Oracle9i

JPublisher User’s Guide

Release 1 (9.0.1)

June 2001
Part No. A90214-01

ORACLE

Oracle9i JPublisher User’s Guide, Release 1 (9.0.1)

Part No. A90214-01

Copyright © 1999, 2001 Oracle Corporation. All rights reserved.
Primary Authors: Brian Wright, Thomas Pfaeffle, P. Alan Thiesen
Contributing Author: Janice Nygard

Contributors: Ekkehard Rohwedder, Prabha Krishna, Ellen Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper, Oracle Net, Oracle Objects, Oracle9i, Oracle8i, Oracle8,
Oracle7, Oracle9i Lite, PL/SQL, Pro*C, SQL*Net, and SQL*Plus are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

SENA US YOUT COMMENTES ...ttt ettt et st ee ettt s e ee et et et et e s e nes et rerenas vii
P T AC .ottt ettt ettt ettt ettt ettt iX
101 (] gL (00 I AN U o [11 0TI TR 4
) 1 U [(0 T 4
2T E=1 (Yo B B T ToT U] g =T o | TR R T T R TTT X
(O00] 0 1VZ=T o] K10] o F-THTTT TSRO PRTRTTTR Xii
Documentation ACCESSIDIITYoiiiiiiie e e e Xii

1 Understanding and Using JPublisher

Understanding JPUBTISNET ... e 1-2
INtroduction t0 JPUBIISNETccoiii e 1-2
What JPUDIISNEN DIOES ...ttt b 1-4
What JPUDIISNEr PrOQUCES ..ot e 1-4
JPUBLIShEr REQUITEMENTS ..ottt e e 1-6
JPublisher INPUL aNd OULPUL ..o e 1-7
Overview of DatatyPe MapPPiNgS.....ooeuriirieire it eseeen 1-8
Creating Types and Packages in the Database...........ccccocviiireiinini e 1-9

JPUDIISNEI OPEIALIONoiviiiiiieiiiet ettt ettt et b e 1-11
Translating and Using PL/SQL Packages and User-Defined TYpesS........ccccovevverrvnenne 1-11
Representing User-Defined Object, Collection, and Reference Types in Java................... 1-13
Strongly Typed Object References for ORAData Implementations.............cccocevveineennes 1-14
JPublisher Command-Line SYNTAX......ccccviiiieiiiriiieie ettt 1-15
Sample JPUDliSher Translation...........cciieiiiiie i 1-15

Backwards Compatibility and Migration ... e 1-21

JPublisher Backwards CompatiDility ... e 1-21
JPublisher Compatibility Between JDK VErsiONSccocoouiiiiiiieiininiee e 1-21
Migration Between Oracle8i JPublisher and Oracle9i JPublisher.............cccoovionincnnn, 1-22
Details of DatatyPe MaPPINGcoveiriririieirieiisieieset ettt st ere e eb e st er et eb et eb et eb et en e benenbenen 1-26
Datatype Mapping TADIESooiiiiir e e e 1-27
Allowed ODJECt ATIIIDULE TYPES ..uciiiiirie ittt e 1-28
Using Datatypes Not Supported bY JDBCccoiiriiiiiinc e 1-29
Concepts of JPublisher-Generated CIaSses.........ccoiviiiiiiiiiice e 1-30
PasSSING OUT PAFaMELETSc.couiiiiririeririe sttt sttt s e s s s s s 1-30
Translating Overloaded Methods ... s 1-33
JPublisher Generation 0f SQLJ CIaSSEScccceiiriiriiriie ettt ettt s e 1-34
Use of SQLJ Classes JPublisher Generates for PL/SQL Packages........cccocooveveniviieniennnens 1-34
Use of Classes JPublisher Generates for ODJECt TYPEScvvivviiiiiiiiieeeee e 1-35
Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher........ 1-37
JPublisher Generation Of JAVA CIaSSESccoviiiiiiiiie et s 1-41
User-Written Subclasses of JPublisher-Generated ClasSes ... 1-44
Extending JPublisher-Generated ClIaSSes ... e 1-44
Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes 1-46
The setFrom() and setValueFrom() Methods...........ccocooiiiiiniiiiic 1-48
JPublisher SUPPOIt fOr INNETTANCEoociiiic e 1-49
ORAData Object Types and INNEFITANCEcccoiiiiiii i 1-49
ORAData Reference Types and INNeritanCeccccvveiieiieiie i 1-51
SQLData Object Types and INNEFItAnCeocoooiiiiiiii e 1-56
Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE..... 1-56
JPUDIISNEr LIMITALIONS ..ottt e e e et et b et en e ben e en e 1-58

Command-Line Options and Input Files

JPUDIISNET OPLIONS ..ottt e et eb bbb b e e 2-2
JPUDBIiSher OPtionN SUMMATY ..ot e s e e 2-2
JPUBIISNEr OPTION TIPS ...ttt s b e bbb 2-4
NOTALIONAl CONVENTIONS ..ottt ettt eb ettt et 2-5
Detailed Descriptions—Options That Affect Datatype Mappings.........cccoeoeneienninncnennne 2-6
Detailed Descriptions—General JPublisher Options..........cocviiieie i 2-11

JPUDIISNEr INPUEL FTTES ..ot 2-25

Properties File Structure and SYNTAXcccoeiieiieineiie e 2-25
INPUT File Structure @and SYNTAX.......cccoeeiiriiie ittt s 2-26
INPUT File PreCAUTIONS ..ottt s s s e s s e 2-32

3 JPublisher Examples

Example: JPublisher Translations with Different Mappings.........ccccovevienieniencenee e 3-2
JPublisher Translation with the IDBC Mappingccccceieeoeeireriinienereeieee s see e 3-2
JPublisher Translation with the Oracle Mapping ... 3-5

Example: JPublisher Object Attribute Mapping ..o 3-8
Listing and Description of Address.java Generated by JPublisher.............c.ccoccooin 3-10
Listing of AddressRef.java Generated by JPUDIIShEr ... 3-13
Listing of Alltypes.java Generated by JPUDIIShEr ... 3-14
Listing of AlltypesRef.java Generated by JPUDIIShEr ... 3-20
Listing of Ntbl.java Generated by JPUDBIIShEr..........ccooiiiiiii e, 3-21
Listing of AddrArray.java Generated by JPUBLIShEr ..o 3-24

Example: Generating a SQLDAta ClaSScccvoiiuiiriiiniiiie e 3-27
Listing of Address.java Generated by JPUDIISHEN ..o 3-27
Listing of Alltypes.java Generated by JPUDIIShEr ... 3-29

Example: Extending JPUDIISNEr CIaSSeS........c.ooiiiiiiiniiicc e 3-36

Example: Wrappers Generated for Methods in ODJecCts.........cccooiiiiiiiiniccc e 3-41
Listing and Description of Rational.sqlj Generated by JPublisher...........cccooiniininnn. 3-43

Example: Wrappers Generated for Methods in Packages.........c.cooeveniincienciencineeeneeee e 3-48
Listing and Description of RationalP.sglj Generated by JPublisherc.ccccoiiniinnnn. 3-50

Example: Using Classes Generated for ODJECt TYPES......cvoviireiniiie st 3-53
Listing of RationalO.sql (Definition of ObJect TYPE)...ccooviieiriiiiiiiiree e 3-55
Listing of JPubRationalO.sqlj Generated by JPUDIIShEr ... 3-56
Listing of RationalORef.java Generated by JPUbBIIShEr ..., 3-60
Listing of RationalO.java Written DY USEr..........cooiiiiiiieit e 3-61
Listing of TestRationalO.java Written DY USErcccoviiiiiiiii e 3-63

Example: Using Classes Generated fOr PaCKages ... e 3-65
Listing of RationalP.sql (Definition of the Object Type and Package)........c.cccoeevvivieauene. 3-66
Listing of TestRationalP.java Written by @ USErcoccoiiiniinin e 3-68

Example: Using Datatypes Not Supported by JDBC ... 3-70

Vi

Send Us Your Comments

Oracle9i JPublisher User’s Guide, Release 1 (9.0.1)
Part No. A90214-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

vii

viii

Preface

This user’s guide describes the Oracle JPublisher utility, which translates
user-defined SQL object types and PL/SQL packages to Java classes. SQLJ and
JDBC programmers who need to have Java classes in their applications to
correspond to object types, VARRAY types, nested table types, object reference
types, or PL/SQL packages can use the JPublisher utility.

Intended Audience

This manual assumes that you are an experienced Java programmer with
knowledge of Oracle databases, SQL, PL/SQL, JDBC, and SQLJ.

Structure
This manual contains the following chapters:

« Chapter 1, "Understanding and Using JPublisher"—Introduces the JPublisher
utility and provides an overview of its operations, including details regarding
datatype mappings, generation of output classes, and support for inheritance.

« Chapter 2, "Command-Line Options and Input Files"—Describes the JPublisher
command line, command line options, and input files.

« Chapter 3, "JPublisher Examples"—Presents examples of JPublisher output for
object types and wrapper methods.

Related Documents

See the following additional documents available from the Oracle Java Platform
group:

Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of Oracle’s implementation
of the JDBC standard (for Java Database Connectivity). This includes an
overview of the Oracle JDBC drivers, details of Oracle’s implementation of
JDBC 1.22 and 2.0 features, and discussion of Oracle JDBC type extensions and
performance extensions.

Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs), is in this book.

Oracle9i Servlet Engine Developer’s Guide

This book documents use of the Oracle9i Servlet Engine, the servlet container in
Oracle9i.

Oracle JavaServer Pages Developer’s Guide and Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described.

Oracle9i Java Tools Reference

This book documents Java-related tools and utilities for use with Oracle9i or in
deploying applications to Oracle9i (such as the session shell and | oadj ava
tools).

Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in
Oracle9i. With stored procedures (functions, procedures, triggers, and SQL

methods), Java developers can implement business logic at the server level,
thereby improving application performance, scalability, and security.

= Oracle9i Enterprise JavaBeans Developer’s Guide and Reference

This book describes Oracle’s Enterprise JavaBeans implementation and
extensions.

» Oracle9i CORBA Developer’s Guide and Reference
This book describes Oracle’s CORBA implementation and extensions.

The following documents from the Oracle Server Technologies group also contain
information of interest and are referred to.

« Oracle9i SQL Reference

This reference book contains a complete description of the content and syntax of
the Structured Query Language (SQL) used to manage information in an Oracle
database.

« PL/SQL User’s Guide and Reference

PL/SQL is Oracle’s procedural extension to SQL. An advanced
fourth-generation programming language, PL/SQL offers seamless SQL access,
tight integration with the Oracle server and tools, portability, security, and
features such as data encapsulation, overloading, exception handling, and
information hiding. This guide explains the concepts behind PL/SQL and
illustrates facets of the language.

Information about JDBC is also available at the following Sun Microsystems Web
site:

http://java. sun. com product s/ j dk/ 1. 2/ docs/ gui de/ j dbc/

In particular, refer to the following Sun Microsystems specifications:
« JDBC 2.0 API

« JDBC 2.0 Standard Extension API

xi

Conventions

This book uses Solaris syntax. However, file names and directory names for
Windows NT are the same, unless otherwise noted.

The term [ORACLE_HOME] indicates the full path of the Oracle home directory.

Additionally, this manual uses the following conventions.

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text within regular text indicates class names,
object names, method names, variable names, Java types,
Oracle datatypes, file names, and directory names.

italicized code_text Italicized code text in a program statement indicates
something that must be provided by the user.

<italicized code_text > Angle brackets enclosing italicized code text in a
program statement indicates something that can
optionally be provided by the user.

For more information, see "Notational Conventions" on page 2-5.

Documentation Accessibility

Xil

Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at:

htt p: //waw or acl e. comf accessi bi lity/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

xiii

Xiv

1

Understanding and Using JPublisher

This chapter provides an overview of JPublisher followed by more detailed
discussion of its operation. The following topics are covered:

Understanding JPublisher

JPublisher Operation

Backwards Compatibility and Migration

Details of Datatype Mapping

Concepts of JPublisher-Generated Classes

JPublisher Generation of SQLJ Classes

JPublisher Generation of Java Classes

User-Written Subclasses of JPublisher-Generated Classes
JPublisher Support for Inheritance

JPublisher Limitations

Understanding and Using JPublisher 1-1

Understanding JPublisher

Understanding JPublisher

This section provides a basic understanding of what JPublisher is for and what it
accomplishes, covering the following topics:

= Introduction to JPublisher

« What JPublisher Does

= What JPublisher Produces

« JPublisher Requirements

= JPublisher Input and Output

« Overview of Datatype Mappings

« Creating Types and Packages in the Database

Introduction to JPublisher

JPublisher is a utility, written entirely in Java, that generates Java classes to
represent the following user-defined database entities in your Java program:

« SQL object types

= Object reference types ("REF types")

=« SQL collection types (VARRAY types or nested table types)
« PL/SQL packages

JPublisher enables you to specify and customize the mapping of SQL object types,
object reference types, and collection types (VARRAYs or nested tables) to Java
classes in a strongly typed paradigm.

JPublisher generates get XXX() and set XXX() accessor methods for each attribute
of an object type. If your object types have stored procedures, JPublisher can
generate wrapper methods to invoke the stored procedures. A wrapper method is a
method that invokes a stored procedure that executes in Oracle9i.

JPublisher can also generate classes for PL/SQL packages. These classes have
wrapper methods to invoke the stored procedures in the PL/SQL packages.

The wrapper methods JPublisher generates contain SQLJ code, so when JPublisher
generates wrapper methods, it generally produces . sql j source files. This is true
for classes representing PL/SQL packages or object types that define methods,
unless you specify (through the - net hods option) that JPublisher should not
generate wrapper methods.

1-2 JPublisher User’s Guide

Understanding JPublisher

If no wrapper methods are generated, JPublisher produces . j ava source files. This
is true for classes representing object types without methods, object reference types,
or collection types, or for classes where the - net hods option is off.

Instead of using JPublisher-generated classes directly, you can:
« Extend the generated classes.

« Write your own Java classes by hand, without using JPublisher. This approach
is quite flexible, but time-consuming and error-prone.

« Use generic classes to represent object, object reference, and collection types.
The or acl e. sql package contains simple generic classes that represent object,
object reference, and collection types. If these classes meet your requirements,
you do not need JPublisher.

Object Types and JPublisher

JPublisher allows your Java language applications to employ user-defined object
types in Oracle9i. If you intend to have your Java-language application access object
data, then it must represent the data in a Java format. JPublisher helps you do this
by creating the mapping between object types and Java classes, and between object
attribute types and their corresponding Java types.

Classes generated by JPublisher implement either the or acl e. sql . ORADat a
interface or the j ava. sql . SQLDat a interface, depending on how you set the
JPublisher options. Either interface makes it possible to transfer object type
instances between the database (or middle-tier database cache) and your Java
program. For more information about the ORADat a and SQLDat a interfaces, see the
Oracle9i JDBC Developer’s Guide and Reference.

PL/SQL Packages and JPublisher

You might want to call stored procedures in a PL/SQL package from your Java
application. The stored procedure can be a PL/SQL subprogram or a Java method
that has been published to SQL. Java arguments and functions are passed to and
returned from the stored procedure.

To help you do this, you can direct JPublisher to create a class containing a wrapper
method for each subprogram in the package. The wrapper methods generated by
JPublisher provide a convenient way to invoke PL/SQL stored procedures from
Java code or to invoke a Java stored procedure from a client Java program.

Understanding and Using JPublisher 1-3

Understanding JPublisher

If you call PL/SQL code that includes top-level subprograms (subprograms not in
any PL/SQL package), JPublisher generates a single class containing wrapper
methods for the top-level subprograms you request.

What JPublisher Does

JPublisher connects to a database and retrieves descriptions of the SQL object types
or PL/SQL packages that you specify on the command line or from an input file. By
default, JPublisher connects to the database by using the JDBC OCI driver, which
requires an Oracle client installation, including Oracle Net and required support
files. If you do not have an Oracle client installation, JPublisher can use the Oracle
JDBC Thin driver.

JPublisher generates a Java class for each SQL object type it translates. The Java
class includes code required to read objects from and write objects to the database.
When you deploy the generated JPublisher classes, your JDBC driver installation
includes all the necessary runtime files. If you create wrapper methods (Java
methods to wrap stored procedures or functions of the SQL object type), JPublisher
generates SQLJ source code so you must additionally have the SQLJ runtime
libraries.

When you call a wrapper method, the SQL value for the object is sent to the server,
along with any | Nour I N OUT arguments. Then the method (stored procedure or
function) is invoked, and the new object value is returned to the client, along with
any OQUT or I N OUT arguments.

JPublisher also generates a class for each PL/SQL package it translates. The class
includes code to invoke the package methods on the server. | Narguments for the
methods are transmitted from the client to the server, and OUT arguments and
results are returned from the server to the client.

The next section furnishes a general description of the source files that JPublisher
creates for object types and PL/SQL packages.

What JPublisher Produces

The number of files JPublisher produces depends on whether you request ORADat a
classes (classes that implement the or acl e. sql . ORADat a interface) or SQLDat a
classes (classes that implement the standard j ava. sql . SQLDat a interface).

The ORADat a interface supports SQL object, object reference, and collection types in
a strongly typed way. That is, for each specific object, object reference, or collection
type in the database, there is a corresponding Java type. The SQLDat a interface, on
the other hand, supports only SQL object types in a strongly typed way. All object

1-4 JPublisher User’s Guide

Understanding JPublisher

reference types are represented generically asj ava. sqgl . Ref instances, and all
collection types are represented generically asj ava. sqgl . Arr ay instances.
Therefore, JPublisher generates classes for object reference and collection types only
if it is generating ORADat a classes.

When you run JPublisher for a user-defined object type and you request ORADat a
classes, JPublisher automatically creates the following:

= anobject class that represents instances of the Oracle object type in your Java
program

« arelated reference class for object references to your Oracle object type

« Javaclasses for any object or collection attributes nested directly or indirectly
within the top-level object (necessary so that attributes can be materialized in
Java whenever an instance of the top-level class is materialized)

Note: For ORADat a implementations, a strongly typed reference
class is always generated, regardless of whether the SQL object type
uses references.

Advantages of using strongly typed instead of weakly typed
references are described in "Strongly Typed Object References for
ORAData Implementations" on page 1-14.

If, instead, you request SQLDat a classes, JPublisher does not generate the object
reference class and does not generate classes for nested collection attributes.

When you run JPublisher for a user-defined collection type, you must request
ORADat a classes. JPublisher automatically creates the following:

= acollection class to act as a type definition to correspond to your Oracle
collection type

« if the elements of the collection are objects, a Java class for the element type, and
Java classes for any object or collection attributes nested directly or indirectly
within the element type (necessary so object elements can be materialized in
Java whenever an instance of the collection is materialized)

When you run JPublisher for a PL/SQL package, it automatically creates the
following:

« alavaclass with wrapper methods that invoke the stored procedures of the
package

Understanding and Using JPublisher 1-5

Understanding JPublisher

JPublisher Requirements

JPublisher requires that Oracle SQLJ and Oracle JDBC also be installed on your
system and in your classpath appropriately. You will need the following libraries
(all available as either . zi por. j ar):

« SQLJtranslator classes (t r ansl at or)

« SQLJruntime classes (runti mel2,runti mel2ee,runti nell, runti e, or
runti ne- nonor acl e)

« JDBCclasses (cl asses12 orcl asses111)

"12" refers to versions for JDK 1.2.x; "11" and "111" refer to versions for JDK 1.1.x. See
the Oracle9i SQLJ Developer’s Guide and Reference for more information about these
files.

When you use Oracle9i JPublisher, you should also use the equivalent version of
SQLJ, because these two products are always installed together. To use all features
of JPublisher, you also need:

« Oracle9i (or version 8.1.7 or 8.1.6)
« Oracle9i JDBC drivers (or version 8.1.7 or 8.1.6)
« Java Developer’s Kit (JDK) version 1.2

If you are using only some features of JPublisher, your requirements might be less
stringent:

« Ifyou never generate SQLDat a classes, and you never use the
java.sql .Blobandj ava. sql . O ob classes, you can use JDK version 1.1.x
instead of JIDK 1.2.x.

« If you never generate code for PL/SQL packages, you can use Oracle database
version 8.1.5.

« Ifyou never generate classes that implement the Oracle-specific ORADat a
interface (or the deprecated Cust onDat uminterface), you should be able to use
a non-Oracle JDBC driver or a non-Oracle SQLJ implementation. When running
code generated by JPublisher, you should even be able to connect to a
non-Oracle database; however, JPublisher itself must connect to an Oracle
database. Oracle does not test or support configurations that use non-Oracle
components.

« If you never use PL/SQL packages or classes that implement the SQLDat a
interface (that is, you use JPublisher to generate only classes that implement the
ORADat a interface or the deprecated Cust onDat uminterface), you can use

1-6 JPublisher User’s Guide

Understanding JPublisher

Oracle database version 8.1.5 with JDBC version 8.1.5 and JDK version 1.1.x or
higher. (Be aware that the ORADat a interface requires the Oracle9i or higher
JDBC implementation.)

« Ifyou instruct JPublisher to not generate wrapper methods (through the setting
- met hods=f al se), or if your object types define no methods, then JPublisher
will not generate wrapper methods or produce any . sql j files. In this case,
you would not need the SQLJ translator. See "Generate Classes for Packages
and Wrapper Methods for Methods (-methods)" on page 2-17 for information
about the - met hods option.

JPublisher Input and Output

You can specify input options on the command line and in the properties file. In
addition to producing . sql j and . j ava files for the translated objects, JPublisher
writes the names of the translated objects and packages to standard output.

JPublisher Input

You can specify JPublisher options on the command line or in a properties file.
"JPublisher Options" on page 2-2 describes all the JPublisher options.

In addition, you can use a file known as the | NPUT file to specify the object types
and PL/SQL packages JPublisher should translate. It also controls the naming of the
generated packages and classes. "INPUT File Structure and Syntax" on page 2-26
describes | NPUT file syntax.

A properties file is an optional text file that you can use to specify frequently-used
options. You name the properties file on the command line. JPublisher processes the
properties file as if its contents were inserted, in sequence, on the command line at
that point. For more information about this file, see "Properties File Structure and
Syntax" on page 2-25.

JPublisher Output

JPublisher generates a Java class for each object type that it translates. For each
object type, JPublisher generates a <t ype>. sql j file (ora<t ype>.j avafile if
wrapper methods were suppressed or do not exist) for the class code and a

<t ype>Ref . j ava file for the code for the REF class of the Java type. For example,
if you define an EMPLOYEE SQL object type, JPublisher generates an

enpl oyee. sql j file (or an enpl oyee. j ava file) and an enpl oyeeRef . j ava
file. Note that the case of Java class names produced by JPublisher is determined by
the - case option. See "Case of Java ldentifiers (-case)" on page 2-12.

Understanding and Using JPublisher 1-7

Understanding JPublisher

For each collection type (nested table or VARRAY) it translates, JPublisher generates
a<type>. | ava file. For nested tables, the generated class has methods to get and
set the nested table as an entire array and to get and set individual elements of the
table. JPublisher translates collection types when generating ORADat a classes, but
not when generating SQLDat a classes.

For PL/SQL packages, JPublisher generates classes containing wrapper methods as
.sqlj files.

When JPublisher generates the class files and wrappers, it also writes the names of
the translated types and packages to standard output.

Overview of Datatype Mappings

JPublisher offers different categories of datatype mappings from SQL to Java.
JPublisher options to specify these mappings are described below, under "Detailed
Descriptions—Options That Affect Datatype Mappings" on page 2-6.

Each type mapping option has at least two possible values: j dbc and or acl e. The
- nunbert ypes option has two additional alternatives: obj ect j dbc and
bi gdeci mal .

The following sections describe these categories of mappings.

For more information about datatype mappings, see "Details of Datatype Mapping"
on page 1-26.

JDBC Mapping

The JDBC mapping maps most numeric datatypes to Java primitive types such as

i nt and f | oat , and maps DECI MAL and NUMBERto j ava. mat h. Bi gDeci mal .
LOB types and other non-numeric built-in types map to standard JDBC Java types
such asj ava. sql . Bl ob andj ava. sqgl . Ti mest anp. For object types, JPublisher
generates SQ.Dat a classes. Predefined datatypes that are Oracle extensions (such
as BFI LE and ROW D) do not have JDBC mappings, so only the or acl e. sqgl . *
mapping is supported for these types.

The Java primitive types used in the JDBC mapping do not support null values and
do not guard against integer overflow or floating-point loss of precision. If you are
using the JDBC mapping and you attempt to call an accessor or method to get an
attribute of a primitive type (short,i nt,fl oat, ordoubl e) whose value is

nul | , an exception is thrown. If the primitive type isshort ori nt, then an
exception is thrown if the value is too large to fitina short ori nt variable.

1-8 JPublisher User’s Guide

Understanding JPublisher

Object JDBC Mapping

The Object JDBC mapping maps most numeric datatypes to Java wrapper classes
such asj ava. | ang. I nt eger andj ava. | ang. Fl oat, and maps DECI MAL and
NUMBERto j ava. mat h. Bi gDeci mal . It differs from the JDBC mapping only in
that it does not use primitive types.

When you use the Object JIDBC mapping, all your returned values are objects. If you
attempt to get an attribute whose value is nul | , a null object is returned.

The Java wrapper classes used in the Object JDBC mapping do not guard against
integer overflow or floating-point loss of precision. If you call an accessor method to
get an attribute that maps to j ava. | ang. | nt eger, an exception is thrown if the
value is too large to fit.

This is the default mapping for numeric types.

BigDecimal Mapping
BigDecimal mapping, as the name implies, maps all numeric datatypes to
j ava. mat h. Bi gDeci mal . It supports null values and very large values.

Oracle Mapping

In the Oracle mapping, JPublisher maps any numeric, LOB, or other built-in type to
aclassin the or acl e. sql package. For example, the DATE type is mapped to

or acl e. sqgl . DATE, and all numeric types are mapped to or acl e. sql . NUVMBER.
For object, collection, and object reference types, JPublisher generates ORADat a
classes.

Because the Oracle mapping uses no primitive types, it can represent a null value as
aJava nul | in all cases. Because it uses the or acl e. sgl . NUMBER class for all
numeric types, it can represent the largest numeric values that can be stored in the
database.

Creating Types and Packages in the Database

Before you run JPublisher, you must create any new datatypes that you will require
in the database. You must also ensure that any PL/SQL packages, methods, and
subprograms that you want to invoke from Java are also installed in Oracle9i.

Use the SQL CREATE TYPE statement to create object, VARRAY, and nested table
types in the database. JPublisher supports the mapping of these datatypes to Java
classes. JPublisher also generates classes for references to object types. REF types are

Understanding and Using JPublisher 1-9

Understanding JPublisher

not explicitly declared in SQL. For more information on creating object types, see
the Oracle9i SQL Reference.

Use the CREATE PACKAGE and CREATE PACKAGE BODY statements to create
PL/SQL packages and store them in the database. PL/SQL furnishes all the
capabilities necessary to implement the methods associated with object types. These
methods (functions and procedures) reside on the server as part of a user’s schema.
You can implement the methods in PL/SQL or Java.

Packages are often implemented to provide the following advantages:

« encapsulation of related procedures and variables

« declaration of public and private procedures, variables, constants, and cursors
« Dbetter performance

For more information on PL/SQL and creating PL/SQL packages, see the PL/SQL
User’s Guide and Reference.

1-10 JPublisher User’s Guide

JPublisher Operation

JPublisher Operation

This section discusses the basic steps in using JPublisher, describes the
command-line syntax, and concludes with a sample translation. The following
topics are covered:

Translating and Using PL/SQL Packages and User-Defined Types
Representing User-Defined Object, Collection, and Reference Types in Java
Strongly Typed Object References for ORAData Implementations
JPublisher Command-Line Syntax

Sample JPublisher Translation

Translating and Using PL/SQL Packages and User-Defined Types

Here are the basic steps for translating and using code for user-defined types and
PL/SQL packages. (User-defined types include Oracle objects and Oracle
collections—VARRAYs and nested tables.)

1.

6.

Create the desired user-defined datatypes and PL/SQL packages in the
database.

JPublisher generates source code for Java classes that represent PL/SQL
packages, user-defined types, and reference types and places them in specified
Java packages. JPublisher generates . j ava files for object reference, VARRAY,
and nested table classes. If you instruct JPublisher to generate wrapper
methods, it will generate . sqgl j files for packages and object types (assuming
the object types have methods). If you instruct JPublisher to not generate
wrapper methods, it will generate . j ava files without wrapper methods for
object types and will not generate classes for packages (because they contain
only wrapper methods). For object types without methods, JPublisher generates
. j avafiles in any case.

Import these classes into your application code.

Use the methods in the generated classes to access and manipulate the
user-defined types and their attributes.

Compile all classes (the JPublisher-generated code and your code). SQLJ
translates the . sqgl j files, and the Java compiler compiles the . j ava files.

Run your compiled application.

Figure 1-1 illustrates the preceding steps.

Understanding and Using JPublisher 1-11

JPublisher Operation

Figure 1-1 Translating and Using Object Code

SQL DDL

Object type.
Package, and

Subprogram

Database

1-12 JPublisher User’s Guide

command line
and
properties file

Generated .java
and .sqlj
source files

INPUT
file

JDBC driver and/or
SQLJ runtime
.class files

Executed by
Java VM

Y

User-written
Jjava and .sqlj
source files

SQLJ or Java
Compiler

.class files
and
.ser resource files

JPublisher Operation

Representing User-Defined Object, Collection, and Reference Types in Java

Here are the three ways to represent user-defined object, collection, and object
reference types in your Java program:

« Use classes that implement the ORADat a interface.

JPublisher generates classes that implement the ORADat a interface. (You can
also write them by hand, but this is not generally recommended.)

« Use classes that implement the SQLDat a interface, as described in the JDBC 2.0
API.

JPublisher generates classes for SQL object types that implement the SQLDat a
interface. (You can also write them by hand, but this is not generally
recommended. Be aware that if you write them by hand, or if you generate
classes for an inheritance hierarchy of object types, your classes must be
registered using a type map.)

When you use the SQLDat a interface, all object reference types are represented
generically asj ava. sqgl . Ref instances, and all collection types are
represented generically asj ava. sql . Arr ay instances.

« Useoracle.sqgl.* classes.

You can use the or acl e. sqgl . * classes to represent user-defined types
generically. The class or acl e. sql . STRUCT represents all object types, the
class or acl e. sql . ARRAY represents all VARRAY and nested table types, and
the class or acl e. sql . REF represents all REF types. These classes are
immutable in the same way thatj ava. | ang. Stri ng is.

Compared to classes that implement SQLDat a, classes that implement ORADat a are
fundamentally more efficient, because ORADat a classes avoid unnecessary
conversions to native Java types. For a comparison of the SQLDat a and ORADat a
interfaces, see the Oracle9i JDBC Developer’s Guide and Reference.

Compared to or acl e. sql . * classes, classes that implement ORADat a or SQLDat a
are strongly typed. Your connected SQLJ translator will detect an error at
translation time if, for example, you mistakenly select a PERSON object into an
ORADat a object that represents an ADDRESS.

JPublisher-generated classes that implement ORADat a or SQLDat a have additional
advantages:

« The classes are customized, rather than generic. You access attributes of an
object using get XXX() and set XXX() methods named after the particular

Understanding and Using JPublisher 1-13

JPublisher Operation

attributes of the object. Note that you have to explicitly update the object in the
database if there are any changes to its data.

= Theclasses are mutable. You can generally modify attributes of an object or
elements of a collection. The exception is that ORADat a classes representing
object reference types are not mutable, because an object reference does not
have any subcomponents that could be sensibly modified. You can, however,
use the set Val ue() method of a reference object to change the database value
that the reference points to.

Strongly Typed Object References for ORAData Implementations

For Oracle ORADat a implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed or acl e. sql . REF
class. This is to provide greater type safety and to mirror the behavior in SQL,
where object references are strongly typed. The strongly typed classes (with names
such as Per sonRef for references to PERSON objects) are essentially wrappers for
the REF class.

In these strongly typed REF wrappers, there is a get Val ue() method that
produces an instance of the SQL object that is referenced, in the form of an instance
of the corresponding Java class. (Or, in the case of inheritance, perhaps as an
instance of a subclass of the corresponding Java class.) For example, if there is a
PERSON object type in the database, with a corresponding Per son Java class, there
will also be a Per sonRef Java class. The get Val ue() method of the Per sonRef
class would return a Per son instance containing the data for a PERSON object in the
database.

Whenever a SQL object type has an attribute that is an object reference, the Java
class corresponding to the object type would have an attribute that is an instance of
a Java class corresponding to the appropriate reference type. For example, if there is
a PERSON object with a MANAGER REF attribute, then the corresponding Per son
Java class will have a Manager Ref attribute.

For standard SQLDat a implementations, strongly typed object references are not
supported—they are not part of the standard. JPublisher does not create a custom
reference class; you must use j ava. sqgl . Ref ororacl e. sqgl . REF as the reference

type.

1-14 JPublisher User’s Guide

JPublisher Operation

JPublisher Command-Line Syntax

On most operating systems, you invoke JPublisher on the command line, typing
j pub followed by a series of options settings as follows:

j pub - optionl=val uel - option2=val ue2 . ..

JPublisher responds by connecting to the database and obtaining the declarations of
the types or packages you specify, then generating one or more custom Java files
and writing the names of the translated object types or PL/SQL packages to
standard output.

Here is an example of a command that invokes JPublisher (this is a single
wrap-around command line):

jpub -user=scott/tiger -input=demoin -nunbertypes=oracl e -usertypes=oracl e
- di r=deno - package=corp

You enter the command on one line, allowing it to wrap as necessary. For clarity,
this chapter refers to the input file (the file specified by the - i nput option) as the
I NPUT file (to distinguish it from any other kinds of input files).

This command directs JPublisher to connect to the database with username SCOTT
and password Tl GER and translate datatypes to Java classes, based on instructions
in the | NPUT file demoi n. The - nunber t ypes=or acl e option directs JPublisher
to map object attribute types to Java classes supplied by Oracle, and the

- usertypes=or acl e option directs JPublisher to generate Oracle-specific

ORADat a classes. JPublisher places the classes that it generates in the package cor p
in the directory deno.

"JPublisher Options" on page 2-2 describes each of these options in more detail.

Notes:
= No spaces are permitted around the equals sign (=).

« If you execute JPublisher without any options on the command
line, it displays an option list and then terminates.

Sample JPublisher Translation

This section provides a sample JPublisher translation of an object type. At this point,
do not worry about the details of the code JPublisher generates. You can find more
information about JPublisher input and output files, options, datatype mappings,
and translation later in this manual.

Understanding and Using JPublisher 1-15

JPublisher Operation

Create the object type EMPLOYEE:

CREATE TYPE enpl oyee AS CBIECT

(
nane VARCHAR2(30) ,

enpno | NTECER
dept no NUVBER
hiredate DATE
sal ary REAL

)

The | NTEGER, NUMBER, and REAL types are all stored in the database as NUMBER
types, but after translation they have different representations in the Java program,
based on your choice for the value of the - nunbert ypes option.

JPublisher translates the types according to the following command line:

jpub -user=scott/tiger -dir=deno -nunbertypes=objectjdbc -builtintypes=j dbc
- package=cor p - case=ni xed -sql =Enpl oyee

(This is a single wrap-around command line.)

"JPublisher Options" on page 2-2 describes each of these options in detail.

Note that because the EMPLOYEE object type does not define any methods,
JPublisher will generate a . j ava file,nota . sql j file.

Because -di r =deno and - package=cor p were specified on the JPublisher
command line, the translated class Enpl oyee is written to Enpl oyee. j ava in the
following location:

./ deno/ cor p/ Enpl oyee. j ava (N X)
.\ deno\ cor p\ Enpl oyee. j ava (Wndows NI)

The Enpl oyee. j ava class file would contain the code below.

Note: The details of the code JPublisher generates are subject to
change. In particular, non-public methods, non-public fields, and
all method bodies may be generated differently.

package corp;
inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;

1-16 JPublisher User’s Guide

JPublisher Operation

inport oracl e. sql

inport oracle.sql.

inport oracl e. sql
inport oracl e. sql

i nport

public

{

. CRADet a;

CRADat aFact or y;

. Datum
. STRUCT;
oracl e.j pub. runti ne. Mut abl eStruct ;

cl ass Enpl oyee inpl enents CRAData, CRADat aFact ory

public static final Sring _SQ_ NAME = "SCOIT. BMPLOYEE",;

public static final

protected Mitabl eStruct _struct;

static int[] _sql Type =

{
12, 4, 2, 91,
b

7

int _SQ TYPEQXE = (racl eTypes. STRLCT;

static CRADataFactory[] _factory = new CRADat aFactory[5];

static final Enpl oyee _Enpl oyeeFact ory = new Enpl oyee();
public static CRADat aFactory get CRADat aFact ory()

{

return _Enpl oyeeFactory;

}

/* constructor */
prot ect ed Enpl oyee(bool ean init)
{ if(init) _struct = new Mitabl eXruct (new (bject[5], _sql Type, _factory); }

publ i ¢ Enpl oyee()

{ this(true); }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
}

return _struct.tobDatunfc, _SQ NAME);

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Enpl oyee o, Datumd, int sqgl Type) throws SQException

{

if (d=null) return null;

if (0o =null) o= new Enpl oyee(fal se);

Understanding and Using JPublisher

1-17

JPublisher Operation

0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */

public Sring getNane() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setNane(Sring nane) throws SQException

{ _struct.setAttribute(0, name); }

public Integer getEnpno() throws SQException

{ return (Integer) _struct.getAttribute(l); }

publ i c voi d set Enpno(l nteger enpno) throws SQLException

{ _struct.setAttribute(l, enpno); }

public java.nath. B gDeci nal getDeptno() throws SQException

{ return (java.math. BigDecinmal) _struct.getAttribute(2); }

publ i ¢ voi d set Dept no(j ava. nat h. B gDeci nal deptno) throws SQLException
{ _struct.setAttribute(2, deptno); }

public java.sql.Tinestanp getH redate() throws SQException

{ return (java.sql.Tinestanp) _struct.getAttribute(3); }

public void setH redate(java. sql . Ti nestanp hi redate) throws SQException
{ _struct.setAttribute(3, hiredate); }

public Hoat getSalary() throws SQException

{ return (Hoat) _struct.getAttribute(4); }

public void setSal ary(Fl oat sal ary) throws SQException
{ _struct.setAttribute(4, salary); }

1-18 JPublisher User’s Guide

JPublisher Operation

Code Generation Notes

For Oracle9i releases (as well as Oracle8i release 8.1.7), there is a protected
_struct field in JPublisher-generated code for SQL object types. This is an
instance of the internal class Mut abl eSt r uct ; this instance contains the data in
original SQL format. In general, you should not reference this field directly.
Instead, use the setting - met hods=al ways or - met hods=namned as necessary
to ensure that JPublisher produces . sql j files, then use the methods

set Fron() and set Val ueFr on() when subclassing. See "The setFrom() and
setValueFrom() Methods" on page 1-48.

In Oracle8i compatibility mode, there is also a protected _ct x field that is a
SQLJ connection context instance. See "Oracle8i Compatibility Mode" on
page 1-24 for more information.

Note that Oracle8i JPublisher would generate implementations of the
now-deprecated Cust omDat umand Cust onDat unfact or y interfaces, instead
of ORADat a and ORADat aFact ory. In fact, it is still possible to do this through
the JPublisher - conpat i bl e option, and this is required if you are using an
Oracle8i JDBC driver.

JPublisher also generates an Enpl oyeeRef . j ava class. The source code is
displayed here:

package corp;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;
inport oracl e.sql . Datum

inport oracl e.sql . REF,

i mport oracl e. sql . STRUCT;

public class Enpl oyeeRef inplenents CRAData, CRADat aFact ory

{

public static final Sring _SQ BASETYPE = "SOOIT. EMPLOYEE';
public static final int _SQ TYPEQXDE = O acl eTypes. REF;

REF ref;

static final Enpl oyeeRef _Enpl oyeeRef Fact ory = new Enpl oyeeRef ();
public static CRADat aFactory get CRADat aFact ory()

{

Understanding and Using JPublisher 1-19

JPublisher Operation

return _Enpl oyeeRef Fact ory;
}

/* constructor */
publ i ¢ Enpl oyeeRef ()
{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{j ava. sql . Gonnecti on c) throws SQException
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

Enpl oyeeRef r = new Enpl oyeeRef () ;

r. ref = (REFH) d;

return r;
}
publ i ¢ Enpl oyee getVal ue() throws SQException
{

return (Enpl oyee) Enpl oyee. get GRADat aFact ory(). creat e(
_ref. get STRICT(), O acl eTypes. REF);

}
public voi d setVal ue(Enpl oyee c) throws SQException
{
_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));
}

}

You can find more examples of object mappings in "Example: JPublisher Object
Attribute Mapping" on page 3-8.

1-20 JPublisher User’s Guide

Backwards Compatibility and Migration

Backwards Compatibility and Migration

This section discusses issues of backwards compatibility, compatibility between JDK
versions, and migration between Oracle8i and Oracle9i releases of JPublisher.

JPublisher Backwards Compatibility

The JPublisher runtime is packaged with Oracle JDBC in the cl asses111 or
cl asses12 library. Code generated by an earlier version of JPublisher will:

« continue to run with the current release of the JPublisher runtime
« continue to be compilable against the current release of the JPublisher runtime

If you use an earlier release of the JPublisher runtime and Oracle JDBC in
generating code, the code will be compilable against that version of the JPublisher
runtime. Specifically, when you use an Oracle8i JDBC driver, JPublisher will
generate code for the now-deprecated Cust onDat uminterface, not the ORADat a
interface that replaced it.

JPublisher Compatibility Between JDK Versions

Generally speaking, . sql j files generated by JPublisher can be translated under
either JDK 1.1.x (assuming you are not using JDBC 2.0-specific types) or JDK 1.2.x
or higher. However, if you intend to translate and compile in separate steps (setting
-conpi | e=fal sein SQLJso thatonly . j ava files, not. cl ass files, are
produced), then you must use the same JDK version for compilation as for
translation unless you use a special JPublisher option setting.

In this situation (translating and compiling in separate steps), the JPublisher default
setting - cont ext =Def aul t Cont ext results in generation of . sql j files that are
completely compatible between JDK 1.1.x and JDK 1.2.x or higher. (With this
setting, for example, you could translate against JDK 1.1.x but still compile against
JDK 1.2.x successfully.)

In this situation, all generated . sql j files use the

sqlj.runtinme.ref. Defaul t Cont ext class forall connection contexts. This is
as opposed to the setting - cont ext =gener at ed, which results in each generated

. sglj file declaring its own connection context inner class. This was the Oracle8i
JPublisher default behavior, and is what makes translated . j ava code incompatible
between JDK 1.1.x and 1.2.x or higher.

See "SQLJ Connection Context Classes (-context)" on page 2-13 for more information
about the - cont ext option.

Understanding and Using JPublisher 1-21

Backwards Compatibility and Migration

Important: With some JPublisher option settings under JDK 1.1.x
there is risk of memory leakage caused by SQLJ connection context
instances that are not closed. See "Releasing Connection Context
Resources" on page 1-40 for information.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
connection contexts.

Migration Between Oracle8i JPublisher and Oracle9i JPublisher

In Oracle9i JPublisher, default option settings and some features of the generated
code have changed. If you wrote an application using JPublisher release 8.1.7 or
earlier, it is unlikely that you will be able to simply re-run JPublisher in Oracle9i and
have the generated classes still work within your application. This section describes
how to modify your JPublisher option settings or your application code
appropriately.

Note: Also see "Changes in User-Written Subclasses of Oracle9i
JPublisher-Generated Classes" on page 1-46 for differences between
Oracle8i functionality and Oracle9i functionality for classes that
extend JPublisher-generated classes.

Changes in Behavior in Oracle9i JPublisher
Be aware of the following changes in JPublisher behavior in Oracle9i:

« By default, JPublisher no longer declares the inner SQLJ connection context
class _Ct x for every object type. Instead, it uses the connection context class
sqlj.runtine.ref. Defaul t Cont ext throughout.

Also, user-written code must call the get Connect i onCont ext () method to
have a connection context handle, instead of using the _ct x connection context
field that was declared under Oracle8i code generation. See "Considerations in
Using Connection Contexts and Connection Instances" on page 1-38 for more
information about the get Connect i onCont ext () method.

« Thesetting - met hods=t r ue will resultin . j ava files being generated instead
of . sql j files if the underlying SQL object type or PL/SQL package does not
define any methods.

1-22 JPublisher User’s Guide

Backwards Compatibility and Migration

« By default, JPublisher now generates code that implements the
oracl e. sgl . ORADat a interface instead of the deprecated
oracl e. sql . Cust onDat uminterface.

« By default, JPublisher now simply places generated code into the current
directory, rather than into a package-directory hierarchy under the current
directory.

See the following sections, "Individual Settings to Force JPublisher Behavior as in
Previous Releases" and "Oracle8i Compatibility Mode", for information about how
to revert to Oracle8i behavior instead.

Individual Settings to Force JPublisher Behavior as in Previous Releases

In Oracle9i, if you want JPublisher to behave as it did in release 8.1.7 and prior,
there are a number of individual backwards-compatibility options you can set.
These are detailed in Table 1-1. See descriptions of these options under "Detailed
Descriptions—General JPublisher Options" on page 2-11 for more information.

See "Oracle8i Compatibility Mode" on page 1-24 for a single setting that results in
the same behavior as for Oracle8i JPublisher—backwards-compatible code
generation plus behavior that is equivalent to what would happen with the
combination of these individual option settings.

Table 1-1 JPublisher Backwards-Compatibility Options

Option Setting Behavior

-context=generated This results in the declaration of an inner class, _Ct x, for
SQLJ connection contexts. This is used instead of the default
Def aul t Cont ext class or user-specified connection context
classes.

-methods=always This forces generation of . sql j (as opposed to . j ava)
source files for all JPublisher-generated classes, regardless of
whether the underlying SQL object or package actually
defines any methods.

-compatible=customdatum For Oracle-specific object wrappers, this results in JPublisher
implementing the older or acl e. sql . Cust onDat umand
Cust onmDat unfact or y interfaces (both deprecated but still
supported in Oracle9i) instead of the newer
oracl e. sql . ORADat a and ORADat aFact ory interfaces.

-dir=. Setting this option to "." (a period or "dot") results in
generation of output files into a hierarchy under the current
directory, as was the default behavior in Oracle8i.

Understanding and Using JPublisher 1-23

Backwards Compatibility and Migration

Unless you have a compelling reason to use the backwards-compatibility settings,
however, it is recommended that you accept the current default (or other) settings.

Oracle8i Compatibility Mode
The following setting results in what is called Oracle8i compatibility mode:

-conpat i bl e=8i

See "Backwards-Compatible Oracle Mapping for User-Defined Types (-compatible)"
on page 2-7 for more information about this option.

For use of this mode to be permissible, however, at least one of the following
circumstances must hold:

= You will compile JPublisher-generated code with the SQLJ - codegen=or acl e
setting.

=« The JPublisher-generated code will execute under JDK 1.2 or higher and will
use the SQLJrunt i mel2 or runti mel2ee library, or it will execute in the
Oracle9i release of the Oracle JVM.

= You run JPublisher with the - net hods=f al se (or none) setting.
JPublisher has the following functionality in Oracle8i compatibility mode:

« JPublisher will generate code that implements the deprecated Cust onDat um
API instead of the ORADat a API (as with - conpat i bl e=cust ondat un).

= With the default - met hods=t r ue setting, JPublisher will always generate SQLJ
source code for a SQL object type, even if the object type does not define any
methods (as with - met hods=al ways).

= JPublisher will generate connection context declarations and connection context
instances on every object type wrapper, as follows (as with
- cont ext =gener at ed):

#sgl static context _Qx;
protected Qx _ctx;

« JPublisher provides a constructor in the wrapper class that takes a generic
Connect i onCont ext instance (an instance of any class implementing the
standard sql j . runt i me. Connecti onCont ext interface) as input. In
Oracle9i, the constructor accepts only a Def aul t Cont ext instance or an
instance of the class specified through the - cont ext option when JPublisher
was run.

1-24 JPublisher User’s Guide

Backwards Compatibility and Migration

JPublisher does not provide an API for releasing a connection context instance
that has been created implicitly on a JPublisher object.

By contrast, Oracle9i JPublisher provides both a set Connect i onCont ext ()
method for explicitly setting the connection context instance for an object, and a
rel ease() method for releasing an implicitly created connection context
instance of an object.

Important: There are circumstances where you should not use
Oracle8i compatibility mode. If your environment uses any of the
following:

« JDK 1.1, the SQLJrunti me library, or the SQLIrunti mell
library

and you use the following JPublisher setting:

« -codegen=iso

as well as any of the following settings:

« -met hods=naned (or sone) or - net hods=t rue (oral |)

then there may be significant memory leakage caused by implicit
connection context instances that are not closed.

Avoid the - conpat i bl e=8i setting in these circumstances, and
use the set Connecti onCont ext () andr el ease() methods in
manipulating connection contexts. For more information, see "Use
of Connection Contexts and Instances in SQLJ Code Generated by
JPublisher" on page 1-37.

Note: Oracle8i compatibility mode is now the only way for a
connection context instance _ct x to be declared in
JPublisher-generated code (there is no other option setting to
accomplish this particular Oracle8i behavior). The _ct x instance
may be useful if you have legacy code that depends on it, but
otherwise you should obtain connection context instances through
the get Connect i onCont ext () method.

Understanding and Using JPublisher 1-25

Details of Datatype Mapping

Details of Datatype Mapping

As described previously, you can specify one of the following settings for datatype
mappings when you use the type mapping options (- bui | t i nt ypes, - | obt ypes,
-nunbertypes,and - usertypes):

« jdbc

« objectjdbc (for - nunbert ypes only)
« bigdeci mal (for-nunbertypes only)
« oracle

These mappings, described in "Overview of Datatype Mappings" on page 1-8, affect
the argument and result types JPublisher uses in the methods it generates.

The class that JPublisher generates for an object type will have get XXX() and

set XXX() methods for the object attributes. The class that JPublisher generates for
a VARRAY or nested table type will have get XXX() and set XXX() methods that
access the elements of the array or nested table. When you use the option

- met hods=t r ue, the class that JPublisher generates for an object type or PL/SQL
package will have wrapper methods that invoke server methods of the object type
or package. The mapping options control the argument and result types these
methods will use.

The JDBC and Object JDBC mappings use familiar Java types that can be
manipulated using standard Java operations. If your JDBC program is manipulating
Java objects stored as object types, you might prefer the JDBC or Object JDBC
mapping.

The Oracle mapping is the most efficient mapping. The or acl e. sgl types match
the Oracle internal datatypes as closely as possible so that little or no data
conversion is required. You do not lose any information and have greater flexibility
in how you process and unpack the data. The Oracle mappings for standard SQL
types are the most convenient representations if you are manipulating data within
the database or moving data (for example, performing SELECT and | NSERT
operations from one existing table to another). When data format conversion is
necessary, you can use methods in the or acl e. sql . * classes to convert to Java
native types.

When you decide which mapping to use, you should remember that data format
conversion is only a part of the cost of transferring data between your program and
the server.

1-26 JPublisher User’s Guide

Details of Datatype Mapping

Datatype Mapping Tables

Table 1-2 lists the mappings from SQL and PL/SQL datatypes to Java types using
the Oracle and JDBC mappings. You can use all the supported datatypes listed in
this table as argument or result types for PL/SQL methods. You can use a subset of
the datatypes as object attribute types, as listed in "Allowed Object Attribute Types"

on page 1-28.

The SQL and PL/SQL Datatype column contains all possible datatypes.

The Oracle Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to or acl e. These types are found in the

oracl e. sql package supplied by Oracle and are designed to minimize the
overhead incurred when converting Oracle datatypes to Java types.

The JDBC Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to j dbc. For standard SQL datatypes,
JPublisher uses Java types specified in the JDBC specification. For SQL datatypes
that are Oracle extensions, JPublisher uses the or acl e. sql . * types. Refer to the
Oracle9i JDBC Developer’s Guide and Reference for more information on the

oracl e. sgl package.

A few datatypes are not currently supported by JPublisher, in some cases because
they are not directly supported by Oracle SQLJ or JDBC, as noted in the table.

Table 1-2 PL/SQL Datatype to Oracle and Object IDBC Mapping Classes

SQL and PL/SQL Datatype

Oracle Mapping

JDBC Mapping

CHAR, CHARACTER, LONG,
STRING, VARCHAR, VARCHAR?2

NCHAR, NVARCHAR2
RAW, LONG RAW

BINARY_INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN, SIGNTYPE,
INT, INTEGER

DEC, DECIMAL, NUMBER,
NUMERIC

DOUBLE PRECISION, FLOAT
SMALLINT
REAL

oracle.sql. CHAR

not currently supported by JPublisher
oracle.sql.RAW
oracle.sql. NUMBER

oracle.sql. NUMBER

oracle.sql. NUMBER
oracle.sql. NUMBER
oracle.sql. NUMBER

Understanding and Using JPublisher

java.lang.String

not currently supported by JPublisher
byte[]

int

java.math.BigDecimal

double
short

float

1-27

Details of Datatype Mapping

Table 1-2

PL/SQL Datatype to Oracle and Object JIDBC Mapping Classes (Cont.)

SQL and PL/SQL Datatype

Oracle Mapping

JDBC Mapping

DATE

ROWID, UROWID
BOOLEAN

CLOB

BLOB

BFILE

NCLOB

object types

SQLJ object types
OPAQUE types
RECORD types
nested table, VARRAY

reference to object type

REF CURSOR
index-by tables

user-defined subtypes

oracle.sql. DATE
oracle.sql.ROWID

not directly supported by JDBC
oracle.sql.CLOB
oracle.sql.BLOB

oracle.sql.BFILE

not currently supported by JPublisher

generated class

not directly supported by SQLJ
not directly supported by SQLJ
not directly supported by JDBC

generated class implemented
using oracle.sql.ARRAY

generated class implemented
using oracle.sgl.REF

java.sql.ResultSet
not directly supported by SQLJ

same as for base type

java.sql.Timestamp
oracle.sql.ROWID

not directly supported by JDBC
java.sql.Clob

java.sql.Blob
oracle.sql.BFILE

not currently supported by JPublisher
generated class

not directly supported by SQLJ
not directly supported by SQLJ
not directly supported by JDBC

java.sql.Array

java.sql.Ref

java.sql.ResultSet
not directly supported by SQLJ

same as for base type

The Object JDBC and BigDecimal mappings, which affect numeric types only, are
fully described in "Mappings For Numeric Types (-numbertypes)" on page 2-8.

Allowed Object Attribute Types

You can use a subset of the PL/SQL datatypes listed in Table 1-2 as object attribute
types. These datatypes are listed here and have the same Oracle mappings and
JDBC mappings as described in the table:

« CHAR, VARCHAR, VARCHAR2, CHARACTER

« DATE

« DECI MAL, DEC, NUMBER, NUMERI C

1-28 JPublisher User’s Guide

Details of Datatype Mapping

« DOUBLE PRECI SI ON, FLCAT
= | NTEGER SMALLI NT, I NT

« REAL

=« RAWLONG RAW
« CLOB

« BLOB

« BFILE

= Object type
« nested table, VARRAY type

« reference type

Using Datatypes Not Supported by JDBC

JPublisher cannot generate wrapper methods for PL/SQL methods that use
datatypes not directly supported by JDBC. If you must call a PL/SQL method that
uses unsupported datatypes (such as BOOLEAN), you have two choices:

« Rewrite the PL/SQL method to avoid using the type.

« Write an anonymous block that converts input types that JDBC supports into
the input types used by the PL/SQL method, and converts output types used
by the PL/SQL method into output types that JDBC supports. For more
information on this technique, see "Example: Using Datatypes Not Supported
by JDBC" on page 3-70.

Understanding and Using JPublisher 1-29

Concepts of JPublisher-Generated Classes

Concepts of JPublisher-Generated Classes

This section covers basic concepts about the code that JPublisher produces,
including the following:

« how output parameters of SQL object type methods and PL/SQL methods are
treated

« how member methods are called

« how overloaded methods are handled

For more information, see the following sections later in this chapter:
« JPublisher Generation of SQLJ Classes

« JPublisher Generation of Java Classes

« JPublisher Support for Inheritance

Passing OUT Parameters

Stored procedures called through SQLJ do not have the same parameter-passing
behavior as ordinary Java methods. This affects the code you write when you call a
wrapper method JPublisher generates.

When you call an ordinary Java method, parameters that are Java objects are passed
as object references. The method can modify the object.

In contrast, when you call a stored procedure through SQLJ, a copy of each
parameter is passed to the stored procedure. If the procedure modifies any
parameters, copies of the modified parameters are returned to the caller. Therefore,
the "before" and "after" values of a parameter that has been modified appear in
separate objects.

A wrapper method JPublisher generates contains SQLJ code to call a stored
procedure. The parameters to the stored procedure, as declared in your CREATE
TYPE or CREATE PACKAGE declaration, have three possible parameter modes: | N,
QUT,and I N OUT. The | N OUT and OUT parameters of the stored procedure are
returned to the wrapper method in newly created objects. These new values must
be returned to the caller somehow, but assignment to the formal parameter within
the wrapper method does not affect the actual parameter visible to the caller.

1-30 JPublisher User’s Guide

Concepts of JPublisher-Generated Classes

Passing Parameters Other Than the "this" Parameter

The simplest way to solve the problem described above is to pass an OUT or | N OUT
parameter to the wrapper method in a single-element array. The array is a sort of
container that holds the parameter.

= You assign the "before" value of the parameter to element 0 of an array.
= You pass the array to your wrapper method.

« The wrapper method assigns the "after" value of the parameter to element 0 of
the array.

« After executing the method, you extract the "after" value from the array.

In the following example, you have an initialized variable p of class Per son, and x
is an object belonging to a JPublisher-generated class that has a wrapper method f
taking an | NOUT Per son argument. You create the array and pass the parameter as
follows:

Person [] pa = {p};
x.f(pa);
p = pa[Q];

Unfortunately, this technique for passing OUT or | N OUT parameters requires you
to add a few extra lines of code to your program for each parameter. If your stored
program has many OUT or | N OUT parameters, you might prefer to call it directly
using SQLJ code, rather than a wrapper method.

Passing the "this" Parameter

Problems similar to what is described above arise when the t hi s object of an
instance method is modified.

The t hi s object is an additional parameter that is passed in a different way. Its
mode, as declared in the CREATE TYPE statement, may be | Nor I N OUT. If you do
not explicitly declare the mode of t hi s, its mode is | N OUT if the stored procedure
does not return a result, or | Nif it does.

If the mode of the t hi s objectis | N OUT, the wrapper method must return the new
value of t hi s. The code generated by JPublisher processes this in different ways,
depending on the situation:

« For astored procedure that does not return a result, the new value of t hi s is
returned as the result of the wrapper method.

Understanding and Using JPublisher 1-31

Concepts of JPublisher-Generated Classes

As an example, assume the SQL object type MYTYPE has the following member
procedure:

MEVBER PROCEDURE f1(y IN QUT | NTEGER) ;

Also assume that JPublisher generates a corresponding Java class MyJavaType.
This class would define the following method:

public MJavaType f1(int[] y)

The f 1 method returns the modified t hi s object value asa MyJavaType
instance.

« For astored function (a stored procedure that returns a result), the wrapper
method returns the result of the stored function as its result. The new value of
t hi s isreturned in a single-element array, passed as an extra argument (the last
argument) to the wrapper method.

Assume the SQL object type MYTYPE has the following member function:
MEVBER FUNCTI ON f2(x I N I NTEGER) RETURNS VARCHAR?;

Then the corresponding Java class MyJavaType would define the following
method:

public Sring f2(int x, MJavaType[] newval ue)

The f 2 method returns the VARCHAR2 function-return as a Java string, and

returns the modified t hi s object value as an array element in the MyJavaType
array.

Note: For PL/SQL static procedures or functions, JPublisher
generates instance methods, not static methods, in the wrapper
class. This is the logistic for associating a database connection (a
SQLJ connection context instance or JDBC connection instance)
with each wrapper class instance. The connection instance is used
in initializing the wrapper class instance, so that subsequently you
are not required to explicitly provide a connection or connection
context instance when calling wrapper methods.

1-32 JPublisher User’s Guide

Concepts of JPublisher-Generated Classes

Translating Overloaded Methods

PL/SQL, as with Java, lets you create overloaded methods—two or more methods
with the same name, but different signatures. If you use JPublisher to generate
wrapper methods for PL/SQL methods, it is possible that two overloaded methods
with different signatures in PL/SQL might have identical signatures in Java. If this
occurs, JPublisher changes the names of the methods to avoid generating two or
more methods with the identical signature. For example, consider a PL/SQL
package or object type that includes these functions:

FUNCTI ON f (x INTEGER y | NTEGER) RETURN | NTEGER

and
FUNCTI ON f (xx FLOAT, yy FLOAT) RETURN | NTEGER

In PL/SQL, these functions have different argument types. However, once they are
translated to Java with Oracle mapping, this difference disappears (both | NTEGER
and FLOAT map to or acl e. sgl . NUMBER).

Suppose that JPublisher generates a class for the package or object type with the
command-line setting - met hods=t r ue and Oracle mapping. JPublisher responds
by generating code similar to this:

public oracle.sqgl . NUOMBER f_1 (
or acl e. sgl . NUMBER X,
or acl e. sgl . NUOMBER y)

throws SQException

/* body omtted */
}

public oracle.sql. NUMBER f_4 (
oracl e. sgl . NUMBER xx,
or acl e. sgl . NUOMBER yy)

throws SQException

/* body omtted */
}

Note that in this example, JPublisher names the first function f _1 and the second
function f _4. Each function name ends with _<nn>, where <nn> is a number
assigned by JPublisher. The number has no significance of its own, but JPublisher
uses it to guarantee that the names of functions with identical parameter types will
be unique.

Understanding and Using JPublisher 1-33

JPublisher Generation of SQLJ Classes

JPublisher Generation of SQLJ Classes

When - net hods=t r ue, JPublisher generates . sql j files for PL/SQL packages
and for object types (unless an object type does not define any methods, in which
case a . j ava file is generated). The classes includes wrapper methods that invoke
the server methods of the object types and packages. Run SQLJ to translate the
.sqlj file.

This section describes how to use these generated classes in your SQLJ code.

Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
To use a class that JPublisher generates for a PL/SQL package:

« Construct an instance of the class.
« Call the wrapper methods of the class.

The constructors for the class associate a database connection with an instance of
the class. One constructor takes a SQLJ Def aul t Cont ext instance (or an instance
of a class specified through the - cont ext option when you ran JPublisher), one
constructor takes a JDBC Connect i on instance, and one constructor has no
arguments. Calling the no-argument constructor is equivalent to passing the SQLJ
default context to the constructor that takes a Def aul t Cont ext instance. Oracle
JDBC provides the constructor that takes a Connect i on instance for the
convenience of the JDBC programmer who knows how to compile a SQLJ program,
but is unfamiliar with SQLJ concepts such as Def aul t Cont ext .

Important: Classes produced by JPublisher include ar el ease()
method. In creating and using an instance of a JPublisher-generated
wrapper class, if you do not use the constructor with the

Def aul t Cont ext argument, and you do not subsequently call the
set Connect i onCont ext () method with a connection context
argument, and you invoke a wrapper method, then the wrapper
object will implicitly construct a Def aul t Cont ext instance. In this
case, use the r el ease() method to release the connection context
instance when it is no longer needed. See "Use of Connection
Contexts and Instances in SQLJ Code Generated by JPublisher" on
page 1-37 for more information.

1-34 JPublisher User’s Guide

JPublisher Generation of SQLJ Classes

Note: In Oracle8i JPublisher and in Oracle8i compatibility mode,
instead of the constructor taking a Def aul t Cont ext instance or
user-specified-class instance, there is a constructor that simply takes
a Connect i onCont ext instance (an instance of any class that
implements the standard sql j . runti me. Connect i onCont ext
interface).

The wrapper methods are all instance methods, because the connection context in
the t hi s object is used in #sgl statements in the wrapper methods.

Because a class generated for a PL/SQL package has no instance data other than the
connection context, you will typically construct one class instance for each
connection context you use. If the default context is the only one you use, call the
no-argument constructor once. The Oracle9i SQLJ Developer’s Guide and Reference
discusses reasons for using explicit connection context instances.

An instance of a class generated for a PL/SQL package does not contain copies of
PL/SQL package variables. It is not an ORADat a class or a SQLDat a class, and you
cannot use it as a host variable.

"Example: Using Classes Generated for Packages" on page 3-65 shows how to use a
class generated for a PL/SQL package.

Use of Classes JPublisher Generates for Object Types

To use an instance of a Java class that JPublisher generates for a SQL object type,
you must first initialize the Java object.

To initialize your Java object, you can:
« Assign an already initialized Java object to your Java object.
« Retrieve a copy of a SQL object into your Java object. To do this, you can:

— Use the SQL object as an QUT argument or as the function call return of a
JPublisher-generated wrapper method.

— Retrieve the SQL object through #sql statements you write.
— Retrieve the SQL object through JDBC calls you write.
« Construct the Java object and set its attributes using the set XXX() methods.

The constructors for the class associate a connection with the class instance. One
constructor takes a Def aul t Cont ext instance (or an instance of a class

Understanding and Using JPublisher 1-35

JPublisher Generation of SQLJ Classes

specified through the - cont ext option when you run JPublisher), one
constructor takes a Connect i on instance, and one constructor has no
arguments. Calling the no-argument constructor is equivalent to passing the
SQLJ default context to the constructor that takes a Def aul t Cont ext instance.
Oracle JDBC provides the constructor that takes a Connect i on instance for the
convenience of the JDBC programmer who knows how to compile a SQLJ
program, but is unfamiliar with SQLJ concepts such as Def aul t Cont ext .

Important: Classes produced by JPublisher include ar el ease()
method. In creating and using an instance of a JPublisher-generated
wrapper class, if you do not use the constructor with the

Def aul t Cont ext argument, and you do not subsequently call the
set Connecti onCont ext () method with a connection context
argument, and you invoke a wrapper method, then the wrapper
object will implicitly construct a Def aul t Cont ext instance. In this
case, use the r el ease() method to release the connection context
instance when it is no longer needed. See "Use of Connection
Contexts and Instances in SQLJ Code Generated by JPublisher" on
page 1-37 for more information.

Note: In Oracle8i JPublisher and in Oracle8i compatibility mode,
instead of the constructor taking a Def aul t Cont ext instance or
user-specified-class instance, there is a constructor that simply takes
aConnecti onCont ext instance (an instance of any class that
implements the standard sql j . runti me. Connect i onCont ext
interface).

Once you have initialized your Java object, you can:

« Call the accessor methods of the object.

« Call the wrapper methods of the object.

« Pass the object to other wrapper methods.

« Use the object as a host variable in #sql statements.
« Use the object as a host variable in JDBC calls.

There is a Java attribute for each attribute of the corresponding SQL object type. The
object has get XXX() and set XXX() accessor methods for each attribute. The

1-36 JPublisher User’s Guide

JPublisher Generation of SQLJ Classes

accessor method names are of the form get Foo() and set Foo() for attribute f 0o.
JPublisher does not generate fields for the attributes.

By default, the class includes wrapper methods that invoke the associated Oracle
object methods executing in the server. The wrapper methods are all instance
methods, regardless of whether the server methods are. The Def aul t Cont ext in
the t hi s object is used in #sgl statements in the wrapper methods.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORADat a and
ORADat aFact ory interfaces:

« create()
« toDatum()

These methods are not generally intended for your direct use; however, you may
want to use them if converting from one object reference wrapper type to another.

The Rat i onal Oexample, described in "Example: Using Classes Generated for
Obiject Types" on page 3-53, shows how to use a class that was generated for an
object type and has wrapper methods.

Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher

The class that JPublisher uses in creating SQLJ connection context instances
depends on how you set the - cont ext option when you run JPublisher, as follows:

« Asetting of - cont ext =Def aul t Cont ext (the default setting) results in
JPublisher using instances of the standard
sqlj.runtine. ref. Defaul t Cont ext class.

« Asetting of a user-specified class (that is in the classpath and implements the
standard sql j . runt i me. Connecti onCont ext interface) results in
JPublisher using instances of that class.

« Asetting of - cont ext =gener at ed results in the following declaration in the
JPublisher-generated class:

#sgl static context _Qx

In this case, JPublisher uses instances of the _Ct x class for connection context
instances.

Understanding and Using JPublisher 1-37

JPublisher Generation of SQLJ Classes

Note: Itis no longer routine (as it was in Oracle8i JPublisher) for
JPublisher to declare a connection context instance _ct x. This only
occurs in Oracle8i compatibility mode (- conpat i bl e=8i), with
_ct x being declared as a protected instance of the static connection
context class _Ct x.

Unless you have legacy code that depends on _ct x, it is preferable
to use the get Connect i onCont ext () and

set Connect i onCont ext () methods to retrieve and manipulate
connection context instances in JPublisher-generated classes. See
"Considerations in Using Connection Contexts and Connection
Instances" below for more information about these methods.

See "SQLJ Connection Context Classes (-context)" on page 2-13 for more information
about the - cont ext option.

Considerations in Using Connection Contexts and Connection Instances

Consider the following points in using SQLJ connection context instances or JDBC
connection instances in instances of JPublisher-generated wrapper classes:

Wrapper classes generated by JPublisher provide a

set Connecti onCont ext () method you can use to explicitly specify a SQLJ
connection context instance. (This will not be necessary if you have already
specified a connection context instance through the constructor.)

This method is defined as follows:

public void set Gonnect i onQont ext (conn_ct xt_i nst ance) ;

This installs the passed connection context instance as the SQLJ connection
context in the object wrapper instance. The connection context instance must be
an instance of the class specified through the - cont ext option for JPublisher
connection contexts (typically Def aul t Cont ext).

Be aware that the underlying JDBC connection must be compatible with the
connection used to materialize the database object in the first place. Specifically,
some objects may have attributes, such as object reference types or BLOBSs, that
are only valid for a particular connection.

1-38 JPublisher User’s Guide

JPublisher Generation of SQLJ Classes

Note: Using the set Connecti onCont ext () method to
explicitly set a connection context instance avoids the problem of
the connection context not being closed properly. This problem only
occurs with implicitly created connection context instances.

« Use either of the following methods of an object wrapper instance, as
appropriate, to retrieve a connection or connection context instance.

— Connection get Connection()
— Conn_Ctxt_Type get Connecti onCont ext ()

The get Connect i onCont ext () method returns an instance of the connection
context class specified through the JPublisher - cont ext option (typically
Def aul t Cont ext).

The returned connection context instance might either be an instance that was
set explicitly through the set Connect i onCont ext () method, or an instance
that was created implicitly by JPublisher.

Note: These methods are available only in generated . sql j files,
not generated . j ava files. If necessary, you can use the setting
- met hods=al ways to ensure that . sql j files are produced.

« If code in a JPublisher-generated class uses any SQLJ statements, and you do
not set a connection context instance explicitly, then one will be created
implicitly from the JDBC connection instance when the
get Connecti onCont ext () method is called.

In this circumstance, you must be careful to use the r el ease() method to free
resources in the SQLJ runtime that would otherwise result in a memory leak.

« Having different connection context classes in different generated classes gives
you the option of checking different classes against different exemplar schemas
during SQLJ on-line semantics checking; however, because the SQLJ source is
constructed from actual SQL types, this checking is usually not necessary.

See "Releasing Connection Context Resources" (below) and "SQLJ Connection
Context Classes (-context)" on page 2-13 for related information.

Understanding and Using JPublisher 1-39

JPublisher Generation of SQLJ Classes

Releasing Connection Context Resources

In some situations, you must use ther el ease() method of an instance of a
JPublisher-generated wrapper class in order to free SQLJ runtime connection
context resources. This is true in the following set of circumstances:

= You used the SQLJ default setting - codegen=i so in translating SQLJ classes.
and:

« YouuseJDK 1.1.x and/or the SQLJr unt i me library (as opposed to
runti nel2,runtinell, and so on) when you execute the generated class or
classes.

and:

= You did not create the object with the constructor that takes an instance of
Def aul t Cont ext (or some other connection context class you specified
through the - cont ext option when you ran JPublisher).

and:
= You have called one or more wrapper methods on the wrapper instance.
and:

= You did not use the set Connect i onCont ext () method of the wrapper
instance to explicitly set a connection context instance.

In these circumstances, a connection context instance would have been created
implicitly on the object and must explicitly be freed through the r el ease()
method before the object goes out of scope.

(When there is an explicit connection context instance, such as through an explicit
constructor or use of the set Connect i onCont ext () method, using r el ease()
is not necessary.)

1-40 JPublisher User’s Guide

JPublisher Generation of Java Classes

JPublisher Generation of Java Classes

When - net hods=f al se, or when SQL object types do not define any methods,
JPublisher does not generate wrapper methods for object types. Furthermore, when
- met hods=f al se, JPublisher does not generate code for PL/SQL packages at all,
because they are not useful without wrapper methods. (Note that when

- met hods=f al se, JPublisher exclusively generates . j ava files.)

JPublisher generates the same Java code for reference, VARRAY, and nested table
types regardless of whether - met hods isf al se ortr ue.

To use an instance of a class JPublisher generates for an object type when
- met hods=f al se, or for a reference, VARRAY, or nested table type, you must first
initialize the object.

To initialize your object, you can:
« Assign an already initialized Java object to your Java object.
« Retrieve a copy of a SQL object into your Java object. To do this, you can:

— Use the SQL object as an QUT argument or as the function call return of a
JPublisher-generated wrapper method in some other class.

— Retrieve the SQL object through #sql statements you write.
— Retrieve the SQL object through JDBC calls you write.
« Construct the Java object and initialize its data.

Unlike the constructors generated in . sql j source files, the constructors generated
in . j ava source files do not take a connection argument. Instead, when your object
is passed to or returned from a St at enent, Cal | abl eSt at ement , or

Pr epar edSt at enent object, JPublisher applies the connection it uses to construct
the St at enent , Cal | abl eSt at ement , or Pr epar edSt at enent object.

This does not mean you can use the same object with different connections at
different times. On the contrary, this is not always possible. An object might have a
subcomponent, such as a reference or a BLOB, that is valid only for a particular
connection.

To initialize the object data, use the set XXX() methods if your class represents an
object type, or the set Array() orset El ement () method if your class represents
a VARRAY or nested table type. If your class represents a reference type, you can
only construct a null reference. All non-null references come from the database.

Understanding and Using JPublisher 1-41

JPublisher Generation of Java Classes

Once you have initialized your object, you can accomplish the following:

Pass the object to wrapper methods in other classes.
Use the object as a host variable in #sql statements.
Use the object as a host variable in JDBC calls.

Call the methods that read and write the state of the object. These methods
operate on the Java object in your program and do not affect data in the
database.

— For aclass that represents an object type, you can call the get XXX() and
set XXX() accessor methods.

— For aclass that represents a VARRAY or nested table, you can call the
get Array(),setArray(),get El enent (), and set El enent ()
methods.

Theget Array() and set Array() methods return or modify an array as
awhole. The get El enent () and set El erent () methods return or
modify individual elements of the array. Then re-insert the Java array into
the database if you want to update the data there.

You cannot modify an object reference, because it is an immutable entity;
however, you can read and write the SQL object it references, using the
get Val ue() and set Val ue() methods.

The get Val ue() method returns a copy of the SQL object to which the
reference refers. The set Val ue() method updates a SQL object type instance
in the database, taking as input an instance of the Java class that represents the
object type. Unlike the get XXX() and set XXX() accessor methods of a class
generated for an object type, the get Val ue() and set Val ue() methods read
and write SQL objects.

A few methods have not been mentioned yet. You can use the

get ORADat aFact or y() method in JDBC code to return an ORADat aFact ory
object. You can pass this ORADat aFact or y to the Oracle get ORADat a() methods
in the classes Arr ayDat aResul t Set, Or acl eCal | abl eSt at enent , and

O acl eResul t Set inthe oracl e. j dbc package. The Oracle JDBC driver uses
the ORADat aFact or y object to create objects of your JPublisher-generated class.

1-42 JPublisher User’s Guide

JPublisher Generation of Java Classes

In addition, classes representing VARRAYs and nested tables have a few methods
that implement features of the or acl e. sql . ARRAY class:

« getBaseTypeNane()
« getBaseType()
« getDescriptor()

JPublisher-generated classes for VARRAY's and nested tables do not, however,
extend or acl e. sgl . ARRAY.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORADat a and
ORADat aFact ory interfaces:

« Ccreate()
« toDatum)

These methods are not generally intended for your direct use; however, you may
want to use them if converting from one object reference wrapper type to another.

The Rat i onal P example, described in "Example: Using Classes Generated for
Packages" on page 3-65, includes a class that was generated for an object type that
does not have wrapper methods.

Understanding and Using JPublisher 1-43

User-Written Subclasses of JPublisher-Generated Classes

User-Written Subclasses of JPublisher-Generated Classes

You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields.

One way to accomplish this is to add methods directly to the JPublisher-generated
class. However, this is not advisable if you anticipate running JPublisher at some
future time to regenerate the class. If you regenerate a class that you have modified
in this way, your changes (that is, the methods you have added) will be overwritten.
Even if you direct JPublisher output to a separate file, you will still need to merge
your changes into the file.

The preferred way to enhance the functionality of a generated class is to extend the
class—that is, treat the JPublisher-generated class as a superclass, write a subclass to
extend its functionality, then map the object type to the subclass.

This section discusses how to accomplish this.

Extending JPublisher-Generated Classes

Suppose you want JPublisher to generate the class JAddr ess from the SQL object
type ADDRESS. You also want to write a class MyAddr ess to represent ADDRESS
objects, where MyAddr ess extends the functionality JAddr ess provides.

Under this scenario, you can use JPublisher to generate a custom Java class
JAddr ess, then write a subclass, MyAddr ess, which contains the added
functionality. You then use JPublisher to map ADDRESS objects to the MyAddr ess
class, not to the JAddr ess class. JPublisher will also produce a reference class for
MyAddr ess, not JAddr ess.

To do this, JPublisher must alter the code it generates in the following ways:

« JPublisher will generate the reference class MyAddr essRef , rather than
JAddr essRef .

= JPublisher will use the MyAddr ess class, instead of the JAddr ess class, to
represent attributes whose SQL type is ADDRESS or to represent VARRAY and
nested table elements whose SQL type is ADDRESS.

« JPublisher will use the My Addr ess factory, instead of the JAddr ess factory,
when the ORADat aFact ory interface is used to construct Java objects whose
SQL type is ADDRESS.

1-44 JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes

Syntax for Mapping to Alternative Classes
JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your - sql command-line option setting:

-sql =obj ect _t ype: gener at ed_cl ass: nap_cl ass

For the above scenario, this would be:
- sql =ADDRESS: JAddr ess: M/Addr ess

See "Declaration of Object Types and Packages to Translate (-sql)" on page 2-20 for
information about the - sgl option.

If you were to enter the line in the | NPUT file, instead of on the command line, it
would look like this:

SQ ADDRESS CENERATE JAddress AS M/Addr ess

See "INPUT File Structure and Syntax" on page 2-26 for information about the
I NPUT file.

In this syntax, JAddr ess indicates the name of the class that JPublisher will
generate (as JAddr ess. j ava), and MyAddr ess specifies the name of the class that
you have written. JPublisher will map the object type ADDRESS to the MyAddr ess
class, not to the JAddr ess class. Therefore, if you retrieve an object that has an
ADDRESS attribute, this attribute will be created as an instance of My Addr ess in
Java. Or if you retrieve an ADDRESS object directly, you will retrieve it into an
instance of MyAddr ess.

For an example of how you would use JPublisher to generate the JAddr ess class,
see "Example: Generating a SQLData Class" on page 3-27.

Writing the Class that Extends the Generated Class
The class that you create (for example, MyAddr ess. j ava) must have the following
features:

= The class must have a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

« Theclass must implement the ORADat a interface or the SQLDat a interface. The
simplest way to do this is to inherit the necessary methods from the superclass.

« If you are extending an ORADat a class, you must also implement the
ORADat aFact ory interface, either in the same class or in a different one. For

Understanding and Using JPublisher 1-45

User-Written Subclasses of JPublisher-Generated Classes

example, you could have a class Enpl oyee that implements ORADat a and a
class Enpl oyeeFact or y that implements ORADat aFact ory.

Following is a sample implementation of the ORADat aFact ory cr eat e()

method:
public CRAData create(Datumd, int sql Type) throws SQException
{
return create(new Userd ass(), d, sql Type) ;
}

Alternatively, the following code shows a more efficient implementation, where
an initialized User Cl ass instance is created through the

User Cl ass(bool ean) constructor, which you must define. This constructor is
provided in JPublisher-generated code, including the superclass that

User Cl ass extends. Using this constructor ensures that a User Cl ass instance
is not needlessly created if the data object is null, or needlessly re-initialized if
the data object is non-null.

protected Userd ass(bool ean init) { super(bool ean); }
public CRAData create(Datumd, int sql Type) throws SQException

{
}

return (d==null) ? null : create(new Wserd ass(fal se), d, sql Type);

"Example: Generating a SQLData Class" on page 3-27 illustrates the preceding
features.

Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes

If you have been providing user-written subclasses for JPublisher-generated classes
under Oracle8i JPublisher, you should be aware that there are a number of relevant
changes in how Oracle9i JPublisher generates code. You would have to make
changes in any applications written against the Oracle8i functionality if you want to
use it under Oracle9i.

1-46 JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes

Note: If you use the - conpat i bl e=8i option setting, you will
not see the changes discussed here and your application will
continue to build and work as before.

In general, however, it is generally advisable to make the
transformation to Oracle9i JPublisher functionality, because this
will help insulate your user code from implementation details of
JPublisher-generated classes.

Following are the changes:

Replace use of the declared _ct x connection context field with use of the
provided get Connect i onCont ext () method. The _ct x field is no longer
supported under Oracle9i.

Replace the explicit implementation of the cr eat e() method with a call to a
superclass cr eat e() method.

Assume that in the example below, User Cl ass extends BaseCl ass. Instead of
writing the following method in User Cl ass:

public QustonbDatumcreate(Datumd, int sql Type) throws SQException
{

if (d=null) return null;

Wserd ass o = new Wserd ass() ;

0._struct = new Mitabl eStruct ((STRUCT) d, _sql Type, _factory);
0._ctx = new _Qx(((STRUT) d).getConnection());

return o;

}

supply the following:

public QustonbDatumcreate(Datumd, int sql Type) throws SQException
{

return create(new Wserd ass(), d, sql Type);

}

In addition, in . sqgl j files, JPublisher now generates a protected constructor
with a boolean argument that specifies whether the object needs to be initialized
or not:

protected Based ass(bool ean init) { ... }

Understanding and Using JPublisher 1-47

User-Written Subclasses of JPublisher-Generated Classes

You can use this to optimize the User Cl ass code as described in "Writing the
Class that Extends the Generated Class" on page 1-45.

« Inaddition to the get Connect i onCont ext () method, Oracle9i JPublisher
provides a get Connecti on() method that can be used to obtain the JDBC
connection associated with the object.

The setFrom() and setValueFrom() Methods
Oracle9i JPublisher provides the following utility methods in generated . sql j files:
« set Fron{anot her Obj ect)

This initializes the calling object from another object of the same base type,
including connection and connection context information. An existing,
implicitly created connection context object on the calling object is freed.

« setVal ueFron{anot her Qbj ect)

This initializes the underlying field values of the calling object from another
object of the same base type. This method does not transfer connection or
connection context information.

1-48 JPublisher User’s Guide

JPublisher Support for Inheritance

JPublisher Support for Inheritance

This section primarily discusses inheritance support for ORADat a types, explaining
the following related topics:

« how JPublisher implements support for inheritance—specifically, why you
must construct subclass objects before selecting instances of non-final types
from the database (or middle-tier database cache)

= why a reference class for a subtype does not extend the reference class for the
base type, and how you can convert from one reference type to another
reference type (typically a subclass or superclass)

This information is followed by a brief overview of standard inheritance support for
SQLDat a types, with reference to appropriate documentation for further
information.

ORAData Object Types and Inheritance
Consider the following SQL object types:
CREATE TYPE PERSON AS CBIECT (

) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
);
And consider the following JPublisher command line to create corresponding Java

classes:

jpub -user=scott/tiger -sqgl =PERSON Person, STUCENT: S udent - usertypes=oracl e

In this example, JPublisher generates a Per son class and a St udent class. The
St udent class extends the Per son class, because STUDENT is a subtype of PERSON.

So initialization can complete properly, create instances of these classes—at least the
leaf classes—before using these mapped types in your code. For example:

new Person();
new S udent ();

The Per son class includes the following method:

Person create(oracl e.sql.Datumd, int sql Type)

Understanding and Using JPublisher 1-49

JPublisher Support for Inheritance

This method, which converts a Dat uminstance to its representation as a custom
Java object, is called by the Oracle JDBC driver whenever a SQL object declared to
be a PERSON is retrieved into a Per son variable. The SQL object, however, may
actually be a STUDENT object. In this case, the cr eat e() method must create a

St udent instance rather than a Per son instance.

In general, to handle this kind of situation, the cr eat e() method of a custom Java
class (regardless of whether the class was created by JPublisher) must be able to
create instances of any subclass that represents a subtype of the SQL object type of
the or acl e. sqgl . Dat umargument. This ensures that the actual type of the created
Java object will match the actual type of the SQL object.

You might think that the code for the cr eat e() method in the root class of a
custom Java class hierarchy must mention all its subclasses. But if this were the case,
you would have to modify the code for a base class when writing or generating a
new subclass. At best, this process would be prone to errors, and would not even be
possible if the programmer did not have access to the source code for the Java
classes being extended.

Code generated by JPublisher solves this problem by creating a static initialization
block in each subclass in the custom Java class hierarchy. This static initialization
block initializes a data structure, equivalent to a type map, declared in the root-level
Java class, giving the root class the information it needs about the subclass. When
an instance of a subclass is created at runtime, the type is registered in the data
structure. Because of this implicit mapping mechanism, no explicit type map, such
as those required in SQLDat a scenarios, is required.

Important: This implementation makes it possible to extend
existing classes without having to modify them, but it carries a
small penalty—the static initialization blocks of the subclasses must
be executed before the class hierarchy can be used to read objects
from the database (or middle-tier database cache). This occurs if
you instantiate an object of each subclass by calling new() . It is
sufficient to instantiate just the leaf classes, because the constructor
for a subclass will invoke the constructor for its immediate
superclass.

To better understand how code generated by JPublisher supports inheritance, try an
example similar to the one at the beginning of this section, and look at the
generated code.

1-50 JPublisher User’s Guide

JPublisher Support for Inheritance

ORAData Reference Types and Inheritance

This section explains why a custom reference class generated for a subtype by
JPublisher does not extend the reference classes of the base type, and offers a
workaround for how to convert from one reference type to another.

Why Reference Type Inheritance Does Not Follow Object Type Inheritance

The example here helps explain why it is not desirable for reference types to follow
the hierarchy of their related object types.

Consider again the example given in the previous section, repeated here for
convenience:

CREATE TYPE PERSON AS QRIECT (

)I\DT FI NAL;

CREATE TYPE STUDENT UNDER PERSON (

)

jpub -user=scott/tiger -sqgl =PERSON Person, STUCENT: S udent - usertypes=oracl e

In addition to generating Per son. sql j (or.j ava)and St udent. sqlj (or
. j ava), JPublisher will generate Per sonRef . j ava and St udent Ref . j ava.

Because the St udent class extends the Per son class, you might expect

St udent Ref to extend Per sonRef . This is not the case, however, because the

St udent Ref class can provide more compile-time type safety as an independent
class than as a subtype of Per sonRef . Additionally, a Per sonRef can do
something that a St udent Ref cannot do: modify a Per son object in the database.

The most important methods of the Per sonRef class would be the following:
« Person getVal ue()

« Vvoid setVal ue(Person c)

The corresponding methods of the St udent Ref class would be as follows:

« Student getVal ue()

« Vvoid setVal ue(Student c)

Understanding and Using JPublisher 1-51

JPublisher Support for Inheritance

If the St udent Ref class extended the Per sonRef class, two problems would
occur:

« Javawould not permit the get Val ue() method in St udent Ref to return a
St udent object when the method it would override in the Per sonRef class
returns a Per son object, even though this is arguably a sensible thing to do.

« ThesetVal ue() method in St udent Ref would not override the
set Val ue() method in Per sonRef , because the two methods have different
signatures.

It would not be sensible to remedy these problems by giving the St udent Ref
methods the same signatures and result types as the Per sonRef methods, because
the additional type safety provided by declaring an object as a St udent Ref , rather
than as a Per sonRef , would be lost.

Converting Between Reference Types

Because reference types do not follow the hierarchy of their related object types,
there is a JPublisher limitation that you cannot convert directly from one reference
type to another. This section provides code to show you how to accomplish such a
conversion in your program.

To convert from the reference type XxxxRef to the reference type YyyyRef , for
example, use the following code:

java.sql . Gonnection conn = ...; [/ get underlying JDBC connection
XxxxRef xref = ...;
YyyyRef yref = (YyyyRef) YyyyRef.get CRADat aFact ory().
creat e(xref . t oDat unfconn), oracl e. j dbc. O acl eTypes. REF) ;
This conversion comprises two steps, each of which can be useful in its own right:

1. Convert xref from its strong XxxxRef type to the weak or acl e. sql . REF
type:
oracle.sql . REF ref = (oracle.sql.RE) xref.toDatunfconn);

2. Convert from the or acl e. sql . REF type to the target YyyyRef type:

YyyyRef yref = (YyyyRef) YyyyRef.get CRADat aFact ory().
create(ref, oracl e.jdbc. O acl eTypes. REF) ;

"Example: Converting Between Reference Types" below provides sample code for
such a conversion.

1-52 JPublisher User’s Guide

JPublisher Support for Inheritance

Note: This conversion does not involve any type checking.
Whether this conversion is actually permitted depends on your
application and on the SQL schema you are using.

Example: Converting Between Reference Types

The following example, including SQL definitions and Java code, illustrates the
points of the preceding discussion.

SQL Definitions Consider the following SQL definitions:

create type person_t as object (ssn nunber, name varchar2 (30), dob date) not
final;

/

show errors

create type instructor_t under person_t (title varchar2(20)) not final;
/
show errors

create type instructorPartTime_t under instructor_t (numhours nunber);
/
show errors

create type student _t under person_t (deptid nunber, najor varchar2(30)) not
final;

/

show errors

create type graduate t under student_t (advisor instructor_t);
/
show errors

create type studentPartTi ne_t under student_t (numhours nunber);
/
show errors

create table person_tab of person_t;
insert into person_tab val ues (1001, 'Larry’, TO DATE(’ 11-SEP-60'));
insert into person_tab values (instructor_t (1101, ’'Snmith’, TO DATE

(" 09-CCT- 1940'), 'Professor’));
insert into person_tab val ues (instructorPartTi ne_t (1111, ' Mers’,

Understanding and Using JPublisher 1-53

JPublisher Support for Inheritance

TO DATH(’ 10- OCT-65"), 'Adjunct Professor’, 20));

insert into person_tab val ues (student_t(1201, 'John’, To DATH'O01-CCT-78), 11,
"EE));

insert into person_tab val ues (graduate t(1211, 'Lisa’, TO DATH' 10-COCT-75'),
12, "ICS, instructor_t(1101, 'Smth’, TODATE (' 09-QCI-40'), 'Professor’)));
insert into person_tab val ues (studentPartTine_t (1221, ' Dave',

TO DATE(’ 11-CCT-70'), 13, 'MATH, 20));

JPublisher Mappings Assume the following mappings when you run JPublisher:

Person_t: Person,instructor_t:lnstructor,instructorPartTi ne t:|nstructorPartTi ne,
graduate_t: G aduat e, st udent Part Ti ne_t : & udent Part Ti ne

Java Class Here is a Java class with an example of reference type conversion as
discussed above, in "Converting Between Reference Types" on page 1-52.

inport java. sqgl . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sqlj.runtime. Cacle;
inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine.ResultSetlterator;

public class Inheritance
{
public static void main(String[] args) throws SQException
{
Systemout . println("CGonnecting.");
Q acl e. connect ("j dbc: oracl e: oci : @, "scott", "tiger");

Systemout. printin("lnitializing type system");
new Person();
new I nstructor();
new | nstructorPartTine();
new S udent T() ;
new & udent Part Ti ne() ;
new G aduat e();

PersonRef p_ref;
InstructorRef i ref;
InstructorPart Ti neRef ipt_ref;
S udent TRef s_ref;

S udent Part Ti meRef spt_ref;

1-54 JPublisher User’s Guide

JPublisher Support for Inheritance

Q aduat eRef g_ref;

Systemout. println("Sel ecting a person.");
#sql { select ref(p) INTO:p_ref FROMPERSON TAB p WHERE p. NAME=' Larry’ };

Systemout. println("Selecting an instructor.");
#sql { select ref(p) INTO:i_ref FROMPERSON TAB p WHERE p. NAME=' Snith' };

Systemout. println("Selecting a part tine instructor.");
#sqgl { select ref(p) INTO:ipt_ref FROM PERSON TAB p WHERE p. NAME=' Mrer s’ };

Systemout. println("Sel ecting a student.");
#sql { select ref(p) INTO:s_ref FROMPERSON TAB p WHERE p. NAME=' John' };

Systemout. println("Selecting a part tine student.");
#sqgl { select ref(p) INTO:spt_ref FROM PERSON TAB p WHERE p. NAME=' Dave’ };

Systemout. println("Sel ecting a graduate student.");
#sql { select ref(p) INTO:g_ref FROMPERSON TAB p WHERE p. NAME=' Lisa’ };

/1 Gonnection object for conversions
Gonnecti on conn = Def aul t Cont ext . get Def aul t Gont ext () . get Gonnecti on() ;

/] Assigning a part-tine instructor ref to a person ref
Systemout. println("Assigning a part-tine instructor ref to a person ref");
oracl e.sqgl . Datumref = ipt_ref.toDatun{conn);
PersonRef pref = (PersonRef) PersonRef. get CRADat aFactory() .
create(ref, O acl eTypes. REF) ;

/1 Assigning a person ref to an instructor ref

Systemout. println("Assigning a person ref to an instructor ref");

InstructorRef iref = (InstructorRef) InstructorRef.get CRADat aFact ory().
create(pref.tobatunf{conn), C acl eTypes. REF);

/] Assigning a graduate ref to an part tine instructor ref
/1 =>this should actually bonb at runtine!
Systemout. println
("Assigning a graduate ref to a part tine instructor ref");
InstructorPart Ti neRef iptref =
(I'nstructorPart Ti neRef) InstructorPart T neRef. get CRADat aFact or y()
.create(g_ref.tobatunfconn), Q acl eTypes. REF);
Q acl e. cl ose() ;

Understanding and Using JPublisher 1-55

JPublisher Support for Inheritance

SQLData Object Types and Inheritance

As described earlier, if you use the JPublisher - user t ypes=j dbc setting instead of
- usertypes=or acl e, the custom Java class that JPublisher generates will
implement the standard SQLDat a interface instead of the Oracle ORADat a
interface. The SQLDat a readSQL() andwrit eSQL() methods provide equivalent
functionality to the ORADat a/ORADat aFact ory creat e() andt oDat um()
methods for reading and writing data.

As is the case when JPublisher generates ORADat a classes corresponding to a
hierarchy of SQL object types, when JPublisher generates SQLDat a classes
corresponding to a SQL hierarchy, the Java types will follow the same hierarchy as
the SQL types.

SQLDat a implementations do not, however, offer the implicit mapping intelligence
that JPublisher automatically generates into ORADat a classes (as described in
"ORAData Object Types and Inheritance" on page 1-49).

In a SQLDat a scenario, you must manually provide a type map to ensure the
proper mapping between SQL object types and Java types. In a JDBC application,
you can properly initialize the default type map for your connection, or you can
explicitly provide a type map as a get Obj ect () input parameter. (See the Oracle9i
JDBC Developer’s Guide and Reference for information.) In a SQLJ application, use a
type map resource that is similar in nature to a properties file. (See the Oracle9i SQLJ
Developer’s Guide and Reference for information.)

In addition, be aware that there is no support for strongly typed object references in
a SQLData implementation. All object references are simple j ava. sql . Ref
instances.

Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE

This section discusses the effect on JPublisher-generated wrapper classes of using
the SQL modifiers FI NAL, NOT FI NAL, | NSTANTI ABLE, or NOT | NSTANTI ABLE.

Using the SQL modifier FI NAL or NOT FI NAL on a SQL type or on a method of a
SQL type has no effect on the generated Java wrapper code. This is so JPublisher
users are able in all cases to customize the generated Java wrapper class through
subclassing and overriding the generated behavior.

Using the SQL modifier NOT | NSTANTI ABLE on a method of a SQL type results in
no code being generated for that method in the Java wrapper class. Thus you must
cast to some wrapper class that corresponds to an instantiable SQL subtype in order
to call such a method.

1-56 JPublisher User’s Guide

JPublisher Support for Inheritance

Using NOT | NSTANTI ABLE on a SQL type results in the corresponding wrapper
class being generated with pr ot ect ed constructors. This will remind you that
instances of that class can only be created through subclasses that correspond to
instantiable SQL types.

Understanding and Using JPublisher 1-57

JPublisher Limitations

JPublisher Limitations
This section summarizes limitations in the current release of JPublisher.
« lack of support for some datatypes

JPublisher does not currently support the following SQL and PL/SQL
argument types:

— BOOLEAN

- NCHAR

- NVARCHAR2

- NCLOB

— RECORD types

— index-by tables

— strongly-typed REF CURSOR
— SQLJ object types

— OPAQUE types

JPublisher will not generate code for wrapper methods that use one or more of
the unsupported datatypes. Instead, JPublisher will display one or more error
messages.

For more information about datatype support, see "Datatype Mapping Tables"
on page 1-27.

= | NPUT file error reporting

JPublisher reports most, but not all, errors in the | NPUT file. The few errors in
the | NPUT file that are not reported by JPublisher are described in "INPUT File
Precautions" on page 2-32.

1-58 JPublisher User’s Guide

2

Command-Line Options and Input Files

This chapter describes the use of JPublisher option settings and input files to specify
program behavior. The following topics are covered:

« JPublisher Options
« JPublisher Input Files

Command-Line Options and Input Files 2-1

JPublisher Options

JPublisher Options

This section lists and discusses the use of JPublisher command-line options,
covering the following topics:

« JPublisher Option Summary

= JPublisher Option Tips

= Notational Conventions

» Detailed Descriptions—Options That Affect Datatype Mappings

« Detailed Descriptions—General JPublisher Options

JPublisher Option Summary

Table 2-1 lists the options that you can use on the JPublisher command line, their

syntax, and a brief description. The abbreviation "n/a" represents "not applicable".

Table 2-1 Summary of JPublisher Options

Option Name Description Default Value
-access Determines the access modifiers that public
JPublisher includes in generated method
definitions.
-bui ltintypes Specifies the datatype mappings (j dbc j dbc

or or acl e) for non-numeric, non-LOB
built-in datatypes.

-case Specifies the case of Java identifiers that ni xed
JPublisher generates.

-conpati bl e Specifies the general Oracle8i or adat a
compatibility mode, or the particular
interface to implement in generated
classes for Oracle mapping of
user-defined types—ORADat a or
Cust omDat um(supported for
backwards compatibility); modifies the
behavior of - usert ypes=or acl e.

- cont ext Specifies what JPublisher uses for Def aul t Cont ext
connection contexts—the SQLJ
Def aul t Cont ext class, a
user-specified class, or a
JPublisher-generated inner class.

2-2 JPublisher User’s Guide

JPublisher Options

Table 2-1 Summary of JPublisher Options (Cont.)

Option Name

Description

Default Value

-dir

-driver

-encodi ng

-i nput

-1 obtypes

- mappi ng

- met hods

-nunbert ypes

-omt_schenmm_nanes

Specifies the directory that holds
generated files/packages (an empty
directory name results in all generated
files being placed in the current
directory; a non-empty directory name
specifies a directory to be used as the
root directory of a class hierarchy).

Specifies the driver class that JPublisher
uses for JDBC connections to the
database.

Specifies the Java encoding of JPublisher
input files and output files.

Specifies the file that lists the types and
packages JPublisher translates.

Specifies the datatype mappings (j dbc
or or acl e) that JPublisher uses for
BLOB and CLOB types.

Specifies which object attribute type and
method argument type mapping the
generated methods support.

Note: This is deprecated in favor of the
"XXXtypes" mapping options, but is
supported for backwards compatibility.

Determines whether JPublisher
generates wrapper methods for SQL
object methods and PL/SQL package
methods. (As secondary effects,
determines whether JPublisher
generates . sql j filesor.j ava files,
and whether it generates PL/SQL
wrapper classes at all.)

Specifies the datatype mappings (j dbc,
obj ect j dbc, bi gdeci mal , or

or acl e) JPublisher uses for numeric
datatypes.

Specifies whether all object types and
package names JPublisher generates
include the schema name.

Command-Line Options and Input Files

empty

oracl e.jdbc. Oracl eDri ver

the value of the System property
file.encoding

n/a

oracle

obj ect j dbc

al |

obj ect j dbc

do not omit schema names

2-3

JPublisher Options

Table 2-1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
- package Specifies the name of the Java package n/a

into which JPublisher is generating Java

wrappers.
- props Specifies a file that contains JPublisher n/a

options in addition to those listed on the
command line.

-sql Specifies object types and packages for n/a
which JPublisher will generate code.

-types Specifies object types for which n/a
JPublisher will generate code.

Note: This option is deprecated in favor
of - sql , butis supported for backwards
compatibility.

-url Specifies the URL JPublisher uses to jdbc:oracle:oci: @

connect to the database. Note: With the Oracle9i release, use "oci"

in the connect string for the Oracle JDBC
OClI driver in any new code. For
backwards compatibility, however, "oci8"
and "oci7" are still accepted.

-user Specifies an Oracle username and n/a
password.
-usertypes Specifies the types mappings (j dbc or oracl e

or acl e) JPublisher uses for
user-defined SQL types.

JPublisher Option Tips

Be aware of the following usage notes for JPublisher options:

« JPublisher always requires the - user option, either on the command line or in
the properties file.

« Options are processed in the order in which they appear. Options from an
I NPUT file are processed at the point where the - i nput option occurs.
Similarly, options from a properties file are processed at the point where the
- pr ops option occurs.

« If a particular option appears more than once, JPublisher uses the value from
the last occurrence.

2-4 JPublisher User’s Guide

JPublisher Options

It is advisable to specify a Java package for your generated classes, either on the
command line, with the - package option, or in the properties file. For
example, on the command line you could enter:

j pub -sqgl =Person - package=e.f ...

or in the properties file you could enter:

j pub. sql =Per son
j pub. package=e. f

These statements direct JPublisher to create the class Per son in the Java
package e. f; that is, to create the class e. f . Per son.

"Properties File Structure and Syntax" on page 2-25 describes the properties file.

If you do not specify a type or package in the | NPUT file or on the command
line, then JPublisher translates all types and packages in the user’s schema
according to the options specified on the command line or in the properties file.

Notational Conventions

The JPublisher option syntax used in the following sections follows these notational
conventions:

Angle brackets <. . . > enclose strings that the user supplies.

A vertical bar | separates alternatives within brackets.

Terms in italics are like variables—specify an actual value or string.
Square brackets [. . .] enclose optional items.

Braces{. . .} enclose a list of possible values—specify only one of the values
within the braces.

An ellipsis . . . immediately following an item (or items enclosed in brackets)
means that you can repeat the item any number of times.

Punctuation symbols other than those described above are entered as shown.

These include ". " and "@, for example.

The next section discusses the options that affect datatype mappings. The remaining
options are then discussed in alphabetical order.

Command-Line Options and Input Files 2-5

JPublisher Options

Detailed Descriptions—Options That Affect Datatype Mappings

The following options control which datatype mappings JPublisher uses to translate
object types, collection types, object reference types, and PL/SQL packages to Java
classes:

« The-usertypes option controls JPublisher behavior for user-defined types
(possibly in conjunction with the - conpat i bl e option for or acl e mapping).

« The-nunbert ypes option controls datatype mappings for numeric types.

« The-1 obt ypes option controls datatype mappings for the BLOB and CLOB
types.

« The-builtintypes option controls datatype mappings for non-numeric,
non-LOB, predefined SQL and PL/SQL types.

These four options are known as the type mapping options. (Another, less flexible
option, - mappi ng, is discussed later. It is deprecated, but still supported for
compatibility with older releases of JPublisher.)

For an object type, JPublisher applies the mappings specified by the type mapping
options to the object attributes and to the arguments and results of any methods
included with the object. The mappings control the types that the generated
accessor methods support; that is, what types the get XXX() methods return and
the set XXX() methods require.

For a PL/SQL package, JPublisher applies the mappings to the arguments and
results of the methods in the package.

For a collection type, JPublisher applies the mappings to the element type of the
collection.

The - user t ypes option controls whether JPublisher implements the Oracle
ORADat a interface or the standard SQLDat a interface in generated classes, and
whether JPublisher generates code for collection and object reference types. In
addition, if - user t ypes=or acl e, you can use the - conpat i bl e option to specify
using Cust onDat uminstead of ORADat a for Oracle mapping. Cust onDat umis
replaced by ORADat a and deprecated in Oracle9i, but is supported for backwards
compatibility. (Beyond this, you can use the - conpat i bl e option to specify a more
general Oracle8i compatibility mode. See "Oracle8i Compatibility Mode" on

page 1-24.)

See "Details of Datatype Mapping" on page 1-26 for more information about the
different datatype mappings and factors you should consider in deciding which
mappings to use.

2-6 JPublisher User’s Guide

JPublisher Options

The following sections provide additional information about these type mapping
options.

Mappings for User-Defined Types (-usertypes)
- usert ypes={ or acl e| j dbc}

The - user t ypes option controls whether JPublisher implements the Oracle
ORADat a interface or the standard SQLDat a interface in generated classes for
user-defined types.

When - usert ypes=or acl e (the default), JPublisher generates ORADat a classes
for object, collection, and object reference types. This is possibly used in conjunction
with the - conpat i bl e option, described in "Backwards-Compatible Oracle
Mapping for User-Defined Types (-compatible)" below.

When - usert ypes=j dbc, JPublisher generates SQLDat a classes for object types.
JPublisher does not generate classes for collection or object reference types in this
case—use j ava. sql . Array for all collection types and j ava. sql . Ref for all
object reference types.

Note: The-usertypes=j dbc setting requires JDK 1.2 or higher,
because the SQLDat a interface is a JDBC 2.0 feature.

Backwards-Compatible Oracle Mapping for User-Defined Types (-compatible)
- conpat i bl e={ or adat a| cust ontlat unj 8i }

If - usertypes=or acl e, you have the option of setting

- conpati bl e=cust ondat umto implement the Cust onDat uminterface instead of
the ORADat a interface in your generated classes for user-defined types.

Cust onDat umis replaced by ORADat a and deprecated in Oracle9i, but is still
supported for backwards compatibility. If - user t ypes=j dbc, a-conpati bl e
setting of cust ondat um(or or adat a) is ignored.

Alternatively, this option has another mode of operation. With a setting of

- conpati bl e=8i , you can specify the general Oracle8i compatibility mode. This
not only uses the Cust onDat uminterface, but also generates the same code that
would be generated by Oracle8i JPublisher, and is equivalent to setting other
JPublisher options for backwards compatibility to Oracle8i. Behavior of method
generation is equivalent to that for a - net hods=al ways setting, and generation of
connection context declarations is equivalent to that for a - cont ext =gener at ed
setting. See "Oracle8i Compatibility Mode" on page 1-24.

Command-Line Options and Input Files 2-7

JPublisher Options

Note: If you use JPublisher in an environment that does not
support the ORADat a interface (such as Oracle8i JDBC 8.1.7 or prior
releases), then the Cust onDat uminterface is used automatically if
-usertypes=or acl e. (You will receive an informational warning
if - conpat i bl e=or adat a, but the generation will take place.)

Mappings For Numeric Types (-numbertypes)
- nunber t ypes={j dbc| obj ect j dbc| bi gdeci nal | or acl e}

The - nunber t ypes option controls datatype mappings for numeric SQL and
PL/SQL types. Four choices are available:

« The JDBC mapping maps most numeric datatypes to Java primitive types such
asint and f| oat, and maps DECI MAL and NUMBER to
j ava. mat h. Bi gDeci mal .

=« The Object JIDBC mapping (the default) maps most numeric datatypes to Java
wrapper classes such asj ava. | ang. I nt eger and j ava. | ang. Fl oat, and
maps DECI MAL and NUMBERto j ava. mat h. Bi gDeci mal .

« The BigDecimal mapping maps all numeric datatypes to
j ava. mat h. Bi gDeci mal .

= The Oracle mapping maps all numeric datatypes to or acl e. sql . NUMBER

Table 2-2 lists the SQL and PL/SQL types affected by the - nunbert ypes option,
and shows their Java type mappings for - nunbert ypes=j dbc and
-nunbert ypes=obj ectj dbc (the default).

Table 2-2 Mappings for Types Affected by the -numbertypes Option

SQL or PL/SQL Datatype JDBC Mapping Type Object JDBC Mapping Type

BINARY_INTEGER, INT, int java.lang.Integer
INTEGER, NATURAL,

NATURALN, PLS_INTEGER,

POSITIVE, POSITIVEN,

SIGNTYPE

SMALLINT short java.lang.Integer
REAL float java.lang.Float
DOUBLE PRECISION, FLOAT double java.lang.Double

2-8 JPublisher User’s Guide

JPublisher Options

Table 2-2 Mappings for Types Affected by the -numbertypes Option (Cont.)

SQL or PL/SQL Datatype JDBC Mapping Type Object JDBC Mapping Type
DEC, DECIMAL, NUMBER, java.math.BigDecimal java.math.BigDecimal
NUMERIC

Mappings For LOB Types (-lobtypes)
-1 obt ypes={]j dbc| or acl e}

The - | obt ypes option controls datatype mappings for the LOB types. Table 2-3
shows how these types are mapped for - | obt ypes=or acl e (the default) and for
-1 obt ypes=j dbc.

Table 2-3 Mappings for Types Affected by the -lobtypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE
Notes:

« BFI LEis an Oracle-specific SQL type, so there is no standard
java. sqgl . Bfi | e Java type.

« Thejava.sqgl.C obandjava. sql . Bl ob interfaces are new
in JDK 1.2. If you use JDK 1.1, you should not select
-1 obt ypes=j dbc.

Mappings For Built-In Types (-builtintypes)
-bui | tint ypes={j dbc| or acl e}

The - bui | ti nt ypes option controls datatype mappings for all the built-in
datatypes except the LOB types (controlled by the - | obt ypes option) and the
different numeric types (controlled by the - nunber t ypes option). Table 2-4 lists
the datatypes affected by the - bui | ti nt ypes option and shows their Java type
mappings for - bui | ti nt ypes=oracl e and - bui | ti nt ypes=j dbc (the default).

Command-Line Options and Input Files 2-9

JPublisher Options

Table 2-4 Mappings for Types Affected by the -builtintypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type
CHAR, CHARACTER, LONG, oracle.sql. CHAR java.lang.String
STRING, VARCHAR,

VARCHAR?2

RAW, LONG RAW oracle.sql.RAW byte[]

DATE oracle.sql.DATE java.sql.Timestamp

Mappings for All Types (-mapping)
- mappi ng={j dbc| obj ect j dbc| bi gdeci nal | or acl e}

The - mappi ng option specifies mapping for all datatypes, so offers little flexibility
between types.

Note: This option is deprecated in favor of the more specific type
mapping options: - user t ypes, - nunbert ypes,

-bui l tintypes,and -1 obt ypes. Itis still supported, however,
for backwards compatibility.

The setting - mappi ng=or acl e is equivalent to setting all the type mapping
options to or acl e . The other - mappi ng settings are equivalent to setting

- nunbert ypes equal to the value of - mappi ng and setting the other type
mapping options to their defaults, as summarized in Table 2-5.

Table 2-5 Relation of -mapping Settings to Settings of Other Mapping Options

-builtintypes= -numbertypes= -lobtypes= -usertypes=
-mapping=oracle oracle oracle oracle oracle
-mapping=jdbc jdbc jdbc oracle oracle
-mapping=objectjdbc jdbc objectjdbc oracle oracle
-mapping=bigdecimal jdbc bigdecimal oracle oracle

2-10 JPublisher User’s Guide

JPublisher Options

Note: Because options are processed in the order in which they
appear on the command line, if the - mappi ng option precedes one
of the specific type mapping options (- bui | ti nt ypes,

-1 obt ypes, - nunber t ypes, or - usert ypes) the specific type
mapping option overrides the - mappi ng option for the relevant
types. If the - mappi ng option follows one of the specific type
mapping options, the specific type mapping option is ignored.

Detailed Descriptions—General JPublisher Options

This section discusses the remaining JPublisher options, for settings other than
datatype mappings. Options in this section are in alphabetical order.

Method Access (-access)
-access={ publ i c| pr ot ect ed| package}

The - access option determines the access modifiers that JPublisher includes in
generated attribute setter and getter methods and member methods on object type
wrapper classes, as well as for wrapper methods on PL/SQL packages.

JPublisher uses the possible option settings as follows:

=« publi c (default)—Results in methods being generated with the publ i ¢ access
modifier.

« protect ed—Results in methods being generated with the pr ot ect ed access
modifier.

« package—Results in the access modifier being omitted, which means that
generated methods are local to the package.

You might want to use a setting of - access=pr ot ect ed or - access=package if
you need to control the usage of the generated JPublisher wrapper classes. Perhaps
you are providing your own customized versions of the wrappers as subclasses of
the JPublisher-generated classes, but do not want to provide access to the generated
superclasses.

You can specify the - access option on the command line or in a properties file.

Command-Line Options and Input Files 2-11

JPublisher Options

Note: Constructors of JPublisher-generated classes, as well as
wrappers for object references, VARRAYS, and nested tables, are not
affected by the value of the - access option.

Case of Java Ildentifiers (-case)
- case={ m xed| sane| | ower | upper}

For class or attribute names you do not specify in an | NPUT file or on the command
line, the - case option affects the case of Java identifiers that JPublisher generates,
including class names, method names, attribute names embedded within

get XXX() and set XXX() method names, arguments of generated method names,
and Java wrapper names.

Table 2-6 describes the possible values for the - case option.

Table 2-6 Values for the -case Option

-case Option Value Description

m xed (default) The first letter of every word-unit of a class name or every
word-unit after the first word-unit of a method name is in
uppercase. All other characters are in lower case. An
underscore (_) or dollar sign ($), or any character that is illegal
in Java, constitutes a word-unit boundary and is silently
removed. A word-unit boundary also occurs after get or set
in a method name.

sanme JPublisher does not change the case of letters from the way
they are represented in the database. Underscores and dollar
signs are retained. JPublisher removes any other character that
isillegal in Java and issues a warning message.

upper JPublisher converts lowercase letters to uppercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.

| oner JPublisher converts uppercase letters to lowercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.

For class or attribute names that you enter with the - sql option, or class names in
the | NPUT file, JPublisher retains the case of the letters in the name, overriding the
- case option.

2-12 JPublisher User’s Guide

JPublisher Options

JPublisher will retain as written the case of the Java class identifier for an object type
specified on the command line or in the | NPUT file. For example, if the command
line includes the following:

- sql =\Wr ker

then JPublisher generates:

public class Wrker ... ;

Or, if the entry in the | NPUT file is written as:
L warKeR

then JPublisher will follow the case for the identifier as it was entered in the | NPUT
file and generate:

public class wOkeR ... ;

SQLJ Connection Context Classes (-context)
- cont ext ={ gener at ed| Def aul t Cont ext | user - speci fi ed}

The - cont ext option controls the connection context class that JPublisher may use,
and possibly declare, for . sql j wrappers for user-defined object types and
PL/SQL packages.

The setting - cont ext =Def aul t Cont ext is the default and results in any
JPublisher-generated . sql j source files using the SQLJ default connection context
class—sql j . runti ne. r ef . Def aul t Cont ext —for all connection contexts.

Alternatively, you can specify any class that implements the standard
sqlj.runtinme. Connecti onCont ext interface and that exists in the classpath.
The specified class will be used for all connection contexts.

Note: W.ith a user-specified class setting, instances of that class
must be used for output from the get Connect i onCont ext ()
method or input to the set Connect i onCont ext () method. See
"Considerations in Using Connection Contexts and Connection
Instances" on page 1-38 for information about these methods.

Command-Line Options and Input Files 2-13

JPublisher Options

The setting - cont ext =gener at ed results in the following inner class declaration
inall . sql j files generated by JPublisher:

#sgl static context _Qx;

This means that each PL/SQL package and each object type wrapper uses its own
SQLJ connection context class. (Also see "Use of Connection Contexts and Instances
in SQLJ Code Generated by JPublisher" on page 1-37.)

There are the following benefits in using the Def aul t Cont ext setting or
user-specified-class setting:

= No additional context classes are generated.

= You have greater flexibility if you translate and compile your . sqgl j filesin

separate steps (translating with the SQLJ - conpi | e=f al se setting). Assuming
you are not using JDK 1.2-specific types (such asj ava. sql . BLOB, CLOB,
Struct, Ref , or Arr ay), the resulting . j ava files can be compiled under
either JDK 1.1.x or under JDK 1.2.x or higher. This is not the case with the
setting - cont ext =gener at ed, because SQLJ connection contexts in JDK 1.1.x
usejava. util . Di ctionary instances for object type maps, while SQLJ
connection contexts in JDK 1.2 or higher use j ava. uti | . Map instances.

A benefit of using the gener at ed setting is that it permits full control over the way
the SQLJ translator performs online checking. Specifically, every object type and
every PL/SQL package can be checked against its own exemplar database schema.
However, because JPublisher generates . sql j files from an existing schema, the
generated code is already verified as correct through construction from that schema.

Note that using the user-specified-class setting gives you the flexibility of the
gener at ed setting while still giving you the advantages of the Def aul t Cont ext
setting.

You can specify the - cont ext option on the command line or in a properties file.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
SQLJ connection contexts.

Output Directory for Generated Files (-dir)
-di r=<directory name>

A non-empty - di r option setting specifies the root of the directory tree within
which JPublisher will place Java and SQLJ source files. JPublisher will nest

generated packages in this directory. A setting of "." (a period, or "dot") specifies the
current directory as the root of the directory tree.

2-14 JPublisher User’s Guide

JPublisher Options

The empty setting, however, installs all generated file directly into the current
directory—there is no hierarchy in this case. This is the default setting, but you can
also specify it explicitly as follows:

-dir=

If you specify a non-empty setting, JPublisher combines the directory, the package
name given with the - package option, and any package name included in a SQL
statement in the | NPUT file to determine the specific directory within which it will
generatea . j avaor. sqlj file. The "Name for Generated Packages (-package)"
section on page 2-18 discusses this in more detail.

For example, in the following command line (which is a single wrap-around line):
jpub -user=scott/tiger -input=demoin -nappi ng=oracl e -case=l oner -sqgl =enpl oyee
- package=cor p -di r =deno

the deno directory will be the base directory for packages JPublisher generates for
object types you specify in the | NPUT file denoi n.

You can specify - di r on the command line or in a properties file. The default value
for the - di r option is empty.

JDBC Driver Class for Database Connection (-driver)
-driver=<dri ver_nane>

The - dri ver option specifies the driver class that JPublisher uses for JDBC
connections to the database. The default is:

-driver=oracl e. jdbc. O acl eDxi ver

This setting is appropriate for any Oracle JDBC driver.

Java Character Encoding (-encoding)
- encodi ng=<nane_of _char act er _encodi ng>

The -encodi ng option specifies the Java character encoding of the | NPUT file
JPublisher reads and the . sql j and . j ava files JPublisher writes. The default
encoding is the value of the system property fi | e. encodi ng, or, if this property is
not set, 8859_1 (ISO Latin-1).

As a general rule, you are not required to specify this option unless you specify an
-encodi ng option when you invoke SQLJ and your Java compiler, in which case you
should use the same - encodi ng option for JPublisher.

Command-Line Options and Input Files 2-15

JPublisher Options

You can use the - encodi ng option to specify any character encoding that is
supported by your Java environment. If you are using the Sun Microsystems JDK,
these options are listed in the nat i ve2asci i documentation, which you can find
at the following URL:

http://ww j avasof t. comt product s/ j dk/ 1. 1/ docs/ t ool docs/ sol ari s/ nati ve2ascii . ht n

Note: Encoding settings, either set through the JPublisher

- encodi ng option or the Javafi | e. encodi ng setting, do not
apply to Java properties files, including those specified through the
JPublisher - pr ops option. Properties files always use the encoding
8859_1. This is a feature of Java in general, not JPublisher in
particular. You can, however, use Unicode escape sequences in a
properties file.

File Containing Names of Objects and Packages to Translate (-input)
-1 nput =fi | enane>

The - i nput option specifies the name of a file from which JPublisher reads the
names of object types and PL/SQL packages to translate, and other information it
needs for their translation. JPublisher translates each object type and package in the
list. You can think of the | NPUT file as a makefile for type declarations—it lists the
types that need Java class definitions.

In some cases, JPublisher might find it necessary to translate some additional
classes that do not appear in the | NPUT file. This is because JPublisher analyzes the
types in the | NPUT file for dependencies before performing the translation, and
translates other types as necessary. For more information on this topic, see
"Translating Additional Types" on page 2-30.

If you do not specify any packages or object types in an | NPUT file or on the
command line, then JPublisher translates all object types and packages declared in
the database schema to which it is connected.

For more information about the syntax of the | NPUT file, see "INPUT File Structure
and Syntax" on page 2-26.

2-16 JPublisher User’s Guide

JPublisher Options

Generate Classes for Packages and Wrapper Methods for Methods (-methods)
- et hods=(true| al | | al ways| naned| sone| f al se| none)

The value of the - met hods option determines whether JPublisher generates
wrapper methods for methods in object types and PL/SQL packages.

For - met hods=t r ue or, equivalently, - net hods=al | (the default), JPublisher
generates wrapper methods for all the methods in the object types and PL/SQL
packages it processes. As of Oracle9i release 9.0.1, this results in generation of a

. sql j source file whenever the underlying SQL object or package actually defines
methods, but a . j ava source if not. (In previous releases, . sql j source files were
always generated for at rue or al | setting.)

The - met hods=al ways setting also results in wrapper methods being generated;
however, for backwards compatibility to earlier JPublisher versions, this setting
always results in . sql j files being generated for all SQL object types, regardless of
whether the types define methods.

For - met hods=narmed or, equivalently, - met hods=sone, JPublisher generates
wrapper methods only for the methods explicitly named in the | NPUT file.

For - net hods=f al se or, equivalently, - met hods=none, JPublisher does not
generate wrapper methods. In this case JPublisher does not generate classes for
PL/SQL packages, because they would not be useful without wrapper methods.

The default is - net hods=al | .

You can specify the - net hods option on the command line or in a properties file.

Omit Schema Name from Generated Names (-omit_schema_names)
-om t _schena_nanes

The presence of the - oni t _schema_nanes option determines whether certain
object type names generated by JPublisher include the schema name. Omitting the
schema name makes it possible for you to use classes generated by JPublisher when
you connect to a schema other than the one used when JPublisher was invoked, as
long as the object types and packages you use are declared identically in the two
schemas.

ORADat a and SQLDat a classes generated by JPublisher include astati ¢ fi nal
St ri ng that names the SQL object type matching the generated class. When the
code generated by JPublisher executes, the object type name in the generated code
is used to locate the object type in the database. If the object type name does not
include the schema name, the type is looked up in the schema associated with the

Command-Line Options and Input Files 2-17

JPublisher Options

current connection when the code generated by JPublisher is executed. If the object
type name does include the schema name, the type is looked up in that schema.

If you do not specify - omi t _schema_nanes on the command line, every object
type or wrapper name generated by JPublisher is qualified with a schema name.

If you do specify - omi t _schema_nanes on the command line, an object type or
wrapper name generated by JPublisher is qualified with a schema name only if:

= Yyou declare the object type or wrapper in a schema other than the one to which
JPublisher is connected

or:

= you declare the object type or wrapper with a schema name on the command
line or | NPUT file

That is, an object type or wrapper from another schema requires a schema name to
identify it, and the use of a schema name with the type or package on the command
line or | NPUT file overrides the - oni t _schema_nanes option.

Name for Generated Packages (-package)
- package=<package transl ation_synt ax>

The - package option specifies the name of the package JPublisher generates. The
name of the package appears in a package declaration in each . j ava or . sql j file.
The directory structure also reflects the package name. An explicit name in the

| NPUT file, after the - sql option, overrides the value given to the - package
option.

Example 1 If the command line includes the following:
-dir=/a/b -package=c.d -case=nixed
and the | NPUT file contains the following line (and assuming the SQL type PERSON

has methods defined on it):
SQ. PERSCN AS Per son

then in the following cases, JPublisher creates the file / a/ b/ ¢/ d/ Per son. sql j :
- sql =PERSON Per son

- sql =PERSCN

SQ. PERSCN AS Per son

Q. PERSON

2-18 JPublisher User’s Guide

JPublisher Options

The Per son. sql j file contains (among other things) the following package
declaration:

package c. d;

Example 2 Now assume the following is again in the command line:

-dir=/a/b -package=c.d -case=nixed

but is followed by specification of an | NPUT file containing the following:

- sql =PERSCN e. f . Per son
SQ. PERSON AS e. f. Person

In this case the package information in the | NPUT file overrides the - package
option on the command line. JPublisher creates the file a/ b/ e/ f/ Per son. sql j ,
which includes the following package declaration:

package e. f;

If you do not supply a package name for a class by any of the means described in
this section, then JPublisher will not supply a name for the package containing the
class. In addition, JPublisher will not generate a package declaration, and it will put
the file containing the declaration of the class in the directory specified by the - di r
option.

Occasionally, JPublisher might need to translate a type not explicitly listed in the

I NPUT file, because the type is used by another type that must be translated. In this
case, the file declaring the required type is placed in the default package named on
the command line, in a properties file, or in the | NPUT file. JPublisher does not
translate non-specified packages, because packages do not have dependencies on
other packages.

Input Properties File (-props)
- props=<fi | enane>

The - pr ops option, entered on the command line, specifies the name of a
JPublisher properties file that lists the values of commonly used options. JPublisher
processes the properties file as if its contents were inserted in sequence on the
command line at that point.

If more than one properties file appears on the command line, JPublisher processes
them with the other command line options in the order in which they appear.

Command-Line Options and Input Files 2-19

JPublisher Options

For information on the contents of the properties file, see "Properties File Structure
and Syntax" on page 2-25.

Note: Encoding settings, either set through the JPublisher

- encodi ng option or the Javafi | e. encodi ng setting, do not
apply to Java properties files, including those specified through the
- pr ops option. Properties files always use the encoding 8859 1.
This is a feature of Java in general, not JPublisher in particular. You
can, however, use Unicode escape sequences in a properties file.

Declaration of Object Types and Packages to Translate (-sql)
-sql =<obj ect type and package transl ation syntax>

You can use the - sql option when you do not need the generality of an | NPUT file.
The - sql option lets you list one or more database entities declared in SQL that
you want JPublisher to translate. Currently, JPublisher supports translation of object
types and packages. JPublisher also translates the top-level subprograms in a
schema, just as it does for subprograms in a PL/SQL package.

You can mix object types and package names in the same - sql declaration.
JPublisher can detect whether each item is an object type or a package.

You can also use the - sql option with the keyword t opl evel to translate all
top-level PL/SQL subprograms in a schema. The t opl evel keyword is not
case-sensitive. More information on the t opl evel keyword is provided later in
this section.

If you do not enter any types or packages to translate in the | NPUT file or on the
command line, then JPublisher will translate all the types and packages in the
schema to which you are connected.

In this section, the - sql option is explained by translating it to the equivalent
I NPUT file syntax. | NPUT file syntax is explained in "Understanding the Translation
Statement” on page 2-26.

The JPublisher command-line syntax for - sql lets you indicate three possible type
translations.

« -sql=nane_a
JPublisher interprets this syntax as: SQL nane_a

« -sql =nane_a: nane_c

2-20 JPublisher User’s Guide

JPublisher Options

JPublisher interprets this syntax as: SQL nane_a AS nane_c
« -sgl =nane_a: nane_b: nane_c

JPublisher interprets this syntax as:
SQL name_a GENERATE nane_b AS nane_c

In this case, name_a must represent an object type.

Important: Only non-case-sensitive SQL names are supported on
the JPublisher command line. If a user-defined type was defined in
a case-sensitive way (in quotes) in SQL, then you must specify the

name in the JPublisher | NPUT file instead of on the command line,
and in quotes. See "INPUT File Structure and Syntax" on page 2-26
for information.

Note: The nane_a: nane_b: name_c translation syntax is not
meaningful when nanme_a represents a package.

You enter - sql =. .. only once on the command line or properties file, followed by
one or more object types and packages (including top-level "packages") that you
want JPublisher to translate. If you enter more than one item for translation, they
must be separated by commas, without any white space. This example assumes that
CORPORATI ONis a package, and EMPLOYEE and ADDRESS are object types:

- sql =CORPCRATI CN EMPLOYEE: or acl eEnpl oyee, ADDRESS: JAddr ess: M/Addr ess

JPublisher will interpret this as follows:

SQ CQCRPCRATI ON
SQ BEMPLOYEE AS or acl eEnpl oyee
SQ ADDRESS CENERATE JAddress AS M/Addr ess

And JPublisher executes the following:
« It creates a wrapper for the CORPORATI ON package.
« Ittranslates the object type EMPLOYEE as or acl eEnpl oyee.

« lttranslates ADDRESS as JAddr ess, generating code so that ADDRESS objects
will be represented by the MyAddr ess class that you will write to extend
JAddr ess.

Command-Line Options and Input Files 2-21

JPublisher Options

« It creates the references to the MyAddr ess class that you will write to extend
JAddr ess.

If you want JPublisher to translate all the top-level PL/SQL subprograms in the
schema to which JPublisher is connected, enter the keyword t opl evel following
the - sql option. JPublisher treats the top-level PL/SQL subprograms as if they
were in a package. For example:

-sql =t opl evel
JPublisher generates a wrapper class, known as t opl evel , for the top level

subprograms. If you want the class to be generated with a different name, you can
declare the name with the - sql =nane_a: nane_b syntax. For example:

-sql =t opl evel : nyd ass
Note that this is synonymous with the | NPUT file syntax:

SQ toplevel AS nyd ass

Similarly, if you want JPublisher to translate all the top-level PL/SQL subprograms
in some other schema, enter:
- sgl =<schena- narre>. t opl evel

where <schema- nanme> is the name of the schema containing the top-level
subprograms.

Declare Object Types to Translate (-types)
-types=<t ype transl ati on syntax>

Note: The-types option is currently supported for compatibility,
but deprecated. Use the - sql option instead.

You can use the - t ypes option, for object types only, when you do not need the
generality of an | NPUT file. The - t ypes option lets you list one or more individual
object types that you want JPublisher to translate. Except for the fact that the

-t ypes option does not support PL/SQL packages, it is identical to the - sql
option.

If you do not enter any types or packages to translate in the | NPUT file or with the
-types or - sgl options, then JPublisher will translate all the types and packages
in the schema to which you are connected.

2-22 JPublisher User’s Guide

JPublisher Options

The command-line syntax lets you indicate three possible type translations.
« -types=nane_a
JPublisher interprets this syntax as: TYPE nane_a
« -types=nane_a: nane_b
JPublisher interprets this syntax as: TYPE name_b AS nane_c
« -types=nane_a: name_b: nane_c

JPublisher interprets this syntax as:
TYPE nane_a GENERATE nane_b AS nane_c

TYPE, TYPE. . . AS, and TYPE. . . GENERATE. . . AS syntax has the same
functionality as SQL, SQL. . . ASand SQL. . . GENERATE. . . AS syntax. See
"Understanding the Translation Statement" on page 2-26.

Enter -t ypes=. .. on the command line, followed by one or more object type
translations you want JPublisher to perform. If you enter more than one item, they
must be separated by commas without any white space. For example, if you enter:

-t ypes=CORPCRATI O\, EMPLOYEE: or acl eEnpl oyee, ADDRESS: JAddr ess: M/Addr ess

JPublisher will interpret this as:

TYPE OORPCRATI ON
TYPE EMPLOYEE AS or acl eEnpl oyee
TYPE ADDRESS (ENERATE JAddress AS MyAddr ess

Connection URL for Target Database (-url)
-url =<url>

You can use the - ur | option to specify the URL of the database to which you want
to connect. The default value is:

-url =j dbc: oracl e: oci : @

You can follow the "@ symbol with an Oracle SID.
To specify the Thin driver, enter:

-url =j dbc: oracl e: t hin: @ost: port: sid

where host is the name of the host on which the database is running, port is the
port number and s/ d is the Oracle SID.

Command-Line Options and Input Files 2-23

JPublisher Options

Note: With the Oracle9i release, use "oci" in the connect string for
the Oracle JDBC OCI driver in any new code. For backwards
compatibility, however, "oci8" and "oci7" are still accepted.

User Name and Password for Database Connection (-user)
- user =<user nane>/ <passvor d>

JPublisher requires the - user option, which specifies an Oracle user name and
password. If you do not enter the - user option, JPublisher prints an error message
and stops execution.

For example, the following command line directs JPublisher to connect to your
database with username scot t and password ti ger:

jpub -user=scott/tiger -input=denmoin -dir=deno -nappi ng=oracl e - package=cor p

2-24 JPublisher User’s Guide

JPublisher Input Files

JPublisher Input Files
These sections describe the structure and contents of JPublisher input files:
« Properties File Structure and Syntax
« INPUT File Structure and Syntax
« INPUT File Precautions

Properties File Structure and Syntax

A properties file is an optional text file where you can specify frequently-used
options. You specify the name of the properties file on the JPublisher command line
with the - pr ops option. JPublisher processes the properties file as if its contents
were inserted on the command line at that point.

In a properties file, you enter one (and only one) option with its associated value on
each line. Enter the option name with the following prefix (including the period):

j pub.
You cannot use any white space within a line. You can enter any option except the
- pr ops option in the properties file.

JPublisher reads the options in the properties file in order, as if its contents were
inserted on the command line at the point where the - pr ops option was specified.
If you specify an option more than once, JPublisher uses the last value encountered.

For example, consider the following command line (a single wrap-around line):
jpub -user=scott/tiger -sqgl=enployee -nappi hg=oracl e - case=l oner - package=corp
- di r=deno

This is equivalent to the following:

j pub - props=ny_properties

where ny_properties isas follows:

j pub. user =scott/ti ger
j pub. sql =enpl oyee

j pub. mappi ng=or acl e

j pub. case=l ower

j pub. package=cor p

j pub. di r=deno

Command-Line Options and Input Files 2-25

JPublisher Input Files

Note: You must include the j pub. prefix (including the period) at
the beginning of each option name. If you enter anything else
before the option name, JPublisher will ignore the entire line.

"JPublisher Options" on page 2-2 describes all the JPublisher options.

INPUT File Structure and Syntax

Specify the name of the | NPUT file on the JPublisher command line with the

- i nput option. This file identifies the object types and PL/SQL packages
JPublisher should translate. It also controls the naming of the generated classes and
packages. Although you can use the - sql command-line option to specify object
types and packages, an | NPUT file allows you a finer degree of control over how
JPublisher translates object types and PL/SQL packages.

If you do not specify types or packages to translate in an | NPUT file or on the
command line, then JPublisher translates all object types and PL/SQL packages in
the schema to which it connects.

Understanding the Translation Statement

The translation statement in the | NPUT file identifies the names of the object types
and PL/SQL packages that you want JPublisher to translate. The translation
statement can also optionally specify a Java name for the type or package, a Java
name for attribute identifiers, and whether there are any extended classes.

One or more translation statements can appear in the | NPUT file. The structure of a
translation statement is:

(SQ <narme> | SQ [<schena_nane>.]topl evel | TYPE <type nane>)
[EENERATE <j ava_nane_1>]
[AS <java_nane 2]
[TRANSLATE
<dat abase _nenber _nane> AS <si npl e_j ava_nane>
{ , <dat abase nenber_name> AS <si npl e_j ava_nane>}*

]

The following sections describe the components of the translation statement.
SQL <name>| TYPE <type_name> Clause Enter SQL <name> to identify an object type

or a PL/SQL package that you want JPublisher to translate. JPublisher examines the
<nane>, determines whether it is an object type or a package name, and processes it

2-26 JPublisher User’s Guide

JPublisher Input Files

appropriately. If you use the reserved word t opl evel in place of <nane>,
JPublisher translates the top-level subprograms in the schema to which JPublisher is
connected.

Instead of SQL, it is permissible to enter TYPE <t ype_nane> if you are specifying
only object types; however, TYPE syntax is deprecated in Oracle9i.

You can enter <nane> as <schema_name>.<name> to specify the schema to which
the object type or package belongs. If you enter <schema_nane>.t opl evel ,
JPublisher translates the top-level subprograms in schema <schenma_nane>.

Important: If a user-defined type was defined in a case-sensitive
way (in quotes) in SQL, then you must specify the name in quotes.
For example:

SQ "CaseSenstiveType" AS CaseSensitiveType
Or, if also specifying a non-case-sensitive schema name:
SQ@ SOOIT. "CaseSensi ti veType" AS CaseSensitiveType
Or, if also specifying a case-sensitive schema name:
SQ "Scott"."CaseSensitiveType AS CaseSensitiveType

(The AS clauses, described below, are optional.)

Avoid situations where a dot (".") is part of the schema name or
type name itself.

Note: The TYPE syntax is currently supported for compatibility,
but deprecated. Use the SQL syntax instead.

AS <java_name_2> Clause This clause optionally specifies the name of the Java class
that represents the user-defined type or PL/SQL package. The <j ava_nane_2>
can be any legal Java name and can include a package identifier. The case of the
Java name overrides the value of the - case option. For more information on how
to name packages, see "Package Naming Rules in the INPUT File" on page 2-29.

When you use the AS clause without a GENERATE clause, the class in the AS clause
is what JPublisher generates and is mapped to the SQL type.

When you use the AS clause with a GENERATE clause, JPublisher generates the class
in the GENERATE clause but maps the SQL type to the class in the AS clause. You

Command-Line Options and Input Files 2-27

JPublisher Input Files

manually create the class in the AS clause, extending the class that JPublisher
generates.

Also see "Extending JPublisher-Generated Classes" on page 1-44.

GENERATE <java_name_1> Clause This clause specifies the name of the class that
JPublisher generates when you want to create a subclass for mapping purposes. Use
the GENERATE clause in conjunction with the AS clause. JPublisher generates the
class in the GENERATE clause. The AS clause specifies the name of the subclass that
you create and that your Java program will use to represent the SQL object type.

The <j ava_nane_1> can be any legal Java name and can include a package
identifier. Its case overrides the value of the - case option.

Use the GENERATE clause only when you are translating object types. When you are
translating an object type, the code JPublisher generates mentions both the name of
the class that JPublisher generates and the name of the class that your Java program
will use to represent the SQL object type. When these are two different classes, use
GENERATE. . . AS.

Do not use this clause if you are translating PL/SQL packages. When you are
translating a PL/SQL package, the code JPublisher generates mentions only the
name of the class that JPublisher generates, so there is no need to use the GENERATE
clause in this case.

Also see "Extending JPublisher-Generated Classes" on page 1-44.

TRANSLATE <database_member_name> AS <simple_java_name> Clause This clause
optionally specifies a different name for an attribute or method. The

<dat abase_nenber_nane> is the name of an attribute of a type, or a method of a
type or package, which is to be translated to the following <si npl e_j ava_nane>.
The <si npl e_j ava_nane> can be any legal Java name, and its case overrides the
value of the - case option. This name cannot have a package name.

If you do not use TRANSLATE. . . AS to rename an attribute or method or if
JPublisher translates an object type not listed in the | NPUT file, then JPublisher uses
the database name of the attribute or method as the Java name as modified
according to the value of the - case option. Reasons why you might want to
rename an attribute name or method include:

« The name contains characters other than letters, digits, and underscores.

« The name conflicts with a Java keyword.

2-28 JPublisher User’s Guide

JPublisher Input Files

« The type name conflicts with another name in the same scope. This can happen,
for example, if the program uses two types with the same name from different
schemas.

Remember that your attribute names will appear embedded within get XXX() and
set XXX() method names, so you might want to capitalize the first letter of your
attribute names. For example, if you enter:

TRANSLATE FI RSTNAME AS Fi r st Nane

JPublisher will generate a get Fi r st Name() method and a set Fi r st Nanme()
method. In contrast, if you enter:

TRANSLATE FI RSTNAME AS fi rst Nane

JPublisher will generate aget fi r st Name() methodand asetfirst Name()
method.

Note: The Java keyword nul | has special meaning when used as
the target Java name for an attribute or method, such as in the
following example:

TRANSLATE FI RSTNAME AS nul |

When you map a SQL method to nul | , JPublisher does not
generate a corresponding Java method in the mapped Java class.
When you map a SQL object attribute to nul | , JPublisher does not
generate the getter and setter methods for the attribute in the
mapped Java class.

Package Naming Rules in the INPUT File If you use a simple Java identifier to name a
class in the | NPUT file, its full class name will include the package name from the
- package option. If the class name in the | NPUT file is qualified with a package
name, then that package name overrides the value of the - package option and
becomes the full package name of the class.

For example:
« Ifyou enter the syntax:
QL AASB

then JPublisher uses the value that was entered for - package on the command
line or the properties file.

Command-Line Options and Input Files 2-29

JPublisher Input Files

« Ifyou enter the syntax:
QL AASBC

then JPublisher interprets B. Cto represent the full class name.
For example, if you enter:

- package=a. b

on the command line and the | NPUT file contains the translation statement:

SQ scott. enpl oyee AS e. Enpl oyee

then JPublisher will generate the class as:
e. Enpl oyee

For more examples of how the package name is determined, see "Name for
Generated Packages (-package)" on page 2-18.

Translating Additional Types It might be necessary for JPublisher to translate
additional types not listed in the | NPUT file. This is because JPublisher analyzes the
types in the | NPUT file for dependencies before performing the translation, and
translates other types as necessary. Recall the example in "Sample JPublisher
Translation" on page 1-15. Assume the object type definition for EMPLOYEE had
included an attribute called ADDRESS, and ADDRESS was an object with the
following definition:

CREATE (R REPLACE TYPE address AS C(BIECT

(
st reet VARCHAR2(50) ,
city VARCHAR2(50) ,
state VARCHAR2(30) ,
zip NUVBER

)

In this case, JPublisher would first translate ADDRESS, because that would be
necessary to define the EMPLOYEE type. In addition, ADDRESS and its attributes
would all be translated in the same case, because they are not specifically
mentioned in the | NPUT file. A class file would be generated for Addr ess. j ava,
which would be included in the package specified on the command line.

JPublisher does not translate packages you do not request. Because packages do not
have attributes, they do not have any dependencies on other packages.

2-30 JPublisher User’s Guide

JPublisher Input Files

Sample Translation Statement

To better illustrate the function of the | NPUT file, consider a more complicated
version of the example in "Sample JPublisher Translation" on page 1-15. Consider
the following command line (a single wrap-around line):

jpub -user=scott/tiger -input=denoin -dir=denmo -nunbertypes=oracl e - package=cor p
- case=sane

The | NPUT file denpi n now contains:

SQ enpl oyee AS c. Enpl oyee
TRANSLATE NAME AS Nane
H RE DATE AS HreDate

The - case=san® option indicates that generated Java identifiers should maintain
the same case as in the database. Any identifier in a CREATE TYPE or CREATE
PACKAGE declaration is stored in upper case in the database unless it is quoted.
However, the - case option is applied only to those identifiers not explicitly
mentioned in the | NPUT file. Thus, Enpl oyee will appear as written. The attribute
identifiers not specifically mentioned (that is, EMPNO, DEPTNO, and SALARY) will
remain in upper case, but JPublisher will translate the specifically mentioned NAME
and HI RE_DATE attribute identifiers as shown.

The translation statement specifies a SQL object type to be translated. In this case,
there is only one object type, Enpl oyee.

The AS c. Enpl oyee clause causes the package name to be further qualified. The
translated type will be written to the following file:

./ denvo/ cor p/ ¢/ Enpl oyee. sql j (UNX)
.\ deno\ cor p\ c\ Enpl oyee. sql j (Wndows NI)

(This assumes the object type defines methods; otherwise Enpl oyee. j ava will be
generated instead.)

The generated file is written in package cor p. ¢ in output directory deno. Note
that the package name is reflected in the directory structure.

The TRANSLATE. . . AS clause specifies that the name of any mentioned object
attributes should be changed when the type is translated into a Java class. In this
case, the NAME attribute is changed to Nane and the Hl RE_DATE attribute is
changed to Hi r eDat e.

Command-Line Options and Input Files 2-31

JPublisher Input Files

INPUT File Precautions

This section describes some of the common errors made in | NPUT files. Check for
these errors before you run JPublisher. Although JPublisher reports most of the
errors that it finds in the | NPUT file, it does not report these.

Requesting the Same Java Class Name for Different Object Types
If you request the same Java class name for two different object types, the second
class will silently overwrite the first. For example, if the | NPUT file contains:

type PERSONL as person
TYPE PERSON2 as person

JPublisher will create the file per son. j ava for PERSON1 and will then overwrite it
for type PERSON2.

Requesting the Same Attribute Name for Different Object Attributes

If you request the same attribute name for two different object attributes, JPublisher
will generate get XXX() and set XXX() methods for both attributes without
issuing a warning message. The question of whether the generated class is valid in
Java depends on whether the two get XXX() methods with the same name and the
two set XXX() methods with the same name have different argument types so that
they may be unambiguously overloaded.

Specifying Nonexistent Attributes

If you specify a nonexistent object attribute in the TRANSLATE clause, JPublisher
will ignore it without issuing a warning message.

For example, if the | NPUT file contains: t ype PERSON translate X as attrl

and Xis not an attribute of PERSON, JPublisher will not issue a warning message.

2-32 JPublisher User’s Guide

3

JPublisher Examples

This chapter provides examples of the output JPublisher produces when translating
object types and PL/SQL packages. This chapter contains the following sections:

« Example: JPublisher Translations with Different Mappings contains examples of
JPublisher output, comparing different outputs where only the values of the
datatype mapping parameters are changed.

« Example: JPublisher Object Attribute Mapping illustrates an example of
JPublisher output when translating different object types.

« Example: Generating a SQLData Class covers an example of JPublisher output
when generating classes that implement the SQLData interface.

« Example: Extending JPublisher Classes presents an example of JPublisher
output when generating a class that you will extend.

« Example: Wrappers Generated for Methods in Objects shows an example of
JPublisher output when generating method wrappers for object type attributes
and methods.

« Example: Wrappers Generated for Methods in Packages shows an example of
JPublisher output when generating method wrappers for PL/SQL methods.

« Example: Using Classes Generated for Object Types presents a complete
program using the classes that JPublisher generates for object types.

« Example: Using Classes Generated for Packages presents a complete program
using the classes and method wrappers that JPublisher generates for objects and
packages respectively.

« Example: Using Datatypes Not Supported by JDBC contains an example of how
to write anonymous PL/SQL blocks that will let you employ datatypes not
supported by JDBC.

JPublisher Examples 3-1

Example: JPublisher Translations with Different Mappings

Example: JPublisher Translations with Different Mappings

This section presents sample output from JPublisher with the only difference in the
translations being the values of the datatype mapping parameters. It uses the SQL
type declaration and JPublisher command line presented in "Sample JPublisher
Translation" on page 1-15 (repeated here for convenience).

Type declaration:

CREATE TYPE enpl oyee AS CBIECT

(
nane VARCHAR2(30) ,

enpno | NTECER
dept no NUVBER
hiredate DATE
sal ary REAL

);

Command line (a single wrap-around line):

jpub -user=scott/tiger -dir=deno -nunbertypes=objectjdbc -builtintypes=j dbc
- package=cor p - case=ni xed - sql =Enpl oyee

In the following two examples, JPublisher translates the types using different
datatype mapping options:

« first, with - nunber t ypes=j dbc and - bui | t i nt ypes=j dbc

« second, with - nunbert ypes=oracl eand-buil ti ntypes=oracl e.

JPublisher Translation with the JDBC Mapping

The SQL program presented in "Sample JPublisher Translation" on page 1-15 is
translated here by JPublisher with - nunber t ypes=j dbc. No other changes have
been made to the command line.

Because the user requests the JDBC mapping rather than the Object JDBC mapping
for numeric types, the get XXX() and set XXX() accessor methods use the type
i nt instead of | nt eger and the type f | oat instead of Fl oat .

Following are the contents of the Enpl oyee. j ava file. The Enpl oyeeRef . j ava
file is unchanged because it does not depend on the types of the attributes.

3-2 JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings

Note: The details of method bodies generated by JPublisher might
change in future releases.

package corp;

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GQRADat a;

i nport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql.Datum

import oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eSruct;

public class Empl oyee inpl enents CRAData, CRADat aFact ory

{ public static final Sring _SQ_ NAME = "SCOIT. BVPLOYEE";
public static final int _SQ TYPEQXE = O acl eTypes. STRULCT;
protected Mitabl eStruct _struct;
static int[] _sql Type =

{
12, 4, 2, 91, 7
|

static CRADataFactory[] _factory = new CRADat aFactory[5];
static final Enpl oyee _Enpl oyeeFact ory = new Enpl oyee();
public static CRADat aFactory get CRADat aFact ory()

{

}

return _Enpl oyeeFactory;

/* constructor */
prot ect ed Enpl oyee(bool ean init)
{ if(init) _struct = new Mitabl eXruct (new (bject[5], _sql Type, _factory);

publ i ¢ Enpl oyee()
{ this(true); }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

JPublisher Examples 3-3

Example: JPublisher Translations with Different Mappings

{
return _struct.tobatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Enpl oyee o, Datumd, int sqgl Type) throws
SQ Except i on
{
if (d=null) return null;
if (o =null) o = new Enpl oyee(fal se);
0. _struct = new Mitabl eStruct ((STRUIT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */
public Sring getNane() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void set Nane(Sring nane) throws SQException

{ _struct.setAttribute(0, name); }

public int getEwpno() throws SQException

{ return ((Integer) _struct.getAttribute(l)).intValue(); }
publ i c voi d set Enpno(int enpno) throws SQException

{ _struct.setAttribute(l, new Integer(enpno)); }

public java.nath. B gDeci nal getDeptno() throws SQException
{ return (java.math. BigDecimal) _struct.getAttribute(2); }
publ i c voi d set Dept no(j ava. nat h. B gDeci nal deptno) throws SQLException
{ _struct.setAttribute(2, deptno); }

public java.sql.Tinestanp getH redate() throws SQException

{ return (java.sql . Tinestanp) _struct.getAttribute(3); }

public void setH redate(java. sql . Ti nestanp hi redate) throws SQException
{ _struct.setAttribute(3, hiredate); }

3-4 JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings

public float getSalary() throws SQException
{ return ((Hoat) _struct.getAttribute(4)).floatVal ue(); }

public void setSal ary(float sal ary) throws SQException
{ _struct.setAttribute(4, new Hoat(salary)); }

JPublisher Translation with the Oracle Mapping

The SQL program presented in "Sample JPublisher Translation" on page 1-15 is
translated here by JPublisher with - nunber t ypes=or acl e and

-bui |l tintypes=oracl e. No other changes have been made to the command
line.

Because the user requests Oracle type mappings, the get XXX() and set XXX()
accessor methods employ the type or acl e. sgl . CHARinstead of St ri ng, the type
oracl e. sql . DATE instead of j ava. sql . Ti nest anp, and the type

or acl e. sgl . NUMBERinstead of | nt eger, j ava. mat h. Bi gDeci mal , and

Fl oat .

Following are the contents of the Enpl oyee. j ava file. The Enpl oyeeRef . j ava
file is unchanged, because it does not depend on the types of the attributes.

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Empl oyee inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. BVPLOYEE";
public static final int _SQ TYPEQCE = O acl eTypes. STRULCT;

JPublisher Examples 3-5

Example: JPublisher Translations with Different Mappings

protected Mit abl eStruct _struct;
static int[] _sql Type =

{
12, 4, 2, 91, 7
b

static CRADataFactory[] _factory = new CRADat aFactory[5];

static final Enpl oyee _Enpl oyeeFact ory = new Enpl oyee();
public static CRADat aFactory get CRADat aFact ory()

{
return _Enpl oyeeFactory;

}

/* constructor */

prot ect ed Enpl oyee(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bject[5], _sql Type, _factory); }
publ i ¢ Enpl oyee()

{ this(true); }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobatunfc, _SQ NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Enpl oyee o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (0o =null) o= new Enpl oyee(fal se);
0. _struct = new Mitabl eStruct ((STRUCT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */

public oracle.sql . CHAR get Name() throws SQException

{ return (oracle.sql.CHAR _struct.getQacl eAttribute(0); }

public voi d set Nane(oracl e. sgl . CHAR nang) throws SQ Exception
{ _struct.setQacleAttribute(0, nane); }

3-6 JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings

publ i ¢ oracl e. sql . NOMBER get Enpno() throws SQLException
{ return (oracle.sql.NUMBER _struct.getQacleAttribute(l); }

publ i ¢ voi d set Enpno(oracl e. sql . NJMBER enpno) throws SQExcepti on

{ _struct.setQacleAttribute(l, enpno); }

publ i c oracl e. sql . NOMBER get Dept no() throws SQException

{ return (oracle.sql.NUMBER _struct.getQacleAttribute(2); }

publ i ¢ voi d set Dept no(or acl e. sgl . NJMBER dept no) throws SQException
{ _struct.setQacleAttribute(2, deptno); }

public oracle.sql.DATE getH redate() throws SQException

{ return (oracle.sql.DATE) _struct.getQacleAttribute(3); }

public void setH redate(oracl e. sql . DATE hiredate) throws SQException
{ _struct.setQacleAttribute(3, hiredate); }

publ i c oracl e. sql . NOMBER get Sal ary() throws SQException

{ return (oracle.sql.NUMBER _struct.getQacleAttribute(4); }

public void setSal ary(oracl e. sgl . NJMBER sal ary) throws SQException
{ _struct.setQacleAttribute(4, salary); }

JPublisher Examples 3-7

Example: JPublisher Object Attribute Mapping

Example: JPublisher Object Attribute Mapping

This section provides examples of JPublisher output for a variety of object attribute
types, demonstrating the various datatype mappings that JPublisher creates.

The example defines an address object (addr ess) and then uses it as the basis of
the definition of an address array (Addr _Ar r ay). The al | t ypes object definition
also uses the address and address array objects to demonstrate the mappings that
JPublisher creates for object references and arrays (seeattr 17,attr 18, and
attr19intheal | t ypes object definition below).

GONNECT SCOTT/ Tl GER

CREATE (R REPLACE TYPE address AS obj ect
(

street varchar2(50),

city varchar2(50),

state varchar2(30),

zZip nunber

)

CREATE CR REPLACE TYPE Addr_Array AS varray(10) CF address;
CREATE (R REPLACE TYPE ntbl AS table CF Integer;
CREATE TYPE al | types AS obj ect (

attrl bfile,

attr2 bl ob,

attr3 char(10),

attr4 clob,

attr5 date,

attr6 deci mal,

attr7 doubl e precision,

attr8 float,

attr9 integer,

attr10 nunber,

attr1l nuneric,

attr12 raw(20),

attr13 real,

attr14 smallint,

attr15 varchar(10),

attr16 varchar2(10),

attr17 address,

attr18 ref address,

attr19 Addr_Array,

attr20 ntbl);

3-8 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

In this example, JPublisher was invoked with the following command line (a single
wrap-around line):

jpub -user=scott/tiger -input=denoin -dir=deno - package=cor p - mappi ng=obj ect j dbc
- et hods=f al se

Note: The - mappi ng option, while deprecated, is still supported
so is therefore demonstrated. The - mappi ng=obj ect j dbc setting
is equivalent to the combination of - bui | ti nt ypes=j dbc,
-nunmbert ypes=obj ectj dbc, - | obt ypes=or acl e, and

- usertypes=or acl e. See "Mappings for All Types (-mapping)"
on page 2-10 for more information.

It is not necessary to create the deno and cor p directories in advance. JPublisher
will create the directories for you.

The denpi n file contains these declarations:

SQ. ADDRESS AS Address
SQ ALLTYPES AS al | . Al I types

JPublisher generates declarations of the types Al | t ypes and Addr ess, because
denvoi n explicitly lists them. It also generates declarations of the types nt bl and
Addr Arr ay, because the Al | t ypes type requires them.

Additionally, JPublisher generates declarations of the types Al | t ypesRef and
Addr essRef , because it generates a declaration of a reference type for each object
type. A reference type is in the same package as the corresponding object type.
Reference types are not listed in the | NPUT file or on the command line. The

Addr ess and Addr essRef types are in package cor p, because - package=cor p
appears on the command line. The Al | t ypes and Al | t ypesRef types are in
package al | , because theal | inall. Al ltypes overrides - package=cor p. The
remaining types were not explicitly mentioned, so they go in package cor p, which
was specified on the command line.

Therefore, JPublisher creates the following files in package cor p:

./ deno/ cor p/ Address. j ava

./ deno/ cor p/ Addr essRef . j ava
./ deno/ corp/ N bl . j ava

./ deno/ corp/ Addr Array. j ava

JPublisher Examples 3-9

Example: JPublisher Object Attribute Mapping

and the following files in package al | :

./deno/al |/ Alltypes.java
./deno/al |/ Al typesRef . j ava

Listing and Description of Address.java Generated by JPublisher
The file . / deno/ cor p/ Addr ess. j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql.Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Address inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';

public static final int _SQ TYPEQE = O acl eTypes. STRULCT;
protected Mitabl eSruct _struct;
static int[] _sql Type =

{
12, 12, 12, 2
|

static CRADataFactory[] _factory = new CRADat aFactory[4];

static final Address _AddressFactory = new Address();
public static CRADat aFactory get CRADat aFact ory()

{

return _AddressFactory;

}

3-10 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

/* constructor */

prot ect ed Address(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bject[4], _sql Type, factory); }
publ i ¢ Address()

{ this(true); }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Address o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (o =null) o= new Address(fal se);
0. _struct = new Mitabl eStruct ((STRUT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */

public Sring getSreet() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setStreet(String street) throws SQException
{ _struct.setAttribute(O, street); }

public Sring getdty() throws SQException

{ return (Sring) _struct.getAttribute(l); }

public void setdty(Sring city) thronws SQException

{ _struct.setAttribute(l, city); }

public Sring getSate() throws SQException

{ return (Sring) _struct.getAttribute(2); }

public void setState(Sring state) throws SQException
{ _struct.setAttribute(2, state); }

JPublisher Examples 3-11

Example: JPublisher Object Attribute Mapping

public java. math. B gDeci nal getZip() throws SQException
{ return (java. math. BigDecinal) _struct.getAttribute(3); }

public voi d setZip(java. nath. B gDeci nal zip) throws SQLException
{ _struct.setAttribute(3, zip); }

}

The Addr ess. j ava file illustrates several points about Java source files.
JPublisher-generated files begin with a package declaration whenever the generated
class is in a named package. Note that you can specify a package in any of these
ways:

« a-package parameter that you specify on the command line or in the
properties file

« theAS <Java identifier>clause inthe | NPUT file, where
Java_i denti fi er includes a package name

Import declarations for specific classes and interfaces mentioned by the Addr ess
class follow the package declaration.

The class definition follows the i npor t declarations. All classes JPublisher
generates are declared publ i c.

SQLJuses the _SQ._NAME and _SQL_ TYPECODE strings to identify the SQL type
matching the Addr ess class.

The no-argument constructor is used to create the _Addr essFact ory object,
which will be returned by get ORADat aFact or y() . For efficiency, JPublisher also
generates a protected boolean constructor for Addr ess objects. This can be used in
subclasses of Addr ess to create uninitialized Addr ess objects. Other Addr ess
objects are constructed by the cr eat e() method. The protected create(...,...,...)
method is used to encapsulate details of the JPublisher implementation in the
JPublisher-generated Addr ess class, and to simplify the writing of user-provided
subclasses. Implementation details, such as generation of the static _f act or y field
and the _st ruct field, are implementation-specific and should not be referenced or
exploited by any subclass of Addr ess. (In this implementation, the _f act ory field
is an array of factories for attributes of Addr ess, but in this case the factories are
null because none of the attribute types of Addr ess require a factory. The _st ruct
field holds the object data and is a Mut abl eSt r uct instance.)

3-12 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

The t oDat unm() method converts an Addr ess object to a Dat umobiject (in this
case, a STRUCT object). JDBC requires the connection argument, although it might
not be logically necessary.

The get XXX() and set XXX() accessor methods use the obj ect j dbc mapping for
numeric attributes and the j dbc mapping for other attributes. The method names
are in mixed case because - case=nmi xed is the default.

Listing of AddressRef.java Generated by JPublisher

The file . / deno/ cor p/ Addr essRef . j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CRADat a;

i nport oracl e. sql . CQRADat aFact ory;
inport oracl e.sql. Datum

inport oracl e.sql . REF,

i mport oracl e. sql . STRUCT;

public class AddressRef inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ BASETYPE = "SQOOIT. ADDRESS';

public static final int _SQ TYPEQXDE = O acl eTypes. REF;
REF ref;

static final AddressRef _AddressRef Factory = new AddressRef ();
public static CRADat aFactory get CRADat aFact ory()

{
}

return _AddressRef Factory;

/* constructor */
publ i ¢ AddressRef ()
{

}

JPublisher Examples 3-13

Example: JPublisher Object Attribute Mapping

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d==null) return null;

AddressRef r = new AddressRef ();

r. ref = (REFH) d;

returnr;

}

public Address getVal ue() throws SQLException
{
return (Address) Address. get CRADat aFactory(). creat e(
_ref. get STRICT(), O acl eTypes. REF);

}
public voi d setVal ue(Address c) throws SQException
{
_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));
}
}

The get Val ue() method in the Addr essRef class returns the address referenced
by an Addr essRef object, with its proper type. The set Val ue() method copies
the contents of the Addr ess argument into the database Addr ess object to which
the Addr essRef object refers.

Listing of Alltypes.java Generated by JPublisher

3-14

The file . / deno/ al | / Al | t ypes. j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package al | ;

inport java. sql . SQ.Excepti on;

JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracl e.sql . CQRADat a;

inport oracl e. sql . GRADat aFact or y;

inport oracl e.sql.Datum

import oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eSruct;

public class A ltypes inplenents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. ALLTYPES';

public static final int _SQ TYPEQE = O acl eTypes. STRULCT;
protected Mit abl eStruct _struct;

static int[] _sql Type =

{
-13, 2004, 1, 2005, 91, 3, 8, 6, 4, 2,
3, -2, 7, 5, 12, 12, 2002, 2006, 2003, 2003

b

static CRADat aFactory[] _factory = new CRADat aFact ory[20] ;

static

{
_factory[16] = corp. Addr ess. get GRADat aFact ory();
_factory[17] = cor p. Addr essRef . get GRADat aFact ory() ;
_factory[18] = cor p. Addr Array. get GRADat aFact ory() ;
_factory[19] = corp. N bl .get GRADat aFact ory();

}

static final Altypes _AltypesFactory = new Al types();
public static CRADat aFactory get CRADat aFact ory()

{
}

return _AlltypesFactory;

/* constructor */

protected Al ltypes(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bj ect[20], _sql Type, _factory); }
public Altypes()

{ this(true); }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{

JPublisher Examples 3-15

Example: JPublisher Object Attribute Mapping

return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
protected CRADat a create(A ltypes o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (o =null) o=newA ltypes(false);
0. _struct = new Mitabl eStruct ((STRUIT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */

public oracle.sql.BFILE getAttrl() throws SQException

{ return (oracle.sql.BFILE) _struct.getGacleAttribute(0); }

public void setAttrl(oracle.sql.BFILE attrl) throws SQException
{ _struct.setQacleAttribute(0, attrl); }

public oracle.sql .BL(B get Atr2() throws SQException

{ return (oracle.sql.BLAB) _struct.getQacleAttribute(l); }
public void setAttr2(oracle.sq .BLCB attr2) throws SQException
{ _struct.setQacleAttribute(l, attr2); }

public Sring getAttr3() throws SQException

{ return (Sring) _struct.getAttribute(2); }

public void setAttr3(Sring attr3) throws SQException

{ _struct.setAttribute(2, attr3); }

public oracle.sql . LB get Attr4() throws SQException

{ return (oracle.sql.A.(B) _struct.getQacleAttribute(3); }
public void setAttr4(oracl e.sq .QCB attr4) throws SQException

{ _struct.setQacleAttribute(3, attr4); }

public java.sql.Tinestanp get Attr5() throws SQException
{ return (java.sql.Tinestanp) _struct.getAttribute(4); }

3-16 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

public void setAttr5(java.sql . Tinestanp attr5) throws SQException
{ _struct.setAttribute(4, attr5); }

public java. math. B gDecinal getAttr6() throws SQException
{ return (java. math. BigDecinal) _struct.getAttribute(5); }
public void setAttr6(java. nath. Bigbecinal attr6) throws SQException
{ _struct.setAttribute(5, attr6); }

public Double getAttr7() throws SQException

{ return (Double) _struct.getAttribute(6); }

public void setAttr7(Doubl e attr7) throws SQException

{ _struct.setAttribute(6, attr7); }

public Double getAttr8() throws SQException

{ return (Double) _struct.getAttribute(7); }

public void setAttr8(Doubl e attr8) throws SQ Exception

{ _struct.setAttribute(7, attr8); }

public Integer getAtr9() throws SQException

{ return (Integer) _struct.getAttribute(8); }

public void setAttr9(Integer attr9) throws SQException

{ _struct.setAttribute(8, attr9); }

public java.nath. B gDecinal getAttr10() throws SQException
{ return (java.math. BigDecinmal) _struct.getAttribute(9); }
public void setAttr10(j ava. nat h. B gDeci nal attr10) throws SQLException
{ _struct.setAttribute(9, attr10); }

public java.nath. B gDecinal getAttr11() throws SQException

{ return (java.math. BigDecinal) _struct.getAttribute(10); }

public void setAttr11(java. nath. B gDeci nal attr11) throws SQLException
{ _struct.setAttribute(10, attrll); }

JPublisher Examples 3-17

Example: JPublisher Object Attribute Mapping

public byte[] getAttr12() throws SQException
{ return (byte[]) _struct.getAttribute(11); }

public void setAttr12(byte[] attr12) throws SQException
{ _struct.setAttribute(1l, attrl2); }

public Hoat getAttr13() throws SQException

{ return (Hoat) _struct.getAttribute(12); }

public void setAttrl13(Float attr13) throws SQLException
{ _struct.setAttribute(12, attr13); }

public Integer getAttrl14() throws SQException

{ return (Integer) _struct.getAttribute(13); }

public void setAttrl4(Integer attrl14) throws SQException
{ _struct.setAttribute(13, attrl4); }

public Sring getAttr15() throws SQException

{ return (Sring) _struct.getAttribute(14); }

public void setAttr15(String attr15) throws SQException
{ _struct.setAttribute(14, attrl15); }

public Sring getAttr16() throws SQException

{ return (Sring) _struct.getAttribute(15); }

public void setAttr16(String attr16) throws SQException
{ _struct.setAttribute(15, attrl6); }

public corp. Address get Atr17() throws SQException

{ return (corp.Address) _struct.getAtribute(16); }
public void setAttrl17(corp. Address attr17) throws SQException

{ _struct.setAttribute(16, attrl7); }

public corp. AddressRef get Attr18() throws SQ Exception

3-18 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

{ return (corp. AddressRef) _struct.getAttribute(17); }

public void setAttr18(corp. AddressRef attr18) throws SQException
{ _struct.setAttribute(17, attr18); }

public corp. AddrArray getAttr19() throws SQException
{ return (corp. AddrArray) _struct.getAttribute(18); }

public void setAttr19(corp. AddrArray attr19) throws SQException
{ _struct.setAttribute(18, attr19); }

public corp.Ntbl getAttr20() throws SQException
{ return (corp.Ntbl) _struct.getAttribute(19); }

public void setAttr20(corp. N bl attr20) throws SQException
{ _struct.setAttribute(19, attr20); }

}

When a declared class requires user-defined classes from another package,
JPublisher generates i nport declarations for those user-defined classes following
the i mpor t declaration for the or acl e. sql package. In this case, JDBC requires
the Addr ess and Addr essRef classes from package cor p.

The attributes with types Addr ess, Addr essRef , Addr Ar r ay, and Nt bl require
the construction of factories. The static block puts the correct factories in the
_factory array.

Note: Notice that the SMALLI NT SQL type for at t r 14 maps to
the Java type shor t , but this maps to | nt eger in

- nunbert ypes=obj ect j dbc mapping. This was a JPublisher
implementation decision. See "Mappings For Numeric Types
(-numbertypes)" on page 2-8 for related information.

JPublisher Examples 3-19

Example: JPublisher Object Attribute Mapping

Listing of AlltypesRef.java Generated by JPublisher

The file . / deno/ corp/al | / Al |l t ypesRef . j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package al | ;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . GQRADat a;

inport oracl e. sql . CQRADat aFact or y;
inport oracl e.sql . Datum

inport oracl e.sql . REF,

import oracl e. sql . STRUCT;

public class Al ltypesRef inplenents CRAData, CRADat aFact ory

{
public static final Sring _SQ BASETYPE = "SQOIT. ALLTYPES';

public static final int _SQ TYPEQXDE = O acl eTypes. REF;
REF ref;

static final AltypesRef _AltypesRef Factory = new Al typesRef ();
public static CRADat aFactory get CRADat aFact ory()

{
return _All typesRef Factory;

}

/* constructor */
public AltypesRef()
{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

3-20 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

if (d=null) return null;

A ltypesRef r = new Al | t ypesRef ();
r. ref = (REFH) d;

return r;

}

public Alltypes getVal ue() throws SQException

{
return (Alltypes) A ltypes.get GRADat aFactory(). creat e(

_ref. get STRICT(), O acl eTypes. REF);

}
public void setVal ue(A ltypes c) throws SQException
{
_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));
}

}

Listing of Ntbl.java Generated by JPublisher

The file . / deno/ cor p/ Nt bl . j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql . Datum

inport oracl e. sql . ARRAY;,

inport oracle.sql.ArrayDescriptor;
inport oracl e.jpub. runtime. Mit abl eArray;

public class N bl inplenments CRAData, CRADataFactory

{
public static final Sring _SQ@ NAME = "SCOIT. NTBL";
public static final int _SQ TYPEQDE = O acl eTypes. ARRAY;

JPublisher Examples 3-21

Example: JPublisher Object Attribute Mapping

Mut abl eArray _array;

static final Nbl _N bl Factory = new Nt bl ();
public static CRADat aFactory get CRADat aFact ory()

{

return _N bl Factory;
}
/* constructors */
public Nbl()
{

this((Integer[])null);
}
public Nbl(Integer[] a)
{

_array = new Mitabl eArray(4, a, null);
}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _array.tobDatun{c, _SQ _NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

N bl a =newNbl();

a._array = new Mitabl eArray(4, (ARRAY) d, null);

return a;
}
public int length() throws SQException
{
return _array.length();
}
public int getBaseType() throws SQException
{
return _array. get BaseType();
}

3-22 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

public Sring get BaseTypeNane() throws SQException

{
return _array. get BaseTypeNane();

}

public ArrayDescriptor getDescriptor() throws SQException
{

return _array. getDescriptor();

}

/* array accessor nethods */
public Integer[] getArray() throws SQException

{
return (Integer[]) _array.getChjectArray();
}
public void setArray(Integer[] a) throws SQException
{
_array.set(hjectArray(a);
}
public Integer[] getArray(long index, int count) throws SQException
{
return (Integer[]) _array.getChj ect Array(index, count);
}

public void setArray(Integer[] a, |ong index) throws SQException
{

_array.set(hjectArray(a, index);

}
public Integer getH enent(long index) throws SQException
{
return (Integer) _array.get Chj ect H enent (i ndex);
}

public void setH enent(Integer a, |ong index) throws SQException

{

_array. set(hj ect H enent (a, index);

}

JPublisher Examples 3-23

Example: JPublisher Object Attribute Mapping

Listing of AddrArray.java Generated by JPublisher

JPublisher generates declarations of the type Addr Ar r ay because they are required
by the Al | t ypes type. The file. / deno/ cor p/ Addr Arr ay. j ava reads as
follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql . Datum

inport oracl e. sql . ARRAY;,

inport oracle.sql.ArrayDescriptor;
inport oracl e.jpub.runtime. Mit abl eArray;

public class AddrArray inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ@ NAMVE = "SCOIT. ADDR ARRAY";

public static final int _SQ TYPEQCDE = O acl eTypes. ARRAY;
Mut abl eArray _array;

static final AddrArray _AddrArrayFactory = new Addr Array();
public static CRADat aFactory get CRADat aFact ory()

{
return _AddrArrayFact ory;

}

/* constructors */
public AddrArray()

{
this((Address[])null);
}
public Addr Array(Address[] a)
{

_array = new Mitabl eArray(2002, a, Address. get CRADat aFactory());

3-24 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _array.tobDatun{c, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{
if (d=null) return null;
AddrArray a = new AddrArray();
a._array = new Mit abl eArray(2002, (ARRAY) d, Address.get CRADat aFactory());
return a;

}
public int length() throws SQException
{
return _array.length();
}
public int getBaseType() throws SQException
{
return _array. get BaseType();
}
public Sring get BaseTypeNane() throws SQException
{
return _array. get BaseTypeNane();
}
public ArrayDescriptor getDescriptor() throws SQException
{
return _array. getDescriptor();
}

/* array accessor nethods */
public Address[] getArray() throws SQException

{
return (Address[]) _array.get (hj ect Array(

new Address[_array. length()]);
}

public void set Array(Address[] a) throws SQException

JPublisher Examples 3-25

Example: JPublisher Object Attribute Mapping

{
_array.set(hjectArray(a);

}

public Address[] getArray(long index, int count) throws SQException

{
return (Address[]) _array.get (hj ect Array(i ndex,

new Address[_array. sl i ceLengt h(index, count)]);

}

public void setArray(Address[] a, |ong index) throws SQException
{ _array.set(hject Array(a, index);

}

publ i c Address getH enent (1 ong i ndex) throws SQ.Exception

{ return (Address) _array. get Cbj ect H enent (i ndex) ;

}

public voi d setH enent (Address a, |ong index) throws SQException
{ _array. set(hj ect H enent (a, index);

}

3-26 JPublisher User’s Guide

Example: Generating a SQLData Class

Example: Generating a SQLData Class

This example is identical to the previous one, except that JPublisher generates a
SQLDat a class rather than an ORADat a class. The command line for this example is:

jpub -user=scott/tiger -input=denoin -dir=deno - package=cor p - mappi ng=obj ect j dbc
- usert ypes=j dbc - net hods=f al se

(This is a single wrap-around command line.)

Note: The - mappi ng option, while deprecated, is still supported
so is therefore demonstrated. The - mappi ng=obj ect j dbc setting
is equivalent to the combination of - bui | ti nt ypes=j dbc,
-nunmbert ypes=obj ectj dbc, - | obt ypes=or acl e, and

- usertypes=or acl e; however, this command line overrides the
- usertypes=or acl e setting with a- user t ypes=j dbc setting.
See "Mappings for All Types (-mapping)" on page 2-10 for more
information about the - mappi ng option.

The option - user t ypes=j dbc instructs JPublisher to generate classes that
implement the SQLDat a interface. The SQLDat a interface supports reference and
collection classes generically, using the generic typesj ava. sql . Ref and

j ava. sgl . Arr ay rather than using custom classes. Therefore, JPublisher
generates only two classes:

./ deno/ cor p/ Address. j ava
./deno/al /Al ltypes.java

Listing of Address.java Generated by JPublisher

Because we specified - user t ypes=j dbc in this example, the Addr ess class
implements the j ava. sql . SQLDat a interface rather than the

oracl e. sgl . ORADat a interface. The file. / deno/ cor p/ Addr ess. j ava reads as
follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

JPublisher Examples 3-27

Example: Generating a SQLData Class

inport java. sql . SQ.Excepti on;

inport oracl e.j dbc. O acl eConnecti on;
inport oracl e.j dbc. O acl eTypes;

inport java.sql.SQDst a;

inport java.sql.SQInput;

inport java.sql.SQQutput;

i nport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Address inpl enents SQData

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

private Sring mstreet;

private Sring mcity;

private Sring mstate;

private java. mat h. B gbeci mal mzip;

/* constructor */
publ i ¢ Address()
{
}

public void readSQ(SQInput stream String type)
throws SQException

{
setSreet(streamreadString());
setdty(streamreadString());
setSate(streamreadring());
set Zi p(streamreadBi gheci nal ());
}

public void witeSQ(SQQitput strean)
throws SQException

{
streamwiteString(getSreet());
streamwiteSring(getdty());
streamwiteString(getSate());
streamw iteB gDeci nal (getZ p());
}
public String get SQLTypeNane() throws SQLExcepti on
{
return _SQ_NAME

3-28 JPublisher User’s Guide

Example: Generating a SQLData Class

}

/* accessor nethods */
public Sring getSreet()
{ return mstreet; }

public void setStreet(String street)
{ mstreet = street; }

public Sring getdty()
{ return mcity; }

public void setGty(Sring city)
{ mcity =city; }

public Sring getSate()
{ return mstate; }

public void setState(Sring state)
{ mstate = state; }

public java. nath. B gDeci nal getZip()
{ return mzip; }

publ i c voi d setZi p(j ava. nat h. B gDeci nal zi p)
{ mzip =zip; }

Listing of Alltypes.java Generated by JPublisher

Because - usert ypes=j dbc was specified in this example, the Al | t ypes class
implements the j ava. sql . SQLDat a interface rather than the

oracl e. sgl . ORADat a interface. Although the SQLDat a interface is a
vendor-neutral standard, there is Oracle-specific code in the Al | t ypes class
because it uses Oracle-specific types such as or acl e. sql . BFI LEand

oracl e. sqgl . CLOB.

JPublisher Examples 3-29

Example: Generating a SQLData Class

The file . / deno/ cor p/ Al | t ypes. j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package al | ;

inport java. sql . SQ.Excepti on;

inport oracl e.jdbc. O acl eConnecti on;
inport oracl e.jdbc. O acl eTypes;

inport java.sql.SQDst a;

inport java.sql.SQInput;

inport java.sql.SQQutput;

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Al ltypes inplenents SQData

{
public static final Sring _SQ_ NAME = "SCOIT. ALLTYPES';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

private oracle.sql.BFILE mattri,;
private oracle.sql.BLCB mattr2;
private Sring mattr3;

private oracle.sql.CL(B mattr4;
private java.sql . Tinestanp mattr5;
private java. math. B gDecinal mattr6;
private Double mattr7,

private Double mattrs§;

private Integer mattr9;

private java. math. B gDecinal mattr10;
private java. math. B gDecinal mattr11;
private byte[] mattri2;

private Hoat mattr13;

private Integer mattri14;

private Sring mattri5;

private Sring mattr16;

private corp. Address mattrl7,

private java.sql . Ref mattr18;

private java.sql . Array mattr19;
private java.sql . Array mattr20;

/* constructor */

3-30 JPublisher User’s Guide

Example: Generating a SQLData Class

public Altypes()

{
}

public void readSQ(SQInput stream String type)
throws SQException

{

set Attr1((oracle.sql.BFLE)

((oracl e. sql . O acl eJdbc2SQI nput) strean) . readO acl e(oj ect());
set Attr2((oracle. sql.BLOB)

((oracl e. sql . O acl eJdbc2SQI nput) strean) . readO acl e(hj ect());
set Atr3(streamreadtring());
set Attr4((oracle.sql.O.B)

((oracl e. sql . O acl eJdbc2SQI nput) strean) . readQ acl e(hj ect());
set Attr5(streamreadTi nestanp());
set Attr6(streamreadB gbecinal ());
set Attr7(new Doubl e(streamreadDoubl e()));
if (streamwasNull()) setAttr7(null);
set Att r8(new Doubl e(st reamreadDoubl e()));
if (streamwasNull()) setAttr8(null);
set Atr9(new I nteger(streamreadint()));
if (streamwasNull()) setAttr9(null);
set Attr10(stream readBi gDeci nal ());
set Attr11(stream readBi gDeci nal ());
set Atrl12(streamreadBytes());
set Attr13(new F oat (streamreadH oat()));
if (streamwasNull ()) setAttri3(null);
set Attrl4(new I nteger(streamreadint()));
if (streamwasNull ()) setAttrl4(null);
set Atri5(streamreadString());
set Atrl6(streamreadString());
set Attr17((corp. Address) streamread(hject());
set Attr18(streamreadRef());
set Atrl9(streamreadArray());
set Atr20(streamreadArray());

}

public void witeSQ(SQQutput streamn)

throws SQLException

{
((oracle.sqgl .Qacl eSQQutput)strean). witeQ acl eChject(getAttri());
((oracle.sqgl .Qacl eSQQutput)strean). witeQ acl eChject(getAttr2());
streamwiteString(getAttr3());
((oracle.sqgl .Qacl eSQQutput)strean). witeQ acl eChject(getAttrd());
streamw iteTi nestanp(get Atr5());

JPublisher Examples 3-31

Example: Generating a SQLData Class

streamw iteBi gDeci nal (getAttr6());
if (getAttr7() == null)

streamw i teBi gDeci mal (nul |');
el se

streamw i teDoubl e(get Attr7(). doubl eval ue());
if (getAttr8() == null)

streamw i teB gDeci nal (nul I);
el se

streamw i t eDoubl e(get Attr8() . doubl eVal ue());
if (getAttr9() == null)

streamw i teB gDecinal (nul I);
el se

streamwitelnt(getAttr9().intValue());
streamw iteB gDeci nal (getAttr10());
streamw iteB gDeci nal (getAttril());
streamw iteBytes(getAttri12());
if (getAttr13() == null)

streamw i teB gDeci nal (nul I);
el se

streamw iteH oat (getAttr13().fl oat Val ue());
if (getAttrl4() = null)

streamw i teB gDeci nal (nul I);
el se

streamwitelnt(getAttr14().intVal ue());
streamwiteString(getAttri5());
streamwiteString(getAttri6());
streamwiteChject(getAtrl7());
streamwiteRef (get Attri8());
streamwiteArray(getAttr19());
streamwiteArray(getAttr20());

}
public Sring get SQ_ TypeNane() throws SQException
{
return _SQ_NAME
}

/* accessor nethods */
public oracle.sql.BFILE getAttri()
{ return mattri; }

public void setAttrl(oracle.sql .BF LE attrl)
{ mattrl = attrl; }

3-32 JPublisher User’s Guide

Example: Generating a SQLData Class

public oracle.sql.BLCB get Atr2()
{ return mattr2; }

public void setAttr2(oracle.sql .BLCB attr?2)
{ mattr2 = attr2; }

public Sring getAttr3()

{ return mattr3; }

public void setAttr3(Sring attr3)

{ mattr3 = attr3; }

public oracle.sql..CB get Atr4()

{ return mattr4; }

public void setAttr4(oracle.sq .CB attr4)
{ mattr4 = attr4; }

public java.sql.Tinestanp get Attr5()

{ return mattr5; }

public void setAttr5(java. sql . Tinestanp attr5)
{ mattr5 = attr5; }

public java. nath. B gDeci nal getAttr6()

{ return mattr6; }

public void setAttr6(java. nat h. Bi gDeci nal attr6)
{ mattr6é = attr6; }

public Double getAttr7()

{ return mattr7; }

public void setAttr7(Doubl e attr7)

{ mattr7 = attr7; }

public Double getAttr8()
{ return mattr8g; }

JPublisher Examples 3-33

Example: Generating a SQLData Class

public void setAttr8(Doubl e attr8)
{ mattr8 = attr8; }

public Integer getAttr9()

{ return mattr9; }

public void setAttr9(Integer attr9)

{ mattr9 = attr9; }

public java. math. B gDeci nal getAttr10()

{ return mattri0; }

public void setAttr10(j ava. nath. Bi gDeci nal at tr10)
{ mattrl0 = attri0; }

public java. nath. B gDeci nal get Attr11()
{ return mattril; }

public void setAttr11(java. nath. B gDeci nal attr11)
{ mattrll = attril; }

public byte[] getAttri12()
{ return mattri12; }

public void setAttr12(byte[] attri2)
{ mattrl2 = attri2; }

public Hoat getAttri13()

{ return mattri3; }

public void setAttr13(Fl oat attr13)
{ mattrl3 = attri3; }

public Integer getAttrl14()

{ return mattri4; }

public void setAttrl4(Integer attr14)
{ mattrl4 = attri4; }

3-34 JPublisher User’s Guide

Example: Generating a SQLData Class

public Sring getAttri15()
{ return mattri5; }

public void setAttr15(String attri5)
{ mattrl5 = attri5; }

public Sring getAttri16()

{ return mattri6; }

public void setAttr16(String attri6)

{ mattrl6 = attri6; }

public corp. Address get Atr17()

{ return mattri7; }

public void setAttr17(corp. Address attrl7)
{ mattrl7 = attri7; }

public java.sql. Ref get Atr18()

{ return mattri8; }

public void setAttr18(java.sql.Ref attri18)
{ mattrl8 = attri8; }

public java.sql. Array getAttr19()

{ return mattri9; }

public void setAttr19(java.sql.Array attr219)

{ mattr19 = attr19; }

public java.sql.Array getAttr20()
{ return mattr20; }

public void setAttr20(j ava.sql.Array attr20)
{ mattr20 = attr20; }

JPublisher Examples 3-35

Example: Extending JPublisher Classes

Example: Extending JPublisher Classes

Here is an example of the scenario described in "Extending JPublisher-Generated
Classes" on page 1-44.

The following is the code that you have written for the class MyAddr ess. j ava and
stored in the directory deno/ cor p.

Note: There is a way to code the ORADat aFact ory cr eat e()
method to be more efficient than shown here, to ensure that an
object instance is not needlessly created (if the data object is null) or
needlessly re-initialized (if the data object is non-null). This is
discussed in "Writing the Class that Extends the Generated Class"
on page 1-45.

package corp;

inport java. sql . SQ.Excepti on;

inport oracl e.sql . CRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql. Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class M/Address extends JAddress

{
/* SQ _NAME inherited fromJAddress */

/* SQ _TYPEQXE inherited fromJAddress */

static final MAddress _M/AddressFactory = new M/Address();
public static CRADat aFactory get CRADat aFact ory()

{
return _M/AddressFact ory;

}

/* constructor */
publ i ¢ M/Addr ess()

{

super () ;

}

/* CRAData interface */
/* toDatun() inherited fromJAddress */

3-36 JPublisher User’s Guide

Example: Extending JPublisher Classes

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{
return create(new M/Address(), d, sql Type);

}

/* accessor nethods inherited fromJAddress */

/* Additional nethods go here. These additional nethods (not shown)
are the reason that JAddress was extended.
*/
}
To have JPublisher generate code for the JAddr ess class, recognizing that
My Addr ess extends JAddr ess, enter this command line:

jpub -user=scott/tiger -input=demoin -dir=deno - package=corp

where the deni n file includes the following:
SQ ADDRESS CHNERATE JAddress AS M/Addr ess

JPublisher will generate these files:

deno/ cor p/ JAddr ess. j ava
deno/ cor p/ MyAddr essRef . j ava

Because an ADDRESS object will be represented in the Java program as a
My Addr ess instance, JPublisher generates the class My Addr essRef rather than
JAddr essRef .

Here is a listing of the deno/ cor p/ JAddr ess. j ava class file generated by
JPublisher:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

JPublisher Examples 3-37

Example: Extending JPublisher Classes

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class JAddress inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQE = O acl eTypes. STRLCT;

protected Mit abl eStruct _struct;
static int[] _sql Type =

{
12, 12, 12, 2
b

static CRADataFactory[] _factory = new CRADat aFactory[4];

static final JAddress _JAddressFactory = new JAddress();
public static CRADat aFactory get CRADat aFact ory()
{

return _JAddressFactory;

}

/* constructor */

prot ect ed JAddress(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bject[4], _sql Type, factory); }
publ i ¢ JAddress()

{ this(true); }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ected CRADat a create(JAddress o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (0o =null) o= new JAddress(fal se);
0. _struct = new Mitabl eStruct ((STRUCT) d, _sql Type, _factory);

3-38 JPublisher User’s Guide

Example: Extending JPublisher Classes

return o;

}

/* accessor nethods */
public Sring getSreet() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setStreet(String street) throws SQException
{ _struct.setAttribute(O, street); }

public Sring getdty() throws SQException
{ return (Sring) _struct.getAttribute(l); }

public void setdty(Sring city) thronws SQException
{ _struct.setAttribute(l, city); }

public Sring getSate() throws SQException
{ return (Sring) _struct.getAttribute(2); }

public void setState(Sring state) throws SQException
{ _struct.setAttribute(2, state); }

public java. math. B gDeci nal getZip() throws SQException
{ return (java.math. BigDecinal) _struct.getAttribute(3); }

public voi d setZip(java. nath. B gDeci nal zip) throws SQException
{ _struct.setAttribute(3, zip); }

}

Here is a listing of the deno/ cor p/ MyAddr essRef . j ava class file generated by
JPublisher:

package corp;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;
inport oracl e.sql . Datum

inport oracl e.sql . REF,

i mport oracl e. sql . STRUCT;

JPublisher Examples 3-39

Example: Extending JPublisher Classes

public class MAddressRef inpl enents CRAData, CRADat aFactory

{

}

public static final Sring _SQ BASETYPE = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQXE = O acl eTypes. REF;

REF ref;

static final MAddressRef _M/AddressRef Factory = new M/AddressRef () ;

public static CRADat aFactory get CRADat aFact ory()
{
return _M/AddressRef Fact ory;

}

/* constructor */
publ i c M/Addr essRef ()
{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

M/ Addr essRef r = new M/Addr essRef ();

r. ref = (REFH) d;
return r;
}
publ i ¢ M/Address get Val ue() throws SQ.Exception
{
return (M/Address) M/Address. get GRADat aFact ory() . cr eat e(
_ref. get STRICT(), O acl eTypes. REF);
}

public voi d setVal ue(M/Address c) throws SQException
{

}

_ref. set Val ue((STRUCT) c.toDatun{_ref.get JavaSgl Connection()));

3-40 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

Example: Wrappers Generated for Methods in Objects

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.

This section describes an example of JPublisher output given the definition below of
a SQL type containing methods. The example defines a type Rat i onal with

numer at or and denom nat or attributes and the following functions and
procedures:

« MEMBER FUNCTI ON t oReal : Given two integers, this function converts a
rational number to a real number and returns a real number.

« MEMBER PROCEDURE nor nal i ze: Given two integers, representing a
numerator and a denominator, this procedure reduces a fraction by dividing the
numerator and denominator by their greatest common divisor.

« STATI C FUNCTI ON gcd: Given two integers, this function returns their
greatest common divisor.

« MEMBER FUNCTI ON pl us: This function adds two rational numbers and
returns the result.

The code forrat i onal . sql follows:

CREATE TYPE Rational AS CBIECT (
nuner at or | NTECER
denom nat or | NTEGER
MAP MEMBER FUNCTI ON t oReal RETURN REAL,
MEMBER PROCEDURE nor nal i ze,
STATI C FUNCTI ON ged(x | NTEGER
y INTEGER RETURN | NTEGER
MEMBER FUNCTI ON plus (x Rational) RETURN Rati onal
)s

CREATE TYPE BODY Rational AS

MAP MEMBER FUNCTI ON toReal RETURN REAL | S
-- convert rational nunber to real nunber
BEA N

RETURN nurnrer at or / denomi nat or;
END toReal ;

JPublisher Examples 3-41

Example: Wrappers Generated for Methods in Objects

MEMBER PROCEDURE nornal i ze |'S

g | NTECER

BEG N

g := Rational . gcd(nunerator, denoninator);
nunerator : = nunerator / g;

denoninator := denonminator / g;

END nornal i ze;

STATI C FUNCTI ON ged(x | NTEGER
y INTEGER) RETURN INTEGER | S

-- find greatest common divisor of x and y
ans | NTECGER
z | NTEGER
BEG N
IF x <y THEN

ans := Rational .gcd(y, X);
BSF (x MDy = 0) THEN

ans :=vy;
ELSE

z:=x MDYy;

ans := Rational .gcd(y, 2);
BE\D I F;
RETURN ans;
END gcd;

MBEVBER FUNCTI ON pl us (x Rational) RETURN Rational IS
BEA N
return Rational (nunerator * x.denoninator + x.nunerator * denoninator,
denomi nator * X.denom nator);
BE\D pl us;
END,

In this example, JPublisher was invoked with the following command line:

jpub -user=scott/tiger -sgl =Rational -nethods=true

The - user parameter directs JPublisher to login to the database as user scot t with
passwordti ger. The - met hods parameter directs JPublisher to generate wrappers
for the methods contained in the type Rat i onal . You can omit this parameter,
because - net hods=t r ue is the default.

3-42 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

Listing and Description of Rational.sqlj Generated by JPublisher

JPublisher generates the file Rat i onal . sql j . This file reads as follows:

Notes:

= The details of method bodies that JPublisher generates might
change in future releases.

= Notice ther el ease() calls, which are to avoid memory leaks
related to SQLJ connection contexts. See "Releasing Connection
Context Resources" on page 1-40 for more information.

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CRADat a;

inport oracl e. sql . GRADat aFact or y;
inport oracl e.sql.Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;
inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Rational inplenents CRAData, CRADat aFactory

{
public static final Sring _SQ_ NAME = "SCOIT. RATI ONAL";
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

/* connection nanagenent */
protected Defaul tntext _ tx = null;
protected Gonnection __onn = nul | ;
publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }
publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException
{ if (_tx==null)
{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new
Def aul t Gontext (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getCGonnection()) : _ onn;
}

JPublisher Examples 3-43

Example: Wrappers Generated for Methods in Objects

public void rel ease() throws SQException
{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

protected Mitabl eStruct _struct;

static int[] _sql Type =
{

4, 4
b

static CRADataFactory[] _factory = new CRADat aFactory[2];

static final Rational _Rational Factory = new Rational (fal se);
public static CRADat aFactory get CRADat aFact ory()
{

return _Rational Factory;

}

/* constructors */

prot ect ed Rational (bool ean init)

{ if (init) _struct = new Mitabl eSruct(new Chject[2], _sql Type, _factory); }
public Rational ()

{ this(true); __tx = DefaultContext.getDefaul tContext(); }

public Rational (Defaul t Gontext c¢) throws SQException

{ this(true); _tx =c; }

public Rational (Gonnection c) throws SQException

{ this(true); _onn =c; }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
if (_tx!=null & _onn!=c) release();
_onn = ¢;
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */

publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ return create(null, d, sql Type); }

public void setFron{Rational o) throws SQException

{ release(); _struct = o._struct; _tx =o._tx; _onn =o0._onn; }
protected voi d setVal ueFron{Rati onal o) { _struct = o._struct; }

3-44 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

protected CRADat a create(Rational o, Datumd, int sql Type) throws SQException
{

if (d=mnull) {if (o=null) { o.release(); }; return null; }

if (o =null) o= newRational(false);

0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);

0.__onn = ((STRUT) d).get JavaSgl Gonnection();

return o;

}

/* accessor nethods */
public Integer getNunerator() throws SQException
{ return (Integer) _struct.getAttribute(0); }

public voi d set Nunerator (I nteger nunerator) throws SQException

{ _struct.setAttribute(O, nurerator); }

public Integer getDenoninator() throws SQException

{ return (Integer) _struct.getAttribute(l); }

publ i ¢ voi d set Denomi nat or (1 nteger denoninator) throws SQException

{ _struct.setAttribute(l, denominator); }

public Integer ged (

I nteger X,
I nteger y)
throws SQException
{
Integer _ jP _result;
#sql [get GonnectionContext()] _ jPt_result = { VALUES(RATI ONAL. GOY
1X,
) b
return _ jPt _result;
}

public Rational normalize ()
throws SQException
{
Rational _ jPt_tenp = this;
#sql [get GonnectionContext ()] {
BEQ N
DINQJT _ jPt_tenp. NORVALI ZK() ;
BEND
b

JPublisher Examples 3-45

Example: Wrappers Generated for Methods in Objects

return __jPt_tenp;

}

public Rational plus (
Rational x)

throws SQException

{

Rational _ jPt_tenp = this;

Rational _ jPt_result;

#sql [get GonnectionContext ()] {
BEQ N
QJT __jPt result :=:_ jPt_tenp. PLUY
%)
END,

b

return _ jPt _result;

}

public Hoat toreal ()
throws SQException
{
Rational _ jPt_tenp = this;
Hoat _jPt_result;
#sql [get GonnectionContext ()] {
BEA N
QJT _jPt _result :=:_ jPt_tenp. TAREAL();
END,
)
return _ jPt _result;
}
}

All the methods that JPublisher generates invoke the corresponding PL/SQL

methods executing in the server.

JPublisher declares the sql _nane for the object to be SCOTT. RATI ONAL and its
sql _type_codetobe Oracl eTypes. STRUCT. By default it uses the SQLJ
connection context class sql j . runti ne. r ef . Def aul t Cont ext . It creates
accessor methods get Nuner at or (), set Nuner at or (), get Denoni nat or (),

and set Denom nat or () for the object attributes nuner at or and denoni nat or.

JPublisher generates source code for the gcd static function, which takes two
I nt eger values as input and returns an | nt eger result. This gcd function invokes
the RATI ONAL. GCD stored function with | N host variables : x and : y.

3-46 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

JPublisher generates source code for the nor mal i ze member procedure, which
defines a PL/SQL block containing an | N OUT parameter inside the SQLJ
statement. The t hi s parameter passes the values to the PL/SQL block.

JPublisher generates source code for the pl us member function, which takes an
object x of type Rat i onal and returns an object of type Rat i onal . It defines a
PL/SQL block inside the SQLJ statement. The | N host variables are : x and a copy
of t hi s. The result of the function is an OUT host variable.

JPublisher generates source code for the t oReal member function, which returns a
Fl oat value. It defines a host OUT variable that is assigned the value returned by
the function. A copy of the t hi s object is an | N parameter.

JPublisher Examples 3-47

Example: Wrappers Generated for Methods in Packages

Example: Wrappers Generated for Methods in Packages

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.

This section describes an example of JPublisher output given the definition below of
a PL/SQL package containing methods. The example defines the package

Rat i onal P with the following functions and procedures, which manipulate the
numerators and denominators of fractions.

=« FUNCTI ON t oReal : Given two integers, this function converts a rational
number to a real number and returns a real number.

« PROCEDURE nor mal i ze: Given two integers (representing a numerator and a
denominator), this procedure reduces a fraction by dividing the numerator and
denominator by their greatest common divisor.

« FUNCTI ON gcd: Given two integers, this function returns their greatest
common divisor.

«» PROCEDURE pl us: Adds two rational numbers and returns the result.
The code for Rat i onal P. sql follows:
CREATE PACKAGE Rational P AS

FUNCTI ON t oReal (nuner at or | NTEGER
denomi nator | NTEGER) RETURN REAL;

PROCEDURE nor nal i ze(nuner at or IN QJT | NTECER
denoninator | N QUT | NTEGER);

FUNCTI N ged(x |NTEGER vy | NTEGER) RETURN | NTEGER,
PROCEDURE plus (nl I|NTEGER d1 | NTEGER

n2 INTEEER d2 | NTEGER

n3 QUT | NTEGER d3 QUT I NTEGER);
END rational P,

/

3-48 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages

CREATE PACKACE BCODY rational P AS

FUNCTI ON t oReal (nunerat or | NTEGER
denonminator | NTEGER) RETURNreal IS
-- convert rational nunber to real nunber
BEA N
RETURN nunerat or / denom nator;
END t oReal ;

FUNCTI ON ged(x | NTEGER y INTEGER) RETURN INTEGER | S
-- find greatest common divisor of x and y
ans | NTECER
BEA N
IFx <y THN
ans :=gcd(y, X);
BHSF (x MDy = 0) THEN
ans :=y;
ELSE
ans :=gcd(y, x MDYy);
END I F;
RETURN ans;
END gcd;

PROCEDURE nor nal i ze(nunerator | N QUT | NTEGER
denomnator IN QUT INTEGER IS

g | NTEGRR
BEQ N

g : = gcd(nunerator, denoninator);
nunerator := nunerator / g;
denoninator := denomnator / g;

END nornal i ze;

PROCEDURE plus (nl | NTEGER d1 | NTEGER
n2 | NTEEER d2 | NTEGER
n3 QUT INTEEER d3 QJT INTEEER IS
BEA N
n3:=nl1* d2 +n2 * di;
d3 :=d1 * d2;
END pl us;

END rational P,

In this example, JPublisher was invoked with the following command line:

jpub -user=scott/tiger -sqgl=Rational P -methods=true

JPublisher Examples 3-49

Example: Wrappers Generated for Methods in Packages

The - user parameter directs JPublisher to login to the database as user scot t with
passwordti ger. The - met hods parameter directs JPublisher to generate wrappers
for the methods in the package Rat i onal P. You can omit this parameter, because

- met hods=t r ue is the default.

Listing and Description of RationalP.sqlj Generated by JPublisher

JPublisher generates the file Rat i onal P. sql j , which reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

inport java. sqgl . SQLExcepti on;

inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Rational P

{

/* connection managenent */
protected Defaul t@ntext _ tx = null;
protected Gonnection __onn = nul | ;
publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }
publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException
{ if (_tx==null)
{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new
Def aul t Gontext (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getCGonnection()) : _ onn;

}
public void rel ease() throws SQException
{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

/* constructors */

3-50 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages

public Rational P() throws SQException

{ _tx = Default Gont ext. get Defaul t Context (); }

publ i c Rational P(Defaul tGontext c) throws SQ Exception
{ _tx=¢}

publ i ¢ Rational P(Gonnection c¢) throws SQException
{_onn =c¢; _tx = new Defaul tContext(c); }

public Integer ged (
I nteger X,
I nteger y)
throws SQException
{
Integer _ jPt _result;
#sql [get GonnectionContext ()] _ jPt_result = { VALUES(RATI ONALP. GO

1X,
) 1
return _ jPt _result;

}

public void normalize (
Integer nunerator[],
Integer denoninator[])
throws SQLException
{
#sql [get GonnectionContext ()] { CALL RATI ONALP. NCRVALI ZK(
I NQJT (nunerator[0Q]),
I NQJT (denonminator[0])) };

}

public void plus (
Integer ni,
Integer di,
I nteger n2,
Integer d2,

Integer n3[],
Integer d3[])
throws SQLException
{
#sql [get GonnectionContext ()] { CALL RATI ONALP. PLUY
:nl,
1di,
‘N2,
1 d2,
:QJT (n3[0]),
(QJT (d3[0])) };

JPublisher Examples 3-51

Example: Wrappers Generated for Methods in Packages

}

public Hoat toreal (
I nt eger nunerat or,
I nteger denoni nat or)
throws SQException

{
Foat __jPt_result;

#sql [get GonnectionContext()] _ jPt_result = { VALUES(RATI ONALP. TCREAL(
: nuner at or,
:denominator)) };

return _ jPt _result;

}
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

By default, JPublisher uses the existing SQLJ connection context class
sqlj.runtinme.ref. Def aul t Cont ext and associates an instance of it with the
Rat i onal P package.

JPublisher generates source code for the gcd function, which takes two

Bi gDeci mal values—x and y—and returns a Bi gDeci mal result. This gcd
function invokes the stored function RATI ONALP. GCDwith | N host variables : x
and:y.

JPublisher generates source code for the nor mal i ze procedure, which takes two

Bi gDeci mal values—numer at or and denoni nat or. This normalize procedure
invokes the stored procedure call RATI ONALP. NORMALI ZE with | N OUT host
variables : nuner at or and : denomi nat or. Because these are | N OUT parameters,
JPublisher passes their values as the first element of an array.

JPublisher generates source code for the pl us procedure, which takes four

Bi gDeci mal | Nparameters and two Bi gDeci mal OUT parameters. This pl us
procedure invokes the stored procedure call RATI ONALP. PLUS, with | N host
variables: nl,:d1,: n2,and: d2. It also defines the QUT host variables : n3 and
: d3. Because these are OUT variables, JPublisher passes each of their values as the
first element of an array.

JPublisher generates source code for the t oReal function, which takes two

Bi gDeci mal values—numer at or and denoni nat or —and returns a

Bi gDeci mal result. Thist oReal function invokes the stored function call

RATI ONALP. TOREAL, with | N host variables : numer at or and : denom nat or.

3-52 JPublisher User’s Guide

Example: Using Classes Generated for Object Types

Example: Using Classes Generated for Object Types

This section illustrates an example of how you can use the classes that JPublisher
generates for object types. Suppose you have defined a SQL object type that
contains attributes and methods. You use JPublisher to generate a <nane>. sql j
file and a <name>Ref . | ava file for the object type. To enhance the functionality of
the Java class generated by JPublisher, you can extend the class. After translating (if
applicable) and compiling the classes, you can use them in a program. For more
information on this topic, see "Use of Classes JPublisher Generates for Object Types"
on page 1-35.

The following steps demonstrate the scenario described above. In this case, define a
Rat i onal OSQL object type that contains numer at or and denomni nat or
attributes and several methods to manipulate rational numbers. After using
JPublisher to generate the JPubRat i onal O. sql j anda Rati onal ORef . j ava
files, provide a file, Rat i onal O. j ava, that enhances the functionality of the
JPubRat i onal Oclass by extending it. After compiling the necessary files, use the
classes in a test file to test the performance of the Rat i onal O j ava class.

Here are the steps, followed by listings of the files:

1. Create the SQL object type Rat i onal Q "Listing of RationalO.sql (Definition of
Obiject Type)" on page 3-55 contains the code for the Rat i onal O. sql file.

2. Use JPublisher to generate Java classes (a JPubRat i onal O. sql j fileand a
Rat i onal ORef . j ava file) for the object. Use this command line:

j pub - props=Rational O props
Assume the properties file Rat i onal O. pr ops contains the following:

j pub. user=scott/tiger
j pub. sql =Rati onal O JPubRati onal O Rati onal O
j pub. net hods=t rue

According to the properties file, JPublisher will log into the database with user
name scott and password ti ger. The sgl parameter directs JPublisher to
translate the object type Rat i onal O(declared by Rat i onal O. sql) and
generate JPubRat i onal Oas Rat i onal O where the second Rat i onal O
indicates a class that you have written (Rat i onal O. j ava) that extends the
functionality of the original Rat i onal O. The value of the net hods parameter
indicates that JPublisher will generate classes for PL/SQL packages and
wrapper methods.

JPublisher Examples 3-53

Example: Using Classes Generated for Object Types

JPublisher produces the following files:

JPubRat i onal O. sql |
Rat i onal ORef . j ava

See "Listing of JPubRationalO.sqlj Generated by JPublisher" on page 3-56 and
"Listing of RationalORef.java Generated by JPublisher" on page 3-60 for listings
of the JPubRat i onal O. sql j and Rat i onal ORef . j ava files.

3. Write afile Rati onal O. j ava that enhances the functionality of
JPubRat i onal O sqlj by extendingit. In Rati onal O j ava, everything is
inherited from the superclass except the following items. Add code to do the
following:

« Declare a factory object, _JPubRat i onal O

« Implement a get ORADat aFact or y() method.

« Implementacreat e() method.

« Implement the constructors by calling the constructors in the superclass.

« AddatoString() method, which is used in the last two
System out. println() callsin the test program
Test Rat i onal O. j ava (described in "Listing of TestRationalO.java
Written by User" on page 3-63).

"Listing of RationalO.java Written by User" on page 3-61 contains the code for
the Rat i onal O. j ava file.

4. Use SQLJ to compile/translate the necessary files. Enter the following:
sqlj JPubRational O sqglj Rational O java

This translates and compiles JPubRat i onal O. sql j and compiles the
Rat i onal O j ava file.

5. Write a program Test Rat i onal O. j ava that uses the Rat i onal Oclass.
"Listing of TestRationalO.java Written by User" on page 3-63 contains the code.

6. Create the file connect . properti es, which Test Rat i onal Ouses to
determine how to connect to the database. The file reads as follows:

sqlj.user=scott

sqlj . password=ti ger

sqlj.url =jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.Oacl eDriver

3-54 JPublisher User’s Guide

Example: Using Classes Generated for Object Types

7. Compile and run Test Rat i onal O

javac TestRational O java
java Test Rational O

The program produces the following output:

gcd: 5

real value: 0.5
sum 100/ 100
sum 1/1

Listing of RationalO.sqgl (Definition of Object Type)
This section contains the code that defines the Rat i onal OSQL object type.

CREATE TYPE Rati onal O AS GBIECT (

nurrer at or | NTECER

denom nat or | NTECER

MAP MEMBER FUNCTI ON t oReal RETURN REAL,

MEVBER PROCEDURE nor nal i ze,

STATI C FUNCTI ON ged(x | NTEGER

y INTEGER RETURN | NTEGER

MEVBER FUNCTI ON pl us (x Rational O RETURN Rati onal O

)s

CREATE TYPE BODY Rational O AS

MAP MEMBER FUNCTI ON toReal RETURN REAL | S
-- convert rational nunber to real nunber
BEA N

RETURN nuner at or / denom nat or ;
END t oReal ;

MEMBER PROCEDURE nornal i ze 1S
g BI NARY_| NTEGER

BEQ N

g : = Rational Q gcd(nunerator, denoninator);
nunerator := nunerator / g;

denoninator := denomnator / g;

END nor nal i ze;

STATI C FUNCTI ON ged(x | NTEGER,

y INTEGER) RETURN INTEGER | S
-- find greatest common divisor of x and y
ans Bl NARY | NTECER

JPublisher Examples 3-55

Example: Using Classes Generated for Object Types

BEA N
IFx <y THN
ans := Rational Qgcd(y, X);
BHSF (x MDy = 0) THEN
ans :=y;
ELSE
ans := Rational Qgcd(y, x MDYy);
END I F;
RETURN ans;
END gcd;

MEMBER FUNCTI ON plus (x Rational @ RETURN Rational OIS
BEA N
return Rational Q nunerator * x.denoninator + X.nurerator * denom nator,
denoni nat or * x.denom nator);
END pl us;
END,

Listing of JPubRationalO.sqlj Generated by JPublisher

This section lists the code in JPubRat i onal O. j ava that JPublisher generates.

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GRADat a;

i nport oracl e. sql . GRADat aFact or y;
inport oracl e.sql . Datum

import oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;
inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class JPubRational Oi npl enents CRAData, CRADat aFactory
{
public static final Sring _SQ_NAME = "SCOOIT. RATIONALO';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

/* connection nanagenent */

protected Defaul t@ntext _ tx = null;

protected Gonnection __onn = nul | ;

publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }

3-56 JPublisher User’s Guide

Example: Using Classes Generated for Object Types

publ i ¢ Def aul t Gont ext get Gonnect i onCont ext () throws SQException
{ if (_tx==null)
_tx = (_onn==null') ? Defaul tCont ext.getDefaul t@ntext() : new
Def aul t Gontext (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getGonnection()) : _ onn;

}
public void rel ease() throws SQException

{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

protected Mit abl eStruct _struct;

static int[] _sql Type =
{

4, 4
b

static CRADataFactory[] _factory = new CRADat aFactory[2];

static final JPubRational O _JPubRational GFact ory = new JPubRati onal Q(f al se);
public static CRADat aFactory get CRADat aFact ory()

{
return _JPubRati onal CFactory;

}

/* constructors */

prot ect ed JPubRati onal O bool ean init)

{ if (init) _struct = new Mitabl eSruct(new (hject[2], _sql Type, _factory); }
publ i ¢ JPubRational Q)

{ this(true); __ tx = DefaultContext.getDefaul tContext(); }

publ i ¢ JPubRati onal O Defaul t Context c) throws SQException

{ this(true); _tx =c; }

publ i ¢ JPubRati onal O Gonnection c) throws SQ Exception

{ this(true); __onn =c; }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

if (_tx!'=null & _onn!=c) release();
_onn = ¢;

JPublisher Examples 3-57

Example: Using Classes Generated for Object Types

return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
public voi d set Fron{JPubRati onal O 0) throws SQException
{ release(); _struct = o._struct; _tx =o._tx; _onn =o0._onn; }
prot ect ed voi d set Val ueFron{JPubRational O o) { _struct = o._struct; }
prot ect ed CRADat a creat e(JPubRati onal O o, Datumd, int sql Type) throws
SQ Exception
{
if (d=mnull) {if (o=null) { o.release(); }; return null; }
if (0o =null) o= new JPubRational fal se);
0. _struct = new Mitabl eStruct ((STRUIT) d, _sql Type, _factory);
0.__onn = ((STRUT) d).getJavaSgl Gonnection();
return o;

}

/* accessor nethods */
public Integer getNunerator() throws SQException
{ return (Integer) _struct.getAttribute(0); }

public voi d set Nunerator (I nteger nunerator) throws SQException
{ _struct.setAttribute(O, nurerator); }

public Integer getDenoninator() throws SQException
{ return (Integer) _struct.getAttribute(l); }

publ i c voi d set Denom nat or (I nteger denoninator) throws SQException
{ _struct.setAttribute(l, denominator); }

public Integer ged (
I nteger X,
I nteger y)
throws SQException
{
Integer _ jPt _result;
#sgl [get GonnectionContext ()] _ jPt_result = { VALUES(RATI ONALQ G
1X,
) b
return _ jPt _result;

}

3-58 JPublisher User’s Guide

Example: Using Classes Generated for Object Types

public Rational O nornalize ()
throws SQException
{
Rational O _jPt _tenp = (Rational Q this;
#sql [get GonnectionContext ()] {
BEA N
DINQUT _ jPt_tenp. NORVALI ZK() ;
END,
b
return _ jPt_tenp;
}

public Rational O plus (
Rati onal O x)
throws SQException
{
JPubRational O __jPt_tenp = this;
Rational O _ jPt result;
#sql [get GonnectionContext ()] {
BEA N
QJT __jPt result :=:_ jPt_tenp. PLUY
%)
END,
b
return _ jPt _result;

}

public Hoat toreal ()
throws SQException
{
JPubRational O __jPt_tenp = this;
Hoat _ jPt_result;
#sql [get GonnectionContext ()] {
BEQ N
QJT _jPt _result :=:_ jPt_tenp. TAREAL();
BEND,
b

return _ jPt _result;

JPublisher Examples 3-59

Example: Using Classes Generated for Object Types

Listing of RationalORef.java Generated by JPublisher

This section lists the code in Rat i onal ORef . j ava that JPublisher generates.

Note: The details of method bodies that JPublisher generates
might change in future releases.

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

inport oracl e. sql . GRADat aFact or y;
inport oracl e.sql. Datum

inport oracl e.sql . REF,

i mport oracl e. sql . STRUCT;

public class Rational CRef inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ BASETYPE = "SQOOIT. RATI ONALO';

public static final int _SQ TYPEQXE = O acl eTypes. REF;
REF ref;

static final Rational CRef _Rational GRef Factory = new Rati onal CRef () ;
public static CRADat aFactory get CRADat aFact ory()

{
return _Rational CRef Fact ory;

}

/* constructor */
public Rational CRef ()
{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

3-60 JPublisher User’s Guide

Example: Using Classes Generated for Object Types

Rati onal GRef r = new Rational CRef ();
r. ref = (REFH) d;
return r;

}

publ i c Rational O get Val ue() throws SQException

{
return (Rational O Rational Q get GRADat aFact ory() . creat e(

_ref. get STRICT(), O acl eTypes. REF);

}
public voi d setVal ue(Rational Oc) throws SQException
{
_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));
}

}

Listing of RationalO.java Written by User

This section lists the code for the user-written file, Rat i onal O. j ava, that extends
the class JPubRat i onal O. sql j . Note that this program accomplishes the
following:

« lItdeclares a factory object, _JPubRat i onal O

« Itimplements a get ORADat aFact or y() method.

« Itimplementsacreate() method.

« Itimplements the constructors by calling the constructors in the superclass.

« ItaddsatoString() method, which is used in the last two
System out. println() callsin Test Rati onal O. j ava (described in
"Listing of TestRationalO.java Written by User" on page 3-63).

Note: There is a way to code the ORADat aFact ory cr eat e()
method to be more efficient than shown here, to ensure that an
object instance is not needlessly created (if the data object is null) or
needlessly re-initialized (if the data object is non-null). This is
discussed in "Writing the Class that Extends the Generated Class"
on page 1-45.

JPublisher Examples 3-61

Example: Using Classes Generated for Object Types

inport java. sql . SQ.Excepti on;

inport oracle.sql . RADat a;

inport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql.Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eSruct;
inport sqlj.runtine.ref.Defaul t Gontext;
inport java. sql . Gonnecti on;

public class Rational O extends JPubRati onal O
i npl enent s CRADat a, CRADat aFact ory

{
/* SQ _NAME inherited fromJPubRational O */

/* SQ TYPEQXE inherited from JPubRati onal O */

static final Rational O _Rational GFactory = new Rational Q();
public static CRADat aFactory get CRADat aFact ory()

{

return _Rational GFact ory;

}

/* constructors */
public Rational Q)

{ super () ;

}

public Rational Q Defaul tGontext c) throws SQ Exception
{ super(c);

Lubl ic Rational QGonnection c) throws SQException

{ super(c);

}

/* CRAData interface */
/* toDatun() inherited fromJPubRational O */

/* CRADataFactory interface */
public CRADat a create(Datumd, int sqgl Type) throws SQException

{
return create(new Rational), d, sgl Type);

}

3-62 JPublisher User’s Guide

Example: Using Classes Generated for Object Types

/* accessor nethods inherited from JPubRational O */

/* additional nethod not in base cl ass */
public Sring toString()
{

try

{

}
catch (SQException e)

{

}
}
}

return getNunerator().toSring() +"/" + getDenomnator().toSring();

return nul | ;

Listing of TestRationalO.java Written by User

This section lists the contents of a user-written file, Test Rat i onal O. j ava, that

tests the performance of the Rat i onal Oclass, given initial values for nuner at or
and denomi nat or. Note that the Test Rat i onal O. j ava file also demonstrates

how to do the following:

« Connect to the database by calling the Or acl e. connect () method.

« Declare a Java object representing a SQL object type and initialize it by setting
its attributes.

« Use the object to call server methods.

inport oracle.sqlj.runtime. Oacle;
inport oracl e.sql. Datum

inport java. sql . Gonnecti on;

inport java.sql.Driver Manager;
inport java.sql.Driver;

public class TestRational O
{

public static void main(String[] args)
throws java. sql . SQLExcepti on
{

Q acl e. connect (new Test Rati onal (). getd ass(),
"connect . properties");

JPublisher Examples 3-63

Example: Using Classes Generated for Object Types

Rational Or = new Rational Q();

Integer n = new I nteger(5);
Integer d = new I nteger(10);

r.set Nunerator(n);
r. set Denom nat or (d);

Integer g = r.ged(n, d);
Systemout. println("ged: " + g);

Hoat f =r.toreal ();
Systemout. printin("real value: " + f);

Rational Os = r.plus(r);
Systemout. printIn("sum " +s);

s = s.nornalize();
Systemout. println("sum " +s);

3-64 JPublisher User’s Guide

Example: Using Classes Generated for Packages

Example: Using Classes Generated for Packages

This section provides an example of how you can use the classes and method
wrappers that JPublisher generates for objects and packages, respectively. Suppose
you have defined a SQL object type that contains attributes and a package with
methods. You use JPublisher to generate a <nane>. sql j files for the object and the
package. After translating the classes you can use them in a program. For more
information on this topic, see "Use of SQLJ Classes JPublisher Generates for
PL/SQL Packages" on page 1-34.

The following steps demonstrate the scenario described above. In this case, you
define a Rat i onal SQL object type that contains nuner at or and denom nat or
integer attributes and a package Rat i onal P that contains methods to manipulate
rational numbers. After using JPublisher to generate the Rati onal . sql j and

Rat i onal P. sql j files, translate them with SQLJ, then use them in a test file to test
the performance of the Rat i onal and Rati onal P classes.

Here are the steps, followed by listings of the files:

1. Create the SQL object type Rat i onal and package Rat i onal P. "Listing of
RationalP.sgl (Definition of the Object Type and Package)" on page 3-66 contains
the SQL code for the Rat i onal P. sql file.

2. Use JPublisher to generate a Java class and a SQLJ class (Rat i onal . j ava and
Rat i onal P. sql j) for the object and package, respectively. Use this command
line:

j pub - props=Rational P. props
Assume the properties file Rat i onal P. pr ops contains the following:

j pub. user=scott/tiger

j pub. sgl =Rat i onal P, Rati onal
j pub. mappi ng=or acl e

j pub. net hods=t rue

According to the properties file, JPublisher will log into the database with user
name scott and password ti ger. The sgl parameter directs JPublisher to
translate the object type Rat i onal and package Rat i onal P (declared in

Rat i onal P. sql). JPublisher will translate the type and package according to
the or acl e mapping. The value of the met hods parameter indicates that
JPublisher will generate classes for PL/SQL packages, including wrapper
methods. Since the object type Rat i onal does not have any member functions,
JPublisher will translate itinto a . j ava file, nota. sql j file. By using the

- met hods=al ways setting for JPublisher, however, you could have requested

JPublisher Examples 3-65

Example: Using Classes Generated for Packages

the generation of a. sqgl j file regardless. See "Generate Classes for Packages
and Wrapper Methods for Methods (-methods)" on page 2-17 for more
information.

JPublisher produces the following files:

Rati onal . j ava
Rati onal P. sql j

3. Translate the Rat i onal P. sgl j and Rati onal . j ava files:
sqlj Rational P.sglj Rational.java
4. Write a program, Test Rat i onal P. j ava, that uses the Rat i onal P class.

5. Write the file connect . properti es, which Test Rati onal P. j ava uses to
determine how to connect to the database. The file reads as follows:

sqlj.user=scott

sqlj . password=ti ger

sqlj.url =jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.Oacl eDriver

6. Compile and run Test Rat i onal P:

javac TestRational P.java
java TestRational P

The program produces the following output:

gcd: 5

real value: 0.5
sum 100/ 100
sum 1/1

Listing of RationalP.sql (Definition of the Object Type and Package)

This section lists the contents of the file Rat i onal P. sql , which defines the
Rat i onal SQL object type and the Rat i onal P package.

CREATE TYPE Rational AS CBIECT (
nurrer at or | NTECER
denom nat or | NTEGER

)s

/

CREATE PACKACE Rational P AS

FUNCTI ON toReal (r Rational) RETURN REAL;

3-66 JPublisher User’s Guide

Example: Using Classes Generated for Packages

PROCEDURE nornal i ze(r IN QJT Rational);
FUNCTI ON ged(x INTEGER y | NTEGER) RETURN | NTEGER
FUNCTION plus (rl1 Rational, r2 Rational) RETURN Rati onal ;

END rational P,
/
CREATE PACKAGE BCODY rational P AS

FUNCTION toReal (r Rational) RETURNreal IS
-- convert rational nunber to real nunber
BEA N

RETURN r. nunerat or / r.denoninator;
END t oReal ;

FUNCTI ON ged(x | NTEGER y |NTEGER) RETURN I NTEGER | S
-- find greatest common divisor of x and y

result | NTECER
BEQ N
IFx <y THN

result := ged(y, X);
BHSF (x MDy = 0) THEN

result :=vy;
ELSE
result :=gcd(y, x MDYy);
END I F;
RETURN resul t;
END gcd;
PROCEDURE nornal ize(r IN QJT Rational) IS
g | NTEGRR
BEG N
g :=gcd(r.nunerator, r.denomnator);
r.nunerator :=r.nunerator / g;
r.denomnator :=r.denomnator / g;

END nornal i ze;

FUNCTION plus (rl1 Rational,
r2 Rational) RETURN Rational IS
n | NTEGER
d | NTEGER
result Rational;
BEG N

JPublisher Examples 3-67

Example: Using Classes Generated for Packages

n:=rl nunerator * r2.denomnator + r2.nunerator * rl.denom nator;
d :=rl.denomnator * r2.denom nator;

result := Rational (n, d);
RETURN resul t;
END pl us;

END rational P,
/

Listing of TestRationalP.java Written by a User

The test program, Test Rat i onal P. j ava, uses the package Rat i onal P and the
object type Rat i onal , which does not have methods. The test program creates an
instance of package Rat i onal P and two Rat i onal objects.

Test Rat i onal P connects to the database in SQLJ style, using the

O acl e. connect () method. In this example, the Or acl e. connect () call
specifies the file connect . properti es, which contains these connection
properties:

sqlj.url=jdbc:oracl e:oci: @
sql j . user=scott
sql j . passwor d=t i ger

Following is a listing of Test Rat i onal P. j ava:

inport oracl e.sql . Datum

i mport oracl e. sgl . NOMBER

inport java. nat h. Bi gDeci mal ;

inport sqlj.runtine.ref.Defaul t Context;
inport oracle.sqlj.runtime. Oacle;
inport java. sql . Gonnecti on;

public class TestRational P
{

public static void main(String[] args)
throws java. sql . SQLExcepti on
{

Q acl e. connect (new Test Rati onal (). getd ass(),
"connect . properties");

Rational P p = new Rational P();

3-68 JPublisher User’s Guide

Example: Using Classes Generated for Packages

NUMBER n = new NUMBER(5) ;
NUMBER d = new NUMBER(10);
Rational r = new Rational ();
r.set Nunerator(n);

r. set Denom nat or (d);

NUMBER f = p.toreal (r);
Systemout. printIn("real value: " + f.stringvalue());

NUMBER g = p.gcd(n, d);
Systemout. println("ged: " + g.stringvalue());

Rational s = p.plus(r, r);
Systemout. println("sum " + s.getNunerator().stringVal ue() +
"/" + s.getDenomnator().stringVal ue());

Rational [] sa = {s};

p. nor nal i ze(sa);

s =sa[0];

Systemout. println("sum " + s.getNunerator().stringVal ue() +
"/" + s.getDenom nator().stringVal ue());

JPublisher Examples 3-69

Example: Using Datatypes Not Supported by JDBC

Example: Using Datatypes Not Supported by JDBC

One technique you can employ to use datatypes not supported by JDBC is to write
an anonymous PL/SQL block that converts input types that JDBC supports into the
input types that the PL/SQL method uses. Then convert the output types that the
PL/SQL method uses into output types that JDBC supports. For more information
on this topic, see "Using Datatypes Not Supported by JDBC" on page 1-29.

The following steps offer a general outline of how you would do this. The steps
assume that you used JPublisher to translate an object type with methods that
contain argument types not supported by JDBC. The steps describe the changes you
must make. You could make changes by extending the class or modifying the
generated files. Extending the classes is generally a better technique; however, in
this example, the generated files are modified.

1. InJava, converteach | Nor | N OUT argument having a type that JDBC does not
support to a Java type that JDBC does support.

2. Passeach | Norl N OUT argument to a PL/SQL block.

3. Inthe PL/SQL block, convert each | Nor | N OUT argument to the correct type
for the PL/SQL method.

4. Call the PL/SQL method.

5. Convert each OUT argument or | N OUT argument or function result from the
type that JIDBC does not support to the corresponding type that JDBC does
support in PL/SQL.

6. Returneach OUT argument, | N OUT argument, or function result from the
PL/SQL block.

7. InJava, convert each OUT argument, | N OUT argument, or function result from
the type JDBC does support to the type it does not support.

Here is an example of how to handle an argument type not directly supported by
JDBC. The example converts from/to a type that JDBC does not support
(Bool ean/BOOLEAN) to/from one that JDBC does support (St ri ng/VARCHAR2).

The following . sql file defines an object type with methods that use bool ean
arguments. The methods this program uses are very simple; they serve only to
demonstrate that arguments are passed correctly.

CREATE TYPE BOCLEANS AS CBIECT (

iln I NTEGER
ilnQut | NTEGER
i Qut I NTEGER

3-70 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC

MEMBER PROCEDURE p(i 1 | N BOOLEAN
i2 N QUT BOOLEAN,
i3 QUT BOOLEAN),

MEMBER FUNCTI ON f (i 1 | N BOCLEAN) RETURN BOCLEAN
)s

CREATE TYPE BCDY BOOLEANS AS

MEMBER PROCEDURE p(i 1 IN BOOLEAN
i2 N QJT BOOLEAN
i3 QUJr BOOLEAN IS
BEA N
iQut :=iln;

IFilnQut IS NLL THEN

ilnQut :=0;
ELSFilnQut =0 THEN
ilnQut :=1;
ELSE
ilnQut := NUL;
END I F;
i3:=i1;
i2:=NOriz;
END,

MEMBER FUNCTI ON f (i1 | N BOOLEAN) RETURN BOOLEAN | S
BEQ N

return il =(iln = 1);
END,

END,

The following . sql j file was first generated by JPublisher and then modified by a
user, according to the steps above. The wrapper methods accomplish the following:
« Convert each argument from Bool ean to St ri ng inJava.

« Pass each argument into a PL/SQL block.

« Convert the argument from VARCHAR2 to BOOLEANin PL/SQL.

« Call the PL/SQL method.

JPublisher Examples 3-71

Example: Using Datatypes Not Supported by JDBC

« Convert each OUT argument, | N OUT argument, or function result from
BOOLEAN to VARCHARZ in PL/SQL.

« Return each OUT argument, | N OUT argument, or function result from the
PL/SQL block.

« Finally, convert each OUT argument, | N OUT argument, or function result.
Here is the code:

inport java. sqgl . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GRADat a;

inport oracl e. sql . GQRADat aFact or y;
inport oracl e.sql.Datum

import oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;
inport sqlj.runtine.ref.Defaul t Context;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Bool eans inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOOIT. BOOLEANS';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

/* connection nanagenent */
protected Defaul t@ntext _ tx = null;
protected Gonnection __onn = nul | ;
publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }
publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException
{ if (_tx==null)
{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new
Def aul t Context (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getCGonnection()) : _ onn;

}
public void release() throws SQException

{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

3-72 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC

protected Mit abl eStruct _struct;

static int[] _sql Type =

static CRADataFactory[] _factory = new CRADat aFactory[3];

static final Bool eans _Bool eansFact ory = new Bool eans(fal se);
public static CRADat aFactory get CRADat aFact ory()
{

return _Bool eansFact ory;

}

/* constructors */

prot ect ed Bool eans(bool ean init)

{ if (init) _struct = new Mitabl eSruct(new Chject[3], _sql Type, _factory); }
publ i ¢ Bool eans()

{ this(true); __ tx = DefaultContext.getDefaul tContext(); }

publ i ¢ Bool eans(Defaul t Gontext c¢) throws SQException

{ this(true); _tx =c; }

publ i ¢ Bool eans(Gonnection c) throws SQException

{ this(true); _onn =c; }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
if (_tx!'=null & _onn!=c) release();
_onn = ¢;
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
public voi d set Fron{Bool eans o) throws SQException
{ release(); _struct = o._struct; _tx =o._tx; _onn =o0._onn; }
prot ect ed voi d set Val ueFron{Bool eans 0) { _struct = o._struct; }
prot ect ed CRADat a creat e(Bool eans o, Datumd, int sqgl Type) throws SQException
{

if (d=null) {if (ol=null) { o.release(); }; return null; }

if (o ==null) o = new Bool eans(fal se);

0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);

JPublisher Examples 3-73

Example: Using Datatypes Not Supported by JDBC

0.__onn = ((STRUT) d).getJavaSgl Gonnection();
return o;

}

/* accessor nethods */
public Integer getlin() throns SQException
{ return (Integer) _struct.getAttribute(0); }

public void setlin(Integer iin) throns SQException
{ _struct.setAttribute(0, iin); }

public Integer getlinout() throws SQException
{ return (Integer) _struct.getAttribute(l); }

public void setlinout(lnteger iinout) throws SQException
{ _struct.setAttribute(l, iinout); }

public Integer getlout() throws SQException
{ return (Integer) _struct.getAttribute(2); }

public void setlout(lnteger iout) throws SQException
{ _struct.setAttribute(2, iout); }

/* Uhable to generate nethod "f"
because it uses a type that is not supported

publ i ¢ <unsupported type> f (
<unsupported type> i 1)
throws SQException
{
Booleans _ jPt_tenp = this;
<unsupported type> _jPt_result;
#sql [get GonnectionContext ()] {
BEQ N
QJT _jPt _result :=:_ jPt_tenp. K
1i1);
END,
b
return _ jPt _result;
}or

3-74 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC

public Bool ean f (
Bool ean i 1)

throws SQException

{
Bool eans _tenp = this;
Sring _il =null;
Sring _result =null;

if (il!'=null) _il1=il.toSring();

#sql [get GonnectionContext ()] {
CEQLARE
i1 BOOLEAN
resul t _ BOOLEAN
t_ VARCHAR(5):

BEA N
il :=:i1="true;

result_ :=: _tenp.F(il);

IF result _ THEN
t_:="true;

BLSIF NOT result _ THEN
t :='false;

B.SE
t_ = NUL;

BE\D I F;

:QJT _result =t ;

END,
b

if (_result == null)
return nul | ;
el se
return new Bool ean(_result.equal s("true"));

/* Unhabl e to generate nethod "p"
because it uses a type that is not supported

publ i ¢ Bool eans p (
<unsupported type> i1,

JPublisher Examples 3-75

Example: Using Datatypes Not Supported by JDBC

<unsupported type> i2[],
<unsupported type> i3[])

throws SQException
{
Bool eans __ jPt_tenp
#sql
BEA N

JINQJT __jPt_tenp.

Tid,
SINQJT (i 2[0]),
QJT (13(0]));
BEND,
b
return _ jPt_tenp;
}or

publ i c Bool eans p (
Bool ean i 1,
Bool ean i 2[],
Bool ean i 3[])
throws SQException

{
Sring il =(il==

Sring _i2 = (i2[0]

Sring _i3 = (i3[0]

=this;

[get Gonnecti onGontext ()] {

P(

nul 1) ? null
D il.tosring();
= null) ? null
:i2[0].toSring();

null') ? null
:i3[0].toSring();

Bool eans _tenp = this;

#sql
CEQLARE
i1 BOOLEAN
i 2_ BOOLEAN
i 3_ BOOLEAN
t_ VARGHARZ(5):

[get Gonnecti onGontext ()] {

"true’
"true’

JINQJT _tenp.P(i1, i2, i3);

3-76 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC

IFi2_ THEN

t_ :="true;
BLSIF NOT i2_ THEN

t :='false;
B.SE

t = NUL;
BE\D I F;
QJT 2=t ;
IFi3 THEN

t_ :="true;
BLSIF NOT i3 THEN

t :='false;
B.SE

t_ = NUL;
BE\D I F;
QJT i3 :=t_;
BEND,

b

i2[00 =(i2=null) ? null

new Bool ean(_i 2. equal s("true"));
i3[0) =(i3=null) ? null

new Bool ean(_i 3. equal s("true"));
return _tenp;

Note: Because of the semantics of SQLJ parameters, it is necessary
to assign to each output parameter exactly once within the block.

JPublisher Examples 3-77

Example: Using Datatypes Not Supported by JDBC

3-78 JPublisher User’s Guide

A

access option, 2-11

ARRAY class, features supported, 1-43
AS clause, translation statement, 2-27
attribute mapping, sample program, 3-8
attribute types, allowed, 1-28

B

backwards compatibility for JPublisher, 1-21
BigDecimal mapping, 1-9
builtintypes option, 2-9

C

case option, 2-12
case-sensitive SQL UDT names, 2-21,2-27
classes, extending, 1-44
collection types
output, 1-8
representing in Java, 1-13
command-line options--see options
command-line syntax, 1-15
compatibility
backwards, for JPublisher, 1-21
between JDK versions, 1-21
Oracle8i compatibility mode, 1-24
compatible option, 2-7

connection contexts and instances, use of, 1-37

context option, 2-13

conventions, notation, 2-5

CREATE PACKAGE BODY statement, 1-10
CREATE PACKAGE statement, 1-10

Index

CREATE TYPE statement, 1-9

D

datatype mappings

allowed object attribute types, 1-28

BigDecimal mapping, 1-9

-builtintypes option, 2-9

-compatible option, 2-7

datatype tables, 1-27

details of use, 1-26

JDBC mapping, 1-8

-lobtypes option, 2-9

-mapping option (deprecated), 2-10

-numbertypes option, 2-8

Object JIDBC mapping, 1-9

Oracle mapping, 1-9

overview, 1-8

relevant options, 2-6

sample program, 3-2

-usertypes option, 2-7

using types not supported by JDBC, 1-29

using types not supported by JDBC, sample
program, 3-70

dir option, 2-14

E

extending JPublisher classes
concepts, 1-44
sample program, 3-36

Index-1

G

GENERATE clause, translation statement, 2-28
getConnection() method, 1-39
getConnectionContext() method, 1-39

inheritance, support through ORAData, 1-49
INPUT files
package naming rules, 2-29
precautions, 2-32
structure and syntax, 2-26
translation statement, 2-26
input files
overview, 1-7
properties files and INPUT files, 2-25
-props option (properties file), 2-19
input option, 2-16
input, JPublisher (overview), 1-7

J

Java classes, generation and use, 1-41
JDBC mapping
overview, 1-8
sample program, 3-2
JDK versions, JPublisher compatibility, 1-21

L

limitations of JPublisher, 1-58
lobtypes option, 2-9

M

mapping option (deprecated), 2-10
mappings--see datatype mappings
method access option, 2-11

methods option, 2-17

methods, overloaded, translating, 1-33

N

nested table types, creating in the database, 1-9
nested tables, output, 1-8

Index-2

notational conventions, 2-5
numbertypes option, 2-8

O

Object JIDBC mapping, 1-9
object types
classes generated for, 1-35
creating in the database, 1-9
inheritance, 1-49
output, 1-7
representing in Java, 1-13
translation, 1-11
using generated classes, sample program,
with JPublisher, overview, 1-3
omit_schema_names option, 2-17
option syntax (command line), 1-15
options
-access option, 2-11
-builtintypes option, 2-9
-case option, 2-12
-compatible option, 2-7
-context option, 2-13
-dir option, 2-14
general options, 2-11
general tips, 2-4
-input option, 2-16
-lobtypes option, 2-9
-mapping option (deprecated), 2-10
-methods option, 2-17
-numbertypes option, 2-8
-omit_schema_names option, 2-17
-package option, 2-18
-props option (properties file), 2-19
-sgl option, 2-20
summary and overview, 2-2
that affect type mappings, 2-6
-types option (deprecated), 2-22
-user option, 2-24
-usertypes option, 2-7
Oracle mapping
overview, 1-9
sample program, 3-5
Oracle8i compatibility mode, 1-24
ORAData interface

3-53

object types and inheritance, 1-49
reference types and inheritance, 1-51
use by JPublisher, 1-3
OUT parameters, passing, 1-30
output
-dir option, 2-14
from JPublisher (overview), 1-7
overview, what JPublisher produces, 1-4
overloaded methods, translating, 1-33

P

packages

creating in the database, 1-9, 1-10

naming rules in INPUT file, 2-29

-package option, 2-18

using generated classes, sample program, 3-65
PL/SQL packages

generated classes for, 1-34

output, 1-8

translation, 1-11

with JPublisher, overview, 1-3
PL/SQL subprograms, translating top level, 2-20
properties files

overview, 1-7

structure and syntax, 2-25
props option (properties file), 2-19

R

reference types
inheritance, 1-51
representing in Java, 1-13
strongly typed, 1-14
release() method (releasing connection
contexts), 1-40, 3-43
requirements for JPublisher, 1-6

S

sample translation, 1-15

schema names, -omit_schema_names option, 2-17
setConnectionContext() method, 1-38

SQL name clause, translation statement, 2-26

sqgl option, 2-20

SQLData interface

object types and inheritance, 1-56

sample, generated SQLData class, 3-27

use by JPublisher, 1-3
SQLJ classes, generation and use, 1-34
strongly typed object references, 1-14
subclassing JPublisher classes, sample

program, 3-36

subclassing JPublisher-generated classes, 1-44
syntax, command line, 1-15

T

toplevel keyword (-sql option), 2-20
TRANSLATE...AS clause, translation
statement, 2-28
translation
declare objects/packages to translate, 2-20
of types, steps involved, 1-11
translation statement
in INPUT file, 2-26
sample statement, 2-31
type mappings--see datatype mappings
types option (deprecated), 2-22
types, creating in the database, 1-9

U

user option, 2-24
usertypes option, 2-7

\%

VARRAY types, creating in the database, 1-9
VARRAY, output, 1-8

\W

wrapper methods
for object, sample program, 3-41
-methods option, 2-17

Index-3

Index-4

	Send Us Your Comments
	Preface
	1 Understanding and Using JPublisher
	Understanding JPublisher
	Introduction to JPublisher
	What JPublisher Does
	What JPublisher Produces
	JPublisher Requirements
	JPublisher Input and Output
	Overview of Datatype Mappings
	Creating Types and Packages in the Database

	JPublisher Operation
	Translating and Using PL/SQL Packages and User-Defined Types
	Representing User-Defined Object, Collection, and Reference Types in Java
	Strongly Typed Object References for ORAData Implementations
	JPublisher Command-Line Syntax
	Sample JPublisher Translation

	Backwards Compatibility and Migration
	JPublisher Backwards Compatibility
	JPublisher Compatibility Between JDK Versions
	Migration Between Oracle8i JPublisher and Oracle9i JPublisher

	Details of Datatype Mapping
	Datatype Mapping Tables
	Allowed Object Attribute Types
	Using Datatypes Not Supported by JDBC

	Concepts of JPublisher-Generated Classes
	Passing OUT Parameters
	Translating Overloaded Methods

	JPublisher Generation of SQLJ Classes
	Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
	Use of Classes JPublisher Generates for Object Types
	Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher

	JPublisher Generation of Java Classes
	User-Written Subclasses of JPublisher-Generated Classes
	Extending JPublisher-Generated Classes
	Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes
	The setFrom() and setValueFrom() Methods

	JPublisher Support for Inheritance
	ORAData Object Types and Inheritance
	ORAData Reference Types and Inheritance
	SQLData Object Types and Inheritance
	Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE

	JPublisher Limitations

	2 Command-Line Options and Input Files
	JPublisher Options
	JPublisher Option Summary
	JPublisher Option Tips
	Notational Conventions
	Detailed Descriptions—Options That Affect Datatype Mappings
	Detailed Descriptions—General JPublisher Options

	JPublisher Input Files
	Properties File Structure and Syntax
	INPUT File Structure and Syntax
	INPUT File Precautions

	3 JPublisher Examples
	Example: JPublisher Translations with Different Mappings
	JPublisher Translation with the JDBC Mapping
	JPublisher Translation with the Oracle Mapping

	Example: JPublisher Object Attribute Mapping
	Listing and Description of Address.java Generated by JPublisher
	Listing of AddressRef.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher
	Listing of AlltypesRef.java Generated by JPublisher
	Listing of Ntbl.java Generated by JPublisher
	Listing of AddrArray.java Generated by JPublisher

	Example: Generating a SQLData Class
	Listing of Address.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher

	Example: Extending JPublisher Classes
	Example: Wrappers Generated for Methods in Objects
	Listing and Description of Rational.sqlj Generated by JPublisher

	Example: Wrappers Generated for Methods in Packages
	Listing and Description of RationalP.sqlj Generated by JPublisher

	Example: Using Classes Generated for Object Types
	Listing of RationalO.sql (Definition of Object Type)
	Listing of JPubRationalO.sqlj Generated by JPublisher
	Listing of RationalORef.java Generated by JPublisher
	Listing of RationalO.java Written by User
	Listing of TestRationalO.java Written by User

	Example: Using Classes Generated for Packages
	Listing of RationalP.sql (Definition of the Object Type and Package)
	Listing of TestRationalP.java Written by a User

	Example: Using Datatypes Not Supported by JDBC

	Index

