Oracle9i

Servlet Engine Developer’s Guide

Release 1 (9.0.1)

July 2001
Part No. A90213-02

ORACLE

Oraclei Servlet Engine Developer’s Guide, Release 1 (9.0.1)
Part No. A90213-02

Copyright © 2000, 2001, Oracle Corporation. All rights reserved.
Primary Authors: Tim Smith and Brian Wright

Secondary Author: John Russell

Contributors: Ellen Barnes, Hal Hildebrand, Sunil Kunisetty, Wendy Liau, Angela Long, Kuassi Mensah,
Jasen Minton, Kannan Muthukkaruppan, Joyce Yang, and Susan Yorke-Kraft

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper, Oracle Net, Oracle Objects, Oracle9i, Oracle8i, Oracle8,
Oracle7, Oracle9i Lite, PL/SQL, Pro*C, SQL*Net, and SQL*Plus are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

SENA US YOUT COMMEBNTES ..ottt e ettt ettt a s et et ees et et ne e e s eeet et aneneens iX
Pl BT B oottt e et e e ettt e e et ea e e e e e e et e et et et et ettt et et ere e Xi
[©eT 0 1VZ=1 01 (1] 8 1S RTUTU TR TSR TUPRT TR i-xiii

1 Oracle Servlet Engine Overview

Web Servers and Serviet ENQINES ... e aneenes 1-2
A Brief INtroduction T0 SErVIELS ..o e 1-3
WAL IS @ SEIVIEL? ...ttt bttt ettt ettt 1-3
KINAS OF SEIVIETS ...ttt et sttt ne b 1-4
AAVANTAGES OF SEIVIETS ... e ettt se et st se e enenen 1-5
JAVASEIVEE PAgES ...ttt ettt ettt ettt ettt et e e btk e e be ek e bt eh ket et e at e st e e et anne e 1-6
About the Oracle SErvIEt ENQINEooii et eneeees 1-7
The Oracle Servliet ENGINg NaMESPACE.ccviuiiiiiae ettt see e e se e eneeeen 1-9
HoSting a Web APPIICALION ...ttt st ee e 1-10
Steps in Developing a Web APpPlICAtiON ..o e 1-11

2 Oracle Servlet Engine Concepts

(1) n (o JRS] 7 L g (=T o OSSR U PP RTRRPSP 2-2
OSE BUIAING BIOCKS........ciiiiiiiie et e et ettt st see e e an e s 2-3
The OSE SeSSION IMOUEN ... ettt et e e e eaneenen 2-5
SEIVIEE ACHIVATION ...t e ettt et b ettt e e e e tes e 2-6
IMUTEIENTEAAING ...ttt et ettt ettt et se e e e eeeneenen 2-6
THE OSE NAMESPACE ...ttt ettt ettt sttt ettt te et et e tes e ee et asbeb e e et e st et eebe et abeebeeeeabenteseeseaneanensen 2-8

A Short INtroduction 1O JND.........ooiiii ettt s e et e 2-8

The OJVM ROOt NAMESPACE.cueiiieeie it iiee ettt ettt ettt se e s e ee e e es s e e neereeneanenas 2-12
Connecting to an OSE Web APPLICAtIONcoo i e 2-15
Connection Using the Oracle HTTP Server as LIStENErccocoviriieiinenceieeese e 2-16
Direct Connection To an Oracle LISTENErcocuiiiiiiiiie e 2-17
Direct Connection to an Oracle DiSpatCher ... 2-17
WVBD SEIVICES ... ettt et ettt ettt h ettt et es e s e et es et ee et e re et e et re et e 2-19
Single-Domain and Multi-Domain SEIVICEScccuiiiiiiiiiiie e 2-20
Creating @ WED SEIVICEoiiiieie ettt ettt ettt et sn e 2-21
THE SEIVICE CONTEXL ...ttt ettt ettt ettt e see st e s e ee et e ne et ee e ne e e 2-21
LAY] o T B 1o o - U o TSSOSO PSSR 2-23
JNDI Contents of @ Web DOMAINccoiiiiiie e 2-23
ViIrtUAI-HOSTEA SEIVICES ...ttt ettt sttt n ettt en et 2-24
Determining the Web DOMaiN.........cccoiiiii et 2-27
1= AV 1= A O] 01 1= LTSRS U SRR 2-32
OVEBIVIBW ... ettt ettt e e ettt st h e b4t e Rt e b e e H £ 10 £ bt b ee £ s en et eeeat et bt e et e re et e eneerennas 2-32
Loading and Publishing SErvIEts. ... 2-34
FINAING the SEIVIET. ... et ettt et sn et 2-35
Accessing the Oracle DAtabase.ccouciiiiiie ettt ettt eee e 2-43
Server-side INTEINAI DIIVETc..iiiie ettt ettt en e 2-43
LI LTI T 1 V/=] OSSR R RSP 2-43

3 OSE Configuration and Examples

CoNNECHING tO ThE OSE ...ttt et ettt es bt be ettt be et e e beneeees 3-2
(07e] o) 1o [T -1 d To] TS (=T o LSS P SR PRP PR 3-3
Configuring the OFaCle SEIVETcui ittt e 3-3
Oracle Net CONFIQUIALTIONouie ettt st 3-4
Creating @ WD SEIVICE ...ttt sa e e e 3-5
COMIMEBNTS ...ttt ettt bt bt b et bbb b bbb b e b e e ee et b e et bt eb et ettt et e en e 3-5
Creating Multi-Domain WED SEIVICES ..ot 3-9
EXAIMPIES ..ttt ettt ettt et e s et et ne R et be et e b e be e e e aneneas 3-9
Creating Web DOMAINS ...ttt ettt es e et es ettt be et e be et e 3-11
Creating SEIVIET CONTEXLSo.ei ettt se e s et as et et ne b e eneeneaeas 3-13
Configuring @ SErvIEt CONTEXL.........oiiiieie et es ettt ee e 3-15
PUDBLISNING SEIVIETS......e ettt s et s ettt ee e ne s 3-21

0] 0010 g T= 1 Y2 TP PP U TP PR PRTPPO 3-23

Creating @ WED SEIVICEci ittt ettt ettt sbeen e benee s 3-24
Creating @ WebD DOMAINoiiie ettt ettt st en e en e see e 3-26
Creating @ SErVIEt CONTEXT.... ..o et ettt se e enee s 3-29
Creating @ SEIVIET ... et ettt sttt ettt be bt ee e en e en 3-29
CompPiling the SEIVIET ... e ettt 3-30
Loading the Servilet into the Database...........c.oooiiiiiiiie e 3-31
PUDBIIShING the SErVIETo et 3-31
ACCESSING The SEIVIEL......ei ettt bt eneas 3-31
Adding LOGGINg TabIES ..ot e ettt ettt se e 3-32
PN [T aTo IS T=Tot T o | OSSP P USSR 3-33

4 An Apache Module for OSE

OVEIVIBW ..ottt ettt et bt bbb 0 H e £ E b4 e b 18 eh e o8 eh e eeeh e eheh b eh b s eb b eneb bbb ben et b anenban s 4-2
WHY USE MO _0SE? ...ttt ettt ettt et et es et et er e ettt e s e e bt en e ben e seeneanea 4-2
APACHE AFCNITECTUIE ..ottt ettt et sb et see e e e aneenes 4-2
(00T 1 110 U] =11 o] o ISRV UPTP PR 4-4

LR =To [BTT =] 0 1] o) €TSS 4-5
Shared Versus DediCated SEIVEIS ..ottt 4-5

(g oTo T -N @Fo] o1 g 1= To1 { To] o K3 RO PRPRRP 4-6

Serviet ACCESS USING MOA_OSEouiiiiiiieiii ettt sttt sttt et st te et eaesse e bt an e benaeseeneenes 4-6

Secure SOCKEt Layer CONMNECTION.cooii ittt et ettt ettt ea e et an e bes e see e ane s 4-9

HTTP Request and ReSPONSE ProCESSINGc..ooiiiiiiiiieiieseieee ettt see e enee s 4-10
Processing the URL ...t e e et sttt b e e aneas 4-10
(03 o TU] o111 s To [P SS U SUR U UPTSRRR 4-10
Session ID for Real Application CIUSTEIScuiiiiiiee s 4-11

The AuroralLocationService DIFECLIVEciiiiiiiie e 4-12

Topology Of @ Site USING MOA_OSEooueieiiiieiieiii ettt ettt st neanea 4-13

UsSIiNg MOd_0SSO WIth MO _0SE......ccuiiiieiie ittt ettt se e s 4-14

5 Configuring mod_ose

STEPIS 10 TAKE ...ttt ettt ettt ettt ettt et es et et eneeE ettt bt ekt en e ne b et eneenen 5-2
] 7 Ug] aTo N o ToTo o LS{= USROS 5-3
CoNFIGUIALTON FIIBS......o i ettt et e see e e enenen 5-4

(g1 oo 53¢] o 1 OO ETSS U USPP TR 5-4

(0100 0 | [T 5-5

Including Configuration Files in httpds.CONT ... 5-8
Oracle Net and Oracle Listener Configurationoccooiiiiiiii i s 5-9
Generating a Configuration File ... e 5-10

ENSIAIMIES.OFA ...t ettt b s e e st es ettt b ettt re e 5-10
Non-Shared Server INSTAHAtIONS. ..o 5-12
ConFIGUIration UtTHITIES.......cuiii et e ettt 5-13

LoN(oTe] g aVAY/=1 oo [o] o T U1 o FO OSSPSR PRSP 5-13

(o TT 04 {0 o | OSSPSR 5-14
AUTOTALOCATIONSEIVICE ...eiiieiiie ittt et b e bbbttt 5-17
Specifying Stateful and Stateless Handlers in 0Se.CoNf...........cooiiiiiiiiiiicc 5-19
S I Oo] g [0 [T =11 (o] o [OOSR 5-20
0fe] 0} i To [T o ol o ¢ o o I o 1o RN OO SRR 5-22

To Configure on the APache SIAe ..o s 5-22

To Configure on the OSE SErver SIde ..o 5-22

Securing a Servlet Context with the OSSO Security Serviet..........cccooiiiiiiiiniiine, 5-23
JLEge18] o] (52 g o o) {1 0o JRRER OSSR R RS 5-25

6 Calling EJBs

OVEIVIBW ..ttt e bbb b8 e £ £ H £ E £ b £ bt e bt ekt eb bttt e b 6-2
SN S e Ty o] o [OOSR 6-3
SEIVIBE .ttt bttt bR e et b et b et b et b et ettt 6-4
BB ettt et b E £ bR £ A b R £ eE b e R 4R b b £ R b E £ et ees ket en et en s 6-5
Compiling and Deploying the EXampPle.........ocoo i s 6-9
ACCESSING the SEIVIET ... e et e 6-10

7 Oracle Servlet Engine Security

OVEIVIBWW ..ottt ettt ettt ettt et et e s te et et e et bes e etseateese e seeasaes e e abeebeeseeeheebbeebe et beebeenbenteersaesesee et besteens 7-2
IINIDT SECUFTLY ..ttt ettt ettt et e e es e e et es ettt e b e et e e me e b ee e s an e ee e ee e ens 7-3
JNIDI Security IMPIemMENtationcoooiiii et e e e 7-3
SEIVIET PIMNISSIONScuii ittt ettt sttt et be e e te et e et e sr e e taesaa et e sbe et benbeerbeteenraans 7-4
HT TP SECUITLY ettt ettt ettt ettt e e et es et e ee et e be et et b e e beebean e besae e eneaneas 7-5
Establishing the PrinCiPals ..ot s 7-5
REAIMS <. ettt et ettt e et e e et ehe e sbe b e et e e teeateere e te et aar e et e areeareareas 7-6
The Session Shell Realm CommMaNdS ...t 7-8

Vi

REaIM CONTIGUIATIONcoiuii ittt ettt ettt ettt et e e e e en e e 7-8

Protecting WED RESOUITEScviiiiiiiee ettt ettt st es e sttt e e besne e eneas 7-11
Declaring A SECUIILY SEIVIEBLoiiii ittt enea 7-14
Creating @ SECUNILY SEIVIETo.o ettt e 7-14
[N C= Y0 1] 0] (=SSOSR PR 7-16
FADMSREAIM ...t ettt b ettt sttt ettt et 7-16
ADUSEIREAIM ... et sr bt e b er b er s en bbb bbb st 7-17
TrOUBIESNOOTING ...ttt ettt ettt ea e 7-19

8 Oracle WAR Deployment

Standard Web Applications and Hierarchies............ccoco o 8-2
Web Application ServIet CONTEXLSociiiiiiiiee e 8-2
Web Application HIErarchies ... s 8-3
Web Application Deployment DESCIIPLOIScooioeiuiriieie ettt enea 8-4
Web Application Deployment and WAR FileS ... 8-6

Overview of WAR Deployment to the Oracle9i Databasecccccooiiiiiiiinii i 8-7
Distributable Applications and the Oracle Servlet EnNgine..........ccccoiiiiiie e 8-7
Overview of the Oracle Auxiliary DeSCHIPLONcoiiiiiiiie e 8-8
Overview of the Oracle WAR Deployment TOOI ... 8-8
SECUNILY PreParatiONsc.oiiiiie ettt ettt sttt ettt en e ben e see e ane 8-10
Database Sessions, Servlet Context Ownership, and Application Privileges.................... 8-14

Oracle AUXITIAY DESCIIPTONiiii ettt s e et st ettt renbe e e ens 8-17
AUXTArY DESCIIPION DT D ..ottt et ettt ettt et e e e seeenaneas 8-17
Auxiliary Descriptor Element and Attribute DesCriptions..........cocooeiiiiicie e 8-23
Sample AUXTHANY DESCIIPION ..ottt et s ettt ebe b e tenee s 8-31

Oracle WAR Deployment Tool FUNCLIONATITY ..o 8-35
Loading Files from the WAR File........coo e 8-35
Creating @ SErvVIEt CONTEXT.... ..o i ettt ettt se e ee e ten e ees 8-38
Publishing Servlets and JAVASErVEr PAgEScoccuiiiiieiiiiiee e ettt seene s 8-39
Securing the APPIICALIONc..iiii ettt sb et s 8-42

Oracle WAR Deployment TOOI USAgE.coii ittt s e 8-43
Oracle WAR Deployment Tool Options and Parameters...........coccoeveneiinininieeie e 8-43
Vehicles for Invoking the Oracle WAR Deployment TOOccooviiiiiiiiniciiiice e 8-46

Sample Application Hierarchy and Descriptor FIles. ..o 8-55
SAMPIE HIBFAICRY ..ottt s e ettt ettt be et en e besee s 8-55

vii

SAMPIE DESCIIPLOT FIIES ...ttt ettt et en e 8-55
Creating and Deploying the WAR File........ccoo e 8-57
CUITENT RESTFICTIONS ...iitiieiit bbbt bttt sttt ettt 8-59

9 Writing PL/SQL Servlets

OVErvieW Of PL/ISQL SEIVIELS........ociiiiiiieei ettt ea e st et sae st st et aesee e 9-2
Configuring mod_ose to Run PL/SQL ServIets........cooo i 9-2
Writing Stateful PL/SQL Stored ProCeAUIES..........coooiiiriiie e e 9-3

Configuring Database Access Descriptors from an Application...........cccoocoiiiiiiciiicic 9-5

PacKage DBIMS EPGC ...ttt et sttt se et ahe ettt et et ee et et seeee e ben e een 9-8
SuMMAry of SUDPIrOGIamSooviie et 9-9

A Abbreviations and Acronyms

Index

vii

Send Us Your Comments

Oracle9i Servlet Engine Developer’s Guide, Release 1 (9.0.1)
Part No. A90213-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

Who Should Read This Guide

This Guide has been written for several audiences. They include
« Javadevelopers

« Oracle developers not familiar with Java

= Managers

Java developers who are used to a Java J2EE environment should have very little
trouble developing applications for the Oracle Servlet Engine. However, since the
OSE runs in a virtual JVM in an Oracle database session, there are concepts and
procedures discussed in this Guide that you should understand to facilitate OSE
application development.

Oracle database developers who are familiar with PL/SQL and other non-Java
programming environments should read the overview of Java and object-oriented
concepts discussed in the first part of this Guide. For more information about Java,
see "Information Resources" on page -xiv.

Chapters 1 and 2 of this Guide should give managers a good overview of the
capabilities of the Oracle Servlet Engine (OSE). As a manager, you might have
purchased Oracle9i for reasons other than Java development within the database.
But if you do want to know more about Oracle9i Java features, see the Oracledi Java
Developer’s Guide for a management perspective on Java development.

The OSE is different from a Web server such as Apache with a servlet engine, e.g.
Tomcat. In these cases, the servlet server runs in a JVM in an operating system
process, not in a JVM in a database session. There are some special concepts that
apply to the OSE in the Oracle JVM (OJVM), such as the method of database access,
how Java servlet classes and JavaServer Pages are loaded, and the way that sessions

xi

are handled. Becoming familiar with the OSE/OJVM way of doing things is a
prerequisite to developing successful applications of the OSE.

If you are developing applications that primarily use JavaServer Pages, read the
Oracle Support for JavaServer Pages Developer’s Guide and Reference.

How to Read This Guide

This Guide describes the Oracle Servlet Engine when it runs in an Oracle server.
This Guide does not attempt to teach servlet programming, nor does it document
the Java Servlet API. To learn about these topics, see the documentation available
from Sun Microsystems, or look at one of the trade books on servlet programming.

il

This Guide contains the following chapters and appendices:

Chapter 1, "Oracle Servlet
Engine Overview"

Chapter 2, "Oracle Servlet
Engine Concepts"

Chapter 3, "OSE
Configuration and
Examples"

Chapter 4, "An Apache
Module for OSE"

Chapter 5, "Configuring
mod_ose"

Chapter 6, "Calling EJBs"

Chapter 7, "Oracle Servlet
Engine Security"

Chapter 8, "Oracle WAR
Deployment"

Chapter 9, "Writing
PL/SQL Servlets"
Appendix A,

"Abbreviations and
Acronyms"

Introduces the product and describes some of its
advantages over alternative servlet engines.

Describes the way the OSE operates, and how it
differs from other servlet engines.

Provides specific instructions on configuring OSE
services, domains, and servlet contexts. Includes
many examples.

Describes the Oracle HTTP Server module that
directs requests for servlets from Apache to the OSE.

Tells you how to configure nod_ose.

Describes a demonstration application that calls an
EJB from a servlet.

Covers all aspects of security with the OSE.

Describes how to create servlet contexts, and deploy
servlets within them, using a Web Archive file.

Describes how to write servlets using PL/SQL and
the PL/SQL gateway.

A comprehensive list of network- and Java-related
acronyms.

Oracle8i Release 3 Users

This Guide has been rewritten extensively from the Oracle8i Release 3 version of the
Guide.

Nevertheless, if you are using the Oracle8i Release 3 version of the OSE, almost all
of the descriptions and instructions in this Guide also apply to your release. There
have been a few additions in functionality for the Oracle9i OSE in OJVM release,
mostly in the area of improvements for the Apache module nod_ose. New Oracle9i
functionality is indicated as such.

Conventions

This book generally uses UNIX syntax for file paths and shell variables. In most
cases file names and directory names are the same for Windows NT, unless
otherwise noted. The notation $ORACLE_HOVE indicates the full path of the Oracle
home directory. It is equivalent functionally to the Windows NT environment
variable %0RACLE_HOVEY% though of course the Oracle installation paths are
different between NT and Solaris or other UNIX flavors.

This Guide uses the following additional conventions.

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text (Courier font) within regular text indicates
class names, object names, method names, variable
names, Java types, Oracle datatypes, file names, URL or
URI fragments, and directory names.

% At the beginning of a command, indicates an operating
system shell prompt.

$ At the beginning of a command, indicates an Oracle VM
session shell prompt.

SQL> At the beginning of a command, indicates a SQL*Plus
prompt.

Xiii

Information Resources

To understand the Oracle JVM programming environment, see the Oracle9i Java
Developer’s Guide.

Managing the OSE requires that you issue a number of commands. Some of these
are issued at the operating system level, at the shell (command processor) level. For
example, to load a Java servlet class into Oracle9i you use the | oadj ava command
from the shell prompt. To publish a servlet class to the OSE, you use the OJVM
session shell, and in the session shell you issue the publ i shser vl et command.

Each of these commands is described briefly in this Guide. But for a complete
description of the commands and all their parameters, see the Oracledi Java Tools
Reference.

The following table lists some sources of information about Java, Java Web servers,
and other related topics that are available on the World Wide Web.

Location Description

http://ww. oracl e.com j ava The latest offerings, updates, and news for Java within
the Oracle9i database. This site contains FAQs, updated
JDBC drivers, SQLJ reference implementations, and
white papers that detail Java application development.
In addition, you can download Java tools (on a
try-and-buy basis) from this site.

http://java. sun. com The Sun Microsystems Web site that is the central source
for Java. This site contains Java products and
information, such as Javadoc, tutorials, book
recommendations, and the Java Developer’s Kit (JDK).

http://java.sun. com docs/ books/jls The Oracle9i JVM implements the Java Language
specification (JLS) and the Java virtual machine (JVM)

http://java. sun. com docs/ books/ vnspec specification, as described here.

http://java. sun.com products/. .. The Oracle Servlet Engine is compliant with the Servlet
2.2 specification, part of the J2EE specification. These
specifications are available here.

http://ww. apache. org Information and documentation on the Apache Web
server (a component of the Oracle HTTP Server). The
Oracle HTTP Server is used together with nod_ose (see
Chapter 4, "An Apache Module for OSE") to access the
OJVM OSE.

Xiv

Location

Description

conp. | ang. j ava. pr ogr anmer Internet newsgroups can be a valuable source of

conp. | ang. j ava. dat abases

information on Java from other Java developers. We
recommend that you monitor these two newsgroups.
Note: Oracle monitors activity on some of these
newsgroups and posts responses to Oracle-specific
issues.

Your local or on-line bookseller has many useful Java references. You can find
another listing of materials that are helpful to beginners, and that you can use as
general references, in the .Oracle Support for JavaServer Pages Developer’s Guide and
Reference

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at:

http://ww. oracl e. conl accessi bility/
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

XV

XVi

1

Oracle Servlet Engine Overview

This chapter introduces Java servlets and the Oracle Servlet Engine (OSE). It
describes the basics of the OSE design and operation, and shows how to combine
the OSE with other products to get speed and scalability for your Web application.
Later chapters of this guide describe in detail how to develop an application for the
OSE and how to administer the OSE.

This chapter covers the following topics:

Web Servers and Servlet Engines

A Brief Introduction to Servlets

About the Oracle Servlet Engine

The Oracle Servlet Engine Namespace
Hosting a Web Application

Steps in Developing a Web Application

Oracle Servlet Engine Overview 1-1

Web Servers and Servlet Engines

Web Servers and Servlet Engines

A Web server is simply a program that runs on a server platform, and sends files
back to clients that request them. Client requests use the HTTP protocol, and the
files are typically pages written using HTML. The client is usually a Web browser
such as Netscape Communicator or Internet Explorer, but any client or even a
server-side program can send HTTP requests to a Web server.

Apache is a well-known Web server. The Oracle HTTP Server is the Oracle extended
version of the Apache Web server.

A Web server takes the URL sent by the client, and finds a file on a server that it can
send back to the client, as an HTTP response. But some clients require information
that has dynamic content, that can change over time, or that varies depending on
information that the client sends to the server as part of the request.

To serve dynamic content, a Web server can include or call on a servlet engine, which
is a program that takes a client request for a dynamic page and activates a Java
class—the servlet—that provides the dynamic content. The content is typically
derived from queries to the database, normally using a JDBC connection.

A servlet engine is almost always separate architecturally from the Web server. For
example, the Apache Web server can use the JServ servlet engine, which supports
the Servlet 2.0 specification, or the newer Tomcat servlet engine, which supports the
Java Servlet specification version 2.2.

The Oracle Servlet Engine running in the Oracle Java Virtual Machine (OJVM) is a
servlet engine that works in conjunction with the Oracle HTTP Server, using the
nod_ose module.

1-2 Oracle9i Servlet Engine Developer’s Guide

A Brief Introduction to Servlets

A Brief Introduction to Servlets

Traditional Web applications have consisted of static pages written in HTML,
combined with a few forms to provide for user input and to supply dynamic
content. The dynamic content was usually enabled using Common Gateway
Interface (CGI) scripts, often written in a scripting language such as Perl or TCL.

Although static HTML pages are a central part of most Web applications, using CGlI
scripts to supply dynamic content turned out to be very inefficient. For example, in
the traditional model each request to a script requires spawning a separate process
in the Web server, thus limiting the scalability of the Web application.

Servlets were designed to overcome these limitations, and to provide efficient access
to data stored in a database server.

What Is a Servlet?

A servlet is a Java class that executes on a server. It is the server-side version of a
Java applet. You write a servlet using standard, platform-independent Java, and
compile it using a Java byte code compiler. Compile your servlets using a Sun JDK
1.2-compliant Java compiler. After compilation, the servlet is loaded into an
Oracle9i server, either on the data tier or perhaps into a read-only database on the
middle tier, and is published in the server. The servlet runs inside the servlet
engine.

After a few configuration steps, the servlet is accessible to a Web browser or other
client that uses the HTTP protocol. The client can query the servlet and receive the
servlet response, for display or other processing.

As with Enterprise JavaBeans (EJBs), servlets are invoked indirectly. However, to
call an EJB method directly from a client, you must activate an ORB and use the
session 1IOP or RMI/I1OP protocol to call methods on the bean. The client activates
a servlet using an HTTP request, from a Web browser or other client application.
Unlike EJBs, you do not call methods on a servlet, because a servlet has a single
entry point. Instead, the client activates the servlet, which then processes the HTTP
request, and sends a response back to the client.

Data can be passed to the servlet in the request URL. A common scenario is for the
client to activate a Web page, written in HTML. The Web page collects some
information from the user, then calls a servlet in the middle tier or in the data tier to
obtain information from the database.

Oracle Servlet Engine Overview 1-3

A Brief Introduction to Servlets

Servlets are close to the data. This is especially true for the Oracle9i platform. In that
platform, servlets reside in the server JVM, and have very fast in-memory access to
SQL data through a special internal JDBC driver.

Kinds of Servlets

A servlet can be either stateless or it can have state.

A stateless servlet simply processes requests, sending the response back to the
client. It has no knowledge of other requests, or any data that they might contain.
This follows the HTTP protocol, which is a stateless protocol. The only certain way
that two stateless requests can share data is for the servlet to store the data of one
request in the database, and retrieve it when needed for other requests. There is no
common Java memory that stateless servlets can share.

However, for many applications it is very convenient to be able to handle separate
but related HTTP requests in a way that preserves their relatedness. For example,
when you connect to a Web site to purchase some items, the server maintains a
shopping cart of your selections. But to keep the shopping cart available, the server
has to know who the client is. The client might make many requests to place items
in the cart, and for the server and the client to agree on which client goes with
which cart requires that some state be maintained.

Servlet engines have a mechanism for handling related requests: the session. A
session encompasses a series of related requests that come from the same client,
within a specified time period. Session state mechanisms relate the separate
requests from the same client. The most successful session state mechanism has
been cookies, developed by Netscape.

The server sends a cookie to the client that identifies the session, and the client (a
Web browser, for example) returns the cookie with each new request to the same
domain. There are also other mechanisms to relate requests that are used, for
browsers that do not support cookies, or in cases where the client has turned off
cookies. Two of these mechanisms are URL rewriting and Hidden Form Fields. The
OSE/OJVM supports URL rewriting whenever cookies are not available.

The J2EE Servlet 2.2 specification defines a session interface. This allows stateful
servlets to persist information on the server, by using an Ht t pSessi on object. Thus
any servlet that is written to the 2.2 specification can maintain and process session
state in the same way.

1-4 Oracle9i Servlet Engine Developer’s Guide

A Brief Introduction to Servlets

Advantages of Servlets

A Java servlet offers the following advantages over scripts and other methods that
provide database access for Web applications:

« Aservlet is written in platform-independent Java, making the application that
uses it portable to a wide variety of hardware and software platforms.

« The full range of Java APIs is available to a servlet, such as the Java Naming and
Directory Interface (JNDI) and many others.

« A servlet can call other components in the server, such as EJBs, CORBA objects,
Java or PL/SQL stored procedures, and other servlets.

Servlets are an effective replacement for CGI scripts. They provide a way to
generate dynamic content that is both easier to write and runs faster. In addition,
servlets address the problem of doing server-side programming with
platform-specific APIs: they are developed with the Java Servlet API, a standard
Java extension.

So, use servlets to handle HTTP client requests. For example, have servlets process
data POSTed over HTTPS using an HTML form, including purchase order or credit
card data. A servlet such as this could be part of an order-entry and processing
system, working with product and inventory databases, and perhaps an on-line
payment system.

Oracle Servlet Engine Overview 1-5

A Brief Introduction to Servlets

JavaServer Pages

JavaServer Pages (JSPs) are also becoming widely used in Web applications to
provide dynamic content for HTTP clients. JavaServer Pages is a technology that is
specified by Sun Microsystems as a convenient way of generating dynamic content
in HTML pages that are served up by a Web application.

JSPs are closely coupled with Java servlet technology. They allow you to include
Java code snippets and calls to external Java components within the HTML code (or
other markup code, such as XML) of your Web pages. JSPs work nicely as a
front-end for business logic and dynamic functionality in JavaBeans and Enterprise
JavaBeans (EJBs).

JSP code is distinct from other Web scripting code, such as JavaScript, in a Web
page. Anything that you can include in a normal HTML page can be included in a
JSP page as well. In a typical scenario for a database application, a JSP page will call
a component such as a JavaBean or Enterprise JavaBean, and the bean will directly
or indirectly access the database, generally through JDBC or perhaps SQLJ. The
server translates a JSP page into a Java servlet before being executed (typically on
demand, but sometimes in advance), and it processes HTTP requests and generates
responses similarly to any other servlet.

JSPs provide a standard way to separate HTML code and Java code. Web
developers who are familiar only with HTML can maintain JSPs independently of
the dynamic content.

JSP pages are fully interoperable with servlets. JSP pages can include output from a
servlet or can forward to a servlet, and servlets can include output from a JSP page
or can forward to a JSP page.

See the JavaServer Pages Developer’s Guide and Reference for complete information
about the use of JSPs in the Oracle Servlet Engine.

1-6 Oracle9i Servlet Engine Developer’s Guide

About the Oracle Servlet Engine

About the Oracle Servlet Engine

The Oracle Servlet Engine is a complete, full-featured servlet container. The purpose
of a servlet engine is to support Web applications. A Web application can consist of
Java servlets, JSP pages, static HTML Web pages, and other Web resources. Other
resources might include CGI scripts, image files, compressed archives, and various
other data files.

The OSE fully supports the servlet 2.2 specification, which is part of the J2EE
specification.

Although functionally identical to servlet activation in a non-server JVM, the servlet
activation model for the OSE/OJVM depends upon the properties of the OJVM, and
hence requires a different development model for optimum speed and scalability.

The Java process, and hence the Java servlet, are started up only when a request
comes into the OSE service. This is the way the OJVM itself works, as described in
the Oracle9i Java Tools Reference. For this reason, "heavy weight" servlets, that do a lot of
initialization work when started up, often do not confer any performance
advantage in the OSE/OJVM, and they always incur a performance penalty on
session start-up.

The OSE/OJVM supports stateful servlets very well, due to the nature of the OJVM
session model. However, if your application makes heavy use of stateless servlets,
be aware that each request to a stateless servlet requires a new instantiation of the
OJVM, which is costly.

Therefore, if your application uses stateless servlets you should always connect to
the OSE by way of Apache and nod_ose, because nod_ose keeps a stateless
connection to the OSE open for the duration of each Apache (ht t pd) process. If the
application servlets do a lot of initialization (such as caching connection pools,
precomputed data, or data obtained from the database), then it is likely that other
client requests will get hits on the cached data when you use Apache and nod_ose.
If you connect directly to the OSE/OJVM to run stateless servlets, each new HTTP
request starts a new server session, and any caching that the servlet does is
completely wasted.

The most important thing to keep in mind about the OSE is that it runs within an
Oracle9i server. The OSE runs under the Java Virtual Machine, in a server session.
Each new request to the OSE gets a separate session, each with its own JVM.

Because the servlet engine is running as part of an Oracle server session, it offers
very fast access to data. A direct in-memory connection is available, using the
Oracle server-side internal JDBC driver, thereby making access to SQL data from

Oracle Servlet Engine Overview 1-7

About the Oracle Servlet Engine

JDBC statements almost immediate. This fast-path access is also indirectly but
conveniently available to SQLJ statements in a servlet, and to JSP statements.

The OSE can also serve static HTML pages to a browser, but that is not its primary
role. For efficient serving of both dynamic content and static pages it is best to
combine the OSE/OJVM in a server (running servlets for fast database access) with
the Oracle’s HTTP server. The Oracle HTTP Server uses a module (mod_ose) that is
provided for access to the OSE/OJVM. Chapter 4, "An Apache Module for OSE"
describes mod_ose.

A Web application that is implemented using servlets is by definition distributable.
When you publish an application in the Oracle9i server, it is simultaneously
accessible by many clients. Each client that connects to the instance in which the
application runs gets its own virtual JVM. It is important to realize that these are not
separate threads of execution, but are completely separate JVMs.

The following statement from the Oracle9i Java Developer’s Guide (page 1-13)
summarizes the special way that the OJVM operates:

"As a database server, Oracle9i efficiently schedules work for thousands of users.
The Oracle9i Aurora JVM uses the facilities of the RDBMS server to concurrently
schedule Java execution for thousands of users. Although Oracle9i supports Java
language level threads required by the Java language specification (JLS) and Java
Compatibility Kit (JCK), using threads within the scope of the database will not
increase your scalability. Using the embedded scalability of the database eliminates
the need for writing multi threaded Java servers. You should use the database’s
facilities for scheduling users by writing single-threaded Java applications. The
database will take care of the scheduling between each application; thus, you
achieve scalability without having to manage threads. You can still write multi
threaded Java applications, but multiple Java threads will not increase your server’s
performance.”

1-8 Oracle9i Servlet Engine Developer’s Guide

The Oracle Servlet Engine Namespace

The Oracle Servlet Engine Namespace

When the Oracle Servlet Engine is running in an Oracle server instance, it looks for
pages, as well as other objects such as servlets, in its "filesystem". The OSE
filesystem is a namespace that represents objects that are stored in the database, as
entries in SQL tables. This namespace, which is configured and maintained using
JNDI, looks to the OSE application developer just like a UNIX file system. A UNIX
or Windows NT filesystem has a root directory. For example, '/’ in UNIX is the root
directory of a file system, and "C:\" in Windows NT is the root of a disk drive. In
JNDI, a directory is called a context, and there is a root context, also named '/’. An
object name in JNDI is called a reference, because it is a name bound to a specific
object.

You usually access the OSE/OJVM namespace using command tools that were
written using JNDI, and that execute in the Oracle9i server. The principal tool is the
session shell, which is a utility that mimics a simple version of a UNIX command-line
shell. The session shell provides built-in commands that let you explore the
namespace, such as the directory lister Is and the cd utility, and tools that let you
modify the namespace, such as mkdir (create a new context), rm (remove a context
or a reference), chmod (change the access permissions on a context or reference), and
many other UNIX-like commands. See Chapters 2 and 3 for more information about
the session shell and the other tools. You can find the complete documentation for
these tools in the Oracle9i Java Tools Reference.

Oracle Servlet Engine Overview 1-9

Hosting a Web Application

Hosting a Web Application
Hosting a Web application on an Oracle server requires the following:

= You must have an Oracle9i (or Oracle8i Release 3) server with the Oracle Java
Virtual Machine (OJVM) installed.

« The Oracle server must be running in an Oracle shared server configuration.
Note that the Oracle shared server was called the multi-threaded server (MTS)
in Oracle8i.

« For complex applications that serve many static pages as well as servlets and
JSPs, and for client applications that use stateless connections, Oracle
recommends that you also configure one or more Oracle HTTP Servers on a
middle-tier system for maximum scalability and performance.

When using the Oracle Servlet Engine, you can configure your Web site to use
virtual hosts. Virtual hosting allows you to host more than one Web domain with a
single servlet engine, running in a single Oracle server session.

You can also configure the Oracle Servlet Engine to support multiple IP addresses.
If your server system has multiple network interface cards (NICs), a domain for
each card’s address can be configured into the OSE. For example, you might do this
if you have a single system that supports entry points for both intranet services
inside your company’s firewall and internet services external to the firewall.

Multiple IP address and name-based virtual hosting can be combined. You can
configure a system that combines one or more network interfaces that host a single
Web domain and other network interfaces that support multiple virtual hostnames.

1-10 Oracle9i Servlet Engine Developer’s Guide

Steps in Developing a Web Application

Steps in Developing a Web Application

To develop a servlet-based Web application for the OSE/OJVM, you follow these
basic steps. Later parts of this guide describe these steps in detail.

1. Ifyou have not yet done so, create a Web service to host the application. This
step must be done by a system or database administrator who has Oracle SYS
privileges.

2. If you have not yet done so, configure a Web domain in the OSE to host the Web
application.

3. Write the Java code for the servlet(s).

4. Compile the servlet(s) using a Sun Microsystems JDK 1.2-compatible Java
compiler.

5. Load the servlet(s) into the Oracle server, using the | oadj ava tool. See the
Oracle9i Java Tools Reference for information about | oadj ava.

For the OSE/OJVM, you perform steps 1 and 2 using the session shell tool. The
session shell, and the session shell commands that you use, are described in
Chapter 2, "Oracle Servlet Engine Concepts" and in Chapter 3, "OSE Configuration
and Examples". Steps 4 and 5 are performed from the operating system command
prompt. Steps 1, 2, 4, and 5 are best done indirectly using a makefile in UNIX, or a
batch script in Windows NT. See the makefiles and batch scripts in the demo
directories of your OSE/OJVM installation for examples.

You can perform the following steps using either commands in the session shell, or
by using a Web Application Archive (WAR) deployment file. For maximum
portability, Oracle recommends that you write and use a WAR file. See Chapter 8,
"Oracle WAR Deployment" for complete information on deploying a Web
application using a WAR file.

6. Create a service context to hold the Web application.

7. Publish each of the servlets and/or JSP pages that make up the application.
Chapter 2, "Oracle Servlet Engine Concepts" and in Chapter 3, "OSE
Configuration and Examples" describe this step.

8. Make sure that external objects called by any servlets in the application, such as
EJBs, are loaded, published, and accessible.

9. Test the application using a Web browser or other HTTP client.

Oracle Servlet Engine Overview 1-11

Steps in Developing a Web Application

1-12 Oracle9i Servlet Engine Developer’s Guide

2

Oracle Servlet Engine Concepts

This chapter covers the following topics:

Getting Started

OSE Building Blocks

The OSE Session Model

The OSE Namespace

Connecting to an OSE Web Application
Web Services

Web Domains

Servlet Contexts

Accessing the Oracle Database

Oracle Servlet Engine Concepts 2-1

Getting Started

Getting Started

This chapter discusses the basic functionality and mode of operation of the Oracle
Servlet Engine (OSE). You can find specific information about configuring the
servlet engine and Web applications in Chapter 3, "OSE Configuration and
Examples", in Chapter 5, "Configuring mod_ose", and in Chapter 8, "Oracle WAR
Deployment".

If you need help in creating, deploying, and accessing your first servlet under the
OSE/OJVM, and are not interested right now in how the OSE/OJVM operates, you
can get started very quickly by having a look at the Summary on page 3-23.

Oracle8i Users Note: Wherever this chapter refers to Oracle9i, the
same information also applies to the Oracle Servlet Engine of
Oracle8i Release 3, unless specifically indicated otherwise.

2-2 Oracle9i Servlet Engine Developer’s Guide

OSE Building Blocks

OSE Building Blocks

To understand how the OSE works, it is useful to have an overall grasp of its basic
building blocks and tools. These are described very briefly in this section. More
detailed explanations are given in later sections of this chapter.

OSE Session Model

The OSE/OJVM runs in a virtual JVM inside an Oracle database server session. It is
important to understand the OSE/OJVM session model in order to develop and
tune your servlet- or JSP-based application for maximum scalability and
performance.

OSE Namespace

Objects that support both Web applications and the OSE system itself are organized
in a hierarchical namespace, similar conceptually to a UNIX file system, or the
directories on a Windows NT disk drive. The OSE namespace is implemented using
the Java Naming and Directory Interface (JNDI), and OSE/OJVM objects in the
namespace are persisted in Oracle server tables.

OSE Administration

The tool used to administer the OSE/OJVM is the session shell. The session shell is a
client-side tool that connects to an Oracle server on which the Oracle JVM has been
installed, and the session shell is then used to run administrative commands on the
server. The session shell behaves like a UNIX shell, with built-in commands to
delete objects, bind new objects, navigate the JINDI namespace, and perform
administrative tasks such as creating new Web services, Web domains, and servlet
contexts.

Web Service

In order for a Web browser (or any other HTTP client) to connect to the OSE and
access servlets or JSPs, a Web service must be established in the OJVM. The Web
service uses the Oracle server HTTP presentation capability. Endpoints for client
connection to the service are also established. (An endpoint is simply a port
number—programmatically a TCP socket.)

A Web browser can connect to a service by sending a request URL that specifies a
hostname and an endpoint. For example the URL

http:// O atest: 8080/

Oracle Servlet Engine Concepts 2-3

OSE Building Blocks

specifies a connection to the host system Or at est , at endpoint 8080. The network
DNS servers look up the host name, and substitute the correct 32-bit IP address in
its place. If this endpoint is an OSE service, this URL would cause the default servlet
for the domain to be activated. If the endpoint is omitted, then the default endpoint
for the HTTP presentation on that host is used.

Web Domain

An OSE Web service can support one or more Web domains. While a single Web
domain per service is the most common case, the OSE can also support multiple
IP-based and/or name-based virtual-hosted Web domains for a single service.

Servlet Context

A servlet context is the basic unit of organization of a Web application. Each Web
domain can support one or more servlet contexts. You publish a single application’s
servlets, JavaServer Pages, and other objects into the servlet context.

For the OSE you can use a Web application archive (WAR) file to configure a servlet
context, or you can do the configuration using session shell commands.

2-4 Oracle9i Servlet Engine Developer’s Guide

The OSE Session Model

The OSE Session Model

When a request from an HTTP client arrives at an HTTP service endpoint, an Oracle
server session is started, the JVM is activated, and then OSE/OJVM is activated to
handle the request.

Important Note: The most important difference between the
OSE/OJVM and other servlet engines, such as Jakarta/Tomcat, is
that the OSE runs in an Oracle server session.

By default, the database session is authenticated as the owner of the Web domain
used to connect to the server.

HTTP clients can combine several HTTP session objects in a single database session.
An HTTP session can exist for each servlet context. A servlet inside a particular
context can integrate the corresponding HTTP session when calling the

get Sessi on(true) method. If the client activates servlets from two different
servlet contexts and each servlet calls get Sessi on(t rue), then two different
HTTP session instances exist in the database session. The first time an HTTP client
connects to an instance of Oracle9i running OSE, a session is created inside the
database. The session is a regular database session that runs its own virtual JVM.

A stateful session is useful in applications where a dialogue should exist between
the client and the servlet. A cookie is sent to the client to maintain the session, that
is to assure that the client can return to the same session on subsequent HTTP
requests. If the client does not support cookies, the OSE uses URL rewriting to
maintain session information.

Note: Any object bound into a HTTP session object is available to
any other servlet that belongs to the same servlet context and that
handles a request identified as being part of the same session.

The OSE supports the complete servlet interface, as required by the Servlet 2.2
specification. Any servlet that is written to operate under the OSE should be
portable to another J2EE-compliant servlet container, and servlets written for other
platforms will run in the OSE with no modification.

Oracle Servlet Engine Concepts 2-5

The OSE Session Model

Servlet Activation

Although functionally the same as servlet activation in a non-server JVM, the
servlet activation model for the OSE/OJVM depends upon the properties of the
OJVM, and hence requires a different development model for optimum speed and
scalability.

The Java process, and hence the Java servlet, are started up only when a request
comes into the OSE service. This is the way the OJVM itself works, as described in
the Oracle9i Java Developer’s Guide. For this reason, heavy weight" servlets, that do a
lot of initialization work when started up usually do not offer any performance
advantage in the OSE/OJVM, and always incur a performance penalty on session
start-up.

The OSE/OJVM supports both stateful and stateless servlets. However, if your
application makes heavy use of stateless servlets, you need to be aware that each
request to a stateless servlet could require a new instantiation of the OJVM, which
would costly.

So if your application uses stateless servlets you should always connect to the OSE
by way of Apache and mod_ose, as nod_ose keeps a stateless connection to the
OSE open for the duration of each Apache (ht t pd) process. If the application
servlets do a lot of initialization (such as caching connection pools, precomputed
data, or data obtained from the database), it is likely that other client requests will
get hits on the cached data when Apache/nod_ose are used. If you connect
directly to the OSE/OJVM to run stateless servlets, each new HTTP request starts a
new server session, and any caching that the servlet does is completely wasted.

Multithreading

Oracle does not recommend that you write or deploy servlets that use the Java
multi threaded model in the OSE/OJVM. The OSE/OJVM works using the Oracle
shared server configuration (called the Multi-Threaded Server, or MTS,
configuration in Oracle8i). The shared server configuration is in itself a distributed
system, and scales by adding new servers as the incoming requests multiply. So in
effect the threading is being done at the server level, and each servlet executes in its
own virtual JVM.

So, each thread of a multithreaded servlet cannot cache static information that is
available to other threads. One JVM, one thread of control.

The following statement from the Oracle9i Java Developer’s Guide (page 1-13)
summarizes the special way that the OJVM operates:

2-6 Oracle9i Servlet Engine Developer’s Guide

The OSE Session Model

"As a database server, Oracle9i efficiently schedules work for thousands of
users. The Oracle9i Aurora JVM uses the facilities of the RDBMS server to
concurrently schedule Java execution for thousands of users. Although Oracle9i
supports Java language level threads required by the Java language
specification (JLS) and Java Compatibility Kit (JCK), using threads within the
scope of the database will not increase your scalability. Using the embedded
scalability of the database eliminates the need for writing multi threaded Java
servers. You should use the database’s facilities for scheduling users by writing
single-threaded Java applications. The database will take care of the scheduling
between each application; thus, you achieve scalability without having to
manage threads. You can still write multi threaded Java applications, but
multiple Java threads will not increase your server’s performance.”

Oracle Servlet Engine Concepts 2-7

The OSE Namespace

The OSE Namespace

When a Web application is deployed in an Oracle server, the Java classes that
implement the servlets and JSPs are stored in the database as SQL objects. You use
the | oadj ava command to load a Java class to an Oracle9i database—it is stored in
a SQL table in the database. The OJVM is able to resolve and execute the servlet
within the OJVM context, in a way analogous to the activation of a Java Stored
Procedure or an Enterprise JavaBean.

The OSE/OJVM uses JNDI to implement the namespace. The INDI layer insulates
the OSE from direct dependence on the database, but enables the database to be
used for persistence of the container objects. The JNDI interface leverages the
features of the Oracle9i server, including concurrency and transactional capability,
as well as scalability, replication, and other advanced capabilities.

A Short Introduction to JNDI

For those unfamiliar with JNDI, this section provides a very brief overview. For
more information, point your Web browser to

http://java. sun. conf products/jndi/index. htm

The JNDI is a set of APIs developed by Sun Microsystems as a standardized way of
naming objects, and navigating to them. The OSE uses JNDI as the method of
implementation for its namespace.

A namespace is simply a collection of names in a naming system. For example,
UNIX provides a set of names for files stored on a file system that is organized in as
a hierarchical tree structure. The OSE has a namespace that consists of objects, such
as servlets, configuration objects, JSPs, as well as other material, such as graphic or
sound images, that make up Web applications.

The JNDI has two fundamental concepts: contexts and references, and one
fundamental action: binding. There are of course other actions, implemented by
classes in the API, that allow the developer using JNDI to navigate the namespace,
create new contexts, and do other operations.

When you develop a Web application for the OSE/OJVM, you use JNDI-based
tools, implemented as session shell commands, to perform most administrative
operations. A servlet developed for the OSE/OJVM can use the INDI API to
perform application tasks, such as calling EJBs or other J2EE components.

Since the INDI namespace for the OSE/OJVM is persisted in SQL tables, you could
use the INDI API to store information in the OSE JNDI namespace that needs to be
shared among Oracle sessions.

2-8 Oracle9i Servlet Engine Developer’s Guide

The OSE Namespace

JNDI References and Contexts

A reference is a name-to-object binding that points to (or names) an object that
implements some functionality, for example a servlet class. A context is an object
that can contain references or other contexts. That is, a context is a set of
name-to-object bindings. A context is like a directory in a file system. For example,
in the UNIX naming system a file path such as / usr/ bi n/ wc names three
directories: '/’ (root), 'usr ’, and ’bi n’, and a leaf node "wc’, which is an ordinary
file. In a INDI namespace, these would be represented by three contexts and a
reference.

Other naming systems use different notational conventions. For example, the DNS
naming system uses dots to separate contexts: j ava. sun. com The JNDI can be
used to represent, or implement, any hierarchical naming system.

References and contexts are Java objects, and so they can have attributes, or
properties, associated with them. For example, a file in a file system typically has a
creation date, a last-modified date, and a set of attributes that tell who can read,
who can modify, and, if possible, who can execute the file. In an analogous way;,
references and contexts in JNDI can have attributes. The OSE uses these attributes
to encode permissions (read, write, execute), and to store configuration parameters
for services, domains, and servlet contexts.

In this guide the INDI-specific term "context" is frequently used. However, since a
context is quite analogous to a directory in a file system, the more imprecise term
"directory" is sometimes used. For example, it seems clearer to talk about a "servlet
context directory" in the INDI namespace, rather than the redundant "servlet
context context", when mention must be made of the specific object that contains a
servlet context.

Binding
The INDI provides API functionality that can bind objects to named contexts or
references, and unbind the name from the context or reference.

In the OSE, these names make up the namespace. Binding is a INDI operation that
associates a name with the information required to construct an object. When you
give a name to afile in a file system, you are in effect binding the name to the object:
the file.

As you will see in following sections, the OSE/OJVM session shell provides tools
that use the JNDI bind to associate names in the OSE namespace with servlet classes
loaded into the database.

Oracle Servlet Engine Concepts 2-9

The OSE Namespace

Interfaces

There are two components that make up JNDI. The application programming
interface, or API, implements the classes that allow the user (for example, a tool
implementer) to access and navigate the namespace. The interfaces and classes that
make up this API are provided by Sun.

A servlet container developer who wants to make JNDI available for use in an
application must also implement the Service Provider Interface (SPI), to allow the
API to access a specific set of objects that are stored somewhere. The objects might
be stored in a file system, or in a database table, or perhaps even in a flat file on a
disk. It does not matter how or where the objects are ultimately stored, as long as
they can be accessed through the SPI.

Note that the storage does not need to be hierarchically organized. For example, a
(non-object) Oracle table contains rows, but does not offer a tree-like structure.
Nonetheless, it is quite feasible to interface a tree-like hierarchical namespace to a
database table by writing the appropriate INDI SPI. Figure 2-1 shows the
relationship of the various components that participate in a JNDI-based application
and its container.

2-10 Oracle9i Servlet Engine Developer’s Guide

The OSE Namespace

Figure 2-1

Application Archite

cture Using JNDI

Servilet or Other
Tool

JNDI

API

h 4

JNDI Naming Manager

¥

¥

SQL SPI

\ \ FS SPI \

ather SF

F

3

SQOL Tables

UNIX Fil

e System

Other storage. ..

Federated Namespaces

JNDI also provides for a namespace whose root references one storage system (that
is, uses one SPI) to contain one or more contexts that refer to different storage
systems, that use one or more different SPIs. The second and other namespaces are
federated with the root namespace in this case. The transition from one namespace
to a federated one is usually transparent to the application user.

However, the OSE developer or administrator needs to understand the concept of
federated namespaces, as they are used in most Web applications. For example, the
document root (doc_r oot context) in an OSE/OJVM application is typically an

object that is a link to a federated OS file system.

Oracle Servlet Engine Concepts 2-11

The OSE Namespace

Note: Files in the OS filesystem have access permissions that are
associated with the operating system users, for example UNIX or
Windows NT logins. But when the OSE accesses files in the OS file
system, you must assign the files Java access permissions through
SQL commands. The permissions are assigned to database users,
not to OS logins.

You use the gr ant _per ni ssi on procedure in the dbns_j ava
package to grant (or restrict) Java permissions
(j ava. i o. Fi | ePerm ssi on) on files in the operating system.

See the Security chapter in the Oracle9i Java Developer’s Guide for
more information.

The OJVM Root Namespace

Figure 2-2 shows an example of the contexts that might be found in the root of the
JNDI namespace in an OJVM.

2-12 Oracle9i Servlet Engine Developer’s Guide

The OSE Namespace

Figure 2-2 The Root of the OJVM JNDI Namespace

| —
— /bin

—/etc
—/system/admin
—/service

— /test

— /HRRoot

Oracle Servlet Engine Concepts 2-13

The OSE Namespace

The following table describes briefly the function of each of these contexts.

Context Purpose

/bin Contains objects that implement system functions. For example,
the session shell commands such as cr eat ewebser vi ce,
cr eat ewebdomai n, addendpoi nt, cr eat eser vi ce and
others are found here. Do not delete these objects (Oracle SYS
privileges would be required), or the OSE might not continue to
function properly.

/etc Contains published objects that are usually called from EJB or
CORBA clients. They are not used by the servlet engine.

/system admi n Holds an admin service, that supports certain servlets used by
the OSE, for example the servlet that implements the session
shell on the server side.

/ service Contains one object for each HTTP service that has been created
for this Oracle instance. In the default installation, there will be
two services: adm n (for administrative uses), and HRRoot (a
demo service).

/t est If present, used only for Oracle internal testing purposes.

/ HRRoot A demonstration service. Contains a single Web domain (also
called HRRoot), with some published demo servlets.

When you create a new Web service, you normally place the service root in the root
directory of the INDI namespace.

2-14 Oracle9i Servlet Engine Developer’s Guide

Connecting to an OSE Web Application

Connecting to an OSE Web Application

Before developing and configuring a Web application that runs under OSE/OJVM,
you must have available an HTTP service, with a specified service endpoint
(TCP/IP socket). For example, a URL such as

http:// O atest: 8088/ myPage. ht m

specifies a connection to a TCP/IP port (or socket), number 8088. If the URL does
not specify a port, the default port for the HTTP presentation, usually port 80, is
assumed.

The endpoint is used by the dispatcher to connect to the HTTP service. See
"Creating a Web Service" on page 2-21 for information about services and setting up
a service endpoint.

There are two routes that an incoming HTTP request from an HTTP client, such as a
Web browser, can take to connect to the OSE, and invoke a servlet or JSP:

1. connecting to OSE using the Oracle HTTP Server’s listener with nod_ose

2. connecting directly from the browser to OSE, through the Oracle server’s
listener

Oracle strongly recommends that you connect to servlets and JSPs by going through
the Oracle HTTP Server (Apache), and using the nod_ose Apache module to
connect to an Oracle listener and then the OSE. See "Connection Using the Oracle
HTTP Server as Listener" on page 2-16 for the benefits of this approach. For
information about Apache and nod_ose see Chapter 4, "An Apache Module for
OSE™.

However, for occasional debugging purposes, it is possible connect to the OSE
directly, by registering a service endpoint with the Oracle listener (or even directly
with a dispatcher), and connecting to that port.

Figure 2-3 shows some of the various ways that an HTTP client can connect to an
Oracle9i server.

Oracle Servlet Engine Concepts 2-15

Connecting to an OSE Web Application

Figure 2-3 Oracle 9i Connection Architecture

Qracle9i

Session Shared

Memory Servers
77 ['__'__ 1
| | |
Session | So0T |
| | State | | |
| : | | — soo2 ||
HttpClient1 ; | | |

: Session | |

sae [1 | [5 |l
- | | |
. |
| |

Direct Dispatcher I | |
Connecfion ! ;
1D tch
il B s oS N

Connection Using the Oracle HTTP Server as Listener

A large Web application might have many static pages, in combination with servlets
and JSP pages to serve the dynamic content. This kind of application will run more
efficiently if the static pages are served directly from a file system, using a server
running either on the middle tier or the data tier, and the dynamic pages are served
by the OSE running in the Oracle server.

In this case, configure the application so that connections to servlets and JSP pages
are routed to the OSE running in the database using the Apache module mod_ose.
See Chapter 4, "An Apache Module for OSE" for information about nod_ose, and
instructions on how to configure it.

2-16 Oracle9i Servlet Engine Developer’s Guide

Connecting to an OSE Web Application

Another reason to use Apache and nod_ose is because applications that make
heavy use of stateless requests can place a heavy load on an Oracle server, if they
connect directly to an Oracle listener. Each stateless request that comes directly to the
Oracle server’s OSE causes a new server session to be started, with the attendant
overhead. But when using Apache with nod_ose, stateless requests are in effect
pooled, each Apache with nod_ose process keeping a stateless connection to the
server and OSE open. This allows much better throughput and scalability.

Direct Connection To an Oracle Listener

With a direct connection, the client request is first routed to the Oracle listener
running on the host named in the URL. For example, a URL from a browser starts
with the string htt p: // Or at est : 8088/ The domain name servers that the
client system is using will look up Or at est , and substitute the appropriate 32-bit
Internet address, for example 10.10.10.5. The request is then routed to the listener on
that host system. If no listener is running on that host, an error is returned. The
error is returned to the client is an HTTP 500 error. Different clients, such as
different Web browsers, might handle the error in different ways, for example by
displaying a "failed to connect" message.

An existing listener must then route to a service registered on the endpoint at port
8088. If no service is registered on that port, the listener returns to the client an error
indicating a failure to connect. But if a service is registered, the service is started. For
OSE, the Oracle JVM is started, and then the OSE is started to route the request to
the appropriate servlet named in the remaining part of the URL (the URI). Routing
to a servlet is explained in detail in "Finding the Servlet" on page 2-35.

Direct Connection to an Oracle Dispatcher

If you want HTTP client requests to go to an Oracle dispatcher directly, bypassing
the listener, you direct your client to the dispatcher’s port number. Do one of the
following to discover the dispatcher’s port number:

« Configure a port number for the dispatcher by adding the ADDRESS parameter
that includes a port number.

« Discover the port assigned to the dispatcher by invoking | snrct| servi ce.
« If you choose to configure the port number, the following shows the syntax:

m s_di spat chers="(address=(protocol =tcp | tcps)
(host=< server_host >) (port=<port>))
(presentation=oracl e. aurora.server. <http_servi ce_name>)"

Oracle Servlet Engine Concepts 2-17

Connecting to an OSE Web Application

The attributes are described below:

ADDRESS (ADD or ADDR) Specifies the network address that the dispatchers will
listen on. The network address may include either the TCP/IP (TCP) or the TCP/IP
with SSL (TCPS) protocol, the host name of the server, and an HTTP listening port,
which may be any port you choose that is not already in use.

The client supplies the port number on its URL, as follows:
htt p://<host nane>: <por t nunber >

Notice that the URL excludes a SID or service name. The dispatcher does not need
the SID instance or service name because it is a directed request.

PRESENTATION (PRE or PRES) The PRESENTATION enables support for HTTP. For
an HTTP presentation, use the HTTP service name that you established with the
cr eat ewebser vi ce command, for example

http://testService

Notice that the URL excludes a SID or service name. The dispatcher does not need
the SID instance or service name because it is a directed request.

Note: While it is possible to connect directly to an Oracle
dispatcher from an HTTP client, and this capability might be useful
in some circumstances for debugging, Oracle does not recommend
that you do this when testing and deploying production
applications. You lose the load balancing and other advantages of
the listener.

2-18 Oracle9i Servlet Engine Developer’s Guide

Web Services

Web Services

An Oracle9i server can present many different services to a client. The most
common one are:

TTC services Clients that follow the traditional client-server model, perhaps with a
client running an OCI or a Forms application, connect to the TTC Oracle service.
(TTC is a traditional Oracle abbreviation that stands for "two-task common".)

IIOP services Remote clients that call Enterprise JavaBeans or CORBA objects in the
server connect to a service that supports session 110OP connections.

HTTP services Web-based client applications connect to an HTTP service on the
Oracle server.

Some developers are able to write customized special services, that can support an
arbitrary communications protocol, and provide database services beyond the scope
of those offered by standard Oracle9i server. Writing custom services is not covered
in this document.

Note: The session IIOP and HTTP services are required for many
applications that use the OJVM. The OJVM requires the Oracle
shared server. (The shared server configuration was called the
multi-threaded server (MTS) in Oracle8i). IIOP and HTTP services
are not normally supported for a dedicated, non-shared, Oracle
server.

Oracle9i provides installed support for HTTP services. A single system can support
one or more Web services, with different endpoints. For example, an e-business that
sells a range of products might want to install several Web services, each supporting
a different product line.

A Web service is associated with an endpoint. An endpoint is a port to which the
HTTP client can send incoming requests. When you register a Web service you must
specify the endpoint for the listener. For the TCP/IP connections that all HTTP
requests use, the endpoint is a socket number. 80 is the usual default socket number
for HTTP requests. Secure Socket Layer (SSL) connections would use a different
port, perhaps 90.

Only a user with Oracle SYS privileges can establish a Web service and a service
endpoint for an Oracle server. Severe security problems could arise if
non-privileged users were able to establish new Web services.

Oracle Servlet Engine Concepts 2-19

Web Services

Single-Domain and Multi-Domain Services

The Oracle Servlet Engine supports two kinds of Web service: single-domain and
multi-domain. A single domain Web service supports a single Web domain. In a
single-domain Web service, the port (endpoint) is the sole determiner of the routing
of servlet request to service and then the domain.

There are several kinds of multi-domain services. Multi-domain services are also
called virtual hosting.

Virtual Hosting

For many purposes, a single-domain service is all that is required. However, in
many cases a single server machine must host multiple Web domains. For example,
a single system that is required to host an administrative domain and an application
domain, each with entirely different sets of privileges and applications. Or, a single
server system might be required to host users on the intranet as well as users
connecting from the internet, outside the firewall. In the latter case, the server
system will typically have two or more physical network connections, and each
network interface card can support a separate Web domain.

Support of multiple Web domains is called virtual hosting. There are two types of
virtual-hosted service:

1. hosting multiple domains using different IP addresses, called IP-based virtual
hosting

2. multiple domain names, called name-based virtual hosting

Because it is possible for a Web domain that is served by an IP address to have
multiple domain names (multiple entries in the DNS tables), it is possible to
combine case 1 above with case 2. For example, a server system could have three
network interface connections, two of which support single Web domains, and a
third that supports multiple (name-based virtually-hosted) domains.

The OSE/OJVM supports virtual hosting differently from a purely JDK-based
implementation of servlet containers, such as Tomcat or JServ. See "Virtual-Hosted
Services" on page 2-24 for more information.

You can also find more information on setting up single and multiple Web domains
in Chapter 3, "OSE Configuration and Examples".

2-20 Oracle9i Servlet Engine Developer’s Guide

Web Services

Creating a Web Service

The system administrator or DBA uses the cr eat eser vi ce or the
cr eat ewebser vi ce session shell commands to establish a service for the OSE,
and identify its

= hame
« root in the OSE JNDI namespace

The administrator must be connected to the session shell as SYS to use either of
these service creation commands.

The cr eat ewebser vi ce command is a more specific form of cr eat eser vi ce,
and can only be used to create HTTP-based services. For information about the
more general cr eat eser vi ce command, see the Oracle9i Java Tools Reference.

Once a service is created, the administrator must establish service endpoints on
which the service can listen, using the addendpoi nt session shell command.

See "Creating a Web Service" on page 3-5 for specific instructions on how to create a
new Web service, and add listening endpoints for it.

The Service Context

The OSE JNDI namespace contains a ser vi ce "directory" at its root. Objects of type
SERVI CE existin/ ser vi ce, one for each Web service that has been created for the
Oracle instance. For example, a newly installed Oracle9i server with the JVM has a
/ servi ce context that includes the following services:

« admn
=« HRService

The admi n service is required for proper operation of the OSE, and must not be
removed. The HRSer vi ce is installed as part of the OSE demo set.

Each SERVI CE object in the / ser vi ce context contains a set of property groups
that describe the service. These include

« theservicegroup:
= the service name: servi ce. nane

« the overall default timeout for the service: ser vi ce. gl obal Ti meout (in
seconds)

. theservice. root

Oracle Servlet Engine Concepts 2-21

Web Services

« theendpoi nt group:
« the endpoint class: endpoi nt . cl ass
« the endpoint name: endpoi nt . nane

« specifics for the named endpoint, such as ports, minimum and maximum
number of threads that the endpoint can handle, endpoint timeout value (in
milliseconds)

« theenvironnment group:
« thecont exts group:
« theni ne group:
« properties for all MIME types that the service handles

Most of the property values in the SERVI CE object are set by the cr eat eser vi ce
or cr eat ewebser vi ce command, and by the addendpoi nt command, either as
defaults or from the parameters of the commands.

You can use the session shell get pr oper t i es command to list the properties for a
SERVI CE object.

2-22 Oracle9i Servlet Engine Developer’s Guide

Web Domains

Web Domains

An HTTP Web service can support one or more than one Web domain. The Web
domain is the basic organization unit of the Web service, and contains the servlet
contexts into which applications are loaded. Web domains correspond either to
service roots, to DNS domain names, or to IP addresses of that host, depending
upon how the Web service is configured (single- or multi-domain).

Each Web domain that a service supports has a name: the domain name. The domain
name is the same as the name of the Web service root in the most common case—a
single-domain Web service.

In the OSE/OJVM, a Web domain is owned by a database schema. For example,
user HR might own the / HRRoot Web domain, where / HRRoot is also the root of a
single domain service.

JNDI Contents of a Web Domain

Every Web domain context contains a conf i g object in the INDI namespace. The
domain also contains a cont ext s directory and al ogs directory. A single-domain
service Web root also has a ser vi cel ogs directory, but that is for the Web service,
and is created by the cr eat ewebser vi ce command.

Figure 2-4 shows the JNDI namespace after the creation (as shown above) of a
single-domain Web service and the corresponding Web domain.

Oracle Servlet Engine Concepts 2-23

Web Domains

Figure 2-4 JNDI Namespace—Single-Domain Service

! —
— J/bin € OSE systemn servlets {session shell commands)
— fetc
— fsystem
— [service - where service configuration is kept
admin
testService €------------ the new service configuration that was created
HRService < the demo service configuration
— /HRRoot ¢------------ where the demo serviets live
— ftestRoot ¢-----rormeerieeeees the service and domain root
— Iservicelogs <----------- the service logging utilities
— flogs e the domain logging utilities
— config <o eeeee the domain configuration object
— fcontexts < where the domain servlet contexts are kept

The remainder of the Web Domains section of this Guide explains multi-domain
Web services. If your application uses only a single-domain service, you can skip
ahead to "Servlet Contexts" on page 2-32.

Virtual-Hosted Services

A multi-domain (also called virtual-hosted) Web service can support more than a
single Web domain under a single service. There are three kinds of virtual-hosted
service:

2-24 Oracle9i Servlet Engine Developer’s Guide

Web Domains

1. A service that uses separate host names (for example abc. comand
abc. us. con for different Web domains. These are name-based virtual-hosted
services.

2. A service that uses different network interfaces to serve different Web domains.
In this case, the system supports different IP addresses, one for each discrete
network interface (network interface card, in the system). These are called
IP-based virtual-hosted services.

3. A combination of 1 and 2. That is, a service that supports several IP addresses,
where each IP address can support name-based virtual hosting. In this case,
each IP-addressed domain does not have to support virtual hosting. Some
might do so, and some might support just a single Web domain.

A Web server/servlet engine combination such as Apache/Tomcat supports
multi-domain Web services in two ways. There can be a separate servlet engine
process for each Web domain, each perhaps configured differently. Or, for some
cases, a single process can support virtual hosting. (This can run into OS limitations
if there are a large number of virtual hosts.)

With the OSE/OJVM, however, there is no reason or need to have multiple Oracle
instances running to serve different Web domains. The Oracle JVM is capable of
supporting multiple Web domains, and has proven to scale well when doing so.

So the OSE/OJVM allows you to configure an Oracle servlet engine to support
multiple Web domains and/or multiple IP addresses, all running in the same server
instance.

Name-Based Virtual Hosting

Name-based virtual hosting is used to handle the case in which multiple DNS
domain names resolve to the same IP address, and multiple Web domains are
needed to service each domain name.

For example, you might have the following domain names
= Xyz.com

= XYyZ.us.com

all resolving to the IP address 10.5.5.10.

In the OSE/OJVM you handle name-based virtual hosting by establishing a
separate Web domain under a single service root. The name of the Web domain
must be the same as the DNS-recognized hostname that is used in the request
URL.

Oracle Servlet Engine Concepts 2-25

Web Domains

See "Determining the Web Domain" on page 2-27 for information about how the
OSE processes these URLSs to route requests to the correct Web domain.

IP-Based Virtual Hosting

In some situations it is a requirement that a single system support multiple IP
addresses. The usual case is that the machine has multiple network interface cards
(NICs), but virtual interfaces (also called "ip aliases") could also be used.

In the OSE/OJVM, you create an IP-based virtual-hosted service by establishing
separate Web domains under the service root. The names of the Web domains are
exactly the same as their corresponding IP addresses, and are directly under the
service root.

How are these Web domains accessed in the URL? They are accessed by using the
IP addresses as the domain names in the URL. For example, the request URL

http://10.5.5.10: 8080/

could reach the Web domain at / MHHost / 10. 5. 5. 10.

Note the difference between the URL htt p: // 10. 5. 5. 10: 8080/ ina
single-domain case, and the URL used to access the IP-based domain 10. 5. 5. 10
above. In the single domain case, the IP address in the URL is used to reach the
server, via the DNS mappings. In the IP-based virtual host case, the IP address of
the network interface is used to determine the correct Web domain.

IP- and Name-Based Virtual Hosting

When you set up a service that supports both IP-based and name-based virtual
hosts, the name-based Web domains are in effect embedded in the IP-based
domains. See Figure 2-8, where for example the Web domains def . comand
ghi . comare contained within the IP-based domain 10. 5. 5. 11.

In the case of embedded Web domain, it is only necessary to use the

cr eat ewebdonmai n command to create the "leaf" domains, that is the domains that
are used, and that must contain a valid conf i g object, a valid / cont ext s
directory, and so on. So for example, to set up the Web domains for the
virtual-hosted service shown in Figure 2-8, you use the session shell mkdi r
command to create the non-leaf domains, and use cr eat ewebdonai n only for the
terminal domains. Using cr eat ewebdonai n to create the IP domains would not
result in errors at run time, but it would create unnecessary objects in the INDI
namespace that are never accessed.

2-26 Oracle9i Servlet Engine Developer’s Guide

Web Domains

Here are example commands that you might use to set up the four Web domains for
the service shown in Figure 2-8 on page 2-31:

$ cd

$ createwebservice -root /ServiceRoot -ip -virtual |Pservice

$ # add endpoints and chown, not shown

$ nmkdir /10.5.5.10

$ mkdir /10.5.5.11

$ createwebdomai n -docroot /tnp/testServicel /10.5.5.10/ abc.com
$ createwebdomai n -docroot /tnp/testService2 /10.5.5.10/10.5.5.10
$ createwebdomai n -docroot /tnp/testService3 /10.5.5.11/def.com
$ createwebdomai n -docroot /tnp/testServiced /10.5.5.11/ ghi.com

Determining the Web Domain

In the case of a multi-domain Web service, the OSE must determine which Web
domain in the Web service the request URL should be directed to. There are four
pieces of information that the OSE can use to determine the Web domain:

1. The JNDI context that is the service root for that service.

2. The host part of the URL, that is all the text after the ht t p: // protocol
indicator and before the next forward slash (°/’). The host part of the complete
URL

http://myHost. co. uk: 8080/ ose/ t est Ser vl et
is
myHost . co. uk: 8080

where : 8080 specifies the port number.

3. The IP address that the request arrived on. This information is passed to the
OSE independently of the URL.

4. Whether the Web service is virtual hosted, either IP-based, name-based, or both.
This information is in the properties of the object having the Web service name
in the / ser vi ce context of the INDI namespace.

Note that if the service is not virtual hosted, it must be single domain, and the Web
domain is simply the service root.

The algorithm used to determine the Web domain for a request to a multiple
domain Web service is the following:

Oracle Servlet Engine Concepts 2-27

Web Domains

IP address = 10.55.10 Single-Domain
Host Name = "abc.com” or "10.5.5 10"

1. Determine the service root (from the Web service properties).

2. Ifthe service is IP-based virtual hosted, use a text form of the actual IP address
to lookup a context of that name. If one is found, that is the Web domain.

3. If (2) succeeds, and the service is also name-based virtual hosted, look for a
context in the JNDI namespace that matches the host name in the URL.

Examples

This section demonstrates how the OSE processes a URL to find the Web domain.
Four cases are shown, one for each of the four Web service types: single-domain,
name-based virtual-hosted, IP-based virtual-hosted, and both IP-based and
name-based virtual-hosted.

In each case, two URLs are processed:

« http://abc.com/

« http://10.5.5.10/

The IP address passed to the OSE for each of these examples is always 10. 5. 5. 10.

Figure 2-5 shows request processing for a single-domain Web service. The IP
address available to the OSE outside of the URL is ignored, because it is a
single-domain service, but either form of the host name in the URL—using the DNS
host name or using the actual IP address, direct the requests correctly to the single
Web domain.

Figure 2-5 Single-Domain Request Processing

T F» [SeniceRoot
config
fservicelogs
Requests
flogs
http:-~abc.com”
fcontexts

http:~~10.5.5.10~

2-28 Oracle9i Servlet Engine Developer’s Guide

Web Domains

Figure 2-6 shows an example of a name-based virtual hosted service, with two Web
domains. The Web domains are named abc. comand 10. 5. 5. 10, as shown in the
JNDI namespace. The interesting thing about this example is that the domain
named 10. 5. 5. 10 is reached by name, and not by the entirely incidental fact that
the service IP address also happens to be 10. 5. 5. 10. This is because the service
type does not include IP-based virtual hosting, so the OSE ignores the actual NIC IP
address.

Figure 2-6 Name-Based Virtual-Hosting Request Processing

IP address = 10.5.5.10 Name-Based
Host Name = "abc.com” or "10.5.5.10" Virtual-Hosted
fSenviceRoot
» ——fabc.com
Requests L Jlogs
http:s7abc.coms — | —— config
http:~/10.5.5.10~ — fcontexts
L —/05510

—— flogs

—— config

L /contexts

Figure 2-7 shows an example of an IP-based virtual-hosted service. There are two
separate Web domains, named 10. 5. 5. 10 and 10. 5. 5. 11. Since the requests are
incoming on the IP address 10.5.5.10, both requests are serviced by the Web domain
named 10. 5. 5. 10.

Oracle Servlet Engine Concepts 2-29

Web Domains

Figure 2-7 IP-Based Virtual-Hosted Request Processing

IP address = 10.5.5.10 IP-Based Virtual-Hosted
Host Mame = "abc.com" or "10.5.5.10"
fServiceRoot
» 10.5.5.10
Requests | ogs
http:~~abc.comf ———— | conig
http:--10.5.5 10 L scontexts
H0.5.5.11
— fogs
—— config
L— Jjcontexts

Figure 2-8 shows the request processing when the service is configured for both
IP-based and name-based virtual hosting. This example is a somewhat contrived
case, as there is a name-based virtual-hosted Web domain called 10.5.5.10 that is in
fact nested under the IP-based Web domain also called 10.5.5.10. Although it would
be unusual to set up a Web service with this configuration, it is perfectly legal to do

SO.

2-30 Oracle9i Servlet Engine Developer’s Guide

Web Domains

Figure 2-8

IP address = 10.5.5.10

Host Narme = "abe.com” or "10.5.5.10"

Reguests

Both IP-Based and Name-Based Virtual-Hosted

Both IP- and
MName-Based

WH

/ServiceRoot

— /105510

http:ssabc.con/ ——mM | fabc.com

http:»~-10.5.5.10~

— flogs
—— config
L Jeoontexts

- A0.5.5.10

— flogs

—— config

L— Jeontexts

L— 1054811

fdef.com

i

— flogs
—— config

L— Jeontexts
ghi.com
— flogs

—— config

L /contexts

Oracle Servlet Engine Concepts 2-31

Servlet Contexts

Servlet Contexts

This section describes the OSE servlet context. It includes the information you need
to understand how a servlet context governs a Web application. For specific
information about creating and configuring a working servlet context, and for
examples of session shell commands to do this, see "Creating Servlet Contexts" on
page 3-13.

Overview

A servlet context holds a Web application that is loaded into the OSE. The servlet
context contains the servlets that make up the application, as well as other objects
that the application needs. These might include JSPs, image files, sound files, static
HTML pages, and other objects that make up the application.

You should create at least one servlet context for each discrete application that the
Web domain supports.

A servlet context belongs to a specific Web domain. When you create a servlet
context, you must specify the Web domain for the servlet context. A servlet context
is a self-contained namespace in the JNDI namespace. All servlets in the context
have a published name, and the name is published in a single context (directory) in
the INDI namespace for the servlet context. So no two servlets in a servlet context
can have the same name.

Note: A servlet context is owned by an Oracle server schema. A
schema can "own" more than one servlet context, but a schema has
a single namespace for class names. A servlet class can be
published in different servlet contexts, with the same or different
published names.

The servlet context maintains certain static information about the context. Each
servlet context has a configuration object, named conf i g, that is located in the root
of the servlet context. The config object has property groups that provide
information about things such as what languages and character sets servlets will
accept, what MIME groups are supported, and the servlets that the application
contains. See "Configuring a Servlet Context" on page 3-15 for specific information
about the conf i g object.

When you create and maintain a servlet context, you must keep two concepts
distinct: the servlet class and the servlet published name. The class is

2-32 Oracle9i Servlet Engine Developer’s Guide

Servlet Contexts

« the. cl ass file that results when you compile the Java servlet source on the
client system

« this object when loaded into a schema in the Oracle server database (done when
you execute the operating system level | oadj ava command)

« this object to which a reference is published in the INDI namespace, under a
published name, when you execute the session shell publ i shser vl et
command

The published name is the reference to the class that is stored in the nanmed_

ser vl et s directory of the servlet context when you publish the servlet, using the
publ i shser vl et session shell command, or when you deploy an application
using a WAR file.

Each servlet context has the following:
= aname

= anowner

« aWeb domain that it belongs to

When a Web domain is first created, only one servlet context is created with it: the
default context. Applications should not run under the domain default context. The
default context is there to handle cases where a URL specifies a domain, but no path
to a servlet context or a specific servlet in the context. In that case, the default
context can serve a default page.

JNDI Namespace Contexts and Objects
A newly-created servlet context has the namespace structure shown in Figure 2-9.

Oracle Servlet Engine Concepts 2-33

Servlet Contexts

Figure 2-9 JNDI Servlet Context Namespace

§—
— fhin €-----mmmimeeee OSE system tools (session shell commands)
— /etc
I fsystem
— /SEMVICE ¢-mmmmmmmoomnoooe where service configurations are kept
admin
testService €-------- the newy service configuration that was created
— /HRERoot
— ftestRoot &-------------- the service and domain root
/servicelogs <-------- the zervice logging utilties
Aogs 4--- - - - - the domain logging utilties
CONfg 4----mmmemm--- the domain configuration ohject
foontexts €----------- where the domain serviet contexts are kept
fdefault 4-------- a default context iz always created

— caonfig 4------ the configuration object for the default context
— doc_root 4--- federsted to the file system: static documents
— httpSecurity

— /named_servlets «-- where the published serviets live
ftestContext 4--- the new test serviet contesxt

— config +----- the configuration object for the test cortext
— doc_root«--- federsted to the file system: static documents
— httpSecurity

L— /named_serviets «-- where the published serviets live

Loading and Publishing Servlets

To make your servlets available to HTTP clients and to other servlets you must first
load them into the Oracle server, and then publish them to the JNDI namespace. All
lookups of servlet references (such as in URLS) are done through the JNDI
namespace.

You use the | oadj ava operating system command to load the servlet to the Oracle
server. Use the publ i shser vl et session shell command to publish a servlet to the
JNDI. See "Publishing Servlets" on page 3-21 for specific instructions about servlet
publication, and examples.

2-34 Oracle9i Servlet Engine Developer’s Guide

Servlet Contexts

Finding the Servlet

When configuring the servlet context, you should understand how the OSE
processes a URL sent in by an HTTP client, to find the right servlet context and the
servlet in the context. Within a Web domain, a servlet is located by

« the virtual path of the servlet context, which can be null
« the virtual path of the servlet, which must be specified in the URL

The published name of the servlet may or may not be the same as virtual path
name. This allows considerable configuration flexibility, as the same servlet can be
reached by different paths.

The URL

The Uniform Resource Locator is part of the request that the client sends to the OSE.
A URL consists of three or four main parts:

« the protocol
« the host specification (along with an optional port number)
« the URI

« additional optional information passed along by the client, such as one or more
query strings

Figure 2-10 shows graphically the format of a typical URL request.

Oracle Servlet Engine Concepts 2-35

Servlet Contexts

Figure 2-10 URL Format

http: - host_name:port_no- URI

http: -/~ Cratest 8088 /0se gimpleServlet?x=12345

k 4
PROTOCOL v

HOST NAME | il
| PORT NUMBER |

| CONTEXT VinualPath | |

| SERVLET vinualPatn | v

‘ Quenry String

The protocol is the initial part, delimited by a colon and two forward slashes. The
protocol for all requests accepted by the OSE must be ht t p: / /. (Other protocols,
accepted by different services than those the OSE supports, mightbeftp://, or
sess_iiop://.)

The host name and port number determine the Web service and the Web domain to
which the request is to be forwarded. Every thing after the port number, or after the
hostname if the port number is missing (and thus is defaulted), is the URI. The URI
contains

« the servlet context specification, that is the servlet context virtual path, which
may be null

« the servlet virtual path

« extra information from the client, that does not map to the servlet context
virtual path or the servlet virtual path, and which is passed on to the servlet for
further processing as required

These are shown in the lower parts of Figure 2-10. In this example, the remaining
material in the URI consists of a query string.

The method that the OSE uses to determine the correct Web domain was described
in the section "Web Domains" on page 2-23.

2-36 Oracle9i Servlet Engine Developer’s Guide

Servlet Contexts

Note: The components of the URI can be retrieved in servlet code
using the Ht t pSer vl et Request methods:

« get Cont ext Pat h()
« getServletPath()
« getPathlnfo()

The complete URI of the request can be obtained using the
get URI () method of the Ht t pSer vl et Request interface.

The Servlet Context Virtual Path

The cont ext s property group of the Web domain conf i g object contains the
virtual path mappings for each servlet context in the domain. For example, if
HRCont ext is the name of a servlet context in the HRRoot domain, then the
conf i g object for the HRRoot domain might contain an entry such as:

--group--=contexts
| ose=HRCont ext

where / ose is the virtual path mapping for the HRCont ext servlet context. The
virtual path mapping for the servlet context is set by the - vi r t ual pat h parameter
of the cr eat econt ext command.

When the OSE processes a URI, it looks for the longest possible match to find the
servlet context. So for example if a Web domain contains two servlet contexts, one
having a virtual path mapping / ose, and the other a virtual path mapping
/ose/test,andthe URIlis. ../ ose/test/servletl/,thenthe OSE looks for a
servlet with the virtual path ser vl et 1 in the servlet context whose virtual path
mapping is / ose/ t est . In this case the OSE does not look for a servlet with the
mapping / t est / ser vl et 1 in the servlet context whose virtual path mapping is

/ ose.

The Servlet Virtual Path

The virtual path of the servlet itself is specified in the publ i shser vl et session
shell command. It cannot be null, as the servlet virtual path is the name that the
OSE uses to find the servlet in its context.

If the OSE finds no servlet virtual path in the URI, then the default serviet for the
context, or for the domain, is activated. The following example should clarify this.

Oracle Servlet Engine Concepts 2-37

Servlet Contexts

Example 2-1 Servlet Configuration 1

Assume that you have set up the following

1. aWeb service called t est Ser vi ce on host Or at est , that listens on endpoint
8088

the root of the service in the JNDI namespace is/ t est Root

a single Web domain within that service: t est Root

two servlet contexts in the Web domain: oseCont ext and t est Cont ext
/ ose is assigned as the virtual path for the oseCont ext servlet context

/ osel t est isassigned as the virtual path for t est Cont ext

N oo o b~ w0 N

a servlet with the class name oseSer vl et is loaded into the database, and
published to the oseCont ext servlet context as Ser vl et 1, with the virtual
path name/test 1

8. aservlet with the class name si npl eSer vl et is loaded into the Oracle
database, and published to the t est Cont ext servlet context as Ser vl et 1,
assigning it the virtual path / si nmpl e

Figure 2-11 shows a view of the relevant parts of the OSE JNDI namespace as
configured for this example.

2-38 Oracle9i Servlet Engine Developer’s Guide

Servlet Contexts

Figure 2-11

— /hin
— /etc
— f=ystemn

— /service

JNDI Namespace for Servlet Configuration 1

fadrmin
AestService
!

| itestRont

fservicelogs
flogs

config
feontexts
— /fdefault

E config
fdoc_root
/named_serviets
|— /oseContext
config
E fdoc_root
/named_serviets
serviett
E [servietn)
(.
L AestContext
config
E fdoc_root
/named_serviets

serviett
{servietm)
(.

Oracle Servlet Engine Concepts 2-39

Servlet Contexts

Figure 2-12 Processing a URL: Examplel

P — http:~~Oratest:8088- 0se- test- testl

I /hin L Il I L I
— fetc
—f=ystemn

—fzervice

fadmin .
festService service. root=testRoot

i
—ftestRoat

fzervicelogs
flogs
confige———————— ose/test=oseContext

fcontexts
— fdefault]
config
E fdoc_root
fnamed_servets
— foseCaontext

config +
fdoc_raot | context . servliets:

/named_serviets stestl=servletl
serviet]
servietn VW
L— jtestContext
config
fdoc_root
fnamed_servets
serviet]
servietm
Figure 2-12 shows how the OSE resolves the URL
http://Oratest: 8088/ ose/test/testl

to instantiate the servlet ser vl et 1 in the oseCont ext servlet context, given the
configuration listed in Example 2-1.

The OSE processes the URL with the following steps:

1. The service is determined by the host name (Or at est) and the port number
(8088).

2. The service has a single Web domain: t est Root . This is determined by the
properties in the / ser vi ce/ t est Ser vi ce object (the configuration object for
thet est Servi ce).

2-40 Oracle9i Servlet Engine Developer’s Guide

Servlet Contexts

3. Inthe confi g object for the t est Root domain, the OSE finds that the virtual
path / ose/ t est maps to thet est Cont ext servlet context. This mapping is in
the cont ext s property group of confi g.

4. Inthet est Cont ext servlet context, the conf i g object maps the virtual path
/ t est 1 to the reference ser vl et 1 in the named_ser vl et s directory.

5. The OSE activates the servlet class si npl eSer vl et , and passes it the URL,
parsed into its components (URI, context info, Pathinfo).

6. If aservlet context match is not found, the request is served by the default
servlet for the domain: / t est Root / cont ext s/ def aul t .

According to the Servlet 2.2 specification, entries in the cont ext . servl ets
property can be paths or wild-card names. Partial paths have priority over
wild-card names. Exact matches have priority over both partial paths and wild-card
names.

If no match for the requested URL is found, the OSE looks for a servlet named

def aul t servl et firstin the servlet context directory, next in the Web domain
directory, and then in the Web service. If the default servlet is found, it processes the
request. If no default servlet is found, OSE generates an internal error code.

Note: Inevery Web domain, a default servlet is automatically
generated but is not published in the INDI namespace. In any cases,
OSE should be able to find a default servlet.

Example 2-2 Servlet Context Mappings

This example shows the effects of four different servlet context virtual path
mappings. There are three servlet contexts, cleverly named Ser vCont ext 1,
Ser vCont ext 2, and Ser vCont ext 3. The fourth case has a null mapping. The
virtual path mappings are:

1. ServContextl: /abc
2. ServCont ext2: /abc/def
3. ServContext3: /abc/def/ghi.htm

Assume that the URI in the request URL is/ abc/ def / ghi . ht M . Here is what
will happen in each case:

1. A servilet with the virtual path mapping / def / ghi . ht m is searched for in
Ser vCont ext 1. If found, it is activated.

Oracle Servlet Engine Concepts 2-41

Servlet Contexts

2. Aservlet with the virtual path mapping/ ghi . ht m is searched for in
Ser vCont ext 2. If found, it is activated.

3. Otherwise, the default servlet for Ser vCont ext 3 is activated.

2-42 Oracle9i Servlet Engine Developer’s Guide

Accessing the Oracle Database

Accessing the Oracle Database

When a servlet needs to communicate with the database, it uses JDBC and an
Oracle JDBC driver. There are three basic kinds of JDBC drivers available with
Oracle9i:

« the OCl driver
« the server-side internal driver
« thethin driver

The OCI driver is used by thick clients who are connecting through Oracle Net to a
server.

Server-side Internal Driver

Thin Driver

The server-side internal driver is used by a servlet when accessing the database in
the same instance that the servlet is running in. This driver provides a fast,
in-memory path to the SQL data, as no network connectivity is required when using
this driver.

To connect using the server-side internal driver, first make sure that your servlet
code imports the j ava. sgl and or acl e. j dbc packages, as follows:

inport java.sql.*;
inport oracle.jdbc.*;

Use the def aul t Connect i on() to connect. No connect string is required, as the
connection is always the same:

Connection conn = null;

try {
/] connect with the server-side internal driver

OracleDriver ora = new OracleDriver();
conn = ora. def aul t Connection();

For a complete examples that use the server-side internal driver to access the
sample schema HR.EMPLOYEES table, see "Creating a Servlet" on page 3-29, and
"EJB" on page 6-5.

The thin driver is used by Java applets on the client side, and is also used by
servlets and JSPs when connecting from one database instance to another. So if you

Oracle Servlet Engine Concepts 2-43

Accessing the Oracle Database

have a servlet running in one instance, and need to call an EJB, or a CORBA object,
or another servlet that is running in a different instance, use the JDBC thin driver.

2-44 Oracle9i Servlet Engine Developer’s Guide

3

OSE Configuration and Examples

This chapter describes how to set up and configure applications to run in the Oracle
Servlet Engine under the Oracle JVM. Also included are many examples that show
the configuration steps, and some demo servlet applications.

Accessing servlets in the OSE/OJVM by going through the Oracle HTTP Server
(powered by Apache) and t he npd_ose module requires additional configuration
steps. Chapter 5, "Configuring mod_ose" describes these steps.

This chapter contains the following topics:
« Connecting to the OSE

« Configuration Steps

« Creating a Web Service

« Creating Multi-Domain Web Services
« Creating Web Domains

« Creating Servlet Contexts

« Configuring a Servlet Context

« Publishing Servlets

« Summary

OSE Configuration and Examples 3-1

Connecting to the OSE

Connecting to the OSE

The OSE runs in a virtual JVM inside an Oracle (database) server session. You must
be running an Oracle shared server configuration to run the Oracle JVM, and hence
to use the OSE. There are three ways that an HTTP client can access a servlet or JSP
in the OSE:

1. by connecting to an OSE Web service directly through a dispatcher

2. by connecting to an Oracle listener that is configured to hand HTTP requests off
to an OSE Web service (through a dispatcher)

3. by connecting to the Oracle HTTP Server (powered by Apache), and routing
HTTP client requests through nod_ose to the Oracle Servlet Engine in an
Oracle (database) server

The first of these possibilities can be useful for debugging, or for quick testing of
deployed servlets. But because it does not provide adequate scaling when multiple
clients are involved, it should never be used when developing or testing production
applications.

The second possibility can serve when your application consists solely of stateful
servlets or JSPs. This, however, is true of few applications.

The third possibility is the one that Oracle recommends for all applications. Static
HTML pages and other static data are served from the Oracle HTTP Server, and
requests for dynamic content are routed through nod_ose to the OSE. To set up
your application to run in this mode, there are additional configuration steps that
you must perform. For example, you must configure the Apache nod_ose
configuration file ose. conf to indicate which requests will be routed to the OSE.
See Chapter 4, "An Apache Module for OSE" and Chapter 5, "Configuring mod_ose"
for information about configuring mod_ose.

It is also possible to use the Oracle HTTP Server with mod_ose to connect to OSE
applications with a server configuration that does not normally use shared servers.
See "Non-Shared Server Installations" on page 5-12 for more information.

3-2 Oracle9i Servlet Engine Developer’s Guide

Configuration Steps

Configuration Steps

Configuring the Oracle Servlet Engine itself and an application that is to run in the
OSE requires some or all of the following steps:

1. possible reconfiguration of the Oracle server, through the server startup file (the
"INIT.ORA" file)

2. establishment of Oracle Net parameters, for example by modifying the
TNSNAMES. ORA file or an LDAP configuration file

creating an OSE Web service that listens to one or more endpoints
creating an OSE Web domain to contain the application contexts
modifying the properties of a Web domain

creating one or more application (servlet) contexts

modifying the properties of an application context

loading servlets (and JSPs) into the Oracle server (the database)

© © N o g > w

publishing servlets so that the servlets have a virtual path associated with their
location in the OSE namespace

Not all of these steps are required in all cases. For example, steps 1 through 7 will
not be required to run most of the sample applications that come with this OSE
release. You might need to perform steps 1 through 3 or 4 only once for all your
application requirements.

Configuring the Oracle Server

The OSE/OJVM runs in a "virtual JVM" in the Oracle server. As with any other
application that uses the OJVM, you must be running the Oracle shared server to
use the OSE.

Note: The Oracle shared server was called the Oracle
multi-threaded server (MTS) prior to Oracle9i.

The shared server is configured in the server initialization file (traditionally called
INIT.ORA file). Entries such as

shared_servers=5
di spat cher s=" (PROTOCOL=t cp) "

OSE Configuration and Examples 3-3

Configuration Steps

are typically found to indicate that a shared server configuration, with associated
dispatchers, is in effect for the instance.

Oracle Net Configuration

When you are using the Oracle HTTP Server (Apache) together with mod_ose to

access the OSE, you might need to configure the TNSNAMES.ORA file. If this file
contains an entry called i nst 1_ht t p, you can use that Oracle Net entry for nod_
ose. If it does not, you must configure a descriptor for rod_ose. See "Oracle Net

and Oracle Listener Configuration" on page 5-9.

3-4 Oracle9i Servlet Engine Developer’s Guide

Creating a Web Service

Creating a Web Service

Commands

This section describes how to create a single-domain OSE Web service. Later
sections describe how to configure a Web domain for the service, and how to create
servlet contexts and publish servlets in the domain.

In order to access servlets in the OSE, you must have created a service to handle
incoming HTTP requests, as well as a Web domain in which the servlets can run.
The service runs in the Oracle server. An Oracle server can support more than one
service. For example, you might configure an OSE to serve administrative HTTP
requests from one service, and application servlet requests from separate service.
You can set up the administrative service so that it has additional privileges not
available to the normal application Web service.

There are two session shell commands that the SYS user must issue to create a Web
service: cr eat ewebser vi ce and addendpoi nt .

To remove an existing Web service, the SYS user issues the dest r oyser vi ce
session shell command. To remove an existing endpoint, use the r mendpoi nt
command. See "Examples" on page 3-7 to see how the two commands are used.

createwebservice

Issue the cr eat ewebser vi ce command from the session shell. The syntax for this
command is

createwebservice -root <location> [optional parameters] <service_nanme>
The parameters of the command are
<service_name> Required parameter that specifies the name of the new

service. Any JNDI identifier is legal.

-root Required parameter that specifies the location in the INDI
namespace for the Web service’s service root.

-ip Optional parameter that creates a service that uses IP-based
virtual hosting.

-virtual Optional parameter that creates a service that uses
name-based virtual hosting. This parameter can be combined
with the -ip parameter.

OSE Configuration and Examples 3-5

Creating a Web Service

-properties <prop_
groups>

addendpoint

Optional parameter that specifies a list of property groups to
use as the defaults for this service. Specify the name-value

pairs in the same way as in the set gr oup command. See the
Oracle9i Java Tools Reference for information about set gr oup.

The addendpoi nt command is used to specify the endpoints (port numbers) on
which a service listens. The syntax for this command is

addendpoi nt -port <port_nunber> [optional _paraneters] <service> <endpoint_name>

The parameters of the addendpoi nt command are

-port

<service>

<endpoint_name>

-listener

-net8

-interface <int_spec>

-register

-ssl

Required parameter that specifies the TPC port number on
which the service listens.

Required parameter that specifies the name of the service, as
used in the cr eat ewebser vi ce command, that the endpoint
will listen on for incoming requests.

Required parameter. Specifies the name of the endpoint. Any
JNDI identifier is a legal endpoint name. The endpoint name
is used in the r mendpoi nt command.

Optional parameter. Specifies the address of the listener to
add the endpoint to for this service. If not specified, the
endpoint is added to the default listener.

Optional parameter. This parameter indicates that the
endpoint is an Oracle Net endpoint. It is used to establish
endpoints for Oracle Net TTC connections, for use by nod_
ose.

Optional parameter. Specifies the IP address used to connect
to this service. The default allows all IP addresses. The IP
address specified is mapped to the service domain.

regi st er is an optional parameter that saves the endpoint
information in a table in the database. This means that every
time the server is started, the specified endpoint is
established. This avoids having to reconfigure the INIT.ORA
file.

Specifies that this is to be an Secure Socket Layer connection.

3-6 Oracle9i Servlet Engine Developer’s Guide

Creating a Web Service

-threads <min><max> The minimum and maximum number of threads for the
endpoint. The minimum value is started upon listener
initialization; the maximum value is used to deny any more
incoming requests.

-timeout The socket read timeout value in seconds. The amount of time
that the Web server will allow you to block on the socket.

Examples
As always in this Guide, ' % indicates an operating system prompt, and ’ $’
indicates a session shell prompt.

Here are examples of the commands that you can use to create a single-domain
service named t est Ser vi ce, and add named endpoints to it:

$ createwebservice -root /testRoot testService

#

$ addendpoint -port 8088 -register testService TestPublic

$ addendpoint -port 9088 -register -ssl testService TestSSL
$ addendpoint -net8 -register testService TestNet8

This example adds two dynamically-registered endpoints for connection through an
Oracle listener, on ports 8088 and (for SSL) port 9088. The last endpoint is for access
to OSE from Apache and nod_ose, which uses the normal Oracle Net TTC. If you
always connect using nod_ose, as recommended by Oracle, you only need to use
the last addendpoi nt command.

Important Warning: When you create a new service, it is usually
owned by SYS, because only SYS can add an endpoint to a new
Web service.

For application services, it is very important to remove the SYS
privileges from the newly-created service root.

Create Web domains in the service when connected to the session
shell as the eventual real owner, not as SYS.

If you do not do these things, servlets that run under the new
service and domain(s) inherit SYS privileges, and could browse and
modify a database at will, possibly causing irreparable damage.

OSE Configuration and Examples 3-7

Creating a Web Service

The following session shell commands (issued as SYS) show how to make the HR
schema the owner of his service:

$ cd
$ chown -R HR /test Root

rmendpoint
Use this command to remove a previously established endpoint.

The syntax is:

rmendpoint [-force] <service> <nane>

where the <ser vi ce> is the name of the service that the endpoint was originally
established for, and <nane> is the endpoint name that was used in the
addendpoi nt command.

If this command results in errors, or does not seem to remove the endpoint (shown
by errors when trying to create a new endpoint of the same name on the same
service), use the - f or ce option. It never hurts to use - f or ce.

After creating the service, you can examine the properties of the service using either
the get pr operti es command, or more specifically the get gr oup command, to
examine the properties of the ser vi ce group of the newly-created t est Ser vi ce
service. In the cr eat ewebser vi ce example command above, notice that neither
the name-based virtual-hosting (- vi r t ual) nor IP-based virtual-hosting (- i p)
options are specified. This means that neither servi ce. htt p. vi rt ual - host nor
servi ce. http. mul ti-homed properties are present in the ser vi ce property
group of the t est Ser vi ce service. You can verify this by issuing the commands

$ cd /service
$ getgroup testService service

Changing Service Properties

You can change properties of the service using the addgr oupent r y session shell
command, but you must be careful if you do this. Changing properties at random,
without a real understanding of their function, can cause the service to malfunction
or to stop working completely.

Some service properties that you might need to change are:
« service. gl obal Ti neout (service timeout value in seconds)

« endpoi nt. <endpoi nt _nane>.ti neout (endpointtimeout value in
milliseconds)

3-8 Oracle9i Servlet Engine Developer’s Guide

Creating Multi-Domain Web Services

Creating Multi-Domain Web Services

Examples

See "Virtual-Hosted Services" on page 2-24 for general information about
multi-domain Web services. To create a multi-domain service, the SYS user issues
the session shell command cr eat ewebser vi ce, just as for a single-domain
service. The difference is that either the - i p or the - vi rt ual options are used.
Both options are used to create a Web service that supports both IP-based and
name-based virtual hosting.

Name-Based
Here is an example of session shell commands that create Web domains for a
name-based virtual-hosted service:

$ createwebservice -root /vhost -virtual vhostService

$ addendpoint -port 8011 -register vhostService ep8011

$ createwebdomai n -docroot /private/youruserl D/ test/docsvl /vhost/xyz.com

$ createwebdomai n -docroot /private/youruserlD/test/docsv2 /vhost/xyz.us.com

Note that each Web domain under / vhost has the same name as a separate DNS
domain name. Now the request URLs

http://xyz.con

and
http://xyz.us.con
will be served by different Web domains. One domain might be used for one of a

company'’s product lines, the other Web domain to support a different part of the
company.

IP-Based

Consider a system that has two network cards. The network interfaces are
configured to the IP addresses 10.5.5.10 and 10.5.5.11.

Note: IP addresses must be statically assigned for IP-based virtual
hosting support to work. An IP-based virtual hosted Web service
cannot work in a subnet where IP addresses are dynamically
assigned.

OSE Configuration and Examples 3-9

Creating Multi-Domain Web Services

Configure an OSE to support these three network interfaces, each having a separate
Web domain, using the following session shell commands:

$ createwebservice -ip -root /Mihost MiService

Note the properties that are established for the MHSer vi ce:

$ cd /service

$ getproperties MiService
--group--=service

servi ce. name=Servi ce MHService
service.description=Aurora HTTP Servlet Engine
service.version=1.0

servi ce.vendor=0racl e Corp.

servi ce. gl obal Ti meout =60

servi ce. root =/ MHhost

service. presentation=http://MService
service.error.log=servicel ogs/error
service. event. | og=servi cel ogs/ event
service. http. nul ti-honed=true

The last property in this abbreviated list is the one that determines that the Web
service supports IP-based virtual hosting.

Now create the domains:

the backslash is a line-continuation character

$ createwebdomai n -docroot /private/youruserlD/test/docs010.005.005.010 \
/ MHHost /10. 5. 5. 10

$ createwebdomai n -docroot /private/youruserlD/test/docs010.005.005.011 \
/ MHHost /10. 5. 5. 11

$

3-10 Oracle9i Servlet Engine Developer’s Guide

Creating Web Domains

Creating Web Domains

Before creating one or more Web domains, first create the Web service that hosts the
domains. See "Creating a Web Service" on page 3-5 for instructions.

Creating a Single-Domain Web Domain

The single-domain Web domain has a name that is the same as its service root. For
example, you created a single-domain service in the example above with the root
/ t est Root . To create a Web domain under this root, use the cr eat ewebdomai n
session shell command.

When you create a Web domain, you specify a document root, using the - docr oot

parameter. This is a place in the file system on the server’s system from which the
OSE serves static pages. For example, on a UNIX system create a directory such as
/ private/youruserl D/ test/docs.Putan HTML file, perhaps

wel cone. ht m , in that directory.

Files in the OS filesystem have access permissions that are associated with the
operating system users, for example UNIX or Windows NT logins. But for the OSE
to access files in the OS file system, the files must have Java file permissions for the
database user who is trying to access the file.

You assign the files Java access permissions through SQL commands. The
permissions are assigned to database users, not to OS logins. Use the gr ant _
per m ssi on procedure in the dbns_j ava package to grant (or restrict) Java
permissions (j ava. i 0. Fi | ePer mi ssi on) on files in the operating system.

See the Security chapter in the Oracle9i Java Developer’s Guide for more information
about Java file permissions.

Here is an example that creates a Web domain, using the session shell:

$ createwebdomai n -docroot /private/youruserlD/test/docs /testRoot

On a Windows NT or Windows 2000 system, create a directory such as
C:\test\docs, and issue the create command as:

$ createwebdomain -docroot C \test\docs /testRoot

To set the file permissions, use SQL*Plus. For example, to assign read and write
permissions to the HR user for the doc_root / pri vat e/ your user | D/ t est/ docs

(and all subdirectories of it) of the cr eat ewebdomai n example above, enter
SQL*Plus as the SYS user and issue the command:

SQL> call dbms_j ava.grant_pernission(’ HR, 'java.io.FilePermssion’,

OSE Configuration and Examples 3-11

Creating Web Domains

"Iprivate/ youruser| Ditest/docs/*', 'read,write');

Once you have established the service, and a service endpoint, the OSE can always
access this domain directly. For example, the URL

http://Oratest: 8080/

will access the / t est Root domain as long as these conditions are met:
« an Oracle9i platform is running on Or at est , and the OSE/OJVM is installed

« the DNS servers can find the DNS name Or at est and substitute the correct
32-bit IP address for it, so that the request can be routed to the correct machine

In this example, the hostname part of the URL is only used by the DNS servers. The
OSE receives the complete URL, as well as the IP address, but does not need to
process either to find the Web domain. There is only one Web domain established
for that service.

Some machines have multiple entries (multiple host names) in the DNS namespace
for the same IP address. For example, the hostnames Or at est and

Or at est . us. or acl e. commight map to the same address. (On UNIX-like
systems, this can be seen in the / et ¢/ host s file.) Assume that the IP address in
this case is 10.5.5.10. So, given the create service and create Web domain conditions
above, each of the following URLSs gets a request to the same OSE Web domain on
the Or at est machine:

http://Oratest/
http://Oratest.us.oracl e.com
http://10.5.5.10/

(In this case, the default servlet for the t est Root service is activated by these
URLs.)

3-12 Oracle9i Servlet Engine Developer’s Guide

Creating Servlet Contexts

Creating Servlet Contexts

Before creating a servlet context, you must establish a Web domain in which the
context will exist. See "Creating Web Domains" on page 3-11.

There are two ways to create and configure a servlet context for the OSE:
« Use session shell commands.
« Deploy an application to the OSE using a WAR file deployment tool.

This chapter uses the session shell commands in examples, because they show
finer-grained control of the servlet context. See Chapter 8, "Oracle WAR
Deployment" for information about deploying an application using WAR files.

In the session shell, use the cr eat econt ext command to create a servlet context.
The syntax of this command is:

createcontext -virtual path <path> [options] <domai n_name> <context _name>

where the options are

[-recreate]

[-properties <prop_groups>]
[-docroot <location>]
[-statel ess]

Here is an example that uses this command to create a servlet context named
HRRoot in the / HRRoot Web domain:

$ createcontext -virtualpath /ose/hr -docroot /private/hr/test/htm
/ HRRoot HRCont ext

The command parameters and options are:

-virtualpath This is a required parameter, not an option. Use it to specify a
path in the URL that precedes the servlet path. See "Finding
the Servlet" on page 2-35 for more information about how the
OSE processes the URL, and finds the right servlet context
and servlet. The minimum vi rt ual pathis’/’.

<domain_name> The JNDI name of the Web domain that the context is to be
located in. The domain name should be an absolute path. For
example, a Web domain in a virtual hosted service (both IP-
and name-based) might be / vhost/ 10. 5. 5. 10/ web1.

OSE Configuration and Examples 3-13

Creating Servlet Contexts

<context_name>

-docroot

-recreate

-properties

-stateless

The name you give the servlet context. This name is arbitrary.
It is used when you configure the context, publish servlets to
the context, and when you finally destroy the context.

Specify the location in the file system of the computer on
which the OSE runs where static files (such as HTML files) are
kept. The docroot must be specified as an absolute path.

If a context with this name already exists, delete it before
adding an empty context with this name. Doing this destroys
any servlets that were associated with this context before the
present cr eat econt ext command.

<prop_groups> List of property groups to use as the defaults
for this service. Specify the name-value pairs in the same way
as in the set gr oup command.

All servlets in this context are stateless. Contexts declared to
be stateless can contain only servlets that are stateless.
Stateless servlets never try to access the HTTPSessi on object.

3-14 Oracle9i Servlet Engine Developer’s Guide

Configuring a Servlet Context

Configuring a Servlet Context

When you create a servlet context, the root context has a conf i g object. By default,
this object has the property groups and property/value pairs shown below, for the
HRCont ext that was created in the previous example:

$ cd / HRRoot / cont ext s/ HRCont ext
$ getproperties config
--group--=context.properties
context.browse. dirs=true

cont ext . wel cone. names=i ndex. htm : i ndex. ht m
cont ext . accept . char set =l SO 8859- 1
context.accept. | anguage=en
context.defaul t.|anguages=*
context.defaul t. charsets=*
--group--=cont ext. parans
--group--=context.mnme
java=text/plain

htm =t ext/htn

ht met ext / ht m

body=t ext / ht m
--group--=context.servlets
[errors/internal =i nternal Error
--group--=context.error.uris
401=/systenm errors/ 401. htm
403=/systenf errors/ 403. htm
404=/ systenl errors/ 404. htm
406=/ systenf errors/ 406. htm
500=/errors/internal

You must configure the new context so that it has the properties that are appropriate
for your application. Do this by using the accessl| og and the addgr oupent ry
session shell commands.

accesslog

This command specifies how HTTP access logging is handled for the servlet
context. Access logging records information about each incoming HTTP request.
The syntax for the accessl og command is:

accesslog [options] <context_name>
[-trace]
[-systable
[-table <table_spec>]

OSE Configuration and Examples 3-15

Configuring a Servlet Context

For more information about the required logging tables, see "Logging" on page 3-17.

addgroupentry

Use this command to add or change the values for properties (in property groups)
in the confi g file. The syntax for this session shell command is:

addgroupentry <obj ect _name> <group_name> <property_name> <property_val ue>

The parameters for this command are:

<object_name> The name of the target object to which properties are to be
added, or whose properties are to be modified.

<group_name> The name of the property group containing the property. For
example, cont ext . properti es.

<property_name> The name of the new or changed property.

<property_value> The string or numeric entry for the property value.

You can add the following propertiesto the servlet context conf i g object:

context.browse.dirs If "true", allows the response to list the files in a
directory, when the URL ends witha’/".
context.debug If "true", sends debug output to the console.
context.default.charsets The charset(s) that are supported.
context.default.languages The two-letter standard abbreviation for the

languages that are supported. Following the HTTP
specification.

context.default.timeout The timeout for all servlets in the servlet context. The
value is in seconds.

context.runAsOwner Allows servlets in the servlet context to run with the
permissions of the JNDI owner of the context, rather
than inheriting the permissions of the web domain
owner. See "Run As Owner" on page 7-4 for more
information on using this property.

Other config Property Groups

context.mime The cont ext . m me property group lists the MIME types supported
by the context.

3-16 Oracle9i Servlet Engine Developer’s Guide

Configuring a Servlet Context

context.servlets The cont ext . ser vl et s group contains the virtual path mappings
for each published servlet in the context.

context.error.uris The cont ext. error. uri s group shows the mappings for HTTP
errors to HTML files, or other files that the OSE responds with when the error
occurs.

Logging

The OSE logs events and errors. By default, logs are directed to the
JAVA$SHTTP$L OGS table in the database, which is in the SYS schema. If your
application requires that you process and have available the logs of events (HTTP
requests, for example), and errors (and this is always a good idea), then you should
redirect the event and errors to tables in the schema that owns the context.

These are the actions that you must take to enable per-context logging for your
application:

« Create SQL tables in the schema to hold the log information, and that match
JAVASHTTPS$LOG in structure.

« Create SQL sequences for the logging tables.

« \erify that the system classes that perform event and error logging have been
bound into the / ser vi cel ogs context of the service root, using the
accessl og tool.

System Classes

Use the session shell bi nd command to bind the event and error handling
capability into the / ser vi cel ogs context of the service. Indicate the names of the
tables that you created in the step above to set an attribute for the bound classes.
Here are examples based on the HRSer vi ce:

bind / HRRoot / servi cel ogs/ event -rebind \
-¢ SYS:oracl e. aurora. namespace. rdbns. Tabl eStream \
-f oracl e. aurora. namespace. Publ i shedObj ect Factory \
-string table.name HR EVENT$LOG

bind /HRRoot / servicel ogs/error -rebind \
-c SYS:oracl e. aurora. namespace. rdbns. Tabl eStream \
-f oracl e. aurora. namespace. Publ i shedObj ect Factory \
-string table.nanme HR ERRORSLOG

OSE Configuration and Examples 3-17

Configuring a Servlet Context

Logging Tables

The names used below are for the tables created for the HRRoot demos. You may
use any names for your application. There are three tables:

« an HTTP log, here called <schema_nanme>. HTTP$LOGS
« aneventlog, here called <schema_nane>. EVENT$LOG
« anerror log, that can be named <schena_nane>. ERRORSLOG

The HTTP log table has the same structure as SYS. JAVASHTTP$LOGS. Here is its
description, as produced by SQL*Plus:

Col um Nane Type
SERVER_NAME VARCHAR2(80)
TI MESTAWP DATE
REMOTE_HOST RAW(4)
REMOTE_USER VARCHAR2(80)
REQUEST_LI NE VARCHAR2(256)
STATUS NUMBER(3)
RESPONSE_SI ZE NUMBER(38)
REQUEST_METHOD RAW(1)
REFERER VARCHAR2(80)
AGENT VARCHAR2(80)

The description of the EVENT$LOG table is:

Col um Nane Type

ID NUMBER

LI NE NUMBER

TEXT VARCHAR2(4000)

And here is the ERROR$LOG table:

Col um Nane Type

ID NUMBER

LI NE NUMBER

TEXT VARCHAR2(4000)

You must also create sequence numbers for use by the event and error logging. The
following SQL commands create the required sequences. These are for the HR
schema, substitute your own schema name and sequence names, as required:

create sequence HR EVENT$LOG I D

3-18 Oracle9i Servlet Engine Developer’s Guide

Configuring a Servlet Context

create sequence HR ERRORSLOG I D

Oracle supplies example servlets that you can use or adopt to view the log tables.
They are the H t pRibnsLogSer vl et and the Tabl eReader Servl et classes. You can use
the following session shell commands to publish these servlets into your context.
Use the table names that you employed in the CREATE TABLE commands to set the
t abl e. name property for the published names.

$ publishservliet -virtualpath /http_log HRContext httpLog_viewer \
SYS:oracle. aurora.nts. http.servlet. H tpRdbnsLogServl et -properties \
t abl e. nane=HR. HTTP$LOG}

$

$ publishservliet -virtualpath /error_| og HRContext error_|l og_viewer \
SYS:oracle. aurora. nts. http.servlet. Tabl eReader Servl et -properties \
t abl e. nane=HR. ERROR$LOG

$

$ publishservliet -virtual path /event_| og HRContext event_|og_viewer \
SYS:oracle. aurora. nts. http.servlet. Tabl eReader Servl et -properties \
t abl e. nane=HR. EVENT$LOG

Timeouts

The timeout values determine how long a stateful session will stay active after the
last request. There are two timeout properties for the service. In addition, each
servlet context can establish its own timeout value, which takes precedence over the
global service and endpoint timeouts. Also, individual servlets can set a timeout
value for the session, using the set Max| nacti vel nt er val () method of the

Ht t pSessi on interface.

Global Timeout This is a property of the ser vi ce group for the service. This value
defaults to 60 seconds when a service is created. You can change the default using
the cr eat eser vi ce command when you create the service, but you cannot change
it if using the cr eat ewebser vi ce command.

You can see the value of the global timeout by entering these commands in the
session shell:

$ cd /service
$ getgroup <service_name> service

You can also change the global timeout using the addgr oupent r y command, after the service has been
created. Specify the new value in seconds.

OSE Configuration and Examples 3-19

Configuring a Servlet Context

Endpoint timeout Each service endpoint can have a separate timeout value, less than
or equal to the global session service timeout. You can set the timeout for each
endpoint when the endpoint is established, using the - t i meout option of the
addendpoi nt command (value in milliseconds). You can see the timeout values for
all endpoints by using these session shell commands:

$ cd /service
$ getgroup <service_name> endpoi nt

Servlet Context Timeout Each servlet context can have a default timeout, which
applies to all servlets in the context that have not set their own timeout values. The
servlet context default timeout is set in the conf i g object of the servlet context.
(The confi g object for the servlet context is in the root directory of the context.)

This timeout is set in the cont ext . properti es group of the confi g object, as
the property cont ext . def aul t. ti neout . Set it using the addgr oupent ry
command, as follows (using the HR demo context as the example):

$ cd / HRRoot/ cont ext s/ HRCont ext
$ addgroupentry config context.properties context.default.timeout NN

where NN is the timeout value in seconds.

3-20 Oracle9i Servlet Engine Developer’s Guide

Publishing Servlets

Publishing Servlets

Use the publ i shser vl et session shell command to publish servlets. The syntax of

this command is:

publishservlet [options] <context_name> <servlet_name> <cl ass_nanme

where the options are:

reuse]

[.
[.
[.
[.

virtual path <path>]
statel ess]

properties props]

The command parameters are:

<context_name>

<servlet_name>

<class_name>

-virtualpath

-stateless

-reuse

-properties

The servlet context path into which to publish.

The name to be given to the servlet in the nanmed_servl ets
directory of the servlet context.

The name of the class in the schema. This is the class that you
loaded using the | oadj ava command, or a class that was
loaded in a deployment file.

The path name that will be used in the URL to reach the
serviet

The servlet is stateless. Stateful is the default property.

Add the specified virtual path to an existing servlet without
republishing the servlet. This could also be done by adding a
property to the cont ext . ser vl et s property group in the
servlet context conf i g object.

<prop_groups> List of property groups to use as the defaults
for this service. Specify the name-value pairs in the same way
as in the set gr oup command. See the Oracle9i Java Tools
Reference for information about this command.

The publ i shser vl et command does two things:

« Binds a reference object to the servlet class into the named_ser vl et s directory
(context) of the servlet context.

« Adds a mapping between the virtual path you specify in the command and the
servlet name in the named_ser vl et s directory.

OSE Configuration and Examples 3-21

Publishing Servlets

The JNDI object that is bound into the naned_ser vl et s directory contains the
servlet class name and any initialization parameters for the servlet, as specified in
the - pr operti es option of the publ i shser vl et command. You can see the class
name and other properties of a published servlet by using the get properti es
session shell command on the published object.

3-22 Oracle9i Servlet Engine Developer’s Guide

Summary

Summary

This section reviews and summarizes information that has been presented in
previous sections. It presents a complete scenario, in which the following steps are
performed:

Creating a Web Service

Creating a Web Domain

Creating a Servlet Context

Creating a Servlet

Compiling the Servlet

Loading the Servlet into the Database
Publishing the Servlet

Accessing the Servlet

Adding Logging Tables

Adding Security

Where it is useful, the results of a step are examined. For example, after many steps
that use session shell commands, the | s and get pr operti es commands are used
to examine the results of the step. SQL*Plus is also used to show the results when
objects are added to the database. If you follow each step in this Summary, you
should have a better understanding of how to use the Oracle Servlet Engine to
develop servlet-based applications.

Throughout this section, as in the remainder of this guide, we use the following
notational conventions:

%indicates an operating system prompt. Do not enter the '%’.
$ indicates a session shell prompt. Do not enter it.

SQL> is a SQL*Plus command prompt.

$ORACLE_HOME is the directory where Oracle is installed.

The character "\’ (backslash) in a command line means line continuation. Do
not put a return (ENTER or RETURN key) in that place. The line is broken for
page formatting purposes only.

Remember that each of the commands used is also documented in earlier sections of
this chapter and in the Oracle9i Java Tools Reference.

OSE Configuration and Examples 3-23

Summary

Creating a Web Service

This step creates a Web service that supports a single Web domain. The service is
called the t est Ser vi ce, and is created to be used by the familiar schema HR.

Step la
To start off, enter the session shell as the SYS user:

% sess_sh -user SYS -password change_on_install -role SYSDBA -service \
http://1ocal host: 8080

Notes: The session shell must be on your command path. Itis in
$ORACLE_HQOVE/ bi n.

If | ocal host does not work in your environment, substitute the
name of the host on which the OSE/OJVM is running.

Port 8080 is the default port for the OSE/OJVM adni n service,
which supports the session shell on the server side.

Once in the session shell, list the contents of the root directory of the JNDI
namespace:

$1s/

In a newly installed Oracle platform, you should see something like this:

bin/ HRRoot / system
etc/ service/ test/

Some of these "directories" (or INDI contexts) might be absent, depending on your
installation. But the bi n, et ¢, ser vi ce and syst ementries must be there. HRRoot
is the root of the HRSer vi ce—a service and Web domain that supports the
demonstration servlets that are installed with Oracle9i.

Oracle8i Users: The HRSer vi ce demos are not available in
Oracle8i, Release 3. See the OTN Web page for more information.

Steplb
Create the Web service:

$ createwebservice -root /testRoot testService

3-24 Oracle9i Servlet Engine Developer’s Guide

Summary

$1s
bin/ servi ce/
etc/ system t est Root /

Verify that the service object was created in the / ser vi ce context:

$ s [service
adm n testService HRService

Yes, it’s there. Now add one endpoint to the service:

$ addendpoint -port 8088 -register testService testEndPoint

Look at thet est Ser vi ce object in the / ser vi ce context. What does it contain?

$ getproperties /service/testService
--group--=service

servi ce. name=Servi ce testService
service.description=Aurora HTTP Servlet Engine
service.version=1.0
service.vendor=0racl e Corp

servi ce. gl obal Ti meout =60

servi ce. root =/t est Root

service. presentation=http://testService
service.error.log=servicel ogs/error
service. event. | og=servi cel ogs/ event

- - group- - =endpoi nt

endpoi nt. cl ass=SYS: oracl e. aurora. nt's. Servi ceEndpoi nt
endpoi nt. nane=t est EndPoi nt

endpoi nt. test EndPoi nt. i nterface=*

endpoi nt . t est EndPoi nt. port =8088

endpoi nt. t est EndPoi nt . backl 0og=50

endpoi nt. t est EndPoi nt. m n. t hr eads=3
endpoi nt. t est EndPoi nt. max. t hr eads=5
endpoi nt. t est EndPoi nt. t i meout =30000
--group- - =envi r onnent
--group-- =cont ext s

--group--=mme

java=text/plain

htm =t ext/htm

Most of the properties under the group ser vi ce are default values for the
creat ewebser vi ce command. Likewise the properties in the group endpoi nt

OSE Configuration and Examples 3-25

Summary

are defaults added by the addendpoi nt command. Only service name and the
endpoint port number are not defaults.

It is important to now make the schema HR the owner of the objects in the service.
Not doing so would open a big security hole in the server.

$ chown -R HR /test Root

Verify the ownership:

$ Is -1 /testRoot
Read Wite Exec Owner Date Tine Type Nane
SYS SYS SYS HR Feb 24 12:02 Cont ext servi cel ogs

Note that SYS remains the owner of the service object:

$1s -1 /serviceltestService
Read Wite Exec Owner Date Tine Type Nane
SYS SYS SYS SYS Feb 24 12:02 Service service/testService

This is normal, and is fact is required. You now have a working Web service, that
supports a single Web domain.

Creating a Web Domain

The Web domain is created in the t est Root service, and has that name. Because
this is a single-domain Web service, the name of the Web domain is arbitrary. When
you create a Web domain, you also specify the default document root for the
domain. You specify a directory on a file system of the host machine. You can put a
wel cone. ht m file in there to be served as the default page for the domain. (The
file names and locations are arbitrary—you do not have to imitate the ones shown
here.)

Before creating the Web domain, have a look at the service root:

$ cd
$ I's testRoot
servi cel ogs/

Note that the only object there is the ser vi cel ogs context. This is created by the
cr eat ewebser vi ce command. Now reconnect to the session shell as the HR user,
and create the Web domain. First exit from the session shell, then restart it as the HR
user:

$ exit
%

3-26 Oracle9i Servlet Engine Developer’s Guide

Summary

% sess_sh -user HR -password hr -service http://local host: 8080
$ createwebdomai n -docroot /tnp/testDomain /testRoot

Look again atthe / t est Root context:

$ I's /testRoot
config cont exts/ | ogs/ servi cel ogs/

The cr eat ewebdomai n command created a cont ext s "context", al ogs context,
and a conf i g object in the root of the Web domain. What does the conf i g object
contain? Look at it:

$ cd /testRoot

$ getproperties config
--group- - =envi r onnent
--group-- =cont ext s
--group--=mme
java=text/plain

htm =t ext/htm

ht net ext/ ht m

body=t ext / ht m

xm =appl i cati on/ xm

(and so on)

Not too much of interest here yet. We will come back to this conf i g object later.

Important: Set the Java Permissions on the Document Root

This is a very important step. For clients to access the files in the document root,
you must set the Java permissions on these files so that users can access them.

Note: Java IO file permissions are granted from the database,
using SQL commands. They are not the same as operating system
permissions or access rights, even though the files in the document
root are static files in the OS filesystem.

You must first connect to the database as a user who has permissions to grant Java
file access permissions to the required users. In this example we connect as the SYS
user, but you can use any database user who has the right grant capability.

% sql plus ' SYS/change_on_install as SYSDBA’
SQL> call dbms_j ava.grant_pernission(' HR, 'java.io.FilePermssion’,

OSE Configuration and Examples 3-27

Summary

"Itnp/testDomain/*', 'read,wite’)
SQL> Call conpl eted.
SQL> exit

The OS directory does not have to exist when you grant these permissions. See the
Security chapter of the Oracle9i Java Developer’s Guide for more information about
file permissions.

Load an HTML page into the document root, using OS commands. Here is an
example welcome page that you can use:

<htm >

<head>

<neta http-equi v="Content - Language" content="en-us">

<neta http-equiv="Content-Type" content="text/htm; charset=w ndows-1252">
<title>Wl come to the Test Context</title>

</ head>

<body>

<hl align="center">Wel cone to the Test Context</h1>

<p>This page is located in the doc root of the <i>test</i> context</p>
<p>The servlet context testContext is |ocated at / ose
</ body>

</htm >

Bind the Classes for Service Event and Error Logging

When you create a Web service, you should bind the classes that perform the event
and error logging into the service. See "System Classes" on page 3-17. Use these
commands while connected to the session shell as SYS:

bind /testRoot/servicel ogs/event -rebind \
-¢ SYS:oracl e. aurora. namespace. rdbns. Tabl eStream \
-f oracl e. aurora. namespace. Publ i shedObj ect Factory \
-string table.name HR EVENT$LOG

bind /testRoot/servicelogs/error -rebind \
-c SYS: oracl e. aurora. namespace. rdbns. Tabl eStream \
-f oracl e. aurora. namespace. Publ i shedObj ect Factory \
-string table.name HR ERRORSLOG

3-28 Oracle9i Servlet Engine Developer’s Guide

Summary

Creating a Servlet Context
Connect to the session shell as the HR user, if you are not already there:

% sess_sh -user HR -password hr -service http://local host: 8080

$

$ createcontext -virtualpath /ose -docroot /tnp/testDomain
/testRoot testContext

Creating a Servlet

This section contains the code for an example servlet that you can use. The servlet
accesses the HR.EMPLOYEES table in the database, which is part of the HR sample
schema.

The servlet code uses JDBC statements to query the database. Note that the
server-side internal driver (KPRB driver) is used. See the Oracle9i JDBC Developer’s
Guide and Reference for more information about this driver.

inport java.io.*;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.sql.*;

inport oracle.jdbc.*;

public class sinpleHRServl et extends H tpServlet {

public void doGet (HtpServl et Request req, HttpServletResponse resp)
throws Servl et Exception, | OException

{
PrintWiter out

Connection conn

new Print Witer(resp.getQutputStrean());
null;

try {
/] connect with the server-side internal driver

Oracl eDriver ora = new Oracl eDriver();
conn = ora. defaul t Connection();

if (conn !'=null) {
Statement stnt = conn.createStatenent();
Resul t Set rset = stnt.executeQuery("select EMPLOYEE | D, LAST_NAME, H RE_DATE from
HR. EMPLOYEES order by H RE_DATE");

resp.set Content Type("text/htm");
out.println("<htm ><head><title>Servlet JDBC Exanpl e</title></head><body>");

OSE Configuration and Examples 3-29

Summary

out.println("<table border=3 cellspacing=2 cel | paddi ng=4 bgcol or =#FFFFE7>") ;
out. println("<tr><td>Enpl oyee Nunmber <td>Last Nane<td>Date Hired");

int counter = 0;
while (rset.next()) {
out.println("<tr><td>" + rset.getlnt(1) + "<td>" + rset.getString(2) + "<td>" +
rset.getDate(3));
count er ++;

}

out.println
out.println
out.println
rset.close(
stmt. close(
conn. cl ose(

"</t abl e>
");
"Atotal of "+ counter +
"</ body></htni >");

records");

}

} catch (java.sql.SQ.Exception e) {
e.printStackTrace(out);

}

out.flush(); out.close();

}

public void init(ServletConfig cfg) throws Servlet Exception {
super.init(cfg);
}

public void destroy() {
super. destroy();

}

public String getServletinfo() {
return "A sinple JDBC servlet";

}
}

Compiling the Servlet

Use a Java compiler compliant with JDK 1.2 to compile the source on the client.
Make sure that servl et . jar,dt.jar,tool s.jar, and Oracle’s

3-30 Oracle9i Servlet Engine Developer’s Guide

Summary

cl asses12. zi p are all on the classpath when you compile. Here is a Solaris
example, but you might need to modify this for your Oracle installation:

%javac -g -classpath .:$ORACLE_HOMVE/li b/ servlet.jar: $ORACLE_

HOVE/ j dbc/ 1i b/ cl asses12. zi p: $ORACLE

HOWE/ sqlj/lib/translator.zip:/usr/local/jdk1l.2.2/lib/dt.jar:/usr/local/jdkl.2.2/
lib/tools.jar sinpleHRServlet.java

Loading the Servlet into the Database

Use the | oadj ava command to load the compiled class
si mpl eHRSer vl et . cl ass into the database, as follows:

% | oadj ava -verbose -oracl eresolver -resolve -oci 8 -user HR\
-password hr sinpl eHRServlet. cl ass

Publishing the Servlet

Use the session shell to publish the servlet to the OSE/OJVM, as follows:

% $ORACLE_HOVE/ bi n/ sess_sh -user HR/ hr -service http://local host: 8080
-command "publishservlet -virtual path /sinpleServlet
/ HRRoot / cont ext s/ HRCont ext si npl eHRServl et HR: si npl eHRSer vl et"

Note that the virtual path / si nmpl eSer vl et was assigned to the class
si mpl eHRSer vl et in the command part of the session shell invocation.

Accessing the Servlet

We can now combine all the elements that we created in the previous sections to
derive the complete URL that is needed to access the si npl eHRser vl et . They are
shown in Figure 3-1;

OSE Configuration and Examples 3-31

Summary

Figure 3-1 Accessing the Servlet: the URL

http:»“localho=t : 8088 0=e-"=inpleSservlet

h 4

[PrROTOCOL | |
HOST NAME | |
PORT NUMBER |
| CONTEXT VirtualPath |

| SERVLET VirtualPath

Use a Web browser to access the servlet, entering the URL shown in Figure 3-1.

Connection to the OSE

In the examples in this section, we have set up an endpoint for the Oracle listener,
and the URL here assumes a direct connection to the Oracle listener and dispatcher.
In your applications use Apache/nod_ose to access servlets. In that case, use the
Apache listener port instead of 8088. If Apache is running, and nod_ose has been
configured correctly, with a/ ose/ Locat i on directive, the rest of the URL can
serve as is.

Adding Logging Tables

3-32

Each Web domain requires tables in the database that hold event and error logging
information. Create these using SQL*Plus or another Oracle administrative tool. See
"Logging" on page 3-17 for more information.

- The HTTP | og table:

create table HR HTTPSLOGH (
server _name VARCHAR2(80),
timestamp DATE,
remot e_host RAW 4),

Oracle9i Servlet Engine Developer’s Guide

Summary

remot e_user VARCHAR2(80),
request _| i ne VARCHAR2(256),
status NUMBER(3),
response_si ze | NTEGER,
request _method RAW 1),
referer VARCHAR2(80),

agent VARCHAR2(80))

- Here's where the event log is stored:

create table HR EVENT$LOG (id nunmber, |ine nunber, text varchar2(4000))
/

- The event |ogging sequence:

create sequence HR EVENT$LOG I D

/

- Here's where we store the error |og

create table HR ERRORSLOG (id nunmber, l|ine nunber, text varchar2(4000))
/

- The sequence for controlling ordering in the error log table

create sequence HR ERRORSLOG I D

/

- don't forget to commit, if auto commit is not on

commit;

Execute these statements using SQL*Plus or an Oracle database management tool.

Adding Security

In the simple example in this Summary section, we have said little about security.
We did make sure that the JNDI objects published under the t est Ser vi ce root
were not owned by SYS, and we did make sure that the static HTML files under the
doc root were accessible by at least the HR user.

But if you are using this simple scenario as a basis for a real Web application, you
must make sure that you properly address client authentication and authorization
issues. See Chapter 7, "Oracle Servlet Engine Security", in this guide. If you are
using Oracle Single Sign-On, you should also refer to the documentation about
nod_osso in "Using mod_osso with mod_ose" on page 4-14.

OSE Configuration and Examples 3-33

Summary

3-34 Oracle9i Servlet Engine Developer’s Guide

A

An Apache Module for OSE

This chapter describes nod_ose, the module that you use to connect to the
OSE/OJVM from the Oracle HTTP Server. The Oracle HTTP Server (powered by
Apache) is the Web server that runs in the middle tier, listens to HTTP requests,
serves static pages to HTTP clients, and can forward HTTP requests to be handled
by servlets or JSPs to the Oracle Servlet Engine running in the data tier.

This chapter describes the basic concepts and use of nod_ose. For specific
information about configuring nod_ose to use with your applications, see
Chapter 5, "Configuring mod_ose".

For additional Apache Web server documentation navigate to the Apache Web site
athttp://httpd. apache. org/ orread one or more of the trade books that
cover the Apache server.

Here are the topics covered in this chapter

« Overview

« Requirements

« mod_ose Connections

« Servlet Access Using mod_ose

« Secure Socket Layer Connection

« HTTP Request and Response Processing
« The AuroralocationService Directive

« Topology of a Site Using mod_ose

« Using mod_osso with mod_ose

An Apache Module for OSE 4-1

Overview

Overview

The Oracle HTTP Server, available with the Oracle Internet Application Server (iAS)
Release 1 and to be available with Release 2, is a Web server powered by the Apache
server engine. The Oracle HTTP Server is used with the OSE/OJVM for Web
applications that serve many static Web pages, or that deploy stateless servlets to
the Oracle9i server.

Why Use mod_ose?

When you combine Apache with the OSE/OJVM, you get an efficient applications
solution that can serve static HTML pages directly from the file system of the server
on which Apache is running, and can serve dynamic content from Java servlets and
JSP pages. The servlets and JSP pages run under the OSE/OJVM, on the database
server, and can benefit from the OSE’s fast and efficient access to SQL data.

If you are using the OSE/OJVM and your application makes use of stateless
servlets, you should always use nod_ose. Not using nod_ose, and connecting
directly to the OSE/OJVM, could cause each HTTP request to start up a new
database session and a new OJVM. This can be very expensive, both in the time
involved and the resources required on the OSE/OJVM server. When you use
Apache and nod_ose, a stateless connection is kept open to the Oracle instance that
is running an OSE/OJVM session for each httpd process running on the Apache
server system. A new client request, or a new stateless HTTP request from a
previous client, can thus re-use existing connections. This avoids the overhead of
opening a new OSE/OJVM session on the data tier server for each stateless HTTP
request, and enables new HTTP requests to use any static information cached on the
server by previous stateless requests.

Apache Architecture

An Apache Web server consists of the server, with its basic listening functionality,
and a number of plug-ins or modules, which customize the Apache server and add
functionality to it for specific applications. For example, the mod_per| module
allows the Perl language interpreter to run inside each Apache ht t pd process,
providing better efficiency for CGI or other scripts that use Perl. And the Oracle
HTTP Server offers the nod_pl sql module, that lets Apache access PL/SQL code
running in an Oracle9i server.

nod_ose is the Oracle HTTP Server module that serves as a conduit from Apache
to the OSE/OJVM. When nmod_ose is configured into Apache, each ht t pd process
that is started by the Apache listener incorporates nod_ose. Note that each

4-2 Oracle9i Servlet Engine Developer’s Guide

Overview

ht t pd/ nod_ose process is independent of the others. These processes cannot
share data.

nod_ose forwards HTTP requests that invoke servlets and JSP pages to the Oracle
server, using a standard Oracle Net connection. This is the same type of connection
that an OCI or a Forms application uses.

Note: The communications protocol for the nod_ose connection
uses HTTP tunnelling over the Oracle Net connection. The Oracle
listener strips off the Oracle Net headers before the request is
handed to the OSE, so the OSE sees it as a normal HTTP request.

Figure 4-1 shows how the Web server and the ht t pd/ nod_ose processes relate to
the OSE/OJVM.

An Apache Module for OSE 4-3

Overview

Figure 4-1 OSE/mod_ose Components

Apache

Listener

Hitp Client 2

[

OracleSi
hitpd Senver
process ' :
statefpl
mod_ose : : 8]
stateless s R
: : ession
\\"""-\—_
hitpd
process : S
atatefnl
mod_ose — ~osE|
stateless |Sacgion
' ' —_—
hitpd
process : T
stateful
mod_ose : - \092/
stateless |Segsion
H o TS

Configuration

The configuration of nod_ose determines which URLs cause HTTP requests to be
forwarded to the OSE for processing, and which URLs are processed by the local

Apache listener.

There are two files that are used by the Oracle HTTP Server to configure Apache
and nod_ose. These are ht t pds. conf and ose. conf . Specific information about
setting up these configuration files is available in Chapter 5, "Configuring mod_

ose".

4-4 Oracle9i Servlet Engine Developer’s Guide

Requirements

Requirements
To use Apache and nod_ose, you must have the following components and
capabilities:
« aninstallation of the Oracle Internet Application Server, which contains the
Oracle HTTP server

« thenod_so library must be installed in the Oracle HTTP Server, or there must
be other equivalent support for Dynamic Shared Objects (nod_so. c is
compiled into the Oracle HTTP Server by default)

« nod_m nme must be installed in the Oracle HTTP Server

« the machine executing the Oracle HTTP Server must have at the least an Oracle
client-side configuration, including

« Oracle Net networking support
« anOracle Nett nsnanes. or a file to describe connect identifiers, or
« support for other Oracle name services, such as an LDAP service

« ifyou are using the Oracle single sign-on server, you must have installed and
configured nod_osso to use with mod_ose (see "Using mod_osso with mod_
ose" on page 4-14)

Apache can run either on the same machine as the Oracle database server, or on one
or more different machines. See the whitepapers from Oracle’s Java Platform Group
and the Internet Applications Group for more information about efficiently
configuring a large application using both the Oracle HTTP Server and Oracle9i.

To configure nod_ose, see Chapter 5, "Configuring mod_ose".

Shared versus Dedicated Servers

The OSE runs under the JVM, and so must run in an Oracle9i shared server
environment. (This is called the multi-threaded server for Oracle8i.) If you do not
normally run a Oracle shared server configuration, it is still possible to use nod_
ose by dedicating a dispatcher to a nod_ose channel. This can be done with
adjustments to the Oracle listener’s TNSNAMES. ORA initialization file. See the
section "Non-Shared Server Installations" on page 5-12 for more information.

An Apache Module for OSE 4-5

mod_ose Connections

mod_ose Connections

nod_ose can provide either a stateless or a stateful channel to the OSE. Both a
stateful and a stateless connection is opened by each ht t pd/ nod_ose process
started by the Apache listener, and the appropriate connection is used depending
upon the requirements of the Web container object (servlet or JSP) and the HTTP
client. The properties of the two connection types are:

stateless Each ht t pd/ mod_ose process keeps an Oracle Net
connection open to the OSE server, and reuses this connection
for HTTP clients and requests. The connection is permanently
associated with a session in the OSE/OJVM server, so that a
session gets serially reused by clients that are serviced by the
corresponding Apache ht t pd/ nod_ose process. In the
stateless mode there are as many OSE connection/session
pairs as there are ht t pd/ nod_ose processes.

stateful The OSE/OJVM associates a session, either an Oracle server
or a data cache session, with each Apache client. Each
OSE/OJVM session has a unique ID, which is sent back to the
HTTP client in a cookie. The cookie is used to route further
requests to the correct session. The stateful connection is kept
according to the following criteria:

« If KeepAlive (set by the HTTP client) is ON, then the
stateful connection is kept open for the duration of the
HTTP client.

« If KeepAlive is OFF, then the stateful connection is closed
after each client request.

In the current implementation routing only happens at connect time. This means
that if you want to send a request to a particular session you must have a
connection to this session. Because multiple requests from the same client can go to
different Apache ht t pd/ nod_ose processes, if stateful connections between nod_
ose and the OSE server were kept open, the number of open connections could
soon become excessive.

Servlet Access Using mod_ose

When the Apache listener receives an HTTP request from a client, it determines
whether the request should be handled directly by Apache, or whether the request
should be forwarded to a database server for processing.

4-6 Oracle9i Servlet Engine Developer’s Guide

Servlet Access Using mod_ose

The way the request is handled is determined by the total Apache configuration,
both in the main Apache configuration file, which is (SAPACHE _

HOVE/ Apache/ conf/ htt pds. conf), and in the mod_ose configuration file,
which is located in $APACHE_HOVE/ nodose/ conf/, and is called ose. conf.

Note: $APACHE_HOVME on UNIX systems is normally $ORACLE._
HOVE/ Apache. ¥%APACHE _HOVE%on Windows NT is %0RACLE
HOVE% Apache.

Apache usually serves static Web pages from the file system on its host system. For
example, the host is dl sun164, Apache is listening on port 7777, and a request
arrives that is

http://dl sunl64: 7777/

In this case, there is no URI (URL-path, or information in the URL after the
hostname and the port), so Apache serves its default static HTML page. The
location and name of the default HTML page is set up in the Apache main
configuration file, using the Di r ect or yl ndex directive.

After you have installed and configured both the Oracle HTTP Server and nod_
ose, an HTTP client can send requests to the HTTP server, and have them
forwarded to the OSE/OJVM server. The client must know the port number that
Apache is listening on, if it is different from the default port 80. For example, if the
Oracle HTTP Server is running on the syhstem known as dl sun164, and is
listening for incoming requests on port 7777, then it can process a request from an
HTTP client with a URL such as

http://dl sunl64: 7777/ i ndex. ht m

and serve the HTML page i ndex. ht m , which is located in the document root of
the Oracle HTTP server. Now, suppose that the HTTP client sends a URL such as
http://dl sunl64: 7777/ osel si npl eSer vl et

This request is sent on to the OSE/OJVM if nod_ose has been configured to have
the OSE serve pages or programs where the URL-path is/ ose/ * (or, specifically,

/ osel si mpl eSer vl et). This routing information is located in the nod_ose
configuration file ose. conf.

The module configuration file contains entries (directives) of the form
<Locat i on>, which specify the service that handles requests to Java servlets or

An Apache Module for OSE 4-7

Servlet Access Using mod_ose

JavaServer Pages. For example, if the configuration file contains a Locat i on entry
with an Apache Set Handl er directive:

<Locat i on>
Set Handl er aurora-service /ose/*

</ Location>

then all requests with the URL-path / ose/ <any servl et name> are forwarded
to the OSE/OJVM for processing. The OSE activates the servlet or JSP, and sends
the servlet response object back to the HTTP client, through Apache. The

ht t pd/ nod_ose process does not process the servlet response, other than to
perform de-chunking (see "Chunking" on page 4-10).

You can find specific information on configuring the Apache listener (through the
ht t pds. conf file) and nod_ose (through the ose. conf file) in Chapter 5,
"Configuring mod_ose".

4-8 Oracle9i Servlet Engine Developer’s Guide

Secure Socket Layer Connection

Secure Socket Layer Connection

You can use nod_ose for Secure Socket Layer (SSL) connections to the Oracle
server. For instructions on configuring nod_ose for SSL, see "SSL Configuration"
on page 5-20.

An Apache Module for OSE 4-9

HTTP Request and Response Processing

HTTP Request and Response Processing

Processing the URL

Chunking

When an HTTP request comes through Apache to nod_ose, the initial path
information in the URL is discarded when the path is sent to the OSE/OJVM. This
includes the protocol, Web domain, and port information.

Assume for example that Apache is listening on port 7777, and that the URL that
Apache receives is

http://dl sunl64: 7777/ ose/ si npl eRequest

This request is forwarded to the OSE/OJVM whenever the ose. conf configuration
file specifies Locat i on and Set Handl er Apache directives that configure URLs
with / ose/ to go to the OSE. For example, the ose. conf file contains

<Location /ose/ >
Set Handl er aur or a- server
</ Location>

In this case, all requests in which the URI starts with / ose/ are forwarded to the
OSE for processing.

nod_ose strips off the protocol (htt p: / /), domain (dl sun164), and port (7777)
information from the URL before forwarding it to the OSE.

After the servlet is executed, the servlet response is returned to the client. In
general, the response is not altered by nod_ose or Apache. For one exception, see
"Chunking" on page 4-10.

In the preceding example, if the OSE finds a servlet context with the virtual path
ose/ , and a servlet with the virtual path si npl eRequest , then the servlet with
the virtual path si npl eRequest is activated to process the request and send a
response back to the client, through nod_ose and Apache. If the servlet context or
servlet is not found, then the OSE sends back a 404 HTTP error. (Or, it might send
back the contents of an error page that is application specific, depending upon how
the application is configured in OSE.

The HTTP 1.1 specification mandates how a server should close or hold open a
connection. Whether a connection is closed or held depends on the setting of

4-10 Oracle9i Servlet Engine Developer’s Guide

HTTP Request and Response Processing

KeepAl i ve (by the HTTP client) and Cont ent Lengt h (set by the servlet in the
set Cont ent Lengt h() method of the Ser vl et Response interface).

When a connection is closed, the client reads the response up to the EOF. However
if a connection is kept open, the client must know how many bytes to read to get the
entire response. The following conditions determine this:

« If KeepAli ve is OFF, the servlet engine always closes the connection. In this
case, the client can read all the data in the response, up until EOF is detected.

« IfKeepAlive is ON and the Cont ent Lengt h of the response is set by the
servlet, the connection is kept open.

However, a servlet might not set the content length parameter in its response to the
client. Therefore, in order to keep stateless connections to the OSE database alive,
nod_ose uses HTTP chunking for the responses from OSE to the Apache process.
HTTP chunking is set by including the value "chunked" for transfer-encoding in the
Transfer Encoding header field.

The responses are de-chunked before being passed to the client. A side-effect of this
is that nrod_ose always removes the content length header from the response, and
so HTTP clients will disconnect the connection to Apache/nod_ose. This is not a
major drawback, as most proxy servers, and most browsers, close connections by
default after every request is processed.

For more technical information, see RFC 2616, section 3.6. This RFC is available at:

http:// ww. w3. or g/ Prot ocol s/

Session ID for Real Application Clusters

When a connection is being made through nod_ose to a specific instance in a
cluster database, the JSESSION cookie ID that is transmitted in the cookie that OSE
sends identifies the instance as well as the session. In this case an alphanumeric
identifier for the instance is appended to the session ID, following a semicolon. For
example

JSESSI ON=0235; <sonel nst anceNanme>

An Apache Module for OSE 4-11

The AuroralLocationService Directive

The AuroraLocationService Directive

nod_ose normally connects to a single OSE service. This is the service specified by
the Aur or aSer vi ce statement in the ose. conf configuration file. For example,
the entry

AuroraService instl_http

in the ose. conf file names a connection identifier in the t nsnanes. or a file that
connects to a specific Oracle listener. This is so because the connect string that nod_
ose uses has a PRESENTATION clause that is a global parameter, used by all nod_
ose requests.

This can be a limitation in some contexts. There are occasions when it would be
desirable to have instances of nod_ose in a single Oracle HTTP Server that can
connect to, say, an administration service and an application service. Or there might
be a standard TCP protocol specified in one connect descriptor, and a Secure Socket
Layer (TCPS) protocol in another connect descriptor. Or, you might want to connect
to a different port number. In each of these cases a different connection identifier is
required in the t nsnanes. or a file. As an example, the connection identifier

i nst1_htt p connects to a standard service, i nst 1_htt ps connects to an SSL
service,and i nst 1_htt pAdm n directs connections on standard TCP/IP to an
administrative service.

To get around this limitation, Oracle9i provides the Aur or aLocat i onSer vi ce
directive. This directive is set in the Apache Locat i on directive of the ose. conf
configuration file, and can route HTTP requests to more than one service, based on
the servlet context specified in the Locat i on directive.

See "AuroralocationService" on page 5-17 for specific information about
configuring the Aur or aLocat i onSer vi ce directive.

Note: The Aur oralLocati onServi ce directive is available only
with the Oracle9i version of nod_ose.

4-12 Oracle9i Servlet Engine Developer’s Guide

Topology of a Site Using mod_ose

Topology of a Site Using mod_ose

When using nod_ose, you can configure different network topologies with the
system in your Web environment. Specifically, you can define configurations that do
not have a single point of failure. In such configurations, when a node failure
occurs, any available Oracle Listener can redirect requests to some other database
instance if the one being used for the client state has failed. For this to work, the
application must have been replicated in all nodes, and it must be able to handle the
recovery from an expired database session.

You can create multi-node, in-tandem configurations. With these types of
configuration, you can make a more scalable service than you can with OSE alone
or with Apache alone. Before determining the number and types of server that your
network requires, you should understand the basic configuration of the two servers:
Apache and OSE. Figure 4-1 shows how the components relate.

With a multi-node server arrangement there is:
« hosingle point of failure

. fail-over configuration

« load balancing functionality

Since mod_ose works in a network in conjunction with Oracle Net, Oracle Net
takes care of the fail-over and load balancing. The Oracle Net Administrator’s Guide
describes these provisions of Oracle Net.

An Apache Module for OSE 4-13

Using mod_osso with mod_ose

Using mod_osso with mod_ose

HTTP security consists of two parts:

authentication The process of determining the identity of an HTTP client
making a request, and ensuring that the client really is who it
claims to be. The simplest form of verification is asking a
client for a password. Another type of authentication involves
the client attaching a digital certificate to its request.

authorization Enforcing the rules of access to different documents and
applications on the Web server and servlet container.
Authorization is based on information provided by a
successful authentication step—the name of the client, also
called the user or principal.

Oracle HTTP Server includes a module, mod_osso, that allows you to protect virtual
paths on the server (authorization), while delegating the authentication step to the
Oracle Single Sign-On Server (called the OSSO Server for short).

The basic function of mod_ose is to let the Oracle HTTP Server forward requests for
certain virtual paths, so that they are actually executed by the OSE/OJVM.

It is possible to apply both nod_osso and nod_ose to the same virtual path. In
Apache terminology this is described as chaining nod_ose after mod_osso.

For example, for a URL-path consisting of a servlet context virtual path plus a
servlet virtual path, you can delegate user authentication to an OSSO server, check
permission on a given virtual path for a particular authenticated user, and then
forward the request to the OSE/OJVM for execution.

In this scheme, the advantages of Oracle Single Sign-On are preserved. That is, if the
client authenticates successfully, it is not asked to repeat authentication for requests
to other protected URLSs in either the Oracle HTTP Server or in the OSE/OJVM, and
the client credentials will be propagated to the OSE/OJVM for all requests that are
forwarded there.

When nod_osso is part of the module chain forwarding requests, servlets are able
to get the user name and a principal object using standard methods of the class
javax.servlet.http. HtpServl et Request, namely get Renot eUser () and
get User Pri nci pal ().

The values returned for these methods will be based on the user identity, which was
established during successful Oracle Single Sign-On.

4-14 Oracle9i Servlet Engine Developer’s Guide

Using mod_osso with mod_ose

The Oracle HTTP Server provides directives for fine-grained authorization which is
functionally very similar to the same HTTP security protections that are provided
by the OSE. These directives may be used independently, or in conjunction with
OSSO authentication. The set of virtual paths redirected to OSE is a subset of all
virtual paths serviced by the Oracle HTTP Server, so the same paths can be
protected by both mechanisms.

When regular HTTP security is used with the OSE/OJVM, the user identity is not
known on the Apache front end, so the only way to define access control is by using
OSE HTTP authorization. However when you use OSSO authentication the
situation is different. A call to the OSSO Server happens on Apache, and the user is
known after that. If an access control rule requires checking the user's membership
in a group, that information also needs to be obtained from the OSSO server. So, all
virtual path protection should be configured on the Apache node, and any
configuration for contexts protected with OSSO that may exist on OSE will be
ignored.

For information about configuring the nod_osso module, see "Configuring mod_
0ss0" on page 5-22. For more information about the Oracle Single Sign-On server,
see the Oracle Single Sign-On Application Developer’s Guide, part of the Oracle9i
Internet Application Server documentation set.

An Apache Module for OSE 4-15

Using mod_osso with mod_ose

4-16 Oracle9i Servlet Engine Developer’s Guide

D

Configuring mod_ose

This chapter describes how to configure the Oracle HTTP Server (powered by
Apache) and the Apache nod_ose module that is used to connect to the Oracle
Servlet Engine (OSE/QJVM).

This chapter contains the following topics:

Steps to Take

Configuration Files

Oracle Net and Oracle Listener Configuration
Generating a Configuration File

Non-Shared Server Installations

Configuration Utilities

AuroralocationService

Specifying Stateful and Stateless Handlers in ose.conf
SSL Configuration

Configuring mod_osso

Troubleshooting

Configuring mod_ose 5-1

Steps to Take

Steps to Take

To set up the Oracle HTTP Server and the nod_ose module that is used to connect
Apache to the Oracle Servlet Engine (OSE/OJVM), you need to take the following
steps:

1.

Make sure that the OSE/OJVM is running on the server.

The OSE/OJVM requires an Oracle Shared Server configuration. If you do not
normally have or use this configuration, see "Non-Shared Server Installations"
on page 5-12 for a workaround.

Install a test servlet that you can access on the server. The examples in this
section use an example servlet called DBSessi on, which is a stateful servlet.
See "Examples" on page 3-9 for the instructions on coding and installing this
servlet.

Be certain that you have the Oracle HTTP Server installed on an accessible
system. The Oracle HTTP Server is part of the standard Oracle8i and Oracle9i
Internet Application Server distributions.

Configure the Oracle server listener so that it accepts incoming Oracle Net
requests from Apache/nmod_ose. See "tnsnames.ora" on page 5-10 for specific
information.

Edit the Apache configuration file to include the nod_ose configuration file.
See "Including Configuration Files in httpds.conf" on page 5-8 for specific
information.

Generate or edit a nod_ose configuration file for your application. For the test
application described in this chapter, the file is shown in "Example ose.conf" on
page 5-7.

Start or restart the Apache server, so that the newly-changed configuration files
are read by Apache.

Try accessing the servlet using a Web browser.

If you cannot access the servlet, see the section "Troubleshooting" on page 5-25.

5-2 Oracle9i Servlet Engine Developer’s Guide

Starting mod_ose

Starting mod_ose

The nod_ose module is configured into Apache by including its configuration file
in the main Apache configuration file. In the nod_ose configuration file, the first
line (apart from any comments) points to the location of the dynamic library that
implements nod_ose, using the LoadMbdul e directive. For example:

LoadModul e ose_modul e [privat el/ Apache/ nodose/ bi n/1i bji pa9i.so
Once nod_ose module is part of Apache, each daemon Apache process (ht t pd
process) that the Apache listener starts includes nod_ose. There is no need to

specifically start rod_ose. This is the normal way that Apache modules are
included in the ht t pd processes.

See "ose.conf" on page 5-5 for more information about the LoadMbdul e directive.

Configuring mod_ose 5-3

Configuration Files

Configuration Files

httpds.conf

When an Apache process starts up, it reads the Apache configuration file to
determine how it should run. The Apache configuration file, and additional
configuration files that it includes, determine which modules are included in
Apache, and thus how HTTP requests are handled: whether they are handled
directly by Apache, or routed to the servlet engine for handling there.

There are two configuration files that you must set up to get Apache and nod_ose
running properly: ht t pds. conf and ose. conf.

The main Apache configuration file used by the Oracle HTTP Server is
ht t pds. conf . Where $APACHE_HOME is the Oracle HTTP Server home directory,
this file is located in

$APACHE_HOME/ Apache/ conf/

Note: $APACHE_HOME on UNIX systems is normally $ORACLE._
HOVE/ Apache. %APACHE _HOVME%0on Windows NT is %0RACLE
HOVE% Apache.

This is the only file that Apache reads directly when it starts up. Other
configuration files are read when they are included in ht t pds. conf, using the
i ncl ude directive.

Note: The Apache configuration file that is used by the Oracle
HTTP Serveris htt pds. conf, not htt pd. conf.

Configuring Apache and nod_ose is not dynamic. When you change a
configuration file, you must restart Apache. However under Solaris there is a way
to restart Apache on the fly, so that the configuration files are read but active
connections are still maintained. Use the OS command

% $APACHE_HOVE/ bi n/ htt pdsct| gracef ul

In the ht t pds. conf file, you need to modify or verify the following for nod_ose
support.

5-4 Oracle9i Servlet Engine Developer’s Guide

Configuration Files

ose.conf

« The port that Apache is listening on for standard HTTP requests. This is the
port number that the HTTP client must use to connect to Apache.

« If SSL is used, the port for SSL requests.

« Addan Apache | ncl ude directive that directly or indirectly includes the nod_
ose configuration file ose. conf.

The configuration file for rod_ose is ose. conf . Itis located in $APACHE _
HOVE/ nodose/ conf /. This file determines which Oracle listener connections are
supported, and how requests to OSE are routed through the Oracle listener to the
appropriate Web service, servlet context, and servlet.

The ose. conf file contains standard Apache directives, such as | f Modul e,
LoadModul e, and Locat i on. The structure of ose. conf is the following:

LoadMbdul e

| f Modul e

Locati on

/1 f Mbdul e

The LoadModul e directive is the first in the file. It specifies a
module name, and the location of the dynamic library that
implements the module. For an example, see "Example
ose.conf" on page 5-7.

The IfModule directive includes the directives following if the
module source has been compiled into Apache. The directive
is<I f Modul e nod_ose. c>.

The Locat i on directive specifies URI components, and
which handlers serve them. <Locat i on / ose/ * > specifies
that any URI-path starting with / ose/ should be handled by
the Set Handl er directive that follows. For example:

<Locati on /ose/>
Set Handl er aur or a- server
</ Locati on>

isa complete Locat i on directive.

Terminates the | f Mbdul e directives.

The nod_ose-specific directives are:

Configuring mod_ose 5-5

Configuration Files

Aur or aServi ce Mandatory directive that specifies the connect identifier (in
the listener initialization file t nsnanes. or a) forall HTTP
requests, except those that contain a URL-path that is
specified in an Aur or aLocat i onSer vi ce directive.

This directive cannot be specified withina Locat i on
directive. It must be specified in the | f Modul e directive.

Use the - net ser vi ce option of the OSE session shell
export webdomai n command to generate this directive, or
specify the netservice key in the input data file for the

gencf g. pl Perl script.

Aur or aWr ker s Optional directive that indicates the number of nod_ose
Per Process worker threads that can be created per Apache/nod_ose
process.

This directive is not meaningful for current Solaris releases of
the Oracle HTTP Server, as Solaris Apache is single-threaded.
On Windows NT, each Apache process can execute more than
one client request at a time.

This value should be the same as the Thr eadsPer Chi | d
value that is specified in the Apache configuration file. This
applies only to Windows NT or Windows 2000 installations.

Use the - wor ker option of the OSE session shell

export webdomai n command to generate this directive, or
specify the worker key in the input data file for the

gencf g. pl Perl script.

Aur or aLocat i on Optional directive included in the Locat i on directive that
Service indicates the TNS connect identifier to use for that location.
Should not be used if the connect identifier is the same as the
global connect identifier that is specified in the
Aur or aSer vi ce directive.

These nmod_ose-specific directives are generated in the configuration file using the

session shell expor t webdomai n command, or using the gencf g. pl Perl
program.

5-6 Oracle9i Servlet Engine Developer’s Guide

Configuration Files

Example ose.conf
Here is an example of an ose.conf file:

LoadModul e ose_nodul e [privat el/ Apache/ nodose/ bi n/1i bji pa9i.so

#

Apache configuration
Domain: /systenadnin
Context: admin

#

<| f Modul e mod_ose. c>

Aur oraService instl nodosetest
Aur or aWor ker sPer Process 1

#
Context for VPATH /adm n/
#

<Location /adni n/ depl oywar >
Set Handl er auror a-server
</ Location>

<Location /admi n/error_l og_vi ewer. htm>
Set Handl er auror a-server
</Location>

<Location /admn/errors/internal >
Set Handl er auror a-server
</Location>

<Location /adm n/event _| og_vi ewer. htm >
Set Handl er auror a-server
</ Location>

<Location /admin/http_| og_vi ewer. htm >
Set Handl er auror a-server
</Location>

<Location /adm n/shell >
Set Handl er auror a-server
</Location>

<Location /ose/ >

Configuring mod_ose 5-7

Configuration Files

Set Handl er auror a-server
</ Location>

<Location /test/ >
Set Handl er auror a-server
</ Location>

</ I f Modul e>

#

End of configuration
#

oracle_apache.conf

Contains includes for Oracle-specific modules, such as mod_pl sgl and nmod_ose.
Include the ose. conf file in this file, using an absolute file path, then make sure
that the Apache main configuration file ht t pds. conf includes or acl e_
apache. conf.

Including Configuration Files in httpds.conf

You can include the nod_ose configuration file ose. conf in the Apache
configuration file ht t pds. conf directly, using the Apache | ncl ude directive.
However, Oracle recommends that you add the | ncl ude for ose. conf to the
configuration file or acl e_apache. conf, which also includes the configuration
files for other Oracle-specific Apache modules such as nod_pl sql ($APACHE _
HOVE/ nodpl sqgl / conf/ pl sgl . conf) . The or acl e_apache. conf fileis
located in $APACHE_HOME/ Apache/ conf /. Then include or acl e_apache. conf
in the ht t pds. conf file.

Always specify the files to be included using absolute paths to the files, as Apache
cannot recognize relative paths. Also, do not use operating system environment
variables, such as the UNIX shell variable $APACHE_HOVE, or the Windows NT
environment variable Y%APACHE HOVE%in the | ncl ude directive.

5-8 Oracle9i Servlet Engine Developer’s Guide

Oracle Net and Oracle Listener Configuration

Oracle Net and Oracle Listener Configuration

Connections from Apache/nmod_ose to the OSE use the Oracle Net protocol, the
same as OCI or Forms client/server applications. nod_ose uses the same
mechanism for finding connection descriptors as other Oracle clients, such as OCI
clients. Depending on the configuration determined by the sql net . or a file,
connections are defined either by

« thet nsnanes. or a file located in the directory pointed to by the environment
variable TNS_ADM N, or

= another Oracle name service, such as an LDAP service, to retrieve the
connection address

See the Oracle Net Administration Guide for more information about configuration of
listeners and dispatchers for the Oracle server.

So to use nod_ose with the OSE/OJVM you must at least configure the Oracle
listener’s initialization file: t nsnanes. or a, to include connect descriptors for the
connections to the OSE server. You can find specific information about doing this in
"tnsnames.ora" on page 5-10.

Configuring mod_ose 5-9

Generating a Configuration File

Generating a Configuration File

tnsnames.ora

The ose. conf file contains Apache configuration commands and directives, such
as LoadModul e, <I f Modul e>, and <Locat i on>. To create a configuration file,
you could analyze your application, find the servlet contexts that nrod_ose must
recognize and transfer HTTP requests to, and create the mod_ose configuration file
by hand, using a text editor. Or you could modify the example files that are
supplied with Oracle.

These approaches, however, are very error-prone, and are not recommended.

Oracle recommends that you create a ose. conf file using the tools supplied to
generate this file. With Oracle8i, you used the expor t webdonai n session shell
command to create the nod_ose configuration for specific Web applications. With
Oracle9i, you can still use the expor t webdomai n command, or you can use the
new Perl script gencf g. pl . This script takes a descriptor file as input, and
generates or modifies a nod_ose configuration file. This tool is described in
"gencfg.pl" on page 5-14.

This Oracle Net initialization file specifies the connect descriptors that are used by
the Oracle listener. An example of this file is provided with all Oracle server
installations, as well as with Oracle client-side installations. For a complete
description of the entries in this file, see the Oracle Net Administrator’s Guide. In
some cases, you might have to copy the file from an example location before
modifying it. For example, in an NT client configuration, copy the file from
YORACLE_HOVE% net wor k\ Adni n\ Sanpl e up to %ORACLE _

HOVE% net wor k\ Admi n, and then modify it to add the nod_ose-specific connect
identifiers.

Modify this file to add one or more connect identifiers that point to OSE services.
Here is an example of a possible entry:

instl http =
(DESCRI PTI ON=

(ADDRESS=
(PROTOCOL=t cp) (HOST=sal es- server) (PORT=1521)

)

(CONNECT_DATA=
(SERVI CE_NAME=sal es. us. acne. com)
(SERVER=shar ed)
(PRESENTATI ON=ht t p: / / sal es)

)

5-10 Oracle9i Servlet Engine Developer’s Guide

Generating a Configuration File

)

In this example, the connect identifier i nst 1_ht t p is associated with a connect
descriptor that specifies the TCP/IP protocol, a host named sal es- server,and a
service that listens on the Net8 port 1521. A service name, sal es. us. acne. comis
specified, and the presentation is HTTP. The service name is the instance name in
the INIT.ORA file (there can be multiple instance names in the case of Oracle Real
Application Cluster installations). You create the service (the presentation) using the
cr eat ewebser vi ce session shell command.

connect identifier The connect identifieri nst 1_ht t p is an arbitrary name. This
connect identifier is generated into the ose. conf file, in the Aur or aSer vi ce
directive, by the configuration utilities. For an example, see the section "gencfg.pl"
on page 5-14.

address The address part of the connect descriptor specifies
« the network protocol, which must be TCP or TCPS for nod_ose

« the host (the server) that nrod_ose should connect to

« the TCP port (socket number) that the HTTP service is registered on—see the
addendpoi nt command, described in "addendpoint” on page 3-6 and in the
Oracle9i Java Tools Reference.

connect_data This part of the entry provides a service name, the kind of server

(shared or dedicated), and the presentation. The presentation is the HTTP service
that you established for your application.

Configuring mod_ose 5-11

Non-Shared Server Installations

Non-Shared Server Installations

The nod_ose module requires a shared server installation to run. It will not run if
the database is not configured with any shared dispatchers/servers. However, some
users prefer not to run with shared servers as a standard configuration. Oracle
recommends the following work around to let you use Apache and nod_ose in a
dedicated server environment.

In the database initialization file (I NI T. ORA), create one or more dedicated
dispatchers and servers with a specific service name. You can use any service name
that follows the | NI T. ORA conventions as long as it differs from the database
service name. The following examples use "MODOSE":

di spat cher s=" (PROTOCOL=t cp) (SERVI CE_NAVE=MODCSE) "
di spat cher s=" (PROTOCOL=t cps) (SERVI CE_NAME=MODOSE) "

The connect identifier in the thsnames entry (t nsnanes. or a file) should use this
service name rather than the database service name.

inst2_http =
(DESCRI PTI ON=
(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 27) (PORT=5521))
(CONNECT_DATA=

(SERVI CE_NAME=MODOSE)

(SERVER=shar ed)

(PRESENTATI ON=ht t p: // admi n)

)
)

You will now have a shared dispatcher and server that will not be used by other
clients—only by nod_ose.

5-12 Oracle9i Servlet Engine Developer’s Guide

Configuration Utilities

Configuration Utilities

The Oracle9i servers support the two utilities for generating configuration files for
nod_ose. They are described in the following sections.

exportwebdomain

The configuration of Web applications running on OSE is specified in the JNDI
namespace on the OSE server. The session shell command expor t webdomai n
extracts the information about the applications installed in a Web domain and
generates the corresponding configuration file.

Use the expor t webdomai n command to generate the structure of a Web domain in
a configuration file for mod_ose. The export utility works in two stages:

= Generates in XML format the structure of a Web domain or contexts within a
domain.

« Applies transformations to the XML, producing configuration files specific to
nod_ose. Generates a configuration file at the shell level.

This session shell tool can be used to generate the nod_ose configuration file.
export webdomai n takes as an argument the name of the Web domain for which
you want to generate a configuration. For example

exportwebdomai n [options] /HRRoot

generates a configuration file for the Web domain HRRoot , which is located at the
root of the INDI namespace in the OSE server. The options to expor t webdomai n
are the following:

-context Optional parameter that specifies the name of the servlet
context to support. If not specified, all contexts in the domain
are configured.

-netservice The name of the service defined in the t nsnanes. or a file.

-format The XSLT transformation type. For example - f or mat
Apache for nod_ose configurations.

-worker Optional parameter that specifies the number of worker
threads per Apache process. In the release, this option applies
only to NT installations, since the current release of Solaris
Apache is always single-threaded.

Configuring mod_ose 5-13

Configuration Utilities

gencfg.pl

-nodefault

-nodocs

Optional parameter that indicates not to map the default
context, unless indicated by the -cont ext option.

Optional parameter that specifies to not forward URLs
mapped into doc_r oot to the Servlet engine. This assumes
that such static pages will be served directly by the external
Web server.

gencf g. pl is a Perl program that generates or modifies configuration files for
nod_ose based on an input description file. The description file contains key:value
pairs in a text format. The output is generated in the file ose. conf in the same
directory. If the file already exists, new material is added to it.

The Perl script provides for two modes of configuration:

« simple: uses the existing ose. conf file in the same directory as gencf g. pl
and updates the Aur or aSer vi ce and Aur or aWbr ker sPer Pr ocess
directives if they already exist.

« exportwebdomain: uses the session shell export webdomai n command. The
arguments to the expor t webdomai n command are constructed by the Perl
script, based on the data either in the input description file webdat a. cf g, or in
another file specified in an argument on the command line. The session shell is
then executed by the Perl program. The OSE database must be running when
you use this mode.

The keys and possible values in webdat a. cf g are:

type

netservice

worker

domains

Optional key. If the value is simple, use the simple mode. If
this key is not provided, use the exportwebdomain mode.

Mandatory key. The Oracle Net connect name to be used in
generating the AuroraService directive in the output
configuration file. See "ose.conf" on page 5-5 for more about
this directive.

Optional key. The number of worker threads to be used for
each Apache process. Used only for NT Apache in this release.
The default is 1 when not specified.

Web domain for which the configuration is to be generated.
Mandatory if type is exportwebdomain.

5-14 Oracle9i Servlet Engine Developer’s Guide

Configuration Utilities

context Optional key. The servlet context to be used for Web domain.
If not provided, configuration is generated for all the contexts
in that domain.

alias The database to which the session shell should connect.
Optional—if not supplied, uses the local database

nodocs Optional key. If true, do not generate configuration for
documents.

nodefault Optional key. If true, do not generate configuration for default
servlets.

An example of key:value pairs in a description file (webdat a. cf g) is

netservice:instl_http
nodocs: true

nodefaul t:true

wor kers: 1

cont ext:admn

domai ns: / syst em admi n

When gencf g. pl is executed with this input file, it generates the following
ose. conf configuration file:

#

Apache configuration
Domain: /systenadnin
Context: admin

#

<| f Modul e mod_ose. c>

AuroraService instl_http
Aur or aWor ker sPer Process 1
#

Context for VPATH /adm n/
#

<Location /adni n/ depl oywar >
Set Handl er auror a-server
</ Location>

<Location /admi n/error_l og_vi ewer.htm>

Set Handl er auror a-server
</ Location>

Configuring mod_ose 5-15

Configuration Utilities

<Location /admn/errors/internal >
Set Handl er auror a-server
</ Location>

<Location /adm n/event _| og_vi ewer. htm >

Set Handl er aurora-server
</ Location>

5-16 Oracle9i Servlet Engine Developer’s Guide

AuroralLocationService

AuroralocationService
Use this directive in the following way:

« Inthe confi g object for the servlet context (in the OSE server’s JNDI
namespace), add a group entry called cont ext . properti es.

« Setthecontext.|ocationservice property in this group to the connect
identifier for the desired service, as specified in the t nsnanes. or a listener
initialization file. Use the session shell addgr oupent r y command to do this.
For example, in the session shell, do

$ cd /systenladni n/ cont ext s/ def aul t

$ addgroupentry config context.properties context.|ocationservice
inst2_https

$ cd / HRRoot / cont ext s/ HRSer vi ce

$ addgroupentry config context.properties context.|ocationservice inst3_http

When you execute the expor t webdomai n session shell command to create a nod_
ose configuration file, either directly or by using the gencf g. pl Perl program, the
Locat i on directives for the configured locations will contain the

Aur or aLocat i onSer vi ce directive. For example

<Location /systenf adm n/contexts/default/ >
AuroralocationService inst2_https
Set Handl er aur or a- server

</ Location>

<Location /HRRoot/contexts/HRService/ >
AuroralocationService inst3_http
Set Handl er aur or a- server

</Location>

Note: The locations specified in the Aur or aLocat i onSer vi ce
directives override the location specified in the Aur or aSer vi ce
directive of the | f Modul e clause.

Configuring mod_ose 5-17

AuroralLocationService

Note: Even if you specify a stateless handler

(aur or a- st at el ess-server) in the Set Handl er clause when
specifying Aur or aLocat i onSer vi ce, the semantics are those of
the stateful handler. That means that the connection is closed either
after the request completes (when KeepAl i ve is OFF), or when the
client completes (when KeepAl i ve is ON).

5-18 Oracle9i Servlet Engine Developer’s Guide

Specifying Stateful and Stateless Handlers in ose.conf

Specifying Stateful and Stateless Handlers in ose.conf

Specify whether a request uses the stateful or the stateless connection by indicating
which Apache handler to use. You indicate the handlers in Locat i on directives in
the ose. conf configuration file. For example:

« SetHandler aurora-stateless-server

This handler specifies a stateless connection. If a servlet being served by a
stateless connection attempts to create an Ht t pSessi on object, it is considered
an error.

=« SetHandler aurora-statefull-server

This handler specifies a stateful connection. It allows a servlet to create an
HTTPSessi on object, and requires Apache to define a separate session to
service the requests.

« SetHandler aurora-server

This specifies the default mode, which is stateful.

Configuring mod_ose 5-19

SSL Configuration

SSL Configuration
nod_ose can accommodate SSL connections between Apache and the OSE/OJVM,
to support SSL connections between the client and OSE/OJVM. You need the
following to set up SSL service:

« acurrent and correct wallet
« aTCPS connect identifier, specified in the t nsnanes. or a configuration file

=« the Aurora service referenced to a connect identifier in t nsnanes. or a, with
the TCPS protocol and a TCPS listener port. For example:

instl https = (DESCRI PTI ON=
(ADDRESS=(PROTOCOL=t cps) (HOST=ser ver 27) (PORT=5524))
(CONNECT_DATA=
(SERVI CE_NAME=r dbns817. rdbns. dev. us. oracl e. com)
(SERVER=shar ed)
(PRESENTATI ON=ht t p: / / admi n)

5-20 Oracle9i Servlet Engine Developer’s Guide

SSL Configuration

Oracle Net uses the service name rather than the SID that was used in earlier
versions of the Oracle server.

| i st ener Addr ess

servi ceSpec

presentati onSpec

An ADDRESS_LIST (host, port, protocol) in the case of multiple
Oracle Listeners on the back end (multiple nodes). This allows for
load balancing and fail-over configurations, as well as the use of
CMAN for connection concentration.

Read the Oracle Net Administrator’s Guide for information about how
to set this parameter.

group of database instances: specify SERVICE_NAME

Defines a group of instances that can be used interchangeably. When
there are multiple database instances, nod_ose load balances the
connections between the different instances.

nod_ose guarantees stateful requests from a client are sent to the
same database instance so they can be associated with the same
database session.

single database instance: specify INSTANCE_NAME
Indicates an specific instance within the service group should be
used.

Indicates which HTTP service should be used for this connection.

<Jndi Servi ceNane> is a place holder for the name of a service in

the INDI namespace (for example, / servi ce/ Ser vi ceNan®) that

understands HTTP and has an Oracle Net end-point associated with
it. See the session shell command, cr eat ewebser vi ce.

Configuring mod_ose 5-21

Configuring mod_osso

Configuring mod_osso

See "Using mod_osso with mod_ose" on page 4-14 for basic information about nod_
0ss0. This section tells you how to configure nod_osso to work with the Oracle
HTTP Server and nod_ose.

Note: mod_osso is not available with Oracle8i Release 3.

To Configure on the Apache Side

Before chaining nod_osso with nod_ose, you must register the Oracle HTTP
Server with an Oracle Single Sign-On server. See the documentation on the Oracle
HTTP Server for more information.

To use nod_0sso0, just protect a virtual path with nod_osso. To do this, define a
Locat i on directive in the Apache configuration file ht t pds. conf as follows:

<Location /<context_virtual _path>/<servlet_virtual _path/>
Aut hName " OSSO Server on nmachinel"
Aut hType Basic
require valid-user

</ Location>

Enter this Locat i on directive in the <I f Modul e nbd_osso. ¢c> section of the
Apache ht t pds. conf configuration file. For more information about this,
including other required options, see the Apache documentation, and the Oracle
HTTP Server Administration Guide (available with Oracle9i Internet Application
Server V2).

Next, configure a virtual path to be forwarded to the OSE/OJVM. For example, add
the following Locat i on directive to the ose. conf configuration file:

<Location /<context_virtual _path>/<servlet_virtual _path/>
Set Handl er aurora-server
</ Location>

Enter this in the <I f Modul e npd_ose. ¢> section of ose. conf , and use the same
virtual servlet context and virtual servlet path as in the Locat i on directive in the
nod_osso. ¢ section of ht t pds. conf.

To Configure on the OSE Server Side

Secure the virtual path in the OSE/OJVM with the OSSO authentication method by
publishing a special OSSO realm for each Web service in the OSE/OJVM. If you

5-22 Oracle9i Servlet Engine Developer’s Guide

Configuring mod_osso

plan to service requests which have been authenticated by an OSSO server, you
must have an OSSO HTTP security realm published in each service root that is
accessed by such a request.

Publish an OSSO Realm

Publish the special OSSO realm by using the session shell r eal mpubl i sh
command with the -t ype OSSOoption, as shown in the following example:

$ real mpublish -w ebservice] <serviceRoot> -type OSSO
It is not necessary to specify the realm name in the - add parameter. The realm with

authentication type OSSO will always be called ossoReal m In fact, any other
name you specify in the - add parameter is ignored.

Note: There can be at most one realm with the authentication type
OSSO for each service root.

To Remove an OSSO Realm
You can remove an OSSO realm just as any other realm. Use the session shell
real m publ i sh command with the - r enove option, as shown in this example:

$ real mpublish -w ebservice] <webserviceRoot> -remve ossoReal m

Securing a Servlet Context with the OSSO Security Servlet

You can configure OSSO authentication at the level of servlet context. As with
regular HTTP security, you use the session shell r eal m secur e command, as
shown in this example:

$ real msecure -s /testRoot/contexts/mycontext -0sso

Note the special - osso flag. It tells the realm command that OSSO authentication
should be enabled for this servlet context. The r eal m secur e command binds a
JNDI object called ht t pSecuri ty into the/t est Root / cont ext s/ nycont ext .
You can use the session shell | s command to verify the existence of the

htt pSecurity servlet.

Configuring mod_ose 5-23

Configuring mod_osso

A standard r eal m secur e command, without the - 0sso option, also binds an

ht t pSecuri t y object into the context. The difference is in the class bound to

ht t pSecuri ty. For aregular HTTP Security method, ht t pSecuri ty is bound to
aservletof classoracl e. aurora. ms. http. security. Ht pSecurity.Inthe
case of OSSO authentication it is bound to

oracle.aurora.nts. http.security. OSSOSecurity.You can use the session
shell get pr operti es command to verify the class binding, as shown in

$ getproperties /testRoot/contexts/mycontext/httpSecurity

This returns:

servlet.cl ass=SYS: oracl e. aurora.nts. http.security. OSSCSecurity

Servlet contexts are secured with the HTTP Security method by default when they
are created. So if you need OSSO authentication, you must explicitly use the
real m secur e command with the - 0sso option to change the type of
authentication to OSSO.

Note: Forthereal m secure -o0ssocommand to succeed, you
must have already created the special OSSO realm in the service
root, as described in "Publish an OSSO Realm" on page 5-23.

It is also possible to configure a servlet context for OSSO authentication when
creating the servlet context using a WAR file. For more information about this, see
"Authenticating with Oracle Single Sign-On" on page 8-14.

5-24 Oracle9i Servlet Engine Developer’s Guide

Troubleshooting

Troubleshooting

If you have trouble connecting through nod_ose to your servlets or JSPs running in
the OSE/OJVM server, you can take the following steps to find the source of the
problem.

1.

Make sure that the servlet has been installed correctly on the OSE/OJVM
server. Follow the troubleshooting steps in Chapter 3, "OSE Configuration and
Examples". See [[need ref in that chapter]] for specific steps.

Make sure that the Oracle listener is running, and has been configured properly.
Be certain that the Aur or aSer vi ce directive in the ose. conf file specifies the
correct entry in the t nsnanes. or a file, and that this entry has the correct
service name, service type, protocol type, and port number. See "tnsnames.ora"
on page 5-10 for more information.

You can also use the t nspi ng utility to test the t nsnanes. or a entry.
Try stopping and restarting the Oracle listener, using the | snrct1 command.
Usethel snrctl stat us command to view the status of each listener port.

Is the Apache server running? If it is, an OS process status command (such as
ps - e under UNIX, or the TaskManager under Windows NT), should show
one or more ht t pds processes running.

Try stopping and restarting the Apache server, to make sure that your latest

ht t pds. conf and ose. conf files have been read by Apache.

If the connection is refused by the server:

check that the proper port was being used for the request

make sure that the correct host name is being used for the request

If an HTTP 404 error occurs:

check the URL contains a virtual path string that specifies the correct servlet
context

make sure that the URL also contains a virtual path string that specifies the
correct servlet within the servlet context

disable, as much as possible, caching in any Web browsers being used to
test HTTP content

if the servlet was just published, or configuration information just changed,
wait for any active sessions to timeout or close all current browsers and
start a completely new browser

Configuring mod_ose 5-25

Troubleshooting

« make sure the doc_r oot specified for that service and context is valid

5-26 Oracle9i Servlet Engine Developer’s Guide

S

Calling EJBs

This chapter tells you how to call Enterprise JavaBeans (EJBs) from servlets running
in the OSE/OJVM servlet container.

This chapter covers the following topics:
« Overview

« EJB Example

Calling EJBs 6-1

Overview

Overview

When you call a server-side EJB from a client application, you must use a network
protocol that involves an ORB, such as RMI over 11OP. However, calling out from
the servlet to an external object that is in the same session as the servlet can be much
simpler and faster than calling from a client. When the servlet and the other object
are running in the same server session, the connection between them does not
involve network traffic, only in-memory resource-sharing. Also, no ORB is
involved, making the calling code in the servlet code simpler. All you need to do is
specify the name of the object to look up.

The remainder of this chapter documents an example that demonstrates calling an
EJB from a servlet in the same Oracle Java Virtual Machine session.

6-2 Oracle9i Servlet Engine Developer’s Guide

EJB Example

EJB Example

In this example, the EJB accesses the Oracle database to retrieve the employee ID
number for an employee whose last name was passed to the EJB from the servlet. So
the example comprises four elements:

« aclient, such as a Web browser, that invokes the servlet

« theservlet

« the EJB, that is called by the servlet

« the Oracle database, from which the EJB retrieves an employee ID number

The example is kept simple, so that you can easily see how the four elements
interact.

In order to compile and run the example, the Oracle9i server must be installed and
running, and the HR example schema must be installed in the database. (The HR
schema is preconfigured.)

Note: The HR schema is not available in the Oracle8i Release 3
distribution. But this example would work for Oracle8i (Release 3)
if you change the SQL statement in the EJB code to access the
SCOTT.EMP table, and change the Makefile or batch file to access
the SCOTT schema, rather than the HR schema.

There are two main pieces of code that make up the example:

« | DServl et.java—the serviet code

« | DServer/ | DBean. j ava—the EJB code

In addition to these, there are the EJB Home and Remote Interface specifications:
« | DCommon/ | D. j ava—the remote interface

« | DConmmon/ | DHone. j ava—the home interface

Finally, there are several support files required for any application that uses EJBs:
« | D. xm —the EJB descriptor

« | DMap. xm —the Oracle-specific EJB descriptor

Calling EJBs 6-3

EJB Example

Servlet

The servlet is called from a client, such as Web browser. The client must pass the
employee last name to the servlet in a query string. See "Accessing the Servlet" on
page 6-10 for an example of the kind of URL that you could use to invoke the
servlet.

The servlet code is listed in this section. The servlet performs the following steps:

1. Imports the required Java packages, including the EJB home and remote
interfaces.

2. Declares Java variables for the last name, and for the ID number that is returned
by the bean.

3. Gets the last name from the query string.
4. Gets a new Initial Context for calling the EJB.

5. Looks up the EJB home interface, using the name of the bean as published in
the INDI namespace ("/ t est/ | DBean", see "Compiling and Deploying the
Example" on page 6-9).

6. Creates a reference to the remote interface.

7. Callsthe EJB get | D(St ri ng) method to retrieve the employee’s ID number,
passing it the last name obtained from the query string.

8. Prints the ID number to the HTTP response output stream.
The listing for the code, | DSer vl et . j ava, is shown here:

inport java.io.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

inport java.sql.*;

i nport | DCommon. | D;

i nport | DConmon. | DHorre;

inport javax.nam ng. Cont ext;

inport javax.nam ng.Initial Context;

public class |DServlet extends HttpServlet
{
public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws Servl et Exception, |CException
{
String Empl D = nul | ;
String LastName = null;
PrintWiter out = new PrintWiter(resp.getQutputStream));

6-4 Oracle9i Servlet Engine Developer’s Guide

EJB Example

EJB

}

Last Nane = req. get QueryString();

try {
Initial Context ic = new Initial Context();

| DHone | D_home = (I DHome)ic.lookup ("/test/|DBean");
IDid = 1D hone.create ();
Enpl D = id.getlD(LastNane);
out.println (LastNanme + "'s enployee IDis " + EnplD);
} catch (Exception e) {
EnplD = "Error",
}

out.flush(); out.close();

public void init(ServletConfig cfg) throws ServletException {

super.init(cfg);

public void destroy() {

super . destroy();

public String getServletinfo() {

return "Servlet calling EJB exanple";

The Enterprise JavaBean that is called by the servlet takes the employee’s last name
that is passed from the servlet, and looks up the ID number in the database. The EJB
performs the following steps:

1.

Imports the required packages. Note that the SQL and the Oracle JDBC
packages must be imported for the JDBC code in the example to work (or even
compile).

The bean implements a method get | D(St ri ng Last Nane) to get the ID
number from the database server.

The bean method declares a JDBC connection conn, a JDBC result set r set ,
and a St ri ng Enpl Dfor the ID. (The ID number could have been retrieved into

Calling EJBs 6-5

EJB Example

anint, butthe Stri ng isused as a "quick and dirty" way of returning a SQL
error if the JDBC connection or query fails.)

4. The first two Java statements in the t r y{} block open an Oracle server-side
internal JDBC connection.

5. Thei f{} block sets up a prepared JDBC statement. Note the '?’ placeholder for
the last name in the WHERE clause of the SQL statement.

6. pstm.setString(l, LastNane) setsthe value of the argument into the
SQL statement.

7. The query is executed, and the next value for the query is obtained. Note that if
there is more than one person with the same last name in the table, only the first
person’s ID is retrieved.

8. Theget String() method on the result set object gets the ID value.

9. Ifthe JDBC-related statements fail, the cat ch{} block is executed. The text
string for the SQL exception is placed in the return value Enpl D. Oracle does
not recommend this technique as a standard way for applications to handle
JDBC errors. It is done here to keep the example simple. See the Oracle9i JDBC
Developer’s Guide and Reference for better ways to handle errors of this kind.

10. Finally, the ID number is returned as a string to the EJB caller—the servlet.

EJB Code
The code for | DBean. j ava is shown here:

package |DServer;

i nport javax.ejb. Sessi onBean;
inport javax.ejb.CreateException;
i nport javax.ejb. Sessi onContext;
inport java.rni.RenoteException;
inport java.sql.*;

inport oracle.jdbc.*;

public class |DBean inplements SessionBean
{
public String getID (String LastNane) throws RenoteException {
Connection conn = null;
Resul t Set rset = null;
String Empl D = nul | ;
try {
Oracl eDriver ora = new OracleDriver();

6-6 Oracle9i Servlet Engine Developer’s Guide

EJB Example

conn = ora. defaul t Connection();
if (conn!=null) {
PreparedStatenment pstnt = conn. prepareSt at enent
("select enployee_id from hr. enpl oyees where | ast_nane = ?");
pstnt.setString(1l, LastName);
rset = pstnt.executeQuery();
if (rset.next()) {
Enpl D = rset.get String(1);
el se
Enpl D = " Unknown";
}

}
} catch (java.sql.SQ.Exception e) {

Enpl D = e. get Message();

1
return Enpl D

}

/1 Methods of the SessionBean

public void ejbCreate () throws RenoteException, CreateException {}
public void ej bRemove() {}

public void setSessionContext (SessionContext ctx) {}

public void ejbActivate () {}

public void ejbPassivate () {}

EJB Interfaces
The EJB home interface (I DConmon/ | DHome. j ava) specification is:

package | DCommon;

i nport javax.ejb. EJBHone;
inport javax.ejb.CreateException;
inport java.rn.RenoteException;

public interface |DHome extends EJBHone

{

public ID create () throws RenoteException, CreateException;

}

The remote interface (I DConmon/ | D. j ava) is:

package | DCommon;

Calling EJBs 6-7

EJB Example

i nport javax.ejhb. EJBOhj ect;
inport java.rn.RenoteException;

public interface |D extends EJBObject
{

}

public String getID (String LastNane) throws RenoteException;

EJB Descriptors
The EJB descriptor for this example is:

<?xm version="1.0"?>
<! DCCTYPE ejb-jar PUBLIC "-//Sun Mcrosystens Inc.//DTD Enterprise JavaBeans 1.1
/IEN'" "ejb-jar.dtd">
<ej b-jar>
<enterpri se-beans>
<sessi on>
<ej b- name>| DBean</ ej b- nane>
<hone>| DCommon. | DHome</ hone>
<r enot e>| DConmon. | D</ r enot e>
<ej b-cl ass>| DSer ver. | DBean</ j b-cl ass>
<sessi on-type>St at ef ul </ sessi on-t ype>
<transaction-type>Container</transaction-type>
</ session>
</ enterprise-beans>
<assenbl y- descri ptor>
<security-rol e>
<rol e-nane>Cr acl ePubl i cRol e</r ol e- name>
</security-role>
<net hod- per ni ssi on>
<rol e-nane>Cr acl ePubl i cRol e</r ol e- name>
<net hod>
<ej b- name>| DBean</ ej b- nane>
<net hod- name>* </ net hod- nane>
</ net hod>
</ met hod- perm ssi on>
<contai ner-transacti on>
<net hod>
<ej b- name>| DBean</ ej b- nane>
<net hod- name>* </ met hod- nane>
</ et hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>

6-8 Oracle9i Servlet Engine Developer’s Guide

EJB Example

</ assenbl y-descri pt or >
</lejb-jar>

The Oracle-specific descriptor is:

<?xm version="1.0"?>
<! DCCTYPE oracl e-ejb-jar PUBLIC "-//Sun M crosystens Inc.//DTD Enterprise JavaBe
ans 1.1//EN' "oracl e-ej b-jar.dtd">
<oracl e-ej b-jar>
<oracl e- descri pt or >
<ej b- name>| DBean</ ej b- nane>
<mappi hgs>
<ej b- mappi ng>
<ej b- name>| DBean</ ej b- nane>
<j ndi - name>t est/ | DBean</j ndi - name>
</ ej b- mappi ng>
<security-rol e-mappi ng>
<security-rol e>
<rol e- name>0r acl ePubl i cRol e</rol e- nane>
</security-role>
<oracl e-rol e>PUBLI C</ or acl e-rol >
</security-rol e- mappi ng>
<transaction- manager >
<defaul t-enlist>True</default-enlist>
</transacti on- manager >
</ mappi ngs>
</ oracl e-descri ptor>
</oracl e-ejb-jar>

Compiling and Deploying the Example

Follow these steps to compile and deploy the example:

1. Use aJDK 1.2-compliant Java compiler to compile
« IDjava
« | DHome.java
« | DBean.java
« |IDServlet.java

2. Usel oadj ava to load the | DSer vl et . cl ass file into the Oracle server.

3. Publish the servlet to the INDI namespace. For the URL specified below, we
assume that the servlet has been published to the named_ser vl et s directory

Calling EJBs 6-9

EJB Example

in the HR servlet context (/ HRRoot / cont ext s/ HRCont ext). See Chapter 3,
"OSE Configuration and Examples" for more information about | oadj ava and
publ i shservl et.

4. Deploy the EJB to the server using the depl oyej b command. Here is a possible
depl oyej b command for this example:

% depl oyej b -republish -addcl asspath .:<your_classpath> -tenp temp \
-user HR -password hr
-servi ce sess_iiop://<host_name>: <your _port _nunber>: <your_Oracl e_SI D>
-descriptor ID.xm -oracledescriptor |Dwvap. xm server.jar

There is a Makefile, and Windows NT batch files, that show how to compile this
demo, in the demo samples directory of your Oracle installation.

Accessing the Servlet

You can access the servlet from a Web browser, for example Netscape Navigator or
Internet Explorer. To invoke the servlet, specify a URL of the general form:

http://<your_host_name>: <port _number >/

<context _virtual _path>/<servlet_virtual _path>?<enpl oyee_| ast _nane>

(But all on one line.) Here is a specific URL that was used in testing this example:

http://dl sun1497: 8060/ ose/ t est | D?Kunar

Where dl sun1497 is the author’s workstation (inside the Oracle firewall, sorry),

8060 is the port number that the HTTP service listens on, / ose is the virtual path
for the HRCont ext servlet context (see Chapter 3, "OSE Configuration and

Examples"), and / | Dt est is the virtual path that | DSer vl et was published under
in step 3 above.

If you do not specify a query string in the URL, the Web client prints:

null's enployee IDis Unknown

If you specify an employee name that does not exist in the HR. EMPLOYEES table,
you get:

xyz's enpl oyee 1D is Unknown

(You can see why returning the error in the String is not a very good idea for a real
application.)

6-10 Oracle9i Servlet Engine Developer’s Guide

v

Oracle Servlet Engine Security

This chapter covers basic aspects of security for the Oracle Servlet Engine, running
in the Oracle Java Virtual Machine. This chapter focuses on security as established
using the session shell tool. Chapter 8, "Oracle WAR Deployment" describes those
aspects of security that are implemented using Web Archive (WAR) deployment
files.

The topics discussed in this chapter are:
« Overview

« JNDI Security

« HTTP Security

« Examples

« Troubleshooting

Oracle Servlet Engine Security 7-1

Overview

Overview
Security for the OSE/OJVM includes three security mechanisms:
1. Oracle9i server security, which involves database schemas and roles.
2. The JNDI protection mechanism, that is based on Oracle database security.

3. The HTTP security mechanisms, involving realms, groups, and principals, and the
access permissions associated with principals.

The first two aspects of OSE/OJVM security and the third are virtually orthogonal.
The slight exception to their almost total independence comes when an HTTP
security realm type uses database schemas as the principals. This is described in
"The DBUSER Type" on page 7-7.

This chapter first describes the INDI protection mechanism that is based on Oracle
database security, then describes how HTTP security is implemented by the
OSE/OJVM. Although knowledge about basic database security and Java security
in the database is helpful in reading this chapter, it is not essential. If you need more
information on these topics see the following Oracle guides:

= Oracle9i Application Developer’s Guide
« Oracle9i Java Developer’s Guide

This Guide assumes some basic knowledge about HTTP security. For more
information, you can look up the HTTP 1.1 specification RFC, which is available at

http://ww. w3. or g/ Prot ocol s/ rfc2068/rfc2068

More accessible documentation about HTTP security is available in any of the trade
press books that cover the Apache Web server. Two such are

« Professional Apache, by Peter Wainwright (\Wrox)
« Apache, the Definitive Guide, by Ben Laurie and Peter Laurie (O’Reilly)

7-2 Oracle9i Servlet Engine Developer’s Guide

JNDI Security

JNDI Security

To create entries in the OSE/OJVM JNDI namespace, you must be in possession of a
valid Oracle database schema name and password. Using the session shell tool
requires a connection to a database session, which requires a database server login.
For example, to create a Web service you must connect to the OSE session shell as
the database schema SYS. If SYS then changes ownership of the service root to
schema HR, then you have to be connected through the session shell as HR to do
things like publish servlets, create HTTP security objects such as realms, add
principals to realms, and so on.

When a client accesses the OSE, from a Web browser for example, and runs a servlet
that is owned by a schema, then that servlet runs with all the database privileges
associated with that schema. The servlet can query database tables or other
database objects, update tables and other objects, run stored procedures, and do all
the other things that a database user can do, exactly in accord with the database
permissions that the schema possesses.

What HTTP security allows you to do is permit and restrict access to servlets and
other JNDI objects (JSPs, text files, and so on) above and beyond the database access
permissions. For example, you might not want all Web browser users to be able to
access servlets that in turn access the HR database schema. So you can add
authentication and authorization requirements to the HR servlets using HTTP
security, which is described in "HTTP Security" on page 7-5.

JNDI Security Implementation

JNDI security is implemented using a UNIX-like permissions scheme. Each OSE
JNDI object, for example a published servlet in a named_ser vl et s context, has an
owner. The owner has a combination of three types of permission: read, write, and
execute. The exact semantics of each permission type are described in the Oracle9i
Java Tools Reference. In summary, read permission allows the session shell user to
"read" the object: list it, get its properties, and actually read it to the extent that it is
readable. Write permission allows the user to modify the object: delete it, substitute
another object, write it to the extent it is writable (a text file, for example), add
objects or properties to it (if it is a context, or a realm). Execute permission allows
the user to have the OSE activate the object, if it is for example a servlet, or to search
the object, if it is a context.

In addition to owner’s permissions, each OSE JNDI object has an access control list.
(This is where JNDI permissions differ somewhat from UNIX permissions, as the
UNIX group concept is not directly implemented in the OSE JNDI namespace

Oracle Servlet Engine Security 7-3

JNDI Security

implementation.) So an object can have a list of database users (schemas), each of
which can have a different set of access permissions.

Servlet Permissions

Normally, OSE JNDI objects in a servlet context inherit the ownership and
permissions of the owner of the Web domain. However in many cases it is desirable
for the owner of a domain to grant the right for other schemas to publish servlet
contexts in that domain, and to then effectively publish servlets in those contexts.
For example, the HR schema owns a domain HRRoot . HR can grant the schema
BENEFITS the right to publish servlets in its own context in that domain.

Run As Owner

In the normal course of events, the OSE would use the domain owner’s database
permissions when executing servlets in a servlet context in the domain. However,
the domain owner can establish that a servlet context is to run with the database
permissions of the servlet context owner. This is set by adding a group property to
the domain conf i g object, as the follow example, for the HRRoot service shows

$ cd / HRRoot
$ addgroupentry config context.properties context.runAsOmer true

Granting Permissions

OSE JNDI object ownership is controlled using the session shell chown command,
and permissions and access control lists are controlled by the chnod command.
These commands are documented in the Oracle9i Java Tools Reference.

7-4 Oracle9i Servlet Engine Developer’s Guide

HTTP Security

HTTP Security

HTTP security allows you to extend and refine the basic security provided by the
JNDI/Oracle database security model. The OSE/OJVM supports the most popular
aspects of the HTTP security model, including BASIC and DIGEST authentication,
as well as authentication using Oracle Single Sign-On (OSSO).

While the database and JNDI security covers for the most part access to database
objects, HTTP security determines who can access servlets from a Web client, and
what HTTP requests clients can use.

Access to a protected Web service resource involves authentication and authorization.
Authentication is the validation of submitted credentials, which establish that a
client is known and validated by the system. Authorization is the determination
that an authenticated user is allowed to perform the requested action.

There are four steps in setting up HTTP security for a Web application:
« establishing the principals of a Web service

« determining which resources are to be protected and how they are to be
protected

« establishing the permissions of principals within the servlet context
« setting up or validating a security servlet in the root of the servlet context

Follow these steps to ensure that the correct base information is established to
define HTTP security for your Web resources. If one or more of these steps is not
followed, security can become either non-existent, or access to protected resources
can be denied to users who should have it.

Establishing the Principals

Principal is the generic term for either a servlet engine user, or a group of users. A
group contains users or other groups. The realm is an object in the Web service that
contains and organizes the declared principals. Figure 7-1 shows that the r eal m
objects are at the top level of the Web service, in the r eal ns context, which is at the
same level as the conf i g object for the Web service.

Oracle Servlet Engine Security 7-5

HTTP Security

Figure 7-1 Realm objects in a Web service

f—
— Jbin
— fetc
— [system
— fservice
— fHRRoot

— f...
— MfestRoot <¢--oeereeees the service and domain root

— [servicelogs
— flogs
— config

— fcontexts

— frealms <-oooeeee where the realm objects are kept
testRealm1 <-------- one test realm

testRealm?2 ¢------- another test realm

Groups

Groups contain other principals (users or other groups). Individual members of a
group inherit the permissions of the group object.

Users

Users are single objects. Unlike a group, there are no subsets of other principals
belonging to a user.

Realms

The realm is the basic unit of HTTP security in the OSE/OJVM. Each realm defines
a separate set of principals. A Web service can contain multiple realms, as shown in
Figure 7-1. The realm is the source of the valid set of principals, and the types of

7-6 Oracle9i Servlet Engine Developer’s Guide

HTTP Security

principals that are handed to the server. The realm is the source of all principals,
and it also determines what kind of credentials are to be used to authenticate a
principal.

Each realm has a type, which determines the way the realm information originates
and the way it is stored. There are four types of realms, which are:

DBUSER Uses only database schemas as principals.

RDBMS Keeps all the realm information directly in a database table.

JNDI Stores all realm information in objects in the OSE JNDI
namespace.

0SSO Used for Oracle Single Sign-On management.

The DBUSER Type

A realm that has the DBUSER type derives principal definitions and permissions
from the users and roles defined in the database. The implications of this are:

« No principal management is allowed using any security commands. You
manage principal creation, deletion, and role membership through SQL
commands in the database server, not by using the session shell r eal m
commands.

« DBUSER-type realms in different Web services are the same, for identical
database instances.

« The OSE/OJVM performs no case translations in the form of the principal
name. This means that unless case was explicitly specified case when the
database schema was created, the entire principal name is uppercase. For
example, SYS and PUBLIC are uppercase, but a schema can be created with a
lower case hame, such as:

create user "steve" identified by boss;

In this case the schema, and hence the principal name, is "steve"—Ilowercase.

Note: The uppercase/lowercase distinction is important when
supplying user names and passwords from the browser.

Oracle Servlet Engine Security 7-7

HTTP Security

The RDBMS and JNDI Types

These realm types behave the same, only the way the information about principals
and groups is stored differs. You manage realms of this type using the session shell
r eal mcommands.

The OSSO Type
The OSSO realm type is described in "Configuring mod_o0sso" on page 5-22.

Note: The OSSO realm type is not available in Oracle8i Release 3.

The Session Shell Realm Commands

The session shell r eal mcommands are the tools that you use to establish,
configure, and remove realms. Use these session shell commands to:

« find out what realm commands are available: r eal m
« list the realms available in a Web service:real m | i st
« add anew realm to a service, or remove arealm: real m publish ...

« add a new principal to a realm, remove an existing one, or list the users in a
realm: r eal m user

« add anew group to a realm, or remove an existing one: real m group ...
« add a principal to a group, or remove an existing one: r eal m par ent

« protect paths to Web resources: real m map . ..

« set HTTP security permissions for HTTP requests: r eal m perm . ..

This chapter lists some common ways to use the r eal mcommands. Complete
documentation for the r eal mcommands is available in the Oracle9i Java Tools
Reference.

Realm Configuration

To Create or Remove a Realm
To create a realm, use the r eal m publ i sh command. Here is an example:

$ real mpublish -webservice /testRoot -add testRealnml -type JNDI

7-8 Oracle9i Servlet Engine Developer’s Guide

HTTP Security

You can also remove a realm using r eal m publ i sh with the - r emrove option. An
example is:

$ real mpublish -webservice /testRoot -remove testReal ml
Realm declarations reside in the INDI namespace. You could deploy a custom realm
type that you have written using the - cl assname option. Here is an example:

$ real mpublish -w /testRoot -add nyReal m -cl assnane steve: foo. bar. MyReal m

In this example, the realm name and the class name are the same, but they do not
have to be so.

To Create or Remove a Principal
Create a user with the r eal m user command. An example is:

$ real muser -webservice /testRoot -realmtestReal ml -add steve -p boss

To create a group use realm group, as follows:

$ real mgroup -webservice /testRoot -real mtestRealml -add HRgroup -p gpswdl

With either of these commands, if the password is left blank, the principal name is
used for the password.

You can delete a user as follows:

$ real muser -webservice /testRoot -real mtestRealml -renmove steve

To delete a group use the realm group command. An example is:

$ real mgroup -webservice /testRoot -real mtestRealml -renove HRgroup

To List Users and Groups

Use the r eal m user command to list the users in a realm, as shown in this
example:

$ real muser -webservice /testRoot -real mtestReal nl

Use realm group to list groups in a realm. For example:

$ real mgroup -webservice /testRoot -realmtestReal ml

Oracle Servlet Engine Security 7-9

HTTP Security

To Add, Remove, or List the Principals for a Group

Use the par ent variant of the r eal mcommand to add a principal to a group. Here
is an example:

$ real mparent -w/testRoot -real mtestRealm-group groupl -add userl

Remove a principal from a group also using r eal m par ent, with the - r enmove
option, as shown in:

$ realmparent -w/testRoot -real mtestRealm-group groupl -renove userl

You can also list principals within a group by using the r eal m par ent command.
For example:

$ real mparent -w/testRoot -real mtestRealm-group groupl

To query which groups a principal is a member of use the - quer y option. For
example:

$ real mparent -w/testRoot -real mtestRealm-query userl

Notes: Not all realms support the query option. For example,
DBUSER realms do not support this kind of principal
manipulation.

Where Realms Are Located

When you declare realms for a service, they are located in a r eal s subcontext of
the service. For JNDI-type realms, there are additional subcontexts within the
r eal ms context that contain the realm’s principal declarations.

Removing the Web service r eal ns context removes all realm definitions for the
service, such as user and group names, permission mappings, and so on. However
any external resources, such as table entries, would still remain. For efficient realm
management, it is much better to use the session shell realm commands.

Removing subcontexts of realms can affect INDI-type realms.
RDBMS-type realms use the following database tables:

= JAVASHTTP$REALMBPRI NCI PAL$— contains all principals and encoded
versions of their passwords

=« JAVASHTTP$REAL MBGROUP$— contains principal/group relationships

7-10 Oracle9i Servlet Engine Developer’s Guide

HTTP Security

Note that creating an RDBMS-type realm also creates a/ r eal ns context in the Web
service root, and entries in this context. But no subcontexts are created for
RDBMS-type realms.

Protecting Web Resources

Realms are containers for principals, groups, and the protection schemes that protect
Web resources. OSE HTTP security resource protection is local to the servlet context.

Resource Protection Schemes

When you need to protect a Web resource, you declare a protection scheme. The
syntax for a protection scheme is

<aut hType>: <r eal mNane> | NONE

So, you specify an authentication method, followed by the name of the realm to
which the authentication applies, or no protection (NONE).

There are only two valid authentication methods for the OSE/OJVM, as shown

below.

BASIC BASEG64 encoding, which is very insecure.

DIGEST In the DIGEST scheme, both parties keep the password, and
pass encrypted codes. The DIGEST scheme is documented in
RFC 2069, at

htt p: / / www. w8. or g/ Prot ocol s/ rfc2069/ r f c2069

Form-based and SSL schemes are not supported, though they can be plugged in
through namespace entries.

Although DIGEST is far more secure than BASIC, not all browsers support it.

You can also declare resources not to be protected. This is useful when the servlet
context root is to be protected. However, when the root is protected, the error pages,
being part of the tree, are also protected. Delivering an error page is part of the
authentication process. If the error page is protected, cycles develop, and the
desired behavior is not observed.

Instead of letting the error page default as part of the tree, explicitly declare the
error pages as not being protected. Use a protection scheme of <NONE>. For
example:

$ realmnmap -s /testRoot/contexts/nyContext -a /system* -schene <NONE>

Oracle Servlet Engine Security 7-11

HTTP Security

$ realmmap -s /testRoot/ myServicelcontexts/myContext -a /* -schene \
basi c: test Real ml

Using "realm map" to Protect Resources

The protected path is local to the servlet context. Internally, that path is normalized,
enabling stable, predictable patterns for matching. This may cause the internal
representation to differ from the original path used to create the protection scheme.
HTTP Security will use the longest, most exact match possible when trying to apply
the protection rules.

Here is an example that protects paths to resources with the BASIC protection
scheme:

$ realmmap -s /testRoot/contexts/nyContext -a /doc/index.htm -scheme \

basi c: test Real il
$ realmmap -s /testRoot/contexts/nyContext -a /doc -schene basic:testReal n2
$ realmmap -s /testRoot/contexts/nyContext -a /doc/* -scheme basic:testReal n8

When declarations are made, as shown in the previous example, the paths are
matched to realms as in the following examples:

/doc/index.htnl -> testReal ml
/doc/foo -> testReal nB

/doc -> testReal n?

/doc/ -> testReal nP
/doc/index -> testReal nB

You can remove the protection on a path using the r eal m map command, as shown
here:

$ realmmap -s /testRoot/contexts/nyContext -r /doc/index.htn

To list all protected paths within a servlet context, use the r eal m nmap command as
shown here:

$ realmmap -s /testRoot/contexts/nyContext

You can explicitly declare that a path not be protected. Here is an example:

$ realmnmap -s /testRoot/contexts/nyContext -a /system* -schene <NONE>

To list all protected paths within a servlet context, just use realm map and specify
only the service root. For example:

$ realmmap -s /testRoot/contexts/nyContext

7-12 Oracle9i Servlet Engine Developer’s Guide

HTTP Security

The JNDI entry for protection mappings is located in the pol i cy subcontext of the
servlet context. Within the policy subcontext there is an object called ht t pMappi ng.
This creates the object responsible for handling the security servlet protection
mapping. By default, ht t pMappi ng is used as an index into the
JAVASHTTP$REALMEMAPPI NG$ database table. The HTTP realm mapping table
contains all the mapped paths. Using JINDI entry manipulation you could introduce
a customized version of ht t pMappi ng.

Declaring Permissions

Permissions are the most complicated of all HTTP security declarations, because
they tie service-scoped entities with servlet context-scoped entities and reside in the
servlet context themselves.

To set up a permission declaration, supply the following information:

« the Web service

« the realm within the specified service

« the servlet context within the specified Web service

« principal(s) within the realm

« the path to which the permission applies

« whether the permission is being granted or denied

« HTTP request types to be protected

Given all the pieces that are being tied into one permission declaration, it is easy to

see why these are the most complicated declarations.

HTTP Request Types HTTP security permissions concern only valid HTTP request
methods: GET, POST, PUT, DELETE, HEAD, TRACE, OPTIONS.

Examples of Permission Declarations
Declare a granted permission on/ f oo/ i ndex. ht M for user 1 for GET and POST:

$ realmperm-w /testRoot -realmtestReal ml -s /testRoot/contexts/myContext -n \
userl -u /foo/index.htm + get,post

Declare a denied permission on/ f oo/ * for user 1 for PUT and DELETE:

$ realmperm-w /testRoot -realmtestReal ml -s /testRoot/contexts/myContext -n \
userl -u /foo/* - put,delete

Oracle Servlet Engine Security 7-13

HTTP Security

Clear granted permissions on/ f oo/ i ndex. ht ml foruser 1:

$ realmperm-w /testRoot -realmtestReal ml -s /testRoot/contexts/myContext -n \
userl -u /foolindex.htm +

List all permissions for user 1:

$ realmperm-w /testRoot -realmtestReal ml -s /testRoot/contexts/myContext -n \

userl

In the pol i cy subcontext of a servlet context, there is a conf i g object. This entry is
used to create the object responsible for all permission declaration checks. The
object is used as a key into the permissions table: JAVASHTTPSREALMSPOLI CY$.

Declaring A Security Servlet

All HTTP security is declared through JINDI nhamespace entries. This is also true for
the servlet that does the enforcing of security. In the servlet context, if there is a
Privil egedServl et named htt pSecuri ty, that servlet is added as the first
pre-filter for all requests within that servlet context.

Any customization is allowed as long as the Pri vi | egedSer vl et interface is
implemented. The purpose of this servlet is to either:

« raise an AccessCont r ol Excepti on during its
service(Htt pRequest. Privil egedAccess, HttpRequest,
Ht t pResponse) if there is a perceived security violation

or
« hotraise an exception if the request is to be allowed

After authentication and authorization have taken place, the servlet must set
specific authenticated principal values on the request itself. This is the user
information that can be retrieved from the request by any executing servlet.

Creating a Security Servlet
You can use r eal m secur e to create a security servlet. For example:
$ real msecure -s /testRoot/contexts/myContext
Removing the security servlet removes all security enforcement in a servlet context.

If the entry is missing, the Web server continues execution with no security
enforcement.

7-14 Oracle9i Servlet Engine Developer’s Guide

HTTP Security

To remove a security servlet, type:

$ rm/nyDomai n/ cont ext s/ nyCont ext/httpSecurity

Note: The servlet is not published in named_ser vl et s but
within the servlet context directory itself.

Oracle Servlet Engine Security 7-15

Examples

Examples

There are two security-related examples in the SORACLE_HOME/demo directory
of your distribution. The demos are reproduced here.

rdbmsRealm

This example protects the path / event _| og* with a realm that uses a database
table for its source of principals. Note that paths in permission declarations are
relative to the servlet context mapping.

This example presupposes that the sample database has already been setup. The
prerequisites are:

« the Web server is installed and operational
« aWeb domain is located in / HRRoot

« thereis acontext / HRRoot / cont ext s/ HRCont ext that has a virtual
path-mapping of ose

« there is no realm named docReal mExanpl e in the domain
First, make sure that there is a security servlet for the servlet context:

$ real msecure -s /HRRoot/ cont ext s/ HRCont ext

Publish a realm that uses a database table for its users:

$ real mpublish -w /HRRoot -add docReal mExanpl e -type rdbns

Create a user in the realm:

$ real muser -w /HRRoot -real mdocReal mExanple -add alex -p wel cone

Create a group in the realm:

$ realmgroup -w /HRRoot -real mdocReal nExanpl e -add docG oup -p wel cone

Add "alex" to the doc G oup:
$ real mparent -w /HRRoot -real m docReal nExanple -group docG oup -add al ex

Allow docGr oup to execute HTTP requests with the GET and POST methods:

$ real mperm -w /HRRoot -real mdocReal mExanple -s \
/ HRRoot / cont ext s/ HRCont ext -name docG oup -path /event_log + get, post

Protect the resource / event _| og:

7-16 Oracle9i Servlet Engine Developer’s Guide

Examples

dbUserRealm

$ realmmap -s / HRRoot/ cont ext s/ HRContext -add /event_l og -schene \
Basi c: docReal nExanpl e

Now, when a client tries to access / ose/ event _| og the browser prompts for a
username and password. Be sure to type in the username with the correct
capitalization ("alex"). User nanme/ passwor d is al ex/ wel come.

You could also enter username: docGr oup password: wel conme

To remove the password protection without removing the realm declaration,
execute the following session shell command:

$ realmmap -s / HRRoot/ cont ext s/ HRCont ext -renmove /event_| og

dbUserRealm is a simple example that protects the path / doc*, and only allows the
database user HR access to it. Note that paths in permission declarations are relative
to the servlet context mapping.

This example presupposes that the sample database has already been setup. The
prerequisites are:

« the Web server is installed and operational
« aWeb domain is located in / HRRoot

=« thereis aservlet context / HRRoot / cont ext s/ HRCont ext that has a virtual
path mapping ose

« the database schema HR has been installed
« there is no realm named dbUser Exanpl e in the domain

First, be sure that there is a security servlet for the
/ HRRoot / cont ext s/ HRCont ext servlet context:

$ real msecure -s /HRRoot/ cont ext s/ HRCont ext

Next, publish a realm that uses database users as for its principals:

$ real mpublish -w /HRRoot -add dbUserExanmple -type dbuser

Allow HR to execute HTTP requests with the GET and POST methods:

$ real mperm -w /HRRoot -real mdbUserExanple -s \
/ HRRoot / cont ext s/ HRCont ext -name HR -path /http_log + get, post

Oracle Servlet Engine Security 7-17

Examples

Protect the resource / htt p_I og:
$ realmmap -s /HRRoot/ contexts/HRContext -add /http_log -schene \
Basi c: dbUser Exanpl e

Now, when a client tries to access / ose/ htt p_I| og for the HR demo server the
browser prompts for username and password. Be sure that the letter case matches
exactly. In this case, the username is literally "HR", and the password is "hr".

To remove the password protection without removing the realm declaration,
execute the following session shell command:

$ realmmap -s / HRRoot/ cont ext s/ HRContext -remove /http_l og

7-18 Oracle9i Servlet Engine Developer’s Guide

Troubleshooting

Troubleshooting

There are several layers of suspected problems to eliminate when debugging HTTP
security. This minimal checklist helps you get started trouble shooting.

Check spelling of all realm names, user names, and URI specifications.

If using a DBUSER-type realm, make sure that the case is correct for principals.
Set your browser cache to check for newer versions of pages every time.

Clear browser cache(s).

After setting a Web server sessions property, make sure you are testing against a
new Web server session. The information may not be propagated to current
active sessions. Do this by closing all running browsers and starting a new
browser.

Be sure that all four stages of security declarations are in place. If any are
missing or incorrect, the results are unpredictable.

Be sure that the type of authentication specified is supported by your browser.
For example, by default, Netscape 4.7 does not support Digest authentication.
Netscape will treat it as just Basic authentication (raising a dialog box).
However, the Basic authentication response does not work for Digest
authentication. This is misleading when the expected Netscape prompt
displays, because it actually appeared for the wrong reasons.

Use the shell to query the entities involved. Check that the information is
declared in a way that defines your security goals.

For example, if / doc/ i ndex. ht nl is to be accessible only to user 1 in
nmy Real m using BASIC authentication, then the following must exist:

« Arealm named myReal mwithin the domain.
« The realm must contain a user named user 1, with a known password.

« A mapping of/ doc/ i ndex. ht M or some more general path to a
protection scheme BASI C:. ny Real mwithin the servlet context.

« A security servlet declared for the servlet context.

« A permission granting GET rights to the user named user 1 for
/doc/ i ndex. ht M (or a more general path)

Oracle Servlet Engine Security 7-19

Troubleshooting

7-20 Oracle9i Servlet Engine Developer’s Guide

8

Oracle WAR Deployment

This chapter describes Web archive (WAR) deployment to the Oracle9i database for
installation and execution of Web applications in the Oracle Servlet Engine.
Although the Oracle implementation follows the general WAR deployment
standard, there are special considerations and logistics for execution in the Oracle9i
JVM. Oracle offers utilities to help with these logistics. The following topics are
discussed in this chapter:

Standard Web Applications and Hierarchies

Overview of WAR Deployment to the Oracle9i Database
Oracle Auxiliary Descriptor

Oracle WAR Deployment Tool Functionality

Oracle WAR Deployment Tool Usage

Sample Application Hierarchy and Descriptor Files

Current Restrictions

Important: Wherever the Oracle9i database is mentioned, this
documentation applies equally to the Oracle8i Release 3 database.

Oracle WAR Deployment 8-1

Standard Web Applications and Hierarchies

Standard Web Applications and Hierarchies

A Web application is a collection of components that are bundled and run as an
integrated unit. Web application components can include HTML pages (or other
static components, such as image files or sound files), servlets, JavaServer Pages
(JSP pages) and tag libraries, JavaBeans, Java utility classes, and other resources. (It
is typical for libraries of classes and resources to be packaged in JAR files.) You can
run such an application in any standard container (servlet engine) from any vendor.
In addition, there must be some kind of top-level meta information to tie all the
components together.

This section briefly summarizes the standard concepts of Web applications and Web
archive (WAR) files, which provide the mechanism for deploying a Web application
to a target environment. The following topics are introduced:

« Web Application Servlet Contexts

« Web Application Hierarchies

« Web Application Deployment Descriptors

« Web Application Deployment and WAR Files

Web Application Servlet Contexts

Each Web application is represented by a servlet context, which maintains
application state information and which you can think of as an application
container. As defined in the servlet 2.2 specification, a particular servlet context is
represented in Java as an instance of a class that implements the standard

j avax. servl et. Servl et Cont ext interface. See "Servlet Contexts" on page 2-32
for more information about servlet contexts.

In general (not considering the Oracle9i JVM in particular), this would be state
information for all instances of the different application components running within
a given Java virtual machine. This is similar to the way a session maintains state
information for a single client on the server; however, in most environments a
servlet context is not specific to any single user and can potentially handle multiple
clients.

The model differs in the Oracle9i VM, however, where there is just a single user for
each JVM session. In this case, any particular servlet context instance is managing
state information for just a single instance of the application and for just a single
user.

8-2 Oracle9i Servlet Engine Developer’s Guide

Standard Web Applications and Hierarchies

Web Application Hierarchies

A Web application has a hierarchy that is rooted at a specific directory path within a
Web server. As described in the servlet 2.2 specification, this hierarchy can exist in a
file system, an archive file (such as a WAR file, described in "Web Application
Deployment and WAR Files" on page 8-6), or some other form for deployment.

When you create a servlet context for an application, you associate its root location,
or document root, with a context path (a name that you choose), and the context path
becomes part of the URL to access the application.

Publishing an application component (such as a servlet or JSP page) is a process to
make the component available for execution. When you publish a component, you
typically specify a virtual path (or servlet path), which determines the rest of the
URL to access the component. The virtual path typically represents the location of
the component within the application hierarchy.

For example, if a customer service application on host wwv. cor phonmepage. com
has a context path of cust ser vi ce, then all requests using URLs that start with
the following prefix will be routed to the servlet context that represents the
customer service application:

http:// ww. cor phonepage. conl cust servi ce

An i ndex. ht ml file in the application document root directory, for example,
would be served as a result of a request to the following URL (and you can say that
i ndex. ht m is the virtual path):

www. cor phonepage. coml cust servi ce/ i ndex. ht m

If a JSP page, mypage. j sp, has a virtual path of j sp/ mypage. j sp (and so
presumably, but not necessarily, is in aj sp subdirectory under the document root
directory), you would access it as follows:

www. cor phonepage. cond cust servi ce/ j sp/ mypage. j sp

There is a WEB- | NF subdirectory of the document root, according to the servlet 2.2
specification, which contains the application deployment descriptor (described in
the next section, "Web Application Deployment Descriptors"). Subdirectories of
VEB- | NF contain any components of the application other than document pages to
be served to the client. For example, components under the VVEB- | NF directory
might include servlets, JavaBeans, and utility classes. Components outside the
VAEB- | NF directory include HTML pages and perhaps JSP pages.

Oracle WAR Deployment 8-3

Standard Web Applications and Hierarchies

Following are the contents of the VEB- | NF directory, according to the servlet 2.2
specification:

« [/ VEB- I NF/ web. xnl file (the deployment descriptor)

« [/ VEB- I NF/ cl asses directory (for . cl ass files for servlet, JavaBean, and
utility classes)

« [/ VEB- I NF/ 1i b directory (for JAR files containing libraries of Java . cl ass
files and resources)

Here is a sample hierarchy for a Web application (in a WAR file):

/index. htm

/wel come. j sp

/i mages/ | ogo. gi f

/ VEB- | NF/ web. xmi

/VEB- | NF/ | i b/ beans. j ar

/ WEB- | NF/ ¢l asses/ coml cust servi ce/ servl ets/ CSLogServl et. cl ass

Web Application Deployment Descriptors

The servlet 2.2 specification provides a mechanism known as a Web application
deployment descriptor to specify the elements and configuration of an application.
The deployment descriptor is an XML file, named web. xm by convention.

Theweb. xm file includes information and settings for such items as servlet context
configuration parameters, session configuration parameters, servlet and JSP
definitions, servlet and JSP mappings, MIME type mappings, error pages, and
security.

The DTD that defines XML grammar for aweb. xm file is included in Chapter 13
of the Sun Microsystems Java Servlet Specification, Version 2.2.

Oracle provides a local copy of this DTD and uses it for validation by default if you
do not specify a DTD in the web. xm DOCTYPE declaration.

Following is a basic example of aweb. xm file (taken from the servlet 2.2
specification):

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DID web Application
2.2//EN" "http://java.sun.com j2ee/ dtds/web-app_2_2.dtd">
<web- app>
<di spl ay-nane>A Sinple Application</display-name>
<cont ext - paranp
<par am nane>\Webnast er </ par am name>

8-4 Oracle9i Servlet Engine Developer’s Guide

Standard Web Applications and Hierarchies

<par am val ue>webmast er @rycor p. conk/ par am val ue>
</ cont ext - par an»
<servl et>
<servl et - name>cat al og</ servl et - nane>
<servl et-class>com nycor p. Cat al ogSer vl et </ servl et-cl ass>
<init-paranmp
<par am name>cat al og</ par am nane>
<par am val ue>Spri ng</ par am val ue>
</init-paranp
</servlet>
<servl et - mappi ng>
<servl et - nane>cat al og</ servl et - nane>
<url-pattern>/catal og/*</url-pattern>
</ servl et - mappi ng>
<sessi on-config>
<session-timeout >30</ sessi on-ti meout >
</ sessi on- confi g>
<ni me- nappi ng>
<ext ensi on>pdf </ ext ensi on>
<ni me-t ype>appl i cati on/ pdf </ m nme-type>
</ 'm me- mappi ng>
<wel cone-file-list>
<wel cone-fil e>i ndex. jsp</wel come-file>
<wel cone-file>i ndex. htm </ wel cone-file>
<wel conme-fil e>i ndex. ht nx/ wel cone-fil e>
<wel cone-file-list>
<error-page>
<error-code>404</ error - code>
<l ocati on>/404. ht m </l ocati on>
</ error-page>
</ web- app>

As described in "Distributable Applications and the Oracle Servlet Engine" on
page 8-7, a Web application must be designed as di st ri but abl e to run in the
Oracle Servlet Engine. The web. xm file specifies this through the presence of a
di st ri but abl e element, defined as follows in the web. xm DTD:

< ELEMENT di stri but abl e EMPTY>

For example:

<di stributable />

Oracle WAR Deployment 8-5

Standard Web Applications and Hierarchies

Note: According to the servlet 2.2 specification, aweb. xm file
can use theenv-entry,ej b-ref,and resour ce-ref elements
to refer application components to external resources and EJBs
without explicit knowledge of their location or organization. The
ej b-r ef element, for example, would contain information to help
a servlet find the home interfaces of an EJB. For more information,
see the Sun Microsystems Java Servlet Specification, Version 2.2.

The Oracle WAR implementation does not currently support these
tags, however. See "Current Restrictions" on page 8-59 for more
information.

Web Application Deployment and WAR Files

A Web archive (WAR) file is a single file that contains all the components of a Web
application and is structured according to the hierarchy of these components. It is
the vehicle for deploying a Web application to the target environment where the
application is intended to run.

At the target system, a deployment tool will unpackage the WAR file and place the
application components according to the hierarchy specified by the WAR file
structure. ("Overview of the Oracle WAR Deployment Tool" on page 8-8 describes
the Oracle tool.)

WAR files are identified by the . war file name extension and can be created using
any standard Java archive (JAR) tool that allows any or all of the application
components to be signed.

8-6 Oracle9i Servlet Engine Developer’s Guide

Overview of WAR Deployment to the Oracle9i Database

Overview of WAR Deployment to the Oracle9i Database

This section provides an overview of details, considerations, and mechanisms in
deploying and running a Web application in the Oracle9i database. This discussion
includes the following topics:

« Distributable Applications and the Oracle Servlet Engine
« Overview of the Oracle Auxiliary Descriptor

« Overview of the Oracle WAR Deployment Tool

« Security Preparations

« Database Sessions, Servlet Context Ownership, and Application Privileges

Distributable Applications and the Oracle Servlet Engine

The Sun Microsystems servlet 2.2 specification introduces the concept of
distributable Web applications, where application components can be deployed
across multiple Java virtual machines, running on either the same host or different
hosts. (Within an application that is marked as distributable, all requests that are
part of a particular session can be handled only on a single JVM at any one time.)

With the scalable nature of the Oracle Servlet Engine, it is typical for many client
sessions to be simultaneously active and accessing the same Web application at any
given time, with each client session executing in its own virtual JVM. This means
that a Web application deployed to run in OSE must be distributable.

For an application to be distributable, you must take the following steps:

« Follow a more restrictive set of rules during development of the application, as
detailed throughout the servlet 2.2 specification.

« Mark the application as distributable, using the di st ri but abl e tag in the
application deployment descriptor (web. xm , discussed in "Web Application
Deployment Descriptors" on page 8-4).

When you deploy an application to the Oracle9i database, the Oracle WAR
deployment tool checks the application deployment descriptor and issues a
warning if the application is not marked di st ri but abl e. (Deployment will
continue despite the warning.) Use the warning as a reminder to check that your
application does not make assumptions about running in a single JVM instance.
Update the deployment descriptor to mark the application di st ri but abl e after
you are satisfied with your analysis and have made the necessary changes.

Oracle WAR Deployment 8-7

Overview of WAR Deployment to the Oracle9i Database

Overview of the Oracle Auxiliary Descriptor

"Web Application Deployment Descriptors" on page 8-4 describes the standard Web
application deployment descriptor file, web. xni . This file is a vehicle for standard
configuration instructions for a Web application and is portable to any runtime
environment supporting the servlet 2.2 specification. However, web. xm cannot
provide all the information necessary to deploy an application to a particular servlet
container, because each vendor is free to extend standard functionality with their
own set of features. Furthermore, some aspects of deployment may be intentionally
left out of the standard web. xm descriptor. The servlet 2.2 specification, therefore,
suggests that each vendor provide an additional descriptor file for configuration of
features unique to that vendor’s runtime environment.

Oracle specifies and supports such an additional descriptor, known as the Oracle
auxiliary descriptor. As with the web. xm deployment descriptor, the auxiliary
descriptor is in XML format. Oracle provides a DTD to specify supported elements
and attributes. You can choose any file name for the auxiliary descriptor, but the

. xm file name extension is recommended.

See "Oracle Auxiliary Descriptor" on page 8-17 for more information.

Overview of the Oracle WAR Deployment Tool

Oracle offers a tool that deploys a Web application to the Oracle9i database for
execution in the Oracle Servlet Engine. The WAR deployment tool requires that the
application be packaged in a WAR file, and the tool can be invoked in any of the
following ways:

« from the server, by using the Oracle session shell depl oywar command
(requires you to first manually upload the WAR file and auxiliary descriptor)

« from the server, from Java code or a PL/SQL call specification through the
oracle.nts. http.depl oynent. Depl oyWar. mai n(String[] args)
method (this also requires you to first manually upload the WAR file and
auxiliary descriptor)

« fromany HTTP client, by invoking the Oracle deployment servlet (presuming
theoracl e. aurora. nts. http. depl oynment . Depl oynent Ser vl et
servlet class has been published to the Oracle Servlet Engine in advance, which
occurs as part of Oracle WAR deployment installation)

(Oracle supplies a special form, depl oywar . ht m as a convenient way to
invoke the deployment servlet.)

8-8 Oracle9i Servlet Engine Developer’s Guide

Overview of WAR Deployment to the Oracle9i Database

from an Oracle client (any system with an Oracle client installation), through a
client-side deployment script (depl oywar on UNIX or depl oywar . bat on
Windows NT)

from a non-Oracle client (any system without an Oracle client installation), by
executing the WAR deployment tool wrapper, Ht t pCl i ent W apper, directly
from Java

Note: The client-side scripts and client-side wrapper are just
convenient front ends that invoke the deployment servlet.

"Vehicles for Invoking the Oracle WAR Deployment Tool" on page 8-46 discusses
each of these ways to invoke the Oracle WAR deployment tool.

When you invoke the WAR deployment tool, it performs several automated steps,
presuming that your web. xm file and Oracle auxiliary descriptor are configured in
some appropriate way. These steps include the following:

loading of the deployment descriptors (web. xm and the auxiliary descriptor)
file loading from the WAR file, using the Oracle | oadj ava utility

The | oadj ava utility loads Java classes, Java resources, and JSP pages into the
Oracle9i database, including JSP translation where applicable. It also copies
static pages of the application to the OSE document root directory.

creation of a servlet context for the application
publishing of application components (servlets and JSP pages)

securing the application (implementing any URI protections and
login/password requirements, assuming appropriate OSE security preparations
were made)

"Oracle WAR Deployment Tool Functionality" on page 8-35 describes these steps in
more detail.

Oracle WAR Deployment 8-9

Overview of WAR Deployment to the Oracle9i Database

Note: The Oracle WAR deployment tool will translate JSP pages
(-jspand. sql j sp files). It will not, however, translate or compile
.sqglj or.java files. (The servlet 2.2 specification assumes that
only compiled classes are being loaded.) Any . j ava or. sql j files
in the WAR file will be treated as Java resources and loaded as is.
You will have to perform any server-side translation or compilation
manually.

Security Preparations

If an application being deployed defines any security restrictions, you must
complete (or verify) appropriate preparations before deployment:

« Create the necessary security realm.
« Create users and groups for role names.
« Create a group for all realm users (if necessary).

« Decide what principals (users or groups) in OSE will correspond to role names
inany security-rol e elementsin the web. xm file. (This is necessary only
for roles involved in security constraints.)

For background information about OSE security, see the Oracle9i Oracle Servlet
Engine User’s Guide.

The application developer must provide a description of security roles and different
authorization arrangements that are required. The appearance of | ogi n- confi g,
security-rol e,orsecurity-constraint elementsinthe web. xm file
indicates that the application has security features.

Create Security Realms Prior to Deployment

All HTTP security protections for an application apply within one HTTP security
realm. The realm is specified in the | ogi n- conf i g element of the web. xm file or
Oracle auxiliary descriptor. Security roles and virtual path protections should be
found and established within this HTTP security realm.

Before deploying the WAR file, it is your responsibility to make sure the HTTP
security realm for the application has been created in OSE. You can accomplish this
using the Oracle9i session shell r eal m publ i sh command, as in the following
example ($ is the session shell prompt):

$ real mpublish -w soneService -add catal ogReal m -type RDBMS

8-10 Oracle9i Servlet Engine Developer’s Guide

Overview of WAR Deployment to the Oracle9i Database

For more information about the r eal m publ i sh command, see the Oracle9i Java
Tools Reference.

The | ogi n- confi g element includes a subelement that provides the realm name,
as in the following example:

<l ogi n-config>

<aut h- met hod>basi c</ aut h- et hod>

<real m nane>cat al ogReal nx/ r eal m nane>
</l ogi n-confi g>

The HTTP security realm name specified in the r eal m nanme subelement

(cat al ogReal min this example) must match the name of the realm that was
created prior to deployment. This example also specifies that the application will be
authenticated (by the Oracle Servlet Engine) according to the basi ¢ authentication
method.

The | ogi n-confi g element is optional in the web. xm file and can be specified in
the Oracle auxiliary descriptor instead, which is useful if you are deploying the
application to different environments and do not want to change the web. xm file
each time. The value in the Oracle auxiliary descriptor takes precedence over the
value in web. xm .

If the | ogi n- conf i g element is not specified in either descriptor, but the web. xm
file contains some security constraints, the Oracle WAR deployment tool will issue

an error. (It is impossible to configure any security constraints without knowing the
security realm and authentication method.)

Create Users and Groups for Role Names Prior to Deployment

The Oracle WAR deployment tool will protect Web resources according to directives
indicated by securi ty-constrai nt elementsin the web. xm file. The following
example illustrates the structure of these elements:

<security-constraint>
<web- resour ce-col | ecti on>

</ web-resour ce-col | ection>
<aut h-constrai nt >
<r ol e- name>cat al ogUser </ r ol e- name>
<r ol e- name>cat al ogBui | der</rol e- name>

</ aut h-constrai nt>

<user - dat a- constrai nt >

Oracle WAR Deployment 8-11

Overview of WAR Deployment to the Oracle9i Database

</ user - dat a- constraint >
</security-constraint>

Web resources (such as the list of relative virtual paths within the application
context) and HTTP methods such as GET, POST, and HEAD (by which these paths are
accessed) must be protected so that only certain authenticated principals can access
the resources. The web- r esour ce- col | ecti on subelement in web. xm defines
the Web resources. The principals—users and groups—are listed in r ol e- nane
subelements of the aut h- const r ai nt subelement.

During deployment, the Oracle WAR deployment tool will ensure appropriate
protection of Web resources at runtime, but cannot decide what groups of users in
your realm correspond to the roles used by the application.

Before deploying the WAR file, it is your responsibility to make sure users and
groups for all role names used in application security constraints have been created.
Users and groups must be created as appropriate for all role names specified by

r ol e- nanme subelements of any securi ty-rol e elements in the web. xm file.

Note: The servlet 2.2 specification requires that each role name
used in an authorization constraint be declared in a separate
security-rol e elementintheweb. xm file. If this requirement
is not followed, the Oracle WAR deployment tool will issue an
error.

Create a Group for All Realm Users Prior to Deployment (if necessary)

The web. xml DTD in the servlet 2.2 specification allows a
security-constraint elementwith an aut h- const r ai nt subelement that
does not contain any role name, as in the following example:

<security-constraint>
<web- r esour ce-col | ecti on>
<web- r esour ce- nanme>Sal esl nf o</ web- r esour ce- name>

</ web- resour ce-col | ection>

<aut h- constrai nt>
<description>
al | authorized users in real mshould be allowed access
</ description>
</ aut h-constrai nt>

8-12 Oracle9i Servlet Engine Developer’s Guide

Overview of WAR Deployment to the Oracle9i Database

</security-constraint>

The specification does not, however, clarify what such a constraint means. It is
reasonable to assume it means that all users of the application realm are authorized
to access the Web resource collection. Such protection is sensible because it requires
that all clients authorize themselves in the given realm before they can use a Web
resource.

There is no direct way in the OSE HTTP security mechanism to protect a resource
for all existing and future users in the realm, but there is a convenient workaround.
To achieve the desired effect, you can create a group that consists of all users in the
realm, and give appropriate permissions to that group. You also must edit the

web. xm file to add a r ol e- name subelement with the name of the newly created

group.

For example, without a workaround the above security constraint will cause the
following error message during WAR deployment:

WARNI NG Wb Resource Col |l ection "Sal eslnfo" is defined,

but the list of Security Role nanmes is enpty inits

<aut h- constraint > el enent.

In this release you need to provide a Security Role nane in order to protect a
web resource.

Vb resource "SalesInfo" will not be protected.

To remedy the situation, issue an appropriate r eal m gr oup command from the
Oracle9i session shell. Consider the following example, which assumes the
application is deployed in the domaint est Root :

realmgroup -w testRoot -real mcatal ogReal m-add all Usrs

Continuing the example, you must then use appropriate r eal m par ent
commands, such as the following, to put desired principals into the al | Usr s

group:
real mparent -w testRoot -realmcatal ogReal m-group allUsrs -add tyrone
(This adds the OSE principal t yr one to the group al | Usr s.)

In addition, you must add a new securi t y-r ol e element to the web. xnl file, as
follows:

<security-rol e>
<rol e- name>al | Usrs</ rol e- name>
</security-role>

Oracle WAR Deployment 8-13

Overview of WAR Deployment to the Oracle9i Database

You must also add the following subelement under the aut h- const r ai nt
subelement of the web. xm security-constraint element:

<rol e-nane>al | Usr s</rol e- name>

For more information about Oracle9i session shell commands such as
real m group and r eal m par ent, see the Oracle9i Java Tools Reference.

Authenticating with Oracle Single Sign-On

A simpler way to authenticate is to use the Oracle Single Sign-On server (OSSO).
With OSSO authentication all of the authorization checks also take place on the
Oracle HTTP Server prior to the request being forwarded to the OSE. Thus, any
<security-constraint>and<security-rol e>elements that are present in
either the web. xm or in the Oracle auxiliary descriptor file do not make sense for
OSSO, and are ignored. This allows administrators to reuse shrink-wrapped WAR
files with minimal changes configure applications to use OSSO authentication.

For additions to the DTD to support OSSO, see "login-config" on page 8-28.

Database Sessions, Servlet Context Ownership, and Application Privileges

The Oracle Servlet Engine, and any components of your application, will execute
within an Oracle9i JVM instance and, therefore, within a particular database
session. Additionally, when you run the Oracle WAR deployment tool, the tool will
run in a particular database session, and this session is used to deploy your
application. In particular, when the new servlet context for your application is
created, it will be owned by the database schema of the deployment session.

For your application to run properly, you must be aware of the database schema
that will own the servlet context, the database schema where your application
classes and resources will be loaded, and the database schemas that are likely to be
used in running your application. These considerations will determine whether
your application will have the necessary privileges to run properly and access
desired database entities such as tables and stored procedures.

The remainder of this section describes what determines the schema of the
deployment database session, and discusses special considerations regarding
application privileges.

Deployment Database Session Initiation and Schema

Depending on how you invoke the Oracle WAR deployment tool, the deployment
database session schema may be determined either explicitly or implicitly.

8-14 Oracle9i Servlet Engine Developer’s Guide

Overview of WAR Deployment to the Oracle9i Database

Explicit Deployment Session Initiation There are a couple of ways to explicitly
determine the deployment database session schema:

using the session shell depl oywar command

When you log in to the Oracle9i session shell, you supply a database user name
and password, and a database session is started for that user schema. Any
subsequent session shell command, including depl oywar, is executed within
that session, by that schema. When you run depl oywar, this schema becomes
the deployment database session schema.

using Java or a PL/SQL call specification to invoke Depl oyWar . mai n()

When you log in to the database and invoke the Depl oyWar . mai n() method,
either directly from Java or through a PL/SQL call specification, the schema
you logged in as becomes the deployment database session schema.

Implicit Deployment Session Initiation All WAR deployment tool vehicles that invoke
the deployment servlet—including the depl oywar . ht mform, the client-side script
(for Oracle clients), or the client-side deployment tool wrapper (for non-Oracle
clients)—start a deployment database session in which the deployment servlet runs.

According to general OSE policy, the schema of this database session is determined
as follows:

Generally speaking, the deployment database session schema is the schema that
owns the domain of the servlet context in which the deployment servlet runs.
(This is the servlet context in which it was published.) This is SYS for the copy
of the deployment servlet that is published automatically when an Oracle9i
database is created. If you publish additional copies of the deployment servlet,
or if you install the Oracle WAR deployment tool onto an existing Oracle8i 8.1.7
database, then the schema depends on how you published the deployment
servlet.

If the servlet context in which the deployment servlet runs was published with
the r un- as- owner property setto t r ue, then the deployment database
session schema is the schema that owns the servlet context, instead of the
schema that owns the domain.

Oracle WAR Deployment 8-15

Overview of WAR Deployment to the Oracle9i Database

Note: Initially, when a servlet context is created, it is owned by the
schema that created it. You can change the owner later through the
session shell chown command. You can verify the owner through
the following session shell command ($ is the session shell
prompt):

$ s -1 <context nane>

Special Deployment Considerations Regarding Application Privileges

To help ensure that your application will run properly, consider the following
points when you deploy it:

« Iftherun-as- owner attribute of the cont ext - descri pt or element is set to
t r ue in the Oracle auxiliary descriptor during deployment, all servlets in your
application will run with privileges of the owner of the servlet context that was
created during deployment of your application.

« If your Oracle auxiliary descriptor specifies the schema subelement under the
j server -1 oader subelement of the cl ass- | oader - descri pt or element,
then that is the schema where your application code will be loaded. If you do
not specify this schema element, then your application will be loaded into the
deployment database session schema. ("Auxiliary Descriptor Element and
Attribute Descriptions" on page 8-23 describes these elements.)

8-16 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

Oracle Auxiliary Descriptor

This section describes the Oracle auxiliary descriptor, introduced in "Overview of
the Oracle Auxiliary Descriptor" on page 8-8. The auxiliary descriptor, used in
conjunction with the standard web. xm file, is for application settings specific to
the Oracle environment.

This section is organized as follows:
« Auxiliary Descriptor DTD
« Auxiliary Descriptor Element and Attribute Descriptions

« Sample Auxiliary Descriptor

Auxiliary Descriptor DTD
This section contains the complete DTD for the Oracle auxiliary descriptor.

<l--
This is the XML DID for the Oracle Auxiliary Descriptor

Version 1.0.1, Dec. 2000
-->

<l--

The oracl e-auxiliary-descriptor element is the root elenment of the Oracle
specific depl oyment descriptor.

-->

<I ELEMENT oracl e-auxiliary-descriptor (description?, context-descriptor,

| og-descriptor?, jsp-info?, class-|oader-descriptor?, |ogin-config?,
security-rol e- mappi ng*) >

<l--

The description element is used to provide descriptive text about the parent
el ement .

-->

<I ELEMENT descri ption (#PCDATA) >

<l--

The context-descriptor contains the servlet context information.
-->

<I ELEMENT cont ext-descriptor (description?, default-info?, accept-info?)>

<l--
The debug flag specifies whether to print servlet debug information.

Oracle WAR Deployment 8-17

Oracle Auxiliary Descriptor

-->
<I ATTLI ST context-descriptor debug (true|false) "fal se">

<l--

The run-as-owner flag specifies whether to allow the user to have the owner's
perm ssions if the user schema is not the same as the serlvet owner’s.

-

<I ATTLI ST context-descriptor run-as-owner (true|false) "fal se">

<l--

The browse-dirs flag specifies whether to allow the user to see the directory
structure if the welcome file is mssing.

-->

<I' ATTLI ST context-descriptor browse-dirs (true|false) "false">

<l--

The nane attribute is the JNDI name of the servlet context to be created.
-->

<I ATTLI ST context-descriptor name CDATA #l MPLI ED >

<l--

The virtual -path attribute is the virtual path to the servlet context.
-->

<I' ATTLI ST context-descriptor virtual -path CDATA #l MPLI ED >

<l--

The doc-root attribute is the full path of the doc root directory on a file
system

-->

<I ATTLI ST context-descriptor doc-root CDATA #l MPLIED >

<l--

The statel ess flag specifies whether the servlet context is stateless.
-->

<I ATTLI ST context-descriptor stateless (true|false) "fal se">

<l--

The default-info el ement specifies NLS information for the server to use in
interpreting requests.

-

<! ELEMENT defaul t-info (description?, charset*, |anguage*)>

<l--

The accept-info el ement specifies NLS information for the server to use in
sendi ng responses.

8-18 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

-->
<I ELEMENT accept-info (description?, charset?, |anguage?)>

<l--

The charset element contains the name of a character set.
-->

<I ELEMENT charset (#PCDATA) >

<l--

The | anguage el enent contains the nane of a |angauge.
-->

<I ELEMENT | anguage (#PCDATA)>

<l--

The | og-descriptor el ement contains http access, event, and error |og
i nformation.

-->

<! ELEMENT | og-descriptor (description?, error-log?, event-log?,

htt p-access-10g?)>

<l--

The error-1og el ement contains the information on how errors are | ogged.
.-

<! ELEMENT error-log (systemlog | rdbns-log | file-Iog)>

<l--

The event-1og el ement contains the information on how events are | ogged.
-->

<! ELEMENT event-log (systemlog | rdbns-log | file-Iog)>

<l--

The http-access-1og el enent contains the information on how http-accesses are
| ogged.

-->

<! ELEMENT http-access-1og (systemlog | rdbns-Iog)>

<l--

The optional name attribute of error-log is the name of the JNDI node,
containing the error log object, relative to the context directory.
-->

<I ATTLI ST error-1og name CDATA #| MPLI ED>

<l--

The optional name attribute of event-log is the name of the JNDI node,
contai ning the event log object, relative to the context directory.

Oracle WAR Deployment 8-19

Oracle Auxiliary Descriptor

-->
<I' ATTLI ST event-1og nanme CDATA #| MPLI ED>

<l--

The optional name attribute of http-access-log is the name of the JNDI node,
contai ning the http-access log object, relative to the context directory.
.-

<I' ATTLI ST http-access-1og name CDATA #l MPLI ED>

<l--

The system|og el ement specifies the log is witten into Systemout
-->

<! ELEMENT system|og EMPTY>

<l--

The rdbms-10g el ement specifies the log is witten into the table, given by the
"table' attribute. It is advisable to specify database schema as the prefix in
table name. |If schemn is omtted, the table will be created in the schema used
for |oading Java objects of the application.

-->

<! ELEMENT rdbns-1o0g EMPTY>

<l--

The required table attribute of rdbms-1og el ement is the table name for witing
the log into a database.

-->

<! ATTLI ST rdbns-1o0g tabl e CDATA #REQU RED>

<l--

The file-l1og element specifies the log is witten into the file, given by the
“file' attribute.

-->

<! ELEMENT file-1o0g EMPTY>

<l--

The required file attribute of file-log elenment is the file name for witing the
log into a file.

-->

<IATTLIST file-log file CDATA #REQU RED>

<l--

The jsp-info el ement contains setting information for JavaServer Pages.
-->

<l ELEMENT jsp-info (description?, hotload?)>

8-20 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

<l--

The hotload el ement specifies the JSP pages to be hotl oaded.
-

<! ELEMENT hot | oad (description?, jsp*)>

<l--

The all attribute of the hotload el enent overrides the jsp page list if it is
true.

-->

<I' ATTLI ST hotload all (true|false) "fal se">

<l--

Each jsp elenment contains the name of a jsp page that is in the WARfile and is
to be hotl oaded.

-->

<I ELEMENT jsp (#PCDATA) >

<l--

The cl ass-1 oader-descriptor el enent provides information necessary to |oad
application classes and resources.

-->

<I ELEMENT cl ass- | oader-descriptor (description?, jserver-loader)>

<l--

The jserver element holds information necessary to | oad java objects into the
dat abase.

-->

<! ELEMENT jserver-|oader (schema?, resolver?)>

<l--

The schemn el enent nust be a valid database schema nane. |f omtted, the web
application will be |oaded into the schema which invoked the depl oynent tool.
Schema el enment is case sensitive.

-->

<I ELEMENT schema (#PCDATA) >

<l--

The resol ver el ement nust use syntax for the '-resolver' option of the
"loadjava' tool. If onmitted, the default oracle resolver is used.

-->

<I ELEMENT resol ver (#PCDATA)>

<l--

The | ogin-config el ement takes precedence over the |ogin-config in web.xn.
-->

Oracle WAR Deployment 8-21

Oracle Auxiliary Descriptor

<l ELEMENT | ogi n-config (description?, auth-nethod, real mnanme?)>

<l--

The auth-method el ement is the nane of the security authentication nethod.
.-

<I ELEMENT aut h- met hod (#PCDATA) >

<l--

The real mname el enment is the name of the OSE security realm
>

<I ELEMENT real m nanme (#PCDATA) >

<l--

The security-rol e-mapping el ement naps a | ogical security role nane to a
principal in the OSE HTTP security realm

-->

<! ELEMENT security-rol e-mappi ng (description?, security-role, ose-principal)>

<l--

The security-role elenent contains the logical security role nane.
-->

<! ELEMENT security-role (description?, role-nane)>

<l--

The rol e-nane el ement contains the nanme of a logical role. It nust al so appear
in asecurity-role element of the web.xm application descriptor.

-->

<I ELEMENT rol e-nane (#PCDATA)>

<l--

The ose-principal nust be the existing user or group in the HTTP security
domai n, defined by the login-config elenment in this descriptor or in the
web. xm .

-->

<I ELEMENT ose-princi pal (#PCDATA)>

<l--
The I D mechanismis for future references to the elements of this auxiliary

depl oynment descriptor.
-

<I' ATTLI ST oracl e-auxiliary-descriptor id | D # MPLI ED>
<I ATTLI ST description id | D #l MPLI ED>

<I ATTLI ST context-descriptor id |D # MPLI ED>

<! ATTLI ST defaul t-info id ID # MPLI ED>

8-22 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

accept-info id I D # MPLI ED>
charset id |D # MPLI ED>

| anguage id | D #l MPLI ED>

| og-descriptor id | D # MPLI ED>
error-log id | D #l MPLI ED>
event-log id | D #l MPLI ED>
http-access-log id | D #l MPLI ED>
systemlog id | D # MPLI ED>
rdbms-1og id | D #l MPLI ED>
file-log id | D #l MPLI ED>

<I ATTLI ST jsp-info id I D #l MPLI ED>

<I ATTLI ST

hotload id I D #l MPLI ED>

<I ATTLIST jsp id I|D # MPLI ED>

<I ATTLI ST

cl ass- | oader-descriptor id |D # MPLI ED>

<I ATTLI ST jserver-loader id | D # MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<l ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

schema id | D #l MPLI ED>

resolver id | D #l MPLI ED>

| ogin-config id I D #l MPLI ED>
auth-method id | D #l MPLI ED>
realmname id | D #l MPLI ED>
security-role-mapping id | D #l MPLI ED>
security-role id | D # MPLI ED>

rol e-name id | D #l MPLI ED>
ose-principal id |D # MPLI ED>

Auxiliary Descriptor Element and Attribute Descriptions

Element names used in the auxiliary descriptor DTD are largely self-explanatory
given an understanding of Web servers in general and the Oracle Servlet Engine in

particular.

This section summarizes and briefly describes the elements, subelements, and

attributes.

For background information, see the Oracle9i Oracle Servlet Engine User’s

Guide and Oracle9i Java Tools Reference (particularly information about the session
shell cr eat econt ext command).

Note: All elements have an optional descri pti on subelement
where you can enter a descriptive comment, but these are omitted
in the following discussion.

Oracle WAR Deployment 8-23

Oracle Auxiliary Descriptor

context-descriptor Use subelements and attributes of this top-level element to
indicate properties of the servlet context.

Subelements:

def aul t - i nf o: This has subelements to specify NLS information for the
server to use in interpreting requests.

Subelements:

— charset: Usechar set subelements of def aul t - i nf o to specify NLS
character sets for the server to try in interpreting each request.

— |l anguage: Use | anguage subelements of def aul t - i nf o to specify NLS
language codes for the server to try in interpreting each request.

A def aul t -i nf o element can have multiple char set or | anguage
subelements. They will be tried in the order presented.

accept - i nf o: This has subelements to specify NLS information for the server
to use in sending responses.

Subelements:

— charset:Useacharset subelement of accept - i nf o to specify the
preferred NLS character set of the server. This character set will be returned
through an accept - char set header in the response.

— language: Use al anguage subelement of accept - i nf o to specify the
preferred NLS language encoding of the server. This language encoding
will be returned through an accept - | anguage header in the response.

An accept - i nf o element can have, at most, one char set subelement and
one | anguage subelement.

Note: Refer to the HTTP 1.1 specification for more information
about these NLS-related elements.

Attributes:

nane: This is the JINDI name of the servlet context to be created (for example,
t est Cont ext).

vi rt ual - pat h: This is the virtual path to the servlet context.

doc- r oot : This is the full file-system path of the document root directory for
the servlet context.

8-24 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

« debug (true orf al se; default f al se): When the debug attribute is enabled,
debugging information—headers and request line of the request, and headers
and response line of the response—is printed into the HTTP access log.

« run-as-owner (trueorfal se;defaultf al se): A servlet context exists
inside a domain. By default, any servlet in any servlet context in a given
domain executes with permissions of the domain owner. However, any
particular servlet context can have a separate owner. (The owner can be
changed through a JNDI chown command.) By setting r un- as- owner to
t r ue, you ensure that servlets in your application execute with permissions of
the owner of the particular context, instead of with permissions of the owner of
the domain.

« browse-dirs (trueorfal se;defaultfal se): If the document root does not
have wel cone files (as specified in the wel corme-fil es-1i st elementin the
web. xm file), enabling br owse- di r s allows you to still see and browse the
directory structure under the document root when you make a request such as
the following:

http://foo.com nmyDir

« statel ess (trueorfal se;defaultfal se;applicable only when accessing
OSE through the Apache nod_ose module): Enabling st at el ess specifies
that the application associated with the servlet context is a stateless application.
(For a stateless application, the Oracle9i JVM database session is reused
between client requests. Multiple clients are hosted by the same session, saving
startup costs. Servlets are not allowed to create HTTP session objects.)

The nane, vi rt ual - pat h, doc-r oot , and st at el ess settings correspond to the
cont ext _name, - vi rtual pat h,-docroot, and - st at el ess settings used by
the WAR deployment tool in the session shell cr eat econt ext command to create
the servlet context. Following is the format of this command ($ is the session shell
prompt; this is a single wrap-around command):

$ createcontext -virtualpath <path> [-recreate] [-properties <prop_groups>]
[-docroot <location>] [-stateless] <domain_name> <context_name>

For information about the cr eat econt ext command, see the Oracle9i Java Tools
Reference.

Oracle WAR Deployment 8-25

Oracle Auxiliary Descriptor

Note: Specify the domain name, which corresponds to the

domai n_nane setting used by the cr eat econt ext command,
through an Oracle WAR deployment tool command-line option. See
"Oracle WAR Deployment Tool Options and Parameters" on

page 8-43.

log-descriptor Use subelements of this top-level element to specify information about
the error log, event log, and HTTP access log.

Note: See "Sample Auxiliary Descriptor" on page 8-31 for
examples of how to use the subelements of | og- descri pt or.

Subelements:

error -1 og: This has subelements and attributes to specify where errors are
logged.

Subelements (only one of the following can be used):

or:

or:

syst em | 0g: Use this (empty) subelement to log errors to the
Syst em out device.

r dbms- | 0g: Use this (empty) subelement and its attribute to log errors to a
database table.

Attribute:

* tabl e: The name of the database table to use for the log. It is advisable
to include the schema name in the table name, for clarity (for example,
HR. t ab1l instead of t ab1l). If you do not specify a schema, then the
schema used will be the one into which classes are being loaded
(inferred from the schema subelement, if present, of the
j server -1 oader element under cl ass- | oader - descri pt or,
explained below).

Columns for this table are as follows:

(1D NUMBER, LINE NUMBER, TEXT VARCHAR2(4000));

8-26 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

— file-1o0g:Usethis (empty) subelement and its attribute to log errors to an
operating system file.

Attribute:

* fil e:the full path and name of the operating system file to use for the
log.

Attributes:

— nane: This optional er r or - | og attribute specifies the name of the INDI
node containing the log object, relative to the servlet context directory.

event - | 0g: This has subelements and attributes to specify where events are
logged.

Subelements (only one of the following can be used; usage is the same as for
error-1ogQ):

- systeml og
or;
- rdbns-1o0g
Attribute:
* table
or;
- file-log
Attribute:
* file
Attributes:
- nane

ht t p- access- | 0g: This has subelements and attributes to specify where
HTTP access information is logged (this is a standard HTTP log).

Subelements (only one of the following can be used; usage is the same as for
error -1 og, except there is no possible fi | e-1 og subelement):

- systeml og
or:

- rdbns-1o0g

Oracle WAR Deployment 8-27

Oracle Auxiliary Descriptor

Attribute:
* table
Attributes:
- nane
jsp-info Use subelements and attributes under this top-level element to specify
whether to hotload JavaServer Pages.
Subelements:

« hot | oad: Use subelements and attributes of this element to specify the JSP
pages to be hotloaded.

Subelements:

— jsp:Usej sp elements to specify JSP pages to be hotloaded (overridden by
the al | attribute). There can be multiple j sp elements, with one JSP page
per element.

Attributes:

— all (trueorfal se;defaultf al se): Use this attribute to specify that all
JSP pages are to be hotloaded (overrides the j sp elements).

For general information about hotloading, see the Oracle JavaServer Pages Developer’s
Guide and Reference.

login-config Use subelements of this top-level element to specify login security
configuration information. Usage is the same as for the | ogi n- confi g elementin
the standard web. xmi file.

Important: Any | ogi n- confi g settings in the auxiliary
descriptor take precedence over | ogi n- confi g settings in
web. xnm .

Subelements:

« aut h- met hod: This is the security authentication method, either BASI C,
DI GEST, or OSSO. (FORMand CLI ENT- CERT are not currently supported.)

In addition to already documented values, the <aut h- met hod> can also be
OSSO The effect is the same as securing the context in the session shell with the
real m secure -0ssocommand (see Securing a Servlet Context with the

8-28 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

OSSO Security Servlet on page 5-23). The special OSSO realm ossoReal mis
created as a result of an aut h- net hod element equal to OSSO, if it did not exist
before. OSSO is the only case where <realm-name> element is optional, and
may be omitted in the <I ogi n- confi g>, as shown in this fragment:

<l ogi n-config>
<description> Context Authentication and Authorization happens on Apache
front end and OSSO server
</ descripti on>
<aut h- met hod>
0SSO
</ aut h- met hod>
</l ogi n-confi g>

r eal m name: This is the name of the OSE security realm (for example,
t est Real m. You can omitr eal m nane if the aut h- met hod is OSSO.

class-loader-descriptor Use subelements under this top-level element to provide
required information for loading application classes and resources.

Subelements:

j server -1 oader : This has subelements to specify the schema and resolver for
loading application classes and resources into the Oracle database.

Subelements:

— schemm: This is the schema where the application is to be loaded. It must
be a valid database schema. If no schema is specified, then the application
will be loaded into the schema from which the WAR deployment tool was
invoked.

Important: The schema element is case-sensitive. The string for
the schema name must exactly match what would be returned by
the following query when the user in question is logged in to the
database:

SELECT USER FROM DUAL;

— resol ver: Thisis the resolver to be used during loading of the application.
The syntax must match what would be used for the | oadj ava
-resol ver option. See the Oracle9i Java Tools Reference for information, or
see the examples in "Sample Auxiliary Descriptor" immediately below. If no
resolver is specified, then the default Oracle resolver is used. (The default

Oracle WAR Deployment 8-29

Oracle Auxiliary Descriptor

resolver for the schema specified in the schema subelement described
above.)

Note: In a future release, when OSE will run outside as well as
inside the database, there will also be aj dk- | oader element.

security-role-mapping Use subelements of this top-level element, in conjunction with
security-rol e elementsinthe web. xni file, to create mappings between logical
security role names in the deployment environment and principals (users or
groups) in the OSE HTTP security realm.

Subelements:

« security-rol e:Use subelements of this element to specify logical security
role names.

Subelements:

— rol e- nanme: This is a logical security role name (such as manager). This
role name must also appear inasecuri ty-rol e element in the web. xm
file, and can be used in ar ol e- nane subelement of an aut h- constr ai nt
subelement of asecuri ty-constraint elementinweb. xm .

« 0se-principal:Thisisan OSE user or group in the OSE HTTP security realm
that is to be granted HTTP access permissions associated with a particular
security role (specified in the r ol e- name element, as described immediately
above). The specified principal must be an existing user or group in the security
realm specified in the r eal m name subelement of the | ogi n- conf i g element
in the auxiliary descriptor or web. xm file.

There can be multiple securi t y-rol e- mappi ng elements defining
security-rol etoose-princi pal mappings.

As an example, presume the following entries in the web. xm file (based on the
example in section 13.3.2 of the Sun Microsystems Java Servlet Specification, Version
2.2, with typographical errors corrected):

<security-rol e>

<rol e- name>manager </ r ol e- name>
</security-role>
<security-constraint>

<web- resour ce-col | ection>
<web- r esour ce- nane>Sal esl nf o</ web- r esour ce- nane>

8-30 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

<url pattern>/sal esinfo/ *</url pattern>
<ht t p- met hod>CET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- net hod>

</ web-resource-col | ecti on>

<aut h- constrai nt >
<rol e- name>manager </ r ol e- name>
</ aut h-constraint>

</security-constraint>

And assume the following entries in the auxiliary descriptor:

security-rol e- mappi ng>
<security-rol e>
<rol e- name>manager </ r ol e- name>
</security-role>
<ose- princi pal >DBA</ ose- pri nci pal >
</security-rol e- mappi ng>

In this situation, a logical security role, manager, is given HTTP access permission
to a Web resource collection, Sal esl nf o. Specifically, manager is allowed GET and
POST HTTP requests to URLs with a context-relative virtual path that starts with
the following:

/ sal esi nf o/
In the auxiliary descriptor, the securi ty-r ol e- mappi ng element maps the

manager logical role name to DBA, an existing user or group in the OSE security
realm.

The auxiliary descriptor mapping is optional. Instead, you could create an OSE
principal named manager . But the mapping functionality in the auxiliary
descriptor provides additional flexibility, allowing a better fit for application
security roles in a previously existing or general-purpose OSE security realm.

You can map an OSE principal, such as DBA, to multiple security roles.

Sample Auxiliary Descriptor

This section provides a sample Oracle auxiliary descriptor, based on the DTD in
"Auxiliary Descriptor DTD" on page 8-17.

<?xm version="1.0"?>
<! DCCTYPE oracl e-auxiliary-descriptor PUBLIC "-//Oracle Corporation//DID O acle

Oracle WAR Deployment 8-31

Oracle Auxiliary Descriptor

Auxiliary web Descriptor//1.0/EN'" "otn.oracle.coni>

<oracl e-auxiliary-descriptor>
<description>
This is an exanple Oracle Auxilary Descriptor for
Version 1.0, Dec. 2000
webdomai n for servlet context is given on command |ine as
$ depl oywar -webdomain /serviceroot/10.1. 1. 20/ cavist.com foo.war foo.xmn
</ description>
<context-descriptor debug="true" run-as-owner="fal se"
browse-dirs="true" statel ess="fal se" name="winecellar"
virtual -path="/cellar" doc-root="/usr/htdocs/web-static-content">
<description>
The full JNDI context name is:
/'serviceroot/10. 1. 1. 20/ cavi st. com wi necel | ar
<defaul t -i nf o>
<charset >
| SO- 8859- 1
</charset >
<l anguage>
en- gb
</l anguage>
<l anguage>
en
</l anguage>
</ defaul t-info>
<accept-inf o>
<charset >
| SO 8859- 1
</charset>
<l anguage>
en
</l anguage>
</ accept -i nfo>
</ cont ext - descri ptor>
<l og- descri ptor >
<description>
error logis witten to System out
event log - to database table "$OSESERROR LOGH"
(HR schema, as specified)
http access log - to table "$OSESACCESS LOGSH"
(HR schema, as inferred fromjserver-|oader)
JNDI node in context "winecellar" will be called "logs/audit"
</ descri pti on>
<error-|og>

8-32 Oracle9i Servlet Engine Developer’s Guide

Oracle Auxiliary Descriptor

<systeml og/ >
<lerror-1|og>

<event-| og>
<rdbns-1 og tabl e="HR $COSESERRCR LOG$"/ >
</ event-|og>

<http-access-1og name="|ogs/audit" >
<rdbms-1 og t abl e=" OSEACCESS_LOGH" / >
</http-access-1o0g>
</l og-descri ptor>

<j sp-info>
<hot| oad al | ="fal se">
<j sp>
/cellar/jsp/wine_1.jsp
</jsp>
<j sp>
/cellar/jsp/cell_1.jsp
</jsp>
</ hot | oad>
</jsp-info>
<cl ass- | oader - descri pt or >
<j server-| oader >
<schema>
HR
</ schema>
<resol ver>
((* HR) (* PUBLIC))
</resol ver>
</jserver-| oader>
</ cl ass-1 oader - descri ptor >
<l ogi n-confi g>
<description>
This login-config will override the login-config in web.xm file.
Valid authorization method val ues are BASIC or DI GEST
</ descri pti on>
<aut h- net hod>
BASI C
</ aut h- met hod>
<real m name>
Wi neReal m
</real m name>
</l ogi n-config>
<security-rol e- mappi ng>

Oracle WAR Deployment 8-33

Oracle Auxiliary Descriptor

<security-rol e>
<description>
Mappi ng application's "manager" role to OSE HTTP Security
</ descripti on>
<rol e- nane>
manager
</rol e- nane>
</security-role>
<ose- princi pal >
DBA
</ ose-principal >
</ security-rol e-mappi ng>
</oracl e-auxiliary-descriptor>

8-34 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Functionality

Oracle WAR Deployment Tool Functionality

This section describes steps the Oracle WAR deployment tool takes in deploying an
application, represented by a WAR file, to the Oracle9i database:

« Loading Files from the WAR File

« Creating a Servlet Context

« Publishing Servlets and JavaServer Pages
« Securing the Application

Any necessary WAR deployment tool parameter settings are noted. For information
about how to invoke the deployment tool and set its input parameters, see "Oracle
WAR Deployment Tool Usage" on page 8-43.

Loading Files from the WAR File

A WAR file can generally have an arbitrary directory structure, but a WEB- | NF
subdirectory is required. This subdirectory contains the web. xmi file and, in further
subdirectories, all Java classes and resources used in the application. There are
many possible kinds of resources, but examples include external resource (. r es)
files for JSP pages, serialized resource (. ser) files for SQLJ JSP pages, and tag
library descriptor (. t | d) files for JSP tag libraries. (See the Oracle JavaServer Pages
Developer’s Guide and Reference for more information about . res, . ser,and . tl d
files.)

JSP pages themselves are outside the VEB- | NF directory, and the Oracle WAR
deployment tool assumes that any other files outside the WEB- | NF directory are
static documents to be served as is to any requests at runtime.

The remainder of this section gives more information about how the deployment
tool loads deployment descriptors, Java files, and static files.

Deployment of Descriptor Files to the Oracle9i Database

The Oracle WAR deployment tool uses the Oracle | oadj ava tool to load the

web. xm descriptor file and the Oracle auxiliary descriptor file into the database as
Java resources. The web. xm file is extracted from the VEEB- | NF directory of the
WAR file; the auxiliary descriptor is specified through a parameter of the session
shell depl oywar command, the deployment servlet, or the client-side script (as
described in "Oracle WAR Deployment Tool Options and Parameters" on

page 8-43).

Oracle WAR Deployment 8-35

Oracle WAR Deployment Tool Functionality

The descriptors are loaded as follows, where cont ext _narme is the name of the
servlet context that is created, and is taken from the name attribute of the
cont ext - descri pt or element in the Oracle auxiliary descriptor.

« Theweb. xnl file is loaded as:

cont ext _name/ VEEB- | NF/ web. xml

« The auxiliary descriptor file is loaded as:

context _nane/ oracl e_aux. xnl

Deployment of Java Files to the Oracle9i Database

To run in the Oracle Servlet Engine, Java code must be loaded into the Oracle9i
database. The Oracle WAR deployment tool examines the WAR file and uses the
Oracle | oadj ava tool to load the following:

« contents of the VVEB- | NF directory

This includes Java class files under the / WEB- | NF/ ¢l asses subdirectory in
the WAR file, and JAR files under the / WEB- | NF/ | i b subdirectory.

« JSP pages

If | oadj ava encounters problems, the WAR deployment tool will report them to
you. Note that errors in individual Java objects do not prevent deployment of
remaining objects. After deployment has finished, you have the option of correcting
any errors and manually using | oadj ava to reload the Java objects that caused the
errors. Alternatively, you can repackage the WAR file and redeploy the application.

Be aware of the following:

« Usethe - repl ace option of the Oracle WAR deployment tool when you want
to redeploy an application that has been deployed previously (whether or not
there were errors during the previous deployment).

« Before invoking the Oracle WAR deployment tool, set the schema subelement
under the cl ass- | oader - descri pt or element in the Oracle auxiliary
descriptor file. This is to specify the database schema where Java objects will be
loaded. (Alternatively, you can let the deployment tool default to the schema of
the user session from which you are invoking the deployment tool.)

« The Oracle WAR deployment tool translates JSP pages (. j spand . sql j sp
files) in the WAR file, but will not translate or compile . sql j or.j ava files.
(The servlet 2.2 specification assumes that only compiled classes are used as

8-36 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Functionality

application code.) Any . j ava or . sql j files in the WAR file will be treated as
Java resources and loaded as is. If your initial WAR file does not conform to the
specification, then you must manually perform any server-side translation or
compilation and then repackage the WAR file.

Deployment of Static Files to the Document Root

Most Web applications, in addition to dynamic components such as servlets and JSP
pages, use static pages (such as HTML pages) whose output does not change from
request to request. WAR file contents that are not under the V\EB- | NF directory,
with the exception of JSP source files, are assumed to be static pages. These files
must be copied to the appropriate document root directory during OSE
deployment.

For any Web application that will run in OSE and use OSE directly as the Web
server, the Oracle WAR deployment tool will place static documents into the
specified document root directory of the servlet context that corresponds to the
application. The doc root is a directory in the file system of the machine on which
the database (including its Oracle Servlet Engine) is installed.

Before invoking the deployment tool in situations where OSE will be used directly
as the Web server, set the doc- r oot subelement under the cont ext - descri pt or
element in the Oracle auxiliary descriptor file to specify the application doc root. If
necessary, the deployment tool will create the file system directory and the doc_

r oot object in the application’s servlet context (once it has created the servlet
context).

Regarding file permissions, you must verify the following:

« If the WAR deployment tool will have to create the doc root directory, ensure
that the user (login schema) has wr i t e permission for the parent directory so
that the deployment tool can write to it.

« Ensure that the user has r ead permission for the deployed WAR file and Oracle
auxiliary descriptor.

You can address both of these issues through dbns_j ava. gr ant _per ni ssi on
calls (through SQL*Plus or equivalent) for Fi | ePer mi ssi on and
Pr opert yPer m ssi on, as in the following examples:

call dbms_j ava. grant_permi ssi on
("HR', "SYS:java.io.FilePermssion',
"lusr/htdocs/ web-static-content/-', "read/wite');
call dbms_j ava. grant_permi ssi on
("HR', 'SYS:java.util.PropertyPerm ssion',

* 0 'read,wite');

Oracle WAR Deployment 8-37

Oracle WAR Deployment Tool Functionality

This example assumes that HR is the user name and
/usr/ ht docs/ web- st atic-content isthe parent directory. The directory name
must be the full path of the parent directory, followed by a hyphen.

Note: If the WAR file contains static files and you did not specify a
doc root directory, or if the Oracle WAR deployment tool cannot
create or write into the specified doc root directory, then a warning
message will be issued. The rest of the application deployment will
proceed.

Using a Front-End Web Server In many circumstances, OSE is not used directly as the
Web server. Instead, a front-end Web server such as the Oracle HTTP Server
powered by Apache is used. In this case there may be no need to specify a doc root
directory for deployment, but you must manually copy your static files to the doc
root of the front-end Web server. (The Oracle auxiliary descriptor doc- r oot
subelement under the cont ext - descri pt or element is optional.)

Note: A doc root is still required, however, for any request
dispatcher functionality such as dynamici ncl ude or f or war d
commands.

Creating a Servlet Context

As described in "Web Application Servlet Contexts" on page 8-2, a Web application
is represented by a servlet context, which acts as an application container. A servlet
context is represented in Java as an instance of a class that implements the standard
j avax. servl et. Servl et Cont ext interface. The Oracle WAR deployment tool
will create a servlet context during deployment of your application and will define
initial servlet context parameters according to cont ext - par amsettings, if this
element is present in the web. xm file.

When deploying the application, you must specify the servlet context name and the
URI path or paths you want mapped to the context (and therefore, to the
application). To provide this information, set the following attributes of the

cont ext - descri pt or element in the Oracle auxiliary descriptor file:

. nane

« Vvirtual -path

8-38 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Functionality

When you invoke the Oracle WAR deployment tool, you must specify the domain
where you want the deployment tool to place the context (for example, through the
-webdomai n parameter in the session shell depl oywar command or client-side
script).

(Refer to the Oracle9i Oracle Servlet Engine User’s Guide for background information
about domains, context names, and virtual paths.)

Notes:

« Another aspect of creating a servlet context for an application is
specifying a file system directory for the doc root (the target
directory for loading static files). This was described earlier, in
"Deployment of Static Files to the Document Root" on
page 8-37.

« If you are redeploying an application that had previously been
deployed, enable the - r epl ace option. This informs the WAR
deployment tool that you are willing to re-create the servlet
context for the application. (See "Oracle WAR Deployment Tool
Options and Parameters" on page 8-43.)

Publishing Servlets and JavaServer Pages

When you deploy an application to the Oracle9i database, the Oracle WAR
deployment tool will publish any servlets and JSP pages in the application. This
process makes them available for execution in the Oracle Servlet Engine. (Refer to
the Oracle9i Oracle Servlet Engine User’s Guide for background information about
publishing.)

The remainder of this section describes the publishing process for servlets and JSP
pages, and any necessary preparations.

Preparation for Servlets

For an application to follow the servlet 2.2 specification, any class that is to be
accessed as a servlet must have a corresponding ser vl et element, with

servl et - nane and ser vl et - cl ass subelements, in the web. xm file. If no
ser vl et element is present, then the Oracle WAR deployment tool will load the
servlet class into the database, but will not publish it as a servlet in the application
servlet context.

Oracle WAR Deployment 8-39

Oracle WAR Deployment Tool Functionality

If a servlet will be accessed through one or more virtual paths within the servlet
context, then the web. xm file must also contain a ser vl et - mappi ng element for
each virtual path.

Implicit Deployment of JavaServer Pages

According to the servlet 2.2 specification, a JSP page would have a web. xm

servl et element withaj sp-fil e subelementinstead of aser vl et - cl ass
subelement. However, use of the ser vl et element is not required for JSP pages in
Oracle WAR deployment.

If the Oracle WAR deployment tool encountersa . j sp file or. sql j sp file outside
the VIEB- | NF directory, and the page is not explicitly listed in the web. xm file, the
page will still be translated, compiled, and published. In this case, however, a user
would invoke the page with a servlet path that is determined by the context-relative
path of the file in the WAR file hierarchy.

Consider the following example.

« The servlet context for an application is accessible by the following virtual path:
/ mycont ext

« ASP page in the application, i maj sp. j sp, islocated inj sp/i maj sp.jspin
the WAR file. This makes the following its context-relative path:
jsp/imajsp.jsp

Therefore, a user would invoke the page as follows:

http://host[:port]/nycontext/jsp/imajsp.jsp

Notes:

« IfaJSP page is encountered inside the VVEB- | NF directory, then
it is loaded into the Oracle9i database as a Java resource. It is
not translated, compiled, or published.

« You cannot install a JSP page into the doc root manually and
expect it to be served to clients. It would not be translated or
published, and attempts to execute it would expose its source
code. To add a JSP page after the WAR file has been deployed,
you must explicitly publish it. (Use the session shell
publ i shj sp command.)

8-40 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Functionality

Translation, Compilation, and Publishing of JavaServer Pages

The Oracle WAR deployment tool performs the following steps for each . j sp or
. sql j sp file that it deploys into the Oracle9i database:

It invokes the OraclelJSP translator to translate the page. The page
implementation class produced by the translator is essentially a servlet class.
All errors and warnings produced by the OracleJSP translator are reported.

It compiles the resulting JSP page implementation servlet and any inner classes
that were generated during JSP translation, and loads them into the application
schema. The Java class name and package of the page implementation servlet
class will be derived from the name and the directory path of the JSP file as it
appears in the WAR file.

For example, a directory path of myr oot / nyj sp will result in the following
package:

_nmyroot. _nyjsp

(For more information about package naming by the OracleJSP translator,
including its use of leading underscores, see the Oracle JavaServer Pages
Developer’s Guide and Reference.)

It maps the servlet to as many virtual paths as there are corresponding
ser vl et - mappi ng elements in the web. xm file (if any).

It publishes the page implementation servlet. This servlet is given a JNDI name
as follows:

— Ifthereisaservl et element for the JSP page in the web. xm file, then the
JNDI name is the same as the ser vl et - name subelement of the ser vl et
element.

— Ifthereisno servl et element, then the servlet name is determined by the
path of the JSP page in the WAR file. First, i npl i ci t _ is prepended, then
each slash ("/") in the path is replaced by an underscore ("_"). For example,

myr oot / nyj sp/ pagel. j sp would have the following JNDI name:
inplicit_myroot_nyjsp_pagel.jsp

Note: The servlet name (JNDI name) is used in the implicit OSE
publ i shservl et command that is executed by the WAR
deployment tool.

Oracle WAR Deployment 8-41

Oracle WAR Deployment Tool Functionality

Securing the Application

To protect a virtual path, the Oracle WAR deployment tool essentially uses the same
sequence of session shell commands that you would use manually. For example, to
allow users in the group cat al ogBui | der in a realm Cat al ogReal mto perform
POST operations to the relative virtual path publ i shedCat al ogs/ * (after they
authenticate themselves through the basi ¢ authentication method), the
deployment tool issues the following session shell commands:

$realm map -s <servl et Cont ext Pat h> -add publishedCat al ogs/ *
-scheme basi c: Cat al ogReal m

$real m perm - w <webservi ceRoot > -real m Cat al ogReal m -s <ser vl et Cont ext Pat h>
-nane catal ogBui | der -path publishedCatal ogs/* + POST

Any messages printed by the r eal mcommands are output by the WAR
deployment tool. For example, the following messages indicate that the two realm
commands above succeeded:

mappi ng ‘ publ i shedCatal ogs/*' with schene ‘basic: Catal ogReal ni added
perm ssions post granted on publishedCatal ogs/* for catal ogBuil der

If, however, you did not create a user or a group named cat al ogBui | der in the
realm Cat al ogReal mprior to deployment, you will see the following error
message:

no such user

Note: For information about preliminary steps you must take
before establishing application security, see "Security Preparations"
on page 8-10.

8-42 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Usage

Oracle WAR Deployment Tool Usage

This section describes the Oracle WAR deployment tool, introduced in "Overview of
the Oracle WAR Deployment Tool" on page 8-8. The deployment tool takes an
application WAR file and Oracle auxiliary descriptor and deploys the application
into the Oracle9i database accordingly. You can then execute the application in the
Oracle Servlet Engine.

The following subsections describe the different ways to invoke the deployment
tool, and document the options and input parameters that the deployment tool
supports:

« Oracle WAR Deployment Tool Options and Parameters
« Vehicles for Invoking the Oracle WAR Deployment Tool

Oracle WAR Deployment Tool Options and Parameters

Each of the vehicles for invoking the Oracle WAR deployment tool supports the
same set of key options and parameters, and the deployment servlet and client-side
script support additional parameters as appropriate.

Table 8-1 summarizes these options and parameters. (The session shell WAR
deployment command, deployment servlet, and client-side script are described in
"Vehicles for Invoking the Oracle WAR Deployment Tool" on page 8-46.)

Table 8-1 Oracle WAR Deployment Tool Options and Parameters

Session Shell

Command Deployment Servlet Client-Side Script
Functionality Parameter Parameter Parameter
WAR file name (enter file nameon warfile -warfile
command line) (or -wa)
Oracle auxiliary descriptor (enter file name on auxdescri pt or -auxdescri ptor
file name command line) (or-a)
Web domain name (where - webdonai n webdonmai n -webdonai n
the application’s servlet (or - w) (or - w)
context will be created)
Replacement of a previously -repl ace repl ace -repl ace
deployed application (or-r) (or-r)
(disabled by default)
Verbose output from tool -ver bose ver bose -ver bose
(disabled by default) (or-ver) (or-v)

Oracle WAR Deployment 8-43

Oracle WAR Deployment Tool Usage

Table 8-1 Oracle WAR Deployment Tool Options and Parameters (Cont.)

Session Shell

Command Deployment Servlet Client-Side Script

Functionality Parameter Parameter Parameter

XML validation for on by default; xm val i dat e -xm val i dat e

web. xm (recommended; -noxml val i dat e (on by default; setto (on by default;

enabled by default) or - nox to disable f al se to disable) -noxml val i dat e
or - nox to disable)

Upload directory for files n/a upl oad - upl oad

being loaded (WAR file and (or - up)

Oracle auxiliary descriptor)

URL of deployment servlet n/a n/a -t arget
(or-t)

Schema (and optionally n/atodepl oywar n/atodeployment -user

password) where WAR file command (the servlet (inferred (or-u)

and auxiliary descriptor will schema is specified from the schema

be deployed when the session used in executing

shell is started) the servlet)

Password for target schema n/a n/a - passwor d

(if not supplied with user (or-p)

name)

Help (brief usage notes) -hel p n/a -hel p
(or-hor-?)

Notes:

« The session shell command parameters also apply if you
invoke the WAR deployment tool through server-side Java
code or a PL/SQL call specification.

« The client-side script parameters also apply when you invoke
the client-side deployment tool wrapper directly from Java.

« The deployment servlet parameters also apply when you
invoke the depl oywar . ht mHTML form.

8-44 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Usage

General Option/Parameter Notes:

WAR file and Oracle auxiliary
descriptor

"Webdomain" option

"Replace" option

"Verbose" option

If you are using the session shell depl oywar
command, server-side Java, or a PL/SQL call
specification to invoke the Oracle WAR
deployment tool, it is assumed that you have
already manually uploaded the WAR file and
Oracle auxiliary descriptor into an accessible
location in the file system of the target system.

This is always required to specify the (existing)
Web domain where the WAR deployment tool is to
create the servlet context for the application being
deployed. In an OSE single-domain scenario, this
would simply be a name such as the following:

/ t est Root

In an OSE multi-domain scenario, however, you
must include the IP address and DNS name such as
in the following example:

/testRoot/10.1.1.20/cavist.com

You must always specify the absolute domain
name (starting with "/"), regardless of your current
directory in the session shell.

If an application has already been deployed, even if
it deployed with errors, OSE will not allow creation
of a servlet context again unless you enable this
option.

Enabling this option significantly increases the
amount of output (especially from the | oadj ava
tool) during deployment, but is useful if you are
trying to troubleshoot deployment errors.

Oracle WAR Deployment 8-45

Oracle WAR Deployment Tool Usage

XML validation (can be
disabled for web. xm)

Upload directory

User and password

General comments about
client-side script parameters

You can disable XML validation for web. xm , but
this is generally advisable only if you are migrating
an application from a servlet container that did not
validate XML, and you cannot immediately correct
validation errors. XML validation verifies the

web. xm file against the DTD specified in the
servlet 2.2 specification, and is enabled by default.
The Oracle auxiliary file is always validated (this
cannot be disabled).

(Severe errors in the web. xm file may prevent
deployment even if XML validation is disabled.)

This option may not be supported in future
releases.

The Oracle WAR deployment tool must have
wr i t e permission for this directory.

These are not applicable for the session shell

depl oywar command, where the user was already
established during session shell login, or for the
deployment servlet, where any security filtering
would have occurred before the servlet was
invoked.

True/false parameters are optional; all other
parameters are mandatory and must be explicitly
set.

You have choices in how to format your
command-line option settings for the client-side
scripts (such as whether they are preceded by a
hyphen). See "Oracle Client-Side Deployment
Scripts (Oracle Client)" on page 8-50 for
information.

Vehicles for Invoking the Oracle WAR Deployment Tool

This section describes each of the ways to invoke the Oracle WAR deployment tool,
providing details about option settings and command-line syntax as applicable. The

following topics are covered:

« WAR Deployment Tool Session Shell Command

8-46 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Usage

« WAR Deployment Tool Invocation from Server-Side Java or PL/SQL Call Spec
« Oracle WAR Deployment Servlet

« Oracle Client-Side Deployment Scripts (Oracle Client)

« Oracle Client-Side WAR Deployment Tool Wrapper (Non-Oracle Client)

When using the session shell command or invoking the WAR deployment tool from
server-side Java or a PL/SQL call specification, you must first manually place the
WAR and auxiliary descriptor files onto the file system of the target server. Loading
these files is generally done for you if you deploy through one of the client-side
vehicles that Oracle provides.

WAR Deployment Tool Session Shell Command

From the Oracle9i session shell, you can use the depl oywar command to deploy a
Web application packaged in a WAR file. Here is the command-line syntax (this is a
single wrap-around command line; $ is the session shell prompt):

$ depl oywar [-replace|-r] [-verbose|-ver] [-noxn validate|-nox]
-webdonai n| -w <domai n_nanme> <WAR-fil e-name> <Oracl e- aux- descri ptor>

Notes:

« You must manually upload the WAR and auxiliary descriptor
files onto the file system of the target machine before executing
the depl oywar command.

« Parameter values for the depl oywar command are
case-sensitive.

The - webdomai n option, WAR file name, and Oracle auxiliary descriptor file name
are mandatory arguments.

The WAR and auxiliary descriptor file names must include full paths to the files and
must be specified on the command line in the positions shown in the example.

The - repl ace, - ver bose, and - noxm val i dat e settings are optional. The order
of these three options and the - webdomai n option amongst themselves is not
significant.

For general information about deployment options and parameters, see "Oracle
WAR Deployment Tool Options and Parameters" on page 8-43.

Oracle WAR Deployment 8-47

Oracle WAR Deployment Tool Usage

For general information about the Oracle9i session shell and how to run it, see the
Oracle9i Java Tools Reference.

WAR Deployment Tool Invocation from Server-Side Java or PL/SQL Call Spec

To invoke the Oracle WAR deployment tool from server-side Java code or through a
PL/SQL call specification, you can use the following public static method:

voi d oracl e.nts. http.depl oyment. Depl oyWar. mai n(String[] args)

Arguments are the same as for the session shell depl oywar command. See "WAR
Deployment Tool Session Shell Command" on page 8-47.

Note: As with the depl oywar session shell command, first you
must manually upload the WAR and auxiliary descriptor files onto
the target machine.

Oracle WAR Deployment Servlet

Provided with the Oracle WAR deployment tool is a servlet that you can use to start
deployment of a WAR file to the Oracle9i database from a client.

This deployment servlet is preloaded in the database SYS schema and published in
the adm n domain of the Oracle Servlet Engine, under the / depl oywar virtual
path. Alternatively, you can publish it in any other desired context with a virtual
path of your choice.

On the server, the Java class for the servlet is as follows:

oracle.aurora.nts. http.depl oynent. Depl oynent Ser vl et

For convenience, Oracle also provides a form called depl oywar . ht mthat you can
use to invoke the servlet from a client. In Oracle9i releases, this form is in the doc
root, [ORACLE_HOME] / j i s/ publ i c_ht m , of the default context of the OSE
adm n service. For the Oracle8i 8.1.7.0 and 8.1.7.1 releases, it is in the

depl oywar . j ar and packager . j ar files that are included with the Oracle
Technology Network download.

Once depl oywar . ht mis placed in an appropriate doc root directory, access it from
a browser, supplying settings for the following parameters when prompted:

« replace=trueorfalse

« verbose=trueorfalse

8-48 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Usage

« xmvalidate=trueorfal se

« uploaddir=<target dir for WAR file and aux descri ptor>
« webdomai n=<Wb domai n for servlet context>

« warfile=<WAR file name>

« auxdescriptor=<Oracle auxiliary descriptor file nane>

The depl oywar . ht mform prompts you for all of these, but only upl oaddi r,
webdomai n,war fi | e, and auxdescri pt or are required. The repl ace
parameter defaults to f al se, ver bose defaultsto f al se, and xnl val i dat e
defaultsto t r ue.

For general information about these options and parameters, see "Oracle WAR
Deployment Tool Options and Parameters" on page 8-43.

Notes:

« Parameter values for the deployment servlet are not
case-sensitive.

« If you want to access the deployment servlet through your own
HTTP client, you can do so through the doPost () method of
the Depl oyment Ser vl et class. You must send
multipart-encoded form data containing the parameter settings
in standard format, separated by standard HTTP boundaries.

DeploymentServlet Permissions The remainder of this section discusses considerations
in ensuring that the deployment servlet will have sufficient permissions when it
executes.

When you deploy your application, its servlet context is created in the domain that
you specified through the webdonai n parameter. You must ensure that the
database session executing the deployment servlet has sufficient JNDI permissions
to browse the domain in question, and to create new JNDI objects in that domain.

One possible way to handle these permission and ownership issues would be to
publish the deployment servlet in every domain where you anticipate executing it
(publishing it in the default context of each domain, for example).

However, this liberal approach may not fit your security model. You may find it
desirable to keep tighter control over application deployment and to use only the
copy of the deployment servlet that is automatically published in the admni n

Oracle WAR Deployment 8-49

Oracle WAR Deployment Tool Usage

domain. This copy of the deployment servlet is owned by the SYS schema, which
can publish your application in any domain and also has the broadest file creation
permissions.

The danger of using the SYS schema, however, is that the servlet context created for
your application during deployment will therefore be owned by SYS. This fact,
combined with setting the r un- as- owner property of the cont ext - descri pt or
element to t r ue in the auxiliary descriptor, would give the application unlimited
access to the database. However, you can prevent this potential security breach by
using the session shell chown command to change ownership of the servlet context
immediately after application deployment.

Also be aware that in the current release, you cannot control the database session
owner by means of HTTP security authentication. Although you can protect access
to the deployment servlet by using the HTTP security r eal mcommand of the
session shell and requiring a user to be authenticated before invoking the
deployment servlet, be aware that the user being authenticated for HTTP access
comes from an OSE HTTP security domain. When the user is authenticated
successfully and is found to have permissions to the servlet, servlet execution is
allowed to start. In general, however, this has no relation to the database schema
that actually executes the servlet.

Currently, you can control which database users can execute the deployment servlet
only as follows:

« through ownership of the domain of the deployment servlet

« through ownership of the servlet context of the deployment servlet, in
combination with the r un- as- owner context property

« by making the deployment servlet class execute with definer’s rights, which
would be SYS

Oracle Client-Side Deployment Scripts (Oracle Client)

For deploying your application from a system with an Oracle client installation, an
alternative to invoking the deployment servlet from the depl oywar . ht mform or
an HTTP client is to use a client-side deployment script that Oracle provides and
which uploads the WAR and auxiliary descriptor files for you.

Important: The client-side deployment script requires an Oracle
client installation. For a non-Oracle client, see "Oracle Client-Side
WAR Deployment Tool Wrapper (Non-Oracle Client)" on page 8-54.

8-50 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Usage

On Solaris, run the following script (%is the UNIX prompt):

% depl oywar <par anet er s>

On Windows NT, run the following batch file from a DOS prompt or from the Run
command line in Windows:

depl oywar . bat <par anet er s>

Running either of these scripts will invoke the Oracle deployment servlet, which is
preloaded in the Oracle9i database and published in the SYS schema of the admi n
domain. (Or the deployment servlet, along with the rest of the Oracle WAR
deployment software, can be added manually to an Oracle8i 8.1.7 database. Refer to
the Oracle WAR deployment README file.)

Note: Parameter values for the client-side deployment script are
not case-sensitive.

Formats for Setting Options/Parameters You can set parameters for the client-side
deployment scripts in a variety of ways.

The simplest way to set a true/false parameter is to precede its name with "-" to
enable it or with "-no" to disable it, such as in the following examples:

-repl ace -verbose -noxm validate

or, to use the accepted shortcuts:
- -V -nox
These settings enable the - r epl ace option and the - ver bose option (which are

disabled by default) and disable the - xml val i dat e option (which is enabled by
default).

Set other options (those other than true/false) using an equals sign (=) as follows:

-target=http:// ww. acme. com 8000/ Depl oynent Ser vl et
-user=HR - password=hr -upl oad=/tnp
-webdomai n=/t est Root

or, to use the accepted shortcuts:

-t=http:// wwmv. acne. com 8000/ Depl oyment Ser vl et
-u=HR -p=hr -up=/tnp
- W=/t est Root

Oracle WAR Deployment 8-51

Oracle WAR Deployment Tool Usage

For help, use - hel p, - h, or - ? to get the deployment script parameter list.

Notes: For parameters other than true/false parameters, you can
optionally omit the "-" or replace the "=" with a space, but not both,
such as in the following examples:

-user HR
-u HR
user =HR
u=HR

You can explicitly set true/false parameterstotr ue orf al se,
optionally omitting the "-", as in the following examples:

-repl ace=true
-r=true

repl ace=true
r=true

-xm val i dat e=f al se
-x=fal se

xm val i dat e=f al se
x=f al se

You must always use "=" (you cannot use a space) when setting
true/false parameters explicitly.

Setting the User Name and Password As a shortcut, you can set the user name and
password simultaneously through the user option, by placing a forward-slash (/")
between the settings. In this case you do not need to use the passwor d option.

All of the following are equivalent:
-user =HR/ hr

or:

-user=HR - passwor d=hr

or:

-user HR/ hr

8-52 Oracle9i Servlet Engine Developer’s Guide

Oracle WAR Deployment Tool Usage

or:

-user HR -password hr

or:

user =HR/ hr

or:

user =HR passwor d=hr

Specifying the WAR file and Auxiliary Deployment Descriptor File names with the default
file name extension are recognized by the client-side deployment script as being
WAR files or auxiliary descriptors, in which case you can enter the file names on the
command line without the war f i | e or auxdescri pt or parameter name:

The . war file name extension indicates a WAR file.

The . xm file name extension indicates an Oracle auxiliary descriptor file.

Sample Deployment Script Command Line Following is an example of running the
client-side deployment script from a Solaris system:

% depl oywar

t=http://local host: 8080/ Depl oyment Ser vl et
u=HR/ hr

up=/tnp

=T -V -nox

w=/ t est Root

nmyTest App. war
[somedi r/ aux. xm

This example accomplishes the following:

It accesses the deployment servlet on the local host in the schema HR with
password hr.

The - up (upload) setting causes the WAR file and Oracle auxiliary descriptor to
be uploaded to the server's / t np directory.

The - r and - v settings enable the - r epl ace and - ver bose options.
The - nox setting disables XML validation of the web. xm file.

The - woption specifies that the servlet context for the application is to be
created in the t est Root domain.

Oracle WAR Deployment 8-53

Oracle WAR Deployment Tool Usage

« Because the Oracle auxiliary descriptor (aux. xm) and the WAR file
(myTest App. war) have default file name extensions, the war fi | e and
auxdescri pt or parameter names are not required.

Oracle Client-Side WAR Deployment Tool Wrapper (Non-Oracle Client)

On a system without an Oracle client installation, you can do the equivalent of
running the client-side deployment script by executing the client-side WAR
deployment tool wrapper directly from Java, as follows.

UNIX (this is a single wrap-around command):

java -classpath $CLASSPATH

oracle.aurora.nts. http.deploynent.client.HtpCientWapper <parameters>
Windows NT (this is a single wrap-around command):

java -classpath Y%CLASSPATH%

oracle.aurora.nts. http.deploynent.client.HtpCientWapper <paraneters>

Specify the WAR file, auxiliary descriptor, and other input parameters just as you
would for the client-side deployment scripts, as described above in "Oracle
Client-Side Deployment Scripts (Oracle Client)" on page 8-50.

Note: The Oracle client-side deployment files, packager . j ar
and htt p_client.jar, mustbe in your classpath. You can obtain
these files from the Oracle Technology Network or from a product
CD for the Oracle9i database or Oracle9i Application Server.

8-54 Oracle9i Servlet Engine Developer’s Guide

Sample Application Hierarchy and Descriptor Files

Sample Application Hierarchy and Descriptor Files

This section provides the hierarchy, web. xm file, and Oracle auxiliary descriptor
for a sample application. The following topics are covered:

« Sample Hierarchy
« Sample Descriptor Files

« Creating and Deploying the WAR File

Sample Hierarchy

Consider a sample Web application with the following hierarchy from the root
directory:

i ndex. htm

WEB- | NF/

WEB- | NF/ cl asses/

VEB- | NF/ cl asses/ Basi cQuery. cl ass
VEB- | NF/ | i b/

VEB- | NF/ | i b/ For Tag. j ar
VEB- | NF/ web. xm

i mages/

i mages/ mai | box. gi f
jsp/

j sp/tag/

j sp/tag/tagexanple.jsp
j sp/tag/ exanpl etag.tld
j sp/wel cone. j sp

The static filei ndex. ht m is at the top of the hierarchy in the doc root. There is an
i mages directory for the one graphic (mai | box. gi f).

In accordance with the servlet 2.2 specification, the VWEB- | NF directory contains the
web. xm file, a cl asses subdirectory for compiled Java class files (only

Basi cQuery. cl ass in this case), and a | i b subdirectory for compressed JAR or
ZIP files with utility libraries (For Tag. j ar in this case).

The j sp directory contains a JSP welcome page, and the tag subdirectory has a JSP
tag example page and the tag library descriptor (TLD file) for the tag library. JSP
pages will be translated by the Oracle WAR deployment tool during deployment.

Sample Descriptor Files
This section provides the sample web. xnl file and Oracle auxiliary descriptor.

Oracle WAR Deployment 8-55

Sample Application Hierarchy and Descriptor Files

Sample web.xml Deployment Descriptor

Following is the web. xnm deployment descriptor file for the sample application.
Note the ser vl et and ser vl et - mappi ng elements for the Basi cQuer y servlet
and the wel cone. j sp and t agexanpl e. j sp JSP pages. For JSP pages, the
servl et elementhasaj sp-fil e subelementinstead of aservl et -cl ass
subelement.

Thisweb. xm file also specifies possible welcome pages and an error page.

<?xm version="1.0" encodi ng="1SO 8859-1"?>

<! DCCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DID Wb Application 2.2//EN'
“http://java.sun.conj2ee/dtds/web-app_2.2.dtd">

<web- app>
<di stributabl e/ >
<servl et>
<servl et - name>exanpl et ag</ servl et - nane>
<jsp-file>jsp/tag/tagexanple.jsp</jsp-file>
</servlet>
<servl et>
<servl et - name>Basi c</ servl et - name>
<servl et-cl ass>Basi cQuery</ servl et-cl ass>
</servlet>
<servl et>
<servl et - name>wel come</ servl et - nane>
<jsp-file>jsp/wel conme.jsp</jsp-file>
</servlet>
<servl et - mappi ng>
<servl et - name>exanpl et ag</ servl et - nane>
<url -pattern>/jsp/tag/tagexanple.jsp</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>Basi c</ servl et - name>
<url - pattern>/basic</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>wel conme</ servl et - nane>
<url - pattern>jsp/ wel cone. jsp</url-pattern>
</ servl et - mappi ng>
<wel cone-file-list>
<wel cone-file>
i ndex. ht
</ wel come-file>

8-56 Oracle9i Servlet Engine Developer’s Guide

Sample Application Hierarchy and Descriptor Files

</ wel come-file-list>
</ web- app>

Sample Oracle Auxiliary Descriptor

Following is the Oracle auxiliary descriptor file for the sample application. This file
specifies a servlet context, MyCt x, in an OSE domain of your choosing, with

/ myapp as its virtual path. The doc root will be the context-relative / t np/ nyapp_
docr oot directory.

The application will be deployed into the HR schema, using the default resolver of
that schema (because no resolver is specified).

<?xm version="1.0"?>
<oracl e-auxiliary-descriptor>
<description>
This is Oracle Auxilary Descriptor for
application M/App. You may depl oy in any Domain you have
</ description>
<cont ext - descri ptor name="M/Ctx"
virtual - pat h="/ nyapp"
doc-r oot ="/t np/ nyapp_docr oot ">
<descri ption>
The full context name is "Donmain/contexts/ MCtx".
</ description>
</ cont ext - descri ptor>
<cl ass- | oader - descri pt or >
<j server-| oader >
<schenma>
HR
</ schema>
</jserver-| oader>
</ cl ass-1 oader - descri ptor >
</oracl e-auxiliary-descriptor>

Creating and Deploying the WAR File

Assuming the application component files are in the directory structure indicated
by the WAR file example above, and you run the JAR utility from the application
root directory, you can create a WAR file named nyapp. war with the following
command:

jar cvf nyapp.war index.htm WEB-INF/ images/ jsp/

Oracle WAR Deployment 8-57

Sample Application Hierarchy and Descriptor Files

The WAR file will have an internal structure that reflects the application hierarchy
(see "Sample Hierarchy" on page 8-55).

Using the client-side deployment script (as an example), the following operating
system command will deploy the WAR file, myapp. war, and the Oracle auxiliary
descriptor, My AppAux. xm :

% depl oywar target=http://host[:8080]/adm n/depl oywar user=HR hr \
upl oad=/t np webdomai n=/ MyDonai n warfil e=nyapp. war auxdescri pt or =MyAppAux. xm

Note: By default, the deployment servlet is automatically installed
in the adm n domain, using port 8080.

Or, using parameter name shortcuts and dropping war f i | e and auxdescri pt or
(allowable because the WAR file and auxiliary descriptor use default file name
extensions):

% depl oywar t=http://host[:8080]/adm n/depl oywar u=HR/ hr up=/tnp w=/ MyDonai n
myapp. war MyAppAux. xm

Or, to enable the - r epl ace option (so the servlet context can be re-created if the
application has previously been deployed) and the - ver bose option (for
informative status output from the Oracle WAR deployment tool and the other tools
that it calls):

% depl oywar t=http://host[:8080]/adm n/depl oywar u=HR/ hr up=/tnp w=/ MyDonmai n -r
-v nyapp. war MyAppAux. xm

8-58 Oracle9i Servlet Engine Developer’s Guide

Current Restrictions

Current Restrictions

Some features are not yet implemented in the current release of Oracle WAR
deployment. Following is a list of the current restrictions.

Theweb. xm | oad- on- st ar t up element has no effect; OSE does not pre-start
servlets. If this element is encountered, the Oracle WAR deployment tool will
print a warning message with the order number that was specified in the

web. xn file.

Generally, error-page mapping for an application may be defined in two ways:
1) HTTP error-code mapping to error-page location; or 2) Java exception-type
mapping to the error-page location. OSE, however, does not currently support
the latter. Such a mapping in the web. xm file will result in a warning message
and will otherwise be ignored.

OSE does not currently support the web. xml env-entry and r esour ce-r ef
elements. Attempts to use these elements will result in a warning message and
will otherwise be ignored.

OSE does not currently support the web. xm ej b-r ef element. Attempts to
use this element will result in a warning message and will otherwise be
ignored. It is possible, however, to refer to an EJB from a servlet by explicitly
using its Home and Renot e interfaces.

OSE does not currently support the web. xml security-rol e-ref
subelement of the ser vl et element. Attempts to use this subelement will
result in a warning message listing names and role links of all security role
references found in a servlet definition. If any of these reference names are used
in the servlet code, the code must be modified to work without them.

JSP pages cannot use any t agl i b directive that specifies a tag library
descriptor (. t | d file) ina JAR file. At agl i b directive must specify a. t | d file
directly. This is because when a JAR file is included in a WAR file, the Oracle
WAR deployment tool will distribute the contents according to the WAR file
hierarchy. The JAR file would no longer be in its original form, and OracleJSP
would no longer be able to find the . t | d file that had formerly been embedded
in the JAR file.

The same restriction exists when the JAR file is published using the session shell
publ i shj sp command.

OSE does not currently support transport guarantee directives, defined in the
user - dat a- const r ai nt subelement of the web. xm
security-constraint element.

Oracle WAR Deployment 8-59

Current Restrictions

« OSE does not currently support form-based authentication; therefore, it does
not support the FORMvalue for the aut h- met hod subelement or
form | ogi n- confi g subelement of the | ogi n- conf i g descriptor element.

« OSE does not currently support the CLI ENT- CERT value for the aut h- et hod
subelement of the | ogi n- confi g descriptor element.

8-60 Oracle9i Servlet Engine Developer’s Guide

9

Writing PL/SQL Servlets

This chapter describes new and changed features for Oracle8i Release and Oracle9i.
The topics in this chapter include:

« Overview of PL/SQL Servlets
« Configuring Database Access Descriptors from an Application

« Package DBMS EPGC

Writing PL/SQL Servlets 9-1

Overview of PL/SQL Servlets

Overview of PL/SQL Servlets

When you use the Internet Application Server (iAS), you typically access PL/SQL
stored procedures over the Web by using the nod_pl sql module. This module is
recommended for stateless PL/SQL procedures, where the transaction state and
values of package variables are not preserved once the original procedure call is
finished.

You can also run PL/SQL stored procedures using the Oracle Servlet Engine
through the mod_ose module of iAS. Oracle recommends this module for stateful
PL/SQL procedures, which behave similar to Java servlets. These procedures can
preserve state (such as package variables and transaction state) across multiple
HTTP requests.

For detailed information about running PL/SQL procedures over the Web, see the
documentation about using nod_pl sqgl inthe Oracle HTTP Server documentation.

Configuring mod_ose to Run PL/SQL Servlets

To run PL/SQL stored procedures as servlets, you must first load and publish one
servlet that serves as a gateway (known as the embedded PL/SQL gateway). This is
a one-time operation. The PL/SQL procedures can then run over the Web without
any code changes or loading/publishing steps for each procedure.

From SQL*Plus, connect as SYS and run the scriptr dbns/ adm n/ i ni t pl gs. sql
to load the embedded PL/SQL gateway servlet into the database server.

From the system command line, use the session shell publ i shser vl et command
to publish the servlet so that it can be accessed through a URL. This operation
registers a virtual path, and every request for a document using that virtual path is
handled by the embedded PL/SQL gateway servlet, which runs the appropriate
PL/SQL stored procedure. For example:

% $ORACLE_HOME/ j i s/ bi n/ uni x/ sess_sh -s http://webserver: portnunber -u\

sys/ change_on_instal |

--Session Shell--

--type "help" at the command line for help nmessage

$ publishservlet -virtual path pls/* /webdomains/contexts/default plsGateway \
SYS: oracl e. pl sql . web. PLSQLGat eway Ser vl et

This publishes the gateway servlet under the name pl sGat eway with a default
context. In this example:

9-2 Oracle9i Servlet Engine Developer’s Guide

Overview of PL/SQL Servlets

« You can access PL/SQL stored procedures using the virtual path / pl s. You
might specify different virtual paths to set up multiple instances of the servlet,
each with different settings.

« You can choose a different name in place of pl sGat eway. This is the name that
you use when forwarding requests from another servlet.

« You must specify the SYS: parameter as shown. It is the name of the actual Java
class file.

A URL to access a stored procedure through the gateway might look like one of
these:

http://webserver/pl s/ dadnane/ procedur enane

http://webserver/pl s/ dadnane/ schemanane. pr ocedur ename

http://webserver: portnunber/pl s/ dadnane/ pr ocedur ename
http://webserver/pl s/ dadnane/ procedur enane?par aml=val uel&par am=val ue2

The procedure names in these URLs specify PL/SQL procedures. They can use
either a stateful or a stateless execution model, depending on how you configure the
DAD, as explained in the following section.

See Also:

« Using mod_plsgl in the documentation for the Oracle HTTP Server for
information about the DAD configuration parameters.

« Oracle9i Java Tools Reference for the syntax of the session shell
commands.

Writing Stateful PL/SQL Stored Procedures

Typically, when you run a PL/SQL stored procedure over the Web, its state goes
away when the procedure ends. This state information includes the values of any
package variables it accesses, its transaction state, and any rows it inserted into
temporary tables.

You might want to change this behavior when several procedures are called in
sequence, for example during a registration procedure that uses several different
HTML forms. Instead of passing the information from one procedure to another
using CGl-style parameters, you can store it in package variables until the entire
process is complete. You can do a single commit or rollback when the registration
succeeds or fails.

You can preserve this state information across calls to PL/SQL stored procedures by
following these steps:

Writing PL/SQL Servlets 9-3

Overview of PL/SQL Servlets

1. Publish the embedded PL/SQL gateway servlet through the Oracle Servlet
Engine, as previously described. This only needs to be done once.

2. Setthe st at ef ul attribute of the DAD to Yes. By default, its value is No. This
only needs to be done once, and remains in effect for all packages and stored
procedures called through this DAD. You can also set this attribute at the global
level, so that all new DADs inherit the same setting.

3. Create a package containing some variables, if you need storage for data to be
preserved across calls.

4. Write one or more PL/SQL stored procedures that access the package variables,
perform different parts of a single transaction, and generally take advantage of
stateful execution.

5. When all the data is ready, explicitly commit if the operation is successful, or
rollback if the operation fails. There is no implicit commit when the procedure
ends. When an exception is raised, there is an implicit rollback to the state at the
beginning of the current procedure call, but the transaction remains open so a
commit or rollback is still needed at the end.

To explicitly delete the package state information, you can call DBMS_
SESSI ON. RESET_PACKAGE. This technique lets you get the performance benefits
of stateful procedures while keeping the default behavior for state information.

9-4 Oracle9i Servlet Engine Developer’s Guide

Configuring Database Access Descriptors from an Application

Configuring Database Access Descriptors from an Application

When you configure a Web server to run Oracle stored procedures, you typically
use a browser interface to set up the database access descriptor (DAD). To automate
this operation, you can configure the DAD by calling procedures in the package
DBMS_EPGC. The following example shows how to set or change the DAD
configuration from an application. The next section describes each procedure in
package DBMS_EPGC.

- A sanple procedure that configures an enbedded gateway
- instance for the given port nunber.

CREATE OR REPLACE PROCEDURE sanpl el init_cfg(port IN PLS_INTEGER) IS
BEGI N

- reset instance (port) configuration.

dbms_epgc. drop_i nstance(port);
dbms_epgc. create_i nstance(port);

- set global attributes for the enbedded PL/SQL Gateway instance.

dbms_epgc. set _gl obal _attribute(port, 'defaultdad', 'HR);
dbms_epgc. set _gl obal _attribute(port, 'admnPath', '/admin_/");
dbms_epgc. set _gl obal _attribute(port, 'stateful', 'Yes');

- create a database access descriptor (DAD) call ed APPS

dbms_epgc. create_dad(port, 'APPS);
dbms_epgc. set _dad_attribute(port, 'APPS', 'default_page', 'APPS.pkg.hone');
dbms_epgc. set _dad_attribute(port, 'APPS', 'docunent_table', 'APPS. doc_tab');
dbms_epgc. set _dad_attribute(port, 'APPS , 'docunent_path', 'docs');
dbms_epgc. set _dad_attribute(port, 'APPS', 'upload_as_blob', 'jpeg, gif,
txt');
dbms_epgc. set _dad_attribute(port, 'APPS', 'docunent_proc',
" APPS. doc_pkg. process_downl oad') ;
- override global setting for stateful attribute
dbms_epgc. set _dad_attribute(port, 'APPS', 'stateful', 'No');

—~ o~~~

Writing PL/SQL Servlets 9-5

Configuring Database Access Descriptors from an Application

- create a database access descriptor (DAD) called HR
dbms_epgc. create_dad(port, 'HR);

dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute
dbms_epgc. set _dad_attribute

port, 'HR, 'usernane', 'scott');

port, 'HR, 'password', 'tiger');

port, 'HR, 'default_page', 'HR hello');

port, 'HR, 'document_table', 'wpg_new doctab');
port, 'HR, 'document_path', 'docs');

port, 'HR, 'upload_as_blob', "txt');

port, 'HR, 'upload_as_long_raw, 'sql');

port, 'HR, 'document_proc',

"HR. docpkg. process_downl oad') ;

N~ N~ A~~~ o~

- Commt the changes.
COW T;
END;

/
show errors;

- Configure the embedded gateway for port 8080.
EXECUTE sanpl el_init_cfg(8080);

If you have worked with DADs before, you might be familiar with the syntax of the
configuration files used by WebDB and OAS. You can import such information in a
single operation, as demonstrated by the following program:

- A sanple procedure that configures an enbedded gateway
- using the inport nethod.

CREATE OR REPLACE PROCEDURE sanpl e2_init_cfg(port IN PLS_INTEGER) IS
string VARCHAR2(2000);
BEGI N

string :="'
[PLSQL_GATEWAY]
adm npath = /admin_/
def aul tdad = HR
stateful = yes

9-6 Oracle9i Servlet Engine Developer’s Guide

Configuring Database Access Descriptors from an Application

[DAD_APPS]

DEFAULT_PAGE=APPS. pkg. home
DOCUMENT_PATH=docs

DOCUMENT_PROC=APPS. doc_pkg. pr ocess_downl oad
DOCUMENT_TABLE=APPS. doc_t ab

STATEFUL=no

UPLOAD_AS BLOB=j peg, gif, txt

[DAD_HR]

DEFAULT_PAGE=HR. hel | o

DOCUMENT_PATH=docs

DOCUMENT_PROC=HR. docpkg. pr ocess_downl oad
DOCUMENT_TABLE=wpg_new_doct ab
USERNAME=scot t

PASSWORD=t i ger

UPLOAD_AS_BLOB-=t xt

UPLOAD_AS_LONG_RAWEsql

dbms_epgc. drop_i nstance(port);
dbms_epgc. create_i nstance(port);

dbms_epgc. i nport (port, string);
- Conmit the changes.

COW T;
END;
/
show errors;

- Configure the embedded gateway for port 8080.

EXECUTE sanpl e2_init_cf g(8080);

See also the documentation about nrod_pl sql in the Oracle HTTP Server
documentation for descriptions of the configuration parameters. Some of the
caching and connection pooling parameters do not apply when the stored
procedures are accessed outside of nod_pl sql .

Writing PL/SQL Servlets 9-7

Package DBMS_EPGC

Package DBMS EPGC

This package lets you configure database access descriptors (DADs) for the Oracle
Servlet Engine.

The embedded PL/SQL gateway runs as a plug-in in the Oracle Servlet Engine
embedded in the Oracle database. There is typically only one entry point to the
Oracle Servlet Engine, istening for HTTP requests on the Oracle Net port to which
nod_ose connects.

Because the configuration information is stored in the database rather than on a
middle tier, it does not work with DADs from the Oracle HTTP Server. You can
exchange configuration information with DADs on a middle tier using the

| MPORT/EXPORT procedures in this package.

Security Model

Although all users have execute privileges on this package, the package performs
its own security checking by maintaining a private list of administrative users: only
these users can call the methods of this package. SYS and SYSTEMare always
administrative users by default. The GRANT_ADM N and REVOKE_ADM N
procedures control the embedded gateway administration privileges for other
database users.

Transactional Behavior
All operations run in the caller's transactional context. The caller must explicitly
commit after calling any update operations such as import, set, or drop.

To execute configuration operations in a separate transaction context, wrap the calls
to this package in an autonomous PL/SQL block.

Types
The procedures in this package use the following type for passing parameters:

TYPE varchar2_table |'S TABLE OF VARCHAR2(4000) | NDEX BY Bl NARY_| NTEGER;

Exceptions
The procedures in this package can raise the following exceptions:

config_error EXCEPTION
PRAGVA EXCEPTI ON_I NI T(config_error, -20000);
config_error_num CONSTANT PLS_|I NTEGER : = -20000;

9-8 Oracle9i Servlet Engine Developer’s Guide

Package DBMS_EPGC

user _al ready_exi sts EXCEPTI ON;
PRAGVA EXCEPTI ON_I NI T(user _al ready_exi sts, -20001);
user _al ready_exi sts_num CONSTANT PLS_| NTEGER : = -20001;

invalid_port EXCEPTION
PRAGVA EXCEPTI ON_I NI T(i nvalid_port, -20002);
invalid_port_num PLS | NTEGER : = -20002;

invalid_usernane EXCEPTI ON;
PRAGVA EXCEPTI ON_I NI T(i nval i d_username, -20003);
invalid username_num PLS | NTEGER : = -20003;

not _an_adm n EXCEPTI ON;
PRAGVA EXCEPTI ON_I NI T(not _an_admi n, -20004);
not _an_adm n_num PLS | NTEGER : = -20004;

privilege_error EXCEPTI ON
PRAGVA EXCEPTI ON_I NI T(privilege_error, -20005);
privilege_error_num PLS_| NTEGER : = - 20005;

dad_not found EXCEPTI ON;
PRAGVA EXCEPTI ON_I NI T(dad_not _found, -20006);
dad_not found_num PLS | NTEGER : = -20006;

invalid dad attribute EXCEPTION,
PRAGVA EXCEPTI ON_I NI T(i nval id_dad_attribute, -20007);
invalid dad _attribute num PLS INTEGER : = -20007;

invalid_global _attribute EXCEPTI ON,
PRAGVA EXCEPTI ON_I NI T(i nval i d_gl obal _attribute, -20008);
invalid_global _attribute_num PLS | NTEGER : = -20008;

instance_al ready_exi sts EXCEPTI ON;

PRAGVA EXCEPTI ON_I NI T(i nst ance_al ready_exi sts, -20009);
instance_al ready_exi sts_num PLS_| NTEGER : = -20009;

Summary of Subprograms

CREATE_INSTANCE Procedure

Creates a gateway instance identified by a port number. You have to do this call
before configuring attributes and privileges for the instance.

Writing PL/SQL Servlets 9-9

Package DBMS_EPGC

If the instance (port) is already in use, this operation results in an error.

The bulk configuration procedures (I MPORT and EXPORT) can be used without
explicitly creating the instance.

The calling user of this routine automatically gets administrative privileges on this
gateway instance.

PROCEDURE create_instance(port IN PLS | NTEGER);

DROP_INSTANCE Procedure

Drops the configuration information for a gateway instance identified by a port
number. In some cases it might be easier to drop and recreate the instance than to
modify it.

PROCEDURE drop_i nstance(port IN PLS I NTEGER);

DROP_ALL_INSTANCES Procedure
Drops the configuration information for all gateway instances in the database.

The caller of this procedure must either be SYS or have administrative privileges on
all gateway instances in the database.

PROCEDURE drop_al | _i nst ances;

GRANT_ADMIN Procedure

The following APIs grant and revoke gateway administration privileges to database
users. The SYS and SYSTEM users are always administrative users by default.

Grants gateway administrative privileges to a user.

PROCEDURE grant _admi n(port | N PLS_| NTEGER, username | N VARCHAR?);

REVOKE_ADMIN Procedure
Revokes gateway administrative privileges of a user.

PROCEDURE revoke_admi n(port |N PLS | NTEGER, username |N VARCHAR2);

9-10 Oracle9i Servlet Engine Developer’s Guide

Package DBMS_EPGC

GET_ADMIN_LIST Procedure
Gets the list of gateway administrative users, other than SYS and SYSTEM If no
such users exist, the result is an empty table, with zero elements.

PROCEDURE get _admin_list(port IN PLS | NTEGER,
users OUT NOCOPY VARCHAR2_TABLE);

SET_GLOBAL_ATTRIBUTE Procedure
Sets the value of a global attribute, one that applies to all DADs. If an attribute is
already set for a given port number, the old value is overwritten with the new one.

Attribute names are not case-sensitive. Attribute values are sometimes
case-sensitive, for example when the values represent UNIX filenames, but values
such as Yes and No are not case-sensitive.

PROCEDURE set _gl obal _attri bute(port I'N PLS_| NTEGER,
attrnanme | N VARCHAR2,
attrvalue I N VARCHAR?) ;

GET_GLOBAL_ATTRIBUTE Procedure
Gets the value of a global attribute. Returns NULL if the attribute has not been set.
Raises an exception if the attribute is not a valid attribute.

FUNCTI ON get _gl obal _attribute(port IN PLS_| NTEGER,
attrname | N VARCHAR2)
RETURN VARCHAR2;

DELETE_GLOBAL_ATTRIBUTE Procedure
Deletes a global attribute.

PROCEDURE del ete_gl obal _attribute(port IN PLS_ | NTEGER,
attrname | N VARCHAR2);

GET_ALL_GLOBAL_ATTRIBUTES Procedure

Get all global attributes/values for an embedded gateway instance. The output is
two index-by tables, one with the attribute names, and the other with the
corresponding attribute values. If the gateway instance has no global attributes set,
the output arrays are empty.

Writing PL/SQL Servlets 9-11

Package DBMS_EPGC

PROCEDURE get _al | _gl obal _attribut es(port IN PLS_I NTEGER,
attrnanmearray OUT NOCOPY VARCHAR2_TABLE,
attrval uearray OUT NOCOPY VARCHAR2_TABLE);

CREATE_DAD Procedure
Creates a new DAD, with no attributes set. The DAD name is not case-sensitive. If a
DAD with this name already exists, the old information is deleted.

PROCEDURE create_dad(port IN PLS | NTEGER, dadname |IN VARCHAR?);

DROP_DAD Procedure
Drops a DAD from the gateway configuration.

PROCEDURE drop_dad(port IN PLS_INTEGER, dadname | N VARCHAR2);

SET_DAD_ATTRIBUTE Procedure

Sets an attribute for a DAD (Database Access Descriptor). It creates the DAD if it
does not already exist. Any old value of the attribute is overwritten.

DAD names and DAD attribute names are not case sensitive. DAD attribute values
might be case-sensitive depending upon the attribute.

PROCEDURE set _dad_attri bute(port I'N PLS | NTEGER,
dadname | N VARCHAR?,
attrname | N VARCHAR2,
attrval ue | N VARCHAR?) ;

Example

set _dad_attribute(8080, 'nmyApp', 'default_page', 'nyApp. hone');
set _dad_attribute(8080, 'myApp', 'document _path', 'docs');

GET_DAD_ATTRIBUTE Procedure
Gets the value of a DAD attribute. Raises an error if DAD does not exist, or if the
attribute is not a valid attribute. Returns NULL if the attribute is not set.

function get_dad_attribute(port IN PLS_ | NTEGER,
dadnane | N VARCHAR?,
attrname | N VARCHAR2) return VARCHAR?;

9-12 Oracle9i Servlet Engine Developer’s Guide

Package DBMS_EPGC

DELETE_DAD ATTRIBUTE Procedure
Deletes a DAD attribute.

PROCEDURE del ete_dad_attri but e(port I N PLS | NTEGER,
dadname | N VARCHAR?,
attrname | N VARCHAR2);

GET_DAD_LIST Procedure

Gets the list of all DADs for an embedded gateway instance. If no DADs exist, the
result is an empty table, with zero elements.

PROCEDURE get _dad_| i st(port IN PLS | NTEGER,
dadarray OUT NOCOPY VARCHAR2_TABLE);

GET_ALL_DAD_ATTRIBUTES Procedure

Get all attributes of a DAD. The output is two index-by tables, one with the
attribute names, and the other with the corresponding attribute values. If the DAD
has no attributes set, the output arrays are empty.

PROCEDURE get _al | _dad_attributes(port IN PLS | NTEGER,
dadnane IN VARCHAR2,
attrnanmearray OUT NOCOPY VARCHAR2_TABLE,
attrval uearray OUT NOCOPY VARCHAR2_TABLE);

IMPORT Procedure

The following procedures let you bulk load the configuration information for an
embedded PL/SQL gateway. The input can be in any of the following forms:

« A VARCHAR2 (with a maximum length of 32 KB)
« An index-by table of VARCHAR? variables
-« ACLOB

The syntax of the configuration information must be the same as that used by the
Oracle HTTP Server in the Internet Application Server. The easiest way to create it
is to export it from an existing DAD.

PROCEDURE i nport (port | N PLS_I NTEGER,

Writing PL/SQL Servlets 9-13

Package DBMS_EPGC

cfg | N VARCHAR2);

PROCEDURE i nport (port | N PLS_| NTEGER,
cfg I N DBVB_EPGC. VARCHAR2 TABLE);

PROCEDURE i nport (port | N PLS_I NTEGER,
cfg INCLOB);

EXPORT Procedure

The following procedures export the configuration information of an embedded
PL/SQL gateway to a flattened form so that it can be used with the Oracle HTTP
Server in iAS. The output can be any of the following:

« VARCHAR2 (with a maximum length of 32 KB)
« index-by table of VARCHAR? variables
. CLOB

PROCEDURE export (port IN PLS_I NTEGER,
cfg OUT NOCOPY VARCHAR?) ;

PROCEDURE export (port IN PLS | NTEGER
cfg OUT NOCOPY dbnms_epgc. VARCHAR2_TABLE) ;

PROCEDURE export (port IN PLS_|I NTEGER,
cfg OUT NOCOPY CLOB);

9-14 Oracle9i Servlet Engine Developer’s Guide

A

Abbreviations and Acronyms

This appendix lists some of the most common acronyms that you find in the areas
of computer networking, distributed object development, and Java. In cases where
an acronym refers to a product or a concept that is associated with a specific group,
company, or product, the group, company, or product is indicated in brackets
following the acronym expansion. For example: CORBA ... [OMG].

This acronym list is intended as a helpful guide. It is extensive, and should include
every acronym in this book, but there are now so many computer-related acronyms
that any list such as this must be incomplete.

3GL third generation language

4GL fourth generation language

ACID atomicity, consistency, isolation, durability
ACL access control list

ADT abstract datatype

AFC application foundation classes [Microsoft]
AJP Apache JServ protocol

ANSI American National Standards Institute

AP application program interface

AQ advanced queuing [Oracle8]

ASCII American standard code for information interchange
ASP active server page(s) [Microsoft]

AWT abstract windowing toolkit [Java]

BDK beans developer kit [Java]

Abbreviations and Acronyms A-1

BLOB binary large object

BOA basic object adapter [CORBA]

BSD Berkeley system distribution [UNIX]

CIS client/server

CGl common gateway interface

CICS customer information control system [IBM]
CLI call level interface [SAG]

CLOB character large object

COM common object model [Microsoft]

COM+ common object model, extended [Microsoft]
CORBA common object request broker architecture [OMG]
CSS cascading style sheet(s)

DB database

DBA database administrator, database administration
DBMS database management system

DCE distributed computing environment [OSF]
DCOM distributed common object model [Microsoft]
DDCF distributed document component facility

DDE dynamic data exchange [Microsoft]

DDL data definition language [SQL]

DHTML dynamic HTML

DLL dynamic link library [Microsoft]

DLM distributed lock manager [Oracle8]

DML data manipulation language [SQL]

DNS domain name server, domain naming system
DOM document object model

DOS disk operating system

DSOM distributed system object model [IBM]

DSS decision support system

A-2 Oracle9i Servlet Engine Developer’s Guide

DTD document type definition [XML]

DTP distributed transaction processing

EBCDIC extended binary-coded decimal interchange code [IBM]

EJB Enterprise JavaBean

ERP enterprise resource planning

ESIOP environment-specific inter-orb protocol

FTP file transfer protocol

GB gigabyte

GIF graphics interchange format

GIOP general inter-orb protocol

GUI graphical user interface

GUID globally-unique identifier

HTML hypertext markup language

HTTP hypertext transfer protocol

IDE integrated development environment, interactive
development environment

IDL interface definition language

IEEE Institute of Electrical and Electronics Engineers

lIOP internet inter-ORB protocol

s internet information server [Microsoft]

IP internet protocol

IPC interprocess communication

IS information services

ISAM indexed sequential access method

ISAPI Internet server API [Microsoft]

ISO international standards organization

ISP internet service provider

ISQL interactive SQL [Interbase]

ISV independent software vendor

Abbreviations and Acronyms A-3

T
J2EE
J2ME
J2SE
JAAS
AR
JAXB
IAXM
JAXP
JAXR
JAX-RPC
JCK
jcpP
idb
JDBC
DK
JFC
T
i
IMS
IND
N
J08B
JPEG
JRMP
ISP

JSR

information technology

Java 2 Enterprise Edition [Sun]
Java 2 Micro Edition [Sun]

Java 2 Standard Edition [Sun]

Java Authentication and Activation Service (Sun)
Java archive (on analogy with tar, g.v.)
Java architecture for XML binding
Java API for XML messaging

Java API for XML processing

Java API for XML registries

Java API for XML-based RPC

Java compatibility Kit [Sun]

Java community process

Java debugger [Sun]

Java database connectivity

Java developer’s kit [Sun]

Java foundation classes

just in time

Java language specification

Java messaging service

Java naming and directory interface
Java native interface

Java objects for business [Sun]

joint photographic experts group
Java remote message protocol

JavaServer Pages [Sun]
(sometimes used for Java stored procedure [Oracle], but this is
deprecated)

Java specification request

A-4 Oracle9i Servlet Engine Developer’s Guide

JTA Java transaction API

JTS Java transaction service

JWS Java Web Server [Sun, obsolete product]
KB kilobyte

LAN local area network

LDAP lightweight directory access protocol
LDIF LDPA data interchange format

LOB large object

MB megabyte

MIME multi-purpose internet mail extensions
MIS management information services

MOM message-oriented middleware

MPEG motion picture experts group

MTS multi-threaded server [Oracle]

MTS Microsoft Transaction Server [Microsoft]
NCLOB national character large object

NIC network information center [internet]
NIS network information service [Sun]

NNTP net news transfer protocol

NSAPI Netscape server application programming interface
NSP network service provider

NT New Technology [Microsoft]

ocl Oracle call interface

0oCX OLE common control [Microsoft]

ODBC open database connectivity [Microsoft]
ODBMS object database management system
ODL object definition language [Microsoft]
ODMG Object Database Management Group
OEM original equipment manufacturer

Abbreviations and Acronyms A-5

oD object identifier

OLE object linking and embedding

OLTP on line transaction processing

OMA object management architecture [OMG]
OMG Object Management Group

00 object-oriented, object orientation
OODBMS object-oriented database management system
oQL object query language

ORB object request broker

ORDBMS object-relational database management system
0S operating system

OSF Open System Foundation

oSl open systems interconnect

0oSsQL object SQL

OoT™ object transaction monitor

oTS object transaction service

Oows Oracle Web Server (obsolescent)

PAM pluggable authentication module

PB petabyte

PDF portable document format [Adobe]

PGP pretty good privacy

PI processing instruction [XML]

PL/SQL procedural language/SQL [Oracle]
PLMN Public Land Mobile Network

PNG portable network graphics

POA portable object adapter [CORBA]

RAM random access memory

RAS remote access service [Microsoft]

RCS revision control system

A-6 Oracle9i Servlet Engine Developer’s Guide

RDBMS relational database management system

RFC request for comments

RFP request for proposal

RMI remote method invocation

ROM read only memory

RPC remote procedure call

RTF rich text file

SAF server application function [Netscape]
SAG SQL Access Group

SAX simple API for XML

SCsl small computer system interface

SDK software developer kit

SET secure electronic transaction

SGML standard generalized markup language
SID system identifier [Oracle]

SLAPD standalone LDAP daemon

SMP symmetric multiprocessing

SMTP simple mail transfer protocol

SOAP simple object access protool [Microsoft]
SPI service provider interface

SQL structured query language

SQLJ SQL for Java

SRAM static (or synchronous) random access memory
SSL secure socket layer

tar tape archive, tape archiver [UNIX]

B terabyte

TCP/IP transmission control protocol/internet protocol
TCPS TCP for SSL

™ transaction monitor

Abbreviations and Acronyms A-7

P
TPC
TPCW
TPF
TPM
tps
ucs
uDP
ul
UML
URL
VAR
VB
VRML
W3G
WAI
WAN
WAP
WIPS

XML
XSL
XSLT
XSLTC
XSP

transaction processing

Transaction Processing Council

TPC Web benchmark

transaction processing facility
transaction processing monitor
transactions per second

universal character set [ISO 10646]
user datagram protocol

user interface

unified modeling language [Rational]
universal resource locator
value-added reseller

Visual Basic [Microsoft]

virtual reality modeling language
WWW Group

Web application interface [Netscape]
wide area network

wireless access protocol, wireless application protocol
Web interactions per second [TPCW]
World Wide Web [W3G]

extended architecture [X/Open]
extensible markup language [W3G]
extensible stylesheet language [W3G]
extensible stylesheet language transformations
XSLT compiler

extensible server pages

A-8 Oracle9i Servlet Engine Developer’s Guide

A

accept-charset

header in HTTP response, 8-24
accept-info

WAR file element, 8-24
access control list, 7-3
AccessControlException, 7-14
accesslog, 3-15
acronyms, A-1
addendpoint, 3-5, 3-6, 5-11
addgroupentry, 3-16
Apache, 1-2,2-6,4-1,4-2

daemon process, 5-3

restarting, 5-4
APACHE_HOME, 5-8
AuroralLocationService, 4-12

directive for ose.conf configuration file, 5-17

mod_ose directive, 5-6
AuroraService, 5-17
aurora-stateless-server, 5-18
AuroraWorkersPerProcess

mod_ose directive, 5-6
authentication

BASIC, 7-5,7-11,7-19

DIGEST, 7-5,7-11

using OSSO, 7-5
auth-method

WAR File subelement, 8-28
authType, 7-11

Index

B

BASE64, 7-11
binding
inJNDI, 2-8,2-9
browse-dirs
WAR file element, 8-25

C
cached data, 1-7
case
of letters in user names, 7-7
cd, 1-9
CGl, 1-3

charset, 8-24

WAR file subelement, 8-24
chmod, 1-9,7-4
chown, 7-4
class-loader-descriptor

WAR file element, 8-29
Common Gateway Interface. See CGlI
config file, 3-16
config object, 2-23, 2-26, 2-32, 2-37, 2-41, 3-15, 3-20,

3-21, 3-27,5-17, 7-4, 7-5, 7-14

configuration files

Apache, 5-2

httpds.conf, 5-8

mod_ose, 5-3

ose.conf, 5-8
context path, 8-3
context-param

in WAR deployment, 8-38
contexts

Index-1

inJNDI, 2-8 DBUSER

cookie, 1-4,2-5 realm type, 7-7
CORBA, 2-14,2-19 deploywar, 8-47
createcontext, 3-13 deploywar.htm, 8-8
createwebdomain, 3-9 destroyservice, 3-5
directive in ose.conf, 4-12
D dispatcher, 3-2
doc-root
DBMS_EPGC package, 9-8 in WAR deployment, 8-38
CONFIG_ERROR exception, 9-8 WAR file element, 8-25
CREATE_DAD procedure, 9-12 DOCTYPE
CREATE_INSTANCE procedure, 9-9 declaration of, 8-4
DAD_NOT_FOUND exception, 9-8 document root, 2-11, 8-3
DELETE_DAD_ATTRIBUTE procedure, 9-13 of servlet context, 8-24
DELETE_GLOBAL_ATTRIBUTE DTD, 8-4,8-5,8-8,8-14
procedure, 9-11 auxiliary descriptor, 8-23

DROP_ALL_INSTANCES procedure, 9-10
DROP_DAD procedure, 9-12

DROP_INSTANCE procedure, 9-10 E
EXPORT procedure, 9-14 EJBs, 1-6,1-11, 2-8, 2-14, 2-19, 6-1, 6-5, A-3
GET_ADMIN_LIST procedure, 9-10 embedded PL/SQL gateway, 9-2
GET_ALL_DAD_ATTRIBUTES procedure, 9-13 endpoint, 2-3, 2-4, 2-5, 2-15, 2-17, 2-19, 2-21, 2-22,
GET_ALL_GLOBAL_ATTRIBUTES 2-38
procedure, 9-11 Enterprise JavaBeans. See EJBs
GET_DAD_ATTRIBUTE procedure, 9-12 error-log
GET_DAD_LIST procedure, 9-13 WAR file element, 8-26
GET_GLOBAL_ATTRIBUTE procedure, 9-11 exportwebdomain, 5-6, 5-13
GRANT_ADMIN procedure, 9-10
IMPORT procedure, 9-13 F
INSTANCE_ALREADY_EXISTS exception, 9-8
INVALID_DATA_ATTRIBUTE exception, 9-8 file permissions
INVALID_GLOBAL_ATTRIBUTE in WAR deployment, 8-37
exception, 9-8 firewall, 1-10, 2-20
INVALID_PORT exception, 9-8
INVALID_USERNAME exception, 9-8 G
NOT_AN_ADMIN exception, 9-8
PRIVILEGE_ERROR exception, 9-8 gencfg.pl
REVOKE_ADMIN procedure, 9-10 Perl script, 5-6,5-10, 5-14
SET_DAD_ATTRIBUTE procedure, 9-12 grant_permission, 2-12
SET_GLOBAL_ATTRIBUTE procedure, 9-10 group
USER_ALREADY_EXISTS exception, 9-8 in security, 7-6,7-11
VARCHAR2_TABLE type, 9-8
dbms_java

package, 2-12,3-11
dbms_java.grant_permission, 8-37

Index-2

H

Hidden Form Fields, 1-4
host name, 2-36
hotload
WAR file subelement, 8-28
HRRoot
sample Web service, 2-14
HTML, 1-3
HTML pages, 8-2,8-3
HTTP
client, 1-11, 2-15, 8-8
presentation, 2-15
protocol, 1-2,1-3
request
DELETE, 7-13
GET, 7-13,7-19,8-31
HEAD, 7-13
OPTIONS, 7-13
POST, 1-5,7-13,8-31
PUT, 7-13
TRACE, 7-13
types to be protected, 7-13
request types, 7-13
requests
stateless, 2-17
security, 7-2,7-3,7-5,7-12
security realm, 8-30
service, 2-5,2-14,5-11
services, 2-19
session object, 2-5
httpd, 5-3
httpds.conf, 5-8, 5-22
Apache configuration file, 5-4
httpdsctl, 5-4
HTTPS, 1-5
HttpServietRequest
getContextPath() method, 2-37
getPathinfo() method, 2-37
getServletPath() method, 2-37
HttpSession object, 1-4

IfModule

Apache directive, 5-5
Include

Apache directive, 5-8
INIT.ORA, 3-3
intranet, 2-20
IP address, 2-20

J
J2EE, 25
JAR, 86

Java archive. See JAR
Java Naming and Directory Interface. See JNDI
Java Stored Procedure, 2-8
Java Virtual Machine. See VM
JAVASHTTP$SREALM$GROUPS, 7-10
JAVASHTTPSREALMSMAPPINGS, 7-13
JAVASHTTPSREALMSPOLICYS
permissions table, 7-14
JAVASHTTP$REALMS$PRINCIPALS, 7-10
JavaBeans, 1-6, 8-2, 8-4
java.io.FilePermission, 2-12
JavaServer Pages. See JSPs
JDBC, 1-4
server side internal driver for, 1-7
JNDI, 1-5,2-8
binding, 2-8,2-9
context objects in, 2-8
namespace, 2-14,2-33,7-3,7-14
permissions in namespace, 7-3
protection, 7-2
realm type, 7-8
reference objects in, 2-8
JServ, 1-2
jserver-loader
WAR file subelement, 8-29
JSP, 1-6, 2-16, 8-3, 8-9, 8-36, 8-39, 8-41
jsp-info
WAR file element, 8-28
VM, 1-8,8-1

Index-3

K

KeepAlive, 4-11,5-18

L

language
WAR file subelement, 8-24
Laurie, Ben, 7-2
Laurie, Peter, 7-2
loadjava, 1-11
LoadModule
Apache directive, 5-5
Location, 5-19
Apache directive, 5-5
log-descriptor
WAR file element, 8-26
login-config
element of web.xml, 8-10
WAR file element, 8-28
Isnrctl service, 2-17

M
middle-tier, 1-10
mkdir, 1-9

mod_ose, 2-17,3-2,5-2
mod_osso, 4-14

mod_osso.c, 5-22

mod_plsqgl, 9-2

MTS, 1-10,2-6

Multi-Threaded Server. See MTS

N

named_servlets, 7-15
JNDI context, 7-3
namespace, 1-9, 2-8
JNDI, 2-33
OSE, 2-9
Netscape, 7-19
network interface card, 1-10, 3-9

Index-4

O

Oracle
auxiliary descriptor, 8-47
auxiliary descriptor for WAR deployment,
8-38
HTTP Server, 2-15
listener, 2-15
shared server, 5-2
Oracle HTTP Server, 1-2,3-2,5-2
Oracle Net, 4-3
configuration of for mod_ose, 5-9
instl_http entry for, 3-4
Oracle Servlet Engine
scalability of, 8-7
Oracle shared server, 5-12
Oracle Single Sign-On. See OSSO
oracle_apache.conf
Apache configuration file, 5-8
Oracle8i, 1-10,2-6
OraclelJSP
translator, 8-41
ose.conf
configuration file, 5-19
creating, 5-10
mod_ose configuration file, 5-5
ose-principal
WAR file subelement, 8-30
0SSO, 5-22,7-5,8-14, 8-28
authentication using, 5-23
realm
publishing, 5-23
removing, 5-23
realm type, 7-7,7-8

8-17,

P
Perl, 5-6,5-10, 5-14
permissions

inJNDI, 7-3

onaservlet, 7-4
plsGateway, 9-2
PL/SQL

call spec, 8-8,8-15
PL/SQL gateway, 9-2

PL/SQL procedures RFC

stateful, 9-2 2616, 4-11
port, 2-15 RFCs
PRESENTATION 2068, 7-2
directive in TNSNAMES.ORA, 2-18 2069, 7-11
principal rm, 1-9
creating, 7-9 rmendpoint, 3-8
in security, 7-11 role-name
in security realm, 7-13 WAR file subelement, 8-30
security, 7-2,7-5 run as owner, 7-4
PrivilegedServlet RunAsOwner
interface, 7-14 servlet context property, 3-16
properties runAsOwner
of a Web service, 2-28 config object entry, 7-4
protection rules run-as-owner
in HTTP security, 7-12 attribute of context-descriptor element, 8-16
protection scheme WAR file element, 8-25
BASIC, 7-12
NONE, 7-11 S
published name
of aservlet, 2-32 schema
publishservlet, 2-34, 2-37, 9-2 WAR file subelement, 8-29
security
examples, 7-16
Q security realm, 7-2, 8-10
query string, 2-35 security servlet
creating, 7-14
R security-role
WAR file subelement, 8-30
RDBMS Service Provider Interface. See SPI
realm type, 7-7 service.globalTimeout, 3-8
rdbms-log servlet
WAR file subelement, 8-26 "heavy weight", 1-7
realm, 5-23,7-5,7-6,7-8 permissions, 7-4
creating, 7-8 published name of, 2-32
location of in INDI namespace, 7-10 stateful, 1-4
removing, 7-9 stateless, 1-4,4-2
where located, 7-10 virtual path of, 2-36
realmName, 7-11 servlet context, 2-32,8-2
realm-name in WAR deployment, 8-38
WAR file element, 8-29 servlet engine
references defined, 1-2
inJNDI, 2-8 session, 1-4
resolver session shell command
WAR file subelement, 8-29 accesslog, 3-15

Index-5

addendpoint, 3-5, 3-6
addgroupentry, 3-16

cd, 1-9
chmod, 1-9,7-4
chown, 7-4

createcontext, 3-13
createwebservice, 3-5
deploywar, 8-47
destroyservice, 3-5
exportwebdomain, 5-13
Is, 1-9
mkdir, 1-9
publishservlet, 2-34
realm, 5-23,7-8
realm map, 7-12,7-18
realm secure, 7-14
rm, 1-9
rmendpoint, 3-8
SetHandler, 5-18
shared server
required for OSE, 3-3
socket, 2-15
SPI, 2-10
SQL tables
for persistence of INDI namespace objects, 2-8
SQL*Plus, 8-37
SSL, 2-18,4-12,5-20
static files
WAR deployment of, 8-37
static pages, 2-16
subcontext, 7-10
SYS
database schema
creating a Web service, 7-3
privileges, 2-19
system-log
WAR file subelement, 8-26

T

table
WAR deployment file attribute, 8-26
TCP, 4-12
TCP/IP, 2-15,2-18,5-11
TCPS, 4-12,5-11,5-20

Index-6

threads
inJava, 1-8
TNS_ADMIN, 5-9
TNSNAMES.ORA, 3-3,3-4
Tomcat, 1-2,2-25
troubleshooting
HTTP security, 7-19
of mod_ose, 5-25
WAR deployment, 8-45

TTC, 2-19

U

UNIX, 2-12,3-11, 5-8
URI, 2-35,2-36

URL, 1-2,1-3,2-26,2-35
URL rewriting, 1-4,2-5
user

in security, 7-6

Vv

virtual host, 1-10
virtual hosting, 2-20
|P-based, 2-26
name-based, 2-25
virtual path, 8-3,8-31
of aservlet, 2-36
virtual-path
WAR file attribute, 8-24
WAR file element, 8-25
virtualpath
option of createcontext command,

w

3-13

Wainwright, Peter, 7-2
WAR, 8-1,8-6
deployment
client-side, 8-50
restrictions on, 8-59
deployment descriptor, 8-9
deployment servlet, 8-48
deployment tool, 8-35
options, 8-43

Web application, 8-3
deployment descriptor for, 8-4
distributable, 8-5
Web applications, 1-7
Web archive file. See WAR
Web archive. See WAR
Web browser, 1-2,1-11
Web domain, 2-23
determination of from the URL, 2-27
single, 3-11
Web server
defined, 1-2
Web service
multi-domain, 2-20
single-domain, 2-20
Web services, 2-19
WEB-INF, 8-37
subdirectory for WAR deployment, 8-35
web.xml, 8-4, 8-35, 8-38, 8-46
Windows NT, 2-12, 3-11, 5-8

X

XML, 5-13
validation of for WAR deployment, 8-46

Index-7

Index-8

	Send Us Your Comments
	Preface
	1 Oracle Servlet Engine Overview
	Web Servers and Servlet Engines
	A Brief Introduction to Servlets
	What Is a Servlet?
	Kinds of Servlets
	Advantages of Servlets
	JavaServer Pages

	About the Oracle Servlet Engine
	The Oracle Servlet Engine Namespace
	Hosting a Web Application
	Steps in Developing a Web Application

	2 Oracle Servlet Engine Concepts
	Getting Started
	OSE Building Blocks
	The OSE Session Model
	Servlet Activation
	Multithreading

	The OSE Namespace
	A Short Introduction to JNDI
	The OJVM Root Namespace

	Connecting to an OSE Web Application
	Connection Using the Oracle HTTP Server as Listener
	Direct Connection To an Oracle Listener
	Direct Connection to an Oracle Dispatcher

	Web Services
	Single-Domain and Multi-Domain Services
	Creating a Web Service
	The Service Context

	Web Domains
	JNDI Contents of a Web Domain
	Virtual-Hosted Services
	Determining the Web Domain

	Servlet Contexts
	Overview
	Loading and Publishing Servlets
	Finding the Servlet

	Accessing the Oracle Database
	Server-side Internal Driver
	Thin Driver

	3 OSE Configuration and Examples
	Connecting to the OSE
	Configuration Steps
	Configuring the Oracle Server
	Oracle Net Configuration

	Creating a Web Service
	Commands

	Creating Multi-Domain Web Services
	Examples

	Creating Web Domains
	Creating Servlet Contexts
	Configuring a Servlet Context
	Publishing Servlets
	Summary
	Creating a Web Service
	Creating a Web Domain
	Creating a Servlet Context
	Creating a Servlet
	Compiling the Servlet
	Loading the Servlet into the Database
	Publishing the Servlet
	Accessing the Servlet
	Adding Logging Tables
	Adding Security

	4 An Apache Module for OSE
	Overview
	Why Use mod_ose?
	Apache Architecture
	Configuration

	Requirements
	Shared versus Dedicated Servers

	mod_ose Connections
	Servlet Access Using mod_ose
	Secure Socket Layer Connection
	HTTP Request and Response Processing
	Processing the URL
	Chunking
	Session ID for Real Application Clusters

	The AuroraLocationService Directive
	Topology of a Site Using mod_ose
	Using mod_osso with mod_ose

	5 Configuring mod_ose
	Steps to Take
	Starting mod_ose
	Configuration Files
	httpds.conf
	ose.conf
	Including Configuration Files in httpds.conf

	Oracle Net and Oracle Listener Configuration
	Generating a Configuration File
	tnsnames.ora

	Non-Shared Server Installations
	Configuration Utilities
	exportwebdomain
	gencfg.pl

	AuroraLocationService
	Specifying Stateful and Stateless Handlers in ose.conf
	SSL Configuration
	Configuring mod_osso
	To Configure on the Apache Side
	To Configure on the OSE Server Side
	Securing a Servlet Context with the OSSO Security Servlet

	Troubleshooting

	6 Calling EJBs
	Overview
	EJB Example
	Servlet
	EJB
	Compiling and Deploying the Example
	Accessing the Servlet

	7 Oracle Servlet Engine Security
	Overview
	JNDI Security
	JNDI Security Implementation
	Servlet Permissions

	HTTP Security
	Establishing the Principals
	Realms
	The Session Shell Realm Commands
	Realm Configuration
	Protecting Web Resources
	Declaring A Security Servlet
	Creating a Security Servlet

	Examples
	rdbmsRealm
	dbUserRealm

	Troubleshooting

	8 Oracle WAR Deployment
	Standard Web Applications and Hierarchies
	Web Application Servlet Contexts
	Web Application Hierarchies
	Web Application Deployment Descriptors
	Web Application Deployment and WAR Files

	Overview of WAR Deployment to the Oracle9i Database
	Distributable Applications and the Oracle Servlet Engine
	Overview of the Oracle Auxiliary Descriptor
	Overview of the Oracle WAR Deployment Tool
	Security Preparations
	Database Sessions, Servlet Context Ownership, and Application Privileges

	Oracle Auxiliary Descriptor
	Auxiliary Descriptor DTD
	Auxiliary Descriptor Element and Attribute Descriptions
	Sample Auxiliary Descriptor

	Oracle WAR Deployment Tool Functionality
	Loading Files from the WAR File
	Creating a Servlet Context
	Publishing Servlets and JavaServer Pages
	Securing the Application

	Oracle WAR Deployment Tool Usage
	Oracle WAR Deployment Tool Options and Parameters
	Vehicles for Invoking the Oracle WAR Deployment Tool

	Sample Application Hierarchy and Descriptor Files
	Sample Hierarchy
	Sample Descriptor Files
	Creating and Deploying the WAR File

	Current Restrictions

	9 Writing PL/SQL Servlets
	Overview of PL/SQL Servlets
	Configuring mod_ose to Run PL/SQL Servlets
	Writing Stateful PL/SQL Stored Procedures

	Configuring Database Access Descriptors from an Application
	Package DBMS_EPGC
	Summary of Subprograms

	A Abbreviations and Acronyms
	Index

