
Oracle9i

JPublisher User’s Guide

Release 1 (9.0.1)

June 2001

Part No. A90214-01

Oracle9i JPublisher User’s Guide, Release 1 (9.0.1)

Part No. A90214-01

Copyright © 1999, 2001 Oracle Corporation. All rights reserved.

Primary Authors: Brian Wright, Thomas Pfaeffle, P. Alan Thiesen

Contributing Author: Janice Nygard

Contributors: Ekkehard Rohwedder, Prabha Krishna, Ellen Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper, Oracle Net, Oracle Objects, Oracle9i, Oracle8i, Oracle8,
Oracle7, Oracle9i Lite, PL/SQL, Pro*C, SQL*Net, and SQL*Plus are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments .. vii

Preface.. ix

Intended Audience .. ix
Structure .. ix
Related Documents... x
Conventions... xii
Documentation Accessibility .. xii

1 Understanding and Using JPublisher

Understanding JPublisher .. 1-2
Introduction to JPublisher ... 1-2
What JPublisher Does .. 1-4
What JPublisher Produces... 1-4
JPublisher Requirements ... 1-6
JPublisher Input and Output .. 1-7
Overview of Datatype Mappings... 1-8
Creating Types and Packages in the Database... 1-9

JPublisher Operation ... 1-11
Translating and Using PL/SQL Packages and User-Defined Types 1-11
Representing User-Defined Object, Collection, and Reference Types in Java................... 1-13
Strongly Typed Object References for ORAData Implementations.................................... 1-14
JPublisher Command-Line Syntax... 1-15
Sample JPublisher Translation.. 1-15
 iii

Backwards Compatibility and Migration .. 1-21
JPublisher Backwards Compatibility... 1-21
JPublisher Compatibility Between JDK Versions .. 1-21
Migration Between Oracle8i JPublisher and Oracle9i JPublisher.. 1-22

Details of Datatype Mapping ... 1-26
Datatype Mapping Tables ... 1-27
Allowed Object Attribute Types... 1-28
Using Datatypes Not Supported by JDBC .. 1-29

Concepts of JPublisher-Generated Classes.. 1-30
Passing OUT Parameters ... 1-30
Translating Overloaded Methods .. 1-33

JPublisher Generation of SQLJ Classes ... 1-34
Use of SQLJ Classes JPublisher Generates for PL/SQL Packages....................................... 1-34
Use of Classes JPublisher Generates for Object Types .. 1-35
Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher 1-37

JPublisher Generation of Java Classes ... 1-41
User-Written Subclasses of JPublisher-Generated Classes .. 1-44

Extending JPublisher-Generated Classes .. 1-44
Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes 1-46
The setFrom() and setValueFrom() Methods.. 1-48

JPublisher Support for Inheritance ... 1-49
ORAData Object Types and Inheritance ... 1-49
ORAData Reference Types and Inheritance ... 1-51
SQLData Object Types and Inheritance .. 1-56
Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE..... 1-56

JPublisher Limitations ... 1-58

2 Command-Line Options and Input Files

JPublisher Options ... 2-2
JPublisher Option Summary ... 2-2
JPublisher Option Tips ... 2-4
Notational Conventions... 2-5
Detailed Descriptions—Options That Affect Datatype Mappings.. 2-6
Detailed Descriptions—General JPublisher Options... 2-11

JPublisher Input Files .. 2-25
iv

Properties File Structure and Syntax ... 2-25
INPUT File Structure and Syntax... 2-26
INPUT File Precautions ... 2-32

3 JPublisher Examples

Example: JPublisher Translations with Different Mappings... 3-2
JPublisher Translation with the JDBC Mapping .. 3-2
JPublisher Translation with the Oracle Mapping .. 3-5

Example: JPublisher Object Attribute Mapping .. 3-8
Listing and Description of Address.java Generated by JPublisher..................................... 3-10
Listing of AddressRef.java Generated by JPublisher .. 3-13
Listing of Alltypes.java Generated by JPublisher .. 3-14
Listing of AlltypesRef.java Generated by JPublisher .. 3-20
Listing of Ntbl.java Generated by JPublisher ... 3-21
Listing of AddrArray.java Generated by JPublisher... 3-24

Example: Generating a SQLData Class .. 3-27
Listing of Address.java Generated by JPublisher .. 3-27
Listing of Alltypes.java Generated by JPublisher .. 3-29

Example: Extending JPublisher Classes ... 3-36
Example: Wrappers Generated for Methods in Objects.. 3-41

Listing and Description of Rational.sqlj Generated by JPublisher...................................... 3-43
Example: Wrappers Generated for Methods in Packages ... 3-48

Listing and Description of RationalP.sqlj Generated by JPublisher 3-50
Example: Using Classes Generated for Object Types .. 3-53

Listing of RationalO.sql (Definition of Object Type)... 3-55
Listing of JPubRationalO.sqlj Generated by JPublisher.. 3-56
Listing of RationalORef.java Generated by JPublisher ... 3-60
Listing of RationalO.java Written by User.. 3-61
Listing of TestRationalO.java Written by User .. 3-63

Example: Using Classes Generated for Packages ... 3-65
Listing of RationalP.sql (Definition of the Object Type and Package)................................ 3-66
Listing of TestRationalP.java Written by a User .. 3-68

Example: Using Datatypes Not Supported by JDBC ... 3-70
 v

vi

Send Us Your Comments

Oracle9i JPublisher User’s Guide, Release 1 (9.0.1)

Part No. A90214-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

This user’s guide describes the Oracle JPublisher utility, which translates
user-defined SQL object types and PL/SQL packages to Java classes. SQLJ and
JDBC programmers who need to have Java classes in their applications to
correspond to object types, VARRAY types, nested table types, object reference
types, or PL/SQL packages can use the JPublisher utility.

Intended Audience
This manual assumes that you are an experienced Java programmer with
knowledge of Oracle databases, SQL, PL/SQL, JDBC, and SQLJ.

Structure
This manual contains the following chapters:

■ Chapter 1, "Understanding and Using JPublisher"—Introduces the JPublisher
utility and provides an overview of its operations, including details regarding
datatype mappings, generation of output classes, and support for inheritance.

■ Chapter 2, "Command-Line Options and Input Files"—Describes the JPublisher
command line, command line options, and input files.

■ Chapter 3, "JPublisher Examples"—Presents examples of JPublisher output for
object types and wrapper methods.
 ix

Related Documents
See the following additional documents available from the Oracle Java Platform
group:

■ Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of Oracle’s implementation
of the JDBC standard (for Java Database Connectivity). This includes an
overview of the Oracle JDBC drivers, details of Oracle’s implementation of
JDBC 1.22 and 2.0 features, and discussion of Oracle JDBC type extensions and
performance extensions.

■ Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

■ Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs), is in this book.

■ Oracle9i Servlet Engine Developer’s Guide

This book documents use of the Oracle9i Servlet Engine, the servlet container in
Oracle9i.

■ Oracle JavaServer Pages Developer’s Guide and Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described.

■ Oracle9i Java Tools Reference

This book documents Java-related tools and utilities for use with Oracle9i or in
deploying applications to Oracle9i (such as the session shell and loadjava
tools).

■ Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in
Oracle9i. With stored procedures (functions, procedures, triggers, and SQL
x

methods), Java developers can implement business logic at the server level,
thereby improving application performance, scalability, and security.

■ Oracle9i Enterprise JavaBeans Developer’s Guide and Reference

This book describes Oracle’s Enterprise JavaBeans implementation and
extensions.

■ Oracle9i CORBA Developer’s Guide and Reference

This book describes Oracle’s CORBA implementation and extensions.

The following documents from the Oracle Server Technologies group also contain
information of interest and are referred to.

■ Oracle9i SQL Reference

This reference book contains a complete description of the content and syntax of
the Structured Query Language (SQL) used to manage information in an Oracle
database.

■ PL/SQL User’s Guide and Reference

PL/SQL is Oracle’s procedural extension to SQL. An advanced
fourth-generation programming language, PL/SQL offers seamless SQL access,
tight integration with the Oracle server and tools, portability, security, and
features such as data encapsulation, overloading, exception handling, and
information hiding. This guide explains the concepts behind PL/SQL and
illustrates facets of the language.

Information about JDBC is also available at the following Sun Microsystems Web
site:

http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/

In particular, refer to the following Sun Microsystems specifications:

■ JDBC 2.0 API

■ JDBC 2.0 Standard Extension API
 xi

Conventions
This book uses Solaris syntax. However, file names and directory names for
Windows NT are the same, unless otherwise noted.

The term [ORACLE_HOME] indicates the full path of the Oracle home directory.

Additionally, this manual uses the following conventions.

For more information, see "Notational Conventions" on page 2-5.

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at:

http://www.oracle.com/accessibility/

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

. . . Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text within regular text indicates class names,
object names, method names, variable names, Java types,
Oracle datatypes, file names, and directory names.

italicized_code_text Italicized code text in a program statement indicates
something that must be provided by the user.

<italicized_code_text > Angle brackets enclosing italicized code text in a
program statement indicates something that can
optionally be provided by the user.
xii

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.
 xiii

xiv

 Understanding and Using JPub
1

Understanding and Using JPublisher

This chapter provides an overview of JPublisher followed by more detailed
discussion of its operation. The following topics are covered:

■ Understanding JPublisher

■ JPublisher Operation

■ Backwards Compatibility and Migration

■ Details of Datatype Mapping

■ Concepts of JPublisher-Generated Classes

■ JPublisher Generation of SQLJ Classes

■ JPublisher Generation of Java Classes

■ User-Written Subclasses of JPublisher-Generated Classes

■ JPublisher Support for Inheritance

■ JPublisher Limitations
lisher 1-1

Understanding JPublisher
Understanding JPublisher
This section provides a basic understanding of what JPublisher is for and what it
accomplishes, covering the following topics:

■ Introduction to JPublisher

■ What JPublisher Does

■ What JPublisher Produces

■ JPublisher Requirements

■ JPublisher Input and Output

■ Overview of Datatype Mappings

■ Creating Types and Packages in the Database

Introduction to JPublisher
JPublisher is a utility, written entirely in Java, that generates Java classes to
represent the following user-defined database entities in your Java program:

■ SQL object types

■ object reference types ("REF types")

■ SQL collection types (VARRAY types or nested table types)

■ PL/SQL packages

JPublisher enables you to specify and customize the mapping of SQL object types,
object reference types, and collection types (VARRAYs or nested tables) to Java
classes in a strongly typed paradigm.

JPublisher generates getXXX() and setXXX() accessor methods for each attribute
of an object type. If your object types have stored procedures, JPublisher can
generate wrapper methods to invoke the stored procedures. A wrapper method is a
method that invokes a stored procedure that executes in Oracle9i.

JPublisher can also generate classes for PL/SQL packages. These classes have
wrapper methods to invoke the stored procedures in the PL/SQL packages.

The wrapper methods JPublisher generates contain SQLJ code, so when JPublisher
generates wrapper methods, it generally produces .sqlj source files. This is true
for classes representing PL/SQL packages or object types that define methods,
unless you specify (through the -methods option) that JPublisher should not
generate wrapper methods.
1-2 JPublisher User’s Guide

Understanding JPublisher
If no wrapper methods are generated, JPublisher produces .java source files. This
is true for classes representing object types without methods, object reference types,
or collection types, or for classes where the -methods option is off.

Instead of using JPublisher-generated classes directly, you can:

■ Extend the generated classes.

■ Write your own Java classes by hand, without using JPublisher. This approach
is quite flexible, but time-consuming and error-prone.

■ Use generic classes to represent object, object reference, and collection types.
The oracle.sql package contains simple generic classes that represent object,
object reference, and collection types. If these classes meet your requirements,
you do not need JPublisher.

Object Types and JPublisher
JPublisher allows your Java language applications to employ user-defined object
types in Oracle9i. If you intend to have your Java-language application access object
data, then it must represent the data in a Java format. JPublisher helps you do this
by creating the mapping between object types and Java classes, and between object
attribute types and their corresponding Java types.

Classes generated by JPublisher implement either the oracle.sql.ORAData
interface or the java.sql.SQLData interface, depending on how you set the
JPublisher options. Either interface makes it possible to transfer object type
instances between the database (or middle-tier database cache) and your Java
program. For more information about the ORAData and SQLData interfaces, see the
Oracle9i JDBC Developer’s Guide and Reference.

PL/SQL Packages and JPublisher
You might want to call stored procedures in a PL/SQL package from your Java
application. The stored procedure can be a PL/SQL subprogram or a Java method
that has been published to SQL. Java arguments and functions are passed to and
returned from the stored procedure.

To help you do this, you can direct JPublisher to create a class containing a wrapper
method for each subprogram in the package. The wrapper methods generated by
JPublisher provide a convenient way to invoke PL/SQL stored procedures from
Java code or to invoke a Java stored procedure from a client Java program.
 Understanding and Using JPublisher 1-3

Understanding JPublisher
If you call PL/SQL code that includes top-level subprograms (subprograms not in
any PL/SQL package), JPublisher generates a single class containing wrapper
methods for the top-level subprograms you request.

What JPublisher Does
JPublisher connects to a database and retrieves descriptions of the SQL object types
or PL/SQL packages that you specify on the command line or from an input file. By
default, JPublisher connects to the database by using the JDBC OCI driver, which
requires an Oracle client installation, including Oracle Net and required support
files. If you do not have an Oracle client installation, JPublisher can use the Oracle
JDBC Thin driver.

JPublisher generates a Java class for each SQL object type it translates. The Java
class includes code required to read objects from and write objects to the database.
When you deploy the generated JPublisher classes, your JDBC driver installation
includes all the necessary runtime files. If you create wrapper methods (Java
methods to wrap stored procedures or functions of the SQL object type), JPublisher
generates SQLJ source code so you must additionally have the SQLJ runtime
libraries.

When you call a wrapper method, the SQL value for the object is sent to the server,
along with any IN our IN OUT arguments. Then the method (stored procedure or
function) is invoked, and the new object value is returned to the client, along with
any OUT or IN OUT arguments.

JPublisher also generates a class for each PL/SQL package it translates. The class
includes code to invoke the package methods on the server. IN arguments for the
methods are transmitted from the client to the server, and OUT arguments and
results are returned from the server to the client.

The next section furnishes a general description of the source files that JPublisher
creates for object types and PL/SQL packages.

What JPublisher Produces
The number of files JPublisher produces depends on whether you request ORAData
classes (classes that implement the oracle.sql.ORAData interface) or SQLData
classes (classes that implement the standard java.sql.SQLData interface).

The ORAData interface supports SQL object, object reference, and collection types in
a strongly typed way. That is, for each specific object, object reference, or collection
type in the database, there is a corresponding Java type. The SQLData interface, on
the other hand, supports only SQL object types in a strongly typed way. All object
1-4 JPublisher User’s Guide

Understanding JPublisher
reference types are represented generically as java.sql.Ref instances, and all
collection types are represented generically as java.sql.Array instances.
Therefore, JPublisher generates classes for object reference and collection types only
if it is generating ORAData classes.

When you run JPublisher for a user-defined object type and you request ORAData
classes, JPublisher automatically creates the following:

■ an object class that represents instances of the Oracle object type in your Java
program

■ a related reference class for object references to your Oracle object type

■ Java classes for any object or collection attributes nested directly or indirectly
within the top-level object (necessary so that attributes can be materialized in
Java whenever an instance of the top-level class is materialized)

If, instead, you request SQLData classes, JPublisher does not generate the object
reference class and does not generate classes for nested collection attributes.

When you run JPublisher for a user-defined collection type, you must request
ORAData classes. JPublisher automatically creates the following:

■ a collection class to act as a type definition to correspond to your Oracle
collection type

■ if the elements of the collection are objects, a Java class for the element type, and
Java classes for any object or collection attributes nested directly or indirectly
within the element type (necessary so object elements can be materialized in
Java whenever an instance of the collection is materialized)

When you run JPublisher for a PL/SQL package, it automatically creates the
following:

■ a Java class with wrapper methods that invoke the stored procedures of the
package

Note: For ORAData implementations, a strongly typed reference
class is always generated, regardless of whether the SQL object type
uses references.

Advantages of using strongly typed instead of weakly typed
references are described in "Strongly Typed Object References for
ORAData Implementations" on page 1-14.
 Understanding and Using JPublisher 1-5

Understanding JPublisher
JPublisher Requirements
JPublisher requires that Oracle SQLJ and Oracle JDBC also be installed on your
system and in your classpath appropriately. You will need the following libraries
(all available as either .zip or .jar):

■ SQLJ translator classes (translator)

■ SQLJ runtime classes (runtime12, runtime12ee, runtime11, runtime, or
runtime-nonoracle)

■ JDBC classes (classes12 or classes111)

"12" refers to versions for JDK 1.2.x; "11" and "111" refer to versions for JDK 1.1.x. See
the Oracle9i SQLJ Developer’s Guide and Reference for more information about these
files.

When you use Oracle9i JPublisher, you should also use the equivalent version of
SQLJ, because these two products are always installed together. To use all features
of JPublisher, you also need:

■ Oracle9i (or version 8.1.7 or 8.1.6)

■ Oracle9i JDBC drivers (or version 8.1.7 or 8.1.6)

■ Java Developer’s Kit (JDK) version 1.2

If you are using only some features of JPublisher, your requirements might be less
stringent:

■ If you never generate SQLData classes, and you never use the
java.sql.Blob and java.sql.Clob classes, you can use JDK version 1.1.x
instead of JDK 1.2.x.

■ If you never generate code for PL/SQL packages, you can use Oracle database
version 8.1.5.

■ If you never generate classes that implement the Oracle-specific ORAData
interface (or the deprecated CustomDatum interface), you should be able to use
a non-Oracle JDBC driver or a non-Oracle SQLJ implementation. When running
code generated by JPublisher, you should even be able to connect to a
non-Oracle database; however, JPublisher itself must connect to an Oracle
database. Oracle does not test or support configurations that use non-Oracle
components.

■ If you never use PL/SQL packages or classes that implement the SQLData
interface (that is, you use JPublisher to generate only classes that implement the
ORAData interface or the deprecated CustomDatum interface), you can use
1-6 JPublisher User’s Guide

Understanding JPublisher
Oracle database version 8.1.5 with JDBC version 8.1.5 and JDK version 1.1.x or
higher. (Be aware that the ORAData interface requires the Oracle9i or higher
JDBC implementation.)

■ If you instruct JPublisher to not generate wrapper methods (through the setting
-methods=false), or if your object types define no methods, then JPublisher
will not generate wrapper methods or produce any .sqlj files. In this case,
you would not need the SQLJ translator. See "Generate Classes for Packages
and Wrapper Methods for Methods (-methods)" on page 2-17 for information
about the -methods option.

JPublisher Input and Output
You can specify input options on the command line and in the properties file. In
addition to producing .sqlj and .java files for the translated objects, JPublisher
writes the names of the translated objects and packages to standard output.

JPublisher Input
You can specify JPublisher options on the command line or in a properties file.
"JPublisher Options" on page 2-2 describes all the JPublisher options.

In addition, you can use a file known as the INPUT file to specify the object types
and PL/SQL packages JPublisher should translate. It also controls the naming of the
generated packages and classes. "INPUT File Structure and Syntax" on page 2-26
describes INPUT file syntax.

A properties file is an optional text file that you can use to specify frequently-used
options. You name the properties file on the command line. JPublisher processes the
properties file as if its contents were inserted, in sequence, on the command line at
that point. For more information about this file, see "Properties File Structure and
Syntax" on page 2-25.

JPublisher Output
JPublisher generates a Java class for each object type that it translates. For each
object type, JPublisher generates a <type>.sqlj file (or a <type>.java file if
wrapper methods were suppressed or do not exist) for the class code and a
<type>Ref.java file for the code for the REF class of the Java type. For example,
if you define an EMPLOYEE SQL object type, JPublisher generates an
employee.sqlj file (or an employee.java file) and an employeeRef.java
file. Note that the case of Java class names produced by JPublisher is determined by
the -case option. See "Case of Java Identifiers (-case)" on page 2-12.
 Understanding and Using JPublisher 1-7

Understanding JPublisher
For each collection type (nested table or VARRAY) it translates, JPublisher generates
a <type>.java file. For nested tables, the generated class has methods to get and
set the nested table as an entire array and to get and set individual elements of the
table. JPublisher translates collection types when generating ORAData classes, but
not when generating SQLData classes.

For PL/SQL packages, JPublisher generates classes containing wrapper methods as
.sqlj files.

When JPublisher generates the class files and wrappers, it also writes the names of
the translated types and packages to standard output.

Overview of Datatype Mappings
JPublisher offers different categories of datatype mappings from SQL to Java.
JPublisher options to specify these mappings are described below, under "Detailed
Descriptions—Options That Affect Datatype Mappings" on page 2-6.

Each type mapping option has at least two possible values: jdbc and oracle. The
-numbertypes option has two additional alternatives: objectjdbc and
bigdecimal.

The following sections describe these categories of mappings.

For more information about datatype mappings, see "Details of Datatype Mapping"
on page 1-26.

JDBC Mapping
 The JDBC mapping maps most numeric datatypes to Java primitive types such as
int and float, and maps DECIMAL and NUMBER to java.math.BigDecimal.
LOB types and other non-numeric built-in types map to standard JDBC Java types
such as java.sql.Blob and java.sql.Timestamp. For object types, JPublisher
generates SQLData classes. Predefined datatypes that are Oracle extensions (such
as BFILE and ROWID) do not have JDBC mappings, so only the oracle.sql.*
mapping is supported for these types.

The Java primitive types used in the JDBC mapping do not support null values and
do not guard against integer overflow or floating-point loss of precision. If you are
using the JDBC mapping and you attempt to call an accessor or method to get an
attribute of a primitive type (short, int, float, or double) whose value is
null, an exception is thrown. If the primitive type is short or int, then an
exception is thrown if the value is too large to fit in a short or int variable.
1-8 JPublisher User’s Guide

Understanding JPublisher
Object JDBC Mapping
The Object JDBC mapping maps most numeric datatypes to Java wrapper classes
such as java.lang.Integer and java.lang.Float, and maps DECIMAL and
NUMBER to java.math.BigDecimal. It differs from the JDBC mapping only in
that it does not use primitive types.

When you use the Object JDBC mapping, all your returned values are objects. If you
attempt to get an attribute whose value is null, a null object is returned.

The Java wrapper classes used in the Object JDBC mapping do not guard against
integer overflow or floating-point loss of precision. If you call an accessor method to
get an attribute that maps to java.lang.Integer, an exception is thrown if the
value is too large to fit.

This is the default mapping for numeric types.

BigDecimal Mapping
BigDecimal mapping, as the name implies, maps all numeric datatypes to
java.math.BigDecimal. It supports null values and very large values.

Oracle Mapping
In the Oracle mapping, JPublisher maps any numeric, LOB, or other built-in type to
a class in the oracle.sql package. For example, the DATE type is mapped to
oracle.sql.DATE, and all numeric types are mapped to oracle.sql.NUMBER.
For object, collection, and object reference types, JPublisher generates ORAData
classes.

Because the Oracle mapping uses no primitive types, it can represent a null value as
a Java null in all cases. Because it uses the oracle.sql.NUMBER class for all
numeric types, it can represent the largest numeric values that can be stored in the
database.

Creating Types and Packages in the Database
Before you run JPublisher, you must create any new datatypes that you will require
in the database. You must also ensure that any PL/SQL packages, methods, and
subprograms that you want to invoke from Java are also installed in Oracle9i.

Use the SQL CREATE TYPE statement to create object, VARRAY, and nested table
types in the database. JPublisher supports the mapping of these datatypes to Java
classes. JPublisher also generates classes for references to object types. REF types are
 Understanding and Using JPublisher 1-9

Understanding JPublisher
not explicitly declared in SQL. For more information on creating object types, see
the Oracle9i SQL Reference.

Use the CREATE PACKAGE and CREATE PACKAGE BODY statements to create
PL/SQL packages and store them in the database. PL/SQL furnishes all the
capabilities necessary to implement the methods associated with object types. These
methods (functions and procedures) reside on the server as part of a user’s schema.
You can implement the methods in PL/SQL or Java.

Packages are often implemented to provide the following advantages:

■ encapsulation of related procedures and variables

■ declaration of public and private procedures, variables, constants, and cursors

■ better performance

For more information on PL/SQL and creating PL/SQL packages, see the PL/SQL
User’s Guide and Reference.
1-10 JPublisher User’s Guide

JPublisher Operation
JPublisher Operation
This section discusses the basic steps in using JPublisher, describes the
command-line syntax, and concludes with a sample translation. The following
topics are covered:

■ Translating and Using PL/SQL Packages and User-Defined Types

■ Representing User-Defined Object, Collection, and Reference Types in Java

■ Strongly Typed Object References for ORAData Implementations

■ JPublisher Command-Line Syntax

■ Sample JPublisher Translation

Translating and Using PL/SQL Packages and User-Defined Types
Here are the basic steps for translating and using code for user-defined types and
PL/SQL packages. (User-defined types include Oracle objects and Oracle
collections—VARRAYs and nested tables.)

1. Create the desired user-defined datatypes and PL/SQL packages in the
database.

2. JPublisher generates source code for Java classes that represent PL/SQL
packages, user-defined types, and reference types and places them in specified
Java packages. JPublisher generates .java files for object reference, VARRAY,
and nested table classes. If you instruct JPublisher to generate wrapper
methods, it will generate .sqlj files for packages and object types (assuming
the object types have methods). If you instruct JPublisher to not generate
wrapper methods, it will generate .java files without wrapper methods for
object types and will not generate classes for packages (because they contain
only wrapper methods). For object types without methods, JPublisher generates
.java files in any case.

3. Import these classes into your application code.

4. Use the methods in the generated classes to access and manipulate the
user-defined types and their attributes.

5. Compile all classes (the JPublisher-generated code and your code). SQLJ
translates the .sqlj files, and the Java compiler compiles the .java files.

6. Run your compiled application.

Figure 1-1 illustrates the preceding steps.
 Understanding and Using JPublisher 1-11

JPublisher Operation
Figure 1–1 Translating and Using Object Code

SQL DDL
command line

and
properties file

INPUT
file

User-written
.java and .sqlj
source files

Generated .java
and .sqlj

source files

SQLJ or Java
Compiler

JDBC driver and/or
SQLJ runtime

.class files

.class files
and

.ser resource files

Executed by
Java VM

JPublisher
object type,

package, and
subprogram
definitions

ORACLE
Database
1-12 JPublisher User’s Guide

JPublisher Operation
Representing User-Defined Object, Collection, and Reference Types in Java
Here are the three ways to represent user-defined object, collection, and object
reference types in your Java program:

■ Use classes that implement the ORAData interface.

JPublisher generates classes that implement the ORAData interface. (You can
also write them by hand, but this is not generally recommended.)

■ Use classes that implement the SQLData interface, as described in the JDBC 2.0
API.

JPublisher generates classes for SQL object types that implement the SQLData
interface. (You can also write them by hand, but this is not generally
recommended. Be aware that if you write them by hand, or if you generate
classes for an inheritance hierarchy of object types, your classes must be
registered using a type map.)

When you use the SQLData interface, all object reference types are represented
generically as java.sql.Ref instances, and all collection types are
represented generically as java.sql.Array instances.

■ Use oracle.sql.* classes.

You can use the oracle.sql.* classes to represent user-defined types
generically. The class oracle.sql.STRUCT represents all object types, the
class oracle.sql.ARRAY represents all VARRAY and nested table types, and
the class oracle.sql.REF represents all REF types. These classes are
immutable in the same way that java.lang.String is.

Compared to classes that implement SQLData, classes that implement ORAData are
fundamentally more efficient, because ORAData classes avoid unnecessary
conversions to native Java types. For a comparison of the SQLData and ORAData
interfaces, see the Oracle9i JDBC Developer’s Guide and Reference.

Compared to oracle.sql.* classes, classes that implement ORAData or SQLData
are strongly typed. Your connected SQLJ translator will detect an error at
translation time if, for example, you mistakenly select a PERSON object into an
ORAData object that represents an ADDRESS.

JPublisher-generated classes that implement ORAData or SQLData have additional
advantages:

■ The classes are customized, rather than generic. You access attributes of an
object using getXXX() and setXXX() methods named after the particular
 Understanding and Using JPublisher 1-13

JPublisher Operation
attributes of the object. Note that you have to explicitly update the object in the
database if there are any changes to its data.

■ The classes are mutable. You can generally modify attributes of an object or
elements of a collection. The exception is that ORAData classes representing
object reference types are not mutable, because an object reference does not
have any subcomponents that could be sensibly modified. You can, however,
use the setValue() method of a reference object to change the database value
that the reference points to.

Strongly Typed Object References for ORAData Implementations
For Oracle ORAData implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed oracle.sql.REF
class. This is to provide greater type safety and to mirror the behavior in SQL,
where object references are strongly typed. The strongly typed classes (with names
such as PersonRef for references to PERSON objects) are essentially wrappers for
the REF class.

In these strongly typed REF wrappers, there is a getValue() method that
produces an instance of the SQL object that is referenced, in the form of an instance
of the corresponding Java class. (Or, in the case of inheritance, perhaps as an
instance of a subclass of the corresponding Java class.) For example, if there is a
PERSON object type in the database, with a corresponding Person Java class, there
will also be a PersonRef Java class. The getValue() method of the PersonRef
class would return a Person instance containing the data for a PERSON object in the
database.

Whenever a SQL object type has an attribute that is an object reference, the Java
class corresponding to the object type would have an attribute that is an instance of
a Java class corresponding to the appropriate reference type. For example, if there is
a PERSON object with a MANAGER REF attribute, then the corresponding Person
Java class will have a ManagerRef attribute.

For standard SQLData implementations, strongly typed object references are not
supported—they are not part of the standard. JPublisher does not create a custom
reference class; you must use java.sql.Ref or oracle.sql.REF as the reference
type.
1-14 JPublisher User’s Guide

JPublisher Operation
JPublisher Command-Line Syntax
On most operating systems, you invoke JPublisher on the command line, typing
jpub followed by a series of options settings as follows:

jpub -option1=value1 -option2=value2 ...

JPublisher responds by connecting to the database and obtaining the declarations of
the types or packages you specify, then generating one or more custom Java files
and writing the names of the translated object types or PL/SQL packages to
standard output.

Here is an example of a command that invokes JPublisher (this is a single
wrap-around command line):

jpub -user=scott/tiger -input=demoin -numbertypes=oracle -usertypes=oracle
-dir=demo -package=corp

You enter the command on one line, allowing it to wrap as necessary. For clarity,
this chapter refers to the input file (the file specified by the -input option) as the
INPUT file (to distinguish it from any other kinds of input files).

This command directs JPublisher to connect to the database with username SCOTT
and password TIGER and translate datatypes to Java classes, based on instructions
in the INPUT file demoin. The -numbertypes=oracle option directs JPublisher
to map object attribute types to Java classes supplied by Oracle, and the
-usertypes=oracle option directs JPublisher to generate Oracle-specific
ORAData classes. JPublisher places the classes that it generates in the package corp
in the directory demo.

"JPublisher Options" on page 2-2 describes each of these options in more detail.

Sample JPublisher Translation
This section provides a sample JPublisher translation of an object type. At this point,
do not worry about the details of the code JPublisher generates. You can find more
information about JPublisher input and output files, options, datatype mappings,
and translation later in this manual.

Notes:

■ No spaces are permitted around the equals sign (=).

■ If you execute JPublisher without any options on the command
line, it displays an option list and then terminates.
 Understanding and Using JPublisher 1-15

JPublisher Operation
Create the object type EMPLOYEE:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno INTEGER,
 deptno NUMBER,
 hiredate DATE,
 salary REAL
);

The INTEGER, NUMBER, and REAL types are all stored in the database as NUMBER
types, but after translation they have different representations in the Java program,
based on your choice for the value of the -numbertypes option.

JPublisher translates the types according to the following command line:

jpub -user=scott/tiger -dir=demo -numbertypes=objectjdbc -builtintypes=jdbc
-package=corp -case=mixed -sql=Employee

(This is a single wrap-around command line.)

"JPublisher Options" on page 2-2 describes each of these options in detail.

Note that because the EMPLOYEE object type does not define any methods,
JPublisher will generate a .java file, not a .sqlj file.

Because -dir=demo and -package=corp were specified on the JPublisher
command line, the translated class Employee is written to Employee.java in the
following location:

./demo/corp/Employee.java (UNIX)

.\demo\corp\Employee.java (Windows NT)

The Employee.java class file would contain the code below.

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;

Note: The details of the code JPublisher generates are subject to
change. In particular, non-public methods, non-public fields, and
all method bodies may be generated differently.
1-16 JPublisher User’s Guide

JPublisher Operation
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 12, 4, 2, 91, 7
 };

 static ORADataFactory[] _factory = new ORADataFactory[5];

 static final Employee _EmployeeFactory = new Employee();
 public static ORADataFactory getORADataFactory()
 {
 return _EmployeeFactory;
 }

 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory); }
 public Employee()
 { this(true); }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 Understanding and Using JPublisher 1-17

JPublisher Operation
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* accessor methods */
 public String getName() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setName(String name) throws SQLException
 { _struct.setAttribute(0, name); }

 public Integer getEmpno() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setEmpno(Integer empno) throws SQLException
 { _struct.setAttribute(1, empno); }

 public java.math.BigDecimal getDeptno() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(2); }

 public void setDeptno(java.math.BigDecimal deptno) throws SQLException
 { _struct.setAttribute(2, deptno); }

 public java.sql.Timestamp getHiredate() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(3); }

 public void setHiredate(java.sql.Timestamp hiredate) throws SQLException
 { _struct.setAttribute(3, hiredate); }

 public Float getSalary() throws SQLException
 { return (Float) _struct.getAttribute(4); }

 public void setSalary(Float salary) throws SQLException
 { _struct.setAttribute(4, salary); }

}

1-18 JPublisher User’s Guide

JPublisher Operation
Code Generation Notes

■ For Oracle9i releases (as well as Oracle8i release 8.1.7), there is a protected
_struct field in JPublisher-generated code for SQL object types. This is an
instance of the internal class MutableStruct; this instance contains the data in
original SQL format. In general, you should not reference this field directly.
Instead, use the setting -methods=always or -methods=named as necessary
to ensure that JPublisher produces .sqlj files, then use the methods
setFrom() and setValueFrom() when subclassing. See "The setFrom() and
setValueFrom() Methods" on page 1-48.

■ In Oracle8i compatibility mode, there is also a protected _ctx field that is a
SQLJ connection context instance. See "Oracle8i Compatibility Mode" on
page 1-24 for more information.

■ Note that Oracle8i JPublisher would generate implementations of the
now-deprecated CustomDatum and CustomDatumFactory interfaces, instead
of ORAData and ORADataFactory. In fact, it is still possible to do this through
the JPublisher -compatible option, and this is required if you are using an
Oracle8i JDBC driver.

JPublisher also generates an EmployeeRef.java class. The source code is
displayed here:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class EmployeeRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

 static final EmployeeRef _EmployeeRefFactory = new EmployeeRef();
 public static ORADataFactory getORADataFactory()
 {
 Understanding and Using JPublisher 1-19

JPublisher Operation
 return _EmployeeRefFactory;
 }

 /* constructor */
 public EmployeeRef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(java.sql.Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 EmployeeRef r = new EmployeeRef();
 r._ref = (REF) d;
 return r;
 }
 public Employee getValue() throws SQLException
 {
 return (Employee) Employee.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Employee c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

You can find more examples of object mappings in "Example: JPublisher Object
Attribute Mapping" on page 3-8.
1-20 JPublisher User’s Guide

Backwards Compatibility and Migration
Backwards Compatibility and Migration
This section discusses issues of backwards compatibility, compatibility between JDK
versions, and migration between Oracle8i and Oracle9i releases of JPublisher.

JPublisher Backwards Compatibility
The JPublisher runtime is packaged with Oracle JDBC in the classes111 or
classes12 library. Code generated by an earlier version of JPublisher will:

■ continue to run with the current release of the JPublisher runtime

■ continue to be compilable against the current release of the JPublisher runtime

If you use an earlier release of the JPublisher runtime and Oracle JDBC in
generating code, the code will be compilable against that version of the JPublisher
runtime. Specifically, when you use an Oracle8i JDBC driver, JPublisher will
generate code for the now-deprecated CustomDatum interface, not the ORAData
interface that replaced it.

JPublisher Compatibility Between JDK Versions
Generally speaking, .sqlj files generated by JPublisher can be translated under
either JDK 1.1.x (assuming you are not using JDBC 2.0-specific types) or JDK 1.2.x
or higher. However, if you intend to translate and compile in separate steps (setting
-compile=false in SQLJ so that only .java files, not .class files, are
produced), then you must use the same JDK version for compilation as for
translation unless you use a special JPublisher option setting.

In this situation (translating and compiling in separate steps), the JPublisher default
setting -context=DefaultContext results in generation of .sqlj files that are
completely compatible between JDK 1.1.x and JDK 1.2.x or higher. (With this
setting, for example, you could translate against JDK 1.1.x but still compile against
JDK 1.2.x successfully.)

In this situation, all generated .sqlj files use the
sqlj.runtime.ref.DefaultContext class for all connection contexts. This is
as opposed to the setting -context=generated, which results in each generated
.sqlj file declaring its own connection context inner class. This was the Oracle8i
JPublisher default behavior, and is what makes translated .java code incompatible
between JDK 1.1.x and 1.2.x or higher.

See "SQLJ Connection Context Classes (-context)" on page 2-13 for more information
about the -context option.
 Understanding and Using JPublisher 1-21

Backwards Compatibility and Migration
See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
connection contexts.

Migration Between Oracle8i JPublisher and Oracle9i JPublisher
In Oracle9i JPublisher, default option settings and some features of the generated
code have changed. If you wrote an application using JPublisher release 8.1.7 or
earlier, it is unlikely that you will be able to simply re-run JPublisher in Oracle9i and
have the generated classes still work within your application. This section describes
how to modify your JPublisher option settings or your application code
appropriately.

Changes in Behavior in Oracle9i JPublisher
Be aware of the following changes in JPublisher behavior in Oracle9i:

■ By default, JPublisher no longer declares the inner SQLJ connection context
class _Ctx for every object type. Instead, it uses the connection context class
sqlj.runtime.ref.DefaultContext throughout.

Also, user-written code must call the getConnectionContext() method to
have a connection context handle, instead of using the _ctx connection context
field that was declared under Oracle8i code generation. See "Considerations in
Using Connection Contexts and Connection Instances" on page 1-38 for more
information about the getConnectionContext() method.

■ The setting -methods=true will result in .java files being generated instead
of .sqlj files if the underlying SQL object type or PL/SQL package does not
define any methods.

Important: With some JPublisher option settings under JDK 1.1.x
there is risk of memory leakage caused by SQLJ connection context
instances that are not closed. See "Releasing Connection Context
Resources" on page 1-40 for information.

Note: Also see "Changes in User-Written Subclasses of Oracle9i
JPublisher-Generated Classes" on page 1-46 for differences between
Oracle8i functionality and Oracle9i functionality for classes that
extend JPublisher-generated classes.
1-22 JPublisher User’s Guide

Backwards Compatibility and Migration
■ By default, JPublisher now generates code that implements the
oracle.sql.ORAData interface instead of the deprecated
oracle.sql.CustomDatum interface.

■ By default, JPublisher now simply places generated code into the current
directory, rather than into a package-directory hierarchy under the current
directory.

See the following sections, "Individual Settings to Force JPublisher Behavior as in
Previous Releases" and "Oracle8i Compatibility Mode", for information about how
to revert to Oracle8i behavior instead.

Individual Settings to Force JPublisher Behavior as in Previous Releases
In Oracle9i, if you want JPublisher to behave as it did in release 8.1.7 and prior,
there are a number of individual backwards-compatibility options you can set.
These are detailed in Table 1–1. See descriptions of these options under "Detailed
Descriptions—General JPublisher Options" on page 2-11 for more information.

See "Oracle8i Compatibility Mode" on page 1-24 for a single setting that results in
the same behavior as for Oracle8i JPublisher—backwards-compatible code
generation plus behavior that is equivalent to what would happen with the
combination of these individual option settings.

Table 1–1 JPublisher Backwards-Compatibility Options

Option Setting Behavior

-context=generated This results in the declaration of an inner class, _Ctx, for
SQLJ connection contexts. This is used instead of the default
DefaultContext class or user-specified connection context
classes.

-methods=always This forces generation of .sqlj (as opposed to .java)
source files for all JPublisher-generated classes, regardless of
whether the underlying SQL object or package actually
defines any methods.

-compatible=customdatum For Oracle-specific object wrappers, this results in JPublisher
implementing the older oracle.sql.CustomDatum and
CustomDatumFactory interfaces (both deprecated but still
supported in Oracle9i) instead of the newer
oracle.sql.ORAData and ORADataFactory interfaces.

-dir=. Setting this option to "." (a period or "dot") results in
generation of output files into a hierarchy under the current
directory, as was the default behavior in Oracle8i.
 Understanding and Using JPublisher 1-23

Backwards Compatibility and Migration
Unless you have a compelling reason to use the backwards-compatibility settings,
however, it is recommended that you accept the current default (or other) settings.

Oracle8i Compatibility Mode
The following setting results in what is called Oracle8i compatibility mode:

-compatible=8i

See "Backwards-Compatible Oracle Mapping for User-Defined Types (-compatible)"
on page 2-7 for more information about this option.

For use of this mode to be permissible, however, at least one of the following
circumstances must hold:

■ You will compile JPublisher-generated code with the SQLJ -codegen=oracle
setting.

■ The JPublisher-generated code will execute under JDK 1.2 or higher and will
use the SQLJ runtime12 or runtime12ee library, or it will execute in the
Oracle9i release of the Oracle JVM.

■ You run JPublisher with the -methods=false (or none) setting.

JPublisher has the following functionality in Oracle8i compatibility mode:

■ JPublisher will generate code that implements the deprecated CustomDatum
API instead of the ORAData API (as with -compatible=customdatum).

■ With the default -methods=true setting, JPublisher will always generate SQLJ
source code for a SQL object type, even if the object type does not define any
methods (as with -methods=always).

■ JPublisher will generate connection context declarations and connection context
instances on every object type wrapper, as follows (as with
-context=generated):

#sql static context _Ctx;
protected _Ctx _ctx;

■ JPublisher provides a constructor in the wrapper class that takes a generic
ConnectionContext instance (an instance of any class implementing the
standard sqlj.runtime.ConnectionContext interface) as input. In
Oracle9i, the constructor accepts only a DefaultContext instance or an
instance of the class specified through the -context option when JPublisher
was run.
1-24 JPublisher User’s Guide

Backwards Compatibility and Migration
■ JPublisher does not provide an API for releasing a connection context instance
that has been created implicitly on a JPublisher object.

By contrast, Oracle9i JPublisher provides both a setConnectionContext()
method for explicitly setting the connection context instance for an object, and a
release() method for releasing an implicitly created connection context
instance of an object.

Important: There are circumstances where you should not use
Oracle8i compatibility mode. If your environment uses any of the
following:

■ JDK 1.1.x, the SQLJ runtime library, or the SQLJ runtime11
library

and you use the following JPublisher setting:

■ -codegen=iso

as well as any of the following settings:

■ -methods=named (or some) or -methods=true (or all)

then there may be significant memory leakage caused by implicit
connection context instances that are not closed.

Avoid the -compatible=8i setting in these circumstances, and
use the setConnectionContext() and release() methods in
manipulating connection contexts. For more information, see "Use
of Connection Contexts and Instances in SQLJ Code Generated by
JPublisher" on page 1-37.

Note: Oracle8i compatibility mode is now the only way for a
connection context instance _ctx to be declared in
JPublisher-generated code (there is no other option setting to
accomplish this particular Oracle8i behavior). The _ctx instance
may be useful if you have legacy code that depends on it, but
otherwise you should obtain connection context instances through
the getConnectionContext() method.
 Understanding and Using JPublisher 1-25

Details of Datatype Mapping
Details of Datatype Mapping
As described previously, you can specify one of the following settings for datatype
mappings when you use the type mapping options (-builtintypes, -lobtypes,
-numbertypes, and -usertypes):

■ jdbc

■ objectjdbc (for -numbertypes only)

■ bigdecimal (for -numbertypes only)

■ oracle

These mappings, described in "Overview of Datatype Mappings" on page 1-8, affect
the argument and result types JPublisher uses in the methods it generates.

The class that JPublisher generates for an object type will have getXXX() and
setXXX() methods for the object attributes. The class that JPublisher generates for
a VARRAY or nested table type will have getXXX() and setXXX() methods that
access the elements of the array or nested table. When you use the option
-methods=true, the class that JPublisher generates for an object type or PL/SQL
package will have wrapper methods that invoke server methods of the object type
or package. The mapping options control the argument and result types these
methods will use.

The JDBC and Object JDBC mappings use familiar Java types that can be
manipulated using standard Java operations. If your JDBC program is manipulating
Java objects stored as object types, you might prefer the JDBC or Object JDBC
mapping.

The Oracle mapping is the most efficient mapping. The oracle.sql types match
the Oracle internal datatypes as closely as possible so that little or no data
conversion is required. You do not lose any information and have greater flexibility
in how you process and unpack the data. The Oracle mappings for standard SQL
types are the most convenient representations if you are manipulating data within
the database or moving data (for example, performing SELECT and INSERT
operations from one existing table to another). When data format conversion is
necessary, you can use methods in the oracle.sql.* classes to convert to Java
native types.

When you decide which mapping to use, you should remember that data format
conversion is only a part of the cost of transferring data between your program and
the server.
1-26 JPublisher User’s Guide

Details of Datatype Mapping
Datatype Mapping Tables
Table 1–2 lists the mappings from SQL and PL/SQL datatypes to Java types using
the Oracle and JDBC mappings. You can use all the supported datatypes listed in
this table as argument or result types for PL/SQL methods. You can use a subset of
the datatypes as object attribute types, as listed in "Allowed Object Attribute Types"
on page 1-28.

The SQL and PL/SQL Datatype column contains all possible datatypes.

The Oracle Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to oracle. These types are found in the
oracle.sql package supplied by Oracle and are designed to minimize the
overhead incurred when converting Oracle datatypes to Java types.

The JDBC Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to jdbc. For standard SQL datatypes,
JPublisher uses Java types specified in the JDBC specification. For SQL datatypes
that are Oracle extensions, JPublisher uses the oracle.sql.* types. Refer to the
Oracle9i JDBC Developer’s Guide and Reference for more information on the
oracle.sql package.

A few datatypes are not currently supported by JPublisher, in some cases because
they are not directly supported by Oracle SQLJ or JDBC, as noted in the table.

Table 1–2 PL/SQL Datatype to Oracle and Object JDBC Mapping Classes

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping

CHAR, CHARACTER, LONG,
STRING, VARCHAR, VARCHAR2

oracle.sql.CHAR java.lang.String

NCHAR, NVARCHAR2 not currently supported by JPublisher not currently supported by JPublisher

RAW, LONG RAW oracle.sql.RAW byte[]

BINARY_INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN, SIGNTYPE,
INT, INTEGER

oracle.sql.NUMBER int

DEC, DECIMAL, NUMBER,
NUMERIC

oracle.sql.NUMBER java.math.BigDecimal

DOUBLE PRECISION, FLOAT oracle.sql.NUMBER double

SMALLINT oracle.sql.NUMBER short

REAL oracle.sql.NUMBER float
 Understanding and Using JPublisher 1-27

Details of Datatype Mapping
The Object JDBC and BigDecimal mappings, which affect numeric types only, are
fully described in "Mappings For Numeric Types (-numbertypes)" on page 2-8.

Allowed Object Attribute Types
You can use a subset of the PL/SQL datatypes listed in Table 1–2 as object attribute
types. These datatypes are listed here and have the same Oracle mappings and
JDBC mappings as described in the table:

■ CHAR, VARCHAR, VARCHAR2, CHARACTER

■ DATE

■ DECIMAL, DEC, NUMBER, NUMERIC

DATE oracle.sql.DATE java.sql.Timestamp

ROWID, UROWID oracle.sql.ROWID oracle.sql.ROWID

BOOLEAN not directly supported by JDBC not directly supported by JDBC

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE

NCLOB not currently supported by JPublisher not currently supported by JPublisher

object types generated class generated class

SQLJ object types not directly supported by SQLJ not directly supported by SQLJ

OPAQUE types not directly supported by SQLJ not directly supported by SQLJ

RECORD types not directly supported by JDBC not directly supported by JDBC

nested table, VARRAY generated class implemented
using oracle.sql.ARRAY

java.sql.Array

reference to object type generated class implemented
using oracle.sql.REF

java.sql.Ref

REF CURSOR java.sql.ResultSet java.sql.ResultSet

index-by tables not directly supported by SQLJ not directly supported by SQLJ

user-defined subtypes same as for base type same as for base type

Table 1–2 PL/SQL Datatype to Oracle and Object JDBC Mapping Classes (Cont.)

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping
1-28 JPublisher User’s Guide

Details of Datatype Mapping
■ DOUBLE PRECISION, FLOAT

■ INTEGER, SMALLINT, INT

■ REAL

■ RAW, LONG RAW

■ CLOB

■ BLOB

■ BFILE

■ object type

■ nested table, VARRAY type

■ reference type

Using Datatypes Not Supported by JDBC
JPublisher cannot generate wrapper methods for PL/SQL methods that use
datatypes not directly supported by JDBC. If you must call a PL/SQL method that
uses unsupported datatypes (such as BOOLEAN), you have two choices:

■ Rewrite the PL/SQL method to avoid using the type.

■ Write an anonymous block that converts input types that JDBC supports into
the input types used by the PL/SQL method, and converts output types used
by the PL/SQL method into output types that JDBC supports. For more
information on this technique, see "Example: Using Datatypes Not Supported
by JDBC" on page 3-70.
 Understanding and Using JPublisher 1-29

Concepts of JPublisher-Generated Classes
Concepts of JPublisher-Generated Classes
This section covers basic concepts about the code that JPublisher produces,
including the following:

■ how output parameters of SQL object type methods and PL/SQL methods are
treated

■ how member methods are called

■ how overloaded methods are handled

For more information, see the following sections later in this chapter:

■ JPublisher Generation of SQLJ Classes

■ JPublisher Generation of Java Classes

■ JPublisher Support for Inheritance

Passing OUT Parameters
Stored procedures called through SQLJ do not have the same parameter-passing
behavior as ordinary Java methods. This affects the code you write when you call a
wrapper method JPublisher generates.

When you call an ordinary Java method, parameters that are Java objects are passed
as object references. The method can modify the object.

In contrast, when you call a stored procedure through SQLJ, a copy of each
parameter is passed to the stored procedure. If the procedure modifies any
parameters, copies of the modified parameters are returned to the caller. Therefore,
the "before" and "after" values of a parameter that has been modified appear in
separate objects.

A wrapper method JPublisher generates contains SQLJ code to call a stored
procedure. The parameters to the stored procedure, as declared in your CREATE
TYPE or CREATE PACKAGE declaration, have three possible parameter modes: IN,
OUT, and IN OUT. The IN OUT and OUT parameters of the stored procedure are
returned to the wrapper method in newly created objects. These new values must
be returned to the caller somehow, but assignment to the formal parameter within
the wrapper method does not affect the actual parameter visible to the caller.
1-30 JPublisher User’s Guide

Concepts of JPublisher-Generated Classes
Passing Parameters Other Than the "this" Parameter
The simplest way to solve the problem described above is to pass an OUT or IN OUT
parameter to the wrapper method in a single-element array. The array is a sort of
container that holds the parameter.

■ You assign the "before" value of the parameter to element 0 of an array.

■ You pass the array to your wrapper method.

■ The wrapper method assigns the "after" value of the parameter to element 0 of
the array.

■ After executing the method, you extract the "after" value from the array.

In the following example, you have an initialized variable p of class Person, and x
is an object belonging to a JPublisher-generated class that has a wrapper method f
taking an IN OUT Person argument. You create the array and pass the parameter as
follows:

Person [] pa = {p};
x.f(pa);
p = pa[0];

Unfortunately, this technique for passing OUT or IN OUT parameters requires you
to add a few extra lines of code to your program for each parameter. If your stored
program has many OUT or IN OUT parameters, you might prefer to call it directly
using SQLJ code, rather than a wrapper method.

Passing the "this" Parameter
Problems similar to what is described above arise when the this object of an
instance method is modified.

The this object is an additional parameter that is passed in a different way. Its
mode, as declared in the CREATE TYPE statement, may be IN or IN OUT. If you do
not explicitly declare the mode of this, its mode is IN OUT if the stored procedure
does not return a result, or IN if it does.

If the mode of the this object is IN OUT, the wrapper method must return the new
value of this. The code generated by JPublisher processes this in different ways,
depending on the situation:

■ For a stored procedure that does not return a result, the new value of this is
returned as the result of the wrapper method.
 Understanding and Using JPublisher 1-31

Concepts of JPublisher-Generated Classes
As an example, assume the SQL object type MYTYPE has the following member
procedure:

MEMBER PROCEDURE f1(y IN OUT INTEGER);

Also assume that JPublisher generates a corresponding Java class MyJavaType.
This class would define the following method:

public MyJavaType f1(int[] y)

The f1 method returns the modified this object value as a MyJavaType
instance.

■ For a stored function (a stored procedure that returns a result), the wrapper
method returns the result of the stored function as its result. The new value of
this is returned in a single-element array, passed as an extra argument (the last
argument) to the wrapper method.

Assume the SQL object type MYTYPE has the following member function:

MEMBER FUNCTION f2(x IN INTEGER) RETURNS VARCHAR2;

Then the corresponding Java class MyJavaType would define the following
method:

public String f2(int x, MyJavaType[] newValue)

The f2 method returns the VARCHAR2 function-return as a Java string, and
returns the modified this object value as an array element in the MyJavaType
array.

Note: For PL/SQL static procedures or functions, JPublisher
generates instance methods, not static methods, in the wrapper
class. This is the logistic for associating a database connection (a
SQLJ connection context instance or JDBC connection instance)
with each wrapper class instance. The connection instance is used
in initializing the wrapper class instance, so that subsequently you
are not required to explicitly provide a connection or connection
context instance when calling wrapper methods.
1-32 JPublisher User’s Guide

Concepts of JPublisher-Generated Classes
Translating Overloaded Methods
PL/SQL, as with Java, lets you create overloaded methods—two or more methods
with the same name, but different signatures. If you use JPublisher to generate
wrapper methods for PL/SQL methods, it is possible that two overloaded methods
with different signatures in PL/SQL might have identical signatures in Java. If this
occurs, JPublisher changes the names of the methods to avoid generating two or
more methods with the identical signature. For example, consider a PL/SQL
package or object type that includes these functions:

FUNCTION f(x INTEGER, y INTEGER) RETURN INTEGER

and

FUNCTION f(xx FLOAT, yy FLOAT) RETURN INTEGER

In PL/SQL, these functions have different argument types. However, once they are
translated to Java with Oracle mapping, this difference disappears (both INTEGER
and FLOAT map to oracle.sql.NUMBER).

Suppose that JPublisher generates a class for the package or object type with the
command-line setting -methods=true and Oracle mapping. JPublisher responds
by generating code similar to this:

 public oracle.sql.NUMBER f_1 (
 oracle.sql.NUMBER x,
 oracle.sql.NUMBER y)
 throws SQLException
 {
 /* body omitted */
 }

 public oracle.sql.NUMBER f_4 (
 oracle.sql.NUMBER xx,
 oracle.sql.NUMBER yy)
 throws SQLException
 {
 /* body omitted */
 }

Note that in this example, JPublisher names the first function f_1 and the second
function f_4. Each function name ends with _<nn>, where <nn> is a number
assigned by JPublisher. The number has no significance of its own, but JPublisher
uses it to guarantee that the names of functions with identical parameter types will
be unique.
 Understanding and Using JPublisher 1-33

JPublisher Generation of SQLJ Classes
JPublisher Generation of SQLJ Classes
When -methods=true, JPublisher generates .sqlj files for PL/SQL packages
and for object types (unless an object type does not define any methods, in which
case a .java file is generated). The classes includes wrapper methods that invoke
the server methods of the object types and packages. Run SQLJ to translate the
.sqlj file.

This section describes how to use these generated classes in your SQLJ code.

Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
To use a class that JPublisher generates for a PL/SQL package:

■ Construct an instance of the class.

■ Call the wrapper methods of the class.

The constructors for the class associate a database connection with an instance of
the class. One constructor takes a SQLJ DefaultContext instance (or an instance
of a class specified through the -context option when you ran JPublisher), one
constructor takes a JDBC Connection instance, and one constructor has no
arguments. Calling the no-argument constructor is equivalent to passing the SQLJ
default context to the constructor that takes a DefaultContext instance. Oracle
JDBC provides the constructor that takes a Connection instance for the
convenience of the JDBC programmer who knows how to compile a SQLJ program,
but is unfamiliar with SQLJ concepts such as DefaultContext.

Important: Classes produced by JPublisher include a release()
method. In creating and using an instance of a JPublisher-generated
wrapper class, if you do not use the constructor with the
DefaultContext argument, and you do not subsequently call the
setConnectionContext() method with a connection context
argument, and you invoke a wrapper method, then the wrapper
object will implicitly construct a DefaultContext instance. In this
case, use the release() method to release the connection context
instance when it is no longer needed. See "Use of Connection
Contexts and Instances in SQLJ Code Generated by JPublisher" on
page 1-37 for more information.
1-34 JPublisher User’s Guide

JPublisher Generation of SQLJ Classes
The wrapper methods are all instance methods, because the connection context in
the this object is used in #sql statements in the wrapper methods.

Because a class generated for a PL/SQL package has no instance data other than the
connection context, you will typically construct one class instance for each
connection context you use. If the default context is the only one you use, call the
no-argument constructor once. The Oracle9i SQLJ Developer’s Guide and Reference
discusses reasons for using explicit connection context instances.

An instance of a class generated for a PL/SQL package does not contain copies of
PL/SQL package variables. It is not an ORAData class or a SQLData class, and you
cannot use it as a host variable.

"Example: Using Classes Generated for Packages" on page 3-65 shows how to use a
class generated for a PL/SQL package.

Use of Classes JPublisher Generates for Object Types
To use an instance of a Java class that JPublisher generates for a SQL object type,
you must first initialize the Java object.

To initialize your Java object, you can:

■ Assign an already initialized Java object to your Java object.

■ Retrieve a copy of a SQL object into your Java object. To do this, you can:

– Use the SQL object as an OUT argument or as the function call return of a
JPublisher-generated wrapper method.

– Retrieve the SQL object through #sql statements you write.

– Retrieve the SQL object through JDBC calls you write.

■ Construct the Java object and set its attributes using the setXXX() methods.

The constructors for the class associate a connection with the class instance. One
constructor takes a DefaultContext instance (or an instance of a class

Note: In Oracle8i JPublisher and in Oracle8i compatibility mode,
instead of the constructor taking a DefaultContext instance or
user-specified-class instance, there is a constructor that simply takes
a ConnectionContext instance (an instance of any class that
implements the standard sqlj.runtime.ConnectionContext
interface).
 Understanding and Using JPublisher 1-35

JPublisher Generation of SQLJ Classes
specified through the -context option when you run JPublisher), one
constructor takes a Connection instance, and one constructor has no
arguments. Calling the no-argument constructor is equivalent to passing the
SQLJ default context to the constructor that takes a DefaultContext instance.
Oracle JDBC provides the constructor that takes a Connection instance for the
convenience of the JDBC programmer who knows how to compile a SQLJ
program, but is unfamiliar with SQLJ concepts such as DefaultContext.

Once you have initialized your Java object, you can:

■ Call the accessor methods of the object.

■ Call the wrapper methods of the object.

■ Pass the object to other wrapper methods.

■ Use the object as a host variable in #sql statements.

■ Use the object as a host variable in JDBC calls.

There is a Java attribute for each attribute of the corresponding SQL object type. The
object has getXXX() and setXXX() accessor methods for each attribute. The

Important: Classes produced by JPublisher include a release()
method. In creating and using an instance of a JPublisher-generated
wrapper class, if you do not use the constructor with the
DefaultContext argument, and you do not subsequently call the
setConnectionContext() method with a connection context
argument, and you invoke a wrapper method, then the wrapper
object will implicitly construct a DefaultContext instance. In this
case, use the release() method to release the connection context
instance when it is no longer needed. See "Use of Connection
Contexts and Instances in SQLJ Code Generated by JPublisher" on
page 1-37 for more information.

Note: In Oracle8i JPublisher and in Oracle8i compatibility mode,
instead of the constructor taking a DefaultContext instance or
user-specified-class instance, there is a constructor that simply takes
a ConnectionContext instance (an instance of any class that
implements the standard sqlj.runtime.ConnectionContext
interface).
1-36 JPublisher User’s Guide

JPublisher Generation of SQLJ Classes
accessor method names are of the form getFoo() and setFoo() for attribute foo.
JPublisher does not generate fields for the attributes.

By default, the class includes wrapper methods that invoke the associated Oracle
object methods executing in the server. The wrapper methods are all instance
methods, regardless of whether the server methods are. The DefaultContext in
the this object is used in #sql statements in the wrapper methods.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORAData and
ORADataFactory interfaces:

■ create()

■ toDatum()

These methods are not generally intended for your direct use; however, you may
want to use them if converting from one object reference wrapper type to another.

The RationalO example, described in "Example: Using Classes Generated for
Object Types" on page 3-53, shows how to use a class that was generated for an
object type and has wrapper methods.

Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher
The class that JPublisher uses in creating SQLJ connection context instances
depends on how you set the -context option when you run JPublisher, as follows:

■ A setting of -context=DefaultContext (the default setting) results in
JPublisher using instances of the standard
sqlj.runtime.ref.DefaultContext class.

■ A setting of a user-specified class (that is in the classpath and implements the
standard sqlj.runtime.ConnectionContext interface) results in
JPublisher using instances of that class.

■ A setting of -context=generated results in the following declaration in the
JPublisher-generated class:

#sql static context _Ctx

In this case, JPublisher uses instances of the _Ctx class for connection context
instances.
 Understanding and Using JPublisher 1-37

JPublisher Generation of SQLJ Classes
See "SQLJ Connection Context Classes (-context)" on page 2-13 for more information
about the -context option.

Considerations in Using Connection Contexts and Connection Instances
Consider the following points in using SQLJ connection context instances or JDBC
connection instances in instances of JPublisher-generated wrapper classes:

■ Wrapper classes generated by JPublisher provide a
setConnectionContext() method you can use to explicitly specify a SQLJ
connection context instance. (This will not be necessary if you have already
specified a connection context instance through the constructor.)

 This method is defined as follows:

public void setConnectionContext(conn_ctxt_instance);

This installs the passed connection context instance as the SQLJ connection
context in the object wrapper instance. The connection context instance must be
an instance of the class specified through the -context option for JPublisher
connection contexts (typically DefaultContext).

Be aware that the underlying JDBC connection must be compatible with the
connection used to materialize the database object in the first place. Specifically,
some objects may have attributes, such as object reference types or BLOBs, that
are only valid for a particular connection.

Note: It is no longer routine (as it was in Oracle8i JPublisher) for
JPublisher to declare a connection context instance _ctx. This only
occurs in Oracle8i compatibility mode (-compatible=8i), with
_ctx being declared as a protected instance of the static connection
context class _Ctx.

Unless you have legacy code that depends on _ctx, it is preferable
to use the getConnectionContext() and
setConnectionContext() methods to retrieve and manipulate
connection context instances in JPublisher-generated classes. See
"Considerations in Using Connection Contexts and Connection
Instances" below for more information about these methods.
1-38 JPublisher User’s Guide

JPublisher Generation of SQLJ Classes
■ Use either of the following methods of an object wrapper instance, as
appropriate, to retrieve a connection or connection context instance.

– Connection getConnection()

– Conn_Ctxt_Type getConnectionContext()

The getConnectionContext() method returns an instance of the connection
context class specified through the JPublisher -context option (typically
DefaultContext).

The returned connection context instance might either be an instance that was
set explicitly through the setConnectionContext() method, or an instance
that was created implicitly by JPublisher.

■ If code in a JPublisher-generated class uses any SQLJ statements, and you do
not set a connection context instance explicitly, then one will be created
implicitly from the JDBC connection instance when the
getConnectionContext() method is called.

In this circumstance, you must be careful to use the release() method to free
resources in the SQLJ runtime that would otherwise result in a memory leak.

■ Having different connection context classes in different generated classes gives
you the option of checking different classes against different exemplar schemas
during SQLJ on-line semantics checking; however, because the SQLJ source is
constructed from actual SQL types, this checking is usually not necessary.

See "Releasing Connection Context Resources" (below) and "SQLJ Connection
Context Classes (-context)" on page 2-13 for related information.

Note: Using the setConnectionContext() method to
explicitly set a connection context instance avoids the problem of
the connection context not being closed properly. This problem only
occurs with implicitly created connection context instances.

Note: These methods are available only in generated .sqlj files,
not generated .java files. If necessary, you can use the setting
-methods=always to ensure that .sqlj files are produced.
 Understanding and Using JPublisher 1-39

JPublisher Generation of SQLJ Classes
Releasing Connection Context Resources
In some situations, you must use the release() method of an instance of a
JPublisher-generated wrapper class in order to free SQLJ runtime connection
context resources. This is true in the following set of circumstances:

■ You used the SQLJ default setting -codegen=iso in translating SQLJ classes.

and:

■ You use JDK 1.1.x and/or the SQLJ runtime library (as opposed to
runtime12, runtime11, and so on) when you execute the generated class or
classes.

and:

■ You did not create the object with the constructor that takes an instance of
DefaultContext (or some other connection context class you specified
through the -context option when you ran JPublisher).

and:

■ You have called one or more wrapper methods on the wrapper instance.

and:

■ You did not use the setConnectionContext() method of the wrapper
instance to explicitly set a connection context instance.

In these circumstances, a connection context instance would have been created
implicitly on the object and must explicitly be freed through the release()
method before the object goes out of scope.

(When there is an explicit connection context instance, such as through an explicit
constructor or use of the setConnectionContext() method, using release()
is not necessary.)
1-40 JPublisher User’s Guide

JPublisher Generation of Java Classes
JPublisher Generation of Java Classes
When -methods=false, or when SQL object types do not define any methods,
JPublisher does not generate wrapper methods for object types. Furthermore, when
-methods=false, JPublisher does not generate code for PL/SQL packages at all,
because they are not useful without wrapper methods. (Note that when
-methods=false, JPublisher exclusively generates .java files.)

JPublisher generates the same Java code for reference, VARRAY, and nested table
types regardless of whether -methods is false or true.

To use an instance of a class JPublisher generates for an object type when
-methods=false, or for a reference, VARRAY, or nested table type, you must first
initialize the object.

To initialize your object, you can:

■ Assign an already initialized Java object to your Java object.

■ Retrieve a copy of a SQL object into your Java object. To do this, you can:

– Use the SQL object as an OUT argument or as the function call return of a
JPublisher-generated wrapper method in some other class.

– Retrieve the SQL object through #sql statements you write.

– Retrieve the SQL object through JDBC calls you write.

■ Construct the Java object and initialize its data.

Unlike the constructors generated in .sqlj source files, the constructors generated
in .java source files do not take a connection argument. Instead, when your object
is passed to or returned from a Statement, CallableStatement, or
PreparedStatement object, JPublisher applies the connection it uses to construct
the Statement, CallableStatement, or PreparedStatement object.

This does not mean you can use the same object with different connections at
different times. On the contrary, this is not always possible. An object might have a
subcomponent, such as a reference or a BLOB, that is valid only for a particular
connection.

To initialize the object data, use the setXXX() methods if your class represents an
object type, or the setArray() or setElement() method if your class represents
a VARRAY or nested table type. If your class represents a reference type, you can
only construct a null reference. All non-null references come from the database.
 Understanding and Using JPublisher 1-41

JPublisher Generation of Java Classes
Once you have initialized your object, you can accomplish the following:

■ Pass the object to wrapper methods in other classes.

■ Use the object as a host variable in #sql statements.

■ Use the object as a host variable in JDBC calls.

■ Call the methods that read and write the state of the object. These methods
operate on the Java object in your program and do not affect data in the
database.

– For a class that represents an object type, you can call the getXXX() and
setXXX() accessor methods.

– For a class that represents a VARRAY or nested table, you can call the
getArray(), setArray(), getElement(), and setElement()
methods.

The getArray() and setArray() methods return or modify an array as
a whole. The getElement() and setElement() methods return or
modify individual elements of the array. Then re-insert the Java array into
the database if you want to update the data there.

■ You cannot modify an object reference, because it is an immutable entity;
however, you can read and write the SQL object it references, using the
getValue() and setValue() methods.

The getValue() method returns a copy of the SQL object to which the
reference refers. The setValue() method updates a SQL object type instance
in the database, taking as input an instance of the Java class that represents the
object type. Unlike the getXXX() and setXXX() accessor methods of a class
generated for an object type, the getValue() and setValue() methods read
and write SQL objects.

A few methods have not been mentioned yet. You can use the
getORADataFactory() method in JDBC code to return an ORADataFactory
object. You can pass this ORADataFactory to the Oracle getORAData() methods
in the classes ArrayDataResultSet, OracleCallableStatement, and
OracleResultSet in the oracle.jdbc package. The Oracle JDBC driver uses
the ORADataFactory object to create objects of your JPublisher-generated class.
1-42 JPublisher User’s Guide

JPublisher Generation of Java Classes
In addition, classes representing VARRAYs and nested tables have a few methods
that implement features of the oracle.sql.ARRAY class:

■ getBaseTypeName()

■ getBaseType()

■ getDescriptor()

JPublisher-generated classes for VARRAYs and nested tables do not, however,
extend oracle.sql.ARRAY.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORAData and
ORADataFactory interfaces:

■ create()

■ toDatum()

These methods are not generally intended for your direct use; however, you may
want to use them if converting from one object reference wrapper type to another.

The RationalP example, described in "Example: Using Classes Generated for
Packages" on page 3-65, includes a class that was generated for an object type that
does not have wrapper methods.
 Understanding and Using JPublisher 1-43

User-Written Subclasses of JPublisher-Generated Classes
User-Written Subclasses of JPublisher-Generated Classes
You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields.

One way to accomplish this is to add methods directly to the JPublisher-generated
class. However, this is not advisable if you anticipate running JPublisher at some
future time to regenerate the class. If you regenerate a class that you have modified
in this way, your changes (that is, the methods you have added) will be overwritten.
Even if you direct JPublisher output to a separate file, you will still need to merge
your changes into the file.

The preferred way to enhance the functionality of a generated class is to extend the
class—that is, treat the JPublisher-generated class as a superclass, write a subclass to
extend its functionality, then map the object type to the subclass.

This section discusses how to accomplish this.

Extending JPublisher-Generated Classes
Suppose you want JPublisher to generate the class JAddress from the SQL object
type ADDRESS. You also want to write a class MyAddress to represent ADDRESS
objects, where MyAddress extends the functionality JAddress provides.

Under this scenario, you can use JPublisher to generate a custom Java class
JAddress, then write a subclass, MyAddress, which contains the added
functionality. You then use JPublisher to map ADDRESS objects to the MyAddress
class, not to the JAddress class. JPublisher will also produce a reference class for
MyAddress, not JAddress.

To do this, JPublisher must alter the code it generates in the following ways:

■ JPublisher will generate the reference class MyAddressRef, rather than
JAddressRef.

■ JPublisher will use the MyAddress class, instead of the JAddress class, to
represent attributes whose SQL type is ADDRESS or to represent VARRAY and
nested table elements whose SQL type is ADDRESS.

■ JPublisher will use the MyAddress factory, instead of the JAddress factory,
when the ORADataFactory interface is used to construct Java objects whose
SQL type is ADDRESS.
1-44 JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes
Syntax for Mapping to Alternative Classes
JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your -sql command-line option setting:

-sql=object_type:generated_class:map_class

For the above scenario, this would be:

-sql=ADDRESS:JAddress:MyAddress

See "Declaration of Object Types and Packages to Translate (-sql)" on page 2-20 for
information about the -sql option.

If you were to enter the line in the INPUT file, instead of on the command line, it
would look like this:

SQL ADDRESS GENERATE JAddress AS MyAddress

See "INPUT File Structure and Syntax" on page 2-26 for information about the
INPUT file.

In this syntax, JAddress indicates the name of the class that JPublisher will
generate (as JAddress.java), and MyAddress specifies the name of the class that
you have written. JPublisher will map the object type ADDRESS to the MyAddress
class, not to the JAddress class. Therefore, if you retrieve an object that has an
ADDRESS attribute, this attribute will be created as an instance of MyAddress in
Java. Or if you retrieve an ADDRESS object directly, you will retrieve it into an
instance of MyAddress.

For an example of how you would use JPublisher to generate the JAddress class,
see "Example: Generating a SQLData Class" on page 3-27.

Writing the Class that Extends the Generated Class
The class that you create (for example, MyAddress.java) must have the following
features:

■ The class must have a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

■ The class must implement the ORAData interface or the SQLData interface. The
simplest way to do this is to inherit the necessary methods from the superclass.

■ If you are extending an ORAData class, you must also implement the
ORADataFactory interface, either in the same class or in a different one. For
 Understanding and Using JPublisher 1-45

User-Written Subclasses of JPublisher-Generated Classes
example, you could have a class Employee that implements ORAData and a
class EmployeeFactory that implements ORADataFactory.

Following is a sample implementation of the ORADataFactory create()
method:

public ORAData create(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

Alternatively, the following code shows a more efficient implementation, where
an initialized UserClass instance is created through the
UserClass(boolean) constructor, which you must define. This constructor is
provided in JPublisher-generated code, including the superclass that
UserClass extends. Using this constructor ensures that a UserClass instance
is not needlessly created if the data object is null, or needlessly re-initialized if
the data object is non-null.

protected UserClass(boolean init) { super(boolean); }
public ORAData create(Datum d, int sqlType) throws SQLException
{
 return (d==null) ? null : create(new UserClass(false),d,sqlType);
}

"Example: Generating a SQLData Class" on page 3-27 illustrates the preceding
features.

Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes
If you have been providing user-written subclasses for JPublisher-generated classes
under Oracle8i JPublisher, you should be aware that there are a number of relevant
changes in how Oracle9i JPublisher generates code. You would have to make
changes in any applications written against the Oracle8i functionality if you want to
use it under Oracle9i.
1-46 JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes
Following are the changes:

■ Replace use of the declared _ctx connection context field with use of the
provided getConnectionContext() method. The _ctx field is no longer
supported under Oracle9i.

■ Replace the explicit implementation of the create() method with a call to a
superclass create() method.

Assume that in the example below, UserClass extends BaseClass. Instead of
writing the following method in UserClass:

public CustomDatum create(Datum d, int sqlType) throws SQLException
{
 if (d == null) return null;
 UserClass o = new UserClass();
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o._ctx = new _Ctx(((STRUCT) d).getConnection());
 return o;
}

supply the following:

public CustomDatum create(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

In addition, in .sqlj files, JPublisher now generates a protected constructor
with a boolean argument that specifies whether the object needs to be initialized
or not:

protected BaseClass(boolean init) { ... }

Note: If you use the -compatible=8i option setting, you will
not see the changes discussed here and your application will
continue to build and work as before.

In general, however, it is generally advisable to make the
transformation to Oracle9i JPublisher functionality, because this
will help insulate your user code from implementation details of
JPublisher-generated classes.
 Understanding and Using JPublisher 1-47

User-Written Subclasses of JPublisher-Generated Classes
You can use this to optimize the UserClass code as described in "Writing the
Class that Extends the Generated Class" on page 1-45.

■ In addition to the getConnectionContext() method, Oracle9i JPublisher
provides a getConnection() method that can be used to obtain the JDBC
connection associated with the object.

The setFrom() and setValueFrom() Methods
Oracle9i JPublisher provides the following utility methods in generated .sqlj files:

■ setFrom(anotherObject)

This initializes the calling object from another object of the same base type,
including connection and connection context information. An existing,
implicitly created connection context object on the calling object is freed.

■ setValueFrom(anotherObject)

This initializes the underlying field values of the calling object from another
object of the same base type. This method does not transfer connection or
connection context information.
1-48 JPublisher User’s Guide

JPublisher Support for Inheritance
JPublisher Support for Inheritance
This section primarily discusses inheritance support for ORAData types, explaining
the following related topics:

■ how JPublisher implements support for inheritance—specifically, why you
must construct subclass objects before selecting instances of non-final types
from the database (or middle-tier database cache)

■ why a reference class for a subtype does not extend the reference class for the
base type, and how you can convert from one reference type to another
reference type (typically a subclass or superclass)

This information is followed by a brief overview of standard inheritance support for
SQLData types, with reference to appropriate documentation for further
information.

ORAData Object Types and Inheritance
Consider the following SQL object types:

CREATE TYPE PERSON AS OBJECT (
...
) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
...
);

And consider the following JPublisher command line to create corresponding Java
classes:

jpub -user=scott/tiger -sql=PERSON:Person,STUDENT:Student -usertypes=oracle

In this example, JPublisher generates a Person class and a Student class. The
Student class extends the Person class, because STUDENT is a subtype of PERSON.

So initialization can complete properly, create instances of these classes—at least the
leaf classes—before using these mapped types in your code. For example:

new Person();
new Student();

The Person class includes the following method:

Person create(oracle.sql.Datum d, int sqlType)
 Understanding and Using JPublisher 1-49

JPublisher Support for Inheritance
This method, which converts a Datum instance to its representation as a custom
Java object, is called by the Oracle JDBC driver whenever a SQL object declared to
be a PERSON is retrieved into a Person variable. The SQL object, however, may
actually be a STUDENT object. In this case, the create() method must create a
Student instance rather than a Person instance.

In general, to handle this kind of situation, the create() method of a custom Java
class (regardless of whether the class was created by JPublisher) must be able to
create instances of any subclass that represents a subtype of the SQL object type of
the oracle.sql.Datum argument. This ensures that the actual type of the created
Java object will match the actual type of the SQL object.

You might think that the code for the create() method in the root class of a
custom Java class hierarchy must mention all its subclasses. But if this were the case,
you would have to modify the code for a base class when writing or generating a
new subclass. At best, this process would be prone to errors, and would not even be
possible if the programmer did not have access to the source code for the Java
classes being extended.

Code generated by JPublisher solves this problem by creating a static initialization
block in each subclass in the custom Java class hierarchy. This static initialization
block initializes a data structure, equivalent to a type map, declared in the root-level
Java class, giving the root class the information it needs about the subclass. When
an instance of a subclass is created at runtime, the type is registered in the data
structure. Because of this implicit mapping mechanism, no explicit type map, such
as those required in SQLData scenarios, is required.

To better understand how code generated by JPublisher supports inheritance, try an
example similar to the one at the beginning of this section, and look at the
generated code.

Important: This implementation makes it possible to extend
existing classes without having to modify them, but it carries a
small penalty—the static initialization blocks of the subclasses must
be executed before the class hierarchy can be used to read objects
from the database (or middle-tier database cache). This occurs if
you instantiate an object of each subclass by calling new(). It is
sufficient to instantiate just the leaf classes, because the constructor
for a subclass will invoke the constructor for its immediate
superclass.
1-50 JPublisher User’s Guide

JPublisher Support for Inheritance
ORAData Reference Types and Inheritance
This section explains why a custom reference class generated for a subtype by
JPublisher does not extend the reference classes of the base type, and offers a
workaround for how to convert from one reference type to another.

Why Reference Type Inheritance Does Not Follow Object Type Inheritance
The example here helps explain why it is not desirable for reference types to follow
the hierarchy of their related object types.

Consider again the example given in the previous section, repeated here for
convenience:

CREATE TYPE PERSON AS OBJECT (
...
) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
...
);

jpub -user=scott/tiger -sql=PERSON:Person,STUDENT:Student -usertypes=oracle

In addition to generating Person.sqlj (or .java) and Student.sqlj (or
.java), JPublisher will generate PersonRef.java and StudentRef.java.

Because the Student class extends the Person class, you might expect
StudentRef to extend PersonRef. This is not the case, however, because the
StudentRef class can provide more compile-time type safety as an independent
class than as a subtype of PersonRef. Additionally, a PersonRef can do
something that a StudentRef cannot do: modify a Person object in the database.

The most important methods of the PersonRef class would be the following:

■ Person getValue()

■ void setValue(Person c)

The corresponding methods of the StudentRef class would be as follows:

■ Student getValue()

■ void setValue(Student c)
 Understanding and Using JPublisher 1-51

JPublisher Support for Inheritance
If the StudentRef class extended the PersonRef class, two problems would
occur:

■ Java would not permit the getValue() method in StudentRef to return a
Student object when the method it would override in the PersonRef class
returns a Person object, even though this is arguably a sensible thing to do.

■ The setValue() method in StudentRef would not override the
setValue() method in PersonRef, because the two methods have different
signatures.

It would not be sensible to remedy these problems by giving the StudentRef
methods the same signatures and result types as the PersonRef methods, because
the additional type safety provided by declaring an object as a StudentRef, rather
than as a PersonRef, would be lost.

Converting Between Reference Types
Because reference types do not follow the hierarchy of their related object types,
there is a JPublisher limitation that you cannot convert directly from one reference
type to another. This section provides code to show you how to accomplish such a
conversion in your program.

To convert from the reference type XxxxRef to the reference type YyyyRef, for
example, use the following code:

java.sql.Connection conn = ...; // get underlying JDBC connection
XxxxRef xref = ...;
YyyyRef yref = (YyyyRef) YyyyRef.getORADataFactory().
 create(xref.toDatum(conn),oracle.jdbc.OracleTypes.REF);

This conversion comprises two steps, each of which can be useful in its own right:

1. Convert xref from its strong XxxxRef type to the weak oracle.sql.REF
type:

oracle.sql.REF ref = (oracle.sql.REF) xref.toDatum(conn);

2. Convert from the oracle.sql.REF type to the target YyyyRef type:

YyyyRef yref = (YyyyRef) YyyyRef.getORADataFactory().
 create(ref,oracle.jdbc.OracleTypes.REF);

"Example: Converting Between Reference Types" below provides sample code for
such a conversion.
1-52 JPublisher User’s Guide

JPublisher Support for Inheritance
Example: Converting Between Reference Types
The following example, including SQL definitions and Java code, illustrates the
points of the preceding discussion.

SQL Definitions Consider the following SQL definitions:

create type person_t as object (ssn number, name varchar2 (30), dob date) not
final;
/
show errors

create type instructor_t under person_t (title varchar2(20)) not final;
/
show errors

create type instructorPartTime_t under instructor_t (num_hours number);
/
show errors

create type student_t under person_t (deptid number, major varchar2(30)) not
final;
/
show errors

create type graduate_t under student_t (advisor instructor_t);
/
show errors

create type studentPartTime_t under student_t (num_hours number);
/
show errors

create table person_tab of person_t;

insert into person_tab values (1001, ’Larry’, TO_DATE(’11-SEP-60’));
insert into person_tab values (instructor_t(1101, ’Smith’, TO_DATE
(’09-OCT-1940’), ’Professor’));
insert into person_tab values (instructorPartTime_t(1111, ’Myers’,

Note: This conversion does not involve any type checking.
Whether this conversion is actually permitted depends on your
application and on the SQL schema you are using.
 Understanding and Using JPublisher 1-53

JPublisher Support for Inheritance
TO_DATE(’10-OCT-65’), ’Adjunct Professor’, 20));
insert into person_tab values (student_t(1201, ’John’, To_DATE(’01-OCT-78’), 11,
’EE’));
insert into person_tab values (graduate_t(1211, ’Lisa’, TO_DATE(’10-OCT-75’),
12, ’ICS’, instructor_t(1101, ’Smith’, TO_DATE (’09-OCT-40’), ’Professor’)));
insert into person_tab values (studentPartTime_t(1221, ’Dave’,
TO_DATE(’11-OCT-70’), 13, ’MATH’, 20));

JPublisher Mappings Assume the following mappings when you run JPublisher:

Person_t:Person,instructor_t:Instructor,instructorPartTime_t:InstructorPartTime,
graduate_t:Graduate,studentPartTime_t:StudentPartTime

Java Class Here is a Java class with an example of reference type conversion as
discussed above, in "Converting Between Reference Types" on page 1-52.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sqlj.runtime.Oracle;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ResultSetIterator;

public class Inheritance
{
 public static void main(String[] args) throws SQLException
 {
 System.out.println("Connecting.");
 Oracle.connect("jdbc:oracle:oci:@","scott","tiger");

 System.out.println("Initializing type system.");
 new Person();
 new Instructor();
 new InstructorPartTime();
 new StudentT();
 new StudentPartTime();
 new Graduate();

 PersonRef p_ref;
 InstructorRef i_ref;
 InstructorPartTimeRef ipt_ref;
 StudentTRef s_ref;
 StudentPartTimeRef spt_ref;
1-54 JPublisher User’s Guide

JPublisher Support for Inheritance
 GraduateRef g_ref;

 System.out.println("Selecting a person.");
 #sql { select ref(p) INTO :p_ref FROM PERSON_TAB p WHERE p.NAME=’Larry’ };

 System.out.println("Selecting an instructor.");
 #sql { select ref(p) INTO :i_ref FROM PERSON_TAB p WHERE p.NAME=’Smith’ };

 System.out.println("Selecting a part time instructor.");
 #sql { select ref(p) INTO :ipt_ref FROM PERSON_TAB p WHERE p.NAME=’Myers’ };

 System.out.println("Selecting a student.");
 #sql { select ref(p) INTO :s_ref FROM PERSON_TAB p WHERE p.NAME=’John’ };

 System.out.println("Selecting a part time student.");
 #sql { select ref(p) INTO :spt_ref FROM PERSON_TAB p WHERE p.NAME=’Dave’ };

 System.out.println("Selecting a graduate student.");
 #sql { select ref(p) INTO :g_ref FROM PERSON_TAB p WHERE p.NAME=’Lisa’ };

 // Connection object for conversions
 Connection conn = DefaultContext.getDefaultContext().getConnection();

 // Assigning a part-time instructor ref to a person ref
 System.out.println("Assigning a part-time instructor ref to a person ref");
 oracle.sql.Datum ref = ipt_ref.toDatum(conn);
 PersonRef pref = (PersonRef) PersonRef.getORADataFactory().
 create(ref,OracleTypes.REF);

 // Assigning a person ref to an instructor ref
 System.out.println("Assigning a person ref to an instructor ref");
 InstructorRef iref = (InstructorRef) InstructorRef.getORADataFactory().
 create(pref.toDatum(conn), OracleTypes.REF);

 // Assigning a graduate ref to an part time instructor ref
 // ==> this should actually bomb at runtime!
 System.out.println
 ("Assigning a graduate ref to a part time instructor ref");
 InstructorPartTimeRef iptref =
 (InstructorPartTimeRef) InstructorPartTimeRef.getORADataFactory()
 .create(g_ref.toDatum(conn), OracleTypes.REF);
 Oracle.close();
 }
}

 Understanding and Using JPublisher 1-55

JPublisher Support for Inheritance
SQLData Object Types and Inheritance
As described earlier, if you use the JPublisher -usertypes=jdbc setting instead of
-usertypes=oracle, the custom Java class that JPublisher generates will
implement the standard SQLData interface instead of the Oracle ORAData
interface. The SQLData readSQL() and writeSQL() methods provide equivalent
functionality to the ORAData/ORADataFactory create() and toDatum()
methods for reading and writing data.

As is the case when JPublisher generates ORAData classes corresponding to a
hierarchy of SQL object types, when JPublisher generates SQLData classes
corresponding to a SQL hierarchy, the Java types will follow the same hierarchy as
the SQL types.

SQLData implementations do not, however, offer the implicit mapping intelligence
that JPublisher automatically generates into ORAData classes (as described in
"ORAData Object Types and Inheritance" on page 1-49).

In a SQLData scenario, you must manually provide a type map to ensure the
proper mapping between SQL object types and Java types. In a JDBC application,
you can properly initialize the default type map for your connection, or you can
explicitly provide a type map as a getObject() input parameter. (See the Oracle9i
JDBC Developer’s Guide and Reference for information.) In a SQLJ application, use a
type map resource that is similar in nature to a properties file. (See the Oracle9i SQLJ
Developer’s Guide and Reference for information.)

In addition, be aware that there is no support for strongly typed object references in
a SQLData implementation. All object references are simple java.sql.Ref
instances.

Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE
This section discusses the effect on JPublisher-generated wrapper classes of using
the SQL modifiers FINAL, NOT FINAL, INSTANTIABLE, or NOT INSTANTIABLE.

Using the SQL modifier FINAL or NOT FINAL on a SQL type or on a method of a
SQL type has no effect on the generated Java wrapper code. This is so JPublisher
users are able in all cases to customize the generated Java wrapper class through
subclassing and overriding the generated behavior.

Using the SQL modifier NOT INSTANTIABLE on a method of a SQL type results in
no code being generated for that method in the Java wrapper class. Thus you must
cast to some wrapper class that corresponds to an instantiable SQL subtype in order
to call such a method.
1-56 JPublisher User’s Guide

JPublisher Support for Inheritance
Using NOT INSTANTIABLE on a SQL type results in the corresponding wrapper
class being generated with protected constructors. This will remind you that
instances of that class can only be created through subclasses that correspond to
instantiable SQL types.
 Understanding and Using JPublisher 1-57

JPublisher Limitations
JPublisher Limitations
This section summarizes limitations in the current release of JPublisher.

■ lack of support for some datatypes

JPublisher does not currently support the following SQL and PL/SQL
argument types:

– BOOLEAN

– NCHAR

– NVARCHAR2

– NCLOB

– RECORD types

– index-by tables

– strongly-typed REF CURSOR

– SQLJ object types

– OPAQUE types

JPublisher will not generate code for wrapper methods that use one or more of
the unsupported datatypes. Instead, JPublisher will display one or more error
messages.

For more information about datatype support, see "Datatype Mapping Tables"
on page 1-27.

■ INPUT file error reporting

JPublisher reports most, but not all, errors in the INPUT file. The few errors in
the INPUT file that are not reported by JPublisher are described in "INPUT File
Precautions" on page 2-32.
1-58 JPublisher User’s Guide

 Command-Line Options and Input
2

Command-Line Options and Input Files

This chapter describes the use of JPublisher option settings and input files to specify
program behavior. The following topics are covered:

■ JPublisher Options

■ JPublisher Input Files
 Files 2-1

JPublisher Options
JPublisher Options
This section lists and discusses the use of JPublisher command-line options,
covering the following topics:

■ JPublisher Option Summary

■ JPublisher Option Tips

■ Notational Conventions

■ Detailed Descriptions—Options That Affect Datatype Mappings

■ Detailed Descriptions—General JPublisher Options

JPublisher Option Summary
Table 2–1 lists the options that you can use on the JPublisher command line, their
syntax, and a brief description. The abbreviation "n/a" represents "not applicable".

Table 2–1 Summary of JPublisher Options

Option Name Description Default Value

-access Determines the access modifiers that
JPublisher includes in generated method
definitions.

public

-builtintypes Specifies the datatype mappings (jdbc
or oracle) for non-numeric, non-LOB
built-in datatypes.

jdbc

-case Specifies the case of Java identifiers that
JPublisher generates.

mixed

-compatible Specifies the general Oracle8i
compatibility mode, or the particular
interface to implement in generated
classes for Oracle mapping of
user-defined types—ORAData or
CustomDatum (supported for
backwards compatibility); modifies the
behavior of -usertypes=oracle.

oradata

-context Specifies what JPublisher uses for
connection contexts—the SQLJ
DefaultContext class, a
user-specified class, or a
JPublisher-generated inner class.

DefaultContext
2-2 JPublisher User’s Guide

JPublisher Options
-dir Specifies the directory that holds
generated files/packages (an empty
directory name results in all generated
files being placed in the current
directory; a non-empty directory name
specifies a directory to be used as the
root directory of a class hierarchy).

empty

-driver Specifies the driver class that JPublisher
uses for JDBC connections to the
database.

oracle.jdbc.OracleDriver

-encoding Specifies the Java encoding of JPublisher
input files and output files.

the value of the System property
file.encoding

-input Specifies the file that lists the types and
packages JPublisher translates.

n/a

-lobtypes Specifies the datatype mappings (jdbc
or oracle) that JPublisher uses for
BLOB and CLOB types.

oracle

-mapping Specifies which object attribute type and
method argument type mapping the
generated methods support.

Note: This is deprecated in favor of the
"XXXtypes" mapping options, but is
supported for backwards compatibility.

objectjdbc

-methods Determines whether JPublisher
generates wrapper methods for SQL
object methods and PL/SQL package
methods. (As secondary effects,
determines whether JPublisher
generates .sqlj files or .java files,
and whether it generates PL/SQL
wrapper classes at all.)

all

-numbertypes Specifies the datatype mappings (jdbc,
objectjdbc, bigdecimal, or
oracle) JPublisher uses for numeric
datatypes.

objectjdbc

-omit_schema_names Specifies whether all object types and
package names JPublisher generates
include the schema name.

do not omit schema names

Table 2–1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
 Command-Line Options and Input Files 2-3

JPublisher Options
JPublisher Option Tips
Be aware of the following usage notes for JPublisher options:

■ JPublisher always requires the -user option, either on the command line or in
the properties file.

■ Options are processed in the order in which they appear. Options from an
INPUT file are processed at the point where the -input option occurs.
Similarly, options from a properties file are processed at the point where the
-props option occurs.

■ If a particular option appears more than once, JPublisher uses the value from
the last occurrence.

-package Specifies the name of the Java package
into which JPublisher is generating Java
wrappers.

n/a

-props Specifies a file that contains JPublisher
options in addition to those listed on the
command line.

n/a

-sql Specifies object types and packages for
which JPublisher will generate code.

n/a

-types Specifies object types for which
JPublisher will generate code.

Note: This option is deprecated in favor
of -sql, but is supported for backwards
compatibility.

n/a

-url Specifies the URL JPublisher uses to
connect to the database.

jdbc:oracle:oci:@

Note: With the Oracle9i release, use "oci"
in the connect string for the Oracle JDBC
OCI driver in any new code. For
backwards compatibility, however, "oci8"
and "oci7" are still accepted.

-user Specifies an Oracle username and
password.

n/a

-usertypes Specifies the types mappings (jdbc or
oracle) JPublisher uses for
user-defined SQL types.

oracle

Table 2–1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
2-4 JPublisher User’s Guide

JPublisher Options
■ It is advisable to specify a Java package for your generated classes, either on the
command line, with the -package option, or in the properties file. For
example, on the command line you could enter:

jpub -sql=Person -package=e.f ...

or in the properties file you could enter:

jpub.sql=Person
jpub.package=e.f
...

These statements direct JPublisher to create the class Person in the Java
package e.f; that is, to create the class e.f.Person.

"Properties File Structure and Syntax" on page 2-25 describes the properties file.

■ If you do not specify a type or package in the INPUT file or on the command
line, then JPublisher translates all types and packages in the user’s schema
according to the options specified on the command line or in the properties file.

Notational Conventions
The JPublisher option syntax used in the following sections follows these notational
conventions:

■ Angle brackets <...> enclose strings that the user supplies.

■ A vertical bar | separates alternatives within brackets.

■ Terms in italics are like variables—specify an actual value or string.

■ Square brackets [...] enclose optional items.

■ Braces {...} enclose a list of possible values—specify only one of the values
within the braces.

■ An ellipsis ... immediately following an item (or items enclosed in brackets)
means that you can repeat the item any number of times.

■ Punctuation symbols other than those described above are entered as shown.
These include "." and "@", for example.

The next section discusses the options that affect datatype mappings. The remaining
options are then discussed in alphabetical order.
 Command-Line Options and Input Files 2-5

JPublisher Options
Detailed Descriptions—Options That Affect Datatype Mappings
The following options control which datatype mappings JPublisher uses to translate
object types, collection types, object reference types, and PL/SQL packages to Java
classes:

■ The -usertypes option controls JPublisher behavior for user-defined types
(possibly in conjunction with the -compatible option for oracle mapping).

■ The -numbertypes option controls datatype mappings for numeric types.

■ The -lobtypes option controls datatype mappings for the BLOB and CLOB
types.

■ The -builtintypes option controls datatype mappings for non-numeric,
non-LOB, predefined SQL and PL/SQL types.

These four options are known as the type mapping options. (Another, less flexible
option, -mapping, is discussed later. It is deprecated, but still supported for
compatibility with older releases of JPublisher.)

For an object type, JPublisher applies the mappings specified by the type mapping
options to the object attributes and to the arguments and results of any methods
included with the object. The mappings control the types that the generated
accessor methods support; that is, what types the getXXX() methods return and
the setXXX() methods require.

For a PL/SQL package, JPublisher applies the mappings to the arguments and
results of the methods in the package.

For a collection type, JPublisher applies the mappings to the element type of the
collection.

The -usertypes option controls whether JPublisher implements the Oracle
ORAData interface or the standard SQLData interface in generated classes, and
whether JPublisher generates code for collection and object reference types. In
addition, if -usertypes=oracle, you can use the -compatible option to specify
using CustomDatum instead of ORAData for Oracle mapping. CustomDatum is
replaced by ORAData and deprecated in Oracle9i, but is supported for backwards
compatibility. (Beyond this, you can use the -compatible option to specify a more
general Oracle8i compatibility mode. See "Oracle8i Compatibility Mode" on
page 1-24.)

See "Details of Datatype Mapping" on page 1-26 for more information about the
different datatype mappings and factors you should consider in deciding which
mappings to use.
2-6 JPublisher User’s Guide

JPublisher Options
The following sections provide additional information about these type mapping
options.

Mappings for User-Defined Types (-usertypes)
-usertypes={oracle|jdbc}

The -usertypes option controls whether JPublisher implements the Oracle
ORAData interface or the standard SQLData interface in generated classes for
user-defined types.

When -usertypes=oracle (the default), JPublisher generates ORAData classes
for object, collection, and object reference types. This is possibly used in conjunction
with the -compatible option, described in "Backwards-Compatible Oracle
Mapping for User-Defined Types (-compatible)" below.

When -usertypes=jdbc, JPublisher generates SQLData classes for object types.
JPublisher does not generate classes for collection or object reference types in this
case—use java.sql.Array for all collection types and java.sql.Ref for all
object reference types.

Backwards-Compatible Oracle Mapping for User-Defined Types (-compatible)
-compatible={oradata|customdatum|8i}

If -usertypes=oracle, you have the option of setting
-compatible=customdatum to implement the CustomDatum interface instead of
the ORAData interface in your generated classes for user-defined types.
CustomDatum is replaced by ORAData and deprecated in Oracle9i, but is still
supported for backwards compatibility. If -usertypes=jdbc, a -compatible
setting of customdatum (or oradata) is ignored.

Alternatively, this option has another mode of operation. With a setting of
-compatible=8i, you can specify the general Oracle8i compatibility mode. This
not only uses the CustomDatum interface, but also generates the same code that
would be generated by Oracle8i JPublisher, and is equivalent to setting other
JPublisher options for backwards compatibility to Oracle8i. Behavior of method
generation is equivalent to that for a -methods=always setting, and generation of
connection context declarations is equivalent to that for a -context=generated
setting. See "Oracle8i Compatibility Mode" on page 1-24.

Note: The -usertypes=jdbc setting requires JDK 1.2 or higher,
because the SQLData interface is a JDBC 2.0 feature.
 Command-Line Options and Input Files 2-7

JPublisher Options
Mappings For Numeric Types (-numbertypes)
-numbertypes={jdbc|objectjdbc|bigdecimal|oracle}

The -numbertypes option controls datatype mappings for numeric SQL and
PL/SQL types. Four choices are available:

■ The JDBC mapping maps most numeric datatypes to Java primitive types such
as int and float, and maps DECIMAL and NUMBER to
java.math.BigDecimal.

■ The Object JDBC mapping (the default) maps most numeric datatypes to Java
wrapper classes such as java.lang.Integer and java.lang.Float, and
maps DECIMAL and NUMBER to java.math.BigDecimal.

■ The BigDecimal mapping maps all numeric datatypes to
java.math.BigDecimal.

■ The Oracle mapping maps all numeric datatypes to oracle.sql.NUMBER.

Table 2–2 lists the SQL and PL/SQL types affected by the -numbertypes option,
and shows their Java type mappings for -numbertypes=jdbc and
-numbertypes=objectjdbc (the default).

Note: If you use JPublisher in an environment that does not
support the ORAData interface (such as Oracle8i JDBC 8.1.7 or prior
releases), then the CustomDatum interface is used automatically if
-usertypes=oracle. (You will receive an informational warning
if -compatible=oradata, but the generation will take place.)

Table 2–2 Mappings for Types Affected by the -numbertypes Option

SQL or PL/SQL Datatype JDBC Mapping Type Object JDBC Mapping Type

BINARY_INTEGER, INT,
INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN,
SIGNTYPE

int java.lang.Integer

SMALLINT short java.lang.Integer

REAL float java.lang.Float

DOUBLE PRECISION, FLOAT double java.lang.Double
2-8 JPublisher User’s Guide

JPublisher Options
Mappings For LOB Types (-lobtypes)
-lobtypes={jdbc|oracle}

The -lobtypes option controls datatype mappings for the LOB types. Table 2–3
shows how these types are mapped for -lobtypes=oracle (the default) and for
-lobtypes=jdbc.

Mappings For Built-In Types (-builtintypes)
-builtintypes={jdbc|oracle}

The -builtintypes option controls datatype mappings for all the built-in
datatypes except the LOB types (controlled by the -lobtypes option) and the
different numeric types (controlled by the -numbertypes option). Table 2–4 lists
the datatypes affected by the -builtintypes option and shows their Java type
mappings for -builtintypes=oracle and -builtintypes=jdbc (the default).

DEC, DECIMAL, NUMBER,
NUMERIC

java.math.BigDecimal java.math.BigDecimal

Table 2–3 Mappings for Types Affected by the -lobtypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE

Notes:

■ BFILE is an Oracle-specific SQL type, so there is no standard
java.sql.Bfile Java type.

■ The java.sql.Clob and java.sql.Blob interfaces are new
in JDK 1.2. If you use JDK 1.1, you should not select
-lobtypes=jdbc.

Table 2–2 Mappings for Types Affected by the -numbertypes Option (Cont.)

SQL or PL/SQL Datatype JDBC Mapping Type Object JDBC Mapping Type
 Command-Line Options and Input Files 2-9

JPublisher Options
Mappings for All Types (-mapping)
-mapping={jdbc|objectjdbc|bigdecimal|oracle}

The -mapping option specifies mapping for all datatypes, so offers little flexibility
between types.

The setting -mapping=oracle is equivalent to setting all the type mapping
options to oracle . The other -mapping settings are equivalent to setting
-numbertypes equal to the value of -mapping and setting the other type
mapping options to their defaults, as summarized in Table 2–5.

Table 2–4 Mappings for Types Affected by the -builtintypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type

CHAR, CHARACTER, LONG,
STRING, VARCHAR,
VARCHAR2

oracle.sql.CHAR java.lang.String

RAW, LONG RAW oracle.sql.RAW byte[]

DATE oracle.sql.DATE java.sql.Timestamp

Note: This option is deprecated in favor of the more specific type
mapping options: -usertypes, -numbertypes,
-builtintypes, and -lobtypes. It is still supported, however,
for backwards compatibility.

Table 2–5 Relation of -mapping Settings to Settings of Other Mapping Options

-builtintypes= -numbertypes= -lobtypes= -usertypes=

-mapping=oracle oracle oracle oracle oracle

-mapping=jdbc jdbc jdbc oracle oracle

-mapping=objectjdbc jdbc objectjdbc oracle oracle

-mapping=bigdecimal jdbc bigdecimal oracle oracle
2-10 JPublisher User’s Guide

JPublisher Options
Detailed Descriptions—General JPublisher Options
This section discusses the remaining JPublisher options, for settings other than
datatype mappings. Options in this section are in alphabetical order.

Method Access (-access)
-access={public|protected|package}

The -access option determines the access modifiers that JPublisher includes in
generated attribute setter and getter methods and member methods on object type
wrapper classes, as well as for wrapper methods on PL/SQL packages.

JPublisher uses the possible option settings as follows:

■ public (default)—Results in methods being generated with the public access
modifier.

■ protected—Results in methods being generated with the protected access
modifier.

■ package—Results in the access modifier being omitted, which means that
generated methods are local to the package.

You might want to use a setting of -access=protected or -access=package if
you need to control the usage of the generated JPublisher wrapper classes. Perhaps
you are providing your own customized versions of the wrappers as subclasses of
the JPublisher-generated classes, but do not want to provide access to the generated
superclasses.

You can specify the -access option on the command line or in a properties file.

Note: Because options are processed in the order in which they
appear on the command line, if the -mapping option precedes one
of the specific type mapping options (-builtintypes,
-lobtypes, -numbertypes, or -usertypes) the specific type
mapping option overrides the -mapping option for the relevant
types. If the -mapping option follows one of the specific type
mapping options, the specific type mapping option is ignored.
 Command-Line Options and Input Files 2-11

JPublisher Options
Case of Java Identifiers (-case)
-case={mixed|same|lower|upper}

For class or attribute names you do not specify in an INPUT file or on the command
line, the -case option affects the case of Java identifiers that JPublisher generates,
including class names, method names, attribute names embedded within
getXXX() and setXXX() method names, arguments of generated method names,
and Java wrapper names.

Table 2–6 describes the possible values for the -case option.

For class or attribute names that you enter with the -sql option, or class names in
the INPUT file, JPublisher retains the case of the letters in the name, overriding the
-case option.

Note: Constructors of JPublisher-generated classes, as well as
wrappers for object references, VARRAYs, and nested tables, are not
affected by the value of the -access option.

Table 2–6 Values for the -case Option

-case Option Value Description

mixed (default) The first letter of every word-unit of a class name or every
word-unit after the first word-unit of a method name is in
uppercase. All other characters are in lower case. An
underscore (_) or dollar sign ($), or any character that is illegal
in Java, constitutes a word-unit boundary and is silently
removed. A word-unit boundary also occurs after get or set
in a method name.

same JPublisher does not change the case of letters from the way
they are represented in the database. Underscores and dollar
signs are retained. JPublisher removes any other character that
is illegal in Java and issues a warning message.

upper JPublisher converts lowercase letters to uppercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.

lower JPublisher converts uppercase letters to lowercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.
2-12 JPublisher User’s Guide

JPublisher Options
JPublisher will retain as written the case of the Java class identifier for an object type
specified on the command line or in the INPUT file. For example, if the command
line includes the following:

-sql=Worker

then JPublisher generates:

public class Worker ... ;

Or, if the entry in the INPUT file is written as:

SQL wOrKeR

then JPublisher will follow the case for the identifier as it was entered in the INPUT
file and generate:

public class wOrKeR ... ;

SQLJ Connection Context Classes (-context)
-context={generated|DefaultContext|user-specified}

The -context option controls the connection context class that JPublisher may use,
and possibly declare, for .sqlj wrappers for user-defined object types and
PL/SQL packages.

The setting -context=DefaultContext is the default and results in any
JPublisher-generated .sqlj source files using the SQLJ default connection context
class—sqlj.runtime.ref.DefaultContext—for all connection contexts.

Alternatively, you can specify any class that implements the standard
sqlj.runtime.ConnectionContext interface and that exists in the classpath.
The specified class will be used for all connection contexts.

Note: With a user-specified class setting, instances of that class
must be used for output from the getConnectionContext()
method or input to the setConnectionContext() method. See
"Considerations in Using Connection Contexts and Connection
Instances" on page 1-38 for information about these methods.
 Command-Line Options and Input Files 2-13

JPublisher Options
The setting -context=generated results in the following inner class declaration
in all .sqlj files generated by JPublisher:

#sql static context _Ctx;

This means that each PL/SQL package and each object type wrapper uses its own
SQLJ connection context class. (Also see "Use of Connection Contexts and Instances
in SQLJ Code Generated by JPublisher" on page 1-37.)

There are the following benefits in using the DefaultContext setting or
user-specified-class setting:

■ No additional context classes are generated.

■ You have greater flexibility if you translate and compile your .sqlj files in
separate steps (translating with the SQLJ -compile=false setting). Assuming
you are not using JDK 1.2-specific types (such as java.sql.BLOB, CLOB,
Struct, Ref, or Array), the resulting .java files can be compiled under
either JDK 1.1.x or under JDK 1.2.x or higher. This is not the case with the
setting -context=generated, because SQLJ connection contexts in JDK 1.1.x
use java.util.Dictionary instances for object type maps, while SQLJ
connection contexts in JDK 1.2 or higher use java.util.Map instances.

A benefit of using the generated setting is that it permits full control over the way
the SQLJ translator performs online checking. Specifically, every object type and
every PL/SQL package can be checked against its own exemplar database schema.
However, because JPublisher generates .sqlj files from an existing schema, the
generated code is already verified as correct through construction from that schema.

Note that using the user-specified-class setting gives you the flexibility of the
generated setting while still giving you the advantages of the DefaultContext
setting.

You can specify the -context option on the command line or in a properties file.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
SQLJ connection contexts.

Output Directory for Generated Files (-dir)
-dir=<directory name>

A non-empty -dir option setting specifies the root of the directory tree within
which JPublisher will place Java and SQLJ source files. JPublisher will nest
generated packages in this directory. A setting of "." (a period, or "dot") specifies the
current directory as the root of the directory tree.
2-14 JPublisher User’s Guide

JPublisher Options
The empty setting, however, installs all generated file directly into the current
directory—there is no hierarchy in this case. This is the default setting, but you can
also specify it explicitly as follows:

-dir=

If you specify a non-empty setting, JPublisher combines the directory, the package
name given with the -package option, and any package name included in a SQL
statement in the INPUT file to determine the specific directory within which it will
generate a .java or .sqlj file. The "Name for Generated Packages (-package)"
section on page 2-18 discusses this in more detail.

For example, in the following command line (which is a single wrap-around line):

jpub -user=scott/tiger -input=demoin -mapping=oracle -case=lower -sql=employee
-package=corp -dir=demo

the demo directory will be the base directory for packages JPublisher generates for
object types you specify in the INPUT file demoin.

You can specify -dir on the command line or in a properties file. The default value
for the -dir option is empty.

JDBC Driver Class for Database Connection (-driver)
-driver=<driver_name>

The -driver option specifies the driver class that JPublisher uses for JDBC
connections to the database. The default is:

-driver=oracle.jdbc.OracleDriver

This setting is appropriate for any Oracle JDBC driver.

Java Character Encoding (-encoding)
-encoding=<name_of_character_encoding>

The -encoding option specifies the Java character encoding of the INPUT file
JPublisher reads and the .sqlj and .java files JPublisher writes. The default
encoding is the value of the system property file.encoding, or, if this property is
not set, 8859_1 (ISO Latin-1).

As a general rule, you are not required to specify this option unless you specify an
-encoding option when you invoke SQLJ and your Java compiler, in which case you
should use the same -encoding option for JPublisher.
 Command-Line Options and Input Files 2-15

JPublisher Options
You can use the -encoding option to specify any character encoding that is
supported by your Java environment. If you are using the Sun Microsystems JDK,
these options are listed in the native2ascii documentation, which you can find
at the following URL:

http://www.javasoft.com/products/jdk/1.1/docs/tooldocs/solaris/native2ascii.html

File Containing Names of Objects and Packages to Translate (-input)
-input=<filename>

The -input option specifies the name of a file from which JPublisher reads the
names of object types and PL/SQL packages to translate, and other information it
needs for their translation. JPublisher translates each object type and package in the
list. You can think of the INPUT file as a makefile for type declarations—it lists the
types that need Java class definitions.

In some cases, JPublisher might find it necessary to translate some additional
classes that do not appear in the INPUT file. This is because JPublisher analyzes the
types in the INPUT file for dependencies before performing the translation, and
translates other types as necessary. For more information on this topic, see
"Translating Additional Types" on page 2-30.

If you do not specify any packages or object types in an INPUT file or on the
command line, then JPublisher translates all object types and packages declared in
the database schema to which it is connected.

For more information about the syntax of the INPUT file, see "INPUT File Structure
and Syntax" on page 2-26.

Note: Encoding settings, either set through the JPublisher
-encoding option or the Java file.encoding setting, do not
apply to Java properties files, including those specified through the
JPublisher -props option. Properties files always use the encoding
8859_1. This is a feature of Java in general, not JPublisher in
particular. You can, however, use Unicode escape sequences in a
properties file.
2-16 JPublisher User’s Guide

JPublisher Options
Generate Classes for Packages and Wrapper Methods for Methods (-methods)
-methods=(true|all|always|named|some|false|none)

The value of the -methods option determines whether JPublisher generates
wrapper methods for methods in object types and PL/SQL packages.

For -methods=true or, equivalently, -methods=all (the default), JPublisher
generates wrapper methods for all the methods in the object types and PL/SQL
packages it processes. As of Oracle9i release 9.0.1, this results in generation of a
.sqlj source file whenever the underlying SQL object or package actually defines
methods, but a .java source if not. (In previous releases, .sqlj source files were
always generated for a true or all setting.)

The -methods=always setting also results in wrapper methods being generated;
however, for backwards compatibility to earlier JPublisher versions, this setting
always results in .sqlj files being generated for all SQL object types, regardless of
whether the types define methods.

For -methods=named or, equivalently, -methods=some, JPublisher generates
wrapper methods only for the methods explicitly named in the INPUT file.

For -methods=false or, equivalently, -methods=none, JPublisher does not
generate wrapper methods. In this case JPublisher does not generate classes for
PL/SQL packages, because they would not be useful without wrapper methods.

The default is -methods=all.

You can specify the -methods option on the command line or in a properties file.

Omit Schema Name from Generated Names (-omit_schema_names)
-omit_schema_names

The presence of the -omit_schema_names option determines whether certain
object type names generated by JPublisher include the schema name. Omitting the
schema name makes it possible for you to use classes generated by JPublisher when
you connect to a schema other than the one used when JPublisher was invoked, as
long as the object types and packages you use are declared identically in the two
schemas.

ORAData and SQLData classes generated by JPublisher include a static final
String that names the SQL object type matching the generated class. When the
code generated by JPublisher executes, the object type name in the generated code
is used to locate the object type in the database. If the object type name does not
include the schema name, the type is looked up in the schema associated with the
 Command-Line Options and Input Files 2-17

JPublisher Options
current connection when the code generated by JPublisher is executed. If the object
type name does include the schema name, the type is looked up in that schema.

If you do not specify -omit_schema_names on the command line, every object
type or wrapper name generated by JPublisher is qualified with a schema name.

If you do specify -omit_schema_names on the command line, an object type or
wrapper name generated by JPublisher is qualified with a schema name only if:

■ you declare the object type or wrapper in a schema other than the one to which
JPublisher is connected

or:

■ you declare the object type or wrapper with a schema name on the command
line or INPUT file

That is, an object type or wrapper from another schema requires a schema name to
identify it, and the use of a schema name with the type or package on the command
line or INPUT file overrides the -omit_schema_names option.

Name for Generated Packages (-package)
-package=<package_translation_syntax>

The -package option specifies the name of the package JPublisher generates. The
name of the package appears in a package declaration in each .java or .sqlj file.
The directory structure also reflects the package name. An explicit name in the
INPUT file, after the -sql option, overrides the value given to the -package
option.

Example 1 If the command line includes the following:

-dir=/a/b -package=c.d -case=mixed

and the INPUT file contains the following line (and assuming the SQL type PERSON
has methods defined on it):

SQL PERSON AS Person

then in the following cases, JPublisher creates the file /a/b/c/d/Person.sqlj:

-sql=PERSON:Person
-sql=PERSON
SQL PERSON AS Person
SQL PERSON
2-18 JPublisher User’s Guide

JPublisher Options
The Person.sqlj file contains (among other things) the following package
declaration:

package c.d;

Example 2 Now assume the following is again in the command line:

-dir=/a/b -package=c.d -case=mixed

but is followed by specification of an INPUT file containing the following:

-sql=PERSON:e.f.Person
SQL PERSON AS e.f.Person

In this case the package information in the INPUT file overrides the -package
option on the command line. JPublisher creates the file a/b/e/f/Person.sqlj,
which includes the following package declaration:

package e.f;

If you do not supply a package name for a class by any of the means described in
this section, then JPublisher will not supply a name for the package containing the
class. In addition, JPublisher will not generate a package declaration, and it will put
the file containing the declaration of the class in the directory specified by the -dir
option.

Occasionally, JPublisher might need to translate a type not explicitly listed in the
INPUT file, because the type is used by another type that must be translated. In this
case, the file declaring the required type is placed in the default package named on
the command line, in a properties file, or in the INPUT file. JPublisher does not
translate non-specified packages, because packages do not have dependencies on
other packages.

Input Properties File (-props)
-props=<filename>

The -props option, entered on the command line, specifies the name of a
JPublisher properties file that lists the values of commonly used options. JPublisher
processes the properties file as if its contents were inserted in sequence on the
command line at that point.

If more than one properties file appears on the command line, JPublisher processes
them with the other command line options in the order in which they appear.
 Command-Line Options and Input Files 2-19

JPublisher Options
For information on the contents of the properties file, see "Properties File Structure
and Syntax" on page 2-25.

Declaration of Object Types and Packages to Translate (-sql)
-sql=<object type and package translation syntax>

You can use the -sql option when you do not need the generality of an INPUT file.
The -sql option lets you list one or more database entities declared in SQL that
you want JPublisher to translate. Currently, JPublisher supports translation of object
types and packages. JPublisher also translates the top-level subprograms in a
schema, just as it does for subprograms in a PL/SQL package.

You can mix object types and package names in the same -sql declaration.
JPublisher can detect whether each item is an object type or a package.

You can also use the -sql option with the keyword toplevel to translate all
top-level PL/SQL subprograms in a schema. The toplevel keyword is not
case-sensitive. More information on the toplevel keyword is provided later in
this section.

If you do not enter any types or packages to translate in the INPUT file or on the
command line, then JPublisher will translate all the types and packages in the
schema to which you are connected.

In this section, the -sql option is explained by translating it to the equivalent
INPUT file syntax. INPUT file syntax is explained in "Understanding the Translation
Statement" on page 2-26.

The JPublisher command-line syntax for -sql lets you indicate three possible type
translations.

■ -sql=name_a

JPublisher interprets this syntax as: SQL name_a

■ -sql=name_a:name_c

Note: Encoding settings, either set through the JPublisher
-encoding option or the Java file.encoding setting, do not
apply to Java properties files, including those specified through the
-props option. Properties files always use the encoding 8859_1.
This is a feature of Java in general, not JPublisher in particular. You
can, however, use Unicode escape sequences in a properties file.
2-20 JPublisher User’s Guide

JPublisher Options
JPublisher interprets this syntax as: SQL name_a AS name_c

■ -sql=name_a:name_b:name_c

JPublisher interprets this syntax as:
SQL name_a GENERATE name_b AS name_c

In this case, name_a must represent an object type.

You enter -sql=... only once on the command line or properties file, followed by
one or more object types and packages (including top-level "packages") that you
want JPublisher to translate. If you enter more than one item for translation, they
must be separated by commas, without any white space. This example assumes that
CORPORATION is a package, and EMPLOYEE and ADDRESS are object types:

-sql=CORPORATION,EMPLOYEE:oracleEmployee,ADDRESS:JAddress:MyAddress

JPublisher will interpret this as follows:

SQL CORPORATION
SQL EMPLOYEE AS oracleEmployee
SQL ADDRESS GENERATE JAddress AS MyAddress

And JPublisher executes the following:

■ It creates a wrapper for the CORPORATION package.

■ It translates the object type EMPLOYEE as oracleEmployee.

■ It translates ADDRESS as JAddress, generating code so that ADDRESS objects
will be represented by the MyAddress class that you will write to extend
JAddress.

Important: Only non-case-sensitive SQL names are supported on
the JPublisher command line. If a user-defined type was defined in
a case-sensitive way (in quotes) in SQL, then you must specify the
name in the JPublisher INPUT file instead of on the command line,
and in quotes. See "INPUT File Structure and Syntax" on page 2-26
for information.

Note: The name_a:name_b:name_c translation syntax is not
meaningful when name_a represents a package.
 Command-Line Options and Input Files 2-21

JPublisher Options
■ It creates the references to the MyAddress class that you will write to extend
JAddress.

If you want JPublisher to translate all the top-level PL/SQL subprograms in the
schema to which JPublisher is connected, enter the keyword toplevel following
the -sql option. JPublisher treats the top-level PL/SQL subprograms as if they
were in a package. For example:

-sql=toplevel

JPublisher generates a wrapper class, known as toplevel, for the top level
subprograms. If you want the class to be generated with a different name, you can
declare the name with the -sql=name_a:name_b syntax. For example:

-sql=toplevel:myClass

Note that this is synonymous with the INPUT file syntax:

SQL toplevel AS myClass

Similarly, if you want JPublisher to translate all the top-level PL/SQL subprograms
in some other schema, enter:

-sql=<schema-name>.toplevel

where <schema-name> is the name of the schema containing the top-level
subprograms.

Declare Object Types to Translate (-types)
-types=<type translation syntax>

You can use the -types option, for object types only, when you do not need the
generality of an INPUT file. The -types option lets you list one or more individual
object types that you want JPublisher to translate. Except for the fact that the
-types option does not support PL/SQL packages, it is identical to the -sql
option.

If you do not enter any types or packages to translate in the INPUT file or with the
-types or -sql options, then JPublisher will translate all the types and packages
in the schema to which you are connected.

Note: The -types option is currently supported for compatibility,
but deprecated. Use the -sql option instead.
2-22 JPublisher User’s Guide

JPublisher Options
The command-line syntax lets you indicate three possible type translations.

■ -types=name_a

JPublisher interprets this syntax as: TYPE name_a

■ -types=name_a:name_b

JPublisher interprets this syntax as: TYPE name_b AS name_c

■ -types=name_a:name_b:name_c

JPublisher interprets this syntax as:
TYPE name_a GENERATE name_b AS name_c

TYPE, TYPE...AS, and TYPE...GENERATE...AS syntax has the same
functionality as SQL, SQL...AS and SQL...GENERATE...AS syntax. See
"Understanding the Translation Statement" on page 2-26.

Enter -types=... on the command line, followed by one or more object type
translations you want JPublisher to perform. If you enter more than one item, they
must be separated by commas without any white space. For example, if you enter:

-types=CORPORATION,EMPLOYEE:oracleEmployee,ADDRESS:JAddress:MyAddress

JPublisher will interpret this as:

TYPE CORPORATION
TYPE EMPLOYEE AS oracleEmployee
TYPE ADDRESS GENERATE JAddress AS MyAddress

Connection URL for Target Database (-url)
-url=<url>

You can use the -url option to specify the URL of the database to which you want
to connect. The default value is:

-url=jdbc:oracle:oci:@

You can follow the "@" symbol with an Oracle SID.

To specify the Thin driver, enter:

-url=jdbc:oracle:thin:@host:port:sid

where host is the name of the host on which the database is running, port is the
port number and sid is the Oracle SID.
 Command-Line Options and Input Files 2-23

JPublisher Options
User Name and Password for Database Connection (-user)
-user=<username>/<password>

JPublisher requires the -user option, which specifies an Oracle user name and
password. If you do not enter the -user option, JPublisher prints an error message
and stops execution.

For example, the following command line directs JPublisher to connect to your
database with username scott and password tiger:

jpub -user=scott/tiger -input=demoin -dir=demo -mapping=oracle -package=corp

Note: With the Oracle9i release, use "oci" in the connect string for
the Oracle JDBC OCI driver in any new code. For backwards
compatibility, however, "oci8" and "oci7" are still accepted.
2-24 JPublisher User’s Guide

JPublisher Input Files
JPublisher Input Files
These sections describe the structure and contents of JPublisher input files:

■ Properties File Structure and Syntax

■ INPUT File Structure and Syntax

■ INPUT File Precautions

Properties File Structure and Syntax
A properties file is an optional text file where you can specify frequently-used
options. You specify the name of the properties file on the JPublisher command line
with the -props option. JPublisher processes the properties file as if its contents
were inserted on the command line at that point.

In a properties file, you enter one (and only one) option with its associated value on
each line. Enter the option name with the following prefix (including the period):

jpub.

You cannot use any white space within a line. You can enter any option except the
-props option in the properties file.

JPublisher reads the options in the properties file in order, as if its contents were
inserted on the command line at the point where the -props option was specified.
If you specify an option more than once, JPublisher uses the last value encountered.

For example, consider the following command line (a single wrap-around line):

jpub -user=scott/tiger -sql=employee -mapping=oracle -case=lower -package=corp
-dir=demo

This is equivalent to the following:

jpub -props=my_properties

where my_properties is as follows:

jpub.user=scott/tiger
jpub.sql=employee
jpub.mapping=oracle
jpub.case=lower
jpub.package=corp
jpub.dir=demo
 Command-Line Options and Input Files 2-25

JPublisher Input Files
"JPublisher Options" on page 2-2 describes all the JPublisher options.

INPUT File Structure and Syntax
Specify the name of the INPUT file on the JPublisher command line with the
-input option. This file identifies the object types and PL/SQL packages
JPublisher should translate. It also controls the naming of the generated classes and
packages. Although you can use the -sql command-line option to specify object
types and packages, an INPUT file allows you a finer degree of control over how
JPublisher translates object types and PL/SQL packages.

If you do not specify types or packages to translate in an INPUT file or on the
command line, then JPublisher translates all object types and PL/SQL packages in
the schema to which it connects.

Understanding the Translation Statement
The translation statement in the INPUT file identifies the names of the object types
and PL/SQL packages that you want JPublisher to translate. The translation
statement can also optionally specify a Java name for the type or package, a Java
name for attribute identifiers, and whether there are any extended classes.

One or more translation statements can appear in the INPUT file. The structure of a
translation statement is:

(SQL <name> | SQL [<schema_name>.]toplevel | TYPE <type_name>)
[GENERATE <java_name_1>]
[AS <java_name_2>]
[TRANSLATE
 <database_member_name> AS <simple_java_name>
 { , <database_member_name> AS <simple_java_name>}*
]

The following sections describe the components of the translation statement.

SQL <name> | TYPE <type_name> Clause Enter SQL <name> to identify an object type
or a PL/SQL package that you want JPublisher to translate. JPublisher examines the
<name>, determines whether it is an object type or a package name, and processes it

Note: You must include the jpub. prefix (including the period) at
the beginning of each option name. If you enter anything else
before the option name, JPublisher will ignore the entire line.
2-26 JPublisher User’s Guide

JPublisher Input Files
appropriately. If you use the reserved word toplevel in place of <name>,
JPublisher translates the top-level subprograms in the schema to which JPublisher is
connected.

Instead of SQL, it is permissible to enter TYPE <type_name> if you are specifying
only object types; however, TYPE syntax is deprecated in Oracle9i.

You can enter <name> as <schema_name>.<name> to specify the schema to which
the object type or package belongs. If you enter <schema_name>.toplevel,
JPublisher translates the top-level subprograms in schema <schema_name>.

AS <java_name_2> Clause This clause optionally specifies the name of the Java class
that represents the user-defined type or PL/SQL package. The <java_name_2>
can be any legal Java name and can include a package identifier. The case of the
Java name overrides the value of the -case option. For more information on how
to name packages, see "Package Naming Rules in the INPUT File" on page 2-29.

When you use the AS clause without a GENERATE clause, the class in the AS clause
is what JPublisher generates and is mapped to the SQL type.

When you use the AS clause with a GENERATE clause, JPublisher generates the class
in the GENERATE clause but maps the SQL type to the class in the AS clause. You

Important: If a user-defined type was defined in a case-sensitive
way (in quotes) in SQL, then you must specify the name in quotes.
For example:

SQL "CaseSenstiveType" AS CaseSensitiveType

Or, if also specifying a non-case-sensitive schema name:

SQL SCOTT."CaseSensitiveType" AS CaseSensitiveType

Or, if also specifying a case-sensitive schema name:

SQL "Scott"."CaseSensitiveType AS CaseSensitiveType

(The AS clauses, described below, are optional.)

Avoid situations where a dot (".") is part of the schema name or
type name itself.

Note: The TYPE syntax is currently supported for compatibility,
but deprecated. Use the SQL syntax instead.
 Command-Line Options and Input Files 2-27

JPublisher Input Files
manually create the class in the AS clause, extending the class that JPublisher
generates.

Also see "Extending JPublisher-Generated Classes" on page 1-44.

GENERATE <java_name_1> Clause This clause specifies the name of the class that
JPublisher generates when you want to create a subclass for mapping purposes. Use
the GENERATE clause in conjunction with the AS clause. JPublisher generates the
class in the GENERATE clause. The AS clause specifies the name of the subclass that
you create and that your Java program will use to represent the SQL object type.

The <java_name_1> can be any legal Java name and can include a package
identifier. Its case overrides the value of the -case option.

Use the GENERATE clause only when you are translating object types. When you are
translating an object type, the code JPublisher generates mentions both the name of
the class that JPublisher generates and the name of the class that your Java program
will use to represent the SQL object type. When these are two different classes, use
GENERATE...AS.

Do not use this clause if you are translating PL/SQL packages. When you are
translating a PL/SQL package, the code JPublisher generates mentions only the
name of the class that JPublisher generates, so there is no need to use the GENERATE
clause in this case.

Also see "Extending JPublisher-Generated Classes" on page 1-44.

TRANSLATE <database_member_name> AS <simple_java_name> Clause This clause
optionally specifies a different name for an attribute or method. The
<database_member_name> is the name of an attribute of a type, or a method of a
type or package, which is to be translated to the following <simple_java_name>.
The <simple_java_name> can be any legal Java name, and its case overrides the
value of the -case option. This name cannot have a package name.

If you do not use TRANSLATE...AS to rename an attribute or method or if
JPublisher translates an object type not listed in the INPUT file, then JPublisher uses
the database name of the attribute or method as the Java name as modified
according to the value of the -case option. Reasons why you might want to
rename an attribute name or method include:

■ The name contains characters other than letters, digits, and underscores.

■ The name conflicts with a Java keyword.
2-28 JPublisher User’s Guide

JPublisher Input Files
■ The type name conflicts with another name in the same scope. This can happen,
for example, if the program uses two types with the same name from different
schemas.

Remember that your attribute names will appear embedded within getXXX() and
setXXX() method names, so you might want to capitalize the first letter of your
attribute names. For example, if you enter:

TRANSLATE FIRSTNAME AS FirstName

JPublisher will generate a getFirstName() method and a setFirstName()
method. In contrast, if you enter:

TRANSLATE FIRSTNAME AS firstName

JPublisher will generate a getfirstName() method and a setfirstName()
method.

Package Naming Rules in the INPUT File If you use a simple Java identifier to name a
class in the INPUT file, its full class name will include the package name from the
-package option. If the class name in the INPUT file is qualified with a package
name, then that package name overrides the value of the -package option and
becomes the full package name of the class.

For example:

■ If you enter the syntax:

SQL A AS B

then JPublisher uses the value that was entered for -package on the command
line or the properties file.

Note: The Java keyword null has special meaning when used as
the target Java name for an attribute or method, such as in the
following example:

TRANSLATE FIRSTNAME AS null

When you map a SQL method to null, JPublisher does not
generate a corresponding Java method in the mapped Java class.
When you map a SQL object attribute to null, JPublisher does not
generate the getter and setter methods for the attribute in the
mapped Java class.
 Command-Line Options and Input Files 2-29

JPublisher Input Files
■ If you enter the syntax:

SQL A AS B.C

then JPublisher interprets B.C to represent the full class name.

For example, if you enter:

-package=a.b

on the command line and the INPUT file contains the translation statement:

SQL scott.employee AS e.Employee

then JPublisher will generate the class as:

e.Employee

For more examples of how the package name is determined, see "Name for
Generated Packages (-package)" on page 2-18.

Translating Additional Types It might be necessary for JPublisher to translate
additional types not listed in the INPUT file. This is because JPublisher analyzes the
types in the INPUT file for dependencies before performing the translation, and
translates other types as necessary. Recall the example in "Sample JPublisher
Translation" on page 1-15. Assume the object type definition for EMPLOYEE had
included an attribute called ADDRESS, and ADDRESS was an object with the
following definition:

CREATE OR REPLACE TYPE address AS OBJECT
(
 street VARCHAR2(50),
 city VARCHAR2(50),
 state VARCHAR2(30),
 zip NUMBER
);

In this case, JPublisher would first translate ADDRESS, because that would be
necessary to define the EMPLOYEE type. In addition, ADDRESS and its attributes
would all be translated in the same case, because they are not specifically
mentioned in the INPUT file. A class file would be generated for Address.java,
which would be included in the package specified on the command line.

JPublisher does not translate packages you do not request. Because packages do not
have attributes, they do not have any dependencies on other packages.
2-30 JPublisher User’s Guide

JPublisher Input Files
Sample Translation Statement
To better illustrate the function of the INPUT file, consider a more complicated
version of the example in "Sample JPublisher Translation" on page 1-15. Consider
the following command line (a single wrap-around line):

jpub -user=scott/tiger -input=demoin -dir=demo -numbertypes=oracle -package=corp
-case=same

The INPUT file demoin now contains:

SQL employee AS c.Employee
 TRANSLATE NAME AS Name
 HIRE_DATE AS HireDate

The -case=same option indicates that generated Java identifiers should maintain
the same case as in the database. Any identifier in a CREATE TYPE or CREATE
PACKAGE declaration is stored in upper case in the database unless it is quoted.
However, the -case option is applied only to those identifiers not explicitly
mentioned in the INPUT file. Thus, Employee will appear as written. The attribute
identifiers not specifically mentioned (that is, EMPNO, DEPTNO, and SALARY) will
remain in upper case, but JPublisher will translate the specifically mentioned NAME
and HIRE_DATE attribute identifiers as shown.

The translation statement specifies a SQL object type to be translated. In this case,
there is only one object type, Employee.

The AS c.Employee clause causes the package name to be further qualified. The
translated type will be written to the following file:

./demo/corp/c/Employee.sqlj (UNIX)

.\demo\corp\c\Employee.sqlj (Windows NT)

(This assumes the object type defines methods; otherwise Employee.java will be
generated instead.)

The generated file is written in package corp.c in output directory demo. Note
that the package name is reflected in the directory structure.

The TRANSLATE...AS clause specifies that the name of any mentioned object
attributes should be changed when the type is translated into a Java class. In this
case, the NAME attribute is changed to Name and the HIRE_DATE attribute is
changed to HireDate.
 Command-Line Options and Input Files 2-31

JPublisher Input Files
INPUT File Precautions
This section describes some of the common errors made in INPUT files. Check for
these errors before you run JPublisher. Although JPublisher reports most of the
errors that it finds in the INPUT file, it does not report these.

Requesting the Same Java Class Name for Different Object Types
If you request the same Java class name for two different object types, the second
class will silently overwrite the first. For example, if the INPUT file contains:

type PERSON1 as person
TYPE PERSON2 as person

JPublisher will create the file person.java for PERSON1 and will then overwrite it
for type PERSON2.

Requesting the Same Attribute Name for Different Object Attributes
If you request the same attribute name for two different object attributes, JPublisher
will generate getXXX() and setXXX() methods for both attributes without
issuing a warning message. The question of whether the generated class is valid in
Java depends on whether the two getXXX() methods with the same name and the
two setXXX() methods with the same name have different argument types so that
they may be unambiguously overloaded.

Specifying Nonexistent Attributes
If you specify a nonexistent object attribute in the TRANSLATE clause, JPublisher
will ignore it without issuing a warning message.

For example, if the INPUT file contains: type PERSON translate X as attr1

and X is not an attribute of PERSON, JPublisher will not issue a warning message.
2-32 JPublisher User’s Guide

 JPublisher Exam
3

JPublisher Examples

This chapter provides examples of the output JPublisher produces when translating
object types and PL/SQL packages. This chapter contains the following sections:

■ Example: JPublisher Translations with Different Mappings contains examples of
JPublisher output, comparing different outputs where only the values of the
datatype mapping parameters are changed.

■ Example: JPublisher Object Attribute Mapping illustrates an example of
JPublisher output when translating different object types.

■ Example: Generating a SQLData Class covers an example of JPublisher output
when generating classes that implement the SQLData interface.

■ Example: Extending JPublisher Classes presents an example of JPublisher
output when generating a class that you will extend.

■ Example: Wrappers Generated for Methods in Objects shows an example of
JPublisher output when generating method wrappers for object type attributes
and methods.

■ Example: Wrappers Generated for Methods in Packages shows an example of
JPublisher output when generating method wrappers for PL/SQL methods.

■ Example: Using Classes Generated for Object Types presents a complete
program using the classes that JPublisher generates for object types.

■ Example: Using Classes Generated for Packages presents a complete program
using the classes and method wrappers that JPublisher generates for objects and
packages respectively.

■ Example: Using Datatypes Not Supported by JDBC contains an example of how
to write anonymous PL/SQL blocks that will let you employ datatypes not
supported by JDBC.
ples 3-1

Example: JPublisher Translations with Different Mappings
Example: JPublisher Translations with Different Mappings
This section presents sample output from JPublisher with the only difference in the
translations being the values of the datatype mapping parameters. It uses the SQL
type declaration and JPublisher command line presented in "Sample JPublisher
Translation" on page 1-15 (repeated here for convenience).

Type declaration:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno INTEGER,
 deptno NUMBER,
 hiredate DATE,
 salary REAL
);

Command line (a single wrap-around line):

jpub -user=scott/tiger -dir=demo -numbertypes=objectjdbc -builtintypes=jdbc
-package=corp -case=mixed -sql=Employee

In the following two examples, JPublisher translates the types using different
datatype mapping options:

■ first, with -numbertypes=jdbc and -builtintypes=jdbc

■ second, with -numbertypes=oracle and -builtintypes=oracle.

JPublisher Translation with the JDBC Mapping
The SQL program presented in "Sample JPublisher Translation" on page 1-15 is
translated here by JPublisher with -numbertypes=jdbc. No other changes have
been made to the command line.

Because the user requests the JDBC mapping rather than the Object JDBC mapping
for numeric types, the getXXX() and setXXX() accessor methods use the type
int instead of Integer and the type float instead of Float.

Following are the contents of the Employee.java file. The EmployeeRef.java
file is unchanged because it does not depend on the types of the attributes.
3-2 JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings
package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 12, 4, 2, 91, 7
 };

 static ORADataFactory[] _factory = new ORADataFactory[5];

 static final Employee _EmployeeFactory = new Employee();
 public static ORADataFactory getORADataFactory()
 {
 return _EmployeeFactory;
 }

 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory);
}
 public Employee()
 { this(true); }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException

Note: The details of method bodies generated by JPublisher might
change in future releases.
 JPublisher Examples 3-3

Example: JPublisher Translations with Different Mappings
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws
SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* accessor methods */
 public String getName() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setName(String name) throws SQLException
 { _struct.setAttribute(0, name); }

 public int getEmpno() throws SQLException
 { return ((Integer) _struct.getAttribute(1)).intValue(); }

 public void setEmpno(int empno) throws SQLException
 { _struct.setAttribute(1, new Integer(empno)); }

 public java.math.BigDecimal getDeptno() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(2); }

 public void setDeptno(java.math.BigDecimal deptno) throws SQLException
 { _struct.setAttribute(2, deptno); }

 public java.sql.Timestamp getHiredate() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(3); }

 public void setHiredate(java.sql.Timestamp hiredate) throws SQLException
 { _struct.setAttribute(3, hiredate); }
3-4 JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings
 public float getSalary() throws SQLException
 { return ((Float) _struct.getAttribute(4)).floatValue(); }

 public void setSalary(float salary) throws SQLException
 { _struct.setAttribute(4, new Float(salary)); }

}

JPublisher Translation with the Oracle Mapping
The SQL program presented in "Sample JPublisher Translation" on page 1-15 is
translated here by JPublisher with -numbertypes=oracle and
-builtintypes=oracle. No other changes have been made to the command
line.

Because the user requests Oracle type mappings, the getXXX() and setXXX()
accessor methods employ the type oracle.sql.CHAR instead of String, the type
oracle.sql.DATE instead of java.sql.Timestamp, and the type
oracle.sql.NUMBER instead of Integer, java.math.BigDecimal, and
Float.

Following are the contents of the Employee.java file. The EmployeeRef.java
file is unchanged, because it does not depend on the types of the attributes.

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 3-5

Example: JPublisher Translations with Different Mappings
 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 12, 4, 2, 91, 7
 };

 static ORADataFactory[] _factory = new ORADataFactory[5];

 static final Employee _EmployeeFactory = new Employee();
 public static ORADataFactory getORADataFactory()
 {
 return _EmployeeFactory;
 }

 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory); }
 public Employee()
 { this(true); }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* accessor methods */
 public oracle.sql.CHAR getName() throws SQLException
 { return (oracle.sql.CHAR) _struct.getOracleAttribute(0); }

 public void setName(oracle.sql.CHAR name) throws SQLException
 { _struct.setOracleAttribute(0, name); }
3-6 JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings
 public oracle.sql.NUMBER getEmpno() throws SQLException
 { return (oracle.sql.NUMBER) _struct.getOracleAttribute(1); }

 public void setEmpno(oracle.sql.NUMBER empno) throws SQLException
 { _struct.setOracleAttribute(1, empno); }

 public oracle.sql.NUMBER getDeptno() throws SQLException
 { return (oracle.sql.NUMBER) _struct.getOracleAttribute(2); }

 public void setDeptno(oracle.sql.NUMBER deptno) throws SQLException
 { _struct.setOracleAttribute(2, deptno); }

 public oracle.sql.DATE getHiredate() throws SQLException
 { return (oracle.sql.DATE) _struct.getOracleAttribute(3); }

 public void setHiredate(oracle.sql.DATE hiredate) throws SQLException
 { _struct.setOracleAttribute(3, hiredate); }

 public oracle.sql.NUMBER getSalary() throws SQLException
 { return (oracle.sql.NUMBER) _struct.getOracleAttribute(4); }

 public void setSalary(oracle.sql.NUMBER salary) throws SQLException
 { _struct.setOracleAttribute(4, salary); }

}

 JPublisher Examples 3-7

Example: JPublisher Object Attribute Mapping
Example: JPublisher Object Attribute Mapping
This section provides examples of JPublisher output for a variety of object attribute
types, demonstrating the various datatype mappings that JPublisher creates.

The example defines an address object (address) and then uses it as the basis of
the definition of an address array (Addr_Array). The alltypes object definition
also uses the address and address array objects to demonstrate the mappings that
JPublisher creates for object references and arrays (see attr17, attr18, and
attr19 in the alltypes object definition below).

CONNECT SCOTT/TIGER;

CREATE OR REPLACE TYPE address AS object
(
 street varchar2(50),
 city varchar2(50),
 state varchar2(30),
 zip number
);

CREATE OR REPLACE TYPE Addr_Array AS varray(10) OF address;
CREATE OR REPLACE TYPE ntbl AS table OF Integer;
CREATE TYPE alltypes AS object (
 attr1 bfile,
 attr2 blob,
 attr3 char(10),
 attr4 clob,
 attr5 date,
 attr6 decimal,
 attr7 double precision,
 attr8 float,
 attr9 integer,
 attr10 number,
 attr11 numeric,
 attr12 raw(20),
 attr13 real,
 attr14 smallint,
 attr15 varchar(10),
 attr16 varchar2(10),
 attr17 address,
 attr18 ref address,
 attr19 Addr_Array,
 attr20 ntbl);
3-8 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
In this example, JPublisher was invoked with the following command line (a single
wrap-around line):

jpub -user=scott/tiger -input=demoin -dir=demo -package=corp -mapping=objectjdbc
-methods=false

It is not necessary to create the demo and corp directories in advance. JPublisher
will create the directories for you.

The demoin file contains these declarations:

SQL ADDRESS AS Address
SQL ALLTYPES AS all.Alltypes

JPublisher generates declarations of the types Alltypes and Address, because
demoin explicitly lists them. It also generates declarations of the types ntbl and
AddrArray, because the Alltypes type requires them.

Additionally, JPublisher generates declarations of the types AlltypesRef and
AddressRef, because it generates a declaration of a reference type for each object
type. A reference type is in the same package as the corresponding object type.
Reference types are not listed in the INPUT file or on the command line. The
Address and AddressRef types are in package corp, because -package=corp
appears on the command line. The Alltypes and AlltypesRef types are in
package all, because the all in all.Alltypes overrides -package=corp. The
remaining types were not explicitly mentioned, so they go in package corp, which
was specified on the command line.

Therefore, JPublisher creates the following files in package corp:

./demo/corp/Address.java

./demo/corp/AddressRef.java

./demo/corp/Ntbl.java

./demo/corp/AddrArray.java

Note: The -mapping option, while deprecated, is still supported
so is therefore demonstrated. The -mapping=objectjdbc setting
is equivalent to the combination of -builtintypes=jdbc,
-numbertypes=objectjdbc, -lobtypes=oracle, and
-usertypes=oracle. See "Mappings for All Types (-mapping)"
on page 2-10 for more information.
 JPublisher Examples 3-9

Example: JPublisher Object Attribute Mapping
and the following files in package all:

./demo/all/Alltypes.java

./demo/all/AlltypesRef.java

Listing and Description of Address.java Generated by JPublisher
The file ./demo/corp/Address.java reads as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Address implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 12, 12, 12, 2
 };

 static ORADataFactory[] _factory = new ORADataFactory[4];

 static final Address _AddressFactory = new Address();
 public static ORADataFactory getORADataFactory()
 {
 return _AddressFactory;
 }

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-10 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 /* constructor */
 protected Address(boolean init)
 { if(init) _struct = new MutableStruct(new Object[4], _sqlType, _factory); }
 public Address()
 { this(true); }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Address o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Address(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* accessor methods */
 public String getStreet() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setStreet(String street) throws SQLException
 { _struct.setAttribute(0, street); }

 public String getCity() throws SQLException
 { return (String) _struct.getAttribute(1); }

 public void setCity(String city) throws SQLException
 { _struct.setAttribute(1, city); }

 public String getState() throws SQLException
 { return (String) _struct.getAttribute(2); }

 public void setState(String state) throws SQLException
 { _struct.setAttribute(2, state); }
 JPublisher Examples 3-11

Example: JPublisher Object Attribute Mapping
 public java.math.BigDecimal getZip() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(3); }

 public void setZip(java.math.BigDecimal zip) throws SQLException
 { _struct.setAttribute(3, zip); }

}

The Address.java file illustrates several points about Java source files.
JPublisher-generated files begin with a package declaration whenever the generated
class is in a named package. Note that you can specify a package in any of these
ways:

■ a -package parameter that you specify on the command line or in the
properties file

■ the AS <Java_identifier> clause in the INPUT file, where
Java_identifier includes a package name

Import declarations for specific classes and interfaces mentioned by the Address
class follow the package declaration.

The class definition follows the import declarations. All classes JPublisher
generates are declared public.

SQLJ uses the _SQL_NAME and _SQL_TYPECODE strings to identify the SQL type
matching the Address class.

The no-argument constructor is used to create the _AddressFactory object,
which will be returned by getORADataFactory(). For efficiency, JPublisher also
generates a protected boolean constructor for Address objects. This can be used in
subclasses of Address to create uninitialized Address objects. Other Address
objects are constructed by the create() method. The protected create(...,...,...)
method is used to encapsulate details of the JPublisher implementation in the
JPublisher-generated Address class, and to simplify the writing of user-provided
subclasses. Implementation details, such as generation of the static _factory field
and the _struct field, are implementation-specific and should not be referenced or
exploited by any subclass of Address. (In this implementation, the _factory field
is an array of factories for attributes of Address, but in this case the factories are
null because none of the attribute types of Address require a factory. The _struct
field holds the object data and is a MutableStruct instance.)
3-12 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
The toDatum() method converts an Address object to a Datum object (in this
case, a STRUCT object). JDBC requires the connection argument, although it might
not be logically necessary.

The getXXX() and setXXX() accessor methods use the objectjdbc mapping for
numeric attributes and the jdbc mapping for other attributes. The method names
are in mixed case because -case=mixed is the default.

Listing of AddressRef.java Generated by JPublisher
The file ./demo/corp/AddressRef.java reads as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class AddressRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

 static final AddressRef _AddressRefFactory = new AddressRef();
 public static ORADataFactory getORADataFactory()
 {
 return _AddressRefFactory;
 }

 /* constructor */
 public AddressRef()
 {
 }

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 3-13

Example: JPublisher Object Attribute Mapping
 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 AddressRef r = new AddressRef();
 r._ref = (REF) d;
 return r;
 }

 public Address getValue() throws SQLException
 {
 return (Address) Address.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Address c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

The getValue() method in the AddressRef class returns the address referenced
by an AddressRef object, with its proper type. The setValue() method copies
the contents of the Address argument into the database Address object to which
the AddressRef object refers.

Listing of Alltypes.java Generated by JPublisher
The file ./demo/all/Alltypes.java reads as follows:

package all;

import java.sql.SQLException;

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-14 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Alltypes implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ALLTYPES";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 -13, 2004, 1, 2005, 91, 3, 8, 6, 4, 2,
 3, -2, 7, 5, 12, 12, 2002, 2006, 2003, 2003
 };

 static ORADataFactory[] _factory = new ORADataFactory[20];
 static
 {
 _factory[16] = corp.Address.getORADataFactory();
 _factory[17] = corp.AddressRef.getORADataFactory();
 _factory[18] = corp.AddrArray.getORADataFactory();
 _factory[19] = corp.Ntbl.getORADataFactory();
 }

 static final Alltypes _AlltypesFactory = new Alltypes();
 public static ORADataFactory getORADataFactory()
 {
 return _AlltypesFactory;
 }

 /* constructor */
 protected Alltypes(boolean init)
 { if(init) _struct = new MutableStruct(new Object[20], _sqlType, _factory); }
 public Alltypes()
 { this(true); }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 JPublisher Examples 3-15

Example: JPublisher Object Attribute Mapping
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Alltypes o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Alltypes(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* accessor methods */
 public oracle.sql.BFILE getAttr1() throws SQLException
 { return (oracle.sql.BFILE) _struct.getOracleAttribute(0); }

 public void setAttr1(oracle.sql.BFILE attr1) throws SQLException
 { _struct.setOracleAttribute(0, attr1); }

 public oracle.sql.BLOB getAttr2() throws SQLException
 { return (oracle.sql.BLOB) _struct.getOracleAttribute(1); }

 public void setAttr2(oracle.sql.BLOB attr2) throws SQLException
 { _struct.setOracleAttribute(1, attr2); }

 public String getAttr3() throws SQLException
 { return (String) _struct.getAttribute(2); }

 public void setAttr3(String attr3) throws SQLException
 { _struct.setAttribute(2, attr3); }

 public oracle.sql.CLOB getAttr4() throws SQLException
 { return (oracle.sql.CLOB) _struct.getOracleAttribute(3); }

 public void setAttr4(oracle.sql.CLOB attr4) throws SQLException
 { _struct.setOracleAttribute(3, attr4); }

 public java.sql.Timestamp getAttr5() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(4); }
3-16 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 public void setAttr5(java.sql.Timestamp attr5) throws SQLException
 { _struct.setAttribute(4, attr5); }

 public java.math.BigDecimal getAttr6() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(5); }

 public void setAttr6(java.math.BigDecimal attr6) throws SQLException
 { _struct.setAttribute(5, attr6); }

 public Double getAttr7() throws SQLException
 { return (Double) _struct.getAttribute(6); }

 public void setAttr7(Double attr7) throws SQLException
 { _struct.setAttribute(6, attr7); }

 public Double getAttr8() throws SQLException
 { return (Double) _struct.getAttribute(7); }

 public void setAttr8(Double attr8) throws SQLException
 { _struct.setAttribute(7, attr8); }

 public Integer getAttr9() throws SQLException
 { return (Integer) _struct.getAttribute(8); }

 public void setAttr9(Integer attr9) throws SQLException
 { _struct.setAttribute(8, attr9); }

 public java.math.BigDecimal getAttr10() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(9); }

 public void setAttr10(java.math.BigDecimal attr10) throws SQLException
 { _struct.setAttribute(9, attr10); }

 public java.math.BigDecimal getAttr11() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(10); }

 public void setAttr11(java.math.BigDecimal attr11) throws SQLException
 { _struct.setAttribute(10, attr11); }
 JPublisher Examples 3-17

Example: JPublisher Object Attribute Mapping
 public byte[] getAttr12() throws SQLException
 { return (byte[]) _struct.getAttribute(11); }

 public void setAttr12(byte[] attr12) throws SQLException
 { _struct.setAttribute(11, attr12); }

 public Float getAttr13() throws SQLException
 { return (Float) _struct.getAttribute(12); }

 public void setAttr13(Float attr13) throws SQLException
 { _struct.setAttribute(12, attr13); }

 public Integer getAttr14() throws SQLException
 { return (Integer) _struct.getAttribute(13); }

 public void setAttr14(Integer attr14) throws SQLException
 { _struct.setAttribute(13, attr14); }

 public String getAttr15() throws SQLException
 { return (String) _struct.getAttribute(14); }

 public void setAttr15(String attr15) throws SQLException
 { _struct.setAttribute(14, attr15); }

 public String getAttr16() throws SQLException
 { return (String) _struct.getAttribute(15); }

 public void setAttr16(String attr16) throws SQLException
 { _struct.setAttribute(15, attr16); }

 public corp.Address getAttr17() throws SQLException
 { return (corp.Address) _struct.getAttribute(16); }

 public void setAttr17(corp.Address attr17) throws SQLException
 { _struct.setAttribute(16, attr17); }

 public corp.AddressRef getAttr18() throws SQLException
3-18 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 { return (corp.AddressRef) _struct.getAttribute(17); }

 public void setAttr18(corp.AddressRef attr18) throws SQLException
 { _struct.setAttribute(17, attr18); }

 public corp.AddrArray getAttr19() throws SQLException
 { return (corp.AddrArray) _struct.getAttribute(18); }

 public void setAttr19(corp.AddrArray attr19) throws SQLException
 { _struct.setAttribute(18, attr19); }

 public corp.Ntbl getAttr20() throws SQLException
 { return (corp.Ntbl) _struct.getAttribute(19); }

 public void setAttr20(corp.Ntbl attr20) throws SQLException
 { _struct.setAttribute(19, attr20); }

}

When a declared class requires user-defined classes from another package,
JPublisher generates import declarations for those user-defined classes following
the import declaration for the oracle.sql package. In this case, JDBC requires
the Address and AddressRef classes from package corp.

The attributes with types Address, AddressRef, AddrArray, and Ntbl require
the construction of factories. The static block puts the correct factories in the
_factory array.

Note: Notice that the SMALLINT SQL type for attr14 maps to
the Java type short, but this maps to Integer in
-numbertypes=objectjdbc mapping. This was a JPublisher
implementation decision. See "Mappings For Numeric Types
(-numbertypes)" on page 2-8 for related information.
 JPublisher Examples 3-19

Example: JPublisher Object Attribute Mapping
Listing of AlltypesRef.java Generated by JPublisher
The file ./demo/corp/all/AlltypesRef.java reads as follows:

package all;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class AlltypesRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ALLTYPES";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

 static final AlltypesRef _AlltypesRefFactory = new AlltypesRef();
 public static ORADataFactory getORADataFactory()
 {
 return _AlltypesRefFactory;
 }

 /* constructor */
 public AlltypesRef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-20 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 {
 if (d == null) return null;
 AlltypesRef r = new AlltypesRef();
 r._ref = (REF) d;
 return r;
 }

 public Alltypes getValue() throws SQLException
 {
 return (Alltypes) Alltypes.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Alltypes c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

Listing of Ntbl.java Generated by JPublisher
The file ./demo/corp/Ntbl.java reads as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.ARRAY;
import oracle.sql.ArrayDescriptor;
import oracle.jpub.runtime.MutableArray;

public class Ntbl implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.NTBL";
 public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 3-21

Example: JPublisher Object Attribute Mapping
 MutableArray _array;

 static final Ntbl _NtblFactory = new Ntbl();
 public static ORADataFactory getORADataFactory()
 {
 return _NtblFactory;
 }

 /* constructors */
 public Ntbl()
 {
 this((Integer[])null);
 }

 public Ntbl(Integer[] a)
 {
 _array = new MutableArray(4, a, null);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _array.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Ntbl a = new Ntbl();
 a._array = new MutableArray(4, (ARRAY) d, null);
 return a;
 }

 public int length() throws SQLException
 {
 return _array.length();
 }

 public int getBaseType() throws SQLException
 {
 return _array.getBaseType();
 }
3-22 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 public String getBaseTypeName() throws SQLException
 {
 return _array.getBaseTypeName();
 }

 public ArrayDescriptor getDescriptor() throws SQLException
 {
 return _array.getDescriptor();
 }

 /* array accessor methods */
 public Integer[] getArray() throws SQLException
 {
 return (Integer[]) _array.getObjectArray();
 }

 public void setArray(Integer[] a) throws SQLException
 {
 _array.setObjectArray(a);
 }

 public Integer[] getArray(long index, int count) throws SQLException
 {
 return (Integer[]) _array.getObjectArray(index, count);
 }

 public void setArray(Integer[] a, long index) throws SQLException
 {
 _array.setObjectArray(a, index);
 }

 public Integer getElement(long index) throws SQLException
 {
 return (Integer) _array.getObjectElement(index);
 }

 public void setElement(Integer a, long index) throws SQLException
 {
 _array.setObjectElement(a, index);
 }

}

 JPublisher Examples 3-23

Example: JPublisher Object Attribute Mapping
Listing of AddrArray.java Generated by JPublisher
JPublisher generates declarations of the type AddrArray because they are required
by the Alltypes type. The file ./demo/corp/AddrArray.java reads as
follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.ARRAY;
import oracle.sql.ArrayDescriptor;
import oracle.jpub.runtime.MutableArray;

public class AddrArray implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDR_ARRAY";
 public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

 MutableArray _array;

 static final AddrArray _AddrArrayFactory = new AddrArray();
 public static ORADataFactory getORADataFactory()
 {
 return _AddrArrayFactory;
 }

 /* constructors */
 public AddrArray()
 {
 this((Address[])null);
 }

 public AddrArray(Address[] a)
 {
 _array = new MutableArray(2002, a, Address.getORADataFactory());

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-24 JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _array.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 AddrArray a = new AddrArray();
 a._array = new MutableArray(2002, (ARRAY) d, Address.getORADataFactory());
 return a;
 }

 public int length() throws SQLException
 {
 return _array.length();
 }

 public int getBaseType() throws SQLException
 {
 return _array.getBaseType();
 }

 public String getBaseTypeName() throws SQLException
 {
 return _array.getBaseTypeName();
 }

 public ArrayDescriptor getDescriptor() throws SQLException
 {
 return _array.getDescriptor();
 }

 /* array accessor methods */
 public Address[] getArray() throws SQLException
 {
 return (Address[]) _array.getObjectArray(
 new Address[_array.length()]);
 }

 public void setArray(Address[] a) throws SQLException
 JPublisher Examples 3-25

Example: JPublisher Object Attribute Mapping
 {
 _array.setObjectArray(a);
 }

 public Address[] getArray(long index, int count) throws SQLException
 {
 return (Address[]) _array.getObjectArray(index,
 new Address[_array.sliceLength(index, count)]);
 }

 public void setArray(Address[] a, long index) throws SQLException
 {
 _array.setObjectArray(a, index);
 }

 public Address getElement(long index) throws SQLException
 {
 return (Address) _array.getObjectElement(index);
 }

 public void setElement(Address a, long index) throws SQLException
 {
 _array.setObjectElement(a, index);
 }

}

3-26 JPublisher User’s Guide

Example: Generating a SQLData Class
Example: Generating a SQLData Class
This example is identical to the previous one, except that JPublisher generates a
SQLData class rather than an ORAData class. The command line for this example is:

jpub -user=scott/tiger -input=demoin -dir=demo -package=corp -mapping=objectjdbc
-usertypes=jdbc -methods=false

(This is a single wrap-around command line.)

The option -usertypes=jdbc instructs JPublisher to generate classes that
implement the SQLData interface. The SQLData interface supports reference and
collection classes generically, using the generic types java.sql.Ref and
java.sql.Array rather than using custom classes. Therefore, JPublisher
generates only two classes:

./demo/corp/Address.java

./demo/all/Alltypes.java

Listing of Address.java Generated by JPublisher
Because we specified -usertypes=jdbc in this example, the Address class
implements the java.sql.SQLData interface rather than the
oracle.sql.ORAData interface. The file ./demo/corp/Address.java reads as
follows:

package corp;

Note: The -mapping option, while deprecated, is still supported
so is therefore demonstrated. The -mapping=objectjdbc setting
is equivalent to the combination of -builtintypes=jdbc,
-numbertypes=objectjdbc, -lobtypes=oracle, and
-usertypes=oracle; however, this command line overrides the
-usertypes=oracle setting with a -usertypes=jdbc setting.
See "Mappings for All Types (-mapping)" on page 2-10 for more
information about the -mapping option.

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 3-27

Example: Generating a SQLData Class
import java.sql.SQLException;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import java.sql.SQLData;
import java.sql.SQLInput;
import java.sql.SQLOutput;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Address implements SQLData
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 private String m_street;
 private String m_city;
 private String m_state;
 private java.math.BigDecimal m_zip;

 /* constructor */
 public Address()
 {
 }

 public void readSQL(SQLInput stream, String type)
 throws SQLException
 {
 setStreet(stream.readString());
 setCity(stream.readString());
 setState(stream.readString());
 setZip(stream.readBigDecimal());
 }

 public void writeSQL(SQLOutput stream)
 throws SQLException
 {
 stream.writeString(getStreet());
 stream.writeString(getCity());
 stream.writeString(getState());
 stream.writeBigDecimal(getZip());
 }

 public String getSQLTypeName() throws SQLException
 {
 return _SQL_NAME;
3-28 JPublisher User’s Guide

Example: Generating a SQLData Class
 }

 /* accessor methods */
 public String getStreet()
 { return m_street; }

 public void setStreet(String street)
 { m_street = street; }

 public String getCity()
 { return m_city; }

 public void setCity(String city)
 { m_city = city; }

 public String getState()
 { return m_state; }

 public void setState(String state)
 { m_state = state; }

 public java.math.BigDecimal getZip()
 { return m_zip; }

 public void setZip(java.math.BigDecimal zip)
 { m_zip = zip; }

}

Listing of Alltypes.java Generated by JPublisher
Because -usertypes=jdbc was specified in this example, the Alltypes class
implements the java.sql.SQLData interface rather than the
oracle.sql.ORAData interface. Although the SQLData interface is a
vendor-neutral standard, there is Oracle-specific code in the Alltypes class
because it uses Oracle-specific types such as oracle.sql.BFILE and
oracle.sql.CLOB.
 JPublisher Examples 3-29

Example: Generating a SQLData Class
The file ./demo/corp/Alltypes.java reads as follows:

package all;

import java.sql.SQLException;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import java.sql.SQLData;
import java.sql.SQLInput;
import java.sql.SQLOutput;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Alltypes implements SQLData
{
 public static final String _SQL_NAME = "SCOTT.ALLTYPES";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 private oracle.sql.BFILE m_attr1;
 private oracle.sql.BLOB m_attr2;
 private String m_attr3;
 private oracle.sql.CLOB m_attr4;
 private java.sql.Timestamp m_attr5;
 private java.math.BigDecimal m_attr6;
 private Double m_attr7;
 private Double m_attr8;
 private Integer m_attr9;
 private java.math.BigDecimal m_attr10;
 private java.math.BigDecimal m_attr11;
 private byte[] m_attr12;
 private Float m_attr13;
 private Integer m_attr14;
 private String m_attr15;
 private String m_attr16;
 private corp.Address m_attr17;
 private java.sql.Ref m_attr18;
 private java.sql.Array m_attr19;
 private java.sql.Array m_attr20;

 /* constructor */

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-30 JPublisher User’s Guide

Example: Generating a SQLData Class
 public Alltypes()
 {
 }

 public void readSQL(SQLInput stream, String type)
 throws SQLException
 {
 setAttr1((oracle.sql.BFILE)
((oracle.sql.OracleJdbc2SQLInput)stream).readOracleObject());
 setAttr2((oracle.sql.BLOB)
((oracle.sql.OracleJdbc2SQLInput)stream).readOracleObject());
 setAttr3(stream.readString());
 setAttr4((oracle.sql.CLOB)
((oracle.sql.OracleJdbc2SQLInput)stream).readOracleObject());
 setAttr5(stream.readTimestamp());
 setAttr6(stream.readBigDecimal());
 setAttr7(new Double(stream.readDouble()));
 if (stream.wasNull()) setAttr7(null);
 setAttr8(new Double(stream.readDouble()));
 if (stream.wasNull()) setAttr8(null);
 setAttr9(new Integer(stream.readInt()));
 if (stream.wasNull()) setAttr9(null);
 setAttr10(stream.readBigDecimal());
 setAttr11(stream.readBigDecimal());
 setAttr12(stream.readBytes());
 setAttr13(new Float(stream.readFloat()));
 if (stream.wasNull()) setAttr13(null);
 setAttr14(new Integer(stream.readInt()));
 if (stream.wasNull()) setAttr14(null);
 setAttr15(stream.readString());
 setAttr16(stream.readString());
 setAttr17((corp.Address) stream.readObject());
 setAttr18(stream.readRef());
 setAttr19(stream.readArray());
 setAttr20(stream.readArray());
 }

 public void writeSQL(SQLOutput stream)
 throws SQLException
 {
 ((oracle.sql.OracleSQLOutput)stream).writeOracleObject(getAttr1());
 ((oracle.sql.OracleSQLOutput)stream).writeOracleObject(getAttr2());
 stream.writeString(getAttr3());
 ((oracle.sql.OracleSQLOutput)stream).writeOracleObject(getAttr4());
 stream.writeTimestamp(getAttr5());
 JPublisher Examples 3-31

Example: Generating a SQLData Class
 stream.writeBigDecimal(getAttr6());
 if (getAttr7() == null)
 stream.writeBigDecimal(null);
 else
 stream.writeDouble(getAttr7().doubleValue());
 if (getAttr8() == null)
 stream.writeBigDecimal(null);
 else
 stream.writeDouble(getAttr8().doubleValue());
 if (getAttr9() == null)
 stream.writeBigDecimal(null);
 else
 stream.writeInt(getAttr9().intValue());
 stream.writeBigDecimal(getAttr10());
 stream.writeBigDecimal(getAttr11());
 stream.writeBytes(getAttr12());
 if (getAttr13() == null)
 stream.writeBigDecimal(null);
 else
 stream.writeFloat(getAttr13().floatValue());
 if (getAttr14() == null)
 stream.writeBigDecimal(null);
 else
 stream.writeInt(getAttr14().intValue());
 stream.writeString(getAttr15());
 stream.writeString(getAttr16());
 stream.writeObject(getAttr17());
 stream.writeRef(getAttr18());
 stream.writeArray(getAttr19());
 stream.writeArray(getAttr20());
 }

 public String getSQLTypeName() throws SQLException
 {
 return _SQL_NAME;
 }

 /* accessor methods */
 public oracle.sql.BFILE getAttr1()
 { return m_attr1; }

 public void setAttr1(oracle.sql.BFILE attr1)
 { m_attr1 = attr1; }
3-32 JPublisher User’s Guide

Example: Generating a SQLData Class
 public oracle.sql.BLOB getAttr2()
 { return m_attr2; }

 public void setAttr2(oracle.sql.BLOB attr2)
 { m_attr2 = attr2; }

 public String getAttr3()
 { return m_attr3; }

 public void setAttr3(String attr3)
 { m_attr3 = attr3; }

 public oracle.sql.CLOB getAttr4()
 { return m_attr4; }

 public void setAttr4(oracle.sql.CLOB attr4)
 { m_attr4 = attr4; }

 public java.sql.Timestamp getAttr5()
 { return m_attr5; }

 public void setAttr5(java.sql.Timestamp attr5)
 { m_attr5 = attr5; }

 public java.math.BigDecimal getAttr6()
 { return m_attr6; }

 public void setAttr6(java.math.BigDecimal attr6)
 { m_attr6 = attr6; }

 public Double getAttr7()
 { return m_attr7; }

 public void setAttr7(Double attr7)
 { m_attr7 = attr7; }

 public Double getAttr8()
 { return m_attr8; }
 JPublisher Examples 3-33

Example: Generating a SQLData Class
 public void setAttr8(Double attr8)
 { m_attr8 = attr8; }

 public Integer getAttr9()
 { return m_attr9; }

 public void setAttr9(Integer attr9)
 { m_attr9 = attr9; }

 public java.math.BigDecimal getAttr10()
 { return m_attr10; }

 public void setAttr10(java.math.BigDecimal attr10)
 { m_attr10 = attr10; }

 public java.math.BigDecimal getAttr11()
 { return m_attr11; }

 public void setAttr11(java.math.BigDecimal attr11)
 { m_attr11 = attr11; }

 public byte[] getAttr12()
 { return m_attr12; }

 public void setAttr12(byte[] attr12)
 { m_attr12 = attr12; }

 public Float getAttr13()
 { return m_attr13; }

 public void setAttr13(Float attr13)
 { m_attr13 = attr13; }

 public Integer getAttr14()
 { return m_attr14; }

 public void setAttr14(Integer attr14)
 { m_attr14 = attr14; }
3-34 JPublisher User’s Guide

Example: Generating a SQLData Class
 public String getAttr15()
 { return m_attr15; }

 public void setAttr15(String attr15)
 { m_attr15 = attr15; }

 public String getAttr16()
 { return m_attr16; }

 public void setAttr16(String attr16)
 { m_attr16 = attr16; }

 public corp.Address getAttr17()
 { return m_attr17; }

 public void setAttr17(corp.Address attr17)
 { m_attr17 = attr17; }

 public java.sql.Ref getAttr18()
 { return m_attr18; }

 public void setAttr18(java.sql.Ref attr18)
 { m_attr18 = attr18; }

 public java.sql.Array getAttr19()
 { return m_attr19; }

 public void setAttr19(java.sql.Array attr19)
 { m_attr19 = attr19; }

 public java.sql.Array getAttr20()
 { return m_attr20; }

 public void setAttr20(java.sql.Array attr20)
 { m_attr20 = attr20; }

}

 JPublisher Examples 3-35

Example: Extending JPublisher Classes
Example: Extending JPublisher Classes
Here is an example of the scenario described in "Extending JPublisher-Generated
Classes" on page 1-44.

The following is the code that you have written for the class MyAddress.java and
stored in the directory demo/corp.

package corp;

import java.sql.SQLException;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class MyAddress extends JAddress
{
 /* _SQL_NAME inherited from JAddress */
 /* _SQL_TYPECODE inherited from JAddress */

 static final MyAddress _MyAddressFactory = new MyAddress();
 public static ORADataFactory getORADataFactory()
 {
 return _MyAddressFactory;
 }

 /* constructor */
 public MyAddress()
 {
 super();
 }

 /* ORAData interface */
 /* toDatum() inherited from JAddress */

Note: There is a way to code the ORADataFactory create()
method to be more efficient than shown here, to ensure that an
object instance is not needlessly created (if the data object is null) or
needlessly re-initialized (if the data object is non-null). This is
discussed in "Writing the Class that Extends the Generated Class"
on page 1-45.
3-36 JPublisher User’s Guide

Example: Extending JPublisher Classes
 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 return create(new MyAddress(), d, sqlType);
 }

 /* accessor methods inherited from JAddress */

 /* Additional methods go here. These additional methods (not shown)
 are the reason that JAddress was extended.
 */
}

To have JPublisher generate code for the JAddress class, recognizing that
MyAddress extends JAddress, enter this command line:

jpub -user=scott/tiger -input=demoin -dir=demo -package=corp

where the demoin file includes the following:

SQL ADDRESS GENERATE JAddress AS MyAddress

JPublisher will generate these files:

demo/corp/JAddress.java
demo/corp/MyAddressRef.java

Because an ADDRESS object will be represented in the Java program as a
MyAddress instance, JPublisher generates the class MyAddressRef rather than
JAddressRef.

Here is a listing of the demo/corp/JAddress.java class file generated by
JPublisher:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 3-37

Example: Extending JPublisher Classes
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class JAddress implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 12, 12, 12, 2
 };

 static ORADataFactory[] _factory = new ORADataFactory[4];

 static final JAddress _JAddressFactory = new JAddress();
 public static ORADataFactory getORADataFactory()
 {
 return _JAddressFactory;
 }

 /* constructor */
 protected JAddress(boolean init)
 { if(init) _struct = new MutableStruct(new Object[4], _sqlType, _factory); }
 public JAddress()
 { this(true); }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(JAddress o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new JAddress(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
3-38 JPublisher User’s Guide

Example: Extending JPublisher Classes
 return o;
 }

 /* accessor methods */
 public String getStreet() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setStreet(String street) throws SQLException
 { _struct.setAttribute(0, street); }

 public String getCity() throws SQLException
 { return (String) _struct.getAttribute(1); }

 public void setCity(String city) throws SQLException
 { _struct.setAttribute(1, city); }

 public String getState() throws SQLException
 { return (String) _struct.getAttribute(2); }

 public void setState(String state) throws SQLException
 { _struct.setAttribute(2, state); }

 public java.math.BigDecimal getZip() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(3); }

 public void setZip(java.math.BigDecimal zip) throws SQLException
 { _struct.setAttribute(3, zip); }

}

Here is a listing of the demo/corp/MyAddressRef.java class file generated by
JPublisher:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;
 JPublisher Examples 3-39

Example: Extending JPublisher Classes
public class MyAddressRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

 static final MyAddressRef _MyAddressRefFactory = new MyAddressRef();
 public static ORADataFactory getORADataFactory()
 {
 return _MyAddressRefFactory;
 }

 /* constructor */
 public MyAddressRef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 MyAddressRef r = new MyAddressRef();
 r._ref = (REF) d;
 return r;
 }

 public MyAddress getValue() throws SQLException
 {
 return (MyAddress) MyAddress.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(MyAddress c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

3-40 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
Example: Wrappers Generated for Methods in Objects

This section describes an example of JPublisher output given the definition below of
a SQL type containing methods. The example defines a type Rational with
numerator and denominator attributes and the following functions and
procedures:

■ MEMBER FUNCTION toReal: Given two integers, this function converts a
rational number to a real number and returns a real number.

■ MEMBER PROCEDURE normalize: Given two integers, representing a
numerator and a denominator, this procedure reduces a fraction by dividing the
numerator and denominator by their greatest common divisor.

■ STATIC FUNCTION gcd: Given two integers, this function returns their
greatest common divisor.

■ MEMBER FUNCTION plus: This function adds two rational numbers and
returns the result.

The code for rational.sql follows:

CREATE TYPE Rational AS OBJECT (
 numerator INTEGER,
 denominator INTEGER,
 MAP MEMBER FUNCTION toReal RETURN REAL,
 MEMBER PROCEDURE normalize,
 STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER,
 MEMBER FUNCTION plus (x Rational) RETURN Rational
);

CREATE TYPE BODY Rational AS

MAP MEMBER FUNCTION toReal RETURN REAL IS
-- convert rational number to real number
BEGIN
 RETURN numerator / denominator;
END toReal;

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.
 JPublisher Examples 3-41

Example: Wrappers Generated for Methods in Objects
MEMBER PROCEDURE normalize IS
 g INTEGER;
BEGIN
 g := Rational.gcd(numerator, denominator);
 numerator := numerator / g;
 denominator := denominator / g;
END normalize;

STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER IS
-- find greatest common divisor of x and y
ans INTEGER;
z INTEGER;
BEGIN
IF x < y THEN
 ans := Rational.gcd(y, x);
ELSIF (x MOD y = 0) THEN
 ans := y;
ELSE
 z := x MOD y;
 ans := Rational.gcd(y, z);
END IF;
RETURN ans;
END gcd;

MEMBER FUNCTION plus (x Rational) RETURN Rational IS
BEGIN
 return Rational(numerator * x.denominator + x.numerator * denominator,
 denominator * x.denominator);
END plus;
END;

In this example, JPublisher was invoked with the following command line:

jpub -user=scott/tiger -sql=Rational -methods=true

The -user parameter directs JPublisher to login to the database as user scott with
password tiger. The -methods parameter directs JPublisher to generate wrappers
for the methods contained in the type Rational. You can omit this parameter,
because -methods=true is the default.
3-42 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
Listing and Description of Rational.sqlj Generated by JPublisher
JPublisher generates the file Rational.sqlj. This file reads as follows:

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class Rational implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.RATIONAL";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}

Notes:

■ The details of method bodies that JPublisher generates might
change in future releases.

■ Notice the release() calls, which are to avoid memory leaks
related to SQLJ connection contexts. See "Releasing Connection
Context Resources" on page 1-40 for more information.
 JPublisher Examples 3-43

Example: Wrappers Generated for Methods in Objects
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 4, 4
 };

 static ORADataFactory[] _factory = new ORADataFactory[2];

 static final Rational _RationalFactory = new Rational(false);
 public static ORADataFactory getORADataFactory()
 {
 return _RationalFactory;
 }

 /* constructors */
 protected Rational(boolean init)
 { if (init) _struct = new MutableStruct(new Object[2], _sqlType, _factory); }
 public Rational()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public Rational(DefaultContext c) throws SQLException
 { this(true); __tx = c; }
 public Rational(Connection c) throws SQLException
 { this(true); __onn = c; }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(Rational o) throws SQLException
 { release(); _struct = o._struct; __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(Rational o) { _struct = o._struct; }
3-44 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
 protected ORAData create(Rational o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new Rational(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }

 /* accessor methods */
 public Integer getNumerator() throws SQLException
 { return (Integer) _struct.getAttribute(0); }

 public void setNumerator(Integer numerator) throws SQLException
 { _struct.setAttribute(0, numerator); }

 public Integer getDenominator() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setDenominator(Integer denominator) throws SQLException
 { _struct.setAttribute(1, denominator); }

 public Integer gcd (
 Integer x,
 Integer y)
 throws SQLException
 {
 Integer __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(RATIONAL.GCD(
 :x,
 :y)) };
 return __jPt_result;
 }

 public Rational normalize ()
 throws SQLException
 {
 Rational __jPt_temp = this;
 #sql [getConnectionContext()] {
 BEGIN
 :INOUT __jPt_temp.NORMALIZE();
 END;
 };
 JPublisher Examples 3-45

Example: Wrappers Generated for Methods in Objects
 return __jPt_temp;
 }

 public Rational plus (
 Rational x)
 throws SQLException
 {
 Rational __jPt_temp = this;
 Rational __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.PLUS(
 :x);
 END;
 };
 return __jPt_result;
 }

 public Float toreal ()
 throws SQLException
 {
 Rational __jPt_temp = this;
 Float __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.TOREAL();
 END;
 };
 return __jPt_result;
 }
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

JPublisher declares the sql_name for the object to be SCOTT.RATIONAL and its
sql_type_code to be OracleTypes.STRUCT. By default it uses the SQLJ
connection context class sqlj.runtime.ref.DefaultContext. It creates
accessor methods getNumerator(), setNumerator(), getDenominator(),
and setDenominator() for the object attributes numerator and denominator.

JPublisher generates source code for the gcd static function, which takes two
Integer values as input and returns an Integer result. This gcd function invokes
the RATIONAL.GCD stored function with IN host variables :x and :y.
3-46 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
JPublisher generates source code for the normalize member procedure, which
defines a PL/SQL block containing an IN OUT parameter inside the SQLJ
statement. The this parameter passes the values to the PL/SQL block.

JPublisher generates source code for the plus member function, which takes an
object x of type Rational and returns an object of type Rational. It defines a
PL/SQL block inside the SQLJ statement. The IN host variables are :x and a copy
of this. The result of the function is an OUT host variable.

JPublisher generates source code for the toReal member function, which returns a
Float value. It defines a host OUT variable that is assigned the value returned by
the function. A copy of the this object is an IN parameter.
 JPublisher Examples 3-47

Example: Wrappers Generated for Methods in Packages
Example: Wrappers Generated for Methods in Packages

This section describes an example of JPublisher output given the definition below of
a PL/SQL package containing methods. The example defines the package
RationalP with the following functions and procedures, which manipulate the
numerators and denominators of fractions.

■ FUNCTION toReal: Given two integers, this function converts a rational
number to a real number and returns a real number.

■ PROCEDURE normalize: Given two integers (representing a numerator and a
denominator), this procedure reduces a fraction by dividing the numerator and
denominator by their greatest common divisor.

■ FUNCTION gcd: Given two integers, this function returns their greatest
common divisor.

■ PROCEDURE plus: Adds two rational numbers and returns the result.

The code for RationalP.sql follows:

CREATE PACKAGE RationalP AS

 FUNCTION toReal(numerator INTEGER,
 denominator INTEGER) RETURN REAL;

 PROCEDURE normalize(numerator IN OUT INTEGER,
 denominator IN OUT INTEGER);

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER;

 PROCEDURE plus (n1 INTEGER, d1 INTEGER,
 n2 INTEGER, d2 INTEGER,
 n3 OUT INTEGER, d3 OUT INTEGER);
END rationalP;

/

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.
3-48 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages
CREATE PACKAGE BODY rationalP AS

 FUNCTION toReal(numerator INTEGER,
 denominator INTEGER) RETURN real IS
 -- convert rational number to real number
 BEGIN
 RETURN numerator / denominator;
 END toReal;

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER IS
 -- find greatest common divisor of x and y
 ans INTEGER;
 BEGIN
 IF x < y THEN
 ans := gcd(y, x);
 ELSIF (x MOD y = 0) THEN
 ans := y;
 ELSE
 ans := gcd(y, x MOD y);
 END IF;
 RETURN ans;
 END gcd;

 PROCEDURE normalize(numerator IN OUT INTEGER,
 denominator IN OUT INTEGER) IS
 g INTEGER;
 BEGIN
 g := gcd(numerator, denominator);
 numerator := numerator / g;
 denominator := denominator / g;
 END normalize;

 PROCEDURE plus (n1 INTEGER, d1 INTEGER,
 n2 INTEGER, d2 INTEGER,
 n3 OUT INTEGER, d3 OUT INTEGER) IS
 BEGIN
 n3 := n1 * d2 + n2 * d1;
 d3 := d1 * d2;
 END plus;

END rationalP;

In this example, JPublisher was invoked with the following command line:

jpub -user=scott/tiger -sql=RationalP -methods=true
 JPublisher Examples 3-49

Example: Wrappers Generated for Methods in Packages
The -user parameter directs JPublisher to login to the database as user scott with
password tiger. The -methods parameter directs JPublisher to generate wrappers
for the methods in the package RationalP. You can omit this parameter, because
-methods=true is the default.

Listing and Description of RationalP.sqlj Generated by JPublisher
JPublisher generates the file RationalP.sqlj, which reads as follows:

import java.sql.SQLException;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class RationalP
{

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 /* constructors */

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-50 JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages
 public RationalP() throws SQLException
 { __tx = DefaultContext.getDefaultContext(); }
 public RationalP(DefaultContext c) throws SQLException
 { __tx = c; }
 public RationalP(Connection c) throws SQLException
 {__onn = c; __tx = new DefaultContext(c); }

 public Integer gcd (
 Integer x,
 Integer y)
 throws SQLException
 {
 Integer __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(RATIONALP.GCD(
 :x,
 :y)) };
 return __jPt_result;
 }

 public void normalize (
 Integer numerator[],
 Integer denominator[])
 throws SQLException
 {
 #sql [getConnectionContext()] { CALL RATIONALP.NORMALIZE(
 :INOUT (numerator[0]),
 :INOUT (denominator[0])) };
 }

 public void plus (
 Integer n1,
 Integer d1,
 Integer n2,
 Integer d2,
 Integer n3[],
 Integer d3[])
 throws SQLException
 {
 #sql [getConnectionContext()] { CALL RATIONALP.PLUS(
 :n1,
 :d1,
 :n2,
 :d2,
 :OUT (n3[0]),
 :OUT (d3[0])) };
 JPublisher Examples 3-51

Example: Wrappers Generated for Methods in Packages
 }

 public Float toreal (
 Integer numerator,
 Integer denominator)
 throws SQLException
 {
 Float __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(RATIONALP.TOREAL(
 :numerator,
 :denominator)) };
 return __jPt_result;
 }
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

By default, JPublisher uses the existing SQLJ connection context class
sqlj.runtime.ref.DefaultContext and associates an instance of it with the
RationalP package.

JPublisher generates source code for the gcd function, which takes two
BigDecimal values—x and y—and returns a BigDecimal result. This gcd
function invokes the stored function RATIONALP.GCD with IN host variables :x
and :y.

JPublisher generates source code for the normalize procedure, which takes two
BigDecimal values—numerator and denominator. This normalize procedure
invokes the stored procedure call RATIONALP.NORMALIZE with IN OUT host
variables :numerator and :denominator. Because these are IN OUT parameters,
JPublisher passes their values as the first element of an array.

JPublisher generates source code for the plus procedure, which takes four
BigDecimal IN parameters and two BigDecimal OUT parameters. This plus
procedure invokes the stored procedure call RATIONALP.PLUS, with IN host
variables :n1, :d1, :n2, and :d2. It also defines the OUT host variables :n3 and
:d3. Because these are OUT variables, JPublisher passes each of their values as the
first element of an array.

JPublisher generates source code for the toReal function, which takes two
BigDecimal values—numerator and denominator—and returns a
BigDecimal result. This toReal function invokes the stored function call
RATIONALP.TOREAL, with IN host variables :numerator and :denominator.
3-52 JPublisher User’s Guide

Example: Using Classes Generated for Object Types
Example: Using Classes Generated for Object Types
This section illustrates an example of how you can use the classes that JPublisher
generates for object types. Suppose you have defined a SQL object type that
contains attributes and methods. You use JPublisher to generate a <name>.sqlj
file and a <name>Ref.java file for the object type. To enhance the functionality of
the Java class generated by JPublisher, you can extend the class. After translating (if
applicable) and compiling the classes, you can use them in a program. For more
information on this topic, see "Use of Classes JPublisher Generates for Object Types"
on page 1-35.

The following steps demonstrate the scenario described above. In this case, define a
RationalO SQL object type that contains numerator and denominator
attributes and several methods to manipulate rational numbers. After using
JPublisher to generate the JPubRationalO.sqlj and a RationalORef.java
files, provide a file, RationalO.java, that enhances the functionality of the
JPubRationalO class by extending it. After compiling the necessary files, use the
classes in a test file to test the performance of the RationalO.java class.

Here are the steps, followed by listings of the files:

1. Create the SQL object type RationalO. "Listing of RationalO.sql (Definition of
Object Type)" on page 3-55 contains the code for the RationalO.sql file.

2. Use JPublisher to generate Java classes (a JPubRationalO.sqlj file and a
RationalORef.java file) for the object. Use this command line:

jpub -props=RationalO.props

Assume the properties file RationalO.props contains the following:

jpub.user=scott/tiger
jpub.sql=RationalO:JPubRationalO:RationalO
jpub.methods=true

According to the properties file, JPublisher will log into the database with user
name scott and password tiger. The sql parameter directs JPublisher to
translate the object type RationalO (declared by RationalO.sql) and
generate JPubRationalO as RationalO, where the second RationalO
indicates a class that you have written (RationalO.java) that extends the
functionality of the original RationalO. The value of the methods parameter
indicates that JPublisher will generate classes for PL/SQL packages and
wrapper methods.
 JPublisher Examples 3-53

Example: Using Classes Generated for Object Types
JPublisher produces the following files:

JPubRationalO.sqlj
RationalORef.java

See "Listing of JPubRationalO.sqlj Generated by JPublisher" on page 3-56 and
"Listing of RationalORef.java Generated by JPublisher" on page 3-60 for listings
of the JPubRationalO.sqlj and RationalORef.java files.

3. Write a file RationalO.java that enhances the functionality of
JPubRationalO.sqlj by extending it. In RationalO.java, everything is
inherited from the superclass except the following items. Add code to do the
following:

■ Declare a factory object, _JPubRationalO.

■ Implement a getORADataFactory() method.

■ Implement a create() method.

■ Implement the constructors by calling the constructors in the superclass.

■ Add a toString() method, which is used in the last two
System.out.println() calls in the test program
TestRationalO.java (described in "Listing of TestRationalO.java
Written by User" on page 3-63).

"Listing of RationalO.java Written by User" on page 3-61 contains the code for
the RationalO.java file.

4. Use SQLJ to compile/translate the necessary files. Enter the following:

sqlj JPubRationalO.sqlj RationalO.java

This translates and compiles JPubRationalO.sqlj and compiles the
RationalO.java file.

5. Write a program TestRationalO.java that uses the RationalO class.
"Listing of TestRationalO.java Written by User" on page 3-63 contains the code.

6. Create the file connect.properties, which TestRationalO uses to
determine how to connect to the database. The file reads as follows:

sqlj.user=scott
sqlj.password=tiger
sqlj.url=jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.OracleDriver
3-54 JPublisher User’s Guide

Example: Using Classes Generated for Object Types
7. Compile and run TestRationalO:

javac TestRationalO.java
java TestRationalO

The program produces the following output:

gcd: 5
real value: 0.5
sum: 100/100
sum: 1/1

Listing of RationalO.sql (Definition of Object Type)
This section contains the code that defines the RationalO SQL object type.

CREATE TYPE RationalO AS OBJECT (
 numerator INTEGER,
 denominator INTEGER,
 MAP MEMBER FUNCTION toReal RETURN REAL,
 MEMBER PROCEDURE normalize,
 STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER,
 MEMBER FUNCTION plus (x RationalO) RETURN RationalO
);

CREATE TYPE BODY RationalO AS

 MAP MEMBER FUNCTION toReal RETURN REAL IS
 -- convert rational number to real number
 BEGIN
 RETURN numerator / denominator;
 END toReal;

 MEMBER PROCEDURE normalize IS
 g BINARY_INTEGER;
 BEGIN
 g := RationalO.gcd(numerator, denominator);
 numerator := numerator / g;
 denominator := denominator / g;
 END normalize;

 STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER IS
 -- find greatest common divisor of x and y
 ans BINARY_INTEGER;
 JPublisher Examples 3-55

Example: Using Classes Generated for Object Types
 BEGIN
 IF x < y THEN
 ans := RationalO.gcd(y, x);
 ELSIF (x MOD y = 0) THEN
 ans := y;
 ELSE
 ans := RationalO.gcd(y, x MOD y);
 END IF;
 RETURN ans;
 END gcd;

 MEMBER FUNCTION plus (x RationalO) RETURN RationalO IS
 BEGIN
 return RationalO(numerator * x.denominator + x.numerator * denominator,
 denominator * x.denominator);
 END plus;
END;

Listing of JPubRationalO.sqlj Generated by JPublisher
This section lists the code in JPubRationalO.java that JPublisher generates.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class JPubRationalO implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.RATIONALO";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
3-56 JPublisher User’s Guide

Example: Using Classes Generated for Object Types
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 4, 4
 };

 static ORADataFactory[] _factory = new ORADataFactory[2];

 static final JPubRationalO _JPubRationalOFactory = new JPubRationalO(false);
 public static ORADataFactory getORADataFactory()
 {
 return _JPubRationalOFactory;
 }

 /* constructors */
 protected JPubRationalO(boolean init)
 { if (init) _struct = new MutableStruct(new Object[2], _sqlType, _factory); }
 public JPubRationalO()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public JPubRationalO(DefaultContext c) throws SQLException
 { this(true); __tx = c; }
 public JPubRationalO(Connection c) throws SQLException
 { this(true); __onn = c; }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 JPublisher Examples 3-57

Example: Using Classes Generated for Object Types
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(JPubRationalO o) throws SQLException
 { release(); _struct = o._struct; __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(JPubRationalO o) { _struct = o._struct; }
 protected ORAData create(JPubRationalO o, Datum d, int sqlType) throws
SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new JPubRationalO(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }

 /* accessor methods */
 public Integer getNumerator() throws SQLException
 { return (Integer) _struct.getAttribute(0); }

 public void setNumerator(Integer numerator) throws SQLException
 { _struct.setAttribute(0, numerator); }

 public Integer getDenominator() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setDenominator(Integer denominator) throws SQLException
 { _struct.setAttribute(1, denominator); }

 public Integer gcd (
 Integer x,
 Integer y)
 throws SQLException
 {
 Integer __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(RATIONALO.GCD(
 :x,
 :y)) };
 return __jPt_result;
 }
3-58 JPublisher User’s Guide

Example: Using Classes Generated for Object Types
 public RationalO normalize ()
 throws SQLException
 {
 RationalO __jPt_temp = (RationalO) this;
 #sql [getConnectionContext()] {
 BEGIN
 :INOUT __jPt_temp.NORMALIZE();
 END;
 };
 return __jPt_temp;
 }

 public RationalO plus (
 RationalO x)
 throws SQLException
 {
 JPubRationalO __jPt_temp = this;
 RationalO __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.PLUS(
 :x);
 END;
 };
 return __jPt_result;
 }

 public Float toreal ()
 throws SQLException
 {
 JPubRationalO __jPt_temp = this;
 Float __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.TOREAL();
 END;
 };
 return __jPt_result;
 }
}

 JPublisher Examples 3-59

Example: Using Classes Generated for Object Types
Listing of RationalORef.java Generated by JPublisher
This section lists the code in RationalORef.java that JPublisher generates.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class RationalORef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.RATIONALO";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

 static final RationalORef _RationalORefFactory = new RationalORef();
 public static ORADataFactory getORADataFactory()
 {
 return _RationalORefFactory;
 }

 /* constructor */
 public RationalORef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;

Note: The details of method bodies that JPublisher generates
might change in future releases.
3-60 JPublisher User’s Guide

Example: Using Classes Generated for Object Types
 RationalORef r = new RationalORef();
 r._ref = (REF) d;
 return r;
 }

 public RationalO getValue() throws SQLException
 {
 return (RationalO) RationalO.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(RationalO c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

Listing of RationalO.java Written by User
This section lists the code for the user-written file, RationalO.java, that extends
the class JPubRationalO.sqlj. Note that this program accomplishes the
following:

■ It declares a factory object, _JPubRationalO.

■ It implements a getORADataFactory() method.

■ It implements a create() method.

■ It implements the constructors by calling the constructors in the superclass.

■ It adds a toString() method, which is used in the last two
System.out.println() calls in TestRationalO.java (described in
"Listing of TestRationalO.java Written by User" on page 3-63).

Note: There is a way to code the ORADataFactory create()
method to be more efficient than shown here, to ensure that an
object instance is not needlessly created (if the data object is null) or
needlessly re-initialized (if the data object is non-null). This is
discussed in "Writing the Class that Extends the Generated Class"
on page 1-45.
 JPublisher Examples 3-61

Example: Using Classes Generated for Object Types
import java.sql.SQLException;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import java.sql.Connection;

public class RationalO extends JPubRationalO
 implements ORAData, ORADataFactory
{
 /* _SQL_NAME inherited from JPubRationalO */

 /* _SQL_TYPECODE inherited from JPubRationalO */

 static final RationalO _RationalOFactory = new RationalO();
 public static ORADataFactory getORADataFactory()
 {
 return _RationalOFactory;
 }

 /* constructors */
 public RationalO()
 {
 super();
 }

 public RationalO(DefaultContext c) throws SQLException
 {
 super(c);
 }
 public RationalO(Connection c) throws SQLException
 {
 super(c);
 }

 /* ORAData interface */
 /* toDatum() inherited from JPubRationalO */

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 return create(new RationalO(), d, sqlType);
 }
3-62 JPublisher User’s Guide

Example: Using Classes Generated for Object Types
 /* accessor methods inherited from JPubRationalO */

 /* additional method not in base class */
 public String toString()
 {
 try
 {
 return getNumerator().toString() + "/" + getDenominator().toString();
 }
 catch (SQLException e)
 {
 return null;
 }
 }
}

Listing of TestRationalO.java Written by User
This section lists the contents of a user-written file, TestRationalO.java, that
tests the performance of the RationalO class, given initial values for numerator
and denominator. Note that the TestRationalO.java file also demonstrates
how to do the following:

■ Connect to the database by calling the Oracle.connect() method.

■ Declare a Java object representing a SQL object type and initialize it by setting
its attributes.

■ Use the object to call server methods.

import oracle.sqlj.runtime.Oracle;
import oracle.sql.Datum;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Driver;

public class TestRationalO
{
 public static void main(String[] args)
 throws java.sql.SQLException
 {
 Oracle.connect(new TestRationalO().getClass(),
 "connect.properties");
 JPublisher Examples 3-63

Example: Using Classes Generated for Object Types
 RationalO r = new RationalO();

 Integer n = new Integer(5);
 Integer d = new Integer(10);

 r.setNumerator(n);
 r.setDenominator(d);

 Integer g = r.gcd(n, d);
 System.out.println("gcd: " + g);

 Float f = r.toreal();
 System.out.println("real value: " + f);

 RationalO s = r.plus(r);
 System.out.println("sum: " + s);

 s = s.normalize();
 System.out.println("sum: " + s);
 }
}

3-64 JPublisher User’s Guide

Example: Using Classes Generated for Packages
Example: Using Classes Generated for Packages
This section provides an example of how you can use the classes and method
wrappers that JPublisher generates for objects and packages, respectively. Suppose
you have defined a SQL object type that contains attributes and a package with
methods. You use JPublisher to generate a <name>.sqlj files for the object and the
package. After translating the classes you can use them in a program. For more
information on this topic, see "Use of SQLJ Classes JPublisher Generates for
PL/SQL Packages" on page 1-34.

The following steps demonstrate the scenario described above. In this case, you
define a Rational SQL object type that contains numerator and denominator
integer attributes and a package RationalP that contains methods to manipulate
rational numbers. After using JPublisher to generate the Rational.sqlj and
RationalP.sqlj files, translate them with SQLJ, then use them in a test file to test
the performance of the Rational and RationalP classes.

Here are the steps, followed by listings of the files:

1. Create the SQL object type Rational and package RationalP. "Listing of
RationalP.sql (Definition of the Object Type and Package)" on page 3-66 contains
the SQL code for the RationalP.sql file.

2. Use JPublisher to generate a Java class and a SQLJ class (Rational.java and
RationalP.sqlj) for the object and package, respectively. Use this command
line:

jpub -props=RationalP.props

Assume the properties file RationalP.props contains the following:

jpub.user=scott/tiger
jpub.sql=RationalP,Rational
jpub.mapping=oracle
jpub.methods=true

According to the properties file, JPublisher will log into the database with user
name scott and password tiger. The sql parameter directs JPublisher to
translate the object type Rational and package RationalP (declared in
RationalP.sql). JPublisher will translate the type and package according to
the oracle mapping. The value of the methods parameter indicates that
JPublisher will generate classes for PL/SQL packages, including wrapper
methods. Since the object type Rational does not have any member functions,
JPublisher will translate it into a .java file, not a .sqlj file. By using the
-methods=always setting for JPublisher, however, you could have requested
 JPublisher Examples 3-65

Example: Using Classes Generated for Packages
the generation of a .sqlj file regardless. See "Generate Classes for Packages
and Wrapper Methods for Methods (-methods)" on page 2-17 for more
information.

JPublisher produces the following files:

Rational.java
RationalP.sqlj

3. Translate the RationalP.sqlj and Rational.java files:

sqlj RationalP.sqlj Rational.java

4. Write a program, TestRationalP.java, that uses the RationalP class.

5. Write the file connect.properties, which TestRationalP.java uses to
determine how to connect to the database. The file reads as follows:

sqlj.user=scott
sqlj.password=tiger
sqlj.url=jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.OracleDriver

6. Compile and run TestRationalP:

javac TestRationalP.java
java TestRationalP

The program produces the following output:

gcd: 5
real value: 0.5
sum: 100/100
sum: 1/1

Listing of RationalP.sql (Definition of the Object Type and Package)
This section lists the contents of the file RationalP.sql, which defines the
Rational SQL object type and the RationalP package.

CREATE TYPE Rational AS OBJECT (
 numerator INTEGER,
 denominator INTEGER
);
/
CREATE PACKAGE RationalP AS

 FUNCTION toReal(r Rational) RETURN REAL;
3-66 JPublisher User’s Guide

Example: Using Classes Generated for Packages
 PROCEDURE normalize(r IN OUT Rational);

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER;

 FUNCTION plus (r1 Rational, r2 Rational) RETURN Rational;

END rationalP;
/
CREATE PACKAGE BODY rationalP AS

 FUNCTION toReal(r Rational) RETURN real IS
 -- convert rational number to real number
 BEGIN
 RETURN r.numerator / r.denominator;
 END toReal;

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER IS
 -- find greatest common divisor of x and y
 result INTEGER;
 BEGIN
 IF x < y THEN
 result := gcd(y, x);
 ELSIF (x MOD y = 0) THEN
 result := y;
 ELSE
 result := gcd(y, x MOD y);
 END IF;
 RETURN result;
 END gcd;

 PROCEDURE normalize(r IN OUT Rational) IS
 g INTEGER;
 BEGIN
 g := gcd(r.numerator, r.denominator);
 r.numerator := r.numerator / g;
 r.denominator := r.denominator / g;
 END normalize;

 FUNCTION plus (r1 Rational,
 r2 Rational) RETURN Rational IS
 n INTEGER;
 d INTEGER;
 result Rational;
 BEGIN
 JPublisher Examples 3-67

Example: Using Classes Generated for Packages
 n := r1.numerator * r2.denominator + r2.numerator * r1.denominator;
 d := r1.denominator * r2.denominator;
 result := Rational(n, d);
 RETURN result;
 END plus;

END rationalP;
/

Listing of TestRationalP.java Written by a User
The test program, TestRationalP.java, uses the package RationalP and the
object type Rational, which does not have methods. The test program creates an
instance of package RationalP and two Rational objects.

TestRationalP connects to the database in SQLJ style, using the
Oracle.connect() method. In this example, the Oracle.connect() call
specifies the file connect.properties, which contains these connection
properties:

sqlj.url=jdbc:oracle:oci:@
sqlj.user=scott
sqlj.password=tiger

Following is a listing of TestRationalP.java:

import oracle.sql.Datum;
import oracle.sql.NUMBER;
import java.math.BigDecimal;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
import java.sql.Connection;

public class TestRationalP
{

 public static void main(String[] args)
 throws java.sql.SQLException
 {

 Oracle.connect(new TestRationalP().getClass(),
 "connect.properties");

 RationalP p = new RationalP();
3-68 JPublisher User’s Guide

Example: Using Classes Generated for Packages
 NUMBER n = new NUMBER(5);
 NUMBER d = new NUMBER(10);
 Rational r = new Rational();
 r.setNumerator(n);
 r.setDenominator(d);

 NUMBER f = p.toreal(r);
 System.out.println("real value: " + f.stringValue());

 NUMBER g = p.gcd(n, d);
 System.out.println("gcd: " + g.stringValue());

 Rational s = p.plus(r, r);
 System.out.println("sum: " + s.getNumerator().stringValue() +
 "/" + s.getDenominator().stringValue());

 Rational[] sa = {s};
 p.normalize(sa);
 s = sa[0];
 System.out.println("sum: " + s.getNumerator().stringValue() +
 "/" + s.getDenominator().stringValue());
 }
}

 JPublisher Examples 3-69

Example: Using Datatypes Not Supported by JDBC
Example: Using Datatypes Not Supported by JDBC
One technique you can employ to use datatypes not supported by JDBC is to write
an anonymous PL/SQL block that converts input types that JDBC supports into the
input types that the PL/SQL method uses. Then convert the output types that the
PL/SQL method uses into output types that JDBC supports. For more information
on this topic, see "Using Datatypes Not Supported by JDBC" on page 1-29.

The following steps offer a general outline of how you would do this. The steps
assume that you used JPublisher to translate an object type with methods that
contain argument types not supported by JDBC. The steps describe the changes you
must make. You could make changes by extending the class or modifying the
generated files. Extending the classes is generally a better technique; however, in
this example, the generated files are modified.

1. In Java, convert each IN or IN OUT argument having a type that JDBC does not
support to a Java type that JDBC does support.

2. Pass each IN or IN OUT argument to a PL/SQL block.

3. In the PL/SQL block, convert each IN or IN OUT argument to the correct type
for the PL/SQL method.

4. Call the PL/SQL method.

5. Convert each OUT argument or IN OUT argument or function result from the
type that JDBC does not support to the corresponding type that JDBC does
support in PL/SQL.

6. Return each OUT argument, IN OUT argument, or function result from the
PL/SQL block.

7. In Java, convert each OUT argument, IN OUT argument, or function result from
the type JDBC does support to the type it does not support.

Here is an example of how to handle an argument type not directly supported by
JDBC. The example converts from/to a type that JDBC does not support
(Boolean/BOOLEAN) to/from one that JDBC does support (String/VARCHAR2).

The following .sql file defines an object type with methods that use boolean
arguments. The methods this program uses are very simple; they serve only to
demonstrate that arguments are passed correctly.

CREATE TYPE BOOLEANS AS OBJECT (
 iIn INTEGER,
 iInOut INTEGER,
 iOut INTEGER,
3-70 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC

 MEMBER PROCEDURE p(i1 IN BOOLEAN,
 i2 IN OUT BOOLEAN,
 i3 OUT BOOLEAN),

 MEMBER FUNCTION f(i1 IN BOOLEAN) RETURN BOOLEAN
);

CREATE TYPE BODY BOOLEANS AS

MEMBER PROCEDURE p(i1 IN BOOLEAN,
 i2 IN OUT BOOLEAN,
 i3 OUT BOOLEAN) IS
BEGIN
 iOut := iIn;

 IF iInOut IS NULL THEN
 iInOut := 0;
 ELSIF iInOut = 0 THEN
 iInOut := 1;
 ELSE
 iInOut := NULL;
 END IF;

 i3 := i1;
 i2 := NOT i2;
END;

MEMBER FUNCTION f(i1 IN BOOLEAN) RETURN BOOLEAN IS
BEGIN
 return i1 = (iIn = 1);
END;

END;

The following .sqlj file was first generated by JPublisher and then modified by a
user, according to the steps above. The wrapper methods accomplish the following:

■ Convert each argument from Boolean to String in Java.

■ Pass each argument into a PL/SQL block.

■ Convert the argument from VARCHAR2 to BOOLEAN in PL/SQL.

■ Call the PL/SQL method.
 JPublisher Examples 3-71

Example: Using Datatypes Not Supported by JDBC
■ Convert each OUT argument, IN OUT argument, or function result from
BOOLEAN to VARCHAR2 in PL/SQL.

■ Return each OUT argument, IN OUT argument, or function result from the
PL/SQL block.

■ Finally, convert each OUT argument, IN OUT argument, or function result.

Here is the code:

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class Booleans implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.BOOLEANS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }
3-72 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC
 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 4, 4, 4
 };

 static ORADataFactory[] _factory = new ORADataFactory[3];

 static final Booleans _BooleansFactory = new Booleans(false);
 public static ORADataFactory getORADataFactory()
 {
 return _BooleansFactory;
 }

 /* constructors */
 protected Booleans(boolean init)
 { if (init) _struct = new MutableStruct(new Object[3], _sqlType, _factory); }
 public Booleans()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public Booleans(DefaultContext c) throws SQLException
 { this(true); __tx = c; }
 public Booleans(Connection c) throws SQLException
 { this(true); __onn = c; }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(Booleans o) throws SQLException
 { release(); _struct = o._struct; __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(Booleans o) { _struct = o._struct; }
 protected ORAData create(Booleans o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new Booleans(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 JPublisher Examples 3-73

Example: Using Datatypes Not Supported by JDBC
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }

 /* accessor methods */
 public Integer getIin() throws SQLException
 { return (Integer) _struct.getAttribute(0); }

 public void setIin(Integer iin) throws SQLException
 { _struct.setAttribute(0, iin); }

 public Integer getIinout() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setIinout(Integer iinout) throws SQLException
 { _struct.setAttribute(1, iinout); }

 public Integer getIout() throws SQLException
 { return (Integer) _struct.getAttribute(2); }

 public void setIout(Integer iout) throws SQLException
 { _struct.setAttribute(2, iout); }

/* Unable to generate method "f"
 because it uses a type that is not supported

 public <unsupported type> f (
 <unsupported type> i1)
 throws SQLException
 {
 Booleans __jPt_temp = this;
 <unsupported type> __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.F(
 :i1);
 END;
 };
 return __jPt_result;
 } */
3-74 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC
 public Boolean f (
 Boolean i1)
 throws SQLException
 {
 Booleans _temp = this;
 String _i1 = null;
 String _result = null;

 if (i1 != null) _i1 = i1.toString();

 #sql [getConnectionContext()] {
 DECLARE
 i1_ BOOLEAN;
 result_ BOOLEAN;
 t_ VARCHAR2(5);

 BEGIN
 i1_ := :_i1 = ’true’;

 result_ := :_temp.F(i1_);

 IF result_ THEN
 t_ := ’true’;
 ELSIF NOT result_ THEN
 t_ := ’false’;
 ELSE
 t_ := NULL;
 END IF;
 :OUT _result := t_;

 END;
 };

 if (_result == null)
 return null;
 else
 return new Boolean(_result.equals("true"));
 }

/* Unable to generate method "p"
 because it uses a type that is not supported

 public Booleans p (
 <unsupported type> i1,
 JPublisher Examples 3-75

Example: Using Datatypes Not Supported by JDBC
 <unsupported type> i2[],
 <unsupported type> i3[])
 throws SQLException
 {
 Booleans __jPt_temp = this;
 #sql [getConnectionContext()] {
 BEGIN
 :INOUT __jPt_temp.P(
 :i1,
 :INOUT (i2[0]),
 :OUT (i3[0]));
 END;
 };
 return __jPt_temp;
 } */

 public Booleans p (
 Boolean i1,
 Boolean i2[],
 Boolean i3[])
 throws SQLException
 {
 String _i1 = (i1 == null) ? null
 : i1.toString();

 String _i2 = (i2[0] == null) ? null
 : i2[0].toString();

 String _i3 = (i3[0] == null) ? null
 : i3[0].toString();

 Booleans _temp = this;

 #sql [getConnectionContext()] {
 DECLARE
 i1_ BOOLEAN;
 i2_ BOOLEAN;
 i3_ BOOLEAN;
 t_ VARCHAR2(5);

 BEGIN
 i1_ := :_i1 = ’true’;
 i2_ := :_i2 = ’true’;

 :INOUT _temp.P(i1_, i2_, i3_);
3-76 JPublisher User’s Guide

Example: Using Datatypes Not Supported by JDBC
 IF i2_ THEN
 t_ := ’true’;
 ELSIF NOT i2_ THEN
 t_ := ’false’;
 ELSE
 t_ := NULL;
 END IF;
 :OUT _i2 := t_;

 IF i3_ THEN
 t_ := ’true’;
 ELSIF NOT i3_ THEN
 t_ := ’false’;
 ELSE
 t_ := NULL;
 END IF;
 :OUT _i3 := t_;

 END;
 };

 i2[0] = (_i2 == null) ? null
 : new Boolean(_i2.equals("true"));
 i3[0] = (_i3 == null) ? null
 : new Boolean(_i3.equals("true"));
 return _temp;
 }
}

Note: Because of the semantics of SQLJ parameters, it is necessary
to assign to each output parameter exactly once within the block.
 JPublisher Examples 3-77

Example: Using Datatypes Not Supported by JDBC
3-78 JPublisher User’s Guide

Index

A
access option, 2-11
ARRAY class, features supported, 1-43
AS clause, translation statement, 2-27
attribute mapping, sample program, 3-8
attribute types, allowed, 1-28

B
backwards compatibility for JPublisher, 1-21
BigDecimal mapping, 1-9
builtintypes option, 2-9

C
case option, 2-12
case-sensitive SQL UDT names, 2-21, 2-27
classes, extending, 1-44
collection types

output, 1-8
representing in Java, 1-13

command-line options--see options
command-line syntax, 1-15
compatibility

backwards, for JPublisher, 1-21
between JDK versions, 1-21
Oracle8i compatibility mode, 1-24

compatible option, 2-7
connection contexts and instances, use of, 1-37
context option, 2-13
conventions, notation, 2-5
CREATE PACKAGE BODY statement, 1-10
CREATE PACKAGE statement, 1-10

CREATE TYPE statement, 1-9

D
datatype mappings

allowed object attribute types, 1-28
BigDecimal mapping, 1-9
-builtintypes option, 2-9
-compatible option, 2-7
datatype tables, 1-27
details of use, 1-26
JDBC mapping, 1-8
-lobtypes option, 2-9
-mapping option (deprecated), 2-10
-numbertypes option, 2-8
Object JDBC mapping, 1-9
Oracle mapping, 1-9
overview, 1-8
relevant options, 2-6
sample program, 3-2
-usertypes option, 2-7
using types not supported by JDBC, 1-29
using types not supported by JDBC, sample

program, 3-70
dir option, 2-14

E
extending JPublisher classes

concepts, 1-44
sample program, 3-36
 Index-1

G
GENERATE clause, translation statement, 2-28
getConnection() method, 1-39
getConnectionContext() method, 1-39

I
inheritance, support through ORAData, 1-49
INPUT files

package naming rules, 2-29
precautions, 2-32
structure and syntax, 2-26
translation statement, 2-26

input files
overview, 1-7
properties files and INPUT files, 2-25
-props option (properties file), 2-19

input option, 2-16
input, JPublisher (overview), 1-7

J
Java classes, generation and use, 1-41
JDBC mapping

overview, 1-8
sample program, 3-2

JDK versions, JPublisher compatibility, 1-21

L
limitations of JPublisher, 1-58
lobtypes option, 2-9

M
mapping option (deprecated), 2-10
mappings--see datatype mappings
method access option, 2-11
methods option, 2-17
methods, overloaded, translating, 1-33

N
nested table types, creating in the database, 1-9
nested tables, output, 1-8

notational conventions, 2-5
numbertypes option, 2-8

O
Object JDBC mapping, 1-9
object types

classes generated for, 1-35
creating in the database, 1-9
inheritance, 1-49
output, 1-7
representing in Java, 1-13
translation, 1-11
using generated classes, sample program, 3-53
with JPublisher, overview, 1-3

omit_schema_names option, 2-17
option syntax (command line), 1-15
options

-access option, 2-11
-builtintypes option, 2-9
-case option, 2-12
-compatible option, 2-7
-context option, 2-13
-dir option, 2-14
general options, 2-11
general tips, 2-4
-input option, 2-16
-lobtypes option, 2-9
-mapping option (deprecated), 2-10
-methods option, 2-17
-numbertypes option, 2-8
-omit_schema_names option, 2-17
-package option, 2-18
-props option (properties file), 2-19
-sql option, 2-20
summary and overview, 2-2
that affect type mappings, 2-6
-types option (deprecated), 2-22
-user option, 2-24
-usertypes option, 2-7

Oracle mapping
overview, 1-9
sample program, 3-5

Oracle8i compatibility mode, 1-24
ORAData interface
Index-2

object types and inheritance, 1-49
reference types and inheritance, 1-51
use by JPublisher, 1-3

OUT parameters, passing, 1-30
output

-dir option, 2-14
from JPublisher (overview), 1-7
overview, what JPublisher produces, 1-4

overloaded methods, translating, 1-33

P
packages

creating in the database, 1-9, 1-10
naming rules in INPUT file, 2-29
-package option, 2-18
using generated classes, sample program, 3-65

PL/SQL packages
generated classes for, 1-34
output, 1-8
translation, 1-11
with JPublisher, overview, 1-3

PL/SQL subprograms, translating top level, 2-20
properties files

overview, 1-7
structure and syntax, 2-25

props option (properties file), 2-19

R
reference types

inheritance, 1-51
representing in Java, 1-13
strongly typed, 1-14

release() method (releasing connection
contexts), 1-40, 3-43

requirements for JPublisher, 1-6

S
sample translation, 1-15
schema names, -omit_schema_names option, 2-17
setConnectionContext() method, 1-38
SQL name clause, translation statement, 2-26
sql option, 2-20

SQLData interface
object types and inheritance, 1-56
sample, generated SQLData class, 3-27
use by JPublisher, 1-3

SQLJ classes, generation and use, 1-34
strongly typed object references, 1-14
subclassing JPublisher classes, sample

program, 3-36
subclassing JPublisher-generated classes, 1-44
syntax, command line, 1-15

T
toplevel keyword (-sql option), 2-20
TRANSLATE...AS clause, translation

statement, 2-28
translation

declare objects/packages to translate, 2-20
of types, steps involved, 1-11

translation statement
in INPUT file, 2-26
sample statement, 2-31

type mappings--see datatype mappings
types option (deprecated), 2-22
types, creating in the database, 1-9

U
user option, 2-24
usertypes option, 2-7

V
VARRAY types, creating in the database, 1-9
VARRAY, output, 1-8

W
wrapper methods

for object, sample program, 3-41
-methods option, 2-17
 Index-3

Index-4

	Send Us Your Comments
	Preface
	1 Understanding and Using JPublisher
	Understanding JPublisher
	Introduction to JPublisher
	What JPublisher Does
	What JPublisher Produces
	JPublisher Requirements
	JPublisher Input and Output
	Overview of Datatype Mappings
	Creating Types and Packages in the Database

	JPublisher Operation
	Translating and Using PL/SQL Packages and User-Defined Types
	Representing User-Defined Object, Collection, and Reference Types in Java
	Strongly Typed Object References for ORAData Implementations
	JPublisher Command-Line Syntax
	Sample JPublisher Translation

	Backwards Compatibility and Migration
	JPublisher Backwards Compatibility
	JPublisher Compatibility Between JDK Versions
	Migration Between Oracle8i JPublisher and Oracle9i JPublisher

	Details of Datatype Mapping
	Datatype Mapping Tables
	Allowed Object Attribute Types
	Using Datatypes Not Supported by JDBC

	Concepts of JPublisher-Generated Classes
	Passing OUT Parameters
	Translating Overloaded Methods

	JPublisher Generation of SQLJ Classes
	Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
	Use of Classes JPublisher Generates for Object Types
	Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher

	JPublisher Generation of Java Classes
	User-Written Subclasses of JPublisher-Generated Classes
	Extending JPublisher-Generated Classes
	Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes
	The setFrom() and setValueFrom() Methods

	JPublisher Support for Inheritance
	ORAData Object Types and Inheritance
	ORAData Reference Types and Inheritance
	SQLData Object Types and Inheritance
	Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE

	JPublisher Limitations

	2 Command-Line Options and Input Files
	JPublisher Options
	JPublisher Option Summary
	JPublisher Option Tips
	Notational Conventions
	Detailed Descriptions—Options That Affect Datatype Mappings
	Detailed Descriptions—General JPublisher Options

	JPublisher Input Files
	Properties File Structure and Syntax
	INPUT File Structure and Syntax
	INPUT File Precautions

	3 JPublisher Examples
	Example: JPublisher Translations with Different Mappings
	JPublisher Translation with the JDBC Mapping
	JPublisher Translation with the Oracle Mapping

	Example: JPublisher Object Attribute Mapping
	Listing and Description of Address.java Generated by JPublisher
	Listing of AddressRef.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher
	Listing of AlltypesRef.java Generated by JPublisher
	Listing of Ntbl.java Generated by JPublisher
	Listing of AddrArray.java Generated by JPublisher

	Example: Generating a SQLData Class
	Listing of Address.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher

	Example: Extending JPublisher Classes
	Example: Wrappers Generated for Methods in Objects
	Listing and Description of Rational.sqlj Generated by JPublisher

	Example: Wrappers Generated for Methods in Packages
	Listing and Description of RationalP.sqlj Generated by JPublisher

	Example: Using Classes Generated for Object Types
	Listing of RationalO.sql (Definition of Object Type)
	Listing of JPubRationalO.sqlj Generated by JPublisher
	Listing of RationalORef.java Generated by JPublisher
	Listing of RationalO.java Written by User
	Listing of TestRationalO.java Written by User

	Example: Using Classes Generated for Packages
	Listing of RationalP.sql (Definition of the Object Type and Package)
	Listing of TestRationalP.java Written by a User

	Example: Using Datatypes Not Supported by JDBC

	Index

