
Oracle  Internet Directory

Application Developer’s Guide

Release 3.0.1

June 2001

Part No. A90152-01

Oracle Internet Directory Application Developer’s Guide, Release 3.0.1

Part No. A90152-01

Copyright © 2001, Oracle Corporation. All rights reserved.

Primary Author: Richard Smith

Contributing Authors: Henry Abrecht, Ginger Tabora

Contributors: Ramakrishna Bollu, Saheli Dey, Bruce Ernst, Rajinder Gupta, Ashish Kolli, Stephen Lee,
David Lin, Radhika Moolky, David Saslav

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or references
to the Internet Society or other Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined in the Internet Standards process
must be followed, or as required to translate it into languages other than English."

RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle
Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

This product contains SSLPlus Integration Suite, version 1.2, from Consensus Development
Corporation.

Oracle Directory Manager requires the Java Runtime Environment. The Java Runtime Environment,
Version JRE 1.1.6. ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue,
Mountain View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

Oracle is a registered trademark, and SQL*Net, SQL*Loader, SQL*Plus, Net8, and Oracle Net Services
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

1 Introduction

About Oracle Internet Directory Software Developer’s Kit release 3.0.1 1-2
Components of the Oracle Internet Directory Software Developer’s Kit 1-2
Other Components of Oracle Internet Directory.. 1-2
Operating Systems Supported ... 1-3

2 Concepts

History of LDAP ... 2-2
Overview of LDAP Models .. 2-2

LDAP Naming Model .. 2-2
LDAP Information Model ... 2-4
LDAP Functional Model.. 2-6
LDAP Security Model .. 2-6
Authentication .. 2-7
Access Control and Authorization... 2-8
Data Integrity .. 2-9
Data Privacy .. 2-9
Password Protection... 2-10
Password Policies ... 2-10

About the Oracle Internet Directory API ... 2-11
v

Initializing an LDAP Session ... 2-14
Initializing the Session by Using the C API .. 2-14
Initializing the Session by Using DBMS_LDAP... 2-15

LDAP Session Handle Options in the C API .. 2-16
Enabling Authentication to a Directory Server... 2-16

Enabling Authentication to a Directory Server by Using the C API 2-16
Enabling Authentication to a Directory Server by Using DBMS_LDAP............................ 2-17

Searching by Using DBMS_LDAP .. 2-18
Flow of Search-Related Operations.. 2-19
Search Scope .. 2-22
Filters .. 2-23

Enabling Session Termination by Using DBMS_LDAP ... 2-24

3 The Oracle Internet Directory C API

About the Oracle Internet Directory C API ... 3-2
Oracle Internet Directory SDK C API SSL Extensions .. 3-2

C API Reference .. 3-4
Summary of LDAP C API.. 3-4
Functions.. 3-8
Initializing an LDAP Session .. 3-9
LDAP Session Handle Options... 3-10
Working With Controls.. 3-15
Authenticating to the Directory.. 3-17
Closing the Session ... 3-20
Performing LDAP Operations .. 3-21
Abandoning an Operation... 3-43
Obtaining Results and Peeking Inside LDAP Messages... 3-44
Handling Errors and Parsing Results .. 3-47
Stepping Through a List of Results .. 3-50
Parsing Search Results ... 3-51

Sample C API Usage... 3-62
C API Usage with SSL.. 3-62
C API Usage Without SSL ... 3-63

Building Applications with the C API.. 3-64
Required Header Files and Libraries ... 3-64
vi

Building a Sample Search Tool ... 3-64
Dependencies and Limitations .. 3-77

4 The Oracle Internet Directory PL/SQL API

About the PL/SQL API... 4-2
Sample PL/SQL Usage ... 4-2

Using the PL/SQL API from a Database Trigger .. 4-2
Using the PL/SQL API for a Search .. 4-10

Building Applications with PL/SQL LDAP API .. 4-13
Dependencies and Limitations .. 4-14
PL/SQL Reference... 4-14

Summary of Subprograms .. 4-14
Exception Summary ... 4-17
Data-Type Summary .. 4-19
Subprograms ... 4-20

5 Command-Line Tools Syntax

LDAP Data Interchange Format (LDIF) Syntax .. 5-2
Command-Line Tools Syntax ... 5-4

ldapadd Syntax ... 5-5
ldapaddmt Syntax .. 5-7
ldapbind Syntax.. 5-9
ldapcompare Syntax... 5-10
ldapdelete Syntax ... 5-11
ldapmoddn Syntax ... 5-13
ldapmodify Syntax ... 5-15
ldapmodifymt Syntax .. 5-20
ldapsearch Syntax... 5-22

Catalog Management Tool Syntax ... 5-27

Glossary

Index
vii

viii

Send Us Your Comments

Oracle Internet Directory Application Developer’s Guide, Release 3.0.1

Part No. A90152-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

Oracle Internet Directory Application Developer’s Guide provides information for

enabling applications to access Oracle Internet Directory by using the C API and the

PL/SQL API.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xi

Audience
Oracle Internet Directory Application Developer’s Guide is for application developers

who wish to enable applications to store and update directory information in an

Oracle Internet Directory server. It is also intended for anyone who wants to know

how the Oracle Internet Directory C API and PL/SQL API work.

Organization

Chapter 1, "Introduction"
Briefly describes the intended audience and components of Oracle Internet

Directory Software Developer’s Kit release 3.0.1. It also lists the other components

of Oracle Internet Directory and the platforms it supports.

Chapter 2, "Concepts"
This chapter provides a brief overview of all of the major operations available in the

C API and the PL/SQL API. It provides developers a general understanding of

Lightweight Directory Access Protocol (LDAP) from a perspective independent of

the API.

Chapter 3, "The Oracle Internet Directory C API"
Introduces the Oracle Internet Directory API and provides examples of how to use

it

Chapter 4, "The Oracle Internet Directory PL/SQL API"
Introduces the PL/SQL API, which is contained in a PL/SQL package called

DBMS_LDAP. It also contains examples of how to use it.

Chapter 5, "Command-Line Tools Syntax"
Provides syntax, usage notes, and examples for using LDAP Data Interchange

Format (LDIF) and LDAP command line tools

Glossary
xii

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i documentation set, especially

– Oracle Internet Directory Administrator’s Guide.

– PL/SQL User’s Guide and Reference

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

For additional information, see:

■ Chadwick, David. Understanding X.500—The Directory. Thomson Computer

Press, 1996.

■ Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

■ Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

■ Internet Assigned Numbers Authority home page, http://www.iana.org ,

for information about object identifiers

■ Internet Engineering Task Force (IETF) documenation, especially:
xiii

■ http://www.ietf.org for the IETF home page

■ http://www.ietf.org/html.charters/ldapext-charter.html
for the ldapext charter and LDAP drafts)

■ http://www.ietf.org/html.charters/
ldup-charter.html for the LDUP charter and drafts

■ http://www.ietf.org/rfc/rfc2254.txt , "The String

Representation of LDAP Search Filters"

■ http://www.ietf.org/rfc/rfc1823.txt , "The LDAP Application

Program Interface"

■ The OpenLDAP Community, http://www.openldap.org

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.
xiv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xv

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;
xvi

Documentation Accessibility
Oracle's goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

technology vendors to address technical obstacles so that our documentation can be

accessible to all of our customers. For additional information, visit the Oracle

Accessibility Program Web site at

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples

in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a

line of text that consists solely of a bracket or brace.
xvii

xviii

Introducti
1

Introduction

This chapter briefly describes the intended audience and components of Oracle

Internet Directory Software Developer’s Kit release 3.0.1. It also lists the other

components of Oracle Internet Directory and the platforms it supports.

This chapter contains these topics:

■ About Oracle Internet Directory Software Developer’s Kit release 3.0.1

■ Components of the Oracle Internet Directory Software Developer’s Kit

■ Other Components of Oracle Internet Directory

■ Operating Systems Supported
on 1-1

About Oracle Internet Directory Software Developer’s Kit release 3.0.1
About Oracle Internet Directory Software Developer’s Kit release 3.0.1
Oracle Internet Directory SDK release 3.0.1 is intended for application developers

using C, C++, and PL/SQL. Java developers can use the JNDI provider from Sun to

access directory information in an Oracle Internet Directory server.

Components of the Oracle Internet Directory Software Developer’s Kit
Oracle Internet Directory Software Developer’s Kit release 3.0.1 consists of:

■ An LDAP Version 3-compliant C API

■ A PL/SQL API contained in a PL/SQL package called DBMS_LDAP

■ Sample programs

■ Oracle Internet Directory Application Developer’s Guide (this document)

■ Command line tools

Other Components of Oracle Internet Directory
The following components of Oracle Internet Directory release 3.0.1, not part of the

Oracle Internet Directory Software Developer’s Kit, can be obtained separately:

■ Oracle directory server, an LDAP Version 3-compliant directory server

■ Oracle directory replication server

■ Oracle Directory Manager, a Java-based graphical user interface

■ Oracle Internet Directory bulk tools

■ Oracle Internet Directory Administrator’s Guide
1-2 Oracle Internet Directory Application Developer’s Guide

Operating Systems Supported
Operating Systems Supported
Oracle Internet Directory, both servers and clients, support these operating systems:

■ Sun Solaris

■ Microsoft Windows

– Windows NT 4.0

– Windows 95

– Windows 98

– Windows 2000

■ HPUX

■ AIX

■ Compaq TRU64

■ Intel Solaris

■ SGI

■ DGUX

■ UNIXWARE
Introduction 1-3

Operating Systems Supported
1-4 Oracle Internet Directory Application Developer’s Guide

Concep
2

Concepts

This chapter provides a brief overview of all of the major operations available in the

C API and the PL/SQL API. It provides developers a general understanding of

Lightweight Directory Access Protocol (LDAP) from a perspective independent of

the API. The concepts acquired in this section make it easier to understand the API

details.

This chapter contains these topics:

■ History of LDAP

■ Overview of LDAP Models

■ About the Oracle Internet Directory API

■ Initializing an LDAP Session

■ LDAP Session Handle Options in the C API

■ Enabling Authentication to a Directory Server

■ Searching by Using DBMS_LDAP

■ Enabling Session Termination by Using DBMS_LDAP
ts 2-1

History of LDAP

fy
History of LDAP
LDAP began as a lightweight front end to the X.500 Directory Access Protocol. To simpli
X.500 Directory Access Protocol, LDAP:

■ Uses TCP/IP connections which are much more lightweight compared to the

OSI communication stack required by X.500 implementations

■ Eliminates little-used and redundant features found in the X.500 Directory

Access Protocol

■ Represents most data elements by using simple formats. These formats are

easier to process than the more complicated and highly structured

representations found in X.500.

■ Encodes data for transport over networks by using a simplified version of the

same encoding rules used by X.500

Overview of LDAP Models
LDAP defines four basic models to describe its operations. This section contains

these topics:

■ LDAP Naming Model

■ LDAP Information Model

■ LDAP Functional Model

■ LDAP Security Model

LDAP Naming Model
The LDAP naming model allows directory information to be referenced and

organized. Each entry in a directory is uniquely identified by a distinguished name
(DN). The distinguished name tells you exactly where the entry resides in the

directory’s hierarchy. This hierarchy is represented by a directory information tree
(DIT).
2-2 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models
To understand the relation between a distinguished name and a directory

information tree, look at the example in Figure 2–1.

Figure 2–1 A Directory Information Tree

The DIT in Figure 2–1 diagrammatically represents entries for two employees of

Acme Corporation who are both named Anne Smith. It is structured along

geographical and organizational lines. The Anne Smith represented by the left

branch works in the Sales division in the United States, while the other works in the

Server Development division in the United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne

Smith. She works in an organizational unit (ou) named Server Development, in the

country (c) of Great Britain (uk), in the organization (o) Acme.

The DN for this "Anne Smith" entry is:

cn=Anne Smith,ou=Server Development,c=uk,o=acme

Note that the conventional format of a distinguished name places the lowest DIT

component at the left, then follows it with the next highest component, thus moving

progressively up to the root.

Within a distinguished name, the lowest component is called the relative
distinguished name (RDN). For example, in the above entry for Anne Smith, the

RDN is cn=Anne Smith . Similarly, the RDN for the entry immediately above

Anne Smith’s RDN is ou=Server Development , the RDN for the entry

immediately above ou=Server Development is c=uk , and so on. A DN is thus a

sequence of RDNs separated by commas.
Concepts 2-3

Overview of LDAP Models
To locate a particular entry within the overall DIT, a client uniquely identifies that

entry by using the full DN—not simply the RDN—of that entry. For example,

within the global organization in Figure 2–1, to avoid confusion between the two

Anne Smiths, you would use each one’s full DN. (If there are potentially two

employees with the same name in the same organizational unit, you could use

additional mechanisms, such as identifying each employee with a unique

identification number.)

LDAP Information Model
The LDAP information model determines the form and character of information in

the directory. It is centered around entries, which are composed of attributes. In a

directory, each collection of information about an object is called an entry. For

example, a typical telephone directory includes entries for people, and a library

card catalog contains entries for books. Similarly, an online directory might include

entries for employees, conference rooms, e-commerce partners, or shared network

resources such as printers.

In a typical telephone directory, an entry for a person contains such information

items as an address and a phone number. In an online directory, these information

items are called attributes. Attributes in a typical employee entry can include, for

example, a job title, an e-mail address, or a phone number.

For example, in Figure 2–2, the entry for Anne Smith in Great Britain (uk) has

several attributes, each providing specific information about her. These are listed in

the balloon to the right of the tree, and they include emailaddrs , printername ,
2-4 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models
jpegPhoto , and app preferences . Moreover, each bullet in Figure 2–2 is also an

entry with attributes, although the attributes for each are not shown.

Figure 2–2 Attributes of the Entry for Anne Smith

Each attribute consists of an attribute type and one or more attribute values. The

attribute type is the kind of information that the attribute contains—for example,

jobTitle . The attribute value is the particular occurrence of information

appearing in that entry. For example, the value for the jobTitle attribute could be

manager .
Concepts 2-5

Overview of LDAP Models
LDAP Functional Model
The LDAP functional model determines what operations can be performed on the

information. There are three types of functions:

LDAP Security Model
The LDAP security model allows information in the directory to be secured.

This section contains these topics:

■ Authentication: Ensuring that the identities of users, hosts, and clients are

correctly validated

■ Access Control and Authorization: Ensuring that a user reads or updates only

the information for which that user has privileges

Search and read The read operation retrieves the attributes of an entry whose

name is known. The list operation enumerates the children of

a given entry. The search operation selects entries from a

defined area of the tree based on some selection criteria

known as a search filter. For each matching entry, a requested

set of attributes (with or without values) is returned. The

searched entries can span a single entry, an entry's children, or

an entire subtree. Alias entries can be followed automatically

during a search, even if they cross server boundaries. An

abandon operation is also defined, allowing an operation in

progress to be canceled.

Modify This category defines four operations for modifying the

directory:

■ Modify: change existing entries. It allows attributes and

values to be added and deleted.

■ Add: insert entries into the directory

■ Delete: remove entries from the directory

■ Modify RDN: change the name of an entry

Authenticate This category defines a bind operation, allowing a client to

initiate a session and prove its identity to the directory.

Several authentication methods are supported, from simple

clear-text password to public key-based authentication. The

unbind operation is used to terminate a directory session.
2-6 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models
■ Data Integrity: Ensuring that data is not modified during transmission

■ Data Privacy: Ensuring that data is not disclosed during transmission

■ Password Protection: Ensuring protection of user passwords through any of

four encryption options

■ Password Policies: Enabling you to set rules that govern how passwords are

used

Authentication
Authentication is the process by which the directory server establishes the true

identity of the user connecting to the directory. It occurs when an LDAP session is

established by means of the ldap-bind operation. Every session has an associated

user identity, also referred to as an authorization ID.

To ensure that the identities of users, hosts, and clients are correctly known, Oracle

Internet Directory provides three authentication options: anonymous, simple, and

SSL.

Anonymous Authentication If your directory is available to everyone, then you can

allow users to log in to the directory anonymously. When using anonymous
authentication, users simply leave blank the user name and password fields when

they log in. Each anonymous user then exercises whatever privileges are specified

for anonymous users.

Simple Authentication In this case, the client identifies itself to the server by means of

a DN and a password which are not encrypted when sent over the network. In the

simple authentication option, the server verifies that the DN and password sent by

the client match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Sockets Layer (SSL) is an

industry standard protocol for securing network connections. It provides

authentication through the exchange of certificates that are verified by trusted

certificate authorities. A certificate ensures that an entity’s identity information is

correct. An entity can be an end user, a database, an administrator, a client, or a

server. A certificate authority (CA) is an application that creates public key

certificates that are given a high level of trust by all the parties involved.
Concepts 2-7

Overview of LDAP Models
You can use SSL in one of three authentication modes:

In an Oracle Internet Directory environment, SSL authentication between a client

and a directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on

the SSL port. (The default SSL port is 636.)

2. SSL performs the handshake between client and directory server.

3. If the handshake is successful, the directory server verifies that the user has the

appropriate authorization to access the directory.

Access Control and Authorization
Authorization is the process of ensuring that a user reads or updates only the

information for which that user has privileges. When directory operations are

attempted within a directory session, the directory server ensures that the user—

identified by the authorization ID associated with the session—has the requisite

permissions to perform those operations. Otherwise, the operation is disallowed.

Through this mechanism, the directory server protects directory data from

unauthorized operations by directory users. This mechanism is called access

control.

Access control information is the directory metadata that captures the

administrative policies relating to access control.

ACI is stored in Oracle Internet Directory as user-modifiable operational attributes.

Typically, a list of these ACI attribute values, called an Access Control List (ACL), is

SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption/decryption is used.

One-way authentication Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and server authenticate themselves to each other.
Both the client and server send certificates to each other.

See Also: Oracle Advanced Security Administrator’s Guide for more

information about SSL
2-8 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models
associated with directory objects. The attribute values on that list govern the access

policies for those directory objects.

ACIs are represented and stored as text strings in the directory. These strings must

conform to a well defined format. Each valid value of an ACI attribute represents a

distinct access control policy. These individual policy components are referred to as

ACI Directives or ACIs and their format is called the ACI Directive format.

Access control policies can be prescriptive, that is, their security directives can be set

to apply downward to all entries at lower positions in the directory information
tree (DIT). The points from which such access control policies apply are called

access control policy points (ACPs).

Data Integrity
Oracle Internet Directory ensures that data has not been modified, deleted, or

replayed during transmission by using SSL. This SSL feature generates a

cryptographically secure message digest—through cryptographic checksums using

either the MD5 algorithm or the Secure Hash Algorithm (SHA)—and includes it

with each packet sent across the network.

Data Privacy
Oracle Internet Directory ensures that data is not disclosed during transmission by

using public-key encryption available with Secure Sockets Layer (SSL). In

public-key encryption, the sender of a message encrypts the message with the

public key of the recipient. Upon delivery, the recipient decrypts the message using

the recipient’s private key. Specifically, Oracle Internet Directory supports two

levels of encryption available through SSL:

■ DES40

The DES40 algorithm, available internationally, is a variant of DES in which the

secret key is preprocessed to provide forty effective key bits. It is designed for

use by customers outside the USA and Canada who want to use a DES-based

encryption algorithm. This feature gives commercial customers a choice in the

algorithm they use, regardless of their geographic location.

■ RC4_40

Oracle has obtained license to export the RC4 data encryption algorithm with a

40-bit key size to virtually all destinations where other Oracle products are

available. This makes it possible for international corporations to safeguard

their entire operations with fast cryptography.
Concepts 2-9

Overview of LDAP Models
Password Protection During installation, the protection scheme for passwords was

set. You can change that initial configuration by using either Oracle Directory

Manager or ldapmodify. You must be a superuser to change the type of password

encryption.

To encrypt passwords, Oracle Internet Directory uses the MD4 algorithm as the

default. MD4 is a one-way hash function that produces a 128-bit hash, or message

digest. You can change this default to one of the following:

■ MD5—An improved, and more complex, version of MD4

■ SHA—Secure Hash Algorithm, which produces a 160-bit hash, longer than

MD5. The algorithm is slightly slower than MD5, but the larger message digest

makes it more secure against brute-force collision and inversion attacks.

■ UNIX Crypt—The UNIX encryption algorithm

■ No Encryption

The value you specify is stored in the orclCryptoScheme attribute in the Root
DSE. This attribute is single-valued.

During authentication to a directory server, a user enters a password in clear text.

The server then hashes the password by using the specified encryption algorithm,

and verifies it against the hashed password in the userPassword attribute. If the

hashed password values match, then the server authenticates the user. If the hashed

password values do not match, then the server sends the user an Invalid

Credentials error message.

Password Policies A password policy is a set of rules that govern how passwords are

used. When a user attempts to bind to the directory, the directory server uses the

password policy to ensure that the password meets the various requirements set in

that policy

When you establish a password policy, you set the following types of rules, to

mention just a few:

■ The maximum length of time a given password is valid

■ The minimum number of characters a password must contain

■ The ability of users to change their own passwords
2-10 Oracle Internet Directory Application Developer’s Guide

About the Oracle Internet Directory API
About the Oracle Internet Directory API
The Oracle Internet Directory API is available as a C API and as a PL/SQL API.

The PL/SQL API is contained in a PL/SQL package called DBMS_LDAP. This

package enables PL/SQL applications to access data located in enterprise-wide

LDAP servers. The naming and syntax of the function calls are similar to those of

the Oracle Internet Directory C API functions and comply with the current

recommendations from the Internet Engineering Task Force (IETF) for the LDAP

C-API. However, the PL/SQL API contains only a subset of the functions available

in the C API. In particular, only synchronous calls to the LDAP server are available

in the PL/SQL API.
Concepts 2-11

About the Oracle Internet Directory API
Figure 2–3 illustrates the overall placement of the DBMS_LDAP API in the runtime

environment of a client.

Figure 2–3 Applications Sharing LDAP Server Data

As Figure 2–3 shows, the API allows multiple different applications—in this

example, Human Resources and Financials—to share employee address book

information and user profiles by using an LDAP server.

Storing such information in an LDAP server enables other non-database

applications that are LDAP-enabled to retrieve the same information. In Figure 2–3,

the Email Clients application uses the same employee address book data to find the

employee for a given email address. Because LDAP offers a centralized repository

of user information, the same information can be used for Single Sign-On

applications and other enterprise-wide user provisioning applications.

Human Resources Database

Session 1

LDAP
Server

Address Book
User Profiles

Single
Sign-on
(SSO)

User
Provisioning
Application

Email
Clients

Application
Logic

DBMS_
LDAP

Session 2

Application
Logic

DBMS_
LDAP

Financials Database

Session 1

Application
Logic

DBMS_
LDAP

Session 2

Application
Logic

DBMS_
LDAP
2-12 Oracle Internet Directory Application Developer’s Guide

About the Oracle Internet Directory API
In summary, the Oracle Internet Directory API enables Oracle database applications

to:

■ Read from the LDAP server information that is published by other programs in

the enterprise

■ Publish in the LDAP server new information that can be used later by the same

application or other applications

■ Modify or update existing information in the LDAP server based on certain

pre-defined conditions

Typically, an application or trigger uses the functions in the API in four simple

steps:

1. Initialize the library and obtain an LDAP session handle.

2. Authenticate to the LDAP server if necessary.

3. Perform some LDAP operations and obtain results and errors if any.

4. Close the session.

Figure 2–4 illustrates these steps.

Figure 2–4 Steps in Typical DBMS_LDAP Usage

The following sections explain the important features of the API with respect to

each of these steps.

Initialize Session
init

Authenticate Session
bind_s, simple_bind_s

Perform LDAP
Operations

Terminate Session
unbind
Concepts 2-13

Initializing an LDAP Session
Initializing an LDAP Session
All LDAP operations require clients to establish an LDAP session with the LDAP

server. To perform LDAP operations, a database session must first initialize and

open an LDAP session.

Initializing the Session by Using the C API
ldap_init() initializes a session with an LDAP server. The server is not actually

contacted until an operation is performed that requires it, allowing various options

to be set after initialization.

Syntax
LDAP *ldap_init
(

const char *hostname,
int portno

)
;

Parameters

Table 2–1

Parameter Description

hostname Contains a space-separated list of hostnames or dotted strings
representing the IP address of hosts running an LDAP server to connect
to. Each hostname in the list MAY include a port number which is
separated from the host itself with a colon (:) character. The hosts will be
tried in the order listed, stopping with the first one to which a successful
connection is made.

Note: A suitable representation for including a literal IPv6[10] address in
the hostname parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number to connect to. The default LDAP port of
389 can be obtained by supplying the constant LDAP_PORT. If a host
includes a port number then this parameter is ignored.
2-14 Oracle Internet Directory Application Developer’s Guide

Initializing an LDAP Session
ldap_init() and ldap_open() both return a session handle, that is, a pointer to an

opaque structure that MUST be passed to subsequent calls pertaining to the session.

These routines return NULL if the session cannot be initialized in which case the

operating system error reporting mechanism can be checked to see why the call

failed.

Note that if you connect to an LDAPv2 server, one of the LDAP bind calls described

below SHOULD be completed before other operations can be per formed on the

session. LDAPv3 does not require that a bind operation be completed before other

operations can be performed.

The calling program can set various attributes of the session by calling the routines

described in the next section.

Initializing the Session by Using DBMS_LDAP
Initialization occurs by means of a call to the function DBMS_LDAP.init() . The

function ‘init’ has the following syntax:

FUNCTION init (hostname IN VARCHAR2, portnum IN PLS_INTEGER)
RETURN SESSION;

To establish an LDAP session, the function init requires a valid hostname and a

port number. It allocates a data structure for the LDAP session and returns a handle

of the type DBMS_LDAP.SESSIONto the caller. The handle returned from the call to

init should be used in all subsequent LDAP operations with the API. The DBMS_

LDAP API uses the LDAP session handles to maintain state about open

connections, outstanding requests, and other information.

A single database session can obtain as many LDAP sessions as required. Typically,

multiple LDAP sessions within the same database session are opened if:

■ There is a requirement to get data from multiple LDAP servers simultaneously

■ There is a requirement to have open sessions using multiple LDAP identities

Note: The handles returned from calls to DBMS_LDAP.init()
are dynamic constructs: They do not persist across multiple

database sessions. Attempting to store their values in a persistent

form, and to reuse stored values at a later stage, can yield

unpredictable results.
Concepts 2-15

LDAP Session Handle Options in the C API
LDAP Session Handle Options in the C API
The LDAP session handle returned by ldap_init() is a pointer to an opaque data

type representing an LDAP session. In RFC 1823 this data type was a structure

exposed to the caller, and various fields in the structure could be set to control

aspects of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these

aspects of the session are now accessed through a pair of accessor functions,

described below.

ldap_get_option() is used to access the current value of various session-wide

parameters. ldap_set_option() is used to set the value of these parameters.

Note that some options are READ-ONLY and cannot be set; it is an error to call

ldap_set_option() and attempt to set a READ-ONLY option.

Note that if automatic referral following is enabled (the default), any connections

created during the course of following referrals will inherit the options associated

with the session that sent the original request that caused the referrals to be

returned.

Enabling Authentication to a Directory Server
Before initiating any of the LDAP operations, an individual or application seeking

to perform operations against an LDAP server must be authenticated.

Enabling Authentication to a Directory Server by Using the C API
The ldap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do general

and extensible authentication over LDAP through the use of the Simple

Authentication Security Layer [12]. The routines both take the dn to bind as, the

method to use, as a dotted-string representation of an OID identifying the method,

and a struct berval holding the credentials. The special constant value LDAP_

SASL_SIMPLE (NULL) can be passed to request simple authentication, or the

simplified routines ldap_simple_bind() or ldap_simple_bind_s() can be used.
2-16 Oracle Internet Directory Application Developer’s Guide

Enabling Authentication to a Directory Server
Enabling Authentication to a Directory Server by Using DBMS_LDAP
The functions simple_bind_s and bind_s enable applications to authenticate to

the directory server by using certain credentials. The function simple_bind_s has

the following syntax:

FUNCTION simple_bind_s (ld IN SESSION, dn IN VARCHAR2, passwd IN VARCHAR2)
RETURN PLS_INTEGER;

The function simple_bind_s requires the LDAP session handle obtained from

init as the first parameter. It also requires an LDAP distinguished name (DN) of

an entry. This DN represents:

■ The identity that the application uses when it authenticates

■ The password for that identity

If the dn and passwd parameters are NULL, then the LDAP server assigns a special

identity, called anonymous , to the application. Typically, the anonymous identity is

associated with the least privileges in an LDAP directory.

When a bind operation is completed, the directory server remembers the new

identity until either another bind is done or the LDAP session is terminated by

using unbind_s . The identity is used by the LDAP server to enforce the security

model specified by the enterprise administration. In particular, this identity helps

the LDAP server determine whether the user or application has sufficient privileges

to perform search, update, or compare operations in the directory.

Note that the password for the bind operation is sent in the clear over the network.

If the network is not secure, then consider using SSL for authentication as well as

secure data transport for all LDAP operations. The function that initiates SSL

communications is called open_ssl and its syntax is:

FUNCTION open_ssl(ld IN SESSION, sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHAR2, sslauth IN PLS_INTEGER)

RETURN PLS_INTEGER;

The open_ssl function should be called immediately after the call to init to

secure the LDAP TCP/IP connection from eavesdroppers. Authentication is done

implicitly by using the credentials in the certificate stored in the wallet.

See Also: The appendix about Oracle Wallet Manager in Oracle
Internet Directory Administrator’s Guide
Concepts 2-17

Searching by Using DBMS_LDAP
The following PL/SQL code snippet shows a typical usage of the initialization,

authentication, and cleanup functions that were just described.

DECLARE
retval PLS_INTEGER;
my_session DBMS_LDAP.session;

BEGIN
retval := -1;
-- Initialize the LDAP session
my_session := DBMS_LDAP.init(’yow.acme.com’,389);
--Bind to the directory
retval :=DBMS_LDAP.simple_bind_s(my_session, ’cn=orcladmin’,

’welcome’);

In the previous example, an LDAP session is initialized to the LDAP server on the

computer yow.acme.com that is listening for requests at TCP/IP port number 389.

Then an authentication is performed with the identity of cn=orcladmin whose

password is welcome . This authenticates the LDAP session and paves the way for

regular LDAP operations.

Searching by Using DBMS_LDAP
Searches are the most frequently used LDAP operations. The LDAP search

operation allows applications to select and retrieve entries from the directory by

using complex search criteria. This release of DBMS_LDAP API provides only

synchronous search capability. This implies that the caller of the search functions is

blocked until the LDAP server returns the entire result set.

There are two functions available for initiating searches in the DBMS_LDAP API:

■ DBMS_LDAP.search_s()

■ DBMS_LDAP.search_st()
2-18 Oracle Internet Directory Application Developer’s Guide

Searching by Using DBMS_LDAP
The only difference between the two is that search_st() uses a client side

timeout to stop the search if it exceeds a certain elapsed time limit. The syntax for

DBMS_LDAP.search_s() is:

FUNCTION search_s
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE
)

RETURN PLS_INTEGER;

Both functions take these arguments:

In addition to search_s and search_st , several support functions in the API

help in retrieving search results. These are highlighted in the following section.

Flow of Search-Related Operations
The programming work required to initiate a typical search operation and retrieve

results can be broken down into the following steps:

1. Decide the attributes that need to be returned, and compose them into the

DBMS_LDAP.STRING_COLLECTION data-type.

2. Initiate the search operation with the desired options and filters (using DBMS_
LDAP.search_s or DBMS_LDAP.search_st).

Argument Description

ld A valid session handle

base The DN of the base entry in the LDAP server where search should start

scope The breadth and depth of the DIT that needs to be searched

filter The filter used to select entries of interest

attrs The attributes of interest in the entries returned

attronly If set to 1, only returns the attributes

res An OUT parameter that returns the result set for further processing
Concepts 2-19

Searching by Using DBMS_LDAP
3. From the result set get an entry (using DBMS_LDAP.first_entry or DBMS_
LDAP.next_entry).

4. For the entry obtained in Step 3, get an attribute (using DBMS_LDAP.first_
attribute or DBMS_LDAP.next_attribute).

5. For the attribute obtained in Step 4, get all of the values and copy them into

local variables (using DBMS_LDAP.get_values or DBMS_LDAP.get_
values_len)

6. Repeat Step 4 until all attributes of the entry are examined

7. Repeat Step 3 until there are no more entries
2-20 Oracle Internet Directory Application Developer’s Guide

Searching by Using DBMS_LDAP
Figure 2–5 illustrates the above steps in more detail.

Figure 2–5 Flow of Search-Related Operations

Collect Attributes

Issue Search

Entry Count > 0
No

No

Yes

Attribute Valid

Yes

Enter Valid

Yes

1

Get First / Next Attribute

4

Get Attribute Values End of Search
5

Get First / Next Entry

3

2

No
Concepts 2-21

Searching by Using DBMS_LDAP
Search Scope
The scope of the search determines the number of entries relative to the base of the

search that the directory server examines to see if they match the given filter

condition. One of three options can be specified when invoking either search_s()
or search_st() functions:

Figure 2–6 illustrates the difference between the three scope options.

Figure 2–6 The Three Scope Options

In Figure 2–6, the base of the search is the patterned circle. The shaded rectangle

identifies the entries that are searched.

SCOPE_BASE The directory server looks only for the entry corresponding to

the base of the search to see if it matches the given criteria in

the filter.

SCOPE_

ONELEVEL

The directory server looks only at all of the entries that are

immediate children of the base object to see if they match the

given criteria in the filter.

SCOPE_SUBTREE The directory server looks at the entire LDAP subtree rooted

at and including the base object.

SCOPE_BASE SCOPE_ONELEVEL SCOPE_SUBTREE

Base of
Search
2-22 Oracle Internet Directory Application Developer’s Guide

Searching by Using DBMS_LDAP
Filters
The search filter required by the search_s() and search_st() functions follows

the string format defined in Internet Engineering Task Force (IETF) RFC 1960. This

section provides a brief overview of the various options available for the filters.

There are six kinds of basic search filters that take an attribute operator value format.

The following table summarizes the basic search filters:

The basic filters in Table 2–2 can be combined to form more complex filters using

the Boolean operators and a prefix notation. The & character represents AND, the |
character represents OR, and the ! character represents NOT.

Table 2–2 Search Filters

Filter Type Format Example Matches

Equality (attr=value) (sn=Keaton) Surnames exactly equal
to Keaton.

Approximate (attr~=value) (sn~=Ketan) Surnames
approximately equal to
Ketan.

Substring (attr=[leading]*[any]*[trailing] (sn=*keaton*) Surnames containing
the string “keaton”.

(sn=keaton*) Surnames starting with
“keaton”.

(sn=*keaton) Surnames ending in
“keaton”.

(sn=ke*at*on) Surnames starting with
“ke”, containing “at”
and ending with “on”.

Greater than or
equal

(attr>=value) (sn>=Keaton) Surnames
lexicographically
greater than or equal to
Keaton.

Less than or
equal

(attr<=value) (sn<=Keaton) Surnames
lexicographically less
than or equal to Keaton.

Presence (attr=*) (sn=*) All entries having the
sn attribute.
Concepts 2-23

Enabling Session Termination by Using DBMS_LDAP
Table 2–3 summarizes the fundamental Boolean operations:

The complex filters shown above can themselves be combined to create arbitrarily

complex nested filters.

Enabling Session Termination by Using DBMS_LDAP
Once an LDAP session handle is obtained and all of the desired LDAP-related work

is complete, the LDAP session must be destroyed. This is accomplished through a

call to DBMS_LDAP.unbind_s() . The function unbind_s has the following

syntax:

FUNCTION unbind_s (ld IN SESSION) RETURN PLS_INTEGER;

A successful call to unbind_s closes the TCP/IP connection to the LDAP server,

de-allocates all system resources consumed by the LDAP session, and returns the

integer DBMS_LDAP.SUCCESS to its callers. Once the unbind_s function is

invoked on a particular session, no other LDAP operations on that session can

succeed unless the session is re-initialized with a call to init .

Table 2–3 Boolean Operators

Filter
Type Format Example Matches

AND (&(<filter1>)(<filter2>)...) (&(sn=keaton)(objectclass=
inetOrgPerson))

Entries with
surname of
Keaton AND
objectclass of
InetOrgPerson.

OR (|(<filter1>)(<filter2>)...) (|(sn~=ketan)(cn=*keaton)) Entries with
surname
approximately
equal to ketan
OR common
name ending in
keaton.

NOT (!(<filter)) (!(mail=*)) Entries without a
mail attribute.
2-24 Oracle Internet Directory Application Developer’s Guide

The Oracle Internet Directory
3

The Oracle Internet Directory C API

This chapter introduces the Oracle Internet Directory C API and provides examples

of how to use it. It contains these topics:

■ About the Oracle Internet Directory C API

■ C API Reference

■ Sample C API Usage

■ Building Applications with the C API

■ Dependencies and Limitations
C API 3-1

About the Oracle Internet Directory C API
About the Oracle Internet Directory C API
The Oracle Internet Directory SDK C API is based on:

■ LDAP Version 3 C API

■ Oracle extensions to support SSL

You can use the Oracle Internet Directory API release 3.0.1 in the following modes:

■ SSL—All communication secured using SSL

■ Non-SSL—Client-to-server communication not secure

The API uses TCP/IP to connect to an LDAP server. When it does this, it uses, by

default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL

call interface. You determine which mode you are using by the presence or absence

of the SSL calls in the API usage. You can easily switch between SSL and non-SSL

modes.

This section contains these topics:

■ Oracle Internet Directory SDK C API SSL Extensions

■ Summary of LDAP C API

Oracle Internet Directory SDK C API SSL Extensions
Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The

SSL extensions provide encryption and decryption of data over the wire, and

authentication.

There are three modes of authentication:

■ None—Neither client nor server is authenticated, and only SSL encryption is

used

■ One-way—Only the server is authenticated by the client

■ Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

See Also: "Sample C API Usage" on page 3-61 for more details on

how to use the two modes
3-2 Oracle Internet Directory Application Developer’s Guide

About the Oracle Internet Directory C API
SSL Interface Calls
There is only one call required to enable SSL:

int ldap_init_SSL(Sockbuf *sb, text *sslwallet, text *sslwalletpasswd, int
sslauthmode)

The ldap_init_SSL call performs the necessary handshake between client and server

using the standard SSL protocol. If the call is successful, all subsequent

communication happens over a secure connection.

Wallet Support
To use the SSL feature, both the server and the client may require wallets,

depending on which authentication mode is being used. release 3.0.1 of the API

supports only Oracle Wallet. You can create wallets using Oracle Wallet Manager.

Argument Description

sb Socket buffer handle returned by the ldap_open call as part of LDAP
handle.

sslwallet Location of the user wallet.

sslwalletpasswd Password required to use the wallet.

sslauthmode SSL authentication mode user wants to use. Possible values are:

■ GSLC_SSL_NO_AUTH—No authentication required

■ GSLC_SSL_ONEWAY_AUTH—Only server authentication
required.

■ GSLC_SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A non zero return value
indicates an error. The error code can be decoded by using the
function ldap_err2string.

See Also: See "Sample C API Usage" on page 3-61
The Oracle Internet Directory C API 3-3

C API Reference
C API Reference
This section contains these topics:

■ Summary of LDAP C API

■ Functions

■ Initializing an LDAP Session

■ LDAP Session Handle Options

■ Working With Controls

■ Authenticating to the Directory

■ Closing the Session

■ Performing LDAP Operations

■ Abandoning an Operation

■ Obtaining Results and Peeking Inside LDAP Messages

■ Handling Errors and Parsing Results

■ Stepping Through a List of Results

■ Parsing Search Results

■ C API Usage with SSL

■ C API Usage Without SSL

Summary of LDAP C API

Table 3–1 DBMS_LDAP API Subprograms

Function or Procedure Description

ber_free() Free the memory allocated for a BerElement

structure

ldap_abandon_ext

ldap_abandon

Cancel an asynchronous operation
3-4 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_add_ext

ldap_add_ext_s

ldap_add

ldap_add_s

Add a new entry to the directory

ldap_compare_ext

ldap_compare_ext_s

ldap_compare

ldap_compare_s

Compare entries in the directory

ldap_count_entries Count the number of entries in a chain of search

results

ldap_count_values Count the string values of an attribute

ldap_count_values_len Count the binary values of an attribute

ldap_delete_ext

ldap_delete_ext_s

ldap_delete

ldap_delete_s

Delete an entry from the directory

ldap_dn2ufn Converts the name into a more user friendly format

ldap_err2string Get the error message for a specific error code

ldap_explode_dn Split up a distinguished name into its components

ldap_explode_rdn

ldap_first_attribute Get the name of the first attribute in an entry

ldap_first_entry Get the first entry in a chain of search results

ldap_get_dn Get the distinguished name for an entry

ldap_get_dn Get the distinguished name for an entry

ldap_get_option Access the current value of various session-wide

parameters

Table 3–1 DBMS_LDAP API Subprograms

Function or Procedure Description
The Oracle Internet Directory C API 3-5

C API Reference
ldap_get_values Get the string values of an attribute

ldap_get_values_len Get the binary values of an attribute

ldap_init

ldap_open

Open a connection to an LDAP server

ldap_memfree() Free memory allocated by an LDAP API function

call

ldap_modify_ext

ldap_modify_ext_s

ldap_modify

ldap_modify_s

Modify an entry in the directory

ldap_msgfree Free the memory allocated for search results or other

LDAP operation results

ldap_next_attribute Get the name of the next attribute in an entry

ldap_next_entry Get the next entry in a chain of search results

ldap_perror

DEPRECATED

Prints the message supplied in message.

ldap_rename

ldap_rename_s

Modify the RDN of an entry in the directory

ldap_result2error

DEPRECATED

Returns the error code from result message.

ldap_result

ldap_msgfree

ldap_msgtype

ldap_msgid

Check the results of an asynchronous operation

ldap_sasl_bind

ldap_sasl_bind_s

General authentication to an LDAP server

Table 3–1 DBMS_LDAP API Subprograms

Function or Procedure Description
3-6 Oracle Internet Directory Application Developer’s Guide

C API Reference
This section lists all the calls available in the LDAP C API found in RFC 1823.

ldap_search_ext

ldap_search_ext_s

ldap_search

ldap_search_s

Search the directory

ldap_search_st Search the directory with a timeout value

ldap_set_option Set the value of these parameters

ldap_simple_bind

ldap_simple_bind_s

Simple authentication to an LDAP server

ldap_unbind_ext

ldap_unbind

ldap_unbind_s

End an LDAP session

ldap_value_free Free the memory allocated for the string values of an

attribute

ldap_value_free_len Free the memory allocated for the binary values of

an attribute

See Also: The following URL:

http://www.ietf.org/rfc/rfc1823.txt for a more detailed

explanation of these calls

Table 3–1 DBMS_LDAP API Subprograms

Function or Procedure Description
The Oracle Internet Directory C API 3-7

C API Reference
Functions
This section contains these topics:

■ Initializing an LDAP Session

■ LDAP Session Handle Options

■ Authenticating to the Directory

■ Working With Controls

■ Closing the Session

■ Performing LDAP Operations

■ Abandoning an Operation

■ Obtaining Results and Peeking Inside LDAP Messages

■ Handling Errors and Parsing Results

■ Stepping Through a List of Results

■ Parsing Search Results
3-8 Oracle Internet Directory Application Developer’s Guide

C API Reference
Initializing an LDAP Session

ldap_init

ldap_open
ldap_init() initializes a session with an LDAP server. The server is not actually

contacted until an operation is performed that requires it, allowing various options

to be set after initialization.

Syntax
LDAP *ldap_init
(

const char *hostname,
int portno

)
;

Parameters

Usage Notes
ldap_init() and ldap_open() both return a "session handle," a pointer to an opaque

structure that MUST be passed to subsequent calls pertaining to the session. These

routines return NULL if the session cannot be initialized in which case the

Table 3–2 Parameters for Initializing an LDAP Session

Parameter Description

hostname Contains a space-separated list of hostnames or dotted strings
representing the IP address of hosts running an LDAP server to connect
to. Each hostname in the list MAY include a port number which is
separated from the host itself with a colon (:) character. The hosts will be
tried in the order listed, stopping with the first one to which a successful
connection is made.

Note: A suitable representation for including a literal IPv6[10] address in
the hostname parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number to connect to. The default LDAP port of
389 can be obtained by supplying the constant LDAP_PORT. If a host
includes a port number then this parameter is ignored.
The Oracle Internet Directory C API 3-9

C API Reference
operating system error reporting mechanism can be checked to see why the call

failed.

Note that if you connect to an LDAPv2 server, one of the LDAP bind calls described

below SHOULD be completed before other operations can be per formed on the

session. LDAPv3 does not require that a bind operation be completed before other

operations can be performed.

The calling program can set various attributes of the session by calling the routines

described in the next section.

LDAP Session Handle Options
The LDAP session handle returned by ldap_init() is a pointer to an opaque data

type representing an LDAP session. In RFC 1823 this data type was a structure

exposed to the caller, and various fields in the structure could be set to control

aspects of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these

aspects of the session are now accessed through a pair of accessor functions,

described below.

ldap_get_option

ldap_set_option
ldap_get_option() is used to access the current value of various session-wide

parameters. ldap_set_option() is used to set the value of these parameters.

Note that some options are READ-ONLY and cannot be set; it is an error to call

ldap_set_option() and attempt to set a READ-ONLY option.

Note that if automatic referral following is enabled (the default), any connections

created during the course of following referrals will inherit the options associated

with the session that sent the original request that caused the referrals to be

returned.
3-10 Oracle Internet Directory Application Developer’s Guide

C API Reference
Syntax
int ldap_get_option
(

LDAP *ld,
int option,
void *outvalue

)
;

int ldap_set_option
(

LDAP *ld,
int option,
const void *invalue

)
;

#define LDAP_OPT_ON ((void *)1)
#define LDAP_OPT_OFF ((void *)0)

Parameters

Table 3–3 Parameters for LDAP Session Handle Options

Parameters Description

ld The session handle. If this is NULL, a set of global defaults is accessed.
New LDAP session handles created with ldap_init() or ldap_open() inherit
their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter SHOULD be
one of the constants listed and described in Table 3–4. After the constant
the actual hexadecimal value of the constant is listed in parentheses.

outvalue The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **, a copy of the data that is associated with
the LDAP session ld is returned; callers should dispose of the memory by
calling ldap_memfree() or ldap_controls_free(), depending on the type of
data returned.
The Oracle Internet Directory C API 3-11

C API Reference
invalue A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the API implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to ldap_set_option(). If a value passed for invalue is
invalid or cannot be accepted by the implementation, ldap_set_option()
should return -1 to indicate an error.

Table 3–4 Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

LDAP_OPT_API_
INFO (0x00)

not applicable
(option is
READ-ONLY)

LDAPAPIInfo * Used to retrieve some basic information
about the LDAP API implementation at
execution time. Applications need to be
able to determine information about the
particular API implementation they are
using both at compile time and during
execution. This option is READ-ONLY and
cannot be set.

LDAP_OPT_DEREF
(0x02)

int * int * Determines how aliases are handled
during search. It SHOULD have one of the
following values: LDAP_DEREF_NEVER
(0x00), LDAP_DEREF SEARCHING (0x01),
LDAP_DEREF_FINDING (0x02), or
LDAP_DEREF_ALWAYS (0x03). The
LDAP_DEREF_SEARCHING value means
aliases are dereferenced during the search
but not when locating the base object of the
search. The LDAP_DEREF_FINDING
value means aliases are dereferenced when
locating the base object but not during the
search. The default value for this option is
LDAP_DEREF_NEVER.

LDAP_OPT_
SIZELIMIT (0x03)

int * int * A limit on the number of entries to return
from a search. A value of LDAP_NO_
LIMIT (0) means no limit. The default
value for this option is LDAP_NO_LIMIT.

Table 3–3 Parameters for LDAP Session Handle Options

Parameters Description
3-12 Oracle Internet Directory Application Developer’s Guide

C API Reference
LDAP_OPT_
TIMELIMIT (0x04)

int * int * A limit on the number of seconds to spend
on a search. A value of LDAP_NO_LIMIT
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself will wait locally for
search results. The timeout parameter
passed to ldap_search_ext_s() or ldap_
result() -- both of which are described later
in this document -- can be used to specify
both a local and server side time limit. The
default value for this option is LDAP_NO_
LIMIT.

LDAP_OPT_
REFERRALS (0x08)

void * (LDAP_
OPT_ON or
LDAP_OPT_OFF)

int * Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It MAY be set to one
of the constants LDAP_OPT_ON or
LDAP_OPT_OFF; any non- NULL pointer
value passed to ldap_set_option() enables
this option. When reading the current
setting using ldap_get_option(), a zero
value means OFF and any non-zero value
means ON. By default, this option is ON.

LDAP_OPT_
RESTART (0x09)

void * (LDAP_
OPT_ON or
LDAP_OPT_OFF)

int * Determines whether LDAP I/O operations
are automatically restarted if they abort
prematurely. It MAY be set to one of the
constants LDAP_OPT_ON or LDAP_OPT_
OFF; any non-NULL pointer value passed
to ldap_set_option() enables this option.
When reading the current setting using
ldap_get_option(), a zero value means OFF
and any non-zero value means ON. This
option is useful if an LDAP I/O operation
can be interrupted prematurely, for
example by a timer going off, or other
interrupt. By default, this option is OFF.

LDAP_OPT_
PROTOCOL_
VERSION (0x11)

int * int * This option indicates the version of the
LDAP protocol used when communicating
with the primary LDAP server. It SHOULD
be one of the constants LDAP_VERSION2
(2) or LDAP_VERSION3 (3). If no version
is set the default is LDAP_VERSION2 (2).

Table 3–4 Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description
The Oracle Internet Directory C API 3-13

C API Reference
Usage Notes
Both ldap_get_option() and ldap_set_option() return 0 if successful and -1 if an

error occurs. If -1 is returned by either function, a specific error code MAY be

retrieved by calling ldap_get_option() with an option value of LDAP_OPT_

ERROR_NUMBER. Note that there is no way to retrieve a more specific error code

if a call to ldap_get_option() with an option value of LDAP_OPT_ERROR_

NUMBER fails.

When a call to ldap_get_option() succeeds, the API implementation MUST NOT

change the state of the LDAP session handle or the state of the underlying

implementation in a way that affects the behavior of future LDAP API calls. When a

LDAP_OPT_
SERVER_
CONTROLS (0x12)

LDAPControl ** LDAPControl *** A default list of LDAP server controls to be
sent with each request. See the Working
With Controls section below.

LDAP_OPT_
CLIENT_
CONTROLS (0x13)

LDAPControl ** LDAPControl *** A default list of client controls that affect
the LDAP session. See the Working With
Controls section below.

LDAP_OPT_API_
FEATURE_INFO
(0x15)

not applicable
(option is
READ-ONLY)

LDAPAPIFeatureInfo * Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This
option is READ-ONLY and cannot be set.

LDAP_OPT_HOST_
NAME (0x30)

char * char ** The host name (or list of hosts) for the
primary LDAP server. See the definition of
the hostname parameter to ldap_init() for
the allowed syntax.

LDAP_OPT_
ERROR_NUMBER
(0x31)

int * int * The code of the most recent LDAP error
that occurred for this session.

LDAP_OPT_
ERROR_STRING
(0x32)

char * char ** The message returned with the most recent
LDAP error that occurred for this session.

LDAP_OPT_
MATCHED_DN
(0x33)

char * char ** The matched DN value returned with the
most recent LDAP error that occurred for
this session.

Table 3–4 Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description
3-14 Oracle Internet Directory Application Developer’s Guide

C API Reference
call to ldap_get_option() fails, the only session handle change permitted is setting

the LDAP error code (as returned by the LDAP_OPT_ERROR_NUMBER option).

When a call to ldap_set_option() fails, it MUST NOT change the state of the LDAP

session handle or the state of the underlying implementation in a way that affects

the behavior of future LDAP API calls.

Standards track documents that extend this specification and specify new options

SHOULD use values for option macros that are between 0x1000 and 0x3FFF

inclusive. Private and experimental extensions SHOULD use values for the option

macros that are between 0x4000 and 0x7FFF inclusive. All values below 0x1000 and

above 0x7FFF that are not defined in this document are reserved and SHOULD

NOT be used. The following macro MUST be defined by C LDAP API

implementations to aid extension implementors:

 #define LDAP_OPT_PRIVATE_EXTENSION_BASE 0x4000 /* to 0x7FFF inclusive */

Working With Controls
LDAPv3 operations can be extended through the use of controls. Controls can be

sent to a server or returned to the client with any LDAP message. These controls are

referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of

client controls. These controls affect the behavior of the LDAP API only and are

never sent to a server. A common data structure is used to represent both types of

controls:

typedef struct ldapcontrol
{

char *ldctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;

} LDAPControl;

The fields in the ldapcontrol structure have the following meanings:

Table 3–5 Fields in ldapcontrol Structure

Field Description

ldctl_oid The control type, represented as a string.
The Oracle Internet Directory C API 3-15

C API Reference
Some LDAP API calls allocate an ldapcontrol structure or a NULL-terminated array

of ldapcontrol structures. The following routines can be used to dispose of a single

control or an array of controls:

void ldap_control_free(LDAPControl *ctrl);
void ldap_controls_free(LDAPControl **ctrls);

If the ctrl or ctrls parameter is NULL, these calls do nothing.

A set of controls that affect the entire session can be set using the ldap_set_
option() function (see above). A list of controls can also be passed directly to

some LDAP API calls such as ldap_search_ext(), in which case any controls set for

the session through the use of ldap_set_option() are ignored. Control lists are

represented as a NULL-terminated array of pointers to ldapcontrol structures.

Server controls are defined by LDAPv3 protocol extension documents; for example,

a control has been proposed to support server-side sorting of search results.

One client control is defined in this document (described in the following section).

Other client controls MAY be defined in future revisions of this document or in

documents that extend this API.

A Client Control That Governs Referral Processing As described previously in

"LDAP Session Handle Options" on page 3-10, applications can enable and disable

automatic chasing of referrals on a session-wide basic by using the ldap_set_

option() function with the LDAP_OPT_REFERRALS option. It is also useful to

govern automatic referral chasing on per-request basis. A client control with an OID

of 1.2.840.113556.1.4.616 exists to provide this functionality.

ldctl_value The data associated with the control (if any). To specify a
zero-length value, set ldctl_value.bv_len to zero and ldctl_
value.bv_val to a zero-length string. To indicate that no data is
associated with the control, set ldctl_value.bv_val to NULL.

ldctl_iscritical Indicates whether the control is critical of not. If this field is
non-zero, the operation will only be carried out if the control is
recognized by the server and/or client. Note that the LDAP
unbind and abandon operations have no server response, so
clients SHOULD NOT mark server controls critical when used
with these two operations.

Table 3–5 Fields in ldapcontrol Structure

Field Description
3-16 Oracle Internet Directory Application Developer’s Guide

C API Reference
/* OID for referrals client control */
#define LDAP_CONTROL_REFERRALS "1.2.840.113556.1.4.616"

/* Flags for referrals client control value */
#define LDAP_CHASE_SUBORDINATE_REFERRALS 0x00000020U
#define LDAP_CHASE_EXTERNAL_REFERRALS 0x00000040U

To create a referrals client control, the ldctl_oid field of an LDAPControl structure

MUST be set to LDAP_CONTROL_REFERRALS ("1.2.840.113556.1.4.616") and the

ldctl_value field MUST be set to a 4-octet value that contains a set of flags. The

ldctl_value.bv_len field MUST always be set to 4. The ldctl_value.bv_val field

MUST point to a 4-octet integer flags value. This flags value can be set to zero to

disable automatic chasing of referrals and LDAPv3 references altogether.

Alternatively, the flags value can be set to the value LDAP_CHASE_

SUBORDINATE_REFERRALS (0x00000020U) to indicate that only LDAPv3 search

continuation references are to be automatically chased by the API implementation,

to the value LDAP_CHASE_EXTERNAL_REFERRALS (0x00000040U) to indicate

that only LDAPv3 referrals are to be automatically chased, or the logical OR of the

two flag values (0x00000060U) to indicate that both referrals and references are to be

automatically chased.

Authenticating to the Directory
The following functions are used to authenticate an LDAP client to an LDAP

directory server.

ldap_sasl_bind

ldap_sasl_bind_s

ldap_simple_bind

ldap_simple_bind_s
The ldap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do general

and extensible authentication over LDAP through the use of the Simple

Authentication Security Layer. The routines both take the dn to bind as, the method

to use, as a dotted-string representation of an object identifier identifying the

method, and a struct berval holding the credentials. The special constant value
The Oracle Internet Directory C API 3-17

C API Reference
LDAP_SASL_SIMPLE (NULL) can be passed to request simple authentication, or

the simplified routines ldap_simple_bind() or ldap_simple_bind_s() can be used.

Syntax
int ldap_sasl_bind
(

LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_sasl_bind_s(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp

);

int ldap_simple_bind(
LDAP *ld,
const char *dn,
const char *passwd

);

int ldap_simple_bind_s(
LDAP *ld,
const char *dn,
const char *passwd

);
3-18 Oracle Internet Directory Application Developer’s Guide

C API Reference
The use of the following routines is deprecated and more complete descriptions can

be found in RFC 1823:

int ldap_bind(LDAP *ld, const char *dn, const char *cred, int method);

int ldap_bind_s(LDAP *ld, const char *dn, const char *cred, int method);

int ldap_kerberos_bind(LDAP *ld, const char *dn);

int ldap_kerberos_bind_s(LDAP *ld, const char *dn);

Parameters

Usage Notes
Additional parameters for the deprecated routines are not described. Interested

readers are referred to RFC 1823.

The ldap_sasl_bind() function initiates an asynchronous bind operation and returns

the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP

error code if not. See the section below on error handling for more information

Table 3–6 Parameters for Authenticating to the Directory

Parameter Description

ld The session handle

dn The name of the entry to bind as

mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentication, or a
text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For ldap_simple_bind(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the request if the
ldap_sasl_bind() call succeeds

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated berval
structure is returned that SHOULD be disposed of by calling
ber_bvfree(). NULL SHOULD be passed to ignore this field.
The Oracle Internet Directory C API 3-19

C API Reference
about possible errors and how to interpret them. If successful, ldap_sasl_bind()

places the message id of the request in *msgidp. A subsequent call to ldap_result(),

described below, can be used to obtain the result of the bind.

The ldap_simple_bind() function initiates a simple asynchronous bind operation

and returns the message id of the operation initiated. A subsequent call to ldap_

result(), described below, can be used to obtain the result of the bind. In case of

error, ldap_simple_bind() will return -1, setting the session error parameters in the

LDAP structure appropriately.

The synchronous ldap_sasl_bind_s() and ldap_simple_bind_s() functions both

return the result of the operation, either the constant LDAP_SUCCESS if the

operation was successful, or another LDAP error code if it was not. See the section

below on error handling for more information about possible errors and how to

interpret them.

Note that if an LDAPv2 server is contacted, no other operations over the connection

can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and

multistep SASL sequences can be accomplished through a sequence of calls to ldap_

sasl_bind() or ldap_sasl_bind_s().

Closing the Session

ldap_unbind_ext

ldap_unbind

ldap_unbind_s
The following functions are used to unbind from the directory, close open

connections, and dispose of the session handle.

Syntax
int ldap_unbind_ext(LDAP *ld, LDAPControl **serverctrls,
LDAPControl **clientctrls);
int ldap_unbind(LDAP *ld);
int ldap_unbind_s(LDAP *ld);
3-20 Oracle Internet Directory Application Developer’s Guide

C API Reference
Parameters

Usage Notes
The ldap_unbind_ext(), ldap_unbind() and ldap_unbind_s() all work

synchronously in the sense that they send an unbind request to the server, close all

open connections associated with the LDAP session handle, and dispose of all

resources associated with the session handle before returning. Note, however, that

there is no server response to an LDAP unbind operation. All three of the unbind

functions return LDAP_SUCCESS (or another LDAP error code if the request

cannot be sent to the LDAP server). After a call to one of the unbind functions, the

session handle ld is invalid and it is illegal to make any further LDAP API calls

using ld.

The ldap_unbind() and ldap_unbind_s() functions behave identically. The ldap_

unbind_ext() function allows server and client controls to be included explicitly, but

note that since there is no server response to an unbind request there is no way to

receive a response to a server control sent with an unbind request.

Performing LDAP Operations

ldap_search_ext

ldap_search_ext_s

ldap_search

ldap_search_s

ldap_search_st
These functions are used to search the LDAP directory, returning a requested set of

attributes for each entry matched.

Table 3–7 Parameters for Closing the Session

Parameter Description

ld The session handle

serverctrls List of LDAP server controls

clientctrls List of client controls
The Oracle Internet Directory C API 3-21

C API Reference
Syntax
int ldap_search_ext
(

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp

);

int ldap_search_ext_s
(

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res

);

int ldap_search
(

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly

);
3-22 Oracle Internet Directory Application Developer’s Guide

C API Reference
int ldap_search_s
(

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPMessage **res

);

int ldap_search_st
(

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res

);

Parameters

Table 3–8 Parameters for Search Operations

Parameter Description

ld The session handle.

base The dn of the entry at which to start the search.

scope One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_
ONELEVEL (0x01), or LDAP_SCOPE_SUBTREE (0x02),
indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter "(objectclass=*)"
which matches all entries is to be used. Note that if the caller of
the API is using LDAPv2, only a subset of the filter
functionality can be successfully used.
The Oracle Internet Directory C API 3-23

C API Reference
attrs A NULL-terminated array of strings indicating which
attributes to return for each matching entry. Passing NULL for
this parameter causes all available user attributes to be
retrieved. The special constant string LDAP_NO_ATTRS ("1.1")
MAY be used as the only string in the array to indicate that no
attribute types are to be returned by the server. The special
constant string LDAP_ALL_USER_ATTRS ("*") can be used in
the attrs array along with the names of some operational
attributes to indicate that all user attributes plus the listed
operational attributes are to be returned.

attrsonly A boolean value that MUST be zero if both attribute types and
values are to be returned, and non-zero if only types are
wanted.

timeout For the ldap_search_st() function, this specifies the local search
timeout value (if it is NULL, the timeout is infinite). If a zero
timeout (where tv_sec and tv_usec are both zero) is passed,
API implementations SHOULD return LDAP_PARAM_
ERROR. For the ldap_search_ext() and ldap_search_ext_s()
functions, the timeout parameter specifies both the local search
timeout value and the operation time limit that is sent to the
server within the search request. Passing a NULL value for
timeout causes the global default timeout stored in the LDAP
session handle (set by using ldap_set_option() with the LDAP_
OPT_TIMELIMIT parameter) to be sent to the server with the
request but an infinite local search timeout to be used. If a zero
timeout (where tv_sec and tv_usec are both zero) is passed in,
API implementations SHOULD return LDAP_PARAM_
ERROR. If a zero value for tv_sec is used but tv_usec is
non-zero, an operation time limit of 1 SHOULD be passed to
the LDAP server as the operation time limit. For other values
of tv_sec, the tv_sec value itself SHOULD be passed to the
LDAP server.

sizelimit For the ldap_search_ext() and ldap_search_ext_s() calls, this is
a limit on the number of entries to return from the search. A
value of LDAP_NO_LIMIT (0) means no limit.

res For the synchronous calls, this is a result parameter which will
contain the results of the search upon completion of the call. If
no results are returned, *res is set to NULL.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

Table 3–8 Parameters for Search Operations

Parameter Description
3-24 Oracle Internet Directory Application Developer’s Guide

C API Reference
Usage Notes
The ldap_search_ext() function initiates an asynchronous search operation and

returns the constant LDAP_SUCCESS if the request was successfully sent, or

another LDAP error code if not. See the section below on error handling for more

information about possible errors and how to interpret them. If successful, ldap_

search_ext() places the message id of the request in *msgidp. A subsequent call to

ldap_result(), described below, can be used to obtain the results from the search.

These results can be parsed using the result parsing routines described in detail

later.

Similar to ldap_search_ext(), the ldap_search() function initiates an asynchronous

search operation and returns the message id of the operation initiated. As for ldap_

search_ext(), a subsequent call to ldap_result(), described below, can be used to

obtain the result of the bind. In case of error, ldap_search() will return -1, setting the

session error parameters in the LDAP structure appropriately.

msgidp This result parameter will be set to the message id of the
request if the ldap_search_ext() call succeeds.There are three
options in the session handle ld which potentially affect how
the search is performed. They are:

■ LDAP_OPT_SIZELIMIT—A limit on the number of entries
to return from the search. A value of LDAP_NO_LIMIT (0)
means no limit. Note that the value from the session
handle is ignored when using the ldap_search_ext() or
ldap_search_ext_s() functions.

■ LDAP_OPT_TIMELIMIT—A limit on the number of
seconds to spend on the search. A value of LDAP_NO_
LIMIT (0) means no limit. Note that the value from the
session handle is ignored when using the ldap_search_
ext() or ldap_search_ext_s() functions.

■ LDAP_OPT_DEREF—One of LDAP_DEREF_NEVER
(0x00), LDAP_DEREF_SEARCHING (0x01), LDAP_
DEREF_FINDING (0x02), or LDAP_DEREF_ALWAYS
(0x03), specifying how aliases are handled during the
search. The LDAP_DEREF_SEARCHING value means
aliases are dereferenced during the search but not when
locating the base object of the search. The LDAP_DEREF_
FINDING value means aliases are dereferenced when

locating the base object but not during the search.

Table 3–8 Parameters for Search Operations

Parameter Description
The Oracle Internet Directory C API 3-25

C API Reference
The synchronous ldap_search_ext_s(), ldap_search_s(), and ldap_search_st()

functions all return the result of the operation, either the constant LDAP_SUCCESS

if the operation was successful, or another LDAP error code if it was not. See the

section below on error handling for more information about possible errors and

how to interpret them. Entries returned from the search (if any) are contained in the

res parameter. This parameter is opaque to the caller. Entries, attributes, values, etc.,

can be extracted by calling the parsing routines described below. The results

contained in res SHOULD be freed when no longer in use by calling ldap_

msgfree(), described later.

The ldap_search_ext() and ldap_search_ext_s() functions support LDAPv3 server

controls, client controls, and allow varying size and time limits to be easily specified

for each search operation. The ldap_search_st() function is identical to ldap_search_

s() except that it takes an additional parameter specifying a local timeout for the

search. The local search timeout is used to limit the amount of time the API

implementation will wait for a search to complete. After the local search timeout

expires, the API implementation will send an abandon operation to abort the search

operation.

Reading an Entry
LDAP does not support a read operation directly. Instead, this operation is

emulated by a search with base set to the DN of the entry to read, scope set to

LDAP_SCOPE_BASE, and filter set to "(objectclass=*)" or NULL. attrs contains the

list of attributes to return.

Listing the Children of an Entry
LDAP does not support a list operation directly. Instead, this operation is emulated

by a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_

ONELEVEL, and filter set to "(objectclass=*)" or NULL. attrs contains the list of

attributes to return for each child entry.
3-26 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_compare_ext

ldap_compare_ext_s

ldap_compare

ldap_compare_s
These routines are used to compare a given attribute value assertion against an

LDAP entry.

Syntax
int ldap_compare_ext
(

LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_compare_ext_s
(

LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_compare
(

LDAP *ld,
const char *dn,
const char *attr,
const char *value

);
The Oracle Internet Directory C API 3-27

C API Reference
int ldap_compare_s
(

LDAP *ld,
const char *dn,
const char *attr,
const char *value

);

Parameters

Usage Notes
The ldap_compare_ext() function initiates an asynchronous compare operation and

returns the constant LDAP_SUCCESS if the request was successfully sent, or

another LDAP error code if not. See the section below on error handling for more

information about possible errors and how to interpret them. If successful, ldap_

compare_ext() places the message id of the request in *msgidp. A subsequent call to

ldap_result(), described below, can be used to obtain the result of the compare.

Similar to ldap_compare_ext(), the ldap_compare() function initiates an

asynchronous compare operation and returns the message id of the operation

initiated. As for ldap_compare_ext(), a subsequent call to ldap_result(), described

Table 3–9 Parameters for Compare Operations

Parameter Description

ld The session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

bvalue The attribute value to compare against those found in the
given entry. This parameter is used in the extended routines
and is a pointer to a struct berval so it is possible to compare
binary values.

value A string attribute value to compare against, used by the ldap_
compare() and ldap_compare_s() functions. Use ldap_
compare_ext() or ldap_compare_ext_s() if you need to compare
binary values.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_compare_ext() call succeeds.
3-28 Oracle Internet Directory Application Developer’s Guide

C API Reference
below, can be used to obtain the result of the bind. In case of error, ldap_compare()

will return -1, setting the session error parameters in the LDAP structure

appropriately.

The synchronous ldap_compare_ext_s() and ldap_compare_s() functions both

return the result of the operation, either the constant LDAP_SUCCESS if the

operation was successful, or another LDAP error code if it was not. See the section

below on error handling for more information about possible errors and how to

interpret them.

The ldap_compare_ext() and ldap_compare_ext_s() functions support LDAPv3

server controls and client controls.
The Oracle Internet Directory C API 3-29

C API Reference
ldap_modify_ext

ldap_modify_ext_s

ldap_modify

ldap_modify_s
These routines are used to modify an existing LDAP entry.

Syntax
typedef struct ldapmod
{

int mod_op;
char *mod_type;
union mod_vals_u
{

char **modv_strvals;
struct berval **modv_bvals;
} mod_vals;

} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext
(

LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_modify_ext_s
(

LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);
3-30 Oracle Internet Directory Application Developer’s Guide

C API Reference
int ldap_modify
(

LDAP *ld,
const char *dn,
LDAPMod **mods
);

int ldap_modify_s
(

LDAP *ld,
const char *dn,
LDAPMod **mods

);

Parameters

The fields in the LDAPMod structure have the following meanings:

Table 3–10 Parameters for Modify Operations

Parameter Description

ld The session handle

dn The name of the entry to modify

mods A NULL-terminated array of modifications to make to the
entry

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the
request if the ldap_modify_ext() call succeeds

Table 3–11

Field Description

mod_op The modification operation to perform. It MUST be one of
LDAP_MOD_ADD (0x00), LDAP_MOD_DELETE (0x01), or
LDAP_MOD_REPLACE (0x02). This field also indicates the
type of values included in the mod_vals union. It is logically
ORed with LDAP_MOD_BVALUES (0x80) to select the
mod_bvalues form. Otherwise, the mod_values form is used.
The Oracle Internet Directory C API 3-31

C API Reference
Usage Notes
For LDAP_MOD_ADD modifications, the given values are added to the entry,

creating the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the

entry, removing the attribute if no values remain. If the entire attribute is to be

deleted, the mod_vals field can be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values

after the modification, having been created if necessary, or removed if the mod_vals

field is NULL. All modifications are performed in the order in which they are listed.

The ldap_modify_ext() function initiates an asynchronous modify operation and

returns the constant LDAP_SUCCESS if the request was successfully sent, or

another LDAP error code if not. See the section below on error handling for more

information about possible errors and how to interpret them. If successful, ldap_

modify_ext() places the message id of the request in *msgidp. A subsequent call to

ldap_result(), described below, can be used to obtain the result of the modify.

Similar to ldap_modify_ext(), the ldap_modify() function initiates an asynchronous

modify operation and returns the message id of the operation initiated. As for ldap_

modify_ext(), a subsequent call to ldap_result(), described below, can be used to

obtain the result of the modify. In case of error, ldap_modify() will return -1, setting

the session error parameters in the LDAP structure appropriately.

The synchronous ldap_modify_ext_s() and ldap_modify_s() functions both return

the result of the operation, either the constant LDAP_SUCCESS if the operation was

successful, or another LDAP error code if it was not. See the section below on error

handling for more information about possible errors and how to interpret them.

mod_type The type of the attribute to modify.

mod_vals The values (if any) to add, delete, or replace. Only one of the
mod_values or mod_bvalues variants can be used, selected by
ORing the mod_op field with the constant LDAP_MOD_
BVALUES. mod_values is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a
NULL-terminated array of berval structures that can be used to
pass binary values such as images.

Table 3–11

Field Description
3-32 Oracle Internet Directory Application Developer’s Guide

C API Reference
The ldap_modify_ext() and ldap_modify_ext_s() functions support LDAPv3 server

controls and client controls.

ldap_rename

ldap_rename_s
These routines are used to change the name of an entry.

int ldap_rename
(

LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_rename_s
(

LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);
The use of the following routines is deprecated and more complete descriptions can

be found in RFC 1823:

int ldap_modrdn
(

LDAP *ld,
const char *dn,
const char *newrdn

);
The Oracle Internet Directory C API 3-33

C API Reference
int ldap_modrdn_s
(

LDAP *ld,
const char *dn,
const char *newrdn

);
int ldap_modrdn2
(

LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn

);
int ldap_modrdn2_s
(

LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn

);

Parameters

Table 3–12 Parameters for Rename Operations

Parameter Description

ld The session handle.

dn The name of the entry whose DN is to be changed.

newrdn The new RDN to give the entry.

newparent The new parent, or superior entry. If this parameter is NULL,
only the RDN of the entry is changed. The root DN SHOULD
be specified by passing a zero length string, "". The newparent
parameter SHOULD always be NULL when using version 2 of
the LDAP protocol; otherwise the server's behavior is
undefined.

deleteoldrdn This parameter only has meaning on the rename routines if
newrdn is different than the old RDN. It is a boolean value, if
non-zero indicating that the old RDN value(s) is to be
removed, if zero indicating that the old RDN value(s) is to be
retained as non-distinguished values of the entry.

serverctrls List of LDAP server controls.

clientctrls List of client controls.
3-34 Oracle Internet Directory Application Developer’s Guide

C API Reference
Usage Notes
The ldap_rename() function initiates an asynchronous modify DN operation and

returns the constant LDAP_SUCCESS if the request was successfully sent, or

another LDAP error code if not. See the section below on error handling for more

information about possible errors and how to interpret them. If successful, ldap_

rename() places the DN message id of the request in *msgidp. A subsequent call to

ldap_result(), described below, can be used to obtain the result of the rename.

The synchronous ldap_rename_s() returns the result of the operation, either the

constant LDAP_SUCCESS if the operation was successful, or another LDAP error

code if it was not. See the section below on error handling for more information

about possible errors and how to interpret them.

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server

controls and client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_rename() call succeeds.

Table 3–12 Parameters for Rename Operations

Parameter Description
The Oracle Internet Directory C API 3-35

C API Reference
ldap_add_ext

ldap_add_ext_s

ldap_add

ldap_add_s
These functions are used to add entries to the LDAP directory.

Syntax
int ldap_add_ext
(

LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_add_ext_s
(

LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_add
(

LDAP *ld,
const char *dn,
LDAPMod **attrs

);

int ldap_add_s
(

LDAP *ld,
const char *dn,
LDAPMod **attrs

);
3-36 Oracle Internet Directory Application Developer’s Guide

C API Reference
Parameters

Usage Notes
Note that the parent of the entry being added must already exist or the parent must

be empty (i.e., equal to the root DN) for an add to succeed.

The ldap_add_ext() function initiates an asynchronous add operation and returns

the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP

error code if not. See the section below on error handling for more information

about possible errors and how to interpret them. If successful, ldap_add_ext()

places the message id of the request in *msgidp. A subsequent call to ldap_result(),

described below, can be used to obtain the result of the add.

Similar to ldap_add_ext(), the ldap_add() function initiates an asynchronous add

operation and returns the message id of the operation initiated. As for ldap_add_

ext(), a subsequent call to ldap_result(), described below, can be used to obtain the

result of the add. In case of error, ldap_add() will return -1, setting the session error

parameters in the LDAP structure appropriately.

The synchronous ldap_add_ext_s() and ldap_add_s() functions both return the

result of the operation, either the constant LDAP_SUCCESS if the operation was

successful, or another LDAP error code if it was not. See the section below on error

handling for more information about possible errors and how to interpret them.

The ldap_add_ext() and ldap_add_ext_s() functions support LDAPv3 server

controls and client controls.

Table 3–13 Parameters for Add Operations

Parameter Description

ld The session handle.

dn The name of the entry to add.

attrs The entry's attributes, specified using the LDAPMod structure
defined for ldap_modify(). The mod_type and mod_vals fields
MUST be filled in. The mod_op field is ignored unless ORed
with the constant LDAP_MOD_BVALUES, used to select the
mod_bvalues case of the mod_vals union.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_add_ext() call succeeds.
The Oracle Internet Directory C API 3-37

C API Reference
ldap_delete_ext

ldap_delete_ext_s

ldap_delete

ldap_delete_s
These functions are used to delete a leaf entry from the LDAP directory.

Syntax
int ldap_delete_ext
(

LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_delete_ext_s
(
LDAP *ld,

const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_delete

(
LDAP *ld,
const char *dn

);

int ldap_delete_s
(

LDAP *ld,
const char *dn

);
3-38 Oracle Internet Directory Application Developer’s Guide

C API Reference
Parameters

Usage Notes
Note that the entry to delete must be a leaf entry (i.e., it must have no children).

Deletion of entire subtrees in a single operation is not supported by LDAP.

The ldap_delete_ext() function initiates an asynchronous delete operation and

returns the constant LDAP_SUCCESS if the request was successfully sent, or

another LDAP error code if not. See the section below on error handling for more

information about possible errors and how to interpret them. If successful, ldap_

delete_ext() places the message id of the request in *msgidp. A subsequent call to

ldap_result(), described below, can be used to obtain the result of the delete.

Similar to ldap_delete_ext(), the ldap_delete() function initiates an asynchronous

delete operation and returns the message id of the operation initiated. As for ldap_

delete_ext(), a subsequent call to ldap_result(), described below, can be used to

obtain the result of the delete. In case of error, ldap_delete() will return -1, setting

the session error parameters in the LDAP structure appropriately.

The synchronous ldap_delete_ext_s() and ldap_delete_s() functions both return the

result of the operation, either the constant LDAP_SUCCESS if the operation was

successful, or another LDAP error code if it was not. See the section below on error

handling for more information about possible errors and how to interpret them.

The ldap_delete_ext() and ldap_delete_ext_s() functions support LDAPv3 server

controls and client controls.

Table 3–14 Parameters for Delete Operations

Parameter Description

ld The session handle.

dn The name of the entry to delete.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_delete_ext() call succeeds.
The Oracle Internet Directory C API 3-39

C API Reference
ldap_extended_operation

ldap_extended_operation_s
These routines allow extended LDAP operations to be passed to the server,

providing a general protocol extensibility mechanism.

Syntax
int ldap_extended_operation
(

LDAP *ld,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_extended_operation_s
(

LDAP *ld,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap

);

Parameters

Table 3–15 Parameters for Extended Operations

Parameter Description

ld The session handle

requestoid The dotted-OID text string naming the request

requestdata The arbitrary data needed by the operation (if NULL, no data
is sent to the server)

serverctrls List of LDAP server controls

clientctrls List of client controls
3-40 Oracle Internet Directory Application Developer’s Guide

C API Reference
Usage Notes
The ldap_extended_operation() function initiates an asynchronous extended

operation and returns the constant LDAP_SUCCESS if the request was successfully

sent, or another LDAP error code if not. See the section below on error handling for

more information about possible errors and how to interpret them. If successful,

ldap_extended_operation() places the message id of the request in *msgidp. A

subsequent call to ldap_result(), described below, can be used to obtain the result of

the extended operation which can be passed to ldap_parse_extended_result() to

obtain the OID and data contained in the response.

The synchronous ldap_extended_operation_s() function returns the result of the

operation, either the constant LDAP_SUCCESS if the operation was successful, or

another LDAP error code if it was not. See the section below on error handling for

more information about possible errors and how to interpret them. The retoid and

retdata parameters are filled in with the OID and data from the response. If no OID

or data was returned, these parameters are set to NULL.

The ldap_extended_operation() and ldap_extended_operation_s() functions both

support LDAPv3 server controls and client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_extended_operation() call succeeds.

retoidp Pointer to a character string that will be set to an allocated,
dotted-OID text string returned by the server. This string
SHOULD be disposed of using the ldap_memfree() function. If
no OID was returned, *retoidp is set to NULL.

retdatap Pointer to a berval structure pointer that will be set an
allocated copy of the data returned by the server. This struct
berval SHOULD be disposed of using ber_bvfree(). If no data
is returned, *retdatap is set to NULL.

Table 3–15 Parameters for Extended Operations

Parameter Description
The Oracle Internet Directory C API 3-41

C API Reference
Abandoning an Operation

ldap_abandon_ext

ldap_abandon
These calls are used to abandon an operation in progress:

Syntax
int ldap_abandon_ext
(

LDAP *ld,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_abandon
(

LDAP *ld,
int msgid

);

Parameters

Usage Notes
ldap_abandon_ext() abandons the operation with message id msgid and returns the

constant LDAP_SUCCESS if the abandon was successful or another LDAP error

code if not. See the section below on error handling for more information about

possible errors and how to interpret them.

Table 3–16 Parameters for Abandoning an Operation

Parameter Description

ld The session handle.

msgid The message id of the request to be abandoned.

serverctrls List of LDAP server controls.

clientctrls List of client controls.
3-42 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_abandon() is identical to ldap_abandon_ext() except that it does not accept

client or server controls and it returns zero if the abandon was successful, -1

otherwise.

After a successful call to ldap_abandon() or ldap_abandon_ext(), results with the

given message id are never returned from a subsequent call to ldap_result(). There

is no server response to LDAP abandon operations.

Obtaining Results and Peeking Inside LDAP Messages

ldap_result

ldap_msgfree

ldap_msgtype

ldap_msgid
ldap_result() is used to obtain the result of a previous asynchronously initiated

operation. Note that depending on how it is called, ldap_result() can actually return

a list or "chain" of result messages. The ldap_result() function only returns messages

for a single request, so for all LDAP operations other than search only one result

message is expected; that is, the only time the "result chain" can contain more than

one message is if results from a search operation are returned.

Once a chain of messages has been returned to the caller, it is no longer tied in any

caller-visible way to the LDAP request that produced it. Therefore, a chain of

messages returned by calling ldap_result() or by calling a synchronous search

routine will never be affected by subsequent LDAP API calls (except for ldap_

msgfree() which is used to dispose of a chain of messages).

ldap_msgfree() frees the result messages (possibly an entire chain of messages)

obtained from a previous call to ldap_result() or from a call to a synchronous search

routine.

ldap_msgtype() returns the type of an LDAP message. ldap_msgid() returns the

message ID of an LDAP message.
The Oracle Internet Directory C API 3-43

C API Reference
Syntax
int ldap_result
(

LDAP *ld,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res

);
int ldap_msgfree(LDAPMessage *res);
int ldap_msgtype(LDAPMessage *res);
int ldap_msgid(LDAPMessage *res);

Parameters

Table 3–17 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter Description

ld The session handle.

msgid The message id of the operation whose results are to be
returned, the constant LDAP_RES_UNSOLICITED (0) if an
unsolicited result is desired, or the constant LDAP_RES_ANY
(-1) if any result is desired.

all Specifies how many messages will be retrieved in a single call
to ldap_result(). This parameter only has meaning for search
results. Pass the constant LDAP_MSG_ONE (0x00) to retrieve
one message at a time. Pass LDAP_MSG_ALL (0x01) to request
that all results of a search be received before returning all
results in a single chain. Pass LDAP_MSG_RECEIVED (0x02)
to indicate that all messages retrieved so far are to be returned
in the result chain.

timeout A timeout specifying how long to wait for results to be
returned. A NULL value causes ldap_result() to block until
results are available. A timeout value of zero seconds specifies
a polling behavior.

res For ldap_result(), a result parameter that will contain the
result(s) of the operation. If no results are returned, *res is set
to NULL. For ldap_msgfree(), the result chain to be freed,
obtained from a previous call to ldap_result(), ldap_search_s(),
or ldap_search_st(). If res is NULL, nothing is done and ldap_
msgfree() returns zero.
3-44 Oracle Internet Directory Application Developer’s Guide

C API Reference
Usage Notes
Upon successful completion, ldap_result() returns the type of the first result

returned in the res parameter. This will be one of the following constants.

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)

LDAP_RES_SEARCH_REFERENCE (0x73) -- new in LDAPv3

LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES_DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_EXTENDED (0x78) -- new in LDAPv3

ldap_result() returns 0 if the timeout expired and -1 if an error occurs, in which case

the error parameters of the LDAP session handle will be set accordingly.

ldap_msgfree() frees each message in the result chain pointed to by res and returns

the type of the last message in the chain. If res is NULL, nothing is done and the

value zero is returned.

ldap_msgtype() returns the type of the LDAP message it is passed as a parameter.

The type will be one of the types listed above, or -1 on error.

ldap_msgid() returns the message ID associated with the LDAP message passed as

a parameter, or -1 on error.
The Oracle Internet Directory C API 3-45

C API Reference
Handling Errors and Parsing Results

ldap_parse_result

ldap_parse_sasl_bind_result

ldap_parse_extended_result

ldap_err2string
These calls are used to extract information from results and handle errors returned

by other LDAP API routines. Note that ldap_parse_sasl_bind_result() and ldap_

parse_extended_result() must typically be used in addition to ldap_parse_result() to

retrieve all the result information from SASL Bind and Extended Operations

respectively.

Syntax
int ldap_parse_result
(

LDAP *ld,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit

);

int ldap_parse_sasl_bind_result
(

LDAP *ld,
LDAPMessage *res,
struct berval **servercredp,
int freeit

);
3-46 Oracle Internet Directory Application Developer’s Guide

C API Reference
int ldap_parse_extended_result

(
LDAP *ld,
LDAPMessage *res,
char **retoidp,
struct berval **retdatap,
int freeit

);
#define LDAP_NOTICE_OF_DISCONNECTION "1.3.6.1.4.1.1466.20036"
char *ldap_err2string(int err);

The use of the following routines is deprecated and more complete descriptions can

be found in RFC 1823:

int ldap_result2error
(

LDAP *ld,
LDAPMessage *res,
int freeit

);
void ldap_perror(LDAP *ld, const char *msg);

Parameters

Table 3–18 Parameters for Handling Errors and Parsing Results

Parameter Description

ld The session handle.

res The result of an LDAP operation as returned by ldap_result()
or one of the synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error
code field from the LDAPMessage message. This is the
indication from the server of the outcome of the operation.
NULL SHOULD be passed to ignore this field.

matcheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this
result parameter will be filled in with a DN indicating how
much of the name in the request was recognized. NULL
SHOULD be passed to ignore this field. The matched DN
string SHOULD be freed by calling ldap_memfree() which is
described later in this document.
The Oracle Internet Directory C API 3-47

C API Reference
errmsgp This result parameter will be filled in with the contents of the
error message field from the LDAPMessage message. The error
message string SHOULD be freed by calling ldap_memfree()
which is described later in this document. NULL SHOULD be
passed to ignore this field.

referralsp This result parameter will be filled in with the contents of the
referrals field from the LDAPMessage message, indicating zero
or more alternate LDAP servers where the request is to be
retried. The referrals array SHOULD be freed by calling ldap_
value_free() which is described later in this document. NULL
SHOULD be passed to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage message. The control
array SHOULD be freed by calling ldap_controls_free() which
was described earlier.

freeit A boolean that determines whether the res parameter is
disposed of or not. Pass any non-zero value to have these
routines free res after extracting the requested information.
This is provided as a convenience; you can also use ldap_
msgfree() to free the result later. If freeit is non-zero, the entire
chain of messages represented by res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in
with the credentials passed back by the server for mutual
authentication, if given. An allocated berval structure is
returned that SHOULD be disposed of by calling ber_bvfree().
NULL SHOULD be passed to ignore this field.

retoidp For extended results, this result parameter will be filled in with
the dotted-OID text representation of the name of the extended
operation response. This string SHOULD be disposed of by
calling ldap_memfree(). NULL SHOULD be passed to ignore
this field. The LDAP_NOTICE_OF_DISCONNECTION macro
is defined as a convenience for clients that wish to check an
OID to see if it matches the one used for the unsolicited Notice
of Disconnection (defined in RFC 2251[2] section 4.4.1).

retdatap For extended results, this result parameter will be filled in with
a pointer to a struct berval containing the data in the extended
operation response. It SHOULD be disposed of by calling ber_
bvfree(). NULL SHOULD be passed to ignore this field.

err For ldap_err2string(), an LDAP error code, as returned by
ldap_parse_result() or another LDAP API call.

Table 3–18 Parameters for Handling Errors and Parsing Results

Parameter Description
3-48 Oracle Internet Directory Application Developer’s Guide

C API Reference
Usage Notes
Additional parameters for the deprecated routines are not described. Interested

readers are referred to RFC 1823.

The ldap_parse_result(), ldap_parse_sasl_bind_result(), and ldap_parse_extended_

result() functions all skip over messages of type LDAP_RES_SEARCH_ENTRY and

LDAP_RES_SEARCH_REFERENCE when looking for a result message to parse.

They return the constant LDAP_SUCCESS if the result was successfully parsed and

another LDAP error code if not. Note that the LDAP error code that indicates the

outcome of the operation performed by the server is placed in the errcodep ldap_

parse_result() parameter. If a chain of messages that contains more than one result

message is passed to these routines they always operate on the first result in the

chain.

ldap_err2string() is used to convert a numeric LDAP error code, as returned by

ldap_parse_result(), ldap_parse_sasl_bind_result(), ldap_parse_extended_result() or

one of the synchronous API operation calls, into an informative zero-terminated

character string message describing the error. It returns a pointer to static data.

Stepping Through a List of Results

ldap_first_message

ldap_next_message
These routines are used to step through the list of messages in a result chain

returned by ldap_result() . For search operations, the result chain can actually

include referral messages, entry messages, and result messages.

ldap_count_messages() is used to count the number of messages returned. The

ldap_msgtype() function, described above, can be used to distinguish between

the different message types.

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *msg);
int ldap_count_messages(LDAP *ld, LDAPMessage *res);
The Oracle Internet Directory C API 3-49

C API Reference
Parameters

Usage Notes
ldap_first_message() and ldap_next_message() will return NULL when no more

messages exist in the result set to be returned. NULL is also returned if an error

occurs while stepping through the entries, in which case the error parameters in the

session handle ld will be set to indicate the error.

If successful, ldap_count_messages() returns the number of messages contained in a

chain of results; if an error occurs such as the res parameter being invalid, -1 is

returned. The ldap_count_messages() call can also be used to count the number of

messages that remain in a chain if called with a message, entry, or reference

returned by ldap_first_message(), ldap_next_message(), ldap_first_entry(), ldap_

next_entry(), ldap_first_reference(), ldap_next_reference().

Parsing Search Results
The following calls are used to parse the entries and references returned by ldap_

search() and friends. These results are returned in an opaque structure that MAY be

accessed by calling the routines described below. Routines are provided to step

through the entries and references returned, step through the attributes of an entry,

retrieve the name of an entry, and retrieve the values associated with a given

attribute in an entry.

Table 3–19 Parameters for Stepping Through a List of Results

Parameter Description

ld The session handle.

res The result chain, as obtained by a call to one of the
synchronous search routines or ldap_result().

msg The message returned by a previous call to ldap_first_
message() or ldap_next_message().
3-50 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_first_entry

ldap_next_entry

ldap_first_reference

ldap_next_reference

ldap_count_entries

ldap_count_references
The ldap_first_entry() and ldap_next_entry() routines are used to step through and

retrieve the list of entries from a search result chain. The ldap_first_reference() and

ldap_next_reference() routines are used to step through and retrieve the list of

continuation references from a search result chain. ldap_count_entries() is used to

count the number of entries returned. ldap_count_references() is used to count the

number of references returned.

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);
LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *ref);
int ldap_count_entries(LDAP *ld, LDAPMessage *res);
int ldap_count_references(LDAP *ld, LDAPMessage *res);

Parameters

Table 3–20 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description

ld The session handle.

res The search result, as obtained by a call to one of the synchronous search
routines or ldap_result().

entry The entry returned by a previous call to ldap_first_entry() or ldap_next_
entry().

ref The reference returned by a previous call to ldap_first_reference() or
ldap_next_reference().
The Oracle Internet Directory C API 3-51

C API Reference
Usage Notes
ldap_first_entry(), ldap_next_entry(), ldap_first_reference() and ldap_next_

reference() all return NULL when no more entries or references exist in the result set

to be returned. NULL is also returned if an error occurs while stepping through the

entries or references, in which case the error parameters in the session handle ld

will be set to indicate the error.

ldap_count_entries() returns the number of entries contained in a chain of entries; if

an error occurs such as the res parameter being invalid, -1 is returned. The ldap_

count_entries() call can also be used to count the number of entries that remain in a

chain if called with a message, entry or reference returned by ldap_first_message(),

ldap_next_message(), ldap_first_entry(), ldap_next_entry(), ldap_first_reference(),

ldap_next_reference().

ldap_count_references() returns the number of references contained in a chain of

search results; if an error occurs such as the res parameter being invalid, -1 is

returned. The ldap_count_references() call can also be used to count the number of

references that remain in a chain.
3-52 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_first_attribute

ldap_next_attribute
These calls are used to step through the list of attribute types returned with an

entry.

char *ldap_first_attribute

(
LDAP *ld,
LDAPMessage *entry,
BerElement **ptr

);

char *ldap_next_attribute
(

LDAP *ld,
LDAPMessage *entry,
BerElement *ptr

);
void ldap_memfree(char *mem);

Parameters

Table 3–21 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

ld The session handle.

entry The entry whose attributes are to be stepped through, as
returned by ldap_first_entry() or ldap_next_entry().

ptr In ldap_first_attribute(), the address of a pointer used
internally to keep track of the current position in the entry. In
ldap_next_attribute(), the pointer returned by a previous call to
ldap_first_attribute(). The BerElement type itself is an opaque
structure that is described in more detail later in this document
in the section "Encoded ASN.1 Value Manipulation".

mem A pointer to memory allocated by the LDAP library, such as
the attribute type names returned by ldap_first_attribute() and
ldap_next_attribute, or the DN returned by ldap_get_dn(). If
mem is NULL, the ldap_memfree() call does nothing.
The Oracle Internet Directory C API 3-53

C API Reference
Usage Notes
ldap_first_attribute() and ldap_next_attribute() will return NULL when the end of

the attributes is reached, or if there is an error, in which case the error parameters in

the session handle ld will be set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute

name. This SHOULD be freed when no longer in use by calling ldap_memfree().

ldap_first_attribute() will allocate and return in ptr a pointer to a BerElement used

to keep track of the current position. This pointer MAY be passed in subsequent

calls to ldap_next_attribute() to step through the entry's attributes. After a set of

calls to ldap_first_attribute() and ldap_next_attribute(), if ptr is non-NULL, it

SHOULD be freed by calling ber_free(ptr, 0). Note that it is very important to pass

the second parameter as 0 (zero) in this call, since the buffer associated with the

BerElement does not point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to ldap_get_

values() and friends to retrieve the associated values.
3-54 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_get_values

ldap_get_values_len

ldap_count_values

ldap_count_values_len

ldap_value_free

ldap_value_free_len
ldap_get_values() and ldap_get_values_len() are used to retrieve the values of a

given attribute from an entry. ldap_count_values() and ldap_count_values_len() are

used to count the returned values.

ldap_value_free() and ldap_value_free_len() are used to free the values.

Syntax
char **ldap_get_values
(

LDAP *ld,
LDAPMessage *entry,
const char *attr

);

struct berval **ldap_get_values_len
(

LDAP *ld,
LDAPMessage *entry,
const char *attr

);

int ldap_count_values(char **vals);
int ldap_count_values_len(struct berval **vals);
void ldap_value_free(char **vals);
void ldap_value_free_len(struct berval **vals);
The Oracle Internet Directory C API 3-55

C API Reference
Parameters

Usage Notes
Two forms of the various calls are provided. The first form is only suitable for use

with non-binary character string data. The second _len form is used with any kind

of data.

ldap_get_values() and ldap_get_values_len() return NULL if no values are found

for attr or if an error occurs.

ldap_count_values() and ldap_count_values_len() return -1 if an error occurs such

as the vals parameter being invalid.

If a NULL vals parameter is passed to ldap_value_free() or ldap_value_free_len(),

nothing is done.

Note that the values returned are dynamically allocated and SHOULD be freed by

calling either ldap_value_free() or ldap_value_free_len() when no longer in use.

Table 3–22 Parameters for Retrieving and Counting Attribute Values

Parameter Description

ld The session handle.

entry The entry from which to retrieve values, as returned by ldap_
first_entry() or ldap_next_entry().

attr The attribute whose values are to be retrieved, as returned by
ldap_first_attribute() or ldap_next_attribute(), or a
caller-supplied string (e.g., "mail").

vals The values returned by a previous call to ldap_get_values() or
ldap_get_values_len().
3-56 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_get_dn

ldap_explode_dn

ldap_explode_rdn

ldap_dn2ufn
ldap_get_dn() is used to retrieve the name of an entry. ldap_explode_dn() and ldap_

explode_rdn() are used to break up a name into its component parts. ldap_dn2ufn()

is used to convert the name into a more "user friendly" format.

Syntax
char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);
char **ldap_explode_dn(const char *dn, int notypes);
char **ldap_explode_rdn(const char *rdn, int notypes);
char *ldap_dn2ufn(const char *dn);

Parameters

Usage Notes
ldap_get_dn() will return NULL if there is some error parsing the dn, setting error

parameters in the session handle ld to indicate the error. It returns a pointer to

newly allocated space that the caller SHOULD free by calling ldap_memfree() when

it is no longer in use.

Table 3–23 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description

ld The session handle.

entry The entry whose name is to be retrieved, as returned by ldap_
first_entry() or ldap_next_entry().

dn The dn to explode, such as returned by ldap_get_dn().

rdn The rdn to explode, such as returned in the components of the
array returned by ldap_explode_dn().

notypes A boolean parameter, if non-zero indicating that the dn or rdn
components are to have their type information stripped off
(i.e., "cn=Babs" would become "Babs").
The Oracle Internet Directory C API 3-57

C API Reference
ldap_explode_dn() returns a NULL-terminated char * array containing the RDN

components of the DN supplied, with or without types as indicated by the notypes

parameter. The components are returned in the order they appear in the dn. The

array returned SHOULD be freed when it is no longer in use by calling ldap_value_

free().

ldap_explode_rdn() returns a NULL-terminated char * array containing the

components of the RDN supplied, with or without types as indicated by the

notypes parameter. The components are returned in the order they appear in the

rdn. The array returned SHOULD be freed when it is no longer in use by calling

ldap_value_free().

ldap_dn2ufn() converts the DN into a user friendly format. The UFN returned is

newly allocated space that SHOULD be freed by a call to ldap_memfree() when no

longer in use.
3-58 Oracle Internet Directory Application Developer’s Guide

C API Reference
ldap_get_entry_controls
ldap_get_entry_controls() is used to extract LDAP controls from an entry.

Syntax
int ldap_get_entry_controls
(

LDAP *ld,
LDAPMessage *entry,
LDAPControl ***serverctrlsp

);

Parameters

Usage Notes
ldap_get_entry_controls() returns an LDAP error code that indicates whether the

reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Table 3–24 Parameters for Extracting LDAP Controls from an Entry

Parameters Description

ld The session handle.

entry The entry to extract controls from, as returned by ldap_first_
entry() or ldap_next_entry().

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of entry. The control array SHOULD be
freed by calling ldap_controls_free(). If serverctrlsp is NULL,
no controls are returned.
The Oracle Internet Directory C API 3-59

C API Reference
ldap_parse_reference
ldap_parse_reference() is used to extract referrals and controls from a

SearchResultReference message.

Syntax
int ldap_parse_reference
(

LDAP *ld,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit

);

Parameters

Usage Notes
ldap_parse_reference() returns an LDAP error code that indicates whether the

reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Table 3–25 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description

ld The session handle.

ref The reference to parse, as returned by ldap_result(), ldap_first_
reference(), or ldap_next_reference().

referralsp This result parameter will be filled in with an allocated array of
character strings. The elements of the array are the referrals
(typically LDAP URLs) contained in ref. The array SHOULD
be freed when no longer in used by calling ldap_value_free().
If referralsp is NULL, the referral URLs are not returned.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of ref. The control array SHOULD be freed
by calling ldap_controls_free(). If serverctrlsp is NULL, no
controls are returned.

freeit A boolean that determines whether the ref parameter is
disposed of or not. Pass any non-zero value to have this
routine free ref after extracting the requested information. This
is provided as a convenience; you can also use ldap_msgfree()
to free the result later.
3-60 Oracle Internet Directory Application Developer’s Guide

Sample C API Usage
Sample C API Usage
The following examples show how to use the API both with and without SSL. More

complete examples are given in RFC 1823. The sample code for the command line

tool to perform LDAP search also demonstrates use of the API in two modes.

This section contains these topics:

■ C API Usage with SSL

■ C API Usage Without SSL

C API Usage with SSL
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include <gsle.h>
#include <gslc.h>
#include <gsld.h>
#include "gslcc.h"

main()
{

LDAP *ld;
int ret = 0;
….
/* open a connection */
if ((ld = ldap_open("MyHost", 636)) == NULL)
 exit(1);

/* SSL initialization */
ret = ldap_init_SSL(&ld->ld_sb, "file:/sslwallet", "welcome",
 GSLC_SSL_ONEWAY_AUTH);
if(ret != 0)
{

printf(" %s \n", ldap_err2string(ret));
exit(1);

}

The Oracle Internet Directory C API 3-61

Sample C API Usage
/* authenticate as nobody */
if (ldap_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_bind_s");
 exit(1);
}

…..
…..

}

Because the user is making the ldap_init_SSL call, the client-to-sever

communication in the above example is secured by using SSL.

C API Usage Without SSL
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include <gsle.h>
#include <gslc.h>
#include <gsld.h>
#include "gslcc.h"

main()
{

LDAP *ld;
int ret = 0;
….

/* open a connection */
if ((ld = ldap_open(" MyHost " , LDAP_PORT)) == NULL)
 exit(1);

/* authenticate as nobody */
if (ldap_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_bind_s");
 exit(1);
}
…..
…..

}

3-62 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
In the previous example, the user is not making the ldap_init_SSL call, and the

client-to-server communication is therefore not secure.

Building Applications with the C API
This section contains these topics:

■ Required Header Files and Libraries

■ Building a Sample Search Tool

Required Header Files and Libraries
To build applications with the C API, you need:

■ The header file is located at $ORACLE_HOME/ldap/public/ldap.h.

■ The library is located at $ORACLE_HOME/lib/libldapclnt8.a

Building a Sample Search Tool
The Oracle Internet Directory SDK release 3.0.1 provides a sample command line

tool, samplesearch, for demonstrating how to use the C API to build applications.

You can use samplesearch to perform LDAP searches in either SSL or non-SSL

mode.

You can find the source file (samplesearch.c) and the make file (demo_
ldap.mk) in the following directory: ORACLE_HOME/ldap/demo .

To build the sample search tool, enter the following command:

make -f demo_ldap.mk build EXE=samplesearch OBJS=samplesearch.o

Note: You can use this make file to build other client applications

by using the C API. Replace samplesearch with the name of the

binary you want to build, and samplesearch.o with your own

object file.
The Oracle Internet Directory C API 3-63

Building Applications with the C API
The sample code for samplesearch is:

/*
 NAME
 s0gsldsearch.c - <one-line expansion of the name>
 DESCRIPTION
 <short description of component this file declares/defines>
 PUBLIC FUNCTION(S)
 <list of external functions declared/defined - with one-line descriptions>
 PRIVATE FUNCTION(S)
 <list of static functions defined in .c file - with one-line descriptions>
 RETURNS
 <function return values, for .c file with single function>
 NOTES
 <other useful comments, qualifications, etc.>
*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include "ldap.h"

#define DEFSEP"="
#define LDAPSEARCH_BINDDN NULL
#define LDAPSEARCH_BASE DEFAULT_BASE
#define DEFAULT_BASE "o=oracle, c=US"

#ifdef LDAP_DEBUG
extern int ldap_debug, lber_debug;
#endif /* LDAP_DEBUG */

usage(s)
char*s;
{
 fprintf(stderr, "usage: %s [options] filter [attributes...]\nwhere:\n", s
);
 fprintf(stderr, " filter\tRFC-1558 compliant LDAP search filter\n");

fprintf(stderr, " attributes\twhitespace-separated list of attributes to
retrieve\n");
 fprintf(stderr, "\t\t(if no attribute list is given, all are retrieved)\n"
);
 fprintf(stderr, "options:\n");
 fprintf(stderr, " -n\t\tshow what would be done but don't actually
search\n");
 fprintf(stderr, " -v\t\trun in verbose mode (diagnostics to standard
3-64 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
output)\n");
 fprintf(stderr, " -t\t\twrite values to files in /tmp\n");
 fprintf(stderr, " -u\t\tinclude User Friendly entry names in the
output\n");
 fprintf(stderr, " -A\t\tretrieve attribute names only (no values)\n");
 fprintf(stderr, " -B\t\tdo not suppress printing of non-ASCII values\n"
);
 fprintf(stderr, " -L\t\tprint entries in LDIF format (-B is implied)\n"
);
#ifdef LDAP_REFERRALS
 fprintf(stderr, " -R\t\tdo not automatically follow referrals\n");
#endif /* LDAP_REFERRALS */
 fprintf(stderr, " -d level\tset LDAP debugging level to ̀ level'\n");
 fprintf(stderr, " -F sep\tprint ̀ sep' instead of ̀ =' between attribute
names and values\n");
 fprintf(stderr, " -S attr\tsort the results by attribute ̀ attr'\n");
 fprintf(stderr, " -f file\tperform sequence of searches listed in
f̀ile'\n");
 fprintf(stderr, " -b basedn\tbase dn for search\n");
 fprintf(stderr, " -s scope\tone of base, one, or sub (search scope)\n"
);

fprintf(stderr, " -a deref\tone of never, always, search, or find (alias
dereferencing)\n");
 fprintf(stderr, " -l time lim\ttime limit (in seconds) for search\n");
 fprintf(stderr, " -z size lim\tsize limit (in entries) for search\n");
 fprintf(stderr, " -D binddn\tbind dn\n");
 fprintf(stderr, " -w passwd\tbind passwd (for simple authentication)\n"
);
#ifdef KERBEROS
 fprintf(stderr, " -k\t\tuse Kerberos instead of Simple Password
authentication\n");
#endif
 fprintf(stderr, " -h host\tldap server\n");
 fprintf(stderr, " -p port\tport on ldap server\n");
 fprintf(stderr, " -W Wallet\tWallet location\n");
 fprintf(stderr, " -P Wpasswd\tWallet Password\n");
 fprintf(stderr, " -U SSLAuth\tSSL Authentication Mode\n");
 return;
}

static char*binddn = LDAPSEARCH_BINDDN;
static char*passwd = NULL;
static char*base = LDAPSEARCH_BASE;
static char*ldaphost = NULL;
static intldapport = LDAP_PORT;
The Oracle Internet Directory C API 3-65

Building Applications with the C API
static char*sep = DEFSEP;
static char*sortattr = NULL;
static intskipsortattr = 0;
static intverbose, not, includeufn, allow_binary, vals2tmp, ldif;
/* TEMP */

main(argc, argv)
intargc;
char**argv;
{
 char*infile, *filtpattern, **attrs, line[BUFSIZ];
 FILE*fp;
 intrc, i, first, scope, kerberos, deref, attrsonly;
 intldap_options, timelimit, sizelimit, authmethod;
 LDAP*ld;
 extern char*optarg;
 extern intoptind;
 charlocalHostName[MAXHOSTNAMELEN + 1];
 char *sslwrl = NULL;
 char*sslpasswd = NULL;
int sslauth=0,err=0;

 infile = NULL;
 deref = verbose = allow_binary = not = kerberos = vals2tmp =
 attrsonly = ldif = 0;
#ifdef LDAP_REFERRALS
 ldap_options = LDAP_OPT_REFERRALS;
#else /* LDAP_REFERRALS */
 ldap_options = 0;
#endif /* LDAP_REFERRALS */
 sizelimit = timelimit = 0;
 scope = LDAP_SCOPE_SUBTREE;

 while ((i = getopt(argc, argv,
#ifdef KERBEROS
 "KknuvtRABLD:s:f:h:b:d:p:F:a:w:l:z:S:"
#else
 "nuvtRABLD:s:f:h:b:d:p:F:a:w:l:z:S:W:P:U:"
#endif
)) != EOF) {
switch(i) {
case 'n':/* do Not do any searches */
 ++not;
 break;
case 'v':/* verbose mode */
3-66 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
 ++verbose;
 break;
case 'd':
#ifdef LDAP_DEBUG
 ldap_debug = lber_debug = atoi(optarg);/* */
#else /* LDAP_DEBUG */
 fprintf(stderr, "compile with -DLDAP_DEBUG for debugging\n");
#endif /* LDAP_DEBUG */
 break;
#ifdef KERBEROS
case 'k':/* use kerberos bind */
 kerberos = 2;
 break;
case 'K':/* use kerberos bind, 1st part only */
 kerberos = 1;
 break;
#endif
case 'u':/* include UFN */
 ++includeufn;
 break;
case 't':/* write attribute values to /tmp files */
 ++vals2tmp;
 break;
case 'R':/* don't automatically chase referrals */
#ifdef LDAP_REFERRALS
 ldap_options &= ~LDAP_OPT_REFERRALS;
#else /* LDAP_REFERRALS */
 fprintf(stderr,
 "compile with -DLDAP_REFERRALS for referral support\n");
#endif /* LDAP_REFERRALS */
 break;
case 'A':/* retrieve attribute names only -- no values */
 ++attrsonly;
 break;
case 'L':/* print entries in LDIF format */
 ++ldif;
 /* fall through -- always allow binary when outputting LDIF */
case 'B':/* allow binary values to be printed */
 ++allow_binary;
 break;
case 's':/* search scope */
 if (strncasecmp(optarg, "base", 4) == 0) {
scope = LDAP_SCOPE_BASE;
 } else if (strncasecmp(optarg, "one", 3) == 0) {
scope = LDAP_SCOPE_ONELEVEL;
The Oracle Internet Directory C API 3-67

Building Applications with the C API
 } else if (strncasecmp(optarg, "sub", 3) == 0) {
scope = LDAP_SCOPE_SUBTREE;
 } else {
fprintf(stderr, "scope should be base, one, or sub\n");
usage(argv[0]);
 exit(1);
 }
 break;

case 'a':/* set alias deref option */
 if (strncasecmp(optarg, "never", 5) == 0) {
deref = LDAP_DEREF_NEVER;
 } else if (strncasecmp(optarg, "search", 5) == 0) {
deref = LDAP_DEREF_SEARCHING;
 } else if (strncasecmp(optarg, "find", 4) == 0) {
deref = LDAP_DEREF_FINDING;
 } else if (strncasecmp(optarg, "always", 6) == 0) {
deref = LDAP_DEREF_ALWAYS;
 } else {
fprintf(stderr, "alias deref should be never, search, find, or always\n");
usage(argv[0]);
 exit(1);
 }
 break;

case 'F':/* field separator */
 sep = (char *)strdup(optarg);
 break;
case 'f':/* input file */
 infile = (char *)strdup(optarg);
 break;
case 'h':/* ldap host */
 ldaphost = (char *)strdup(optarg);
 break;
case 'b':/* searchbase */
 base = (char *)strdup(optarg);
 break;
case 'D':/* bind DN */
 binddn = (char *)strdup(optarg);
 break;
case 'p':/* ldap port */
 ldapport = atoi(optarg);
 break;
case 'w':/* bind password */
 passwd = (char *)strdup(optarg);
3-68 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
 break;
case 'l':/* time limit */
 timelimit = atoi(optarg);
 break;
case 'z':/* size limit */
 sizelimit = atoi(optarg);
 break;
case 'S':/* sort attribute */
 sortattr = (char *)strdup(optarg);
 break;
case 'W':/* Wallet URL */
 sslwrl = (char *)strdup(optarg);
 break;
case 'P':/* Wallet password */
 sslpasswd = (char *)strdup(optarg);
 break;
case 'U':/* SSL Authentication Mode */
 sslauth = atoi(optarg);
 break;
default:
 usage(argv[0]);
 exit(1);
 break;
}
 }

 if (argc - optind < 1) {
usage(argv[0]);
 exit(1);
 }
 filtpattern = (char *)strdup(argv[optind]);
 if (argv[optind + 1] == NULL) {
attrs = NULL;
 } else if (sortattr == NULL || *sortattr == '\0') {
 attrs = &argv[optind + 1];
 } else {
for (i = optind + 1; i < argc; i++) {
 if (strcasecmp(argv[i], sortattr) == 0) {
break;
 }
}
if (i == argc) {
skipsortattr = 1;
argv[optind] = sortattr;
} else {
The Oracle Internet Directory C API 3-69

Building Applications with the C API
optind++;
}
 attrs = &argv[optind];
 }

 if (infile != NULL) {
if (infile[0] == '-' && infile[1] == '\0') {
 fp = stdin;
} else if ((fp = fopen(infile, "r")) == NULL) {
 perror(infile);
 exit(1);
}
 }

 if (ldaphost == NULL) {
 if (gethostname(localHostName, MAXHOSTNAMELEN) != 0) {
 perror("gethostname");
 exit(1);
 }
 ldaphost = localHostName;
 }

 if (verbose) {
printf("ldap_open(%s, %d)\n", ldaphost, ldapport);
 }

 if ((ld = ldap_open(ldaphost, ldapport)) == NULL) {
perror(ldaphost);
exit(1);
 }

 if (sslauth > 1)
 {
 if (!sslwrl || !sslpasswd)
 {
 printf ("Null Wallet or password given\n");
 exit (0);
 }
 }
 if (sslauth > 0)
 {
 if (sslauth == 1)
 sslauth = GSLC_SSL_NO_AUTH;
 else if (sslauth == 2)
 sslauth = GSLC_SSL_ONEWAY_AUTH;
3-70 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
 else if (sslauth == 3)
 sslauth = GSLC_SSL_TWOWAY_AUTH;
 else
 {
 printf(" Wrong SSL Authenication Mode Value\n");
 exit(0);
 }

 err = ldap_init_SSL(&ld->ld_sb,sslwrl,sslpasswd,sslauth);
 if(err != 0)
{
 printf(" %s\n", ldap_err2string(err));
 exit(0);
}
 }

 ld->ld_deref = deref;
 ld->ld_timelimit = timelimit;
 ld->ld_sizelimit = sizelimit;
 ld->ld_options = ldap_options;

 if (!kerberos) {
authmethod = LDAP_AUTH_SIMPLE;
 } else if (kerberos == 1) {
authmethod = LDAP_AUTH_KRBV41;
 } else {
authmethod = LDAP_AUTH_KRBV4;
 }
 if (ldap_bind_s(ld, binddn, passwd, authmethod) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_bind");
exit(1);
 }

 if (verbose) {
printf("filter pattern: %s\nreturning: ", filtpattern);
if (attrs == NULL) {
 printf("ALL");
} else {
 for (i = 0; attrs[i] != NULL; ++i) {
printf("%s ", attrs[i]);
 }
}
putchar('\n');
 }
The Oracle Internet Directory C API 3-71

Building Applications with the C API
 if (infile == NULL) {
rc = dosearch(ld, base, scope, attrs, attrsonly, filtpattern, "");
 } else {
rc = 0;
first = 1;
while (rc == 0 && fgets(line, sizeof(line), fp) != NULL) {
 line[strlen(line) - 1] = '\0';
 if (!first) {
putchar('\n');
 } else {
first = 0;
 }
 rc = dosearch(ld, base, scope, attrs, attrsonly, filtpattern,
 line);
}
if (fp != stdin) {
 fclose(fp);
}
 }

 ldap_unbind(ld);
 exit(rc);
}

dosearch(ld, base, scope, attrs, attrsonly, filtpatt, value)
 LDAP*ld;
 char*base;
 intscope;
 char**attrs;
 intattrsonly;
 char*filtpatt;
 char*value;
{
 charfilter[BUFSIZ], **val;
 intrc, first, matches;
 LDAPMessage*res, *e;

 sprintf(filter, filtpatt, value);

 if (verbose) {
printf("filter is: (%s)\n", filter);
 }

 if (not) {
return(LDAP_SUCCESS);
3-72 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
 }

 if (ldap_search(ld, base, scope, filter, attrs, attrsonly) == -1) {
ldap_perror(ld, "ldap_search");
return(ld->ld_errno);
 }

 matches = 0;
 first = 1;
 while ((rc = ldap_result(ld, LDAP_RES_ANY, sortattr ? 1 : 0, NULL, &res))
 == LDAP_RES_SEARCH_ENTRY) {
matches++;
e = ldap_first_entry(ld, res);
if (!first) {
 putchar('\n');
} else {
 first = 0;
}
print_entry(ld, e, attrsonly);
ldap_msgfree(res);
 }
 if (rc == -1) {
ldap_perror(ld, "ldap_result");
return(rc);
 }
 if ((rc = ldap_result2error(ld, res, 0)) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_search");
 }
 if (sortattr != NULL) {
 extern intstrcasecmp();

 (void) ldap_sort_entries(ld, &res,
 (*sortattr == '\0') ? NULL : sortattr, strcasecmp);
 matches = 0;
 first = 1;
 for (e = ldap_first_entry(ld, res); e != NULLMSG;
 e = ldap_next_entry(ld, e)) {
matches++;
if (!first) {
 putchar('\n');
} else {
 first = 0;
}
print_entry(ld, e, attrsonly);
 }
The Oracle Internet Directory C API 3-73

Building Applications with the C API
 }

 if (verbose) {
 printf("%d matches\n", matches);
 }

 ldap_msgfree(res);
 return(rc);
}

print_entry(ld, entry, attrsonly)
 LDAP*ld;
 LDAPMessage*entry;
 intattrsonly;
{
 char*a, *dn, *ufn, tmpfname[64];
 inti, j, notascii;
 BerElement*ber;
 struct berval**bvals;
 FILE*tmpfp;
 extern char*mktemp();

 dn = ldap_get_dn(ld, entry);
 if (ldif) {
write_ldif_value("dn", dn, strlen(dn));
 } else {
printf("%s\n", dn);
 }
 if (includeufn) {
ufn = ldap_dn2ufn(dn);
if (ldif) {
 write_ldif_value("ufn", ufn, strlen(ufn));
} else {
 printf("%s\n", ufn);
}
free(ufn);
 }
 free(dn);

 for (a = ldap_first_attribute(ld, entry, &ber); a != NULL;
 a = ldap_next_attribute(ld, entry, ber)) {
if (skipsortattr && strcasecmp(a, sortattr) == 0) {
 continue;
}

3-74 Oracle Internet Directory Application Developer’s Guide

Building Applications with the C API
if (attrsonly) {
 if (ldif) {
write_ldif_value(a, "", 0);
 } else {
printf("%s\n", a);
 }
} else if ((bvals = ldap_get_values_len(ld, entry, a)) != NULL) {
 for (i = 0; bvals[i] != NULL; i++) {
if (vals2tmp) {
 sprintf(tmpfname, "/tmp/ldapsearch-%s-XXXXXX", a);
 tmpfp = NULL;

 if (mktemp(tmpfname) == NULL) {
perror(tmpfname);
 } else if ((tmpfp = fopen(tmpfname, "w")) == NULL) {
perror(tmpfname);
 } else if (fwrite(bvals[i]->bv_val,
 bvals[i]->bv_len, 1, tmpfp) == 0) {
perror(tmpfname);
 } else if (ldif) {
write_ldif_value(a, tmpfname, strlen(tmpfname));
 } else {
printf("%s%s%s\n", a, sep, tmpfname);
 }

 if (tmpfp != NULL) {
fclose(tmpfp);
 }
} else {
 notascii = 0;
 if (!allow_binary) {
for (j = 0; j < bvals[i]->bv_len; ++j) {
 if (!isascii(bvals[i]->bv_val[j])) {
notascii = 1;
break;
 }
}
 }

 if (ldif) {
write_ldif_value(a, bvals[i]->bv_val,
bvals[i]->bv_len);
 } else
{
printf("%s%s%s\n", a, sep,
The Oracle Internet Directory C API 3-75

Dependencies and Limitations
notascii ? "NOT ASCII" : (char *)bvals[i]->bv_val);
 }
}
 }
 gsledePBerBvecfree(bvals);
}
 }
}

int
write_ldif_value(char *type, char *value, unsigned long vallen)
{
 char *ldif;

 if ((ldif = gsldlDLdifTypeAndValue(type, value, (int)vallen)) == NULL)
 {
 return(-1);
 }

 fputs(ldif, stdout);
 free(ldif);

 return(0);
}

Dependencies and Limitations
This API can work against any release of Oracle Internet Directory. It requires either

an Oracle environment or, at minimum, NLS and other core libraries.

To use the different authentication modes in SSL, the directory server requires

corresponding configuration settings.

Oracle Wallet Manager is required for creating wallets if you are using the C API in

SSL mode.

TCP/IP Socket Library is required.

See Also: Oracle Internet Directory Administrator’s Guide for details

on how to set the directory server in various SSL authentication

modes
3-76 Oracle Internet Directory Application Developer’s Guide

Dependencies and Limitations
The following Oracle libraries are required:

■ Oracle SSL-related libraries

■ Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You

should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP

SDK specifications (RFC 1823).
The Oracle Internet Directory C API 3-77

Dependencies and Limitations
3-78 Oracle Internet Directory Application Developer’s Guide

The Oracle Internet Directory PL/SQ
4

The Oracle Internet Directory PL/SQL API

This chapter introduces the Oracle Internet Directory PL/SQL API and provides

examples of how to use it. It contains these topics:

■ About the PL/SQL API

■ Sample PL/SQL Usage

■ Building Applications with PL/SQL LDAP API

■ Dependencies and Limitations

■ PL/SQL Reference
L API 4-1

About the PL/SQL API
About the PL/SQL API
The PL/SQL API is packaged in the DBMS_LDAP package. It is based on the C API

described in Chapter 3, "The Oracle Internet Directory C API".

You can use the Oracle Internet Directory API release 3.0.1 in the following modes:

■ SSL—All communication secured using SSL

■ Non-SSL—Client-to-server communication not secure

The API uses TCP/IP to connect to an LDAP server. When it does this, it uses, by

default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL

call interface. You determine which mode you are using by the presence or absence

of the SSL calls in the API usage. You can easily switch between SSL and non-SSL

modes.

Sample PL/SQL Usage
This section contains these topics

■ Using the PL/SQL API from a Database Trigger

■ Using the PL/SQL API for a Search

Using the PL/SQL API from a Database Trigger
The DBMS_LDAP API can be invoked from database triggers to synchronize any

changes to a database table with an enterprise-wide LDAP server. The following

example illustrates how changes to a table called 'EMP' are synchronized with the

data in an LDAP server using triggers for insert, update, and delete. There are two

files associated with this sample: trigger.sql and empdata.sql .

The file trigger.sql creates the table as well as the triggers associated with it.

The file empdata.sql inserts some sample data into the table EMP, which

automatically gets updated to the LDAP server through the insert trigger.

These files can be found in the plsql directory under $ORACLE_
HOME/ldap/demo

$Header: $
Copyright (c) Oracle Corporation 2000. All Rights Reserved.
FILE
trigger.sql
DESCRIPTION
This SQL file creates a database table called 'EMP' and creates a trigger on it
4-2 Oracle Internet Directory Application Developer’s Guide

Sample PL/SQL Usage
called LDAP_EMP which will synchronize all changes happening to the table with
an LDAP server. The changes to the database table are reflected/replicated to
the LDAP directory using the DBMS_LDAP package.
This script assumes the following:
LDAP server hostname: NULL (local host)
LDAP server portnumber: 389
Directory container for employee records: o=acme, dc=com
Username/Password for Directory Updates: cn=orcladmin/welcome
The aforementioned variables could be customized for different environments by
changing the appropriate variables in the code below.
Table Definition:
Employee Details(Columns) in Database Table(EMP):
EMP_ID Number
FIRST_NAME Varchar2
LAST_NAME Varchar2
MANAGER_ID Number
PHONE_NUMBER Varchar2
MOBILE Varchar2
ROOM_NUMBER Varchar2
TITLE Varchar2

LDAP Schema Definition & mapping to relational schema EMP:
Corresponding Data representation in LDAP directory:

DN cn=FIRST_NAME LAST_NAME, o=acme, dc=com]
cn FIRST_NAME LAST_NAME
sn LAST_NAME
givenname FIRST_NAME
manager DN
telephonenumber PHONE_NUMBER
mobile MOBILE
employeeNumber EMP_ID
userpassword FIRST_NAME
objectclass person

organizationalperson
inetOrgPerson
top

MODIFIED (MM/DD/YY)
rbollu 07/21/00 - created

—Creating EMP table

PROMPT Dropping Table EMP ..
drop table EMP;
The Oracle Internet Directory PL/SQL API 4-3

Sample PL/SQL Usage
PROMPT Creating Table EMP ..
CREATE TABLE EMP (

EMP_ID NUMBER, Employee Number
FIRST_NAME VARCHAR2(256), First Name
LAST_NAME VARCHAR2(256), Last Name
MANAGER_ID NUMBER, Manager Number
PHONE_NUMBER VARCHAR2(256), Telephone Number
MOBILE VARCHAR2(256), Mobile Number
ROOM_NUMBER VARCHAR2(256), Room Number
TITLE VARCHAR2(256) Title in the company

);

—Creating Trigger LDAP_EMP

PROMPT Creating Trigger LDAP_EMP ..

CREATE OR REPLACE TRIGGER LDAP_EMP
AFTER INSERT OR DELETE OR UPDATE ON EMP
FOR EACH ROW

DECLARE
retval PLS_INTEGER;
emp_session DBMS_LDAP.session;
emp_dn VARCHAR2(256);
emp_rdn VARCHAR2(256);
emp_array DBMS_LDAP.MOD_ARRAY;
emp_vals DBMS_LDAP.STRING_COLLECTION ;
ldap_host VARCHAR2(256);
ldap_port VARCHAR2(256);
ldap_user VARCHAR2(256);
ldap_passwd VARCHAR2(256);
ldap_base VARCHAR2(256);

BEGIN

retval := -1;
-- Customize the following variables as needed
ldap_host := NULL;
ldap_port := '389';
ldap_user := 'cn=orcladmin';
ldap_passwd:= 'welcome';
ldap_base := 'o=acme,dc=com';
-- end of customizable settings

DBMS_OUTPUT.PUT('Trigger [LDAP_EMP]: Replicating changes ');
DBMS_OUTPUT.PUT_LINE('to directory .. ');
4-4 Oracle Internet Directory Application Developer’s Guide

Sample PL/SQL Usage
DBMS_OUTPUT.PUT_LINE(RPAD('LDAP Host ',25,' ') || ': ' || ldap_host);
DBMS_OUTPUT.PUT_LINE(RPAD('LDAP Port ',25,' ') || ': ' || ldap_port);

-- Choosing exceptions to be raised by DBMS_LDAP library.
DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Initialize ldap library and get session handle.
emp_session := DBMS_LDAP.init(ldap_host,ldap_port);

DBMS_OUTPUT.PUT_LINE (RPAD('Ldap session ',25,' ') || ': ' ||
RAWTOHEX(SUBSTR(emp_session,1,8)) ||
'(returned from init)');

-- Bind to the directory
retval := DBMS_LDAP.simple_bind_s(emp_session,

ldap_user,ldap_passwd);

DBMS_OUTPUT.PUT_LINE(RPAD('simple_bind_s Returns ',25,' ') || ': '
 || TO_CHAR(retval));

-- Process New Entry in the database

IF INSERTING THEN

-- Create and setup attribute array for the New entry
emp_array := DBMS_LDAP.create_mod_array(14);

-- RDN to be - cn="FIRST_NAME LAST_NAME"

emp_vals(1) := :new.FIRST_NAME || ' ' || :new.LAST_NAME;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
'cn',emp_vals);

emp_vals(1) := :new.LAST_NAME;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'sn',emp_vals);

emp_vals(1) := :new.FIRST_NAME;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'givenname',emp_vals);

emp_vals(1) := 'top';
The Oracle Internet Directory PL/SQL API 4-5

Sample PL/SQL Usage
emp_vals(2) := 'person';
emp_vals(3) := 'organizationalPerson';
emp_vals(4) := 'inetOrgPerson';

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'objectclass',emp_vals);

emp_vals.DELETE;
emp_vals(1) := :new.PHONE_NUMBER;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'telephonenumber',emp_vals);

emp_vals(1) := :new.MOBILE;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'mobile',emp_vals);

emp_vals(1) := :new.ROOM_NUMBER;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'roomNumber',emp_vals);

emp_vals(1) := :new.TITLE;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'title',emp_vals);

emp_vals(1) := :new.EMP_ID;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'employeeNumber',emp_vals);

emp_vals(1) := :new.FIRST_NAME;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_ADD,
 'userpassword',emp_vals);

-- DN for Entry to be Added under 'ldap_base' [o=acme, dc=com]

emp_dn := 'cn=' || :new.FIRST_NAME || ' ' ||
:new.LAST_NAME || ', ' || ldap_base ;
DBMS_OUTPUT.PUT_LINE(RPAD('Adding Entry for DN ',25,' ') || ': ['
 || emp_dn || ']');
4-6 Oracle Internet Directory Application Developer’s Guide

Sample PL/SQL Usage
-- Add new Entry to ldap directory
retval := DBMS_LDAP.add_s(emp_session,emp_dn,emp_array);
DBMS_OUTPUT.PUT_LINE(RPAD('add_s Returns ',25,' ') || ': '
 || TO_CHAR(retval));

-- Free attribute array (emp_array)
DBMS_LDAP.free_mod_array(emp_array);

END IF; -- INSERTING

-- Process Entry deletion in database

IF DELETING THEN

-- DN for Entry to be deleted under 'ldap_base' [o=acme, dc=com]

emp_dn := 'cn=' || :old.FIRST_NAME || ' ' ||
:old.LAST_NAME || ', ' || ldap_base ;
DBMS_OUTPUT.PUT_LINE(RPAD('Deleting Entry for DN ',25,' ') ||
 ': [' || emp_dn || ']');

-- Delete entry in ldap directory
retval := DBMS_LDAP.delete_s(emp_session,emp_dn);
 DBMS_OUTPUT.PUT_LINE(RPAD('delete_s Returns ',25,' ') || ': ' ||
 TO_CHAR(retval));

END IF; -- DELETING

-- Process updated Entry in database

IF UPDATING THEN

-- Since two Table columns(in this case) constitue a RDN
-- check for any changes and update RDN in ldap directory
-- before updating any other attributes of the Entry.

IF :old.FIRST_NAME <> :new.FIRST_NAME OR
 :old.LAST_NAME <> :new.LAST_NAME THEN

emp_dn := 'cn=' || :old.FIRST_NAME || ' ' ||
 :old.LAST_NAME || ', ' || ldap_base;

emp_rdn := 'cn=' || :new.FIRST_NAME || ' ' || :new.LAST_NAME;

DBMS_OUTPUT.PUT_LINE(RPAD('Renaming OLD DN ',25,' ') ||
The Oracle Internet Directory PL/SQL API 4-7

Sample PL/SQL Usage
 ': [' || emp_dn || ']');
DBMS_OUTPUT.PUT_LINE(RPAD(' => NEW RDN ',25,' ') ||
 ': [' || emp_rdn || ']');
retval := DBMS_LDAP.modrdn2_s(emp_session,emp_dn,emp_rdn,
 DBMS_LDAP.MOD_DELETE);
DBMS_OUTPUT.PUT_LINE(RPAD('modrdn2_s Returns ',25,' ') || ': ' ||
 TO_CHAR(retval));

END IF;

-- DN for Entry to be updated under 'ldap_base' [o=acme, dc=com]

emp_dn := 'cn=' || :new.FIRST_NAME || ' ' ||
 :new.LAST_NAME || ', ' || ldap_base;

DBMS_OUTPUT.PUT_LINE(RPAD('Updating Entry for DN ',25,' ') ||
 ': [' || emp_dn || ']');

-- Create and setup attribute array(emp_array) for updated entry
emp_array := DBMS_LDAP.create_mod_array(7);

emp_vals(1) := :new.LAST_NAME;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'sn',emp_vals);

emp_vals(1) := :new.FIRST_NAME;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'givenname',emp_vals);

emp_vals(1) := :new.PHONE_NUMBER;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'telephonenumber',emp_vals);

emp_vals(1) := :new.MOBILE;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'mobile',emp_vals);

emp_vals(1) := :new.ROOM_NUMBER;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'roomNumber',emp_vals);
4-8 Oracle Internet Directory Application Developer’s Guide

Sample PL/SQL Usage
emp_vals(1) := :new.TITLE;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'title',emp_vals);

emp_vals(1) := :new.EMP_ID;

DBMS_LDAP.populate_mod_array(emp_array,DBMS_LDAP.MOD_REPLACE,
 'employeeNumber',emp_vals);

-- Modify entry in ldap directory
 retval := DBMS_LDAP.modify_s(emp_session,emp_dn,emp_array);

DBMS_OUTPUT.PUT_LINE(RPAD('modify_s Returns ',25,' ') || ': ' ||
 TO_CHAR(retval));

-- Free attribute array (emp_array)
DBMS_LDAP.free_mod_array(emp_array);

END IF; -- UPDATING

-- Unbind from ldap directory
retval := DBMS_LDAP.unbind_s(emp_session);

DBMS_OUTPUT.PUT_LINE(RPAD('unbind_res Returns ',25,' ') || ': ' ||
 TO_CHAR(retval));

DBMS_OUTPUT.PUT_LINE('Directory operation Successful .. exiting');

-- Handle Exceptions
EXCEPTION

WHEN OTHERS THEN
-- TODO : should the trigger call unbind at this point ??
-- what if the exception was raised from unbind itself ??

DBMS_OUTPUT.PUT_LINE(' Error code : ' || TO_CHAR(SQLCODE));
DBMS_OUTPUT.PUT_LINE(' Error Message : ' || SQLERRM);
DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

END;
/
-------------------------------END OF trigger.sql---------------------------
The Oracle Internet Directory PL/SQL API 4-9

Sample PL/SQL Usage
Using the PL/SQL API for a Search
The following example illustrates using the DBMS_LDAP API to perform an LDAP

search in a PL/SQL program. This example searches for the entries created using

the trigger example described previously. It assumes a base of o=acme,dc=com
and performs a subtree search to retrieve all entries that are subordinates of the base

entry. The code shown below is contained in a file called search.sql which can be

found in the $ORACLE_HOME/ldap/demo/plsql directory.

$Header: $

Copyright (c) Oracle Corporation 2000. All Rights Reserved.

FILE
search.sql

DESCRIPTION

This SQL file contains the PL/SQL code required to perform
a typical search against an LDAP server.

This script assumes the following:
LDAP server hostname: NULL (local host)
LDAP server portnumber: 389
Directory container for employee records: o=acme, dc=com
Username/Password for Directory Updates: cn=orcladmin/welcome

NOTE
Run this file after you have run the 'trigger.sql' and 'empdata.sql'
scripts to see what entries were added by the database triggers.

MODIFIED (MM/DD/YY)
akolli07/21/00 - created

set serveroutput on size 30000

DECLARE
retval PLS_INTEGER;
my_session DBMS_LDAP.session;
my_attrs DBMS_LDAP.string_collection;
my_message DBMS_LDAP.message;
my_entry DBMS_LDAP.message;
4-10 Oracle Internet Directory Application Developer’s Guide

Sample PL/SQL Usage
entry_index PLS_INTEGER;
my_dn VARCHAR2(256);
my_attr_name VARCHAR2(256);
my_ber_elmt DBMS_LDAP.ber_element;
attr_index PLS_INTEGER;
i PLS_INTEGER;
my_vals DBMS_LDAP.STRING_COLLECTION ;
ldap_host VARCHAR2(256);
ldap_port VARCHAR2(256);
ldap_user VARCHAR2(256);
ldap_passwd VARCHAR2(256);
ldap_base VARCHAR2(256);

BEGIN
retval := -1;

-- Please customize the following variables as needed
ldap_host := NULL ;
ldap_port := '389';
ldap_user := 'cn=orcladmin';
ldap_passwd:= 'welcome';
ldap_base := 'o=acme,dc=com';
-- end of customizable settings

 DBMS_OUTPUT.PUT('DBMS_LDAP Search Example ');
 DBMS_OUTPUT.PUT_LINE('to directory .. ');
 DBMS_OUTPUT.PUT_LINE(RPAD('LDAP Host ',25,' ') || ': ' || ldap_host);
 DBMS_OUTPUT.PUT_LINE(RPAD('LDAP Port ',25,' ') || ': ' || ldap_port);

 -- Choosing exceptions to be raised by DBMS_LDAP library.
 DBMS_LDAP.USE_EXCEPTION := TRUE;

 my_session := DBMS_LDAP.init(ldap_host,ldap_port);

 DBMS_OUTPUT.PUT_LINE (RPAD('Ldap session ',25,' ') || ': ' ||
 RAWTOHEX(SUBSTR(my_session,1,8)) ||
 '(returned from init)');

 -- bind to the directory
 retval := DBMS_LDAP.simple_bind_s(my_session,
 ldap_user, ldap_passwd);

 DBMS_OUTPUT.PUT_LINE(RPAD('simple_bind_s Returns ',25,' ') || ': '
 || TO_CHAR(retval));
The Oracle Internet Directory PL/SQL API 4-11

Sample PL/SQL Usage
 -- issue the search
 my_attrs(1) := '*'; -- retrieve all attributes
 retval := DBMS_LDAP.search_s(my_session, ldap_base,
 DBMS_LDAP.SCOPE_SUBTREE,
 'objectclass=*',
 my_attrs,
 0,
 my_message);

 DBMS_OUTPUT.PUT_LINE(RPAD('search_s Returns ',25,' ') || ': '
 || TO_CHAR(retval));
 DBMS_OUTPUT.PUT_LINE (RPAD('LDAP message ',25,' ') || ': ' ||
 RAWTOHEX(SUBSTR(my_message,1,8)) ||
 '(returned from search_s)');

 -- count the number of entries returned
 retval := DBMS_LDAP.count_entries(my_session, my_message);
 DBMS_OUTPUT.PUT_LINE(RPAD('Number of Entries ',25,' ') || ': '
 || TO_CHAR(retval));
 DBMS_OUTPUT.PUT_
LINE('---');

 -- get the first entry
 my_entry := DBMS_LDAP.first_entry(my_session, my_message);
 entry_index := 1;

 -- Loop through each of the entries one by one
 while my_entry IS NOT NULL loop

 -- print the current entry
 my_dn := DBMS_LDAP.get_dn(my_session, my_entry);
 -- DBMS_OUTPUT.PUT_LINE (' entry #' || TO_CHAR(entry_index) ||
 -- ' entry ptr: ' || RAWTOHEX(SUBSTR(my_entry,1,8)));
 DBMS_OUTPUT.PUT_LINE (' dn: ' || my_dn);
 my_attr_name := DBMS_LDAP.first_attribute(my_session,my_entry,
 my_ber_elmt);
 attr_index := 1;
 while my_attr_name IS NOT NULL loop

 my_vals := DBMS_LDAP.get_values (my_session, my_entry,
 my_attr_name);
 if my_vals.COUNT > 0 then
 FOR i in my_vals.FIRST..my_vals.LAST loop

DBMS_OUTPUT.PUT_LINE(' ' || my_attr_name || ' : '
||
4-12 Oracle Internet Directory Application Developer’s Guide

Building Applications with PL/SQL LDAP API
 SUBSTR(my_vals(i),1,200));
 end loop;

 end if;
 my_attr_name := DBMS_LDAP.next_attribute(my_session,my_entry,
 my_ber_elmt);
 attr_index := attr_index+1;

 end loop;
 my_entry := DBMS_LDAP.next_entry(my_session, my_entry);
 DBMS_OUTPUT.PUT_
LINE('===');
 entry_index := entry_index+1;

 end loop;

 -- unbind from the directory
 retval := DBMS_LDAP.unbind_s(my_session);
 DBMS_OUTPUT.PUT_LINE(RPAD('unbind_res Returns ',25,' ') || ': ' ||
 TO_CHAR(retval));

 DBMS_OUTPUT.PUT_LINE('Directory operation Successful .. exiting');

-- Handle Exceptions
EXCEPTION

WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(' Error code : ' || TO_CHAR(SQLCODE));
 DBMS_OUTPUT.PUT_LINE(' Error Message : ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

END;
/
-------------------------------END OF trigger.sql---------------------------

Building Applications with PL/SQL LDAP API
To use the PL/SQL LDAP API, you must first load it into the database. You do this

by using a script called catldap.sql that is located in the $ORACLE_
HOME/rdbms/admin directory. You must be connected as SYSDBA using the

SQL*Plus command line tool.

The following is a sample command sequence that you can use to load the DBMS_

LDAP package:

SQL> CONNECT / AS SYSDBA
SQL> @?/rdbms/admin/catldap.sql
The Oracle Internet Directory PL/SQL API 4-13

Dependencies and Limitations
Dependencies and Limitations
The PL/SQL LDAP API for this release has the following limitations:

■ The LDAP session handles obtained from the API are valid only for the

duration of the database session. The LDAP session handles cannot be written

to a table and re-used in other database sessions.

■ Only synchronous versions of LDAP API functions are supported in this

release.

■ The PL/SQL LDAP API requires a database connection to work. It cannot be

used in client-side PL/SQL engines (like Oracle Forms) without a valid

database connection.

PL/SQL Reference
The PL/SQL package DBMS_LDAP contains the functions and procedures which

can be used by PL/SQL programmers to access data from LDAP servers. This

section explains all of the API functions in detail. Be sure that you have read the

previous sections before using this section.

This section contains these topics:

■ Summary of Subprograms

■ Exception Summary

■ Data-Type Summary

■ Subprograms

Summary of Subprograms

Table 4–1 DBMS_LDAP API Subprograms

Function or Procedure Description

FUNCTION init init() initializes a session with an LDAP server. This
actually establishes a connection with the LDAP
server.

FUNCTION simple_bind_s The function simple_bind_s can be used to perform
simple user name/password based authentication to
the directory server.
4-14 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
FUNCTION bind_s The function bind_s can be used to perform complex
authentication to the directory server.

FUNCTION unbind_s The function unbind_s is used for closing an active
LDAP session.

FUNCTION compare_s The function compare_s can be used to test if a
particular attribute in a particular entry has a
particular value.

FUNCTION search_s The function search_s performs a synchronous
search in the LDAP server. It returns control to the
PL/SQL environment only after all of the search
results have been sent by the server or if the search
request is 'timed-out' by the server.

FUNCTION search_st The function search_st performs a synchronous
search in the LDAP server with a client side
time-out. It returns control to the PL/SQL
environment only after all of the search results have
been sent by the server or if the search request is
'timed-out' by the client or the server.

FUNCTION first_entry The function first_entry is used to retrieve the first
entry in the result set returned by either search_s or
search_st.

FUNCTION next_entry The function next_entry() is used to iterate to the next
entry in the result set of a search operation.

FUNCTION count_entries This function is used to count the number of entries in the
result set. It can also be used to count the number of
entries remaining during a traversal of the result set using
a combination of the functions first_entry() and next_
entry().

FUNCTION first_attribute The function first_attribute() fetches the first attribute of a
given entry in the result set.

FUNCTION next_attribute The function next_attribute() fetches the next attribute of a
given entry in the result set.

FUNCTION get_dn The function get_dn() retrieves the X.500 distinguished
name of given entry in the result set.

FUNCTION get_values The function get_values() can be used to retrieve all of the
values associated for a given attribute in a given entry.

Table 4–1 DBMS_LDAP API Subprograms

Function or Procedure Description
The Oracle Internet Directory PL/SQL API 4-15

PL/SQL Reference
FUNCTION get_values_len The function get_values_len() can be used to retrieve
values of attributes that have a 'Binary' syntax.

FUNCTION delete_s This function can be used to remove a leaf entry in the
LDAP Directory Information Tree.

FUNCTION modrdn2_s The function modrdn2_s() can be used to rename the
relative distinguished name of an entry.

FUNCTION err2string The function err2string() can be used to convert an LDAP
error code to string in the local language in which the API
is operating.

FUNCTION create_mod_array The function create_mod_array() allocates memory for
array modification entries that will be applied to an entry
using the modify_s() functions.

PROCEDURE populate_mod_
array (String Version)

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP.create_mod_array() is called.

PROCEDURE populate_mod_
array (Binary Version)

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP.create_mod_array() is called.

FUNCTION modify_s Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s , we have to call
DBMS_LDAP.creat_mod_array () and DBMS_
LDAP.populate_mod_array () first.

FUNCTION add_s Adds a new entry to the LDAP directory synchronously.
Before calling add_s , we have to call DBMS_
LDAP.creat_mod_array () and DBMS_
LDAP.populate_mod_array () first.

PROCEDURE free_mod_array Frees the memory allocated by DBMS_LDAP.create_
mod_array ().

FUNCTION count_values Counts the number of values returned by DBMS_
LDAP.get_values ().

FUNCTION count_values_len Counts the number of values returned by DBMS_
LDAP.get_values_len ().

FUNCTION rename_s Renames an LDAP entry synchronously.

FUNCTION explode_dn Breaks a DN up into its components.

FUNCTION open_ssl Establishes an SSL (Secure Sockets Layer) connection over
an existing LDAP connection.

Table 4–1 DBMS_LDAP API Subprograms

Function or Procedure Description
4-16 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exception Summary
The DBMS_LDAP package shipped with Oracle9i release 9.0.1 can generate the

following exceptions:

FUNCTION msgfree This function frees the chain of messages associated with
the message handle returned by synchronous search
functions.

FUNCTION ber_free This function frees the memory associated with a handle
to BER ELEMENT.

Table 4–2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

general_error 31202 Raised anytime an error is encountered that does
not have a specific PL/SQL exception associated
with it. The error string contains the description
of the problem in the local language of the user.

init_failed 31203 Raised by DBMS_LDAP.init() if there are some
problems.

invalid_session 31204 Raised by all functions and procedures in the
DBMS_LDAP package if they are passed an
invalid session handle.

invalid_auth_method 31205 Raised by DBMS_LDAP.bind_s() if the
authentication method requested is not
supported.

invalid_search_scope 31206 Raised by all of the 'search' functions if the scope
of the search is invalid.

invalid_search_time_val 31207 Raised by time based search function: DBMS_
LDAP.search_st() if it is given an invalid value for
the time limit.

invalid_message 31208 Raised by all functions that iterate through a
result-set for getting entries from a search
operation if the message handle given to them is
invalid.

Table 4–1 DBMS_LDAP API Subprograms

Function or Procedure Description
The Oracle Internet Directory PL/SQL API 4-17

PL/SQL Reference
count_entry_error 31209 Raised by DBMS_LDAP.count_entries if it cannot
count the entries in a given result set.

get_dn_error 31210 Raised by DBMS_LDAP.get_dn if the DN of the
entry it is retrieving is NULL.

invalid_entry_dn 31211 Raised by all the functions that
modify/add/rename an entry if they are
presented with an invalid entry DN.

invalid_mod_array 31212 Raised by all functions that take a modification
array as an argument if they are given an invalid
modification array.

invalid_mod_option 31213 Raised by DBMS_LDAP.populate_mod_array if
the modification option given is anything other
than MOD_ADD, MOD_DELETE or MOD_
REPLACE.

invalid_mod_type 31214 Raised by DBMS_LDAP.populate_mod_array if
the attribute type that is being modified is NULL.

invalid_mod_value 31215 Raised by DBMS_LDAP.populate_mod_array if
the modification value parameter for a given
attribute is NULL.

invalid_rdn 31216 Raised by all functions and procedures that
expect a valid RDN if the value of the RDN is
NULL.

invalid_newparent 31217 Raised by DBMS_LDAP.rename_s if the new
parent of an entry being renamed is NULL.

invalid_deleteoldrdn 31218 Raised by DBMS_LDAP.rename_s if the
deleteoldrdn parameter is invalid.

invalid_notypes 31219 Raised by DBMS_LDAP.explode_dn if the
notypes parameter is invalid.

invalid_ssl_wallet_loc 31220 Raised by DBMS_LDAP.open_ssl if the wallet
location is NULL but the SSL authentication
mode requires a valid wallet.

invalid_ssl_wallet_password 31221 Raised by DBMS_LDAP.open_ssl if the wallet
password given is NULL.

invalid_ssl_auth_mode 31222 Raised by DBMS_LDAP.open_ssl if the SSL
authentication mode is not one of 1, 2 or 3.

Table 4–2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception
4-18 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Data-Type Summary
The DBMS_LDAP package uses the following data-types:

Table 4–3 DBMS_LDAP Data-Type Summary

Data-Type Purpose

SESSION Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSAGE Used to hold a handle to the message retrieved from the result
set. This is used by all functions that work with entries attributes
and values.

MOD_ARRAY Used to hold a handle into the array of modifications being
passed into either modify_s() or add_s().

TIMEVAL Used to pass time limit information to the LDAP API functions
that require a time limit.

BER_ELEMENT Used to hold a handle to a BER structure used for decoding
incoming messages.

STRING_COLLECTION Used to hold a list of VARCHAR2 strings which can be passed
on to the LDAP server.

BINVAL_COLLECTION Used to hold a list of RAW data which represent binary data.

BERVAL_COLLECTION Used to hold a list of BERVAL values that are used for
populating a modification array.
The Oracle Internet Directory PL/SQL API 4-19

PL/SQL Reference
Subprograms

FUNCTION init
init() initializes a session with an LDAP server. This actually establishes a

connection with the LDAP server.

Syntax
FUNCTION init
(

hostname IN VARCHAR2,
portnum IN PLS_INTEGER

)
RETURN SESSION;

Parameters

Return Values

Table 4–4 INIT Function Parameters

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server
to connect to. Each hostname in the list MAY include a port
number which is separated from the host itself with a colon (:)
character. The hosts will be tried in the order listed, stopping
with the first one to which a successful connection is made.

portnum Contains the TCP port number to connect to. If a host includes
a port number then this parameter is ignored. If this parameter
is not specified and the hostname also does not contain the
port number, a default port number of 389 is assumed.

Table 4–5 INIT Function Return Values

Value Description

SESSION (function return) A handle to an LDAP session which can be used for further
calls into the API.
4-20 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
DBMS_LDAP.init() is the first function that should be called in order to establish a

session to the LDAP server. Function DBMS_LDAP.init() returns a "session

handle," a pointer to an opaque structure that MUST be passed to subsequent calls

pertaining to the session. This routine will return NULL and raise the “INIT_

FAILED” exception if the session cannot be initialized.Subsequent to the call to

init(), the connection has to be authenticated using DBMS_LDAP.bind_s or DBMS_

LDAP.simple_bind_s().

See Also
DBMS_LDAP.simple_bind_s(), DBMS_LDAP.bind_s().

Table 4–6 INIT Function Exceptions

Exception Description

init_failed Raised when there is a problem contacting the LDAP server.

general_error For all other errors. The error string associated with the
exception describes the error in detail.
The Oracle Internet Directory PL/SQL API 4-21

PL/SQL Reference
FUNCTION simple_bind_s
The function simple_bind_s can be used to perform simple username/password

based authentication to the directory server.

Syntax
FUNCTION simple_bind_s
(

ld IN SESSION,
dn IN VARCHAR2,
passwd IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–7 SIMPLE_BIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Table 4–8 SIMPLE_BIND_S Function Return Values

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS on a successful completion. If there
was a problem, one of the following exceptions will be raised.
4-22 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
DBMS_LDAP.simple_bind_s() can be used to authenticate a user whose directory

distinguished name and directory password are known. It can be called only after a

valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

Table 4–9 SIMPLE_BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.
The Oracle Internet Directory PL/SQL API 4-23

PL/SQL Reference
FUNCTION bind_s
The function bind_s can be used to perform complex authentication to the directory

server.

Syntax
FUNCTION bind_s
(

ld IN SESSION,
dn IN VARCHAR2,
cred IN VARCHAR2,
meth IN PLS_INTEGER

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–10 BIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle

dn The Distinguished Name of the User that we are trying to login
as

cred A text string containing the credentials used for authentication

meth The authentication method

Table 4–11 BIND_S Function Return Values

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS on a successful completion. One of the
following exceptions is raised if there was a problem.
4-24 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
DBMS_LDAP.bind_s() can be used to authenticate a user. It can be called only after

a valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP.simple_bind_s().

Table 4–12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.
The Oracle Internet Directory PL/SQL API 4-25

PL/SQL Reference
FUNCTION unbind_s
The function unbind_s is used for closing an active LDAP session.

Syntax
FUNCTION unbind_s
(

ld IN SESSION
)

RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Table 4–13 UNBIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

Table 4–14 UNBIND_S Function Return Values

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS on proper completion. One of the
following exceptions is raised otherwise.

Table 4–15 UNBIND_S Function Exceptions

Exception Description

invalid_session Raised if the sessions handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.
4-26 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The unbind_s() function, will send an unbind request to the server, close all open

connections associated with the LDAP session and dispose of all resources

associated with the session handle before returning. After a call to this function, the

session handle ld is invalid and it is illegal to make any further LDAP API calls

using ld.

See Also
DBMS_LDAP.bind_s(), DBMS_LDAP.simple_bind_s().
The Oracle Internet Directory PL/SQL API 4-27

PL/SQL Reference
FUNCTION compare_s
The function compare_s can be used to test if a particular attribute in a particular

entry has a particular value.

Syntax
FUNCTION compare_s
(

ld IN SESSION,
dn IN VARCHAR2,
attr IN VARCHAR2,
value IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–16 COMPARE_S Function Parameters

Parameter Description

ld A valid LDAP session handle

dn The name of the entry to compare against

attr The attribute to compare against.

value A string attribute value to compare against

Table 4–17 COMPARE_S Function Return Values

Value Description

PLS_INTEGER (function
return)

COMPARE_TRUE is the given attribute has a matching value.

COMPARE_FALSE if the value of the attribute does not match
the value given.
4-28 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
The function compare_s can be used to assert if the value of a given attribute stored

in the directory server matches a certain value.This operation can only be

performed on attributes whose syntax definition allows them to be compared. The

compare_s function can only be called after a valid LDAP session handle has been

obtained from the init() function and authenticated using the bind_s() or simple_

bind_s() functions.

See Also
DBMS_LDAP.bind_s()

Table 4–18 COMPARE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.
The Oracle Internet Directory PL/SQL API 4-29

PL/SQL Reference
FUNCTION search_s
The function search_s performs a synchronous search in the LDAP server. It returns

control to the PL/SQL environment only after all of the search results have been

sent by the server or if the search request is 'timed-out' by the server.

Syntax
FUNCTION search_s
(

ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE

)
RETURN PLS_INTEGER;

Parameters

Table 4–19 SEARCH_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

base The dn of the entry at which to start the search.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or SCOPE_
SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can
be passed to indicate that the filter "(objectclass=*)" which matches all
entries is to be used.

attrs A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") MAY be used as the only string in the array to indicate that no
attribute types are to be returned by the server. The special constant
string ALL_USER_ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

attrsonly A boolean value that MUST be zero if both attribute types and values
are to be returned, and non-zero if only types are wanted.
4-30 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Return Values

Exceptions

res This is a result parameter which will contain the results of the search
upon completion of the call. If no results are returned, *res is set to
NULL.

Table 4–20 SEARCH_S Function Return Value

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res (OUT parameter) If the search succeeded and there are entries, this parameter is
set to a NON-NULL value which can be used to iterate
through the result set.

Table 4–21 SEARCH_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL, or SCOPE_SUBTREE.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 4–19 SEARCH_S Function Parameters

Parameter Description
The Oracle Internet Directory PL/SQL API 4-31

PL/SQL Reference
Usage Notes
The function search_s() issues a search operation and does not return control to the

user environment until all of the results have been returned from the server. Entries

returned from the search (if any) are contained in the res parameter. This parameter

is opaque to the caller. Entries, attributes, values, etc., can be extracted by calling the

parsing routines described below.

See Also
DBMS_LDAP.search_st(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry.
4-32 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
FUNCTION search_st
The function search_st performs a synchronous search in the LDAP server with a

client-side time-out. It returns control to the PL/SQL environment only after all of

the search results have been sent by the server or if the search request is 'timed-out'

by the client or the server.

Syntax
FUNCTION search_st
(

ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
tv IN TIMEVAL,
res OUT MESSAGE

)
RETURN PLS_INTEGER;

Parameters

Table 4–22 SEARCH_ST Function Parameters

Parameter Description

ld A valid LDAP session handle.

base The dn of the entry at which to start the search.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter "(objectclass=*)"
which matches all entries is to be used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS ("1.1") MAY be used as the only
string in the array to indicate that no attribute types are to be
returned by the server. The special constant string ALL_USER_
ATTRS ("*") can be used in the attrs array along with the names
of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be
returned.
The Oracle Internet Directory PL/SQL API 4-33

PL/SQL Reference
Return Values

Exceptions

attrsonly A boolean value that MUST be zero if both attribute types and
values are to be returned, and non-zero if only types are
wanted.

tv The time-out value expressed in seconds and microseconds
that should be used for this search.

res This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Table 4–23 SEARCH_ST Function Return Values

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res (OUT parameter) If the search succeeded and there are entries, this parameter is
set to a NON_NULL value which can be used to iterate
through the result set.

Table 4–24 SEARCH_ST Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_time_value Raised if the time value specified for the time-out is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 4–22 SEARCH_ST Function Parameters

Parameter Description
4-34 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
This function is very similar to DBMS_LDAP.search_s() except that it requires a

time-out value to be given.

See Also
DBMS_LDAP.search_s(), DBML_LDAP.first_entry(), DBMS_LDAP.next_entry.
The Oracle Internet Directory PL/SQL API 4-35

PL/SQL Reference
FUNCTION first_entry
The function first_entry is used to retrieve the first entry in the result set returned

by either search_s() or search_st()

Syntax
FUNCTION first_entry
(

ld IN SESSION,
msg IN MESSAGE

)
RETURN MESSAGE;

Parameters

Return Values

Exceptions

Table 4–25 FIRST_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Table 4–26 FIRST_ENTRY Return Values

Value Description

MESSAGE (function
return)

A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Table 4–27 FIRST_ENTRY Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming "msg" handle is invalid.
4-36 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The function first_entry() should always be the first function used to retrieve the

results from a search operation.

See Also
DBMS_LDAP.next_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_st()
The Oracle Internet Directory PL/SQL API 4-37

PL/SQL Reference
FUNCTION next_entry
The function next_entry() is used to iterate to the next entry in the result set of a

search operation.

Syntax
FUNCTION next_entry
(

ld IN SESSION,
msg IN MESSAGE

)
RETURN MESSAGE;

Parameters

Return Values

Exceptions

Table 4–28 NEXT_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Table 4–29 NEXT_ENTRY Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Table 4–30 NEXT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle, ld is invalid.

invalid_message Raised if the incoming 'msg' handle is invalid.
4-38 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The function next_entry() should always be called after a call to the function first_

entry(). Also, the return value of a successful call to next_entry() should be used as

'msg' argument used in a subsequent call to the function next_entry() to fetch the

next entry in the list.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_st()
The Oracle Internet Directory PL/SQL API 4-39

PL/SQL Reference
FUNCTION count_entries
This function is used to count the number of entries in the result set. It can also be

used to count the number of entries remaining during a traversal of the result set

using a combination of the functions first_entry() and next_entry().

Syntax
FUNCTION count_entries
(

ld IN SESSION,
msg IN MESSAGE

)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Table 4–31 COUNT_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle

msg The search result, as obtained by a call to one of the
synchronous search routines

Table 4–32 COUNT_ENTRY Function Return Values

Value Description

PLS INTEGER (function
return)

Non-zero if there are entries in the result set

-1 if there was a problem.

Table 4–33 COUNT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming 'msg' handle is invalid.

count_entry_error Raised if there was a problem in counting the entries.
4-40 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
count_entries() returns the number of entries contained in a chain of entries; if an

error occurs such as the res parameter being invalid, -1 is returned. The count_

entries() call can also be used to count the number of entries that remain in a chain

if called with a message, entry or reference returned by first_message() , next_

message() , first_entry() , next_entry() , first_reference() , next_reference() .

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().
The Oracle Internet Directory PL/SQL API 4-41

PL/SQL Reference
FUNCTION first_attribute
The function first_attribute() fetches the first attribute of a given entry in the result

set.

Syntax
FUNCTION first_attribute
(

ld IN SESSION,
msg IN MESSAGE,
ber_elem OUT BER_ELEMENT

)
RETURN VARCHAR2;

Parameters

Return Values

Exceptions

Table 4–34 FIRST_ATTRIBUTE Function Parameter

Parameter Description

ld A valid LDAP session handle

msg The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry()

ber_elem A handle to a BER ELEMENT that is used to keep track of
which attribute in the entry has been read

Table 4–35 FIRST_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 (function
return)

The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP.next_attribute() to iterate over
all of the attributes

Table 4–36 FIRST_ATTRIBUTE Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.
4-42 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_

attribute() should be used in the next call to next_attribute() to iterate through the

various attributes of an entry. The name of the attribute returned from a call to first_

attribute() can in turn be used in calls to the functions get_values() or get_values_

len() to get the values of that particular attribute.

See Also
DBMS_LDAP.next_attribute(), DBMS_LDAP.get_values(), DBMS_LDAP.get_

values_len(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().

invalid_message Raised if the incoming 'msg' handle is invalid

Table 4–36 FIRST_ATTRIBUTE Function Exceptions

Exception Description
The Oracle Internet Directory PL/SQL API 4-43

PL/SQL Reference
FUNCTION next_attribute
The function next_attribute() fetches the next attribute of a given entry in the result

set.

Syntax
FUNCTION next_attribute
(

ld IN SESSION,
msg IN MESSAGE,
ber_elem IN BER_ELEMENT

)
RETURN VARCHAR2;

Parameters

Return Values

Exceptions

Table 4–37 NEXT_ATTRIBUTE Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry() .

ber_elem A handle to a BER ELEMENT that is used to keep track of
which attribute in the entry has been read.

Table 4–38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 (function
return)

The name of the attribute if it exists.

Table 4–39 NEXT_ATTRIBUTE Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming 'msg' handle is invalid.
4-44 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_

attribute() should be used in the next call to next_attribute() to iterate through the

various attributes of an entry. The name of the attribute returned from a call to

next_attribute() can in turn be used in calls to the functions get_values() or get_

values_len() to get the values of that particular attribute.

See Also
DBMS_LDAP.first_attribute(), DBMS_LDAP.get_values(), DBMS_LDAP.get_values_

len(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().
The Oracle Internet Directory PL/SQL API 4-45

PL/SQL Reference
FUNCTION get_dn
The function get_dn() retrieves the X.500 distinguished name of given entry in the

result set.

Syntax
FUNCTION get_dn
(

ld IN SESSION,
msg IN MESSAGE

)
RETURN VARCHAR2;

Parameters

Return Values

Exceptions

Table 4–40 GET_DN Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The entry whose DN is to be returned.

Table 4–41 GET_DN Function Return Values

Value Description

VARCHAR2 (function
return)

The X.500 Distinguished name of the entry as a PL/SQL string.

NULL if there was a problem.

Table 4–42 GET_DN Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming 'msg' handle is invalid.

get_dn_error Raised if there was a problem in determining the DN
4-46 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The function get_dn() can be used to retrieve the DN of an entry as the program

logic is iterating through the result set. This can in turn be used as an input to

explode_dn() to retrieve the individual components of the DN.

See Also
DBMS_LDAP.explode_dn().
The Oracle Internet Directory PL/SQL API 4-47

PL/SQL Reference
FUNCTION get_values
The function get_values() can be used to retrieve all of the values associated for a

given attribute in a given entry.

Syntax
FUNCTION get_values
(

ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2

)
RETURN STRING_COLLECTION;

Parameters

Return Values

Exceptions

Table 4–43 GET_VALUES Function Parameters

Parameter Description

ld A valid LDAP session handle

ldapentry A valid handle to an entry returned from a search result

attr The name of the attribute for which values are being sought

Table 4–44 GET_VALUES Function Return Values

Value Description

STRING_COLLECTION
(function return)

A PL/SQL string collection containing all of the values of the
given attribute

NULL if there are no values associated with the given attribute

Table 4–45 GET_VALUES Function Exceptions

Exception Description

invalid session Raised if the session handle ld is invalid.

invalid message Raised if the incoming 'entry handle' is invalid.
4-48 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The function get_values() can only be called after the handle to entry has been first

retrieved by call to either first_entry() or next_entry(). The name of the attribute

may be known beforehand or can also be determined by a call to first_attribute() or

next_attribute().The function get_values() always assumes that the data-type of the

attribute it is retrieving is 'String'. For retrieving binary data-types, get_values_len()

should be used.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_values(),

DBMS_LDAP.get_values_len().
The Oracle Internet Directory PL/SQL API 4-49

PL/SQL Reference
FUNCTION get_values_len
The function get_values_len() can be used to retrieve values of attributes that have a

'Binary' syntax.

Syntax
FUNCTION get_values_len
(

ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2

)
RETURN BINVAL_COLLECTION;

Parameters

Return Values

Table 4–46 GET_VALUES_LEN Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

Table 4–47 GET_VALUES_LEN Function Return Values

Value Description

BINVAL_COLLECTION
(function return

A PL/SQL 'Raw' collection containing all the values of the
given attribute.

NULL if there are no values associated with the given
attribute.
4-50 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
The function get_values_len() can only be called after the handle to entry has been

first retrieved by call to either first_entry() or next_entry().The name of the attribute

may be known beforehand or can also be determined by a call to first_attribute() or

next_attribute().This function can be used to retrieve both binary and non-binary

attribute values.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_values_

len(), DBMS_LDAP.get_values().

Table 4–48 GET_VALUES_LEN Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming 'entry handle' is invalid
The Oracle Internet Directory PL/SQL API 4-51

PL/SQL Reference
FUNCTION delete_s
The function delete_s() can be used to remove a leaf entry in the LDAP Directory

Information Tree.

Syntax
FUNCTION delete_s
(

ld IN SESSION,
entrydn IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Table 4–49 DELETE_S Function Parameters

Parameter Name Description

ld A valid LDAP session

entrydn The X.500 distinguished name of the entry to delete

Table 4–50 DELETE_S Function Return Values

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS if the delete operation wa successful.
And exception is raised otherwise.

Table 4–51 DELETE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid

general_error For all other errors. The error string associated with this
exception will explain the error in detail.
4-52 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
The function delete_s() can be used to remove only leaf level entries in the LDAP

DIT. A leaf level entry is an entry that does not have any children/ldap entries

under it. It cannot be used to delete non-leaf entries.

See Also
DBMS_LDAP.modrdn2_s()
The Oracle Internet Directory PL/SQL API 4-53

PL/SQL Reference
FUNCTION modrdn2_s
The function modrdn2_s() can be used to rename the relative distinguished name of

an entry.

Syntax
FUNCTION modrdn2_s
(

ld IN SESSION,
entrydn in VARCHAR2
newrdn in VARCHAR2
deleteoldrdn IN PLS_INTEGER

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–52 MODRDN2_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newrdn The new relative distinguished name of the entry.

deleteoldrdn A boolean value that if non-zero indicates that the attribute
values from the old name should be removed from the entry.

Table 4–53 MODRDN2_S Function Return Values

Value Description

PLS_INTEGER (function
return)

DBMS_LDAP.SUCCESS if the operation was successful. An
exception is raised otherwise.
4-54 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
The function nodrdn2_s() can be used to rename the leaf nodes of a DIT. It simply

changes the relative distinguished name by which they are known. The use of this

function is being deprecated in the LDAP v3 standard. Please use rename_s() which

can achieve the same foundation.

See Also
DBMS_LDAP.rename_s().

Table 4–54 MODRDN2_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid.

invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general error For all other errors. The error string associated with this
exception will explain the error in detail.
The Oracle Internet Directory PL/SQL API 4-55

PL/SQL Reference
FUNCTION err2string
The function err2string() can be used to convert an LDAP error code to string in the

local language in which the API is operating

Syntax
FUNCTION err2string
(

ldap_err IN PLS_INTEGER
)

RETURN VARCHAR2;

Parameters

Return Values

Exceptions

Usage Notes
In this release, the exception handling mechanism automatically invokes this if any

of the API calls encounter an error.

See Also
N/A

Table 4–55 ERR2STRING Function Parameters

Parameter Description

ldap_err An error number returned from one the API calls.

Table 4–56 ERR2STRING Function Return Values

Value Description

VARCHAR2 (function
return)

A character string appropriately translated to the local
language which describes the error in detail.

Table 4–57 ERR2STRING Function Exceptions

Exception Description

N/A None.
4-56 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
FUNCTION create_mod_array
The function create_mod_array() allocates memory for array modification entries

that will be applied to an entry using the modify_s() or add_s() functions.

Syntax
FUNCTION create_mod_array
(

num IN PLS_INTEGER
)

RETURN MOD_ARRAY;

Parameters

Return Values

Exceptions

Table 4–58 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add/modify.

Table 4–59 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY (function
return)

The data structure holds a pointer to an LDAP mod array.

NULL if there was a problem.

Table 4–60 CREATE_MOD_ARRAY Function Exceptions

Exception Description

N/A No LDAP specific exception will be raised
The Oracle Internet Directory PL/SQL API 4-57

PL/SQL Reference
Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s . It is required to call DBMS_LDAP.free_mod_array to free

memory after the calls to add_s or modify_s have completed.

See Also
DBMS_LDAP.populate_mod_array() , DBMS_LDAP.modify_s() , DBMS_
LDAP.add_s() , and DBMS_LDAP.free_mod_array() .
4-58 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
PROCEDURE populate_mod_array (String Version)
Populates one set of attribute information for add or modify operations.

Syntax
PROCEDURE populate_mod_array
(

modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modval IN DBMS_LDAP.STRING_COLLECTION

);

Parameters

Return Values

Table 4–61 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description

modptr The data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modval This field specifies the attribute values to add, delete, or
replace. It is for the string values only.

Table 4–62 POPULATE_MOD_ARRAY (String Version) Procedure Return Values

Value Description

N/A
The Oracle Internet Directory PL/SQL API 4-59

PL/SQL Reference
Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s . It has to happen after DBMS_LDAP.create_mod_array called.

See Also
DBMS_LDAP.create_mod_array() , DBMS_LDAP.modify_s() , DBMS_
LDAP.add_s() , and DBMS_LDAP.free_mod_array() .

Table 4–63 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array

invalid_mod_option Invalid LDAP mod option

invalid_mod_type Invalid LDAP mod type

invalid_mod_value Invalid LDAP mod value
4-60 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
PROCEDURE populate_mod_array (Binary Version)
Populates one set of attribute information for add or modify operations. This

procedure call has to happen after DBMS_LDAP.create_mod_array() called.

Syntax
PROCEDURE populate_mod_array
(

modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modval IN DBMS_LDAP.BERVAL_COLLECTION

);

Parameters

Return Values

Table 4–64 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description

modptr The data structure holds a pointer to an LDAP mod array

mod_op This field specifies the type of modification to perform

mod_type This field indicates the name of the attribute type to which the
modification applies

modval This field specifies the attribute values to add, delete, or
replace. It is for the binary values

Table 4–65 POPULATE_MOD_ARRAY (Binary Version) Procedure Return Values

Value Description

N/A
The Oracle Internet Directory PL/SQL API 4-61

PL/SQL Reference
Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s . It has to happen after DBMS_LDAP.create_mod_array called.

See Also
DBMS_LDAP.create_mod_array() , DBMS_LDAP.modify_s() , DBMS_
LDAP.add_s() , and DBMS_LDAP.free_mod_array() .

Table 4–66 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array

invalid_mod_option Invalid LDAP mod option

invalid_mod_type Invalid LDAP mod type

invalid_mod_value Invalid LDAP mod value
4-62 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
FUNCTION modify_s
Performs a synchronous modification of an existing LDAP directory entry.

Syntax
FUNCTION modify_s
(

ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–67 MODIFY_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init().

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array() .

Table 4–68 MODIFY_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the modification
operation
The Oracle Internet Directory PL/SQL API 4-63

PL/SQL Reference
Exceptions

Usage Notes
This function call has to follow successful calls of DBMS_LDAP.create_mod_
array() and DBMS_LDAP.populate_mod_array() .

See Also
DBMS_LDAP.create_mod_array() ,DBMS_LDAP.populate_mod_array() ,

DBMS_LDAP.add_s() , and DBMS_LDAP.free_mod_array() .

Table 4–69 MODIFY_S Function Exceptions

Exception Description

invalid_session Invalid LDAP session

invalid_entry_dn Invalid LDAP entry dn

invalid_mod_array Invalid LDAP mod array
4-64 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
FUNCTION add_s
Adds a new entry to the LDAP directory synchronously. Before calling add_s , we

have to call DBMS_LDAP.create_mod_array() and DBMS_LDAP.populate_
mod_array() .

Syntax
FUNCTION add_s
(

ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–70 ADD_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init().

entrydn This parameter specifies the name of the directory entry to be
created.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array() .

Table 4–71 ADD_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the modification
operation.
The Oracle Internet Directory PL/SQL API 4-65

PL/SQL Reference
Exceptions

Usage Notes
The parent entry of the entry to be added must already exist in the directory. This

function call has to follow successful calls of DBMS_LDAP.create_mod_array()
and DBMS_LDAP.populate_mod_array() .

See Also
DBMS_LDAP.create_mod_array() ,DBMS_LDAP.populate_mod_array() ,

DBMS_LDAP.modify_s() , and DBMS_LDAP.free_mod_array() .

Table 4–72 ADD_S Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.
4-66 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
PROCEDURE free_mod_array
Frees the memory allocated by DBMS_LDAP.create_mod_array() .

Syntax
PROCEDURE free_mod_array
(

modptr IN DBMS_LDAP.MOD_ARRAY
);

Parameters

Return Values

Exceptions

Usage Notes
N/A

See Also
DBMS_LDAP.populate_mod_array() , DBMS_LDAP.modify_s() , DBMS_
LDAP.add_s() , and DBMS_LDAP.create_mod_array() .

Table 4–73 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array() .

Table 4–74 FREE_MOD_ARRAY Procedure Return Value

Value Description

N/A

Table 4–75 FREE_MOD_ARRAY Procedure Exceptions

Exception Description

N/A No LDAP specific exception will be raised.
The Oracle Internet Directory PL/SQL API 4-67

PL/SQL Reference
FUNCTION count_values
Counts the number of values returned by DBMS_LDAP.get_values() .

Syntax
FUNCTION count_values
(

values IN DBMS_LDAP.STRING_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Usage Notes
N/A

See Also
DBMS_LDAP.count_values_len(), DBMS_LDAP.get_values() .

Table 4–76 COUNT_VALUES Function Parameters

Parameter Description

values The collection of string values.

Table 4–77 COUNT_VALUES Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 4–78 COUNT_VALUES Function Exceptions

Exception Description

N/A No LDAP specific exception will be raised.
4-68 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
FUNCTION count_values_len
Counts the number of values returned by DBMS_LDAP.get_values_len() .

Syntax
FUNCTION count_values_len
(

values IN DBMS_LDAP.BINVAL_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Usage Notes
N/A

See Also
DBMS_LDAP.count_values(), DBMS_LDAP.get_values_len().

Table 4–79 COUNT_VALUES_LEN Function Parameters

Parameter Description

values The collection of binary values.

Table 4–80 COUNT_VALUES_LEN Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 4–81 COUNT_VALUES_LEN Function Exceptions

Exception Description

N/A No LDAP specific exception will be raised.
The Oracle Internet Directory PL/SQL API 4-69

PL/SQL Reference
FUNCTION rename_s
Renames an LDAP entry synchronously.

Syntax
FUNCTION rename_s
(

ld IN SESSION,
dn IN VARCHAR2,
newrdn IN VARCHAR2,
newparent IN VARCHAR2,
deleteoldrdn IN PLS_INTEGER,
serverctrls IN LDAPCONTROL,
clientctrls IN LDAPCONTROL

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–82 RENAME_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init().

dn This parameter specifies the name of the directory entry to be
renamed or moved.

newrdn This parameter specifies the new RDN.

newparent This parameter specifies the DN of the new parent.

deleteoldrdn This parameter specifies if the old RDN should be retained. If
this value is 1, then the old RDN will be removed.

serverctrls Currently not supported.

clientctrls Currently not supported.

Table 4–83 RENAME_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.
4-70 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
N/A

See Also
DBMS_LDAP.modrdn2_s() .

Table 4–84 RENAME_S Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_entry_dn Invalid LDAP DN.

invalid_rdn Invalid LDAP RDN.

invalid_newparent Invalid LDAP newparent.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.
The Oracle Internet Directory PL/SQL API 4-71

PL/SQL Reference
FUNCTION explode_dn
Breaks a DN up into its components.

Syntax
FUNCTION explode_dn
(

dn IN VARCHAR2,
notypes IN PLS_INTEGER

)
RETURN STRING_COLLECTION;

Parameters

Return Values

Exceptions

Table 4–85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

notypes This parameter specifies if the attribute tags will be returned. If
this value is not 0, then there will be no attribute tags will be
returned.

Table 4–86 EXPLODE_DN Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN can not be broken up, NULL will
be returned.

Table 4–87 EXPLODE_DN Function Exceptions

Exception Description

invalid_entry_dn Invalid LDAP DN.

invalid_notypes Invalid LDAP notypes value.
4-72 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Usage Notes
N/A

See Also
DBMS_LDAP.get_dn() .
The Oracle Internet Directory PL/SQL API 4-73

PL/SQL Reference
FUNCTION open_ssl
Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP

connection.

Syntax
FUNCTION open_ssl
(

ld IN SESSION,
sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHAR2,
sslauth IN PLS_INTEGER

)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–88 OPEN_SSL Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session, as returned by a
successful call to DBMS_LDAP.init().

sslwrl This parameter specifies the wallet location (Required for
one-way or two-way SSL connection.)

sslwalletpasswd This parameter specifies the wallet password (Required for
one-way or two-way SSL connection.)

sslauth This parameter specifies the SSL Authentication Mode (1 for no
authentication required, 2 for one way authentication required, 3
for two way authentication required.

Table 4–89 OPEN_SSL Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.
4-74 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions

Usage Notes
Need to call DBMS_LDAP.init() first to acquire a valid ldap session.

See Also
DBMS_LDAP.init() .

Table 4–90 OPEN_SSL Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_ssl_wallet_loc Invalid LDAP SSL wallet location.

invalid_ssl_wallet_
passwd

Invalid LDAP SSL wallet passwd.

invalid_ssl_auth_mode Invalid LDAP SSL authentication mode.
The Oracle Internet Directory PL/SQL API 4-75

PL/SQL Reference
FUNCTION msgfree
This function frees the chain of messages associated with the message handle

returned by synchronous search functions.

Syntax
FUNCTION msgfree
(

res IN MESSAGE
)

RETURN PLS_INTEGER;

Parameters

Return Values

Table 4–91 MSGFREE Function Parameters

Parameter Description

res The message handle as obtained by a call to one of the
synchronous search routines.

Table 4–92 MSGFREE Return Values

Value Description

PLS_INTEGER Indicates the type of the last message in the chain.

The function might return any of the following values:

■ DBMS_LDAP.LDAP_RES_BIND

■ DBMS_LDAP.LDAP_RES_SEARCH_ENTRY

■ DBMS_LDAP.LDAP_RES_SEARCH_REFERENCE

■ DBMS_LDAP.LDAP_RES_SEARCH_RESULT

■ DBMS_LDAP.LDAP_RES_MODIFY

■ DBMS_LDAP.LDAP_RES_ADD

■ DBMS_LDAP.LDAP_RES_DELETE

■ DBMS_LDAP.LDAP_RES_MODDN

■ DBMS_LDAP.LDAP_RES_COMPARE

■ DBMS_LDAP.LDAP_RES_EXTENDED
4-76 Oracle Internet Directory Application Developer’s Guide

PL/SQL Reference
Exceptions
N/A. No LDAP-specific exception is raised.

Usage Notes
N/A

See Also
DBMS_LDAP.search_s(), DBMS_LDAP.search_st() .
The Oracle Internet Directory PL/SQL API 4-77

PL/SQL Reference
FUNCTION ber_free
This function frees the memory associated with a handle to BER ELEMENT.

Syntax
PROCEDURE ber_free
(

ber_elem IN BER_ELEMENT,
freebuf IN PLS_INTEGER

)

Parameters

Return Values
N/A

Exceptions
N/A. No LDAP-specific exception is raised.

Usage Notes
N/A

See Also
DBMS_LDAP.first_attribute(),DBMS_LDAP.next_attribute().

Table 4–93 BER_FREE Function Parameters

Parameter Description

ber_elem A handle to BER ELEMENT.

freebuf The value of this flag should be zero while the BER ELEMENT
returned from DBMS_LDAP.first_attribute() is being freed. For
any other case, the value of this flag should be one.

The default value of this parameter is zero.
4-78 Oracle Internet Directory Application Developer’s Guide

Command-Line Tool
5

Command-Line Tools Syntax

This chapter provides syntax, usage notes, and examples for using LDAP Data

Interchange Format (LDIF) and LDAP command-line tools. It contains these topics:

■ LDAP Data Interchange Format (LDIF) Syntax

■ Command-Line Tools Syntax

■ Catalog Management Tool Syntax
s Syntax 5-1

LDAP Data Interchange Format (LDIF) Syntax
LDAP Data Interchange Format (LDIF) Syntax
The standardized file format for directory entries is as follows:

dn: distinguished_name
attribute_type : attribute_value
.
.
.
objectClass: object_class_value
.
.
.

The following example shows a file entry for an employee. The first line contains

the DN. The lines that follow the DN begin with the mnemonic for an attribute,

followed by the value to be associated with that attribute. Note that each entry ends

with lines defining the object classes for the entry.

dn: cn=Suzie Smith,ou=Server Technology,o=Acme, c=US
cn: Suzie Smith
cn: SuzieS
sn: Smith
email: ssmith@us.Acme.com
telephoneNumber: 69332
photo:/ ORACLE_HOME/empdir/photog/ssmith.jpg
objectClass: organizational person
objectClass: person
objectClass: top

Property Value Description

dn: RDN,RDN,RDN, ... Separate RDNs with commas.

attribute: attribute_value This line repeats for every attribute in the entry,
and for every attribute value in multi-valued
attributes.

objectClass: object_class_ value This line repeats for every object class.
5-2 Oracle Internet Directory Application Developer’s Guide

LDAP Data Interchange Format (LDIF) Syntax
The next example shows a file entry for an organization.

dn: o=Acme,c=US
o: Acme
ou: Financial Applications
objectClass: organization
objectClass: top

LDIF Formatting Notes
A list of formatting rules follows. This list is not exhaustive.

■ All mandatory attributes belonging to an entry being added must be included

with non-null values in the LDIF file.

■ Non-printing characters and tabs are represented in attribute values by base-64

encoding.

■ The entries in your file must be separated from each other by a blank line.

■ A file must contain at least one entry.

■ Lines can be continued to the next line by beginning the continuation line with

a space or a tab.

■ Add a blank line between separate entries.

■ Reference binary files, such as photographs, with the absolute address of the

file, preceded by a forward slash ("/").

■ The DN contains the full, unique directory address for the object.

■ The lines listed after the DN contain both the attributes and their values. DNs

and attributes used in the input file must match the existing structure of the

DIT. Do not use attributes in the input file that you have not implemented in

your DIT.

■ Sequence the entries in an LDIF file so that the DIT is created from the top

down. If an entry relies on an earlier entry for its DN, make sure that the earlier

entry is added before its child entry.

■ When you define schema within an LDIF file, insert a white space between the

opening parenthesis and the beginning of the text, and between the end of the

text and the ending parenthesis.

Tip: To see the mandatory and optional attribute types for an

object class, use Oracle Directory Manager. See Oracle Internet
Directory Administrator’s Guide.
Command-Line Tools Syntax 5-3

Command-Line Tools Syntax
Command-Line Tools Syntax
This section tells you how to use the following tools:

■ ldapadd Syntax

■ ldapaddmt Syntax

■ ldapbind Syntax

■ ldapcompare Syntax

■ ldapdelete Syntax

■ ldapmoddn Syntax

■ ldapmodify Syntax

■ ldapmodifymt Syntax

■ ldapsearch Syntax

See Also: The various resources listed in Oracle Internet Directory
Administrator’s Guide. for a complete list of LDIF formatting rules

and for information about using NLS with LDIF files.
5-4 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
ldapadd Syntax
The ldapadd command-line tool enables you to add entries, their object classes,

attributes, and values to the directory. To add attributes to an existing entry, use the

ldapmodify command, explained in "ldapmodify Syntax" on page 5-15.

ldapadd uses this syntax:

ldapadd [arguments] -f filename

where filename is the name of an LDIF file written with the specifications

explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on

page 5-2.

The following example adds the entry specified in the LDIF file my_ldif_
file.ldi :

ldapadd -p 389 -h myhost -f my_ldif_file.ldi

See Also: Oracle Internet Directory Administrator’s Guide. for an

explanation of using ldapadd to configure a server with an input

file

Optional Arguments Descriptions

-b Specifies that you have included binary file names in the file,
which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

-c Tells ldapadd to proceed in spite of errors. The errors will be
reported. (If you do not use this option, ldapadd stops when it
encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry specified in binddn. Use this with the -w password option.

-E "character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-f filename Specifies the input name of the LDIF format import data file. For a
detailed explanation of how to format an LDIF file, see "LDAP
Data Interchange Format (LDIF) Syntax" on page 5-2.

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-K Same as -k , but performs only the first step of the Kerberos bind
Command-Line Tools Syntax 5-5

Command-Line Tools Syntax
-k Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with
KERBEROS defined.

You must already have a valid ticket granting ticket.

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-n Shows what would occur without actually performing the
operation

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p directory_server_port_
number

Connects to the directory on TCP port directory_server_port_
number. If you do not specify this option, the tool connects to the
default port (389).

-P wallet_password Specifies wallet password required for one-way or two-way SSL
connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Optional Arguments Descriptions
5-6 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
ldapaddmt Syntax
ldapaddmt is like ldapadd: It enables you to add entries, their object classes,

attributes, and values to the directory. It is unlike ldapadd in that it supports

multiple threads for adding entries concurrently.

While it is processing LDIF entries, ldapaddmt logs errors in the add.log file in the

current directory.

ldapaddmt uses this syntax:

ldapaddmt -T number_of_threads -h host -p port -f filename

where filename is the name of an LDIF file written with the specifications

explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on

page 5-2.

The following example uses five concurrent threads to process the entries in the file

myentries.ldif .

ldapaddmt -T 5 -h node1 -p 3000 -f myentries.ldif

Note: Increasing the number of concurrent threads improves the

rate at which LDIF entries are created, but consumes more system

resources.

Optional Arguments Descriptions

-b Specifies that you have included binary file names in the data file,
which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

-c Tells the tool to proceed in spite of errors. The errors will be
reported. (If you do not use this option, the tool stops when it
encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn. Use this with the -w password
option.

-E "character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-K Same as -k, but performs only the first step of the kerberos bind
Command-Line Tools Syntax 5-7

Command-Line Tools Syntax
-k Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with
KERBEROS defined.

You must already have a valid ticket granting ticket.

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-n Shows what would occur without actually performing the
operation.

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies wallet password required for one-way or two-way SSL
connections

-T Sets the number of threads for concurrently processing entries

-U SSLAuth Specifies SSL Authentication Mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Optional Arguments Descriptions
5-8 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
ldapbind Syntax
The ldapbind command-line tool enables you to see whether you can authenticate a

client to a server.

ldapbind uses this syntax:

ldapbind [arguments]

Optional Arguments Descriptions

-D binddn When authenticating to the directory, specifies doing so as the
entry specified in binddn. Use this with the -w password option.

-E ".character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-n Shows what would occur without actually performing the
operation

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies the wallet password required for one-way or two-way
SSL connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"
Command-Line Tools Syntax 5-9

Command-Line Tools Syntax
ldapcompare Syntax
The ldapcompare command-line tool enables you to match attribute values you

specify in the command line with the attribute values in the directory entry.

ldapcompare uses this syntax:

ldapcompare [arguments]

The following example tells you whether Person Nine ’s title is associate .

ldapcompare -p 389 -h myhost -b "cn=Person Nine, ou=EuroSInet Suite, o=IMC,
c=US" -a title -v associate

Mandatory Arguments Descriptions

-a attribute name Specifies the attribute on which to perform the compare

-b "basedn" Specifies the distinguished name of the entry on which to perform
the compare

-v attribute value Specifies the attribute value to compare

Optional Arguments Descriptions

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn. Use this with the -w password option.

-d debug-level Sets the debugging level. See the chapter on managing a directory

server in Oracle Internet Directory Administrator’s Guide.

-E "character_set" Specifies native character set encoding. See chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-f filename Specifies the input filename

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).
5-10 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
ldapdelete Syntax
The ldapdelete command-line tool enables you to remove entire entries from the

directory that you specify in the command line.

ldapdelete uses this syntax:

ldapdelete [arguments] [" entry_DN" | -f input_filename]

The following example uses port 389 on a host named myhost.

ldapdelete -p 389 -h myhost "ou=EuroSInet Suite, o=IMC, c=US"

-P wallet_password Specifies wallet password (required for one-way or two-way SSL
connections)

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Note: If you specify the entry DN, then do not use the -f option.

Optional Arguments Descriptions

-D binddn When authenticating to the directory, uses a full DN for the binddn
parameter; typically used with the -w password option.

Optional Arguments Descriptions
Command-Line Tools Syntax 5-11

Command-Line Tools Syntax
-d debug-level Sets the debugging level. See the chapter on managing a directory

server in Oracle Internet Directory Administrator’s Guide.

-E "character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-f input_filename Specifies the input filename

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-k Authenticates using authentication instead of simple
authentication. To enable this option, you must compile with
Kerberos defined.

You must already have a valid ticket granting ticket.

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-n Shows what would be done, but doesn’t actually delete

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies wallet password required for one-way or two-way SSL
connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect.

Optional Arguments Descriptions
5-12 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
ldapmoddn Syntax
The ldapmoddn command-line tool enables you to modify the DN or RDN of an

entry.

ldapmoddn uses this syntax:

ldapmoddn [arguments]

The following example uses ldapmoddn to modify the RDN component of a DN

from "cn=dcpl" to "cn=thanh mai" . It uses port 389, and a host named myhost.

ldapmoddn -p 389 -h myhost -b "cn=dcpl,dc=Americas,dc=imc,dc=com" -R "cn=thanh
mai"

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Mandatory Argument Description

-b "basedn" Specifies DN of the entry to be moved

Optional Arguments Descriptions

-D binddn When authenticating to the directory, do so as the entry is
specified in binddn. Use this with the -w password option.

-E "character_set" Specifies native character set encoding. See the chapter on NLS

in Oracle Internet Directory Administrator’s Guide.

-f filename Specifies the input filename

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP
address.

Optional Arguments Descriptions
Command-Line Tools Syntax 5-13

Command-Line Tools Syntax
-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-N newparent Specifies new parent of the RDN

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies wallet password required for one-way or two-way SSL
connections

-r Specifies that the old RDN is not retained as a value in the
modified entry. If this argument is not included, the old RDN is
retained as an attribute in the modified entry.

-R newrdn Specifies new RDN

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this
parameter as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Optional Arguments Descriptions
5-14 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
ldapmodify Syntax
The ldapmodify tool enables you to act on attributes.

ldapmodify uses this syntax:

ldapmodify [arguments] -f filename

where filename is the name of an LDIF file written with the specifications

explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page 5-2.

The list of arguments in the following table is not exhaustive.

Optional Arguments Description

-a Denotes that entries are to be added, and that the input file is in
LDIF format.

-b Specifies that you have included binary file names in the data file,
which are preceded by a forward slash character.

-c Tells ldapmodify to proceed in spite of errors. The errors will be
reported. (If you do not use this option, ldapmodify stops when it
encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn. Use this with the -w password option.

-E "character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-n Shows what would occur without actually performing the
operation.

-o log_file_name Can be used with the -c option to write the erroneous LDIF
entries in the logfile. You must specify the absolute path for the
log file name.

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).
Command-Line Tools Syntax 5-15

Command-Line Tools Syntax
To run modify , delete , and modifyrdn operations using the -f flag, use LDIF

for the input file format (see "LDAP Data Interchange Format (LDIF) Syntax" on

page 5-2) with the specifications noted below:

If you are making several modifications, then, between each modification you enter,

add a line that contains a hyphen (-) only. For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype:modify
add: work-phone
work-phone:510/506-7000
work-phone:510/506-7001
-
delete: home-fax

Unnecessary space characters in the LDIF input file, such as a space at the end of an

attribute value, will cause the LDAP operations to fail.

-P wallet_password Specifies wallet password required for one-way or two-way SSL
connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the -D option.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Optional Arguments Description
5-16 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
Line 1: Every change record has, as its first line, the literal dn: followed by the DN

value for the entry, for example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US

Line 2: Every change record has, as its second line, the literal “changetype: ”

followed by the type of change (add, delete, modify, modrdn), for example:

changetype:modify

or

changetype:modrdn

Format the remainder of each record according to the following requirements for

each type of change:

■ changetype:add

Uses LDIF format (see "LDAP Data Interchange Format (LDIF) Syntax" on

page 5-2).

■ changetype:modify

The lines that follow this changetype consist of changes to attributes belonging

to the entry that you identified in Line 1 above. You can specify three different

types of attribute modifications—add, delete, and replace—which are explained

next:

– Add attribute values. This option to changetype modify adds more values

to an existing multi-valued attribute. If the attribute does not exist, it adds

the new attribute with the specified values:

add: attribute name
attribute name: value1
attribute name: value2...

For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype:modify
add: work-phone
work-phone:510/506-7000
work-phone:510/506-7001
Command-Line Tools Syntax 5-17

Command-Line Tools Syntax
– Delete values. If you supply only the "delete" line, all the values for the

specified attribute are deleted. Otherwise, if you specify an attribute line,

you can delete specific values from the attribute:

delete: attribute name
[attribute name: value1]

For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype:modify
delete: home-fax

– Replace values. Use this option to replace all the values belonging to an

attribute with the new, specified set:

replace: attribute name
[attribute name: value1 ...]

If you do not provide any attributes with "replace," then the directory adds

an empty set. It then interprets the empty set as a delete request, and

complies by deleting the attribute from the entry. This is useful if you want

to delete attributes that may or may not exist.

For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype:modify
replace: work-phone
work-phone:510/506-7002

* changetype:delete

This change type deletes entries. It requires no further input, since you

identified the entry in Line 1 and specified a changetype of delete in

Line 2.

For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype:delete

* changetype:modrdn

The line following the change type provides the new relative distin-

guished name using this format:

newrdn: RDN
5-18 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype:modrdn
newrdn: cn=Barbara Fritchy-Blomberg

Example: Using ldapmodify to Add an Attribute
This example adds a new attribute called myAttr . The LDIF file for this operation

is:

dn: cn=subschemasubentry
changetype: modify
add: attributetypes
attributetypes: (1.2.3.4.5.6.7 NAME ‘myAttr’ DESC ‘New attribute definition’
EQUALITY caseIgnoreMatch SYNTAX
‘1.3.6.1.4.1.1466.115.121.1.15’)

On the first line, enter the DN specifying where this new attribute is to be located.

All attributes and object classes they are stored in cn=subschemasubentry .

The second and third lines show the proper format for adding a new attribute.

The last line is the attribute definition itself. The first part of this is the object

identifier number: 1.2.3.4.5.6.7 . It must be unique among all other object

classes and attributes. Next is the NAME of the attribute. In this case the attribute

NAME is myAttr . It must be surrounded by single quotes. Next is a description of

the attribute. Enter whatever description you want between single quotes. At the

end of this attribute definition in this example are optional formatting rules to the

attribute. In this case we are adding a matching rule of EQUALITY
caseIgnoreMatch and a SYNTAX of Directory String . This example uses the

object ID number of 1.3.6.1.4.1.1466.115.121.1.15 instead of the SYNTAXES name

which is "Directory String".

Put your attribute information in a file formatted like this example. Then run the

following command to add the attribute to the schema of your Oracle directory

server.

ldapmodify -h yourhostname -p 389 -D orcladmin -w "welcome" -v -f
/tmp/newattr.ldif

This ldapmodify command assumes that your Oracle directory server is running on

port 389, that your super user account name is orcladmin , that your super user
Command-Line Tools Syntax 5-19

Command-Line Tools Syntax
password is welcome and that the name of your LDIF file is newattr.ldif .

Substitute the host name of your computer where you see yourhostname .

If you are not in the directory where the LDIF file is located, then you must enter

the full directory path to the file at the end of your command. This example

assumes that your LDIF file is located in the /tmp directory.

ldapmodifymt Syntax
The ldapmodifymt command-line tool enables you to modify several entries

concurrently.

ldapmodifymt uses this syntax:

ldapmodifymt -T number_of_threads [arguments] -f filename

where filename is the name of an LDIF file written with the specifications

explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page 5-2.

For example:

ldapmodifymt -T 5 -h node1 -p 3000 -f myentries.ldif

See Also: "ldapmodify Syntax" on page 5-15 for additional

formatting specifications used by ldapmodifymt

Optional Arguments Descriptions

-a Denotes that entries are to be added, and that the input file is in
LDIF format. (If you are running ldapadd, this flag is not
required.)

-b Specifies that you have included binary file names in the data file,
which are preceded by a forward slash character.

-c Tells ldapmodify to proceed in spite of errors. The errors will be
reported. (If you do not use this option, ldapmodify stops when it
encounters an error.)

-D "binddn" When authenticating to the directory, specifies doing so as the
entry is specified in binddn. Use this with the -w password option.

-E "character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.
5-20 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-n Shows what would occur without actually performing the
operation.

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies wallet password required for one-way or two-way SSL
connections

-T Sets the number of threads for concurrently processing entries

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w password Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the -D option.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

Optional Arguments Descriptions
Command-Line Tools Syntax 5-21

Command-Line Tools Syntax
ldapsearch Syntax
The ldapsearch command-line tool enables you to search for and retrieve specific

entries in the directory.

ldapsearch uses this syntax:

ldapsearch [arguments] filter [attributes]

The filter format must be compliant with RFC-2254.

Separate attributes with a space. If you do not list any attributes, all attributes are

retrieved.

See Also: http://www.ietf.org/rfc/rfc2254.txt for further

information about the standard for the filter format

Mandatory Arguments Descriptions

-b "basedn" Specifies the base DN for the search

-s scope Specifies search scope: base, one, or sub.

Optional Arguments Descriptions

-A Retrieves attribute names only (no values)

-a deref Specifies alias dereferencing: never, always, search, or find

-B Allows printing of non-ASCII values

-D binddn When authenticating to the directory, specifies doing so as the
entry specified in binddn. Use this with the -w password option.

-d debug level Sets debugging level to the level specified (see the chapter on

managing a directory server in Oracle Internet Directory
Administrator’s Guide.)

-E "character_set" Specifies native character set encoding. See the chapter on NLS in

Oracle Internet Directory Administrator’s Guide.

-f file Performs sequence of searches listed in file

-F sep Prints ‘sep’ instead of ‘=’ between attribute names and values

-h ldaphost Connects to ldaphost, rather than to the default host, that is, your
local computer. ldaphost can be a computer name or an IP address.

-L Prints entries in LDIF format (-B is implied)
5-22 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
-l timelimit Specifies maximum time (in seconds) to wait for ldapsearch
command to complete

-M Instructs the tool to send the ManageDSAIT control to the server.
The ManageDSAIT control instructs the server not to send
referrals to clients. Instead a referral entry is returned as a regular
entry.

-n Shows what would be done without actually searching

-O ref_hop_limit Specifies the number of referral hops that a client should process.
The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies wallet password (required for one-way or two-way SSL
connections)

-S attr Sorts the results by attribute attr

-t Writes to files in /tmp

-u Includes user friendly entry names in the output

-U SSLAuth Specifies the SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol. A
value of 2 causes the tool to use the LDAP v2 protocol.

-w passwd Specifies bind passwd for simple authentication

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on Solaris, you could set this parameter
as follows:

-W "file:/home/my_dir/my_wallet"

On Windows NT, you could set this parameter as follows:

-W "file:C:\my_dir\my_wallet"

-z sizelimit Specifies maximum number of entries to retrieve

Optional Arguments Descriptions
Command-Line Tools Syntax 5-23

Command-Line Tools Syntax
Examples of ldapsearch Filters
Study the following examples to see how to build your own search commands.

Example 1: Base Object Search The following example performs a base-level search on

the directory from the root.

ldapsearch -p 389 -h myhost -b "" -s base -v "objectclass=*"

■ -b specifies base dn for search, root in this case.

■ -s specifies whether the search is a base search (base), one level search (one)

or subtree search (sub).

■ "objectclass=*" specifies the filter for search.

Example 2: One-Level Search The following example performs a one level search

starting at "ou=HR, ou=Americas, o=IMC, c=US" .

ldapsearch -p 389 -h myhost -b "ou=HR, ou=Americas, o=IMC, c=US" -s one -v
"objectclass=*"

Example 3: Subtree Search The following example performs a sub-tree search and

returns all entries having a DN starting with "cn=Person" .

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "cn=Person*"

Example 4: Search Using Size Limit The following example actually retrieves only two

entries, even if there are more than two matches.

ldapsearch -h myhost -p 389 -z 2 -b "ou=Benefits,ou=HR,ou=Americas,o=IMC,c=US"
-s one "objectclass=*"

Example 5: Search with Required Attributes The following example returns only the DN
attribute values of the matching entries:

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "objectclass=*" dn

The following example retrieves only the distinguished name (dn) along with the

surname (sn) and description (description) attribute values:

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "cn=Person*" dn sn description
5-24 Oracle Internet Directory Application Developer’s Guide

Command-Line Tools Syntax
Example 6: Search for Entries with Attribute Options The following example retrieves

entries with common name (cn) attributes that have an option specifying a

language code attribute option. This particular example retrieves entries in which

the common names are in French and begin with the letter R.

ldapsearch -p 389 -h myhost -b "c=US" -s sub "cn;lang-fr=R*"

Suppose that, in the entry for John, no value is set for the cn;lang-it language

code attribute option. In this case, the following example does not return John’s

entry:

ldapsearch -p 389 -h myhost -b "c=us" -s sub "cn;lang-it=Giovanni"

Example 7: Searching for All User Attributes and Specified Operational Attributes The

following example retrieves all user attributes and the createtimestamp and

orclguid operational attributes:

ldapsearch -p 389 -h myhost -b "ou=Benefits,ou=HR,ou=Americas,o=IMC,c=US" -s sub
"cn=Person*" * createtimestamp orclguid

The following example retrieves entries modified by Anne Smith:

ldapsearch -h sun1 -b "" "(&(objectclass=*)(modifiersname=cn=Anne
Smith))"

The following example retrieves entries modified between 01 April 2001 and 06

April 2001:

ldapsearch -h sun1 -b "" "(&(objectclass=*)(modifytimestamp>=20000401000000)
(modifytimestamp<= 20000406235959))"

Other Examples: Each of the following examples searches on port 389 of host sun1,

and searches the whole subtree starting from the DN "ou=hr,o=acme,c=us" .

The following example searches for all entries with any value for the objectclass

attribute.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree "objectclass=*"

Note: Because modifiersname and modifytimestamp are not

indexed attributes, use catalog.sh to index these two attributes.

Then, restart the Oracle directory server before issuing the two

previous ldapsearch commands.
Command-Line Tools Syntax 5-25

Command-Line Tools Syntax
The following example searches for all entries that have orcle at the beginning of

the value for the objectclass attribute.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"objectclass=orcle*"

The following example searches for entries where the objectclass attribute

begins with orcle and cn begins with foo.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"(&(objectclass=orcle*)(cn=foo*))"

The following example searches for entries in which the common name (cn) is not

foo .

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree "(!(cn=foo))"

The following example searches for entries in which cn begins with foo or sn
begins with bar .

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"(|(cn=foo*)(sn=bar*))"

The following example searches for entries in which employeenumber is less than

or equal to 10000.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"employeenumber<=10000"
5-26 Oracle Internet Directory Application Developer’s Guide

Catalog Management Tool Syntax
Catalog Management Tool Syntax
Oracle Internet Directory uses indexes to make attributes available for searches.

When Oracle Internet Directory is installed, the entry cn=catalogs lists available

attributes that can be used in a search. Only those attributes that have an equality

matching rule can be indexed.

If you want to use additional attributes in search filters, you must add them to the

catalog entry. You can do this at the time you create the attribute by using Oracle

Directory Manager. However, if the attribute already exists, then you can index it

only by using the Catalog Management tool.

Before running the Catalog Management tool, unset the LANG variable. After you

finish running Catalog Management tool, set the LANG variable back to its original

value.

To unset LANG:

■ Using Korn shell:

UNSET LANG

■ Using C shell:

UNSETENV LANG

The Catalog Management tool uses this syntax:

catalog.sh -connect net_service_name {add|delete} {-attr attr_name |-file
filename}

Mandatory Argument Description

- connect net_service_name Specifies the net service name to connect to the directory
database

See Also: Oracle Net Services Administrator’s Guide

Optional Arguments Descriptions

- add -attr attr_name Indexes the specified attribute

- delete -attr attr_name Drops the index from the specified attribute

- add -file filename Indexes attributes (one per line) in the specified file

-delete -file filename Drops the indexes from the attributes in the specified file
Command-Line Tools Syntax 5-27

Catalog Management Tool Syntax
When you enter the catalog.sh command, the following message appears:

This tool can only be executed if you know the OiD user password.
Enter OiD password:

If you enter the correct password, the command is executed. If you give an incorrect

password, the following message is displayed:

Cannot execute this tool

After you finish running the Catalog Management tool, set the LANG variable back

to its original value.

To set LANG:

■ Using Korn shell:

SET LANG=appropriate_language ; EXPORT LANG

■ Using C shell:

SETENV LANGappropriate_language

To effect the changes after running the Catalog Management tool, stop, then restart,

the Oracle directory server.

See Also: The chapter on preliminary tasks in Oracle Internet
Directory Administrator’s Guide. for instructions on starting and

restarting directory servers
5-28 Oracle Internet Directory Application Developer’s Guide

Glossary

access control item (ACI)

An attribute that determines who has what type of access to what directory data. It

contains a set of rules for structural access items, which pertain to entries, and

content access items, which pertain to attributes. Access to both structural and

content access items may be granted to one or more users or groups.

access control list (ACL)

The group of access directives that you define. The directives grant levels of access

to specific data for specific clients, or groups of clients, or both.

access control policy point

An entry that contains security directives that apply downward to all entries at

lower positions in the directory information tree (DIT).

ACI

See access control item (ACI)

ACL

See access control list (ACL)

ACP

See access control policy point

administrative area

A subtree on a directory server whose entries are under the control (schema, ACL,

and collective attributes) of a single administrative authority.
Glossary-1

advanced symmetric replication (ASR)

See Oracle9i Replication

agent

See directory integration agent

agent profile

In an Oracle Directory Integration platform environment, an entry in Oracle

Internet Directory that specifies:

■ Configuration parameters for integration agents

■ Mapping rules for synchronizing between a connected directory and Oracle

Internet Directory

anonymous authentication

The process by which the directory authenticates a user without requiring a user

name and password combination. Each anonymous user then exercises the

privileges specified for anonymous users.

API

See application program interface

application program interface

Programs to access the services of a specified application. For example,

LDAP-enabled clients access directory information through programmatic calls

available in the LDAP API.

ASR

See Oracle9i Replication

attribute

An item of information that describes some aspect of an entry. An entry comprises a

set of attributes, each of which belongs to an object class. Moreover, each attribute

has both a type, which describes the kind of information in the attribute, and a value,

which contains the actual data.

attribute configuration file

In an Oracle Directory Integration platform environment, a file that specifies

attributes of interest in a connected directory.
Glossary-2

attribute type

The kind of information an attribute contains, for example, jobTitle .

attribute value

The particular occurrence of information appearing in that entry. For example, the

value for the jobTitle attribute could be manager .

authentication

The process of verifying the identity of a user, device, or other entity in a computer

system, often as a prerequisite to allowing access to resources in a system.

authorization

Permission given to a user, program, or process to access an object or set of objects.

binding

The process of authenticating to a directory.

central directory

In an Oracle Directory Integration platform environment, the directory that acts as

the central repository. In an Oracle Directory Integration platform environment,

Oracle Internet Directory is the central directory.

certificate

An ITU x.509 v3 standard data structure that securely binds an identity to a public

key. A certificate is created when an entity’s public key is signed by a trusted

identity: a certificate authority (CA). This certificate ensures that the entity’s

information is correct and that the public key actually belongs to that entity.

certificate authority (CA)

A trusted third party that certifies that other entities—users, databases,

administrators, clients, servers—are who they say they are. The certificate authority

verifies the user’s identity and grants a certificate, signing it with the certificate

authority’s private key.

certificate chain

An ordered list of certificates containing an end-user or subscriber certificate and its

certificate authority certificates.
Glossary-3

change logs

A database that records changes made to a directory server.

cipher suite

In SSL, a set of authentication, encryption, and data integrity algorithms used for

exchanging messages between network nodes. During an SSL handshake, the two

nodes negotiate to see which cipher suite they will use when transmitting messages

back and forth.

cold backup

The procedure to add a new DSA node to an existing replicating system by using

the database copy procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are

examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet

Directory.

concurrent operations

The number of operations that are being executed on the directory from all of the

concurrent clients. Note that this is not necessarily the same as the concurrent

clients, because some of the clients may be keeping their sessions idle.

configset

See configuration set entry

configuration set entry

A directory entry holding the configuration parameters for a specific instance of the

directory server. Multiple configuration set entries can be stored and referenced at

run-time. The configuration set entries are maintained in the subtree specified by

the subConfigsubEntry attribute of the DSE, which itself resides in the associated

directory information base (DIB) against which the servers are started.
Glossary-4

connect descriptor

A specially formatted description of the destination for a network connection. A

connect descriptor contains destination service and network route information.

The destination service is indicated by using its service name for Oracle9i release

release 9.0.1 database or its Oracle System Identifier (SID) for Oracle release 8.0 or

version 7 databases. The network route provides, at a minimum, the location of the

listener through use of a network address.

connected directory

In an Oracle Directory Integration platform environment, any directory or

repository other than the central directory. In such an environment, Oracle Internet

Directory serves as the central directory, and all other directories are connected

directories. Synchronization always happens between Oracle Internet Directory and

a connected directory.

consumer

A directory server that is the destination of replication updates. Sometimes called a

slave.

contention

Competition for resources.

context prefix

The DN of the root of a naming context.

cryptography

The practice of encoding and decoding data, resulting in secure messages.

data integrity

The guarantee that the contents of the message received were not altered from the

contents of the original message sent.

decryption

The process of converting the contents of an encrypted message (ciphertext) back

into its original readable format (plaintext).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,

and the operation is performed in a naming context not held locally by the server. A
Glossary-5

default knowledge reference typically sends the user to a server that has more

knowledge about the directory partitioning arrangement.

DES

Data Encryption Standard, a block cipher developed by IBM and the U.S.

government in the 1970's as an official standard.

DIB

See directory information base (DIB).

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries

that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration agent

In an Oracle Directory Integration platform environment, a program that interacts

with a connected directory to synchronize changes between the connected directory

and Oracle Internet Directory.

directory integration profile

In an Oracle Directory Integration platform environment, an entry in Oracle

Internet Directory that contains configuration information required for

synchronization.

directory integration server

In an Oracle Directory Integration platform environment, the server that drives the

synchronization of data between Oracle Internet Directory and a connected
directory

directory naming context

See naming context.

directory replication group (DRG)

The directory servers participating in a replication agreement.
Glossary-6

directory server instance

A discrete invocation of a directory server. Different invocations of a directory

server, each started with the same or different configuration set entries and startup

flags, are said to be different directory server instances.

directory-specific entry (DSE)

An entry specific to a directory system agent (DSA). Different DSAs may hold the

same DIT name, but have different contents—that is, the contents can be specific to

the DSA holding it. A DSE is an entry with contents specific to the DSA holding it.

directory system agent (DSA)

The X.500 term for a directory server.

distinguished name (DN)

The unique name of a directory entry. It comprises all of the individual names of the

parent entries back to the root.

DIS

See Oracle directory integration server (DIS)

DIT

See directory information tree (DIT)

DN

See distinguished name (DN)

DRG

See directory replication group (DRG)

DSA

See directory system agent (DSA)

DSE

See directory-specific entry (DSE)

encryption

The process of disguising the contents of a message and rendering it unreadable

(ciphertext) to anyone but the intended recipient.
Glossary-7

entry

The building block of a directory, it contains information about an object of interest

to directory users.

export agent

In an Oracle Directory Integration platform environment, an agent that exports data

out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration platform environment, the file that contains data

exported by an export agent.

export file

See export data file.

external agent

A directory integration agent that is independent of the Oracle Directory

Integration server. The Oracle directory integration server does not provide

scheduling, mapping, or error handling services for it. An external agent is typically

used when a third party metadirectory solution is integrated with the Oracle

Directory Integration platform.

failover

The process of failure recognition and recovery.

filter

A method of qualifying data, usually data that you are seeking. Filters are always

expressed as DNs, for example: cn=susie smith, o=acme, c=us .

global unique identifier (GUID)

In a multi-master replication environment, an entry replicated on multiple nodes

has the same DN on each node. However, even though it has the same DN, it is

assigned a different GUID on each node. For example, the same DN can be

replicated on both node1 and node2, but the GUID for that DN as it resides on

node1 would be different from the GUID for that DN on node2.

grace login

A login occurring within the specified period before password expiration.
Glossary-8

guest user

One who is not an anonymous user, and, at the same time, does not have a specific

user entry.

GUID

See global unique identifier (GUID).

handshake

A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is

substantially smaller than the text itself. Hash numbers are used for security and for

faster access to data.

import agent

In an Oracle Directory Integration platform environment, an agent that imports

data into Oracle Internet Directory.

import data file

In an Oracle Directory Integration platform environment, the file containing the

data imported by an import agent.

import file

See import data file.

inherit

When an object class has been derived from another class, it also derives, or

inherits, many of the characteristics of that other class. Similarly, an attribute

subtype inherits the characteristics of its supertype.

instance

See directory server instance.

integration agent

See agent.
Glossary-9

integrity

The guarantee that the contents of the message received were not altered from the

contents of the original message sent.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard

specifications. It is an international community of network designers, operators,

vendors, and researchers concerned with the evolution of the Internet architecture

and the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a

server. It permits manipulation of remote message folders, also called mailboxes, in

a way that is functionally equivalent to local mailboxes.

key

A string of bits used widely in cryptography, allowing people to encrypt and

decrypt data; a key can be used to perform other mathematical operations as well.

Given a cipher, a key determines the mapping of the plaintext to the ciphertext.

key pair

A public key and its associated private key.

See public/private key pair.

knowledge reference

The access information (name and address) for a remote DSA and the name of the

DIT subtree that the remote DSA holds. Knowledge references are also called

referrals.

latency

The time a client has to wait for a given directory operation to complete. Latency

can be defined as wasted time. In networking discussions, latency is defined as the

travel time of a packet from source to destination.

LDAP

See Lightweight Directory Access Protocol (LDAP).

LDIF

See LDAP Data Interchange Format (LDIF).
Glossary-10

Lightweight Directory Access Protocol (LDAP)

A standard, extensible directory access protocol. It is a common language that

LDAP clients and servers use to communicate. The framework of design

conventions supporting industry-standard directory products, such as the Oracle

Internet Directory.

LDAP Data Interchange Format (LDIF)

The set of standards for formatting an input file for any of the LDAP command-line

utilities.

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a

message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it

(with or without alteration of the original message), and retransmits it to the

originally-intended recipient—all without the knowledge of the legitimate sender

and receiver. This type of security attack works only in the absence of

authentication.

mapping rules file

In an Oracle Directory Integration platform environment, the file that specifies

mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from

which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site that

participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value

sought and the attribute value stored. For example, matching rules associated with

the telephoneNumber attribute could cause "(650) 123-4567" to be matched with

either "(650) 123-4567" or "6501234567" or both. When you create an attribute, you

associate a matching rule with it.
Glossary-11

MD4

A one-way hash function that produces a 128-bit hash, or message digest. If as little

as a single bit value in the file is modified, the MD4 checksum for the file will

change. Forgery of a file in a way that will cause MD4 to generate the same result as

that for the original file is considered extremely difficult.

MD5

An improved version of MD4.

MDS

See master definition site (MDS)

metadirectory

A directory solution that shares information between all enterprise directories,

integrating them into one virtual directory. It centralizes administration, thereby

reducing administrative costs. It synchronizes data between directories, thereby

ensuring that it is consistent and up-to-date across the enterprise.

MTS

See shared server

native agent

In an Oracle Directory Integration platform environment, an agent that runs under

the control of the Oracle directory integration server (DIS).

naming attribute

A specialized attribute that holds values for different types of RDN. A naming

attribute is identifiable by its mnemonic label, usually cn , sn , ou , o, c , and so on.

For example, the naming attribute c is the mnemonic for the naming attribute

country , and it holds the RDN for specific country values.

naming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must

begin at an entry that serves as the top of the subtree, and extend downward to

either leaf entries or knowledge references (also called referrals) to subordinate

naming contexts. It can range in size from a single entry to the entire DIT.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and

their client applications to reside on different computers and communicate. The
Glossary-12

main function of Oracle Net Services is to establish network sessions and transfer

data between a client application and a server. Oracle Net Services is located on

each computer in the network. Once a network session is established, Oracle Net

Services acts as a data courier for the client and the server.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a

connect request by passing a user name and password along with a net service

name in a connect string for the service to which they wish to connect:

CONNECT username/password@net_service_name

Depending on your needs, net service names can be stored in a variety of places,

including:

■ Local configuration file, tnsnames.ora, on each client

■ Directory server

■ Oracle Names server

■ External naming service, such as NDS, NIS or CDS

object class

A named group of attributes. When you want to assign attributes to an entry, you

do so by assigning to that entry the object classes that hold those attributes.

All objects associated with the same object class share the same attributes.

OEM

See Oracle Enterprise Manager.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The

commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility

The utility used to change the password with which Oracle Internet Directory

connects to an Oracle database.
Glossary-13

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates

the Oracle directory server processes. It also controls the replication server if one is

installed, and the Oracle directory integration server.

one-way function

A function that is easy to compute in one direction but quite difficult to reverse

compute, that is, to compute in the opposite direction.

one-way hash function

A one-way function that takes a variable sized input and creates a fixed size

output.

Oracle Call Interface (OCI)

An application programming interface (API) that allows you to create applications

that use the native procedures or function calls of a third-generation language to

access an Oracle database server and control all phases of SQL statement execution.

Oracle Directory Integration platform

A component of Oracle Internet Directory. It allows various information

repositories to synchronize with Oracle Internet Directory and to form a single

virtual directory.

Oracle directory integration server (DIS)

In an Oracle Directory Integration platform environment, the server that drives the

synchronization of data between Oracle Internet Directory and a connected
directory.

Oracle Directory Manager

A Java-based tool with a graphical user interface for administering Oracle Internet

Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common

services, and tools to provide an integrated and comprehensive systems

management platform for managing Oracle products.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about

dispersed users and network resources. It combines Lightweight Directory Access
Glossary-14

Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and

availability of Oracle9i.

Oracle PKI certificate usages

Defines Oracle application types that a certificate supports.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key

security credentials on clients and servers.

Oracle9 i Replication

A feature in Oracle9i that allows database tables to be kept synchronized across two

Oracle databases.

other information repository

In an Oracle Directory Integration platform environment, in which Oracle Internet

Directory serves as the central directory, any information repository except Oracle

Internet Directory.

partition

A unique, non-overlapping directory naming context that is stored on one directory

server.

partner agent

A directory integration agent for which the Oracle Directory Integration server

performs mapping, scheduling, and error handling.

PKCS #12

A public-key encryption standard (PKCS). RSA Data Security, Inc. PKCS #12 is an

industry standard for storing and transferring personal authentication

credentials—typically in a format called a wallet.

plaintext

Message text that has not been encrypted.

private key

In public-key cryptography, this key is the secret key. It is primarily used for

decryption but is also used for encryption with digital signatures.
Glossary-15

profile

See directory integration profile

proxy user

A kind of user typically employed in an environment with a middle tier such as a

firewall. In such an environment, the end user authenticates to the middle tier. The

middle tier then logs into the directory on the end user’s behalf, but does so as a

proxy user. A proxy user has the privilege to switch identities and, once it has

logged into the directory, switches to the end user’s identity. It then performs

operations on the end user’s behalf, using the authorization appropriate to that

particular end user.

public key

In public-key cryptography this key is made public to all, it is primarily

used for encryption but can be used for verifying signatures.

public-key cryptography

Cryptography based on methods involving a public key and a private key.

public-key encryption

The process in which the sender of a message encrypts the message with the public

key of the recipient. Upon delivery, the message is decrypted by the recipient using

the recipient’s private key.

public/private key pair

A mathematically related set of two numbers where one is called the private key

and the other is called the public key. Public keys are typically made widely

available, while private keys are available only to their owners. Data encrypted

with a public key can only be decrypted with its associated private key and vice

versa. Data encrypted with a public key cannot be decrypted with the same public

key.

referral

See knowledge reference.

relational database

A structured collection of data that stores data in tables consisting of one or more

rows, each containing the same set of columns. Oracle makes it very easy to link the

data in multiple tables. This is what makes Oracle a relational database

management system, or RDBMS. It stores data in two or more tables and enables
Glossary-16

you to define relationships between the tables. The link is based on one or more

fields common to both tables.

replica

Each copy of a naming context that is contained within a single server.

RDN

See relative distinguished name (RDN).

registry entry

An entry containing runtime information associated with invocations of Oracle

directory servers, called a directory server instance. Registry entries are stored in

the directory itself, and remain there until the corresponding directory server

instance stops.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names

that would serve to uniquely address the entry. In the example,

cn=Smith,o=acme,c=US , the RDN is cn=Smith .

replication agreement

A special directory entry that represents the replication relationship among the

directory servers in a directory replication group (DRG).

response time

The time between the submission of a request and the completion of the response.

root DSE

See root directory specific entry.

root directory specific entry

An entry storing operational information about the directory. The information is

stored in a number of attributes.

SASL

See Simple Authentication and Security Layer (SASL)

scalability

The ability of a system to provide throughput in proportion to, and limited only by,

available hardware resources.
Glossary-17

schema

The collection of attributes, object classes, and their corresponding matching rules.

Secure Hash Algorithm (SHA)

An algorithm that takes a message of less than 264 bits in length and produces a

160-bit message digest. The algorithm is slightly slower than MD5, but the larger

message digest makes it more secure against brute-force collision and inversion

attacks.

Secure Sockets Layer (SSL)

An industry standard protocol designed by Netscape Communications Corporation

for securing network connections. SSL provides authentication, encryption, and

data integrity using public key infrastructure (PKI).

service time

The time between the initiation of a request and the completion of the response to

the request.

session key

A key for symmetric-key cryptosystems that is used for the duration of one message

or communication session

SGA

See System Global Area (SGA).

SHA

See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server

processes, so the number of users that can be supported is increased. With shared

server configuration, many user processes connect to a dispatcher. The dispatcher

directs multiple incoming network session requests to a common queue. An idle

shared server process from a shared pool of server processes picks up a request

from the queue. This means a small pool of server processes can server a large

amount of clients. Contrast with dedicated server.

sibling

An entry that has the same parent as one or more other entries.
Glossary-18

simple authentication

The process by which the client identifies itself to the server by means of a DN and

a password which are not encrypted when sent over the network. In the simple

authentication option, the server verifies that the DN and password sent by the

client match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

A method for adding authentication support to connection-based protocols. To use

this specification, a protocol includes a command for identifying and authenticating

a user to a server and for optionally negotiating a security layer for subsequent

protocol interactions. The command has a required argument identifying a SASL

mechanism.

single key-pair wallet

A PKCS #12-format wallet that contains a single user certificate and its associated

private key. The public key is imbedded in the certificate.

slave

See consumer.

SLAPD

Standalone LDAP daemon.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in

the scope of the search. It points the user to the server that stores the requested

information.

specific administrative area

Administrative areas control:

■ Subschema administration

■ Access control administration

■ Collective attribute administration

A specific administrative area controls one of the above aspects of administration. A

specific administrative area is part of an autonomous administrative area.

sponsor node

In replication, the node that is used to provide initial data to a new node.
Glossary-19

SSL

See Secure Sockets Layer (SSL).

subclass

An object class derived from another object class. The object class from which it is

derived is called its superclass.

subschema DN

The list of DIT areas having independent schema definitions.

subentry

A type of entry containing information applicable to a group of entries in a subtree.

The information can be of these types:

■ access control policy points

■ Schema rules

■ Collective attributes

Subentries are located immediately below the root of an administrative area.

subordinate reference

A knowledge reference pointing downward in the DIT to a naming context that

starts immediately below an entry.

subtype

An attribute with one or more options, in contrast to that same attribute without the

options. For example, a commonName (cn) attribute with American English as an

option is a subtype of the commonName (cn) attribute without that option.

Conversely, the commonName (cn) attribute without an option is the supertype of

the same attribute with an option.

subACLSubentry

A specific type of subentry that contains ACL information.

subSchemaSubentry

A specific type of subentry containing schema information.

super user

A special directory administrator who typically has full access to directory

information.
Glossary-20

superclass

The object class from which another object class is derived. For example, the object

class person is the superclass of the object class organizationalPerson . The

latter, namely, organizationalPerson , is a subclass of person and inherits the

attributes contained in person .

superior reference

A knowledge reference pointing upward to a DSA that holds a naming context

higher in the DIT than all the naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more

options. For example, the commonName (cn) attribute without an option is the

supertype of the same attribute with an option. Conversely, a commonName (cn)

attribute with American English as an option is a subtype of the commonName (cn)

attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It

supplies updates from the master copy to the consumer server.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for

one Oracle database instance. If multiple users are concurrently connected to the

same instance, the data in the instance SGA is shared among the users.

Consequently, the SGA is sometimes referred to as the "shared global area."

system operational attribute

An attribute holding information that pertains to the operation of the directory

itself. Some operational information is specified by the directory to control the

server, for example, the time stamp for an entry. Other operational information,

such as access information, is defined by administrators and is used by the directory

program in its processing.

TLS

See Transport Layer Security (TLS)

think time

The time the user is not engaged in actual use of the processor.
Glossary-21

throughput

The number of requests processed by Oracle Internet Directory per unit of time.

This is typically represented as "operations per second."

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol

allows client-server applications to communicate in a way that prevents

eavesdropping, tampering, or message forgery.

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when

an identity is being validated as the entity it claims to be. Typically, the certificate

authorities you trust issue user certificates.

trustpoint

See trusted certificate.

UCS-2

Fixed-width 16-bit Unicode. Each character occupies 16 bits of storage. The Latin-1

characters are the first 256 code points in this standard, so it can be viewed as a

16-bit extension of Latin-1.

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit

space. It encodes nearly every character in just about every existing character set

standard, covering most written scripts used in the world. It is owned and defined

by Unicode Inc. Unicode is canonical encoding which means its value can be passed

around in different locales. But it does not guarantee a round-trip conversion

between it and every Oracle character set without information loss.

UNIX Crypt

The UNIX encryption algorithm.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely

called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects

the mean solar time along the Earth's prime meridian. UTC is indicated by a z at the

end of the value, for example, 200011281010z.
Glossary-22

UTF-8

A variable-width encoding of UCS-2 which uses sequences of 1, 2, or 3 bytes per

character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with one

byte, characters from 128-2047 require two bytes, and characters from 2048-65535

require three bytes. The Oracle character set name for this is UTF-8 (for the Unicode

2.1 standard). The standard has left room for expansion to support the UCS4

characters with sequences of 4, 5, and 6 bytes per character.

wallet

An abstraction used to store and manage security credentials for an individual

entity. It implements the storage and retrieval of credentials for use with various

cryptographic services. A wallet resource locator (WRL) provides all the necessary

information to locate the wallet.

wait time

The time between the submission of the request and initiation of the response.

X.509

A popular format from ISO used to sign public keys.
Glossary-23

Glossary-24

Index

A
abandoning an operation, 3-43

access control, 2-6, 2-8

and authorization, 2-8

access control information (ACI), 2-9

attributes, 2-8

directives

format, 2-9

Access Control List (ACL), 2-8

access control lists (ACLs), 2-8

ACI. See access control information (ACI)

ACLs. See Access Control List (ACL)

add.log, 5-7

administration tools

ldapadd, 5-5

ldapaddmt, 5-7

ldapbind, 5-9

ldapcompare, 5-10

ldapdelete, 5-11

ldapmoddn, 5-13

ldapmodify, 5-15

ldapmodifymt, 5-20

anonymous authentication, 2-7

applications, building

with PL/SQL LDAP API, 4-13

with the C API, 3-64

attribute options

searching for by using ldapsearch, 5-25

attributes

adding

by using ldapadd, 5-5

concurrently, by using ldapaddmt, 5-7

to existing entries, 5-5

attribute options

searching for by using ldapsearch, 5-25

deleting

by using ldapmodify, 5-18

values, by using ldapmodify, 5-18

in LDIF files, 5-2

types, 2-5

values, 2-5

replacing, by using ldapmodify, 5-18

authentication, 2-6, 2-7

anonymous, 2-7

certificate-based, 2-7

Kerberos, 5-6, 5-8, 5-12

modes, SSL, 3-2

one-way SSL, 2-8

options, 2-7

password-based, 2-7

PKI, 2-9

SSL, 2-7, 2-8, 3-2, 5-6, 5-8, 5-9, 5-16, 5-21

none, 3-2

one-way, 3-2

two-way, 3-2

strong, 2-7

to a directory server

enabling, 2-16

enabling, by using DBMS_LDAP, 2-17

enabling, by using the C API, 2-16

to the directory, 3-17

two-way SSL, 2-8

authorization, 2-6, 2-8

authorization ID, 2-7
Index-1

B
bulk tools, 1-2

C
C API, 3-1

functions

abandon, 3-43

abandon_ext, 3-43

add, 3-37

add_ext, 3-37

add_ext_s, 3-37

add_s, 3-37

compare, 3-27

compare_ext, 3-27

compare_ext_s, 3-27

compare_s, 3-27

count_entries, 3-52

count_references, 3-52

count_values, 3-56

count_values_len, 3-56

delete, 3-39

delete_ext, 3-39

delete_ext_s, 3-39

delete_s, 3-39

dn2ufn, 3-58

err2string, 3-47

explode_dn, 3-58

explode_rdn, 3-58

extended_operation, 3-41

extended_operation_s, 3-41

first_attribute, 3-54

first_entry, 3-52

first_message, 3-50

first_reference, 3-52

get_dn, 3-58

get_entry_controls, 3-60

get_option, 3-10

get_values, 3-56

get_values_len, 3-56

init, 3-9

init_ssl call, 3-3

modify, 3-30

modify_ext, 3-30

modify_ext_s, 3-30

modify_s, 3-30

msgfree, 3-44

msgid, 3-44

msgtype, 3-44

next_attribute, 3-54

next_entry, 3-52

next_message, 3-50

next_reference, 3-52

open, 3-9

parse_extended_result, 3-47

parse_reference, 3-61

parse_result, 3-47

parse_sasl_bind_result, 3-47

rename, 3-34

rename_s, 3-34

result, 3-44

sasl_bind, 3-17

sasl_bind_s, 3-17

search, 3-21

search_ext, 3-21

search_ext_s, 3-21

search_s, 3-21

search_st, 3-21

set_option, 3-10

simple_bind, 3-17

simple_bind_s, 3-17

unbind, 3-20

unbind_ext, 3-20

unbind_s, 3-20

value_free, 3-56

value_free_len, 3-56

reference, 3-4

sample search tool, 3-64

sample usage, 3-62

summary, 3-4

usage with SSL, 3-62

usage without SSL, 3-63

Catalog Management Tool

syntax, 5-27

catldap.sql, 4-13

certificate authority, 2-7

certificate-based authentication, 2-7

certificates, 2-7

change types, in ldapmodify input files, 5-17
Index-2

changetype

add, 5-17

delete, 5-18

modify, 5-17

modrdn, 5-18

children of an entry, listing, 3-26

command line tools

ldapadd, 5-5

ldapaddmt, 5-7

ldapbind, 5-9

ldapcompare, 5-10

ldapdelete, 5-11

ldapmoddn, 5-13

ldapmodify, 5-15

ldapmodifymt, 5-20

ldapsearch, 5-22

syntax, 5-4

components

Oracle Internet Directory SDK, 1-2

controls, working with, 3-15

D
data

integrity, 2-7, 2-9

privacy, 2-7, 2-9

data-type summary, 4-19

DBMS_LDAP package, 2-11, 4-14

searching by using, 2-18

deleting values from attributes, 5-18

dependencies and limitations, 3-77, 4-14

C API, 3-77

PL/SQL API, 4-14

DES40 encryption, 2-9

directives, 2-9

directory information tree (DIT), 2-2

distinguished names, 2-2

components of, 2-3

format, 2-3

in LDIF files, 5-2

DNs. see distinguished names.

documentation, related, xiii

E
encryption

DES40, 2-9

levels available in Oracle Internet Directory, 2-9

options for passwords, 2-10

passwords, 2-10

default, 2-10

MD4, 2-10

MD5, 2-10

SHA, 2-10

UNIX crypt, 2-10

RC4_40, 2-9

entries

adding

by using ldapadd, 5-5

by using ldapaddmt, 5-7

concurrently, 5-7

deleting

by using ldapdelete, 5-11

by using ldapmodify, 5-18

distinguished names of, 2-2

locating by using distinguished names, 2-3

modifying

by using ldapmodify, 5-15

concurrently by using ldapmodifymt, 5-20

naming, 2-2

reading, 3-26

errors

handling and parsing results, 3-47

examples of ldapsearch filters, 5-24

exception summary, 4-17

F
filters, 2-23

IETF-compliant, 5-22

ldapsearch, 5-24

formats, of distinguished names, 2-3

G
group entries, creating by using ldapmodify, 5-17
Index-3

H
header files and libraries, required, 3-64

history of LDAP, 2-2

I
integrity, data, 2-9

interface calls, SSL, 3-3

J
Java, 1-2

JNDI, 1-2

jpeg images, adding with ldapadd, 5-7

K
Kerberos authentication, 5-6, 5-8, 5-12

L
LDAP

data interchange format (LDIF), 5-2

syntax, 5-2

functional model, 2-6

history, 2-2

information model, 2-4

messages, obtaining results and peeking

inside, 3-44

naming model, 2-2

operations, performing, 3-21

search filters, IETF-compliant, 5-22

security model, 2-6

session handle options, 3-10

in the C API, 2-16

sessions

initializing, 2-14, 3-9

version 2 C API, 3-2

ldapadd, 5-5

adding entries, 5-5

adding jpeg images, 5-7

syntax, 5-5

ldapaddmt, 5-7

adding entries concurrently, 5-7

log, 5-7

syntax, 5-7

ldapbind, 5-9

syntax, 5-9

ldap-bind operation, 2-7

ldapcompare, 5-10

syntax, 5-10

ldapdelete, 5-11

deleting entries, 5-11

syntax, 5-11

ldapmoddn, 5-13

syntax, 5-13

ldapmodify, 5-15

adding values to multivalued attributes, 5-17

change types, 5-17

creating group entries, 5-17

deleting entries, 5-18

LDIF files in, 5-5, 5-7, 5-15, 5-20

replacing attribute values, 5-18

syntax, 5-15

ldapmodifymt, 5-20

by using, 5-20

multithreaded processing, 5-21

syntax, 5-20

ldapsearch, 3-64

filters, 5-24

syntax, 5-22

LDIF

by using, 5-2

files, in ldapmodify commands, 5-5, 5-7, 5-15,

5-20

formatting notes, 5-3

formatting rules, 5-3

syntax, 5-2

M
MD4, for password encryption, 2-10

MD5, for password encryption, 2-10

multiple threads, 5-21

in ldapaddmt, 5-7

increasing the number of, 5-7

multithreaded command line tools

ldapaddmt, 5-7

ldapmodifymt, 5-21

multivalued attributes, adding values to, 5-17
Index-4

N
naming entries, 2-2

O
object classes

adding concurrently by using ldapaddmt, 5-7

in LDIF files, 5-2

objects, removing, 5-11, 5-15

one-way SSL authentication, 2-8, 3-2

OpenLDAP Community, xiv

operating systems supported by Oracle Internet

Directory, 1-3

operational attributes

ACI, 2-8

Oracle Directory Manager, 1-2

listing attribute types, 5-3

Oracle directory replication server, 1-2

Oracle directory server, 1-2

Oracle extensions to support SSL, 3-2

Oracle Internet Directory, components, 1-2

Oracle SSL call interface, 3-2, 4-2

Oracle SSL extensions, 3-2

Oracle SSL-related libraries, 3-78

Oracle system libraries, 3-78

Oracle wallet, 3-3

Oracle Wallet Manager, 3-3

required for creating wallets, 3-77

Oracle wallet parameter

modifying, 5-6, 5-8, 5-9, 5-11, 5-13, 5-14, 5-16,

5-21, 5-23

Oracle wallets, changing location of, 5-6, 5-8, 5-9,

5-11, 5-13, 5-14, 5-16, 5-21, 5-23

overview of LDAP models, 2-2

P
password-based authentication, 2-7

passwords

encryption, 2-7, 2-10

default, 2-10

MD4, 2-10

MD5, 2-10

SHA, 2-10

UNIX crypt, 2-10

encryption options, 2-10

policies, 2-10

performance

increasing, by using multiple threads, 5-7

permissions, 2-6, 2-8

PKI authentication, 2-9

PL/SQL API, 4-1, 4-2

building applications with, 4-13

contains subset of C API, 2-11

datatype summary, 4-19

dependencies and limitations, 4-14

exception summary, 4-17

functions

add_s, 4-65

ber_free, 4-78

bind_s, 4-24

compare_s, 4-28

count_entries, 4-40

count_values, 4-68

count_values_len, 4-69

create_mod_array, 4-57

dbms_ldap.init, 4-21

delete_s, 4-52

err2string, 4-56

explode_dn, 4-72

first_attribute, 4-42

first_entry, 4-36

get_dn, 4-46

get_values, 4-48

get_values_len, 4-50

init, 4-20

modify_s, 4-63

modrdn2_s, 4-54

msgfree, 4-76

next_attribute, 4-44

next_entry, 4-38

open_ssl, 4-74, 4-76, 4-78

rename_s, 4-70

search_s, 4-30

search_st, 4-33

simple_bind_s, 4-22

unbind_s, 4-26

loading into database, 4-13

procedures

free_mod_array, 4-67
Index-5

populate_mod_array (binary version), 4-61

populate_mod_array (string version), 4-59

reference, 4-14

sample, 4-2

subprograms, 4-20

summary, 4-14

using for a search, 4-10

using from a database trigger, 4-2

privacy, data, 2-7, 2-9

privileges, 2-6, 2-8

procedures, PL/SQL

free_mod_array, 4-67

populate_mod_array (binary version), 4-61

populate_mod_array (string version), 4-59

public key

infrastructure, 2-9

R
RC4_40 encryption, 2-9

RDNs. see relative distinguished names (RDNs)

related documentation, xiii

relative distinguished names (RDNs), 2-3

modifying by using ldapmodify, 5-18

results, stepping through a list of, 3-50

RFC 1823, 3-79

rules, LDIF, 5-3

S
sample C API usage, 3-62

sample PL/SQL usage, 4-2

sample search tool, building with C API, 3-64

SDK components, 1-2

search

filters

IETF-compliant, 5-22

ldapsearch, 5-24

results

parsing, 3-51

scope, 2-22

search-related operations, flow of, 2-19

security, within Oracle Internet Directory

environment, 2-7

sessions

closing, 3-20

enabling termination by using DBMS_

LDAP, 2-24

initializing

by using DBMS_LDAP, 2-15

by using the C API, 2-14

session-specific user identity, 2-7

SHA (Secure Hash Algorithm), for password

encryption, 2-10

simple authentication, 2-7

Smith, Mark, xiii

SQL*Plus, 4-13

SSL

authentication modes, 3-2

default port, 2-8

enabling, 5-6, 5-8, 5-9, 5-16, 5-21

handshake, 3-3

interface calls, 3-3

modifying orclsslwalleturl parameter, 5-6, 5-8,

5-9, 5-11, 5-13, 5-14, 5-16, 5-21, 5-23

no authentication, 2-8

one-way authentication, 2-8

Oracle extensions, 3-2

provide encryption and decryption, 3-2

strong authentication, 2-9

two-way authentication, 2-8

wallets, 3-3

changing location of, 5-6, 5-8, 5-9, 5-11, 5-13,

5-14, 5-16, 5-21, 5-23

strong authentication, 2-7

syntax

Catalog Management Tool, 5-27

command line tools, 5-4

ldapadd, 5-5

ldapaddmt, 5-7

ldapbind, 5-9

ldapcompare, 5-10

ldapdelete, 5-11

ldapmoddn, 5-13

ldapmodify, 5-15

ldapmodifymt, 5-20

ldapsearch, 5-22

LDIF, 5-2
Index-6

T
TCP/IP socket library, 3-77

two-way authentication, SSL, 3-2

types of attributes, 2-5

U
UNIX crypt, for password encryption, 2-10

W
wallets

changing location of, 5-6, 5-8, 5-9, 5-11, 5-13,

5-14, 5-16, 5-21, 5-23

SSL, 3-3

support, 3-3
Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	About Oracle Internet Directory Software Developer’s Kit release 3.0.1
	Components of the Oracle Internet Directory Software Developer’s Kit
	Other Components of Oracle Internet Directory
	Operating Systems Supported

	2 Concepts
	History of LDAP
	Overview of LDAP Models
	LDAP Naming Model
	LDAP Information Model
	LDAP Functional Model
	LDAP Security Model

	About the Oracle Internet Directory API
	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using DBMS_LDAP

	LDAP Session Handle Options in the C API
	Enabling Authentication to a Directory Server
	Enabling Authentication to a Directory Server by Using the C API
	Enabling Authentication to a Directory Server by Using DBMS_LDAP

	Searching by Using DBMS_LDAP
	Flow of Search-Related Operations
	Search Scope
	Filters

	Enabling Session Termination by Using DBMS_LDAP

	3 The Oracle Internet Directory C API
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions

	C API Reference
	Summary of LDAP C API
	Functions
	Initializing an LDAP Session
	LDAP Session Handle Options
	Working With Controls
	Authenticating to the Directory
	Closing the Session
	Performing LDAP Operations
	Abandoning an Operation
	Obtaining Results and Peeking Inside LDAP Messages
	Handling Errors and Parsing Results
	Stepping Through a List of Results
	Parsing Search Results

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL

	Building Applications with the C API
	Required Header Files and Libraries
	Building a Sample Search Tool

	Dependencies and Limitations

	4 The Oracle Internet Directory PL/SQL API
	About the PL/SQL API
	Sample PL/SQL Usage
	Using the PL/SQL API from a Database Trigger
	Using the PL/SQL API for a Search

	Building Applications with PL/SQL LDAP API
	Dependencies and Limitations
	PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data-Type Summary
	Subprograms

	5 Command-Line Tools Syntax
	LDAP Data Interchange Format (LDIF) Syntax
	Command-Line Tools Syntax
	ldapadd Syntax
	ldapaddmt Syntax
	ldapbind Syntax
	ldapcompare Syntax
	ldapdelete Syntax
	ldapmoddn Syntax
	ldapmodify Syntax
	ldapmodifymt Syntax
	ldapsearch Syntax

	Catalog Management Tool Syntax

	Glossary
	Index

