Oracle " Call Interface

Programmer’s Guide

Release 9.0.1

June 2001
Part No. A89857-01

ORACLE



Oracle Call Interface Programmer’s Guide, Release 9.0.1

Part No. A89857-01

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.
Primary Authors:  Jack Melnick

Contributing Author:  Eric Belden, Phil Locke

Contributors: G. Arora, P. Balaji, M. Bastawala, S. Chandrasekaran, D. Chatterjee, E. Chen, L.
Chidambaran, S. Gollapudi, G. Govindarajan, W. He, T. Hoang, R.-S. Hwu, M. Joglekar, S. Kaluskar, R.
Kambo, R. Kasamsetty, A. Katti, S. Kotsovolos, V. Krishnamurthy, S. Krishnaswamy, R. Krishnan, S.
Kumar, S. Lari, C. Lei, C. Lim, Meghna Mehta, Sambit Mishra, Shailendra Mishra, P. Mitra, K. Mohan, R.
Murthy, R. Ratnam, P. Reilly, A. Roy, D. Saha, E. Soylemez, A. Surpur, A. Swaminathan, P. Tucker, S.
Vedala, Wei Wang, R. Wessman, D. Wong

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and SQL*Forms, SQL*Net, Oracle NetSolutions, Oracle Secure Network
Services, SQL*Plus, Oracle Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle8i, Oracle9i, Oracle
Forms, PL/SQL, Pro*C, Pro*C/C++, Pro*COBOL, Net8, Oracle Store, and Trusted Oracle are trademarks
or registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Oracle Call Interface Programmer’s Guide



Contents

SeNd US YOUI COMMEBNES ..ottt XXXiii
PEETACE ...ttt ettt ettt ettt ettt ettt ettt ettt XXXV
YN [ 111 o1 ISR XXXVI
OFQANIZATION ..ottt bbb e b etk b e bbb e ke s b bt e bt e bt eb et be et ne b e XXXVi
Related DOCUMEBNTATION ......ociviiiiii ittt sttt et sb e et e e s b e s st e e s be e st e s sbesssbe s sbaesrbeesaeseaes xl
(000] 0 1V/=T 011 T0] o F- T TR SRR xli
Documentation ACCESSIDIITY .......coviiiiiii e xliii
What's New in Oracle Call INTEIFACE? ... xlv
Oraclei Release 1 (9.0.1) New Features in Oracle Call Interface ........cc.ccocvevvevinvnceiencnerienen, xlvi
Oracle9i Release 9.0.0 New Features in Oracle Call Interface.........ccocooeveeeiiiicie v Xlvii
Oracle8i Release 2 (8.1.6) New Features in Oracle Call Interface ...........ccocooviiniiiiiniiiiciee, I

Partl OCI Concepts

1 Introduction and Upgrading

OVEIVIEW OF OC ...ttt s be e s be e te st e e teste e beste et e eneenbeensenreanes 1-2
AAVANTAGES OF OC ...ttt bbbt b et b et bbbt e e 1-3
Building an OCI APPLICALION .......ccciiiiiceccce s e et e sren 1-3
=T (30 1 L SRS 1-4
Procedural and Non-Procedural EIEMENtS..........ccoveviiiiiiinieiesenene e 1-5
L@ 01101 ] o] o Yo o S 1-6
1@ ] I r= 1 (] 4 ] o1 S ST RPRURRIN 1-7



ENcapsulated INTEITACES .......ooi i et 1-12

Simplified User Authentication and Password Management............ccoccovvevnernenccneennas 1-12
Extensions to Improve Application Performance and Scalability..........cccccccoveveiiivinennnne, 1-13
OCT ODJECE SUPPOIT ...ttt ettt b bbbt b bbb bt se b e e ne b nes 1-14
Client-Side ODJECT CACNE ..o ene e 1-14
Associative and Navigational INterfaces..........cceveveiiiiiiiiiisisie e 1-14
Runtime ENvironment for ODJECES.........coiiiii i s 1-15
Type Management, Mapping and Manipulation FUNCLIONS ... 1-16
(@ o] 1= 101 A 4 0TI I U TS (o] SRS 1-16
OCI Support for Oracle Advanced QUEUING ........coeieiiiriiiiinese e 1-17
XA LIDIANY SUPPOIT ...ttt b bbbttt bt 1-17
Simplified Migration of Existing APpPliCatioNS..........cccvcovviviiiiiniere s 1-17
Compatibility, Upgrading, and Migration ............cccociiiiniiiiiiene e 1-18
ODbSOIESCENT OCT ROULINES ...ttt ettt se et s e eneeeas 1-18
(@10 I 2o 101 1 [T N [0 SSTU] o] o o £=T o 1SR 1-20
COMPALIDTTITY .t bbbttt b e 1-21
18] oo 7 To [T FUNU T T S SO TR TSP ST SOPT PP 1-22

OCI Programming Basics

Overview Of OCI ProgrammMiNg ...t sre e 2-2
OC Program STTUCTULIE ......ocveieiieieseesesee e este et steeaesseeseesseestessaesaesseesteassesseessesseensesseessesseesensnens 2-2
(@ 104 [ B - 1 7= B £ 0 (o1 (U] TSP PPRTRP 2-5
[ F= T L0 | LT PRSPPSO 2-5
Allocating and Freeing HandIes.........ccoovieiiiceiccse e 2-6
ENVIrONMENt HANAIE.........cooiecee ettt sreanes 2-9
EFTOr HANAIE......ooc ettt e et e s be e te s ae e stesaeesteaneas 2-9
Service Context and Associated HandIes...........cccoeieveiiieiic e 2-9
Statement Handle, Bind Handle, and Define Handle .............ccocoveiiiciiicccccce e, 2-10
DESCIIDE HANAIE........ociice e ettt esbe b e ere s 2-11
Complex Object Retrieval HandIe..........ccccovviiiiieecccc s 2-12
B == (o I o = T 1 ST 2-12
SUDSCHIPTION HANAIE ..o 2-12
DireCt Path HANAIES. .......ccocvieiece ettt e ne e nnenne s 2-12
ProCeSS HANAIE ...ttt et s ae et s teesre e e stenraen 2-13
ConNection POOI HANAIE ..ot 2-13



[ Fo L0 | TSl 1 0 | 0 10 (R 2-13

User Memory ATOCATION .......cooiiiiiiiiic s 2-14
(1D TCTS o] | o (0] S 2-15
SNAPSNOT DESCIIPION ...ttt bbb b e bbbt e et b e be b b 2-16
LOB/FILE DatatyPe LOCALON .......coiieiirieiirieiinieisietsiesest ettt sne e sne e an e ene e 2-17
L= 0 0 1= o gl DT o o) (o] USSP 2-18
ROWVID DESCIIPLOL ...ttt stttk bbb e bbbttt et et e e bbb e b e 2-18
Datetime and Interval DeSCIIPTOIS. ..ottt 2-18
(070 001 o] [ @] o] [=To1 fl 1= TSl T o (o] PSSP 2-19
Advanced QUEUING DESCIIPIONS .....c.iiiiiiirieie ettt sbe e 2-19
LDAP-based Publish-Subscribe NOtfication ..o 2-19
User Memory AHOCALION ... it re s srenre e 2-19
OCI ProgramimMiNg STEPS ....couecirierieitiitesie ettt ettt b sttt sb bt ettt e e es s e e et ebesbesbesnea 2-20
OCI Environment INItialiZation.........ccocoiiiiiiiinee e 2-21
Creating the OCI ENVIFONMENT.........cccoiiiiiieieise st e s esae e e e sse e sne e ssesnens 2-21
SNAared DAta MOAE .........coiiiiiiei bbbttt eb bbb 2-22
Allocating Handles and DeSCriPTOrS. ......coiiiiiieiieiie ettt 2-25
Application Initialization, Connection, and Session Creation..........cc.ccocevevevevecieiesinennn, 2-26
Processing SQL STAtEMENTS ......ccuiiiiiiiicce et be e sre e sre s 2-29
ComMMIL OF ROIDACK ... e et sne 2-29
Terminating the APPHICALION ......cocv i sre e 2-30
=T ol gl o - U e | 1 T PSSR 2-31
Return and Error Codes for Truncation and Null Data..........cccccoovevenineiencienecccee 2-33
Functions Returning Other ValUES ..........cccooueieieiiieccse s 2-34
Additional CodiNg GUIAEIINES ......ccocieiice et sre s 2-34
PAramMELET TYES ..ot e et 2-35
Inserting NUlIS iNt0 @ COIUMN ........co i 2-35
INAICALOr VAriAbIES ... ettt sre 2-36
CaNCEIING CallS ... 2-38
Positioned Updates and DeEIEtes. .......ccccivveieiiieicieceeese st 2-39
RESEIVEA WOTTS ...ttt bbb bbb bbbt b et e b e bbb e 2-39
APPHCATION LINKING ..ottt ettt ene e 2-41
NON-BIOCKING MOGE ......cooeiieece sttt st e e e eneereanennenrs 2-41
Setting BIOCKING IMOAES .....c.ooiiiiece sttt sttt nne s 2-42
Cancelling a Non-blocking Call............ccoiiiiiiii e 2-42



NON-BIOCKING EXAMPIE ... 2-42

UsIiNg PL/SQL iN @N OCT PrOQIam.....c..ciiiiiieiieisieisieisiese ettt 2-44
(€] ] oF= 1 1T.2= 11 Lo g I ] U o] o o o A0S 2-46
UTF-16 ENVIrONMENT IMOAE ... e 2-46
Character LENGth SEMEANTICS. ........ccviiiiiiieiieieie ettt 2-48
(O T 1o Tod 1T g =1 ST U o] o [0 ] o AR 2-49
Datatypes
L@ T To] [l I - =1 1 1= 3-2
Using External DatatyPe COOES. ........coviiiiiiriieiseie ettt sb e 3-4
INTEFNAT DATALYPES ...ttt bbbt e bbb bbbt bbbt bbbt nn s 3-4
LONG, RAW, LONG RAW, VARCHARZ .......cccct ittt 3-5
Character Strings and BYLe AITAYS.......cccciviiieiieieiti st ete e sae et sae e e e este e sreensesreenes 3-6
UROWID .....coiiiiiiee sttt ettt sttt et b et s b s e b et et et e e et et ebe st e te st etesb et e sbesesbeseabeseareseas 3-6
=T b L D=1 =1 Y o1 P 3-7
VARCHAR2. ..ottt ettt sttt b bt s e s bt be ettt et e ettt n et e e 3-9
INUMBER ...ttt ettt ettt s et s et e et e be b e s e b e s et e st st et e be st e te b enenrns 3-11
INTEGER......otittiitt ettt bbb bbbt b ettt bt b et et 3-12
1@ N OSSOSO 3-12
STRING ..ottt b e e b e et et e be st e bese et e s e e besb et e sb et e st esesbeseabe e abe e eae e ateeas 3-13
VARNUM L.t bbb b bbbt bttt e bbb 3-14
LONG .ottt s bbb R bR bR bbbt E et et e 3-14
VWARGCHAR ... oottt b st s st s e b e st e s e b e e b e b et e s e b e e s e s e ne st nentenes 3-14
DIATE ..t bbb bbb b e bR e bt e bR bbbt be et e 3-15
RAWV ..ot b et ettt b et E et E e bR bR bR bR b et Rt bt Rt Ee et e nenr e 3-16
WARRAW ..ottt ettt bttt s et e s et e st e s st e bR e st e s e b e e s b n ettt enen 3-16
LONG RAW ...ttt bbb bbbkttt b 3-17
UNSIGNED. ...ttt ettt b et bbbttt ettt st et st et st e bt nenrns 3-17
LONG VARCHAR. ...ttt ettt sttt nesnns 3-17
LONG VARRAW ..ottt ettt bbbttt bbb nnne 3-17
CHAR et b e bbb ettt sttt E e et e R R bR e b e bt be e ne et e 3-17
CHARZ ...t b e et ettt et st e b e st et e st et e s b et e et e R e e b e e e b e e et e e ere e te e 3-19
NEeW EXtErnal DAtatyPES ......covciveiiieiiese st stes et e sttt sttt e ensen e saeneeneenesneanens 3-19
Named Data Types (Object, VARRAY, Nested Table)........c.ccocreninininiiiiiiicieeiee 3-19



ROWVID DESCIIPLOL ...ttt sttt b bt s a bbbttt et e b e e b e b b e b e 3-20

LOB DESCIIPLON ....euviiiiteiiiteiete ettt ettt ekttt sttt b et b e bbbt bbbkt b b nb bt eb bt ab et e bt ab e are e 3-21
Datetime and Interval Datatype DeSCrIPLOIS........cociveveiiieie e 3-23
C Object-Relational Datatype MapPings .......cocoeeiririeiirireresese e 3-26
(LY e WO o] 1V =T 5] o] o 1P ROSO PR PRR 3-26
Data Conversions for LOB Datatype DeSCriptors.........cccoovvivivrierienienieneseieseesesseeeseseseenes 3-28
Data Conversions for Datetime and Interval Datatypes...........ccoceverereneneiieneieisese e 3-29
Datetime and Date Migration RUIES ..........ccociiiiiiiiiiiiceee e 3-30
LY 0 L0 Lo =TSSP 3-31
Relationship Between SQLT and OCI_TYPECODE ValUues..........ccccoeiiieiinciciicccenee 3-33
DefinitioNs IN OratyPeS. N .o e 3-35

Using SQL Statements in OCI

Overview Of SQL Statement PrOCESSING .........ccuruiiriiiriiiiieinieisiesise e 4-2
Processing SQL STAtEMENTS ........ocviieieieieeeece s eene et e e resneseesrenrenes 4-2
Preparing STAtEMENTS ........c.oiii e bbbt b et s et b bbbt b sbe b b e 4-4
Using Prepared Statements on MUItiple SErVErS ... 4-5
RVA L T L FS31 = [ o T T SRS 4-6
EXECULING STALEMIEBNTS ..ot ettt et et e s aeebe s aeentesneesreanes 4-7
EXECULION SNAPSNOLS ...t 4-7
EXECULION IMOAES ..ot 4-8
Batch Error Mode for OCISTMEEXECULE() ...vecvvevveiieiieeieiieeie ettt sre e e saenaeens 4-9
Describing SeleCt-LiSt ITEMS. ..o e 4-12
IMPIICIT DESCIIDE ...ttt e e s e e e e eneeresrenrens 4-13
EXPlicit DeSCribe Of QUEKIES .......oiiiiieiieiiie e et 4-14
WAL IS DETINTNG? ...ttt bbbt b ettt eb e 4-15
FEECNING RESUILS ....oviiic ettt a e e e e e e e s e ereereeneeeenrenes 4-16
FELChING LOB Dala .....ccviiiieieciicie ettt sttt et ne e besneenne e e sreannas 4-17
Setting PrefetCh COUNT ..o e 4-17
SCIOHADIE CUISOIS.....c.ieiis ettt 4-18
Support for Scrollable Cursors iN OCH..........c.coiiiiiiii e 4-18
Example of Access on a Scrollable CUrSOr ... 4-19

Binding and Defining
BINAING -ttt b bbb E bR bR e bbb bbbt n et 5-2

Vii



viii

Named Binds and Positional BiNGS.........c...ooouiiiiiiiiciie ettt 5-4

OCT AITAY INTEITACE ...t b bbbttt bt e 5-5
Binding Placeholders in PLZSQL ......cooviioiecscese st sne s 5-5
StEPS USE 1N BINAING ..niiiiiiii et 5-6
PLZSQL EXAMPIE ...ttt bbbt bbbt nb bbb ane e 5-8
VAN \VZ TaTot=To I =TT o To I @ o T=T LA o] o S 5-10
Named Data TYPE BINGS........couiiiiiiieie et sne s 5-10
BINAING REFS ...ttt bbbttt bbb 5-10
27T o [T o T 2T SR 5-11
Binding in OCI_DATA_AT_EXEC MOUE ......ccoviiiieiieitseitse st 5-17
Binding Ref Cursor Variables ... 5-17
Summary of Bind INfOrmation............ccoi i 5-18
(1D 1=7 i 1 T USSR 5-19
StEPS USed iN DEFINING.....coviiiiiieiiieer ettt 5-20
AAVANCEA DETINES....cviiiieiiitie bbbttt bbb nne 5-21
Advanced DefinNe OPEIatiONS ..........cooiiiiiiiiiiireie ettt et e st be st sne 5-22
Defining Named Data Type Output Variables............cccccoiiiiiiiiiiiieeeeeee 5-22
Defining REF OULPUL Variables.........ccooo i ane s 5-22
Defining LOB OULPUL Variables ..........cooiiiiiiiiieis e 5-22
Defining PL/SQL Output Variables ... 5-25
Defining FOr a PIeCeWISE FELCN ......ccviee e ane s 5-25
Binding and Defining Arrays Of StrUCIUIES .........ccvoiiiieiieecr e 5-26
SKIP PAFAIMETEIS ...ttt etttk et bbbt b et b et b e b b 5-27
OCI Calls Used wWith Arrays Of SEFUCTUIES ......cc.ooveieicicececc s 5-29
Arrays of Structures and Indicator Variables..........cccccooviiiiiviie e 5-29
DML With RETURNING CIAUSE ....c.ccuiiiiiiiiiictiieisiee sttt sae s ssessssenes 5-30
Using DML with RETURNING ClaUSE.........ccvcoviiiiiiiisece e 5-30
Binding RETURNING...INTO Variables..........cccccoiiiiiiieiiiece et 5-31
Error HANAIING ..ccoueeee ettt bbb 5-32
DML with RETURNING REF...INTO ClAUSE ........ccooiiiininiecnecsese e 5-32
Additional Notes AbouUt CallDaCKS ..o 5-34
Array Interface for DML RETURNING Statements .........ccoooeorennennensencienee e 5-34
Character Conversion Issues in Binding and Defining.......c.ccoccoevivviivevencnccicseceeseee e 5-35
(O pToToF] [ lo @1 gF: U= ot 1= G- USSR 5-35
Using OCI_ATTR_MAXDATA_SIZE ArDULE........ccooiiiicisee e 5-36



Using OCI_ATTR_MAXCHAR_SIZE ALITDULE .........evvvvvveeerereeeseseeseeeeeeeesssssssesesessseesens 5-37

Buffer Expansion DUFiNG BiNAING.........cccooiiiiiiiiiceseeseesi s 5-38
Constraint Checking DUring DefiniNg ........cccoovvieiiiiiieiiec e 5-39
General Compatibility Issues for Character Length Semantics..........cocooeveviiiiininenne 5-40
Code Examples for Binding and Defining with Character Conversion............cc.cccceeeee. 5-40
PL/SQL REF CURSORS and Nested TabIes.........ccccciieiiiiiiiiiecece st 5-43
Runtime Data Allocation and Piecewise OPErations ..........c.ccocveverenereneneieseeeeesese e 5-44
Valid Datatypes for PieCewWise OPErations ...........ccoeereiireiineiiseniseisie s 5-44
Binding and Defining fOr LOBS.........coiiiiiiicecceee st e 5-45
Types Of PIeCEWISE OPEIALIONS.......cc.oiviieiieiieieeit ettt ettt ettt sbe e 5-46
Providing INSERT or UPDATE Data at RUNTIME.........cccocoiiiniiceeeecee s 5-47
Piecewise Operations With PLZSQL ..ot 5-50
Providing FETCH Information at RUNTIME .........cccoiiiii e 5-50
Additional Information About Piecewise Operations with No Callbacks...............c.ccc.... 5-53

6 Describing Schema Metadata

Describing Schema Metadata...........c.cceiiiiiiiiiee e 6-2
R o To @ 10 I ToTTol g o1y AN o)V 6-2
RESTIICTIONS ...ttt bbb bbb bbbt et e se e s e e st e bt et e beabesbe st e 6-4
Notes 0N TYPES aNd ALLFIDULES. ..o 6-4
Parameter AIFIDULES ..o 6-5
Types OCI_PTYPE_TABLE or OCI_PTYPE_VIEW........cccoiiiiiiee et 6-7
Procedure/Function/Subprogram ALHDULES .........cccoeiiiiiieeee e 6-7
o To] 1 Vo [= I AN 1 ] 0T =SSP 6-8
TYPE ATIIIDULES ...t e ettt ettt b et sb e b b e 6-8
Type ALHDULE ALIFIDULES .......oiiiiiee e 6-10
TYPEe Method AtLIDULES .....ociee e e sre e 6-11
COlIECLION ATIIIDULES ..ot bbbttt sbe b 6-12
SYNONYM ATIFIDULES ... e 6-14
SEQUENCE ALLIIDULES .....vecviiecc ettt s e e e e s e e e e eneerenrenrens 6-14
COlUMN ALIFIDUTES. ...ttt sbe s 6-15
Argument/ReSUIt ALIFIDULES .........ooviiiiieee e 6-16
LIST ALLFIDULES ..ttt ekttt se et a et sb et sb e ebe e 6-18
SCHEMA ATIFIDULES ..o ettt sre s 6-19
Database ALIFIDULES ..o et 6-19



Character Length Semantics Support in Describing..........ccccooviiiiiniieneiee e 6-21

Examples USing OCIDESCIIDEANY().....cviuiirieirieiniiisieisieise ettt 6-23
Retrieving Column Data Types FOr a Table ... 6-23
Describing the Stored ProCeAUIE...........c.oov ittt 6-24
Retrieving Attributes of an ODJECT TYPE......ci i 6-26
Retrieving the Collection Element’s Data Type of a Named Collection Type................... 6-29
Describing with Character Length Semantics .........c.ccccoov e 6-30

LOB and FILE Operations

(@101 - 1 T 1 I 0 =TRSOOSR PSRRI 7-2
Creating and Modifying INterNal LOBS ..........cccviiiiiiiiiie et 7-2
Associating a FILE ina Table With an OS File ... 7-3
LOB Attributes 0f @an ODJECT ..o 7-3
Writing to a LOB Attribute of an ODJECT..........c.ccoiiiiiiiice e 7-4
Transient Objects With LOB ALFIDULES .........coeveieccecn e 7-4
YN =\ L =] =TT o]l I ] S OSPR 7-4
LOB @Nd FILE FUNCLIONS. ...ttt ettt st sttt s et neenesbe b sne e 7-5
Functions for Improving LOB Read/Write Performance.........ccccocvvvvevevcieneceeesiesn e 7-11
LOB BUFfering FUNCLIONS ........cooiiiiiiecc ettt nne s 7-12
Functions for Opening and ClOSING LOBS ........cccociiiiiiiiieiseiese et 7-12
LOB Read and Wrrite CallDacks ..o 7-14
The Callback Interface for Streaming ..o 7-15
Reading LOBS USING CallDACKS ........c..ccoiiiiiiiieeneese et 7-15
Writing LOBS USING CallDACKS .......ccciiiiiiicieieieeese s sre e ane s 7-16
Temporary LOB SUPPOIT .......ooi et e 7-18
Creating and Freeing Temporary LOBS ..ot 7-19
Temporary LOB DUFAtIONS........ccccviiiiiiiiie et sttt e e e enasnennenns 7-19
Temporary LOB EXAmMPIE ..ot e 7-20

Managing Scalable Platforms

OCI SUPPOIT FOr TraNSACTIONS.......iiuiiiiiiteie ettt bbbttt ebe b e b b 8-2
Levels of Transactional COMPIEXITY .......c.ciriiiiiieireesee e 8-2
Transaction EXAMPIES ......cviiiiiiciic sttt e e s e e e enesrenrenren 8-9
Related Initialization PArameters ..........ccociiiiiiiiii e 8-11

Password and Session Man@gEMENT...........ccoueiiiiiiiiie e 8-11



Authentication ManagEMENT ...........c.oiiiiiiiccce et sre s 8-12

PasSWOrd MaNAGEMENT .........cuiiiiiiitiiitet ettt et 8-13
1Ty (o] TN Y F= T = Vo T=T o T o | USSP 8-14
Middle-tier APPIICALIONS. ........oiiiiiiie et sb e 8-15
Attributes for Middle-tier APPHCALIONS .........ccoiiiiiiiiiiie e 8-16
Y [ Te To | o ATl b U g o -SSP 8-18
Attributes for AUTHENTICALION .........cccoiiiiiiee e 8-21
Externally INitialized CONTEXT ........c.ciiiiiiiiricee e 8-22
OCI Attributes for Externally Initialized CONteXt.........ccccvivviivirievirinereseeee e 8-22
Using OClISessionBegin() with an Externally initialized Context...........c.cccooveveiveveinenen. 8-23
Oracledi Application SErver CaChe ... 8-26

OCI Programming Advanced Topics

TRFEAA SATETY ...t bbb bbbt bbbttt 9-2
Advantages of OCI Thread SAfety ........cccciviiiiriise e e 9-2
Thread Safety and Three-Tier Archit€CtUIES ........ccccve e e 9-2
Basic Concepts of Multithreaded DevelopmMENT ...........ccviiriniinieneeeee e 9-3
Implementing Thread Safety ... e 9-3
Multithreading EXAMPIE ........ooiiiiiiiii bbb 9-4

The OCITRread PACKAGE ........cociiiiicie ettt 9-5
Initialization and TerMINALION ..o 9-6
Passive Threading PrimitIVES ..ottt sttt nreens 9-7
Active Threading PrimitiVES ... 9-10
Using the OCIThread PaCKAQE .......ccccoviiereieiiceeeeeese sttt 9-11
Example USiNg OCITRIEA ........cccooiiiiiie e e 9-11

CONNECTION POOTING ...ttt bbb bbbttt nn s 9-14
OCI Connection POOIING CONCEPLS .....cveeeiiieieeei st e st e e e e ene e snesnens 9-14
OCI Calls for Connection POOIING ........ccoiviiiiice et 9-16
Alternative Interface for Connection POOIING .........ccociiiiiiiiiiicccceeee e 9-20
Example of Connection POOIING ........cccvieieiiicccecese s 9-20

User-Defined CallbDack FUNCLIONS...........coooiiiiiieiee e 9-24
Registering User CallDacks.............coiiiiiiiiic s 9-24
OCI Callbacks From EXternal PrOCEAUIES .........ccoiiiiiieniienieeneesieesie s 9-34

Application Failover CallDacks..........coo i 9-35
Failover CallDack OVEIVIEW...........coci it sttt 9-35

Xi



Failover Callback Structure and Parameters ...........oocveiiiee e 9-35

Failover Callback REGISTIation ............ccooiiriiniiieieisiee e 9-37
Failover Callback EXAMPIE ........cooiiieicccec et ene s 9-37
Handling OCI_FO_ERROR .........cccoiiiiiiiieise ettt s 9-39
OCI and AdVaNCed QUEUING ....ccueiiiiieieieteriete ettt sb ettt et bbb bbb snne 9-42
OCI Advanced QUEUING FUNCLIONS........cciiviiiiriirieerece e enenns 9-42
OCI Advanced QUEUING DESCIIPTOIS. .....cciiiiiiiiiieieeiee e 9-42
Advanced Queuing iNn OCI VS. PLZSQL......ooiiiiiiiiiiiiee et 9-43
Publish-Subscribe NOtITICAtION ..ot e 9-46
Publish-Subscribe Registration FUNCLIONS.............cccoiiiieiiiiccccc s 9-47
NOLIfication CallDACK...........ooci i 9-52
NOLIFICAtION PrOCEAUIE .......c.iiitiiiiicce ettt 9-53
Publish-Subscribe Direct Registration EXample...........cccooiiiiiiiinnc e 9-54
Publish-Subscribe LDAP Registration EXample ... 9-59

Part Il OCI Object Concepts

10 OCI Object-Relational Programming

Xii

OVEIVIEW OF ODJECTS ...ttt et 10-2
(@108 @ oY T=Tox A @ A= Y TSRS 10-2
Working With ODBJectS iN OCH.......ccoiiicicecece e 10-4
BasiC ODJeCt Program SEIUCTUIE ......c..coiiiiiieiiee ettt 10-4
Persistent Objects, Transient Objects, and ValUes ............ccccvivvivnievinese s 10-6
Developing an OCI Object APPHICAtION ........ccooiiiiiiiiicee e 10-8
Representing Objects in C APPLCAtIONS ..o 10-8
Initializing Environment and Object CaChe........ccoovcveiie i 10-10
Making Database CONNECLIONS ..........cccciiieiiiiicie st re e sae e 10-11
Retrieving an Object Reference from the SErver ... 10-11
T e oV LT =T T @ o] 1= PP 10-12
Manipulating Object AtIrDULES ..o 10-14
Marking Objects and FIUShING ChangEes ........cocoiriiiiiiiiieeee s 10-15
Fetching EMBedded ODBJECTS.........ccoiiiiicise s 10-16
ODbjJECt MEta-AtLrIDULES........c.eoe et e e ene e 10-18
Complex ODJECT RELIEVAL.........ccciieiieiee e 10-22
L@ L o =1 {1 (o] o T [ ST 10-26



11

OCI Versus SQL ACCESS 10 ODJECLS ....vcviiieiiiicie ettt re s 10-28

Pin Count and UNPINNING .....cooiiiiiiiiee et 10-30
INUTTIEY et s e et s et e s eeaRe st e s eesee st e tesaensen e e e eneenenrenneanens 10-30
(01 1oL ] Lo I @ o] 1= iSRS 10-33
Freeing and CopYiNg ODJECES.......cociiiiiiiiiieiie ittt 10-35
Object Reference and TYpe REFEIrENCE ......cvcveveieicce e 10-35
Creating Objects Based on Object Views or User-defined OIDS ...........c.cccccvevvevveeinennn. 10-36
Error Handling in Object APPHICALIONS ........cccciiiiiiiirieincere e 10-37
TYPE INNEIITANCE ...ttt ee st te e ene e e e eneenenreanennens 10-37
SUBSTITULADTTITY ...ttt re s 10-38
NOT INSTANTIABLE Types and Methods ... 10-39
OCI Support for TYpe INNEIITANCE ......ccveivecccc e 10-40
OTT Support for TYpe INNEITANCE. ........coviie e 10-41
TYPE EVOIUTION ... bbbt 10-42
Object-Relational Datatypes
Overview of OCI FUNCLIONS TOr ODJECTS ......coiiiiiiiiiecc s 11-2
Mapping Oracle DatatyPes 10 C......cccvceieieieieeeees et sneseenre s 11-2
OCI Type Mapping MethodolOgy ..........ccccoeieiiiiiiiieie e 11-4
Manipulating C Datatypes With OCl ..........ccoiiiiiiiiiice e 11-4
Precision of Oracle NUMber OPerations ..........ccccoveveriiiiieinsn e 11-6
(DL (o (@ 104 | - (=) RSO S 11-6
Date CONVEISION FUNCTIONS ........cciiiiiiiiiiiie ettt s seeresne e nees 11-6
Date Assignment and Retrieval FUNCLIONS ........ccccovoiveviiniie e 11-7
Date Arithmetic and ComparisSoN FUNCLIONS...........cciiiiiiiiinii s 11-7
Date Information ACCESSOr FUNCHIONS .......ccoiuiiiiieieiiiciieese e 11-7
Date Validity Checking FUNCLIONS .........ccoiiiiiicccecr e 11-7
DAte EXAMPIE ... bbbttt er e 11-8
Datetime and Interval (OCIDateTime, OCIHINterval) ..o 11-9
DAtetime FUNCLIONS .....oviiiiiecie ettt 11-10
Datetime EXAMPIE ... et 11-12
INTEIVAL FUNCHIONS ..ottt st ettt 11-13
T8 a] oL g (@10 1 NN U g ] 0= o) ISP S 11-14
Number Arithmetic FUNCLIONS........o.oii e 11-14
Number CONVErsioN FUNCLIONS ..........ccoiii ittt s sne s 11-15

Xiii



Xiv

Exponential and Logarithmic FUNCLIONS ..........ccocoiiiiiiiiicce e 11-15

TrIQONOMELIIC FUNCLIONS ...ttt 11-16
Number Assignment, Comparison, and Evaluation FUNCLIONS..........cc.ccccevvreienicicennen, 11-16
NUMDBDEE EXAMIPIE ...ttt bbb et ettt 11-17
Fixed or Variable-Length String (OCISTriNG) ........ccoviiriiiiiiiireeeeeeeeee s 11-19
R3] 1T T TR U [ Tox £ o] o SRS 11-19
STHING EXAMIPIE ..o et ene 11-19
RAW (OCTRAW)......iietiiitit etttk b bbbt bbbt bbbt b et nb et nb bt 11-20
RAW FUNCLIONS ...ttt bbbttt bbb 11-20
RAW EXAIMPIE ...ttt bbb b bbbttt b e 11-21
Collections (OClTable, OCIArray, OCICOIl, OCIHHTEN) ... 11-21
Generic ColleCtion FUNCLIONS ..o 11-22
Collection Data Manipulation FUNCLIONS ..........ooiiiiiiiee e 11-22
Collection SCaNNING FUNCHIONS...........cciiiiiiieie e 11-23
Varray/Collection Iterator EXamPIe........ccoeoeieiieieieiescse s 11-23
Nested Table Manipulation FUNCLIONS ..........ccooiiiiiiiiie e 11-24
NEStEd TaDIE LOCALOIS. .....ccuiiiiieiieiiie ettt ettt neane e 11-25
MUItilevel COHECLION TYPES......ciiicicise sttt e e reene e 11-26
Multilevel Collection Type EXamMPIe......c.ooiiiiiiiiii e 11-26
REF (OCTRET) ..ottt bbbttt bbbt bbbt ettt ettt bt 11-27
REF Manipulation FUNCLIONS ..........ccooiiiiiiiscse e 11-28
REF EXAMPIE ..ottt b bbb bbbttt et be e 11-28
Obiject Type Information Storage and ACCESS ... 11-29
1T o] T o] (o] @] ] 1= £ PS 11-29
Any Type, AnyData and AnyDataSet INterfaces ... 11-29
TYPE INTEITACES ...ttt b et b et b et b et b e eb e ebe e 11-30
OCIANYDALA INTEITACES......eevieeeeeieece ettt st bt r e nee e eneeneas 11-34
OCIANYDAtASET INTEITACES ......oiieie ettt na e 11-34
Binding NAmMed DatatyPES. .......couieiiiriiirieiiieiisieii sttt s et sb et sn b 11-36
Named DatatyPe BiNAS.........ccccviiiiiirie ettt e e ereene e 11-36
=TT T [ T 4= SRS 11-37
Information for Named Datatype and REF BiNdS ..........c.ccccveiiiiiiniiieinescececseeee 11-37
Defining NamMed DatatyPeS.......coviiviiiiiiieiirieriesesese st e et sae s e e e e e eneerenneans 11-38
Defining Named Datatype Output Variables............ccociiiiiiiniiiinee e 11-38
Defining REF Output Variables............ccooiii s 11-39



12

13

Information for Named Datatype and REF Defines, and PL/SQL OUT Binds.............. 11-39

Binding And Defining Oracle C DatatyPes........cccoeeieiriiiieiinerisie e 11-41
Bind and Defing EXAMPIES ...t ne s 11-43
Salary Update EXAMPIES........coiiiiiiiiiie et 11-45

SQLT_NTY Bind/Defing EXamMPIe .......ccooiiiiiiieeeees e 11-48
BiNA EXAMPIE ..ot sttt n e e e rennn 11-48
DEfINE EXAMPIE ... bbb bbbttt ane 11-49

Direct Path Loading

Direct Path LOAdiNg OVEIVIEW..........cciuiiiiie ettt ettt sttt ste e sne s 12-2
Datatypes Supported for Direct Path LOading........ccccccoviiiiiriiniineincenee e 12-3
Direct Path HANAIES ..ottt 12-4
Direct Path INnterface FUNCHIONS ... 12-7
Limitations and Restrictions of the Direct Path Load Interface........c..ccccooeviniiininnnn. 12-9
Direct Path Load Example for Scalar COIUMNS...........cccoviiiii i 12-9

Direct Path Loading 0f ODJECt TYPES ..ot 12-14
Direct Path Loading of Nested Tables.........c.ccoiiiiiiiii e 12-15
Direct Path Loading of Column ODBJECES ........ccceveieieeicce e 12-16
Direct Path Loading of SQL String COIUMNS .......cc.ccvviviiiiiieccce e 12-19
Direct Path Loading of REF COIUMNS .......ccooiiiiiiiiiieee e 12-22
NOT FINAL Object and REF COIUMNS .......ccccoiviiiiieeeecesese s eneas 12-26
Direct Path Loading of Object TabIeS ........cccveiiieciccce e 12-28
Direct Path Loading a NOT FINAL Object Table ... 12-29

Direct Path LOAding iN PIECES.......ccciiiiiieriieesee ettt ene e enenns 12-30
Loading ODjJeCt TYPES IN PIECES ......cciiiiiiiieie et et 12-31

Direct Path Context Handles and Attributes for Object TYPES ..o 12-32
Direct Path Context AtIrIDULES ..o 12-32
Direct Path Function Context and ATtribDULES............coeiiiiiiii e 12-32
Direct Path Column Parameter AttribDULES. ... 12-36
Direct Path Function Column Array Handle for Non-scalar Columns............c.cccccvevnine 12-39

Object Cache and Object Navigation
Overview of Using Objects in OCI Programs.........ccccoeiviiiiniininsesesieseseseseesesesessessessessesnens 13-2
The Object Cache and Memory Management ...........ccceoveieniciie et 13-2

Cache Consistency and CONEIENCY ..........cciiiiiiiiiiee e 13-4

XV



14

XVi

ODbject Cache Parameters ........cocvi ittt e esbe e e sreenees 13-5

ODbjJeCt CaCNE OPEIALIONS ......c.vevieeiiieiirieii ittt ettt sr et b et b e eb e b e b e b 13-6
Loading and RemoVving OBJECt COPIES .....cccvveieieieisiesese et e e enens 13-7
Making Changes t0 ODJECT COPIES .....oiviiiiiieiiieeer ettt 13-9
Synchronizing Object COPIes WIth SEIVET ... 13-10
L@ o= o Tt ([ o SRS 13-12
Commit and Rollback in Object APPlICALIONS .........cooviiiiiiiii e 13-15
ODJECE DUFALION ...ttt ettt b ettt bbb bbbt bt 13-15
Memory Layout Of @n INSTANCE ........ccceie i 13-17
(@ oY =To1 a N\ =NV T =1 1 o] o I USSR 13-18
Simple ODBJECt NAVIGALION........ciiiiiieiieere e 13-18
OCI Navigational FUNCLIONS ..ot ne e enenns 13-20
PIiNZUNPINZFIEe FUNCLIONS ..ottt 13-20
Flush and Refresh FUNCLIONS ... 13-21
Mark and Unmark FUNCLIONS...........ociiiiiiiiiese s 13-21
Object Meta-Attribute AcCCeSSOr FUNCLIONS .........c.ocieiiiiciise e 13-21
OB FUNCHIONS....c.eiii ettt sttt st see e et e e e e e e neeneaneeneas 13-22
Type Evolution and the ObjJect CaChe..........cccvviiiiiie i 13-22
The Object Type Translator (OTT)
OTT OVEIVIBW ...ttt ettt sttt b et s b bbbt b et btk ek ekttt e b b et b nn e 14-2
What is the Object TyPe TranSIator ... 14-2
Creating Types in the DAtabase ..........cocoiiiiiiiei e 14-5
L)Y7o {1 o X I PSS 14-5
The OTT COMMANT LINE ..ottt r b et ne b 14-6
OTT Command Line Invocation EXampPle ... 14-6
LI L= 1107 o T 1 =SS 14-9
OTT DatatyPe IMAPPINGS. ...ueiveitirteiteitisie ettt ettt sb et st sb e sb e b e e b et se e e eseeseeseeneebeees 14-10
Mapping ODbject DAtatyPes t0 C ......cccocirieirieiriciriiisiest e 14-12
OTT Type Mapping EXAMPIE ......cccviiiiiiiiie et e nn s 14-13
NUI TNAICATOT STFUCTS ...ttt bbb bbb et 14-16
OTT Support for TYPe INNEIITANCE. .......ccooiiiiiieee e 14-17
THE OUILYPE FIIE .ot sttt sttt e e e eneenenrs 14-21
Using OTT wWith OCI APPHICALIONS .....ocuiiuiiiiiiieiece e 14-22
Accessing and Manipulating Objects With OCl ... 14-23



Calling the Initialization FUNCLION ..o 14-24

Tasks of the Initialization FUNCHION..........cocoiiiiiiieee e 14-26
OTT REFEIENCE ...ttt et et sttt b bbb e b e ebe et e ebe e ete e 14-26
OTT ComMMaNd LiNE SYNTAX .....cceciiiiieiisiieiiieese st ste et te e ste s e sbe s e sne e e sreenees 14-27
OTT PAAMETEIS ...ttt b e e s b e e e b e et e sb e e bt eb e e bt eaeenbeennesaeaneas 14-28
Where OTT Parameters Can APPEAN ......ccccieieruirieriereeeeeeiesessestesessesseseessessessessessessssessessens 14-33
Structure of the INLYPE Fil.......ooiiiiie e 14-34
Nested Included File GENEration ...........coiieieiiiieieieee e 14-36
SCHEMAL_NAMES USAQE ..ottt st st 14-38
Default Name MapPPiNg .. ..o bbbt e sb et e e e e ene s 14-40
OTT Restriction on File Name COMPATiSON .......c.ccoiiiiiiiniiiiiseeee e 14-42

Part Il

OCI Reference

15 OCI Relational Functions

Introduction to the Relational FUNCLIONS ..........cooiiiiiiii s 15-2
U 1ot T T TRV ] - S 15-2
(O 1] [ To T @ 10 I ¥ T [o1 4 (o] o = SRS 15-3
Server Round-trips fOr LOB FUNCHIONS..........ccuiiiriiniisiesesee e 15-3
Connect, Authorize, and Initialize FUNCLIONS ..........ccoiiiiiiieee s 15-4
(@104 (] aTpl=Tod Aol g  aloTe] [ £=T 1 =T ) IR SRS 15-5
OCICONNECLIONPOOIDESIIOY() ...ttt bbbt 15-8
L@ 1O |3 1O T () OSSR 15-9
L@ 101 =1 01V 1o 1 1 ) O RRSRSR 15-12
OCTINTTIATIZE(). vttt bbbt bbbt b et 15-14
L@ 1O | 0T T 1 { (TSP 15-17
L@ 14 1 I To To] o 1) TSRS 15-18
10103 1 ol o] 0 22 FE TSRO USSP POUPTTROPTRPPTON 15-20
L@ 108 =T =T N 1 7 Uod ] ) PP 15-22
L@ 1@d RT=T oY= =] 7 Tod o USSR 15-25
OCISESSIONBEGIN() ..ttt ettt b bt e bbbt ne bbbt 15-26
L@ 108 113 o | = g o ) TSP 15-30
(O 104 I =T V1 P> =T USSR 15-31
Handle and DesCriptor FUNCLIONS. .........ooiiiiiiiiiee et 15-32
L@ 1O AN 11 T (TSP 15-33

XVii



OCTALIISEL() . vvvveevveoeeee e seeeeeeeeseeeeessseseeesseeesssesesse s seseeesseeesesese e s essseses e seesseesssssseesseeseseeeee 15-35

OCIDESCHIPLONATIOC() vttt ettt bbbttt 15-37
OCIDESCIIPLOIFTEE() ..vviuveriereeeeteeeee e st e st ettt e e e s e resresaesbestesaesaebesaeseenseneeneenenneas 15-39
(@104 | =T aTe | 17N | [ ol ) S SS 15-41
OCTHANAIEFTEE() vttt 15-44
L@ 1O |2 Ur=Ta 0[] (RSSO 15-46
L@ 1O |- =T o ¢ ST (PSS 15-48
Bind, Define, and DesCribe FUNCLIONS ........c.coiuviiiiiiiiiceecee sttt 15-50
OCIBINAAITAYOFSIIUCE() c.vevveveeeieeie ettt sre bt eneeneanneneas 15-51
@104 1 2] [ To | 2377 I F= Vg 4 T=T (OSSR 15-52
OCIBINABYPOS() ...eveveteiteteiete ettt etttk bbbttt 15-57
OCIBINADYNANMUC() teuvevverierrereeeereeesestesestesteste e ssessesseseessessesesssssessessessessessessessessessessessesessessens 15-62
(@103 1211 aTe (@] 0] [=To1 ) TSSOSO 15-66
OCIDEFINEATITAYOTSIIUCT() ..vevveveieieieeie ettt 15-68
OCIDETINEBYPOS().. euvevverierierieeerieesieste s e stesteste et e e sae st esee e s e ssestessessestesteseesesaeseenseneesesnennens 15-69
(@101 3= 1T 01T o= o1 o (OSSR 15-73
OCIDEFINEODJECT ...t bbbt 15-76
OCIDESCIIDEANY() vevvevieierieeee ettt sttt e e e e ese e e e e testesaesbesteseeseesenaeseeneeneeneanenneas 15-78
(@104 1] 11 (€T=31 =TT T | L) (o] (OSSR 15-81
STAEMENT FUNCLIONS ...ttt b e e b ettt e e eneereenas 15-83
OCISEMEEXECULE() 1.vevvevveriereeeeieetee et st se e te e se et e e esae e s sessestesaesaeseeseesaessesseseenseneeneanennens 15-84
L@ 103 151 40 01 1 1=1 1ol o ) TSSOSO 15-87
(@ 108 1] 41 1 1 T=1 (o1 o121 TSRS 15-89
OCIStMEGELPIECEINTO() c.vevvereeieeiieeee ettt e e e eneeneas 15-92
OCISIMTPTEPAIE() «-veuveeerieiieieee ettt ettt b et sb e sb e bbbt e e e e e e e aneene s 15-94
OCISIMESETPIECEINTO() ..eveiireeeeeree et 15-96

16 More OCI Relational Functions

Introduction to the Relational FUNCLIONS ... 16-2
U 1ot T T TV ] - P SR 16-2
(O 1] [T To T @ 10 I w W1 [od f (o] o < F USSR 16-3
Server Round-trips fOr LOB FUNCHIONS ........cccoiiiiiieiiie ettt 16-3
LOB FUNCLIONS ...ttt bbbttt bbbt b bttt bbbt 16-4
(@104 18T 1 o] o] =7=To |11 I USSR 16-7
OCIDUFAtIONENT() ...ttt ettt b et b et eb et r e b ene e 16-9

Xviii



@10 | Wo] 07N o] o 1< o [o [ FERE TSP PO RSO PR PRSP 16-10

O CTLODASSIGN() -+ttt ettt bbbt bbb bt et ne ettt nn et e 16-12
(O 10 | W0 o 1@ 0 T= 1 #31=1 1 o 0 ) PSS 16-14
1@ 101 o) o[04 g T-1 #7=) { [o [ IR RSRRR 16-15
O CTLODCIOSE() vevervveeerereerinteiist sttt ettt bbb b et b bbbkt b et ne et bttt 16-16
L@ 104 | o] oT@0] )Y/ () 1SS 16-18
OCILODCIreate TEMPOIAIY () .. ccveeveitereerieieieeieieee ettt bbb ettt be e 16-20
OCILObDIiSableBUTTEING() ..o.vovereireiitiietiiet e 16-22
(@108 | Mol o] =g F=To] [=1 21013 (1T o To ) PP 16-23
(O 10 1 o] o] =1 = =1 (USSR 16-24
OCTLODFIIECIOSE() ..vtuvveeetiiteiiiteistee sttt b bbbttt bttt 16-26
L@ 10 | o] o] =] =104 1011 AN | [ RSP 16-27
(O 10 1 o] o] ] (o1 o 1) £ ) USSR 16-28
OCILODFIIEGEINGAIME() ... vttt 16-29
L@ 10 | o] o] =i =1 £ @ o 1= o 1 FS RSP 16-31
OCILODFHEOPEN() ..ttt bbb bbb e e et be b e b ene s 16-32
OCILODFIIESEINGME() ... ittt 16-33
L@ 10 | o] o] =l [0 o1 21013 {1 ) ISP 16-35
OCILODFIEETEMPOIAIY (). .eeveieerteiteieeiteie ettt bbb ettt eb b e 16-37
OCILODGETCRUNKSIZE() ... eveveiveieiteiiteietereet ettt 16-38
(@ 10 | Wo] 1€ 1= T g o' o1 PRSP 16-40
(O 10 | Wo] o] 151 <o [ U T- 1 ST TP RSO PRURPR PR 16-42
101011 o] o] [ @] o 1=1 o [ TSSOSO TP POURTTROPTTPTION 16-43
(O 10 | Mo o] F-Y =T g o To T 1= Y/ (PSS 16-45
(@104 | o] o] IoT=To | o) 0 0 T =T (USRS 16-46
OCILODLOCAIOIASSIGN() . veveverereareriiteietereete ettt et b bbbt bbbt nbenes 16-48
(@104 | Wo] o] o Tor=1 (o o < 111 € TSP 16-50
OCILODOPEN() -ttt bbb bbb ettt b et b e 16-52
L@ 108 Io] o1 L:: Lo ) IFU SRRSO 16-54
L@ 10 | o] o 1 1 ¢ 1 1 RSP 16-59
L@ 1031 o) o) V) ] (= PR RSRRS 16-61
OCILODWITEAPPENA() ..+ttt bbbttt 16-66
Advanced Queuing and Publish-Subscribe FUNCLIONS.........cccccocviviniicnceec e 16-70
L@ 111N @ 1B =T o | TSROSO 16-71
L@ 108N @ = o To [ PR RSRRR 16-73

Xix



OCTAQLISTEN() vvvvvveveeeeeeeeeeeeeeeeeseeeesssesesesseeesseesessessesssseesssesesesssesssssssesessesessseesssssseessesessssseee 16-85

OCISUbSCriptioNDISABIE()........oveieieiei e 16-87
OCISUbSCHIPHONENGBIE() .. vt e e eneas 16-88
OCISUBSCIIPLIONPOST() ...ttt bbb e ene s 16-89
OCISUDSCHIPTIONREGISTEN().. ..ttt 16-91
OCISUbSCHIPIONUNREGISIEN() . .vovvveeeeeiesiesiesie ettt st e e e enaeneas 16-94
Direct Path Loading FUNCLIONS.........cccociiiiiiie et 16-96
OCIDIIPAtNADOIT() ...ttt bbbttt bbbt n et 16-97
OCIDirPathColAITaYENTIYGEL()....uvcveerieierieieriisere ettt st e e aneeneas 16-98
OCIDIirPathCOIAITAYENTIYSET().....cccveiveiieiiieieie sttt st sne s 16-100
OCIDirPathCOIAITAYROWGETL() .....covevireeiirieiiiieiiieiesie sttt 16-102
OCIDirPatNCOIAITAYRESEL() ...vviveiieieirieriiriese et eieee e te et se e e e e ene e snesnens 16-104
OCIDIirPathColArray TOSIIEAM()......eeiveiieriieiesie ettt re e sre s 16-105
OCIDIrPatNDataSaVe()........ccrueuerieiirieierieieniesiaie ettt sttt sr e sr et ab et en e b e ene e 16-107
OCIDIrPAtNFINISN() ... cvvevevieiece ettt e ere e snesrenae e 16-108
OCIDIrPatNFIUSRROW() ...o.voviiiiiiceieesese ettt e sb e 16-109
OCIDirPathLOadSIIEaAM() .. ..covevereeiirieierieiirieesie ettt sb e 16-110
OCIDIrPAtNPIEPAIE() .. ecuvereereereeresieseeesestestesestessesteseeseeseasessessessestessessesseseensessesesssesessessessens 16-112
OCIDIrPatNSLrE@MRESEL() ...eoveieeiiesiee ettt sre et esreenbesre s 16-113
Thread Management FUNCLIONS ..ot 16-114
1O 1O 1 I ] ¢=T= o [ o 11T ) PSSR 16-116
(O 1O Il T =T o [ @1 =T (= () SRR 16-117
OCIThreadHANAIEGEL() ......c.erveeirieiirieiirieeie ettt 16-119
OCIThreadHNADESTIOY() «.ovvevveveeieieeiseiesiese et eiees ettt e sae e e e e e e eneeresneaneas 16-120
(@104 Il o T=T=To | [T 1 a1 1) ISR 16-121
OCITRIeadlIdDESIIOY() .. .eveveeeeireeiirieiesieie ettt ettt sttt sr bbb en e b ene e 16-122
L@ 10 1 I ] ¢=T= T | Lo (-1 ) PSPPSR 16-123
OCITRIEAAIAINIT() ... v iveieeeieie ettt st sbe e b ere e 16-124
OCITRIrEAdIANUIT() .. v cveieie ettt sttt sb e sb e b e e b et e are e 16-125
(O 10 I ] == To | Lo ST U o 1= (RSP SSSRN 16-126
(O 103 Il o1 == o | [o K511 £ SOOI URTPUSTRPRIN 16-127
OCIThreadldSENUTI() .....coveveieireerer et 16-128
1O 1O I ] == o | 1 T (PSS 16-129
OCITRIEAdISMUITI()...cve vttt b et sbe b 16-130

OCITRIEAAIONN() . veveereeete ettt ekt ekt e et sr et sb et b et eb e b e ene e 16-131



OCITIreadKeyYDESIIOY() ...occveieeiriiieiieiie e sie st sieste e ste et et raesae e e sre e e sae s e e steeseesreenee e 16-132

OCITRIEAAKEYGEL() ...veveveeeiesieiesieeet ettt ettt bbbt b et b et ebe b nn et nn b e 16-133
(@ 10 I ] == o | (=7 [ T PSSP 16-134
(O T 0] Il T == To | (=) VA= () IS 16-135
OCIThreadMUETEXACGUITE() ...eiveueieeiireiiteiiete ettt b e 16-136
OCIThreadMULEXDESTIOY () ..vvivveverieriirieierierieieieeree e eres e ere et sae e e e e seeeeneerennes 16-137
OCITRreadMULEXTNIT() ....ccveie ittt e te e reenee e 16-138
OCIThreadMULEXREIEASE() ... cveueiveieireiiteieete ettt 16-139
OCIThreadProCeSSINIT() .....cviviireierireseriereee et sa e e e e eneereenes 16-140
(O 1O Il T =T= o I =T o o ) TS 16-141
TranSACtION FUNCLIONS .....c.oiiiiiiic ettt sttt b et et neereene e 16-142
(@ 1O - o ES{ o] 0 1 411 RSP 16-143
(O 1Od I - Ta 1S 1= = o o ) T OSSR 16-146
OCITIANSFOIGET() ... ettt ettt bbbt eb et eb e e b ebenr et nn b e 16-147
OCITranSMUILIPIEPAIE() «.vvvvviverieriesiisiesesieseeieree e ese e e sre e se e sre sttt saesae e e seeseensenennes 16-148
OCITIANSPIEPAIE() «.eveveeeirterte sttt sttt ettt b et st besb e bbbt bt s e se e e e st ereans 16-149
OCITranNSROIDACK() ... cveveviieeieiieese bbb 16-150
(@ 1O 1 I - 151 =V ) SRS 16-151
MISCEIANEOUS FUNCLIONS ... .ottt bbb e 16-159
(@ 108121 -1 | OSSPSR 16-160
(@ 10 =g o T (-1 ) SRS 16-161
OCITLAATOSVECEX() cvervevereererieierieesieistesesteseste et seetesee e seeteseeresbesesbesease e sseseebeseeseseeseseeseseeseneas 16-163
OCIPaSSWOIrdCRNANGE() ...veveverieiiiieiiteieeie ettt 16-165
L@ 1O | (=T 1 (TS SSP 16-167
OCIROWIATOCKNAN() .veveveveiieiesieieete sttt sttt sttt st sbe e ebe st ebeseeteseereseereneas 16-168
OCISEIVEIVEISION() ...veveretirreieeteiestee sttt ettt ettt ettt bbbt b et b et eb et b e e b nr b nnebennere e 16-169
(@108 1SV 7ol @4 07 o] o F- T ) 1SS 16-170
OCIUSEICAlDACKGEL() ...veveeieiieecie sttt ettt st e s teenaesreenee s 16-171
OCIUSErCallDaCKREGISTEN() .. eveueiveiiireieteieete ettt 16-173

17 OCI Navigational and Type Functions

Introduction to the Navigational and Type FUNCLIONS ...........ccoeiniiniineiieeeeeee e 17-2
Object TYPes and LIfEtiMES......ccccce e sne s 17-2
BT 1T 1] [0 YOS 17-3
THE FUNCLION SYNTAX ... ittt et 17-4

XXi



XXii

Navigational FUNCLION RETUIN VAIUES ..........ccoveiiiicicece e 17-5

Server Roundtrips for Cache and Object FUNCLIONS ..ot 17-5
Navigational FUNCION Error COUES.......ccoviieieieecese st ane s 17-5
OCI Flush or Refresh FUNCLIONS. ........coiiiiiicceee et 17-8
OCICACNEFTUSI()..c.v vttt b et bbb 17-9
L@ 108 [ O To] g 1= R =Y i =] ] ) PSSR 17-11
(@ 10310 o] 1=To1 1 [B1S] IOSOSOSO TSP 17-13
OCIODJECIRETIESN() ...ttt bbbttt 17-14
OCI Mark or Unmark Object and Cache FUNCLIONS.........c.ccoovvivieviniene e 17-16
(@104 [0 1ol 0 110 F ] o T T () OSSR 17-17
OCIODJECtMArKDEIETE() ... vttt 17-18
OCIObjectMarkDeleteBYRET().....cviviiiiriiireie et e e eneas 17-19
OCIODJECIMArKUPAALE() ... eveeveeieieetieiesie sttt sttt st eneas 17-20
OCIODJECTUNMAIK() ..ttt bbbttt 17-22
OCIObjectUNMArkBYRET() .. .cvcveeiecisise sttt s nneneas 17-23
OCI Get Object Status FUNCLIONS..........ociieiiiccr ettt 17-24
O CTODJECEEXISTS() - vveverereeetereete sttt sttt sttt sr et b ettt ettt ettt e bbb bbbt b e nnne 17-25
1O 101 [@] o] [=To (©1=] 1 2 o] =] o 1Y/ (RSSO 17-26
(@104 (@] o] =To1 4 1Y B 11 o Y/ ) PSS 17-30
OCIODJECISLOCKEU() ..veveieteriete ettt sttt sttt 17-31
OCI Miscellaneous ObjJeCt FUNCLIONS ........cccooviieicicice s ere s 17-32
L0101 (@] o] =To1 (0Xe] o) Y/ IF TSP TUUPSPROTORPRN 17-33
OCIODJECIGELATII() ..ttt etttk e bbbt b et bt bt 17-35
1@ 10 [@] o] =Tw1 (C1=] o [ o ) RSSO 17-37
(0104 [0 o =T (1] (@] o] [=To1 12 1= { ) OSSR 17-38
OCIODJECIGEITYPERET() ...ttt bbbt 17-39
L@ 10 (@] o] =T w1 { o Lo ) SRS 17-40
(@104 (@] o] =To1 { o Tod 1 A Lo VAT - U] £ OSSR 17-41
OCTODJECENEW() .ttt ettt b et bbb e bbbt bbbt 17-43
1O T8 (@] o] =T o1 e =] 7N o 4 ) TSRS 17-47
OCI Pin, Unpin, and Free FUNCLIONS .......oo.ooiiieeee e 17-49
O CTCACNEFTEE() 1+ttt bbbt b et bbb bbbt b et b et b et bt 17-50
L@ 1O [ @ 1ol 1 T-10 L o7 o 1 o) 1P TSRS 17-51
(@104 (@] o =To1 1N o = V4 o | ) TSR 17-52
O CTODJECIFTEE() +.vevevetereeteiiete ettt ettt b ettt b et r bbbt bbb 17-54



Q10111510 2T 310 FO OO 17-56

OCIODJECtPINCOUNTRESEL() ...vveveiverietiietiriete ettt 17-59
L@ 101 [@] o] =Tw1 {70 1 1= ] [T ) ISP 17-61
O 101 (@] o] =To1 (0] ] o] | o1 I TR ST PO RSO URUR PSP 17-63
OCI Type Information ACCESSOr FUNCLIONS .........coiiiiiiiiirieiirieie e 17-65
OCITYPEAITaAYBYNGAME() ...oveiveiiiiieiiisieiesiesieee ettt sttt neeneeresne e 17-66
OCITYPEAITAYBYRET() ...ttt 17-69
OCITYPEBYNEMIE() ... vttt b bbbt e ettt 17-71
L@ 1O Y0 1= =3V { (S SP 17-74

18 OCI Datatype Mapping and Manipulation Functions

Introduction to Datatype Mapping and Manipulation FUNCLIONS...........ccccceveivcivccncecn e, 18-2
THE FUNCLION SYNTAX......cuiiieiiiieiti ettt sttt et e st e st e s teansesaeenestaeseessaeseenreens 18-2
Datatype Mapping and Manipulation Function Return Values.............cccccoveiiennicincnnns 18-3
Functions Returning Other ValUES ..........cccovueicieiiiiecce e 18-3
Server Roundtrips for Datatype Mapping and Manipulation Functions ..............c.cc.cc..... 18-4
EXAIMPIES ...ttt bt 18-4

OCI Collection and Iterator FUNCLIONS ........coviiiiiiiiceesese e 18-5
@101 (070117 2N o] o 1=] o T [ IS USROS STPSOPRURURPRURN 18-6
O CTCOIASSIGN() -ttt bbbk b bbbt b et bbb b bbb 18-8
L@ 108 [ @011 AN1S] o | o] =1 U=T o o (PP 18-10
(104 [00] | [€1=] 4 =1 [T o o () USSR 18-12
10103 1070] | | ] olor- o] f | TSSOSO PRURTROPTTPTON 18-15
L@ 10 [ @01 111V, -V RSP 18-16
L@ 1031001 | K57 1T TSP 18-17
L@ 103 1010 | 1 1 4 10 110 PSSRSO 18-19
(O 1O 11 (=] @1 =T 1 (=T RSP 18-20
L@ 10 1 =T g BT =] =T USSR 18-21
OCHITErGEICUITENT() . .veveveteiieteieet ettt b bttt ne et b et nnenes 18-22
L@ 10 1 (=T o a1 RSP 18-23
L@ 1T 1 =T NN 1= 4§ [OOSR 18-24
O CTITEIPIEV() vttt bbb bbbt e ettt bbbt 18-26

OCI Date, Datetime, and Interval FUNCLIONS...........cccoiiiiineinenne e 18-28
OCIDAtEAAUDAYS() .. vveveieeeiteirieieeite s ee st et e ste e ste e e sreeaesteesaesteesbestaebeaseesbeessesseaneesreenes 18-31
OCIDate AdAMONTNS() ....cviieeiiieeisie e 18-32

XXili



XXV

(@101 =1 =Y AN o | o 1 PSR 18-33

OCIDALECNECK() +-veveveiteieteieet ettt ettt b e 18-34
OCIDAtECOMPAIE()...veuververrereereerieeseatesestesteste e ssessesteseesseseeseaseasessessessessesaessessessessensesesesseasens 18-36
OCIDAtEDAYSBEIWEEN() ....ccveeieiieeie ittt ettt be e sre et s e e ste st saesra e tesraenreenae e 18-37
OCIDALEFTOMTEXL() ..t eveeveeeteriete ettt sttt bbb bbbt nnes 18-38
OCIDAtEGEIDALE() ..ovvevveveerrereereereeese s sesese ettt e e e e ese e e s e arestesaesrestesaeseesesseseenseneeneanenneas 18-40
(@101 13-\ (=1 C 1= [T 0 =T PSR 18-41
OCIDALELASTDAY () -+ eveveereearerieterieie ettt sttt sr ettt sb ettt bbbt bbbt bt nnns 18-42
OCIDALENEXIDAY() +vvevververrereereerieesestesesteseste e stestesteseeseseeesseasestessessesaeseesaessessessesensesesseasens 18-43
L@ 1O -1 (1=l D -1 =] (PSS 18-44
OCIDALESEITIME() v evevereereeete ettt bbbt e bbb bbbt b et bt b 18-45
OCIDAESYSDALE() .. euvevvereereereerrereeesesesesteseste et e e e e e ese e e sseasestesaesrestesaeseesenaeseenseneeneanenneas 18-46
(@101 =1 (= [l 1 ) TSR 18-47
OCIDALETIMEASSIGN() - veeerereeteriete ettt ettt se sttt b bbbt nr et nnne 18-49
OCIDAtETIMECNECK() . .euverrereeeerieese e e sttt e ettt re st e srebeae e e e eneeneeneeneas 18-50
OCIDAtETIMECOMPAIE() -.veveveevieierieeieeterie sttt sttt ettt sttt sb e bt e e b b sn e e e e e e aneenea 18-52
OCIDAtETIMECONSTIUCT()....veveeveieteiieie ettt 18-53
OCIDAtETIMECONVEIT() .. evvereereerieieiese e e sesie et et e e e e te e tesrestesaesrebeaeseeneeneeneanaaneas 18-55
OCIDAteTIMEFTOMANTAY() cveevveiieeieiiee e siee et e et e st e et s e sre e e sreesae s e e ste s e e stesraestesraesaeaneenes 18-56
OCIDAtETIMEFTOMTEXE() .. ettt bbbttt 18-58
OCIDAtETIMEGEDALE() ..ovveveevrerieieie et se s ste et e et re et re st sre st e e e e e eneeneeneeneas 18-60
OCIDAtETIMEGELTIME()....iiieieieeieiee ettt e e sre e s eeste s e e saesra e teeraesaeeneenes 18-61
OCIDateTimeGetTimeZoNeNAME()......ccureireirieireise e 18-63
OCIDateTimeGetTimeZoNeOTTSEL() .. .cviviirererirereriee e eneas 18-64
OCIDateTimelNtervValAdA() ........coce et 18-65
OCIDateTimelNtervalSUD() ......cooiiieie e 18-66
OCIDAtETIMESUDTIACT() ..ovvevveveeeieeee ettt e e e eneeneas 18-67
OCIDateTimeSySTIimMESTAMP().. . eoeiererierinieie et s eneas 18-68
OCIDALETIMETOATTAY() .. veveeeterieterieiesieie sttt sttt b ettt ettt se st bbbt sb bbbt nr et nnns 18-69
OCIDAtETIMETOTEXL().veuververeereereeriseatesestesresteseseesteseeseesseseeesseasessessessesreseessessesseseensessesessensens 18-71
@101 1B -\ (=Y o] g 1ol Mo o] o 1= OSSR 18-73
OCHINTENVAIAAU() .ttt bbbt 18-75
OCHNIEIVAIASSIGN() vvvevereeeee ettt ettt sresreseesee b e ae e e e eneeneaneaneas 18-76
OCHNTENVAICRECK() . vviveeeicie ettt st e s te et e reene e 18-77
OCHINTErVAICOMPAIE() ..veeeveeeteieeie ettt ettt ettt 18-79



OCHNTErVAIDIVIAE() ..vveveceee ettt te st e b e ere e be st e s reeneesreannes 18-81

OCIHNtErvalFrOMMNUMDBDET() ..ot 18-82
OCHNIENVAIFFOMTEXL() ovveveeieieesieiiesierte ettt s sa s e s e e e e eneerenneens 18-83
OCHNTErVAIFIOMTZ() .ee ettt sttt e b et et e st e nreeneesaeenees 18-85
OCIHINterval GEtDAYSECONM() .. .euvivereireieririeii ettt 18-86
OCIlIntervalGetYearMONth() .......cccvireieierieeeee e 18-88
OCHNIENVAIMUITIPIY (). cveeeereeetesteee et e e 18-89
OCIHINtErvalSEtDAYSECONT() .. .vevvivereiriietirieteriei sttt 18-90
OCIIntervalSetYearMONTN() ....ccvie i e 18-92
OCHNTErVAISUDTIACT() .. cve e cie ettt ettt et esre e e saeannes 18-93
OCHNTErVAITONUMDET (). eveveiteiiseeiet et 18-94
OCHNIEIVAITOTEXL() .. viveeveeeesestesesie st ettt st sa e se e e s e s e e e eneerenrenes 18-95
OCT NUMDBEE FUNCLIONS ...ttt bbb ettt 18-97
OCTNUMDBEIADS() vttt bbbt bt bt et et et bbbt nb s 18-99
(@ 108 | N1 Tai0] o =1 o7 AN'e [ [ ISP 18-100
@104 LNIT g p] o] N ol 00 1] ISR 18-101
OCTNUMDBEIATTSIN() vttt sb et r et sb et b e e b e b nn b e ere e 18-102
(@108 | T a] o =T o AN ol - o SR 18-103
@104 L NIT g p] o] N ol IF- U 12 ) OSSR 18-104
OCINUMDBEIASSIGN() +vtveterreierteiisieest ettt ettt bbbttt eb e e b e b nn b e e ebe e 18-105
(@ 108 | N[ L] o =T O T [ TSP 18-106
OCINUMDBEICIMP() vttt sttt b ettt bbb bbb e e s e e e e st ereans 18-107
OCTNUIMDBDEICOS() vveveveeeterieierieiesiee sttt eb ettt se et re et sr et sb st b et b et sb et eb et ebe st ebenrebeneere e 18-108
(@ 10 | N[ 1] o T=T o =T ) SR 18-109
OCINUMDBEIDIV() ..ttt sb et et e sbe e ebe e ebe e ebeseeteseereneas 18-110
OCTNUMDBETEXP() vvevetereeterieiesieesiee ettt ettt sb bbbt sb et eb et eb e e b nn et neere e 18-111
(@ 10 | N8 T o] o =1 = To o ) TSRS 18-112
OCINUMDBEIFIOMINT()..cuviiieicceece ettt esbeenee s 18-113
OCINUMDBEIFIOMREAI() ...cveieiieiiieiiiteste et 18-114
(@108 | N Ta] o =T g (o T T =) ) SRR 18-115
OCINUMDBEIHYPCOS() -.eveveteitenierieniesiesie ettt ettt sb et e bt et e e e s enes 18-117
OCINUMDBEIHYPSIN() vttt b e 18-118
(@108 | NI o] o =T o o A4 o1 I U SRS 18-119
L@ 104 AT 0] 07T o 1 g Tod (SR S 18-120
OCINUMDBEINTNTPOWET() ..ottt b e 18-121

XXV



XXVi

L@ 104 L NIT 0] oT=T o 1] 1 SRR 18-122

OCINUMDBEITSZEIO() ..ttt ettt r et eb e eb e re e 18-123
L@ 1O | N1 10 0] =1 f I o T RSP SSS 18-124
(@104 1 NIT 0] o1 o oo | ) SRR 18-125
OCINUMDBEIMMOA() .+ ettt ettt b e sb e en e ere e 18-126
L@ 1O | NN Taia] =1 Y 1 1 PSSR 18-127
L@ 104 AT 0] oT=T o \N 1= T SRR 18-128
OCTNUMDBDEIPOWET() ..ttt ettt bbbt b bbb eb e b e ene e 18-129
(O 1O | N0 1o ] =] o T (PSSR 18-130
(@104 1AW o] oT=T ¢ {0 TH o Lo ) ISR 18-131
OCTNUMDBDEISEIPI() vttt et ettt sr et b et sb e eb e ere e 18-132
OCINUMDBEISEEZEIO()...cuvevvereeeeeresiese e se s st e ste st et ese e se e sre e resbesressesteseesesaeseeneeneeresnesnens 18-133
OCINUMDBEISRITI() cvevviveieieiee ettt ettt et e b 18-134
OCTNUMDBEISIGN()- vttt sb et b et et se et sr bbb are e 18-135
(O T8 | N 1o 0] o =] 71 TSRS SSSN 18-136
OCTNUMDBEISOIT() 1. venveeeneeteeieet ettt ettt b et st b e e et s e et bt ebesbe b 18-137
OCINUMDBEISUD() ...ttt 18-138
(O 1O | N[ 1] o =] I 1 RSP RSSN 18-139
(@104 AT o] o] ol Io ] 1] { (SR 18-140
OCINUMDBEITOREAI() ..ttt 18-141
OCINUMDBEITOTEXL() 1ovvevveriereerieresesesesestestesiestessesteseeeesessessessessessessessesseseesessesesssesessessessens 18-142
L@ 104 AT o] oT=T ol I U ol ) SRR 18-144
OCT RAW FUNCHIONS. ...ttt ettt sttt sttt sttt s et ne et et e besneneas 18-145
OCIRAWAIIOCSIZE() .. vevvevieriereee ettt st ettt e et re e te st stesteaesae e enaeseeneeneeresnesneas 18-146
OCIRAWASSIGNBYTES() vvevveiveeiiieeiieiiesiesie st te et este e te et e sre e ste e e ste e e steesaesteesbesreesbesneenes 18-147
OCIRAWASSIGNRAW() ....ccveeeteieteeeie ettt ettt sb et b e b e b ene e 18-148
L@ T 12 =\, (RSP SSS 18-149
OCITRAWRESIZE() .vveveeveeite et ittt sttt et ae et e s ae e sbesse e teaneesbeeseesteeneesreenbesneenes 18-150
OCTRAWSIZE() «.vevtteiieteeete ettt bbbt bt btk e bbbt b bt sb bt ab et ab et ene e er e 18-151
OCH RET FUNCLIONS ..ottt bbbttt bbb 18-152
(O 1@ L] 7 ANST] [0 o ) PSSR 18-153
O CTRETCIBAI() c.vevetereeteieete ettt bt bt ekt e bbbt bbb bt b et eb et ene e ene e 18-154
(O 1O |2 =1 1 = (o] 0] 1= PSSR 18-155
OCIREFHEXSIZE() ..ttt b et ettt st sb et et esberesbe e sbe e ebe e ere e 18-157
OCIRETFISEQUAI() -ttt ettt ettt sr et sb et sb et eb e b ere e 18-158



OCTREFISNUII oo eeeeeeeeseeeese e eeseeesseeeesessessssseeeseeseesesesssssseessseeseseessseseeesed 18-159

OCITRETTOHEX() vvtrveveieteiieiesteie st ste sttt sttt sttt et bt e sb s e b e e sbe e ebe e ebe e ete s etesneteseereneas 18-160
(@10 I3 1 10T [N 11 1 (01 o] o 1TSS 18-161
(@101 ] (g [ To AN | [oTors =T ) IS 18-162
OCISEIINGASSIGN() +veveveeetireeierieeet ettt ettt sb et b et b et eb et eb et eb e e ebennebennebe e 18-163
OCISEINGASSIGNTEXL() «rvveverieieirieiesisese et e e re et sre st e saesren s esee e eneerennes 18-164
(@104 I) (g [ To [ €T=] = aToToTe [ gV T ISR 18-165
OCISTIINGPII() c. vttt ettt bbbt b et b et eb e e b nn et nr b e 18-166
OCISEINGRESIZE() v vveveiveeteseese e e sttt e te e b sre s tesr et et e sae e enseseeneeneerenres 18-167
(@101 1] (g [ T0 RS 2= PSS 18-168
@103 B F-1 o] [ U] o Tod £ o] o TSR PPRPR 18-169
(@10 o] 1= 1= [ =T | ISP 18-170
(O 10d I 1= T o] L= T 1] £ S 18-171
OCITADIEFIIST() ..veveveeeieieetirt ettt b et bt b e eb e b nea 18-172
(@ 10 1 I o] 1= I T ) S SSPSR 18-173
L0 10 I 1= o] 1= Lot USRS PSTTRRTN 18-174
OCITADIEPTEV() ...ttt b et bbb et 18-176
(@ 10 I 1o 1=ES ] 2= ISP 18-178

19 OCI Cartridge Functions

Introduction to External Procedure and Cartridge Services FUNCLIONS..........ccccccevevvvvinnennn, 19-2
THE FUNCLION SYNTAX......ciiiieiiiicite ettt et et e s e s te e s e saeenaestaeseesraeseenraens 19-2
RETUIN COUEBS ...ttt et b ettt ettt st s b b et se et e e e e st ene et e e besbesbeneenee 19-3
RVA A L O] a1 (=) q A 1Y/ o 1 SR 19-3

Cartridge Services — OCI EXternal ProCeduUrEsS..........ccooviieeiiiiieiesie e 19-4
OCIEXtPrOCAHOCCAIMEMOIY()....eviviiiiirieiiiieiiiteisieisie ettt 19-5
OCIEXIPTOCRAISEEXCP() +.vvuveververreruesiiriesieseesieieseeseesessessessessessessessessessessessessessesessnsesssssesessessens 19-6
OCIEXtProcRaiSEEXCPWITIIMSG() ... .veveuieiiieiieieecse e 19-7
OCIEXIPIOCGETENV() ...ttt ettt 19-8

Cartridge Services — MEMOTY SEIVICES .....cccviuiriirierieieieiesie e seste e ste e sae e seeseseeses e ssesressesnens 19-9
(@104 18T o] a1 =7=To || 1 USSR 19-10
OCIDUFAtIONENT() ...evevieetirteiet ettt bbbttt 19-11
L@ 10 11 1= o 0 Lo 1772 | [ 1ol () PP 19-12
(O 104 1\V/ =T g ol Y R (=T 4T ) USRS 19-14
OCTMEMOTYFTEE() ...ttt b bbbttt ettt 19-15

XXVil



Cartridge Services — Maintaining CONTEXL..........cccvoviiiiii i e 19-16

OCICONTEXISETVAIUE() .. vttt bbbt 19-17
1O 108 [ @091 (=) (CT=7 AV - 111 1= (SRS 19-19
OCICONTEXICIEANVAIUE() ....vv et sttt e st e nae s 19-20
OCICONTEXIGENEIAEKEY () ..veuiiviieierieie ettt 19-21
Cartridge Services — Parameter Manager INterface ...........cccvovivvvienie s 19-22
L@ 1@ 1 Tod 1 [ V1 (PSR 19-23
OCITEXTFACTTEIIINI() 1.ttt ettt b ekttt ek bbbt bbb 19-24
OCIEXIFACTRESEL() 1.vevverveeierieieeee st e sttt se st besae b te e sr et e e e eneeneeneanenneas 19-25
OCIEXIraCtSEtNUIMKEYS()...veiveiieiieiieeie ettt ettt re e sre e st teeaeste e e sraeaeene e 19-26
OCIEXTIACISETKEY() ..vereiterieteriete ettt ettt et bbbt 19-27
(O T |t - Tod 0] o T =T SRS 19-29
L@ 10 | o Tod 1 o] . ] € ) ISR 19-30
OCIEXTIACTTOINT() +.veveveeeeteiete ettt ettt ettt 19-31
(O 1O |t d - Tod oo To [ ) ISR 19-32
L@ 10 | o Tod i I 1S () ISR 19-33
OCIEXTraCtTOOCTNUMI()....ccveieteiieieiieie ettt 19-35
(O T |t Tod o 1) (TSRS 19-36
L@ 10 | o Tod 1 o ] ) (OSSR 19-37
Cartridge Services — File 1/O INTErface ...t 19-39
L@ 1O | 1T o] =T TSRS 19-39
L@ 1011 11 o1 OSSOSO 19-40
OCTFHETEIIMI() -eveveiteeeteiete ettt bbbttt bbb bbb bbb bbbt b et bt nnns 19-41
L@ 1O | 1T =1 o T SRS 19-42
L@ 10 1T [=T0 [ 11T ) ISP 19-44
(@ 10811 T T Lo [ SRS 19-45
L@ 1O [ 11NV ] =T ) SRS 19-47
O CTFESEEK() .. v vevevereateeete sttt sttt b ettt sttt be st e be e e be st ebe st e besbesesberesbenenans 19-48
OCTFHEEXISTS() +.vververeiterieteitete ettt ettt ekt b et b et n e 19-50
OCIFIHEGELENGLN() . vttt st r e ne e e eneeneas 19-51
L@ 10311 T (U] o IO SO S 19-52
Cartridge Services — String Formatting INterface ... 19-53
L@ 1O | o ¢ ¢ T 1 1 SRS 19-54
L@ 104 | o] aF- U IN=1 1/ ISP 19-55
OCTFOMMALSTIING() 1+ vttt ettt bbbt et e bbbt bbbt nnne 19-56

XXViii



(0] 0 g F LAY/ (010 T} 11=T T 19-59
(0] 4 0 g T 1 OL0 o (=13 19-61
ez 10 0] o L USRS 19-63

20 OCI Any Type and Data Functions

Introduction to Any Type and Data INterfaces ..o 20-2
THE FUNCLION SYNTAX......c.uiiiiiiiieiie ettt et e st e st e s te e s e saeesnesteesresraestenreens 20-2
FUNCLION RELUIN VAIUEBS ...ttt sttt e 20-2

OCI Type INterface FUNCLIONS ......cccociiiiisese ettt nesrenrennens 20-4
L@ 10 I Y/ 0 1Y AN [0 1 AN 1 1 ) OO 20-5
OCITYPEBEGINCIEALE() ..vveveretiiiitiieteiet sttt bttt bbbt 20-6
(@ 10 i 1Y o 1= =l o [ @8 == (=T ) ISR 20-8
OCITYPESEIBUIITIN{) ...eve vttt bttt sre s 20-9
OCITYPESELCOHECTION() ...ttt 20-10

OCI Any Data Interface FUNCLIONS ........cccoov i 20-11
OCTANYDALAACCESS() cvveveiveeireiieiieeiteseeeseeste s e st e e e e ste st e sreaeesreesaeste e besteebeassesbeensesseansesseanees 20-12
OCIANYDATAATIIGET() ...veveveieiteiesieiet ettt et 20-14
L@ 101 W AN ) B v VAN a1 =] (PP 20-17
OCIANYDataBegiNCIrEate() .....c.coveieieeiiiieie ettt et e e re e e sreennes 20-20
OCIANYDataCOHAAAEIZM() ..o 20-22
OCIANYDataCOIGELEIEMI() .oveiveieieisieie ettt e 20-24
(@ 10d AN g} VZ B -1 -1 @do] 0 V=T () PSSR 20-26
OCIANYDATADESIIOY () .. veveveteiisteieteiet ettt sttt sb bbbt st bbb nnenes 20-28
OCIANYDAtAENACTEALE() ..vvveveveiereirieierierieieeeee e eresese e e e sre et saesae e e esseseeseeseeneeresseans 20-29
OCIANYDataGetCUITATIINUIMI() ..cvveivieiecieeeee ettt sre s 20-30
OCIANYDATAGETTYPE() .. veveverterirteieteiett ettt sttt sttt sb bttt bbbt ne et nb e nnenes 20-31
OCIANYDALAISNUII() ...t renne e 20-32

OCI Any Data Set Interface FUNCLIONS .........cccovieiiiice e 20-33
OCIANYDataSEtAdAINSTANCE() ....vevvivieeriieieieeie et 20-34
OCIANYDataSetBegiNCrEaAte() .. v veierrerierierieieeeeeeeesese st e et e et e e sa e se e eneeresneens 20-36
OCIANYDAtASEIDESIIOY () ...eveiveeieerieiieeie sttt ste e ste e ste e sae st e be st et e eteesbeensesreeneesreenees 20-38
OCIANYDAtaSEIENACIEALE() ....evviveeeeeiietiieie et 20-39
OCIANYDAtaSEtGEICOUNT() .ovviveieieiieierieieieeee ettt reeneeresre e 20-40
OCIANYDataSetGetINSTANCE() .. ...veveieeiirieie ettt re s 20-41
OCIANYDALASEIGETTYPE() +vvvereireriitiietiriete ettt sttt sn s 20-42

XXiX



Part IV Appendixes

A

XXX

Handle and Descriptor Attributes

(07010 1V/=T 011 o] 13PTSR TSP USRR A-3
Environment Handle AtIriDULES ... e A-4
Error HaNdIe ATIFTDULES ........ooii bbb bbb e A-11
Service Context Handle AttrIDULES ..o e A-12
Server Handle ATHIDULES. ..o A-14
User Session Handle AtErDULES ... e A-17
Connection Pool Handle ATFDULES ..o e A-21
Transaction Handle AtIriDULES ..o e A-23
Statement Handle AIHDULES ..o e A-24
Bind Handle AHIDULES ..o e st A-32
Define Handle AtHDULES ..o A-35
Describe Handle ATFTDULES ... e A-38
Parameter DesCriptor ATIFIDULES ..o A-38
LOB LOCAtOr ALLIIDULES ......cviiciie bbbttt A-39
Complex ODJeCt ALIHDULES ..o e e A-40
Complex Object Retrieval Handle AttribDULES. ..o A-40
Complex Object Retrieval Descriptor AttrbULES ..........coevereiicieece e A-40
Advanced Queuing Descriptor AIITDULES ... A-42
OCIAQENQOptions Descriptor AttriDULES..........c.ccviiiiiircce e A-42
OCIAQDeqOptions Descriptor AttribBULES.........cccoviiiicccce e A-43
OCIAQMsgProperties Descriptor AFIDULES ..o A-46
OCIAQAQgeNt Descriptor AtIFDULES ..o A-50
OCIServerDNSs Descriptor AttriBULES ... A-51
Subscription Handle ATFIDULES. ..o e A-53
Direct Path Loading Handle AtIribULES...........ccoiiiiiiie e A-58
Direct Path Context Handle (OCIDirPathCtx) Attributes ........ccccovevvvivviviivcvve e, A-58
Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes..............ccccveee. A-62

Direct Path and Direct Path Function Column Array Handle (OCIDirPathColArray)
Attributes A-63

Direct Path Stream Handle (OCIDirPathStream) Attributes .........ccccoceveiveiviviiv s, A-65
Direct Path Column Parameter AFHDULES.............oovvviiiiiiceie e A-66
Process HanNle ATIIIDULES.........c.viiieie ettt e e e st e e s bt e s s sate e e sbee s A-72



B

OCI Demonstration Programs

C  OCI Function Server Round-trips

OVerview Of Server ROUNG-TIIPS. ...ttt C-2
Relational FUNCEION ROUNA-EIIPS .....oviieicieec e sne e C-2
LOB FUNCEION ROUNGA-TIIS ...ttt sttt ettt sb b e sne s C-3
Object and Cache FUNCION ROUN-TIIPS......coviiiiiiieiricciesiese e C-4
Describe Operation ROUNG-TIIPS ....ccciveiiiccciecese s e e sre s e snens C-6
Datatype Mapping and Manipulation Function ROUNd-trips.......c.ccccooeieiiiiiiiinincicncneee C-6
Other LOCAl FUNCHIONS ...ttt ettt sttt s e be b sbe st b e C-7
Index

XXXI



XXX



Send Us Your Comments

Oracle Call Interface Programmer’s Guide, Release 9.0.1
Part No. A89857-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
«  What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227 Attn: Information Development Department
« Postal service:

Oracle Corporation

Information Development Department

500 Oracle Parkway MS 4op1l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXXiii



xxxiv  Oracle Call Interface Programmer’s Guide



Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows applications written in C or C++ to interact with one or more Oracle
database servers. OCI gives your programs the capability to perform the full range
of database operations that are possible with an Oracle database server, including
SQL statement processing and object manipulation.

The Preface includes the following sections:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXXV



Audience

Organization

The Oracle Call Interface Programmer’s Guide is intended for programmers
developing new applications or converting existing applications to run in the
Oracle environment. This comprehensive treatment of OCI will also be valuable to
systems analysts, project managers, and others interested in the development of
database applications.

This guide assumes that you have a working knowledge of application
programming using C. Readers should also be familiar with the use of Structured
Query Language (SQL) to access information in relational database systems. In
addition, some sections of this guide also assume a knowledge of the basic concepts
of object-oriented programming.

See Also:

« For information about SQL, refer to the Oracle9i SQL Reference
and the Oracle9i Database Administrator’s Guide.

« For information about basic Oracle concepts, see Oracle9i
Database Concepts.

« For information about the differences between the Standard
Edition and the Enterprise Edition and all the features and
options that are available to you, see Oracle9i Database New
Features.

The Oracle Call Interface Programmer’s Guide contains four parts, split between two
volumes. A brief summary of what you will find in each chapter and appendix
follows:

PART I: OCI CONCEPTS

Part I (Chapter 1 through Chapter 9) provides conceptual information about how to
program with OCI to build scalable application solutions that provide access to
relational data in an Oracle database.

Chapter 1, "Introduction and Upgrading"

This chapter introduces you to the Oracle Call Interface and describes special terms
and typographical conventions that are used in describing the interface. This
chapter also discusses features new to the current release.

xxxvi Oracle Call Interface Programmer’s Guide



Chapter 2, "OCI Programming Basics"

This chapter gives you the basic concepts needed to develop an OCI program. It
discusses the essential steps each OCI program must include, and how to retrieve
and understand error messages

Chapter 3, "Datatypes”

Understanding how data is converted between Oracle tables and variables in your
host program is essential for using OCI. This chapter discusses Oracle internal and
external datatypes, and data conversions.

Chapter 4, "Using SQL Statements in OCI"
This chapter discusses the steps involved in SQL statements using OCI.

Chapter 5, "Binding and Defining"

This chapter discusses OCI bind and define operations in detail, including a
discussion of advanced bind and define operations.

Chapter 6, "Describing Schema Metadata"

This chapter discusses how to use the OCIDescribeAny()  call to obtain
information about schema objects and their associated elements.

Chapter 7, "LOB and FILE Operations"
This chapter describes OCI support for LOB, FILE, and temporary LOB datatypes.

Chapter 8, "Managing Scalable Platforms"

This chapter describes password management, session management, and thread
safety.

Chapter 9, "OCI Programming Advanced Topics"

This chapter covers more advanced OCI programming topics, including the OCI
thread support, descriptions of user callbacks, application failover callbacks,
advanced queuing, and publish-subscribe notification.

PART II: OCI OBJECT CONCEPTS

Part Il (Chapter 10 through Chapter 14) describes OCI functionality for accessing
object-relational data with OCI.

XXXVii



XXXViii

Chapter 10, "OCI Object-Relational Programming"

This chapter provides an introduction to the concepts involved when using OCI to
access objects in an Oracle database server. The chapter includes a discussion of
basic object concepts and object navigational access, and the basic structure of
object-relational applications.

Chapter 11, "Object-Relational Datatypes"

This chapter outlines the object datatypes used in OCI programming. This chapter

discusses the C mappings of user-defined datatypes in an Oracle database, and the
functions that manipulate such data. Binding and defining using these C mappings
is also covered.

Chapter 12, "Direct Path Loading"
Discusses loading of data from files into scalar and object columns.

Chapter 13, "Object Cache and Object Navigation"

This chapter provides an introduction to the concepts involved when using OCI to
access objects in an Oracle database server. This chapter also discusses the Object
Cache, and the use of OCI navigational calls to manipulate objects retrieved from
the server.

Chapter 14, "The Object Type Translator (OTT)"

This chapter discusses the use of the Object Type Translator to convert database
object definitions to C structure representations for use in OCI applications.

PART Ill: OCI REFERENCE
Part 11l (Chapter 15 through Chapter 20) lists OCI function calls in the OCI library.

Chapter 15, "OCI Relational Functions"

This chapter contains a list of OCI relational functions, including syntax, comments,
parameter descriptions, and other useful information.

Chapter 16, "More OCI Relational Functions"

Continues the OCI relational functions started in the last chapter. It covers LOB,
threads, transaction management and miscellaneous functions.

Oracle Call Interface Programmer’s Guide



Chapter 17, "OCI Navigational and Type Functions"

This chapter contains a list of OCI navigational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 18, "OCI Datatype Mapping and Manipulation Functions"

This chapter contains a list of OCI datatype mapping and manipulation functions,
including syntax, comments, parameter descriptions, and other useful information.

Chapter 19, "OCI Cartridge Functions”

This chapter discusses special OCI functions used by external procedures and
cartridge functions.

Chapter 20, "OCI Any Type and Data Functions"
This chapter describes the OCI Any Type and Data functions.

PART IV: APPENDIXES

Part IV (Appendix A through Appendix C) provides additional reference
information about OCI programming.

Appendix A, "Handle and Descriptor Attributes"

This appendix describes the attributes of OCI application handles that can be set or
read using OCI calls.

Appendix B, "OCI Demonstration Programs"

This appendix gives the names of important OCI demonstration programs that are
included with the Oracle installation.

Appendix C, "OCI Function Server Round-trips"

This appendix includes tables which show the estimated number of server
roundtrips required by various OCI applications.

Where to Begin

Because of the many enhancements to OCI, both new and experienced users should
read the conceptual material in Part 1.

Readers familiar with the current version of OCI and interested in its object
capabilities may want to skim Part 1 and then begin reading the chapters in Part II.

XXXIX



Readers looking for reference information, such as OCI function syntax and handle
attribute descriptions, should refer to Part 11l and Part IV.

Related Documentation

xl

In North America, printed documentation is available for sale in the Oracle Store at
http:/oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http/fechnet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/technet.oracle.com/docs/index.htm

The Oracle Call Interface Programmer’s Guide does hot contain all information that
describes the features and functionality of OCI in the Standard Edition and the
Enterprise Edition products.

Oracle C++ Call Interface

For C++ programmers, the Oracle C++ Call Interface provides OCI functionality for
C++ programs and lets you manipulate database objects (of user-defined types) as
C++ objects.

Other Sources of Information about OCI
For other sources of information about OCI:

Oracle Call Interface Programmer’s Guide



Conventions

See Also:

The following notational and text formatting conventions are used in this guide:

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted. In syntax, an ellipsis means that the previous item can be repeated.

For information about the C++ Call interface, refer to Oracle
C++ Call Interface Programmer’s Guide.

For information about cartridge services, and the OCI calls
pertaining to development of data cartridges, refer to Oracle9i
Data Cartridge Developer’s Guide.

For information about OCI calls pertaining to National
Language and Globalization Support, see the chapter "OCI
Programming” in Oracle9i Globalization and National Language
Support Guide.

For information about OCI calls pertaining to Advanced
Queuing, see Oracle9i Application Developer’s Guide - Advanced
Queuing.

For information about using OCI with the XA library, see
Oracle9i Application Developer’s Guide - Fundamentals.

For information about using OCI calls to manipulate LOBs,
including code examples, see Oracle9i Application Developer’s
Guide - Large Objects (LOBS).

For a more detailed explanation of object types, see Oracle9i
Application Developer’s Guide - Object-Relational Features.

For a list of Frequently Asked Questions (FAQs) and a tutorial
on OCI, see the web site at

http://www.oracle.com/

and select Technologies, OCI, Tech Info.

xli



xlii

monospace font

SQL and C code examples, OCI function names, database objects, packages,
usernames, file names, and directory names are shown in monospace font. Syntax
examples are in monospace font also.

italics
Italics are also used for emphasis and for the titles of documents.

monospace italic
Monospace italics are used for OCI parameters, and user-supplied data fields, when
used in body text. Plain font is used for these items when used in tables and in lists.

MONOSPACE UPPERCASE
Monospace uppercase is used for SQL or PL/SQL keywords, such as SELECTor
UPDATE

See Also:  Oracle9i SQL Reference and the PL/SQL User’s Guide and
Reference to see the lists of the keywords and reserved words for
SQL and PL/SQL

bold
Boldface type is used to identify the names of C datatypes, such as ub4, sword , or
OCINumber. Bold is sometimes used in code examples for emphasis.

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The Note flag indicates that the reader should pay
particular attention to the information to avoid a common problem
or increase understanding of a concept.

7.x Upgrade Note:  An item marked with "7.x Upgrade Note"
typically alerts the programmer to something that is done much
differently in the releases 8 and later OCI than in the 7.x OCls.

Oracle Call Interface Programmer’s Guide



Caution:  An item marked Caution indicates something that an
OCI programmer must be careful to do or not do in order for an
application to work correctly.

See Also:  Text marked See Also points you to another section of
this guide, or to other documentation, for additional information
about the topic being discussed.

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http/Aww.oracle.com/accessibility/
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

xliii



xliv  Oracle Call Interface Programmer’s Guide



What's New Iin Oracle Call Interface?

The following sections describe the new features in Oracle Call Interface:
« Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface
»  Oracle9i Release 9.0.0 New Features in Oracle Call Interface

» Oracle8i Release 2 (8.1.6) New Features in Oracle Call Interface

xlv



Oracle9/ Release 1 (9.0.1) New Features in Oracle Call Interface

xlvi

« Defining LOB Output Variables

This section has been re-written.

See Also: "Defining LOB Output Variables" on page 5-22

« Supporting UTF-16 Unicode

This discussion has been re-written.

See Also:
« "Globalization Support” on page 2-46

« "Character Conversion Issues in Binding and Defining" on
page 5-35

« "Bind Handle Attributes” on page A-32
« "Define Handle Attributes" on page A-35

« Advanced Queuing

Changes were made in the interfaces of publish-subscribe notification and in the
OCI function OCISubscriptionRegister() . Several subscription handle
attributes were modified and several were added. Open registration for
publish-subscribe has been added.

See Also:

« "Publish-Subscribe Notification" on page 9-46

« "Publish-Subscribe Registration Functions” on page 9-47
« "OCISubscriptionRegister()" on page 16-91

« "Subscription Handle Attributes” on page A-53

« "Publish-Subscribe Registration Functions” on page 9-47
« "OCIServerDNs Descriptor Attributes” on page A-51

« "Environment Handle Attributes" on page A-4

« "Publish-Subscribe LDAP Registration Example” on page 9-59



« Direct Path Loading

Direct path loading of data into object columns as well as scalar columns, is now
supported. Direct path loading is moved to chapter 12, so that it now appears after
the discussion of objects and their use. Sections on binding and defining object
datatypes are now at the end of chapter 11.

See Also:
« Chapter 12, "Direct Path Loading"
« "Direct Path Loading Handle Attributes" on page A-58

Oracle9/ Release 9.0.0 New Features in Oracle Call Interface

This document has these new features. Each of these features is discussed in greater
detail in the cross-referenced sections:

« Connection Pooling

This feature allows you to use many logical connections in a single physical
connection.

See Also:
« "Connection Pooling" on page 9-14
« "Connect, Authorize, and Initialize Functions" on page 15-4

«  "Connection Pool Handle Attributes" on page A-21

« Scrollable cursors.

Members of a result set can be accessed in non-sequential order.

See Also:
= "Scrollable Cursors" on page 4-18

« "Statement Functions" on page 15-83

« Globalization support.

Various OCI calls support UTF-16 for SQL statements, data, metadata, objects, and
error messages.

See Also:  "Globalization Support" on page 2-46

xIvii



xlviii

« Middle-tier applications.

New attributes have been added for client authentication.

See Also:  "Middle-tier Applications" on page 8-15

« New datatypes.

Datetime and Interval and Daylight Savings datatypes are described in the
following sections:

See Also:
« "Datetime and Interval Datatype Descriptors" on page 3-23

« "Datetime and Interval (OCIDateTime, OClInterval)" on
page 11-9

« "Data Conversions for Datetime and Interval Datatypes" on
page 3-29

« and "OCI Date, Datetime, and Interval Functions" on
page 18-28

« Any Type, AnyData, AnyDataSet.

An OCIlAnyData encapsulates type information as well as a data instance of that
type (i.e. self descriptive data). An OCIAnyDataSet encapsulates type information
as well as a set of instances of that type.

See Also:  "Any Type, AnyData and AnyDataSet Interfaces" on
page 11-29 and the corresponding new functions in Chapter 20,
"OCI Any Type and Data Functions"

« Using LOB columns instead of LONG columns.

See Also:  "Runtime Data Allocation and Piecewise Operations"
on page 5-44 has been rewritten with new features for support of
LOBs.



« Subtypes of objects can be defined.

See Also:
« "Type Inheritance" on page 10-37
« "OTT Support for Type Inheritance" on page 14-17

« Type evolution.

How the attributes of types can be changed.

See Also:  "Type Evolution" on page 10-42

« Multilevel collection types.

Collections whose elements are collections.

See Also:  "Multilevel Collection Types" on page 11-26

« Externally initialized context.

An externally initialized context is an application context whose attributes can be
initialized from OCI.

See Also:
« "Externally Initialized Context" on page 8-22

« "User Session Handle Attributes" on page A-17

« Caching.

See Also:  "Oracle9i Application Server Cache" on page 8-26 for
this performance-enhancing feature
»  Structural changes to this document:
« Chapter 15 of release 8.1.6 has been split into chapters 15 and 16.

« The sections in chapters 15 and 16 have been rearranged in a more logical
order.

« Chapters 17, 18, 19 were chapters 16, 17, 18 in release 8.1.6.
« Chapter 20 has been added.

xlix



See Also:

« See the section "Compatibility, Upgrading, and Migration” on
page 1-18 for information about new calls that supersede
existing routines.

« See the table of contents and the index for entries for the new
features.

Oracle8j Release 2 (8.1.6) New Features in Oracle Call Interface

The 8.1 releases of OCI have the following new features and performance
advantages:

« Avrevised callback mechanism has been implemented.

« Adiscussion of middle-tier authentication attributes is now in this guide.
« Cartridge service functions are now documented in this guide.
« Ability to create new object with non-NULL attribute values.

« Support for universal ROWIDs.

« Support for fixed-width Unicode.

« OClIThread package for thread manipulation.

« Ability to register user-created callback functions.

« Enhanced application failover processing ability.

« Support for publish/subscribe notification.

« No-wait locking option for objects.

« Ability to detect object changes when flushing.

« Support for temporary LOBs.

« Enhancements to LOB support.

« Enhanced array DML statement execution allowing all errors to be returned in a
batch.

« Enhanced DML...RETURNING support.
« Ability to create objects based on object views or user-created object IDs.

« Support for non-blocking mode.



Additional functional and performance enhancements.
Publish-subscribe functionality for client notification of events.

Direct path loading calls that provide access to the direct block formatter of the
Oracle server.

Reduced memory usage at runtime.
Increased runtime performance with code reduction.

Increased query performance with streamlined and more efficient fetch
protocol.






Part |

OCI Concepts

This part of the guide contains chapters that describe OCI programming concepts:

Chapter 1, "Introduction and Upgrading", provides an introduction to the OClI
and discusses features that are new to this release.

Chapter 2, "OCI Programming Basics", discusses the basic concepts of OCI
programming.

Chapter 3, "Datatypes", describes datatypes used in OCI applications and
within the server.

Chapter 4, "Using SQL Statements in OCI", discusses how to process SQL
statements using OCI.

Chapter 5, "Binding and Defining", discusses bind and define operations in
detail.

Chapter 6, "Describing Schema Metadata”, discusses the OCIDescribeAny()
function.

Chapter 7, "LOB and FILE Operations", discusses the OCI functions that
perform operations on large objects (LOBs) in a database and external LOBs.

Chapter 8, "Managing Scalable Platforms", discusses password and session
management, middle-tier applications, and externally initialized context.

Chapter 9, "OCI Programming Advanced Topics", covers advanced topics in
OCI programming, such as threads, connection pooling, user-defined callbacks,
advanced queuing, and publish-subscribe notification.






Introduction and Upgrading

This chapter introduces you to the Oracle Call Interface (OCI). It provides
background information that you need to develop applications using OCI. This
chapter also introduces special terms that are used in discussing OCI.

The following topics are covered:
«  Overview of OCI

« Compatibility, Upgrading, and Migration

Introduction and Upgrading 1-1



Overview of OCI

Overview of OCI

The Oracle Call Interface (OCI) is an application programming interface (API) that
lets you create applications that use the native procedures or function calls of a
third-generation language to access an Oracle database server and control all phases
of SQL statement execution. OCI supports the datatypes, calling conventions,
syntax, and semantics of C and C++.

See Also:

« For information about the C++ Call interface, refer to Oracle
C++ Call Interface Programmer’s Guide

« "Other Sources of Information about OCI" on page xI

OCI provides:

« Improved performance and scalability through the efficient use of system
memory and network connectivity.

« Consistent interfaces for dynamic session and transaction management in a
two-tier client-server or multitier environment.

« N-tiered authentication.
« Comprehensive support for application development using Oracle objects.
« Access to external databases.

« Applications that can service an increasing number of users and requests
without additional hardware investments.

OCI lets you manipulate data and schemas in an Oracle database using a host
programming language, such as C. It provides a library of standard database access
and retrieval functions in the form of a dynamic runtime library (OCI library) that
can be linked in an application at runtime. This eliminates the need to embed SQL
or PL/SQL within 3GL programs.

OCI has many new features that can be categorized into several primary areas:

« Encapsulated/opaque (meaning that the details of which are unknown)
interfaces.

« Simplified user authentication and password management.
« Extensions to improve application performance and scalability.

« Consistent interface for transaction management.

1-2 Oracle Call Interface Programmer’s Guide



Overview of OCI

Advantages of OCI

OCI extensions to support client-side access to Oracle objects.

OCI provides significant advantages over other methods of accessing an Oracle
database:

More fine-grained control over all aspects of the application design.
High degree of control over program execution.

Use of familiar 3GL programming techniques and application development
tools such as browsers and debuggers.

Support of dynamic SQL.

Availability on the broadest range of platforms of all the Oracle programmatic
interfaces.

Dynamic bind and define using callbacks.
Describe functionality to expose layers of server metadata.
Asynchronous event notification for registered client applications.

Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes.

Ability to associate a commit request with an execute to reduce roundtrips.

Optimization for queries using transparent prefetch buffers to reduce
roundtrips.

Thread safety; you do not have to use mutual exclusive locks (mutexes) on OCI
handles.

Building an OCI Application

As Figure 1-1 shows, you compile and link an OCI program in the same way that
you compile and link a non-database application. There is no need for a separate
preprocessing or precompilation step.

Introduction and Upgrading 1-3



Overview of OCI

Figure 1-1 The OCI Development Process

Source Files

'

L Host Language Compiler

Object Files 17 OClI Library

Host Linker
_—

Application
N~

Oracle supports most popular third-party compilers. The details of linking an OCI
program vary from system to system. On some platforms, it may be necessary to
include other libraries, in addition to the OCI library, to properly link your OCI
programs. See your Oracle system-specific documentation and the installation
guide for more information about compiling and linking an OCI application for
your specific platform.

Parts of OCI
OCI has this functionality:

« APIsto design a scalable, multithreaded application that can support large
numbers of users securely.

1-4 Oracle Call Interface Programmer’s Guide



Overview of OCI

«  SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database server.

« Datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types.

« Data loading functions, for loading data directly into the database without
using SQL statements.

« External procedure functions, for writing C callbacks from PL/SQL.

Procedural and Non-Procedural Elements

The Oracle Call Interface (OCI) lets you develop scalable, multithreaded
applications on multitier architecture that combine the non-procedural data access
power of Structured Query Language (SQL) with the procedural capabilities of C
and C++,

« Inanon-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

« Inaprocedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
very flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to an Oracle database in a structured
programming environment.

OCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example,
an OCI program can run a query against an Oracle database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be
supplied by the application.

Introduction and Upgrading 1-5



Overview of OCI

You can also take advantage of PL/SQL, Oracle’s procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications
written in SQL alone. OCI also provides facilities for accessing and manipulating
objects in an Oracle database server.

Object Support

OCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object
might have attributes—first name ,last name , and age—which represent a
person’s identifying characteristics.

« The object type definition serves as the basis for creating objects, which
represent instances of the object type. Using the object type as a structural
definition, a person object could be created with the attributes *John’,
‘Bonivento’, and '30’. Object types may also contain methods—programmatic
functions that represent the behavior of that object type.

See Also:  For a more detailed explanation of object types and
objects, see Oracle9i Database Concepts and Oracle9i Application
Developer’s Guide - Object-Relational Features.

OCI includes functions that extend the capabilities of OCI to handle objects in an
Oracle database server. Specifically, the following capabilities have been added to
OCI:

= Support for execution of SQL statements that manipulate object data and
schema information.

« Support for passing object references and instances as input variables in SQL
statements.

« Support for declaring object references and instances as variables to receive the
output of SQL statements.

« Support for fetching object references and instances from a database.

« Support for describing the properties of SQL statements that return object
instances and references.

« Support for describing PL/SQL procedures or functions with object parameters
or results.

1-6 Oracle Call Interface Programmer’s Guide



Overview of OCI

« Commit and rollback calls have been extended to synchronize object and
relational functionality.

Additional OCI calls are provided to support manipulation of objects after they
have been accessed by way of SQL statements. For a more detailed description of
enhancements and new features, refer to "Encapsulated Interfaces" on page 1-12.

SQL Statements

One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle
recognizes several types of SQL statements:

« Data Definition Language
« Control Statements
= Transaction Control
= Session Control
« System Control
« Data Manipulation Language (DML)

«  Queries

Note: Queries are often classified as DML statements, but OCI
applications process queries differently, so they are considered
separately here.

« PL/SQL.
« Embedded SQL.

See Also:  Chapter 4, "Using SQL Statements in OCI"

Data Definition Language

Data Definition Language (DDL) statements manage schema objects in the
database. DDL statements create new tables, drop old tables, and establish other
schema objects. They also control access to schema objects.

The following is an example of creating and specifying access to a table:

Introduction and Upgrading 1-7



Overview of OCI

CREATE TABLE employees
(nhame  VARCHAR2(20),
ssn  VARCHAR2(12),
empno NUMBER(),
mgr  NUMBER(6),

salary NUMBER())

GRANT UPDATE, INSERT, DELETE ON employees TO donna
REVOKE UPDATE ON employees FROM jamie

DDL statements also allow you to work with objects in the Oracle database server,
as in the following series of statements which creates an object table:

CREATE TYPE person_tAS OBJECT (
name VARCHAR2(30),
ssn VARCHAR2(12),
address VARCHAR2(50))

CREATE TABLE person_tab OF person_t

Control Statements

« OCl applications treat transaction control, session control, and system control
statements like DML statements.

See Also:  Oracle9i SQL Reference for information about these
types of statements

Data Manipulation Language

Data manipulation language (DML) statements can change data in the database
tables. For example, DML statements are used to

« Insert new rows into a table

« Update column values in existing rows

« Delete rows from a table

« Lock atable in the database

« Explain the execution plan for a SQL statement

« DML statements can require an application to supply data to the database using
input (bind) variables.

1-8 Oracle Call Interface Programmer’s Guide



Overview of OCI

See Also:  "What is Binding?" on page 4-6 for more information
about input bind variables

DML statements also allow you to work with objects in the Oracle database server,
as in the following example, which inserts an instance of type person_t into the
object table person_tab

INSERT INTO person _tab
VALUES (person_t('Steve May’,'123-45-6789','146 Winfield Street))

Queries

Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT as in
the following example:

SELECT dname FROM dept
WHERE deptno =42

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name
FROM employees
WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be
supplied by the application.

«  When processing a query, an OCI application also needs to define output
variables to receive the returned results. In the above statement, you would
need to define an output variable to receive any name values returned from the

query.

Introduction and Upgrading 1-9



Overview of OCI

See Also:

« "Binding" on page 5-2 for more information about input bind
variables. See the section "Defining" on page 5-19 for
information about defining output variables.

« See Chapter 4, "Using SQL Statements in OCI", for detailed
information about how SQL statements are processed in an
OCI program.

PL/SQL

PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows a number of constructs to be grouped into a
single block and executed as a unit. Among these are:

« One or more SQL statements.

« Variable declarations.

» Assignment statements.

« Procedural control statements (IF.. THEN...ELSE statements and loops).
« Exception handling.

You can use PL/SQL blocks in your OCI program to:

« Call Oracle stored procedures and stored functions.

« Combine procedural control statements with several SQL statements, to be
executed as a single unit.

« Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling.

« Use cursor variables.
« Access and manipulate objects in an Oracle database server.

The following PL/SQL example issues a SQL statement to retrieve values from a
table of employees, given a particular employee number. This example also
demonstrates the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename =:emp_number,

1-10 Oracle Call Interface Programmer’s Guide



Overview of OCI

END;

= Note that the placeholders in this statement are not PL/SQL variables. They
represent input values passed to Oracle when the statement is processed. These
placeholders need to be bound to C language variables in your program.
See Also:

« See the PL/SQL User’s Guide and Reference for information about
coding PL/SQL blocks.

« See the section "Binding Placeholders in PL/SQL" on page 5-5
for information about working with placeholders in PL/SQL.

Embedded SQL

OCI processes SQL statements as text strings, which an application passes to Oracle
on execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN)
allow you to embed SQL statements directly into your application code. A separate
precompilation step is then necessary to generate an executable application.

« ltis possible to mix OCI calls and embedded SQL in a precompiler program.

See Also:  Refer to the Pro*C/C++ Precompiler Programmer’s Guide
for more information.

Special OCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement. For
example, a SQL statement such as

SELECT customer, address
FROM customers

WHERE bus_type ='SOFTWARE'
AND sales volume = :sales

contains the following parts:

« A SQL command — SELECT.

«  Two select-list items — customer and address.

= Atable name in the FROMIlause — customers.

«  Two column names in the WHERElause — bus_type and sales_volume.
«  Aliteral input value in the WHERIElause — 'SOFTWARE

Introduction and Upgrading 1-11



Overview of OCI

« A placeholder for an input variable in the WHER[Elause — :sales.

When you develop your OCI application, you call routines that specify to the Oracle
database server the address (location) of input and output variables in your
program. In this guide, specifying the address of a placeholder variable for data
input is called a bind operation. Specifying the address of a variable to receive
select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations. These
terms and operations are described in Chapter 4, "Using SQL Statements in OCI".

Encapsulated Interfaces

All the data structures that are used by OCI are encapsulated in the form of opaque
interfaces that are called handles. A handle is an opaque pointer to a storage area
allocated by the OCI library that stores context information, connection information,
error information, or bind information about a SQL or PL/SQL statement. A client
allocates a certain type of handle, populates one or more of those handles through
well-defined interfaces, and sends requests to the server using those handles. In
turn, applications can access the specific information contained in the handle by
using accessor functions. The OCI library manages a hierarchy of handles.
Encapsulating the OCI interfaces using these handles has several benefits to the
application developer including:

« Reduction in the amount of server side state information that needs to be
retained thereby reducing server side memory usage.

« Improved application developer productivity by eliminating the need for global
variables, making error reporting easier and providing consistency in the way
OCl variables are accessed and used.

« Further, the encapsulation of OCI structures in the form of handles makes them
opaque, allowing changes to be made to the underlying structure without
affecting applications.

Simplified User Authentication and Password Management

OCI provides application developers simplified user authentication and password
management in several ways:

« Allows asingle OCI application to authenticate and maintain multiple users.

= Allows the application to update a user’s password which is particularly
helpful if an expired password message is returned by an authentication
attempt.

1-12 Oracle Call Interface Programmer’s Guide



Overview of OCI

OCI supports two types of login sessions:

A simplified login function for sessions where a single user connects to the
database using a login name and password.

A setup in which a single OCI application authenticates and maintains multiple
sessions by separating the login session, which is the session created when a
user logs into an Oracle database, from the user sessions, which are all other
sessions created by a user. This is an important difference from Oracle 7.3, in
which sessions could be created implicitly by starting new transactions once the
user has logged in to the database, a process called session cloning. These user
sessions in Oracle 7.3 inherited the privileges and security context from the
login session. OCI requires a client to provide all the necessary authentication
information for each user session. This allows an OCI application to support
multiple users.

Extensions to Improve Application Performance and Scalability

OCI has several enhancements to improve application performance and scalability.
Application performance has been improved by reducing the number of client to
server round trips required and scalability improvements have been facilitated by
reducing the amount of state information that needs to be retained on the server
side. Some of these features include:

Increased client-side processing, and reduced server-side requirements on
gueries.

Implicit prefetching of SELECTstatement result sets to eliminate the describe
round trip, reduce roundtrips, and reduce memory usage.

Elimination of open and close cursor round trips.
Improved support for multithreaded environments.
Session multiplexing over connections.

Consistent support for a variety of configurations including standard 2-tier
client-server configurations, server-to-server transaction coordination, and
3-tier TP-monitor configurations.

Consistent support for local and global transactions including support for the
XA interface’s TM_JOIN operation.

Improved scalability by providing the ability to concentrate connections,
processes, and sessions across users on connections and eliminating the need
for separate sessions to be created for each branch of a global transaction.

Introduction and Upgrading 1-13



Overview of OCI

« Allowing applications to authenticate multiple users and allow transactions to
be started on their behalf.

OCI Object Support

OCI provides the most comprehensive application programming interface for
programmers seeking to use the Oracle server’s object capabilities. These features
can be divided into five major categories:

« Client-Side Object Cache.
« Associative and navigational interfaces to access and manipulate objects.
« Runtime environment for objects.

« Type management functions to access information about object types in an
Oracle database.

« Type mapping and manipulation functions for manipulating data attributes of
Oracle types.

«  Object Type Translator utility, which maps internal Oracle schema information
to client-side language bind variables.

Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects instances which have
been fetched by an OCI application from the server to the client side. The object
cache is created when the OCI environment is initialized. Multiple applications
running against the same server will each have their own object cache. The cache
tracks the objects which are currently in memory, maintains references to objects,
manages automatic object swapping and tracks the meta-attributes or type
information about objects. The cache provides the following to OCI applications:

« Improved application performance by reducing the number of client-to-server
round trips required to fetch and operate on objects.

« Enhanced scalability by supporting object swapping from the client-side cache.

« Improved concurrency by supporting object-level locking.

Associative and Navigational Interfaces

Applications using OCI can access objects in the Oracle server through several types
of interfaces:

1-14 Oracle Call Interface Programmer’s Guide



Overview of OCI

Using SQL SELECT INSERT, and UPDATEstatements.

Using a C-style pointer chasing scheme to access objects in the client-side cache
by traversing the corresponding smart pointers or REFs.

OCI provides a set of functions with extensions to support object manipulation
using SQL SELECTINSERT, and UPDATEstatements. To access Oracle objects these
SQL statements use a consistent set of steps as if they were accessing relational
tables. OCI provides the following sets of functions required to access objects using
SQL statements for:

Binding and defining object type instances and references as input and output
variables of SQL statements.

Executing SQL statements that contain object type instances and references.
Fetching object type instances and references.

Describing a select-list item of an Oracle object type.

OCI also provides a set of functions using a C-style pointer chasing scheme to
access objects once they have been fetched into the client-side cache by traversing
the corresponding smart pointers or REFs. This navigational interface provides
functions for:

Instantiating a copy of a referenceable persistent object, that is, of a persistent
object with object ID in the client-side cache by pinning its smart pointer or REF

Traversing a sequence of objects that are connected to each other by traversing
the REFs that point from one to the other.

Dynamically getting and setting values of an object’s attributes.

Runtime Environment for Objects

OCI provides a runtime environment for objects that offers a set of functions for
managing how Oracle objects are used on the client-side. These functions provide
the necessary functionality for:

Connecting to an Oracle server in order to access its object functionality
including initializing a session, logging on to a database server, and registering
a connection.

Setting up the client-side object cache and tuning its parameters.
Getting errors and warning messages.

Controlling transactions that access objects in the server.

Introduction and Upgrading 1-15



Overview of OCI

« Associatively accessing objects through SQL.

« Describing a PL/SQL procedure or function whose parameters or result are of
Oracle type system types.

Type Management, Mapping and Manipulation Functions
OCI provides two sets of functions to work with Oracle objects:

« Type Mapping functions allow applications to map attributes of an Oracle
schema which are represented in the server as internal Oracle datatypes such as
Oracle’s number, date and string types to their corresponding host language
types such as integer, months and days.

« Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting/getting their values
and flushing their values to the server.

Additionally, the OCIDescribeAny()  function can provide information about
objects stored in the database.

Object Type Translator

The Object Type Translator (OTT) utility translates schema information about
Oracle object types into client-side language bindings. That is, the Oracle OTT
translates type information into declarations of host language variables, such as
structures and classes. The OTT takes an intype file which contains metadata
information about Oracle schema objects as input. The OTT generates an outtype
file and the necessary header and implementation files that must be included ina C
application that runs against the object schema. Both OCI applications and
Pro*C/C++ precompiler applications may include code generated by the OTT. The
OTT has many benefits including:

« Improves application developer productivity: OTT eliminates the need for
application developers to write by hand the host language variables that
correspond to schema objects.

« Maintains SQL as the data-definition language of choice: By providing the
ability to automatically map Oracle schema objects that are created using SQL
to host language variables, OTT facilitates using SQL as the data-definition
language of choice. This in turn allows Oracle to support a consistent model of
the user’s data, enterprise-wide.

1-16 Oracle Call Interface Programmer’s Guide



Overview of OCI

« Facilitates schema evolution of object types: OTT provides the ability to
regenerate included header files when the schema is changed allowing Oracle
applications to support schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file and the specific database connection. With Oracle, OTT can only
generate C structs which can either be used with OCI programs or with the
Pro*C/C++ precompiler programs.

OCI Support for Oracle Advanced Queuing

OCI provides an interface to Oracle’s Advanced Queuing (AQ) feature. Oracle AQ
provides message queuing as an integrated part of the Oracle server. Oracle AQ
provides this functionality by integrating the queuing system with the database,
thereby creating a message-enabled database. By providing an integrated solution
Oracle AQ frees you to devote your efforts to your specific business logic rather
than having to construct a messaging infrastructure.

See Also:  For more information about the OCI AQ features, refer
to "OClI and Advanced Queuing" on page 9-42.

XA Library Support

See Also:  Oracle9i Application Developer’s Guide - Fundamentals for
information about support for the Oracle XA library.

Simplified Migration of Existing Applications

OCI has been significantly improved with many features. Applications written to
work with OCI release 7 have a smooth migration path to this OCI release because
of the interoperability of OCI release 7 clients with this release of the server, and of
clients of this release with an Oracle7 database server.

Specifically:

« Applications that use OClI release 7.3 work unchanged against this release of the
server.

« Applications that use this release of OCI work against an Oracle7 server
provided they do not use any of the new capabilities of OCI or the server.

« OCl release 7 and the OCI calls of this release can be mixed in the same
application and in the same transaction provided they are not mixed within the
statement.

Introduction and Upgrading 1-17



Compatibility, Upgrading, and Migration

As a result, when migrating an existing OCI release 7 application you have the
following three alternatives:

« Retain Oracle7 OCI client: You can retain your Oracle7 OCI applications
without making any modifications - they will continue to work against a
current server.

« Upgrade to the current OCI client but do not modify application: You who
choose to upgrade from an Oracle7 OCI client to the current release OCI client
need only relink the new version of the OCI library and need not recompile
your application. The relinked Oracle7 OCI applications work unchanged
against a current server.

« Upgrade to Oracle9i OCI client and modify application: To use the
performance and scalability benefits provided by the new OCI, however, you
will need to modify your existing applications to use the new OCI
programming paradigm, relink them with the new OCI library, and run them
against the current release of the server.

Further, if you need to use any of the object capabilities of the current server release,
you will need to upgrade your client to use the this release of OCI.

Compatibility, Upgrading, and Migration

This OCI release provides support for applications written with either the 7.x OCI
or the 8.x or later OCI. This section discusses issues concerning compatibility
between different versions of OCI and server, changes in the OCI library routines,
and migrating an application from the release 7.x OCI to this release of OCI.

See Also:  For the most recently updated information about
compatibility, upgrading, and migration, refer to Oracle9i Database
Migration

Obsolescent OCI Routines

Release 8.0 of the Oracle Call Interface introduced an entirely new set of functions
which were not available in release 7.3. Release 8.1 added more new functions.
Oracle9i OCI continues to support these new functions, and adds more new calls. The
earlier 7.x calls are still available, but Oracle strongly recommends that existing
applications use the new calls to improve performance and provide increased
functionality.

Table 1-1, "Obsolescent OCI Routines" lists the 7.x OCI calls with their release 8.x or
later equivalents. For more information about the OCI calls, see the function

1-18 Oracle Call Interface Programmer’s Guide



Compatibility, Upgrading, and Migration

descriptions in Part Il of this guide. For more information about the 7.x calls, see
the Programmer’s Guide to the Oracle Call Interface, Release 7.3. These 7.x calls are
obsoleted, meaning that OCI has replaced them with newer calls. While the
obsoleted calls are supported at this time, they may not be supported in all future

versions of OCI.

Note: In many cases the new OCI routines do not map directly
onto the 7.x routines, so it may not be possible to simply replace
one function call and parameter list with another. Additional
program logic may be required before or after the new call is made.
See the remaining chapters of this guide for more information.

Table 1-1 Obsolescent OCI Routines

7.x OCI Routine

Equivalent or Similar 8.x or Later OCI Routine

obindps(), obndra(),
obndrn(), obndrv()

obreak()
ocan()
oclose()
ocof(), ocon()
ocom()

odefin(), odefinps()

odescr()

odessp()
oerhms()
oexec(), oexn()

oexfet()

ofen(), ofetch()
ofing()

OCIBindByName(), OCIBindByPos() (Note: additional bind
calls may be necessary for some data types)

OCIBreak()

none

Note: cursors are not used in release 8.x or later
OCIStmtExecute() with OCI_COMMIT_ON_SUCCESS mode
OCITransCommit()

OCIDefineByPos() (Note: additional define calls may be
necessary for some data types)

Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, will most often be done by
calling OCIAttrGet() on the statement handle after SQL
statement execution.

OClDescribeAny()
OCIErrorGet()
OCIStmtExecute()

OCIStmtExecute(), OCIStmtFetch() (Note: result set rows can
be implicitly prefetched)

OCIStmtFetch()

none

Introduction and Upgrading 1-19



Compatibility, Upgrading, and Migration

Table 1-1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine

Equivalent or Similar 8.x or Later OCI Routine

ogetpi()
olog()
ologof()

onbclr(), onbset(),
onbtst()

oopen()
oopt()
oparse()
opinit()
orol()
osetpi()
sqlld2()
sqllda()
odsc()
oermsg()
olon()
orlon()
oname()

0sql3()

OCIStmtGetPiecelnfo()
OClLogon()
OClILogoff()

Note: non-blocking mode can be set or checked by calling
OCIAttrSet() or OCIAttrGet() on the server context handle or
service context handle

Note: cursors are not used in release 8.x or later
none

OCIStmtPrepare(); however, it is all local
OCIEnvCreate()

OClITransRollback()
OCIStmtSetPiecelnfo()

SQLSvcCtxGet or SQLEnvGet
SQLSvcCtxGet or SQLEnvGet

Note: see odescr() above

OCIErrorGet()

OClLogon()

OClLogon()

Note: see odescr() above

Note: see oparse() above

See Also:

For information about the additional functionality

provided by new functions not listed here, see the remaining
chapters of this guide.

OCI Routines Not Supported

Some OCI routines that were available in previous versions of OCI are not
supported in Oracle8i or Oracle9i. They are listed in Table 1-2, "OCI Routines Not

Supported":

1-20 Oracle Call Interface Programmer’s Guide



Compatibility, Upgrading, and Migration

Compatibility

Table 1-2 OCI Routines Not Supported

OCI Routine Equivalent or Similar 8.x or Later OCI Routine

obind() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

obindn() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

odfinn() OCIDefineByPos() (Note: additional define calls may be
necessary for some data types)

odsrbn() Note: see odescr() in Table 1-1

ologon() OClLogon()

0sql() Note: see oparse() Table 1-1

This section addresses compatibility between different versions of OCI and Oracle
server.

Existing 7.x applications with no new release 8.x or later OCI calls have two choices:
« Do not relink the application.
« Relink with the new 8.x or later OCI library.

In either case, the application will work against both Oracle7 and Oracle8i or later,
with the exception that the function ocom() should be substituted for ocon() .
ocon() enables AUTOCOMMI{automatic commit of every DML statement), and
thus leads to an error in a subsequent fetch statement.

The application will not be able to use the object features of Oracle8i or later, and
will not get any of the performance or scalability benefits provided by those OCI
releases.

New applications written completely in OCI will work seamlessly against both
Oracle7 and Oracle8i or later, with the following exceptions:

« Against Oracle7 servers, none of Oracle’s object features are supported, and the
following datatypes are not supported:

« SQLT_NTY - named data type
« SQLT_REF - reference to named data type in host language representation.
« SQLT_CLOB - a character LOB data type.

Introduction and Upgrading 1-21



Compatibility, Upgrading, and Migration

SQLT_BLOB - a binary LOB data type.

SQLT_BFILE - a binary FILE LOB data type.

SQLT_RSET - result set data type.

SQLT_DATE - ANSI DATE

SQLT_TIMESTAMP - TIMESTAMP

SQLT_TIMESTAMP_TZ - TIMESTAMP WITH TIME ZONE
SQLT_TIMESTAMP_LTZ - TIMESTAMP WITH LOCAL TIME ZONE
SQLT_INTERVAL_DS - INTERVAL DAY TO SECOND
SQLT_INTERVAL_YM - INTERVAL YEAR TO MONTH

« Against Oracle7 Servers, the following calls or features are not supported, or are
supported with restrictions:

Table 1-3 Oracle8i or Later OCI Restrictions When Running Against Oracle7 Servers

Function Restrictions

OCIBindObject() not supported

OClIPasswordChange() not supported

OCIDefineObject() not supported

OClIDescribeAny() only supports description of select lists or stored procedures
OCIErrorGet() only a subset of Oracle error codes can be returned
OCIStmtFetch() prefetching options not supported

OCILob*() LOB/FILE calls are not supported

OCIAttrSet() setting NCHAR attributes not supported

OCIAttrGet() getting NCHAR attributes not supported

Upgrading

Programmers who wish to incorporate release 8.x or later functionality into existing
OCI applications have two options:

« Completely rewrite the application to use only new OCI calls (recommended).

« Incorporate new OCI release 8.x or later calls into the application, while still
using 7.x calls for some operations.

1-22 Oracle Call Interface Programmer’s Guide



Compatibility, Upgrading, and Migration

This manual should provide the information necessary to rewrite an existing
application to use only new OCI calls.

Adding 8.x or Later OCI Calls to 7.x Applications

The following guidelines apply to programmers who want to incorporate new
Oracle datatypes and features by using new OCI calls, while keeping 7.x calls for
some operations:

« Change the existing logon to use OCILogon() instead of olog() (or other
logon call). The service context handle can be used with new OCI calls or can be
converted into a Lda_Def to be used with 7.x OCI calls.

See Also:  See the description of OClServerAttach() on
page 16-71 and the description of OCISessionBegin() on
page 16-71 for information about the logon calls necessary for
applications which are maintaining multiple sessions.

« After the server context handle has been initialized, it can be used with OCI
release 8.x or later calls.

« Touse Oracle7 OCI calls, convert the server context handle to an Lda_Def using
OCISvcCtxToLda() , and pass the resulting Lda_Def to the 7.x calls.

Note: If there are multiple service contexts which share the same
server handle, only one can be in Oracle7 mode at any time.

« To begin using 8.x or later OCI calls again, the application must convert the
Lda_Def back to a server context handle using OClLdaToSvcCtx()

= The application may toggle between the Lda_Def and server context as often as
necessary in the application.

This approach allows an application to use a single connection, but two different
APIs, to accomplish different tasks.

You can mix and match OCI 7.x and OCI 8.x or later calls within a transaction, but
not within a statement. This lets you execute one SQL or PL/SQL statement with
OCI 7.x calls and the next SQL or PL/SQL statement within that transaction with
Oracle8.x or later OCI calls.

Introduction and Upgrading 1-23



Compatibility, Upgrading, and Migration

Caution:  You cannot open a cursor, parse with OCI 7.x calls and
then execute the statement with OCI 8.x or later calls.

1-24 Oracle Call Interface Programmer’s Guide



2

OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with

the OCI. This chapter covers the following topics:

Overview of OCI Programming
OCI Program Structure

OCI Data Structures

Handles

Descriptors

OCI Programming Steps

OCI Environment Initialization
Processing SQL Statements
Commit or Rollback
Terminating the Application
Error Handling

Additional Coding Guidelines

Using PL/SQL in an OCI Program

Globalization Support

OCI Programming Basics 2-1



OCI Program Structure

Overview of OCI Programming

This chapter provides an introduction to the concepts and procedures involved in
developing an OCI application. After reading this chapter, you should have most of
the tools necessary to understand and create a basic OCI application.

This chapter is broken down into the following major sections:

« OCI Program Structure - covers the basic overall structure of an OCI
application, including the major steps involved in creating one.

« OCI Data Structures - discusses handles, and descriptors.

«  OCI Programming Steps - discusses in detail each of the steps involved in
coding an OCI application.

« Error Handling - covers error handling in OCI applications.

« Additional Coding Guidelines - provides useful information to keep in mind
when coding an OCI application.

= Non-Blocking Mode - this section covers the use of non-blocking mode to
connect to an Oracle database server.

« Using PL/SQL in an OCI Program - discusses some important points to keep in
mind when working with PL/SQL in an OCI application.

New users should pay particular attention to the information presented in this
chapter, because it forms the basis for the rest of the material presented in this
guide. The information in this chapter is supplemented by information in later
chapters.

See Also:

« For adiscussion of the OCI functions that apply to a
multilingual environment, see the Oracle9i Globalization and
National Language Support Guide

« For adiscussion of the OCI functions that apply to cartridge
services, see the Oracle9i Data Cartridge Developer’s Guide.

OCI Program Structure

The general goal of an OCI application is to operate on behalf of multiple users. In
an n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

2-2 Oracle Call Interface Programmer’s Guide



OCI Program Structure

The OCI uses the following basic program structure:
1. Initialize the OCI programming environment and threads.
2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

4. Reexecute prepared statements, or prepare a new statement for execution.
5. Terminate user sessions and server connections.
6. Free handles.

Figure 2-1, "Basic OCI Program Flow" illustrates the flow of steps in an OCI
application. Each step is described in more detail in the section "OCI Programming
Steps" on page 2-20.

Figure 2-1 Basic OCI Program Flow

Create
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles
& Data Structures

Keep in mind that the diagram and the list of steps present a simple generalization
of OCI programming steps. Variations are possible, depending on the functionality
of the program. OCI applications that include more sophisticated functionality,
such as managing multiple sessions and transactions and using objects, require
additional steps.

OCI Programming Basics 2-3



OCI Program Structure

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process, as illustrated in Figure 2-2, "Multiple
Environments Within an OCI Process". If an environment requires any process-level
initialization then it is performed automatically.

Note: In previous releases, a separate explicit process-level
initialization was required. This requirement has been simplified
and no explicit process-level initialization is required.

Figure 2-2 Multiple Environments Within an OCI Process

OCI Process

Create Create Create
Environment Environment Environment

Allocate Handles
and Data Structures

Allocate Handles
and Data Structures

Allocate Handles
and Data Structures

v

v

v

Connect to Server
and Begin Session

Connect to Server
and Begin Session

Connect to Server
and Begin Session

v v v
Issue SQL Issue SQL Issue SQL
and Process Data and Process Data and Process Data
v v v
Disconnect Disconnect Disconnect

Free Handles
& Data Structures

Free Handles
& Data Structures

Free Handles
& Data Structures

Note: It is possible to have more than one active connection and
statement in an OCI application.

See Also:  For information about accessing and manipulating
objects, see Chapter 10, "OCI Object-Relational Programming" and
the chapters that follow it

2-4 Oracle Call Interface Programmer’s Guide



Handles

OCI Data Structures

Handles

Handles and descriptors are opaque data structures which are defined in OCI
applications and may be allocated directly, through specific allocate calls, or may be
implicitly allocated by OCI functions.

7.x Upgrade Note:  Programmers who have previously written 7.x
OCI applications need to become familiar with these new data
structures which are used by most OCI calls

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the following section.
Descriptors are discussed in the section "Descriptors” on page 2-15.

Almost all OCI calls include in their parameter list one or more handles. A handle is
an opaque pointer to a storage area allocated by the OCI library. You use a handle
to store context or connection information, (e.g., an environment or service context
handle), or it may store information about OCI functions or data (e.g., an error or
describe handle). Handles can make programming easier, because the library,
rather than the application, maintains this data.

Most OCI applications need to access the information stored in handles. The get
and set attribute OCI calls, OCIAttrGet() and OCIAttrSet() , access this
information.

See Also:  For more information about using handle attributes, see
the section "Handle Attributes" on page 2-13

The following table lists the handles defined for the OCI. For each handle type, the
C datatype and handle type constant used to identify the handle type in OCI calls
are listed.

OCI Programming Basics 2-5



Handles

Table 2-1 OCI Handle Types

Description C Type Handle Type

OCI environment handle OCIEnv OCI_HTYPE_ENV

OCl error handle OCIError OCI_HTYPE_ERROR

OCI service context handle OCISvcCtx OCI_HTYPE_SVCCTX

OCI statement handle OCIStmt OCI_HTYPE_STMT

OCI bind handle OCIBind OCI_HTYPE_BIND

OCI define handle OClIDefine OCI_HTYPE_DEFINE

OCI describe handle OClDescribe OCI_HTYPE_DESCRIBE

OCI server handle OClServer OCI_HTYPE_SERVER

OCI user session handle OClSession OCI_HTYPE_SESSION

OCI connection pool OCIPool OCI_HTYPE_CPOOL

OCI transaction handle OClITrans OCI_HTYPE_TRANS

OCI complex object retrieval (COR) OCIComplexObject OCI_HTYPE_COMPLEXOBJECT
handle

OCl thread handle OCIThreadHandle N/A

OCI subscription handle OCISubscription OCI_HTYPE_SUBSCRIPTION
OCI direct path context handle OCIDirPathCtx OCI_HTYPE_DIRPATH_CTX

OCI direct path function context handle OCIDirPathFuncCtx  OCI_HTYPE_DIRPATH_FN_CTX

OCI direct path column array handle OCIDirPathColArray OCI_HTYPE_DIRPATH_COLUMN_ARRAY
OCI direct path stream handle OCIDirPathStream OCI_HTYPE_DIRPATH_STREAM

OCI process handle OCI_HTYPE_PROC

Allocating and Freeing Handles

Your application allocates all handles (except the bind, define, and thread handles)
with respect to particular environment handle. You pass the environment handle as
one of the parameters to the handle allocation call. The allocated handles is then
specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and
contain information about the statement represented by that handle.

2-6 Oracle Call Interface Programmer’s Guide



Handles

Note: The bind and define handles are implicitly allocated by the
OCIl library, and do not require user allocation.

Figure 2-3, "Hierarchy of Handles" illustrates the relationship between the various
types of handles.

All user-allocated handles are allocated using the OCI handle allocation call,
OCIHandleAlloc()

Note: The environment handle is allocated and initialized with a
call to OCIEnvCreate() , which is required by all OCI
applications.

The thread handle is allocated with the OCIThreadHndInit() call.

An application must free all handles when they are no longer needed. The
OCIHandleFree()  function frees handles.

Note: When a parent handle is freed, all child handles associated
with it are also freed, and can no longer be used. For example,
when a statement handle is freed, any bind and define handles
associated with it are also freed.

OCI Programming Basics 2-7



Handles

ST

Figure 2-3 Hierarchy of Handles

Session
Handle

Direct Path
Context Handle

Thread
Handle

COR
Handle

Subscription

Ferl

See Also:

Handle
Environment R Describe
Handle Handle
Statement
Handle

Service Context
Handle

Error
Handle

Server
Handle

Connection Pool
Handle

Handles lessen the need for global variables. Handles also make error reporting
easier. An error handle is used to return errors and diagnostic information.

For sample code demonstrating the allocation and use

of OCI handles, see the example programs listed in Appendix B,
"OCI Demonstration Programs"

The various handle types are described in more detail in the following sections.

2-8 Oracle Call Interface Programmer’s Guide




Handles

Environment Handle

The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache, which allows for fast memory
access. All memory allocation under the environment handle is done from this
cache. Access to the cache is serialized if multiple threads try to allocate memory
under the same environment handle. When multiple threads share a single
environment handle, they may block on access to the cache.

The environment handle is passed as the parent parameter to the
OCIHandleAlloc() call to allocate all other handle types. Bind and define
handles are allocated implicitly.

Error Handle

The error handle is passed as a parameter to most OCI calls. The error handle
maintains information about errors that occur during an OCI operation. If an error
occurs in a call, the error handle can be passed to OCIErrorGet()  to obtain
additional information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because
most OCI calls require an error handle as one of its parameters.

Service Context and Associated Handles

A service context handle defines attributes that determine the operational context for
OCIl calls to a server. The service context contains three handles as its attributes, that
represent a server connection, a user session, and a transaction. These attributes are
illustrated in Figure 2-4, "Components of a Service Context":

Figure 2—-4 Components of a Service Context

Service Context

Handle
Server User Session Transaction
Handle Handle Handle

« A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

OCI Programming Basics 2-9



Handles

« A user session handle defines a user’s roles and privileges (also known as the
user’s security domain), and the operational context on which the calls execute.

« Atransaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including the fetch state and package instantiation, if any.

Breaking the service context down in this way provides scalability and enables
programmers to create sophisticated three-tiered applications and transaction
processing (TP) monitors to execute requests on behalf of multiple users on
multiple application servers and different transaction contexts.

You must allocate and initialize the service context handle with
OCIHandleAlloc() or OCILogon() before you can use it. The service context
handle is allocated explicitly by OCIHandleAlloc() . It can be initialized using
OCIAttrSet() with the server, session, and transaction handle. If the service
context handle is allocated implicitly using OClLogon() , it is already initialized.

Applications maintaining only a single user session per database connection at any
time can call OCILogon() to get an initialized service context handle.

In applications requiring more complex session management, the service context
must be explicitly allocated, and the server handle and user session handle must be
explicitly set into the service context. OCIServerAttach() and
OClSessionBegin() , calls initialize the server and user session handle
respectively.

An application will only define a transaction explicitly if it is a global transaction or
there are multiple transactions active for sessions. It will be able to work correctly
with the implicit transaction created automatically by OCI when the application
makes changes to the database.

See Also:

« For more information about transactions, see the section "OCI
Support for Transactions" on page 8-2

« For more information about establishing a server connection
and user session, see the sections "OCI Environment
Initialization" on page 2-21, and "Password and Session
Management" on page 8-11

Statement Handle, Bind Handle, and Define Handle

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes.

2-10 Oracle Call Interface Programmer’s Guide



Handles

Figure 2-5 Statement Handles

Statement
Handle
Define Bind
Handle Handle

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the
OCIBindByName() or OCIBindByPos() function. The user does not need to
allocate bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a
define handle for each output variable defined with OCIDefineByPos() . The user
does not need to allocate define handles. They are implicitly allocated by the define
call.

Bind and define handles are freed when the statement handle is freed or when a
new statement is prepared on the statement handle.

Statement context data, the data associated with a statement handle, can be shared.

See Also:  For information about OCI shared mode, see "Shared
Data Mode" on page 2-22

Describe Handle

The describe handle is used by the OCI describe call, OCIDescribeAny() . This call
obtains information about schema objects in a database (e.g., functions, procedures).
The call takes a describe handle as one of its parameters, along with information
about the object being described. When the call completes, the describe handle is
populated with information about the object. The OCI application can then obtain
describe information through the attributes of parameter descriptors.

See Also:  Chapter 6, "Describing Schema Metadata”, for more
information about using the OCIDescribeAny()  function

OCI Programming Basics 2-11



Handles

Complex Object Retrieval Handle

The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database server. This handle contains COR descriptors,
which provide instructions about retrieving objects referenced by another object.

See Also :  For information about complex object retrieval and the
complex object retrieval handle, refer to "Complex Object Retrieval"
on page 10-22

Thread Handle

For information about the thread handle, which is used in multithreaded
applications, refer to "The OCIThread Package" on page 9-5.

Subscription Handle

The subscription handle is used by an OCI client application that is interested in
registering for subscriptions to receive notifications of database events or events in
the AQ namespace. The subscription handle encapsulates all information related to
a registration from a client.

See Also:  For information about publish-subscribe and allocating
the subscription handle, refer to "Publish-Subscribe Notification" on
page 9-46

Direct Path Handles

The direct path handles are necessary for an OCI application that utilizes the direct
path load engine in the Oracle database server. The direct path load interface allows
the application to access the direct block formatter of the Oracle server.

2-12 Oracle Call Interface Programmer’s Guide



Handles

Figure 2—6 Direct Path Handles

Direct Path
Context Handle

l

Direct Path Direct Path Direct Path
Column Array Stream Function Context
Handle Handle Handle
See Also:

« For information about direct path loading and allocating the
direct path handles, refer to "Direct Path Loading Overview"
on page 12-2

« For information about the handle attributes, refer to "Direct
Path Loading Handle Attributes" on page A-58

Process Handle

The process handle is a specialized handle for OCI applications that utilize shared
data structures mode to set global parameters.

See Also: "Shared Data Mode" on page 2-22

Connection Pool Handle

The connection pool handle is used for applications that pool physical connections
into virtual connections, by calling specific OCI functions.

See Also:  "Connection Pooling" on page 9-14

Handle Attributes

All OCI handles have attributes associated with them. These attributes represent
data stored in that handle. You can read handle attributes using the attribute get
call, OCIAttrGet() , and you can change them with the attribute set call,
OCIAttrSet()

For example, the following statements set the username in the session handle by
writing to the OCI_ATTR_USERNAME attribute:

text usemame]] ="scott”,

OCI Programming Basics 2-13



Handles

err = OCIAttrSet ((dvoid*) mysessp, OCl_ HTYPE_SESSION, (dvoid*) usemame,
(ub4) strlen(usemame), OCl ATTR_USERNAME,
(OClEror *) myerthp);

Some OCI functions require that particular handle attributes be set before the
function is called. For example, when OCISessionBegin() is called to establish a
user’s login session, the username and password must be set in the user session
handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the
function completes. For example, when OCIStmtExecute()  is called to execute a
SQL query, describe information relating to the select-list items is returned in the
statement handle.

ub4 parment;

* get the number of columns in the select list */

err = OCIAtrGet ((dvoid *)stmhp, (Ub4)OCI_HTYPE_STMT, (dvoid )
&parment, (ub4 *) O, (Ub4)OCIL ATTR_PARAM_COUNT, enhp);

See Also:

« See the description of OCIAttrGet() on page 15-33 for an
example showing the username and password handle
attributes being set

« For alist of all handle attributes, refer to Appendix A, "Handle
and Descriptor Attributes”

User Memory Allocation

The OCIEnvCreate() call, which initializes the environment handle, and the
generic handle allocation (OCIHandleAlloc() ) and descriptor allocation
(OClDescriptorAlloc() ) calls have an xtramem_sz parameter in their
parameter list. This parameter is used to specify memory chunk size which is
allocated along with that handle for the user. This memory is not used by OCI and
is for use by the application only.

Typically, an application uses this parameter to allocate an application-defined
structure, such as for an application bookkeeping or storing context information, that
has the same lifetime as the handle.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each handle is allocated and

2-14 Oracle Call Interface Programmer’s Guide



Descriptors

deallocated. The memory is allocated along with the handle, and freeing the handle
frees up the user’s data structures as well.

Descriptors

OCI descriptors and locators are opaque data structures that maintain data-specific
information. The following table lists them, along with their C datatype, and the
OCI type constant that allocates a descriptor of that type in a call to

OCIDescriptorAlloc()

descriptors and locators.

Table 2-2 Descriptor Types

. The OClIDescriptorFree() function frees

Description

C Type

OCI Type Constant

snapshot descriptor

LOB datatype locator

FILE datatype locator
read-only parameter descriptor
ROWID descriptor

ANSI DATE descriptor
TIMESTAMP descriptor

TIMESTAMP WITH TIME ZONE
descriptor

TIMESTAMP WITH LOCAL TIME
ZONE descriptor

INTERVAL YEAR TO MONTH
descriptor

INTERVAL DAY TO SECOND
descriptor

complex object descriptor
advanced queuing enqueue options
advanced queuing dequeue options

advanced queuing message properties

OClISnapshot
OClLobLocator
OClLobLocator
OClParam
OCIRowid
OClIDateTime
OClIDateTime
OClIDateTime

OClIDateTime

OClInterval

OClInterval

OCIComplexObjectComp
OCIAQENQgOptions
OCIAQDeqOptions
OCIAQMsgProperties

OCI_DTYPE_SNAP
OCI_DTYPE_LOB
OCI_DTYPE_FILE
OCI_DTYPE_PARAM
OCI_DTYPE_ROWID
OCI_DTYPE_DATE
OCI_DTYPE_TIMESTAMP
OCI_DTYPE_TIMESTAMP_TZ

OCI_DTYPE_TIMESTAMP_LTZ

OCI_DTYPE_INTERVAL_YM

OCI_DTYPE_INTERVAL_DS

OCI_DTYPE_COMPLEXOBJECTCOMP
OCI_DTYPE_AQENQ_OPTIONS
OCI_DTYPE_AQDEQ OPTIONS
OCI_DTYPE_AQMSG_PROPERTIES

OCI Programming Basics 2-15



Descriptors

Table 2-2 Descriptor Types (Cont.)

Description C Type OCI Type Constant
advanced queuing agent OCIAQAgent OCI_DTYPE_AQAGENT
advanced queuing notification OCIAQNOtify OCI_DTYPE_AQNFY
the distinguished names of the database OCIServerDNs OCI_DTYPE_SRVDN

servers in a registration request

Note: Although there is a single C type for OCILobLocator, this
locator is allocated with a different OCI type constant for internal
and external LOBs. The section below on LOB locators discusses
this difference.

The main purpose of each descriptor type is listed here, and each descriptor type is
described in the following sections:

« OCISnapshot - used in statement execution

. OCILOBLocator - used for LOB (OCI_DTYPE_LOB) or FILE
(OCI_DTYPE_FILE) calls

« OCIParam - used in describe calls

« OCIRowid - used for binding or defining ROWIDvalues

« OCIDateTime and OClInterval - used for datetime and interval datatypes
« OCIComplexObjectComp - used for complex object retrieval

« OCIAQENQgOptions, OCIAQDegOptions, OCIAQMsgProperties,
OCIAQAgent - used for Advanced Queuing

« OCIAQNOotify - used for publish-subscribe notification
« OCIServerDNs - used for LDAP-based publish-subscribe notification

Snapshot Descriptor
The snapshot descriptor is an optional parameter to the execute call,
OCIStmtExecute() . It indicates that a query is being executed against a particular

database snapshot. A database snapshot represents the state of a database at a
particular point in time.

2-16 Oracle Call Interface Programmer’s Guide



Descriptors

You allocate a snapshot descriptor with a call to OCIDescriptorAlloc() , by
passing OCI_DTYPE_SNAP as the type parameter.

See Also:  For more information about OCIStmtExecute()  and
database snapshots, see the section "Execution Snapshots" on
page 4-7

LOB/FILE Datatype Locator

A LOB (large object) is an Oracle datatype that can hold up to 4 gigabytes of binary
(BLOB) or character (CLOB) data. In the database, an opaque data structure called a
LOB locator is stored in a LOB column of a database row, or in the place of a LOB
attribute of an object. The locator serves as a pointer to the actual LOB value, which
is stored in a separate location.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or
CLOB) or FILE (BFILE). OCILob* functions take the LOB locator as a parameter
instead of the LOB value. OCI LOB functions do not take actual LOB data as
parameters. These functions take the LOB locators as parameters and operate on the
LOB data referenced by these locators.

Hence, the old long interface can operate on the actual LOB value. This
descriptor—OCILobLocator—is also used for operations on FILEs.

The LOB locator is allocated with a call to OCIDescriptorAlloc() , by passing
OCI_DTYPE_LOB as the type parameter for BLOBs or CLOBs, and
OCI_DTYPE_FILE for BFILEs.

Caution:  The two LOB locator types are not interchangeable.
When binding or defining a BLOB or CLOB, the application must
take care that the locator is properly allocated using
OCI_DTYPE_LOB. Similarly, when binding or defining a BFILE,
the application must be sure to allocate the locator using
OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the server by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In
this case, the application would first allocate the LOB locator and then use it to
define an output variable. Similarly, a LOB locator can be used as part of a bind
operation to create an association between a LOB and a placeholder in a SQL
statement.

OCI Programming Basics 2-17



Descriptors

The LOB locator datatype (OCIlLobLocator) is not a valid datatype when connected
to an Oracle7 Server.

See Also:  For more information about OCI LOB operations, see
Chapter 7, "LOB and FILE Operations"

Parameter Descriptor

OCI applications use parameter descriptors to obtain information about select-list
columns or schema objects. This information is obtained through a describe
operation.

The parameter descriptor is the one descriptor type that is not allocated using
OCIDescriptorAlloc() . You can obtain it only as an attribute of a describe,
statement, or complex object retrieval handle by specifying the position of the
parameter using an OCIParamGet() call.

See Also:  See Chapter 6, "Describing Schema Metadata", and
"Describing Select-List Items" on page 4-12 for more information
about obtaining and using parameter descriptors

ROWID Descriptor

The ROWIDdescriptor, OCIRowid, is used by applications that need to retrieve and
use Oracle ROWIDs. The size and structure of the ROWIDhas changed from Oracle
release 7 to Oracle release 8, and is opaque to the user. To work with a ROWIDusing
OCl release 8 or later, an application can define a ROWIDdescriptor for a rowid
position in a SQL select-list, and retrieve a ROWIDinto the descriptor. This same
descriptor can later be bound to an input variable in an INSERT statement or WHERE
clause.

ROWIDs are also redirected into descriptors using OCIAttrGet() on the
statement handle following an execute.

Datetime and Interval Descriptors

These descriptors are used by applications which use the datetime or interval
datatypes (OClIDateTime and OCllInterval). These descriptors can be used for
binding and defining, and are passed as parameters to the functions
OClIDescAlloc()  and OCIDescFree() to allocate and free memory.

2-18 Oracle Call Interface Programmer’s Guide



Descriptors

See Also:  For more information about these datatypes refer to
Chapter 3, "Datatypes”. The functions which operate on these
datatypes are listed in Chapter 18, "OCI Datatype Mapping and
Manipulation Functions”

Note: The functions which operate on OCIDateTime and
OClInterval datatypes also work on the OCIDate datatype

Complex Object Descriptor

For information about the complex object descriptor and its use, refer to "Complex
Object Retrieval” on page 10-22.

Advanced Queuing Descriptors

For information about Advanced Queuing and its related descriptors, refer to "OCI
and Advanced Queuing" on page 9-42.

LDAP-based Publish-Subscribe Notification

For information about LDAP-based publish-subscribe notification, see
"Publish-Subscribe Registration Functions" on page 9-47.

User Memory Allocation

The OClIDescriptorAlloc() call has an xtramem_sz parameter in its parameter
list. This parameter is used to specify an amount of user memory which should be
allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure
maybe used for application bookkeeping or storing context information.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each descriptor or locator is allocated
and deallocated. The memory is allocated along with the descriptor or locator, and
freeing the descriptor or locator (with OCIDescriptorFree() ) frees up the user’s
data structures as well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory
which has the same lifetime as the handle.

OCI Programming Basics 2-19



OCI Programming Steps

The OCIEnvCreate() and OCIEnvInit() calls have a similar parameter for
allocating user memory which has the same lifetime as the environment handle.

OCI Programming Steps

Each of the steps that you perform in an OCI application is described in greater
detail in the following sections. Some of the steps are optional. For example, you do
not need to describe or define select-list items if the statement is not a query.

Note: For an example showing the use of OCI calls for processing
SQL statements, see the first sample program in Appendix B, "OCI
Demonstration Programs"

See Also:

« The special case of dynamically providing data at run time is
described in detail in the section "Runtime Data Allocation and
Piecewise Operations" on page 5-44

« Special considerations for operations involving arrays of
structures are described in the section "Binding and Defining
Arrays of Structures" on page 5-26

« Refer to the section "Error Handling" on page 2-31 for an
outline of the steps involved in processing a SQL statement
within an OCI program

« For information on using the OCI to write multi-threaded
applications, refer to "Thread Safety" on page 9-2

« For more information about types of SQL statements, refer to
the section "SQL Statements" on page 1-7
The following sections describe the steps that are required of an OCI application:
«  OCI Environment Initialization.
« Processing SQL Statements.
«  Commit or Rollback.
« Terminating the Application.

« Error Handling.

2-20 Oracle Call Interface Programmer’s Guide



OCI Environment Initialization

Application-specific processing will also occur in between any and all of the OCI
function steps.

7.x Upgrade Note:  OCI programmers should take note that OCI
programs no longer require an explicit parse step. This means that
8.0 or later applications must issue an execute command for both
DML and DDL statements.

OCI Environment Initialization

This section describes how to initialize the OCI environment, establish a connection
to a server, and authorize a user to perform actions against a database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

1. Creating the OCI environment.
2. Allocating Handles and Descriptors.

3. Initializing the Application, Connection, and Session.

Creating the OCI Environment

Each OCI function call is executed in the context of an environment that is created
with the OCIEnvCreate()  call. This call must be invoked before any other OCI
call. The only exception is when setting a process-level attribute for the OCI shared
mode.

See Also:  "Shared Data Mode" on page 2-22
The mode parameter of OCIEnvCreate()  specifies whether the application calling
the OCI library functions will:
« Runinathreaded environment (mode= OCI_THREADED).
« Use objects (mode= OCI_OBJECT).
« Use shared data structures (mode = OCI_SHARED).
« Use subscriptions (mode= OCI_EVENTS).

The mode can be set independently in each environment.

OCI Programming Basics 2-21



OCI Environment Initialization

Initializing in object mode is necessary if the application will be binding and
defining objects, or if the application will be using the OCI’s object navigation calls.
The program may also choose to use none of these features (mode=
OCI_DEFAULT) or some combination of them, separating the options with a
vertical bar. For example if mode= (OCI_THREADED | OCI_OBIJECT), then the
application runs in a threaded environment and use objects.

You can also specify user-defined memory management functions for each OCI
environment.

Note: In previous releases, a separate explicit process-level
initialization was required. This requirement has been simplified
and no explicit process-level initialization is required.

See Also:

« See the description of OCIEnvCreate()  on page 15-9 and
OClInitialize() on page 15-14 for more information about
the initialization calls.

« For information about using the OCI to write multi-threaded
applications, refer to "Thread Safety" on page 9-2.

« For information about OCI programming with objects, refer to
Chapter 10, "OCI Object-Relational Programming" and the
chapters that follow it.

« For information about using the publish-subscribe feature, see
"Publish-Subscribe Notification" on page 9-46.

Shared Data Mode

When a SQL statement is processed, certain underlying data is associated with the
statement. This data includes information about statement text and bind data, as
well as define and describe information for queries. For applications where the
same set of SQL statements is executed on multiple instances of the application on
the same host, the data can be shared.

When an OCI application is initialized in shared mode, common statement data is
shared between multiple statement handles, thus providing memory savings for the
application. This savings may be particularly valuable for applications which create
multiple statement handles which execute the same SQL statement on different
users’ sessions but in the same schema, either on the same or multiple connections.

2-22  Oracle Call Interface Programmer’s Guide



OCI Environment Initialization

Without the shared mode feature, each execution of the query using an OCI
statement handle requires its own memory for storing the metadata. The total
amount of memory required is roughly equal to the number of statements being
executed in all the processes combined multiplied by the memory required for each
statement handle.

A large part of the common memory in a statement handle is shared among all the
processes executing the same statement with the shared mode feature. The total
amount of memory in all the processes combined is much less than in the previous
case for the same number of processes. The memory requirement per statement
handle is much smaller than in the case where there is no sharing, as the number of
such statements increases to a large number.

Shared data structure mode can be useful in the following scenarios:

«  When several instances of the same application are running on the same
machine to service multiple clients. Each of these instances may be executing
identical SQL statements, differentiated by different bind values.

« When an application process forks service threads to execute the same
statement for different users either on the same connection or on multiple
connections. The same saving as above can be realized in this scenario too.

=«  Where the types of applications are SQL drivers and other middle-tiered
applications.

Note: Small applications, which execute single queries
non-concurrently do not benefit from this feature.

There are several ways to use the shared OCI functionality. Existing applications
can quickly examine the benefits of this feature without changing any code. These
applications can be initialized in OCI shared mode by setting environment
variables. New applications should use OCI API calls to initialize shared mode
functionality.

Using OCI Functions

To initialize OCI shared mode functionality, process handle parameters must be set
and OCIEnvCreate() = must be called with the mode flag set to OCI_SHARED. For
example:

ub4 mode = OCl_SHARED | OC|_THREADED;
OCIEnvCreate (&envhp, mode, (CONST dvoid *)0, 0, 0, 0, (size_t)0 (dvoid **)0);

OCI Programming Basics 2-23



OCI Environment Initialization

The first application that initializes OCI in shared mode starts up the shared
subsystem using the parameters set by that OCI application. When subsequent
applications initialize using the shared mode, they use the previously started
shared subsystem.

See Also:  For information on the parameters that can be set and
read for the OCI shared mode system, see "Process Handle
Attributes” on page A-72.

If an OCI application has been initialized in shared mode, all statements that are
prepared and executed use the shared subsystem by default. If you do not want to
use the shared subsystem to execute a specific SQL statement, then you can use the
OCI_NO_SHARING flag in OCIStmtPrepare() . For example:

OCIStmtPrepare(stmthp, (CONST text *)createstmt,
(ubd)strien((char *updstmt), (Ub4)OCI_NTV_SYNTAX,
(ub4)OCI_NO_SHARING);

The OCI_NO_SHARING flag has no effect if the process has not been initialized in
the shared mode.

See Also:  OCIStmtPrepare() on page 15-94.

To detach a process from the shared memory subsystem, use the OCITerminate()
call.

See Also: OClITerminate()  on page 15-31.

Using Environment Variables

The environment variables OCI_SHARED_MODE and
OCI_NUM_SHARED_PROCS can be used to set OCI shared mode functionality.
However, this is not the recommended method. This procedure lets you to quickly
examine the benefits of using shared mode functionality in existing applications.

OCI_SHARED_MODE To initialize an OCI application to run in shared mode, set the

environment variable OCI_SHARED_MODE before executing a OCI program. To
set the variable in the C-shell under Solaris, for example, issue the command:

setenv OCl_ SHARED MODE number

where number is the size of the shared memory address space. For example:

2-24 Oracle Call Interface Programmer’s Guide



OCI Environment Initialization

setenv OCl_SHARED MODE 20000000

If the shared subsystem is not already running, setting this variable launches the
subsystem by creating a shared memory address space with the size specified. The
size of the shared memory required is determined by the nature of the application
and depends on the size and type of the SQL statement and the underlying table(s)
that it accesses.

OCI_NUM_SHARED_PROCS

To set the maximum number of processes that can connect to the shared subsystem,
set the environment variable ORA_OCI_NUM_SHARED_PROCS. To set this
variable, issue the command:

setenv OClI_ NUM_SHARED PROCS number

where number is the maximum number of processes. For example:
setenv OCI_ NUM_SHARED_PROCS 20

ORA_OCI_NUM_SHARED_PROCS is an initialization parameter for starting the
shared subsystem. It has no effect if the shared subsystem is already running.

Allocating Handles and Descriptors

Oracle provides OCI functions to allocate and deallocate handles and descriptors.
You must allocate handles using OCIHandleAlloc() before passing them into an
OCI call, unless the OCI call, such as OCIBindByPos() , allocates the handles for
you.

You can allocate the following types of handles with OCIHandleAlloc()
« error handle.

= service context handle.

« statement handle.

« describe handle.

« server handle.

« user session handle.

« transaction handle.

« connection pool handle

« complex object retrieval handle.

OCI Programming Basics 2-25



OCI Environment Initialization

« subscription handle.

« direct path context handle.

« direct path column array handle.
« direct path stream handle

Depending on the functionality of your application, it needs to allocate some or all
of these handles.

See Also:  the description of OCIHandleAlloc() on page 15-41

Application Initialization, Connection, and Session Creation

An application must call OCIEnvCreate() to initialize the OCI environment
handle.

Following this step, the application has two options for establishing a server
connection and beginning a user session: Single User, Single Connection; or
Multiple Sessions or Connections.

Note: OCIEnvCreate() should be used instead of the
OClInitialize() and OCIEnvInit() calls.

OClInitialize() and OCIEnvInit() calls are supported for
backward compatibility.

Option 1: Single User, Single Connection
This option is the simplified logon method.

If an application maintains only a single user session per database connection at any
time, the application can take advantage of the OCI’s simplified logon procedure.

When an application calls OCILogon() , the OCI library initializes the service
context handle that is passed to it and creates a connection to the specified server
for the user whose username and password are passed to the function.

The following is an example of what a call to OClLogon() might look like:

OClLogon(envhp, erthp, &svchp, “scott’, nameLen, "tiger”,
passwdLen, “oracledb", dbnamelen);

The parameters to this call include the service context handle (which are initialized),
the username, the user’s password, and the name of the database that are used to

2-26 Oracle Call Interface Programmer’s Guide



OCI Environment Initialization

establish the connection. The server and user session handles are also implicitly
allocated by this function.

If an application uses this logon method, the service context, server, and user
session handles will all be read-only, which means that the application cannot
switch session or transaction by changing the appropriate attributes of the service
context handle, using OCIAttrSet()

An application that initializes its session and authorization using OCILogon()
should terminate them using OCIlLogoff()

Option 2: Multiple Sessions or Connections
This option uses explicit attach and begin session calls.

If an application needs to maintain multiple user sessions on a database connection,
the application requires a different set of calls to set up the sessions and
connections. This includes specific calls to attach to the server and begin sessions:

« OCIServerAttach() creates an access path to the data server for OCI
operations.

« OCISessionBegin() establishes a session for a user against a particular
server. This call is required for the user to be able to execute any operation on
the server.

Note: See "Non-Blocking Mode" on page 2-41 for information
about specifying a blocking or non-blocking connection in the
OClServerAttach() call.

These calls set up an operational environment that lets you to execute SQL and
PL/SQL statements against a database. The database must be up and running
before the calls are made, or else they will fail.

See Also:  These calls are described in more detail in "Connect,
Authorize, and Initialize Functions™ on page 15-4. Refer to
Chapter 9, "OCI Programming Advanced Topics", for more
information about maintaining multiple sessions, transactions, and
connections.

Example of Creating and initializing an OCI Environment

The following example demonstrates the use of creating and initializing an OCI
environment. In the example, a server context is created and set in the service

OCI Programming Basics 2-27



OCI Environment Initialization

handle. Then a user session handle is created and initialized using a database
username and password. For the sake of simplicity, error checking is not included.

#include <s.h>
#include <oci.h>

main()

{

OCIEnv*myenvhp;  /*the environment handle */
OClServer *mysivhp;  #the server handle */
OCIEnor *myerthp;  /*the emror handle */
OClSession *myusrhp; # user session handle */
OCISveCix *mysvchp;  Fthe service handle */

¥ initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate(&myenvhp, OCl_THREADED|OCI|_OBJECT, (dvoid *0,
0,0, 0, (size_t) 0, (dvoid *)0);

F allocate a server handle */
(void) OCIHandleAlloc ((dvoid *myenvhp, (dvoid *)&mysrvhp,
OCI_HTYPE_SERVER, 0, (dvoid **) O);

f* allocate an error handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid *)&myerhp,
OCI_HTYPE_ERROR, 0, (dvoid **) O);

[+ create a server context */
(void) OClServerAttach (mysrvhp, myerrhp, (text *)instL_alias”,
stien (instl_alias"), OCI_DEFAULT);

 allocate a service handle */
(void) OCIHandleAlloc ((dvoid *myenvhp, (dvoid *)&mysvchp,
OCI_HTYPE_SVCCTX, 0, (dvoid **) 0);

[* set the server atfribute in the service context handle®/
(void) OClAtrSet ((dvoid ¥)mysvchp, OCI_HTYPE_SVCCTX,
(dvoid ®mystvhp, (Ub4) 0, OCI ATTR_SERVER, myenhp);

[+ allocate a user session handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid *)&myusrhp,
OCI_HTYPE_SESSION, 0, (dvoid **) 0);

* set usemame attribute in user session handle */
(void) OCIAtirSet ((dvoid Y)myusthp, OCI_HTYPE_SESSION,

2-28 Oracle Call Interface Programmer’s Guide



Commit or Rollback

(dvoid *)"scott”, (ub4)strien('scott),
OCI_ATTR_USERNAME, myerhpy;

* set password atfribute in user session handle */

(void) OCIAtrSet ((dvoid Y)myusthp, OCI_HTYPE_SESSION,
(dvoid *)'tiger", (ub4)strien("tiger”),
OCI_ATTR_PASSWORD, myerthp);

(void) OClSessionBegin ((dvoid *) mysvchp, myerrhp, myusthp,
OC|_CRED_RDBMS, OC| DEFAULT);

[* set the user session attribute in the service context handle*/
(void) OCIAtrSet ( (dvoid ®mysvchp, OCI_ HTYPE_SVCCTX,
(dvoid *)myusrhp, (ub4) 0, OCl_ ATTR_SESSION, myerrhp);

The demonstration program cdemo81.c in the demodirectory illustrates this
process, with error-checking.

Processing SQL Statements

For information about processing SQL statements, refer to Chapter 4, "Using SQL
Statements in OCI".

Commit or Rollback

An application commits changes to the database by calling OCITransCommit()

This call takes a service context as one of its parameters. The transaction currently
associated with the service context is the one whose changes are committed. This
may be a transaction explicitly created by the application or the implicit transaction
created when the application modifies the database.

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the
OCIExecute() call, the application can selectively commit
transactions at the end of each statement execution, saving an extra
roundtrip.

If you want to roll back a transaction, use the OCITransRollback() call.

OCI Programming Basics 2-29



Terminating the Application

If an application disconnects from Oracle in some way other than a normal logoff
(for example, losing a network connection), and OCITransCommit()  has not been
called, all active transactions are rolled back automatically.

See Also:  For more information about implicit transactions and
transaction processing, see the section "Service Context and
Associated Handles" on page 2-9, and the section "OCI Support for
Transactions" on page 8-2

Terminating the Application
An OCI application should perform the following three steps before it terminates:
1. Delete the user session by calling OCISessionEnd()  for each session.

2. Delete access to the data source(s) by calling OCIServerDetach() for each
source.

3. Explicitly deallocate all handles by calling OCIHandleFree()  for each handle.

4. Delete the environment handle, which deallocates all other handles associated
with it.

Note: When a parent OCI handle is freed, any child handles
associated with it are freed automatically

The calls to OCIServerDetach() and OCISessionEnd()  are not mandatory, but
are recommended. If the application terminates, and OCITransCommit()
(transaction commit) has not been called, any pending transactions are
automatically rolled back

See Also:  For an example showing handles being freed at the end
of an application, refer to the first sample program in Appendix B,
"OCI Demonstration Programs”

Note: If the application has used the simplified logon method of
OClILogon() ,thenacall to OCILogoff()  terminates the session,
disconnects from the server, and frees the service context and
associated handles. The application is still responsible for freeing
other handles it has allocated.

2-30 Oracle Call Interface Programmer’s Guide



Error Handling

Error Handling

OCI function calls have a set of return codes, listed in Table 2-3, "OCI Return
Codes", which indicate the success or failure of the call, such as OCI_SUCCESS or
OCI_ERROR, or provide other information that may be required by the application,
such as OCI_NEED_DATA or OCI_STILL_EXECUTING. Most OCI calls return one
of these codes.

See Also:  For exceptions, see "Functions Returning Other Values"
on page 2-34

Table 2-3 OCI Return Codes

OCI Return Code

Description

OCI_SUCCESS

The function completed successfully.

OCI_SUCCESS_WITH_INFO The function completed successfully; a call to OCIErrorGet() returns

additional diagnostic information. This may include warnings.

OCI_NO_DATA The function completed, and there is no further data.

OCI_ERROR The function failed; a call to OCIErrorGet() returns additional
information.

OCI_INVALID_HANDLE An invalid handle was passed as a parameter or a user callback is passed an

OCI_NEED_DATA

invalid handle or invalid context. No further diagnostics are available.

The application must provide run-time data.

OCI_STILL_EXECUTING The service context was established in non-blocking mode, and the current

OCI_CONTINUE

operation could not be completed immediately. The operation must be
called again to complete. OCIErrorGet() returns ORA-03123 as the error
code.

This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

If the return code indicates that an error has occurred, the application can retrieve
Oracle-specific error codes and messages by calling OCIErrorGet() . One of the
parameters to OCIErrorGet() is the error handle passed to the call that caused

the error.

OCI Programming Basics 2-31



Error Handling

Note: Multiple diagnostic records can be retrieved by calling
OCIErrorGet() repeatedly until there are no more records
(OCI_NO_DATA is returned). OCIErrorGet() returns at most a
single diagnostic record at any time.

The following example code returns error information given an error handle and
the return code from an OCI function call. If the return code is OCI_ERROR, the
function prints out diagnostic information. OCI_SUCCESS results in no printout,
and other return codes print the return code information.

STATICF void checkenr(errhp, status)
OCIEnor *errhp;
sword status;
{
text embuf[512];
ub4 buflen;
ub4 errcode;

switch (status)

{

case OCl_SUCCESS:
break;

case OCl_SUCCESS WITH_INFO:
(void) printf("Emor - OCl_SUCCESS_WITH_INFO\n";
break;

case OCl_ NEED_DATA:
(void) printf("Error - OCI_NEED_DATAWN");
break;

case OCI_NO_DATA:
(void) printf("Error - OCI_NODATAWN');
break;

case OCl_ERROR:
(void) OCIEmorGet (erhp, (ub4) 1, (text *) NULL, &errcode,

enbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);

(void) printf("Error - %s\n", enbuf);
break;

case OCl_INVALID_HANDLE:
(void) printf("Emor - OCI_INVALID_HANDLE\n");
break;

case OC|_STILL_EXECUTING:
(void) printf("Emor - OCI_STILL_EXECUTE\N");
break;

default:

2-32  Oracle Call Interface Programmer’s Guide



Error Handling

break;

Return and Error Codes for Truncation and Null Data

In Table 2-4, Table 2-5, and Table 2-6, the OCI return code, Oracle error number,
indicator variable, and column return code are specified when the data fetched is

null or truncated.

See Also:  See "Indicator Variables" on page 2-36 for a discussion
of indicator variables.

Table 2-4 Normal Data - Not Null and Not Truncated

Indicator - not provided

Indicator - provided

Return code - not provided

Return code - provided

OCIl_SUCCESS
emor=0

OCl_SUCCESS
eror=0
retumcode=0

OCIl_SUCCESS
emor=0
indicator=0
OCI_SUCCESS
emor=0
indicator=0
retum code=0

Table 2-5 Null Data

Indicator - not provided

Indicator - provided

Return code - not provided

Return code - provided

OCl ERROR
emor =1405

OCl_ERROR
eror =1405
retum code = 1405

OCl_SUCCESS
emor=0
indicator =-1

OCl_SUCCESS
emor=0
indicator=-1
retum code = 1405

OCI Programming Basics 2-33



Additional Coding Guidelines

Table 2—-6 Truncated Data

Indicator - not provided Indicator - provided
Return code - not provided OCl_ERROR OCl_ERROR
eror = 1406 eror = 1406
indicator = data_len
Return code - provided OCl_SUCCESS WITH_INFO OCl_SUCCESS WITH_INFO
error = 24345 error = 24345
retum code = 1405 indicator =data _len
retum code = 1406

In Table 2-6, data_len s the actual length of the data that has been truncated if
this length is less than or equal to SB2ZMAXVALOtherwise, the indicator is set to -2.

Functions Returning Other Values

Some functions return values other than the OCI error codes listed in Table 2-3.
When using these function be sure to take into account that they return a value
directly from the function call, rather than through an OUT parameter. More
detailed information about each function and its return values is listed in the
reference chapters. Some examples of these functions are:

« OCICollMax()

« OCIRawPtr()

« OCIRawsize()

« OCIRefHexSize()
« OCIReflsEqual()
«  OCIRefIsNull()
« OCIStringPtr()

« OCIStringSize()

Additional Coding Guidelines

This section explains some additional factors to keep in mind when coding
applications using the Oracle Call Interface.

2-34 Oracle Call Interface Programmer’s Guide



Additional Coding Guidelines

Parameter Types

OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account
for some types of parameters, as described in the following sections.

See Also:  For more information about parameter datatypes and
parameter passing conventions, refer to "Connect, Authorize, and
Initialize Functions" on page 15-4.

Address Parameters

Address parameters pass the address of the variable to Oracle. You should be
careful when developing in C, which normally passes scalar parameters by value, to
make sure that the parameter is an address. In all cases, you should pass your
pointers carefully.

Integer Parameters

Binary integer parameters are numbers whose size is system dependent. Short
binary integer parameters are smaller numbers whose size is also system
dependent. See your Oracle system-specific documentation for the size of these
integers on your system.

Character String Parameters

Character strings are a special type of address parameter. This section describes
additional rules that apply to character string address parameters.

Each OCI routine that allows a character string to be passed as a parameter also has
a string length parameter. The length parameter should be set to the length of the
string.

7.x Upgrade Note:  Unlike earlier versions of the OCI, you do not
pass -1 for the string length parameter of a null-terminated string.

Inserting Nulls into a Column

You can insert a null into a database column in several ways. One method is to use
a literal NULL in the text of an INSERT or UPDATEstatement. For example, the SQL
statement

INSERT INTO emp (ename, empno, deptno)
VALUES (NULL, 8010, 20)

OCI Programming Basics 2-35



Additional Coding Guidelines

makes the ENAMEolumn null.

Another method is to use indicator variables in the OCI bind call.

See Also: "Indicator Variables" on page 2-36

One other method to insert a NULL s to set the buffer length and maximum length
parameters both to zero on a bind call.

Note: Following SQL92 requirements, Oracle returns an error if
an attempt is made to fetch a null select-list item into a variable that
does not have an associated indicator variable specified in the
define call.

Indicator Variables

Each bind and define OCI call has a parameter that lets you to associate an indicator
variable, or an array of indicator variables if you are using arrays, with a DML
statement, PL/SQL statement, or query.

The C languages does not have the concept of null values; therefore you associate
indicator variables with input variables to specify whether the associated
placeholder is a NULL When data is passed to Oracle, the values of these indicator
variables determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned
from Oracle is a NULL or a truncated value. In the case of a NULL fetch (on
OCIStmtFetch() ) or a truncation (on OCIStmtExecute()  or

OCIStmtFetch() ), the OCI call returns OCI_SUCCESS. The corresponding
indicator variable is set to the appropriate value, as listed in Table 2-8, "Output
Indicator Values". If the application has a return code variable in the corresponding
OCIDefineByPos()  call, the OCI assigns a value of ORA-01405 (for NULL fetch) or
ORA-01406 (for truncation) to the return code variable.

The datatype of indicator variables is sb2. In the case of arrays of indicator
variables, the individual array elements should be of type sb2.

Input

For input host variables, the OCI application can assign the following values to an
indicator variable:

2-36 Oracle Call Interface Programmer’s Guide



Additional Coding Guidelines

Table 2—7 Input Indicator Values

Input Indicator Value Action Taken by Oracle

-1 Oracle assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle assigns the value of the input variable to the column.

Output

On output, Oracle can assign the following values to an indicator variable:

Table 2-8 Output Indicator Values

Output Indicator Value  Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output

variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Indicator Variables for Named Data Types and REFs

Indicator variables for most new (after release 8.0) datatypes function as described
above. The only exception is SQLT_NTY (a named datatype). Data of type
SQLT_REF uses a standard scalar indicator, just like other variable types. For data
of type SQLT_NTY, the indicator variable must be a pointer to an indicator
structure.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type.
This structure includes an atomic null indicator, plus indicators for each object
attribute.

OCI Programming Basics 2-37



Additional Coding Guidelines

See Also: =

« See the documentation for the OTT in Chapter 14, "The Object
Type Translator (OTT)", and the section "Nullity" on page 10-30
of this manual for information about null indicator structures

« See the descriptions of OCIBindByName() and
OCIBindByPos() in"Bind, Define, and Describe Functions"
on page 15-50, and the sections "Information for Named
Datatype and REF Binds" on page 11-37, and "Information for
Named Datatype and REF Defines, and PL/SQL OUT Binds"
on page 11-39, for more information about setting indicator
parameters for named datatypes and REFs

Cancelling Calls

On most platforms, you can cancel a long-running or repeated OCI call. You do this
by entering the operating system’s interrupt character (usually CTRL-C) from the
keyboard.

Note: This is not to be confused with cancelling a cursor, which is
accomplished by calling OCIStmtFetch()  with the nrows
parameter set to zero

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 ("user requested cancel of current operation™)
is returned.

Given a particular service context pointer or server context pointer, the
OCIBreak() function performs an immediate (asynchronous) abort of any
currently executing OCI function that is associated with the server. It is normally
used to stop a long-running OCI call being processed on the server. The
OCIReset() function is necessary to perform a protocol synchronization on a
non-blocking connection after an OCI application aborts a function with
OCIBreak()

The status of potentially long-running calls can be monitored through the use of
non-blocking calls. See the section "Non-Blocking Mode" on page 2-41 for more
information.

2-38 Oracle Call Interface Programmer’s Guide



Additional Coding Guidelines

Positioned Updates and Deletes

You can use the ROWIDassociated with a SELECT..FOR UPDATE OFstatement in a
later UPDATEor DELETEstatement. The ROWIDis retrieved by calling

OCIAttrGet() on the statement handle to retrieve the handle’s
OCI_ATTR_ROWID attribute.

For example, for a SQL statement such as
SELECT ename FROM emp WHERE empno = 7499 FOR UPDATE OF sal

when the fetch is performed, the ROWIDattribute in the handle contains the row
identifier of the selected row. You can retrieve the ROWIDinto a buffer in your
program by calling OCIAttrGet() as follows:

OCIRowid *rowid; /*the rowid in opaque format */
[* allocate descriptor with OCIDescriptorAlloc() */
err = OClIDescriptorAlloc ((dvoid *) envhp, (dvoid *¥) &rowid,
(ub4) OCI_TYPE_ROWID, (size_t) 0, (dvoid **) 0));
err = OCIAtrGet ((dvoid®) mystmtp, OCl HTYPE_STMT,
(dvoid®) rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWIDin a DELETEor UPDATEstatement. For example,
if rowid is the buffer in which the row identifier has been saved, you can later
process a SQL statement such as

UPDATE emp SET sal =:1 WHERE rowid =:2

by binding the new salary to the :1 placeholder and rowid to the :2 placeholder.
Be sure to use datatype code 104 (ROWIDdescriptor) when binding rowid to :2 .
Using prefetching, an array of ROWIDs can be selected for use in subsequent batch
updates.

See Also:  For more information on ROWIDs, see "UROWID" on
page 3-6 and "DATE" on page 3-15.

Reserved Words

Some words are reserved by Oracle. That is, they have a special meaning to Oracle
and cannot be redefined. For this reason, you cannot use them to name database
objects such as columns, tables, or indexes.

OCI Programming Basics 2-39



Additional Coding Guidelines

See Also:  To view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL, see the Oracle9i SQL Reference and the
PL/SQL User’s Guide and Reference

Oracle Reserved Namespaces

Table 2-9, "Oracle Reserved Namespaces" contains a list of namespaces that are
reserved by Oracle. The initial characters of function names in Oracle libraries are
restricted to the character strings in this list. Because of potential name conflicts, do
not use function names that begin with these characters. For example, the Oracle
Net Transparent Network Service functions all begin with the characters NS so you
need to avoid naming functions that begin with NS

Table 2-9 Oracle Reserved Namespaces

Namespace Library

XA external functions for XA applications only

SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

0, OClI external OCI functions internal OCI functions

UPI, KP function names from the Oracle UPI layer

NA Oracle Net Native Services Product

NC Oracle Net Rpc Project

ND Oracle Net Directory

NL Oracle Net Network Library Layer

NM Oracle Net Management Project

NR Oracle Net Interchange

NS Oracle Net Transparent Network Service

NT Oracle Net Drivers

NZ Oracle Net Security Service

oS SQL*Net V1

TTC Oracle Net Two Task

GEN, L, ORA Core library functions

LI, LM, LX function names from the Oracle Globalization Support layer

S function names from system-dependent libraries

2-40 Oracle Call Interface Programmer’s Guide



Additional Coding Guidelines

Table 2-9 Oracle Reserved Namespaces (Cont.)

Namespace Library

KO Kernel Objects

The list in Table 2-9, "Oracle Reserved Namespaces" is not a comprehensive list of
all functions within the Oracle reserved namespaces. For a complete list of functions
within a particular namespace, refer to the document that corresponds to the
appropriate Oracle library.

Function Names

When creating a user function in an OCI program, do not start the function name
with OCI to avoid possible conflicts with the OCI functions.

Application Linking

For information about application linking modes, including Oracle support for
non-deferred linking and single task linking in various versions of the OCI, please

see "" on page 1-24.

Non-Blocking Mode

The OCI provides the ability to establish a server connection in blocking mode or
non-blocking mode. When a connection is made in blocking mode, an OCI call returns
control to an OCI client application only when the call completes, either
successfully or in error. With the non-blocking mode, control is immediately
returned to the OCI program if the call could not complete, and the call returns a
value of OCI_STILL_EXECUTING.

In non-blocking mode, an application must test the return code of each OCI
function to see if it returns OCI_STILL_EXECUTING. In this case, the OCI client can
continue to process program logic while waiting to retry the OCI call to the server.

The non-blocking mode returns control to an OCI program once a call has been
made so that it may perform other computations while the OCI call is being
processed by the server. This mode is particularly useful in Graphical User Interface
(GUI) applications, real-time applications, and in distributed environments.

The non-blocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application has to check whether the
pending call is finished at the server. The client application must check whether the

OCI Programming Basics 2-41



Additional Coding Guidelines

pending call has finished at the server by executing the call again with the exact same
parameters.

Note: While waiting to retry non-blocking OCI call, the
application may not issue any other OCI calls, or an ORA-03124
error will occur. The only exceptions to this rule are OCIBreak()
and OCIReset()

See "Cancelling a Non-blocking Call" on page 2-42 for more
information on these calls

Setting Blocking Modes

You can modify or check an application’s blocking status by calling OCIAttrSet()
to set the status or OCIAttrGet() to read the status on the server context handle
with the attrtype  parameter set to OCI_ATTR_NONBLOCKING_MODE.

See Also:  See OCI_ATTR_NONBLOCKING_MODE on
page A-15.

Note: Only functions that have server context or a service context
handle as a parameter may return OCI_STILL_EXECUTING.

Cancelling a Non-blocking Call

You can cancel a long-running OCI call by using the OCIBreak() function. After
issuing an OCIBreak() while an OClI call is in progress, you must issue an
OCIReset() call to reset the asynchronous operation and protocol.

Non-blocking Example
The following code is an example of non-blocking mode.

intmain (int argc, char **argv)

{
sword retval;

if (retval = INtOCIHandles()) /* initialize all handles */
{

printf ("Unable to allocate handles.\n');

exit (EXIT_FAILURE);

2-42  Oracle Call Interface Programmer’s Guide



Additional Coding Guidelines

}
if (retval = logon()) /* log on */
{

printf ("Unable to log on..\n");
exit (EXIT_FAILURE);
}
if (retval = AllocStmtHandle ()) /* allocate statement handle */
{
printf ("Unable to allocate statement handle..\n");
exit (EXIT_FAILURE);
}
* set non-blocking on */
if (retval = OCIAtrSet ((dvoid *) srvhp, (ub4) OCI HTYPE_SERVER,
(dvoid ®) 0, (Ub4) 0,
(ub4) OCI_ATTR_NONBLOCKING_MODE, errhp))
{
printf ("Unable to set non-blocking mode..\n");
exit (EXIT_FAILURE);

}

while ((retval = OCIStmtExecute (svchp, stmhp, erthp, (ub4)0, (Ub4)0,
(OClIsnapshot *) 0, (OClISnapshot *)0,
OCI_DEFAULT))==OCI_STILL_EXECUTING)
printf (".");
printf (\n");

if (retval I= OCI_SUCCESS || retval '= OC|_SUCCESS_WITH_INFO)

{
printf("Error in OCIStmtExecute..\n");
exit EXIT_FAILURE);

}
i (retval = logoff () /*log out*/
{

printf ("Unable to logout ..\n");
exit (EXIT_FAILURE);
}

cleanup();
retum (int)OCl_SUCCESS;
}

OCI Programming Basics 2-43



Using PL/SQL in an OCI Program

Using PL/SQL in an OCI Program

PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language (DML) statements. PL/SQL lets you to group a number of constructs into
a single block and execute them as a unit. These constructs include:

One or more SQL statements
Variable declarations
Assignment statements

Procedural control statements such as IF... THEN...ELSE statements and
loops

Exception handling

You can use PL/SQL blocks in your OCI program to perform the following
operations:

Call Oracle stored procedures and stored functions

Combine procedural control statements with several SQL statements, to be
executed as a single unit

Access special PL/SQL features such as records, tables, CURSOR FORoops,
and exception handling

Use cursor variables

Operate on objects in an Oracle8 server

Note: While the OCI can only directly process anonymous blocks,
and not named packages or procedures, you can always put the
package or procedure call within an anonymous block and process
that block.

Note that all OUT variables have to be initialized to NULL (through
an indicator of -1, or an actual length of 0) prior to executing a
PL/SQL begin-end block in OCI.

OCI does not support the PL/SQL RECORD datatype.

2-44 Oracle Call Interface Programmer’s Guide



Using PL/SQL in an OCI Program

Caution:  When writing PL/SQL code, it is important to keep in
mind that the parser treats everything that starts with "--" to a
carriage return as a comment. So if comments are indicated on each
line by "--", the C compiler can concatenate all lines in a PL/SQL
block into a single line without putting a carriage return "\n" for
each line. In this particular case, the parser fails to extract the
PL/SQL code of a line if the previous line ends with a comment. To
avoid the problem, the programmer should put "\n" after each "--"
comment to make sure the comment ends there.

See Also:  PL/SQL User’s Guide and Reference for information about
coding PL/SQL blocks

OCI Programming Basics 2-45



Globalization Support

Globalization Support

OCI supports UTF-16 Unicode encoding formats in string-based function calls (for
SQL statements, data, metadata such as user and password, object support, in error
messages).

UTF-16 is a variable-width Unicode encoding built from 2-byte UCS2. Any
character in any language can be represented in UTF-16. AL16UTF16 is the Oracle
character set name for UTF-16. UTF-16 is a superset of UCS2.

ASCII and other native character sets are supported as well. Strings in ASCII follow
so-called byte length semantics. Unicode strings have character length semantics.

OCl is the interface between users and servers, so describe, insert, update and fetch
operations must be aware of codepoint-length semantics.

See Also:

« "Character Conversion Issues in Binding and Defining" on
page 5-35 for more information about Unicode support in OCI
calls

« "Character Length Semantics Support in Describing"” on
page 6-21

« For more information about Unicode support in OCI see the
Oracle9i Globalization and National Language Support Guide

UTF-16 Environment Mode

OCil calls are constructed as hierarchical layers with inheritance between handles.
Whether and how UTF-16 is used in OCI will be determined by setting up OCI
environment handles through the mode parameter and using the concept of
inheritance of handles. The way OCI handles are implemented allows lower level
handles such as OCI statement handles to get the UTF-16 settings from their parents
or to have OCI environment handles as default. Except for the environment, all
handles are stateless for UTF-16 setting. In other words, they do not save UTF-16
information. So users should always rely on the parent environment handle in
terms of UTF-16 setting.

Aside from OCIEnvCreate() , all these functions have one characteristic which is
they take text * parameters which might point to UTF-16 buffers. However, some
OCI functions, in order to simplify the OCI, require some parameters which are
string primitives to be passed down as dvoid * followed by length parameters.

2-46 Oracle Call Interface Programmer’s Guide



Globalization Support

For instance, OCIAttrGet(), which retrieves handle attribute information, asks
for attribute name returned out to be cast to dvoid * type, and

OClDescribeAny(), which describes existing schema objects, takes object name
passed in as a dvoid * parameter. These dvoid * parameters can come from string
buffers, such as names.

For text * parameters, their corresponding length values, no matter whether passed
in or out, are always the number of bytes for the whole string, regardless of UTF-16
setting. In other words, the length should always be twice the number of UTF-16
characters in the string.

The only exception to this rule is the group of functions with existing UTF-16
support where the length parameters refer to number of characters.

Top-level Environment Creation

OCIEnvCreate() initializes an environment handle from which other OCI
handles and structures get the fundamental information. A user can set UTF-16
encoding for the whole environment through this function call

Relational OCI Functions with Text Input

The following functions communicate with the server, but do not take mode
parameters as they do not need to. They choose the mode setting embedded in the
environment or statement handles that are passed down to them.

« OCIStmtPrepare()

« OCIBindByName()

« OClServerAttach()

« OCIPasswordChange()
« OClLogon()

« OCILobFileSetName()
« OCIAttrSet()

« OCIDescribeAny()

If mixed programming for both UTF-16 and non-UTF-16 buffers is inevitable for an
application, it is advised to create two separated environment handles each dealing
with one encoding respectively, because most relational OCI and object OCI calls
take only one environment handle at a time. For any functions taking more than
text parameter, these string buffers should always be prepared and treated in the

OCI Programming Basics 2-47



Globalization Support

same encoding. Mixed encoding for different string parameters in one function call
is invalid.

Relational OCI Functions with Text Output

The same advice to users as for the functions with text input applies to these
functions:

«  OCIStmtGetBindInfo()
« OCIErrorGet()

« OClServerVersion()

« OCILobFileGetName()
«  OCIAttrGet()

OCI String Functions with UTF-16 Data

As a scalar type OCIString, the encoding of the buffer depends on the environment
handle it belongs to. Being treated as a datatype SQLT_VST, OCIString behaves in
the same way as normal string types for bind and define handles.

If the environment handle is created with OCI_UTF16 mode, the data in OCIString
should be in UTF-16 encoding. Otherwise, the data is in NLS_LANG encoding. The
default character set in the corresponding bind or define handles are OCI_UTF16ID,
which means UTF-16. The size parameters are always in bytes. The related
functions are:

« OCIStringAssignText() - can assign a UTF-16 text to OCIString

« OCIStringResize() - resizes the OCIString in bytes

« OCIStringAllocSize() - allocates OCIString in bytes

«  OCIStringPtr() - returns a text pointer to an OCIString which can be in
UTF-16

« OCIStringSize() - returns size in bytes

Character Length Semantics

OCI works as a translator between server and client, and passes around character
information for constraint checking.

2-48 Oracle Call Interface Programmer’s Guide



Globalization Support

There are two kinds of character sets in the world, variable-width and fixed-width,
as a single byte character set is just a special fixed-width character set where each
byte stands for one character.

For fixed-width character sets, constraint checking is easier as number of bytes is
simply equal to a multiple of number of characters. Therefore, no scanning through
the whole string to find out number of characters is needed for fixed-width
character sets. However, for variable-width ones, complete scanning is inevitable to
find out the number of characters.

Character Set Support

See "Character Length Semantics Support in Describing" on page 6-21 and
"Character Conversion Issues in Binding and Defining" on page 5-35for a complete
discussion.

OCI Programming Basics 2-49



Globalization Support

2-50 Oracle Call Interface Programmer’s Guide



3

Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI
applications. It also provides a general discussion of Oracle datatypes, including
special datatypes new in the latest Oracle release. The information in this chapter is
useful for understanding the conversions between internal and external
representations that occur when you transfer data between your program and
Oracle. This chapter contains the following sections:

Oracle Datatypes
Internal Datatypes
External Datatypes
New External Datatypes
Data Conversions
Typecodes

Definitions in oratypes.h

See Also:  For detailed information about Oracle internal
datatypes, see the Oracle9i SQL Reference

Datatypes 3-1



Oracle Datatypes

Oracle Datatypes

One of the main functions of an OCI program is to communicate with a database
through an Oracle server. The OCI application may retrieve data from database
tables through SQL SELECTqueries, or it may modify existing data in tables
through INSERT , UPDATEor DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats known as internal datatypes. Examples of
internal datatypes include NUMBERCHARand DATE

In general, OCI applications do not work with internal datatype representations of
data. OCI applications work with host language datatypes which are predefined by
the language in which they are written. When data is transferred between an OCI
client application and a database table, the OCI libraries convert the data between
internal datatypes and external datatypes.

External datatypes are host language types that have been defined in the OCI
header files. When an OCI application binds input variables, one of the bind
parameters is an indication of the external datatype code (or SQLT code) of the
variable. Similarly, when output variables are specified in a define call, the external
representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types
provide a convenience for the programmer by making it possible to work with host
language types instead of proprietary data formats.

Note: Even though some external types are similar to internal
types, an OCI application never binds to internal datatypes. They
are discussed here because it can be useful to understand how
internal types can map to external types.

The OCI is capable of performing a wide range of datatype conversions when
transferring data between Oracle and an OCI application. There are more OCI
external datatypes than Oracle internal datatypes. In some cases a single external
type maps to an internal type; in other cases multiple external types map to an
single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI
programmer. For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number

3-2 Oracle Call Interface Programmer’s Guide



Oracle Datatypes

and you want the salary to come back as character data, rather than in a binary
floating-point format, specify an Oracle external string datatype, such as VARCHAR2
(code = 1) or CHAR(code = 96) for the dty parameter in the OCIDefineByPos()

call for the sal column. You also need to declare a string variable in your program
and specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT(code = 4) external datatype. You also need to define a
variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost
any external datatype provides a lot of power for performing specialized tasks. For
example, you can input and output DATEvalues in pure binary format, with no
character conversion involved, by using the DATEexternal datatype (code = 12). See
the description of the DATE external datatype on page 3-15 for more information.

To control data conversion, you must use the appropriate external datatype codes
in the bind and define routines. You must tell Oracle where the input or output
variables are in your OCI program and their datatypes and lengths.

OCIl also supports an additional set of OCI typecodes which are used by Oracle’s
type management system to represent datatypes of object type attributes. There is a
set of predefined constants which can be used to represent these typecodes. The
constants each contain the prefix OClI_TYPECODE

In summary, the OCI programmer must be aware of the following different
datatypes or data representations:

« Internal Oracle datatypes, which are used by table columns in an Oracle
database. These also include datatypes used by PL/SQL which are not used by
Oracle columns (e.g., indexed table, boolean, record).

See Also:  "Internal Datatypes" on page 3-4

« External OCI datatypes, which are used to specify host language
representations of Oracle data.

See Also:  "External Datatypes" on page 3-7, and "Using External
Datatype Codes" on page 3-4

« OCIL_TYPECODE values, which are used to Oracle to represent type
information for object type attributes.

Datatypes 3-3



Internal Datatypes

See Also: "Typecodes" on page 3-31, and "Relationship Between
SQLT and OCI_TYPECODE Values" on page 3-33

Information about a column’s internal datatype is conveyed to your application in
the form of an internal datatype code. Once your application knows what type of
data will be returned, it can make appropriate decisions about how to convert and
format the output data. The Oracle internal datatype codes are listed in the section
"Internal Datatypes" on page 3-4.

See Also:  For detailed information about Oracle internal
datatypes, see the Oracle9i SQL Reference. For information about
describing select-list items in a query, see the section "Describing
Select-List Items" on page 4-12.

Using External Datatype Codes

An external datatype code indicates to Oracle how a host variable represents data in
your program. This determines how the data is converted when returned to output
variables in your program, or how it is converted from input (bind) variables to
Oracle column values. For example, if you want to convert a NUMBERN an Oracle
column to a variable-length character array, you specify the VARCHAR?2 external
datatype code in the OCIDefineByPos()  call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external
datatype code that corresponds to the type of the bind variable. For example, if you
want to input a character string such as 02-FEB-65 to a DATEcolumn, specify the
datatype as a character string and set the length parameter to nine.

It is always the programmer’s responsibility to make sure that values are
convertible. If you try to insert the string MY BIRTHDAY into a DATEcolumn, you
will get an error when you execute the statement.

See Also:  For a complete list of the external datatypes and
datatype codes, see Table 3-2, "External Datatypes and Codes"

Internal Datatypes

The following table lists the Oracle internal (also known as built-in) datatypes, along
with each type’s maximum internal length and datatype code.

3-4 Oracle Call Interface Programmer’s Guide



Internal Datatypes

Table 3-1 Internal Oracle Datatypes

Datatype
Internal Oracle Datatype Maximum Internal Length Code
VARCHAR2, NVARCHAR2 4000 bytes 1
NUMBER 21 bytes 2
LONG 2731-1 bytes (2 gigabytes) 8
ROWID 10 bytes 11
DATE 7 bytes 12
RAW 2000 bytes 23
LONG RAW 2/731-1 bytes 24
CHAR, NCHAR 2000 bytes 96
User-defined type (object type, VARRAY, N/A 108
Nested Table)
REF N/A 111
CLOB, NCLOB 4 gigabytes 112
BLOB 4 gigabytes 113
BFILE 4 gigabytes 114
TIMESTAMP 11 bytes 180
TIMESTAMP WITH TIME ZONE 13 bytes 181
INTERVAL YEAR TO MONTH 5 bytes 182
INTERVAL DAY TO SECOND 11 bytes 183
UROWID 3950 bytes 208
TIMESTAMP WITH LOCAL TIME ZONE 11 bytes 231

See Also:  For more information about these built-in datatypes,
see the Oracle9i SQL Reference. The following sections provide
OCl-specific information about these datatypes.

LONG, RAW, LONG RAW, VARCHAR2

You can use the piecewise capabilities provided by OCIBindByName() ,
OCIBindByPos() , OCIDefineByPos() , OCIStmtGetPiecelnfo() and

Datatypes 3-5



Internal Datatypes

OCIstmtSetPiecelnfo() to perform inserts, updates or fetches involving
column data of these types.

Character Strings and Byte Arrays

You can use five Oracle internal datatypes to specify columns that contain
characters or arrays of bytes: CHARVARCHARZRAWLONGand LONG RAW

Note: LOBs can contain characters and FILEs can contain binary
data. They are handled differently than other types, so they are not
included in this discussion. See Chapter 7, "LOB and FILE
Operations", for more information about these data types.

CHARVARCHARZand LONGcolumns normally hold character data. RAWAnd LONG
RAWhold bytes that are not interpreted as characters, for example, pixel values in a
bit-mapped graphics image. Character data can be transformed when passed
through a gateway between networks. For example, character data passed between
machines using different languages (where single characters may be represented by
differing numbers of bytes) can be significantly changed in length. Raw data is
never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal datatype for each column in the table. The OCI programmer must be aware
of the many possible ways that character and byte-array data can be represented
and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

UROWID

The Universal ROWIDUROWIDis a datatype that can store both logical and
physical rowids of Oracle tables, and rowids of the foreign tables, such as DB2
tables accessed by a gateway. Logical rowids are primary key-based logical
identifiers for the rows of Index-Organized Tables (I0Ts).

To use columns of the UROWIDQWatatype, the value of the COMPATIBLHEn itialization
parameter must be set to 8.1 or higher.

The following host variables can be bound to Universal ROWIDs:
« SQLT_CHR (VARCHARR

3-6 Oracle Call Interface Programmer’s Guide



External Datatypes

« SQLT_VCS (VARCHAR
« SQLT_STR (Null-Terminated string)
« SQLT_LVC (long varchar)

. SLQT_AFC (CHAR
. SQLT_AVC (CHARZ

« SQLT_VST (OCI String)
« SQLT_RDD (ROWIDdescriptor)

External Datatypes

Table 3-2 lists datatype codes for external datatypes. For each datatype, the table
lists the program variable types for C from or to which Oracle internal data is
normally converted.

Table 3-2 External Datatypes and Codes

EXTERNAL DATATYPE

TYPE OF PROGRAM

NAME CODE VARIABLE OCI DEFINED CONSTANT
VARCHAR?2 1 char[n] SQLT_CHR
NUMBER 2 unsigned char[21] SQLT_NUM
8-bit signed INTEGER 3 signed char SQLT_INT
16-bit signed INTEGER 3 signed short, signed int SQLT_INT
32-bit signed INTEGER 3 signed int, signed long SQLT_INT
FLOAT 4 float, double SQLT_FLT
Null-terminated STRING 5 char[n+1] SQLT_STR
VARNUM 6 char[22] SQLT_VNU
LONG 8 char[n] SQLT_LNG
VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS
DATE 12 char[7] SQLT_DAT
VARRAW 15 unsigned SQLT_VBI
char[n+sizeof(short integer)]
RAW 23 unsigned char[n] SQLT_BIN

Datatypes 3-7



External Datatypes

Table 3-2 External Datatypes and Codes (Cont.)

EXTERNAL DATATYPE

TYPE OF PROGRAM

NAME CODE VARIABLE OCI DEFINED CONSTANT

LONG RAW 24 unsigned char[n] SQLT_LBI

UNSIGNED INT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned SQLT_LVB
char[n+sizeof(integer)]

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid * SQLT_RDD

NAMED DATA TYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB descriptor 112 OClLobLocator (see note 3) SQLT_CLOB

Binary LOB descriptor 113 OClLobLocator (see note 3) SQLT_BLOB

Binary FILE descriptor 114 OClLobLocator SQLT_FILE

OCI string type 155 OCIString SQLT_VST (see note 2)

OCI date type 156 OClDate * SQLT_ODT (see note 2)

ANSI DATE descriptor 184 OClIDateTime * SQLT_DATE

TIMESTAMP descriptor 187 OClIDateTime * SQLT_TIMESTAMP

TIMESTAMP WITH TIME ZONE 188 OClIDateTime * SQLT_TIMESTAMP_TZ

descriptor

INTERVAL YEAR TO MONTH 189 OClInterval * SQLT_INTERVAL_YM

descriptor

3-8 Oracle Call Interface Programmer’s Guide



External Datatypes

Table 3-2 External Datatypes and Codes (Cont.)

EXTERNAL DATATYPE
TYPE OF PROGRAM

NAME CODE VARIABLE OCI DEFINED CONSTANT
INTERVAL DAY TO SECOND 190 OCllInterval * SQLT_INTERVAL_DS
descriptor

TIMESTAMP WITH LOCAL TIME 232 OClIDateTime * SQLT_TIMESTAMP_LTZ

ZONE descriptor

Notes:

(1) This type is valid only for version 7.x OCI calls. OCI release 8 or later applications should use the ROWID
descriptor (type 104).

(2) For more information on the use of these datatypes, refer to Chapter 11, "Object-Relational Datatypes".

(3) In applications using datatype mappings generated by OTT, CLOBs may be mapped as OCIClobLocator,
and BLOBs may be mapped as OCIBlobLocator. For more information, refer to Chapter 14, "The Object Type
Translator (OTT)".

Note: Where the length is shown as n, it is a variable, and
depends on the requirements of the program (or of the operating
system in the case of ROWID

Each of the external datatypes is described below. Datatypes that are new as of
release 8.0 or later are described in the section "New External Datatypes" on
page 3-19.

The following three types are internal to PL/SQL and cannot be returned as values
by OCI:

« Boolean, SQLT BOL
« Indexed Table, SQLT_TAB
« Record, SQLT_REC

VARCHAR2

The VARCHAR®atatype is a variable-length string of characters with a maximum
length of 4000 bytes.

Datatypes 3-9



External Datatypes

Note: If you are using Oracle objects, you can work with a special
OCIString external datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes" for
more information about this datatype.

Input

The value_sz  parameter determines the length in the OCIBindByName() or
OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable
value by reading exactly that many bytes, starting at the buffer address in your
program. Trailing blanks are stripped, and the resulting value is used in the SQL
statement or PL/SQL block. If, in the case of an INSERT statement, the resulting
value is longer than the defined length of the database column, the INSERT fails,
and an error is returned.

Note: A trailing null is not stripped. Variables should be
blank-padded but not null-terminated.

If the value_sz parameter is zero, Oracle treats the bind variable as a null,
regardless of its actual content. Of course, a null must be allowed for the bind
variable value in the SQL statement. If you try to insert a null into a column that has
a NOT NULLintegrity constraint, Oracle issues an error, and the row is not inserted.

When the Oracle internal (column) datatype is NUMBERnNput from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the VARCHARZ2tring
contains an illegal conversion character, Oracle returns an error and the value is not
inserted into the database.

Output

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos()  call, or the value_sz parameter of OCIBindByName() or
OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is
returned.

If you omit the rlenp parameter of OCIDefineByPos() , returned values are
blank-padded to the buffer length, and nulls are returned as a string of blank

3-10 Oracle Call Interface Programmer’s Guide



External Datatypes

NUMBER

characters. If rlenp is included, returned values are not blank-padded. Instead,
their actual lengths are returned in the rlenp parameter.

To check if a null is returned or if character truncation has occurred, include an
indicator parameter in the OCIDefineByPos()  call. Oracle sets the indicator
parameter to -1 when a null is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a null is selected, the fetch call returns the error code
OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will
return ORA-1405.

See Also:  "Indicator Variables" on page 2-36

You can also request output to a character string from an internal NUMBERIatatype.
Number conversion follows the conventions established by National Language
Support for your system. For example, your system might be configured to
recognize a comma rather than period as the decimal point.

You should not need to use NUMBERS an external datatype. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and will expect this
format on input. The following discussion is included for completeness only.

Note: If you are using objects in an Oracle database server, you
can work with a special OCINumber datatype using a set of
predefined OCI functions. Refer to Chapter 11, "Object-Relational
Datatypes" for more information about this datatype.

Oracle stores values of the NUMBERIatatype in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of
the exponent byte is the sign bit; it is set for positive numbers and it is cleared for
negative numbers. The lower 7 bits represent the exponent, which is a base-100
digit with an offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add
another 128 if the number is positive. If the number is negative, you do the same,
but subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e) -128 - 65 = Oxc1 -128 -65 = 193 -128 -65
=0.

Datatypes 3-11



External Datatypes

INTEGER

FLOAT

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is 96 (101 - 5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa
bytes do not have the trailing 102 byte. Because the mantissa digits are stored in
base 100, each byte can represent 2 decimal digits. The mantissa is normalized,;
leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER

If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos()
call, your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number.
Note that only the bytes that represent the number are returned. There is no blank
padding or null termination. If you need to know the number of bytes returned, use
the VARNUMxternal datatype instead of NUMBERSee the description of VARNUMbdN
page 3-14 for examples of the Oracle internal number format.

The INTEGERdatatype converts numbers. An external integer is a signed binary
number; the size in bytes is system dependent. The host system architecture
determines the order of the bytes in the variable. A length specification is required
for input and output. If the number being returned from Oracle is not an integer,
the fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system,
Oracle returns an "overflow on conversion" error.

The FLOATdatatype processes numbers that have fractional parts or that exceed the
capacity of an integer. The number is represented in the host system’s floating-point
format. Normally the length is either four or eight bytes. The length specification is
required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore Oracle can represent numbers with greater
precision than floating-point representations.

3-12 Oracle Call Interface Programmer’s Guide



External Datatypes

STRING

Note: You may receive a round-off error when converting
between FLOATand NUMBERThus, using a FLOATas a bind
variable in a query may return an ORA-1403 error. You can avoid
this situation by converting the FLOATinto a STRINGand then
using datatype code 1 or 5 for the operation.

The null-terminated STRING format behaves like the VARCHAR?2 format (datatype
code 1), except that the string must contain a null terminator character. This
datatype is most useful for C language programs.

Input

The string length supplied in the OCIBindByName() or OCIBindByPos() call
limits the scan for the null terminator. If the null terminator is not found within the
length specified, Oracle issues the error

ORA-01480: trailing null missing from STRbind value

If the length is not specified in the bind call, the OCI uses an implied maximum
string length of 4000.

The minimum string length is two bytes. If the first character is a null terminator
and the length is specified as two, a null is inserted in the column, if permitted.
Unlike types 1 and 96, a string containing all blanks is not treated as a null on input;
itis inserted as is.

Note: Unlike earlier versions of the OCI, in release 8.0 or later,
you cannot pass -1 for the string length parameter of a
null-terminated string

Output

A null terminator is placed after the last character returned. If the string exceeds the
field length specified, it is truncated and the last character position of the output
variable contains the null terminator.

A null select-list item returns a null terminator character in the first character
position. An ORA-01405 error is possible, as well.

Datatypes 3-13



External Datatypes

VARNUM

LONG

VARCHAR

The VARNUMatatype is like the external NUMBERIatatype, except that the first byte
contains the length of the number representation. This length does not include the
length byte itself. Reserve 22 bytes to receive the longest possible VARNUMSet the
length byte when you send a VARNUMalue to Oracle.

The following table shows several examples of the VARNUNMNalues returned for
numbers in an Oracle table.

Table 3-3 VARNUM Examples

Decimal Exponent Mantissa Terminator
Value Length Byte Byte Bytes Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74,34 102
100000 2 195 1 n/a
1234567 5 196 2,24,46, 68 n/a

The LONGdatatype stores character strings longer than 4000 bytes. You can store up
to two gigabytes (27°31-1 bytes) in a LONGcolumn. Columns of this type are used
only for storage and retrieval of long strings. They cannot be used in functions,
expressions, or WHERElauses. LONCGcolumn values are generally converted to and
from character strings.

The VARCHARIatatype stores character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
string. The specified length of the string in a bind or a define call must include the
two length bytes, so the largest VARCHARLtring that can be received or sent is 65533
bytes long, not 65535. For converting longer strings, use the LONG VARCHAdXternal
datatype.

3-14 Oracle Call Interface Programmer’s Guide



External Datatypes

DATE

The DATEdatatype can update, insert, or retrieve a date value using the Oracle
internal date binary format. A date in binary format contains seven bytes, as shown
in Table 3-4.

Table 3-4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7
Meaning Century Year Month  Day Hour  Minute Second
Example (for 119 192 11 30 16 18 1

30-NOV-1992, 3:17 PM)

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte
stores the value of the year, which is 1992, as an integer, divided by 100, giving 119
in excess-100 notation. The second byte stores year modulo 100, giving 192. Dates
Before Common Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE,
which is Julian day 1. For this date, the century byte is 53, and the year byte is 88.
The hour, minute, and second bytes are in excess-1 notation. The hour byte ranges
from 1 to 24, the minute and second bytes from 1 to 60. If no time was specified
when the date was created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATEexternal datatype, the
database does not do consistency or range checking. All data in this format must be
carefully validated before input.

Note: There is little need to use the Oracle external DATEdatatype
in ordinary database operations. It is much more convenient to
convert DATEinto character format, because the program usually
deals with data in a character format, such as DD-MON-YY.

When a DATEcolumn is converted to a character string in your program, it is
returned using the default format mask for your session, or as specified in the
INIT.ORA file.

Datatypes 3-15



External Datatypes

Note: If you are using objects in an Oracle database, you can work
with a special OCIDate datatype using a set of predefined OCI
functions.

» Refer to Chapter 11, "Object-Relational Datatypes" for more
information about this datatype.

» For information about DATETIMEand INTERVAL datatypes,
refer to "Datetime and Interval Datatype Descriptors” on
page 3-23.

RAW

The RAWHatatype is used for binary data or byte strings that are not to be
interpreted by Oracle, for example, to store graphics character sequences. The
maximum length of a RAWolumn is 2000 bytes.

See Also:  Oracle9i SQL Reference.

When RAWata in an Oracle table is converted to a character string in a program,
the data is represented in hexadecimal character code. Each byte of the RAWHata is
returned as two characters that indicate the value of the byte, from 00’ to 'FF’. If
you want to input a character string in your program to a RAWolumn in an Oracle
table, you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by OCIDefineByPos()
OCIBindByName() , OCIBindByPos() , OCIStmtGetPiecelnfo() ,and
OCIStmtSetPiecelnfo() to perform inserts, updates, or fetches involving RAW
(or LONG RAW¢olumns.

Note: If you are using objects in an Oracle database, you can work
with a special OCIRaw datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes" for
more information about this datatype.

VARRAW

The VARRAW atatype is similar to the RAWHatatype. However, the first two bytes
contain the length of the data. The specified length of the string in a bind or a define
call must include the two length bytes. So the largest VARRAWtring that can be

3-16 Oracle Call Interface Programmer’s Guide



External Datatypes

received or sent is 65533 bytes long, not 65535. For converting longer strings, use
the LONG VARRA®{ternal datatype.

LONG RAW

The LONG RAWatatype is similar to the RAWHatatype, except that it stores raw data
with a length up to two gigabytes (2°31-1 bytes).

UNSIGNED

The UNSIGNEDatatype is used for unsigned binary integers. The size in bytes is
system dependent. The host system architecture determines the order of the bytes
in a word. A length specification is required for input and output. If the number
being output from Oracle is not an integer, the fractional part is discarded, and no
error or other indication is returned. If the number to be returned exceeds the
capacity of an unsigned integer for the system, Oracle returns an "overflow on
conversion" error.

LONG VARCHAR

The LONG VARCHAdRtatype stores data from and into an Oracle LONGcolumn. The
first four bytes of a LONG VARCHAd®®Ntain the length of the item. So, the maximum
length of a stored item is 2°31-5 bytes.

LONG VARRAW

The LONG VARRAWMatatype is used to store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is
27\31-5 bytes.

CHAR

The CHARdatatype is a string of characters, with a maximum length of 2000. CHAR
strings are compared using blank-padded comparison semantics

See Also:  Oracle9i SQL Reference
Input

The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByPos() call.

Datatypes 3-17



External Datatypes

Note: The entire contents of the buffer (value_sz chars) is
passed to the database, including any trailing blanks or nulls

If the value_sz parameter is zero, Oracle treats the bind variable as a null,
regardless of its actual content. Of course, a null must be allowed for the bind
variable value in the SQL statement. If you try to insert a null into a column that has
a NOT NULLintegrity constraint, Oracle issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARSs.

When the Oracle internal (column) datatype is NUMBERnNput from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the CHARstring
contains an illegal conversion character, Oracle returns an error and does not insert
the value. Number conversion follows the conventions established by National
Language Support settings for your system. For example, your system might be
configured to recognize a comma (,) rather than a period (.) as the decimal point.

Output

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos()  call. If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of OCIDefineByPos() , returned values are
blank padded to the buffer length, and nulls are returned as a string of blank
characters. If rlenp is included, returned values are not blank padded. Instead,
their actual lengths are returned in the rlenp  parameter.

To check whether a null is returned or if character truncation has occurred, include
an indicator parameter or array of indicator parameters in the OCIDefineByPos()
call. An indicator parameter is set to -1 when a null is fetched and to the original
column length when the returned value is truncated. Otherwise, it is set to zero. If
you do not specify an indicator parameter and a null is selected, the fetch call
returns an ORA-01405 error.

See Also:  "Indicator Variables" on page 2-36

You can also request output to a character string from an internal NUMBERIatatype.
Number conversion follows the conventions established by the National Language

Support settings for your system. For example, your system might use a comma (,)

rather than a period (.) as the decimal point.

3-18 Oracle Call Interface Programmer’s Guide



New External Datatypes

CHARZ

The CHARZxternal datatype is similar to the CHARdatatype, except that the string
must be null terminated on input, and Oracle places a null-terminator character at
the end of the string on output. The null terminator serves only to delimit the string
on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the null
terminator. For example, if an array in C is declared as

charmy_num[] ="123.45"

then the length parameter when you bind my_nummust be seven. Any other value
would return an error for this example.

New External Datatypes

The following new external datatypes were introduced with or after release 8.0.
These datatypes are not supported when you connect to an Oracle release 7 server.

Note: Both internal and external datatypes have Oracle-defined
constant values, such as SQLT_NTY, SQLT_REF, corresponding to
their datatype codes. Although the constants are not listed for all of
the types in this chapter, they are used in this section when
discussing new Oracle datatypes. The datatype constants are also
used in other chapters of this guide when referring to these new

types.

Named Data Types (Object, VARRAY, Nested Table)

Named data types are user-defined types which are specified with the CREATE
TYPEcommand in SQL. Examples include object types, varrays, and nested tables.
In the OCI, named data type refers to a host language representation of the type. The
SQLT_NTY datatype code is used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can
be generated from types stored in the database by using the Object Type Translator.
These types correspond to OCI_TYPECODE_OBJECT.

Datatypes 3-19



New External Datatypes

See Also:

« For more information about working with named data types in
the OCI, refer to Part 2 of this guide.

« For information about how named data types are represented
as C structs, refer to Chapter 14, "The Object Type Translator
(OTT)".

REF

This is a reference to a named data type. The C language representation of a REFis
a variable declared to be of type OCIRef *. The SQLT_REF datatype code is used
when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in
object mode. When REFs are retrieved from the server, they are stored in the
client-side object cache.

To allocate a REFfor use in your application, you should declare a variable to be a
pointer to a REF and then call OCIObjectNew() , passing OCI_TYPECODE_REF
as the typecode parameter.

See Also:  For more information about working with REFs in the
OCl, refer to Part Il of this guide

ROWID Descriptor

The ROWIDdatatype identifies a particular row in a database table. ROWIDcan be a
select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWIDIn further DELETEstatements.

If you are performing a SELECTfor UPDATEthe ROWIDs implicitly returned. This
ROWICxan be read into a user-allocated ROWIDdescriptor using OCIAttrGet() on
the statement handle and used in a subsequent UPDATEstatement. The prefetch
operation fetches all ROWIDs on a SELECTfor UPDATEuse prefetching and then a
single row fetch.

You access rowids through the use of a ROWIDdescriptor, which you can use as a
bind or define variable.

3-20 Oracle Call Interface Programmer’s Guide



New External Datatypes

See Also:  See the sections "Descriptors” on page 2-15 and
"Positioned Updates and Deletes" on page 2-39 for more
information about the use of the ROWIDdescriptor

LOB Descriptor

A LOB (Large Object) stores binary or character data up to 4 gigabytes in length.
Binary data is stored in a BLOB(Binary LOB), and character data is stored in a CLOB
(Character LOB) or NCLOB(National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the database server. A
database table stores a LOB locator which points to the LOB value which may be in a
different storage space.

When an OCI application issues a SQL query which includes a LOB column or
attribute in its select-list, fetching the result(s) of the query returns the locator,
rather than the actual LOB value. In the OCI, the LOB locator maps to a variable of
type OClLobLocator.

See Also:

« For more information about descriptors, including the LOB
locator, see the section "Descriptors" on page 2-15

« For more information about LOBs refer to the Oracle9i SQL
Reference and the Oracle9i Application Developer’s Guide - Large
Objects (LOBs).

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI
functions assume that the locator has already been created, whether or not the LOB
to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated
with the OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin() , and then
operations are performed using the locator. The OCI functions never take the actual
LOB value as a parameter.

See Also:  For more information about OCI LOB functions, see
Chapter 7, "LOB and FILE Operations"

The datatype codes available for binding or defining LOBs are:

Datatypes 3-21



New External Datatypes

« SQLT_BLOB - a binary LOB data type.
» SQLT_CLOB - a character LOB data type.
The NCLOB:s a special type of CLOBwith the following requirements:

« To write into or read from an NCLOBthe user must set the character set form
(csfrm ) parameter to be SQLCS_NCHAR.

« The amount (amtp) parameter in calls involving CLOB and NCLOR is always
interpreted in terms of characters, rather than bytes, for fixed-width character
sets.

See Also: "LOB and FILE Functions" on page 7-5

BFILE

The BFILE datatype provides access to file LOBs that are stored in file systems
outside an Oracle database. Oracle currently only supports access to binary files, or
BFILEs.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server’s file system. The locator maintains the directory alias and
the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability. The maximum file size supported is 4
gigabytes.

The database administrator must ensure that the file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot
modify a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining FILES is:
« SQLT_BFILE - a binary FILE LOB data type

See Also:  For more information about directory aliases, refer to
the Oracle9i Application Developer’s Guide - Large Objects (LOBSs)

BLOB

The BLOBdatatype stores unstructured binary large objects. BLOBs can be thought
of as bitstreams with no character set semantics. BLOBs can store up to four
gigabytes of binary data.

3-22 Oracle Call Interface Programmer’s Guide



New External Datatypes

BLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The BLOBvalue manipulations can be committed or rolled
back. You cannot save a BLOBIlocator in a variable in one transaction and then use it
in another transaction or session.

CLOB

The CLOBdatatype stores fixed- or varying-width character data. CLOB can store
up to 4 gigabytes of character data.

CLOB have full transactional support; changes made through the OCI participate
fully in the transaction. The CLOBvalue manipulations can be committed or rolled
back. You cannot save a CLOBIocator in a variable in one transaction and then use it
in another transaction or session.

NCLOB. An NCLOB:s a national character version of a CLOB It stores fixed-width,
single-byte or multibyte national character set (NCHARdata, or varying-width
character set data. NCLORB can store up to 4 gigabytes of character text data.

NCLOB have full transactional support; changes made through the OCI participate
fully in the transaction. NCLOBvalue manipulations can be committed or rolled
back. You cannot save a NCLOBlocator in a variable in one transaction and then use
it in another transaction or session.

You cannot create an object with NCLOBattributes, but you can specify NCLOB
parameters in methods.

Datetime and Interval Datatype Descriptors
The datetime and interval datatype descriptors are briefly summarized here.

See Also:  For more a more complete discussion, see Oracle9i SQL
Reference

ANSI DATE

The ANSI DATEIs based on the DATE but contains no time portion. (Therefore, it
also has no time zone.) ANSI DATEfollows the ANSI specification for the DATE
datatype. When assigning an ANSI DATEto a DATEor a timestamp datatype, the
time portion of the Oracle DATEand the timestamp are set to zero. When assigning
a DATEor a timestamp to an ANSI DATE the time portion is ignored.

You are encouraged to instead use the TIMESTAMPdatatype which contains both
date and time.

Datatypes 3-23



New External Datatypes

TIMESTAMP

The TIMESTAMPdatatype is an extension of the DATEdatatype. It stores the year,
month, and day of the DATEdatatype, plus the hour, minute, and second values. It
has no time zone. The TIMESTAMPdatatype has the form:

TIMESTAMP(fractional_seconds_precision)

where fractional_seconds_precision (which is optional) specifies the
number of digits in the fractional part of the SECONIRlatetime field and can be a
number in the range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE@ ST2) is a variant of TIMESTAMPthat includes an
explicit time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and UTC (Coordinated
Universal Time—formerly Greenwich Mean Time). The TIMESTAMP WITH TIME
ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECONIDIatetime field and can be a number in the
range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONfzalues are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONEoffsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONESLTZ) is another variant of TIMESTAMP
that includes a time zone displacement in its value. Storage is in the same format as
for TIMESTAMPThis type differs from TIMESTAMP WITH TIME ZONH that data
stored in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When users retrieve the data,
Oracle returns it in the users’ local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time).
The TIMESTAMP WITH LOCAL TIMEONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

3-24 Oracle Call Interface Programmer’s Guide



New External Datatypes

where fractional _seconds_precision optionally specifies the number of
digits in the fractional part of the SECONDIatetime field and can be a number in the
range 0 to 9. The default is 6.

INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONRtbres a period of time using the YEARand MONTH
datetime fields. The INTERVAL YEAR TO MONTd4tatype has the form:

INTERVAL YEAR(year_precision) TO MONTH

where the optional year precision is the number of digits in the YEARdatetime
field. The default value of year precision is 2.

INTERVAL DAY TO SECOND

INTERVAL DAY TO SECONiores a period of time in terms of days, hours, minutes,
and seconds. The INTERVAL DAY TO SECONiatatype has the form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

where:

« day _precision is the number of digits in the DAYdatetime field. It is
optional. Accepted values are 0 to 9. The default is 2.

fractional_seconds_precision is the number of digits in the fractional
part of the SECONDIatetime field. It is optional. Accepted values are 0to 9. The
default is 6.

Avoiding Unexpected Results Using Datetime

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONEnd
SESSIONTIMEZONEIf the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

Datatypes 3-25



Data Conversions

C Object-Relational Datatype Mappings

The OCI supports Oracle-defined C datatypes used to map user-defined datatypes
to C representations (e.g. OCINumber, OCIlArray). The OCI provides a set of calls
to operate on these datatypes, and to use these datatypes in bind and define
operations, in conjunction with OCI external datatype codes.

See Also:  For information on using these Oracle-defined C
datatypes, refer to Chapter 11, "Object-Relational Datatypes"

Data Conversions

Table 3-5 and Table 3-6 show the supported conversions from internal datatypes to
external datatypes, and from external datatypes into internal column
representations, for all datatypes available through release 7.3. Information about
data conversions for data types newer than release 7.3 is listed here:

« REFs stored in the database are converted to SQLT_REF on output.
« SQLT_REF is converted to the internal representation of REFs on input.

« Named Data Types stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

« SQLT_NTY (represented by a C struct in an application) is converted to the
internal representation of the corresponding type on input.

LOBs are shown in a separate table that follows, because of the width limitation.
See Also:  For information about OCIString, OCINumber, and

other new datatypes, refer to Chapter 11, "Object-Relational
Datatypes"

Table 3—-5 Data Conversions

INTERNAL DATATYPES

EXTERNAL

DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW IF_&CIVG CHAR
VARCHAR  1/0 170 170 I/0(1) 1/70(1) 1/0(2) 1/0(3) 1/0(3)

NUMBER 1/0(4) 170 | 1/0(4)
INTEGER 1/0(4) 170 [ 1/0(4)
FLOAT 1/0(4) 170 | 1/0(4)

3-26 Oracle Call Interface Programmer’s Guide



Data Conversions

Table 3-5 Data Conversions (Cont.)

INTERNAL DATATYPES

EXTERNAL TONG
DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW  CHAR
STRING 170 170 170 I/0(1) 1/0(1)  1/0(2) 1/0(3) 1/0(3,5) 1/0
VARNUM 1/0(4) 170 [ 1/0(4)
DECIMAL 170(4) 170 [ 1/0(4)
LONG 170 170 170 I/0(1) 1/0(1)  1/0(2) 1/0(3) 1/0(3,5) 1/0
VARCHAR  1/0 170 170 I/0(1) 1/0(1)  1/0(2) 1/0(3) 1/0(3,5) 1/0
DATE 170 | 170 170
VARRAW 1/0(6) I(5, 6) I/0 170 1/0(6)
RAW 1/0(6) I(5, 6) I/0 170 1/0(6)
LONG RAW  O(6) I(5, 6) /0 170 0(6)
UNSIGNED  1/0(4) 170 | 1/0(4)
LONG 170 170 170 I/0(1) 1/0(1)  1/0(2) 1/0(3) 1/0(3,5) 170
VARCHAR

LONG 1/0(6) I(5, 6) I/0 170 1/0(6)
VARRAW

CHAR 170 170 170 I/0(1) 1/0(1)  1/0(2) 170(3) I(3) 170

Datatypes 3-27



Data Conversions

Table 3-5 Data Conversions (Cont.)

INTERNAL DATATYPES

EXTERNAL LONG

DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW CHAR

CHARZ 170 170 170 170(1) 1/0(1) 170(2) 1/70(3) 1(3) 170

ROWID 1(1) 170 170 1(1)

descriptor

Notes: Legend:

(1) For input, host string must be in Oracle ROWID/UROW!IBormat. I= Ctonvlersion valid for
input only

On output, column value is returned in Oracle ROWID/UROW!IBormat.
. . . O = Conversion valid for

(2) For input, host string must be in the Oracle DATEcharacter format. output only

On output, column value is returned in Oracle DATEformat. 1/0 = Conversion valid
(3) For input, host string must be in hex format. for input or output

On output, column value is returned in hex format.
(4) For output, column value must represent a valid number.
(5) Length must be less than or equal to 2000.
(6) On input, column value is stored in hex format.

On output, column value must be in hex format.

Data Conversions for LOB Datatype Descriptors

Table 3—-6 Data Conversions for LOBs
INTERNAL DATATYPES

EXTERNAL DATATYPES CLOB BLOB
VARCHAR 170

CHAR 170

LONG 170

LONG VARCHAR 170

RAW 170
VARRAW 170
LONG RAW 170

3-28 Oracle Call Interface Programmer’s Guide



Data Conversions

Table 3—-6 Data Conversions for LOBs

INTERNAL DATATYPES

EXTERNAL DATATYPES CLOB

BLOB

LONG VARRAW

170

Data Conversions for Datetime and Interval Datatypes

You can also use one of the character data types for the host variable used in a fetch
or insert operation from or to a datetime or interval column. Oracle will do the
conversion between the character data type and datetime/interval data type for

you.

Table 3-7 Data Conversion for Datetime and Interval Types

External Types
VARCHAR2, CHAR
DATE

OCI DATE

ANSI DATE
TIMESTAMP (TS)

TIMESTAMP WITH TIME
ZONE (TSTZ)

TIMESTAMP WITH
LOCAL TIME ZONE
(TSLTZ)

INTERVAL YEAR TO
MONTH

INTERVAL DAY TO
SECOND

Internal Types

INTERVAL  NTERVAL
VARCHAR, YEAR TO DAY TO
CHAR DATE TS TSTZ TSLTZ  MONTH SECOND
170 170 170 170 170 170 170
170 170 170 170 170 - -
170 170 170 170 170 - -
170 170 170 170 170 - -
170 170 170 170 170 - -
170 170 170 170 170 - -
170 170 170 170 170
170 - - - - 170 -
170 - - - - - 170

Datatypes 3-29



Data Conversions

Note: When assigning a source with time zone to a target without a time zone, the time
zone portion of the source is ignored. On assigning a source without a time zone to a target
with a time zone, the time zone of the target is set to the session’s default time zone

(0) When assigning an Oracle DATEto a TIMESTAMPthe TIME portion of the DATEis
copied over to the TIMESTAMPWhen assigning a TIMESTAMRo Oracle DATE the
TIME portion of the result DATEis set to zero. This is done to encourage migration of
Oracle DATEto ANSI compliant DATETIMEdata types

(1) When assigning an ANSI DATEto an Oracle DATEor a TIMESTAMPthe TIME portion
of the Oracle DATEand the TIMESTAMPare set to zero. When assigning an Oracle DATE
or a TIMESTAMRPRo an ANSI DATE the TIME portion is ignored

(2) When assigning a DATETIMEto a character string, the DATETIMEis converted using
the session’s default DATETIMEformat. When assigning a character string to a
DATETIME the string must contain a valid DATETIMEvalue based on the session’s
default DATETIMEformat

(3) When assigning a character string to an INTERVAL, the character string must be a valid
INTERVAL character format.

Data Conversion Notes for Datetime and Interval Types

(1) When converting from TSLTZ to CHARDATE TIMESTAMPand TSTZ, the value
will be adjusted to the session time zone.

(2) When converting from CHARDATE and TIMESTAMPto TSLTZ, the session time
zone will be stored in memory.

(3) When assigning TSLTZ to ANSI DATE, the time portion will be zero.

(4) When converting from TSTZ, the time zone which the time stamp is in will be
stored in memory.

(5) When assigning a character string to an interval, the character string must be a
valid interval character format.

Datetime and Date Migration Rules

OCI has full forward and backward compatibility between a client application and
the database server as far as the datetime and date columns are concerned.

Pre-9.0 Client with 9.0 or Later Server

The only datetime datatype available to a pre-9.0 application is the DATEdatatype,
SQLT_DAT. When a pre-9.0 client that defined a buffer as SQLT_DAT, tries to

3-30 Oracle Call Interface Programmer’s Guide



Typecodes

Typecodes

obtain data from a TSLTZ column, then only the date portion of the value will be
returned to the client.

Pre-9.0 Server with 9.0 or Later Client

In this case the new client might have a bind or define buffer of type
SQLT_TIMESTAMP_LTZ. The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new
datetime datatypes) into a DATEcolumn, an error will be issued since there is
potential data loss in this situation.

When a client has an OUT bind or a define buffer that is of datatype
SQLT_TIMESTAMP_LTZ and the underlying server side SQL buffer or column is of
DATEtype, then the session time zone is assigned.

There is a unique typecode associated with each Oracle type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used by
Oracle to manage information about object type attributes. This typecode system is
designed to be generic and extensible, and is not tied to a direct one-to-one
mapping to Oracle datatypes. Consider the following SQL statements;

CREATE TYPE my_type AS OBJECT
(arl NUMBER,
a2 INTEGER,
a3 SMALLINT);

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created,
my_table will have three columns, all of which are of Oracle NUMBERype,
because SMALLINT and INTEGERmap internally to NUMBERThe internal
representation of the attributes of my_type , however, maintains the distinction
between the datatypes of the three attributes: attrl is
OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER, and attr3 is
OCI_TYPECODE_SMALLINT. If an application describes my_type , these
typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some
OCI functions, like OCIObjectNew()  (where it helps determine what type of
object is created). It is also returned as the value of some attributes when an object is

Datatypes 3-31



Typecodes

described; e.g., querying the OCI_ATTR_TYPECODE attribute of a type returns an

OClITypeCode value.

Table 3-8 lists the possible values for an OCITypeCode. There is a value

corresponding to each Oracle datatype.

Table 3-8 OCITypeCode Values

Value Datatype
OCI_TYPECODE_REF REF
OCI_TYPECODE_DATE DATE
OCI_TYPECODE_TIMESTAMP TIMESTAMP

OCI_TYPECODE_TIMESTAMP_TZ
OCI_TYPECODE_TIMESTAMP_LTZ
OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL DS
OCI_TYPECODE_REAL
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_FLOAT
OCI_TYPECODE_NUMBER
OCI_TYPECODE_DECIMAL
OCI_TYPECODE_OCTET
OCI_TYPECODE_INTEGER
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_RAW
OCI_TYPECODE_VARCHAR?
OCI_TYPECODE_VARCHAR
OCI_TYPECODE_CHAR
OCI_TYPECODE_VARRAY
OCI_TYPECODE_TABLE
OCI_TYPECODE_CLOB
OCI_TYPECODE_BLOB

3-32 Oracle Call Interface Programmer’s Guide

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND
single-precision real

double-precision real

floating-point

Oracle number

decimal

octet

integer

smallint

RAW

variable string ANSI SQL, i.e., VARCHAR?2
variable string Oracle SQL, i.e., VARCHAR
fixed-length string inside SQL, i.e. SQL CHAR
variable-length array (varray)

multiset

character large object (CLOB)

binary large object (BLOB)



Typecodes

Table 3-8 OCITypeCode Values (Cont.)

Value Datatype
OCI_TYPECODE_BFILE binary large object file (BFILE)
OCI_TYPECODE_OBIJECT named object type

OCI_TYPECODE_NAMEDCOLLECTION Domain (named primitive type)

Relationship Between SQLT and OCI_TYPECODE Values

Oracle recognizes two different sets of datatype code values. One set is
distinguished by the SQLT _ prefix, the other by the OCI_TYPECODE prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define
operation. In this way, the SQL typecodes help to control data conversions between
Oracle and OCI client applications. The OCI_TYPECODE types are used by Oracle’s
type system to reference or describe predefined types when manipulating or
creating user-defined types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE
values. In other cases, however, there is not a direct one-to-one mapping. For
example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and
OCI_TYPECODE_SMALLINT are all mapped to the SQLT_INT type.

The following table illustrates the mappings between SQLT and OCI_TYPECODE
types.

Table 3-9 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename  Oracle Type System Type Equivalent SQLT Type
BFILE OCI_TYPECODE_BFILE SQLT_BFILE

BLOB OCI_TYPECODE_BLOB SQLT_BLOB

CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n) [note 1]
CLOB OCI_TYPECODE_CLOB SQLT_CLOB
COLLECTION OCI_TYPECODE_NAMEDCOLLECTION SQLT_NCO

DATE OCI_TYPECODE_DATE SQLT_DAT
TIMESTAMP OCI_TYPECODE_TIMESTAMP SQLT_TIMESTAMP
TIMESTAMP WITH TIME ZONE OCI_TYPECODE_TIMESTAMP_TZ SQLT_TIMESTAMP_TZ

Datatypes 3-33



Typecodes

Table 3-9 OCI_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

TIMESTAMP WITH LOCAL OCI_TYPECODE_TIMESTAMP_LTZ SQLT_TIMESTAMP_LTZ

TIME ZONE

INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

FLOAT
DECIMAL
DOUBLE
INTEGER
NUMBER
OCTET
POINTER

RAW

REAL

REF

OBIECT
SIGNED(8)
SIGNED(16)
SIGNED(32)
SMALLINT
TABLE [note 6]
TABLE (Indexed table)
UNSIGNED(8)
UNSIGNED(16)
UNSIGNED(32)
VARRAY [note 6]

OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL DS
OCI_TYPECODE_FLOAT (b)
OCI_TYPECODE_DECIMAL (p)
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_INTEGER
OCI_TYPECODE_NUMBER (p, s)
OCI_TYPECODE_OCTET
OCI_TYPECODE_PTR
OCI_TYPECODE_RAW
OCI_TYPECODE_REAL
OCI_TYPECODE_REF
OCI_TYPECODE_OBJECT
OCI_TYPECODE_SIGNEDS
OCI_TYPECODE_SIGNED16
OCI_TYPECODE_SIGNED32
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_TABLE
OCI_TYPECODE_ITABLE
OCI_TYPECODE_UNSIGNEDS
OCI_TYPECODE_UNSIGNED16
OCI_TYPECODE_UNSIGNED32
OCI_TYPECODE_VARRAY

3-34 Oracle Call Interface Programmer’s Guide

SQLT_INTERVAL_YM
SQLT_INTERVAL_DS
SQLT_FLT (8) [note 2]
SQLT_NUM (p, 0) [note 3]
SQLT_FLT (8)
SQLT_INT (i) [note 4]
SQLT_NUM (p, s) [note 5]
SQLT_INT (1)
<NONE>

SQLT_LVB

SQLT_FLT (4)
SQLT_REF
SQLT_NTY
SQLT_INT (1)
SQLT_INT (2)
SQLT_INT (4)
SQLT_INT (i) [note 4]
<NONE>

SQLT_TAB

SQLT_UIN (1)
SQLT_UIN (2)
SQLT_UIN (4)
<NONE>



Definitions in oratypes.h

Table 3-9 OCI|_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n) [note 1]
VARCHAR?2 OCIl_TYPECODE_VARCHAR? (n) SQLT_VCS (n) [note 1]
Notes:

1. nis the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits. b is the precision of the
number in binary digits.

3. This is equivalent to a NUMBERVith no decimal places.

4.1 is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.
6. Can only be part of a named collection type.

Definitions in oratypes.h

Throughout this guide you will see references to datatypes like ub2 or sb4, or to
constants like UB4AMAXVALThese types are defined in the oratypes.h  header file,
an example of which is included here. The exact contents may vary according to the
platform you are using.

Note:  The use of the datatypes in oratypes.h  is the only
supported means of supplying parameters to the OCI.

#ifndef ORATYPES

# define ORATYPES
#define SX_ ORACLE
#define SX3_ ORACLE

#ifndef ORASTDDEF
#include <stddefh>

# define ORASTDDEF
#endif

#ifndef ORALIMITS
#include <limits.n>

Datatypes 3-35



Definitions in oratypes.h

# define ORALIMITS
#endif

#ifndef TRUE
#define TRUE 1
# define FALSE O
#endif

#ifdef lint
#ifndef mips

# define signed
#endif

#endif

#ifdef ENCORE_88K
#ifndef signed

# define signed

# endif

#endif

#if defined(SYSV_386) || defined(SUN_OS)
#ifdef signed

# undef signed

# endif

# define signed

#endif

#ifndef lint

typedef unsigned char ubl;
typedef signed char sbl;
#else

#define ubl unsigned char
#define sbl signed char
#endif

#define UBIMAXVAL ((Ub1)UCHAR_MAX)
#define UBIMINVAL (ubl)  0)

#define SBIMAXVAL ((sb1)SCHAR_MAX)
#define SBIMINVAL ((sb1)SCHAR_MIN)

3-36 Oracle Call Interface Programmer’s Guide



Definitions in oratypes.h

#oefine MINUBIMAXVAL ((ub1) 255)
#oefine MAXUBIMINVAL ((ubl) 0)

#Hoefine MINSBIMAXVAL ((sbl) 127)
#Hoefine MAXSBIMINVAL ((sb1) -127)

#ifndef lint

typedef unsigned short  ub2;
typedef signedshort sb2;
else

#define ub2 unsigned short
#define sh2 signed short
#endif

#define UB2ZMAXVAL ((Ub2)USHRT_MAX)
#define UB2ZMINVAL ((ub2)  0)

#define SB2MAXVAL ((sh2) SHRT_MAX)
#define SB2MINVAL ((sb2) SHRT_MIN)
#define MINUB2ZMAXVAL ((ub2) 65535)
#define MAXUB2MINVAL ((ub2) 0)
#define MINSB2MAXVAL ((sb2) 32767)
#define MAXSB2MINVAL ((sb2)-32767)

#ifndef lint

typedef unsigned int ub4;
typedef signedint sb4;
#else

#define eb4 int

#define ub4 unsigned int
#define sh4 signed int
#endif

#define UBAMAXVAL ((Ub4)UINT_MAX)
#define UBAMINVAL (ub4)  0)

#define SBAMAXVAL ((sb4) INT_MAX)
#define SBAMINVAL ((sb4) INT_MIN)

#define MINUBAMAXVAL ((ub4) 4294967295)
#define MAXUBAMINVAL ((ub4) 0)
#define MINSBAMAXVAL ((sh4) 2147483647)
#define MAXSBAMINVAL ((sh4)-2147483647)

Datatypes 3-37



Definitions in oratypes.h

#define UB1BITS CHAR BIT
#define UBIMASK (@ << ((uword)CHAR_BIT))- 1)

typedefubl bitvec;
#define BITVEC(n) ((n)+(UB1BITS-1))>>3)

#ifdef lint
# define oratext unsigned char
Helse

typedef unsigned char oratext;
#endif

ifndef lint

typedef  ub4 duword,
typedef  sb4  dsword;
typedef  dsword dword;

Helse

#define duword ub4
#define dsword sh4
#define dword dsword
#endif

#define DUWORDMAXVAL  UB4AMAXVAL
#define DUWORDMINVAL  UB4AMINVAL

#define DSWORDMAXVAL ~ SBAMAXVAL
#define DSWORDMINVAL ~ SBAMINVAL

#define MINDUWORDMAXVAL  MINUBAMAXVAL
#define MAXDUWORDMINVAL MAXUB4MINVAL
#define MINDSWORDMAXVAL = MINSBAMAXVAL
#define MAXDSWORDMINVAL MAXSBAMINVAL
#define DEWORDMAXVAL — EBAMAXVAL
#define DEWORDMINVAL  EBAMINVAL

#define MINDEWORDMAXVAL  MINEBAMAXVAL
#define MAXDEWORDMINVAL MAXEB4MINVAL
#define DWORDMAXVAL ~ DSWORDMAXVAL
#define DWORDMINVAL ~ DSWORDMINVAL

3-38 Oracle Call Interface Programmer’s Guide



Definitions in oratypes.h

#indeflint

typedef ub4 dsize_t;
#else

# define dsize_tub4
#endif

# define DSIZE_TMAXVAL UB4AMAXVAL
# define MINDSIZE_TMAXVAL (dsize_t)65535

#ifndeflint

typedef sh4 dboolean;
#else

# define dboolean sh4
#endif

#ifndef lint

typedef ub4 dptr_t;
Helse

#define dptr_tub4
#endif

#ifndeflint

typedef char ebl;
typedef short eb2;
typedef int eb4;
typedef eb4d deword,
Helse

#defne  ebl char
#defne  eb2 short
#defne  ebd int
# define deword eb4
#endif

Datatypes 3-39



Definitions in oratypes.h

#define EBIMAXVAL  ((eb1)SCHAR_MAX)
#define EBIMINVAL  ((ebl) O0)

#define MINEBIMAXVAL ((ebl) 127)
#define MAXEBIMINVAL ((ebl) 0)
#define EB2ZMAXVAL  ((€b2) SHRT_MAX)
#define EB2MINVAL  ((€b2) 0)

#define MINEB2MAXVAL ((eb2) 32767)
#define MAXEB2MINVAL ((eb2) 0)
#define EBAMAXVAL  ((eb4) INT_MAX)
#define EBAMINVAL  ((eb4) 0)

#define MINEBAMAXVAL  ((eb4) 2147483647)
#define MAXEBAMINVAL ((eb4) 0)

#ifndeflint
typedef  sbl bl
Helse

#define bl sbl
#endif

#define BIMAXVAL SBIMAXVAL
#define BIMINVAL SBIMINVAL

#ifndeflint

typedef  sb2 b2
Helse

#define  b2sh2
#endif

#define B2MAXVAL SB2MAXVAL
#define B2MINVAL SB2MINVAL

#ifndeflint

typedef  sh4 b4;
Helse

#define b4 sb4
#endif

#define BAMAXVAL SBAMAXVAL
#define BAMINVAL SBAMINVAL

#ifndef uiXT

typedef ubl BITSS;
typedef ub2  BITS16;
typedef ub4  BITS32;

3-40 Oracle Call Interface Programmer’s Guide



Definitions in oratypes.h

#endif

#if ldefined(LUSEMFC)
# ifdef lint
# define text unsigned char
# define OraText oratext
#else
typedef oratext text;
typedef oratext OraText;
#endif
#endif

#define M_IDEN 30

#ifdef AIXRIOS

# define SLMXFNMLEN 256
Helse

# define SLMXFNMLEN 512
#endif

#ifndef lint

typedef inteword;
typedef unsigned int uword;
typedef signed int sword;
Helse

#define eword int

#define uword unsigned int
#define sword signed int
#endif

#define EWORDMAXVAL ((eword) INT_MAX)
#define EWORDMINVAL ((eword)  0)

#define UWORDMAXVAL ((uword)UINT_MAX)
#define UWORDMINVAL ((uword)  0)

#define SWORDMAXVAL ((sword) INT_MAX)
#define SWORDMINVAL ((sword) INT_MIN)

#define MINEWORDMAXVAL ((eword) 2147483647)
#define MAXEWORDMINVAL ((eword) 0)

#define MINUWORDMAXVAL ((uword) 4294967295)
#define MAXUWORDMINVAL ((uword) 0)
#define MINSWORDMAXVAL ((sword) 2147483647)
#define MAXSWORDMINVAL ((sword) -2147483647)

Datatypes 3-41



Definitions in oratypes.h

#ifndef lint

typedef unsigned long ubig_ora;
typedef signed long shig_ora;
telse

#define ubig_ora unsigned long
#define shig_ora signed long
#endif

#define UBIG_ORAMAXVAL ((ubig_ora)ULONG_MAX)
#define UBIG_ORAMINVAL ((ubig ora)  0)

#define SBIG_ORAMAXVAL ((shig_ora) LONG_MAX)
#define SBIG_ORAMINVAL ((sbig_ora) LONG_MIN)
#define MINUBIG_ORAMAXVAL ((ubig_ora) 4294967295)
#define MAXUBIG_ORAMINVAL ((ubig_ora) 0)
#define MINSBIG_ ORAMAXVAL ((shig_ora) 2147483647)
#define MAXSBIG_ORAMINVAL ((shig_ora)-2147483647)

#define UBIGORABITS  (UB1BITS * sizeof(ubig_ora))

#ifndeflint
#f(_STDC__=1)

# define SLUSNATIVE
# define SLSBNATIVE
#endif

#endif

#ifdef SLUBNATIVE

#ifdef SS_64BIT_SERVER
#ifndeflint

typedef unsigned long ub8;
#else
# define ub8 unsigned long
#endif
else
#ifindeflint

typedef unsigned long long ub8;
#else
# define ub8 unsigned long long
#endif
#endif

#define UBSZERO  ((ub8)0)

3-42 Oracle Call Interface Programmer’s Guide



Definitions in oratypes.h

#define UBSMINVAL  ((ub8)0)
#define UBBMAXVAL  ((ubB8)18446744073709551615)

#define MAXUBBMINVAL ((ub8)0)
#define MINUBBMAXVAL ((ub8)18446744073709551615)

#endif

#ifdef SLSBNATIVE

#ifdef SS_64BIT_SERVER
#ifndeflint

typedef signed long sb8;
#else
# define sh8 signed long
# endif
else
#ifndeflint

typedef signed long long sh8;
#else
# define sh8 signed long long
# endif
#endif

#define SB8ZERO  ((sh8)0)

#define SBSMINVAL ~ ((sb8)-9223372036854775808)
#define SBBMAXVAL  ((sb8) 9223372036854775807)

Hoefine MAXSBBMINVAL ((sh8)-9223372036854775807)
Hoefine MINSBBMAXVAL ((sb8) 9223372036854775807)

#endif

#undef CONST

#ifdef _olint

# define CONST const

#else

#if defined(PMAX) && defined(_ STDC )
# define CONST const

Helse

Datatypes 3-43



Definitions in oratypes.h

# ifdef MBBOPEN

# define CONST const

#else

# ifdefined(SEQ_PSX) && defined(__ STDC )
# define CONST const

# else

# ifdef A OSF

# ifdefined(__STDC )
#  define CONST const
# else

#  define CONST
#  endif

# else

# define CONST
# endif

#ifdef lint
# define dvoid void
Helse

#ifdef UTS2

# define dvoid char
#else

# define dvoid void
# endif

#endif

typedefvoid (igenfp_t)( void );

#indef ORASYS_TYPES

#include <sysfypes.h>
#define ORASYS_TYPES
#endif

#ifndef boolean

3-44 Oracle Call Interface Programmer’s Guide



Definitions in oratypes.h

#ifndeflint
typedefint boolean;
Helse

#define boolean int
#endif

#Hendif

#ifndef SIZE_ TMAXVAL
# define SIZE_ TMAXVAL UBIG_ORAMAXVAL
#endif

#ifndef MINSIZE_TMAXVAL
# define MINSIZE_TMAXVAL (size_t)4294967295
#endif

#if 1defined(MOTIF) && 'defined(LISPL) && 'defined(__cplusplus) &&\
Idefined(LUSEMFC)

typedef OraText *string;

#endif

#ifndef lint

typedef unsigned short utext;

else

#define utext unsigned short
#endif

#endif

Datatypes 3-45



Definitions in oratypes.h

3-46 Oracle Call Interface Programmer’s Guide



A

Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL
statements with the Oracle Call Interface. The following topics are covered in this
chapter:

Overview of SQL Statement Processing
Processing SQL Statements

Preparing Statements

What is Binding?

Executing Statements

Describing Select-List Items

What is Defining?

Fetching Results

Scrollable Cursors

Using SQL Statements in OCI  4-1



Processing SQL Statements

Overview of SQL Statement Processing

Chapter 2, "OCI Programming Basics" discussed the basic steps involved in any
OCI application. This chapter presents a more detailed look at the specific tasks
involved in processing SQL statements in an OCI program.

Processing SQL Statements

One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in processing SQL.

Once you have allocated the necessary handles and attached to a server, the basic
steps in processing a SQL statement are the following, as illustrated in Figure 4-1,
"Steps In Processing SQL Statements™:

1. Prepare. Define an application request using OCIStmtPrepare()

2. Bind. For DML statements and queries with input variables, perform one or
more bind calls using

«» OCIBindByPos() ,

« OCIBindByName() ,

« OCIBindObject()

« OCIBindDynamic()

« or OCIBindArrayOfStruct()

to bind the address of each input variable (or PL/SQL output variable) or array
to each placeholder in the statement.

3. Execute. Call OCIStmtExecute()  to execute the statement. For DDL
statements, no further steps are necessary.

4. Describe. Describe the select-list items, if necessary, using OCIParamGet()
and OCIAttrGet() . This is an optional step; it is not required if the number of
select-list items and the attributes of each item (such as its length and datatype)
are known at compile time.

5. Define. For queries, perform one or more define calls to OCIDefineByPos() ,
OCIDefineObject() , OCIDefineDynamic() , or
OCIDefineArrayOfStruct() to define an output variable for each select-list
item in the SQL statement. Note that you do not use a define call to define the
output variables in an anonymous PL/SQL block. You have done this when
you have bound the data.

4-2 Oracle Call Interface Programmer’s Guide



Processing SQL Statements

6. Fetch. For queries, call OCIStmtFetch()  to fetch the results of the query.

Following these steps, the application can free allocated handles and then detach
from the server, or it may process additional statements.

7.x Upgrade Note:  OCI programs no longer require an explicit
parse step. If a statement must be parsed, that step takes place upon
execution. This means that 8.0 or later applications must issue an
execute command for both DML and DDL statements.

Figure 4-1 Steps In Processing SQL Statements

Prepare
—> Statement OCIStmtPrepare()
v OCIBindByName() or OCIBindByPos()
Bind OCIBindObject()
Placeholders* OCIBindArrayOfStruct()
s OCIBindDynamic()
Execute
| Statement OCIStmtExecute()
v
Describe OCIParamGet()
Select-list Items* OCIAttrGet()
v OClIDefineByPos()
Define OClIDefineObject()
Output Variables* OCIDefineArrayOfStruct()
7 OCIDefineDynamic()
Fetch and

OCIStmtFetch()

Process Data*

| |

* These steps performed
if necessary

For each of the steps in the diagram, the corresponding OCI function calls are listed.
In some cases multiple calls may be required.

Each step above is described in detail in the following sections.

Using SQL Statements in OCI  4-3



Preparing Statements

Note: Some variation in the order of steps is possible. For
example, it is possible to do the define step before the execute if the
datatypes and lengths of returned values are known at compile
time. Also, as indicated by the asterisks (*), some steps may not be
required by your application.

Additional steps beyond those listed above may be required if your application
needs to do the following:

« initiate and manage multiple transactions
« manage multiple threads of execution

« perform piecewise inserts, updates, or fetches

See Also:

« These topics are described in Chapter 9, "OCI Programming
Advanced Topics".

« For information on using OCI shared mode functionality, refer
to "Shared Data Mode" on page 2-22.

Preparing Statements

SQL and PL/SQL statements need to be prepared for execution by using the
statement prepare call and bind calls (if necessary). In this phase, the application
specifies a SQL or PL/SQL statement and binds associated placeholders in the
statement to data for execution. The client-side library allocates storage to maintain
the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCIStmtPrepare() call and passing it a previously allocated statement
handle. This is a completely local call, requiring no round trip to the server. No
association is made at this point between the statement and a particular server.

Following the request call, an application can call OCIAttrGet() on the statement
handle, passing OCI_ATTR_STMT_TYPE to the attrtype  parameter, to determine
what type of SQL statement was prepared. The possible attribute values, and
corresponding statement types are listed in Table 4-1.

4-4 Oracle Call Interface Programmer’s Guide



Preparing Statements

Table 4-1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type
OCI_STMT_SELECT SELECT statement
OCI_STMT_UPDATE UPDATE statement
OCI_STMT_DELETE DELETE statement
OCI_STMT_INSERT INSERT statement
OCI_STMT_CREATE CREATE statement
OCI_STMT_DROP DROP statement
OCI_STMT_ALTER ALTER statement
OCI_STMT_BEGIN BEGIN... (PL/SQL)
OCI_STMT_DECLARE DECLARE... (PL/SQL)
See Also:

« For more information on the specifics of using PL/SQL in an
OCI application, see the section "Using PL/SQL in an OCI
Program" on page 2-44

« See the OCIStmtPrepare() call

Using Prepared Statements on Multiple Servers

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for
the servers. All information cached about the current service context and statement
handle association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECTstatement will
need to be executed against multiple servers to retrieve information for display. The
OCI allows the network manager application to prepare a SELECTstatement once
and execute it against multiple servers. It must fetch all of the required rows from
each server prior to reassociating the prepared statement with the next server.

Note: If a prepared statement must be reexecuted frequently on
the same server, it is efficient to prepare a new statement for
another service context.

Using SQL Statements in OCl  4-5



What is Binding?

What is Binding?

Most DML statements, and some queries (such as those with a WHERElause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
Such data can be constant or literal data, known when your program is compiled.
For example, the following SQL statement, which adds an employee to a database
contains several literals, such as 'BESTRY’ and 2365:

INSERT INTO emp VALUES
(2365, BESTRY’, PROGRAMMER, 2000, 20)

Coding a statement like this into an application would severely limit its usefulness.
You would need to change the statement and recompile the program each time you
add a new employee to the database. To make the program more flexible, you can
write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (:ename ), that show where input
data must be supplied by the program.

INSERT INTO emp VALUES
(*empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE INSERT, SELECT or
UPDATEstatement, or PL/SQL block, in any position in the statement where you
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
(12345, OERTEL’, WRITER', 50000, 30)

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to the placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement.

See Also:  For detailed information about implementing bind
operations, refer to Chapter 5, "Binding and Defining"

4-6 Oracle Call Interface Programmer’s Guide



Executing Statements

Executing Statements

An OCI application executes prepared statements individually using
OCIStmtExecute()

See Also: OCIStmtExecute()  for a syntax description

When an OCI application executes a query, it receives data from Oracle that
matches the query specifications. Within the database, the data is stored in
Oracle-defined formats. When the results are returned, an OCI application can
request that data be converted to a particular host language format, and stored in a
particular output variable or buffer.

For each item in the select-list of a query, the OCI application must define an output
variable to receive the results of the query. The define step indicates the address of
the buffer and the type of the data to be retrieved.

Note: If output variables are defined for a SELECTstatement
before a call to OCIStmtExecute() , the number of rows specified
by the iters  parameter are fetched directly into the defined
output buffers and additional rows equivalent to the prefetch count
are prefetched. If there are no additional rows, then the fetch is
complete without calling OCIStmtFetch()

For non-queries, the number of times the statement is executed during array
operations is equal to iters - rowoff , Where rowoff is the offset in the bound
array, and is also a parameter of the OCIStmtExecute() call. For example, if an
array of 10 items is bound to a placeholder for an INSERT statement, and iters s
set to 10, all 10 items will be inserted in a single execute call when rowoff is zero. If
rowoff issetto 2, only 8 items will be inserted.

See Also:  "What is Defining?" on page 4-15 for more information
about defining output variables

Execution Snapshots

The OCIStmtExecute()  call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database’s committed data.
This is achieved by taking the contents of the snap_out parameter of one
OCIStmtExecute()  call and passing that value in the snap_in parameter of the
next OCIStmtExecute()  call.

Using SQL Statements in OCI  4-7



Executing Statements

Note: Uncommitted data in one service context is not visible to
another context, even when using the same snapshot

The datatype of both the snap_out and snap_in parameter is OCISnapshot, an
OCI snapshot descriptor. This descriptor is allocated with the OCIDescAlloc()
function.

See Also:  For more information about descriptors, see the section
"Descriptors" on page 2-15

It is not necessary to specify a snapshot when calling OCIStmtExecute() . The
following sample code shows a basic execution in which the snapsho t parameters
are passed as NULL.

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *NULL, (OCISnapshot *) NULL, OCI_DEFAULT))

Note: The checkerr()  function evaluates the return code from
an OCI application. The code for the function is listed in the section
"Error Handling" on page 2-31.

Execution Modes
You can specify several modes for the OCIStmtExecute()  call:

« OCI_DEFAULT. Calling OCIStmtExecute()  in this mode executes the
statement. It also implicitly returns describe information about the select-list.

« OCI_DESCRIBE_ONLY. This mode is for users who wish to describe a query
prior to execution. Calling OCIStmtExecute()  in this mode does not execute
the statement, but it does return the select-list description.

« OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode, the
current transaction is committed after execution, if execution completes
successfully.

« OCI_EXACT_FETCH - Used when the application knows in advance exactly
how many rows it will be fetching.

« OCI_BATCH_ERRORS - See "Batch Error Mode for OCIStmtExecute()" on
page 4-9, for information about this mode.

4-8 Oracle Call Interface Programmer’s Guide



Executing Statements

Batch Error Mode for OCIStmtExecute()

The OCI provides the ability to perform array DML operations. For example, an
application can process an array of INSERT, UPDATEor DELETEstatements with a
single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation aborts and the OCI
returns an error. Any rows remaining in the array are ignored. The application must
then reexecute the remainder of the array, and go through the whole process again
if it encounters more errors, which makes additional roundtrips.

To facilitate processing of array DML operations, the OCI provides the batch error
mode (also called the enhanced DML array feature). This mode, which is specified in
the OCIStmtExecute()  call, simplifies DML array processing in the event of one
or more errors. In this mode, the OCI attempts to INSERT, UPDATEor DELETEall
rows, and collects (batches) information about any errors which occurred. The
application can then retrieve this error information and reexecute any DML
operations which failed during the first call.

Note: This function is only available to applications linked with
the 8.1 or later OCI libraries running against a release 8.1 or later
server. Applications must also be recoded to account for the new
program logic described in this section.

In this way, all DML operations in the array are attempted in the first call, and any
failed operations can be reissued in a second call.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the
OCIStmtExecute()  call.

2. After performing an array DML operation with OCIStmtExecute() , the
application can retrieve the number of errors encountered during the operation
by calling OCIAttrGet() on the statement handle to retrieve the
OCI_ATTR_NUM_DML_ERRORS attribute. For example:

ub4 num_ers;
OCIAtrGet(stmtp, OCI_ HTYPE_STMT, &wum_err, 0, OCI ATTR_NUM_DML_ERRORS, erthp);

3. The list of errors hangs off an error handle.

The application extracts each error, along with its row information, from the
error handle which was passed to the OCIStmtExecute()  call using
OCIParamGet() . In order to retrieve the information, the application must

Using SQL Statements in OCI  4-9



Executing Statements

allocate an additional new error handle for the OCIParamGet() call. This new
error handle is populated with the batched error information. The application
obtains the syntax of each error with OCIErrorGet() , and the row offset (into
the DML array) at which the error occurred by calling OCIAttrGet() on the
new error handle.

For example, once the num_errs amount has been retrieved, the application
can issue the following calls:

OCIErmor errhnd;
for (i=0; i<num_ens; i++)
{
OClParamGet(erhp, OCl_HTYPE_ERROR, erthp, &errhnd, i);
OClAtrGet(erhndl, OCl_ HTYPE_ERROR, &row_offset, O,
OCI_ATTR_DML_ROW_OFFSET, erthp);
OCIEmorGet(..., emrhnd, ...);

Following this, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from
the batched error. Once the appropriate bind buffers are corrected or updated,
the application can reexecute the associated DML statements.

Because the application cannot know at compile time which rows in the first
execution will cause errors, the binds for the subsequent DML should be done
dynamically by passing in the appropriate buffers at runtime. The user can
reuse the bind buffers used in the array binds done on the first DML operation.

Example of Batch Error Mode
The following code shows an example of how this execution mode might be used.

In this example assume that we have an application which inserts five rows (with

two columns, of types NUMBERNd CHAR into a table. Furthermore, let us assume
only two rows (say, 1 and 3) are successfully inserted in the initial DML operation.
The user then proceeds to correct the data (wrong data was being inserted the first
time) and to issue an update with the corrected data. The user uses statement

handles stmtpl and stmtp2 to issue the INSERT and UPDATErespectively.

OCIBind *bindp[2], *bindp2[2];
ub4 num_errs, row_off MAXROWS], numberfMAXROWS] ={1,2,34.5};
char grade]MAXROWS] ={A,B,'C,D’JE};

F Armay bind all the positions il

4-10 Oracle Call Interface Programmer’s Guide



Executing Statements

OCIBindByPas (stmtpl,&bindp1[0],errhp,1,(dvoid *)&number(0],
sizeof(number{0]),SQLT_NUM,(dvoid *)0, (ub2 *)0,(ub2 *)0,
0,(ub4 *)0,0CI_DEFAULT);
OCIBindByPos (stmtpl,&bindp1[1],ermhp,2,(dvoid ¥)&grade[0],
sizeof(grade[0],SQLT_CHR,(dvoid *)0, (ub2 *)0,(ub2 *)0,0,
(ub4$0,0CI_DEFAULT);

P execute the aray INSERT *
OCIStmtExecute (svchp,stmipl, emhp ,5,0,00,0CI BATCH_ERRORS);
F getthe number of errors *

OCIAtrGet (stmtpl, OCl_HTYPE_STMT, &um_errs, O,
OCI_ATTR_NUM_DML_ERRORS, enhpy;
if (num_ens) {
F*The user can do one of two things: 1) Allocate as many *
* error handles as number of errors and free all handles */
[ at alater ime; or 2) Allocate one err handle and reuse */
Fthe same handle for all the errors */
OCIEnor *errhndnum_ens];
for (1=0; i <num_enms; i++) {
OCIParamGet( emhp ,OCI_HTYPE_ERROR, errhp, &errhndl], i);
OCIAtrGet ( erhndl] ,OCl_HTYPE_ERROR, &row_offfi], 0,
OCI_ATTR_DML_ROW_OFFSET, erthp);
F get server diagnostics ¥
OCIEmorGet (..., erhndl[] s
}
}

¥ make corrections to bind data #

OCIBindByPos (stmip2,&bindp2[0],errhp,1,(dvoid ¥)0,0,SQLT_NUM,
(dvoid %)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,0CI_DATA_AT_EXEC);

OCIBindByPos (stmtp2,&bindp2[1],ermhp,2,(dvoid *)0,0,SQLT_DAT,
(dvoid %0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,0CI_DATA_AT_EXEC),

P register the callback for each bind handle ¥

OCIBindDynamic (bindp2[0],errhp,row_offmy_callback,0,0);

OCIBindDynamic (bindp2[1],emrhp,row_offmy_callback,0,0);

P execute the UPDATE statement ¥

OCIStmtExecute (svchp,stmip2,erhp,2,0,0,0,0CI BATCH_ERRORS);

In this example, OCIBindDynamic()  is used with a callback because the user does
not know at compile time what rows will return with errors. With a callback, you
can simply pass the erroneous row numbers, stored in row_off , through the
callback context and send only those rows that need to be updated or corrected. The
same bind buffers can be shared between the INSERT and the UPDATEexecutes.

Using SQL Statements in OCI  4-11



Describing Select-List Items

Describing Select-List Items

If your OCI application is processing a query, you may need to obtain more
information about the items in the select-list. This is particularly true for dynamic
gueries whose contents are not known until run time. In this case, the program may
need to obtain information about the datatypes and column lengths of the select-list
items. This information is necessary to define output variables that will receive
query results.

For example, a user might enter a query such as
SELECT * FROM employees

where the program has no prior information about the columns in the employees
table.

There are two types of describes available: implicit and explicit. An implicit describe
is one which does not require any special calls to retrieve describe information from
the server although special calls are necessary to access the information. An explicit
describe is one which requires the application to call a particular function to bring
the describe information from the server.

An application may describe a select-list (query) either implicitly or explicitly. Other
schema elements must be described explicitly.

An implicit describe allows an application to obtain select-list information as an
attribute of the statement handle after a statement has been executed without making a
specific describe call. It is called implicit, because no describe call is required. The
describe information comes free with the execute.

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute() . Calling
OCIStmtExecute() in this mode does not execute the statement, but it does
return the select-list description. For performance reasons, however, it is
recommended that applications take advantage of the implicit describe that comes
free with a standard statement execution.

An explicit describe with the OCIDescribeAny()  call obtains information about
schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by
reading handle attributes.

See Also:  For information about using OCIDescribeAny()  to
obtain metadata pertaining to schema objects, refer to Chapter 6,
"Describing Schema Metadata"

4-12 Oracle Call Interface Programmer’s Guide



Describing Select-List Items

Implicit Describe

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about select-list items from the statement handle, the
application must call OCIParamGet() once for each position in the select-list to
allocate a parameter descriptor for that position. Select-list positions are 1-based,
meaning that the first item in the select-list is considered to be position number 1.

To retrieve information about multiple select-list items, an application can call
OCIParamGet() with the pos parameter set to 1 the first time, and then iterate the
value of pos and repeat the OCIParamGet() call until OCI_ERROR with
ORA-24334 is returned. An application could also specify any position n to get a
column at random.

Once a parameter descriptor has been allocated for a position in the select-list, the
application can retrieve specific information by calling OCIAttrGet() on the
parameter descriptor. Information available from the parameter descriptor includes
the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and data
types corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare()

OCIParam *mypard;
ub4 counter;
ub2  dtype;

tet  *col_name;
ub4 col_name_len;
sb4 |_status;

¥ Request a parameter descriptor for position 1 in the selectHist */
counter=1;
|_status = OCIParamGet(stmthp, OCI_HTYPE_STMT, erthp, &mypard,
(ub4) counter);

F Loop only if a descriptor was successfully retrieved for
current position, starting at 1. */
while (parm_status=—0CI_SUCCESS){

* Retrieve the data type attribute */

checkerr(erhp, OCIAtrGet((dvoid¥) mypard, (ub4) OCl DTYPE_PARAM,
(dvoid®) &ditype,(ub4 *) O, (Ub4) OCI_ATTR_DATA TYPE,

Using SQL Statements in OCI  4-13



Describing Select-List Items

(OClError*) emhp ));

F Retrieve the column name attribute */

checkerr(erhp, OCIAtrGet((dvoid®) mypard, (Ub4) OCl_DTYPE_PARAM,
(dvoid™) &col name,(ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OClEror*) emhp));

printf(‘column=%s datatype=%d\n\n", col_name, dtype);
filush(stdout);

¥ increment counter and get next descriptor, if there is one */

counter++;

parm_status = OClParamGet(stmthp, OCI_HTYPE_STMT, erhp, &mypard,
(ub4) counter);

}

Note: Error handling for the initial OCIParamGet() call is not
included in this example. Ellipses (...) indicate portions of code that
have been omitted for this example.

The checkerr()  function is used for error handling. The complete listing can
be found in the first sample application in Appendix B, "OCI Demonstration
Programs".

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require
a network round trip, because all of the select-list information is cached on the
client side after the statement is executed.

See Also:

« See the descriptions of OCIParamGet() and OCIAttrGet()
for more information about these calls.

« See the section "Parameter Attributes" on page 6-5 for a list of
the specific attributes of the parameter descriptor which may be
read by OCIAttrGet()

Explicit Describe of Queries

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute() . Calling

4-14 Oracle Call Interface Programmer’s Guide



What is Defining?

OCISstmtExecute() in this mode does not execute the statement, but it does
return the select-list description.

Note: To maximize performance, it is recommended that
applications execute the statement in default mode and use the
implicit describe which accompanies the execution.

The following short example demonstrates the use of this mechanism to perform an
explicit describe of a select-list to return information about the columns in the
select-list. This pseudo-code shows how to retrieve column information (for
example, data type).

¥ initialize svchp, stmhp, erhp, rowoff, iters, snap_in, snap_out*/

* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

OClIParam *colhd; # column handle */
checkerr(erhp, OCISImtExecute(svchp, stmhp, erhp, iters, rowof,
snap_in, snap_out, OCl_ DESCRIBE_ONLY);

F* Get the number of columns in the query */
checkerr(erhp, OCIAtrGet(stmhp, OCI_HTYPE_STMT, &umcols,
0,0CI_ATTR_PARAM_COUNT, erh));

* go through the column list and retrieve the data type of each column. We
startfrompos=1*
for (i=1;i<=numcoals; i++)
{
 get parameter for column i*/
checkenr(errhp, OCIParamGet(stmhp, OCl_HTYPE_STMT, erth, &colhd, i));

F get data-type of column i */
checkerr(enthp, OCIAfGet(colhd, OC|_ DTYPE_PARAM,
&typefi-1], 0, OCI_ATTR_DATA_TYPE, enh));
}

What is Defining?

Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list from which you want to retrieve data. The

Using SQL Statements in OCI  4-15



Fetching Results

define step creates an association which determines where returned results are
stored, and in what format.

For example, if your OCI statement processes the following statement:
SELECT name, ssn FROM employees
WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value
returned from the name column, and one to receive the value returned from the ssn
column.

See Also:  For information about implementing define operations,
please refer to Chapter 5, "Binding and Defining"

Fetching Results

If an OCI application has processed a query, it is typically necessary to fetch the
results with OCIStmtFetch()  or with OCIStmtFetch2()  after the statement has
been executed. Oracle encourages the use of OCIStmtFetch2() , which supports
scrollable cursors, and will be enhanced.

See Also:  For information about scrollable cursors, see "Scrollable
Cursors" on page 4-18

Fetched data is retrieved into output variables that have been specified by define
operations.

Note: If output variables are defined for a SELECTstatement
before a call to OCIStmtExecute() , the number of rows specified
by the iters  parameter is fetched directly into the defined output
buffers

See Also:

« These statements fetch data associated with the sample code in
the section "Steps Used in Defining" on page 5-20. Refer to that
example for more information.

« For information about defining output variables, see the section
"Defining" on page 5-19.

4-16 Oracle Call Interface Programmer’s Guide



Fetching Results

Fetching LOB Data

If LOB columns or attributes are part of a select-list, they can be returned as LOB
locators or actual LOB values, depending on how the user has defined them. If LOB
locators are fetched, then the application can perform further operations on these
locators via the OCILob* interfaces.

See Also:  See Chapter 7, "LOB and FILE Operations", for more
information about working with LOB locators in the OCI

Setting Prefetch Count

In order to minimize server round trips and maximize the performance of
applications, the OCI can prefetch result set rows when executing a query. The OCI
programmer can customize this prefetching by setting the
OCI_ATTR_PREFETCH_ROWS or OCI_ATTR_PREFETCH_MEMORY attribute of
the statement handle using the OCIAttrSet() function. The attributes are used as
follows:

« OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched.

« OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be
prefetched. The application then fetches as many rows as will fit into that much
memory.

When both of these attributes are set, the OCI prefetches rows up to the
OCI_ATTR_PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY
limit is reached, in which case the OCI returns as many rows as will fit in a buffer of
size OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and the OCI fetches an extra row all the time.
To turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH_MEMORY attributes to zero.

Note: Prefetching is not in effect if LONGcolumns are part of the
guery. Queries containing LOB columns can be prefetched, because
the LOB locator, rather than the data, is returned by the query.

See Also:  For more information about these handle attributes, see
the section "Statement Handle Attributes" on page A-24.

Using SQL Statements in OCI  4-17



Scrollable Cursors

Scrollable Cursors

A cursor is a database query and its result set. Execution of a cursor puts the results
of the query into a set of rows called the result set. The result set can be fetched
either sequentially or non-sequentially. The latter case is known as a scrollable cursor.

A scrollable cursor provides support for forward and backward access into the
result set from a given position, using either absolute or relative row number offsets
into the result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch
previously-fetched rows, the n-th row in the result set, or the n-th row from the
current position. Client-side caching of either the partial or entire result set results
in fewer calls to the server, thus improving performance.

Oracle does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG datatype is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at
execution time. The size of the client cache can be controlled by the existing OCI
attributes OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY.

Support for Scrollable Cursors in OCI

The OCIStmtExecute()  call has an execution mode for scrollable cursors,
OCI_STMT_SCROLLABLE_READONLY. The default for statement handles is
non-scrollable, that is, forward sequential access only (where the mode is
OCI_FETCH_NEXT). You must set this execution mode each time the statement
handle is executed.

See Also: OCIStmtExecute()  for further information

The statement handle attribute OCI_ATTR_CURRENT_POSITION can be retrieved
only using OCIAttrGet() . This attribute cannot be set by the application. This
indicates the current position in the result set.

For non-scrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows
fetched into user buffers with the OCIStmtFetch2()  calls issued since this
statement handle was executed. Since they are forward sequential only, this also
represents the highest row number seen by the application.

For scrollable cursors, OCI_ATTR_ROW_COUNT will represent the maximum
(absolute) row number fetched into the user buffers. Since the application can

4-18 Oracle Call Interface Programmer’s Guide



Scrollable Cursors

arbitrarily position the fetches, this need not be the total number of rows fetched
into the user’s buffers since the (scrollable) statement was executed.

The attribute OCI_ATTR_ROWS_FETCHED on the statement handle, represents the
number of rows that were successfully fetched into the user’s buffers in the last
fetch call or execute. It works for both scrollable and non-scrollable cursors.

Use the call OCIStmtFetch2() , which is replacing the call OCIStmtFetch()
which is retained for backward compatibility. You are encouraged to use
OCIstmtFetch2()  instead, for all new applications, even those not using
scrollable cursors. This call also works for non-scrollable cursor, but then an error
will be raised if any other orientation besides OCI_DEFAULT or
OCI_FETCH_NEXT is passed.

See Also:  OCIStmtFetch2()  for a complete description of how
to make calls that work with scrollable cursors

Example of Access on a Scrollable Cursor
Assume result set is returned by the SQL query:
SELECT empno, ename FROM emp

and that the table EMPhas 14 rows. One usage of scrollable cursors is illustrated in
the following code snippet:

* execute the scrollable cursor in the scrollable mode */
OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4)
0, (CONST OClSnapshot*)
NULL, (OCISnapshot *) NULL,
OCI_STMT_SCROLLABLE._READONLY);

* Fetches rows with absolute row numbers 6, 7, 8. After this call,

OC|_ ATTR_CURRENT_POSITION=8,0Cl ATTR_ ROW_COUNT =8%

checkprint(erhp, OCIStmtFetch2(stmthp, errhp, (Ub4) 3,
OC|_FETCH_ABSOLUTE, (sh4) 6, OCl_DEFAULT);

* Fetches rows with absolute row numbers 6, 7, 8. After this call,

OCl_ ATTR_CURRENT_POSITION=8,0Cl ATTR_ROW_COUNT =8%

checkprint(erhp, OCIStmtFetch2(stmthp, errhp, (Ub4) 3,
OC|_FETCH_RELATIVE, (sb4)-2, OCI_DEFAULT);

* Fetches rows with absolute row numbers 14. After this call,
OCl ATTR_CURRENT POSITION=14,0Cl ATTR_ ROW_COUNT =14%

Using SQL Statements in OCI  4-19



Scrollable Cursors

checkprint(erhp, OCIStmtFetch2(stmthp, errhp, (Ub4) 1,
OCI_FETCH_LAST, (sh4) 0, OCI_DEFAULT);

* Fetches rows with absolute row number 1. After this call,
OC|_ATTR_CURRENT_POSITION=1,OCl| ATTR_ROW_COUNT =14%
checkprint(errhp, OCIStmtFetch2(stmthp, erhp, (ub4) 1,

OCI_FETCH_FIRST, (sb4) 0, OC|_DEFAULT);

* Fetches rows with absolute row numbers 2, 3, 4. After this call,
OC|_ ATTR_CURRENT_POSITION =4, OC| ATTR_ROW_COUNT =14%
checkprint(erhp, OCIStmtFetch2(stmthp, errhp, (Ub4) 3,

OCI_FETCH_NEXT, (sb4) 0, OCl_DEFAULT);

* Fetches rows with absolute row numbers 3,4,5,6,7. After this call,
OCI_ATTR_CURRENT_POSITION =7, OCl_ATTR_ROW_COUNT =14. Itis assumed
the user's define memoary is allocated. */
checkprint(erhp, OCIStmtFetch2(stmthp, errhp, (Ub4) 5,

OCI_FETCH_PRIOR, (sb4) 0, OCI_DEFAULT);

checkprint (erhp, status)

ub4 rows_fetched;

checkerr (errhp, status);

checkem(errhp, OCIArGet((CONST void *) stmthp, OCI HTYPE_STMT,
(void *) &rows_fetched, (uint*) O,
OCI_ATTR_ROWS_FETCHED, erhp));

4-20 Oracle Call Interface Programmer’s Guide



D

Binding and Defining

This chapter revisits the basic concepts of binding and defining that were
introduced in Chapter 2, "OCI Programming Basics", and provides more detailed
information about the different types of binds and defines you can use in OCI
applications. Additionally, this chapter discusses the use of arrays of structures, as
well as other issues involved in binding, defining, and character conversions.

This chapter includes the following sections:

Binding

Advanced Bind Operations

Defining

Advanced Define Operations

Binding and Defining Arrays of Structures

DML with RETURNING Clause

Character Conversion Issues in Binding and Defining
PL/SQL REF CURSORs and Nested Tables

Runtime Data Allocation and Piecewise Operations

Binding and Defining 5-1



Binding

Binding

Most DML statements, and some queries (such as those with a WHERElause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
Such data can be constant or literal data, known when your program is compiled.
For example, the following SQL statement, which adds an employee to a database
contains several literals, such as 'BESTRY’ and 2365:

INSERT INTO emp VALUES
(2365, BESTRY’, PROGRAMMER, 2000, 20)

Coding a statement like this into an application would severely limit its usefulness.
You would need to change the statement and recompile the program each time you
add a new employee to the database. To make the program more flexible, you can
write the program so that a user can supply input data at runtime.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at runtime, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (for example, :ename ), that show
where input data must be supplied by the program.

INSERT INTO emp VALUES
(*empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE INSERT, SELECT or
UPDATEstatement, or PL/SQL block, in any position in the statement where you
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Note: Placeholders cannot be used to name other Oracle objects
such as tables or columns.

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to the placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement. Data
does not have to be in a bind variable when you perform the bind step. At the bind
step, you are only specifying the address, datatype, and length of the variable.

5-2 Oracle Call Interface Programmer’s Guide



Binding

Note: If program variables do not contain data at bind time, make
sure they contain valid data when you execute the SQL statement
or PL/SQL block using OCIStmtExecute()

For example, given the INSERT statement
INSERT INTO emp VALUES

(*empno, :ename, :job, :sal, :deptno)
and the following variable declarations
text *ename, *job;

sword empno, sal, deptno;

the bind step makes an association between the placeholder name and the address
of the program variables. The bind also indicates the datatype and length of the
program variables, as illustrated in Figure 5-1.

See Also:  The code that implements this example is found in the
section "Steps Used in Binding" on page 5-6.

Figure 5-1 Using OCIBindByName() to Associate Placeholders with Program
Variables
INSERT INTO emp (empno, ename, job, sal, deptno)
VALUES (:empno, :ename, :job, :sal, :deptno)

OCIBindByName () \ "\\\

Address = &empno ename &sal &deptno
Data Type | integer string string integer integer

Length = sizeof(empno) sirlen(ename)+1  strlen(job)+1 sizeof(sal) = sizeof(deptno)

If you change only the value of a bind variable, it is not necessary to rebind in order
to execute the statement again. The bind is a bind by reference, so as long as the
address of the bind variable and bind handle remain valid, you can reexecute a
statement that references the variable without rebinding.

Binding and Defining 5-3



Binding

Note: At the interface level, all bind variables are considered at
least IN and must be properly initialized. If the variable is a pure
OUT bind variable, you can set the variable to zero. You can also
provide a NULL indicator and set that indicator to -1 (NULL).

In the Oracle server, new datatypes have been implemented for named datatypes,
REFs and LOBs, and they may be bound as placeholders in a SQL statement.

Note: For opaque data types (descriptors or locators) whose sizes
are not known to you, pass the address of the descriptor or locator
pointer. Set the size parameter to the size of the appropriate data
structure, (sizeof(  structure ))

Named Binds and Positional Binds

The SQL statement in the previous section is an example of a named bind. Each
placeholder in the statement has a name associated with it, such as ’ename’ or ’sal’.
When this statement is prepared and the placeholders are associated with values in
the application, the association is made by the name of the placeholder using the
OCIBindByName() call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than their
names. For binding purposes, an association is made between an input value and
the position of the placeholder, using the OCIBindByPos() call.

The example from the previous section could also be used for a positional bind:
INSERT INTO emp VALUES
(:empno, :ename, ;job, :sal, :deptno)

The five placeholders would then each be bound by calling OCIBindByPos() and
passing the position number of the placeholder in the position parameter. For
example, the :empno placeholder would be bound by calling OCIBindByPos()
with a position of 1, :ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider
the following SQL statement, which queries the database for those employees
whose commission and salary are both greater than a given amount:

SELECT empno FROM emp

5-4 Oracle Call Interface Programmer’s Guide



Binding

WHERE sal > :some_value
AND comm >:some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName() to bind the :some_value placeholder by name. In this case,
the second placeholder inherits the bind information from the first placeholder.

OCI Array Interface

You can pass data to Oracle in various ways. You can execute a SQL statement
repeatedly using the OCIStmtExecute()  routine and supply different input
values on each iteration. Alternatively, you can use the Oracle array interface and
input many values with a single statement and a single call to

OCIStmtExecute() . In this case you bind an array to an input placeholder, and
the entire array can be passed at the same time, under the control of the iters
parameter.

The array interface significantly reduces round trips to Oracle when you need to
update or insert a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that needs to insert 10 rows into the database. Calling
OCIStmtExecute()  ten times with single values results in ten network round
trips to insert all the data. The same result is possible with a single call to
OCIStmtExecute()  using an input array, which involves only one network round
trip.

Note: When using the OCI array interface to perform inserts, row
triggers in the database are fired as each row of the insert gets
inserted.

Binding Placeholders in PL/SQL

You process a PL/SQL block by placing the block in a string variable, binding any
variables, and executing the statement containing the block, just as you would with
a single SQL statement.

When you bind placeholders in a PL/SQL block to program variables, you must
use OCIBindByName() or OCIBindByPos() to perform the basic bind binds. You
can use OCIBindByName() or OCIBindByPos() to bind host variables that are
either scalars or arrays.

Binding and Defining 5-5



Binding

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee’s salary, given the employee
number and the new salary amount:

char plsql_statement]] ="BEGIN\
RAISE_SALARY(:emp_number, :new_sal),\
END;";

These placeholders can be bound to input variables in the same way as placeholders
in a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables using bind calls.

For example, in a PL/SQL block such as

BEGIN
SELECT ename,sal,comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename =:emp_number;

END;

you would use OCIBindByName() to bind variables in place of the :emp_name,
:salary ,and :commission output placeholders, and in place of the input
placeholder :emp_number .

7.x Upgrade Note:  In the Oracle7 OCI, it was sufficient for
applications to initialize only IN-bind buffers. In later releases, all
buffers, even pure OUT buffers, must be initialized by setting the
buffer length to zero in the bind call, or by setting the
corresponding indicator to -1.

See Also:  For more information about binding PL/SQL
placeholders see "Information for Named Datatype and REF Binds"
on page 11-37.

Steps Used in Binding

Binding placeholders is done in one or more steps. For a simple scalar or array bind,
it is only necessary to specify an association between the placeholder and the data.
This is done by using OCI bind by name (OCIBindByName() ) or OCI bind by
position (OCIBindByPos() ) call.

5-6 Oracle Call Interface Programmer’s Guide



Binding

See Also:  See the section "Named Binds and Positional Binds" on
page 5-4 for information about the difference between these types
of binds.

Once the bind is complete, the OCI library knows where to find the input data (or
where to put PL/SQL output data) when the SQL statement is executed. As
mentioned in the section "Binding" on page 5-2, program input data does not need
to be in the program variable when it is bound to the placeholder, but the data must
be there when the statement is executed.

The following code example shows handle allocation and binding for each of five
placeholders in a SQL statement.

Note: The checkerr()  function evaluates the return code from
an OCI application. The code for the function is listed in the section
"Error Handling" on page 2-31.

F*The SQL statement, associated with stmthp (the statement handle)

by calling OCIStmtPrepare() */

text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, deptno)\
VALUES (:empno, :ename, ;job, :sal, :deptno)"”;

/¥ Bind the placeholders in the SQL statement, one per bind handle. */
checkerr(erhp, OCIBindByName(stmthp, &bnd1p, erhp, (text *) “ENAME",
stien(:ENAME"), (ub1 *) ename, enamelen+1, STRING_TYPE, (dvoid ) 0,
(Ub2%) 0, (ub2) 0, (Ub4) O, (Ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd2p, erthp, (text *) ":.JOB",
strlen(:JOB"), (ubl1*) job, joblen+1, STRING_TYPE, (dvoid *)
&job_ind, (Ub2*) 0, (ub2) 0, (ub4) O, (Ub4 *) 0, OCI_DEFAULT))
checkerr(erhp, OCIBindByName(stmthp, &bnd3p, erhp, (text *) "“:SAL",
strien(:SAL"), (ubl *) &sal, (sword) sizeof(sal), INT_TYPE,
(dvoid*) &sal_ind, (Ub2*) 0, (ub2) O, (ub4) O, (b4 *) O,
OCI_DEFAULT))
checkem(erhp, OCIBindByName(stmthp, &bnddp, errhp, (text*) ""DEPTNO",
stien(:DEPTNQO"), (ub1 *) &deptno,(sword) sizeof(deptno), INT_TYPE,
(dvoid*) O, (Ub2#) 0, (ub2) 0, (ub4) O, (b4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &ond5Sp, erthp, (text *) :EMPNQO",
stien(:EMPNQO"), (ub1 *) &empno, (sword) sizeof(empno), INT_TYPE,
(dvoid*) O, (Ub2*) 0, (ub2) 0, (ub4) O, (ub4 *) 0,0CI_DEFAULT))

Binding and Defining 5-7



Binding

PL/SQL Example

Perhaps the most common use for PL/SQL blocks in an OCI program is to call
stored procedures or stored functions. For example, assume that there is a
procedure called RAISE_SALARY stored in the database, and you want to call this
procedure from an OCI program. You do this by embedding a call to that procedure
in an anonymous PL/SQL block, then processing the PL/SQL block in the OCI
program.

The following program fragment shows how to embed a stored procedure call in an
OCI application. For the sake of brevity, only the relevant portions of the program
are reproduced here.

The program passes an employee number and a salary increase as inputs to a stored
procedure called raise_salary , which takes these parameters:

raise_salary (employee_numIN, sal_increase IN, new_salary OUT);

This procedure raises a given employee’s salary by a given amount. The increased
salary which results is returned in the stored procedure’s OUT variable
new_salary , and the program displays this value.

 Define PL/SQL statement to be used in program. */
text*give_raise = (text*) "BEGIN\
RAISE_SALARY(:emp_number,:sal_increase, :new_salary),\
END;"
OCIBind *bndlp=NULL; *the first bind handle */
OCIBind *bnd2p =NULL,; f*the second bind handle */
OCIBind *bnd3p=NULL; Fthe third bind handle *

static void checken();
sh4 status;

main()
{
sword empno, raise, new_sal;
dvoid *mp;
OCISession *usrhp = (OCISession *NULL;

* attach to database server, and perform necessary initializations
and authorizations */

[+ allocate a statement handle */
checkenr(errhp, OCIHandleAlloc( (dvoid *) envhp, (dvoid *) &stmthp,
OCI_HTYPE_STMT, 100, (cvoid **) &mp));

5-8 Oracle Call Interface Programmer’s Guide



Binding

* prepare the statement request, passing the PL/SQL text
block as the statement to be prepared */
checkerr(errhp, OCISImtPrepare(stmthp, erhp, (text *) give_raise, (ub4)
strilen(give_raise), OCl_NTV_SYNTAX, OC|_DEFAULT));

Fbind each of the placeholders to a program variable */
checkerr( errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) "“:emp_number”,
-1, (ub1*) &empno,
(sword) sizeof(empno), SQLT_INT, (dvoid *) 0,
(Ub2*) 0, (Ub2) O, (Ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkenr( errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":sal_increase”,
-1, (ubl*) &raise,
(sword) sizeof(raise), SQLT_INT, (dvoid *) O,
(Ub2#) 0, (Ub2) 0, (ub4) O, (Ub4*) O, OCI_DEFAULT))

F* remember that PL/SQL OUT variable are bound, not defined */

checkerr( OCIBindByName(stmthp, &ond3p, enhp, (text *) “new_salary”,
-1, (ubl1*) &new_sal,
(sword) sizeof(new_sal), SQLT_INT, (dvoid *) O,
(Ub2*) 0, (Ub2) O, (Ub4) O, (ub4 *) 0, OCI_DEFAULT));

F prompt the user for input values */
printf("Enter the employee number: *);
scanf("%d", &empno);

Fflush the input buffer */
myfiush();

printf("Enter employee’s raise: ");
scanf('%d", &raise);

Fflush the input buffer */
myfiush(;

* execute PL/SQL block*/
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *) NULL, (OCISnapshot *) NULL, OC|_ DEFAULT));

F* display the new salary, following the raise */
printf( The new salary is %d\n", new_sal);
}

The following is one possible sample output from this program. Before execution,
the salary of employee 7954 is 2000.

Binding and Defining 5-9



Advanced Bind Operations

Enter the employee number: 7954
Enter employee’s raise: 1000
The new salary is 3000.

The previous section and example demonstrated how to perform a simple scalar
bind. In that case, only a single bind call is necessary. In some cases, additional bind
calls are necessary to define specific attributes for specific bind datatypes or
execution modes. These more sophisticated bind operations are discussed in the
following section.

Oracle also provides predefined C datatypes that map object attributes.

See Also:  Information about binding these datatypes, such as
OClIDate and OCINumber, can be found in Chapter 12, "Direct
Path Loading".

Advanced Bind Operations

The section "What is Binding?" on page 4-6 discussed how a basic bind operation is
performed to create an association between a placeholder in a SQL statement and a
program variable using OCIBindByName() or OCIBindByPos()

This section covers more advanced bind operations, including multi-step binds, and
binds of named data types and REFs.

In certain cases, additional bind calls are necessary to define specific attributes for
certain bind data types or certain execution modes.

The following sections describe these special cases, and the information about
binding is summarized in Table 5-1, "Bind Information for Different Bind Types".

Named Data Type Binds

For information on binding named data types (objects),

See Also: "Named Datatype Binds" on page 11-36.

Binding REFs

For information on this topic,

See Also: "Binding REFs" on page 11-37.

5-10 Oracle Call Interface Programmer’s Guide



Advanced Bind Operations

Binding LOBs

There are two ways of binding LOBs:

« Bind the LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCILob functions.

« Bind the LOB value directly, without using the LOB locator.

Both of these ways are discussed next.

Binding LOB Locators

Either a single locator or an array of locators can be bound in a single bind call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, if an application has prepared a SQL statement like

INSERT INTO some_table VALUES (:one_lob)

where one_lob is a bind variable corresponding to a LOB column, and has made
the following declaration:

OClLobLocator* one_lob;

Then the following sequence of steps would be used to bind the placeholder, and
execute the statement

F initialize single locator */

one_lob =OClIDescriptorAlloc(..OCl_DTYPE_LOB...);

* pass the address of the locator */
OCIBindByName(...,(dvoid *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecurte...,1....) F Listhe iters parameter */

Note: In these examples, most parameters are omitted for
simplicity.

You could also do an array insert using the same SQL INSERT statement. In this
case, the application would include the following code:

OClILabLocator *lob_array[10];
for (i=0; i<10, i++)

lob_array{i] = OCIDescriptorAlloc(...OCI_DTYPE_LOB..);
Finitialize array of locators */

Binding and Defining 5-11



Advanced Bind Operations

OCIBindByName(...,(dvoid *) lob_array,...);

OCIBindArayOfStruct(...);
OCIStmtExecute(...,10,...); F 10is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() routine
before they can be used. In the case of an array of locators, you must initialize each
array element using OCIDescriptorAlloc() .Use OCI_DTYPE_LOB as the type
parameter when allocating BLOBs CLOBs and NCLOBs Use OCI_DTYPE_FILE
when allocating BFILEs

Binding LOB Data

Oracle allows nonzero binds for INSERTs and UPDATEsof any size LOB. So you
can bind up to 4 gigabytes of data into a LOB column using OCIBindByPos()
OCIBindByName() , and PL/SQL binds. Because you can have multiple LOBs in a
row, you can bind up to 4 gigabytes of data for each one of those LOBs in the same
INSERT or UPDATEstatement.

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Users of this features should make sure that their temporary
tablespace is big enough to hold at least the amount of data equal to the sum of all
the bind lengths for LOBs. If your temporary tablespace is extendable, it will be
extended automatically after the existing space is fully consumed. Use the
command:

"CREATE TABLESPACE ... AUTOEXTENT ON.... TEMPORARY ...,"

to create an extendable temporary tablespace.

Restrictions on LOB Binds

« Ifatable has both LONGand LOB columns, then you can have binds of greater
than 4 kilobytes for either the LONGcolumn or the LOB columns, but not both in
the same statement.

« You cannot bind data of any size to LOB attributes in object-relational
datatypes.For LOB attributes, you need to insert an empty LOB locator and
then modify the contents of the LOB using OCILob*() functions.

« Inan INSERT AS SELECToperation, Oracle does not allow binding of any
length data to LOB columns.

« Oracle doesn’t do any implicit conversion such as HEXto RAWr RAWo HEXfor
data of size more than 4000 bytes. The following PL/SQL code illustrates this:

5-12 Oracle Call Interface Programmer’s Guide



Advanced Bind Operations

create table t (c1 clob, c2 blob);
declare

text varchar(32767);

binbuf raw(32767);
begin

text = Ipad (&, 12000, 'a);

binbuf :=utl_raw.cast to_raw(text);

- The following works ...
insert into t values (text, binbuf);

— The following won't work because Oracle won't do implicit
- hex to raw conversion.
insertinto t (c2) values (text);

— The following won't work because Oracle won't do implicit
—raw to hex conversion.
insertinto t (c1) values (binbuf);

— The following won't work because we can't combine the
—utl_raw.cast to_raw() operator with the >4k bind.
insertinto t (c2) values (utl_raw.cast to_raw(text));

end;
/

« If you bind more than 4000 bytes of data to a BLOBor a CLOB and the data is
filtered by a SQL operator, then Oracle will limit the size of the result to at most

4000 bytes.
For example:

create table t (c1 clob, c2 blob);

— The following command inserts only 4000 bytes because the result of

—LPAD is limited to 4000 bytes
insertinto t(c1) values (pad(a’, 5000, 'a));

— The following command inserts only 2000 bytes because the result of
- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion

— converts it to 2000 bytes of RAW data.
insertinto t(c2) values (pad(a, 5000, 'a));

Binding and Defining 5-13



Advanced Bind Operations

Examples of Binding LOBs

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE foo(a INTEGER);
CREATE TYPE lob_typ(A1 CLOB);
CREATE TABLE lob_long_tab (C1 CLOB, C2 CLOB, CT3lob_typ, L LONG);

Examplel: Binding LOBs

void insert() F Afunction in an OCI program */
{
P The following is allowed */
ub1 buffer{8000];
text *insert_sgl="INSERT INTO lob_long_tab (C1,C2,L)
VALUES (1, :2,:3)"
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((chart)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], erhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIstmtExecute(svchp, stmthp, enhp, 1, 0, OCI_DEFAULT);
}

Example2: Binding LOBs

void insert()
{
P The following is allowed */
ubl buffer{8000];
text*insert_sgl="INSERT INTO lob_long _tab (C1,L)
VALUES (1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((chart)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OC|_DEFAULT);
OCIBindByPos(stmthp, &indhp0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &indhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1,0, OCl_DEFAULT);

5-14 Oracle Call Interface Programmer’s Guide



Advanced Bind Operations

Example3: Binding LOBs

void insert()
{
F*The following is allowed, no matter how many rows it updates */
ub1 buffer{8000];
text*insert_sql = (text*)'UPDATE lob_long_tab SET
Cl=:1,C2=2,L=3
OCIStmtPrepare(stmthp, errhp, insert_sq, strlen((char*)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], emhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ubd) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCISstmtExecute(svchp, stmthp, enhp, 1, 0, OCI_DEFAULT);
}

Example4: Binding LOBs

void insert()
{
F*The following is allowed, no matter how many rows it updates */
ubl buffer{8000];
text *insert_sql = (text*)'UPDATE lob_long_tab SET
Cl=1,C2=2,L=3"
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((chart)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[1], errhp, 2, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[2], emhp, 3, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

Exampleb: Binding LOBs
void insert()
{
F Piecewise, callback and array insert/update operations similar to
*the allowed regular insert/update operations are also allowed */
}

Binding and Defining 5-15



Advanced Bind Operations

Example6: Binding LOBs

void insert()
{
FThe following is NOT allowed because we try to insert >4000 bytes
*to both LOB and LONG columns */
ubl buffer{8000];
text*insert_sql = (text*)'INSERT INTO lob_long_tab (C1, L)
VALUES (1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sq, strien((char*)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], erhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

Example7: Binding LOBs

void insert()
{
P The following is NOT allowed because we try to insert data into
* OB attributes */
ub1 buffer{8000];
text*insert_sql = (text*)'INSERT INTO lob_long_tab (CT3)
VALUES (lob_typ(:2))";
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((chart)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &indhp0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (uh4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1,0, OCl_ DEFAULT);
}

Example8: Binding LOBs

void insert()
{
FThe following is NOT allowed because we try to do insert as
* select character data into LOB column */
ub1 buffer{8000;
text*insert_sql = (text*)'INSERT INTO lob_long_tab (C1) SELECT
:1 from FOO",
OCIStmtPrepare(stmthp, errhp, insert_sq|, strien((char¥)insert_sq),
(ub4) OCI_NTV_SYNTAX,; (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,

5-16 Oracle Call Interface Programmer’s Guide



Advanced Bind Operations

SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

Other Disallowed Operations

Other update operations similar to the disallowed insert operations are also not
allowed. Piecewise and callback INSERT or UPDATEoperations similar to the
disallowed regular INSERT or UPDATEoperations are also not allowed.

See Also:  For more information about the OCILob functions,
refer to Chapter 7, "LOB and FILE Operations".

Binding FILES

When using a FILE locator as a bind variable for an INSERT or UPDATEstatement,
you must first initialize the locator with a directory alias and filename (using
OCILobFileSetName() ) before issuing the INSERT or UPDATEstatement.

Binding in OCI_DATA AT _EXEC Mode

If the mode parameter in a call to OCIBindByName() or OCIBindByPos() issetto
OCI_DATA_AT_EXEC, an additional call to OCIBindDynamic()  is necessary if
the application will use the callback method for providing data at runtime. The call
to OCIBindDynamic()  sets up the callback routines, if necessary, for indicating
the data or piece that is being provided.

If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI piecewise
polling method will be used instead of callbacks, the call to OCIBindDynamic() is
not necessary.

When binding RETURNMIlause variables, an application must use
OCI_DATA_AT_EXEC mode, and it must provide callbacks.

See Also:  For more information about piecewise operations,

please refer to the section "Runtime Data Allocation and Piecewise
Operations” on page 5-44.

Binding Ref Cursor Variables
Ref Cursors are bound to a statement handle with a bind datatype of SQLT_RSET.

See Also: "PL/SQL REF CURSORs and Nested Tables" on
page 5-43

Binding and Defining 5-17



Advanced Bind Operations

Summary of Bind Information

The following table summarizes the bind calls necessary for different types of binds.
For each type, the table lists the bind datatype (passed in the dty parameter of
OCIBindByName() or OCIBindByPos() ), and notes about the bind

Table 5-1 Bind Information for Different Bind Types

Type of Bind Bind Datatype Notes

Scalar any scalar datatype Bind a single scalar using OCIBindByName() or
OCIBindByPos()

Array of Scalars any scalar datatype Bind an array of scalars using OCIBindByName() or
OCIBindByPos()

Named Data Type SQLT_NTY Two bind calls are required:

. OCIBindByName() or OCIBindByPos()
. OCIBindObject()

REF SQLT_REF Two hind calls are required:
« OCIBindByName() or OCIBindByPos()

. OCIBindObject()
LOB SQLT_BLOB Allocate the LOB locator using OCIDescriptorAlloc() ,
BEILE SQLT CLOB and then bind its address (OCIlLobLocator **) with

OCIBindByName() or OCIBindByPos() ,using one of the
LOB datatypes.

Array of Structures varies Two bind calls are required:
or Static Arrays . OCIBindByName() or OCIBindByPos()
. OCIBindArrayOfStruct()

Piecewise Insert varies OCIBindByName() or OCIBindByPos() is required. The
application may also need to call OCIBindDynamic() to
register piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its
address (OCIStmt **) using the SQLT_RSET datatype.

See Also:  For more information about datatypes and datatype
codes, see Chapter 3, "Datatypes".

5-18 Oracle Call Interface Programmer’s Guide



Defining

Defining

Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list from which you want to retrieve data. The
define step creates an association that determines where returned results are stored,
and in what format.

For example, if your OCI statement processes the following statement:
SELECT name, ssn FROM employees
WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value
returned from the name column, and one to receive the value returned from the
ssn column.

Note: If you were only interested in retrieving values from the
name column, you would not need to define an output variable for
ssn.

If the SELECTstatement being processed might return more than a single value for
a query, the output variables you define may be arrays instead of scalar values.

Depending on the application, the define step can take place before or after the
execute. If the datatypes of select-list items are known when the application is
coded, the define can take place before the statement is executed. If your application
is processing dynamic SQL statements—statements entered by you at runtime— or
statements that do not have a clearly defined select-list, such as

SELECT * FROM employees

the application must execute the statement and retrieve describe information before
defining output variables.

See Also:  See the section "Describing Select-List Items" on
page 4-12 for more information.

The OCI processes the define call locally, on the client side. In addition to indicating
the location of buffers where results should be stored, the define step also
determines what type of data conversions, if any, will take place when data is
returned to the application.

Binding and Defining 5-19



Defining

Note: Output buffers must be 2-byte aligned.

The dty parameter of the OCIDefineByPos()  call specifies the datatype of the
output variable. The OCI is capable of a wide range of data conversions when data
is fetched into the output variable. For example, internal data in Oracle DATEformat
can be automatically converted to a string datatype on output.

See Also:  For more information about datatypes and conversions,
refer to Chapter 3, "Datatypes".

Steps Used in Defining

Defining output variables is done in one or more steps. A basic define is
accomplished with the OCI define by position call, OCIDefineByPos() . This step
creates an association between a select-list item and an output variable. Additional
define calls may be necessary for certain datatypes or fetch modes.

Once the define step is complete, the OCI library knows where to put retrieved data
after fetching it from the database.

Note: You can make your define calls again to redefine the output
variables without having to reprepare or reexecute the SQL
statement.

The following example code shows a scalar output variable being defined following
an execute and a describe.

F* The following statement was prepared, and associated with statement
handle stmthpl.
SELECT dname FROM dept WHERE deptno = :dept_input

The input placeholder was bound earlier, and the data comes from the
user input below */

printf("Enter employee dept ");
scanf('%d", &deptno);
myffiush();

F* Execute the statement. If OCIStmtExecute() retums OCl_NO_DATA, meaning that
no data matches the query, then the department number is invalid. */

5-20 Oracle Call Interface Programmer’s Guide



Defining

if ((Status = OCIStmtExecute(svchp, stmthpl, errhp, 0, 0, 0, 0,
OCI_DEFAULT))
&& (status '=OCl_NO_DATA))
{
checkerr(erhp, status);
do_exit(EXIT_FAILURE);
}
if (status == OCl_NO_DATA){
printf( The dept you entered doesn't exist\n'Y);
retumQ;

}
* The next two statements describe the select-list item, dname, and

retum its length */
checkerr(ermhp, OCIParamGet(stmthpl, errhp, &parmdp, (ub4) 1));
checkerr(errhp, OCIAtrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &deptlen, (Ub4 *) O, (ub4) OCI_ATTR_DATA SIZE,
(OCIEmor*) emhp ));

¥ Use the retrieved length of dname to allocate an output buffer, and
then define the output variable. If the define call retums an error,
exit the application */
dept = (text *) malloc((int) deptlen + 1);
if (status = OCIDefineByPos(stmthpl, &defnp, enhp,
1, (ub1*) dept, deptien+1,
SQLT_STRING, (dvoid *) 0,
(ub2*) 0, OCI_DEFAULT))
{
checkerr(erhp, status);
do_exit(EXIT_FAILURE);
}

See Also:  For an explanation of the describe step, see the section
"Describing Select-List Items" on page 4-12.

Advanced Defines
In some cases the define step requires more than just a call to OCIDefineByPos()
There are additional calls that define the attributes of an array fetch
(OCIDefineArrayOfStruct() ) or a named data type fetch
(OCIDefineObject() ). For example, to fetch multiple rows with a column of
named data types, all three calls must be invoked for the column; but to fetch
multiple rows of scalar columns, OCIDefineArrayOfStruct() and
OCIDefineByPos()  are sufficient.

Binding and Defining 5-21



Advanced Define Operations

See Also:  These more sophisticated define operations are covered
in the section "Advanced Define Operations” on page 5-22.

Oracle also provides pre-defined C datatypes that map object type attributes.

See Also: Information about defining these datatypes (for
example, OCIDate, OCINumber) can be found in Chapter 11,
"Object-Relational Datatypes"

Advanced Define Operations

The section "What is Defining?" on page 4-15 discussed how a basic define
operation is performed to create an association between a SQL select-list item and
an output buffer in an application.

This section covers more advanced defined operations, including multi-step
defines, and defines of named data types and REFs.

In some cases the define step requires more than just a call to OCIDefineByPos()
There are additional calls that define the attributes of an array fetch
(OClIDefineArrayOfStruct() ) or a named data type fetch
(OCIDefineObject() ). For example, to fetch multiple rows with a column of
named data types, all the three calls must be invoked for the column; but to fetch
multiple rows of scalar columns only OCIDefineArrayOfStruct() and
OCIDefineByPos()  are sufficient.

The following sections discuss specific information pertaining to different types of
defines.

Defining Named Data Type Output Variables

For information on defining named data type (object) output variables, refer to
"Defining Named Datatype Output Variables" on page 11-38.

Defining REF Output Variables

For information on defining REF output variables, refer to "Defining REF Output
Variables" on page 11-39.

Defining LOB Output Variables
There are two ways of defining LOBs:

5-22 Oracle Call Interface Programmer’s Guide



Advanced Define Operations

« Define as a LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCILob functions.

« Define as a LOB value directly, without using the LOB locator.

Both of these ways are discussed next.

Defining LOB Locators

Either a single locator or an array of locators can be defined in a single define call.
In each case, the application must pass the address of a LOB locator and not the locator
itself. For example, if an application has prepared a SQL statement like:

SELECT lobl FROM some_table;

where lobl isthe LOB column and one_lob is a define variable corresponding to
a LOB column with the following declaration:

OCILobLocator * one_lob;

Then the following sequence of steps would be used to bind the placeholder, and
execute the statement

[ initialize single locator */

one_lob = OClDescriptorAlloc(...OCl DTYPE_LOB...);

* pass the address of the locator */
OCIDefineByPos(... 1, ...(dvoid *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecute...,1,...) F Listhe iters parameter */

Note: In these examples, most parameters are omitted for
simplicity.

You could also do an array select using the same SQL SELECTstatement. In this
case, the application would include the following code:

OCILobLocator *lob_array{10];
for (=0; i<10, i++)
lob_arrayfi] = OClDescriptorAlloc(..OCl_DTYPE_LOB...);
F initialize array of locators */

OCIDefineByPos(...,1, (dvoid *) lob_array,... SQLT_CLOB, ...);
OCIDefineArrayOfStruct(...);

Binding and Defining 5-23



Advanced Define Operations

OCIStmtExecute(...,10,...); F 10is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() routine
before they can be used. In the case of an array of locators, you must initialize each
array element using OClDescriptorAlloc() . Use OCI_DTYPE_LOB as the type
parameter when allocating BLOBs CLOBs and NCLOBs Use OCI_DTYPE_FILE
when allocating BFILES

Defining LOB Data

Oracle allows nonzero defines for SELECTsof any size LOB. So you can select up to
4 gigabytes of data from a LOB column using OCIDefineByPos() , and PL/SQL
defines. Because you can have multiple LOBs in a row, you can select up to 4
gigabytes of data from each one of those LOBs in the same SELECTstatement.

Examples of Defining LOBs

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE lob_tab (C1 CLOB, C2 CLOB);

Examplel: Defining LOBS

void select_define_before_execute() /A function inan OCI program*/
{
FThe following is allowed */
ubl buffer[8000];
ubl buffer2[8000];
text*select_sgl="SELECT c1,c2 FROM lob_tab";
OCIStmtPrepare(stmthp, errhp, select_sq, stlen((char¥)select_sa),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIDefineByPos(stmthp, &defhp[0], errhp, 1, (dvoid *)bufferl, 8000,
SQLT_LNG, 0, 0,0, (ub4) OCI_DEFAULT);
OCIDefineByPos(stmthp, &dethp[1], erhp, 2, (dvoid *)buffer2, 8000,
SQLT_LNG, 0, 0,0, (ub4) OCI_DEFAULT);
OCISstmtExecute(svchp, stmthp, enhp, 1, 0, OCI_DEFAULT);
}

Example2: Defining LOBs

void select_execute_before_define()

{
1 The following is allowed */

5-24 Oracle Call Interface Programmer’s Guide



Advanced Define Operations

ubl buffer1[8000];

ubl buffer2[8000];

text*select_sgl ="SELECT c1, c2 FROM lob_tab";

OCIStmtPrepare(stmthp, errhp, select_sq], stlen((char®)select_sa),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIStmtExecute(svchp, stmthp, errhp, 0,0, OCI_ DEFAULT);

OCIDefineByPos(stmthp, &bindhp[Q], errhp, 1, (dvoid *)bufferl, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCl_DEFAULT);

OCIDefineByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer2, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);

OCISmtFetch(stmthp, ehp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

}

Example3: Defining LOBs

void select()
{
F* Piecewise, callback and array select operations similar to

*the allowed regular select operations are also allowed */
}

Defining PL/SQL Output Variables

You do not use the define calls to define output variables for select-list items in a
SQL SELECT statement in a PL/SQL block. You must use OCI bind calls instead.

See Also:  See the section "Information for Named Datatype and
REF Defines, and PL/SQL OUT Binds" on page 11-39 for more
information about defining PL/SQL output variables.

Defining For a Piecewise Fetch

When performing a piecewise fetch, an initial call to OCIDefineByPos() s
required. An additional call to OCIDefineDynamic() is necessary if the
application will use callbacks rather than the standard polling mechanism for
fetching data.

See Also:  See the section "Runtime Data Allocation and Piecewise
Operations" on page 5-44 for more information.

Binding and Defining 5-25



Binding and Defining Arrays of Structures

Binding and Defining Arrays of Structures

When using arrays of structures, an initial call to OCIDefineByPos() s required.
An additional call to OCIDefineArrayOfStruct() is necessary to set up
additional parameters, including the skip parameter necessary for arrays of
structures operations.

The arrays of structures functionality