Tables
	Row Objects and Column Objects

	Object Views
	REF Datatype
	Scoped REFs
	Dangling REFs
	Dereferencing REFs
	Obtaining REFs

	Collections

	Defining Object and Collection Types
	Object Types and References
	Null Objects and Attributes
	Default Values for Objects and Collections
	Constraints for Object Tables
	Indexes for Object Tables and Nested Tables
	Triggers for Object Tables
	Rules for REF Columns and Attributes
	Name Resolution
	When Table Aliases are Required

	Restriction on Using User-Defined Types with a Remote Database

	Methods
	Member Methods
	Methods for Comparing Objects
	Map Methods
	Order Methods
	Guidelines
	Comparison Methods in Type Hierarchies

	Static Methods
	Constructor Methods

	Collections
	Varrays
	Nested Tables
	Multi-Level Collection Types
	Nested Table Storage Tables
	Varray Storage
	Assignment and Comparison of Multi-Level Collections

	Creating a VARRAY or Nested Table
	Constructors for Multi-Level Collections
	Querying Collections
	Nesting Results of Collection Queries
	Unnesting Results of Collection Queries
	Unnesting Queries Containing Table Expression Subqueries
	Unnesting Queries with Multi-Level Collections

	Performing DML Operations on Collections
	Performing DML on Multi-Level Collections

	Type Inheritance
	Types and Subtypes
	FINAL and NOT FINAL Types and Methods
	Creating Subtypes
	NOT INSTANTIABLE Types and Methods
	Inheriting, Overloading, and Overriding Methods
	Overloading Methods
	Overriding Methods
	Restrictions on Overriding Methods

	Dynamic Method Dispatch
	Substituting Types in a Type Hierarchy
	Attribute Substitutability
	Column and Row Substitutability
	Subtypes Having Supertype Attributes
	REF Columns and Attributes
	Collection Elements

	Turning Off Substitutability
	Constraining Substitutability
	Assignments Across Types
	Objects and REFs to Objects
	Collection Assignments

	Comparisons: Objects, REF Variables, and Collections
	Comparing Object Instances
	Comparing REF Variables
	Comparing Collections.

	Functions and Predicates Useful with Objects
	VALUE
	REF
	DEREF
	TREAT
	IS OF type
	SYS_TYPEID

	3 Object Support in Oracle Programmatic Environments
	SQL
	PL/SQL
	Oracle Call Interface (OCI)
	Associative Access in OCI Programs
	Navigational Access in OCI Programs
	Object Cache
	Building an OCI Program that Manipulates Objects

	Oracle C++ Call Interface (OCCI)
	OCCI Associative Relational and Object Interfaces
	The OCCI Navigational Interface

	Pro*C/C++
	Associative Access in Pro*C/C++
	Navigational Access in Pro*C/C++
	Converting Between Oracle Types and C Types
	Oracle Type Translator (OTT)

	Oracle Objects For OLE (OO4O)
	Representing Objects in Visual Basic (OraObject)
	Representing REFs in Visual Basic (OraRef)
	Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)

	Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types
	JDBC Access to Oracle Object Data
	SQLJ Access to Oracle Object Data
	Choosing a Data Mapping Strategy
	Using JPublisher to Create Java Classes for JDBC and SQLJ Programs
	What JPublisher Produces

	Java Object Storage
	Representing SQLJ Types to the Server
	Creating SQLJ Object Types
	Sample SQLJ Object Type Mapping
	More About Mapping
	Evolving SQLJ Types
	Constraints
	Querying SQLJ Objects
	Inserting Java Objects
	Updating SQLJ Objects

	4 Managing Oracle Objects
	Privileges on Object Types and Their Methods
	System Privileges
	Schema Object Privileges
	Using Types in New Types or Tables
	Example
	Privileges on Type Access and Object Access

	Dependencies and Incomplete Types
	Completing Incomplete Types
	Type Dependencies of Substitutable Tables and Columns
	The FORCE Option

	Tools
	JDeveloper
	Business Components for Java (BC4J)
	JPublisher

	Utilities
	Import/Export of Object Types
	Types
	Object View Hierarchies

	SQL*Loader

	5 Applying an Object Model to Relational Data
	Why to Use Object Views
	Defining Object Views
	Using Object Views in Applications
	Nesting Objects in Object Views
	Identifying Null Objects in Object Views
	Using Nested Tables and Varrays in Object Views
	Single-Level Collections in Object Views
	Multi-Level Collections in Object Views

	Specifying Object Identifiers for Object Views
	Creating References to View Objects
	Modelling Inverse Relationships with Object Views
	Updating Object Views
	Updating Nested Table Columns in Views
	Using INSTEAD OF Triggers to Control Mutating and Validation

	Applying the Object Model to Remote Tables
	Defining Complex Relationships in Object Views
	Tables and Types to Demonstrate Circular View References
	Creating Object Views with Circular References

	Object View Hierarchies
	Creating an Object View Hierarchy
	The Flat Model
	The Horizontal Model
	The Vertical Model

	Querying a View in a Hierarchy
	Privileges for Operations on View Hierarchies

	6 Advanced Topics for Oracle Objects
	Storage of Objects
	Leaf-Level Attributes
	How Row Objects are Split Across Columns
	Hidden Columns for Tables with Column Objects
	Hidden Columns for Substitutable Columns and Tables
	REFs
	Internal Layout of Nested Tables
	Internal Layout of VARRAYs

	Creating Indexes on Typeids or Attributes
	Indexing a Type Discriminant Column
	Indexing Subtype Attributes of a Substitutable Column

	Object Identifiers
	Type Evolution
	Changes Required by a Change to a Type
	Steps to Change a Type
	Validating a Type
	If a Type Change Validation Fails
	ALTER TYPE Options for Type Evolution
	ALTER TABLE Option for Type Evolution

	OCI Tips and Techniques for Objects
	Initializing an OCI Program in Object Mode
	Creating a New Object
	Updating an Object
	Deleting an Object
	Controlling Object Cache Size
	Retrieving Objects into the Client Cache (Pinning)
	Specifying which Version of an Object to Retrieve
	Specifying How Long to Keep the Object Pinned
	Specifying Whether to Lock the Object on the Server

	How to Choose the Locking Technique
	Flushing an Object from the Object Cache
	Pre-Fetching Related Objects (Complex Object Retrieval)
	Demonstration of OCI and Oracle Objects
	Using the OCI Object Cache with View Objects

	Transient and Generic Types
	User-Defined Aggregate Functions
	Partitioning Tables that Contain Oracle Objects
	Parallel Query with Object Views
	How Locators Improve the Performance of Nested Tables

	7 Frequently Asked Questions About Using Oracle Objects
	General Questions about Oracle Objects
	Are the object-relational features a separate option?
	What are the design goals of Oracle9i Object-Relational & Extensibility technologies?

	Object Types
	What is structured data?
	Where are the user-defined types, user-defined functions, and abstract data types?
	What is an object type?
	Why are object types useful?
	How is object data stored and managed in Oracle9i?
	Is inheritance supported in Oracle9i?

	Object Methods
	What language can I use to write my object methods?
	How do I decide between using PL/SQL and Java for my object methods?
	When should I use external procedures?
	What are definer and invoker rights?

	Object References
	What is an object reference?
	When should I use object references? How are they different from foreign keys?
	Can I construct object references based on primary keys?
	What is a scoped REF and when should I use it?
	Can I manipulate objects using object references in PL/SQL and Java?

	Collections
	What kinds of collections are supported by Oracle9i?
	Do Oracle Objects support collections within collections?
	How do I decide between using varrays and nested tables for modeling collections?
	What is a collection locator?
	What is collection unnesting?

	Object Views
	What are the differences between object views and object tables?
	Are object views updateable?

	Object Cache
	Why do we need the object cache?
	Does the object cache support object locking?

	Large Objects (LOBs)
	How can I manage large objects using Oracle?

	User-Defined Operators
	What is a user-defined operator?
	Why are user-defined operators useful?

	8 Design Considerations for Oracle Objects
	Representing Objects as Columns or Rows
	Column Object Storage
	Row Object Storage in Object Tables

	Performance of Object Comparisons
	Storage Considerations for Object Identifiers (OIDs)
	Storage Size of REFs
	Integrity Constraints for REF Columns
	Performance and Storage Considerations for Scoped REFs
	Indexing Scoped REFs

	Speeding up Object Access using the WITH ROWID Option
	Viewing Object Data in Relational Form with Unnesting Queries
	Using Procedures and Functions in Unnesting Queries

	Storage Considerations for Varrays
	Performance of Varrays Versus Nested Tables
	Nested Tables
	Nested Table Storage
	Nested Table in an Index-Organized Table (IOT)

	Nested Table Indexes
	Nested Table Locators
	Optimizing Set Membership Queries
	DML Operations on Nested Tables

	Multi-Level Collections
	Choosing a Language for Method Functions
	Static Methods

	Writing Reusable Code using Invoker Rights
	Function-Based Indexes on the Return Values of Type Methods
	Converting to the Current Object Format
	Replicating Object Tables and Columns
	Replicating Columns of Object, Collection, or REF Type
	Replicating Object Tables

	Constraints on Objects
	Type Evolution
	Pushing a Type Change Out to Clients
	Changing Default Constructors
	Altering the FINAL Property of a Type

	Performance Tuning
	Parallel Queries with Oracle Objects
	Tips and Techniques
	Deciding Whether to Evolve a Type or Create a Subtype Instead
	How ANYDATA Differs from User-Defined Types
	Polymorphic Views: An Alternative to an Object View Hierarchy
	The SQLJ Object Type
	What is the intended use of SQLJ Object Type?
	What is involved in creating a SQLJ Object Type?
	When would you use SQLJ Object Type?
	When would you use Custom Object Type?
	What are the differences between the SQLJ and Custom Object Types through JDBC?

	Miscellaneous Tips
	Column Substitutability and the Number of Attributes in a Hierarchy
	Circular Dependencies Among Types
	PL/SQL and TREAT and IS OF

	9 A Sample Application Using Object-Relational Features
	Introduction
	A Purchase Order Example
	Implementing the Application Under The Relational Model
	Entities and Relationships
	Creating Tables Under the Relational Model
	Customer_reltab
	PurchaseOrder_reltab
	LineItems_reltab
	Stock_reltab

	Inserting Values Under the Relational Model
	Querying Data Under The Relational Model
	Updating Data Under The Relational Model
	Deleting Data Under The Relational Model

	Implementing the Application Under The Object-Relational Model
	Defining Types
	Method Definitions
	The getPONo Method
	The sumLineItems Method
	The compareCustOrders Method

	Creating Object Tables
	The Object Table Customer_objtab

	Object Datatypes as a Template for Object Tables
	Object Identifiers and References
	Object Tables with Embedded Objects
	The Object Table Stock_objtab
	The Object Table PurchaseOrder_objtab
	Inserting Values
	Querying
	Average Discount across all Line Items of all Purchase Orders
	Deleting

	Manipulating Objects Through Java
	Using oracle.sql.* Classes (Weak Typing)
	Using Strong Typing (SQLData or CustomDatum)
	Generating Wrapper Classes with JPublisher
	How to Use the Wrapper Classes
	Sample Program Using the SQLData Interface

	Manipulating Objects with Oracle Objects for OLE
	Selecting Data
	Inserting Data
	Updating Data
	Calling a Method Function

	Index

