
Oracle9 i

CORBA Developer’s Guide and Reference

Release 1 (9.0.1)

June 2001

Part No. A90187-01

Oracle9i CORBA Developer’s Guide and Reference, Release 1 (9.0.1)

Part No. A90187-01

Release 1 (9.0.1)

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Authors: Sheryl Maring

Contributors: Tim Smith, Ellen Barnes, Matthieu Devin, Steve Harris, Hal Hildebrand, Susan Kraft,
Thomas Kurian, Wendy Liau, Angie Long, Sastry Malladi, John O’Duinn, Jeff Schafer, Aniruddha Thakur

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle, Oracle Database Configuration Assistant, OracleJSP,
Oracle Network Manager, Oracle Security Server, Oracle Security Service, Oracle® Wallet Manager,
Oracle9i, Oracle9i Internet Application Server, and PL/SQL are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

1 Overview

Prerequisite Reading.. 1-2
Terminology ... 1-2
About CORBA ... 1-3

CORBA Features... 1-5
About the ORB .. 1-6

Using JNDI and IIOP ... 1-6
IIOP... 1-7

For More Information .. 1-8
Books .. 1-8
URLs ... 1-8

2 Getting Started

A First CORBA Application ... 2-2
Writing Interfaces in IDL... 2-3
Generating Stubs and Skeletons ... 2-4
Writing the Server Object Implementation... 2-6
Writing the Client Code... 2-8
Compiling the Java Source .. 2-11
Loading the Classes into the Database .. 2-12
iii

Publishing the Object Name ... 2-13
Running the Example... 2-13

The Interface Definition Language (IDL) .. 2-15
Using IDL... 2-15
IDL Types... 2-19
Exceptions.. 2-23
Getting by Without IDL... 2-24

Activating ORBs and Server Objects .. 2-24
Client Side.. 2-24
Server Side ... 2-25
About Object Activation .. 2-25
CORBA Interceptors... 2-26

Debugging Techniques.. 2-26
Using a Debug Agent for Debugging Server Applications.. 2-27

3 Configuring IIOP Applications

Overview .. 3-2
Oracle9i Database Templates For Default Configuration ... 3-2
Advanced Configuration ... 3-4

Overview of Listeners and Dispatchers .. 3-4
Handling Incoming Requests ... 3-6
Configuring The Dispatcher Through Editing Initialization Files .. 3-8
Configuring the Listener ... 3-10
SSL Configuration for EJB and CORBA .. 3-12

4 JNDI Connections and Session IIOP Service

JNDI Connection Basics .. 4-2
The Name Space.. 4-3
Execution Rights to Database Objects .. 4-4
URL Syntax .. 4-5

URL Components and Classes ... 4-6
Using JNDI to Access Bound Objects... 4-7

Importing JNDI Support Classes.. 4-9
Retrieving the JNDI InitialContext... 4-9

Session IIOP Service .. 4-13
iv

Session IIOP Service Overview .. 4-13
Session Management.. 4-15
Service Context Class ... 4-16
Session Context Class... 4-17
Session Management Scenarios .. 4-18
Setting Session Timeout... 4-26

Retrieving the Oracle9i Version Number... 4-28
Activating In-Session CORBA Objects From Non-IIOP Presentations................................. 4-28
Accessing CORBA Objects Without JNDI .. 4-29

Retrieving the NameService Initial Reference.. 4-29
Retrieving Initial References from ORBDefaultInitRef... 4-33

5 Advanced CORBA Programming

Using SQLJ... 5-2
Running the SQLJ Translator.. 5-2
A Complete SQLJ Example ... 5-3

Implementing CORBA Callbacks ... 5-3
IDL .. 5-4
Client Code .. 5-4
Callback Server Implementation.. 5-5
Callback Client-Server Implementation.. 5-5

Retrieving Interfaces With The IFR .. 5-6
Publishing the IDL Interface ... 5-7
Circular References Between Interfaces .. 5-7
Managing Security Within the IFR .. 5-8
Retrieving Interfaces Implicitly .. 5-8
Retrieving Interfaces Explicitly... 5-8

Using the CORBA Tie Mechanism.. 5-11
Migrating from JDK 1.1 to Java 2... 5-12
Invoking CORBA Objects From Applets... 5-16

Using Signed JAR Files to Conform to Sandbox Security .. 5-17
Performing Object Lookup in Applets .. 5-17
Modifying HTML for Applets that Access CORBA Objects .. 5-18

Interoperability with Non-Oracle ORBs.. 5-21
Java Client Using Oracle ORB .. 5-22
v

Java Client Using Non-Oracle ORB ... 5-23
C++ Client Interoperability ... 5-23
IIOP Transport Protocol... 5-25

6 IIOP Security

Overview .. 6-2
Data Integrity... 6-3

Using the Secure Socket Layer.. 6-3
SSL Version Negotiation.. 6-4

Authentication... 6-5
Client-Side Authentication ... 6-6

Using JNDI for Authentication... 6-8
Providing Username and Password for Client-Side Authentication.................................... 6-9
Using Certificates for Client Authentication .. 6-13
AuroraCertificateManager Class.. 6-16

Server-Side Authentication .. 6-20
Authorization... 6-26

Setting Up Trust Points.. 6-27
Parsing Through the Server’s Certificate Chain... 6-27
AuroraCurrent Class.. 6-28

7 Transaction Handling

Transaction Overview .. 7-2
Global and Local Transactions ... 7-3
Demarcating Transactions... 7-3
Transaction Context Propagation... 7-5
Enlisting Resources .. 7-6
Two-Phase Commit.. 7-7

JTA Summary... 7-8
Environment Initialization .. 7-9
Methods for Enlisting Database Resources .. 7-10
Summary of Single-Phase and Two-Phase Commit.. 7-10

JTA Server-Side Demarcation... 7-13
JTA Client-Side Demarcation ... 7-14
Enlisting Resources on the Server-side .. 7-19
vi

Binding Transactional Objects in the Namespace.. 7-21
Configuring Two-Phase Commit Engine ... 7-25
Creating DataSource Objects Dynamically ... 7-29
Setting the Transaction Timeout .. 7-30
JTA Limitations ... 7-31
Java Transaction Service .. 7-31

JTS Client-Side Demarcation... 7-32
JTS Server-Side Demarcation .. 7-34
JTS Limitations .. 7-36

Transaction Service Interfaces .. 7-37
TransactionService.. 7-37
Using The Java Transaction Service... 7-38

For More Information on JTS ... 7-41
JDBC Restrictions ... 7-42

A Example Code: CORBA

Basic Example .. A-2
README.. A-2
Bank.IDL .. A-2
Server.. A-2
Client.java .. A-5
StoredClient.java... A-6

IFR Example ... A-7
Bank.IDL .. A-7
Server.. A-8
Client .. A-11

Callback Example ... A-18
IDL Files ... A-18
Server.. A-19
Client .. A-19

TIE Example ... A-21
Hello.IDL ... A-21
Server Code - HelloImpl.java.. A-21
Client.java .. A-21

Pure CORBA Client.. A-22
vii

Bank.IDL .. A-22
Server Code ... A-23
Client.java .. A-24

JTA Examples... A-27
Single-Phase Commit JTA Transaction Example.. A-27

Employee.IDL ... A-27
Client.java .. A-27
EmployeeServer.sqlj ... A-31

Two-Phase Commit JTA Transaction Example.. A-32
Employee.IDL ... A-32
Client.java .. A-33
Server.. A-35

JTS Transaction Example... A-40
Employee.IDL ... A-40
Client.java .. A-40
Server.. A-42

SSL Examples .. A-43
Client-Side Authentication ... A-43

Hello.IDL ... A-43
Client.java .. A-44
Server.. A-45

Server-Side Authentication .. A-45
Hello.IDL ... A-45
Client.java .. A-45
Server.. A-48

Session Example.. A-48
Hello.IDL ... A-48
Client.java .. A-49
Server.. A-50

Applet Example ... A-51
JDK and JInitiator Applets ... A-51

HTML for JDK 1.1... A-51
HTML for JDK 1.2... A-51
HTML for Oracle JInitiator.. A-52
Applet Client ... A-53
viii

Visigenic Applet.. A-54
README.. A-54
HTML for Visigenic Client Applet... A-54
Visigenic Client Applet.. A-55

B Comparing the Oracle9 i and VisiBroker VBJ ORBs

Object References Have Session Lifetimes ... B-2
The Database Server Is the Implementation Mainline ... B-3
Server Object Implementations Are Deployed by Loading and Publishing B-3
Implementation by Inheritance Is Nearly Identical .. B-3
Implementation by Delegation Is Different ... B-3
Clients Look Up Object Names with JNDI ... B-4
No Interface or Implementation Repository ... B-5
The Bank Example in Oracle9i and VBJ... B-5

The Bank IDL Module.. B-5
Oracle9i Client... B-5
VBJ Client... B-6
Oracle9i Account Implementation ... B-7
VBJ Account Implementation ... B-7
Oracle9i Account Manager Implementation .. B-8
VBJ Account Manager Implementation .. B-9
VBJ Server Mainline ... B-10

C Abbreviations and Acronyms

Index
ix

x

Send Us Your Comments

Oracle9 i CORBA Developer’s Guide and Reference, Release 1 (9.0.1)

Part No. A90187-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomment_us@us.oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
xi

xii

Preface

This guide gets you started building CORBA applications for Oracle9i. It includes

many code examples to help you develop your application.

Who Should Read This Guide?
Anyone developing server-side CORBA applications for Oracle9i will benefit from

reading this guide. Written especially for programmers, it will also be of value to

architects, systems analysts, project managers, and others interested in

network-centric database applications. To use this guide effectively, you must have

a working knowledge of Java and Oracle9i. This guide assumes that you have some

familiarity with CORBA See "Suggested Reading" on page xv for more information

on CORBA concepts.

How This Guide Is Organized
This guide consists of the following chapters and appendices:

Chapter 1, "Overview", presents a brief overview of the CORBA development

model from an Oracle9i perspective.

Chapter 2, "Getting Started", describes techniques for developing CORBA server

objects that run in the Oracle9i data server.

Chapter 3, "Configuring IIOP Applications", discusses how to configure for your

CORBA applications.

Chapter 4, "JNDI Connections and Session IIOP Service", discusses how to use JNDI

and sessions within your CORBA applications.
xiii

Chapter 5, "Advanced CORBA Programming", details how to program your

CORBA application beyond the simple example presented in Chapter 2.

Chapter 6, "IIOP Security", covers how to implement security within your CORBA

application.

Chapter 7, "Transaction Handling", documents the transaction interfaces that you

can use when developing your CORBA applications.

Appendix A, "Example Code: CORBA", includes examples of CORBA applications.

Each example contains both the Java and IDL source code.

Appendix B, "Comparing the Oracle9i and VisiBroker VBJ ORBs", discusses some of

the fundamental differences between developing CORBA applications for

VisiBroker and the Oracle9i JVM.

Appendix C, "Abbreviations and Acronyms", supplies a list of acronyms.

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

technology vendors to address technical obstacles so that our documentation can be

accessible to all of our customers.

JAWS, a Windows screen reader, may not always correctly read the Java code

examples in this document. The conventions for writing Java code require that

closing braces should appear on an otherwise empty line; however, JAWS may not

always read a line of text that consists solely of a bracket or brace.‘

For additional information, visit the Oracle Accessibility Program web site at

http://www.oracle.com/accessibility/ .

Notational Conventions
This guide follows these conventions:
xiv

Java code examples follow these conventions:

Suggested Reading
The Oracle9i Java Developer’s Guide gives you the technical background information

necessary to understand Java in the database server. As well as a comprehensive

discussion of the advantages of the Oracle9i implementation for enterprise

application development, it explains the fundamentals of the Oracle9i Java virtual

machine (JVM) and gives a technical overview of the tools that Oracle9i JVM

provides.

Programming with VisiBroker, by D. Pedrick et al. (John Wiley and Sons, 1998)

provides a good introduction to CORBA development from the VisiBroker point

of view.

Core Java by Cornell & Horstmann, second edition, Volume II (Prentice-Hall, 1997)

has good presentations of several Java concepts relevant to EJB. For example, this

book documents the Remote Method Invocation (RMI) interface.

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Courier Courier font denotes Java program names, file names, path
names, and Internet addresses.

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.

Mixed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words also begin with an upper-case letter.
xv

Online Sources
There are many useful online sources of information about Java. For example, you

can view or download guides and tutorials from the Sun Microsystems home page

on the Web:

http://www.sun.com

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, see:

http://www.javasoft.com

Related Publications
Occasionally, this guide refers you to the following Oracle publications for

more information:

Oracle9i Application Developer’s Guide - Fundamentals

Oracle9i Java Developer’s Guide

Oracle9i Java Tools Reference

Oracle9i JDBC Developer’s Guide and Reference

Oracle9i SQL Reference

Oracle9i SQLJ Developer’s Guide and Reference
xvi

Ove
1

Overview

This chapter gives you a general picture of distributed object development in the

Oracle9i JVM. As with the more specific chapters that follow, this overview focuses

on the aspects of CORBA development that are particular to Oracle9i, giving a brief

general description of the standard CORBA development model.

This chapter covers the following topics:

■ Prerequisite Reading

■ Terminology

■ About CORBA

■ Using JNDI and IIOP

■ For More Information
rview 1-1

Prerequisite Reading
Prerequisite Reading
Before consulting this Guide, you should read the Oracle9i Java Developer’s Guide,

which gives you the technical background information necessary to understand

Java in the database server. As well as a comprehensive discussion of the

advantages of the Oracle9i implementation for enterprise application development,

it explains the fundamentals of the Oracle9i JVM and gives a technical overview of

the Oracle9i tools.

In addition, the Oracle9i Java Developer’s Guide describes the strategic advantages of

the distributed component development model that is implemented by CORBA.

Terminology
This section defines some of the basic terms used in this chapter. See also

Appendix C, "Abbreviations and Acronyms", for a list of common acronyms used in

Java and distributed object computing.

client
A client is an object, an application, or an applet that makes a request of a server

object. Remember that a client need not be a Java application running on a

workstation or a network computer, nor an applet downloaded by a Web browser.

A server object can be a client of another server object. Client refers to a role in a

requestor/server relationship, not to a physical location or a type of computer

system.

marshalling
In distributed object computing, marshalling refers to the process by which the ORB

passes requests and data between clients and server objects.

object adapter
Each CORBA ORB implements an object adapter (OA), which is the interface

between the ORB and the message-passing objects. CORBA 2.0 specifies that a basic

object adapter (BOA) must exist, but most of the details of its interface are left up to

individual CORBA vendors. Future CORBA standards will require a vendor-neutral

portable object adapter (POA).
1-2 CORBA Developer’s Guide and Reference

About CORBA
request
A request is a method invocation. Other names sometimes used in its stead are

method call and message.

server object
A CORBA server object is a Java object activated by the server, typically on a first

request from a client.

session
A session always means a database session. Although it is conceptually the same

type of session as that established when a tool such as SQL*Plus connects to Oracle,

there are differences in the CORBA case, as follows:

■ You establish the database session using the IIOP protocol; you establish a

SQL*Plus session using the Oracle Net Services TTC protocol.

■ A JVM that runs in the database server controls an IIOP session.

See "Session IIOP Service" on page 4-13 for more information about sessions.

About CORBA
CORBA stands for Common Object Request Broker Architecture. What is common

about CORBA is that it integrates ideas from several of the original proposers.

CORBA is deliberately vendor neutral. The CORBA architecture specifies a software

component, a broker, that mediates and directs requests to objects that are

distributed across one or more networks, which might have been written in a

different language from that of the requestor, and which might be running on

different hardware from that of the requestor.

CORBA enables your application to tie together components from various sources.

Also, and unlike a typical client/server application, a CORBA application is not

inherently synchronous. It is not necessarily typical that a CORBA requestor (a

Note: To use CORBA with Oracle9i, you must configure the

database so that the listener can recognize incoming IIOP requests,

in addition to TTC requests. DBAs and system administrators

should see Chapter 3, "Configuring IIOP Applications" for

information on setting up the database and the listener to accept

incoming IIOP requests.
Overview 1-3

About CORBA
client) invokes a method on a server component and waits for a result. Using

asynchronous method invocations, event interfaces and callbacks from server object

to the client ORB, you can construct elaborate applications that link together many

interacting objects and that access one or many data sources and other resources

under transactional control.

CORBA offers a well-supported international standard for cross-platform,

cross-language development. CORBA supports cross-language development by

specifying a neutral language, Interface Definition Language (IDL), in which you

develop specifications for the interfaces that the application objects expose.

CORBA supports cross-platform development by specifying a transport

mechanism, IIOP, that allows different operating systems running on very different

hardware to interoperate. IIOP supplies a common software bus that, together with

an ORB running on each system, makes data and request transfer transparent to the

application developer.

Although the CORBA standard was developed before the advent of Java and is a

standard focused on component development in a heterogeneous application

development environment, incorporating systems and languages of varying age

and sophistication, it is possible to develop CORBA applications solely in Java.

For CORBA developers, Oracle9i offers the following services and tools:

■ a Java Transaction API (JTA) interface, which implements the Sun Microsystems

specification

■ a Java Transaction Service (JTS) interface to the OMG Object Transaction Service

(OTS)

■ a CosNaming implementation used for publishing objects to an Oracle9i
database, retrieving the object references, and activating objects

■ a version of the IIOP protocol that supports the Oracle9i session-based ORB,

which is compatible with standard IIOP

■ a wide range of tools, which assist in developing CORBA applications, that do

the following:

■ load Java classes and resource files into the database

■ drop loaded classes

■ publish objects to the CosNaming service

■ manage the session name space
1-4 CORBA Developer’s Guide and Reference

About CORBA
CORBA Features
CORBA achieves its flexibility in several ways:

■ It specifies an interface description language (IDL) that allows you to specify

the interfaces to objects. IDL object interfaces describe, among other things:

■ The data that the object makes public.

■ The operations to which the object can respond, including the complete

signature of the operation. CORBA operations map to Java methods, and

the IDL operation parameter types map to Java datatypes.

■ Exceptions that the object can throw. IDL exceptions also map to Java

exceptions, and the mapping is very direct.

CORBA provides bindings for many languages, including both non-object

languages such as COBOL and C, and object-oriented languages such as

Smalltalk and Java.

■ All CORBA implementations provide an object request broker (ORB) that

handles the routing of object requests in a way that is largely transparent to the

application developer. For example, requests—or method invocations—on

remote objects that appear in the client code look like local method invocations.

The remote call functionality, including marshalling of parameter and return

data, is performed for the programmer by the ORB.

■ CORBA specifies a network protocol, the Internet Inter-ORB Protocol (IIOP),

that provides for transmission of ORB requests and data over a widely available

transport protocol: TCP/IP, the Internet standard.

■ A set of fully-specified services eases the burden of application development by

making it unnecessary for the developer to constantly reinvent the wheel.

Among these services are:

■ Naming—One or more services that enable you to resolve names that are

bound to CORBA server objects.

■ Transactions—Services that enable you to manage transaction control of

data resources in a flexible and portable way.

■ Events.

CORBA specifies more than 12 services; however, most of these are not

currently implemented by CORBA ORB vendors.

The remainder of this section introduces some of the essential building blocks of an

Oracle9i CORBA application. These include:
Overview 1-5

Using JNDI and IIOP
■ ORB—how to talk to remote objects

■ IDL—how to write a portable interface

■ naming service (and JNDI)—how to locate a persistent object

■ object adapters—how to register a transient object

About the ORB
The object request broker (ORB) is the fundamental part of a CORBA

implementation. The ORB makes it possible for a client to send messages to a

server, and the server to return values to the client. The ORB handles all

communication between a client and a server object.

The Oracle9i ORB is based on code from Inprise’s VisiBroker 3.4 for Java. The ORB

that executes on the server side has been slightly modified from the VisiBroker

code, to accommodate the Oracle9i object location and activation model. The

client-side ORB has been changed very little.

In some CORBA implementations, the application programmer and the server

object developer must be aware of the details of how the ORB is activated on the

client and the server, and they must include code in their objects to start up the ORB

and activate objects. The Oracle9i ORB, on the other hand, makes these details

largely transparent to the application developer. Only in certain circumstances does

the developer need to control the ORB directly. These occur, for example, when

coding callback mechanisms or when there is a need to register transient objects

with the basic object adapter.

Using JNDI and IIOP
You publish CORBA objects in the Oracle database using the OMG CosNaming

service. In addition, you can access these objects using Oracle’s JNDI interface to

CosNaming.

Note: The VisiBroker ORB functionality supplied with Oracle9i is
only licensed for accessing Oracle9i servers.
1-6 CORBA Developer’s Guide and Reference

Using JNDI and IIOP
Figure 1–1 shows how applications access remote objects published in the database,

using JNDI.

Figure 1–1 Remote Object Access

IIOP
Oracle9i offers a Java interpreter for the IIOP protocol. Oracle embeds a pure Java

ORB of a major CORBA vendor—VisiBroker for Java version 3.4 by Inprise.

Oracle9i repackaged the Visigenic Java IIOP interpreter to run in the database.

Because Oracle9i is a highly scalable server, only the essential components of the

interpreter are necessary—namely, a set of Java classes that do the following:

■ decode the IIOP protocol

■ find or activate the relevant Java object

■ invoke the method that the IIOP message specifies

■ write the IIOP reply back to the client

Oracle9i does not use the ORB scheduling facilities. The Oracle multi-threaded

server performs the dispatching and enables the server to process IIOP messages

efficiently and in a highly scalable manner.

object reference

JNDI

Session

activated object

published objects

name, class, helper
name, class, helper

Oracle9i
Overview 1-7

For More Information
On top of this infrastructure, Oracle9i implements both the EJB and CORBA

programming models.

For More Information
This section lists some resources that you can access to get more information about

CORBA and application development using Java.

Books
The ORB and some of the CORBA services that Oracle9i JVM supplies are based on

VisiBroker for Java code licensed from Inprise. Programming with VisiBroker, by D.

Pedrick et al. (John Wiley and Sons, 1998), provides both an introduction to CORBA

development from the VisiBroker point of view and an in-depth look at the

VisiBroker CORBA environment.

Client/Server Programming with Java and CORBA, by R. Orfali and D. Harkey (John

Wiley and Sons, 1998), covers CORBA development in Java. This book also uses the

VisiBroker implementation for its examples.

You should be aware that the examples published in both of these books require

some modification to run in the Oracle9i ORB. It is better to start off using the

demos provided with Oracle9i, which are more extensive than the examples in the

books cited, and demonstrate all the features of Oracle9i CORBA. See also

Appendix B, "Comparing the Oracle9i and VisiBroker VBJ ORBs" for a discussion of

the major differences between VisiBroker for Java and the Oracle9i implementation.

URLs
You can download specifications for CORBA 2.0 and for CORBA services from links

available at the following web site:

http://www.omg.org/library/downinst.html

Documentation on Inprise’s VisiBroker for Java product is available at:

http://www.inprise.com/techpubs/visibroker/visibroker33/
1-8 CORBA Developer’s Guide and Reference

Getting S
2

Getting Started

This chapter introduces the basic procedures for creating CORBA applications for

Oracle9i. The emphasis in this chapter is to present the basics for developing an

Oracle9i CORBA application. For advanced programming techniques and

miscellaneous tips for CORBA applications, see Chapter 5, "Advanced CORBA

Programming".

This chapter covers the following topics:

■ A First CORBA Application

■ The Interface Definition Language (IDL)

■ Activating ORBs and Server Objects

■ Debugging Techniques
tarted 2-1

A First CORBA Application
A First CORBA Application
This section introduces the Oracle9i CORBA application development process. It

tells you how to write a simple but useful program that runs on a client system,

connects to Oracle using IIOP, and invokes a method on a CORBA server object that

is activated and runs inside the Oracle9i JVM.

Figure 2–1 CORBA Application Components

As Figure 2–1 illustrates, a CORBA application requires that you provide the client

implementation, the server interface and implementation, and IDL stubs and

skeletons. To create this, perform the following steps:

1. Design and write the object interfaces in IDL.

2. Generate stubs, skeletons, and helper and holder support classes.

3. Write the server object implementations.

Client

IDL stub

Server

IDL skeleton

ORB

{interface
implementation
helper class
holder class

Oracle9i Database
2-2 CORBA Developer’s Guide and Reference

A First CORBA Application
4. Write the client implementation. This code runs outside of the Oracle9i data

server on a workstation or PC.

5. Compile the Java server implementation with the client-side Java compiler. In

addition, compile all the Java classes generated by the IDL compiler. Generate a

JAR file to contain these classes and any other resource files that are needed.

6. Compile the client code using the JDK Java compiler.

7. Load the compiled classes into the Oracle9i database using the loadjava tool

and specifying the JAR file as its argument. Make sure to include all generated

classes, such as stubs and skeletons. Client stubs are required in the server only

when the server object acts as a client to another CORBA object.

8. Publish a name for the objects that are directly accessible, using the CosNaming

service, so that you can access them from the client program.

This chapter uses an employee sample to demonstrate the above steps. The example

asks the user for an employee number in the EMP table and returns the employee’s

last name and current salary. It throws an exception if there is no employee in the

database with the given ID number.

Writing Interfaces in IDL
When writing a server application, you must create an Interface Definition Lan-

guage (IDL) file to define the server’s interfaces. An interface is a template that

defines a CORBA object. As with any object in an object oriented language, it con-

tains methods and data elements that can be read or set. However, the interface is

only a definition and so defines what the interface to an object would be if it existed.

In your IDL file, each interface describes an object and the operations clients can

perform on that object.

The IDL for the employee example is called employee.idl , and it contains only a

single server-side method: getEmployee . The getEmployee method takes an ID

number and queries the database for the employee’s name and salary.

This interface defines three things:

■ a getEmployee method that queries the database and returns the information

■ an EmployeeInfo data structure to hold the returned information

Note: For a full description of IDL, see "The Interface Definition

Language (IDL)" on page 2-15.
Getting Started 2-3

A First CORBA Application
■ a SQLError exception to be thrown if the employee is not found

The contents of the employee.idl file is as follows:

module employee {

 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 EmployeeInfo getEmployee (in long ID) raises (SQLError);
 };
};

Generating Stubs and Skeletons
Use the idl2java compiler to compile the interface description. As shown in

Figure 2–2, the compiler generates the interface, implementation template, helper,

and holder classes for the three objects in the IDL file, as well as a stub and skeleton

class for the Employee interface. See "Using IDL" on page 2-15 for more

information about these classes and the Oracle9i Java Tools Reference for more

information on the idl2java compiler.

Note: Because this example does not use the Tie mechanism, you

can invoke the compiler with the -no_tie option. Two fewer

classes will be generated.
2-4 CORBA Developer’s Guide and Reference

A First CORBA Application
Figure 2–2 IDL Compilation Generates Support Files

Compile the IDL as follows:

% idl2java -no_tie -no_comments employee.idl

When you compile the employee.idl file, the idl2java tool generates the fol-

lowing files:

Note: Because developing a CORBA application includes many

compilation, loading, and publishing steps, Oracle recommends

that if you are working in a command-line oriented environment,

always use a makefile or a batch file to control the process. Or, you

can use IDE products such as Oracle’s JDeveloper to control the

process.

File name File type

_example_Employee.java Implementation template for server object.

Employee.java Employee interface definition.

Interface
Definition

Helper &
Holder

IDL
client stub

IDL
server

skeleton

Impl.
Template

Definition
IDL Interface

idl2java compiler
Getting Started 2-5

A First CORBA Application
Modify the _example_Employee.java file to include your application imple-

mentation. First, rename the _example_Employee.java file to a more appropri-

ate name, such as EmployeeImpl.java . Once renamed, modify the file to add

your server’s implementation. The EmployeeImpl.java file extends the IDL

server skeleton, _EmployeeImplBase.java . Add and implement the getEm-
ployee method that is defined in the Employee.java interface definition. Sec-

ondly, create the client application that invokes these methods appropriately.

"Writing the Server Object Implementation" on page 2-6 demonstrates how to cre-

ate the server implementation of Employee in EmployeeImpl.java .

Writing the Server Object Implementation
An implementation is an instantiation of an interface. That is, the implementation is

code that implements all the functions and data elements that were defined in the

EmployeeInfo.java EmployeeInfo interface definition.

SQLError.java SQLError interface definition.

_st_Employee.java IDL client stub.

_EmployeeImplBase.java IDL server skeleton.

EmployeeHelper.java Helper class for Employee . The most impor-

tant methods this class provides are the nar-

row method for typecasting a returned object

to be a Employee object, and the id method

that returns the interface’s identifier.

EmployeeHolder.java Holder class for Employee . The Holder class

enables a Java object to pass values back to

clients.

EmployeeInfoHelper.java Helper class for EmployeeInfo .

EmployeeInfoHolder.java Holder class for the EmployeeInfo
structure.

SQLErrorHelper.java Helper class for SQLError .

SQLErrorHolder.java Holder class for the SQLError exception.

File name File type
2-6 CORBA Developer’s Guide and Reference

A First CORBA Application
IDL interface. The following steps describe how to implement the Employee inter-

face:

1. Modify the EmployeeImpl.java file, which used to be the

_example_Employee.java file, to add your server implementation. Notice

that the EmployeeImpl extends the IDL-generated skeleton,

_EmployeeImplBase .

As Figure 2–1 illustrates, the _EmployeeImplBase IDL skeleton exists

between the ORB and the server application, so any invocation of the server

application is performed through it. The skeleton prepares the parameters, calls

the server method, and saves any return values or any out or inout parameters.

2. Implement the getEmployee method to query the database for the employee

and return the appropriate name and salary in EmployeeInfo .

package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl extends _EmployeeImplBase {

 /*constructor*/
 public EmployeeImpl() {
 }

 /*getEmployee method queries database for employee info*/
 public EmployeeInfo getEmployee (int ID) throws SQLError {
 try {
 /*create a JDBC connection*/
 Connection conn =
 new oracle.jdbc.OracleDriver().defaultConnection ();

 /*Create a SQL statement for the database query*/
 PreparedStatement ps =
 conn.prepareStatement ("select ename, sal from emp where empno = ?");
 /*set the employee identifier and execute query. return the
 result in an EmployeeInfo structure */
 try {
 ps.setInt (1, ID);
 ResultSet rset = ps.executeQuery ();
 if (!rset.next ())
 throw new SQLError ("no employee with ID " + ID);
 return new EmployeeInfo (rset.getString (1), ID, rset.getFloat (2));
 } finally {
Getting Started 2-7

A First CORBA Application
 ps.close ();
 }
 /*If a problem occurs, throw the SQLError exception*/
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

This code uses the JDBC API to perform the database query. The implementation

uses a prepared statement to accommodate the variable in the WHERE clause of the

query. See the Oracle9i JDBC Developer’s Guide and Reference for more about Oracle9i
JDBC. You can use SQLJ, instead of JDBC, if your statement is static.

Comparing Oracle9 i Server Applications to Other ORB Applications
Most ORB applications must provide a server application that instantiates the

server implementation and registers this instance with the CORBA object adapter.

However, Oracle9i instantiates the implementation and registers the resulting

instance on demand for you. Thus, you do not need to provide code that initializes

the ORB, instantiates the implementation, and registers the instance. The only

server code that you provide is the actual server implementation. However, your

client will not be able to find an active server implementation instance through the

ORB, because it is not instantiated until called.

To facilitate this, Oracle9i requires you to publish the implementation object in the

Name Service after loading the application into the database. The client retrieves

the object from the Name Service through a JNDI lookup . Once retrieved, the client

invokes the activate method, which initializes an instance of the object. At this

point, the client can invoke methods on the object.

Writing the Client Code
After writing the server object, you must create the client implementation. In order

for the server object to be accessed by the client, you must publish the server object

in the Oracle9i database. The client code looks up the published name and activates

the server object as a by-product of the look up. You can look up any server object

either through JNDI or CosNaming. The example below demonstrates the JNDI

method for retrieving the server object reference. See "JNDI Connection Basics" on

page 4-2 for more information on JNDI and CosNaming.
2-8 CORBA Developer’s Guide and Reference

A First CORBA Application
When you perform the JNDI lookup, the ORB on the server side is started and the

client is authenticated using the environment properties supplied when the initial

context object is created. See "IIOP Security" on page 6-1.

To retrieve the object from the Name Service, you must provide the following:

■ Object name

■ IIOP Service Name

■ Client Authentication Information

Object name
The object name specifies the complete path name of the published object that you

want to look up. For example: /test/myServer .

See "Retrieving the JNDI InitialContext" on page 4-9 for further information about

the lookup() method.

IIOP Service Name
The service name specifies a service that an IIOP presentation manages, and it

represents a database instance. "Accessing CORBA Objects Without JNDI" on

page 4-29 explains the format of the service URL. Briefly, the service name specifies

the following components:

■ URL prefix for the service

■ the name of the host that manages the service presentation

■ the port number of the listener for the target database instance on that host

■ the system identifier (SID) for the database instance on the host

A typical example of a service name is sess_iiop://localhost:2481:ORCL ,

where sess_iiop is the URL prefix for the service, localhost defaults to the

host of the local database, 2481 is the default listener port for IIOP connections, and

ORCL is the SID.

Client Authentication Information
You must authenticate yourself to the database each time you connect. The type of

authentication information depends on how you want to authenticate—through a

username/password combination, or SSL certificates. See "IIOP Security" on

page 6-1 for more information.
Getting Started 2-9

A First CORBA Application
Client Example
The client invokes the getEmployee method through the following steps:

1. Instantiates and populates a JNDI InitialContext object with the required

connect properties, including authentication information. See "JNDI Connection

Basics" on page 4-2.

2. Invokes the lookup() method on the initial context, with a URL as a

parameter that specifies the service name and the name of the object to be

found. The lookup() method returns an object reference to the Employee
CORBA server object. See "Using JNDI to Access Bound Objects" on page 4-7

for more information.

3. Using the object reference returned by the lookup() method invokes the

getEmployee() method on the object in the server. This method returns an

EmployeeInfo class, which is derived from the IDL EmployeeInfo struct.

For simplicity, an employee ID number is hard-coded as a parameter of this

method invocation.

4. Prints the values returned by getEmployee() in the EmployeeInfo class.

import employee.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
 public static void main (String[] args) throws Exception {
 String serviceURL = "sess_iiop://localhost:2481:ORCL";
 String objectName = "/test/myEmployee";

// Step 1: Populate the JNDI properties with connect and authentication
// information
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
 env.put (Context.SECURITY_CREDENTIALS, "TIGER");
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

// Step 2: Lookup the object providing the service URL and object name
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);

// Step 3 (using SCOTT’s employee ID number): Invoke getEmployee
2-10 CORBA Developer’s Guide and Reference

A First CORBA Application
 EmployeeInfo info = employee.getEmployee (7788);

// Step 4: Print out the returned values.
 System.out.println (info.name + " " + info.number + " " + info.salary);
 }
}

When you execute the client code, it prints the following on the client console:

SCOTT 7788 3000.0

Compiling the Java Source
Run the client-side Java byte code compiler, javac , to compile all the Java source

that you have created. The Java source includes the client and server object

implementations, as well as the Java classes generated by the IDL compiler.

For the Employee example, you compile the following files:

■ employee/Employee.java

■ employee/EmployeeHelper.java

■ employee/EmployeeHolder.java

■ employee/EmployeeInfo.java

■ employee/EmployeeInfoHelper.java

■ employee/EmployeeInfoHolder.java

■ employee/SQLError.java

■ employee/SQLErrorHelper.java

■ employee/SQLErrorHolder.java

■ employee/_EmployeeImplBase.java

■ employee/_st_Employee.java

■ EmployeeImpl.java

■ Client.java

Compile other generated Java files following the dependencies that the Java

compiler uses.
Getting Started 2-11

A First CORBA Application
Oracle9i JVM supports the Java JDK compiler, releases 1.1.6 or 1.2. Alternatively,

you might be able to use other Java compilers, such as a compiler incorporated in

an IDE.

Loading the Classes into the Database
CORBA server objects, such as the EmployeeImpl object created for this example,

execute inside the Oracle9i database server. Load all your classes into the

server—through the loadjava command-line tool—so that they can be activated

by the ORB upon demand. In addition, load all dependent classes, such as

IDL-generated Holder and Helper classes, and classes the server object uses, such as

the EmployeeInfo class of this example.

Use the loadjava tool to load each of the server classes into the Oracle9i database.

For the Employee example, issue the loadjava command in the following way:

% loadjava -resolve -user scott/tiger
 employee/Employee.class employee/EmployeeHolder.class
 employee/EmployeeHelper.class employee/EmployeeInfo.class
 employee/EmployeeInfoHolder.class employee/EmployeeInfoHelper.class
 employee/SQLError.class employee/SQLErrorHolder.class
 employee/SQLErrorHelper.class employee/_st_Employee.class
 employee/_EmployeeImplBase.class employeeServer/EmployeeImpl.class

It is sometimes convenient to combine the server classes into a JAR file and use that

file as the argument to the loadjava command. In this example, you could issue

the command:

% jar -cf0 myJar.jar employee/Employee.class employee/EmployeeHolder.class \
 employee/EmployeeHelper.class employee/EmployeeInfo.class \
 employee/EmployeeInfoHolder.class employee/EmployeeInfoHelper.class \
 employee/SQLError.class employee/SQLErrorHolder.class \
 employee/SQLErrorHelper.class employee/_st_Employee.class \
 employee/_EmployeeImplBase.class employeeServer/EmployeeImpl.class

Then, execute the loadjava command as follows:

% loadjava -resolve -user scott/tiger myJar.jar

Note: Do not load any client implementation classes or any other

classes not used on the server side.
2-12 CORBA Developer’s Guide and Reference

A First CORBA Application
Publishing the Object Name
The final step in preparing the application is to publish the name of the CORBA

server object implementation in the Oracle9i database. See "The Name Space" on

page 4-3 and the publish section in the Oracle9i Java Tools Reference for information

about publishing objects.

For the example in this section, publish the server object, using the publish
command, as follows:

% publish -republish -user scott -password tiger -schema scott
 -service sess_iiop://localhost:2481:ORCL
 /test/myEmployee employeeServer.EmployeeImpl employee.EmployeeHelper

This command specifies the following:

■ publish —run the publish command

■ -republish —overwrite any published object of the same name

■ -user scott —scott is the username for the schema doing the publishing

■ -password tiger —Scott’s password

■ -schema scott —the name of the schema in which to resolve classes

■ -service sess_iiop://localhost:2481:ORCL —establishes the service

name (see also "Service Context Class" on page 4-16)

■ /test/myEmployee —the name of the published object

■ employeeServer.EmployeeImpl —the name of the class, loaded in the

database, that implements the server object

■ employee.EmployeeHelper —the name of the helper class

Running the Example
To run this example, execute the client class using the client-side JVM. For this

example, you must set the CLASSPATH for the java command to include:

■ the standard Java library archive (classes.zip)

■ any class files the client ORB uses, such as those in VisiBroker for Java

vbjapp.jar and vbjorb.jar

■ the Oracle9i JAR files: mts.jar and aurora_client.jar

If you are using JDBC, include one of the following JAR files:
Getting Started 2-13

A First CORBA Application
■ classes111.zip for JDBC 1.1 support

■ classes12.zip for JDBC 1.2 support

If you are using SSL, include one of the following JAR files:

■ javax-ssl-1_1.jar and jssl-1_1.jar for SSL 1.1 support

■ javax-ssl-1_2.jar and jssl-1_2.jar for SSL 1.2 support

You can locate these libraries in the lib and jlib directories, under the Oracle

home location in your installation.

The following invocation of the JDK java command runs this example.

% java -classpath .:$(ORACLE_HOME)/lib/aurora_client.jar |
:$(ORACLE_HOME/lib/mts.jar |
:$(ORACLE_HOME)/jdbc/lib/classes111.zip: |
$(ORACLE_HOME)/sqlj/lib/translator.zip:$(ORACLE_HOME)/lib/vbjorb.jar: |
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip |

Client |
sess_iiop://localhost:2481:ORCL |
/test/myEmployee |
scott tiger

This example assumes that you invoke the client with the following arguments on

the command line:

■ CLASSPATH libraries

■ client object

■ service name

■ name of the published object to activate

■ username

■ password

Note: The UNIX shell variable $ORACLE_HOME might be

represented as %ORACLE_HOME% on Windows NT. The

JDK_HOME is the installation location of the Java Development Kit

(JDK).
2-14 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
The Interface Definition Language (IDL)
CORBA provides language independence: CORBA objects written in one language

can send requests to objects implemented in a different language. Objects

implemented in an object-oriented language such as Java or Smalltalk can talk to

objects written in C or COBOL, and the converse.

CORBA achieves language independence through the use of a specification

meta-language that defines the interfaces that an object—or a piece of legacy code

wrappered to look like an object—presents to the outside world. As in any

object-oriented system, a CORBA object can have its own private data and its own

private methods. The specification of the public data and methods is the interface

that the object presents to the outside world.

IDL is the language that CORBA uses to specify its objects. You do not write

procedural code in IDL—its only use is to specify data, methods, and exceptions.

Each CORBA vendor supplies a compiler that translates IDL specifications into a

specific language. Oracle9i uses the idl2java compiler from Inprise. The

idl2java compiler translates your IDL interface specifications into Java classes.

See the Oracle9i Java Tools Reference for more information on this tool.

Using IDL
The following example demonstrates the IDL for the HelloWorld example. See

"Basic Example" on page A-2 for the complete example.

module hello {
 interface Hello {
 wstring helloWorld();
 };
};

Note: From the java command, you can see why it is almost

always better to use a makefile or a batch file to build CORBA

applications.

Note: The idl2java compiler accepts only ASCII characters. Do

not use ISO Latin-1 or other non-ASCII globalization characters in

IDL files.
Getting Started 2-15

The Interface Definition Language (IDL)
IDL consists of a module, which contains a group of related object interfaces. The

IDL compiler uses the module name to name a directory where the Java classes are

placed after generation. In addition, the module name is used to name the Java

package for the resulting classes.

This module defines a single interface: Hello . The Hello interface defines a single

operation: helloWorld , which takes no parameters and returns a wstring (a

wide string, which is mapped to a Java String).

The module and interface names must be valid Java identifiers and valid file names

for your operating system. When naming interfaces and modules, remember that

both Java and CORBA objects are portable, and that some operating systems are

case sensitive and some are not, so be sure to keep names distinct in your project.

Nested Modules
You can nest modules. For example, an IDL file that specifies the following modules

maps to the Java package hierarchy package org.omg.CORBA .

module org {
 module omg {
 module CORBA {
 ...
 };
 ...
 };
 ...
};

Running the IDL Compiler
Assume that the HelloWorld IDL is saved in a file called hello.idl . When you

run idl2java to compile the hello module, eight Java class files are generated

and are placed in a subdirectory named hello , in the same directory as the IDL

file:

Note: This guide does not specify IDL data and exception types,

such the wstring shown in the preceding example. Some of the

IDL to Java bindings are listed in this guide (for example, see "IDL

Types" on page 2-19); however, CORBA developers should refer to

the OMG specification for complete information about IDL and IDL

types.
2-16 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
% idl2java hello.idl
Traversing hello.idl
Creating: hello/Hello.java
Creating: hello/HelloHolder.java
Creating: hello/HelloHelper.java
Creating: hello/_st_Hello.java
Creating: hello/_HelloImplBase.java
Creating: hello/HelloOperations.java
Creating: hello/_tie_Hello.java
Creating: hello/_example_Hello.java

The ORB uses these Java classes to invoke a remote object, pass and return

parameters, and perform other functions. You can control the files that are

generated, where they are put, and other aspects of IDL compiling—such as

whether the IDL compiler generates comments in the Java files. See the complete

description of the idl2java compiler in the Oracle9i Java Tools Reference.

The following describes each of the files generated:

Hello This specifies, in Java, what the interface to a Hello object

looks like. In this case, the interface is:

package hello;
public interface Hello extends org.omg.CORBA.Object {
 public java.lang.String helloWorld();
}
Because the file is put in a hello directory, it takes the

package spec from that name. All CORBA basic interface

classes subclass, directly or indirectly, the following:

org.omg.CORBA.Object .

You must implement the methods in the interface. It is

recommended that you name the implementation class for the

hello.java interface helloImpl , but this naming

convention is not a requirement.

HelloHolder The application uses the holder class when parameters in the

interface operation are of the types out or inout . Because the

ORB passes Java parameters by value, special holder classes

are necessary to provide for parameter return values.
Getting Started 2-17

The Interface Definition Language (IDL)
HelloHelper The helper classes contain methods that read and write the

object to a stream, and cast the object to and from the type of

the base class. For example, the helper class has a narrow()
method that is used to cast an object to the appropriate type,

as in the following code:

 LoginServer lserver = LoginServerHelper.narrow
 (orb.string_to_object (loginIOR));

Note that when you get an object reference using the JNDI

InitialContext lookup () method, you do not have to call

the helper narrow () method—the ORB calls it automatically

for you.

_st_Hello The generated files that have _st_ prefixed to the interface

name are the stub files or client proxy objects. (_st_ is a

VisiBroker-specific prefix.)

These classes are installed on the client that calls the remote

object. In effect, when a client calls a method on the remote

object, it is really calling into the stub, which then performs

the operations necessary to perform a remote method

invocation. For example, it must marshall parameter data for

transport to the remote host.

_HelloImplBase Generated source files of the form

_<interfaceName>ImplBase are the skeleton files. A

skeleton file is installed on the server and communicates with

the stub file on the client, in that it receives the message on the

ORB from the client and upcalls to the server. The skeleton file

also returns parameters and return values to the client.

HelloOperations
_tie_Hello

The server uses these two classes for Tie implementations of

server objects. See "Using the CORBA Tie Mechanism" on

page 5-11 for information about Tie classes.

_example_Hello The _example_<interfaceName> class provides you with

a template for your server object implementation. You can

copy the example code to the directory where you will

implement the Hello server object, rename it, and implement

the methods. HelloImpl.java is used in the examples in

this guide.
2-18 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
IDL Interface Body
An IDL interface body contains the following kinds of declarations:

IDL Types
This section gives a brief description of IDL datatypes and their mapping to Java

datatypes. For more information about IDL types that are not covered here, see the

CORBA specifications and the books cited in "For More Information" on page 1-8.

Basic Types
The mapping between IDL basic types and Java primitive types is straightforward.

Table 2–1 shows the mappings, as well as possible CORBA exceptions that can be

raised on conversion.

constants constant values exported by the interface

types type definitions

exceptions exception structures exported by the interface

attributes any associated attributes exported by the interface

operations methods supported by the interface

Table 2–1 IDL to Java Datatype Mappings

CORBA IDL Datatype Java Datatype Exception

boolean boolean

char char CORBA::DATA_CONVERSION

wchar char

octet byte

string java.lang.String CORBA::MARSHAL

CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL

short short

unsigned short short

long int

unsigned long int
Getting Started 2-19

The Interface Definition Language (IDL)
The IDL character type char is an 8-bit type, representing an ISO Latin-1 character

that maps to the Java char type, which is a 16-bit unsigned element representing a

Unicode character. On parameter marshalling, if a Java char cannot be mapped to

an IDL char , a CORBA DATA_CONVERSION exception is thrown.

The IDL string type contains IDL chars. On conversion between Java String ,

and IDL string , a CORBA DATA_CONVERSION can be thrown. Conversions

between Java strings and bounded IDL string and wstring can throw a CORBA

MARSHALS exception if the Java String is too large to fit in the IDL string.

Constructed Types
Perhaps the most useful IDL constructed (aggregate) type for the Java developer is

the struct. The IDL compiler converts IDL structs to Java classes. For example, the

IDL specification:

module employee {
 struct EmployeeInfo {
 long empno;
 wstring ename;
 double sal;
 };
 ...

causes the IDL compiler to generate a separate Java source file for an

EmployeeInfo class. It looks like this:

package employee;
final public class EmployeeInfo {
 public int empno;
 public java.lang.String ename;
 public double sal;
 public EmployeeInfo() {
 }
 public EmployeeInfo(

long long long

unsigned long long long

float float

double double

Table 2–1 IDL to Java Datatype Mappings (Cont.)

CORBA IDL Datatype Java Datatype Exception
2-20 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
 int empno,
 java.lang.String ename,
 double sal
) {
 this.empno = empno;
 this.ename = ename;
 this.sal = sal;
 }
 ...

The class contains a public constructor with parameters for each of the fields in the

struct. The field values are saved in instance variables when the object is

constructed. Typically, these are passed by value to CORBA objects.

Collections
The two types of ordered collections in CORBA are sequences and arrays. An IDL

sequence maps to a Java array with the same name. An IDL array is a

multidimensional aggregate, whose size in each dimension must be established at

compile time.

The ORB throws a CORBA MARSHAL exception at runtime if sequence or array

bounds are exceeded when Java data is converted to sequences or arrays.

IDL also generates a holder class for a sequence. The holder class name is the

sequence’s mapped Java class name with Holder appended to it.

The following IDL code shows how you can use a sequence of structs to represent

information about employees within a department:

module employee {
 struct EmployeeInfo {
 long empno;
 wstring ename;
 double sal;
 };

 typedef sequence <EmployeeInfo> employeeInfos;

 struct DepartmentInfo {
 long deptno;
 wstring dname;
 wstring loc;
 EmployeeInfos employees;
 };
Getting Started 2-21

The Interface Definition Language (IDL)
The following code is the Java class code that the IDL compiler generates for the

DepartmentInfo class:

package employee;
final public class DepartmentInfo {
 public int deptno;
 public java.lang.String dname;
 public java.lang.String loc;
 public employee.EmployeeInfo[] employees;
 public DepartmentInfo() {
 }
 public DepartmentInfo(
 int deptno,
 java.lang.String dname,
 java.lang.String loc,
 employee.EmployeeInfo[] employees
) {
 this.deptno = deptno;
 this.dname = dname;
 this.loc = loc;
 this.employees = employees;
 }

Notice that the sequence employeeInfos is generated as a Java array

EmployeeInfo[] .

Specify an array in IDL, as follows:

const long ArrayBound = 12;
typedef long larray[ArrayBound];

The IDL compiler generates this as:

public int[] larray;

When you use IDL constructed and aggregate types in your application, you must

make sure to compile the generated .java files and load them into the Oracle9i
database when the class is a server object. You should scan the generated .java
files and make sure that all required files are compiled and loaded. Study the

Makefile (UNIX) or the makeit.bat batch file (Windows NT) of CORBA

examples that define these types to see how the set of IDL-generated classes is

compiled and loaded into the data server.
2-22 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
Exceptions
You can create new user exception classes in IDL with the exception key word.

For example:

 exception SQLError {
 wstring message;
 };

The IDL can declare that operations raise user-defined exceptions. For example:

interface employee {
 attribute name;
 exception invalidID {
 wstring reason;
 };
 ...
 wstring getEmp(long ID)
 raises(invalidID);
 };
};

CORBA System Exceptions
Mapping between OMG CORBA system exceptions and their Java form is

straightforward. Table 2–2 contains these mappings:

Table 2–2 CORBA and Java Exceptions

OMG CORBA Exception Java Exception

CORBA::PERSIST_STORE org.omg.CORBA.PERSIST_STORE

CORBA::BAD_INV_ORDER org.omg.CORBA.BAD_INV_ORDER

CORBA::TRANSIENT org.omg.CORBA.TRANSIENT

CORBA::FREE_MEM org.omg.CORBA.FREE_MEM

CORBA::INV_IDENT org.omg.CORBA.INV_IDENT

CORBA::INV_FLAG org.omg.CORBA.INV_FLAG

CORBA::INTF_REPOS org.omg.CORBA.INTF_REPOS

CORBA::BAD_CONTEXT org.omg.CORBA.BAD_CONTEXT

CORBA::OBJ_ADAPTER org.omg.CORBA.OBJ_ADAPTER

CORBA::DATA_CONVERSION org.omg.CORBA.DATA_CONVERSION
Getting Started 2-23

Activating ORBs and Server Objects
Getting by Without IDL
The Oracle9i JVM development environment offers the Inprise Caffeine tools, which

enable development of pure Java distributed applications that follow the CORBA

model. You can write your interface specifications in Java and use the java2iiop
tool to generate CORBA-compatible Java stubs and skeletons.

Developers can also use the java2idl tool to code in pure Java, and generate the

IDL required for customers who are using a CORBA server that does not support

Java. This tool generates IDL from Java interface specifications.

See the Oracle9i Java Tools Reference for more information about java2iiop and

java2idl .

Activating ORBs and Server Objects
A CORBA application requires that an ORB be active on both the client system and

the system running the server. This section presents more information about how

the ORB is activated.

Client Side
The client-side ORB is normally initialized in one of two ways:

■ The ORB is implicitly instantiated when the client instantiates the server object

through the JNDI lookup() method on the JNDI InitialContext object.

■ The ORB is explicitly instantiated when a pure CORBA client invokes the

CORBA ORB init method. See "Oracle9i ORB Interface" on page 5-13 for a full

explanation of the init method.

CORBA::OBJECT_NOT_EXIST org.omg.CORBA.OBJECT_NOT_EXIST

CORBA::TRANSACTIONREQUIRED org.omg.CORBA.TRANSACTIONREQUIRED

CORBA::TRANSACTIONROLLEDBACK org.omg.CORBA.TRANSACTIONROLLEDBACK

CORBA::INVALIDTRANSACTION org.omg.CORBA.INVALIDTRANSACTION

Table 2–2 CORBA and Java Exceptions

OMG CORBA Exception Java Exception
2-24 CORBA Developer’s Guide and Reference

Activating ORBs and Server Objects
Server Side
The presentation that manages IIOP requests starts the ORB on the server when the

session is created. If you want to retrieve the ORB instance, use the CORBA

oracle.aurora.jndi.orb_dep.Orb .init method. See "Oracle9i ORB

Interface" on page 5-13 for a full explanation of this method.

About Object Activation
Objects are activated on demand. When a client looks up an object, the ORB loads

the object into memory and caches it. To activate the object, the ORB looks up the

class by the fully-qualified class name under which the object was published. The

class name is resolved in the schema defined at publication time, rather than the

caller’s schema. See the description of the command-line tool publish in the

Oracle9i Java Tools Reference for more information.

When the class is located, the ORB creates a new instance of the class, using

newInstance() . For this reason, the no-argument constructor of a persistent

object class must be public. If the class implements the

oracle.aurora.AuroraServices.ActivatableObject interface (as

determined by the Java reflection API), then the

_initializeAuroraObject() message is sent to the instance. See "Using the

CORBA Tie Mechanism" on page 5-11 for an example that requires

_initializeAuroraObject() .

There is no need for the server implementation to register its published objects with

the object adapter using a boa.obj_is_ready() call—the Oracle9i ORB performs

this automatically.

You register transient objects generated by other objects, such as persistent

published objects, with the BOA using obj_is_ready() . For an example, see the

factory demo in the $ORACLE_HOME/javavm/demo/corba/basic/factory
directory of the product CD.

Note: The only other time that you explicitly initialize the ORB on

the client through the ORB.init method is when you are in a

callback scenario. See "Implementing CORBA Callbacks" on

page 5-3 for a full discussion of callbacks. This discussion includes

an example that shows how the ORB is initialized within the object

to which the server calls back.
Getting Started 2-25

Debugging Techniques
CORBA Interceptors
Visibroker enables you to implement interceptors. You can find instructions on how

to create them in the Visibroker documentation.

Debugging Techniques
Until Java IDEs and JVMs support remote debugging, you can adopt several

techniques for debugging your CORBA client and server code.

1. Use JDeveloper for debugging any Java applications. JDeveloper has provided a

user interface that utilizes the Oracle9i debugging facilities. You can

successfully debug an object loaded into the database by using JDeveloper’s

debugger. See the JDeveloper documentation for instructions.

2. Use a prepublished DebugAgent object for debugging objects executing on a

server. See "Using a Debug Agent for Debugging Server Applications" on

page 2-27 for more information.

3. Perform standalone ORB debugging, using one machine and ORB tracing.

Debug by placing both the client and server in a single address space in a single

process. Use of an IDE for client or server debugging is optional, though highly

desirable.

4. Use Oracle9i trace files.

In the client, the output of System.out.println() goes to the screen.

However, in the Oracle9i ORB, all messages are directed to the server trace files.

The directory for trace files is a parameter specified in the database initialization

file. Assuming a default install of the product into a directory symbolically

named $ORACLE_HOME, the trace file appears, as follows:

${ORACLE_HOME}/admin/<SID>/bdump/ORCL_s000x_xxx.trc

where ORCL is the SID, and x_xxx represents a process ID number. Do not

delete trace files after the Oracle instance has been started—if you do, no output

will be written to a trace file. If you do delete trace files, stop and then restart

the server.

5. Use a single Oracle MTS server.

For debugging only, set the MTS_SERVERS parameter in your INITSID.ORA

file to MTS_SERVERS = 1, and set the MTS_MAX_SERVERS to 1. Having

multiple MTS servers active means that a trace file is opened for each server
2-26 CORBA Developer’s Guide and Reference

Debugging Techniques
process, and, thus, the messages get spread out over several trace files, as

objects get activated in more than one session.

6. Use the printback example to redirect System.out . This example is available

in the

$ORACLE_HOME/javavm/demo/examples/corba/basic/printback
directory.

Using a Debug Agent for Debugging Server Applications
The procedure for setting up your debugging environment is discussed fully in the

Oracle9i Java Developer’s Guide. However, it discusses starting the debug agent using

a DBMS_JAVA procedures. Within a CORBA application, you can start, stop, and

restart the debug agent using the oracle.aurora.debug .DebugAgent class

methods. These methods perform exactly as their DBMS_JAVA counterparts

perform.

public void start(java.lang.String host, int port, long timeout_seconds)
throws DebugAgentError

public void stop() throws DebugAgentError
public void restart(long timeout) throws DebugAgentError

Example 2–1 Starting a DebugAgent on the Server

The following example shows how to debug an object that exists on the server. First,

you need to start a debug proxy through the debugproxy command-line tool. This

example informs the debugproxy to start up the jdb debugger when contacted by

the debug agent.

Once you execute this command, start your client, which will lookup the intended

object to be debugged, lookup the DebugAgent that is prepublished as

"/etc/debugagent ", and start up the DebugAgent .

Once the DebugAgent starts, the debugproxy starts up the jdb debugger and allows

you to set your breakpoints. Since you have a specified amount of time before the

DebugAgent times out, the first thing you should do is suspend all threads. Then,
Getting Started 2-27

Debugging Techniques
set all of your breakpoints before resuming. This suspends the timeout until you are

ready to execute.

proxy window on tstHost

% debugproxy -port 2286 start jdb -password
. (wait until a debug agent starts up and
. contact this proxy... when it does, jdb
. starts up automatically and you can set

client code

main(...)
{
 //retrieve the object that you want to debug
 Bank b = (Bank)ic.lookup(sessURL + "/test/Bank");

 DebugAgent dbagt = (DebugAgent)ic.lookup(svcURL + "/etc/debugagent");
 //start the debug agent and give the proxy host, port, and a timeout
 dbagt.start("tstHost",2286,30);

 //lookup debugagent from JNDI

. breakpoints and debug the object, as follows:)
> suspend

 ...
 //execute methods within Bank)
 ...
 //stop the agent when you want to
 dbagt.stop();
 //restart the agent when you want to
 dbagt.restart(30);

> load SCOTT:Bank
> stop in Bank:updateAccount
> resume
> ...
2-28 CORBA Developer’s Guide and Reference

Configuring IIOP Applica
3

Configuring IIOP Applications

Configuring IIOP-based applications, whether EJB or CORBA applications, involves

configuring the appropriate listener and dispatcher for session-based IIOP

communications. The process for configuring IIOP-based applications can include

both database and network configuration. These elements are discussed in the

sections below:

■ Overview

■ Oracle9i Database Templates For Default Configuration

■ Advanced Configuration
tions 3-1

Overview
Overview
Clients access EJB and CORBA applications in the database over an Internet

Inter-Orb Protocol (IIOP) connection. IIOP is an implementation of General

Inter-Orb Protocol (GIOP) over TCP/IP. All CORBA or EJB connections with the

database must have IIOP configured on the dispatcher and the Oracle Net Services

listener. The database dispatcher and Oracle Net Services listener are automatically

configured, during installation, to accept IIOP requests. See Oracle9i Database

Templates For Default Configuration on page 3-2 for more information.

Oracle9 i Database Templates For Default Configuration
During the database template setup, you can choose the Oracle JVM option (as

Figure 3–1 shows). This ensures that the Oracle JVM is installed and configured for

you. You automatically receive a configuration for a shared server database with

session-based IIOP connections through a Oracle Net Services listener, using

non-SSL TCP/IP.

Note: For security concerns, you must decide if your IIOP

connection will be Security Socket Layer (SSL) enabled.

■ See "Using the Secure Socket Layer" on page 6-3 for

information on SSL.

■ See "SSL Configuration for EJB and CORBA" on page 3-12 for

information on how to configure SSL.
3-2 CORBA Developer’s Guide and Reference

Oracle9i Database Templates For Default Configuration
Figure 3–1 Choosing the Oracle JVM Option

After the Oracle9i installation is complete, the following line is added to your

database initialization file:

dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

This configures a dispatcher that is GIOP-enabled. If, instead, you install the

Advanced Security Option and you want the SSL-based TCP/IP connection, then

edit your database initialization file to replace the previous line by removing the

hash mark (#) from the following line:

dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

In addition, an Oracle Net Services listener is configured with both a TTC and IIOP

listening endpoints. TTC listening endpoints are required for Oracle Net Services

requests; IIOP listening endpoints are required for IIOP requests. If you require an

SSL-enabled IIOP listening endpoint, you must add this endpoint to your existing

listener. See SSL Configuration for EJB and CORBA on page 3-12 for more

information.

After installation, you must unlock the following three users:

■ AURORAJISUTILITY$

■ OSE$HTTP$ADMIN

Note: The (protocol=tcps) attribute identifies the connection as

SSL-enabled.
Configuring IIOP Applications 3-3

Advanced Configuration
■ AURORAORBUNAUTHENTICATED

By default, all database users are locked. These three users must be unlocked by a

system administrator in order for Servlets, EJB, or CORBA applications to work

correctly.

Once the installation is completed, both the dispatcher and listener are ready for

IIOP requests. Your client application must know the host and port number for the

listener that it is directing its request towards. You can discover what port the

listener is listening on through the Oracle Net Services lsnrctl tool.

The client directs its request to a URL that includes the host and port, which

identifies the listener, and either the SID or database service name, which identifies

the database. The following shows the syntax for this request:

sess_iiop://< hostname >/:< portnumber >/:<SID | service_name >

Advanced Configuration
Both the listener and dispatcher are configured automatically for IIOP requests.

However, you may have an environment that requires changing the default

configuration. This section educates you on how listeners and dispatchers work

together and how you can modify that behavior.

■ Overview of Listeners and Dispatchers

■ Handling Incoming Requests

■ Configuring The Dispatcher Through Editing Initialization Files

■ Configuring the Listener

■ SSL Configuration for EJB and CORBA

Overview of Listeners and Dispatchers
During installation, the listeners and dispatchers were configured for you in a

manner where all IIOP requests are redirected from the listener to the dispatcher.

Each dispatcher listens on a random port number assigned to it when it is initiated.

Each port number is guaranteed to be unique per database instance. The listener is

configured with two listening endpoints: one for TTC requests, and one for IIOP

requests.
3-4 CORBA Developer’s Guide and Reference

Advanced Configuration
Once configured, the listeners redirect all IIOP requests to the dispatchers as shown

in Figure 3–2.

Figure 3–2 Listener and Dispatcher Interaction

1. Upon database startup, the dispatcher registers itself with the listener.

2. The client invokes a method, giving the listener’s URL address as the

destination.

3. The listener sends back a LOCATION_FORWARD response to the client’s ORB

layer, informing it of the dispatcher’s address. This redirects the request to the

appropriate dispatcher.

Note: However, if you want any endpoint to use the secure socket

layer (SSL), you will also need a separate endpoint for an

SSL-enabled IIOP endpoint. See "Using the Secure Socket Layer" on

page 6-3 for more information about connecting using IIOP and

SSL.

 Client

Listener

Oracle9i

Dispatchers

LOCATION_FORWARD

Session Memory

SGA

session state

session state

Shared
Servers

registers at
start up1

2

3

4

Configuring IIOP Applications 3-5

Advanced Configuration
4. The underlying ORB runtime layer resends the initial request to the dispatcher.

All future method invocations are directed to the dispatcher. The listener is no

longer a part of the communication.

Handling Incoming Requests
When the database starts up, all dispatchers register with all listeners configured

within the same database initialization file. This is how the listeners know where

each dispatcher is and the port that the dispatcher listens on. When an IIOP client

invokes a request, the listener will either redirect the request to a GIOP-specific

dispatcher, or hand off to a generic dispatcher.

Both methods are discussed in the following sections:

■ Redirect to GIOP Dispatcher

■ Hand Off to Generic Dispatcher

Redirect to GIOP Dispatcher
A client sends a request to the listener (by designating the host and port for the

listener in the sess_iiop URL). The listener recognizes the IIOP protocol and

redirects the request to a registered GIOP dispatcher. This is the default behavior

that is configured during installation.

Figure 3–3 IIOP Listener Redirect to GIOP Dispatcher

Note: The client is unaware of the redirection logic, which is

performed by the ORB runtime layer that supports the client.

GIOP
dispatcher

IIOP
listener

IIOP
CLIENT

Oracle9i Database

1
2

3

4

3-6 CORBA Developer’s Guide and Reference

Advanced Configuration
1. The GIOP dispatcher registers itself with the listener.

2. The IIOP client—an EJB or CORBA client—invokes a method, giving the

address (host, port, and SID) of the listener. You can determine the port number

of the listener through the lsnrctl tool.

3. The listener sends back a response to the client informing it of the GIOP

dispatcher’s address.

4. The underlying ORB runtime layer on the client resends its initial request to the

GIOP dispatcher. All future method invocations are directed to the dispatcher.

The listener is no longer a part of the communication.

Hand Off to Generic Dispatcher
Handoff is when a listener forfeits the socket to the dispatcher when an incoming

request arrives. This can only occur when the following is true:

■ Both the listener and the dispatcher exist on the same node.

■ No GIOP dispatcher is configured. That is, the dispatchers configuration line

in the database initialization file has been removed. Thus, a generic dispatcher

is used.

■ A listener has been configured to receive IIOP requests. That is, it contains an

IIOP listening endpoint. The Oracle JVM installation creates an IIOP listening

endpoint on a listener. Although, you can also dynamically configure an IIOP

listening endpoint on an existing listener through the dynamic registration tool,

regep . See "Dynamic Listener Endpoint Registration" on page 3-10 for more

information.

Figure 3–4 shows the dispatcher and listener combination in a hand-off

environment.
Configuring IIOP Applications 3-7

Advanced Configuration
Figure 3–4 Hand Off to Dispatcher

1. When the database starts, the generic dispatcher registers itself with the

dynamically configured listener.

2. The client sends a request to the listener.

3. The listener hands off the request to the generic dispatcher. The listener

negotiates with the generic dispatcher on a separate channel. On this channel,

the socket is handed off to the dispatcher through the operating system

mechanisms.

The client communicates directly with the dispatcher from this point on. The

client is never made aware that the socket was handed off.

Configuring The Dispatcher Through Editing Initialization Files
The database supports incoming requests through a presentation. Note that the

presentation discussed in this chapter is not the same as the presentation layer in

the OSI model. Both the listener and the dispatcher accept incoming network

requests based upon the presentation that is configured. For IIOP, you configure a

GIOP presentation.

You configure the IIOP connection in the database initialization file by modifying

the PRESENTATION attribute of the DISPATCHERS parameter. To configure an

IIOP connection within the database, manually edit the database initialization file.

The following is the syntax for the DISPATCHERS parameter:

dispatchers="(protocol=tcp | tcps)
(presentation=oracle.aurora.server.SGiopServer)"

generic
dispatcher

listener

IIOP
CLIENT

Oracle9i Database

1
2

3

3-8 CORBA Developer’s Guide and Reference

Advanced Configuration
The attributes for the DISPATCHER are described below:

For example, to configure a shared server for session-based IIOP connections

through the listener, using non-SSL TCP/IP, add the following within your database

initialization file:

dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

Direct Dispatcher Connection
If you want your client to go to a dispatcher directly, bypassing the listener, you

direct your client to the dispatcher’s port number. Do one of the following to

discover the dispatcher’s port number:

■ Configure a port number for the dispatcher by adding the ADDRESS parameter

that includes a port number.

■ Discover the port assigned to the dispatcher by invoking lsnrctl service .

If you choose to configure the port number, the following shows the syntax:

dispatchers="(address=(protocol=tcp | tcps)
(host=< server_host>)(port=< port>))
(presentation=oracle.aurora.server.SGiopServer)"

Attribute Description

PROTOCOL (PRO or PROT) Specifies the TCP/IP or TCP/IP with SSL protocol,
for which the dispatcher will generate a listening
endpoint.

Valid values: TCP (for TCP/IP) or TCPS (for TCP/IP
with SSL)

PRESENTATION (PRE or PRES) Enables support for GIOP. Supply the following value
for a GIOP presentation:

■ oracle.aurora.server.SGiopServer for
session-based GIOP connections. This
presentation is valid for TCP/IP and TCP/IP
with SSL.

Note: If you configure several DISPATCHERS within your

database initialization file, then each dispatcher definition must

follow the other. Do not define any other configuration parameters

between the DISPATCHER definitions.
Configuring IIOP Applications 3-9

Advanced Configuration
The attributes are described below:

The client supplies the port number on its URL, as follows:

session_iiop://<hostname>/:<portnumber>

Notice that the URL excludes a SID or service name. The dispatcher does not need

the SID instance or service name, because it is a directed request.

Configuring the Listener
You can configure listeners either dynamically through a tool or statically by

modifying the configuration files. Both methods are explained below:

■ Dynamic Listener Endpoint Registration

■ Static Configuration of the Oracle Net Services Listener

■ Displaying Current Listening Endpoints

Dynamic Listener Endpoint Registration
In order for a listener to receive an IIOP incoming request, the listener must have an

IIOP endpoint registered. You can register any type of listening endpoint through

the dynamic registration tool, regep .

The advantage of dynamically registering a listener endpoint is that you do not

need to restart your database for the listener to be IIOP enabled. The listening

endpoint is active immediately. For full details on the regep tool, see the Oracle9i
Java Tools Reference.

Attribute Description

ADDRESS
(ADD or ADDR)

Specifies the network address on which the dispatchers will
listen. The network address may include either the TCP/IP
(TCP) or the TCP/IP with SSL (TCPS) protocol, the host name of
the server, and a GIOP listening port, which may be any port
you choose that is not already in use.

PRESENTATION
(PRE or PRES)

Enables support for GIOP. Supply the following value for a
GIOP presentation:

■ oracle.aurora.server.SGiopServer for
session-based GIOP connections. This presentation is valid
for TCP/IP and TCP/IP with SSL.
3-10 CORBA Developer’s Guide and Reference

Advanced Configuration
Example 3–1 Dynamically Registering a Listener at Port 2241

The following line dynamically registers a listener on the SUNDB host on endpoint

port number 2241. This tool logs on to the SUNDB host.

regep -pres oracle.aurora.server.SGiopServer -host sundb -port 2241

Static Configuration of the Oracle Net Services Listener
If you statically configure a listener, you need to configure separate ports as

listening endpoints for both TTC and IIOP connections. The default listener that is

configured by the Oracle JVM install is configured for both TTC and IIOP listening

endpoints.

You can configure each listener to listen on a well-known port number, and the

client communicates with the listener using this port number. To configure the

listener manually, you must modify the listener’s DESCRIPTION parameter within

the listener.ora file with a GIOP listening address. The following example

configures a GIOP presentation for non-SSL TCP/IP with port number 2481. You

use port 2481 for non-SSL and port 2482 for SSL.

For GIOP, the PROTOCOL_STACK parameter is added to the DESCRIPTION when

configuring an IIOP connection to sales-server :

listener=
 (description_list=
 (description=

 (address=(protocol=tcp)(host=sales-server)(port=2481))
 (protocol_stack=
 (presentation=giop)
 (session=raw))))

The following table gives the definition for each of the GIOP parameters:

Note: If you statically configure a listener with IIOP endpoints, you

must restart your database. See "Static Configuration of the Oracle

Net Services Listener" on page 3-11 for more information.

Attribute Description

PROTOCOL_STACK Identifies the presentation and session layer
information for a connection.
Configuring IIOP Applications 3-11

Advanced Configuration
After configuration, the client directs its request to a URL that includes the host and

port, which identifies the listener, and either the SID or database service name,

which identifies the database. The following shows the syntax for this request:

sess_iiop://< hostname >/:< portnumber >/:<SID | service_name >

Taking the configuration shown in the listener.ora file above, your URL would

contain the following values:

sess_iiop://sales-server/:2481/:orcl

Displaying Current Listening Endpoints
Whether the listening endpoints are registered dynamically or statically, you can

display the current endpoints through the lsnrctl command, as follows:

% lsnrctl
> set display to normal
> status

SSL Configuration for EJB and CORBA
Oracle9i also supports the use of authentication data such as certificates and private

keys, required for use by SSL in combination with GIOP. To configure your

transport to be SSL-enabled with GIOP, do the following:

(PRESENTATION=GIOP) Identifies a presentation of GIOP for IIOP clients.
GIOP supports
oracle.aurora.server.SGiopServer , using
TCP/IP.

 (SESSION=RAW) Identifies the session layer. There is no specific
session layer for IIOP clients.

(ADDRESS=...) Specifies a listening address that uses TCP/IP on
either port 2481 for non-SSL, or port 2482 for SSL.
If non-SSL, define the protocol as TCP; for SSL,
define the protocol as TCPS.

Attribute Description
3-12 CORBA Developer’s Guide and Reference

Advanced Configuration
1. Enable the DISPATCHERS to be SSL-enabled.

2. Specify the SSL wallet to be used when configuring both the listener and

database.

The following sections explain how to accomplish these steps.

Enable the DISPATCHERS for SSL
You must edit the database initialization file to add an SSL-enabled dispatcher.

Uncomment the DISPATCHERS parameter in the database initialization file that

defines the TCPS port. During installation, the Database Configuration Assistant

always includes a commented-out line for SSL TCP/IP. This line is as follows:

dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

Configure the Wallet Location through Oracle Net Manager
Modify the listener to accept SSL requests on port 2482.

1. Start Oracle Net Manager.

■ On UNIX, run netmgr at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Network Administration > Oracle Net Manager.

2. In the navigator pane, expand Local > Profile.

3. From the pull-down list, select Oracle Advanced Security > SSL.

This brings you to the listening port panel, as shown in Figure 3–5.

Note: The SSL listening endpoint is automatically registered with a

listener. To verify that an SSL endpoint is registered with your

listener, follow the directions given in "Displaying Current

Listening Endpoints" on page 3-12.
Configuring IIOP Applications 3-13

Advanced Configuration
Figure 3–5 IIOP listening port configuration

4. On the "Configure SSL for:" line, select the "Server" radio button.

5. Under "Wallet Directory", enter the location for the wallet.

6. If you desire a certain SSL version, choose the appropriate version on the SSL

version pulldown list.

7. If you want the client to authenticate itself by providing certificates, select the

"Require Client Authentication" checkbox.

8. Choose File > Save Network Configuration.

These steps will add wallet and SSL configuration information into both the listener

and database configuration files. You must specify the SSL wallet location in both
3-14 CORBA Developer’s Guide and Reference

Advanced Configuration
the listener and database configuration files: both entities must locate the wallet for

certificate handshake capabilities.

The listener.ora file:
ssl_client_authentication=false
ssl_version=undetermined

Both of these parameters apply to the database and to the listener.

The ssl_client_authentication parameter is defaulted to FALSE. The value

for this parameter is defined, as follows:

■ FALSE—The server-side always authenticates itself to the client using a

certificate. The client only authenticates itself to the server with username and

password.

■ TRUE—Both the client and server authenticate to each other using certificates.

The sqlnet.ora database file:
ssl_client_authentication=true
ssl_version=0
sqlnet.crypto_seed=< seed_info >

You can specify a specific SSL version number, such as 3.0, in the ssl_version
parameter. The ssl_version value of 0 means that the version is undetermined

and will be agreed upon during handshake. SSL version 2.0 is not supported.

Within both the listener’s listener.ora and database’s sqlnet.ora files, the

wallet location is specified:

oss.source.my_wallet=
 (source=
 (method=file)
 (method_data=
 (directory= wallet_location)))

The Oracle Advanced Security Administrator’s Guide describes how to set up the SSL

wallet with the appropriate certificates.
Configuring IIOP Applications 3-15

Advanced Configuration
3-16 CORBA Developer’s Guide and Reference

JNDI Connections and Session IIOP Se
4

JNDI Connections and

Session IIOP Service

This chapter describes in detail how clients connect to an Oracle9i server session

and how they authenticate themselves to the server. The term client, as used in this

chapter, includes client applications and applets running on a network PC or a

workstation, as well as distributed objects such as EJBs and CORBA server objects

that are calling other distributed server objects and, thus, acting as clients to these

objects.

To execute CORBA objects, you must first publish these objects in an Oracle9i
database instance, using a CORBA CosNaming service. Then, you can retrieve the

object reference either through a URL-based Java Naming and Directory Interface

(JNDI) to CosNaming or straight to the CosNaming service. JNDI is recommended

because it is easy for clients written in Java to locate and activate published objects.

In addition to authentication, this chapter discusses security of access control to

objects in the database. A published object in the data server has a set of

permissions that determine who can access and modify the object. In addition,

classes that are loaded into the data server are loaded into a particular schema, and

the person who deploys the classes can control who uses them.

This chapter covers the following topics:

■ JNDI Connection Basics

■ The Name Space

■ Execution Rights to Database Objects

■ URL Syntax

■ Using JNDI to Access Bound Objects

■ Session IIOP Service
rvice 4-1

JNDI Connection Basics
■ Retrieving the Oracle9i Version Number

■ Activating In-Session CORBA Objects From Non-IIOP Presentations

■ Accessing CORBA Objects Without JNDI

JNDI Connection Basics
The client example in Chapter 2 shows how to connect to Oracle, start a database

server session, and activate an object using a single URL specification. This is

performed through the following steps:

1. Hashtable env = new Hashtable();
2. env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
3. env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
4. env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
5. env.put(javax.naming.Context.SECURITY_AUTHENTICATION,

ServiceCtx.NON_SSL_LOGIN);
6. Context ic = new InitialContext(env);
7. myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");
8. System.out.println(hello.helloWorld());

In this example, there are four basic operations:

■ Lines 1-5 set up an environment for the JNDI initial context.

■ Line 6 creates the JNDI initial context.

■ Line 7 looks up a published object. (See "URL Syntax" on page 4-5 for a

discussion of the URL syntax.)

■ Line 8 invokes a method on the object.

When a client looks up an object through the JNDI lookup method, the client and

server automatically perform the following logic:

■ A session IIOP connection is created to the ORCL instance of the local host

database.

■ The server establishes a database session.

■ The client is authenticated, using the NON_SSL_LOGIN protocol, with the

username and password specified in the environment context.

■ The published object, /test/myHello , is located in the session namespace,

and a reference to it is returned to the client.
4-2 CORBA Developer’s Guide and Reference

The Name Space
When the client invokes a method—such as helloWorld() —on the returned

reference, the server activates the object in the server.

The Name Space
The name space in the database looks just like a typical file system. You can

examine and manipulate objects in the publishing name space using the session

shell tool. See the sess_sh tool in the Oracle9i Java Tools Reference for information

about the session shell.

There is a root directory, indicated by a forward slash (’/’). The root directory is

built to contain three other directories: bin , etc , and test . The /test directory is

where most objects are published for the example programs. You can create new

directories under root to hold objects for separate projects; however, you must have

access as database user SYS to create new directories under the root.

There is no effective limit to the depth that you can nest directories.

The /etc directory contains objects that the ORB uses. The objects contained in

/etc are:

deployejb execute loadjava login transactionFactory

Do not delete objects in the /etc directory.

The entries in the name space are represented by objects that are instances of the

following classes:

■ oracle.aurora.AuroraServices.PublishingContext —represents a

class that can contain other objects (a directory)

■ oracle.aurora.AuroraServices.PublishedObject —used for the leafs

of the tree—that is, the object names themselves.

The javadoc on the product CD documents these classes.

Published names for objects are stored in a database table. Each published object

also has a set of associated permissions. Each class or resource file can have a

combination (union) of the following permissions:

Note: The initial values in the publishing name space are set up

when the Oracle9i JVM is installed.
JNDI Connections and Session IIOP Service 4-3

Execution Rights to Database Objects
read The holder of read rights can list the class or the attributes of the class, such as

its name, its helper class, and its owner.

write The holder of write for a context can bind new object names into a context. For

an object (a leaf node of the tree), write allows the holder to republish the object

under a different name.

execute You must have execute rights to resolve and activate an object represented

by a context or published object name.

You use the chmod command of the session shell tool to view and change object

rights.

Execution Rights to Database Objects
In addition to authentication and privacy, Oracle9i supports controlled access to the

classes that make up CORBA and EJB objects. Only users or roles that have been

granted execute rights to the Java class of an object stored in the database can

activate the object and invoke methods on it.

You can control execute rights on Java classes with the following tools:

■ At load time with the -grant argument to loadjava . See the Oracle9i Java
Developer’s Guide for more information about loadjava and execution rights

on Java classes in the database.

■ Using SQL commands—Use the SQL DDL GRANT EXECUTE command to

grant execute permission on a Java class that is loaded into the database. For

example, if SCOTT has loaded the Hello class, then SCOTT (or SYS) can grant

execute privileges on that class to another user, say OTTO, by issuing the SQL

command:

SQL> GRANT EXECUTE ON "Hello" TO OTTO;

Use the SQL command REVOKE EXECUTE to remove execute rights for a user

from a loaded Java class.

■ At publish time—Published objects are not restricted to a specific schema; they

are potentially available to all users in the instance. Published objects have

permissions that can differ from underlying classes. For example, if user SCOTT

has execute permission on a published object name, but does not have execute

permission on the class that the published object represents, then SCOTT will

not be able to activate the object.

You can control permissions on a published object through the following:
4-4 CORBA Developer’s Guide and Reference

URL Syntax
1. Using the -grant option with the publish tool.

2. Using the chmod and chown commands within the Session Shell. You must

be connected to the Session Shell as the user SYS to use the chown
command.

Use the ls -l command in the session shell to view the permissions

(EXECUTE, READ, and WRITE) and the owner of a published object.

A client can access the following three built-in server objects without being

authenticated:

■ the Name Service

■ the InitialReferences object (the boot service)

■ the Login object

You can activate these objects using serviceCtx.lookup() without

authentication. See the "Logging In and Out of the Oracle9i Session" on page 6-11

for an example that access the Login object explicitly.

URL Syntax
Oracle9i provides universal resource locator (URL) syntax to access services and

sessions. The URL lets you use JNDI requests to start up services and sessions, and

also to access components published in the database instance. An example service

URL is shown in Figure 4–1.

Figure 4–1 Service URL

Four components make up the service URL:

1. The URL prefix followed by a colon and two slashes: sess_iiop:// for a session

IIOP request.

URL Prefix

Hostname

System Identifier (SID) or
Service Name

Listener Port Number for IIOP

sess_iiop://localhost:2481:ORCL
JNDI Connections and Session IIOP Service 4-5

URL Syntax
2. The system name (the hostname). For example: myPC-1. You can also use

localhost or the numeric form of the IP address for the host.

3. The listener port number for IIOP services. The default is 2481.

4. The system identifier (SID)—for example, ORCL—or the service name—for

example, mySID.myDomain .

■ SID—The system identifier is defined in your database initialization file as

the db_name. This identifies the database instance to which you are

connecting. If you choose to add the SID to your service URL, the listener

will load-balance incoming requests across multiple dispatchers for the

database instance.

■ Service name—The service name is equivalent to either the service_name
or the db_name.db_domain parameters defined in your database

initialization file. If you use the service name within your service URL, the

listener will load balance incoming requests across multiple database

instances: that is, all database instances registered with the listener. This

option is good when you are using parallel servers.

Always use colons to separate the hostname, port, and SID or service name.

URL Components and Classes
When you make a connection to Oracle and look up a published object using JNDI,

you use a URL that specifies the service (service name, host, port, and SID), as well

as the name of a published object to look up and activate. For example, a complete

URL could look like:

sess_iiop://localhost:2481:ORCL/:default/projectAurora/Plans816/getPlans

Note: If you do use the service name, you must specify the

-useServiceName flag on any tool that takes in the URL. If you do

not specify this flag, the tool assumes that the last string is a SID.

Note: If you specify a dispatcher port instead of a listener port,

and you specify a SID, an ObjectNotFound exception is thrown

by the server. Because applications that connect directly to

dispatcher ports do not scale well, Oracle does not recommend

direct connection to dispatchers.
4-6 CORBA Developer’s Guide and Reference

Using JNDI to Access Bound Objects
where sess_iiop://localhost:2481:ORCL specifies the service name,

:default indicates the default session (when a session has already been

established), /projectAurora/Plans816 specifies a directory path in the

namespace, and getPlans is the name of a published object to look up.

Each component of the URL represents a Java class. For example, the service name

is represented by a ServiceCtx class instance, and the session by a SessionCtx
instance. See "Using JNDI to Access Bound Objects" and "Session IIOP Service"

starting on page 4-7 for more information on the service and session names within

the URL.

CosNaming Restriction for JNDI Name
The JNDI bound name for the published object must use JNDI syntax rules. The

underlying naming service that Oracle9i JNDI uses is CosNaming. Thus, if your

name includes a dot (".") in one of the names, the behavior diverges from normal

CosNaming rules, as follows:

■ The substring before the dot is treated as a CosNaming NameComponent id.

■ The substring after the dot is treated as a CosNaming NameComponent kind.

■ Both id and kind are concatenated into a full JNDI name.

Normally, in retrieving a CosNaming object, you supply the id and kind as separate

entities. The Oracle9i implementation concatenates both id and kind. Thus, to

retrieve the object, your application refers to the full name with the dot included as

part of the JNDI name, rather than as a separator.

Using JNDI to Access Bound Objects
Clients use JNDI to look up published objects in the Oracle9i namespace. JNDI is an

interface supplied by Sun Microsystems that gives the Java application developer a

methodology to access name and directory services. This section discusses only

those parts of the JNDI API that are needed to look up and activate published

Note: Do not specify the session name when no session has been

established for that connection. That is, on the first look up there is

no session active; therefore, :default as a session name has no

meaning. In addition, :default is implied, so you can use a URL

without a session name.
JNDI Connections and Session IIOP Service 4-7

Using JNDI to Access Bound Objects
objects. To obtain a complete set of documentation for JNDI, see the Web site URL:

http://java.sun.com/products/jndi/index.html .

As described in "URL Syntax" on page 4-5, the JNDI URL required to access any

bound name in the Oracle9i namespace requires a compound name consisting of

the following two components:

■ Service name—Oracle9i uses the service name to retrieve a handle to the correct

namespace.

Several namespaces will exist within your network. The service specifies from

which namespace to retrieve the JNDI bound object. Service names can be one

of the following:

■ Session name—the actual JNDI bound name of the object within the designated

namespace. The syntax mimics a UNIX file system syntax. The session name

can be represented by a SessionCtx object.

You can utilize the service and session contexts to perform some advanced

techniques, such as opening different sessions within a database or enabling several

clients to access an object in a single session. These are discussed further in the

Note: It is also possible to access the session namespace without

using JNDI. Instead, you can use CosNaming methods.

Service Name Description

sess_iiop://
 <hostname>:<port>:<SID>

Specifies the host, port, and SID where the
desired namespace is located. Specifying this
service name only, without a session name,
returns a ServiceCtx object. The session
IIOP service is the main service used by IIOP
applications. It retrieves objects and object
references bound in JNDI namespaces on
different database hosts. See "Session IIOP
Service" on page 4-13 for a full description.

jdbc_access: Specifies that the desired object exists in a
well-known namespace. Used primarily to
retrieve JTA UserTransaction and
DataSource objects from the namespace.

java: Used to specify that the bound name is
actually an EJB environment variable that was
specified within its deployment descriptor.
4-8 CORBA Developer’s Guide and Reference

Using JNDI to Access Bound Objects
"Session IIOP Service" on page 4-13. However, for simple JNDI lookup invocations,

you should use the URL syntax specified in "URL Syntax" on page 4-5.

Importing JNDI Support Classes
When you use JNDI in your client or server object implementations, be sure to

include the following import statements in each source file:

import javax.naming.Context; // the JNDI Context interface
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx; // JNDI property constants
import java.util.Hashtable; // hashtable for the initial context environment

Retrieving the JNDI InitialContext
Context is an interface in the javax.naming package that is used to retrieve the

InitialContext . All Oracle9i EJB and CORBA clients use the InitialContext
for JNDI lookup() . Before you perform a JNDI lookup() , set the environment

variables, such as authentication information into the Context . You can use a hash

table or a properties list for the environment. Then, this information is made

available to the naming service when the lookup() is performed. The examples in

this guide always use a Java Hashtable , as follows:

Hashtable environment = new Hashtable();

Next, set up properties in the hash table. You must always set the Context
URL_PKG_PREFIXES property, whether you are on the client or the server. The

remaining properties are used for authentication, which are primarily used by

clients or by a server authenticating itself as another user.

■ javax.naming.Context.URL_PKG_PREFIXES

■ javax.naming.Context.SECURITY_PRINCIPAL

■ javax.naming.Context.SECURITY_CREDENTIALS

■ javax.naming.Context.SECURITY_ROLE

■ javax.naming.Context.SECURITY_AUTHENTICATION

■ USE_SERVICE_NAME

URL_PKG_PREFIXES
Context.URL_PKG_PREFIXES holds the name of the environment property for

specifying the list of package prefixes to use when loading in URL context factories.
JNDI Connections and Session IIOP Service 4-9

Using JNDI to Access Bound Objects
The value of the property should be a colon-separated list of package prefixes for

the class name of the factory class that will create a URL context factory.

In the current implementation, you must always supply this property in the Context

environment, and it must be set to the String "oracle.aurora.jndi ".

SECURITY_PRINCIPAL
Context.SECURITY_PRINCIPAL holds the database username.

SECURITY_CREDENTIALS
Context.SECURITY_CREDENTIAL holds the clear-text password. This is the

Oracle database password for the SECURITY_PRINCIPAL (the database user). In all

of the three authentication methods mentioned in SECURITY_AUTHENTICATION

below, the password is encrypted when it is transmitted to the server.

SECURITY_ROLE
Context.SECURITY_ROLE holds the Oracle9i database role with which the user is

connecting. For example, "CLERK" or "MANAGER".

SECURITY_AUTHENTICATION
Context.SECURITY_AUTHENTICATION holds the name of the environment

property that specifies the type of authentication to use. Values for this property

provide for the authentication types supported by Oracle9i. There are four possible

values, which are defined in the ServiceCtx class:

■ ServiceCtx.NON_SSL_LOGIN : The client authenticates itself to the server

with a username and password, using the Login protocol over a standard

TCP/IP connection (not a secure socket layer connection). The Login protocol

encrypts the password as it is transmitted from the client to the server. The

server does not authenticate itself to the client. See "Providing Username and

Password for Client-Side Authentication" on page 6-9 for more information

about this protocol.

■ ServiceCtx.SSL_CREDENTIAL : The client authenticates itself to the server

providing a username and password that are encrypted over a secure socket

layer (SSL) connection. The server authenticates itself to the client by providing

credentials.

■ SSL_LOGIN: The client authenticates itself to the server with a username and

password within the Login protocol, over an SSL connection. The server does

not authenticate itself to the client.
4-10 CORBA Developer’s Guide and Reference

Using JNDI to Access Bound Objects
■ SSL_CLIENT_AUTH: Both the client and the server authenticate themselves to

each other by providing certificates to each other over an SSL connection.

USE_SERVICE_NAME
If you are using a service name instead of an SID in the URL, set this property to

true. Otherwise, the last string in the URL must contain the SID. Given a Hashtable

within the variable env , the following designates that the service name is used

instead of the SID within the URL:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put("USE_SERVICE_NAME", "true");
Context ic = new InitialContext(env);

The default is false.

The URL given within the lookup should contain a service name, instead of an SID.

The following URL contains the service name orasun12 :

myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481: orasun12 /test/myHello");

The JNDI InitialContext Methods
InitialContext is a class in the javax.naming package that implements the

Context interface. All naming operations are relative to a context. The initial

context implements the Context interface and provides the starting point for

resolution of names.

Note: To use an SSL connection, you must be able to access a

listener that has an SSL port configured, and the listener must be

able to redirect requests to an SSL-enabled database IIOP port. You

must also include the following JAR files when you compile and

build your application:

■ If your client uses JDK 1.1, import jssl-1_1.jar and
javax-ssl-1_1.jar.

■ If your client uses Java 2, import jssl-1_2.jar and
javax-ssl-1_2.jar .
JNDI Connections and Session IIOP Service 4-11

Using JNDI to Access Bound Objects
Constructor
You construct a new initial context using the constructor:

public InitialContext(Hashtable environment)

It requires a Hashtable for the input parameter that contains the environment

information described in "Retrieving the JNDI InitialContext" above. The following

code fragment sets up an environment for a typical client and creates a new initial

context:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);

lookup
This is the most common initial context class method that the CORBA or EJB

application developer will use:

public Object lookup(String URL)

You use lookup() to retrieve an object instance or to create a new service context.

■ To retrieve an object instance, specify a URL for the service name and append

the JNDI bound name (the session name). The returned result must be cast to

the expected object type. For example, to retrieve the Hello interface, you would

do the following:

myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");

The service name is "sess_iiop://localhost:2481:ORCL "; the JNDI

bound name for Hello’s home interface is "/test/myHello ".

■ To retrieve a handle to a specific namespace, specify the desired service context.

The return result must be cast to ServiceCtx when a new service context is

being created. For example, if initContext is a JNDI initial context, the

following statement creates a new service context:

ServiceCtx service =
 (ServiceCtx) initContext.lookup("sess_iiop://localhost:2481:ORCL");
4-12 CORBA Developer’s Guide and Reference

Session IIOP Service
See "Session Management Scenarios" on page 4-18 for examples of how to use the

JNDI lookup method within an EJB or CORBA application.

Session IIOP Service
All client/server network communications route requests over an accepted protocol

between both entities. Most network communications to the Oracle9i database are

routed over the two-task common (TTC) layer. This is the service that processes

incoming Oracle Net requests for database SQL services. However, with the

addition of Java into the database, Oracle9i requires that clients communicate with

the server over an IIOP transport that recognizes database sessions. This is

accomplished through the session IIOP service.

The session IIOP service is used for facilitating requests for IIOP applications,

which includes CORBA and EJB applications. The following sections describe how

to manage your applications within one or more database sessions:

■ Session IIOP Service Overview

■ Session Management

■ Service Context Class

■ Session Context Class

■ Session Management Scenarios

■ Setting Session Timeout

Session IIOP Service Overview
As discussed in the Oracle9i Java Developer’s Guide, since the EJB is loaded into the

database, your client application must start up the EJB within the context of a

database session. Because beans are activated within a session, each client cannot

see bean instances active in another session unless given a handle to that session.

However, you can activate objects either within the existing session or another

session.

The session IIOP service session component tag—TAG_SESSION_IIOP— exists

inside the IIOP profile—SessionIIOP . The value for this Oracle session IIOP

component tag is 0x4f524100 and contains information that uniquely identifies the

session in which the object was activated. The client ORB runtime uses this

information to send requests to objects in a particular session.
JNDI Connections and Session IIOP Service 4-13

Session IIOP Service
Although the Oracle9i session IIOP service provides an enhancement of the

standard IIOP protocol—it includes session ID information—it does not differ from

standard IIOP in its on-the-wire data transfer protocol.

Client Requirements
Clients must have an ORB implementation that supports session IIOP to be able to

access objects in different sessions simultaneously, from within the same program,

and to be able to disconnect from and reconnect to the same session. The version of

the Visigenic ORB that ships with Oracle9i has been extended to support session

IIOP.

Session Routing
When a client makes an IIOP connection to the database, Oracle9i determines if a

new session should be started to handle the request, or if the request should be

routed to an existing session. If the client initializes a new request for a connection

(using the InitialContext .lookup() method) and no session is active for that

connection, a new session is automatically started. If a session has already been

activated for the client, the session identifier is encoded into the object key of the

object. This information enables the session IIOP service to route the request to the

correct session. In addition, a client can use this session identifier to access multiple

sessions. See "Session Management Scenarios" on page 4-18 for more information.

Oracle9 i JVM Tools
When using the Oracle9i JVM tools, especially when developing EJB and CORBA

applications, it is important to distinguish the two network service protocol types:

TTC and IIOP.
4-14 CORBA Developer’s Guide and Reference

Session IIOP Service
Figure 4–2 TTC and IIOP Services

Figure 4–2 shows which tools and requests use TTC and which use IIOP database

ports. The default port number for TTC is 1521, and the default for IIOP is 2481.

■ Tools such as publish , deployejb , and the session shell access IIOP objects

and so must connect using an IIOP port. In addition, EJB and CORBA clients

must use an IIOP port when sending requests to Oracle.

■ Tools such as loadjava and dropjava connect using a TTC port.

Session Management
In simple cases, a client (or a server object acting as a client) starts a new server

session implicitly when it performs the lookup for a server object. Oracle9i also

gives you the ability to control session start-up explicitly. Two Oracle-specific

classes give you control over the session IIOP service connection and over the

sessions within the database:

■ Service Context Class—controls the session IIOP service connection to the

database

Given a URL to that database, you can create a service context. You can open

one or more named sessions within the database off of this service context.

Client

SQL*Plus

OCI

dropjava

loadjava

publish

deployejb

session shell

IIOP requests

TTC

IIOP
JNDI Connections and Session IIOP Service 4-15

Session IIOP Service
■ Session Context Class—controls named database sessions that are created off of

a service context

Once the session has been created, you can activate CORBA or EJB objects

within the session using the named session context object.

Service Context Class
The service context class controls the session IIOP service connection to the

database. Given a URL to that database, you can create a service context. You can

open one or more named sessions within the database off of this service context.

This Oracle-specific class extends the JNDI Context class.

Variables
The ServiceCtx class defines a number of final public static variables that you can

use to define environment properties and other variables. Table 4–1 shows these.

Methods
The public methods in this class that CORBA and EJB application developers can

use are as follows:

public Context createSubcontext(String name)

Table 4–1 ServiceCtx Public Variables

String Name Value

NON_SSL_CREDENTIAL "Credential"

NON_SSL_LOGIN "Login"

SSL_CREDENTIAL "SecureCredential"

SSL_LOGIN "SecureLogin"

SSL_CLIENT_AUTH "SslClientAuth"

SSL_30 "30"

SSL_20 "20"

SSL_30_WITH_20_HELLO "30_WITH_20_HELLO"

Integer Name Integer Constructor

SESS_IIOP new Integer(2)

IIOP new Integer(1)
4-16 CORBA Developer’s Guide and Reference

Session IIOP Service
This method takes a Java String as the parameter and returns a JNDI Context
object representing a session in the database. The method creates a new named

session. The parameter is the name of the session to be created, which must start

with a colon (:).

The return result should be cast to a SessionCtx object.

This method can throw the exception: javax.naming.NamingException .

public Context createSubcontext(Name name)

Each of the methods that takes a String parameter has a corresponding method

that takes a Name parameter. The functionality is the same.

public static org.omg.CORBA.ORB init(String username,
 String password,
 String role,
 boolean ssl,
 java.util.Properties props)

This method retrieves access to the ORB that is created when you perform a look

up. Set the ssl parameter to true for SSL authentication. Clients that do not use

JNDI to access server objects should use this method.

See the sharedsession example in Appendix A of the Oracle9i CORBA Developer’s
Guide and Reference for a usage example.

public Object lookup(String string)

The lookup method looks up a published object in the database instance associated

with the service context, and either returns an activated instance of the object, or

throws javax.naming.NamingException.

Session Context Class
The session context class controls named database sessions that are created off of a

service context. Once the session has been created, you can activate CORBA or EJB

objects within the session, using the named session context object. Session contexts

represent sessions and contain methods that enable you to perform session

operations, such as authenticating the client to the session or activating objects. This

class extends the JNDI Context class.
JNDI Connections and Session IIOP Service 4-17

Session IIOP Service
Methods
The session context methods that a client uses are the following:

public synchronized boolean login()

The login method authenticates the client, using the initial context environment

properties passed in the InitialContext constructor: username, password, and

role.

public synchronized boolean login(String username,
 String password,
 String role)

The login method authenticates the client, using the username, password, and

optional database role supplied as parameters.

public Object activate(String name)

The activate method looks up and activates a published object with the given

name.

Session Management Scenarios
The following sections describe the five different scenarios for managing database

sessions:

■ Client Accessing a Single Session—A client activates and accesses an object in

the :default session.

■ Ending a Session—Discusses methods that explicitly terminate a session.

■ Client Starting a Named Session—A client activates and accesses one or more

objects in a session other than the default session. This session is identified by a

name within a SessionCtx .

■ Two Clients Accessing the Same Session—Two or more clients can access an

activated object within a session, by providing x and y to both clients.

Note: Creating a subcontext within the session context affects the

object type returned on the final JNDI lookup. See "Lookup of

Objects Off of JNDI Context" on page 4-25 for more information.
4-18 CORBA Developer’s Guide and Reference

Session IIOP Service
■ In-Session Activation—A server object, acting as a client, activates another

object within the same session.

■ Lookup of Objects Off of JNDI Context—Lookup of a partial JNDI name

requires that you activate the bound object.

Client Accessing a Single Session In general, when you look up a published object

from a client with a URL, hostname, and port, the object is activated in a new

session. For example, a client would perform the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);
SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://localhost:5521:ORCL/test/myObj");

Activating an object in a new session from a server object is identical to starting a

session from an application client. If you invoke the lookup method within the

server object, the second object instance is activated in a separate session from the

originating session.

Ending a Session Normally, a session terminates when the client terminates.

However, if you want to explicitly terminate a session, you can do one of the

following:

Terminate A Session From The Server-Side Using The Endsession Method
The server can control session termination by executing the following method:

oracle.aurora.mts.session.Session.THIS_SESSION().endSession();

Terminate A Session From The Client-side Using The Logout Object
If the client wishes to exit the session, it can execute the logout method of the

LogoutServer object, which is pre-published as "/etc/logout ". Only the

session owner is allowed to logout. Any other owner receives a NO_PERMISSION

exception.

The LogoutServer object is analogous to the LoginServer object, which is

pre-published as "/etc/login ". You can use the LoginServer object to retrieve

the Login object, which is used to authenticate to the server. This is an alternative

method to using the Login object within the JNDI lookup.
JNDI Connections and Session IIOP Service 4-19

Session IIOP Service
The following example shows how a client can authenticate using the

LoginServer object and can exit the session through the LogoutServer object.

import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LogoutServer;
...
// To log in using the LoginServer object
LoginServer loginServer = (LoginServer)ic.lookup(serviceURL + "/etc/login");
Login login = new Login(loginServer);
System.out.println("Logging in ..");
login.authenticate(user, password, null);
...
//To logout using the LogoutServer
LogoutServer logout = (LogoutServer)ic.lookup(serviceURL + "/etc/logout");
logout.logout();

Client Starting a Named Session You can explicitly create multiple sessions on the

database instance through the JNDI methods provided in the ServiceCtx and

SessionCtx classes.

The following lookup method contains a URL that defines the IIOP service URL of

"sess_iiop://localhost:5521:ORCL " and a default session context.

SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://localhost:5521:ORCL/test/myHello");

In this simple case, the JNDI initial context lookup method implicitly starts a

session and authenticates the client. This session becomes the default session, which

is identified by the name ":default ". All sessions are named. However, in the

default case, the client does not need to know the name of the session, because all

requests go to this single session. Unless specified, all additional objects will be

activated in the default session. Even if you create a new JNDI initial context and

look up the same or a new object, the object is instantiated in the same session as the

first object.

The only way to activate objects within another session is to create a named session.

You can create other sessions in place of or in addition to the default session by

creating session contexts off of the service context. Because each session is a named

session, you can activate objects in different sessions within the database.

1. Instantiate a new hashtable for the environment properties to be passed to the

server.

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
4-20 CORBA Developer’s Guide and Reference

Session IIOP Service
2. Create a new JNDI Context.

Context ic = new InitialContext(env);

3. Use the JNDI lookup method on the initial context, passing in the service URL,

to establish a service context. This example uses a service URL with the service

prefix of hostname, listener port, and SID.

ServiceCtx service =
 (ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");

4. Create a session by invoking the createSubcontext method on the service

context object. Provide the name for the session as a parameter to the

createSubcontext method. A new session is created within the database.

SessionCtx session = (SessionCtx) service.createSubcontext(":session1");

5. Authenticate the client program to the database by invoking the login method

on the session context object.

session.login("scott", "tiger", null); // role is null

6. Activate the object, identified by its bound JNDI name, in the named session.

Hello hello = (Hello)session.activate (objectName);

 System.out.println (hello.helloWorld ());

Note: Only the URL_PKG_PREFIXES Context variable is filled

in—the other information will be provided in the

login.authenticate() method parameters.

Note: Provide only the service URL of hostname, listener port,

and database SID. If you provide the JNDI name of the desired

object, a default session will be created for you.

Note: You must name a new session when you create it. The

session name must start with a colon (:) and cannot contain a slash

(/), but is not otherwise restricted.
JNDI Connections and Session IIOP Service 4-21

Session IIOP Service
Example 4–1 Activating Objects in Named Sessions

The following example creates two named sessions of the name :session1 and

:session2 . Each one retrieves the Hello object separately. The client invokes both

Hello objects in each named session.

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx) ic.lookup ("sess_iiop://localhost:2481:ORCL");

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx) service.createSubcontext (":session1");

// Authenticate
session1.login("scott", "tiger", null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx) service.createSubcontext (":session2");

// Authenticate using a login object (not required, just shown for example).
LoginServer login_server2 = (LoginServer)session2.activate ("/etc/login");
Login login2 = new Login (login_server2);
login2.authenticate ("scott", "tiger", null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

// Verify that the objects are indeed different
System.out.println (hello1.helloWorld ());
System.out.println (hello2.helloWorld ());

Two Clients Accessing the Same Session When the client invokes the JNDI lookup

method, Oracle9i creates a session. If you want a second client to access the

instantiated object in this session, you must do the following:

1. The first client saves both the object instance handle and a Login object

reference.

2. The second client retrieves the handle and Login object reference and uses

them to access the object instance.
4-22 CORBA Developer’s Guide and Reference

Session IIOP Service
Example 4–2 Two Clients Accessing a Single Instance

1. The first client authenticates itself to the database by providing a username and

password through the authenticate method on a Login object.

2. The session is created and the object is instantiated through the lookup method

that is given the URL.

3. Both the LoginServer object and the server object instance handle are saved

to a file for the second client to retrieve.

// Login to the 9i server
LoginServer lserver = (LoginServer)ic.lookup (serviceURL + "/etc/login");
new Login (lserver).authenticate (username, password, null);

// Activate a Hello in the 9i server
// This creates a first session in the server
Hello hello = (Hello)ic.lookup (serviceURL + objectName);
hello.setMessage ("As created by Client1");
System.out.println ("Client1: " + hello.helloWorld ());

// save Login object into a file, loginFile, for Client2 to read
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
String log = orb.object_to_string (lserver);
OutputStream os = new FileOutputStream (loginFile);
os.write (log.getBytes ());
os.close ();

// save object instance handle into a file, helloFile,
// for Client2 to read
String obj_hndl = orb.object_to_string (hello);
OutputStream os = new FileOutputStream (helloFile);
os.write (obj_hndl.getBytes ());
os.close ();

The second client accesses the Hello object instance in the active session by doing

the following:

1. Retrieves the object handle and the Login object. This example uses

implementation-defined methods of readHandle and readLogin to retrieve

these objects from storage.

2. Authenticates to the database session with the same Login object as the first

client through the authenticate method. You can recreate the Login object

from the LoginServer object through the Login constructor.

FileInputStream finstream = new FileInputStream (hellofile);
JNDI Connections and Session IIOP Service 4-23

Session IIOP Service
ObjectInputStream istream = new ObjectInputStream (finstream);
Hello hello = (Hello) orb.string_to_object(istream.readObject());
finstream.close ();

// Authenticate with the login Object
LoginServer lserver = (LoginServer) readLogin(loginFile);

//Set the VisiBroker bind options to specify that the
//login is to not try recursively, which means that if it
//fails on the first try, return with the error immediately.
//See VisiBroker manuals for more information.
lserver._bind_options (new BindOptions (false, false));

Login login = new Login (lserver);
login.authenticate (username, password, null);

In-Session Activation If the server object wants to look up and activate a new

published object in the same session in which it is running, the server object can

execute the following:

Context ic = new InitialContext();
SomeObject myObj = (SomeObject) ic.lookup("/test/Hello");

Notice that there are no environment settings for authentication information in the

environment or a session URL in the lookup. The authentication already succeeded

in order to log into the session. Plus, the object exists on the local machine. So, any

other object activation within the session can proceed without specifying

authentication information or a target sess_iiop URL address.

All object parameters designated within in-session object methods use

pass-by-reference semantics, instead of pass-by-value semantics. The following

example contains a single input object parameter of myParmObj into the foo
method for the previously retrieved in-session object, myObj .

myObj.foo(myParmObj);

With pass-by-reference, the reference to the input object parameter is directly

passed to the destination server object. Any changes to the contents of the

myParmObj on the client or the server are reflected to the other party—as both

parties reference the same object. Alternatively, if it were pass-by-value, a copy of

the myParmObj object would be passed. In this case, any changes to the party’s

copy of myParmObj would be visible only with the party that made the changes.
4-24 CORBA Developer’s Guide and Reference

Session IIOP Service
In-Session Activation in Prior Releases In releases previous to Release 8.1.7, in-session

activation was performed with the thisServer/:thisSession notation in place

of the hostname:port:SID in the URL. This notation is still valid, but only for

IIOP clients.

For example, to look up and activate an object in the same session, do the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext(env);
SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://thisServer/:thisSession/test/Hello");

In this case, myObj is activated in the same session in which the invoking object is

running. Note that there is no need to supply login authentication information,

because the client (a server object, in this case) is already authenticated to Oracle9i.

Realize that objects are not authenticated—instead, clients must be authenticated to

a session. However, when a separate session is to be started, then some form of

authentication must be done—either login or SSL credential authentication.

Lookup of Objects Off of JNDI Context In the Sun Microsystems JNDI, if you bind a

name of "/test/myObject ", you can retrieve an object from a Context when

executing the following:

Context ctx = ic.lookup("/test");
MyObject myobj = ctx.lookup("myObject");

The returned object is activated and ready for you to perform method invocations

off of it.

In Oracle9i, trying to retrieve an object from a Context results in an inactive object

being returned. Instead, you must do the following:

Note: In-session activation as demonstrated in this section is valid

for both IIOP and non-IIOP clients.

Note: You can use the thisServer notation only on the server

side—that is, from server objects. You cannot use it in a client

program.
JNDI Connections and Session IIOP Service 4-25

Session IIOP Service
1. Retrieve a SessionCtx , instead of a Context . You can retrieve the

SessionCtx from a ServiceCtx , in one of the two following ways:

■ Retrieve the ServiceCtx first and the SessionCtx from the

ServiceCtx , as follows:

ServiceCtx service =
 (ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");
//Retrieve the ServiceCtx subcontext
SessionCtx sess = (SessionCtx) service.lookup("/test");

■ Retrieve the ServiceCtx and SessionCtx in the same lookup, as

follows:

SessionCtx sess =
 (SessionCtx) ic.lookup("sess_iiop://localhost:2481:ORCL/test");

2. Execute the Oracle-specific SessionCtx.activate method for each object in

the session that you want to retrieve. This method activates the object in the

session and returns the object reference. You cannot just perform a lookup of

the object, as it will return an inactive object. Instead, execute the activate
method, as follows:

MyObject myObj = (MyObject) sessCtx.activate("myObject");
// Verify that the objects are indeed different
System.out.println (myObj.printMe ());

The Oracle9i JNDI implementation provides two implementations of the Context
object:

■ ServiceCtx —identifies the database instance through a sess_iiop URL

■ SessionCtx —represents database session within the database

In performing a lookup, you must lookup both the ServiceCtx for identifying the

database and the SessionCtx for retrieving the actual JNDI bound object.

Normally, you supply the URLs for both objects within the JNDI URL given to the

lookup method. However, you can also retrieve each individually as demonstrated

above.

Setting Session Timeout
A session—with its state—normally exits when the last connection terminates.

However, there are situations where you may want a session and its state to idle for

a specified amount of time after the last connection terminates, such as the

following:
4-26 CORBA Developer’s Guide and Reference

Session IIOP Service
■ A middle-tier layer does not want to keep connections open to the session

because connections are expensive; but, the middle-tier may want to keep the

session open in case of another incoming client request.

■ If you experience a network problem that abnormally terminates the

connection, the session will stay around for the specified amount of time to

allow the connection to be re-established.

■ If your application passes a handle to an existing object within the session to

another client before its connection terminates, the second client has time to

access the session.

The timeout clock starts when the last connection to the session terminates. If

another connection to the session starts within the timed window, the timeout clock

is reset. If not, the session exits.

You can set the session idle timeout either from the client or from within a server

object:

■ Set the Session Timeout from the Client

■ Set the Session Timeout from a Server Object

Set the Session Timeout from the Client
You can set the idle timeout on the client through the pre-published utility

object—oracle.aurora.AuroraServices.Timeout . This object is

pre-published under "/etc/timeout ". Use the setTimeout method from this

object.

1. Retrieve the Timeout object through a JNDI lookup of "/etc/timeout "

2. Set the timeout with the setTimeout method giving the number of seconds

for session idle.

Timeout timeout = (Timeout)ic.lookup(serviceURL + "/etc/timeout");
System.out.println("Setting a timeout of 20 seconds ");
timeout.setTimeout(20);

Set the Session Timeout from a Server Object
A server object can control the session timeout by using the

oracle.aurora.net.Presentation object, which contains the

sessionTimeout() method. This method takes one parameter: the session

timeout value in seconds. For example:

int timeoutValue = 30;
JNDI Connections and Session IIOP Service 4-27

Retrieving the Oracle9i Version Number
...
// set the timeout to 30 seconds
oracle.aurora.net.Presentation.sessionTimeout(timeoutValue);
...
// set the timeout to a very long time
oracle.aurora.net.Presentation.sessionTimout(Integer.MAX_INT);

Retrieving the Oracle9 i Version Number
You can retrieve the version of Oracle9i that is installed in the database through the

pre-published oracle.aurora.AuroraServices.Version object, which is

published as "/etc/version " in the JNDI namespace. The Version object

contains the getVersion method, which returns a string that contains the version,

such as "8.1.7". You can retrieve the Version object by providing "/etc/version "

within the JNDI lookup. The following example retrieves the version number:

Version version = (Version)ic.lookup(serviceURL + "/etc/version");
System.out.println("The server version is : " + version.getVersion());

Activating In-Session CORBA Objects From Non-IIOP Presentations
Non-IIOP server requests, such as HTTP or DCOM, can activate a CORBA object

within the same session.

If the non-IIOP server object wants to look up and activate a new published object

in the same session in which it is running, the server object can execute the following:

Context ic = new InitialContext();
SomeObject myObj = (SomeObject) ic.lookup("/test/Hello");

Note: When you use the sessionTimeout() method, you must

add $(ORACLE_HOME)/javavm/lib/aurora.zip to your

CLASSPATH.

■ HTTP An HTTP client interacts with the Oracle9i webserver and executes a

JSP or servlet, which can activate the CORBA object within the same

session that it is running in.

■ DCOM A DCOM client uses a DCOM bridge to access Oracle9i. While within

the Oracle9i session, the DCOM bridge session can activate the

CORBA object within the same session that it is running in.
4-28 CORBA Developer’s Guide and Reference

Accessing CORBA Objects Without JNDI
Notice that there are no environment settings for authentication information in the

environment or a URL specified in the lookup. The authentication already

succeeded in order to log into the session. Plus, the object exists on the local

machine. So, any other object activation within the session can proceed without

specifying authentication information or a target URL address.

Accessing CORBA Objects Without JNDI
It is possible for clients to access server objects without using the JNDI classes

shown in the other sections of this chapter. These clients can connect to an Oracle

server by using CosNaming methods.

Retrieving the NameService Initial Reference
In order to use the CORBA ORB methods, you must first retrieve the naming

service object. Oracle9i prepublishes a NameService object that you can retrieve

through the ORB resolve_initial_references method.

In CORBA, there are two methods to retrieve the NameService initial reference:

using ORBInitRef or ORBDefaultInitRef . At this time, we have provided only

the ORBDefaultInitRef methodology.

You must provide a service URL to the ORBDefaultInitRef of the form of host,

port, and SID. Or you can provide the service URL with host, port, service name. In

addition, you can specify some optional properties, such as:

■ The connection should use SSL, set the ORBUseSSL property to true:

System.setProperty("ORBUseSSL", "true");

■ The transport type, which can be sess_iiop or iiop . Set the

TRANSPORT_TYPE property, as follows:

System.setProperty("TRANSPORT_TYPE", "sess_iiop");

■ If retrieving the NameService without first accessing the BootService , set

the backward compatible property (ORBNameServiceBackCompat) to false,

as follows:

System.setProperty("ORBNameServiceBackCompat", "false");

Note: Once you retrieve the IIOP object reference through this

method, you cannot pass this object to a remote client or server.
JNDI Connections and Session IIOP Service 4-29

Accessing CORBA Objects Without JNDI
■ Use the service name instead of the SID in the service URL. Set the

USE_SERVICE_NAME property to true, as follows:

System.setProperty("USE_SERVICE_NAME", "true");

Example 4–3 Retrieving a Server Object Using CosNaming

The following example demonstrates how to retrieve the NameService object.

From this object, the login is executed and the server object is retrieved.

import java.lang.Exception;

import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import org.omg.CosNaming.NameComponent;

import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.PublishingContext;
import oracle.aurora.AuroraServices.PublishedObjectHelper;
import oracle.aurora.AuroraServices.PublishingContextHelper;

import Bank.Account;
import Bank.AccountManager;
import Bank.AccountManagerHelper;

public class Client {
 public static void main(String args[]) throws Exception {
 // Parse the args
 if (args.length < 4 || args.length > 5) {
 System.out.println ("usage: Client host port username password <sid>");
 System.exit(1);
 }
 String host = args[0];
 String port = args[1];
 String username = args[2];
 String password = args[3];

Note: You initialize the server URL either through the

ORBDefaultInitRef or through the individual properties:

ORBBootHost , ORBBootPort , and ORACLE_SID.
4-30 CORBA Developer’s Guide and Reference

Accessing CORBA Objects Without JNDI
 String sid = null;
 if(args.length == 5)
 sid = args[4];

 // Declarations for an account and manager
 Account account = null;
 AccountManager manager = null;
 PublishingContext rootCtx = null;

 // access the Oracle9 i Names Service
 try {
 // Initialize the ORB
 // The service URL for the server is provided in a string
 // that is prefixed with ’iioploc://’ and includes either
 // host, port, sid or, if the USE_SERVICE_NAME is set to true,
 // host, port, service_name. This example uses host, port, sid
 // and sets it in the ORBDefaultInitRef.
 String initref;
 initref = (sid == null) ? "iioploc://" + host + ":" + port :

"iioploc://" + host + ":" + port + ":" + sid;
 System.setProperty("ORBDefaultInitRef", initref);

 /*
 * Alternatively, you can set the host, port, sid or service in the
 * following individual properties. If set, these properties
 * take precedence over the URL set within the ORBDefaultInitRef property
 System.setProperty("ORBBootHost", host);
 System.setProperty("ORBBootPort", port);
 if (sid != null)
 //set the SID. alternatively, if the USE_SERVICE_NAME property is
 //true, this should contain the service name instead of the sid.

System.setProperty("ORACLE_SID", sid);
 */

 /*
 * Some of the other properties that you can set
 * include the backwards compatibility flag, the service name
 * indicator, the SSL protocol definition, and the transport type.
 System.setProperty("ORBNameServiceBackCompat", "false");
 System.setProperty("USE_SERVICE_NAME", "true");
 System.setProperty("ORBUseSSL", "true");
 //transport type can be either sess_iiop or iiop
 System.setProperty("TRANSPORT_TYPE", "sess_iiop");
 */
JNDI Connections and Session IIOP Service 4-31

Accessing CORBA Objects Without JNDI
 //initialize the ORB
 com.visigenic.vbroker.orb.ORB orb =

oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the Name service Object reference with the
 // resolve_initial_references method
 rootCtx = PublishingContextHelper.narrow(orb.resolve_initial_references(

 "NameService"));

 //After retrieving the NameService initial reference, you must perform
 // the login, as follows:
 // Get the pre-published login object reference
 PublishedObject loginPubObj = null;
 LoginServer serv = null;
 NameComponent[] nameComponent = new NameComponent[2];
 nameComponent[0] = new NameComponent ("etc", "");
 nameComponent[1] = new NameComponent ("login", "");

 // Lookup this object in the Name service
 Object loginCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 loginPubObj = PublishedObjectHelper.narrow (loginCorbaObj);

 // create and activate this object (non-standard call)
 loginCorbaObj = loginPubObj.activate_no_helper ();
 serv = LoginServerHelper.narrow (loginCorbaObj);

 // Create a client login proxy object and authenticate to the DB
 Login login = new Login (serv);
 login.authenticate (username, password, null);

 // Now create and get the bank object reference
 PublishedObject bankPubObj = null;
 nameComponent[0] = new NameComponent ("test", "");
 nameComponent[1] = new NameComponent ("bank", "");

 // Lookup this object in the name service
 Object bankCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 bankPubObj = PublishedObjectHelper.narrow (bankCorbaObj);

 // create and activate this object (non-standard call)
 bankCorbaObj = bankPubObj.activate_no_helper ();
4-32 CORBA Developer’s Guide and Reference

Accessing CORBA Objects Without JNDI
 manager = AccountManagerHelper.narrow (bankCorbaObj);

 account = manager.open ("Jack.B.Quick");

 float balance = account.balance ();
 System.out.println ("The balance in Jack.B.Quick's account is $"
 + balance);
 } catch (SystemException e) {
 System.out.println ("Caught System Exception: " + e);
 e.printStackTrace ();
 } catch (Exception e) {
 System.out.println ("Caught Unknown Exception: " + e);
 e.printStackTrace ();
 }
 }
}
See "Ending a Session" on page 4-19 for more information on the LoginServer ,

Login , and LogoutServer objects.

Retrieving Initial References from ORBDefaultInitRef
CORBA 2.3 Interoperable Name Service supports both the ORBInitRef and

ORBDefaultInitRef methodologies for creating and retrieving initial references.

At this time, Oracle9i only supports an IIOP URL scheme within the

ORBDefaultInitRef , as shown in "Retrieving the NameService Initial Reference"

on page 4-29. You can only provide either a host, port, SID or host, port, service

name combination—prefixed by "iioploc:// "—to the ORBDefaultInitRef for

locating the initial reference. Within this location, the service must have been

activated. Any service activated within the specified location can be retrieved using

the resolve_initial_references method with its object key, which is defined

at the time of activation.

For example, if you set the ORBDefaultInitRef to the following server URL:

System.setProperty("ORBDefaultInitRef","iioploc://myHost:myPort:mySID);

Then, initialize the ORB and retrieve your service, as follows:

//initialize the ORB
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

// Get the myService service Object reference with resolve_initial_references
rootCtx = PublishingContextHelper.narrow(orb.resolve_initial_references(

 "myService"));
JNDI Connections and Session IIOP Service 4-33

Accessing CORBA Objects Without JNDI
The object key that is used to retrieve the service is "myService ". The object with

this key is returned with the resolve_initial_references method.

The following are the Oracle9i services that are activated during startup:

NameService , BootService , AuroraSSLCurrent , and

AuroraSSLCertificateManager .

If you want Oracle9i to initiate any services for you during startup, supply a string

with a comma-separated list of services to be installed when the ORB is initialized

in the UserORBServices property. Each service must be a fully-qualified package

name and name of the class that extends the ORBServiceInit class. You must

extend this class in order for your service to be installed by Oracle9i.
4-34 CORBA Developer’s Guide and Reference

Advanced CORBA Program
5

Advanced CORBA Programming

This chapter discusses advanced CORBA programming techniques, such as calling

back to the client from the server. Advanced programming for security and

transactions are covered in their own chapters. This chapter covers the following

topics:

■ Using SQLJ

■ Implementing CORBA Callbacks

■ Retrieving Interfaces With The IFR

■ Using the CORBA Tie Mechanism

■ Migrating from JDK 1.1 to Java 2

■ Invoking CORBA Objects From Applets

■ Interoperability with Non-Oracle ORBs
ming 5-1

Using SQLJ
Using SQLJ
You can often simplify the implementation of a CORBA server object by using

Oracle9i SQLJ to perform static SQL operations. Using SQLJ statements results in

less code than the equivalent JDBC calls and makes the implementation easier to

understand and debug. This section describes a version of the example first shown

in "A First CORBA Application" on page 2-2, but uses SQLJ rather than JDBC for

the database access. Refer to the Oracle9i SQLJ Developer’s Guide and Reference for

complete information about SQLJ.

The only code that changes for this SQLJ implementation is in the

EmployeeImpl.java file, which implements the Employee object. The SQLJ

implementation, which can be called EmployeeImpl.sqlj , is listed below. You

can contrast that with the JDBC implementation of the same object in "Writing the

Server Object Implementation" on page 2-6.

package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl extends _EmployeeImplBase {
 public EmployeeInfo getEmployee (int ID) throws SQLError {
 try {
 String name = null;
 double salary = 0.0;
 #sql { select ename, sal into :name, :salary from emp
 where empno = :ID };
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

The SQLJ version of this implementation is considerably shorter than the JDBC

version. In general, Oracle recommends that you use SQLJ where you have static

SQL commands to process, and use JDBC, or a combination of JDBC and SQLJ, in

applications where dynamic SQL statements are required.

Running the SQLJ Translator
To compile the EmployeeImpl.sqlj file, issue the following SQLJ command:

% sqlj -J-classpath
5-2 CORBA Developer’s Guide and Reference

Implementing CORBA Callbacks
.:$(ORACLE_HOME)/lib/aurora_client.jar:$(ORACLE_HOME)/jdbc/lib/classes111.zip:
$(ORACLE_HOME)/sqlj/lib/translator.zip:$(ORACLE_HOME)/lib/vbjorb.jar:
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip -ser2class
 employeeServer/EmployeeImpl.sqlj

This command does the following:

■ translates the SQLJ code into a pure Java file

■ compiles the resulting .java source to get a .class file

■ the -ser2class option translates SER files to .class files

The SQLJ translation generates two additional class files:

employeeServer/EmployeeImpl_SJProfile0
employeeServer/EmployeeImpl_SJProfileKeys

which you must also load into the database when you execute the

loadjava command.

A Complete SQLJ Example
This example is available in complete form in the examples/corba/basic
example directory, complete with a Makefile or Windows NT batch file so that you

can see how the example is compiled and loaded.

Implementing CORBA Callbacks
This section describes how a CORBA server object can call back to a client. The

basic technique that is shown in this example is the following:

■ Write a client object that runs on the client side and contains the methods that

the called-back-to object performs.

■ Implement a server object that has a method that takes a reference to the client

callback object as a parameter.

■ In the client code:

■ Instantiate the client callback object.

■ Register it with the BOA.

■ Pass its reference to the server object that calls it.

■ In the server object implementation, perform the callback to the client.
Advanced CORBA Programming 5-3

Implementing CORBA Callbacks
IDL
The IDL for this example is shown below. There are two separate IDL files:

client.idl and server.idl :

/* client.idl */
module client {
 interface Client {
 wstring helloBack ();
 };
};

/* server.idl */
#include <client.idl>

module server {
 interface Server {
 wstring hello (in client::Client object);
 };
};

Note that the server interface includes the interface defined in client.idl .

Client Code
The client code for this example must instantiate the client-side callback object and

register it with the BOA so that it can be accessed by the server. The code performs

the following steps to do this:

■ Invokes the init() method, with no parameters, on the ORB pseudo-object.

This returns a reference to the existing client-side ORB.

■ Uses the ORB reference to initialize the BOA.

■ Instantiates a new client object.

■ Registers the client object with the client-side BOA.

The code to perform these steps is as follows:

com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
org.omg.CORBA.BOA boa = orb.BOA_init ();

Note: See "Callbacks using Security" on page 6-21 for examples of

using callbacks within an SSL environment.
5-4 CORBA Developer’s Guide and Reference

Implementing CORBA Callbacks
ClientImpl client = new ClientImpl ();
boa.obj_is_ready (client);

Finally, the client code calls the server object, passes it a reference to the registered

client-side callback object, and prints its return value, as follows:

System.out.println (server.hello (client));

Callback Server Implementation
The implementation of the server-side object is simple. It receives the client-side

callback object and invokes a method from this object. In this example, the server

invokes the client-side helloBack method.

package serverServer;

import server.*;
import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ServerImpl extends _ServerImplBase implements ActivatableObject
{
 public String hello (Client client) {
 return "I Called back and got: " + client.helloBack ();
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

The server simply returns a string that includes the string return value from

the callback.

Callback Client-Server Implementation
The client-side callback server implements the desired callback method. The

following example implements the helloBack method:

package clientServer;

import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends _ClientImplBase implements ActivatableObject
Advanced CORBA Programming 5-5

Retrieving Interfaces With The IFR
{
 public String helloBack () {
 return "Hello Client World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

The client-side object is just like any other server object. But in this callback example

it is running in the client ORB, which can be running on a client system, not

necessarily running inside an Oracle9i database server.

Retrieving Interfaces With The IFR
The Interface Repository (IFR) specified by OMG defines how to store and retrieve

interface definitions. The information contained within the interface can be used

internally by the ORB to retrieve information about an object reference, for

type-checking the request signatures, or used externally by DII/DSI applications for

instantiating objects dynamically through DII/DSI.

You store the IDL interface definition within the IFR through the Oracle9i publish
command. The publish command stores the interface within the IFR Repository,

which has been implemented using database tables.

Once stored, you can retrieve the interface definition either implicitly through the

_get_interface_def method or explicitly looking up the IFR Repository
object and invoking the standard methods to traverse through the repository.

The following sections explain how to publish and retrieve IDL interface

information:

■ Publishing the IDL Interface

■ Circular References Between Interfaces

■ Managing Security Within the IFR

■ Retrieving Interfaces Implicitly

■ Retrieving Interfaces Explicitly
5-6 CORBA Developer’s Guide and Reference

Retrieving Interfaces With The IFR
Publishing the IDL Interface
You store the IDL interface definition within the IFR through the Oracle9i JVM

publish command. This command contains the following two options for storing

the IDL interface definition within the IFR:

The following publish command loads the Bank.idl interfaces into the IFR. This is

executed under the SCOTT schema security permissions. If it already exists, the

-replaceIDL option specifies that the interfaces should be replaced with this

version of Bank.idl , which is located in /private /idl_int on the server node.

publish -republish -user SCOTT -password TIGER -schema SCOTT \
-service sess_iiop://dlsun164:2481:orcl \

 /test/myBank bankServer.AccountManagerImpl \
 Bank.AccountManagerHelper -idl /private/idl_int/Bank.idl -replaceIDL

The interfaces within the IDL are loaded within the schema that executes the

publish command. Thus, if another user loads an IDL of the same name, it will

not overwrite this one because they exist within separate schemas.

The interfaces are removed from the IFR when you remove the associated

PublishedObject. To remove the published object and the interfaces added with the

above myBank example, do the following:

sess_sh -command "remove /test/myBank -user SCOTT -password TIGER \
-service sess_iiop://dlsun164:2481:orcl" -idl

Circular References Between Interfaces
The current implementation of the IFR does not allow circular references between

interfaces within a module. That is, you cannot have two interfaces which reference

-idl Load the IDL interface definition into the IFR. In order for the

IDL interface to be loaded into the server, the full directory

path and IDL file name must be accessible from the server.

That is, no relative path names are allowed and the path

directory given is one that exists on the server, not on the

client.

-replaceIDL If an IDL interface definition currently exists within the IFR,

replace it with this version. You must have the appropriate

security permissions for this to succeed. If not specified, the

publish command will not replace the existing interface

within the IFR.
Advanced CORBA Programming 5-7

Retrieving Interfaces With The IFR
each other. The following example shows an invalid module definition, where x
references y and y references x :

module circular {
 interface x;
 interface y { x func1(); };
 interface x { y func2(); };
};

Managing Security Within the IFR
The IFR is implemented using SQL tables. Thus, you must have the correct

permissions to change or remove an existing IDL from the IFR. The user who

created the IDL automatically has permission. Otherwise, this user must grant

permission for any other user to modify or remove the IDL from within the IFR.

Any grant executed on a PublishedObject also extends to the interface that was

stored in the IFR with the -idl option on the publish command.

See the security chapter in the Oracle9i Java Developer’s Guide for information on

granting permissions.

Retrieving Interfaces Implicitly
You can retrieve the interface definition implicitly through the

org.omg.CORBA.Object._get_interface_def method. The object returned

should be cast to InterfaceDef . The following code retrieves the InterfaceDef
object for the Bank.Account :

AccountManager manager =
 (AccountManager)ic.lookup (serviceURL + objectName);

Bank.Account account = manager.open(name);

org.omg.CORBA.InterfaceDef intf = (org.omg.CORBA.InterfaceDef)
 account._get_interface_def();

Once retrieved, you can execute any of the InterfaceDef methods for retrieving

information about the interface.

Retrieving Interfaces Explicitly
All defined interfaces stored in the IFR are stored in a hierarchy. The top level of the

hierarchy is a Repository object, which is also a Container object. All objects

under the Repository object are Contained objects. You can parse down through
5-8 CORBA Developer’s Guide and Reference

Retrieving Interfaces With The IFR
the Container objects, reviewing the Contained objects, until you find the

particular interface definition you want.

The Repository object is pre-published under the name "/etc/ifr ". To retrieve a

prepublished IFR Repository object, look up the "/etc/ifr " object as shown

below:

Repository rep = (Repository)ic.lookup(serviceURL + "/etc/ifr");

Once the Repository object is retrieved, you can traverse through the hierarchy

until you reach the object you are interested in. The methods for each object type,

InterfaceDef , and others are documented fully in the OMG CORBA

specification.

As shown in Figure 5–1, the Account interface is contained within

AccountManager , which is contained within the Repository object.

Figure 5–1 IFR Hierarchy for Account Interface

Example 5–1 Traversing IFR Repository Within the print Method

Once you retrieve the IFR object, you can traverse through all stored definitions

within the IFR. The print method in Example 5–1 prints out all stored definitions

located within the IFR.

public void print() throws org.omg.CORBA.UserException {

 //retrieve the repository as a container... as the top level container
 org.omg.CORBA.Container container =

Note: The user can only see the objects to which the user has read

privileges.

Repository "/etc/ifr"
Container for "AccountManager"

 "AccountManager"
Contained by Repository
Container of "Account"

 "Account"
Contained by "AccountManager"
Advanced CORBA Programming 5-9

Retrieving Interfaces With The IFR
(Container)ic.lookup(serviceURL + "/etc/ifr");

 //All objects in the IFR are Contained, except for the Repository.
 //Retrieve the contents of the Repository, which would be all objects that
 //it contains.
 org.omg.CORBA.Contained[] contained =
 container.contents(org.omg.CORBA.DefinitionKind.dk_all, true);

 //The length is equal to the number of objects contained within the IFR
 for(int i = 0; i < contained.length; i++) {
 {
 //Each Contained object has a description.

 org.omg.CORBA.ContainedPackage.Description description =
contained[i].describe();

 //Each object is of a certain type, which is retrieved by the value method.
 switch(contained[i].def_kind().value()) {
 case org.omg.CORBA.DefinitionKind._dk_Attribute:

 printAttribute(org.omg.CORBA.AttributeDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Constant:
 printConstant(org.omg.CORBA.ConstantDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Exception:
 printException(org.omg.CORBA.ExceptionDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Interface:
 printInterface(org.omg.CORBA.InterfaceDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Module:
 printModule(org.omg.CORBA.ModuleDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Operation:
 printOperation(org.omg.CORBA.OperationDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Alias:
 printAlias(org.omg.CORBA.AliasDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Struct:
 printStruct(org.omg.CORBA.StructDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Union:
 printUnion(org.omg.CORBA.UnionDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Enum:
5-10 CORBA Developer’s Guide and Reference

Using the CORBA Tie Mechanism
 printEnum(org.omg.CORBA.EnumDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_none:
 case org.omg.CORBA.DefinitionKind._dk_all:
 case org.omg.CORBA.DefinitionKind._dk_Typedef:
 case org.omg.CORBA.DefinitionKind._dk_Primitive:
 case org.omg.CORBA.DefinitionKind._dk_String:
 case org.omg.CORBA.DefinitionKind._dk_Sequence:
 case org.omg.CORBA.DefinitionKind._dk_Array:
 default:

break;
 }
 }
 }

Using the CORBA Tie Mechanism
There is only one special consideration when you use the CORBA Tie, or delegation,

mechanism rather than the inheritance mechanism for server object

implementations. In the Tie case, you must implement the

oracle.aurora.AuroraServices.ActivatableObject interface. This

interface has a single method: _initializeAuroraObject().

Note that earlier releases of the Oracle9i ORB required you to implement this

method for all server objects. For the current release, its implementation is required

only for Tie objects.

The implementation of _initializeAuroraObject() for a tie class is typically:

import oracle.aurora.AuroraServices.ActivatableObject;
...
public org.omg.CORBA.Object _initializeAuroraObject () {
 return new _tie_Hello (this);
...

where _tie_<interface_name> is the tie class generated by the IDL compiler.

Additionally, you must always include a public, parameterless constructor for the

implementation object.

See the "TIE Example" on page A-21 for a complete example that shows how to use

the Tie mechanism.
Advanced CORBA Programming 5-11

Migrating from JDK 1.1 to Java 2
Migrating from JDK 1.1 to Java 2
Oracle9i updated its ORB implementation to Visibroker 3.4, which is compatible

with both JDK 1.1 and Java 2.

JDK 1.1 did not contain an OMG CORBA implementation. Thus, when you

imported the Inprise libraries and invoked the CORBA methods, it always invoked

the Visibroker implementation. The Sun Microsystems Java 2 contains an OMG

CORBA implementation. Thus, if you invoke the CORBA methods without any

modifications—as discussed below—you will invoke the Sun Microsystems CORBA

implementation, which can cause unexpected results. To avoid this, you should

bypass the Sun Microsystems CORBA implementation.

Here are the three methods for initializing the ORB on the client-side and

recommendations for bypassing the Sun Microsystems CORBA implementation:

■ JNDI Lookup—The setup for the lookup method is the same for both JDK 1.1

and Java 2. However, you must regenerate the stubs and skeletons.

■ Oracle9i ORB Interface—The Oracle9i ORB provides an interface for initializing

the ORB. If you do not use JNDI, your client initializes an ORB on its node to

communicate with the ORB in the database. You can use an Oracle9i ORB on

your client through this class.

■ CORBA ORB Interface—If you want to use OMG’s CORBA ORB interface, you

must set a few properties to ensure that you are accessing the correct

implementation. If you do not wish to use the Oracle9i ORB on your client, you

can use the pure CORBA interfaces. However, you must set up your

environment to direct your calls to the correct implementation.

JNDI Lookup
If you are using JNDI on the client to access CORBA objects that reside in the server,

no code changes are necessary. However, you must regenerate your CORBA stubs

and skeletons.

Note: All release 8.1.5 CORBA applications must regenerate their

stubs and skeletons to work with Oracle9i release 8.1.6 and

following. You must use the current release tools when

regenerating code from an IDL file.
5-12 CORBA Developer’s Guide and Reference

Migrating from JDK 1.1 to Java 2
Oracle9 i ORB Interface
If your client environment uses JDK 1.1, you do not need to change your existing

code. However, you must regenerate your stubs and skeletons.

If your client environment has been upgraded to Java 2, you can initialize the ORB

through the oracle.aurora.jndi.orb_dep.Orb.init method. This method

guarantees that when you initialize the ORB, it will initialize only a single ORB

instance. That is, if you use the Java 2 ORB interface, it returns a new ORB instance

each time you invoke the init method. The Oracle9i init method initializes a

singleton ORB instance. Each successive call to init returns an object reference to

the existing ORB instance.

In addition, the Oracle9i ORB interface manages the session-based IIOP connection.

oracle.aurora.jndi.orb_dep.Orb Class There are several init methods, each with a

different parameter list. The following describes the syntax and parameters for each

init method.

No Parameters
If you execute the ORB.init method that takes no parameters, it does the

following:

■ If no ORB instance exists, it creates an ORB instance and returns its reference to

you.

■ If an ORB instance exists, it returns the ORB reference to you.

Syntax
public com.visigenic.vbroker.orb.ORB init();

Providing ORB Properties
If you execute the ORB.init method that takes the ORB properties as the only

parameter, it does the following:

■ If no ORB instance exists, it creates an ORB instance, taking into account the

properties argument, and returns its reference to you.

Note: The returned class for each init method is different. You

can safely cast the org.omg.CORBA.ORB class to

com.visigenic.vbroker.orb.ORB .
Advanced CORBA Programming 5-13

Migrating from JDK 1.1 to Java 2
■ If an ORB instance exists, it returns the ORB reference to you.

Syntax
public org.omg.CORBA.ORB init(Properties props);

Providing Input Arguments and ORB Properties
If you execute the ORB.init method that takes the ORB properties and ORB

command-line arguments, it always creates an ORB instance and returns the

reference to you.

Syntax
public org.omg.CORBA.ORB init(String[] args, Properties props);

Example 5–2 Using the Oracle9i ORB init Method

The following example shows a client instantiating an ORB using the Oracle9i Orb
class.

// Create the client object and publish it to the orb in the client
// Substitute Oracle9 i ’s Orb.init for OMG ORB.init call
// old way: org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

Providing ORB Properties with Username, Password, and Role
If you execute the ORB.init method that provides the ORB properties, username,

password, and role as parameters, it does the following:

■ If no ORB instance exists, it creates an ORB instance and returns its reference to

you.

■ If an ORB instance exists, it returns the ORB reference to you.

Use this method when your client chooses not to use JNDI for ORB initialization

and it receives a reference to an existing object from another client. To access an

active object within a session, the new client must authenticate itself to the database

in one of two ways:

Parameter Description

Properties props ORB system properties

String[] args Arguments that are passed to the ORB instance
5-14 CORBA Developer’s Guide and Reference

Migrating from JDK 1.1 to Java 2
■ If SSL_CREDENTIALS is requested, provide the username, password, and role

in the init method parameters. Then, when you invoke a method on the

supplied object reference, the username, password, and role are passed

implicitly on the first message to authenticate the client to the database.

■ If the login protocol is requested, through either SSL_LOGIN or

NON_SSL_LOGIN, the first client must pass object references to both the login

object and the destination object. The second client authenticates itself by

providing the username, password, and role on the authenticate method of

the login object. Then, it executes any method on the object.

This method is how a second client invokes an active object in an established

session.

Syntax
public org.omg.CORBA.ORB init(String un, String pw, String role,

boolean ssl, java.util.Properties props);

CORBA ORB Interface
If you have implemented a pure CORBA client—that is, you do not use JNDI—you

must set the following properties before the ORB initialization call. These properties

direct the call to the Oracle9i implementation rather than the Java 2 implementation.

This ensures the behavior that you expect. The behavior expected from Visibroker is

as follows:

■ Even if you invoke ORB.init more than once, Oracle9i creates only a single

ORB instance. If you do not set these properties, be aware that each invocation

of ORB.init will create a new ORB instance.

■ The session IIOP connection is managed correctly.

■ Callbacks from the server are managed correctly.

Parameter Description

String un The username for client-side authentication.

String pw The password for client-side authentication.

String role The role to use after logging on.

Boolean ssl If true, SSL is enabled for the connection. If false, a NON-SSL
connection is used.

Properties props Properties that are used by the ORB.
Advanced CORBA Programming 5-15

Invoking CORBA Objects From Applets
Example 5–3 Assigning Visibroker Values to OMG Properties

The following example shows how to set up the OMG properties for directing the

OMG CORBA init method to the Visibroker implementation.

System.getProperties().put("org.omg.CORBA.ORBClass",
"com.visigenic.vbroker.orb.ORB");

System.getProperties().put("org.omg.CORBA.ORBSingletonClass",
"com.visigenic.vbroker.orb.ORB");

Or you can set the properties on the command line, as follows:

java -Dorg.omg.CORBA.ORBClass=com.visigenic.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.visigenic.vbroker.orb.ORB

Backward Compatibility with Oracle9 i Release 8.1.5
The tools provided with Oracle9i, such as publish , have been modified to work

with either a JDK 1.1 or Java 2 environment. However, any code that has been

generated or loaded with the 8.1.5 version of any tool will not succeed. Make sure

that you always use the current version of all tools. This rule applies to your

CORBA stubs and skeletons. In migrating any release 8.1.5 applications, you must

regenerate all stubs and skeletons with the current version of the IDL compiler.

Invoking CORBA Objects From Applets
You invoke a server object from an applet in the same manner as from a client. The

only differences are the following:

■ You must conform to the applet standards.

■ You must conform to the Java plug-in standards. The Java plug-ins that are

supported are JDK 1.1, Java 2, and Oracle’s JInitiator.

■ You set the following properties within the initial context environment before

the object lookup: ORBdisableLocator , ORBClass , and

ORBSingletonClass.

Property Assign Value

org.omg.corba.ORBClass com.visigenic.vbroker.orb

org.omg.corba.ORBSingletonClass com.visigenic.vbroker.orb
5-16 CORBA Developer’s Guide and Reference

Invoking CORBA Objects From Applets
Using Signed JAR Files to Conform to Sandbox Security
The security sandbox constricts your applet from accessing anything on the local

disk or from connecting to a remote host other than the host that the applet was

downloaded from. If you create a signed JAR file as a trusted party, you can bypass

the sandbox security. See http://java.sun.com for more information on applet

sandbox security and signed JAR files.

Performing Object Lookup in Applets
You perform the JNDI lookup within the applet the same as within any Oracle Java

client, except that you set the following property within the initial context:

env.put(ServiceCtx.APPLET_CLASS, this);

By default, you do not need to install any JAR files on the client to run the applet.

However, if you want to place the Oracle JAR files on the client machine, set the

ClassLoader property in the InitialContext environment, as follows:

env.put(’ClassLoader’, this.getClass().getClassLoader());

The following shows the init method within an applet that invokes the Bank

example. The applet sets up the initial context—including setting the

APPLET_CLASS property—and performs the JNDI lookup giving the URL.

public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 try {
 // Initialize the ORB (using the Applet).
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 env.put(ServiceCtx.APPLET_CLASS, this);

 Context ic = new InitialContext(env);
Advanced CORBA Programming 5-17

Invoking CORBA Objects From Applets
 _manager = (AccountManager)ic.lookup
("sess_iiop://hostfunk:2222/test/myBank");

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 throw new RuntimeException();
 }
 }

Within the action method, the applet invokes methods off of the retrieved object.

In this example, the open method of the retrieved AccountManager object is

invoked.

 public boolean action(Event ev, Object arg) {
 if(ev.target == _checkBalance) {
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account’s balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

Modifying HTML for Applets that Access CORBA Objects
Oracle9i supports only the following Java plug-ins for the HTML page that loads in

the applet: JDK 1.1, Java 2, and Oracle JInitiator. Each plug-in contains different

syntax for the applet information. However, each HTML page may contain

definitions for the following two properties:

■ ORBdisableLocator set to TRUE—Required for all applets.

■ ORBClass and ORBSingletonClass definitions—Required for the applets

that use the Java 2 or JInitiator plug-in.
5-18 CORBA Developer’s Guide and Reference

Invoking CORBA Objects From Applets
The examples in the following sections show how to create the correct HTML

definition for each plug-in type. Each HTML definition defines the applet bank

example.

■ Example 5–4, "HTML Definition for JDK 1.1 Plug-in"

■ Example 5–5, "HTML Definition for Java 2 Plug-in"

■ Example 5–6, "HTML Definition for JInitiator Plug-in"

Example 5–4 HTML Definition for JDK 1.1 Plug-in

<pre>
<html>
<title>Applet talking to 8i</title>
<h1>applet talking to 8i using java plug in 1.1 </h1>
<hr>
The bank example
Specify the plugin in codebase, the class within the CODE parameter, the JAR
files in the ARCHIVE parameter, the plugin version in the type parameter, and
set ORBdisableLocator to true.
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 500 HEIGHT = 50
codebase="http://java.sun.com/products/plugin/1.1/

jinstall-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,

aurora_client.jar,vbjorb.jar,vbjapp.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">
<PARAM NAME="ORBdisableLocator" VALUE="true">

<COMMENT>
Set the plugin version in the type, set ORBdisableLocator to true, the applet
class within the java_CODE tag, the JAR files in the java_ARCHIVE tag, and the
plug-in source site within the pluginspage tag.
<EMBED type="application/x-java-applet;version=1.1"

ORBdisableLocator="true"

Note: Because of the sandbox security rules, you cannot set or

read any system properties. Therefore, any values that you want to

pass on to the ORB runtime, you may set within the applet

parameters. This is the method used to set the

ORBdisableLocator , ORBClass and ORBSingletonClass
properties.
Advanced CORBA Programming 5-19

Invoking CORBA Objects From Applets
java_CODE = OracleClientApplet.class
java_ARCHIVE = "oracleClient.jar,
aurora_client.jar,vbjorb.jar,vbjapp.jar"
WIDTH = 500 HEIGHT = 50

pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

Example 5–5 HTML Definition for Java 2 Plug-in

<pre>
<html>
<title>applet talking to 8i</title>
<h1>applet talking to 8i using Java plug in 1.2 </h1>
<hr>
The bank example
Specify the plugin in codebase, the class within the CODE parameter, the JAR
files in the ARCHIVE parameter, the plugin version in the type parameter, and
set ORBdisableLocator to true.
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 500 HEIGHT = 50
codebase="http://java.sun.com/products/plugin/1.2/jinstall-11-win32.cab#

Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,
aurora_client.jar,vbjorb.jar,vbjapp.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1.2">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.visigenic.vbroker.orb.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass"

VALUE="com.visigenic.vbroker.orb.ORB">
<COMMENT>
Set the plugin version in the type, set ORBdisableLocator to true, the ORBClass
and ORBSingletonClass to the correct ORB class, the applet
class within the java_CODE tag, the JAR files in the java_ARCHIVE tag, and the
plug-in source site within the pluginspage tag.
<EMBED type="application/x-java-applet;version=1.1.2"

ORBdisableLocator="true"
org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
5-20 CORBA Developer’s Guide and Reference

Interoperability with Non-Oracle ORBs
java_CODE = OracleClientApplet.class
java_ARCHIVE = "oracleClient.jar,

aurora_client.jar,vbjorb.jar,vbjapp.jar"
WIDTH = 500 HEIGHT = 50

pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

Example 5–6 HTML Definition for JInitiator Plug-in

<h1> applet talking to 8i using JInitiator 1.1.7.18</h1>
 <COMMENT>
 Set the plugin version in the type, set ORBdisableLocator to true, the
 ORBClass and ORBSingletonClass to the correct ORB class, the applet
 class within the java_CODE tag, the source of the applet in the java_CODEBASE
 and the JAR files in the java_ARCHIVE tag.
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
 java_CODE="OracleClientApplet"
 java_CODEBASE="http://hostfunk:8080/applets/bank"
 java_ARCHIVE="oracleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBdisableLocator="true"
 org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
 org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
 serverHost="orasundb"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>

Interoperability with Non-Oracle ORBs
You can interoperate with Oracle9i from a client that uses another vendor’s ORB. To

do so, the vendor must provide the functionality that Oracle9i uses by being part of

the database: functions such as session-based connections, extended CosNaming,

and the login protocol. To provide this functionality, your ORB vendor must work

with Oracle’s Product Management to provide libraries for you.
Advanced CORBA Programming 5-21

Interoperability with Non-Oracle ORBs
All client-side functionality has been packaged into aurora_client.jar . This

JAR file has been broken into two JAR files for interoperating with your ORB

vendor:

■ aurora_orbindep.jar —includes ORB-independent features, such as JNDI

■ aurora_orbdep.jar —includes Oracle ORB dependent functionality, such as

session-based communication, the login protocol, and security context

Your ORB vendor needs to provide you with the aurora_orbdep.jar file. Thus,

you include the vendor’s aurora_orbdep.jar file and the Oracle-provided

aurora_orbindep.jar file to replace aurora_client.jar .

The aurora_orbdep.jar includes the following functionality:

Java Client Using Oracle ORB
Perform the following if you choose to use the Oracle-provided ORB on your client:

1. Put aurora_client.jar in a directory that exists in the CLASSPATH.

2. Compile and run your CORBA application.

Note: If you do not remove the aurora_client.jar file from

your CLASSPATH, you will be using Oracle’s classes instead of

your ORB vendor’s classes.

Function Description

login The login protocol performs the challenge/response protocol for
authenticating the client to the database. See "IIOP Security" on
page 6-1 for more information.

 bootstrap The boot service obtains key services, such as CosNaming.

 extended CosNaming The Oracle9i ORB extended CosNaming to automatically
instantiate an object upon first lookup.

 Session IIOP Session IIOP is implemented to allow one client to connect to
more than a single IIOP session at the same time. See Chapter 3,
"Configuring IIOP Applications", for more information.

Credentials This is the security context interceptor for the credential type of
authentication.
5-22 CORBA Developer’s Guide and Reference

Interoperability with Non-Oracle ORBs
Java Client Using Non-Oracle ORB
Perform the following if you choose to use another vendor’s ORB on your client:

1. Put aurora_orbindep.jar in a directory that exists in the CLASSPATH.

2. Contact your ORB vendor to receive their aurora_orbdep.jar .

3. Put their aurora_orbdep.jar in a directory that exists in the CLASSPATH.

4. Compile and run your CORBA application.

C++ Client Interoperability
With C++ clients, the ORB vendor must provide the aurora_client.jar file

functionality in shared libraries. The vendor will make use of the Oracle-provided

C++ login protocol for authentication. All clients are required to authenticate

themselves to the database. One of the methods for authenticating is through the

login protocol.

The login protocol is an Oracle-specific design, used for logging in to a database by

providing a username and password to authenticate the client. The following

example shows how to write a sample C++ CORBA client to Oracle9i. This example

uses the Visigenics C++ ORB for its client-side ORB.

Example 5–7 C++ Client Using Login Protocol to Authenticate

The following C++ client uses the Visigenics C++ ORB for the client-side ORB. Your

implementation can be different, depending on the type of ORB you use.

#include <Login.h>
#include <oracle_orbdep.h>

// set up host, port, and SID
char *sid = NULL;
char *host = argv[1];
int port = atol(argv[2]);
if(argc == 4) sid = argv[3];

// set up username, password, and role
wchar_t *username = new wchar_t[6];

Note: If you do not remove the aurora_client.jar file from

your CLASSPATH, you will be using Oracle’s classes instead of

your ORB vendor’s classes.
Advanced CORBA Programming 5-23

Interoperability with Non-Oracle ORBs
username[0] = 's';
username[1] = 'c';
username[2] = 'o';
username[3] = 't';
username[4] = 't';
username[5] = '\0';

wchar_t *password = new wchar_t[6];
password[0] = 't';
password[1] = 'i';
password[2] = 'g';
password[3] = 'e';
password[4] = 'r';
password[5] = '\0';

wchar_t *role = new wchar_t[1];
role[0] = '\0';

// Get the Name service Object reference
AuroraServices::PublishingContext_ptr rootCtx = NULL;

// Contact Visibroker’s boot service for initializing
rootCtx = VisiCppBootstrap::getNameService (host, port, sid);

// Get the pre-published login object reference
AuroraServices::PublishedObject_ptr loginPubObj = NULL;
AuroraServices::LoginServer_ptr serv = NULL;
CosNaming::NameComponent *nameComponent = new CosNaming::NameComponent[2];

nameComponent[0].id = (const char *)"etc";
nameComponent[0].kind = (const char *)"";
nameComponent[1].id = (const char *)"login";
nameComponent[1].kind = (const char *)"";

CosNaming::Name *name1 = new CosNaming::Name(2, 2, nameComponent, 0);

// Lookup this object in the Name service
CORBA::Object_ptr loginCorbaObj = rootCtx->resolve (*name1);

// Make sure it is a published object
loginPubObj = AuroraServices::PublishedObject::_narrow (loginCorbaObj);

// create and activate this object (non-standard call)
loginCorbaObj = loginPubObj->activate_no_helper ();
serv = AuroraServices::LoginServer::_narrow (loginCorbaObj);
5-24 CORBA Developer’s Guide and Reference

Interoperability with Non-Oracle ORBs
// Create a client login proxy object and authenticate to the DB
oracle_orbdep *_visi = new oracle_orbdep(serv);
Login login(_visi);
boolean res = login.authenticate(username, password, role);

IIOP Transport Protocol
If, when using another vendor’s ORB, the ORB vendor does not support

session-based IIOP, you can use a regular IIOP port. Any client that uses a regular

IIOP transport cannot access multiple sessions.

To configure a non-session-based IIOP listener, you must do the following:

1. Configure the MTS_DISPATCHERS parameter to

oracle.aurora.server.GiopServer instead of

oracle.aurora.server.SGiopServer .

mts_dispatchers="(protocol=tcp | tcps)
(presentation=oracle.aurora.server.GiopServer)"

2. Set the TRANSPORT_TYPE property to ServiceCtx.IIOP , as shown below:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put("TRANSPORT_TYPE", ServiceCtx.IIOP);
Context ic = new InitialContext(env);

Note: Instead of setting the TRANSPORT_TYPE property, you can

use the -iiop option on any of the command-line tools. If your

client is directing the request to a dispatcher, you must also provide

the regular IIOP port within the service name on the

command-line.
Advanced CORBA Programming 5-25

Interoperability with Non-Oracle ORBs
5-26 CORBA Developer’s Guide and Reference

IIOP Se
6

IIOP Security

Security involves data integrity, authentication, and authorization.

■ For data integrity, Oracle9i enables your application to use IIOP over a secure

socket layer (SSL).

■ For authentication, your application can choose between providing a

username/password combination or a certificate.

■ For authorization, you can choose the level of trust points that any incoming

clients will be required to give.

The following sections explain these subjects in detail:

■ Overview

■ Data Integrity

■ Authentication

■ Client-Side Authentication

■ Server-Side Authentication

■ Authorization
curity 6-1

Overview
Overview
As discussed in the Oracle9i Java Developer’s Guide, there are several security issues

you must think about for your application. The Oracle9i Java Developer’s Guide
divides security into network connection, database contents, and JVM security

issues. All these factors pertain to IIOP. However, IIOP has specific implementation

issues for both the networking and the JVM security, as listed below:

■ JVM security includes both utilizing Java2 permissions and granting execution

rights. For IIOP, you can grant execution privileges in one of two ways:

* CORBA—The owner grants execution rights to CORBA objects with an

option on the loadjava tool. See the loadjava discussion in the

Oracle9i Java Developer’s Guide for information on granting execution

rights when loading the CORBA classes.

* EJB—The owner grants execution rights to EJB objects and, potentially,

methods within the deployment descriptor. See the section on "Access

Control" in the Oracle9i Enterprise JavaBeans Developer’s Guide and
Reference for more information on defining execution rights within your

deployment descriptor.

■ Network connection security includes the following issues:

* Data Integrity—To prevent a sniffer from reading the transmission

directly off the wire, all transmissions are encoded. Oracle supports

Secure Socket Layer (SSL) for encryption.

* Authentication—To prevent an invalid user from impersonating a valid

user, the client or server provides authentication information. This

information can take the form of a username/password combination or

certificates.

* Authorization—To prove that the user is allowed access to the object,

two types of authorization are performed:

- Session authorization—The session is authorized to the user. In this

case, the client is authorized to access the server through validating

either the username or certificate provided.

- User authorization—The client or server can perform authorization on

a provided certificate. This type of authorization can be performed only

when the client or server authenticates itself by providing a certificate.

This section describes fully the network connection security issues that IIOP

applications must consider.
6-2 CORBA Developer’s Guide and Reference

Data Integrity
Data Integrity
Do you want your transport line to be encrypted? Do you want data integrity and

confidentiality? If you believe that the physical connection can be tampered with,

you can consider encrypting all transmissions by using the secure socket layer (SSL)

encryption technology. However, because adding encryption to your transmission

affects your connection performance, if you do not have any transport security

issues, you should transmit unencrypted.

Figure 6–1 Data Integrity Decision Tree

Using the Secure Socket Layer
The Oracle9i CORBA and EJB implementations rely on the Secure Socket Layer

(SSL) for data integrity and authentication. SSL is a secure networking protocol,

originally defined by Netscape Communications, Inc. Oracle9i supports SSL over

the IIOP protocol used for the ORB.

When a connection is requested between a client and the server, the SSL layer

within both parties negotiate during the connection handshake to verify if the

connection is allowed. The connection is verified at several levels:

1. The SSL version on both the client and the server must agree for the transport to

be guaranteed for data integrity.

encrypt?

Is my physical
transport safe?

Yes

No

Use SSL for
data integrity

Do not use SSL;
transmit in the
clear
IIOP Security 6-3

Data Integrity
2. If server-side authentication with certificates is requested, the certificates

provided by the server are verified by the client at the SSL layer. This means

that the server is guaranteed to be itself. That is, it is not a third party

pretending to be the server.

3. If client-side authentication with certificates is requested, the certificates

provided by the client are verified at the SSL layer. The server receives the

client’s certificates for authentication or authorization of the client.

The SSL layer performs authentication between the peers. After the handshake, you

can be assured that the peers are authenticated to be who they say they are. You can

perform additional tests on their certificate chain to authorize that this user can

access your application. See "Authorization" on page 6-26 for how to go beyond

authentication.

SSL Version Negotiation
SSL makes sure that both the client and server side agree on an SSL protocol version

number. The values that you can specify are as follows:

■ Undetermined: SSL_UNDETERMINED. This is the default setting.

■ 3.0 with 2.0 Hello: This setting is not supported.

■ 3.0: SSL_30.

■ 2.0: This setting is not supported.

Note: Normally, client-side authentication means only that the

server verifies that the client is not an impersonator and is trusted.

However, when you specify SSL_CLIENT_AUTH, you are

requesting both server-side and client-side authentication.

Note: If you decide to use SSL, your client must import the

following JAR files:

■ If your client uses JDK 1.1, import jssl-1_1.jar and

javax-ssl-1_1.jar.

■ If your client uses Java 2, import jssl-1_2.jar and

javax-ssl-1_2.jar .
6-4 CORBA Developer’s Guide and Reference

Authentication
In the database, the default is "Undetermined". The database does not support 2.0 or

3.0 with 2.0 Hello. Thus, you can use only the Undetermined or 3.0 setting for the

client.

■ The server’s version is set within the database SQLNET.ORA file, using the

SSL_VERSION parameter. For example, SSL_VERSION = 3.0.

■ For the client, set the SSL client version number in the client’s JNDI

environment, as follows:

environment.put("CLIENT_SSL_VERSION", ServiceCtx.SSL_30);

Table 6–1 shows which handshakes resolve to depending on SSL version settings on

both the client and the server. The star sign "✸" indicates cases where the handshake

fails.

Table 6–1 SSL Version Numbers

Authentication
Authentication is the process by which one party supplies to a requesting party

information that identifies itself. This information guarantees that the originator is

not an imposter. In the client/server distributed environment, authentication can be

required from the client or the server:

■ Server-side authentication—The server sends identifying information to

authenticate itself. The client uses this information to verify that the server is

itself, and not an imposter. If you request SSL, the server will always send

certificate-based authentication information.

■ Client-side authentication—For the same reasons, the client sends identifying

information to the server, which includes either a username/password

 Server Setting

 Client Setting Undetermined
3.0 W/2.0 Hello

(Not Supported) 3.0
 2.0 (Not
 Supported)

 Undetermined 3.0 ✸ ✸ ✸

 3.0 W/2.0 Hello
 (not supported)

 ✸ ✸ ✸ ✸

 3.0 3.0 ✸ 3.0 ✸

 2.0 (not supported) ✸ ✸ ✸ ✸
IIOP Security 6-5

Client-Side Authentication
combination or certificates. Since the client is logging on to a database, the client

must always authenticate itself to the database.

■ Callout authentication—The server initiates a call to another object. This causes

the server to act as a client; as such, the server cannot use the database

authentication information, but must provide information and authenticate

itself as an independent party.

■ Callback authentication—The server is given either a CORBA IOR or an EJB

handle for calling back to an object that exists on the client. In this scenario, the

server is acting as a client; as such, the server cannot use the database

authentication information, but must provide information and authenticate

itself as an independent party.

Client-Side Authentication
The Oracle data server is a secure server: a client application cannot access data

stored in the database without first being authenticated by the database server.

Oracle9i CORBA server objects and Enterprise JavaBeans execute in the database

server. For a client to activate such an object and invoke methods on it, the client

must authenticate itself to the server. The client authenticates itself when a CORBA

or EJB object starts a new session. The following are examples of how each IIOP

client must authenticate itself to the database:

■ When a client initially starts a new session, it must authenticate itself to the

database.

■ When a client passes an object reference (a CORBA IOR or an EJB bean handle)

to a second client, the second client connects to the session specified in the

object reference. The second client authenticates itself to the server.

The client authenticates itself by providing one of the following types:

Authentication type Definition

Certificates You can provide the user certificate, the Certificate Authority
certificate (or a chain that contains both, including other identifying
certificates), and a private key.

Username and
password
combination

You can provide the username and password through either
credentials or the login protocol. In addition, you can pass a database
role to the server, along with the username and password.
6-6 CORBA Developer’s Guide and Reference

Client-Side Authentication
The type of client-side authentication can be determined by the server’s

configuration. If, within the SQLNET.ORA file, the

SSL_CLIENT_AUTHENTICATION parameter is TRUE, then the client must provide

certificate-based authentication. If the SSL_CLIENT_AUTHENTICATION parameter

is FALSE, the client authenticates itself with a username/password combination. If

the SSL_CLIENT_AUTHENTICATION parameter is TRUE and the client provides a

username/password, the connection handshake will fail.

The following table gives a brief overview of the options that the client has for

authentication.

■ The columns represent the options available if you have chosen to use SSL for

data integrity.

■ The rows demonstrate the three authentication vehicles: login protocol,

credentials, and certificates.

■ The table entries detail the different methods you must employ when

implementing the client-side authentication type.

Authentication vehicle
NON-SSL transport SSL transport

Providing username and
password using the login protocol

■ Implicit method: Set JNDI
property to NON_SSL_LOGIN;
provide username and password
in JNDI properties.

■ Explicit method: Create a Login
object with username and
password.

■ Implicit method: Set JNDI
property to SSL_LOGIN;
provide username and
password in JNDI properties.

■ Explicit method: Create a
Login object with username
and password.

Providing username and
password using credentials

Not supported because the password
would transmit in the clear.

Set JNDI property to
SSL_CREDENTIAL; username
and password are implicitly sent
to the server in the handshake.

Providing certificates Not supported because certificates
require an SSL transport.

Set JNDI property to
SSL_CLIENT_AUTH; provide
client certificate, CA certificate,
and private key in JNDI
properties.

Pure CORBA objects use
AuroraCertificateManager
class to specify certificates, CA
certificate, and private key.
IIOP Security 6-7

Client-Side Authentication
As the table demonstrates, most of the authentication options include setting an

appropriate value in JNDI properties.

Using JNDI for Authentication
To set up client-side authentication using JNDI, set the

javax.naming.Context.SECURITY_AUTHENTICATION attribute to one of the

following values:

■ ServiceCtx.NON_SSL_LOGIN —A plain IIOP connection is used. Because SSL

is not used, all data flowing over the line is not encrypted. Thus, to protect the

password, the client uses the login protocol to authenticate itself. In addition,

the server does not provide SSL certificates to the client to identify itself.

■ ServiceCtx.SSL_LOGIN —An SSL-enabled IIOP connection is used. All data

flowing over the transport is encrypted. If you do not want to provide a

certificate for the client authentication, use the login protocol to provide the

username and password.

Because this is an SSL connection, the server sends its certificate identity to the

client. The client is responsible for verifying the server’s certificate, if interested,

for server authentication. Optionally, the client can set up trust points for the

server’s certificate to be verified against.

■ ServiceCtx.SSL_CREDENTIAL —An SSL-enabled IIOP connection is used.

All data flowing over the transport is encrypted. The client provides the

username and password without using the login protocol for client

authentication to the server. The username and password are automatically

passed to the server in a security context, on the first message.

The server provides its certificate identity to the client. The client is responsible

for verifying the server’s certificate, if interested, for server authentication.

■ ServiceCtx.SSL_CLIENT_AUTH —An SSL-enabled IIOP connection is used.

All data flowing over the transport is encrypted. The client provides

appropriate certificates for client-side authentication to the server. In addition,

the server provides its certificate identity to the client. If interested, the client is

responsible for authorizing the server’s certificate.

Note: The client’s password is not encrypted, as it is with SSL. It

might be slightly more efficient than SSL_LOGIN, where

encrypting a password over an SSL connection is redundant.
6-8 CORBA Developer’s Guide and Reference

Client-Side Authentication
■ Nothing is specified. The client must activate the login protocol explicitly before

activating and invoking methods on a server-side object. Use this method when

a client must connect to an existing session and invoke methods on an existing

object. See the

$ORACLE_HOME/javavm/demo/examples/corba/session/sharedsess
ion example for more information. The username and password in the initial

context environment are automatically passed as parameters to the login

object’s authenticate() method.

Within each of these options, you choose to do one or more of the following:

For information on how to implement each of these methods for client or server

authentication, see the following sections:

■ Providing Username and Password for Client-Side Authentication

■ Using Certificates for Client Authentication

■ Server-Side Authentication

Providing Username and Password for Client-Side Authentication
The client authenticates itself to the database server either through a

username/password or by supplying appropriate certificates. The

username/password can be supplied either through Oracle’s login protocol, or

credentials over the SSL transport connection.

■ Provide a username and password by setting JNDI properties, which implicitly

sets these values in a login protocol. Set SECURITY_AUTHENTICATION to
ServiceCtx.SSL_LOGIN or ServiceCtx.NON_SSL_LOGIN .

■ Provide a username and password through credentials. The username and

password are provided implicitly and are shipped to the server over the

encrypted SSL transport. Set SECURITY_AUTHENTICATION to
serviceCtx.SSL_CREDENTIAL .

■ Provide a username and password in an explicitly activated login protocol.

 Client authentication ■ authenticate itself to the server using login protocol

■ authenticate itself to the server using straight username and
password

■ authenticate itself to the server using SSL certificates

 Server authentication ■ authenticate itself to the client using SSL certificates
IIOP Security 6-9

Client-Side Authentication
Username Sent by Setting JNDI Properties for the Login Protocol
A client can use the login protocol to authenticate itself to the Oracle9i data server.

You can use the login protocol either with or without SSL encryption, because a

secure handshaking encryption protocol is built in to the login protocol.

If your application requires an SSL connection for client-server data security, specify

the SSL_LOGIN service context value for the SECURITY_AUTHENTICATION

property that is passed when the JNDI initial context is obtained. The following

example defines the connection to be SSL-enabled for the login protocol. Notice that

the username and password are set.

Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_LOGIN);
Context ic = new InitialContext(env);
...
If your application does not use an SSL connection, specify NON_SSL_LOGIN
within the SECURITY_AUTHENTICATION parameter as shown below:

env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx. NON_SSL_LOGIN);

When you specify values for all four JNDI Context

variables—URL_PKG_PREFIXES, SECURITY_PRINCIPAL,

SECURITY_CREDENTIALS, and SECURITY_AUTHENTICATION—the first

invocation of the Context.lookup() method performs a login automatically.

If the client setting up the connection is not using JNDI lookup() because it

already has an IOR, the user that gave it the IOR for the object should have also

passed in a Login object that exists in the same session as the active object. You must

Note: The Login class serves as an implementation of the client

side of the login handshaking protocol and as a proxy object for

calling the server login object. This component is packaged in the

aurora_client.jar file. All Oracle9i ORB applications must

import this library.

Note: The login handshaking is secured by encryption, but the

remainder of the client-server interaction is not secure.
6-10 CORBA Developer’s Guide and Reference

Client-Side Authentication
provide the username and password in the authenticate method of the Login

object before invoking the methods on the active object.

Logging In and Out of the Oracle9 i Session If the session owner wishes to exit the

session, the owner can use the logout method of the LogoutServer object, which

is pre-published as "/etc/logout ". You use the LogoutServer object to exit the

session. Only the session owner is allowed to logout. Any other owner receives a

NO_PERMISSION exception.

The LogoutServer object is analogous to the LoginServer object, which is

pre-published as "/etc/login ". You can use the LoginServer object to retrieve

the Login object, which is used to authenticate to the server. This is an alternative

method to using the Login object within the JNDI lookup.

The following example shows how a client can authenticate using the

LoginServer object and can exit the session through the LogoutServer object.

import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LogoutServer;
...
// To log in using the LoginServer object
LoginServer loginServer = (LoginServer)ic.lookup(serviceURL + "/etc/login");
Login login = new Login(loginServer);
System.out.println("Logging in ..");
login.authenticate(user, password, null);
...
//To logout using the LogoutServer
LogoutServer logout = (LogoutServer)ic.lookup(serviceURL + "/etc/logout");
logout.logout();

Username Sent Implicitly by Using Credentials
Using the ServiceCtx.SSL_CREDENTIAL authentication type means that the

username, password, and, potentially, a role are passed to the server on the first

request. Because this information is passed over an SSL connection, the password is

encrypted by the transfer protocol, and there is no need for the handshaking that

the Login protocol uses. This is slightly more efficient and is recommended for SSL

connections.

Username Sent by Explicitly Activating a Login Object
You can explicitly create and populate a Login object for the database login.

Typically, you would do this if you wanted to create and use more than a single
IIOP Security 6-11

Client-Side Authentication
session from a client. The following example shows a client creating and logging on

to two different sessions. To do this, you must perform the following steps:

1. Create the initial context.

2. Perform a look up on a URL for the destination database.

3. On this database service context, create two subcontexts—one for each session.

4. Login to each session using a Login object, providing a username and

password.

// Prepare a simplified Initial Context as we are going to do
// everything by hand
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
LoginServer login_server1 = (LoginServer)session1.activate ("etc/login");
Login login1 = new Login (login_server1);
login1.authenticate (user, password, null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");
LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
Login login2 = new Login (login_server2);
login2.authenticate (user, password, null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

Note: The username and password for both sessions are identical,

because the destination database is the same database. If the client

connects to two different databases, the username and password

may need to be different for logging on.
6-12 CORBA Developer’s Guide and Reference

Client-Side Authentication
Using Certificates for Client Authentication
Client authentication through certificates requires the client sending a certificate or

certificate chain to the server; the server verifies that the client is truly who the

client said it was and that it is trusted.

You set up the client for certificate authentication through one of the following

methods:

■ Specifying Certificates in a File

■ Specifying Certificates in Individual JNDI Properties

■ Specifying Certificates Using AuroraCertificateManager

Specifying Certificates in a File
You can set up a file that contains the user certificate, the issuer certificate, the entire

certificate chain, an encrypted private key, and the trustpoints. Once created, you

can specify that the client use the file during connection handshake for client

authentication.

1. Create the client certificate file—Create this file through an export feature in the

Wallet Manager. The Oracle Wallet Manager has an option that creates this file.

You must populate a wallet using the Wallet Manager before requesting that the

file is created.

After you create a valid wallet, bring up the Wallet Manager and perform the

following:

■ From the menu bar pull down, click on Operations > Export Wallet.

■ Within the filename field, enter the name that you want the certificate file to

be known as.

This creates a base-64 encoded file that contains all certificates, keys, and

trustpoints that you added within your wallet. For information on how to

create the wallet, see the Oracle Advanced Security Administrator’s Guide.

2. Specify the client certificates file for the connection—Within the client code, set

the SECURITY_AUTHENTICATION property to

ServiceCtx.SSL_CLIENT_AUTH . Provide the appropriate certificates and

Note: All certificates, trustpoints, and the private key should be in

base-64 encoded format.
IIOP Security 6-13

Client-Side Authentication
trustpoints for the server to authenticate against. Specify the filename and

decrypting key in the JNDI properties, as follows:

The following code is an example of how to set up the JNDI properties to define

the client certificate file:

Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, “oracle.aurora.jndi”);
env.put(javax.naming.Context.SECURITY_PRINCIPAL, <filename>);
env.put(javax.naming.Context.SECURITY_CREDENTIAL, <decrypting_key>);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION,

ServiceCtx. SSL_CLIENT_AUTH);
Context ic = new InitialContext(env);
...
For example, if your decrypting key is welcome12 and the certificate file is

credsFile , the following two lines would specify these values within the

JNDI context:

env.put(Context.SECURITY_CREDENTIALS, "welcome12");
env.put(Context.SECURITY_PRINCIPAL, "credsFile");

Specifying Certificates in Individual JNDI Properties
You can provide each certificate, private key, and trust point programmatically, by

setting each item individually within JNDI properties. Once you populate the JNDI

properties with the user certificate, issuer (Certificate Authority) certificate,

encrypted private key, and trust points, they are used during connection handshake

for authentication. To identify client-side authentication, set the

SECURITY_AUTHENTICATION property to serviceCtx.SSL_CLIENT_AUTH .

You can choose any method for setting up your certificates within the JNDI

properties. All authorization information values must be set up before initializing

the context.

Values Set in JNDI Property

Name of the certificate file SECURITY_PRINCIPAL

Key for decrypting the private key SECURITY_CREDENTIAL

Note: Only a single issuer certificate can be set through JNDI

properties.
6-14 CORBA Developer’s Guide and Reference

Client-Side Authentication
The following example declares the certificates as a static variable. However, this is

just one of many options. Your certificate must be base-64 encoded. For example, in

the following code, the testCert_base64 is a base-64 encoded client certificate

declared as a static variable. The other variables for CA certificate, private key, and

so on, are not shown, but they are defined similarly.

final private static String testCert_base64 =
 "MIICejCCAeOgAwIBAgICAmowDQYJKoZIhvcNAQEEBQAwazELMAkGA1UEBhMCVVMx" +
 "DzANBgNVBAoTBk9yYWNsZTEoMCYGA1UECxMfRW50ZXJwcmlzZSBBcHBsaWNhdGlv" +
 "biBTZXJ2aWNlczEhMB8GA1UEAxMYRUFTUUEgQ2VydGlmaWNhdGUgU2VydmVyMB4X" +
 "DTk5MDgxNzE2MjIxMloXDTAwMDIxMzE2MjIxMlowgYUxCzAJBgNVBAYTAlVTMRsw" +
 "GQYDVQQKExJPcmFjbGUgQ29ycG9yYXRpb24xPDA6BgNVBAsUMyoqIFNlY3VyaXR5" +
 "IFRFU1RJTkcgQU5EIEVWQUxVQVRJT04gT05MWSB2ZXJzaW9uMiAqKjEbMBkGA1UE" +
 "AxQSdGVzdEB1cy5vcmFjbGUuY29tMHwwDQYJKoZIhvcNAQEBBQADawAwaAJhANG1" +
 "Kk2K7uOOtI/UBYrmTe89LVRrG83Eb0/wY3xWGelkBeEUTwW57a26u2M9LZAfmT91" +
 "e8Afksqc4qQW23Sjxyo4ObQK3Kth6y1NJgovBgfMu1YGtDHaSn2VEg8p58g+nwID" +
 "AQABozYwNDARBglghkgBhvhCAQEEBAMCAMAwHwYDVR0jBBgwFoAUDCHwEuJfIFXD" +
 "a7tuYNO8bOw1EYwwDQYJKoZIhvcNAQEEBQADgYEARC5rWKge5trqgZ18onldinCg" +
 "Fof6D/qFT9b6Cex5JK3a2dEekg/P/KqDINyifIZL0DV7z/XCK6PQDLwYcVqSSK/m" +
 "487qjdH+zM5X+1DaJ+ROhqOOX54UpiAhAleRMdLT5KuXV6AtAx6Q2mc8k9bzFzwq" +
 "eR3uI+i5Tn0dKgxhCZU=\n";

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_CLIENT_AUTH);
//decrypting key
env.put(Context.SECURITY_CREDENTIALS, "welcome12");

// you may also set the certificates individually, as shown bellow.
//User certificate
env.put(ServiceCtx.SECURITY_USER_CERT, testCert_base64);
//Certificate Authority’s certificate
env.put(ServiceCtx.SECURITY_CA_CERT, caCert_base64);
//Private key

Note: When you are setting individual certificates as static

variables, note that certificates for Oracle9i parties do not have any

separators. However, if you are setting a certificate for a Visigenic

ORB (as the client callback object does in a callback scenario), the

certificate must be delineated by "BEGIN CERTIFICATE" and "END

CERTIFICATE" identifying lines. See the Visigenic documentation

for the format of these strings.
IIOP Security 6-15

Client-Side Authentication
env.put(ServiceCtx.SECURITY_ENCRYPTED_PKEY, encryptedPrivateKey_base64);
// setup the trust point
env.put(ServiceCtx.SECURITY_TRUSTED_CERT, trustedCert);

Context ic = new InitialContext(env);

Specifying Certificates Using AuroraCertificateManager
CORBA clients that do not use JNDI can use AuroraCertificateManager for

setting the user and issuer certificates, the encrypted private key, and the trust

points.

AuroraCertificateManager maintains certificates for your application. For the

certificates to be passed on the SSL handshake for the connection, you must set the

certificates before an SSL connection is made. Setting up a certificate in this manner

is required only if the following is true:

■ The client sets its certificates through AuroraCertificateManager if

client-side authentication is required, and the client does not want to use JNDI

properties for setting certificates.

■ The server sets its certificates through AuroraCertficateManager if it is

executing a callout or a callback. The typical server-side authentication for a

simple client/server exchange is taken care of by the database wallet. However,

if this server intends to act as a client by executing a callout or callback, it needs

to set certificates identifying itself; it cannot use the database certificate that is

contained in the wallet.

AuroraCertificateManager Class
The methods offered by this object allow you to:

■ Set the SSL protocol version. The default is Undetermined.

■ Set the private key and certificate chain.

■ Require that client applications authenticate themselves by presenting their

certificate chain. This method is used only by servers.

Invoking the ORB.resolve_initial_references method with the parameter

SSLCertificateManager will return an object that can be narrowed to a

AuroraCertificateManager . Example 6–1 shows a code example of the

following methods.
6-16 CORBA Developer’s Guide and Reference

Client-Side Authentication
addTrustedCertificate
This method adds the specified certificate as a trusted certificate. The certificate

must be in DER encoded format. The client adds trustpoints through this method

for server-side authentication.

When your client wants to authenticate a server, the server sends its certificate chain

to the client. You might not want to check every certificate in the chain. For

example, you have a chain composed of the following certificates: Certificate

Authority, enterprise, business unit, a company site, and a user. If you trust the

company site, you would check the user’s certificate, but you might stop checking

the chain when you get to the company site’s certificate, because you accept the

certificates above the company sites in the hierarchical chain.

Syntax

void addTrustedCertificate(byte[] derCert);

requestClientCertificate
This method is invoked by servers that wish to require certificates from client

applications. This method is not intended for use by client applications.

Syntax

void requestClientCertificate(boolean need);

Parameter Description

derCert The DER encoded byte array containing the certificate.

Note: The requestClientCertificate method is not currently

required, because the SQLNET.ORA and LISTENER.ORA

configuration parameter SSL_CLIENT_AUTHENTICATION

performs its function.

Parameter Description

need If true, the client must send a certificate for authentication. If
false, no certificate is requested from the client.
IIOP Security 6-17

Client-Side Authentication
setCertificateChain
This method sets the certificate chain for your client application or server object and

can be invoked by clients or by servers. The certificate chain always starts with the

Certificate Authority certificate. Each subsequent certificate is for the issuer of the

preceding certificate. The last certificate in the chain is the certificate for the user or

process.

Syntax

void setCertificateChain(byte[][] derCertChain)

setEncryptedPrivateKey
This method sets the private key for your client application or server object. You

must specify the key in PKCS5 or PKCS8 format.

Syntax

void setEncryptedPrivateKey(byte[] key, String password);

setProtocolVersion
This method sets the SSL protocol version that can be used for the connection. A 2.0

Client trying to establish an SSL connection with a 3.0 Server will fail and the

converse. We recommend using Version_Undetermined, because it lets the peers

establish an SSL connection whether they are using the same protocol version or

not. SSL_Version_Undetermined is the default value.

Syntax

void setProtocolVersion(int protocolVersion);

Parameter Description

derCertChain A byte array containing an array of certificates.

Parameter Description

key The byte array that contains the encrypted private key.

password A string containing a password for decrypting the private key.
6-18 CORBA Developer’s Guide and Reference

Client-Side Authentication
Example 6–1 Setting SSL Security Information Using AuroraCertificateManager

This example does the following:

1. Retrieves the AuroraCertificateManager .

2. Initializes this client’s SSL information:

a. Sets the certificate chain through setCertificateChain .

b. Sets the trustpoint through addTrustedCertificate.

c. Sets the private key through setEncryptedPrivateKey .

// Get the certificate manager
AuroraCertificateManager cm = AuroraCertificateManagerHelper.narrow(

orb.resolve_initial_references("AuroraSSLCertificateManager"));

BASE64Decoder decoder = new BASE64Decoder();
byte[] userCert = decoder.decodeBuffer(testCert_base64);
byte[] caCert = decoder.decodeBuffer(caCert_base64);

// Set my certificate chain, ordered from CA to user.
byte[][] certificates = {
 caCert, userCert
};
cm.setCertificateChain(certificates);
cm.addTrustedCertificate(caCert);

// Set my private key.
byte[] encryptedPrivateKey =
decoder.decodeBuffer(encryptedPrivateKey_base64);

cm.setEncryptedPrivateKey(encryptedPrivateKey, "welcome12");

Parameter Description

protocolVersion The protocol version being specified. The value you supply is defined
in oracle.security.SSL.OracleSSLProtocolVersion . This
class defines the following values:

■ SSL_Version_Undetermined : Version is undetermined. This is
used to connect to SSL 2.0 and SSL 3.0 peers. This is the default
version.

■ SSL_Version_3_0_With_2_0_Hello : Not supported.

■ SSL_Version_3_0 : Used to connect to 3.0 peers only.

■ SSL_Version_2_0 : Not supported.
IIOP Security 6-19

Server-Side Authentication
Server-Side Authentication
The server can require a different type of authentication, depending on its role. If

you are utilizing the database as a server in a typical client/server environment,

you use certificates that are set within a wallet for the database for server-side

authentication. However, if you are using the server to callout to another object or

callback to an object on the client, the server is now acting as a client and so requires

its own identifying certificates. That is, in a callout or callback scenario, the server

cannot use the wallet generated for database server-side authentication.

The following sections describe this in more detail:

■ Typical Client/Server

■ Callouts using Security

■ Callbacks using Security

Typical Client/Server
Server-side authentication takes place when the server provides certificates for

authentication to the client. When requested, the server will authenticate itself to

the client, also known as server-side authentication, by providing certificates to the

client. The SSL layer authenticates both peers during the connection handshake.

The client requests server-side authentication by setting any of the SSL_* values in

the JNDI property. See "Using JNDI for Authentication" on page 6-8 for more

information on these JNDI values.

For server-side authentication, you must set up a database wallet with the

appropriate certificates, using the Wallet Manager. See the Oracle Advanced Security
Administrator’s Guide for information on how to create a wallet.

Server activity Authentication method

Typical client/server Use database wallet generated by Oracle Wallet Manager.

Callout to another object Set identifying certificates, using either JNDI properties or
AuroraCurrentManager class.

Callback to client object Set identifying certificates, using AuroraCurrentManager
class.
6-20 CORBA Developer’s Guide and Reference

Server-Side Authentication
Callouts using Security
A callout is when a Java object loaded within the database invokes a method within

another Java object. If the original call from the client required a certain level of

security—certificate-based or username/password security—the server object is

also required to provide the same level of security information for itself before

invoking the method on the second server object.

Figure 6–2 Server callout requires security

■ Username/password: If the client sent a username/password combination for

authenticating to the database, the server object is also required to send its own

username/password combination to the second object. The server object cannot

forward along the client’s username/password combination, but must supply

its own. You can set the username/password combination in the same manner

as the client. See "Providing Username and Password for Client-Side

Authentication" on page 6-9 for more information.

■ Certificate-based: Similarly, if the client sent certificates for authentication, the

server object must do the same. Additionally, the server must create and send

its own certificates; it cannot forward on the client’s certificates for

authentication. You set up your server object certificates using either the

appropriate JNDI properties or the AuroraCertificateManager , as

discussed in "Using Certificates for Client Authentication" on page 6-13.

Callbacks using Security
A callback is when the client passes the server object an object reference to an object

that exists on the client. As shown in Figure 6–3, the server object receives the object

Note: If the client wants to verify the server against trustpoints or

authorize the server, it is up to the client to set up its trustpoints

and parse the server’s certificates for authorization. See

"Authorization" on page 6-26 for more information.

client object1 object2
client
security object1

security
information

information
IIOP Security 6-21

Server-Side Authentication
reference and invokes methods. This effectively calls out of the server and back to

an object located in the client. See "Debugging Techniques" on page 2-26 for more

information on callbacks.

Figure 6–3 Server Callout Requires Security

The type of security you can use for callbacks is certificate-based security over SSL.

When you add SSL security to callbacks, you can have one of two situations:

1. Server-side authentication only.

a. The client is not required to authenticate itself with a certificate. However, it

must still authenticate itself to the database using a username/password

combination.

b. The server, because server-side authentication is always required with SSL,

authenticates itself to the client by providing certificates contained in the

database wallet.

c. When the server calls back to the client, it acts as a client; thus, it is not

required to provide certificates for authentication.

client object1
client
certificate

object1
certificate

client
object1

username/password

server wallet

no certificate

certificate for

server-side authentication

a.

b.

c.

d.

obj2
6-22 CORBA Developer’s Guide and Reference

Server-Side Authentication
d. The called object, although contained in the client, is the server object in the

callback scenario. Thus, because server-side authentication rules hold, the

callback object must provide certificates to authenticate itself.

Example 6–2 Callback Code With Server-side Authentication Only

The following code shows the client code that performs (a) and (d) steps above.

The first half of the client code sets up a username and password for

authenticating itself to the database. It retrieves the server object. However,

before it invokes the server’s method, the last half of the code sets up the client

callback object by setting certificates, initializing the BOA, and instantiating the

callback object. Finally, the server method is invoked.

public static void main (String[] args) throws Exception {
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

//set up username/password for authentication to database. Set up
//security to be SSL_LOGIN - login authentication for client and server-side
//authentication.
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_LOGIN);
Context ic = new InitialContext (env);

// Get the server object before preparing the client object.
// You have to do it in this order to get the ORB initialized correctly
Server server = (Server)ic.lookup (serviceURL + objectName);

// Create the client object and export it to the ORB in the client
// First, set up the ORB properties for the callback object
java.util.Properties props = new java.util.Properties();
props.put("ORBservices", " oracle.aurora.ssl ");

BASE64Decoder decoder = new BASE64Decoder();

// Initialize the ORB.
com.visigenic.vbroker.orb.ORB orb = (com.visigenic.vbroker.orb.ORB)

oracle.aurora.jndi.orb_dep.Orb.init(args, props);

// Get the certificate manager
IIOP Security 6-23

Server-Side Authentication
AuroraCertificateManager certificateManager =
 AuroraCertificateManagerHelper.narrow(
 orb.resolve_initial_references(" AuroraSSLCertificateManager "));

// Set up client callback certificate chain , ordered from user to CA.
byte[] userCert = decoder.decodeBuffer(testCert_base64);
byte[] caCert = decoder.decodeBuffer(caCert_base64);

// Set my certificate chain, ordered from CA to user.
byte[][] certificates = { caCert, userCert };
cm.setCertificateChain(certificates);
cm.addTrustedCertificate(caCert);

// Set client callback object’s private key.
byte[] encryptedPrivateKey=decoder.decodeBuffer(encryptedPrivateKey_base64);

cm.setEncryptedPrivateKey(encryptedPrivateKey, "welcome12");

// Initialize the BOA with SSL
org.omg.CORBA.BOA boa = orb.BOA_init("AuroraSSLTSession", null);

//Instantiate the client callback object
ClientImpl client = new ClientImpl ();

//register callback object with BOA
boa.obj_is_ready (client);

// Invoke the server method, passing the client to call us back
System.out.println (server.hello (client));
6-24 CORBA Developer’s Guide and Reference

Server-Side Authentication
2. Client-side and server-side authentication.

a. The client is required to authenticate itself with a certificate.

b. The server, because server-side authentication is always required with SSL,

authenticates itself to the client by providing certificates contained in the

database wallet.

c. When the server calls back to the client, it acts as a client; thus, it is required

to provide its own certificates for authentication.

d. The called object, although contained in the client, is the server object in the

callback scenario. Thus, because server-side authentication rules hold, the

callback object must provide certificates to authenticate itself.

The code for the client shown in Example 6–2 is the same for this scenario, except

that instead of providing a username and password, the client provides certificates.

Because client-side authentication is required and because the server is acting as a

client, the server code sets up identifying certificates for itself before invoking the

callback object. The server must create and send its own certificates; it cannot

forward on the client’s certificates for authentication. You set up your server object

certificates using either the appropriate JNDI properties or the

AuroraCertificateManager as discussed in "Using Certificates for Client

Authentication" on page 6-13.

Example 6–3 Server Code in Callback with Client-side Authentication

The following server code does the following:

1. Retrieves the Oracle9i ORB reference by invoking the init method.

2. Retrieves the AuroraCertificateManager

client
object1

client certificate

server wallet

server certificate

certificate for

server-side authentication

a.

b.

c.

d.

obj2
IIOP Security 6-25

Authorization
3. Sets certificates and key through AuroraCertificateManager methods.

4. Invokes the client callback method, hello .

public String hello (Client client) {
BASE64Decoder decoder = new BASE64Decoder();
com.visigenic.vbroker.orb.ORB orb = (com.visigenic.vbroker.orb.ORB)

 oracle.aurora.jndi.orb_dep.Orb.init ();

try {
// Get the certificate manager
 AuroraCertificateManager cm = AuroraCertificateManagerHelper.narrow(
 orb.resolve_initial_references(" AuroraSSLCertificateManager "));

 byte[] userCert = decoder.decodeBuffer(testCert_base64);
 byte[] caCert = decoder.decodeBuffer(caCert_base64);

 // Set my certificate chain, ordered from CA to user.
 byte[][] certificates = { caCert, userCert };
 cm. setCertificateChain (certificates);

 // Set my private key.
 byte[] encryptedPrivateKey =

decoder.decodeBuffer(encryptedPrivateKey_base64);

 cm. setEncryptedPrivateKey (encryptedPrivateKey, "welcome12");

 } catch (Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE("Couldn’t initialize SSL context");
 }

 return "I Called back and got: " + client.helloBack ();
}

Authorization
The SSL layer authenticates the peers during the connect handshake. After the

handshake, you can be assured that the peers are authenticated to be who they said

they are. In addition, because the server has specified, within an Oracle wallet, its

trustpoints, the SSL adapter on the server will authorize the client. However, the

client has the option of how much authorization is done against the server.

■ The client can direct the SSL layer to authorize the server by setting up

trustpoints.
6-26 CORBA Developer’s Guide and Reference

Authorization
■ The client can authorize the server itself by extracting the server’s certificate

chain and parsing through the chain.

Setting Up Trust Points
The server automatically has trustpoints established through the installed Oracle

Wallet. The trustpoints in the wallet are used to verify the client’s certificates.

However, if the client wants to verify the server’s certificates against certain

trustpoints, it can set up these trustpoints, as follows:

■ If server-side authentication is requested, the client does not have any

certificates set. Thus, to verify the server’s certificates, the client can set a single

trustpoint through JNDI, or if it is a pure CORBA application—that does not

use JNDI—can add trustpoints through the

AuroraCertificateManager.addTrustedCertificate method. See

Example 6–4 on how to set a single trustpoint through JNDI.

■ If client-side authentication is requested, the client has set up certificates. Thus,

the client can add trustpoints to the file that contains its certificates, can add a

single trustpoint through JNDI, or if it is a pure CORBA application—that does

not use JNDI—can add trustpoints through the

AuroraCertificateManager.addTrustedCertificate method.

If the client does not set up trust points, it does not hinder the authorization. That is,

Oracle9i assumes that the client trusts the server.

Example 6–4 Verifying Trustpoints

The following example shows how the client sets up its trustpoints through JNDI.

The JNDI SECURITY_TRUSTED_CERT property can take only a single certificate.

// setup the trust point
env.put(ServiceCtx. SECURITY_TRUSTED_CERT, trustedCert);

Parsing Through the Server’s Certificate Chain
The client retrieves the certificates to perform any authorization checks. In the past,

you could retrieve the single issuer certificate. Now, you receive the entire issuer

certificate chain. You must parse the certificate chain for the information that you

need. You can parse the chain through the AuroraCurrent object.
IIOP Security 6-27

Authorization
AuroraCurrent contains three methods for retrieving and managing the

certificate chain. For creating and parsing the certificate chain, you can use the

X509Cert class methods. For information on this class, see the Sun Microsystems

JDK documentation. Note that the X509Cert class manipulates the certificate chain

differently in JDK 1.1 than in Java 2.

The AuroraCurrent class methods are as follows:

■ getPeerDERCertChain —Obtain the peer’s certificate chain, which enables

you to verify that the peer is authorized to access your application methods.

■ getNegotiatedProtocolVersion —Obtain the SSL protocol version being

used by the connection, to verify the versioning.

■ getNegotiatedCipherSuite —Obtain the cipher suite used to encrypt

messages passed over the connection, to verify that the encryption is strong

enough for your purposes.

When the handshake occurs, the protocol version and the type of encryption used is

negotiated. The type of encryption can be full or limited encryption, which complies

with the United States legal restrictions. After the handshake completes, the

AuroraCurrent can retrieve what was resolved in the negotiation.

AuroraCurrent Class
The following describes the methods contained within AuroraCurrent . See

Example 6–5 for a code example of these methods.

getNegotiatedCipherSuite
This method obtains the type of encryption negotiated in the handshake with the

peer.

Note: You must configure the database and listener to be

SSL-enabled, as described in Chapter 3, "Configuring IIOP

Applications".

Note: JDK 1.1 certificate classes were contained within

javax.security.cert . In JDK 1.2, these classes have been

moved to java.security.cert .
6-28 CORBA Developer’s Guide and Reference

Authorization
Syntax

String getNegotiatedCipherSuite(org.omg.CORBA.Object peer);

Returns

This method returns a string with one of the following values:

Export ciphers:

■ SSL_RSA_EXPORT_WITH_RC4_40_MD5

■ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

■ SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

■ SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

■ SSL_RSA_WITH_NULL_SHA

■ SSL_RSA_WITH_NULL_MD5

Domestic ciphers:

■ SSL_RSA_WITH_3DES_EDE_CBC_SHA

■ SSL_RSA_WITH_RC4_128_SHA

■ SSL_RSA_WITH_RC4_128_MD5

■ SSL_RSA_WITH_DES_CBC_SHA

■ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

■ SSL_DH_anon_WITH_RC4_128_MD5

■ SSL_DH_anon_WITH_DES_CBC_SH

getPeerDERCertificateChain
This method obtains the peer’s certificate chain. After retrieving the chain, you can

parse through the certificates within the chain, to authorize the peer to your

application.

Syntax

Parameter Description

peer the peer from which you obtain the negotiated cipher
IIOP Security 6-29

Authorization
byte [] [] getPeerDERCertificateChain(org.omg.CORBA.Object peer);

Returns

This method returns a byte array that contains an array of certificates.

getNegotiatedProtocolVersion
This method obtains the negotiated SSL protocol version of a peer.

Syntax

String getNegoriatedProtocolVersion(org.omg.CORBA.Object peer);

Returns

This method returns a string with one of the following values:

■ SSL_Version_Undetermined

■ SSL_Version_3_0

Example 6–5 Retrieving a Peer’s SSL Information for Authorization

This example shows how to authorize a peer by retrieving the certificate

information, using the AuroraCurrent object.

1. To retrieve an AuroraCurrent object, invoke the

ORB.resolve_initial_references method with AuroraSSLCurrent as

the argument.

2. Retrieve the SSL information from the peer through AuroraCurrent methods:

getNegotiatedCipherSuite , getNegotiatedProtocolVersion , and

getPeerDERCertChain .

3. Authorize the peer. You can authorize the peer based on its certificate chain.

Parameter Description

peer the peer from which you obtain its certificate chain

Parameter Description

peer the peer from which you obtain the negotiated protocol version
6-30 CORBA Developer’s Guide and Reference

Authorization
static boolean verifyPeerCert(org.omg.CORBA.Object obj) throws Exception
 {
 org.omg.CORBA.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the SSL current
AuroraCurrent current = AuroraCurrentHelper.narrow

 (orb.resolve_initial_references(" AuroraSSLCurrent "));

 // Check the cipher
 System.out.println("Negotiated Cipher: " +
 current. getNegotiatedCipherSuite (obj));
 // Check the protocol version
 System.out.println("Protocol Version: " +
 current. getNegotiatedProtocolVersion (obj));
 // Check the peer’s certificate
 System.out.println("Peer’s certificate chain : ");
 byte [] [] certChain = current. getPeerDERCertChain (obj);

 //Parse through the certificate chain using the X509Certificate methods
 System.out.println("length : " + certChain.length);
 System.out.println("Certificates: ");
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 //For each certificate in the chain
 for(int i = 0; i < certChain.length; i++) {
 ByteArrayInputStream bais = new ByteArrayInputStream(certChain[i]);
 Certificate xcert = cf.generateCertificate(bais);
 System.out.println(xcert);
 if(xcert instanceof X509Certificate)
 {
 X509Certificate x509Cert = (X509Certificate)xcert;
 String globalUser = x509Cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
 }
 }

 return true;
 }

Note: This example uses the x509Certificate class methods for

parsing the certificate chain and is specific to Java 2. If you are

using Java 1.1, you must use the x509Certificate class methods

specific to Java 1.1.
IIOP Security 6-31

Authorization
Note: The x509Certificate class is a Java 2 class. See the Sun

Microsystems documentation for more information. In addition,

you can find information in the javadoc for javax.net.ssl .
6-32 CORBA Developer’s Guide and Reference

Transaction Han
7

Transaction Handling

This chapter covers transaction management for CORBA applications. The CORBA

developer can choose to use one of the following transactional APIs provided:

■ Java Transaction API (JTA) by Sun Microsystems is a method for creating global

transactions in a pure Java environment. JTA can be used in either a single or

two-phase commit transaction. In addition, it can be demarcated either from the

client or the server object.

■ Java Transaction Service (JTS) is a mapping of a subset of the OMG Object

Transaction Service (OTS) API that is supplied with Oracle9i. The CORBA

developer invokes a transaction service to enable transactional properties for

distributed objects in either a Java or non-Java environment. JTS can only be

used in a single-phase commit transaction. In addition, it only supports

client-side demarcation.

In Oracle9i, Java Transaction API (JTA) 1.0.1 for managing transactions. This chapter

assumes that you have a working knowledge of JTA. The discussion focuses mostly

on examples and explaining the differences between the Sun Microsystems JTA

specification and the Oracle JTA implementation. See

http://www.javasoft.com for the Sun Microsystems JTA specification.

■ Transaction Overview

■ JTA Summary

■ JTA Server-Side Demarcation

■ JTA Client-Side Demarcation

■ Enlisting Resources on the Server-side

■ Binding Transactional Objects in the Namespace

■ Configuring Two-Phase Commit Engine
dling 7-1

Transaction Overview
■ Creating DataSource Objects Dynamically

■ Setting the Transaction Timeout

■ JTA Limitations

■ Java Transaction Service

■ Transaction Service Interfaces

■ JDBC Restrictions

Transaction Overview
Transactions manage changes to multiple databases within a single application as a

unit of work. That is, if you have an application that manages data within one or

more databases, you can ensure that all changes in all databases are committed at

the same time if they are managed within a transaction.

Transactions are described in terms of ACID properties, which are as follows:

■ Atomic: all changes to the database made in a transaction are rolled back if any

change fails.

■ Consistent: the effects of a transaction take the database from one consistent

state to another consistent state.

■ Isolated: the intermediate steps in a transaction are not visible to other users of

the database.

■ Durable: when a transaction is completed (committed or rolled back), its effects

persist in the database.

The JTA implementation, specified by Sun Microsystems, relies heavily on the JDBC

2.0 specification and XA architecture. The result is a complex requirement on

applications in order to ensure that the transaction is managed completely across all

databases. Sun Microsystems’s specifies Java Transaction API (JTA) 1.0.1 and JDBC

2.0 on http://www.javasoft.com .

You should be aware of the following when using JTA within the Oracle9i
environment:

■ Global and Local Transactions

■ Demarcating Transactions

■ Transaction Context Propagation

■ Enlisting Resources
7-2 CORBA Developer’s Guide and Reference

Transaction Overview
■ Two-Phase Commit

Global and Local Transactions
Whenever your application connected to a database using JDBC or a SQL server,

you were creating a transaction. However, the transaction involved only the single

database and all updates made to the database were committed at the end of these

changes. This is referred to as a local transaction.

A global transaction involves a complicated set of management objects—objects

that track all of the objects and databases involved in the transaction. These global

transaction objects—TransactionManager and Transaction —track all objects

and resources involved in the global transaction. At the end of the transaction, the

TransactionManager and Transaction objects ensure that all database

changes are atomically committed at the same time.

Within a global transaction, you cannot execute a local transaction. If you try, the

following error will be thrown:

ORA-2089 "COMMIT is not allowed in a subordinate session."

Some SQL commands implicitly execute a local transaction. All SQL DDL

statements, such as "CREATE TABLE", implicitly starts and commits a local

transaction under the covers. If you are involved in a global transaction that has

enlisted the database that the DDL statement is executing against, the global

transaction will fail.

Demarcating Transactions
A transaction is said to be demarcated, which means that each transaction has a

definite start and stop point. For example, in a client-side demarcated transaction,

the client starts the transaction with a begin method and completes the transaction

with either executing the commit or rollback method.

The originating client or object that starts the transaction must also end the

transaction with a commit or rollback. If the client begins the transaction, calls out

to a server object, the client must end the transaction after the invoked method

returns. The invoked server object cannot end the transaction.

In a distributed object application, transactions are demarcated differently if the

originator is the client or the server. Where the transaction originates defines the

transaction as client-side demarcated or server-side demarcated.
Transaction Handling 7-3

Transaction Overview
UserTransaction Interface
The following are the methods that you can use for transaction demarcation. These

methods are defined within the javax.transaction.UserTransaction
interface:

public abstract void begin() throws NotSupported, SystemException;

Creates a new transaction and associates the transaction with the thread.

Exceptions:

■ NotSupportedException : Thrown if the thread is already involved with

a transaction. Nested transactions are not supported.

■ SystemException : Thrown if an unexpected error condition occurs.

public abstract void commit() throws RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException, IllegalStateException, SystemException;

Completes the existing transaction by saving all changes to resources involved

in the transaction. The thread is disassociated from this transaction when this

method finishes.

Exceptions:

■ RollbackException : Thrown if any resource within the transaction

could not commit successfully. All resource changes are rolled back.

■ HeuristicMixedException : Thrown to indicate that some of the

resources were committed; some were rolled back.

■ HeuristicRollbackException : Thrown to indicate that some updates

to resources involved in the transaction were rolled back.

■ SecurityException : Thrown when the thread is not allowed to commit

the transaction based on a security violation.

■ IllegalStateException : Thrown if the current thread has not been

associated with a transaction. This occurs if you try to commit a transaction

that was never started.

■ SystemException : Thrown if an unexpected error condition occurs.

public abstract void rollback() throws IllegalStateException, SecurityException, SystemException;

Roll back the transaction associated with the current thread.

Exceptions:
7-4 CORBA Developer’s Guide and Reference

Transaction Overview
■ SecurityException : Thrown when the thread is not allowed to roll back

the transaction based on a security violation.

■ IllegalStateException : Thrown if the current thread has not been

associated with a transaction. This occurs if you try to roll back a

transaction that was never started.

■ SystemException : Thrown if an unexpected error condition occurs.

public abstract int getStatus() throws SystemException;

Retrieve the transaction status associated with the current thread.

Exceptions:

■ SystemException : Thrown if an unexpected error condition occurs.

public abstract void setRollbackOnly() throws IllegalStateException, SystemException;

Modify the transaction associated with the current thread so that the outcome

results in a rollback.

Exceptions:

■ IllegalStateException : Thrown if the current thread has not been

associated with a transaction. This occurs if you try to set for a roll back a

transaction that was never started.

■ SystemException : Thrown if an unexpected error condition occurs.

public abstract setTransactionTimeout(int seconds) throws SystemException;

Set the timeout value in seconds for the transaction associated with this current

thread. See "Setting the Transaction Timeout" on page 7-30 for more information

on this method.

Exceptions:

■ SystemException : Thrown if an unexpected error condition occurs.

Transaction Context Propagation
When you begin a transaction within either a client or a server instance, JTA

denotes the originator in the transaction manager. As the transaction involves more

objects and resources, the transaction manager tracks all of these objects and

resources in the transaction and manages the transaction for these entities.

When an object calls another object, in order for the invoked object to be included in

the transaction, JTA propagates the transaction context to the invoked object.
Transaction Handling 7-5

Transaction Overview
Propagation of the transaction context is necessary for including the invoked object

into the global transaction.

As shown in Figure 7–1, if the client begins a global transaction, calls a server object

in the database, the transaction context is propagated to the server object. If this

server object invokes another server object, within the same or a remote database,

the transaction context is propagated to this object as well. This ensures that all

objects that are supposed to be involved in the global transaction are tracked by the

transaction manager.

Figure 7–1 Connection to an Object over IIOP

Enlisting Resources
While there are several methods for retrieving a JDBC connection to a database,

only one of these methods causes the database to be included in a JTA transaction.

The following table lists the normal methods for retrieving JDBC connections:

Table 7–1 JDBC Methods

Retrieval Method Description

OracleDriver().
 defaultConnection()

Pre-JDBC 2.0 method for retrieving the local
connection. Use only within local transactions.

DriverManager.getConnection
 ("jdbc:oracle:kprb:")

Pre-JDBC 2.0 method for retrieving the local
connection. Use only within local transactions.

DataSource.getConnection
 ("jdbc:oracle:kprb:")

JDBC 2.0 method for retrieving connections to the
local databases. Can be used for JTA transactions.

Client Server ObjectIIOP

connection
Server Object

IIOP

connection
7-6 CORBA Developer’s Guide and Reference

Transaction Overview
Of these methods, only the DataSource object can be used to include a database

resource in the global transaction. In order to ensure that the statements are

included within a global transaction, you must do the following:

1. Bind a JTA DataSource object (OracleJTADataSource) in the JNDI

namespace. There are several types of DataSource objects that you can bind.

You must bind the JTA type in order for this database to be included in the

global transaction.

2. The object method must retrieve the DataSource object from the JNDI

namespace after the global transaction has started.

3. Retrieve the connection object from this DataSource object using the

getConnection method.

An example is shown in "Enlisting Resources on the Server-side" on page 7-19.

If your transaction involves more than one database, you must specify an Oracle9i
database as the two-phase commit engine. See "Configuring Two-Phase Commit

Engine" on page 7-25 for more information.

Two-Phase Commit
One of the primary advantages for a global transaction is the number of objects and

database resources managed as a single unit within the transaction. If your global

transaction involves more than one database resource, you must specify a

two-phase commit engine, which is an Oracle9i database designated to manage the

changes to all databases within the transaction. The two-phase commit engine is

responsible for ensuring that when the transaction ends, all changes to all databases

are either totally committed or fully rolled back.

On the other hand, if your global transaction has multiple server objects, but only a

single database resource, you do not need to specify a two-phase commit engine.

The two-phase commit engine is required only to synchronize the changes for

multiple databases. If you have only a single database, single-phase commit can be

performed by the transaction manager.
Transaction Handling 7-7

JTA Summary
Figure 7–2 shows three databases enlisted in a global transaction and another

database that is designated as the two-phase commit engine. When the global

transaction ends, the two-phase commit engine ensures that all changes made to the

databases A, B, and the local are committed or rolled back simultaneously.

Figure 7–2 Two-Phase Commit for Global Transactions

JTA Summary
The following sections summarize the details for demarcating the transaction and

enlisting the database in the transaction. These details are explained and

Note: Your two-phase commit engine can be any Oracle9i
database. It can be the database where your server object exists, or

even a database that is not involved in the transaction at all. See

"Configuring Two-Phase Commit Engine" on page 7-25 for a full

explanation of the two-phase commit engine setup.

Client Server Object

local database server

Database B

Database A

JDBC
connection

IIOP

connection

JDBC connection

table X

two-phase
 commit
 engine

manage
transactional
updates
to all three
databases
7-8 CORBA Developer’s Guide and Reference

JTA Summary
demonstrated in the rest of the chapter. However, these tables provide a reference

point for you.

Environment Initialization
Before you can retrieve the UserTransaction or DataSource bound objects

from the JNDI namespace, you must provide the following before the JNDI lookup:

■ authentication information, such as username and password

■ namespace URL
Transaction Handling 7-9

JTA Summary
Methods for Enlisting Database Resources
The DataSource object is used to explicitly enlist the database in the JTA

transaction. In order for the database to be correctly enlisted, the DataSource must

be bound correctly, and the retrieval mechanism can be one of three methods. These

are discussed below:

Summary of Single-Phase and Two-Phase Commit
Table 7–4 summarizes the single-phase commit scenario. It covers the JNDI binding

requirements and the application implementation runtime requirements.

Table 7–2 Environment Setup For Transactional Object Retrieval

Source Qualifiers Environment Setup

Setup includes authentication information, and
namespace URL

Client Retrieves a remote object or a
remote database connection.

Must always provide the environment setup
before retrieving the UserTransaction
from a remote JNDI provider. All JNDI
providers are remote from a true client.

Server ■ Can use in-session activation
to retrieve a local object or
local database connection.

If the JNDI provider is within the same
database as the object, it can use in-session
lookup. Since the server uses its own session
for the lookup, no setup is required.

■ Retrieves a remote object or a
remote database connection.

The JNDI provider is remote, so the server
object must always provide the environment
setup.

Table 7–3 JDBC 2.0 DataSource Overview

JDBC 2.0 DataSource

Binding You must bind a JTA DataSource into the namespace with the bindds
command. The bindds command must contain the -dstype jta option.

Retrieving DataSource object
from remote JNDI provider

1. Provide the environment Hashtable , which contains authentication
information and namespace URL.

2. Retrieve the DataSource object through a JNDI lookup that contains the
"jdbc_access:// " prefix.

Retrieving DataSource object
from local JNDI provider

Retrieve the DataSource object using in-session activation. Environment
setup and "jdbc_access:// " prefix is not required.
7-10 CORBA Developer’s Guide and Reference

JTA Summary
Table 7–5 summarizes the two-phase commit scenario.

Table 7–4 Single-Phase Commit

Aspect Description

Binding ■ No binding required for UserTransaction . The UserTransaction object is created for
you.

■ If using a DataSource object in the transaction, bind it using the bindds command.

Runtime ■ Retrieve the UserTransaction through a JNDI lookup with the "java:comp/
UserTransaction " string, or a normal JNDI lookup.

■ Your runtime is responsible for starting and terminating the transaction.

■ If using the DataSource object to manage SQL DML statements within the transaction,
retrieve the DataSource .

Table 7–5 Two-Phase Commit Requirements

Aspect Requirements

Binding
UserTransaction

One of two
scenarios:

Scenario one is where you bind the UserTransaction WITH a username and
password that is to be used to complete all global transactions started from this
UserTransaction .

■ You bind a UserTransaction object with the fully-qualified database address of
the two-phase commit engine and its username and password.

■ You bind DataSource objects for each database involved in the transaction with a
fully-qualified public database link from the two-phase commit engine to itself.

Scenario two is where you bind the UserTransaction WITHOUT a username and
password. Thus, the username that is used when retrieving the UserTransaction is
the user that completes the transaction.

■ You bind a UserTransaction object with the fully-qualified database address of
the two-phase commit engine.

■ You bind DataSource objects for each database involved in the transaction with a
fully-qualified public database link from the two-phase commit engine to itself.
Transaction Handling 7-11

JTA Summary
Binding
DataSource

You must bind a JTA DataSource for each database involved in the transaction. You
must create public database links, as discussed in the System Administration section.

System
Administration

■ The user that completes the transaction (as described in the binding section) must
have the privilege to commit the transaction on all included databases. There are one
of two methods for ensuring that the user can complete the transaction.

- If the username is not bound with the UserTransaction object, the user that
retrieves the UserTransaction both starts and stops the transaction. Thus, this
user must be created on all involved database in order to be able to open a session to
all databases.

- If the username is bound with the UserTransaction object is different than the
user that retrieves the UserTransaction object, the username bound with the
UserTransaction object must be given explicit privilege to complete a transaction
it did not start. Thus, make sure that this user exists on each database in order to
open sessions to all databases and grant it the "CONNECT, REMOVE, CREATE
SESSION, and FORCE ANY TRANSACTION" privileges on each database.

■ Create public database links from the two-phase commit engine to each database
involved.

Runtime Runtime requirements are the same as indicated in the single-phase commit table.

Table 7–5 Two-Phase Commit Requirements (Cont.)

Aspect Requirements
7-12 CORBA Developer’s Guide and Reference

JTA Server-Side Demarcation
JTA Server-Side Demarcation
To retrieve any objects or database resources, you can perform in-session activation

or remote lookup.

■ In-session activation: Server objects can be local or remote, the

UserTransaction is always local, and DataSource objects can be local or

remote. For local retrieval of any of these objects, you can activate these objects

within this session. The namespace is always local, so you do not have to

provide authentication information, namespace URL, or the "jdbc_
access:// " prefix. In this scenario, the lookup would require only the JNDI

name, In addition, the initial context can be created without any set

environment.

■ Remote retrieval: The server object and/or the DataSource object is remote, so

you must still provide all of the same information that was provided in the

client scenario: authentication information, namespace URL, and the "jdbc_
access:// " prefix. For remote retrieval, perform exactly as demonstrated in

the "JTA Client-Side Demarcation" on page 7-14.

Example 7–1 Server-Side Demarcation for Single-Phase Commit

The following example demonstrates a server object performing an in-session

lookup of the UserTransaction and DataSource objects. This example uses a

single phase commit transaction. Notice that because this is an in-session activation,

none of the following are needed: authentication information, location of the

namespace, and the "jdbc_access:// " prefix.

ic = new InitialContext ();

// lookup the usertransaction
UserTransaction ut = (UserTransaction)ic.lookup ("/test/myUT");
...
ut.begin ();

// Retrieve the DataSource
DataSource ds = (DataSource)ic.lookup ("/test/empDB");

// Get connection to the database through DataSource.getConnection

Note: To modify this for two-phase commit, supply a username

and password within the environment passed into the initial

context constructor.
Transaction Handling 7-13

JTA Client-Side Demarcation
Connection conn = ds.getConnection ();

JTA Client-Side Demarcation
For JTA, client-side demarcated transactions are programmatically demarcated

through the UserTransaction interface (see "UserTransaction Interface" on

page 7-4). A UserTransaction object must be bound with the bindut command

into the namespace (see "Bind UserTransaction Object in the Namespace" on

page 7-22). With client-side transaction demarcation, the client controls the

transaction. The client starts a global transaction by invoking the

UserTransaction begin method; it ends the transaction by invoking either the

commit or rollback methods. In addition, the client must always set up an

environment including a Hashtable with authentication information and

namespace location URL.

Figure 7–3 shows a client invoking a server object. The client starts a global

transaction, then invokes the object. The transactional context is propagated to

include the server object.

Figure 7–3 Client Demarcated Global Transaction

The following must occur for the client to demarcate the transaction:

1. Initialize a Hashtable environment with the namespace address and

authentication information.

2. Retrieve the UserTransaction object from the namespace within the client

logic. When you retrieve the UserTransaction object from any client, the

URL must consist of "jdbc_access:// " prefix before the JNDI name.

3. Start the global transaction within the client using

UserTransaction.begin() .

Client Server ObjectIIOP

connection
7-14 CORBA Developer’s Guide and Reference

JTA Client-Side Demarcation
4. Retrieve the server object.

5. Invoke any object methods to be included in the transaction.

6. End the transaction through UserTransaction.commit() or

UserTransaction.rollback() .

Example 7–2 shows a client that invokes a server object within the transaction.

Example 7–2 Bind UserTransaction Object in Namespace

Before starting the client, you must first bind the UserTransaction object in the

namespace. To bind a UserTransaction object to the name "/test/myUT " in the

namespace located on nsHost , execute the following:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
& bindut /test/myUT

See "Bind UserTransaction Object in the Namespace" on page 7-22 for more

information.

Developing the Client Application
After binding the UserTransaction object, your client code can retrieve the

UserTransaction object and start a global transaction. Since the client is

retrieving the UserTransaction object from a remote site, the lookup requires

authentication information, location of the namespace, and the "jdbc_access:// "

prefix.

EmployeeInfo info;
String sessiiopURL = args [0];
String objectName = args [1];

//Set up the service URL to where the UserTransaction object
//is bound. Since from the client, the connection to the database
//where the namespace is located can be communicated with over either
//a Thin or OCI JDBC driver. This example uses a Thin JDBC driver.
String namespaceURL = "jdbc:oracle:thin:@nsHost:1521:ORCL";

// lookup usertransaction object in the namespace
//1.(a) Authenticate to the database.
// create InitialContext and initialize for authenticating client
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
env.put (Context.SECURITY_CREDENTIALS, "TIGER");
Transaction Handling 7-15

JTA Client-Side Demarcation
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
//1.(b) Specify the location of the namespace where the transaction objects
// are bound.
env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
Context ic = new InitialContext (env);

//2. Retrieve the UserTransaction object from JNDI namespace
UserTransaction ut = (UserTransaction)ic.lookup ("jdbc_access://test/myUT");

//3. Start the transaction
ut.begin();

//4. Retrieve the server object reference
// lookup employee object in the namespace
Employee employee = (Employee)ic.lookup

("sess_iiop://myhost:1521:orcl/test/employee");

//5. Perform business logic.
...

//6. End the transaction
//Commit the updated value
ut.commit ();

JTA Client-Side Demarcation Including Databases
The previous example showed how a transaction context was propagated to server

objects from a client within the JTA global transaction. When you execute the server

object, the transaction is propagated over the IIOP transport layer. In addition to

invoking IIOP server objects, you may wish to update databases over JDBC

connections. This section shows how you enlist databases using a JDBC connection

in tandem with the IIOP server object propagation.

Figure 7–4 demonstrates how the client can open both an IIOP and a JDBC

connection to the database. To open the JDBC connection within the context of a

global transaction, you must use a JTA DataSource object.
7-16 CORBA Developer’s Guide and Reference

JTA Client-Side Demarcation
Figure 7–4 Client Creating Both JDBC and IIOP Connections

To include a remote database within the transaction from a client, you must use a

DataSource object, which has been bound in the namespace as a JTA

DataSource . Then, invoke the getConnection method of the DataSource
object after the transaction has started, and the database is included in the global

transaction. See "Enlisting Resources" on page 7-6 for more information.

The following must occur in the client runtime to demarcate the transaction:

1. Initialize a Hashtable environment with the namespace address and

authentication information.

2. Retrieve the UserTransaction object from the namespace within the client

logic. When you retrieve the UserTransaction object from the client, the

URL must consist of "jdbc_access:// " prefix before the JNDI name.

3. Start the global transaction within the client using

UserTransaction.begin() .

4. Enlist any database resources to be included in the transaction by opening a

connection to the specified database, as follows:

a. Retrieve the DataSource object from the namespace within the client

logic. When you retrieve the DataSource object from any client, the URL

must consist of "jdbc_access:// " prefix before the JNDI name.

b. Open a connection to the database through

DataSource.getConnection method.

5. Retrieve the object reference.

IIOP

JDBC

Client

Oracle Database
Transaction Handling 7-17

JTA Client-Side Demarcation
6. Invoke any object methods to be included in the transaction.

7. Invoke SQL DML statements against any enlisted databases. SQL DDL creates a

local transaction that will abort the global transaction. Thus, SQL DDL cannot

be executed within a JTA transaction.

8. End the transaction through UserTransaction.commit() or

UserTransaction.rollback() .

Example 7–3 shows a client that invokes a server object and enlists a single database

within the transaction.

Example 7–3 Employee Client Code for Client Demarcated Transaction

Before starting the client, you must first bind the UserTransaction and

DataSource objects in the JNDI namespace. See "Bind UserTransaction Object in

the Namespace" on page 7-22 and "Bind DataSource Object in the Namespace" on

page 7-24 for directions on the binding these objects.

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
> bindut /test/myUT
> bindds /test/DataSource/empDB -url jdbc:oracle:thin:@empHost:5521:ORCL
 -dstype jta

Developing the Client Application
The following example follows the steps listed in "JTA Client-Side Demarcation

Including Databases" on page 7-16.

//Set up the service URL to where the UserTransaction object
//is bound. Since from the client, the connection to the database
//where the namespace is located can be communicated with over either
//a Thin or OCI JDBC driver. This example uses a Thin JDBC driver.
String namespaceURL = "jdbc:oracle:thin:@nsHost:1521:ORCL";

// lookup usertransaction object in the namespace
//1.(a) Authenticate to the database.
// create InitialContext and initialize for authenticating client
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
env.put (Context.SECURITY_CREDENTIALS, "TIGER");
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
//1.(b) Specify the location of the namespace where the transaction objects
// are bound.
env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
7-18 CORBA Developer’s Guide and Reference

Enlisting Resources on the Server-side
Context ic = new InitialContext (env);

//2. Retrieve the UserTransaction object from JNDI namespace
ut = (UserTransaction)ic.lookup ("jdbc_access://test/myUT");

//3. Start the transaction
ut.begin();

//4.(a) Retrieve the DataSource (that was previously bound with bindds in
// the namespace. After retrieving the DataSource...
// get a connection to a database. You need to provide authentication info
// for a remote database lookup, similar to what you would do from a client.
// In addition, if this was a two-phase commit transaction, you must provide
// the username and password.
DataSource ds = (DataSource)ic.lookup ("jdbc_access://test/empDB");

//4.(b). Get connection to the database through DataSource.getConnection
// in this case, the database requires the same username and password as
// set in the environment.
Connection conn = ds.getConnection ("SCOTT", "TIGER");

//5. Retrieve the server object reference
// lookup employee object in the namespace
Employee employee = (Employee)ic.lookup (sessiiopURL + objectName);

//6. Perform business logic.
...

//7. Close the database connection.
conn.close ();

//8. End the transaction
//Commit the updated value
ut.commit ();
}

Enlisting Resources on the Server-side
The databases that the object accesses must be enlisted to be included within the

global transaction. This is discussed more in "Enlisting Resources" on page 7-6 and

"Bind DataSource Object in the Namespace" on page 7-24.
Transaction Handling 7-19

Enlisting Resources on the Server-side
If you access an Oracle9i database from the server that should be included in the

transaction, you must open the connection to the database after the global

transaction starts.

Example 7–4 Enlist Database in Single Phase Transaction

The following example enlists a database in the global transaction.

//retrieve the initial context.
InitialContext ic = new InitialContext ();

// lookup the usertransaction
UserTransaction ut = (UserTransaction)ic.lookup ("/test/myUT");

//start the transaction
ut.begin ();

// get a connection to the local database. If this was a two-phase commit
// transaction, you would provide the username and password for the 2pc engine
DataSource ds = (DataSource)ic.lookup (dsName);

// get connection to the local database through DataSource.getConnection
Connection conn = ds.getConnection ("SCOTT", "TIGER");

//perform your SQL against the database.
//prepare and execute a sql statement. retrieve the employee’s selected benefits
PreparedStatement ps =
 conn.prepareStatement ("update emp set ename = :(employee.name),

sal = :(employee.salary) where empno = :(employee.number)");
 //do work
 ps.close();
}

//close the connection
conn.close();

// commit the transaction
ut.commit ();

//return the employee information.
return new EmployeeInfo (name, empno, (float)salary);

Note: At this time, the Oracle JTA implementation does not

support including non-Oracle databases in a global transaction.
7-20 CORBA Developer’s Guide and Reference

Binding Transactional Objects in the Namespace
Example 7–5 Using SQLJ with Explicit Enlistment

As in Example 7–4, you would retrieve the JTA DataSource from the JNDI

provider, retrieve the connection, retrieve a context from that connection, and then

provide the context on the SQLJ command-line.

//retrieve the initial context.
InitialContext ic = new InitialContext ();

// lookup the usertransaction
UserTransaction ut = (UserTransaction)ic.lookup ("/test/myUT");

//start the transaction
ut.begin ();

// get a connection to the local database. If this was a two-phase commit
// transaction, you would provide the username and password for the 2pc engine
DataSource ds = (DataSource)ic.lookup (dsName);

// get connection to the local database through DataSource.getConnection
Connection conn = ds.getConnection ("SCOTT", "TIGER");

//setup the context for issuing SQLJ against the database
DefaultContext defCtx = new DefaultContext (conn);

//issue SQL DML statements against the database
#sql [defCtx] { update emp set ename = :(remoteEmployee.name),

sal = :(remoteEmployee.salary)
 where empno = :(remoteEmployee.number) };

//close the connection
conn.close();

// commit the transaction
ut.commit ();

//return the employee information.
return new EmployeeInfo (name, empno, (float)salary);

Binding Transactional Objects in the Namespace
For most global transactions, you will need to bind at least one of the following

objects in the namespace:

■ UserTransaction object
Transaction Handling 7-21

Binding Transactional Objects in the Namespace
■ DataSource object—Necessary for specifying databases that will be included

in the transaction.

Bind UserTransaction Object in the Namespace
The bindut command binds a UserTransaction object in the namespace. This

object is used for demarcation of global transactions by either a client or by an

object.

You must bind a UserTransaction object for both single and two-phase commit

transactions through the bindut command of the sess_sh tool.

The options used to bind a UserTransaction object depend on whether the

transaction uses a single or two-phase commit, as described below:

Single-Phase Commit Binding for UserTransaction Single-phase commit requires the

JNDI bound name for the UserTransaction object. You do not need to provide

the address to a two-phase commit engine. For example, the following binds a

UserTransaction with the name of "/test/myUT " that exists for a single-phase

commit transaction:

bindut /test/myUT

To bind a UserTransaction object to the name "/test/myUT " in the namespace

located on nsHost through the sess_sh command, execute the following:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
& bindut /test/myUT

Two-Phase Commit Binding for UserTransaction Two-phase commit binding requires the

JNDI bound name for the UserTransaction object and the address to a

two-phase commit engine. You provide a URL for the two-phase commit engine in

the bindut command, which can be either a JDBC URL or a sess_iiop URL.

In addition, you can bind a username and password with the UserTransaction
object.

■ If you do not bind a username and password with the UserTransaction , the

user that retrieved the UserTransaction will be the same user that is used to

Note: The client needs the same information to retrieve the

UserTransaction as you give within the bindut command.
7-22 CORBA Developer’s Guide and Reference

Binding Transactional Objects in the Namespace
perform the commit or rollback for the two-phase commit on all involved

databases.

■ If you bind a username and password with the UserTransaction , then this is

the username that the two-phase commit will be committed or rolled back with

on all involved databases. The transaction will be started by the user that

retrieves the UserTransaction object; it will be completed by the user bound

with the UserTransaction object.

The username that is used to commit or rollback the two-phase commit transaction

must be created on the two-phase commit engine and on each database involved in

the transaction. It needs to be created so that it can open a session from the

two-phase commit engine to each of the involved databases using database links.

Secondly, it must be granted the CONNECT, RESOURCE, CREATE SESSIONprivileges

to be able to connect to each of these databases. For example, if the user that is

needed for completing the transaction is SCOTT, you would do the following on the

two-phase commit engine and each database involved in the transaction:

CONNECT SYSTEM/MANAGER;
CREATE USER SCOTT IDENTIFIED BY SCOTT;
GRANT CONNECT, RESOURCE, CREATE SESSION TO SCOTT;

Lastly, if you bound a username and password with the UserTransaction object,

it will be using a different username to finalize the transaction than the username

used to start the transaction. For this to be allowed, you must grant the FORCE ANY
TRANSACTION privileges on each database involved in the transaction in order for

two separate users to start and stop the transaction. If SCOTT is the username

bound with the UserTransaction object, you would need to do the following in

addition to the previous grant:

GRANT FORCE ANY TRANSACTION TO SCOTT;

The following binds a UserTransaction with the name of "/test/myUT " and a

two-phase commit engine at "2pcHost " using a JDBC URL:

bindut /test/myUT -url jdbc:oracle:thin:@2pcHost:5521:ORCL

To bind the UserTransaction in the namespace designating the two-phase

commit engine at dbsun.mycompany.com with a sess_iiop URL:

bindut /test/myUT -url sess_iiop://dbsun.mycompany.com:2481:ORCL

When the transaction commits, the UserTransaction communicates with the

two-phase engine designated in the -url option to commit all changes to all

included databases. In this example, the username and password were not bound
Transaction Handling 7-23

Binding Transactional Objects in the Namespace
with the UserTransaction object, so the user that retrieves the

UserTransaction object from the JNDI namespace is used to start and stop the

transaction. Thus, this user must exist on all involved databases and the two-phase

commit engine. The UserTransaction tracks all databases involved in the

transaction; the two-phase commit engine uses the database links for these

databases to complete the transaction.

Bind DataSource Object in the Namespace
The bindds command binds a DataSource object in the JNDI namespace. In

order to enlist any database in a global transaction—including the local

database—you must bind a JTA DataSource object to identify each database

included in the transaction. There are multiple types of DataSource objects for use

with certain scenarios. However, for use with JTA transactions, you must bind a JTA

DataSource object, also known as an OracleJTADataSource object, to identify

each database included in the transaction. See the bindds command of the sess_
sh tool in the Oracle9i Java Tools Reference for a description of other DataSource
object types.

Single-Phase Commit Scenario In a single-phase commit scenario, the transaction only

includes a single database in the transaction. Since no coordination for updates to

multiple databases is needed, you do not need to specify a coordinator. Instead, you

simply provide the JNDI bound name and the URL address information for this

database within the OracleJTADataSource object. You do not need to provide a

database link for a transaction coordinator.

Use the bindds command of the sess_sh tool to bind an DataSource object in

the namespace. The full command is detailed in the Oracle9i Java Tools Reference. For

example, the following binds an OracleJTADataSource with the name of

"/test/empDS " that exists within a single-phase commit transaction with the

bindds command:

bindds /test/empDS -url jdbc:oracle:thin:@empHost:5521:ORCL -dstype jta

After binding the DataSource object in the namespace, the server can enlist the

database within a global transaction.

Note: If you change the two-phase commit engine, you must

update all database links on all DataSource objects involved in

the transaction, and rebind the UserTransaction .
7-24 CORBA Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
Two-Phase Commit Scenario If multiple databases are to be included in the global

transaction, you will need a two-phase commit engine, which is an Oracle9i
database that is configured to be the transaction coordinator. Basically, the

two-phase commit engine must have database links to each of the databases

involved in the transaction. When the transaction ends, the transaction manager

notifies the two-phase commit engine to either coordinate the commit of all changes

to all involved databases or coordinate a roll back of these same changes.

In order to facilitate this coordination, you must configure the following:

1. Your system administrator must create fully-qualified public database links

from the two-phase commit engine (Oracle9i database) to each database

involved in the transaction. These database link names must be included when

binding the OracleJTADataSource object.

2. Bind a JTA DataSource (OracleJTADataSource) object for each database in

the transaction. You must include the following in the bindds command:

a. The JNDI bound name for the object

b. The URL for creating a connection to the database

c. The fully-qualified public database link from the two-phase commit engine

to this database

The following example binds the empDSJTA DataSource into the namespace with

2pcToEmp as the database link name created on the two-phase commit engine:

% bindds /test/empDS -url jdbc:oracle:thin:@dbsun:5521:ORCL
-dstype jta -dblink 2pcToEmp.oracle.com

Configuring Two-Phase Commit Engine
When multiple databases are included in a global transaction, the changes to these

resources must all be committed or rolled back at the same time. That is, when the

transaction ends, the transaction manager contacts a coordinator—also known as a

Note: In a two-phase commit scenario, the DataSource object is

bound, with respect to the two-phase commit engine. If you change

the two-phase commit engine, you must update all database links,

and rebind all concerned DataSource and UserTransaction
objects.
Transaction Handling 7-25

Configuring Two-Phase Commit Engine
two-phase commit engine—to either commit or roll back all changes to all included

databases. The two-phase commit engine is an Oracle9i database that is configured

with the following:

■ Fully-qualified database links from the itself to each of the databases involved

in the transaction. When the transaction ends, the two-phase commit engine

communicates with the included databases over their fully-qualified database

links.

■ A user that is designated to create sessions to each database involved and is

given the responsibility of performing the commit or rollback. The user that

does the communication must be created on all involved databases and be

given the appropriate privileges.

In order to facilitate this coordination, you must configure the following:

1. Designate an Oracle9i database as the two-phase commit engine.

2. Configure fully-qualified public database links (using the CREATE DATABASE
LINK command) from the two-phase commit engine to each database that may

be involved in the global transaction. This is necessary for the two-phase

commit engine to communicate with each database at the end of the

transaction. These database link names must be included when binding the JTA

DataSource (OracleJTADataSource) object.

3. Bind a JTA DataSource (OracleJTADataSource) object for each database in

the transaction. You must include the following in the bindds command:

a. The JNDI bound name for the object

b. The URL for creating a connection to the database

c. The fully-qualified database link from the two-phase commit engine to this

database

Provide the fully-qualified database link name in the -dblink option of

bindds for each individual database when binding that database’s

DataSource into the namespace.

bindds /test/empDS -url jdbc:oracle:thin:@empHost:5521:ORCL
-dstype jta -dblink 2pcToEmp.oracle.com
7-26 CORBA Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
4. Create the user on the two-phase commit engine that facilitates the two-phase

commit. This user will open sessions to each resource involved in the

transaction and complete the transaction. To do this, the user must be created

on each database and granted CONNECT, RESOURCE, and CREATE SESSION
privileges. If the user that completes the transaction is different from the user

that starts the transaction, you also need to grant the FORCE ANY TRANSACTION
privilege. These privileges must be granted on all databases included in the

transaction.

The decision on whether the FORCE ANY TRANSACTION privilege is needed is

determined by whether you bound a username and password with the

UserTransaction object.

■ If you do not bind a username and password with the UserTransaction ,

the user that retrieved the UserTransaction will be the same user that is

used to perform the commit or rollback for the two-phase commit on all

involved databases.

■ If you bind a username and password with the UserTransaction , then

this is the username that the two-phase commit will be committed or rolled

back with on all involved databases. The transaction will be started by the

user that retrieves the UserTransaction object.

Both types of users must be created, so that it can open a session from the

two-phase commit engine to each of the involved databases. Secondly, it must

be granted the CONNECT, RESOURCE, CREATE SESSION privileges to be able to

connect to each of these databases. For example, if the user that is needed for

completing the transaction is SCOTT, you would do the following on the

two-phase commit engine and each database involved in the transaction:

CONNECT SYSTEM/MANAGER;
CREATE USER SCOTT IDENTIFIED BY SCOTT;
GRANT CONNECT, RESOURCE, CREATE SESSION TO SCOTT;

Lastly, if you bound a username and password with the UserTransaction
object, it will be using a different username to finalize the transaction than the

Note: In a two-phase commit scenario, the DataSource object is

bound, with respect to the two-phase commit engine. If you change

the two-phase commit engine, you must update all database links,

and rebind all concerned DataSource and UserTransaction
objects.
Transaction Handling 7-27

Configuring Two-Phase Commit Engine
username used to start the transaction. For this to be allowed, you must grant

the FORCE ANY TRANSACTION privileges on each database involved in the

transaction in order for two separate users to start and stop the transaction.

The advantage of binding a username with the UserTransaction is that it is

treated as a global user is always committing all transactions started with this

UserTransaction object. Thus, if you have more than one JTA transactions,

you will only have to create one user and grant privileges to that user on all

involved databases.

For example, if SCOTT is the username bound with the UserTransaction
object, you would need to do the following in addition to the previous grant:

GRANT FORCE ANY TRANSACTION TO SCOTT;

5. Bind a UserTransaction into the namespace. You must provide the

two-phase commit engine’s fully-qualified database address. At this point, you

should decide (based on the discussion in step 3) on whether to bind it with a

username and password. The following assumes a global username is bound

with the UserTransaction .

bindut /test/myUT -url sess_iiop://dbsun.mycompany.com:2481:ORCL
-user SCOTT -password TIGER

Example 7–6 Two-Phase Commit Example

The following example shows a server object that performs an in-session activation

to retrieve both the UserTransaction and DataSource objects that have been

bound locally. The UserTransaction was bound with the two-phase commit

engine’s URL, username, and password. The DataSource objects were all bound

with the proper database links.

//with the environment set, create the initial context.
InitialContext ic = new InitialContext ();
UserTransaction ut = (UserTransaction)ic.lookup ("/test/myUT");

//With the same username and password for the 2pc engine,
// lookup the local datasource and a remote database.
DataSource localDS = (DataSource)ic.lookup ("/test/localDS");

//remote lookup requires environment setup
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
7-28 CORBA Developer’s Guide and Reference

Creating DataSource Objects Dynamically
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
Context ic = new InitialContext (env);

//retrieve the DataSource for the remote database
DataSource remoteDS = (DataSource)ic.lookup ("jdbc_access://test/NewYorkDS");

//retrieve connections to both local and remote databases
Connection localConn = localDS.getConnection ();
Connection remoteConn = remoteDS.getConnection ();
...
//close the connections
localConn.close();
remoteConn.close();

//end the transaction
 ut.commit();

Creating DataSource Objects Dynamically
If you want to bind only a single DataSource object in the namespace to be used

for multiple database resources, you must do the following:

1. Bind the DataSource without specifying the URL, host, port, SID, or driver

type. Thus, you execute the bindds tool with only the -dstype jta option, as

follows:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password
TIGER
& bindds /test/empDS -dstype jta

2. Retrieve the DataSource in your code. When you perform the lookup, you

must cast the returned object to OracleJTADataSource instead of

DataSource . The Oracle-specific version of the DataSource class contains

methods to set the DataSource properties.

3. Set the following properties:

■ Set the URL with the OracleJTADataSource.setURL method

■ Fully-qualified database link if using two-phase commit engine with the

OracleJTADataSource.setDBLink method
Transaction Handling 7-29

Setting the Transaction Timeout
4. Retrieve the connection through the

OracleJTADataSource .getConnection method as indicated in the other

examples.

Example 7–7 Retrieving Generic DataSource

The following example retrieves a generically bound DataSource from the

namespace using in-session lookup and initializes all relevant fields.

//retrieve an in-session generic DataSource object
OracleJTADataSource ds =
 (OracleJTADataSource)ic.lookup ("java:comp/env/test/empDS");

//set all relevant properties for my database
//URL is for a local database so use the KPRB URL
ds.setURL ("jdbc:oracle:kprb:");
//Used in two-phase commit, so provide the fully qualified database link that
//was created from the two-phase commit engine to this database
ds.setDBLink("localDB.oracle.com");

//Finally, retrieve a connection to the local database using the DataSource
Connection conn = ds.getConnection ();

Setting the Transaction Timeout
A global transaction automatically has an idle timeout of 60 seconds. If the session

attached to the transaction is idle for over the timeout limit, the transaction is rolled

back. If any activity occurs within this timeframe, the timeout is reset to zero.

To initialize a different timeout, set the timeout value—in seconds—through the

setTransactionTimeout method before the transaction is begun. If you change

the timeout value after the transaction begins, it will not affect the current

transaction. The following example sets the timeout to 2 minutes (120 seconds)

before the transaction begins.

//create the initial context
InitialContext ic = new InitialContext ();

//retrieve the UserTransaction object
ut = (UserTransaction)ic.lookup ("/test/myUT");

//set the timeout value to 2 minutes
ut.setTransactionTimeout (120);

//begin the transaction
7-30 CORBA Developer’s Guide and Reference

Java Transaction Service
ut.begin

//Update employee table with new employees
updateEmployees(emp, newEmp);

//end the transaction.
ut.commit ();

JTA Limitations
The following are the portions of the JTA specification that Oracle9i does not

support.

Nested Transactions
Nested transactions are not supported in this release. If you attempt to begin a new

transaction before committing or rolling back any existing transaction, the

transaction service throws a NotSupportedException exception.

Interoperability
The transaction services supplied with this release do not interoperate with other

JTA implementations.

Timeouts
The global transaction timeout does not work. In addition, the UserTransaction
idle timeout (setTransactionTimeout method) starts only when a database

connection is closed and idle. Oracle recommends that you do not use timeouts.

Java Transaction Service
With JTS, you demarcate the transaction off of a transaction context, which you can

retrieve from the TransactionService object. The transaction context contains

the begin, commit, rollback, suspend, and resume methods. One of the

disadvantages to JTS is that you cannot use a two-phase commit engine to

coordinate changes to multiple databases. The advantage to JTS is that you can

suspend and resume the transaction. Also, because it is specific to CORBA, you can

use either Java or non-Java languages in your application.

This implementation of JTS does not manage distributed transactions. Transaction

control distributed among multiple database servers, with support for the required

two-phase commit protocol, is only available within the JTA implementation.
Transaction Handling 7-31

Java Transaction Service
The JTS transaction API supplied with Oracle9i manages only one resource: an

Oracle9i database session. A transaction exists within only a single server, which

means that it cannot span multiple servers or multiple database sessions in a single

service. Transaction contexts are never propagated outside a server. If a server

object calls out to another server, the transaction context is not carried along.

However, a transaction can involve one or many objects. The transaction can

encompass one or many methods within these objects.

Whether you demarcate the transaction on the client or the server, the following

must occur:

1. Initialize the TransactionService object.

Oracle9i automatically initializes this object for any server objects; thus, only

the client must explicitly initialize this object. The initialization is accomplished

through the AuroraTransactionService.initialize method.

2. Retrieve the TransactionService object through the static TS.getTS
method.

3. Retrieve the current transaction context through the

TransactionService.getCurrent method.

4. Manage the transaction through the following transaction context (Current
class) methods: begin , commit , rollback , rollback_only , suspend ,

resume .

JTS Client-Side Demarcation
The only difference between client and server-side demarcation is that the client

must initialize the TransactionService object before retrieving it. The client

initializes a TransactionService object on the intended server. Since JTS can

only manage a transaction within a single server, the client should invoke server

objects that exist only on that single server. In addition, any SQL statements

executed against the database should also be solely applied to the same server.

The following example demonstrates the steps required for a client-side

demarcation:

1. Initialize the TransactionService object. The initialization is accomplished

through the AuroraTransactionService.initialize method.

2. Retrieve the TransactionService object through the static TS.getTS
method.
7-32 CORBA Developer’s Guide and Reference

Java Transaction Service
3. Retrieve the current transaction context through the

TransactionService.getCurrent method.

4. Manage the transaction through the following transaction context (Current
class) methods: begin , commit , rollback , rollback_only , suspend ,

resume .

Example 7–8 Client-Side Demarcation for JTS Example

import employee.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jts.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 //The environment must be setup with the correct authentication
 //and prefix information before you create the initial context
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 //provide the intial context and the service URL of the server
 AuroraTransactionService.initialize (ic, serviceURL);

 //Since JTS can only manage transactions on a single server, the
 //destination server object exists on the same server as the transaction
 //service. Thus, you use the same service URL to retrieve the object.
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);
Transaction Handling 7-33

Java Transaction Service
 EmployeeInfo info;

 //Use the static method getTS to retrieve the TransactionService and the
 //static method getCurrent to retrieve the current transaction context.
 //Off of the Current object, you can start the transaction with the begin
 //method. All three methods have been combined as follows:
 TS.getTS ().getCurrent ().begin ();

 //invoke a method on the retrieved server object. Since the object exists
 //on the transaction server, it is included in the transaction.
 info = employee.getEmployee ("SCOTT");
 System.out.println (info.name + " " + " " + info.salary);
 System.out.println ("Increase by 10%");
 info.salary += (info.salary * 10) / 100;
 employee.updateEmployee (info);
 info = employee.getEmployee ("SCOTT");
 System.out.println (info.name + " " + " " + info.salary);

 //Finally, commit the transaction with the Current.commit method.
 TS.getTS ().getCurrent ().commit (true);
 }
}

JTS Server-Side Demarcation
Oracle9i initializes the TransactionService for any server object. In the same

manner as the client, the server must invoke only other server objects on the same

server. SQL statements should also only be applied to the same database.

The following example demonstrates the steps required for a client-side

demarcation:

1. Retrieve the TransactionService object through the static TS.getTS
method.

2. Retrieve the current transaction context through the

TransactionService.getCurrent method.

3. Manage the transaction through the following transaction context (Current
class) methods: begin , commit , rollback , rollback_only , suspend ,

resume .

Example 7–9 Server-Side Demarcation for JTS Example

package employeeServer;
7-34 CORBA Developer’s Guide and Reference

Java Transaction Service
import employee.*;
import java.sql.*;
import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl extends _EmployeeImplBase
{
 Control txn;

 public EmployeeInfo getEmployee (String name) throws SQLError {
 //When the client invokes the getEmployee method, the transaction is started
 //Retreive the Transaction service through the static getTS method.
 //Retrieve the current transaction context through the getCurrent method.
 //And start the transaction with the Current.begin method. These have
 //been combined into one statement....
 TS.getTS ().getCurrent ().begin ();

 //Retrieve the employee information given the employee name.
 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };

 //At this point, we suspend the transaction to return the employee
 //information to the client.
 txn = TS.getTS().getCurrent().suspend();
 return new EmployeeInfo (name, empno, (float)salary);
 }

 public void updateEmployee (EmployeeInfo employee) throws SQLError {
 //After the client retrieves the employee info, it invokes the updateEmp
 //method to change any values.
 //The transaction is resumed in this method through the Current.resume,
 //which requires the Control object returned on the suspend method.
 TS.getTS().getCurrent().resume(txn);

 //update the employee’s information.
 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)
 where empno = :(employee.number) };

 //Once finished, complete the transaction with the Current.commit method.
 TS.getTS ().getCurrent ().commit (true);
 }
Transaction Handling 7-35

Java Transaction Service
JTS Limitations
The implementations of JTS that is supplied for this Oracle9i release is intended to

support client-side transaction demarcation. It has limitations that you should be

aware of when designing your application.

No Distributed Transactions
This implementation of JTS does not manage distributed transactions. Transaction

control distributed among multiple database servers, with support for the required

two-phase commit protocol, is only available within the JTA implementation.

Resources
The JTS transaction API supplied with Oracle9i manages only one resource: an

Oracle9i database session. A transaction cannot span multiple servers or multiple

database sessions in a single service.

Transaction contexts are never propagated outside a server. If a server object calls

out to another server, the transaction context is not carried along.

However, a transaction can involve one or many objects. The transaction can

encompass one or many methods of these objects. The scope of a transaction is

defined by a transaction context that is shared by the participating objects. For

example, your client can invoke one or more objects on the same server within a

single session or several objects on the same server within multiple sessions.

Nested Transactions
Nested transactions are not supported in this release. If you attempt to begin a new

transaction before committing or rolling back any existing transaction, the

transaction service throws a SubtransactionsUnavailable exception.

Timeouts
Methods of the JTS that support transaction timeout, such as setTimeout() , do

not work in this release. You can invoke them from your code, and no exception is

thrown, but they have no effect.

Interoperability
The transaction services supplied with this release do not interoperate with other

OTS implementations.
7-36 CORBA Developer’s Guide and Reference

Transaction Service Interfaces
Transaction Service Interfaces
Oracle9i supports a version of the JTS. The JTS is a Java mapping of the OMG

Object Transaction Service (OTS). There are two classes that the application

developer can use:

■ TransactionService

■ UserTransaction , implemented by

oracle.aurora.jts.client.AuroraTransactionService

TransactionService
Use the TransactionService to initialize a transaction context on the client.

Include the AuroraTransactionService package in your Java client source

with the following import statements:

import oracle.aurora.jts.client.AuroraTransactionService;
import javax.jts.*;
import oracle.aurora.jts.util.*;

These classes are included in the library file aurora_client.jar , which must be

in the CLASSPATH when compiling and executing all source files that use the JTS.

There is only one method in this package that you can call:

public synchronized static void initialize(Context initialContext,
 String serviceName)

This method initializes the transaction context on a client. The parameters are:

An example of using initialize() is:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context initialContext = new InitialContext(env);
AuroraTransactionService.initialize
 (initialContext, "sess_iiop://localhost:2481:ORCL");

initialContext The context object returned by a JNDI Context constructor.

serviceName The complete service name. For example sess_
iiop://localhost:2481:ORCL
Transaction Handling 7-37

Transaction Service Interfaces
Using The Java Transaction Service
JTS contains methods that a client-side or server-side object uses to begin

transactions, commit or roll back a transaction, and perform utility functions such

as setting the transaction timeout. JTS methods should be used in CORBA clients

server objects.

The following sections describe the JTS APIs:

■ Required Import Statements

■ Java Transaction Service Methods

■ Current Transaction Methods

Required Import Statements
To use the JTS methods, include the following import statements in your source:

import oracle.aurora.jts.util.TS;
import javax.jts.util.*;
import org.omg.CosTransactions.*;

The oracle.aurora.jts.util package is included in the library file aurora_
client.jar , which must be in the CLASSPATH for all Java sources that use the

JTS.

You use the static methods in the TS class to retrieve the transaction service.

Java Transaction Service Methods
The JTS includes the following methods:

public static synchronized TransactionService getTS()

1. The getTS method returns a transaction service object.

2. Once a transaction service has been obtained, you can invoke the static method

getCurrent() on it to return a Current pseudo-object, the transaction

context.

3. Finally, you can invoke methods to begin, suspend, resume, commit, or roll

back the current transaction on the Current pseudo-object.

Here is an example that begins a new transaction on a client, starting with getting

the JNDI initial context:

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jts.client.AuroraTransactionService;
7-38 CORBA Developer’s Guide and Reference

Transaction Service Interfaces
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
...
Context ic = new InitialContext(env);
...
AuroraTransactionService.initialize(ic, serviceURL);
...
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info;
oracle.aurora.jts.util.TS.getTS().getCurrent().begin();

If there is no transaction service available, then getTS() throws a

NoTransactionService exception.

Current Transaction Methods
The methods that you can call to control transactions on the current transaction

context are the following:

public void begin()

Begins a new transaction.

Can throw these exceptions:

■ NoTransactionService —if you have not initialized a transaction context.

■ SubtransactionsUnavailable —if you invoke a begin() before the

current transaction has been committed or rolled back.

See the section "TransactionService" on page 7-37 for information

about initialization.

public Control suspend()

Suspends the current transaction in the session. Returns a Control transaction

context pseudo-object. You must save this object reference for use in any subsequent

resume() invocations. Invoke suspend() in this way:

org.omg.CosTransactions.Control c =
 oracle.aurora.jts.util.TS.getTS().getCurrent().suspend();

suspend() can throw these exceptions:

■ NoTransactionService —if you have not initialized a transaction context.
Transaction Handling 7-39

Transaction Service Interfaces
■ TransactionDoesNotExist —if not in an active transaction context. This can

occur if a suspend() follows a previous suspend() , with no

intervening resume() .

If suspend() is invoked outside of a transaction context, then a

NoTransactionService exception is thrown. If suspend() is invoked before

begin() has been invoked, or after a suspend() , the a exception is thrown.

public void resume(Control which)

Resumes a suspended transaction. Invoke this method after a suspend() , in order

to resume the specified transaction context. The which parameter must be the

transaction Control object that was returned by the previous matching

suspend() invocation in the same session. For example:

org.omg.CosTransactions.Control c =
 oracle.aurora.jts.util.TS.getTS().getCurrent().suspend();
... // do some non-transactional work
oracle.aurora.jts.util.TS.getTS().getCurrent().resume(c);

resume() can throw:

■ InvalidControl —if the which parameter is not valid, or is null.

public void commit(boolean report_heuristics)

Commits the current transaction. Set the report_heuristics parameter to

false .

The report_heuristics parameter is set to true for extra information on

two-phase commits. Because this release of Oracle9i does not support the two-phase

commit protocol for distributed objects for JTS, use of the report_heuristics
parameter is not meaningful. It is included for compatibility with future releases.

commit() can throw:

■ HeuristicMixe d—if report_heuristics was set true, and a two-phase

commit is in progress.

■ HeuristicHazard —if report_heuristics was set true, and a two-phase

commit is in progress.

The HeuristicMixe d and HeuristicHazard exceptions are documented in the

OTS specification.

If there is no active transaction, commit() throws a NoTransaction exception.
7-40 CORBA Developer’s Guide and Reference

For More Information on JTS
public void rollback()

Rolls back the effects of the current transaction.

Invoking rollback() has the effect of ending the transaction, so invoking any JTS

method except begin() after a rollback() throws a NoTransaction exception.

If not in a transaction context, rollback() throws the NoTransaction exception.

public void rollback_only() throws NoTransaction {

rollback_only() modifies the transaction associated with the current thread so

that the only possible outcome is to roll back the transaction. If not in a transaction

context, rollback_only() throws the NoTransaction exception.

public void set_timeout(int seconds)

This method is not supported, and has no effect if invoked. The default timeout

value is 60 seconds in all cases.

public Status get_status()

You can call get_status() at any time to discover the status of the current

transaction. Possible return values are:

■ javax.transaction.Status.StatusActive

■ javax.transaction.Status.StatusMarkedRollback

■ javax.transaction.Status.StatusNoTransaction

The complete set of status ints is defined in javax.transaction.Status .

public String get_transaction_name() {

Invoke get_transaction_name() to see the name of the transaction, returned as

a String. If this method is invoked before a begin() , after a rollback() , or

outside of a transaction context, it returns a null string.

For More Information on JTS
Information on the Java Transaction Service is available at:
Transaction Handling 7-41

JDBC Restrictions
http://java.sun.com:/products/jts/index.html

The Sun JTS specification is available at:

http://java.sun.com/products/jta/index.html

The OTS specification is part of the CORBA services specification. Chapter 10

(individually downloadable) contains the OTS specification. Get it at:

http://www.omg.org/library/csindx.html

JDBC Restrictions
If you are using JDBC calls in your CORBA server object to update a database, and

you have an active transaction context, you should not also use JDBC to perform

transaction services, by calling methods on the JDBC connection. Do not code JDBC

transaction management methods. For example:

Connection conn = ...
...
conn.commit(); // DO NOT DO THIS!!

Doing so will cause a SQLException to be thrown. Instead, you must commit

using the UserTransaction object retrieved to handle the global transaction.

When you commit using the JDBC connection, you are instructing a local

transaction to commit, not the global transaction. When the connection is involved

in a global transaction, trying to commit a local transaction within the global

transaction causes an error to occur.

In the same manner, you must also avoid doing direct SQL commits or rollbacks

through JDBC. Code the object to either handle transactions directly using the

UserTransaction interface.

Within a global transaction, you cannot execute a local transaction. If you try, the

following error will be thrown:

ORA-2089 "COMMIT is not allowed in a subordinate session."

Some SQL commands implicitly execute a local transaction. All SQL DDL

statements, such as "CREATE TABLE", implicitly starts and commits a local

transaction under the covers. If you are involved in a global transaction that has

enlisted the database that the DDL statement is executing against, the global

transaction will fail.
7-42 CORBA Developer’s Guide and Reference

Example Code: CO
A

Example Code: CORBA

Oracle9i installs several samples under the $ORACLE_HOME/javavm/demo
directory. Some of these samples are included in this appendix for your perusal.

The examples in the $ORACLE_HOME/javavm/demo directory include a UNIX

makefile and Windows NT batch file to compile and run each example. You need a

Java-enabled Oracle9i database with the standard EMP and DEPT demo tables to

run the examples.

The emphasis in these short examples is on demonstrating features of the ORB and

CORBA, not on elaborate Java coding techniques. Each of the examples includes a

README file that tell you what files the example contains, what the example does,

and how to compile and run the example.

■ Basic Example

■ IFR Example

■ Callback Example

■ TIE Example

■ Pure CORBA Client

■ JTA Examples

■ JTS Transaction Example

■ SSL Examples

■ Session Example

■ Applet Example
RBA A-1

Basic Example
Basic Example
The following is a Bank example that demonstrates a simple CORBA application.

Included is the README, the IDL, the server code, and the client code. Refer to the

$ORACLE_HOME/javavm/demo/corba/basic directory for the Makefile.

README
This is an Oracle9i-compatible version of the VisiBroker Bank
example. The major differences from the Vb example are:

(1) There is no server main loop. For Oracle9i the
"wait-for-activation" loop is part of the IIOP presentation (MTS
server).

(2) _boa.connect(object) is used instead of the less portable
 _boa_obj_is_ready(object) in the server object implementation to
register the new Account objects.

(3) The client program contains the code necessary to lookup the
AccountManager object (published under /test/BankCorb) and activate it,
and to authenticate the client to the server. (Note that object
activation and authentication, via NON_SSL_LOGIN, happen "under the
covers" so to speak on the lookup() method invocation.)

(4) There is also a tie implementation of this example, with the
server being AccountManagerImplTie.java.

Bank.IDL
// Bank.idl

module common {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Server
The server code is implemented in the following:
A-2 CORBA Developer’s Guide and Reference

Basic Example
AccountManagerImpl.java
// AccountManagerImpl.java

package server;

import common.*;
import java.util.*;

public class AccountManagerImpl extends _AccountManagerImplBase
{
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

 public synchronized Account open(String accountName)
 {
 // Lookup the account in the account dictionary.
 Account account = (Account) _accounts.get(accountName);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Intialize orb and boa
 //org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 //org.omg.CORBA.BOA boa = orb.BOA_init();

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 // register object with boa
 //boa.obj_is_ready(account);
 //orb.connect(account);
 _orb().connect(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 9i.
 System.out.println("Created " + accountName + "’s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(accountName, account);
 }
Example Code: CORBA A-3

Basic Example
 // Return the account.
 return account;
 }
}

AccountImpl.java
package server;
import common.*;

public class AccountImpl extends _AccountImplBase
{
 private float _balance;

 public AccountImpl(float balance)
 {
 _balance = balance;
 }

 public float balance()
 {
 return _balance;
 }
}

AccountManagerImplTie.java
package server;

import common.*;
import java.util.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImplTie implements AccountManagerOperations,
 ActivatableObject
{
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

 public synchronized Account open(String name)
 {
 // Lookup the account in the account dictionary.
 Account account = (Account) _accounts.get(name);
A-4 CORBA Developer’s Guide and Reference

Basic Example
 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Intialize orb and boa
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 //org.omg.CORBA.BOA boa = orb.BOA_init();

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 // register object with boa
 //boa.obj_is_ready(account);
 orb.connect(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 9i.
 System.out.println("Created " + name + "’s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 public org.omg.CORBA.Object _initializeAuroraObject()
 {
 return new _tie_AccountManager(this);
 }
}

Client.java
package client;

import common.*;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
Example Code: CORBA A-5

Basic Example
{
 public static void main (String[] args)
 {
 if (args.length != 5) {
 System.out.println("usage: Client user password GIOP_SERVICE CorbaPubname
accountName");
 System.exit(1);
 }
 String user = args[0];
 String password = args[1];
 String GIOP_SERVICE = args[2];
 String corbaPubname = args[3];
 String accountName = args[4];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

 try {
 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager)ic.lookup(GIOP_SERVICE + corbaPubname);

 // Request the account manager to open a named account.
 Account account = manager.open(accountName);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 System.out.println("The balance in " + accountName +
 "’s account is $" + balance);
 } catch (Exception e) {
 System.out.println("Client.main(): " + e.getMessage());
 }
 }
}

StoredClient.java
package client;
A-6 CORBA Developer’s Guide and Reference

IFR Example
import common.*;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class StoredClient
{
 public static String callBankCorb(String corbaPubname, String accountName)
 {
 Hashtable env = new Hashtable();

 String ret = null;
 try {
 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager)ic.lookup(corbaPubname);

 // Request the account manager to open a named account.
 Account account = manager.open(accountName);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 ret = "The balance in " + accountName + "’s account is $" + balance;
 } catch (Exception e) {
 ret = "StoredClient.callBankCorb(): " + e.getMessage();
 }
 return ret;
 }
}

IFR Example
The following example shows how to use the IFR. Soft copy is located at

$ORACLE_HOME/javavm/demo/corba/basic/bankWithIFR .

Bank.IDL
module common {
 interface Account {
 float balance();
Example Code: CORBA A-7

IFR Example
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Server
The server code is implemented in the AccountManager , Account , and TIE

classes.

AccountManagerImpl.java
package server;

import common.*;
import java.util.*;

public class AccountManagerImpl extends _AccountManagerImplBase
{
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

 public synchronized Account open(String accountName)
 {
 // Lookup the account in the account dictionary.
 Account account = (Account) _accounts.get(accountName);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Intialize orb and boa
 //org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 //org.omg.CORBA.BOA boa = orb.BOA_init();

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 // register object with boa
 //boa.obj_is_ready(account);
 //orb.connect(account);
 _orb().connect(account);
A-8 CORBA Developer’s Guide and Reference

IFR Example
 // Print out the new account.
 // This just goes to the system trace file for Oracle 9i.
 System.out.println("Created " + accountName + "’s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(accountName, account);
 }
 // Return the account.
 return account;
 }
}

AccountImpl.java
package server;

import common.*;

public class AccountImpl extends _AccountImplBase
{
 private float _balance;

 public AccountImpl(float balance)
 {
 _balance = balance;
 }

 public float balance()
 {
 return _balance;
 }
}

AccountManagerImplTie.java
package server;

import common.*;
import java.util.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImplTie implements AccountManagerOperations,
Example Code: CORBA A-9

IFR Example
 ActivatableObject
{
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

 public synchronized Account open(String name)
 {
 // Lookup the account in the account dictionary.
 Account account = (Account) _accounts.get(name);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Intialize orb and boa
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 //org.omg.CORBA.BOA boa = orb.BOA_init();

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 // register object with boa
 //boa.obj_is_ready(account);
 orb.connect(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 9i.
 System.out.println("Created " + name + "’s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 public org.omg.CORBA.Object _initializeAuroraObject()
 {
 return new _tie_AccountManager(this);
 }
}

A-10 CORBA Developer’s Guide and Reference

IFR Example
Client
The client code is facilitated in the following:

■ Client.java

■ PrintIDL.java

Client.java
package client;

import common.*;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import org.omg.CORBA.Repository;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args)
 {
 if (args.length != 5) {
 System.out.println("usage: Client user password GIOP_SERVICE CorbaPubname
accountName");
 System.exit(1);
 }
 String user = args[0];
 String password = args[1];
 String GIOP_SERVICE = args[2];
 String corbaPubname = args[3];
 String accountName = args[4];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

 try {
 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager)ic.lookup(GIOP_SERVICE + corbaPubname);
Example Code: CORBA A-11

IFR Example
 // Request the account manager to open a named account.
 Account account = manager.open(accountName);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 System.out.println
 ("The balance in " + accountName + "’s account is $" + balance);

 System.out.println("Calling the implicit method get_interface()");
 org.omg.CORBA.InterfaceDef intf =
 (org.omg.CORBA.InterfaceDef)account._get_interface_def();
 System.out.println("intf = " + intf.name());

 System.out.println("Now explicitly looking up for IFR and printing the");
 System.out.println("whole repository");
 System.out.println("");

 Repository rep = (Repository)ic.lookup(GIOP_SERVICE + "/etc/ifr");

 new PrintIDL(org.omg.CORBA.ORB.init()).print(rep);

 } catch (Exception e) {
 System.out.println("Client.main(): " + e.getMessage());
 e.printStackTrace();
 }
 }
}

PrintIDL.java
package client;

import common.*;
import java.io.PrintStream;
import java.util.Vector;
import java.io.DataInputStream;
import org.omg.CORBA.Repository;

public class PrintIDL
{
 private static org.omg.CORBA.ORB _orb;
 private static PrintStream _out = System.out;
 private static int _indent;
A-12 CORBA Developer’s Guide and Reference

IFR Example
 public PrintIDL (org.omg.CORBA.ORB orb) {
 _orb = orb;
 }
 private void println(Object o) {
 for(int i = 0; i < _indent; i++) {
 _out.print(" ");
 }
 _out.println(o);
 }

 private String toIdl(org.omg.CORBA.IDLType idlType) {
 org.omg.CORBA.Contained contained =

org.omg.CORBA.ContainedHelper.narrow(idl Type);
 return contained == null ?
 idlType.type().toString() :
 contained.absolute_name();
 }

 public void print(org.omg.CORBA.Container container)
 throws org.omg.CORBA.UserException {
 org.omg.CORBA.Contained[] contained =
 container.contents(org.omg.CORBA.DefinitionKind.dk_all, true);
 for(int i = 0; i < contained.length; i++) {
 {
 org.omg.CORBA.ContainedPackage.Description description =
 contained[i].describe();
 org.omg.CORBA.portable.OutputStream output =
 _orb.create_output_stream();
 org.omg.CORBA.ContainedPackage.DescriptionHelper.write(output,
 description);
 org.omg.CORBA.portable.InputStream input = output.create_input_stream();
 org.omg.CORBA.ContainedPackage.Description description2 =
 org.omg.CORBA.ContainedPackage.DescriptionHelper.read(input);
 org.omg.CORBA.Any any1 = _orb.create_any();
 org.omg.CORBA.ContainedPackage.DescriptionHelper.insert(any1,
 description);
 org.omg.CORBA.Any any2 = _orb.create_any();
 org.omg.CORBA.ContainedPackage.DescriptionHelper.insert(any2,
 description2);
 if(!any1.equals(any1) ||
 !any1.equals(any2) ||
 !any2.equals(any2) ||
 !any2.equals(any1)) {
Example Code: CORBA A-13

IFR Example
 System.out.println("\n*** The desriptions were not equal (1) *** \n");
 }
 org.omg.CORBA.ContainedPackage.Description description3 =
 org.omg.CORBA.ContainedPackage.DescriptionHelper.extract(any2);
 if(description.kind != description2.kind ||
 !description.value.equals(description3.value)) {
 System.out.println("\n*** The desriptions were not equal (2) *** \n");
 }
 }
 switch(contained[i].def_kind().value()) {
 case org.omg.CORBA.DefinitionKind._dk_Attribute:
 printAttribute(org.omg.CORBA.AttributeDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Constant:
 printConstant(org.omg.CORBA.ConstantDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Exception:
 printException(org.omg.CORBA.ExceptionDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Interface:
 printInterface(org.omg.CORBA.InterfaceDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Module:
 printModule(org.omg.CORBA.ModuleDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Operation:
 printOperation(org.omg.CORBA.OperationDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Alias:
 printAlias(org.omg.CORBA.AliasDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Struct:
 printStruct(org.omg.CORBA.StructDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Union:
 printUnion(org.omg.CORBA.UnionDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_Enum:
 printEnum(org.omg.CORBA.EnumDefHelper.narrow(contained[i]));
 break;
 case org.omg.CORBA.DefinitionKind._dk_none:
 case org.omg.CORBA.DefinitionKind._dk_all:
 case org.omg.CORBA.DefinitionKind._dk_Typedef:
 case org.omg.CORBA.DefinitionKind._dk_Primitive:
 case org.omg.CORBA.DefinitionKind._dk_String:
A-14 CORBA Developer’s Guide and Reference

IFR Example
 case org.omg.CORBA.DefinitionKind._dk_Sequence:
 case org.omg.CORBA.DefinitionKind._dk_Array:
 default:
 break;
 }
 }
 }

 private void printConstant(org.omg.CORBA.ConstantDef def)
 throws org.omg.CORBA.UserException {
 println("const " + toIdl(def.type_def()) + " " + def.name() + " = " +
 def.value() + ";");
 }

 private void printStruct(org.omg.CORBA.StructDef def)
 throws org.omg.CORBA.UserException {
 println("struct " + def.name() + " {");
 _indent++;
 org.omg.CORBA.StructMember[] members = def.members();
 for(int j = 0; j < members.length; j++) {
 println(toIdl(members[j].type_def) + " " + members[j].name + ";");
 }
 _indent--;
 println("};");
 }

 private void printUnion(org.omg.CORBA.UnionDef def)
 throws org.omg.CORBA.UserException {
 println("union " + def.name() + "
 switch(" + toIdl(def.discriminator_type_def()) + ") {");
 org.omg.CORBA.UnionMember[] members = def.members();
 int default_index = def.type().default_index();
 _indent++;
 for(int j = 0; j < members.length; j++) {
 if(j == default_index) {
 println("default:");
 }
 else {
 println("case " + members[j].label + ":");
 }
 _indent++;
 println(toIdl(members[j].type_def) + " " + members[j].name + ";");
 _indent--;
 }
 _indent--;
Example Code: CORBA A-15

IFR Example
 println("};");
 }
 private void printException(org.omg.CORBA.ExceptionDef def)
 throws org.omg.CORBA.UserException {
 println("exception " + def.name() + " {");
 _indent++;
 org.omg.CORBA.StructMember[] members = def.members();
 for(int j = 0; j < members.length; j++) {
 println(toIdl(members[j].type_def) + " " + members[j].name + ";");
 }
 _indent--;
 println("};");
 }

 private void printEnum(org.omg.CORBA.EnumDef def)
 throws org.omg.CORBA.UserException {
 org.omg.CORBA.TypeCode type = def.type();
 println("enum " + type.name() + " {");
 _indent++;
 int count = type.member_count();
 for(int j = 0; j < count; j++) {
 println(type.member_name(j) + ((j == count - 1) ? "" : ","));
 }
 _indent--;
 println("};");
 }

 private void printAlias(org.omg.CORBA.AliasDef def)
 throws org.omg.CORBA.UserException {
 org.omg.CORBA.IDLType idlType = def.original_type_def();
 String arrayBounds = "";
 while(true) {
 // This is a little strange, since the syntax of typedef’ed
 // arrays is stupid.
 org.omg.CORBA.ArrayDef arrayDef =
 org.omg.CORBA.ArrayDefHelper.narrow(idlType);
 if(arrayDef == null) {
 break;
 }
 arrayBounds += "[" + arrayDef.length() + "]";
 idlType = arrayDef.element_type_def();
 }
 println("typedef " + toIdl(idlType) + " " + def.name() + arrayBounds + ";");
 }
A-16 CORBA Developer’s Guide and Reference

IFR Example
 private void printAttribute(org.omg.CORBA.AttributeDef def)
 throws org.omg.CORBA.UserException {
 String readonly = def.mode() == org.omg.CORBA.AttributeMode.ATTR_READONLY ?
 "readonly " : "";
 println(readonly + "attribute " + toIdl(def.type_def()) + " " + def.name() +
 ";");
 }

 private void printOperation(org.omg.CORBA.OperationDef def)
 throws org.omg.CORBA.UserException {
 String oneway = def.mode() == org.omg.CORBA.OperationMode.OP_ONEWAY ?
 "oneway " : "";
 println(oneway + toIdl(def.result_def()) + " " + def.name() + "(");
 _indent++;
 org.omg.CORBA.ParameterDescription[] parameters = def.params();
 for(int k = 0; k < parameters.length; k++) {
 String[] mode = { "in", "out", "inout" };
 String comma = k == parameters.length - 1 ? "" : ",";
 println(mode[parameters[k].mode.value()] + " " +
 toIdl(parameters[k].type_def) + " " +
 parameters[k].name + comma);
 }
 _indent--;
 org.omg.CORBA.ExceptionDef[] exceptions = def.exceptions();
 if(exceptions.length > 0) {
 println(") raises (");
 _indent++;
 for(int k = 0; k < exceptions.length; k++) {
 String comma = k == exceptions.length - 1 ? "" : ",";
 println(exceptions[k].absolute_name() + comma);
 }
 _indent--;
 }
 println(");");
 }

 private void printInterface(org.omg.CORBA.InterfaceDef idef)
 throws org.omg.CORBA.UserException {
 String superList = "";
 {
 org.omg.CORBA.InterfaceDef[] base_interfaces = idef.base_interfaces();
 if(base_interfaces.length > 0) {
 superList += " :";
 for(int j = 0; j < base_interfaces.length; j++) {
 String comma = j == base_interfaces.length - 1 ? "" : ",";
Example Code: CORBA A-17

Callback Example
 superList += " " + base_interfaces[j].absolute_name() + comma;
 }
 }
 }
 println("interface " + idef.name() + superList + " {");
 _indent++;
 print(idef);
 _indent--;
 println("};");
 }

 private void printModule(org.omg.CORBA.ModuleDef def)
 throws org.omg.CORBA.UserException {
 println("module " + def.name() + " {");
 _indent++;
 print(def);
 _indent--;
 println("};");
 }
}

Callback Example
The callback example is available online at

$ORACLE_HOME/javavm/demo/examples/corba/basic/callback.

IDL Files

Client.IDL
module common {
 interface Client {
 wstring helloBack ();
 };
};

Server.IDL
#include <Client.idl>

module common {
 interface Server {
 wstring hello (in Client object);
 };
A-18 CORBA Developer’s Guide and Reference

Callback Example
};

Server

ServerImpl.java
package server;

import common.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ServerImpl extends _ServerImplBase implements ActivatableObject
{
 public String hello (Client client) {
 return "I Called back and got: " + client.helloBack ();
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

Client
The client invokes the server object, which calls back to another object on the

client-side. The originating client is implemented in Client.java. The client-side

callback object is implemented in ClientImpl.java.

Client.java
// Client.java

package client;

import common.*;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
Example Code: CORBA A-19

Callback Example
 if (args.length != 4) {
 System.out.println ("usage: Client user password GIOP_SERVICE corbaPubname
");
 System.exit (1);
 }
 String user = args[0];
 String password = args[1];
 String GIOP_SERVICE = args[2];
 String corbaPubname = args[3];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // Get the server object before preparing the client object
 // You have to do it in that order to get the ORB initialized correctly
 Server server = (Server)ic.lookup (GIOP_SERVICE + corbaPubname);

 // Create the client object and publish it to the orb in the client
 //org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
 com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
 org.omg.CORBA.BOA boa = orb.BOA_init ();
 ClientImpl client = new ClientImpl ();
 boa.obj_is_ready (client);

 // Pass the client to the server that will call us back
 System.out.println (server.hello (client));
 }
}

ClientImpl.java
package client;

import common.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends _ClientImplBase implements ActivatableObject
{
 public String helloBack ()
 {
 return "Hello Client World!";
A-20 CORBA Developer’s Guide and Reference

TIE Example
 }

 public org.omg.CORBA.Object _initializeAuroraObject ()
 {
 return this;
 }
}

TIE Example
This example demonstrates how to use the TIE mechanism.

Hello.IDL
module common {
 interface Hello {
 wstring helloWorld ();
 };
};

Server Code - HelloImpl.java
package server;

import common.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl implements HelloOperations, ActivatableObject
{
 public String helloWorld()
 {
 return "Hello World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject()
 {
 return new _tie_Hello (this);
 }
}

Client.java
package client;
Example Code: CORBA A-21

Pure CORBA Client
import common.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 4) {
 System.out.println("usage: Client user password GIOP_SERVICE corbaPubname"
);
 System.exit(1);
 }
 String user = args[0];
 String password = args[1];
 String GIOP_SERVICE = args[2];
 String corbaPubname = args[3];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext(env);

 Hello hello = (Hello) ic.lookup(GIOP_SERVICE + corbaPubname);
 System.out.println(hello.helloWorld());
 }
}

Pure CORBA Client
This example uses CORBA Naming Service to retrieve any objects instead of JNDI.

Bank.IDL
module common {
 interface Account { float balance(); };
 interface AccountManager { Account open(in string name); };
};
A-22 CORBA Developer’s Guide and Reference

Pure CORBA Client
Server Code

AccountManagerImpl.java
package server;

import common.*;
import java.util.*;
import org.omg.CORBA.Object;
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImpl extends _AccountManagerImplBase
 implements ActivatableObject
{
 private Dictionary _accounts = new Hashtable ();
 private Random _random = new Random();

 // Constructors
 public AccountManagerImpl() { super(); }
 public AccountManagerImpl(String name) { super(name); }

 public Object _initializeAuroraObject()
 {
 return new AccountManagerImpl("BankManager");
 }

 public synchronized Account open(String name)
 {
 // Lookup the account in the account dictionary.
 Account account = (Account) _accounts.get (name);

 // If there was no account in the dictionary, create one.
 if (account == null) {
 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs (_random.nextInt ()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 // Make the object available to the ORB.
 _orb().connect(account);

 // Print out the new account.
 System.out.println("Created " + name + "’s account: " + account);
Example Code: CORBA A-23

Pure CORBA Client
 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }

 // Return the account.
 return account;
 }
}

AccountImpl.java
package server;

import common.*;

public class AccountImpl extends _AccountImplBase
{
 private float _balance;

 public AccountImpl () { _balance = (float) 100000.00; }
 public AccountImpl (float balance) { _balance = balance; }
 public float balance () { return _balance; }
}

Client.java
package client;

import common.*;
import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import org.omg.CosNaming.NameComponent;
import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.PublishingContext;
import oracle.aurora.AuroraServices.PublishedObjectHelper;
import oracle.aurora.AuroraServices.PublishingContextHelper;

public class Client
{
 public static void main(String args[]) throws Exception
 {
 // Parse the args
A-24 CORBA Developer’s Guide and Reference

Pure CORBA Client
 if (args.length < 4 || args.length > 5) {
 System.out.println ("usage: Client user password HOST PORT SID");
 System.exit(1);
 }
 String username = args[0];
 String password = args[1];
 String host = args[2];
 String port = args[3];
 String sid = null;
 if(args.length == 5)
 sid = args[4];

 // Declarations for an account and manager
 Account account = null;
 AccountManager manager = null;
 com.visigenic.vbroker.orb.ORB orb;
 PublishingContext rootCtx = null;

 // access the Aurora Names Service
 try {
 // Initialize the ORB
 String initref;
 initref = (sid == null) ? "iioploc://" + host + ":" + port :
 "iioploc://" + host + ":" + port + ":" + sid;
 System.getProperties().put("ORBDefaultInitRef", initref);

 /*
 * Alternatively the following individual properties can be set
 * which take precedence over the URL above
 System.getProperties().put("ORBBootHost", host);
 System.getProperties().put("ORBBootPort", port);
 if(sid != null)
 System.getProperties().put("ORACLE_SID", sid);
 */

 /*
 * Some of the other properties that you can set
 System.getProperties().put("ORBNameServiceBackCompat", "false");
 System.getProperties().put("USE_SERVICE_NAME", "true");
 System.getProperties().put("ORBUseSSL", "true");
 System.getProperties().put("TRANSPORT_TYPE", "sess_iiop");
 */

 orb = oracle.aurora.jndi.orb_dep.Orb.init();
 // Get the Name service Object reference
Example Code: CORBA A-25

Pure CORBA Client
 rootCtx = PublishingContextHelper.narrow(orb.resolve_initial_references(
 "NameService"));
 // Get the pre-published login object reference
 PublishedObject loginPubObj = null;
 LoginServer serv = null;
 NameComponent[] nameComponent = new NameComponent[2];
 nameComponent[0] = new NameComponent ("etc", "");
 nameComponent[1] = new NameComponent ("login", "");

 // Lookup this object in the Name service
 Object loginCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 loginPubObj = PublishedObjectHelper.narrow (loginCorbaObj);

 // create and activate this object (non-standard call)
 loginCorbaObj = loginPubObj.activate_no_helper ();
 serv = LoginServerHelper.narrow (loginCorbaObj);

 // Create a client login proxy object and authenticate to the DB
 Login login = new Login (serv);
 login.authenticate (username, password, null);

 // Now create and get the bank object reference
 PublishedObject bankPubObj = null;
 nameComponent[0] = new NameComponent ("test", "");
 nameComponent[1] = new NameComponent ("bank", "");

 // Lookup this object in the name service
 Object bankCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 bankPubObj = PublishedObjectHelper.narrow (bankCorbaObj);

 // create and activate this object (non-standard call)
 bankCorbaObj = bankPubObj.activate_no_helper ();
 manager = AccountManagerHelper.narrow (bankCorbaObj);

 account = manager.open ("Jack.B.Quick");

 float balance = account.balance ();
 System.out.println ("The balance in Jack.B.Quick’s account is $"
 + balance);
 } catch (SystemException e) {
 System.out.println ("Caught System Exception: " + e);
A-26 CORBA Developer’s Guide and Reference

Single-Phase Commit JTA Transaction Example
 e.printStackTrace ();
 } catch (Exception e) {
 System.out.println ("Caught Unknown Exception: " + e);
 e.printStackTrace ();
 }
 }
}

JTA Examples

Single-Phase Commit JTA Transaction Example

Employee.IDL
module employee {
 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 void setUpDSConnection (in wstring dsName) raises (SQLError);
 EmployeeInfo getEmployee (in wstring name) raises (SQLError);
 void updateEmployee (in EmployeeInfo name) raises (SQLError);
 };
};

Client.java
import employee.*;

import java.sql.DriverManager;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
Example Code: CORBA A-27

Single-Phase Commit JTA Transaction Example
import java.sql.SQLException;
import javax.naming.NamingException;

import oracle.aurora.jndi.jdbc_access.jdbc_accessURLContextFactory;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 7)
 {
 System.out.println ("usage: Client sessiiopURL jdbcURL objectName " +
 "user password userTxnName dataSrcName");
 System.exit (1);
 }
 String sessiiopURL = args [0];
 String jdbcURL = args [1];
 String objectName = args [2];
 String user = args [3];
 String password = args [4];
 String utName = args [5];
 String dsName = args [6];

 // lookup usertransaction object in the namespace
 UserTransaction ut = lookupUserTransaction (user, password,
 jdbcURL, utName);

 // lookup employee object in the namespace
 Employee employee = lookupObject (user, password, sessiiopURL, objectName);
 EmployeeInfo info;

 // for (int ii = 0; ii < 10; ii++)
 // {
 // start a transaction
 ut.begin ();

 // set up the DS on the server
 employee.setUpDSConnection (dsName);

 // retrieve the info
 info = employee.getEmployee ("SCOTT");
 System.out.println ("Before Update: " + info.name +" " + info.salary);

 // change the salary and update it
A-28 CORBA Developer’s Guide and Reference

Single-Phase Commit JTA Transaction Example
 System.out.println ("Increase by 10%");
 info.salary += (info.salary * 10) / 100;
 employee.updateEmployee (info);

 // commit the changes
 ut.commit ();

 // NOTE: you can do this before the commit of the previous transaction
 // (without starting a txn) then it becomes part of the first
 // global transaction.
 // start another transaction to retrieve the updated info
 ut.begin ();

 // Since, you started a new transaction, the DS needs to be
 // enlisted with the ’new’ transaction. Hence, setup the DS on the server
 employee.setUpDSConnection (dsName);

 // try to retrieve the updated info
 info = employee.getEmployee ("SCOTT");
 System.out.println ("After Update: " + info.name +" " + info.salary);

 // commit the seond transaction
 ut.commit ();

 /*
 * ut.rollback ();
 * ut.begin ();
 * info = employee.getEmployee ("SCOTT", dsName);
 * System.out.println (info.name + " " + " " + info.salary);
 *
 * System.out.println ("Increase by 10%");
 * info.salary += (info.salary * 10) / 100;
 * employee.updateEmployee (info);
 *
 * info = employee.getEmployee ("SCOTT", dsName);
 * System.out.println (info.name + " " + " " + info.salary);
 * //ut.commit ();
 * ut.rollback ();
 * }
 */
 }

 private static UserTransaction lookupUserTransaction (String user,
 String password,
 String jdbcURL,
Example Code: CORBA A-29

Single-Phase Commit JTA Transaction Example
 String utName)
 {
 UserTransaction ut = null;
 try {
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, jdbcURL);
 Context ic = new InitialContext (env);

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 ut = (UserTransaction)ic.lookup ("jdbc_access:/" + utName);
 } catch (NamingException e) {
 e.printStackTrace ();
 } catch (SQLException e) {
 e.printStackTrace ();
 }
 return ut;
 }

 private static Employee lookupObject (String user, String password,
 String sessiiopURL, String objectName)
 {
 Employee emp = null;
 try {
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 System.out.println ("Trying to lookup: " + sessiiopURL + objectName);
 emp = (Employee)ic.lookup (sessiiopURL + objectName);
 } catch (NamingException e) {
 e.printStackTrace ();
 }
 return emp;
 }
}

A-30 CORBA Developer’s Guide and Reference

Single-Phase Commit JTA Transaction Example
EmployeeServer.sqlj
package employeeServer;

import employee.*;

import java.sql.Connection;
import java.sql.SQLException;
import java.util.Hashtable;
import javax.sql.DataSource;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

//import oracle.aurora.transaction.xa.OracleJTADataSource;

public class EmployeeImpl
 extends _EmployeeImplBase
{
 Context ic = null;
 DataSource ds = null;
 Connection conn = null;

 public void setUpDSConnection (String dsName)
 throws SQLError
 {
 try {
 if (ic == null)
 ic = new InitialContext ();

 // get a connection to the local DB
 ds = (DataSource)ic.lookup (dsName);

 // get a connection to the local DB
 // ((OracleJTADataSource)ds).setURL ("jdbc:oracle:kprb:");
 conn = ds.getConnection ();
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("setUpDSConnection failed:" + e.toString ());
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("setUpDSConnection failed:" + e.toString ());
 }
 }
Example Code: CORBA A-31

Two-Phase Commit JTA Transaction Example
 public EmployeeInfo getEmployee (String name)
 throws SQLError
 {
 try {
 if (conn == null)
 throw new SQLError ("getEmployee: conn is null");

 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }

 public void updateEmployee (EmployeeInfo employee)
 throws SQLError
 {
 if (conn == null)
 throw new SQLError ("updateEmployee: conn is null");

 try {
 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)
 where empno = :(employee.number) };
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

Two-Phase Commit JTA Transaction Example

Employee.IDL
module employee {
 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };
A-32 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 exception SQLError {
 wstring message;
 };

 interface Employee {
 void initialize (in wstring user, in wstring password,
 in wstring serviceURL, in wstring utName,
 in wstring dsName) raises (SQLError);
 void setRemoteObject (in wstring objName) raises (SQLError);

 EmployeeInfo getEmployee (in wstring empName) raises (SQLError);
 EmployeeInfo getRemoteEmployee (in wstring name) raises (SQLError);
 void updateEmployee (in EmployeeInfo empInfo) raises (SQLError);
 void updateRemoteEmployee (in EmployeeInfo empInfo) raises (SQLError);
 };
};

Client.java
import employee.*;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 6)
 {
 System.out.println ("usage: Client serviceURL objectName " +
 "user password userTxnName dataSrcName");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];
 String utName = args [4];
 String dsName = args [5];

 Hashtable env = new Hashtable ();
Example Code: CORBA A-33

Two-Phase Commit JTA Transaction Example
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 EmployeeInfo localInfo;
 EmployeeInfo remoteInfo;

 try {
 // lookup an employee object
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);

 // initialize the employee object
 employee.initialize (user, password, serviceURL, utName, dsName);

 // setup the remote Object
 employee.setRemoteObject (objectName);

 // get info for "SCOTT"
 localInfo = employee.getEmployee ("SCOTT");
 System.out.println ("Before Update: " + localInfo.name + " " +
 localInfo.salary);
 // get info for "SMITH"
 remoteInfo = employee.getRemoteEmployee ("SMITH");
 System.out.println (" " + remoteInfo.name + " " +
 remoteInfo.salary);

 // try to update locally
 localInfo.salary += 100;
 remoteInfo.salary += 200;

 // update Scott’s salary
 employee.updateEmployee (localInfo);

 // update Smith’s salary
 employee.updateRemoteEmployee (remoteInfo);

 // get updated info for "SCOTT"
 localInfo = employee.getEmployee ("SCOTT");
 System.out.println ("After Update: " + localInfo.name +" " +
 localInfo.salary);

 // get updated info for "SMITH"
 remoteInfo = employee.getRemoteEmployee ("SMITH");
A-34 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 System.out.println (" " + remoteInfo.name +" " +
 remoteInfo.salary);
 } catch (SQLError e) {
 System.out.println (" Got SQLError: " + e.toString ());
 }
 }
}

Server
package employeeServer;

import employee.*;

import java.sql.Connection;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import javax.transaction.Status;
import javax.transaction.UserTransaction;

import java.sql.SQLException;
import javax.naming.NamingException;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.transaction.xa.OracleJTADataSource;

public class EmployeeImpl extends _EmployeeImplBase
{
 Context inSessionLookupctx = null;
 Context remoteLookupCtx = null;
 UserTransaction ut = null;
 DataSource ds = null;
 Connection conn = null;
 String utName = null;
 String dsName = null;
 String user = null;
 String pwd = null;
 String serviceURL = null;
 Employee remoteEmployee = null;

 private void setInSessionLookupContext ()
 throws NamingException
 {
Example Code: CORBA A-35

Two-Phase Commit JTA Transaction Example
 // NOTE: here we need to set env as 2-phase coord needs
 // branches, user/pwd to be set (branches is must)
 Hashtable env = new Hashtable ();
 env.put ("oracle.aurora.jta.branches", "true");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, pwd);
 inSessionLookupctx = new InitialContext (env);
 // ic = new InitialContext ();
 }

 private void setRemoteLookupInitialContext ()
 throws NamingException
 {
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, pwd);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 remoteLookupCtx = new InitialContext (env);
 }

 public void initialize (String user, String password, String serviceURL,
 String utName, String dsName)
 throws SQLError
 {
 try {
 // set the local variables
 this.user = user;
 this.pwd = password;
 this.utName = utName;
 this.dsName = dsName;
 this.serviceURL = serviceURL;

 // set up a ctx to lookup the local/in-session objects
 if (inSessionLookupctx == null)
 setInSessionLookupContext ();

 // setup a ctx to lookup the remote objects
 if (remoteLookupCtx == null)
 setRemoteLookupInitialContext ();

 // lookup the usertransaction
 if (utName != null)
 ut = (UserTransaction)inSessionLookupctx.lookup (utName);
A-36 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 // get a connection to the local DB
 if (dsName != null)
 ds = (DataSource)inSessionLookupctx.lookup (dsName);
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("setUpDSConnection failed:" + e.toString ());
 }
 }

 public void setRemoteObject (String objName)
 throws SQLError
 {
 if (remoteLookupCtx == null)
 throw new SQLError ("setRemoteObject: context is null");
 if (serviceURL == null)
 throw new SQLError ("setRemoteObject: serviceURL is null");

 try {
 if (remoteEmployee == null)
 remoteEmployee = (Employee)remoteLookupCtx.lookup (serviceURL +
 objName);
 remoteEmployee.initialize (user, pwd, serviceURL, utName, dsName);
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("setRemoteObject: " + e.toString ());
 }
 return;
 }

 public EmployeeInfo getEmployee (String name)
 throws SQLError
 {
 System.out.println ("getEmployee: begin");
 this.startTrans ();

 EmployeeInfo info = this.doSelect (name);
 System.out.println ("getEmployee: end");
 return info;
 }

 public EmployeeInfo getRemoteEmployee (String name)
 throws SQLError
 {
 System.out.println ("getRemoteEmployee: begin");
 if (remoteEmployee == null)
Example Code: CORBA A-37

Two-Phase Commit JTA Transaction Example
 throw new SQLError ("updateRemoteEmployee--remoteEmployee is NULL");

 EmployeeInfo info = remoteEmployee.getEmployee (name);
 System.out.println ("getRemoteEmployee: end " + info.name + " " +
 info.salary);

 this.commitTrans ();
 return info;
 }

 public void updateEmployee (EmployeeInfo empInfo)
 throws SQLError
 {
 System.out.println ("updateEmployee: begin");
 this.startTrans ();

 try {
 System.out.println (" Before updating: ");
 this.doSelect (empInfo.name);

 #sql { update emp set ename = :(empInfo.name), sal = :(empInfo.salary)
 where empno = :(empInfo.number) };
 System.out.println (" After updating: ");
 this.doSelect (empInfo.name);
 } catch (SQLException e) {
 System.out.println ("updateEmployee: end with SQLException");
 e.printStackTrace ();
 throw new SQLError ("updateEmployee failed: " + e.toString ());
 }
 System.out.println ("updateEmployee: end");
 }

 public void updateRemoteEmployee (EmployeeInfo empInfo)
 throws SQLError
 {
 System.out.println ("updateRemoteEmployee: begin");
 if (remoteEmployee == null)
 throw new SQLError ("updateRemoteEmployee--remoteEmployee is NULL");

 remoteEmployee.updateEmployee (empInfo);
 System.out.println ("updateRemoteEmployee: end");
 this.commitTrans ();
 return;
 }
A-38 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 private void getLocalDBConenction ()
 throws SQLError
 {
 try {
 if (ds == null)
 throw new SQLError ("datasource is not set");
 // get a connection to the local DB
 ((OracleJTADataSource)ds).setURL ("jdbc:oracle:kprb:");
 conn = ds.getConnection ();
 } catch (SQLException e) {
 System.out.println ("getLocalDBConenction: end: with SQLException");
 e.printStackTrace ();
 throw new SQLError (e.toString ());
 }
 }

 private void startTrans ()
 throws SQLError
 {
 try {
 if (ut == null)
 throw new SQLError ("startTrans: userTransaction is null");

 // start a new-transaction iff no-txn is associated with the thread
 if (ut.getStatus () == Status.STATUS_NO_TRANSACTION)
 ut.begin ();

 // get the local-db connection--To enlist with the TM
 this.getLocalDBConenction ();
 } catch (Exception e) {
 throw new SQLError ("startTrans failed:" + e.toString ());
 }
 }

 private void commitTrans ()
 throws SQLError
 {
 try {
 ut.commit ();
 } catch (Exception e) {
 throw new SQLError ("commitTrans failed:" + e.toString ());
 }
 }

 private EmployeeInfo doSelect (String name)
Example Code: CORBA A-39

JTS Transaction Example
 throws SQLError
 {
 try {
 int empNo = 0;
 double empSalary = 0.0;
 #sql { select empno, sal into :empNo, :empSalary from emp
 where ename = :name };
 System.out.println (" (" + name + ", " + empSalary + ")");
 return new EmployeeInfo (name, empNo, (float)empSalary);
 } catch (SQLException e) {
 System.out.println ("getEmployee: end: with SQLException");
 e.printStackTrace ();
 throw new SQLError (e.toString ());
 }
 }
}

JTS Transaction Example

Employee.IDL
module employee {
 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 EmployeeInfo getEmployee (in wstring name) raises (SQLError);
 EmployeeInfo getEmployeeForUpdate (in wstring name) raises (SQLError);
 void updateEmployee (in EmployeeInfo name) raises (SQLError);
 };
};

Client.java
import employee.*;
A-40 CORBA Developer’s Guide and Reference

JTS Transaction Example
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 // get the handle to the InitialContext
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // This is using Server-side TX services, specifically, JTS/XA TX:

 // get handle to the object and it’s info
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);

 // get the info about a specific employee
 EmployeeInfo info = employee.getEmployee ("SCOTT");
 System.out.println ("Beginning salary = " + info.salary);
 System.out.println ("Decrease by 10%");
 // do work on the object or it’s info
 info.salary -= (info.salary * 10) / 100;

 // call update on the server-side
 employee.updateEmployee (info);

 System.out.println ("Final Salary = " + info.salary);
 }
}

Example Code: CORBA A-41

JTS Transaction Example
Server
package employeeServer;

import employee.*;
import java.sql.*;

import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl extends _EmployeeImplBase
{
 Control c;

 private void startTrans () throws SQLError {
 try {
 TS.getTS ().getCurrent ().begin ();
 } catch (Exception e) {
 throw new SQLError ("begin failed:" + e);
 }
 }

 private void commitTrans () throws SQLError {
 try {
 TS.getTS ().getCurrent ().commit (true);
 } catch (Exception e) {
 throw new SQLError ("commit failed:" + e);
 }
 }

 public EmployeeInfo getEmployee (String name) throws SQLError {
 try {
 startTrans ();

 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };
 c = TS.getTS().getCurrent().suspend();
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 } catch (Exception e) {
 throw new SQLError (e.getMessage());
 }
A-42 CORBA Developer’s Guide and Reference

Client-Side Authentication
 }

 public EmployeeInfo getEmployeeForUpdate (String name) throws SQLError {
 try {
 startTrans ();

 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name for update };
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }

 public void updateEmployee (EmployeeInfo employee) throws SQLError {
 try {
 TS.getTS().getCurrent().resume(c);

 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)
 where empno = :(employee.number) };
 commitTrans ();
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 } catch (Exception e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

SSL Examples

Client-Side Authentication

Hello.IDL
module common {
 interface Hello {
 wstring helloWorld ();
 };
};
Example Code: CORBA A-43

Client-Side Authentication
Client.java
package client;

import common.Hello;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

 public static void main (String[] args) throws Exception {
 if (args.length != 3) {
 System.out.println("usage: Client serviceURL objectName credsFile");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String credsFile = args [2];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_CLIENT_AUTH);
 env.put(Context.SECURITY_CREDENTIALS, "welcome");

 // Simply specify a file that contains all the credential info. This is
 // the file generated by the wallet manager tool.
 env.put(Context.SECURITY_PRINCIPAL, credsFile);

/*
 // As an alternative, you may also set the credentials individually, as
 // shown bellow.
 env.put(ServiceCtx.SECURITY_USER_CERT, testCert_base64);
 env.put(ServiceCtx.SECURITY_CA_CERT, caCert_base64);
 env.put(ServiceCtx.SECURITY_ENCRYPTED_PKEY, encryptedPrivateKey_base64);
 //System.getProperties().put("AURORA_CLIENT_SSL_DEBUG", "true");
*/

 Context ic = new InitialContext(env);

 Hello hello = (Hello) ic.lookup(serviceURL + objectName);
 System.out.println(hello.helloWorld());
 }
A-44 CORBA Developer’s Guide and Reference

Server-Side Authentication
}

Server
package server;

import common.*;

public class HelloImpl extends _HelloImplBase {
 public String helloWorld() {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }
}

Server-Side Authentication
This example includes setting a trustpoint. If you do not want to involve

trustpoints, just remove the section of the code that sets the trustpoint.

Hello.IDL
module common {
 interface Hello {
 wstring helloWorld ();
 };
};

Client.java
package client;

import common.Hello;
import java.util.Hashtable;
import java.io.*;
import java.security.cert.*; // for JDK 1.2
//import javax.security.cert.*; // for JDK 1.1
import javax.naming.Context;
import javax.naming.InitialContext;
import oracle.aurora.ssl.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
Example Code: CORBA A-45

Server-Side Authentication

"+
E"+
public class Client
{
 private static String trustedCert =
"MIIB1jCCAYCgAwIBAgIQQQFhvgccFLBfXGa6Y/iSGzANBgkqhkiG9w0BAQQFADBsMQswCQYDVQQG"+
"EwJVUzEPMA0GA1UEChQGT3JhY2xlMSkwJwYDVQQLFCBFbnRlcnByaQpzZSBBcHBsaWNhdGlvbiBT"+
"ZXJ2aWNlczEhMB8GA1UEAxQYRUFTUUEgQ2VydGlmaWNhdGUgU2VydmVyMB4XDTAwMDcyODIzMDA0
"OVoXDTAzMDcwNzIzMDA0OVowbDELMAkGA1UEBhMCVVMxDzANBgNVBAoUBk9yYWNsZTEpMCcGA1U
"CxQgRW50ZXJwcmkKc2UgQXBwbGljYXRpb24gU2VydmljZXMxITAfBgNVBAMUGEVBU1FBIENlcnRp"+
"ZmljYXRlIFNlcnZlcjBcMA0GCSqGSIb3DQEBAQUAA0sAMEgCQQCy+w2AxY8u5kKI3rco9PWNr1Bb"+
"C3bwFZzd4+sdTqyHDy8Y2t2E7qfg9CwBO5ki530vT4ImH5x6lhbPN4QbcfgRAgMBAAEwDQYJKoZI"+
"hvcNAQEEBQADQQAYMohM/rz5ksAeorTw9qDcfH2TV6Qu0aXBvNJqBT5x4RvwLWYGMzcy77uSkiM1"+
"NkF3xY7MfZGqObKE3NQNgEuK";

 static boolean verifyPeerCert(org.omg.CORBA.Object obj) throws Exception
 {
 org.omg.CORBA.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the SSL current
 AuroraCurrent current = AuroraCurrentHelper.narrow
 (orb.resolve_initial_references("AuroraSSLCurrent"));

 // Check the cipher
 System.out.println("Negotiated Cipher: " +
 current.getNegotiatedCipherSuite(obj));
 // Check the protocol version
 System.out.println("Protocol Version: " +
 current.getNegotiatedProtocolVersion(obj));
 // Check the peer’s certificate
 System.out.println("The account obj’s certificate chain : ");
 byte [] [] certChain = current.getPeerDERCertChain(obj);
 System.out.println("length : " + certChain.length);
 System.out.println("Certificates: ");

 // JDB 1.2 way
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 for(int i = 0; i < certChain.length; i++) {
 ByteArrayInputStream bais = new ByteArrayInputStream(certChain[i]);
 Certificate xcert = cf.generateCertificate(bais);
 System.out.println(xcert);
 if(xcert instanceof X509Certificate)
 {
 X509Certificate x509Cert = (X509Certificate)xcert;
A-46 CORBA Developer’s Guide and Reference

Server-Side Authentication
 String globalUser = x509Cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
 }
 }

 // JDK 1.1 way
/*
 java.security.Security.setProperty("cert.provider.x509v1",
 "oracle.security.cert.X509CertificateImpl");
 for(int i = 0; i < certChain.length; i++) {
 javax.security.cert.X509Certificate cert =
 javax.security.cert.X509Certificate.getInstance(certChain[i]);
 String globalUser = cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
 }
*/

 return true;
 }

 public static void main (String[] args) throws Exception {
 if (args.length != 2) {
 System.out.println("usage: Client serviceURL objectName");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_LOGIN);
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");

 // setup the trust point
 env.put(ServiceCtx.SECURITY_TRUSTED_CERT, trustedCert);

 Context ic = new InitialContext(env);

 // Make an SSL connection to the server first. If the connection
 // succeeds, then inspect the server’s certificate, since we haven’t
 // specified a trust point.
 // Get a SessionCtx that represents a database instance
 ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);
Example Code: CORBA A-47

Session Example
 SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
 // Lookup login object for the purpose of getting hold of some corba
 // object needed for verifyPeerCert(). We should provide an extension
 // to just getting the NS object, for this purpose.
 LoginServer obj = (LoginServer) session1.activate("/etc/login");

 if(!verifyPeerCert(obj))
 throw new org.omg.CORBA.COMM_FAILURE("Verification of Peer cert failed");

 // Now that we trust the server, let’s go ahead and do our business.
 session1.login();
 Hello hello = (Hello) session1.activate(objectName);
 System.out.println(hello.helloWorld());
 }
}

Server
package server;

import common.*;

public class HelloImpl extends _HelloImplBase {
 public String helloWorld() {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }
}

Session Example
You can manage sessions in multiple ways, which are all discussed in "Session

Management Scenarios" on page 4-18. The example presented here demonstrates

how to access two sessions from a single client.

Hello.IDL
module common
{
 interface Hello
 {
 wstring helloWorld();
 void setMessage(in wstring message);
 };
A-48 CORBA Developer’s Guide and Reference

Session Example
};

Client.java
package client;

import common.*;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 4) {
 System.out.println ("usage: Client user password GIOP_SERVICE
 corbaPubname");
 System.exit (1);
 }
 String user = args[0];
 String password = args[1];
 String GIOP_SERVICE = args[2];
 String corbaPubname = args[3];

 // Prepare a simplified Initial Context as we are going to do
 // everything by hand
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 Context ic = new InitialContext (env);

 // Get a SessionCtx that represents a database instance
 ServiceCtx service = (ServiceCtx) ic.lookup(GIOP_SERVICE);

 // Create and authenticate a first session in the instance.
 SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
 LoginServer login_server1 = (LoginServer)session1.activate ("etc/login");
 Login login1 = new Login (login_server1);
 login1.authenticate (user, password, null);

 // Create and authenticate a second session in the instance.
Example Code: CORBA A-49

Session Example
 SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");
 LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
 Login login2 = new Login (login_server2);
 login2.authenticate (user, password, null);

 // Activate one Hello object in each session
 Hello hello1 = (Hello)session1.activate (corbaPubname);
 Hello hello2 = (Hello)session2.activate (corbaPubname);

 // Verify that the objects are indeed different
 hello1.setMessage ("Hello from Session1");
 hello2.setMessage ("Hello from Session2");

 System.out.println (hello1.helloWorld ());
 System.out.println (hello2.helloWorld ());
 }
}

Server
package server;

import common.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{
 String message;

 public String helloWorld()
 {
 return message;
 }

 public void setMessage(String message)
 {
 this.message = message;
 }

 public org.omg.CORBA.Object _initializeAuroraObject()
 {
 return this;
 }
}

A-50 CORBA Developer’s Guide and Reference

JDK and JInitiator Applets
Applet Example

JDK and JInitiator Applets

HTML for JDK 1.1
<pre>
<html>
<title> CORBA Applet talking to 9i</title>
<h1> CORBA applet talking to 9i using java plug in 1.1 </h1>
<hr>
The good old bank example
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 500 HEIGHT = 50 codebase="http://java.sun.com/products/plugin/1.1/jinst
all-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,aurora_client.jar,vbjorb.jar,vbj
app.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"
ORBdisableLocator="true" java_CODE = OracleClientApplet.class java_ARCHIVE = "or
acleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar" WIDTH = 500 HEIGHT = 50
 pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

HTML for JDK 1.2
<pre>
<html>
<title> CORBA applet talking to 9i</title>
<h1> CORBA applet talking to 9i using Java plug in 1.2 </h1>
<hr>
The good old bank example
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 500 HEIGHT = 50 codebase="http://java.sun.com/products/plugin/1.2/jinst
Example Code: CORBA A-51

JDK and JInitiator Applets
all-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,aurora_client.jar,vbjorb.jar,vbj
app.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1.2">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.visigenic.vbroker.orb.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass" VALUE="com.visigenic.vbroker.orb.O
RB">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1.2"
ORBdisableLocator="true"
org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB" java_CODE = Orac
leClientApplet.class java_ARCHIVE = "oracleClient.jar,aurora_client.jar,vbjorb.j
ar,vbjapp.jar" WIDTH = 500 HEIGHT = 50 pluginspage="http://java.sun.com/produc
ts/plugin/1.2/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

HTML for Oracle JInitiator
<h1>CORBA applet talking to 9i using JInitiator 1.1.7.18</h1>
 <COMMENT>
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
 java_CODE="OracleClientApplet"
 java_CODEBASE="http://mysun:8080/applets/bank"
 java_ARCHIVE="oracleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBdisableLocator="true"
 org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
 org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
 serverHost="mysun"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>
A-52 CORBA Developer’s Guide and Reference

JDK and JInitiator Applets
Applet Client
// ClientApplet.java

import java.awt.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import Bank.*;

public class OracleClientApplet extends java.applet.Applet {

 private TextField _nameField, _balanceField;
 private Button _checkBalance;
 private Bank.AccountManager _manager;

 public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 try {
 String serviceURL = "sess_iiop://mysun:2222";
 String objectName = "/test/myBank";

 // Initialize the ORB (using the Applet).
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 env.put(ServiceCtx.APPLET_CLASS, this);

 Context ic = new InitialContext(env);
 _manager = (AccountManager)ic.lookup (serviceURL + objectName);
 } catch (Exception e) {
 System.out.println(e.getMessage());
Example Code: CORBA A-53

Visigenic Applet
 e.printStackTrace();
 throw new RuntimeException();
 }
 }

 public boolean action(Event ev, Object arg) {
 if(ev.target == _checkBalance) {
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account's balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

}

Visigenic Applet

README
To run VisiClient applet, you need to do the following.

Start osagent and gatekeeper (with port 16000)
(for gate keeper, create a file called gatekeeper.properties and just
put this entry in there : exterior_port=16000)

Then start the Bank server (vbj Server &).

Your browser should have Jinitiator installed (use ojdk-pc.us.oracle.com
for getting JInitiator, jdk 1.1.7.18)
(Browser security doesn’t have to be off, i.e, you may set it to
AppletHost in Jinitiator)

Then simply connect to mysun:8080/applets/bank/VisiClient.html

HTML for Visigenic Client Applet
<h1>Visigenic Client applet</h1>
 <COMMENT>
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
A-54 CORBA Developer’s Guide and Reference

Visigenic Applet
 java_CODE="VisiClientApplet"
 java_CODEBASE="http://mysun:8080/applets/bank"
 java_ARCHIVE="visiClient.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBgatekeeperIOR="http://mysun:16000/gatekeeper.ior"
 USE_ORB_LOCATOR="true"
 ORBbackCompat="true"
 serverHost="mysun"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>

Visigenic Client Applet
// ClientApplet.java

import java.awt.*;

public class VisiClientApplet extends java.applet.Applet {

 private TextField _nameField, _balanceField;
 private Button _checkBalance;
 private Bank.AccountManager _manager;

 public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 // Initialize the ORB (using the Applet).
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(this, null);
 // Locate an account manager.
 _manager = Bank.AccountManagerHelper.bind(orb, "BankManager");
 }

 public boolean action(Event ev, Object arg) {
 if(ev.target == _checkBalance) {
Example Code: CORBA A-55

Visigenic Applet
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account’s balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

}

A-56 CORBA Developer’s Guide and Reference

Comparing the Oracle9i and VisiBroker VBJ O
B

Comparing the Oracle9 i and

VisiBroker VBJ ORBs

This appendix, which is for developers who are familiar with the VisiBroker VBJ

ORB, summarizes the main differences between that ORB and the current version of

the Oracle9i ORB. Each ORB supports multiple styles of usage, but this appendix

compares only the most commonly used styles. In particular, it assumes that VBJ

clients use the helper bind method to find objects by name, whereas Oracle9i
clients use the JNDI lookup method for the same purpose. It also assumes that

Oracle9i clients use Oracle’s session IIOP to communicate with server objects,

although the Oracle9i ORB also supports the standard IIOP used by the VBJ ORB.

The differences in the ORBs are summarized in these sections:

■ Object References Have Session Lifetimes

■ The Database Server Is the Implementation Mainline

■ Server Object Implementations Are Deployed by Loading and Publishing

■ Implementation by Inheritance Is Nearly Identical

■ Implementation by Delegation Is Different

■ Clients Look Up Object Names with JNDI

■ No Interface or Implementation Repository

■ The Bank Example in Oracle9i and VBJ

At the end of the appendix, equivalent client and server implementations of the

same IDL for the VBJ and Oracle9i ORBs are provided for comparison.
RBs B-1

Object References Have Session Lifetimes
Object References Have Session Lifetimes
The Oracle9i ORB creates object instances in database sessions. When a session

disappears, references to objects created in that session become invalid: attempts to

use them incur the “object does not exist” exception. A session disappears when the

last client connection to the session is closed or the session’s timeout value is

reached. An object in a session can set the session timeout value with

oracle.aurora.net.Presentation.sessionTimeout()
optionally providing a client interface to this method, which a client can call if it

wants an object to persist after client connections to the session are closed.

The life of a typical Oracle9i CORBA object proceeds as follows:

■ A client looks up an object implementation’s name with JNDI specifying the

database where the implementation has been published.

■ The Oracle ORB responds by instantiating an object of the type, and returning a

reference to the client.

■ The client calls methods on the object, and may pass the reference to other

clients who may then call methods on the object.

■ The object ceases to exist when its session is destroyed.
B-2 CORBA Developer’s Guide and Reference

Implementation by Delegation Is Different
The Database Server Is the Implementation Mainline
An Oracle9i server object implementation consists of a single class. Developers do

not write a mainline server, because the database server is the mainline. If the

database is running, all implementations published in that database are available to

clients. The database server dynamically assigns MTS threads to implementations.

An implementation may multithread its own execution with Java threads.

Server Object Implementations Are Deployed by Loading and
Publishing

Loading an object implementation into a database with the loadjava tool makes

that implementation accessible to the ORB running in that database. Publishing a

loaded implementation’s name to a database’s session name space with the

publish tool makes the implementation accessible to clients by name. Every

CORBA object implementation must be loaded, but only those whose names will be

looked up by clients need to be published.

Implementation by Inheritance Is Nearly Identical
To implement the hypothetical interface Alpha in Oracle9i, write a class called

AlphaImpl , which extends AlphaImplBase and defines the Java methods that

implement the IDL operations. You may also provide instance initialization code in

an _initializeAuroraObject method, which the Oracle ORB will call when it

creates a new instance.

Implementation by Delegation Is Different
For an Oracle9i implementation by delegation (tie), the class you write extends a

class you have defined and implements two Oracle-defined interfaces. The first

interface, whose name is the IDL interface name concatenated with Operations ,

defines the methods corresponding to the IDL operations. The second interface,

called ActivatableObject , defines a single method called

_initializeAuroraObject () . To implement this method, create and return an

instance. Here is a minimal example:

// IDL
module hello {
 interface Hello {
 wstring helloWorld ();
 };
Comparing the Oracle9i and VisiBroker VBJ ORBs B-3

Clients Look Up Object Names with JNDI
};

// Oracle9 i tie implementation
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl implements HelloOperations, ActivatableObject
//, extends <YourClass>
{
 public String helloWorld () {
 return "Hello World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 // create and initialize an instance and return it, for example ...
 return new _tie_Hello (this);
 }
}

Clients Look Up Object Names with JNDI
An Oracle9i client can look up a published object by name, with CORBA

COSNaming or with the simpler JNDI, which interacts with COSNaming in the

client’s behalf.

A client creates an initial JNDI context for a particular database with a Java

constructor, for example:

Context ic = new InitialContext(env);

The env parameter specifies user name and password under which the client is

logging in. Because object implementations run in database servers, CORBA object

users (through their clients) must identify and authenticate themselves to the

database as they would for any database operation.

To obtain an instance of a published implementation, the client calls the JNDI

context’s lookup() method, passing a URL that names the target database and the

published name of the desired object implementation. The lookup () call returns a

reference to an instance in the target database. A client may pass the reference

(perhaps in stringified form) to other clients, and the reference will remain valid as

long as the session in which the associated object was created survives. Clients that

use copies of the same object reference share the object’s database session.
B-4 CORBA Developer’s Guide and Reference

The Bank Example in Oracle9i and VBJ
If a client executes lookup() twice in succession with the same parameters, the

second object reference is identical to the first, that is, it refers to the instance created

by the first lookup() call. However, if a client creates a second session and does

the second lookup() in that session, a different instance is created and its

reference returned.

No Interface or Implementation Repository
The current version of the Oracle9i ORB does not include an interface repository or

an implementation repository.

The Bank Example in Oracle9 i and VBJ
The following sections compare implementations of the bank example, widely used

in VBJ documentation. Both client and server are shown as they would be

implemented in Oracle9i and VBJ. All implementations use inheritance.

The Bank IDL Module

// Bank.idl

module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Oracle9 i Client

// Client.java

import bankServer.*;
import Bank.*;
Comparing the Oracle9i and VisiBroker VBJ ORBs B-5

The Bank Example in Oracle9i and VBJ
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {

 String serviceURL = "sess_iiop://localhost:2222";
 String objectName = "/test/myBank";
 String username = "scott";
 String password = "tiger";

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, username);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager) ic.lookup(serviceURL + objectName);

 // use args[0] as the account name, or a default.
 String name = args.length == 1 ? args[0] : "Jack B. Quick";

 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 System.out.println
 ("The balance in " + name + "‘s account is $" + balance);
 }
}

VBJ Client
// Client.java
B-6 CORBA Developer’s Guide and Reference

The Bank Example in Oracle9i and VBJ
public class Client {

 public static void main(String[] args) {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Locate an account manager.
 Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "BankManager");
 // use args[0] as the account name, or a default.
 String name = args.length > 0 ? args[0] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println
 ("The balance in " + name + "‘s account is $" + balance);
 }

}

Oracle9 i Account Implementation

// AccountImpl.java
package bankServer;

public class AccountImpl extends Bank._AccountImplBase {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

VBJ Account Implementation
Comparing the Oracle9i and VisiBroker VBJ ORBs B-7

The Bank Example in Oracle9i and VBJ
// AccountImpl.java

public class AccountImpl extends Bank._AccountImplBase {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

Oracle9 i Account Manager Implementation

// AccountManagerImpl.java
package bankServer;

import java.util.*;

public class AccountManagerImpl extends Bank._AccountManagerImplBase {

 public AccountManagerImpl() {
 super();
 }

 public AccountManagerImpl(String name) {
 super(name);
 }

 public synchronized Bank.Account open(String name) {
 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);
 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);
B-8 CORBA Developer’s Guide and Reference

The Bank Example in Oracle9i and VBJ
 _orb().connect (account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle9 i .
 System.out.println("Created " + name + "‘s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

}

VBJ Account Manager Implementation

// AccountManagerImpl.java

import java.util.*;

public class AccountManagerImpl extends Bank._AccountManagerImplBase {
 public AccountManagerImpl(String name) {
 super(name);
 }
 public synchronized Bank.Account open(String name) {
 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);
 // If there was no account in the dictionary, create one.
 if(account == null) {
 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);
 // Make the object available to the ORB.
 _boa().obj_is_ready(account);
 // Print out the new account.
 System.out.println("Created " + name + "‘s account: " + account);
 // Save the account in the account dictionary.
Comparing the Oracle9i and VisiBroker VBJ ORBs B-9

The Bank Example in Oracle9i and VBJ
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();
}

VBJ Server Mainline

// Server.java

public class Server {

 public static void main(String[] args) {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Initialize the BOA.
 org.omg.CORBA.BOA boa = orb.BOA_init();
 // Create the account manager object.
 Bank.AccountManager manager =
 new AccountManagerImpl("BankManager");
 // Export the newly created object.
 boa.obj_is_ready(manager);
 System.out.println(manager + " is ready.");
 // Wait for incoming requests
 boa.impl_is_ready();
 }

}

B-10 CORBA Developer’s Guide and Reference

Abbreviations and Acro
C

Abbreviations and Acronyms

This appendix lists some of the most common acronyms that you will find in the

areas of networks, distributed object development, and Java. In cases where an

acronym refers to a product or a concept that is associated with a specific group,

company or product, the group, company, or product is indicated in brackets

following the acronym expansion. For example: CORBA ... [OMG].

3GL third generation language

4GL fourth generation language

ACID atomicity, consistency, isolation, durability

ACL access control list

ADT abstract datatype

AFC application foundation classes [Microsoft]

ANSI American National Standards Institute

API application program interface

AQ advanced queueing [Oracle9i]

ASCII American standard code for information interchange

ASP active server pages [Microsoft]

application service provider

AWT abstract windowing toolkit [Java]

BDK beans developer kit [Java]

BLOB binary large object

BOA basic object adapter [CORBA]
nyms C-1

BSD Berkeley system distribution [UNIX]

C/S client/server

CGI common gateway interface

CICS customer information control system [IBM]

CLI call level interface [SAG]

CLOB character large object

COM component object model [Microsoft]

COM+ component object model, extended [Microsoft]

CORBA common object request broker architecture [OMG]

DB database

DBA database administrator, database administration

DBMS database management system

DCE distributed computing environment [OSF]

DCOM distributed common object model [Microsoft]

DDCF distributed document component facility

DDE dynamic data exchange [Microsoft]

DDL data definition language [SQL]

DLL dynamic link library [Microsoft]

DLM distributed lock manager [Oracle9i]

DML data manipulation language [SQL]

DOS disk operating system

DSOM distributed system object model [IBM]

DSS decision support system

DTP distributed transaction processing

EBCDIC extended binary-coded decimal interchange code [IBM]

EJB Enterprise JavaBean

ERP enterprise resource planning

ESIOP environment-specific inter-orb protocol

FTP file transfer protocol
C-2 CORBA Developer’s Guide and Reference

GB gigabyte

GIF graphics interchange format

GIOP general inter-orb protocol

GUI graphical user interface

GUID globally-unique identifier

HTML hypertext markup language

HTTP hypertext transfer protocol

IDE integrated development environment

interactive development environment

IDL interface definition language

IEEE Institute of Electrical and Electronics Engineers

IIOP Internet inter-ORB protocol

IIS Internet information server [Microsoft]

IP Internet protocol

IPC interprocess communication

IS information services

ISAM indexed sequential access method

ISAPI Internet server API [Microsoft]

ISO international standards organization (translation)

ISP Internet service provider

ISQL interactive SQL [Interbase]

ISV independent software vendor

IT information technology

J2EE Java 2 Enterprise Edition [Sun]

JAR Java archive (on analogy with tar, q.v.)

JCK Java compatibility kit [Sun]

JDBC Java database connectivity

JDK Java developer kit

JFC Java foundation classes
Abbreviations and Acronyms C-3

JIT just in time

JLS Java language specification

JMF Java media framework

JMS Java messaging service

JNDI Java naming and directory interface

JNI Java native interface

JOB Java Objects for Business [Sun]

JPEG joint photographic experts group

JRMP Java remote message protocol

JSP Java server pages [Sun]

(sometimes used for Java Stored Procedure [Oracle])

JTA Java transaction API

JTS Java transaction service

JWS Java Web Server [Sun]

KB kilobyte

LAN local area network

LDAP lightweight directory access protocol

LDIF LDPA data interchange format

LOB large object

MB megabyte

MIME multipurpose Internet mail extensions

MIS management information services

MOM message-oriented middleware

MPEG motion picture experts group

MTS multi-threaded server [Oracle]

MTS Microsoft Transaction Server [Microsoft]

NCLOB national character large object

NIC network information center [Internet]

NNTP net news transfer protocol
C-4 CORBA Developer’s Guide and Reference

NSAPI Netscape server application programming interface

NSP network service provider

NT New Technology [Microsoft]

OCI Oracle call interface

OCX OLE common control [Microsoft]

ODBC open database connectivity [Microsoft]

ODBMS object database management system

ODL object definition language [Microsoft]

ODMG Object Database Management Group

OEM original equipment manufacturer

OID object identifier

OLE object linking and embedding

OLTP on line transaction processing

OMA object management architecture [OMG]

OMG Object Management Group

OO object-oriented, object orientation

OODBMS object-oriented database management system

OQL object query language

ORB object request broker

ORDBMS object-relational database management system

OS operating system

OSF Open System Foundation

OSI open systems interconnect

OSQL object SQL

OTM object transaction monitor

OTS object transaction service

OWS Oracle Web Server

PB petabyte

PDF portable document format [Adobe]
Abbreviations and Acronyms C-5

PGP pretty good privacy

PL/SQL procedural language/SQL [Oracle]

POA portable object adapter [CORBA]

RAM random access memory

RAS remote access service [Microsoft]

RCS revision control system

RDBMS relational database management system

RFC request for comments

RFP request for proposal

RMI remote method invocation [Sun]

ROM read only memory

RPC remote procedure call

RTF rich text file

SAF server application function [Netscape]

SAG SQL Access Group

SCSI small computer system interface

SDK software developer kit

SET secure electronic transaction

SGML standard generalized markup language

SID system identifier [Oracle]

SLAPD standalone LDAP daemon

SMP symmetric multiprocessing

SMTP simple mail transfer protocol

SPI service provider interface

SQL structured query language

SQLJ SQL for Java

SRAM static (or synchronous) random access memory

SSL secure socket layer

TB terabyte
C-6 CORBA Developer’s Guide and Reference

TCPS TCP for SSL

TCP/IP transmission control protocol/Internet protocol

TP transaction processing

TPC Transaction Processing Council

TPCW TPC web benchmark

TPF transaction processing facility

TPM transaction processing monitor

UCS universal character set [ISO 10646]

UDP user datagram protocol

UI user interface

UML unified modeling language [Rational]

URI uniform resource identifier

URL universal resource locator

URN universal resource name

VAR value-added reseller

VB Visual Basic [Microsoft]

VRML virtual reality modeling language

WAI web application interface [Netscape]

WAN wide area network

WIPS Web interactions per second [TPCW]

WWW world wide Web

XA extended architecture [X/Open]

XML extended markup language

jdb Java debugger [Sun]

tar tape archive, tape archiver [UNIX]

tps transactions per second
Abbreviations and Acronyms C-7

C-8 CORBA Developer’s Guide and Reference

Index

Symbols
_get_interface_def method, 5-6, 5-8

_initializeAuroraObject method, 2-25

A
ACID properties, 7-2

acronyms, C-1

ActivatableObject interface, 2-25

_initializeAuroraObject method, 2-25

ADDRESS parameter, 3-10, 3-12

applet

invoking server objects from, 5-16

sandbox security restrictions, 5-17

APPLET_CLASS property, 5-17

aurora_client.jar file, 6-10

AuroraCertificateManager class, 6-24, 6-25

setCertificateChain method, 6-24

setEncryptedPrivateKey method, 6-24

AuroraCurrentManager class, 6-20

AuroraTransactionService class, 7-32

initialize method, 7-32, 7-37

aurora.zip, 4-28

authenticate method, 4-20, 6-11

authentication

defined, 6-5

logout, 4-19, 6-11

server-side, 6-20

using SSL, 6-3

B
begin method, 7-4, 7-14, 7-17, 7-32, 7-33, 7-34, 7-39

bindds command, 7-24, 7-29

bindut command, 7-15, 7-18, 7-22, 7-28

BOA

obj_is_ready method, 2-25

C
callback, 5-3

client-side authentication, 6-25

server-side authentication, 6-22

using SSL, 6-21

callout

using SSL, 6-21

certificates, 6-20, 6-21, 6-24

manager, 6-24

ClassLoader property, 5-17

client

access existing bean, 4-22

client-side authentication, 6-5

collections

in IDL, 2-21

commit method, 7-4, 7-14, 7-15, 7-18, 7-32, 7-33,

7-34, 7-40

configuring, 3-1 to 3-15

direct to dispatcher, 3-9

IIOP clients, 3-1 to 3-15

SSL over TCP/IP, 3-12

Contained object, 5-8

Container object, 5-8

Context

JNDI object, 4-9

CORBA

callbacks, 5-3

Java 2 support, 5-12
Index-1

pure CORBA using Java 2, 5-15

retrieving name service, 4-29

skeletons, 2-4

stubs, 2-4

system exceptions, 2-23

TIE mechanism, 5-11

web sites for documentation, 1-8

CosNaming service, 4-1, 4-2, 4-29

Current class

begin method, 7-32, 7-33, 7-34

commit method, 7-32, 7-33, 7-34

resume method, 7-32, 7-33, 7-34

rollback method, 7-32, 7-33, 7-34

rollback_only method, 7-32, 7-33, 7-34

suspend method, 7-32, 7-33, 7-34

D
data integrity, 6-3

DataSource object

binding in namespace, 7-24

create dynamically, 7-29

getConnection method, 7-6

DebugAgent class, 2-27

restart method, 2-27

stop method, 2-27

debugging techniques, 2-26

DESCRIPTION parameter, 3-11

dispatchers

configuration, 3-4

connecting directly, 3-4

overview, 3-5

DriverManager class

getConnection method, 7-6

dynamic registration

listening endpoints, 3-10

E
endpoint, 3-5

endSession method, 4-19

example code, A-1

exceptions

in IDL, 2-23

G
General Inter-Orb Protocol, see GIOP

get_status method, 7-41

get_transaction_name method, 7-41

getCurrent method, 7-32, 7-33, 7-34

getStatus method, 7-5

getTS method, 7-32, 7-34, 7-38

GIOP

dispatcher configuration, 3-4

presentation, 3-2

H
hand off, 3-7

Helper class

narrow method, 2-6

HeuristicMixedException, 7-4

HeuristicRollbackException, 7-4

Holder class, 2-6

I
IDL, 1-4

IFR, 5-7, 5-8

interface, 2-3

language mapping, 2-3

skeleton, 2-7

idl2java tool, 2-4

IFR, 5-6, 5-8

object hierarchy, 5-8

overview, 5-6

permissions, 5-8

Repository object, 5-6

IIOP, 1-7, 3-2, 4-15

clients

connecting to dispatchers, 3-4

configuring, 5-25

MTS_DISPATCHER, 3-2

profile, 4-13

SSL support, 3-12

IIOP clients

configuring, 3-1 to 3-15

IllegalStateException, 7-4

implementation, 2-6

init method, 2-24
Index-2

InitialContext object, 4-12

initialize method, 7-32, 7-37

Inprise, 1-8

version supported, 5-12

VisiBroker for Java, B-1

in-session activation, 4-24

interceptors, 2-26

interface

defined, 2-3

IFR, 5-7, 5-8

retrieving from IFR, 5-6

Interface Description Language, see IDL

Interface Repository, see IFR

InterfaceDef class, 5-8

Internet Inter-Orb Protocol, see IIOP

J
Java 2

migrating from JDK 1.1, 5-12

Java Naming and Directory Interface, see JNDI

Java Transaction API, see JTA

Java Transaction Service, see JTS

java2idl tool, 2-24

java2iiop tool, 2-24

javax-ssl-1_1.jar, 4-11, 6-4

javax-ssl-1_2.jar, 4-11, 6-4

JDeveloper

debugging, 2-26

JNDI

Context object, 4-9

initial context, 4-2

InitialContext constructor, 4-12

lookup method, 4-7, 4-12

jssl-1_1.jar, 4-11, 6-4

jssl-1_2.jar, 4-11, 6-4

JTA

client-side demarcation, 7-14

limitations, 7-31

nested transactions, 7-31

overview, 7-1, 7-2

server-side demarcation, 7-13

specification web site, 7-1

timeout, 7-30

two-phase commit, 7-7, 7-25

JTS, 7-1

begin method, 7-39

client-side demarcation, 7-32

commit method, 7-40

get_status method, 7-41

get_transaction_name method, 7-41

getTS method, 7-38

initializing, 7-31

invocation steps, 7-32

limitations, 7-36

overview, 7-31

rollback method, 7-41

rollback_only method, 7-41

server-side demarcation, 7-34

suspend method, 7-39

L
listener, 3-4

configuration, 3-5

dynamic, 3-10

static, 3-11

dynamic registration, 3-10

hand off, 3-7

overview, 3-5

redirection, 3-5, 3-6

loadjava tool, 2-12

login

non-JNDI login, 4-19, 6-11

Login class, 4-5, 6-11

LoginServer class, 6-11

authenticate method, 4-20, 6-11

logout method, 4-19, 6-11

LogoutServer class, 4-19, 6-11

lookup method, 4-11, 4-12

M
MTS_DISPATCHERS parameter

ADDRESS attribute, 3-10

configuration, 5-25

overview, 3-2

PRESENTATION attribute, 3-8, 3-9, 3-10

PROTOCOL attribute, 3-9
Index-3

N
NameService

retrieving, 4-29

namespace, 4-3

narrow method, 2-6

NON_SSL_LOGIN value, 4-2, 4-10

NotSupportedException, 7-4

O
obj_is_ready method, 2-25

object activation, 2-24, 2-25, 4-28

in-session, 4-24, 4-28

Object class

_get_interface_def method, 5-8

OracleDriver class

defaultConnection method, 7-6

OracleJTADataSource class, 7-30

ORB

initialization, 2-24, 5-13, 6-24

ORBClass property, 5-16, 5-18

ORBDefaultInitRef, 4-33

ORBdisableLocator property, 5-18

ORBInitRef, 4-33

ORBSingletonClass property, 5-16, 5-18

OSS.SOURCE.MY_WALLET parameter, 3-15

P
parameter passing

by value, 2-21

presentation

GIOP, 3-2, 3-8

oracle.aurora.server.SGiopServer, 3-8

PRESENTATION attribute, 3-8, 3-9, 3-10, 3-12

property

ORBClass, 5-16

ORBSingletonClass, 5-16

PROTOCOL attribute, 3-9

PROTOCOL_STACK parameter, 3-11

publish command

IFR, 5-7

publish tool, 2-13, 5-7

published object

permissions, 4-4

R
RAW session layer, 3-12

redirection, 3-5, 3-6

regep tool, 3-10, 3-11

remove command

removing interface from IFR, 5-7

Repository object, 5-8

IFR, 5-6

restart method, 2-27

resume method, 7-32, 7-33, 7-34, 7-40

rollback method, 7-4, 7-14, 7-15, 7-18, 7-32, 7-33,

7-34, 7-41

rollback_only method, 7-32, 7-33, 7-34, 7-41

RollbackException, 7-4

S
Secure Socket Layer, see SSL

security

storing interface in IFR, 5-8

SECURITY_AUTHENTICATION property, 4-10

SECURITY_CREDENTIALS property, 4-10

SECURITY_PRINCIPAL property, 4-10

SECURITY_ROLE property, 4-10

SecurityException, 7-4

server-side authentication, 6-5

service name, 2-9, 4-6, 4-11

session

logout, 4-19, 6-11

routing, 4-14

terminating from server-side, 4-19

SESSION attribute, 3-12

setCertificateChain method, 6-24

setEncryptedPrivateKey method, 6-24

setRollbackOnly method, 7-5

setTransactionTimeout method, 7-5, 7-30

SID, 4-6

skeletons, 2-7

SQLJ, 5-2

SSL, 6-20

configuring, 3-12

defined, 6-3

JAR files, 4-11, 6-4

protocol version numbers, 6-4
Index-4

SSL_CLIENT_ AUTHENTICATION

parameter, 3-15

SSL_CLIENT_AUTH value, 4-11

SSL_CREDENTIAL value, 4-10

SSL_LOGIN value, 4-10

SSL_VERSION parameter, 3-15

SSL_VERSION property, 3-15

start method, 2-27

stop method, 2-27

suspend method, 7-32, 7-33, 7-34, 7-39

system exceptions, 2-23

system identifier, see SID

SystemException, 7-4

T
TIE mechanism, 5-11

trace files, 2-26

transaction

client-side demarcation, 7-14

context propagation, 7-5

demarcation, 7-3

global, 7-3

limitations, 7-31, 7-36

overview, 7-2

server-side demarcation, 7-13

single-phase commit

example, 7-13

timeout, 7-30

two-phase commit, 7-7, 7-25

Transaction class, 7-3

TransactionManager class, 7-3

TransactionService class, 7-32, 7-37

getCurrent method, 7-32, 7-33, 7-34

TRANSPORT_TYPE property, 5-25

TS class

getTS method, 7-32, 7-34

TTC, 4-13

two-phase commit, 7-25

two-task common, see TTC

U
URL

syntax for, 4-5

URL_PKG_PREFIXES property, 4-9

USE_SERVICE_NAME property, 4-11

UserTransaction

bind in namespace, 7-22

UserTransaction interface, 7-4, 7-37

begin method, 7-4

commit method, 7-4

getStatus method, 7-5

rollback method, 7-4

setRollbackOnly method, 7-5

setTransactionTimeout method, 7-5

UserTransaction object

begin method, 7-14, 7-17

binding in namespace, 7-13

commit method, 7-14, 7-15, 7-18

retrieving, 7-13

rollback method, 7-14, 7-15, 7-18

setTransactionTimeout method, 7-30

useServiceName flag, 4-6

deployejb option, 4-11

V
version

Visibroker, 5-12

VisiBroker for Java, 1-8

W
wallet, 6-20

web sites

CORBA, 1-8
Index-5

Index-6

	Oracle9i
	Send Us Your Comments
	Preface
	1 Overview
	Prerequisite Reading
	Terminology
	client
	marshalling
	object adapter
	request
	server object
	session

	About CORBA
	CORBA Features
	About the ORB

	Using JNDI and IIOP
	IIOP

	For More Information
	Books
	URLs

	2 Getting Started
	A First CORBA Application
	Writing Interfaces in IDL
	Generating Stubs and Skeletons
	Writing the Server Object Implementation
	Comparing Oracle9i Server Applications to Other ORB Applications

	Writing the Client Code
	Object name
	IIOP Service Name
	Client Authentication Information
	Client Example

	Compiling the Java Source
	Loading the Classes into the Database
	Publishing the Object Name
	Running the Example

	The Interface Definition Language (IDL)
	Using IDL
	Nested Modules
	Running the IDL Compiler
	IDL Interface Body

	IDL Types
	Basic Types
	Constructed Types
	Collections

	Exceptions
	CORBA System Exceptions

	Getting by Without IDL

	Activating ORBs and Server Objects
	Client Side
	Server Side
	About Object Activation
	CORBA Interceptors

	Debugging Techniques
	Using a Debug Agent for Debugging Server Applications

	3 Configuring IIOP Applications
	Overview
	Oracle9i Database Templates For Default Configuration
	Advanced Configuration
	Overview of Listeners and Dispatchers
	Handling Incoming Requests
	Redirect to GIOP Dispatcher
	Hand Off to Generic Dispatcher

	Configuring The Dispatcher Through Editing Initialization Files
	Direct Dispatcher Connection

	Configuring the Listener
	Dynamic Listener Endpoint Registration
	Static Configuration of the Oracle Net Services Listener
	Displaying Current Listening Endpoints

	SSL Configuration for EJB and CORBA
	Enable the DISPATCHERS for SSL
	Configure the Wallet Location through Oracle Net Manager

	4 JNDI Connections and Session IIOP Service
	JNDI Connection Basics
	The Name Space
	Execution Rights to Database Objects
	URL Syntax
	URL Components and Classes
	CosNaming Restriction for JNDI Name

	Using JNDI to Access Bound Objects
	Importing JNDI Support Classes
	Retrieving the JNDI InitialContext
	URL_PKG_PREFIXES
	SECURITY_PRINCIPAL
	SECURITY_CREDENTIALS
	SECURITY_ROLE
	SECURITY_AUTHENTICATION
	USE_SERVICE_NAME
	The JNDI InitialContext Methods
	Constructor
	lookup

	Session IIOP Service
	Session IIOP Service Overview
	Client Requirements
	Session Routing
	Oracle9i JVM Tools

	Session Management
	Service Context Class
	Variables
	Methods

	Session Context Class
	Methods

	Session Management Scenarios
	Setting Session Timeout
	Set the Session Timeout from the Client
	Set the Session Timeout from a Server Object

	Retrieving the Oracle9i Version Number
	Activating In-Session CORBA Objects From Non-IIOP Presentations
	Accessing CORBA Objects Without JNDI
	Retrieving the NameService Initial Reference
	Retrieving Initial References from ORBDefaultInitRef

	5 Advanced CORBA Programming
	Using SQLJ
	Running the SQLJ Translator
	A Complete SQLJ Example

	Implementing CORBA Callbacks
	IDL
	Client Code
	Callback Server Implementation
	Callback Client-Server Implementation

	Retrieving Interfaces With The IFR
	Publishing the IDL Interface
	Circular References Between Interfaces
	Managing Security Within the IFR
	Retrieving Interfaces Implicitly
	Retrieving Interfaces Explicitly

	Using the CORBA Tie Mechanism
	Migrating from JDK 1.1 to Java 2
	JNDI Lookup
	Oracle9i ORB Interface
	No Parameters
	Providing ORB Properties
	Providing Input Arguments and ORB Properties
	Providing ORB Properties with Username, Password, and Role
	CORBA ORB Interface
	Backward Compatibility with Oracle9i Release 8.1.5

	Invoking CORBA Objects From Applets
	Using Signed JAR Files to Conform to Sandbox Security
	Performing Object Lookup in Applets
	Modifying HTML for Applets that Access CORBA Objects

	Interoperability with Non-Oracle ORBs
	Java Client Using Oracle ORB
	Java Client Using Non-Oracle ORB
	C++ Client Interoperability
	IIOP Transport Protocol

	6 IIOP Security
	Overview
	Data Integrity
	Using the Secure Socket Layer
	SSL Version Negotiation

	Authentication
	Client-Side Authentication
	Using JNDI for Authentication
	Providing Username and Password for Client-Side Authentication
	Username Sent by Setting JNDI Properties for the Login Protocol
	Username Sent Implicitly by Using Credentials
	Username Sent by Explicitly Activating a Login Object

	Using Certificates for Client Authentication
	Specifying Certificates in a File
	Specifying Certificates in Individual JNDI Properties
	Specifying Certificates Using AuroraCertificateManager

	AuroraCertificateManager Class
	addTrustedCertificate
	requestClientCertificate
	setCertificateChain
	setEncryptedPrivateKey
	setProtocolVersion

	Server-Side Authentication
	Typical Client/Server
	Callouts using Security
	Callbacks using Security

	Authorization
	Setting Up Trust Points
	Parsing Through the Server’s Certificate Chain
	AuroraCurrent Class
	getNegotiatedCipherSuite
	getPeerDERCertificateChain
	getNegotiatedProtocolVersion

	7 Transaction Handling
	Transaction Overview
	Global and Local Transactions
	Demarcating Transactions
	UserTransaction Interface

	Transaction Context Propagation
	Enlisting Resources
	Two-Phase Commit

	JTA Summary
	Environment Initialization
	Methods for Enlisting Database Resources
	Summary of Single-Phase and Two-Phase Commit

	JTA Server-Side Demarcation
	JTA Client-Side Demarcation
	Developing the Client Application
	JTA Client-Side Demarcation Including Databases
	Developing the Client Application

	Enlisting Resources on the Server-side
	Binding Transactional Objects in the Namespace
	Bind UserTransaction Object in the Namespace
	Bind DataSource Object in the Namespace

	Configuring Two-Phase Commit Engine
	Creating DataSource Objects Dynamically
	Setting the Transaction Timeout
	JTA Limitations
	Nested Transactions
	Interoperability
	Timeouts

	Java Transaction Service
	JTS Client-Side Demarcation
	JTS Server-Side Demarcation
	JTS Limitations
	No Distributed Transactions
	Resources
	Nested Transactions
	Timeouts
	Interoperability

	Transaction Service Interfaces
	TransactionService
	Using The Java Transaction Service
	Required Import Statements
	Java Transaction Service Methods
	Current Transaction Methods

	For More Information on JTS
	JDBC Restrictions

	A Example Code: CORBA
	Basic Example
	README
	Bank.IDL
	Server
	AccountManagerImpl.java
	AccountImpl.java
	AccountManagerImplTie.java

	Client.java
	StoredClient.java

	IFR Example
	Bank.IDL
	Server
	AccountManagerImpl.java
	AccountImpl.java
	AccountManagerImplTie.java

	Client
	Client.java
	PrintIDL.java

	Callback Example
	IDL Files
	Client.IDL
	Server.IDL

	Server
	ServerImpl.java

	Client
	Client.java
	ClientImpl.java

	TIE Example
	Hello.IDL
	Server Code - HelloImpl.java
	Client.java

	Pure CORBA Client
	Bank.IDL
	Server Code
	AccountManagerImpl.java
	AccountImpl.java

	Client.java

	JTA Examples
	Single-Phase Commit JTA Transaction Example
	Employee.IDL
	Client.java
	EmployeeServer.sqlj

	Two-Phase Commit JTA Transaction Example
	Employee.IDL
	Client.java
	Server

	JTS Transaction Example
	Employee.IDL
	Client.java
	Server

	SSL Examples
	Client-Side Authentication
	Hello.IDL
	Client.java
	Server

	Server-Side Authentication
	Hello.IDL
	Client.java
	Server

	Session Example
	Hello.IDL
	Client.java
	Server

	Applet Example
	JDK and JInitiator Applets
	HTML for JDK 1.1
	HTML for JDK 1.2
	HTML for Oracle JInitiator
	Applet Client

	Visigenic Applet
	README
	HTML for Visigenic Client Applet
	Visigenic Client Applet

	B Comparing the Oracle9i and VisiBroker VBJ ORBs
	Object References Have Session Lifetimes
	The Database Server Is the Implementation Mainline
	Server Object Implementations Are Deployed by Loading and Publishing
	Implementation by Inheritance Is Nearly Identical
	Implementation by Delegation Is Different
	Clients Look Up Object Names with JNDI
	No Interface or Implementation Repository
	The Bank Example in Oracle9i and VBJ
	The Bank IDL Module
	Oracle9i Client
	VBJ Client
	Oracle9i Account Implementation
	VBJ Account Implementation
	Oracle9i Account Manager Implementation
	VBJ Account Manager Implementation
	VBJ Server Mainline

	C Abbreviations and Acronyms
	Index

