Oracle9/ OLAP Services

Developer’s Guide to the OLAP DML

Release 1 (9.0.1)

June 2001
Part No. A86720-01

ORACLE

Oracle9i OLAP Services Developer’s Guide to the OLAP DML, Release 1 (9.0.1)
Part No. A86720-01
Copyright © 1999, 2001 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are “restricted computer
software” and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

cConten

SENA US YOUT COMMENTES oottt ettt e e e e seeeseeeeseeesesesesesessessesesesesessseseeeseeeseseees

o Y = (o1 < NSO TTTOTRRN

(0701 01Y7=T 01 1 (o] 13RS
Documentation ACCESSIDITITYoooviiccccec s

1 Basic Concepts

WHhat 1S The OLAP DIML?......coiiieiee bbbt
USING the OLAP DIML..c.ciiiiecce ettt sttt st sttt ene e e neenenneene e
How Do | Use the OLAP DML t0 ANalyze Data? ...
Where DO | GO FIOM HEFE? ..ottt

2 Defining and Working with Analytic Workspaces

Defining an ANalytic WOIKSPACE.........c.coviveiiieie ettt sanse e sseene s
How to Gain Access to an Analytic WOIrKSPACEcccoveeviive e enen
Gaining Access to a Workspace from OLAP WOrksheet...........cccooviiiiiiniinieceeeee
Gaining Access to a Workspace from a Java Applicationcccccvovvivvvienievinc s
Using the OLAP DML to Work with Analytic WOrkSpacesccccoovvevviiinnine e,
Saving Analytic Workspace Changes ... e
Minimizing Analytic Workspace Growth...........ccccooiiiiiciccc e
Sharing ANalytic WOIKSPACES.ccvieiieiieieiece sttt e et sre sttt sae e e e e enaeseeneens
Working With AUTOGO PrOgIamS........cooiuiuiairiiie ittt seese st e e esesteseeseessesteeessesessessesseas
Adding Security to an ANalytic WOIKSPACE.........coeveiiiieerie s
Obtaining Analytic Workspace INformation..........ccccocvviviineieisiecc e

ts

1-1
1-5
1-6
1-9

Defining Data Objects

Overview: Defining OLAP DML ODJECTSc..coiiiiiieec e 3-1
(2= T o YT g To D Ta =T o Yo OSSR 3-4
DefiNiNg REIALIONSoviieieecce sttt ae e e e e st e e e neeneerennn 3-7
DefiNiNg Variabls...... ..ot bbbt 3-11
Defining Variables That Handle Sparse Data Efficiently.........cc.ccccoovviieiviciniici e, 3-15
Defining Hierarchical Dimensions and Variables That Use Them ..., 3-20
DefiNiNg MELATALA.......c..oiieiii ettt b ettt bbbt bt e 3-23
Changing the Definition of an ODBJECt ... 3-24

4 Working with Expressions

OLAP DIVIL DAA TYPES ...veeiviiteeieeiesieetiestessiesteestesseesaesseesesssessessseessessesssessesssesssessesssessessessessssesssens 4-2
Using OLAP DML ODBjJects iN EXPreSSIONScoiieiiiiriieiiie ettt 4-6
OLAP DIML OPEIALOISeiitiiietie ittt ettt e et b et et e s b e bt e b e ebeesbesbeeseesseebe e e e sbeanee e 4-10
INtrOAUCING EXPIrESSIONS .. .cviiiieievecette ettt re et re st e besne e et e e eneeneenennen 4-11
Expressions and DIMeNSIONALITYccooo i e e 4-14
Specifying a Single Value for the Dimension of an EXpression.........cccccoieviieincnenne 4-16
USING FUNCLIONS 1N EXPIrESSIONS .. .c.viiieiiiiiieieeece st steste s ste st saese s e esesseseessesseseesaessessesansenns 4-22
NUMEIIC EXPIESSIONS. ... ittt b ettt ettt b e ettt be b e b e b e e st ebesbe b seeneene 4-23
JLEC o o =151 Lo o OSSR . 4-27
2 0T0] Lo T T bt o] f=1S7] 1] o S 4-28
(07e] o I} d o] g =L I o d o] £=11S] o] o 1T U SRRSO 4-37
SUDSHITULION EXPIESSIONS ...c.eitiiiiieieeieiee ettt sttt b et sb e b e besbe b e b e seeneeneebeanes 4-39
WOrKIiNG WIth NA VAIUEScooieicicse sttt sttt s enne e 4-40

Populating OLAP DML Data Objects

Overview: Populating an Analytic WOIKSPACEcccceeuerieriireieieiece e se e se e eneere s 5-1
Maintaining Dimensions and COMPOSITESccciieiiiiiiiie e e 5-3
Assigning Values t0 Data ODJECTSccoiiiiiiiiiiere e e 5-13
Calculating and ANAlYZiNg Data.........cccocoveiiiiiiisieie e ereenes 5-18
AGGregating DATAcoiiiiiiiieeeee ettt bbb bbb bbb e b 5-19

Limiting an Application’s View of the Data

INtroducing DiMeENSION STATUS.........coiiiiiieicee ettt bt se e ebe e ene s 6-2
Limiting Using a Simple LiSt Of VAIUEScooviiiici e 6-5
Limiting Using a BOOIEaN EXPreSSION........cccviiiiiieireee ettt sne s 6-7
Limiting to the Top or Bottom Values of a Sorted DIimeNSIioN...........ccoceveniieniencie e 6-11
Limiting to the Values of a Related DIimMeNnSioN.........cccccoveviiiciciie s 6-13
Limiting Based on the Position of a Value in a DIMEeNSIONcccccoviiiiiininciinenene e 6-15
Limiting Based on a Relationship Within a Hierarchycccooeviiiinniincie e, 6-16
Limiting Composites and Conjoint DIMENSIONScccooeviieicieieee e 6-21
WOrKing WIth NUTT STALUSoc.oiiii et e 6-24
WOrKING WILh ValUBSETS.......coueiiiiiiiie e ettt bbb e 6-25

Working with Models

Using Models to CalCulate Data ...ttt 7-1
Creating a Nested Hierarchy of MOAEIlS ..o 7-4
Basic Modeling COMMENAS........c.oiiiiiee ettt bbb bbb e 7-6
COMPIING 8 MOAEL......oii b bbb ettt et st be b e 7-8
L YT oo =T 1Y/ o o 1= S 7-11
Debugging @ IMOTEL.........cooiiiiee bbb bbb b bt e e 7-13
Modeling for MUltiple SCENAITOSccuoviiiie e 7-15

Designing Programs

Introduction t0 OLAP DIML PrOgramiscccoi it sie st s sbe s e nneneas 8-2
INVOKING PrOQIaMS ..ot ettt ettt ene et e s steste b e sae s e e e e e e eneenenneerens 8-3
Defining and EAiting PrOgramsot s 8-5
UsiNg Variables 1IN PrOQIaIMS ...t bbb 8-8
L ST L To AN o [0 1 =T) S 8-11
Writing User-Defined FUNCHIONS. ..ot st 8-16
Controlling the FIOW Of EXECULIONooiiiiiiiiiiese et 8-19
(D LT =T ot AT T @ 10 1 o] U RSP 8-23
Preserving the SeSSioN ENVIFONMENT ..ot s 8-25
[F=Ta o T ol =1 g o] ¢TSS PPV PP PR 8-29
(070 aa] oT1 FTaTo [ad foTo | - U g1 0SS 8-35
LS T aTo I ad feTo | - 11 o TR UR U SPR 8-37

10

11

Vi

Debugging Programs

Overview: Debugging in OLAP DIML ...t 9-1
Debugging with a Debugging File ... 9-2
Debugging With OLAP WOIKSNEEL..........ccccviiiiierire et ens 9-5
OLAP DML Debugger COMMANTScooiiiiiiiiiiniie ettt s ss e 9-6
WOrking With WatCh POINTS........ociieices e 9-10

Using Embedded SQL

O T To R] F= LA Lol g -1 I D | - S 10-2
Obtaining Access to the Relational Databasec.coioeiiiiieiiie s 10-3
Supported SQL COMIMANGAScoiiiiiiiiiie ettt e e ettt esbe st e sbe bt e sbe e s 10-4
(O 1=Tod TqT oo I (o] g = 5 o =SSR 10-5
Fetching Data into an Analytic WOrKSPACE.........c.coi i e 10-6
(D=1l FoU g T To I W O U] £lo] oSSR 10-8
(@70 1= 1T To K- W@ U1 =10 1 PSS 10-10
Fetching the SEIECted DAta........c.cooi i bbb b 10-11
(02 [111 g Lo - W @1 £=To] OOV 10-14
Using Dimensions as OQutput Host Variables........c..ccocooiiiiii s 10-14
Writing OLAP DML Data to a Relational Table ... 10-15
Matching Oracledi Data TYPES ...coiiiieierieie ettt ettt st st sb et ee s b e 10-18
Using the Special Features of an OCI CONNECLIONccccevevereieicieece e 10-20
EXAmMPIe: SQL PrOQIramcoi ittt sttt ettt bbb b b e e e e 10-22

Reading Data from Files

Introducing Data-Reading PrOogramiS ...ttt ens 11-2
REAAING FIIES ..ttt ettt b et be b b e b e b ne e e e 11-3
Specifying File Names in the OLAP DML ...t era s 11-5
Reading Data from FIlES ...t bbb 11-6
Reading and Maintaining DImMension ValUEs.............cccooiiiiiiiiiiinicsee e 11-9
Processing INPUE DALccoviiiiiiiiiiieirerieece et et e sre st snesrenae e e ae e e 11-18
Processing Records INAivVIidually ... 11-19
Processing Several Values for One Variable............ccooiiiiiie e 11-22

12 Writing Reports

Introducing the Reporting COMMEANAScccooiiiiiiiiie e e 12-2
Creating REPOI ROWS........ci ittt ettt e ettt se et e st s et e s besa e e st eseeteaneseenteneeneens 12-4
Creating RePOIt COIUMNScco ittt ettt r et se e e eneeneeresneneeeens 12-6
RetrieVing Data fOr ROWS........cco et bbb bt 12-7
Controlling the Default Format of Report QULPUL.........ccccoceieiiv s 12-11
Modifying the Layout 0f COIUMNS........cociiii s 12-12
CreatiNg HEAOINGSc.coii et bbbt bbb bt e e et ebeens 12-16
Performing Calculations iN @ REPOITcccvvviiiie e sre s 12-20
Creating Paginated REPOITSooi i bbb 12-25
Creating Headings 0N EaCh Page ..o e 12-30
Guidelines for Writing a REPOIt PrOgram.........cccccoevirieriireenieieise e seeseestessessesee e seensesennes 12-33

A Creating and Using Analytic Workspace Metadata

What is Analytic Workspace Metadata?...........ccceoveveiiiisieneie e A-1
Analytic Workspace Metadata PrereqUISITES. ..o A-2
Metadata That Describes Dimension Hierarchies ... A-10
Metadata That Describes Dimension Hierarchy Levels ..., A-16
Metadata That Describes Dimension AttribDULES. ... A-20
Metadata That Describes Other ODjJECESccoiiiiiiiiiiece s A-23

Glossary

Index

Vil

viii

Send Us Your Comments

Oracle9i OLAP Services Developer’s Guide to the OLAP DML, Release 1 (9.0.1)
Part No. A86720-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

FAX - 781-684-5880. Attn: Oracle OLAP Services
Postal service;

Oracle Corporation

OLAP Services Documentation Manager

200 Fifth Avenue

Waltham, MA 02451-8720

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

What this manual is about

The Oracle9i OLAP Services Developer’s Guide to the OLAP DML provides an
overview of the programming environment for the OLAP DML, describes the
OLAP DML data objects, and explains how to use the key commands in the OLAP
DML. It also describes how to write and debug OLAP DML programs and
illustrates programming strategies for accessing and working with data.

Intended audience
This guide is intended for users who want to perform the following tasks:
« Write OLAP DML programs
« Manage analytic workspaces with the OLAP DML
« Access data and perform analysis using the OLAP DML

Structure of this document

The Oracle9i OLAP Services Developer’s Guide to the OLAP DML is structured as
follows:

« Chapter 1 provides an overview of the OLAP DML environment.

« Chapter 2 describes how to create, attach, and manage analytic workspaces,
how to save analytic workspace changes, how to share analytic workspaces,
and how to obtain information about an analytic workspace.

« Chapter 3 describes how to define OLAP DML objects.

Xi

« Chapter 4 describes the OLAP DML data types and operators and how to create
expressions in the OLAP DML.

« Chapter 5 provides an overview of how to populate OLAP DML data objects
and how to calculate values.

« Chapter 6 describes how to limit an application’s view of the data.
« Chapter 7 describes how to write models using the OLAP DML.

« Chapter 8 describes how to write OLAP DML programs.

« Chapter 9 describes how to use the OLAP DML debugger.

« Chapter 10 describes how to access relational data by using SQL commands in
the OLAP DML.

« Chapter 11 describes how to use the OLAP DML to read data from files.
« Chapter 12 describes how to use the OLAP DML to write reports.
« Appendix A describes how to create and use analytic workspace metadata.

« The Glossary provides definitions of OLAP terminology.

Related Documentation

Xii

You will find the following documentation helpful when using the Oracle OLAP
APl and Oracle OLAP Services:

« Oracle9i OLAP Services Concepts and Administration Guide — Describes how to
use OLAP Services. It introduces the basic concepts underlying business
analysis and multidimensional querying, as well as the basic tools used for
application development and system administration.

= Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP APl — Introduces
Java programmers to the Oracle OLAP API, the application programming
interface for Oracle OLAP Services. Through OLAP Services, the OLAP API
provides access to data stored in an Oracle database. The OLAP API's
capabilities for querying, manipulating, and presenting data are particularly
suited to applications that perform online analytical processing.

« Oracle9i OLAP Services OLAP API Reference — Provides online reference
documentation for the Oracle OLAP API, the Java application programming
interface for Oracle OLAP Services.

« Oracle9i Data Warehousing Guide — Discusses the database structures, concepts,
and issues involved in creating a data warehouse to support OLAP solutions.

Conventions

Text conventions
You will find the following text conventions in this document.

Mouse usage

Convention

Usage

Boldface text

Indicates menu items, command buttons, options, field names,
and hyperlinks.

Bold text is also used for notes and other secondary information
in tables (for example, Result).

Fi xed-wi dt h text

Indicates folder names, file names, operating system
commands, and URLSs. Also indicates examples and anything
that you must type exactly as it appears.

For example: If you are asked to type showever si on, then
you would type all the characters exactly as shown in the
fixed-width font.

Italic text

Indicates variables, including variable text that is used in the
following ways:

« Inthe syntax of OLAP DML commands to indicate
arguments or parameters.

« When dialog boxes or their components are unlabeled or
have labels that change dynamically based on their current
context. The wording of variable text does not exactly
match what you see on your screen.

Italic type is also used for emphasis, for new terms, and for titles
of documents.

Underlined text

Indicates a default value in descriptions of OLAP DML syntax.

UPPERCASE text

Indicates Express commands and objects and acronyms.

Always use the left mouse button unless you are specifically instructed to use the

right mouse button.

The term “left mouse button” refers to the dominant button. If you have
reconfigured your mouse to reverse the functions of the left and right buttons, then
you will need to use the reverse button when you follow the procedures in this

manual.

Xiii

Formats for key combinations and sequences
Key combinations and key sequences appear in the following formats.

IF you seetheformat... |THEN...
Keyl+Key2, press and hold down the first key while you press the second
key.

For example: “Press Alt+Tab” means to press and hold down
the Alt key while you press the Tab key.

Keyl, Key?2, press and release the keys one after the other.

For example: “Press Alt, F, O” means to press and release the
Alt key, press and release the F key, then press and release
the O key.

Documentation Accessibility

Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program web site at

http://ww. oracl e. com accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Xiv

http://www.oracle.com/accessibility/

1

Basic Concepts

Chapter summary

List of topics

This chapter provides an overview of the basic concepts that you should
understand before you use the OLAP DML. The checklist at the end of this chapter
explains how to use this guide to learn the specific tasks that this chapter discusses.

This chapter includes the following topics:

« What Is the OLAP DML?

« Using the OLAP DML

« How Do | Use the OLAP DML to Analyze Data?
« Where Do | Go From Here?

What Is the OLAP DML?

Definition: OLAP DML

The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write programs that
contain DML commands and functions.

If you are familiar with Oracle Express Server, think of the OLAP DML as being the
same as the Express Server stored procedure language (SPL). In fact, the OLAP
DML is nearly 100 percent compatible with Oracle Express Server’s stored
procedure language.

Basic Concepts 1-1

What Is the OLAP DML?

The basic syntactic units of the OLAP DML are:
« Commands that initiate actions
« Functions that initiate actions and return a value

« Options to which you assign a value and that can influence the analytic
workspace processing environment in various ways

OLAP DML commands, functions, and options are collectively referred to as
commands. The complete syntax for each command is provided in the OLAP DML
Reference, which is a help system that you can access from OLAP Worksheet.

The purpose of the OLAP DML

The purpose of the OLAP DML is to allow application developers to extend Oracle
OLAP Services’ Java OLAP API.

To describe the purpose of the OLAP DML, it is important to discuss a few
important concepts such as:

« OLAP Server data sources
« Analytic workspaces
« The relationship of the Oracle OLAP API to the OLAP DML

OLAP Services data sources

OLAP Services can access two different data sources — the Oracle relational
database and analytic workspaces. For most applications the Oracle relational
database will be the primary (and often the only) data source. When accessing data
from the Oracle relational database, OLAP Services generates SQL to access data
stored in tables. The OLAP API provides a wide variety of analytic functions that
allow the application to derive calculated measures when using the Oracle database
as the data source.

In some cases, however, the OLAP API does not provide the means to calculate data
needed by an application. Examples include forecasts, solving a model, some types
of consolidations (aggregations), and allocations. In this case, you can use the OLAP
DML to calculate this data. The OLAP DML does not operate directly on data in
relational tables. Instead, it operates on data within an analytic workspace.

1-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

What Is the OLAP DML?

Analytic workspaces

An analytic workspace is a multidimensional data source. It may be temporary (that
is, for the life of the session) or it may be persistent. When an analytic workspace is
persisted, a separate data file is created that is not part of the relational database.

OLAP APl and OLAP DML
The OLAP API performs three primary functions:

« It provides access to metadata the describes the multidimensional data model
and data sources.

« It fetches data from data sources.
« It provides the means of performing complex analytic calculations.

When accessing data in the relational database, OLAP Services processes OLAP API
queries by generating SQL. When accessing data in an analytic workspace, OLAP
Services processes OLAP API queries by using OLAP Services’ multidimensional
engine and the OLAP DML.

Basic Concepts 1-3

What Is the OLAP DML?

The following illustration provides an architectural overview of OLAP Services,
showing both the relational database and analytic workspaces as data sources.

Application

OLAP Services

Java OLAP API

SQL Query Multidimensional
Generator [| Processor || Engine

Data Data

Relational Analytic
Database Workspace

1-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using the OLAP DML

Using the OLAP DML

When should | use the OLAP DML?
There are three situations where you might use the OLAP DML

When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or using the Java
OLAP API.

When your application needs to perform and persist various calculations, but
you do not want to immediately commit this calculation to the data warehouse.

You want to use a data file that was created with Oracle Express Server with
OLAP Services.

The common calculations for which you will need OLAP DML
The most common types of calculations that the OLAP DMS is used for includes:

Forecasts

Models (a group of calculations in which the results of one calculation is
required by another calculation — refer to Chapter 7 for more information)

Allocations

Some types of non-additive aggregations (consolidations), such as hierarchical
weighted averages

In addition, the OLAP DML can be used when you want to perform calculations
that are not easily accomplished in the ETL process or using the OLAP API.

Because analytic workspaces are not stored in the relational database, it is possible
for you to commit data to the analytic workspace without committing it to the data
warehouse. This is very useful for work in process. For example, you might have a
forecasting application where you want to allow users to save personal forecasts
and reuse them during a later session, but you do not want that user to commit the
forecast to the data warehouse.

Basic Concepts 1-5

How Do | Use the OLAP DML to Analyze Data?

How Do | Use the OLAP DML to Analyze Data?

Procedure: Using the OLAP DML
To use the OLAP DML, you:

1.

Create an analytic workspace (see “Creating an analytic workspace” on page
1-6).

Define data sources within the analytic workspace (see “Defining data sources
within the analytic workspace” on page 1-7).

Load data into the analytic workspace (see “Loading data into analytic
workspaces” on page 1-7).

Define and execute the OLAP DML commands and programs (see “Executing
OLAP DML commands and functions” on page 1-7).

What can | do with the data after | have analyzed it?
After you have used the OLAP DML to analyze data from a table, you can then:

View data in an analytic workspace using the OLAP API

Can commit data to the data warehouse

Creating an analytic workspace

Creating an analytic workspace is a very simple process and is accomplished using
acommand in the OLAP DML. An example of this command follows:

DATABASE CREATE \ DATA SALESFCRECAST

The above command will create a new and empty analytic workspace named
SALESFORECAST in the \DATA directory.

This would be similar to creating a new tablespace and data file in the relational
database. That is, the physical file is created, but there are no objects stored in the
file yet.

For more information about creating an analytic workspace, refer to Chapter 2.

1-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How Do | Use the OLAP DML to Analyze Data?

Defining data sources within the analytic workspace

Within an analytic workspace, you create workspace objects and OLAP API data
sources. Examples of workspace objects include variables, formulas, and
dimensions. These are the basic building blocks within an analytic workspace.

These workspace objects can be augmented with analytic workspace metadata to
expose data to the OLAP API.

For more information about creating data sources, refer to Chapter 3. To learn how
to create and use analytic workspace metadata, refer to Appendix A.

Loading data into analytic workspaces

To use the OLAP DML, data must exist in the analytic workspace. Data can be
loaded into an analytic workspace by fetching it from the relational database or by
loading it using OLAP Services’ file reader. In most cases, the relational database
will be the data source.

Data is loaded into the analytic workspace using commands in the OLAP DML.
There are commands for fetching data from relational tables and commands for
reading flat files. When loading data from the relational database, the data can be
from any table (that is, it does not need to be part of a data warehouse).

For more information about loading data into an analytic workspace, refer to
Chapter 10.

Executing OLAP DML commands and functions

The OLAP DML consists of various commands and functions. Commands create,
delete, and modify objects, call programs, fetch and load data, and perform other
needed tasks. Functions typically manipulate data (for example, return the TOTAL
of SALES).

You can call individual functions and you can define and execute formulas and
programs. Whether you use functions, formulas, or programs will depend on what
you are trying to accomplish.

OLAP Services applications call or executes commands and functions using the SPL
EXECUTE method in the OLAP API. The SPL EXECUTE method allows the OLAP
API to pass OLAP DML commands to the multidimensional engine that processes
the OLAP DML.

The OLAP Worksheet application allows you to work interactively with the OLAP
DML (much the same way that SQL Plus allows you to interact with the relational

Basic Concepts 1-7

How Do | Use the OLAP DML to Analyze Data?

database by typing SQL statements). Using the OLAP Worksheet, you can execute
most OLAP DML commands. You can also define workspace objects, and edit
programs and formulas.

You might, for example, use the OLAP Worksheet to define a OLAP DML program
that loads data from the relational database and forecasts sales. Your application
would then call execute the OLAP DML program through the OLAP API using the
SPL EXECUTE method.

For more information about using OLAP DML commands, functions, and
programs, refer to Chapter 4, Chapter 5, Chapter 6, and Chapter 7.

Viewing data in an analytic workspace

Temporary vs.

Any data in an analytic workspace that has been exposed as an OLAP API data
source with analytic workspace metadata will automatically become available
through the OLAP API. To the OLAP API client, there is no difference between a
relational database data source and an analytic workspace data source. The OLAP
API reveals all data sources to the application without requiring the application to
understand the data’s physical storage.

persistent analytic workspaces

Analytic workspaces may be either temporary or persistent, depending on your
needs. If the analytic workspace is needed only to perform a specific calculation and
the results of the calculation does not need to be persisted in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, your application needs to forecast a small amount sales data. Since the
forecast can be rerun at any time, there might not be any point in persisting the
results.

Analytic workspaces can also be persisted across sessions. You might want to
persist data in the analytic workspace if you have calculated a significant amount of
data (for example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Sharing data in analytic workspaces

Data in analytic workspaces may be shared by many different users. To share data
in an analytic workspace, the workspace needs to be persisted during the period of
time it is to be shared.

1-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Where Do | Go From Here?

For example, if you want to allow a user to share the results of a forecast, you can
allow the user to persist the analytic workspace. If another user attaches that
workspace during their application session, they can be allowed to see the other
user’s forecast.

Committing data to the data warehouse

Data created within an analytic workspace can be committed to the relational
database using the OLAP DML. Data can be committed to any table, regardless of
whether that table is part of a data warehouse.

The are two primary reasons why you might want to commit data in an analytic
workspace to the relational database:

= You want to use the relational database for long-term persistent storage. This is
advisable because the relational database has more robust disaster recovery
features as compared to analytic workspaces.

= You want to make the results of calculations made within an analytic workspace
available to SQL-based applications (that is, applications that use SQL rather
than the OLAP API).

Two common examples of situations where you might want to commit data to the
relational database include:

« Sharing the results of a final forecast with users of SQL-based applications.

« Managing the long persistence of data resulting from specialized aggregations
in the relational database.

Where Do | Go From Here?

The OLAP DML checklist

To learn how to perform all the tasks described in this chapter, use the following
checklist:

0 Read Chapter 2 to learn how to create an analytic workspace.

O Read Chapter 3 to learn how to populate an analytic workspace with the objects
that will contain data from the Oracle relational database.

0 Read Chapter 10 to learn how to select data from an Oracle relational database
and move that data into the objects in a DML work file.

Basic Concepts 1-9

Where Do | Go From Here?

0 Read Chapter 4, Chapter 5, Chapter 6, and Chapter 7 to learn how to use the
DML commands and functions to analyze data.

0 Read Chapter 10 to learn how to move the analyzed data from the work file into
the Oracle relational database.

For more information

The following publications provide more information about the Oracle OLAP API
and the OLAP DML

« Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

« The OLAP Worksheet’s Help system contains an on-line reference for the DML
language

1-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

2

Defining and Working with Analytic
Workspaces

Chapter summary
This chapter discusses creating, attaching, and managing analytic workspaces.

List of topics

This chapter includes the following topics:

Defining an Analytic Workspace

How to Gain Access to an Analytic Workspace

Gaining Access to a Workspace from a Java Application
Gaining Access to a Workspace from OLAP Worksheet
Using the OLAP DML to Work with Analytic Workspaces
Saving Analytic Workspace Changes

Minimizing Analytic Workspace Growth

Sharing Analytic Workspaces

Working with AUTOGO Programs

Adding Security to an Analytic Workspace

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-1

Defining an Analytic Workspace

Defining an Analytic Workspace

How to define an analytic workspace

Analytic workspaces are defined using commands in the OLAP DML. There are
two methods by which this can be accomplished:

« Use the OLAP API's SPLExecut or method to issue OLAP DML commands.
This allows applications using the OLAP API to create new analytic workspaces
and alter existing workspaces. When workspaces are defined through the
SPLExecut or method, they can be temporary (that is, for the life of the
session) or they may be persisted.

« Use OLAP Worksheet to issue OLAP DML commands. OLAP Worksheet
connects to an OLAP Services instance as a new session and allows you to work
interactively with the OLAP DML, this is similar to issuing SQL commands
from within SQL Worksheet. When an analytic workspace is created using
OLAP Worksheet, it must be persisted so that OLAP Services applications using
the OLAP API will be able access it.

This guide discusses how to use OLAP DML commands to define an analytic
workspace.

Examples: Defining an analytic workspace

The following example creates a new analytic workspace named shoes; the full
name of the new analytic workspace is shoes. db.

dat abase create shoes

The following example creates the shoes. db analytic workspace in a directory
named apps on thei drive of an NT system.

dat abase create 'i:/apps/ shoes’

For the complete syntax for the DATABASE command, see the OLAP DML
Reference.

About the term “database”

Throughout this guide, you will notice that the OLAP DML command ‘database’ is
used to create and manage analytic workspaces. When referring to the OLAP DML,
you can think of the terms ‘database’ and ‘analytic workspace’ as being equivalent.
The ‘database’ command is used in the OLAP DML to allow for compatibility with

2-2 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Defining an Analytic Workspace

the Express Server stored procedure language. (Express Server was the predecessor
to OLAP Services.)

Do not confuse analytic workspaces with the Oracle relational database. Analytic
workspaces are stored in files that are separate from Oracle relational database files.

Managing analytic workspace structure and size

An analytic workspace can be made up of many files. There is always a main
analytic workspace file. There can also be one or more extension analytic workspace
files. You can use extension files to divide a single analytic workspace among
several files, so the analytic workspace can be larger than the space that is available
on any single disk. Typically, you need extension files only when the analytic
workspace is located on a disk with limited available space or when the analytic
workspace will grow to a very large size. An analytic workspace that is stored in
more than one file is called a multifile analytic workspace.

When you use the DATABASE command with the CREATE keyword, a new
analytic workspace file is created. As the analytic workspace is populated, data is
added to that file and, optionally, additional analytic workspace extension files are
created, if needed. Depending on the options that you specify when you create an
analytic workspace, you can change the default characteristics of these files:

« The maximum size of analytic workspace files

« The increment size of analytic workspace files

« The location of the main analytic workspace file

« The location of analytic workspace extension files

Note: If you want to specify location of analytic workspace extension files only
for a given session, then use the DBEXTENDPATH option. If you want to
specify the location of analytic workspace extension files only for an instance of
OLAP Services, then use the ExtensionFilePath setting of the OLAP Services
Instance Manager.

Defining and Working with Analytic Workspaces 2-3

How to Gain Access to an Analytic Workspace

How to Gain Access to an Analytic Workspace

Two alternatives for accessing a workspace

Once an analytic workspace has been defined, it can be accessed in one of the
following two ways.

« From OLAP Worksheet, or

« From alava application

For more information

To learn how to access an analytic workspace from OLAP Worksheet, see “Gaining
Access to a Workspace from OLAP Worksheet” on page 2-4.

To learn how to access an analytic workspace from a Java application, see “Gaining
Access to a Workspace from a Java Application” on page 2-6.

Gaining Access to a Workspace from OLAP Worksheet

What is OLAP Worksheet?

OLAP Worksheet is a command line interface to OLAP Services that you can use to
perform the following tasks:

= Access an analytic workspace

» Execute most OLAP DML commands

« Edit programs

« Debug programs

OLAP Worksheet has a Command Input window and an Edit window.

You can enter OLAP DML commands in the Input (query) pane at the bottom of the
Command Input window. The results are displayed in the Output (result) pane at
the top of the Command Input window.

This chapter describes how to use OLAP Worksheet to access analytic workspaces
and execute OLAP DML commands. Refer to Chapter 9 for information about
writing, editing, and debugging programs with OLAP Worksheet, as well as how to
display its Edit window.

2-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Gaining Access to a Workspace from OLAP Worksheet

This guide provides basic information about using OLAP Worksheet. For details,
refer to the OLAP Worksheet Help system.

Overview of accessing a workspace

Once you have started OLAP Worksheet, you can use its menus to establish a
connection to OLAP Services, open a workspace, execute OLAP DML commands or
write and debug programs, save any changes, close the workspace, and close the
connection.

Establishing a connection
Use the following procedure to establish a connection to OLAP Services:
1. Inthe OLAP Worksheet menu bar, choose File.
2. Choose Connect.

3. Enter valid user credentials and information in the Login dialog box that
appears.

Opening the workspace

Once you have made a connection to OLAP Services, you can open an analytic
workspace by entering a DATABASE ATTACH command in the Command Input
window in OLAP Worksheet.

Alternatively, you can define a new analytic workspace.

For example, suppose that you have already defined a workspace named SALES
that exists at the top level of the current directory. Enter the following command to
open the SALES analytic workspace:

dat abase attach sal es

Suppose you want to define a new workspace named EXPENSE. You would enter
the following commands to create the new workspace and then open it:

dat abase create expense
dat abase attach expense

For more information about opening workspaces and working with more than one
workspace at a time, see “Using the OLAP DML to Work with Analytic
Workspaces” on page 2-9.

Defining and Working with Analytic Workspaces 2-5

Gaining Access to a Workspace from a Java Application

Closing the workspace

When you have finished working with an analytic workspace and have saved
changes, you can close it by entering a DATABASE DETACH command in the
Command Input window in OLAP Worksheet.

For example, to close an analytic workspace named SALES, enter the following
command:

dat abase detach sal es

Closing the connection
Use the following procedure to close a connection to OLAP Services:

1. Inthe OLAP Worksheet menu bar, choose File.
2. Choose Disconnect.

3. When prompted to disconnect, choose Yes.

Gaining Access to a Workspace from a Java Application

Overview of accessing a workspace

Typically, a Java application uses the Oracle OLAP API to access relational data. In
addition, the Oracle OLAP API supports access to data that resides in an OLAP
Services analytic workspace.

Through the OLAP API, a Java application can access workspace data that has been
provided with analytic workspace metadata. Because analytic workspace metadata
is compatible with the OLAP APl multidimensional metadata (MDM) model, a Java
application can manipulate workspace data using the OLAP API Java classes. For a
description of the MDM model and the OLAP API classes, see the Oracle9i OLAP
Services Developer’s Guide to the Oracle OLAP API and the Oracle9i OLAP Services
OLAP API Reference.

As an alternative access method, the OLAP API provides a way for a Java
application to directly manipulate workspace data, without the need for any
metadata and without the use of the OLAP API data manipulation classes. The Java
application uses the SPLExecut or class in the OLAP API to send DML commands
directly to OLAP Services for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens
the workspace, accesses the data (either through MDM metadata or through

2-6 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Gaining Access to a Workspace from a Java Application

SPLExecut or), closes the workspace, and closes the connection. This topic
describes these steps.

Establishing a connection

To make a connection, follow the steps described in the chapter about connecting to
a data store in the Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API.
The chapter describes how the OLAP service makes a connection to its parent
Oracle database instance. This connection is a requirement even if your application
will only access data in an OLAP Services workspace.

When you have connected to the workspace, you will have a Connect i on object
that represents the connection.

Opening the workspace

Use the openDat abase method on the Connect i on object to open the workspace
that you want to access. The openDat abase method requires the following two
parameters:

« The name of the workspace. This is the name that was used in the OLAP
Services DML to create the workspace. For example, the following DML
command creates a workspace named FORECAST.

DATABASE CREATE FCRECAST

« AProperti es object that specifies parameters that are appropriate for
opening the workspace. The Pr opert i es object contains one or more
properties, each of which represents one parameter. If you are opening a
workspace that has analytic workspace metadata, then you must specify a
property called “DatabaseType”, with a value of “ECM”.

To discover if there are other required or optional parameters, use the

get Connect i onPar anet er | nf o method on the Connect i on object, as
described in the reference page for the Connect i on class in the Oracle9i OLAP
Services OLAP API Reference.

The openDat abase method returns the Dat abase object that represents the
workspace.

Accessing workspace data using MDM metadata

The OLAP API provides classes that support the MDM model for describing a set of
data. These classes are in the ndmpackage of the OLAP API.

Defining and Working with Analytic Workspaces 2-7

Gaining Access to a Workspace from a Java Application

Ordinarily, the data that an application analyzes is stored in an Oracle database, and
it has been provided with MDM-compatible metadata through the OLAP
management feature of Oracle Enterprise Manager. However, if your workspace
has been provided with analytic workspace metadata, the OLAP API can use the
workspace data for analysis, because its analytic workspace metadata is
MDM-compatible.

To access analytic workspace metadata and the data that it represents, create an
Mimvet adat aPr ovi der, as described in the chapter on discovering metadata in
the Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API. When you
create the Minmivet adat aPr ovi der , specify the Dat abase object that represents
the workspace.

To navigate the metadata, create queries, and fetch data, use the procedures that are
described in the Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API.

Accessing workspace data using SPLExecutor

The OLAP API provides the SPLExecut or class, through which you can execute
DML commands or evaluate DML expressions in a workspace. You create an
SPLExecut or object, specifying your Connect i on object as a parameter. Then
you call the execut eCommand method on your SPLExecut or to send commands
to the OLAP service, or you call one of several methods for evaluating expressions.

Depending on the evaluation method that you use, the return value is a bool ean,
i nt, doubl e, or other Java data type. An executed command always returns a
String.

For more information about the SPLExecut or methods, see the reference page for
this class in the Oracle9i OLAP Services OLAP API Reference.

Closing the workspace

When you are finished with your work, call the cl ose method on the Dat abase
object that represents your workspace. This method closes the Dat abase object,
and the OLAP service detaches the workspace that is associated with it.

Closing the connection

When you no longer need the connection, call the cl ose method on the
Connect i on object. This method terminates the connection that was made on
behalf of your application with the Oracle database instance, and the method
terminates the connection between your application and the OLAP service.

2-8 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Using the OLAP DML to Work with Analytic Workspaces

Using the OLAP DML to Work with Analytic Workspaces

Definition: Active analytic workspace

To make the data and the object definitions of an analytic workspace available to
your session, the analytic workspace must be attached. Analytic workspaces that
are currently attached are known as active analytic workspaces. Attaching analytic

workspaces is described in “How to attach an analytic workspace” on page 2-10.

Listing the active analytic workspaces

You can view a list of the active analytic workspaces by using the DATABASE
command with the LIST keyword. For the complete syntax for the DATABASE
command, see the OLAP DML Reference. The simplified syntax for this command
is shown below.

dat abase i st

This command displays a list of the active analytic workspaces, along with their
update status and full path name. The expr ess. db analytic workspace, which is a
system analytic workspace that contains objects used internally, always appears in
the analytic workspace list.

The meaning of the update status, CHANGED or UNCHANGED, depends on
whether the analytic workspace is attached with read/write or read-only access and
whether the analytic workspace is being shared with other users.

Definition: Current analytic workspace

The current analytic workspace is the first analytic workspace in the list of the
active analytic workspaces that you view with the DATABASE command with the
LIST keyword. By default, when you define new OLAP DML objects, they reside in
the current analytic workspace, unless you specify the name of another active
analytic workspace. Additionally, programs such as DBDESCRIBE list only the
objects in the current analytic workspace.

Your session does not have to have a current analytic workspace. If you start OLAP
Services without specifying an analytic workspace name, then the expr ess. db
analytic workspace is first on the list. However, the expr ess. db analytic
workspace is not current; there is no current analytic workspace until you specify
one with the DATABASE command. Even though an active analytic workspace is
not current, you can still change and update its data, edit and run its programs, and
modify its analytic workspace definitions.

Defining and Working with Analytic Workspaces 2-9

Using the OLAP DML to Work with Analytic Workspaces

Retrieving the name of the current analytic workspace

You can retrieve the name of the current analytic workspace by using the
DATABASE function with the NAME keyword.

Example: Retrieving the name of the current analytic workspace

Suppose that you have two analytic workspaces attached, one named

pr ogr ans. db and another named deno. db. The following commands use the
DATABASE function with the NAME keyword to retrieve the name of the current
analytic workspace into a variable named MYTEXT, and then display the value of
MYTEXT. This value is shown after the commands.

nytext = dat abase(nane)
show nyt ext
PROGRAMG

How to attach an analytic workspace

The system administrator can change OLAP Services configuration settings so that
OLAP Services starts up with one or more application analytic workspaces already
attached. To reconfigure OLAP Services, use the OLAP Services Instance Manager.

You can also use the DATABASE command to attach and detach analytic
workspaces during a session. During your OLAP Services session, you can use the
DATABASE command to switch freely between active analytic workspaces.

You can attach an analytic workspace by using the DATABASE command with or
without the ATTACH keyword. As shown below, the action that is taken varies
depending on whether or not you use the ATTACH keyword:

« If you attach an analytic workspace by using the DATABASE command with
the ATTACH keyword, then the analytic workspace that you specify is
automatically attached and made to be the current analytic workspace.

« If you attach an analytic workspace by using the DATABASE command with
the ATTACH keyword, then different actions are taken, depending on whether
or not there is a current analytic workspace:

« Ifthere is no current analytic workspace, then the new analytic workspace
is attached and made current.

« Ifthere is a current analytic workspace, then it is first detached. The new
analytic workspace is attached and made current.

2-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using the OLAP DML to Work with Analytic Workspaces

When you attach an analytic workspace, the default access to it is read-only. If you
want a different attachment mode, then you must explicitly specify it in the
DATABASE command as described in “Specifying the analytic workspace
attachment mode” on page 2-11.

Note: You can create programs that are automatically executed when you attach an
analytic workspace. For more information, see “Programs that run when a user
attaches to an analytic workspace” on page 2-12.

Examples: Attaching an analytic workspace

The following example attaches an existing analytic workspace named

fi nance. db and makes it the current analytic workspace. If another analytic
workspace was current before this command executes, then that analytic workspace
remains attached but is no longer current.

dat abase attach finance

The following example attaches the f i nance. db analytic workspace and makes it
current. The analytic workspace that was current is detached before this command
was executed.

dat abase fi nance

Specifying the analytic workspace attachment mode

You can specify whether you want the analytic workspace attached in read-only
mode, read/write nonexclusive mode, or read/write exclusive mode by using the
RO, RW, and RW EXCLUSIVE keywords of the DATABASE command.

An analytic workspace that is attached in read/write nonexclusive mode or
read-only mode can be accessed simultaneously by several sessions. However, only
one session can have the analytic workspace open with read/write access. If
another user has already attached an analytic workspace in read/write mode, then
you cannot attach the same analytic workspace in read/write mode until that other
user detaches it.

An analytic workspace that is attached in read/write exclusive mode cannot be
accessed by any other session. If other users have already attached an analytic
workspace, then you cannot attach the same analytic workspace in read/write
exclusive mode until all of the other users detach it.

For more information on sharing analytic workspaces across sessions and
specifying the analytic workspace attachment mode, see “Sharing Analytic
Workspaces” on page 2-17.

Defining and Working with Analytic Workspaces 2-11

Using the OLAP DML to Work with Analytic Workspaces

Programs that run when a user attaches to an analytic workspace

When a user attaches to an analytic workspace, permission programs and
AUTOGO programs will be run automatically if they exist:

1.

Any permission programs that are associated with the analytic workspace will
be automatically executed.

Any AUTOGO program associated with the analytic workspace or any
program specified in the DATABASE ATTACH command will be executed.

Permission programs are, as the name suggests, programs that check the permission
of the user. AUTOGO programs and programs specified in the DATABASE
ATTACH command can contain any type of functionality. For more information on
permission programs, see “Adding Security to an Analytic Workspace” on page
2-20. For more information on other programs that run when a user attaches to an
analytic workspace, see “Working with AUTOGO Programs” on page 2-19.

Attaching multiple analytic workspaces

You can attach more than one analytic workspace at a time. However, when
working with multiple analytic workspaces, keep the following points in mind:

Oracle Corporation does not recommend that you give the same name to more
than one analytic workspace. However, if there is more than one analytic
workspace with the same name, then specify the full path name of the analytic
workspace you want.

If you are going to attach more than one analytic workspace, then you must
take more care when you name objects. When you request an object by name,
either with the DESCRIBE command or by referring to it in a command or
program, all the active analytic workspaces are searched in order until the
named object is found. When you intend to use several analytic workspaces
together, do not give the same name to objects in different analytic workspaces.
If you do, then you can create unanticipated interactions between the objects.

If you have analytic workspace permission programs defined in analytic
workspaces that are currently attached, then the one in the analytic workspace
that you are attaching is executed. However, if you have analytic workspace
permission programs in more than one currently attached analytic workspace,
then you must take special care when you edit them, or use them in any other
way, to ensure that you access the appropriate version.

2-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Saving Analytic Workspace Changes

Detaching analytic workspaces

To detach an analytic workspace, you use the DATABASE command with the
DETACH keyword. The following command detaches the f i nance. db analytic
workspace.

dat abase detach finance

Saving Analytic Workspace Changes

When should you save your analytic workspace changes?

Typically, you want to save an analytic workspace at the end of your OLAP Services
session to save analytic workspace changes that were made during the session. You
can also save an analytic workspace periodically during an OLAP Services session
to save changes as you go along.

If you have read/write access to the analytic workspace, then you will get a
warning message if you try to switch analytic workspaces, detach a changed
analytic workspace, or exit without updating the analytic workspace. If you have
read-only access to the analytic workspace, then you can make changes to the
analytic workspace, but you cannot save these changes by updating it.

Using the UPDATE command

If you have changed an analytic workspace and want to save those changes, then
execute the UPDATE command. The UPDATE command saves analytic workspace
changes to disk.

For the complete syntax for the UPDATE command, see the OLAP DML Reference.
The simplified syntax for the UPDATE command is show below.

UPDATE [dbnanel [dbnane2 . . .]]

A dbname argument specifies the name of a read/write analytic workspace that is
attached to your OLAP Services session. If you do not specify any analytic
workspace names, then all the attached read/write analytic workspaces, including
expr ess. db, are updated.

For example, you can issue the following command to save all analytic workspace
changes made so far in a session, including changes to expr ess. db if it is attached
as a read/write analytic workspace.

updat e

Defining and Working with Analytic Workspaces 2-13

Minimizing Analytic Workspace Growth

Updating shared analytic workspaces

If you have attached a shared analytic workspace and another user has read/write
access, then that user’s UPDATE command does not affect your view of the analytic
workspace. Your view of the data remains the same as when you attached the
analytic workspace. If you want access to the changes, then you must detach the
analytic workspace and reattach it.

Minimizing Analytic Workspace Growth

Ways to minimize analytic workspace growth

This guide presents some very basic and simple information about ways in which
you can minimize analytic workspace growth.

You can minimize analytic workspace growth through the judicious use of NA
stored pages and by frequently updating the analytic workspace when you are
attached exclusively. You can completely reorganize the analytic workspace by
exporting and importing all of the analytic workspace files.

Definition: NA pages
An NA page is an analytic workspace page that contains only NA values for a
variable. Depending on the status of the variable at the time the NA values are
assigned, NA pages are either unstored or stored:

« NA unstored pages — In most cases, if an analytic workspace page would
contain only NA values for a variable, then the page is not actually stored.
Instead a marker is stored. This marker indicates that the page would contain
only NA values. These virtual analytic workspace pages are called NA unstored

pages.
« NA stored pages — An NA stored page is an actual analytic workspace page

that contains only NA values. Typically, you want NA stored pages to be
created only if you want to reserve space for values of an in-place variable.

2-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Minimizing Analytic Workspace Growth

When are NA stored pages created?
NA stored pages are created only if all of the following conditions are true:

« The NA values are explicitly assigned.

« The variable is defined as an in-place variable when the NA values are
assigned.

= The analytic workspace that contains the variable is attached in read/write,
exclusive mode when the NA values are assigned.

« The variable contains, or has previously contained, at least one non-NA value.

=« The NA values are distributed so that some analytic workspace pages contain
only NA values.

Retrieving the number of NA pages

You can use the OBJ function with the NAPAGES keyword to retrieve the number
of NA pages (either stored and unstored) in an analytic workspace.

You can also run DBREPORT to retrieve information about the number of NA pages
(both stored and unstored) in an analytic workspace.

For more information on the OBJ function and the DBREPORT program, see the
topic for the function or the program in the OLAP DML Reference.

Releasing NA stored pages

You can use the NAPAGEFREE command to release any NA stored pages that have
been created for a variable. Once these pages are released, they can be used to store
new data. NAPAGEFREE loops through all allocated pages for the variable and
converts any NA stored pages into NA unstored pages. When it is finished, it
reports the number of pages that have been freed.

For more information on the NAPAGEFREE command, see the topic for the
function in the OLAP DML Reference.

Example: Releasing NA stored pages

The following example uses OBJ(DISKSIZE) to query the variable SALES before and
after NAPAGEFREE is issued to show its reduction by the number of pages that are
freed by NAPAGEFREE (three in this example).

Defining and Working with Analytic Workspaces 2-15

Minimizing Analytic Workspace Growth

The first OBJ function shows that 35 pages are being used to store the SALES
variable.

show obj (di sksi ze "sal es’)
35

Now the NAPAGEFREE command frees three pages that contained only NA values.

napagefree sal es
3 pages freed for SALES.

When the OBJ function is reissued, it shows that only 33 pages are now being used
to store the SALES variable.

show obj (di sksi ze 'sal es’)
32

When are unused pages released?

When many users are attached to an analytic workspace, unused pages are not
actually released when the analytic workspace is updated. Instead, an erase list is
created. The erase list identifies the pages that it can release later when only one
user is attached to the analytic workspace.

Updating an analytic workspace when you are attached exclusively

When you update an analytic workspace and no other users are attached to the
analytic workspace, the erase list is flushed and all unused pages are released. This
creates more space in the analytic workspace files for new data. Consequently, to
minimize analytic workspace growth, you want to update the analytic workspace
frequently when you have exclusive use it.

Using EXPORT and IMPORT to minimize analytic workspace size

You can reorganize your analytic workspace files by exporting all of the objects in
your analytic workspace and then importing them into a new analytic workspace.
This procedure remaves extra space. The new files may be substantially smaller.

To reorganize your analytic workspace by exporting and importing OLAP DML
objects, follow the procedure outlined below.

1. Issue an ALLSTAT command against the original analytic workspace.

2. Use the EXPORT command with the ALL keyword to put all of the data in the
original analytic workspace into an EIF file.

2-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Sharing Analytic Workspaces

3. Create a new analytic workspace with a different name than the original
analytic workspace.

4. Use the IMPORT command to import the EIF file into the new analytic
workspace.

5. Use the UPDATE command to update the new analytic workspace.

6. After checking that the objects were successfully moved into the new analytic
workspace, delete the original analytic workspace.

7. Rename the new analytic workspace with the original name.

For more information on importing and exporting analytic workspace files, see the
topics for the EXPORT and IMPORT commands in the OLAP DML Reference.

You cannot export and import SEGWIDTH specifications

If you use CHGDFN SEGWIDTH to specify the segment size of any variable, you
should be aware that this information cannot be exported and imported. If you
export any variable, when that variable is imported, it will use the default segment
size.

Sharing Analytic Workspaces

Sharing analytic workspaces across sessions

An analytic workspace can be accessed simultaneously by several sessions.
However, only one session can have the analytic workspace open with read/write
access at any given time.

When you attach an analytic workspace, your default access to it is read-only.
OLAP Services supports simultaneous access for one writer and many readers of an
analytic workspace. Provided your user ID has the appropriate access rights, you
can always get read-only access to an analytic workspace, no matter how many
other users are using it. If another user has read/write access and updates the
analytic workspace, then your view of the analytic workspace does not change; you
must detach and reattach the analytic workspace to see the changes.

If you want read/write access, then you must explicitly specify it in the DATABASE
command. If you request read/write access to an analytic workspace that is being
used in read/write mode by another session, whether or not OLAP Services waits
for the analytic workspace and the message OLAP Services returns to the

Defining and Working with Analytic Workspaces 2-17

Sharing Analytic Workspaces

application depends on how you have coded the DATABASE command as
described in “Waiting for an analytic workspace” on page 2-18.

Waiting for an analytic workspace

You can specify whether or not you want to wait until an analytic workspace is
available for the type of access you are you are requesting by using the WAIT and
NOWAIT keywords of the DATABASE command.

« If you specify the NOWAIT keyword (the default) and if the analytic workspace
is not available for the type of access you are requesting, then an error message
is produced that indicates that the analytic workspace is unavailable.

« If you specify the WAIT keyword and the analytic workspace is not available
for the type of access you are requesting, then OLAP Services places you on the
wait list for the analytic workspace. The number of seconds that OLAP Services
waits for access depends on the value of the DefaultDBWaitTime setting. Use
the OLAP Services Instance Manager to change the value of the
DefaultDBWaitTime setting.

Strategies for attaching analytic workspaces in exclusive mode

If your analytic workspaces are in use almost all of the time, you need to develop a
strategy for attaching the analytic workspace in read/write, exclusive mode. Some
possible strategies are listed below:

« “Officially” schedule a time to attach the analytic workspace exclusively.

« Run a batch job every 30 minutes or so that attempts to attach the analytic
workspace in read/write, exclusive mode and, once it is successful, updates the
analytic workspace. You can use the Persistent Session and Command line
utilities to set up batch jobs.

Command line utilities

You can submit batch jobs using the OLAP Service Manager (xscosvc). You can
define scripts that invoke xscosvc. You can schedule the running of these scripts
with the Unix cr on facility, the Windows NT at command, or the job-scheduling
facility within Oracle Enterprise Manager. For more information about input files,
refer to the INFILE command in the OLAP DML Reference.

2-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with AUTOGO Programs

Working with AUTOGO Programs

What is an AUTOGO program?

You can create programs that are automatically executed when you attach an
analytic workspace. When you attach an analytic workspace by using the
DATABASE command without the ATTACH keyword, the workspace dictionary is
searched for a program named AUTOGO. If it exists, then the program is executed
before commands are accepted. You can use the NOAUTOGO keyword to specify
that the AUTOGO program should not be executed.

You do not have to name a program AUTOGO to have it automatically execute
when you attach an analytic workspace. You can use the AUTOGO keyword with
the DATABASE command to specify that a program will be automatically executed
with some name other than AUTOGO when you attach an analytic workspace.
Even if a program named AUTOGO exists in the analytic workspace, the program
you specify is still used after the AUTOGO keyword instead.

Analytic workspace permission programs are executed before any AUTOGO
program that is associated with the analytic workspace is executed. For more
information on permission programs, see “Adding Security to an Analytic
Workspace” on page 2-20. For information on writing and debugging OLAP DML
programs, see Chapter 8 and Chapter 9.

Example: AUTOGO program

Suppose you have two analytic workspaces of sales data, one for expenses and one
for revenue. You have a third analytic workspace called anal ysi s that contains
programs that analyze the data.

The anal ysi s analytic workspace has the following AUTOGO program, which
attaches the other two analytic workspaces.

dat abase attach expense after anal ysis
dat abase attach revenue after anal ysis

Running AUTOGO programs

Suppose that you write a program named ATTACH_DBS that attaches the analytic
workspaces you want an application to use. You can run it when attaching the main
analytic workspace, called anal ysi s, with the following command.

dat abase autogo attach_dbs anal ysi s

Defining and Working with Analytic Workspaces 2-19

Adding Security to an Analytic Workspace

If you named the program AUTOGO, you could run the program automatically
with the following command.

dat abase anal ysi s

Adding Security to an Analytic Workspace

Types of security

You can protect analytic workspaces with a password and analytic workspace
permission programs. When an analytic workspace is password-protected, users
cannot attach it without specifying the password. When you provide an analytic
workspace permission program for an analytic workspace, that program associates
access rights with OLAP DML objects.

Assigning a password

At any time after you create an analytic workspace, you can assign a password to it
by using the DATABASE command with the PASSWORD keyword. This command
assigns a password to the current analytic workspace; if the current analytic
workspace already has a password, then it replaces the old password with the new
one.

Passwords can consist of up to 16 characters. They must begin with a letter or an
underscore and can contain letters, numbers, periods (.), and underscores ().
Choose a password you can remember easily. Once you specify a password, you
cannot access the analytic workspace without it.

A password does not become effective until you update the analytic workspace.
Thereafter, you can attach that analytic workspace only if you supply this password
in the DATABASE command.

Example: Assigning and using a password

The following command assigns the password gol df i nch to the current analytic
workspace (called sal es).

dat abase password gol df i nch

To access the analytic workspace after this command is executed, you must, as
shown below, use the password gol df i nch.

dat abase sal es gol df i nch

2-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Adding Security to an Analytic Workspace

Removing a password

To remove a password from the current analytic workspace, use the DATABASE
command with the PASSWORD keyword without specifying the password
argument. Once you update the analytic workspace, the password is no longer
required to attach the analytic workspace.

Using analytic workspace permission programs

When a user attaches an analytic workspace, the analytic workspace is checked to
see if it contains a program called PERMIT_READ or PERMIT_WRITE. You do not
have to create these programs; however, if they are present, then they are
automatically executed when the user attaches an analytic workspace.

IF the user attaches an analytic THEN the following program is executed,
workspace with . . . it exists . ..

read-only access, PERMIT_READ program.

read/write access, PERMIT_WRITE program.

If you have analytic workspace permission programs defined in analytic
workspaces that are currently attached, then the one in the analytic workspace that
you are attaching is executed. However, if you have analytic workspace permission
programs in more than one currently attached analytic workspace, then you must
take special care when you edit them or use them in any other way, to ensure that
you access the one in the appropriate analytic workspace.

Analytic workspace permission programs are executed before any AUTOGO
program that is associated with the analytic workspace is executed. If a user
specifies a password when attaching the analytic workspace, then the password is
not immediately compared to the stored password that was specified with
DATABASE PASSWORD. Instead, the password is passed as an argument to the
analytic workspace permission program for processing.

Creating and designing analytic workspace permission programs

To create permission programs, you define two programs with the names
PERMIT_READ and PERMIT_WRITE. In these programs, you can specify PERMIT
commands and the values of the permission conditions on which permission is

Defining and Working with Analytic Workspaces 2-21

Adding Security to an Analytic Workspace

based. You write these programs as user-defined functions that return a Boolean

value.

IF the program returns . . . THEN the analytic workspace. ..
YES is attached.

NO is not attached.

For information on writing and debugging OLAP DML programs, see Chapter 8
and Chapter 9.

Levels of access you can control using permission programs

Permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

Type of access Description
Analytic Workspace | Depending on the return value of the permission program, the user
level is or is not granted access to the entire analytic workspace.
Object level Depending on the PERMIT commands in the permission program,

the user is or is not restricted to the access to specific objects or sets
of object values.

Note: All of the objects referred to in a given permission program
must exist in the same analytic workspace.

Using PERMIT commands to restrict access

For example, using the PERMIT command, you can deny access to the SALARY
variable to one group of users, and you can deny access to the TENURE variable to
another group of users. You can even specify that certain users cannot access a
subset of the cells in the SALARY variable.

You can specify permission to access OLAP DML objects with PERMIT commands.
The PERMIT command can use permission conditions based on values that are
returned by the SYSINFO function. In this manner, you can specify permission
based on the user ID under which the session is running or the groups to which the
user ID belongs.

Making an analytic workspace read-only

To protect an analytic workspace from inadvertent changes, you should ensure that
users attach the analytic workspace in read-only (RO) mode unless you know that

2-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Obtaining Analytic Workspace Information

users need to make permanent changes in the analytic workspace. By default, an
analytic workspace is read-only when it is attached. You can also explicitly make
the analytic workspace read-only at the system level.

Users can use a read-only analytic workspace in the same way as an ordinary
analytic workspace; users can even make changes to it during a session. However,
users cannot make the changes permanent on disk by updating. The UPDATE
command has no effect on an analytic workspace with read-only access. This
protects data you do not want users to change.

Obtaining Analytic Workspace Information

Viewing a complete analytic workspace description

The DBDESCRIBE program displays a complete description of your analytic
workspace, including:

« Atable of contents that shows general information about your analytic
workspace, such as the date and time of the last update and the number of each
type of OLAP DML obiject.

« Alist of OLAP DML objects that are sorted alphabetically.

« Detailed descriptions of all OLAP DML objects, which are sorted by type of
object and sorted alphabetically by name within each type. For each object,
there is a cross-reference list of other objects that use or are used by this object.

Because the output from DBDESCRIBE is frequently very long, you can direct it to a
file with the OUTFILE command.

outfile 'fil enane’
dbdescri be
outfile eof

Obtaining general analytic workspace information

The DATABASE function returns various kinds of information about attached
analytic workspaces. For example, you can use the DATABASE function to learn
your read or write access rights to an analytic workspace or to determine if an
attached analytic workspace has been changed by a user with read/write access.

Defining and Working with Analytic Workspaces 2-23

Obtaining Analytic Workspace Information

For the complete syntax for the DATABASE function, see the OLAP DML
Reference. The simplified syntax of the DATABASE function is shown below.

DATABASH choi ce [dat abase- nane])

The keyword you specify for choice determines the type of information that is
returned by the DATABASE function. Examples of keywords are: ATTACHED,
CHANGED, FILESIZE, NAME, RO, and RW.

For example, the following commands check which analytic workspace is active so
the program can choose the appropriate data to report.

i f DATABASHNAME) eq ' MYSALES
then report sal es.m
el se report gensal es

Listing the names of objects in an analytic workspace

You can retrieve a list of the objects in an analytic workspace by using the
LISTNAMES program. This program lists all the objects in the analytic workspace,
grouped by object type and alphabetized within object type. LISTNAMES shows
the total number of each type of object (dimension, variable, and so on).

2-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Obtaining Analytic Workspace Information

Example: Listing the names of all of the objects in an analytic workspace

If the denp analytic workspace is attached, issuing the command | i st nanmes
produces the following output.

11 DI MENSI ONs 19 VARI ABLEs 4 RELATI ONs 2 VALUESETs
CHO CE ACTUAL DI VI SI ON. PRODUCT PRODUCTSET
DI STRI CT ADVERTI SI NG MARKET. MARKET QUARTERSET
DI VSI ON BUDCET
LI NE CHO CEDESC
MARKET DEMOVER
MARKETLEVEL EXPENSE
MONTH FAST
MONTH | NDUSTRY. SALES
PRODUCT NAME. LI NE
QUARTER NAME. PRODUCT
REG ON NATI ONAL. SALES
YEAR PRI CE
PRODUCT. MEMO
SALES
SALES. FORECAST
SALES. PLAN
SHARE
UNI TS
UNI TS. M

Viewing the definitions of OLAP DML objects

To display the definitions of one or more objects, use the DESCRIBE command. For
example, you can issue the following command for the deno analytic workspace.

describe price

Defining and Working with Analytic Workspaces 2-25

Obtaining Analytic Workspace Information

It produces the following output.

DEFI NE PR CE VAR ABLE DEQ MAL <MONTH PRCDUCT>
LD Wiol esal e Lhit Selling Price

If you execute the DESCRIBE command without any object names, all the objects in
the current status list of the NAME dimension are described.

Listing objects that are dimensioned by a specific dimension

Use the LISTBY command to retrieve a list of all objects that are dimensioned by, or
related to, a given dimension.

Example: Listing objects that are dimensioned by a specific dimension

For example, to find out which objects in the deno analytic workspace are
dimensioned by, or related to, MONTH, you can use the following command.

listby nonth
The following list is displayed.
14 obj ects dinensioned by or related to MINTH i n dat abase DEMD

ACTUAL ADVERTI S NG BUDCET
EXPENSE FCST NATI ONAL. SALES
PR CE PRCDUCT. MEMD SALES

SALES. FCRECAST SALES. PLAN SHARE

WN TS WINTS M

Obtaining information about OLAP DML objects
To obtain information about OLAP DML objects, you can use the OBJ function.

Example: Obtaining the number of dimensions for the variable

The following command obtains the number of dimensions for the variable UNITS
in the deno analytic workspace. The output is shown below the command.

show obj (nundi ns " units’)
3

2-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Obtaining Analytic Workspace Information

Example: Obtaining the data type of a variable

The following command obtains the data type of the UNITS variable. The output is
shown below the command.

show obj (data ’units’)
| NTEGER

Obtaining information about groups of objects

You often use the OBJ function in conjunction with the LIMIT command and the
NAME dimension in order to obtain information about groups of objects. The
LIMIT command sets the status of a dimension. This means that it restricts the
accessibility of dimension values, which sets a corresponding restriction on any
variables or relations that are dimensioned by them. The NAME dimension
contains the names of all the objects that are defined in the analytic workspace.

You can use the LIMIT command together with the OBJ function to identify a group
of objects with a particular characteristic. Then, you can list the objects in the group
using the STATUS command.

Example: Identifying objects by their dimensions

The following commands lists the objects that are dimensioned by both MONTH
and PRODUCT.

limt name to obj (isby 'month') and obj (isby ’product’)
status name

The output of these commands is shown below.

The current status of NAME is:
ADVERTI SING BEXPENSE, NATIONAL. SALES, PR CE, PRODUCT. MEMD SALES,
SALES FCRECAST, SALES. PLAN SHARE, INTS, LN TS M

Defining and Working with Analytic Workspaces 2-27

Obtaining Analytic Workspace Information

Related information
For more information, see the following table.

IF you want documentation about... | THEN see...

the status of a dimension, Chapter 6

the entry for the STATUS command in the
OLAP DML Reference

limiting dimensions, Chapter 6

the entry for the LIMIT command in the OLAP
DML Reference

the DBDESCRIBE program, LISTBY the entry for the program, command, or
command, LISTNAMES program, function in the OLAP DML Reference
NAME dimension, OBJ function

2-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

3

Chapter summary

Defining Data Objects

This chapter introduces the OLAP DML data structures. It explains how to define
OLAP DML objects and change the definition of those objects.

List of topics

This chapter includes the following topics:

Overview: Defining OLAP DML objects

Defining Dimensions

Defining Relations

Defining Variables

Defining Variables That Handle Sparse Data Efficiently
Defining Hierarchical Dimensions and Variables That Use Them
Defining Metadata

Changing the Definition of an Object

Overview: Defining OLAP DML objects

What are object definitions?

It is important to understand the distinction between an object’s definition and its
data. An object’s definition is its description in the workspace dictionary of the
analytic workspace. An object’s data is the value or values that are associated with
that definition. All objects have definitions. However, not all objects have data.

Defining Data Objects 3-1

Overview; Defining OLAP DML objects

For example, a SALES variable that is dimensioned by MONTH, PRODUCT, and
DISTRICT has a definition for itself as a variable object. The SALES variable is also
associated with the definitions for its three dimensions. However, the values of
SALES, MONTH, PRODUCT, and DISTRICT are not part of the definitions.

Other objects, such as programs (stored procedures), do not have data.

Defining OLAP DML objects using OLAP DML commands

Once you have created an analytic workspace, you can begin defining OLAP DML
objects. To define any OLAP DML object, use the DEFINE command. The simplified
syntax for the DEFINE command is shown below.

CEFl NE nane obj ect-type attributes [DATABASE dbnane]
The name argument specifies the name for the new definition.

Important: Because each analytic workspace has its own dictionary of OLAP DML
objects, you can define objects with the same name in more than one analytic
workspace. However, to prevent unexpected results, you should take care to
provide unique names for objects in separate analytic workspaces that will be active
at the same time.

The object-type argument specifies the type of OLAP DML object that is being
defined. The default is VARIABLE. You can specify any of the valid object types as
outlined in “OLAP DML objects you define using the DEFINE command” on page
3-3.

The attributes argument specifies the properties of the object. Attributes are different
for each type of object. The attributes are listed in the entry for each object type.

The DATABASE dbname phrase specifies the name of an attached analytic
workspace in which you want to define the object. If you do not specify an analytic
workspace name, then the current analytic workspace is used.

For the complete syntax for the DEFINE command, see the entry for the command
in THE OLAP DML Reference.

3-2 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Overview: Defining OLAP DML objects

OLAP DML objects you define using the DEFINE command

The OLAP DML data objects types that you define using the DEFINE command are
outlined in the following table.

Object Type Description

DIMENSION An object that contains a list of values that provide categories for
data. A dimension acts as an index for identifying values of a
variable. A dimension is similar to a key in a relational analytic
workspace.

RELATION An object that establishes a correspondence between the values of a
given dimension and the values of that dimension or other
dimensions in the analytic workspace.

VARIABLE An object that stores data. The data type of a variable indicates the
kind of data that it contains.

COMPOSITE A named list of dimension-value combinations, in which a given
combination has one value taken from each of the dimensions on
which the composite is based.

Note: An unnamed composite is automatically created when you
define a variable with some dimensions specified as sparse. An
unnamed composite is an internal object; it is not considered an
OLAP DML object.

FORMULA An object that represents a stored calculation, expression, or
procedure that produces a value.

MODEL An object that contains a set of interrelated equations that are used
to calculate data and assign it to a variable or dimension value. In
most cases, models are used when working with financial data.

PROGRAM An object that contains a series of OLAP DML commands. A
program is a stored procedure that executes a set of related
commands.

VALUESET An object that contains a list of dimension values for a particular
dimension.

AGGMAP An object that contains a set of interrelated commands that are used

(AGGREGATION | to specify which data in a variable should be aggregated (with the

MAP) AGGREGATE command) and which data should be calculated on

the fly (with the AGGREGATE function).

Defining Data Objects 3-3

Defining Dimensions

Defining Dimensions

Definition: Dimension

A dimension is an OLAP DML object that holds a list of values that provide the
organization for one or more OLAP DML variables. A dimension value is similar to
a key in a relational analytic workspace; it acts as an index to data. For example, if
you have sales data with a separate sales figure for each month, then the data has a
MONTH dimension; that is, the data is organized by month. The dimension values
you add might be Feb98, Mar98, and Apr98.

Dimension values let you identify your data and provide an easy way to target the
data you need for a particular purpose. When your users display or analyze your
data, they select the values to work with.

Types of dimensions
OLAP DML supports both flat and hierarchical dimensions:

« A flat dimension exists when the values within a dimension are all at the same
level. No value is the child or parent of another value.

= A hierarchical dimension exists when values are in a one-to-many
(parent-to-child) relationship with each other. A hierarchical dimension is a
means of organizing and structuring this type of data within a single dimension
that you can then use to dimension a single variable that contains data for all
the levels. Some dimensions have multiple hierarchies based on them. For more
information on hierarchical dimensions, see “Defining Hierarchical Dimensions
and Variables That Use Them” on page 3-20.

Note: When you define a variable using the SPARSE keyword, an internal object
called a composite is automatically created. A composite shares some of the
characteristics of a dimension and contains values that are combinations of values
in other dimensions. For more information on composites, see “Defining Variables
That Handle Sparse Data Efficiently” on page 3-15.

Determining what dimensions to define

If you want your analytic workspace to contain only flat dimensions, you need to
define dimensions for each level of detail in your data that users will access.

For example, if your company is divided into sales districts and each district
handles several store accounts, then you need to decide whether you want sales

3-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Defining Dimensions

figures for every store or only for each district. As shown in the following table, the
answer to this question determines the structure of your analytic workspace.

IF... THEN . ..

you need store data, you can define a STORE dimension.

you always look at each district as a whole, | all you need is a DISTRICT dimension.

you want to look at data both ways, you can organize data by store and view
aggregates of data by district by creating
both a STORE and a DISTRICT dimension
with a relation between them.

Sometimes, you will decide to store data of varying levels of aggregation within a
single variable, because this type of storage affords a quicker response time for
users who want to view the data. In this case, you need to define a hierarchical
dimension.

For example, if you want to look at data both ways instead of defining both a
STORE and a DISTRICT dimension as described above, then you can define a single
hierarchical dimension. This hierarchical dimension would contain all of the values
for stores and districts. If you dimension a variable by this hierarchical dimension
then you can store data of varying levels of aggregation within that single variable.
You can still view store data and district data separately.

How data for simple flat dimensions is stored

The data for a simple flat dimension is stored in a one-dimensional array. As you
add values to the dimension, it stores each new value at the end of the array.

Example: How data for simple flat dimensions is stored

Assume that the PRODUCT dimension has been defined as a TEXT data type. The
first three values that are added to the dimension are TENTS, CANOES, and
RACQUETS. At this point, a report of the dimension shows the following values.

Defining Data Objects 3-5

Defining Dimensions

The values are actually stored as shown below.

PRODUCT Dimension

Position 1 2 3
Value TENTS CANCES RACQUETS

Later, the values SPORTSWEAR and FOOTWEAR are added. At this point, a report
of the dimension shows the following values.

Now the dimension array looks like the following figure.

PRODUCT Dimension

Position |1 2 3 4 5

Value TENTS CANCES RACQUETS SPORTSVEAR FOOTVEAR

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

adding values to dimensions, Chapter 5.

using dimensions in expressions, Chapter 4.

reports, Chapter 12.

defining dimensions, the entry for the DEFINE DIMENSION
command in THE OLAP DML Reference.

3-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Relations

Defining Relations

Definition: Relation

A relation is an OLAP DML object that establishes a correspondence between the
values of a given dimension and the values of that same dimension or other
dimensions in the analytic workspace. The structure of a relation is similar to that of
a variable. However, the cells in relations do not hold actual data values; instead,
each cell in a relation holds the index of the value of a dimension.

By creating a relation between two dimensions that participate in a one-to-many
(parent-to-child) relationship, you can organize your data by the child dimension
and view aggregates of data by the parent dimension. For example, if you define
STORE and DISTRICT dimensions and a relation between them, then you can
organize data by STORE and view aggregates of data by DISTRICT.

You can explicitly define relations between two or more dimensions, multiple
relations between two relations, or a self-relation. Additionally, relations between
dimensions in your analytic workspace that have time data types (DAY, WEEK,
MONTH, QUARTER, or YEAR) are automatically defined.

How relations are dimensioned

All relations are dimensioned arrays. Relations can be dimensioned by the
dimension with the larger number of values or the fewer number of values.

Dimensioning with the larger number of values

Typically, a relation is dimensioned by the dimension with the larger number of
values (that is, the less aggregate or child dimension) and the related dimension is
the dimension with fewer values (that is, the more aggregate or parent dimension).
For example, you can create a relation called STATE.CITY to associate each city with
the state that it is in. The relationship is dimensioned by CITY and the related
dimension is STATE. You assign a state to each city.

Dimensioning with the fewer number of values

Less typically, a relation is dimensioned by the dimension with fewer values (the
more aggregate dimension or parent dimension). In this case, not every value of the
other dimension is related. For example, you could create a relationship, named
CITY.STATE, between states and their capital cities. The relation is dimensioned by
STATE and the related dimension is CITY. Only the capital cities are assigned to a
state.

Defining Data Objects 3-7

Defining Relations

How relation data is stored

The order in which you define the dimensions of a relation determines how its data
is stored and accessed. Dimension values vary in the order you list them in the
definition, with the first value varying fastest and the last value varying slowest.

The data values that are stored for a relation are the indexes of the related
dimension.

For example, the STATE.CITY relation (that is dimensioned by CITY and has a
related dimension of STATE) assigns a state to each city. To implement this
relationship, an index from the STATE dimension is stored for every value (index)
in the CITY dimension.

STATE.CITY Relation
CITYPosition C1 Cc2 C3
(Value) (Atl ant a) (Chi cago) (Springfield)
STATEPosition | S1 S2 S2
(\Value) (Georgi a) (I'1'l'inois) (I'1'l'inois)

Example: Relation between two dimensions

Most relations are a single-dimensional array that relates the values of one
dimension with another. For example, as the figure below illustrates, you can define
two simple dimensions, STATE and CITY, and a relation STATE.CITY between them
to associate each city with the state that it is in.

STATE dimension

STATE.CITY
relation

CITY dimension

3-8 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Defining Relations

Assume that the STATE.CITY relation was defined using the following command.
define state.city relation state<city>

Assume that, as shown below, the STATE dimension has two values and the CITY
dimensions has three values.

ERI A

The STATE.CITY relation is dimensioned by CITY and the related dimension is
STATE. The STATE.CITY relation assigns a state to each city as shown below.

aTy STATE A TY
ATLANTA ERA A
H G0 ILLING S

SPR NGFI ELD ILLING S

Example: Self-relation

You can define a self-relation for a single dimension. For example, to keep track of
the reporting structure of a company, you can have the EMP.EMP relation for the
EMPLOYEE dimension.

EMPLOYEE
dimension

EMP.EMP
relation

Assume that the EMP.EMP relation was defined using the following command.

define enp.enp rel ati on enpl oyee <enpl oyee>

Defining Data Objects 3-9

Defining Relations

Assume that the EMPLOYEE dimension contains the values shown below.

The self-relation EMP.EMP is dimensioned by the EMPLOYEE dimension and the
related dimension is also the EMPLOYEE dimension. As shown below, the
EMP.EMP relation assigns a manager to each employee.

M GHAEL ARCN ANN LGGAN
LUCY BATES ANN LGGAN
RALPH BURNS LUCY BATES

In this example, Ann Logan, the company’s president, does not report to anyone;
employees Lucy Bates and Michael Aron report directly to Ann Logan, the
president; and employee Ralph Burns reports to employee Lucy Bates.

For information about using self-relations with hierarchical dimensions, see
“Defining Hierarchical Dimensions and Variables That Use Them” on page 3-20.

Related information
For more information, see the following table.

IF you want documentation about . .. THEN see.. ..

using self-relations with hierarchical “Defining Hierarchical Dimensions and

dimensions, Variables That Use Them” on page 3-20.

adding values to relations, “Assigning Values to Data Objects” on page
5-13.

using relations in expressions, “Using OLAP DML Objects in Expressions”
on page 4-6.

3-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Variables

Defining Variables

Definition: Variable

A variable is an OLAP DML object that stores data. All of the data in a variable
represents the same unit of measurement with the same data type. Your business
might have several categories of transactions — measured in dollars, units,
percentages, and so on — and each category is stored in its own variable. For
example, you might record sales data in dollars (a SALES variable) and units (a
UNITS variable).

Typically, you use variables to contain data values that quantify a particular aspect
of your business.

Types of variables
Variables can be either dimensioned or undimensioned:

« Dimensioned variables — If a variable is an array with dimensions, then those
dimensions organize its data, and there is one cell for each combination of
dimension values. This type of variable is called a dimensioned variable. A
variable can be dimensioned by up to 32 dimensions.

=« Undimensioned variables — If a variable has no dimensions, then it is a scalar,
or single-cell variable, which contains one data value.

Variables that you define in an analytic workspace can be permanent, inplace, or
temporary. You can also define variables in programs, as described in “Defining
local variables” on page 8-9.

Permanent variables

A permanent variable is a variable for which both the variable’s values and
definitions are stored on disk. The values of permanent variables are written to new
pages in the analytic workspace as you make changes to the values of the variable.
However, the stored values of the permanent variable are not actually changed
when an UPDATE command is processed for the analytic workspace that contains
the variable. Consequently, if an update of an analytic workspace is unsuccessful,
then the original values of the permanent variable can be retrieved.

Defining Data Objects 3-11

Defining Variables

Inplace variables

Like permanent variables, both the values and definitions of inplace variables are
stored on disk. The way that inplace variables are updated depends on how the
analytic workspace is attached:

« When the analytic workspace is attached in read/write, non-exclusive mode,
inplace variables are updated in the same way that permanent variables are
updated.

= When the analytic workspace is attached in read/write, exclusive mode, the
values of an inplace variable are stored whenever it writes pages to the disk.
Additionally, when you change the values of inplace variable, the new changed
values are stored over the inplace variable’s old values. Consequently, if an
update of an analytic workspace is unsuccessful, then the original values of an
inplace variable might not still be stored in the analytic workspace, and it might
not be possible to restore the variable’s original values.

For more information on attaching analytic workspaces, see “Gaining Access to a
Workspace from OLAP Worksheet” on page 2-4.

Temporary variables

For more efficient use of disk space, the OLAP DML also lets you define temporary
variables that have values only during the current OLAP Services session. When
you update the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded.

When to use inplace variables
There are both advantages and disadvantages to using inplace variables:

« Advantages of inplace variables — Once the values for an inplace variable have
been stored, new analytic workspace pages are no longer created to store new,
changed values. Consequently, the major advantage of using an inplace variable
is that the analytic workspace that contains the variable grows at a slower rate
and has fewer free pages then the analytic workspace would have if you
defined the variable as a permanent variable.

« Disadvantages of inplace variables — The major disadvantages of using inplace
variables rather than a permanent variables are:

« Aninplace variable is always in an indeterminate state while it is being
updated. Because the old values are overwritten when the new ones are
stored, there is no way to know exactly what data is stored in the variable at

3-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Variables

any given moment. Depending on the other processing that is being
performed, an inplace variable that is being updated can be
computationally inconsistent. The values of an inplace variable are in a
determinate state only after an UPDATE command is processed for the
analytic workspace that contains the variable.

« Ifan UPDATE command for an analytic workspace that contains an inplace
variable fails, it might not be possible to restore the original values of the
inplace variable if its stored values have been overwritten. Instead, you
must explicitly restore the inplace variable’s original values.

Recommendations for using inplace variables

Oracle Corporation recommends that you only use inplace variables if you can
guarantee that the following conditions are met:

= You can reconstruct the data in the inplace variable if the update of the analytic
workspace that contains the variable fails.

= You are the only user accessing the analytic workspace when you update the
inplace variable, for example, when you explicitly attach an analytic workspace
in read/write, exclusive mode as described in “Specifying the analytic
workspace attachment mode” on page 2-11.

How variable data is stored

The order in which you list the dimensions in a variable’s definition determines
how that variable’s data will be stored and accessed. The first dimension that you
list in the variable definition is referred to as the fastest-varying dimension, and the
last dimension that you list is referred to as the slowest-varying dimension.

Example: How variable data is stored

Assume your analytic workspace has an OPCOSTS variable that contains the
operating costs, by month, of each city in which you have offices. In the definition
shown below for the OPCOSTS variable, MONTH is the fastest-varying dimension
and CITY is the slowest-varying dimension.

define opcosts variabl e deci mal <nmonth city>

The data for a multidimensional variable is stored as a linear stream of values, in
which the values of the fastest-varying dimension are clustered together. For
example, for the OPCOSTS variable, the values for Boston for all the months are

Defining Data Objects 3-13

Defining Variables

stored in a sequence, and then it stores the values for Chicago for all the months in a
sequence, and so on. Thus the month values vary fastest, as shown below.

OPCOSTS variable

Dimension | JAN97 FEB97 JAN97 FEB97
Values Boston Boston Chicago Chicago
Variable 16000.77 16000.28 19000.21 19000.24
Values

Example: Three-dimensional variable

The denp analytic workspace contains the SALES variable, which is a
three-dimensional array dimensioned by MONTH, PRODUCT, and DISTRICT.

MONTH PRODUCT DISTRICT
dimension dimension dimension
SALES
variable

Assume that the MONTH, PRODUCT, and DISTRICT dimensions have 36, 5, and 6
values, respectively, and that the SALES variable has the following definition.

define sal es variabl e deci mal <month product district>

The SALES variable contains 1,080 cells, which is the total number of cells in each
dimension multiplied together or, in this case, 36 times 5 times 6.

O STR CI: BCBTON

................... SALES - - cmmmmmm e
------------------- MNTH ---------memmm -
PRCDUCT JANDG FEB96 VARO6
TENTS 50, 808. 96 34, 641. 59 45,742.21
CANCES 70, 489. 44 82, 237. 68 97, 622. 28
RACQLETS 56, 337. 84 60, 421. 50 62,921. 70
SPCRTSVWEAR 57,079. 10 63, 121. 50 67, 005. 90
FOOTWEAR 95, 986. 32 101, 115. 36 103, 679. 88

3-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Variables That Handle Sparse Data Efficiently

DO STR CT: ATLANTA

------------------- SALES ----mmmmmm e
------------------- MONTH =< <= === == e
PRODUCT JAND6 FEB96 MARO6
TENTS 46,174. 92 50, 553. 52 58, 787. 82
CANCES 56, 271. 40 61, 828. 33 77,217. 62

Related information
For more information, see the following table.

IF you want documentation about ... | THEN see ...

populating variables, “Assigning Values to Data Objects” on page
5-13

using variables in expressions, “Using OLAP DML Objects in Expressions”
on page 4-6

defining variables, the entry for the DEFINE VARIABLE
command in THE OLAP DML Reference

Defining Variables That Handle Sparse Data Efficiently

Definition: Sparse data

A variable with sparse data is one in which a relatively high percentage of the
variable’s cells do not contain actual data. Such “empty,” or NA, values take up
storage space in the file.

There are two types of sparsity:

= Controlled sparsity occurs when a range of values of one or more dimensions has
no data; for example, a new variable dimensioned by MONTH for which you
do not have data for past months. The cells exist because you have past months
in the MONTH dimension, but the data is NA.

= Random sparsity occurs when NA values are scattered throughout the data
variable, usually because some combinations of dimension values never have
any data. For example, a district might only sell certain products and never

Defining Data Objects 3-15

Defining Variables That Handle Sparse Data Efficiently

have data for other products. Other districts might sell some of those products
and other ones, too.

Definition: Composite

A composite is an internal object that is used to compactly store a variable with
sparse data. A composite is a list of dimension-value combinations in which one
value is taken from each of the dimensions on which the composite is based.

Composites can be named or unnamed:

« Anunnamed composite is not an OLAP DML object; it is merely an internal
structure. If you define a variable you use the SPARSE keyword to request that
an unnamed composite is automatically created.

« A named composite is an OLAP DML object that is you define using the
DEFINE COMPOSITE command. Later, when you are defining or accessing a
variable you use this name along with the dimension names from which it is
built.

Because the values in composites are automatically maintained, using composites is
the recommended way of handling sparsity in your analytic workspace.

In general, why you should use composites

Using composites is one of the most important steps you can take to manage
sparsity, which contributes to keeping analytic workspace size to a minimum and
promoting good performance.

Specifically, why you should use named composites

Using a named composite in the variable’s dimension list tells OLAP Services that
those dimensions in the named composite are sparse dimensions on this variable,
and that this composite is shared only with other variables that use the same named
composite.

In general, using named composites is a good practice. This is because any variables
that are defined with an unnamed composite and that have exactly the same
dimensions in the same order will automatically share that unnamed composite. If
these variables have different sparsity patterns, performance will suffer. Using
named composites makes it easier to track which variables share the same
composite.

3-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Variables That Handle Sparse Data Efficiently

Note: You can also manage sparsity by using a conjoint dimension to hold
dimension-value combinations for which a given variable has data. However,
because the values in composites are automatically maintained, using composites is
the recommended way of handling sparsity in your analytic workspace.

How to use composites

To ensure that a variable uses a minimum of disk storage space, when you define a
multidimensional variable, you can specify that a composite is used to store the
data for one or more of the variable’s dimensions.

First, define a named composite as an OLAP DML object by using the DEFINE
COMPOSITE command. Then, define the variables by using the following syntax to
include a named composite in each variable’s dimension list.

conposi t e- nane <di ns>

For example, suppose you define a composite named PRODDIST, whose
dimensions include PRODUCT and DISTRICT, as shown in the following
command.

CEFI NE proddi st QOMPCEl TE <product district>

Now, suppose you want to define a SALES variable, in which TIME will be the
fastest-varying dimension and the PRODDIST composite will be the
slowest-varying dimension, as shown in the following command.

CEFI NE sal es <tine proddi st <product district>>

Note that you should never use the SPARSE keyword with a composite. Essentially,
you use the name of the composite instead of the SPARSE keyword.

Naming, renaming, and unnaming composites
You can use the RENAME command to:

« Name an unnamed composite.
« Change the name of a named composite.

« Change a named composite to an unnamed composite.

What happens when you add data to a variable that uses a composite

When you define a multidimensional variable, you can specify that a composite is
used to store the data for one or more of the variable’s dimensions. Later, as you

Defining Data Objects 3-17

Defining Variables That Handle Sparse Data Efficiently

add data to the variable’s dimensions for which you defined a composite, the
following actions are taken:

1. The composite is filled with dimension-value combinations.

2. The data for the variable is stored using the composite’s structure rather than
the structure of the base dimensions.

For a variable that uses a composite, cells are created for only those dimension
values that are used in the composite’s dimension-value combinations; it does not
create a variable cell for every value in the base dimensions. Data for a variable is
stored in order, cell by cell, for each combination of dimension values. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. This means that if you
define a variable with one regular dimension and one composite, then it is stored
like a two-dimensional variable.

Example: Defining a variable that uses a named composite

If your company does promotional marketing for certain products in some but not
all districts, then your variable data will be sparse along the PRODUCT and
DISTRICT dimensions. Therefore, suppose you define a composite named
PRODDIST, whose base dimensions are PRODUCT and DISTRICT. There are
dimension-value combinations in the composite only for those values that have
data. For example, if you ran a promotion for tents but not canoes, then the
composite will include the tents and city combinations, but not the canoes and city
combinations.

The following command creates a variable called PROMO that is dimensioned by
MONTH and a composite named PRODDIST, whose base dimensions are
PRODUCT and DISTRICT.

define prono integer <month proddi st <product district>>

The conceptual figure below illustrates the PROMO variable that is created by this
command, the MONTH, PRODUCT and DISTRICT base dimensions, a named
composite (PRODDIST) created from the PRODUCT and DISTRICT base

3-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Variables That Handle Sparse Data Efficiently

dimensions, and the internal relation that is created between the PRODUCT and
DISTRICT base dimensions and the PRODDIST composite.

MONTH
dimension

PRODUCT
dimension

DISTRICT
dimension

PRODDIST

(named composite)

PROMO
variable

The following is an example of the sequence in which the data for the PROMO
variable might be stored.

Sequence in which data for the PROMO variable might be stored
TENTS, TENTS, TENTS, RACQUETS, RACQUETS,
BOSTON BOSTON BOSTON CHICAGO CHICAGO
JAN95 FEB95 MAR95 JAN95 FEB95
257 379 428 635 192

Defining a variable with a single-dimension composite

When you specify a composite for just one dimension in a variable definition, a
single-dimension composite is created. The values of this composite will be a subset
of the values in its base dimension.

It is a good idea to use single dimension composites when a variable will share the
same dimensions as some other variables, but for a particular single dimension, the
variable will only have data for some of that dimension’s values.

Example: Defining a variable with a single-dimension composite

Suppose you have already defined a variable called ACTUAL with the dimensions
LINE, DIVISION, and MONTH. The ACTUAL variable does not contain any NA
values. You need to define a variable called BUDGET, which requires much less

Defining Data Objects 3-19

Defining Hierarchical Dimensions and Variables That Use Them

detail than ACTUAL. For example, BUDGET only needs 10 percent of the LINE
dimension values, while ACTUAL needs all of them.

If you define BUDGET without setting sparsity, then all of the LINE dimension
values are present for every MONTH and ORG, but 90 percent of the LINE
dimension cells will have NA values.

To handle sparse data in this case, when you define BUDGET, specify a composite
for only the LINE dimension as shown below.

define budget decinmal <sparse <line> division nont h>

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

working with sparse data, “Working with NA Values” on page 4-40

using composites in expressions, “Using composites in expressions” on page
4-7

defining composites, the DEFINE COMPOSITE command in the

OLAP DML Reference

defining conjoint dimensions, the DEFINE DIMENSION command in the
OLAP DML Reference

defining variables that use composites, the DEFINE VARIABLE command in the
OLAP DML Reference

Defining Hierarchical Dimensions and Variables That Use Them

Definition: Hierarchical dimension

A hierarchical dimension is a means of organizing and structuring parent-child
(one-to-many) data within a single dimension and using self-relations to organize
the values of the hierarchical dimension into groups. A hierarchy exists when
values within a dimension are arranged in levels, with each level representing the
aggregated total of the data from the level below. Some dimensions have multiple
hierarchies based on them.

Hierarchical dimensions allow you to store data of varying levels of aggregation
within a single variable. This type of storage affords a quicker response time for
users who want to view the data, particularly when the variable is large.

3-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Hierarchical Dimensions and Variables That Use Them

Example: Hierarchical dimension values

Rather than defining two separate dimensions, one for city and the other for region,
you could define a hierarchical dimension named GEOGRAPHY that contains both
city and region values.

BCSTON
SAN FRANG SQO
SEATTLE

Defining a variable that uses a hierarchical dimension

You use a hierarchical dimension to define a variable that contains data of varying
levels of aggregation within a single variable. This type of storage affords a quicker
response time for users who want to view the data, particularly when the variable is
large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the variable’s cells
that correspond to the lower level dimension values. For example, in a SALES
variable that is defined with a TIME dimension, the variable’s cells that correspond
to each quarter represent the total sales for the months in the quarter.

After you have defined a variable with hierarchical dimensions, you can add
variable data to the lowest level of the hierarchy, and then calculate or “aggregate”
the values for the higher levels of the hierarchy. For more information on
aggregating data, see “Aggregating Data” on page 5-19.

Example: Hierarchical dimension and variable that uses it

The conceptual diagram below illustrates the GEOGRAPHY dimension that
contains values for both cities and regions, the GEO.GEO relation that defines the
relationships between cities and regions, the DIVISION dimension that contains the

Defining Data Objects 3-21

Defining Hierarchical Dimensions and Variables That Use Them

list of divisions, and the COSTS variable that contains the expenses for each
DIVISION by city and the totals by region.

GEOGRAPHY GEO.GEO
dimension relation
DIVISION COSTS
dimension variable

The DIVISION and GEOGRAPHY dimensions have the following values.

BCSTON
SAN FRANG SCO
SEATTLE

Assume that the GEO.GEO relation was defined using the following command.
define geo. geo rel ati on geography <geography>

The figure below illustrates the values of a self-relation called GEO.GEO that is
defined to assign cities to regions.

GEORAPHY GEQ &0
EAST NA

VEEST NA
BOSTON EAST

SAN FRANO SO0 VEEST
SEATTLE VEEST

3-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Metadata

If you enter data at the lowest level (city level) of COSTS, then it has the values
shown below.

------------------------ (/0 =) 1= S
---------------------- GEOERAPHY- - - - == == s s
DVSION EAST VEEST BOSTON SAN FRANO SO SEATTLE
D VA NA NA 27,600.00 10, 000. 00 40, 000. 00
D \B NA NA 30,000. 00 12, 000. 00 50, 000. 00

After you aggregate the data, the COSTS variable has values in all of its cells,
including the cells for the totals for the East and West regions.

------------------------ (/0 =) 1= S
---------------------- GEOERAPHY- - - - == == s s
DVSION EAST VEEST BOSTON SAN FRANO SO SEATTLE
D VA 27,600.00 50,000.00 27,600.00 10, 000.00 40, 000. 00
O \B 30,000.00 62,000.00 30,000.00 12, 000.00 50, 000. 00

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

Defining dimensions, the entry for the DEFINE DIMENSION
command in the OLAP DML Reference

adding values to dimensions, “Maintaining Dimensions and Composites”
on page 5-3

using dimensions in expressions, “Using dimensions in expressions” on page
4-6

aggregating data, “Aggregating Data” on page 5-19

Defining Metadata

Definition: Metadata for OLAP DML objects

Metadata is a group of data objects that describes the OLAP DML objects that you
define.

Defining Data Objects 3-23

Changing the Definition of an Object

Why and how to use metadata

The purpose of metadata is to provide you with the flexibility to specify how the
OLAP DML objects will be displayed in applications. Therefore, you should use
metadata when the way in which OLAP DML objects are displayed matters.

You must define metadata and set its property to YES in order to use that metadata.

Using the metadata appendix

This guide provides an appendix that describes all of the metadata that you can
define and use. Refer to Appendix A to learn the following:

=« What metadata is available — You may or may not need to define all possible
types of metadata, depending on your needs. Read the appendix thoroughly in
order to understand what kind of metadata is possible to define, then decide
which metadata you need.

« The purpose of each metadata object — Each metadata object serves a specific
purpose. The description of each metadata object explains its purpose and use.

« How to define metadata — The description of each metadata object includes the
syntax for defining that metadata object, as well as an example.

« How to set the metadata’s property to YES — The description of each metadata
object includes an example of how you set its property to YES, which is what
makes that object functional.

Changing the Definition of an Object

When can you change the definition of an object?

The definition of the last object you have defined in your analytic workspace is the
current definition. You can append characteristics, such as a description, property,
or permission to the current definition. If you want to append a characteristic to a
definition that is not current, then you can use the CONSIDER command to make it
the current definition.

3-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Changing the Definition of an Object

Commands that you can use to make changes to an object definition

The following table lists the OLAP DML commands that you can use to append
characteristics to an object definition.

Command Description

EQ Allows you to specify the expression to be calculated for a formula that
has already been defined

EXTARGS Assigns arguments to the definition of an EXTCALL object

LD Assigns a long description to an object definition

MODEL Allows you to enter completely new contents into a new or existing
model

PERMIT Assigns access permission to an object definition

PROGRAM Allows you to enter completely new contents into a new or existing
program

PROPERTY Assigns a property to an object definition

VNF Assigns a value name format to the definition of a time dimension

Example: Changing the definition of a variable
Suppose that you have defined a Boolean variable named ONPLAN. Later, you
want to add a description to the variable’s definition.

As shown below, to change the definition of the ONPLAN variable, you first make
ONPLAN the current definition, and then you append a description to the
definition.

consi der onpl an
Id Are these districts being tracked on a special plan?

Example: Changing the storage type of a variable

You can redefine the access mode of a variable by using the CHGDFN command,
which is shown below.

CHEFN var nane | NPLACE
PERVANENT

For more information on the DEFINE and CHGDFN commands, see the topic for
the command in the OLAP DML Reference.

Defining Data Objects 3-25

Changing the Definition of an Object

3-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

A

Chapter summary

List of topics

Working with Expressions

Expressions represent data values in the grammar of the OLAP DML. This chapter
explains how to create and use expressions.

This chapter includes the following topics:

OLAP DML Data Types

Using OLAP DML Obijects in Expressions
OLAP DML Operators

Introducing Expressions

Expressions and Dimensionality
Specifying a Single Value for the Dimension of an Expression
Using Functions in Expressions

Numeric Expressions

Text Expressions

Boolean Expressions

Conditional Expressions

Substitution Expressions

Working with NA Values

Working with Expressions 4-1

OLAP DML Data Types

OLAP DML Data Types

Basic data types

OLAP DML data types fall into five categories which are referred to as basic data
types and are described in the following table.

Basic Type Specific Type
Numeric INTEGER, SHORTINTEGER, DECIMAL, SHORTDECIMAL
Text TEXT, ID
Boolean BOOLEAN
Date DATE
Time DAY, WEEK, MONTH, QUARTER, YEAR

Different objects support the use of different data types for their values:

« For most data values, such as those stored in variables, the INTEGER,
SHORTINTEGER, DECIMAL, SHORTDECIMAL, TEXT, ID, BOOLEAN, and
DATE data types are supported.

« For dimension values, the INTEGER, TEXT, ID, DAY, WEEK, MONTH,
QUARTER, and YEAR data types are supported.

Numeric data types
The following numeric data types are supported.
Data Type Data Value
INTEGER A whole number (in the range of £2,147,483,647).

SHORTINTEGER A whole number (in the range of £32,767.

DECIMAL A decimal number (with up to 15 significant digits).

SHORTDECIMAL A decimal number (with up to 7 significant digits).

A value for any of these data types can begin with a plus (+) or minus (-) sign; it
cannot contain commas. Additionally, a decimal value can contain a decimal point.

4-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

OLAP DML Data Types

Examples of literal numeric values
Examples of literal numeric values are:

-1
256000
+2147483647

10000000000. 0009

Text data types

The following types of text data types are supported.

Data Type

Data Value

TEXT

Any number of alphanumeric characters enclosed in single quotes (’).

ID

Up to 8 alphanumeric characters enclosed in single quotes ().

Escape sequences

In some cases, text data includes values that are not printable. Escape sequences are
provided to allow such values to be input and displayed. An escape sequence is a
series of alphanumeric characters that begins with a backslash.

The following table shows escape sequences that are recognized.

Escape
Sequence Meaning

\b Backspace

\ f Form feed

\'n Linefeed

\r Carriage return

\t Horizontal tab

\ Double quote

\’ Single quote

\\ Backslash

\ dnnn Character with ASCII code nnn decimal, where \d indicates a decimal
escape and nnn is the decimal value for the character

\ xnn Character with ASCII code nn hexadecimal, where \x indicates a
hexadecimal escape and nn is the hexadecimal value for the character

Working with Expressions 4-3

OLAP DML Data Types

Examples of literal text values
Examples of literal text values are:

"First Quarter\’s Earni ngs’
"sales data eif’

"NONE

Ny

" JANDG’

"c:\\ pl an97\\ budget . db’

BOOLEAN data type

A BOOLEAN data type is provided that you can use to represent logical values. In
code, you can use any of the following values (in any combination of uppercase and
lowercase characters) to represent Boolean values:

= YES, TRUE, ON
= NO FALSE, OFF

By default, Boolean values as YES and NOare displayed. However, you can use the
NOSPELL and YESSPELL functions to specify other values for display.

Working with Boolean expressions is discussed in “Boolean Expressions” on page
4-28.

DATE data type

A DATE data type is provided that you can use to represent date values. Dates
range from January 1, 1000, to December 31, 9999.

To control how values are formatted with the DATE data type in output, use the
DATEFORMAT option. For more information on using the DATEFORMAT option,
see the entry for the option in the OLAP DML Reference.

To represent DATE values, specify them in either quoted text or integer format.

4-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

OLAP DML Data Types

Representing DATE values as quoted text

For quoted text, specify a group of characters enclosed in single quotes (’). Format
the text in one of the styles specified by the DATEORDER option and described in
the following table.

IF the style is... THEN specify... Examples

numeric, the day, month, and year as three |’ 24/ 4/ 97" ' 24-04-1997’
integer numbers with one or
more separators between them.

packed numeric, the day, month, and year as three |’ 240497’ ' 04241997’
integer numbers with no
separators between them.

month name, the day and year as integer ' 24APROT7’ ' 24 ap 97’
numbers and the month as "April 24, 1997
characters.

See the entry for DATEORDER in the OLAP DML Reference for detailed rules for
these styles.

Representing DATE values as integers

For an integer, specify a number between -328,717 and 2,958,464 (with the integer 1
corresponding to January 1, 1900).

Time data types

For dimensions, five time data types (DAY, WEEK, MONTH, QUARTER, and
YEAR) are supported. You can specify a dimension value for a time dimension in
either date or value name (VNF) format:

« To specify a value in date format, use any of the input styles listed for the
DATEORDER option. You need to specify only the date components that are
relevant for the data type that is defined for the dimension. If you specify a full
date, the current value of the DATEORDER option is used to resolve any
ambiguities.

« To specify a value in VNF format, use the formats outlined in the VNF
command. A VNF is a template that controls the input and display format for
values of a given time dimension. The template can include format
specifications for any of the components that identify a time period (day,
month, calendar year, fiscal year, and period within a fiscal year).

Working with Expressions 4-5

Using OLAP DML Objects in Expressions

Note: You can use the MAKEDATE function to create a full date value from a day,
month, and year. For more information on the MAKEDATE functions, see the entry
for the function in the OLAP DML Reference.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

functions that you can use to manipulate the OLAP DML Reference
text, numbers, dates and time periods,

specifying file names, “Specifying File Names in the OLAP DML”
on page 11-5

Using OLAP DML Objects in Expressions

Overview: Using OLAP DML objects in expressions
You can use OLAP DML objects and functions in expressions as described below:

= You can use a dimension, a relation, or a variable as an array of data by
specifying the name of the object.

= You can use a formula or a function as a subexpression or as an expression in a
command or function by specifying the name of the formula or the function.

= You can use a valueset as a list of dimension values in an expression by
specifying the name of the valueset.

= You can use various data objects as the target or source expression in an
assignment statement as described in “Assigning Values to Data Objects” on
page 5-13.

Using dimensions in expressions
In expressions, a dimension is referenced as a one-dimensional array.

If the dimension has a data type of TEXT, then, in most cases, the dimension values
are referenced as text values.

4-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using OLAP DML Objects in Expressions

However, dimension values are referenced by their positions (integers) in the
dimension array and uses the values numerically when you do one of the following:

« Use adimension with a data type of TEXT in a numeric expression
« Compare one value in a dimension to another value in the same dimension

In these cases, the position number is based on the default status list, not on the
current status.

Note: When you use a dimension with a data type of DATE, if you want the
dimension value to be treated as an integer position, then you must use the
CONVERT function.

Using composites in expressions

In expressions, composites behave much the same way that dimensions do and,
generally, you can use a composite in an expression anywhere you can use a
dimension:

« If the composite is named, then you specify its name.

« If the composite is unnamed, then you specify SPARSE <dimensions...>.

Using variables in expressions

In expressions, a variable is referenced as an array containing values of the specified
data type.

When you assign values to a variable or when you use REPORT or another
command or function that loops over the dimensions of a variable, the values of the
variable’s fastest-varying dimension vary first. For example, for the OPCOSTS
variable that is dimensioned by MONTH and CITY, when you view the variable as
REPORT command output, you will see the data for all months for the first city
before you see any data for the second city. In this case, MONTH is the
fastest-varying dimension because its values change before those of CITY. When
you write programs that loop over a multidimensional variable in this way;, try to
maximize performance by matching the fastest-varying dimension with the inner
loop.

Note: When you use a variable as the solution variable in a model, the model will
execute most efficiently if the order of the dimensions in the definition of the
solution variable matches the order of the dimensions in the DIMENSION
commands in the model.

Working with Expressions 4-7

Using OLAP DML Objects in Expressions

You can uniquely and completely select any item of data within a multidimensional
variable by using a QDR to specify one value from each of the variable’s
dimensions.

For example, if the OPCOSTS variable is dimensioned by MONTH and CITY,
specifying Jan95 for the MONTH dimension and Boston for the CITY dimension
uniquely specifies a single cell in the variable.

Using variables defined with composites in expressions

In most cases, when you use OLAP DML functions and commands with variables
that are defined with composites, the functions and commands treat those variables
as if they were defined with base dimensions:

= You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

« The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and
therefore, they do not have any independent status.

Default behavior of commands that loop over a variable

When you use the REPORT command or any other command that loops over a
variable that uses a composite, the default behavior is to evaluate all the
combinations of the values of the composite’s base dimensions that are in status.
Any combinations that do not exist in the composite display NA for their associated
data.

For example, the following commands create a report for the East region that shows
the number of coupons issued for sportswear from January through March 1995.
Since no coupons were issued in March 1995, the report displays NA in that
column.

limt nonth to ' JANDS' ' FEB9S ' NARDS
limt narket to 'EAST

limt product to ' SPCRTSVEAR

report coupons

NARKET: EAST
------------ COPONS: - == - === ==
------------- MONTH - - - - = === - - - -
PRCOUCT JANDS FEB95 NARDS5
SPCRTSVEAR 1, 000 1, 000 NA

4-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using OLAP DML Objects in Expressions

Changing the default behavior of looping commands

However, for performance reasons, you can change the default looping behavior for
the REPORT, ROW, RETRIEVE, FETCH, and = commands so that those commands
loop over the values in the composite rather than all of the base dimension values.
For more information on these commands, see the entry for each command in the

OLAP DML Reference.

Using relations in expressions

A relation is, in many ways, just a special type of variable. Instead of holding
general data values, a relation contains values of the related dimension.
Consequently, in an expression, a relation behaves somewhat like a variable and

somewhat like a dimension:

= When you use a relation in a text expression, the relation value is referenced as
a text value. The values of the related dimension that is contained in the relation
are converted into text, and you can use these values in an expression. You can
also compare a text literal to a relation.

=« When you use a relation in a numeric expression, the relation value is
referenced by its position (an integer) in its related dimension array. You can use
this numeric value in an expression. The position number is based on the
default status list of the dimension, not the current status list of the dimension.

Related information

For more information, see the following table.

IF you want documentation about . . .

THEN see . ..

OLAP DML data objects,

Chapter 3

using OLAP DML data objects in
assignment statements,

“Assigning Values to Data Objects” on page
5-13

user-defined functions,

“Writing User-Defined Functions” on page
8-16

Working with Expressions 4-9

OLAP DML Operators

OLAP DML Operators

Definition: Operator

An operator is a symbol that transforms a value or combines it in some way with

another value.

Categories of operators

The OLAP DML operators fall into the categories described in the following table.

Category

Description

Arithmetic

Operators that you can use in numeric expressions with numeric data to
produce a numeric result. You can also use some arithmetic operators in
date expressions with a mix of date and numeric data, which returns either
a date or numeric result. For more information on arithmetic operators, see
“OLAP DML arithmetic operators” on page 4-23.

Assignment

An operator that you use to create an assignment statement that stores the
results of an expression into an OLAP DML object. For more information
on using assignment statements, see “Assigning Values to Data Objects” on
page 5-13.

Comparison

Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean) which returns a Boolean
result. For more information on comparison operators, see “Boolean
operators” on page 4-29.

Logical

Operators that you can use to transform Boolean values using logical
operations which returns a Boolean result. For more information on logical
operators, see “Boolean operators” on page 4-29.

Substitution

An operator that you can use to evaluate an expression and substitute the
resulting value. For more information on the substitution operator, see
“Substitution Expressions” on page 4-39.

Conditional

Operators that you can use to select one of two values based on a Boolean
condition. For more information on the substitution operator, see
“Conditional Expressions” on page 4-37.

4-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introducing Expressions

Introducing Expressions

Definition: Expression

Expressions represent data values in the grammar of the OLAP DML language. You
can use expressions as arguments in commands or functions and as values for
OLAP DML options. An expression often performs a mathematical or logical
operation. It always evaluates to a result in one of the OLAP DML data types.

An expression can be:
« Asingle, literal value (for example, 10 or ' EAST')
« Avariable or formula that contains multiple values (for example, SALES)

« A function that returns one or more values (for example, TOTAL or
JOINLINES)

« A calculation that combines literal values, dimensions, variables, formulas, and
functions with operators (for example, | NFLATI ON* 1. 02 or ACTUAL GT
20000)

An expression has a data type. It can also have dimensions. The data type and
dimensions of an expression depend on the values you are using in the expression.

Data types of expressions
The data type of an expression can be one of the following basic types:
= Numeric
« Text
« Date (evaluating to a date value)
« Boolean (evaluating to a YES or NO value)

These data types are defined in “OLAP DML Data Types” on page 4-2.

How the data type of an expression is determined

The data type of an expression is the data type of the resulting value. It may not be
the same as the data type of the OLAP DML data objects that make up the
expression; it depends on the data and on the operators and functions that are
involved.

Working with Expressions 4-11

Introducing Expressions

In addition, a conditional expression that is indicated by an IF. . . THEN. . .ELSE
operator is supported. A conditional expression returns a value whose data type
depends on the expressions in the THEN and ELSE clauses, not on the expression in
the IF clause, which must be Boolean.

Note: Do not confuse a conditional expression with the IF command, which has
similar syntax but a different purpose. The IF command does not have a data type
and is not evaluated like an expression.

Changing the data type of an expression

You can use the CONVERT function to change an expression’s data type. For
example, you can convert a number to text, or you can convert a text string that
consists of digits to a number.

However, there is no need to convert data to another type within the same basic
category because those conversions are made automatically. In general, you can use
TEXT or ID data anywhere text is called for, and you can use integers and decimal
numbers interchangeably.

OLAP DML data types are discussed in “OLAP DML Data Types” on page 4-2.

Saving an expression

You can save an expression in a formula. Typically, you define a formula to save
complex or frequently used expressions. A formula is a OLAP DML object that you
name and define using the DEFINE FORMULA command.

For example, you can define a formula to calculate dollar sales, as follows.
define dollar.sales formula units * price

Each time you use a formula, the expression it represents is evaluated.

4-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introducing Expressions

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..
functions, the OLAP DML Reference
formulas, Chapter 7

the entry for the DEFINE FORMULA
command in the OLAP DML Reference

dimension status and limiting dimensions, | Chapter 6

the entry for the LIMIT command in the
OLAP DML Reference

assigning permissions to dimension values, | “Adding Security to an Analytic Workspace”
on page 2-20

the entry for the PERMIT command in the
OLAP DML Reference

user-defined functions, Chapter 8

qualified data references, “Specifying a Single Value for the Dimension
of an Expression” on page 4-16

Working with Expressions 4-13

Expressions and Dimensionality

Expressions and Dimensionality

How an expression is dimensioned

An expression is dimensioned by a union of the dimensions of all the variables,
dimensions, relations, formulas, qualified data references, and functions in the

expression.
Item Dimensioned By More Information
Variable The dimensions listed in Example 1: if the PRICE variable is
Relation the object’s definition dimensioned by MONTH and PRODUCT, then
the expression PRI CE* 1. 2 is also
Formula dimensioned by MONTH and PRODUCT
Example 2: If the UNITS variable is
dimensioned by MONTH, PRODUCT, and
DISTRICT, then the expression UNI TS* PRI CE
is dimensioned by MONTH, PRODUCT, and
DISTRICT (even though the dimensions of the
PRICE variable are MONTH and PRODUCT
only)
Qualified All of the dimensions of Qualified data references are described in
data the associated object, “Specifying a Single Value for the Dimension of
reference except for the dimensions | an Expression” on page 4-16
being qualified
Function In most cases, the union of | Note 1: Unless otherwise noted in the OLAP
the dimensions of its input | DML Reference, when you specify breakout
arguments dimensions or relations in an aggregation
function, you change the dimensionality of the
expression. The first dimension that you
specify as a breakout dimension is the slowest
varying and the last dimension that you specify
is the fastest varying.
Note 2: The dimensions of a user-defined
function depend on how it has been coded.

Determining the dimensions of an expression

You can find out the dimensions of an expression with the PARSE command and
the INFO function. PARSE evaluates the text of an expression; the INFO function
indicates how the expression is interpreted.

For more information on the PARSE command and the INFO function, see the entry
for the command or function in the OLAP DML Reference.

4-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Expressions and Dimensionality

Example: Determining the dimensions of an expression

This example illustrates the use of the DIMENSION keyword with the INFO
function to retrieve the dimensions of the expression just analyzed by the PARSE
command.

The following commands produce the output shown below them.

parse 'total (sal es region)’
show i nf o(par se di nensi on)
REG ON

How dimension status affects the results of expressions

The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, if three
dimension values are in status for MONTH, and two for PRODUCT, then the
expression PRI CE GT 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an
expression are limited to the range of data you want to consider. In addition, you
must take into consideration any PERMIT commands that might limit access to the
dimensions of the data.

Example 1: How dimension status affects the results of an expression

You can see the changes in the results reported by the TOTAL function as you
change the status of PRODUCT and MONTH, both of which are dimensions of the
SALES variable.

limt nonth to all

limt district to all

limt product to all

report width 22 total (sal es product)

The output of this report command is shown below.

PRODUCT TOTAL(SALES PRCDUCT)

TENTS 10, 430, 420. 75
CANCES 11, 699, 953. 48
RACQLETS 13, 550, 445. 01
SPCRTSVEAR 14, 910, 328. 52
FOOTVEAR 12, 590, 595. 74

Working with Expressions 4-15

Specifying a Single Value for the Dimension of an Expression

Example 2: How dimension status affects the results of an expression
The following commands produce the output shown below them.

limt product to ' RACQETS ' SPCRTSWEAR
report width 22 total (sal es product)

PRCDUCT TOTAL(SALES PRCDUCT)
RACQLETS 13, 550, 445. 01
SPCRTSWEAR 14, 910, 328. 52

Example 3: How dimension status affects the results of an expression
The following commands produce the output shown below them.

limt nonth to year ' YROG'
report width 22 total (sal es product)

PRODUCT TOTAL(SALES PRCDUCT)
RACQLETS 6, 957, 866. 18
SPCRTSVEAR 7,703, 196. 64

Specifying a Single Value for the Dimension of an Expression

What is a QDR?

A qualified data reference (QDR) is a way of limiting one or more dimensions of an
expression to a single value. QDRs are useful when you want to temporarily
reference a value that is not in the current status. Using a QDR, you can qualify a
dimension (which allows you to specify one dimension value in an expression) or
one or more dimensions of a variable or relation.

A qualified data reference takes the following form.
expr essi on(di manel di nexpl [, di mane2 di nexp2. . .])

The dimname argument is the name of one of the dimensions of the expression, and
the dimexp argument is one of the following:

= Avalue of dimname.
« Atext expression whose result is a value of dimname.
= A numeric expression whose result is the logical position of a value of dimname.

= Avrelation of dimname.

4-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Specifying a Single Value for the Dimension of an Expression

Qualifying a complex expression

To qualify a complex expression, you should use the QUAL function. For more
information, see the entry for QUAL.

Qualifying a variable
You can qualify any or all of a variable’s dimensions using either of the following
techniques:

« The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value may be outside the current status.

« The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the
qualifier. The dimension is temporarily replaced by the dimension(s) of the
relation.

Example: Temporarily limiting the dimension of a variable

In the demonstration analytic workspace, deno, the variable SALES has three
dimensions, MONTH, PRODUCT, and DISTRICT. You might want to compare total
sales in Boston to the total sales in all cities. In a single FETCH command, you want
DISTRICT to be limited to two different values:

« For the numerator of the expression, you want the status of DISTRICT to be
BOSTON.

« For the denominator of the expression, you want the status of DISTRICT to be
ALL.

The command below lets you fetch this data by using a QDR.
fetch sal es(district 'BOSTON)/total (sal es)

Replacing a dimension in a variable

When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension(s) of the relation. The relation must be related to the
variable’s dimension you are qualifying, and it must be dimensioned by the
replacement dimension.

Example: Replacing a dimension in a variable

Suppose you have two variables, SALES and QUOTA, which are dimensioned by
MONTH, PRODUCT, and DISTRICT. A third variable, DIVISION.MGR, is

Working with Expressions 4-17

Specifying a Single Value for the Dimension of an Expression

dimensioned by MONTH and DIVISION. You also have a relation between
DIVISION and PRODUCT, called DIVISION.PRODUCT. These objects have the
following definitions.

DEFI NE SALES VAR ABLE DEQ MAL <MINTH PRODUCT DI STR CT>
LD Sal es Revenue

CEFI NE QUOTA VAR ABLE DEQ MAL <MINTH PRODUCT DI STR CT>
DEFINE DM S ON MR VAR ABLE TEXT <MINTH D'V S O\>
DEFINE DM S ON PRODUCT RELATI ON DM SI ON <PRCDLCT>
LD DM S N for each PRODUCT

The command below produces the report following it.

report divi sion. ngr

CAMPING Hawey Hawey Jones Jones Jones Jones
SPCRTING Carey Car ey Carey Carey Carey Misgr ave
CLOH NG Musgrave Misgrave Misgrave Misgrave Misgrave Véng

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota; and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
DIVISION.PRODUCT, which is related to DIVISION and dimensioned by
PRODUCT, as the qualifier. The QDR replaces the DIVISION dimension with
PRODUCT, so that it has the same dimensions as the other expression in the report
“SALES /7 QUOTA.” The command below produces the report following it.

report down nonth sales w6 sal es/ quota w 8 headi ng -
"MANAGER di vi si on. ngr (di vi si on divi si on. product)

----------------------------- PRODUCT- - - == - == === = mmem i mee oo
e TENTS - - - --- CANCES- - - - -- RACQUETS -- - - SPCRTSVEAR - - - - FODTVEAR - -
SALEY SALEY SALEY SALEY SALES

JAND5 1.00 Hawey 0.82 Hawey 1.02 Carey 0.91 Musgrave 0.92 Misgrave
FEBOS 0.84 Hawey 0.96 Hawey 1.00 GCarey 0.80 Musgrave 1.07 Misgrave
MRO5 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Misgrave 0.91 Misgrave
APRO5 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Misgrave

4-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Specifying a Single Value for the Dimension of an Expression

Example: Qualifying more than one dimension of a variable

You can qualify more than one of the dimensions of a variable. For example, if you
qualify all the dimensions of the SALES variable by specifying one dimension value
of each dimension, then you narrow SALES down to a single—cell value.

To fetch sales for JUN95, TENTS, and SEATTLE, use the following QDR.
fetch sal es(nonth ' JUNDS', product ' TENTS, district ' SEATTLE)
This command fetches the single value: 113,806.48.

Qualifying a relation

You can also use a QDR to qualify a relation (which is really a special kind of
variable).

Example: Qualifying a relation

Suppose the REGION.DISTRICT relation is dimensioned by DISTRICT. If you
qualify DISTRICT with the value SEATTLE, then the value of the expression is the
value of the relation for SEATTLE. Because the QDR specifies one value of
DISTRICT, the expression has a single—cell result.

The definition of REGION.DISTRICT is as follows.

DEF NE REG ON D STR CT RELATI ON REG ON <D STR CT>
LD The region for each district

The command below fetches the value: WEST.

fetch region.district(district ' SEATTLE)

Quialifying a dimension

You can use a QDR to qualify the dimension itself, which allows you to specify one
dimension value in an expression.

Example: Qualifying a dimension
The following expression specifies one value of DISTRICT, the one contained in the
single-cell variable MYDISTRICT.

district(district nydistrict)

Working with Expressions 4-19

Specifying a Single Value for the Dimension of an Expression

Using QDRs to assign a value to a specific cell of a data object

You can use a qualified data reference with the target expression of the = command.
This lets you assign a value to a specific cell in a data object.

Example: Using QDRs to assign a value to a specific cell of a data object

The following example assigns the value 10200 to the data cell of the SALES
composite that is specified in the qualified data reference. If the composite named
SALES does not already have a value for the combination BOSTON and TENTS,
then this value combination is added to the composite, thus adding the data cell.

sal es(narket ' BOBTON product ' TENTS nonth ' JANB9') = 10200

Using ampersand substitution with QDRs

When you use an ampersand with a QDR, you must enclose the whole expression
in parentheses if you want the variable to be qualified before the substitution is
made.

Example: Using ampersand substitution with QDRs

Suppose you have a text variable named MYVAR that is dimensioned by REPTYPE
and that contains the names of variables. Remember that it is MYVAR that is
dimensioned by REPTYPE, not the variables named by MYVAR. Therefore, you
must use parentheses so that MYVAR is qualified and the resulting value is used in
the REPORT command.

report & nyvar(reptype ' ACTUAL'))

If you do not use parentheses and the variable that is specified in MYVAR is SALES,
then you will get an error message that SALES is not dimensioned by REPTYPE.

Using the QUAL function to explicitly specify a QDR

Sometimes you will find that the syntax of a QDR is ambiguous and could either be
misinterpreted or cause a syntax error. In this case, you can use the QUAL function
to explicitly specify a qualified data reference (QDR).

Example: Using the QUAL function

The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

4-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Specifying a Single Value for the Dimension of an Expression

These commands produce the report shown below them.

limt nonth to ' JANDG

limt line to QO

limt division to ' SPCRTING

to " JUNDE'

report down nonth w 11 nax(actual , budget) w 11 actual w 11 budget
DM S N SPCRTI NG

MAYO6
JUNBG

287, 557. 87
323, 981. 56
326, 184. 87
394, 544. 27
449, 862. 25
457, 347.55

287,557. 87
315, 298. 82
326, 184. 87
394, 544. 27
449, 862. 25
457, 347. 55

279,773.01
323, 981. 56
302, 177. 88
386, 100. 82
433, 997. 89
448, 042. 45

Now consider how you might view the same figures for MAX(ACTUAL,BUDGET)
without changing the status of LINE or DIVISION.

al | stat

limt nonth to ' JANDG

to " JUNDE'

report heading 'For Gogs in Sporting D vision down nmonth -

w 11 headi hg ' MAX(ACTUAL, BUDEET) ' -
qual (nmax(actual , budget), line 'QOGS, division ' SPCRTING)

For Cogs in

Spoorting
D vi si on

MAYO6
JUN\BG6

287, 557. 87
323, 981. 56
326, 184. 87
394, 544. 27
449, 862. 25
457, 347. 55

If you attempt to produce the same report with standard QDR syntax, then an error

is signalled.

report heading 'For Qogs in Sporting Division” down nmonth -
w 11 headi ng ' MMX(ACTUAL, BUDCGET) " -

nax(actual , budget) (line cogs, division sporting)

Working with Expressions 4-21

Using Functions in Expressions

The following error message is produced.

ERROR A right parenthesis or an operator is expected after LINE

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . ..

limiting dimensions, Chapter 6

qualified data references, “Specifying a Single Value for the Dimension
of an Expression” on page 4-16

ampersand substitution, “Substitution Expressions” on page 4-39

the QUAL function, the entry for the function in the OLAP DML
Reference

Using Functions in Expressions

Definition: Function

A function is a predefined calculation that returns a value. A number of built-in
functions are provided, including:

= Numeric functions — You can use these functions to make calculations and
analyze data.

« Date functions — You can use these functions to manipulate dates.

« Text functions — You can use these functions to join characters or lines, search
for or extract a group of characters, or calculate the length of the text.

Using functions in the OLAP DML

You can use a function wherever you need to use an expression in a command or
function, or even within another expression. To include a function in an expression,
specify the name of the function followed by its arguments enclosed in parentheses.

In addition to using the predefined OLAP DML functions, you can define a
program that behaves like a function by returning a value.

4-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Numeric Expressions

Numeric Expressions

What is a numeric expression?

A numeric expression evaluates to data with any of the numeric data types (that is,
INTEGER, SHORTINTEGER, DECIMAL, and SHORTDECIMAL). The data in a
numeric expression can be any combination of the following:

= Numeric literals

= Numeric variables or formulas

« Dimensions

« OLAP DML functions that yield numeric results
« Date literals, variables, formulas, or functions

In addition, you can join any of these three—part expressions with the arithmetic
operators for a more complex numeric expression. You use arithmetic operators in
numeric expressions with numeric data, which returns a numeric result. You can
also use some arithmetic operators in date expressions with a mix of date and
numeric data, to retrieve either a date or numeric result.

OLAP DML arithmetic operators

The following table shows the OLAP DML arithmetic operators. When you use two
or more operators in a numeric expression, the expression is evaluated according to
standard rules of arithmetic. The column entitled Priority indicates the order in
which that operator is evaluated. Operators of the same priority are evaluated from
left to right, which are summarized below.

Operator Operation Priority
- Sign reversal 1st
o Exponentiation 2nd
*and / Multiplication and division 3rd
+and - Addition and subtraction 4th

Note: A comma is required before a negative number that follows another numeric
expression, or the minus sign is interpreted as a subtraction operator. For example,
i ntvar, -4.

Working with Expressions 4-23

Numeric Expressions

Mixing numeric data types

You can include INTEGER, SHORTINTEGER, DECIMAL, and SHORTDECIMAL
data in the same numeric expression.

The data type of the result is determined according to the following rules.

IF... THEN the resultis . ..
all the data in the expression is INTEGER or INTEGER.
SHORTINTEGER, and the only operations are addition,

subtraction, and multiplication,

any of the data is DECIMAL or SHORTDECIMAL, DECIMAL.

you perform any division or exponentiation operations, DECIMAL.

Automatic conversion of numeric data types

Numbers are converted to different data types according to the following rules.

IFyou ...

THEN ...

use a value with the
SHORTINTEGER or
SHORTDECIMAL data type in an
expression,

the value is converted to its long counterpart before
using it.

Note: See “Boolean Expressions” on page 4-28 for
information about problems that can occur when
you mix SHORTDECIMAL and DECIMAL data
types in a comparison expression.

save the results of a calculation as a
value with the SHORTINTEGER
data type,

NA is stored when the result is outside the range of
a SHORTINTEGER (-32768 to 32767).

assign the value of a decimal
expression to an object with the
INTEGER data type,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then Express stores NA.

use a decimal value where a value
with the INTEGER data type is
required,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then Express stores NA.

assign the value of a decimal
expression to a variable with the
SHORTDECIMAL data type,

only the first 7 significant digits are stored.

4-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Numeric Expressions

If these conversions are not what you want, then you can use OLAP DML functions
to get different results.

Using dimensions in arithmetic expressions

When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an integer) and is used numerically. The
position number is based on the default status list, not on current status. When you
use a dimension with a data type of DATE, you must use the CONVERT function
when you want the dimension value to be treated as an integer position.

For example, the MONTH dimension in the deno analytic workspace has JAN95 in
position 1, FEB95 in position 2, and so on. Even when the list is sorted
alphabetically so that APR95 is first, the value APR95 remains in position 4.

Using dates in arithmetic expressions

When you use dates in arithmetic expressions, the result can be numeric or it can be
a date. The following table shows the legal operations for dates and the data type of

the result.
IFyou..... .. THEN the resultis... . ..
add or subtract a number from a | a future or prior date.
date,
subtract a date from a date, the number of days between them.

add or subtract a number from a | the time period at the appropriate interval in the future
time period, or the past, similar to the LEAD or LAG function. The
result is NA when there is no dimension value that
corresponds to the result. The calculation is made based
on the positions of the values in the dimension’s default
status list.

Limitations of dates in expressions
The following list outlines the ways in which you cannot use dates in expressions.

= You cannot add two dates together.

= You cannot add or subtract a literal value from a dimension value with a date
data type. Both operands must actually be dimension values.

For example, suppose that M1 is a dimension with a data type of MONTH. An
error message is returned when you attempt to subtract the literal value AUG97

Working with Expressions 4-25

Numeric Expressions

from the first value in status for the M1 dimension by issuing the first command
shown below. However, the number of months between the two values is
displayed when, as shown in the second command, you use a QDR to identify
AUG97 as a value of M1 and then subtract this dimension value from the first
value in status for the M1 dimension.

I ncorrect: show ml - ' AUX7’
Correct: show ml - mi(ml *AUGIT7")

= You cannot specify time periods that have different phases or lengths in the
same calculation.

For example, if you tried to subtract a week from a month, then the result
would not have any meaning. If you need to compare time periods of different
types, then use the IN operator.

Limitations of floating point calculations

All decimal data are converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a
mantissa and an exponent. The mantissa and the exponent are stored as binary
numbers. The mantissa is a binary fraction which, when multiplied by a number
equal to 2 raised to the exponent, produces a number that equals or closely
approximates the original decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers may result in further
approximations, and the inaccuracy will gradually increase with the number of
operations. In addition to the approximation factor, the available number of
significant digits affects the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable may differ in
the least significant digits from a result you compute by hand. Because the
SHORTDECIMAL data type provides a maximum of only seven significant digits,
you will see more of these differences with SHORTDECIMAL data. Therefore, you
may want to use the DECIMAL data type for variables that have a fractional
decimal component, such as sales, costs, and other variables that contain currency
amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type

4-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Text Expressions

will offer a different and closer approximation than the SHORTDECIMAL data
type, because it has more significant digits. This can lead to problems when
SHORTDECIMAL and DECIMAL data types are mixed in a comparison expression.
See the topic “Boolean Expressions” on page 4-28 for information on how to handle
such comparisons.

Controlling errors during calculations
You can control the following types of errors:

« Division by zero — Dividing a non-NA value by zero normally produces an
error. If a divide-by-zero error occurs when you are making a calculation on
dimensioned data, then you can end up with partial results. When you use the
REPORT or the = command, values are reported or stored as they are
calculated, so the division by zero halts the loop before it has gone through all
the values.

If you divide an NA value by zero, then the result is NA; no error occurs. If you
want to suppress the divide-by-zero error, then you can change the value of the
DIVIDEBYZERO option to YES. This means that the result of any division by
zero is NA and no error occurs. This allows the calculation of the other values
of a dimensioned expression to continue.

« Root of negative numbers — It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). If
you want to suppress the error message and allow the calculation of roots for
non-negative values of the expression to continue, then set the
ROOTOFNEGATIVE option to YES.

« Overflow errors — The DECIMALOVERFLOW option works in a similar
manner to DIVIDEBYZERO. It lets you control whether an error is generated
when a calculation produces a decimal result larger than it can handle.

Text Expressions

What is a text expression?

A text expression evaluates to data with either the TEXT or ID data type. Text
expressions can be any combination of the following:

« Text literals; for example,” BOSTON' or’ Current Sal es Report’
« Text dimensions; for example, DISTRICT or MONTH

Working with Expressions 4-27

Boolean Expressions

« Text variables or formulas; for example, PRODUCT. NAME

« Functions that yield text results; for example, JO NLI NES(’ Pr oduct :
product . nane)

Example: Text expression

Suppose TEXTVAR is a variable whose value is’ MONTH , which is the name of a
dimension. Whether you enclose the word TEXTVAR in quotation marks
determines whether the following OBJ function returns the word VARIABLE (the
type of object TEXTVAR is) or DIMENSION (the type of object MONTH is).

The following commands produce the output shown below them.

show obj (type "textvar’)
VAR ABLE

The following commands produce the output shown below them.

show obj (type textvar)
DO MENS ON

Working with dates in text expressions

If you use a DATE value where a text value (TEXT or ID) is expected, or if you store
a DATE value in a text variable, then the DATE value is automatically converted to
a text value.

The current template in the DATEFORMAT option is used to format the text. If you
want to override the current DATEFORMAT template, then you can convert the
DATE value to text by using the CONVERT function with a date-format argument.
See the entry for the CONVERT function in the OLAP DML Reference for an
example.

Once a DATE value is stored in a text variable, the DATEFORMAT template is no
longer used to format the display of the value, and subsequent changes to
DATEFORMAT have no impact.

Boolean Expressions

What is a Boolean expression?

A Boolean expression is a logical statement that is either true or false. Boolean
expressions can compare data of any type as long as both parts of the expression

4-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Boolean Expressions

have the same basic data type. You can test data to see if it is equal to, greater than,
or less than other data.

A Boolean expression can consist of Boolean data, such as the following:

« Boolean values (YES and NO, and their synonyms ON and OFF and TRUE and
FALSE)

= Boolean variables or formulas
« Functions that yield Boolean results
« Boolean values calculated by comparison operators

For example, if you have the Boolean expression shown below, then each value of
the variable ACTUAL is compared to the constant 20,000. If the value is greater than
20,000, then the statement is true; if the value is less than or equal to 20,000, then the
statement is false.

actual gt 20000

When you are supplying a Boolean value, you can type either YES, ON, or TRUE
for a true value, and NO, OFF, or FALSE for a false value. When the result of a
Boolean calculation is produced, the defaults are YES and NO, but you can change
the output by setting the YESSPELL and NOSPELL options.

Boolean operators

The following table shows the comparison operators and the logical operators. You
use these operators to make expressions in much the same way as arithmetic

Working with Expressions 4-29

Boolean Expressions

operators. The column entitled “Priority” indicates the order in which that operator

is evaluated.
Operator Operation Example Priority
NOT Returns opposite of NOT(YES) = NO 1st
Boolean expression
EQ Equal to 4 EQ 4 = YES 2nd
NE Not equal to 4 NE 4 = NO 2nd
GT Greater than 5GI 7 =NO 2nd
LT Less than 5 LT 7 = YES 2nd
GE Greater than or equal to 8 GE 8 = YES 2nd
LE Less than or equal to 8 LE 9 = YES 2nd
IN Is a date in a time period? |’ 1JAN97’ I N W.97 = YES 2nd
LIKE Does a text value matcha | ' EXPRESS LI KE ' %RE% = YES |2nd
specified text pattern?
AND Both expressionsaretrue |8 GE 8 AND 5 LT 7 = YES 3rd
OR Either expressionistrue |8 GE 8 OR 5 GI 7 = YES 4th

Each operator has a priority that determines its order of evaluation. Operators of
equal priority are evaluated left to right, unless parentheses change the order of
evaluation. However, the evaluation is halted when the truth value is already
decided. For example, in the following expression, the TOTAL function is never
executed because the first phrase determines that the whole expression is true.

yes eq yes or total (sales) gt 20000

Creating Boolean expressions

A Boolean expression is a three-part clause that consists of two items to be
compared, separated by a comparison operator. You can create a more complex
Boolean expression by joining any of these three-part expressions with the AND
and OR logical operators. Each expression that is connected by AND or OR must be
a complete Boolean expression in itself, even when it means specifying the same
variable several times.

4-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Boolean Expressions

For example, the following expression is not valid because the second part is
incomplete.

sal es gt 50000 and | e 20000
In the next expression, both parts are complete so the expression is valid.
sal es gt 50000 and sal es | e 20000

When you combine several Boolean expressions, the whole expression must be
valid even if the truth value can be determined by the first part of the expression.
The whole expression is compiled before it is evaluated, so when there are
undefined variables in the second part of a Boolean expression, you will get an
error.

Use the NOT operator, with parentheses around the expression, to reverse the sense
of a Boolean expression.

The following two expressions are equivalent.

district ne ' BOSTON
not (district eq ' BOBTON)

Example: Using Boolean comparisons

The following example shows a report that displays whether sales in Boston for
each product were greater than a literal amount.

limt nonth to first 2
limt district to ' BOSTON
fetch sal es gt 75000 | abel ed

This FETCH command returns the following data.

(MONTH JAND5, PRCDUCT TENTS, DI STR CT BOSTQN): FALSE
(MONTH FEB95, PRCDUCT TENTS, DI STR CT BOSTQN): FALSE
(MONTH JANBS, PRCOUCT CANCES, DI STRICT BCSTON): FALSE
(MONTH FEB95, PRCDUCT CANCES, DI STRCT BCSTAON: TRE
(MINTH JANBS, PRCDUCT RACQUETS, D STRICT BOSTAN: FALSE
(MINTH FEB9S, PRODUCT RACQUETS, D STRCT BOSTAN: FALSE
(MONTH JAND5, PRCDUCT SPCRTSVWEAR DI STR CT BOSTON): FALSE
(MONTH FEB95, PRODUCT SPCRTSWEAR DI STR CT BOSTQN): FALSE
(MONTH JANBS, PRCDUCT FOOTWEAR DI STR CT BOSTON): TRUE
(MONTH FEB95, PRCDUCT FOOTWEAR DI STR CT BOSTON): TRUE

Working with Expressions 4-31

Boolean Expressions

Comparing NA values in Boolean expressions

When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, if you test
whether an NA value is equal to a non-NA value, then the result is NO. However, if
the result would be misleading, then NA is returned. For example, testing whether
an NA value is less than or greater than a non—-NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non-NA values.

Expression Result
NA EQ NA YES
NA NE NA NO
NA EQ non-NA NO
NA NE non-NA YES
NA AND NO NO
NA OR YES YES

Controlling errors when comparing numeric data

If you get unexpected results when comparing numeric data, then there are several
possible causes to consider:

= One of the numbers you are comparing may have a small decimal part that
does not show in output because of the setting of the DECIMALS option.

= You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

= You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle Corporation recommends that you use the ABS and ROUND functions to do
approximate tests for equality and avoid all three causes of unexpected comparison
failure. When using ABS or ROUND, you can adjust the absolute difference or the
rounding factor to values you feel are appropriate for your application. If speed of
calculation is important, then you will probably want to use the ABS rather than the
ROUND function.

4-32 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Boolean Expressions

Example: Controlling errors due to the setting of the DECIMALS option

Suppose EXPENSE is a decimal variable whose value is set by a calculation. If the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value will appear in output as 100.00. However, the output of the following
command returns NO.

show expense eq 100. 00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Example: Controlling errors when comparing floating point numbers resulting
from arithmetic operations

A standard restriction on the use of floating point numbers in a computer language
is that you cannot expect exact equality in a comparison of two floating point
numbers when either number is the result of an arithmetic operation. For example,
on some systems, the following command returns a NO instead of the expected
YES.

show.1l + .2 eq .3

When you deal with decimal data, you should not code direct comparisons such as
the one above. Instead, you can use the ABS or the ROUND function to allow a
tolerance for approximate equality. For example, either of the following two
commands will produce the desired YES.

show abs((.1 +.2) - .3) It .00001
show round(.1 + .2) eq round(.3, .00001)

Example: Controlling errors when comparing SHORTDECIMAL and DECIMAL
values

You cannot expect exact equality between SHORTDECIMAL and DECIMAL
representations of a decimal number with a fractional component, because the
DECIMAL data type has more significant digits to approximate fractional
components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a
fractional decimal number, then a comparison of the SHORTDECIMAL number to a
fractional decimal number is likely to return NO.

define sdvar shortdeci nal
sdvar = 1.3
show sdvar eq 1.3

Working with Expressions 4-33

Boolean Expressions

What happens in this situation is that the literal is automatically typed as
DECIMAL and converts the SHORTDECIMAL variable SDVAR to DECIMAL,
which extends the decimal places with zeros. A bit-by-bit comparison is then
performed, which fails.

There are several ways to avoid this type of comparison failure:;

« Do not mix the SHORTDECIMAL and DECIMAL types in comparisons. To
avoid mixing these two data types, you should generally define variables with
fractional decimal components as DECIMAL rather than SHORTDECIMAL.

« Use the ABS or ROUND function to allow for approximate equality. The
following commands both produce YES.

show abs(sdvar - 1.3) It .00001
show round(sdvar, .00001) eq round(.3, .00001)

Comparing dimension values

Values are not compared in the same dimension based on the textual value. Instead,
it compares the positions of the values in the default status of the dimension. This
allows you to specify commands like the following command.

fetch district |t ' SEATTLE | abel ed
Commands are interpreted such as these using the process below.

1. Thetext literal " SEATTLE' is converted to its position in the DISTRICT
dimension’s default status list.

2. That position is compared to the position of all other values in the DISTRICT
dimension.

3. Asshown by the following report, the value YES is returned for districts that
are positioned before SEATTLE in the DISTRICT dimension’s default status list
and it returns NO for SEATTLE itself. It will also return NO for districts added

after SEATTLE.

report 22 width district It ’SEATTLE
O STR CT D STRCT LT * SEATTLE

BCSTON YES

ATLANTA YES

CH CAO YES

DALLAS YES

CENVER YES

SEATTLE NO

4-34 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Boolean Expressions

A more complex example assigns increasing values to the variable QUOTA based
on initial values assigned to the first six months. The comparison depends on the
position of the values in the MONTH dimension. Because it is a time dimension, the
values will be in chronological order.

quota = if nonth e "JUBS then 100 el se lag(quota, 1, nonth)* 1.15

However, if you compare values from different dimensions, such as in the
expression REG ONLT DI STRI CT, then the only common denominator is TEXT,
and text values are compared, not dimension positions.

Comparing dates

You can compare two dates with any of the Boolean comparison operators. For
dates, “less” means before and “greater” means after. The expressions being
compared can include any of the date calculations discussed in “Numeric
Expressions” on page 4-23. For example, in a billing application, you can determine
whether today is 60 or more days after the billing date in order to send out a more
strongly worded bill.

if bill.date + 60 | e today

Dates also have a numeric value. For example, January 1, 1000, has a value of

- 328717; December 31, 9999, has a value of 2958464, and January 1, 1900, has a
value of 1. Thus, each date in this range has a corresponding numeric value. For
example, January 2, 1000, has a value of - 328716 and January 2, 1900, has a value
of 2. You can use the CONVERT function to change dates to integers and integers to
dates and compare them.

Comparing dates and times

There are several types of time dimensions whose values are time periods. Each
time period covers a range of dates, from one day to one year. If a date falls between
the starting and ending dates of that time period, then is equal to a time period.

You can also compare one time dimension value to another time dimension value,
when the two have the same length and phase. However, you cannot compare two
time dimension values with the standard Boolean operators when they have
different period lengths or phases. To make such a comparison, you can convert a
time dimension value to a date (its value becomes the last day in the time period)
and then compare it to another time period.

Correct: show day It convert(week date)
Incorrect: show day It week

Working with Expressions 4-35

Boolean Expressions

The Boolean operator IN is designed for comparing time periods. It evaluates
whether a date or time period is contained in another time period. The comparison
is based on the ending dates of the time periods. If the ending date of the first
period is in the second period, then the result is YES. It does not matter whether the
first period is actually shorter or longer than the second.

Comparing text data

When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter
of each employee’s name is greater than the letter “M.”

ext chars(enpl oyee.nane, 1, 1) gt 'M

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the ASCII value of the characters.

You can compare numbers with text by first converting the number to text.
Ordering is based on the values of the characters. This can produce unexpected
results because the text is evaluated from left to right. For example, the text literal
‘1234’ is greater than’ 100, 999. 00’ because’ 2’ , the second character in the
first text literal, is greater than ' 0’ , the second character in the second text literal.

Example: Comparing text data

Suppose NAME.LABEL is an ID variable whose value is* 3- Per son’ and
NAME.DESC is a TEXT variable whose value is’ 3- Per son Tents’.

The result of the following SHOW command will be NO.
show nane. desc eq nane. | abel
The result of the following commands will be YES.

nane. desc = ' 3- Person’
show nane. desc eq nane. | abel

Comparing a text value to a text pattern

The Boolean operator LIKE is designed for comparing a text value to a text pattern.
A text value is like another text value or pattern when corresponding characters
match.

4-36 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Conditional Expressions

Besides literal matching, LIKE lets you use wildcard characters to match more than
one character in a string:

« Anunderscore (_) character in a pattern matches any single character.

« A percent (%) character in a pattern matches zero or more characters in the
first string.

For example, a pattern of %AT_ would match any text that contained zero or more
characters, followed by the characters AT, followed by any other single character.
Both ' DATA' and’ ERRATA’ will return YES when LIKE is used to compare them
with the pattern %AT _.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options. See the entries in the OLAP DML Reference for
these options, both for examples of their effect on the LIKE operator and for general
examples of the use of the LIKE operator.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following command is NO.

show not (' EXPRESS |ike ' EX%)

Comparing text literals to relations

You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, REGION.DISTRICT holds values of REGION, so you can do the following
comparison.

region.district eq ' VEEST
Conditional Expressions

What is a conditional expression?

A conditional expression is an expression you can use to select one of two values
based on a Boolean condition. A conditional expression contains the conditional
operator IF. . . THEN. . .ELSE and has the following format.

| F Bool ean- expr essi on THEN expr essi onl BH.SE expr essi on2

You can use a conditional expression as part of any other expression as long as the
data type is appropriate.

Working with Expressions 4-37

Conditional Expressions

Note: Do not confuse a conditional expression with the IF command, which has
similar syntax but a different purpose. The IF command does not have a data type
and is not evaluated like an expression.

How is a conditional expression processed?

A conditional expression is processed by first evaluating the Boolean expression;
then:

« If the result of the Boolean expression is TRUE, then expressionl is evaluated and
returns that value.

« If the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expressionl and expression2 arguments are any valid OLAP DML expressions
that evaluate to the same basic data type. However, when the data type of either
value is DATE, it is possible for the other value to have a numeric or text data type.
Because both data types are expected to be DATE, it will convert the numeric or text
value to a DATE. The data type of the whole expression is the same as the two
expressions.

If the result of the Boolean expression is NA, then NA is returned.

Example: Report with conditional expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but if sales in the district are below budget, then the bonus is
zero.

limt nonth to ' JANDE' to ' JUNDE
limt product to ' TENTS
report down district if sales-sales.plan It 0 then O
el se . 05*(sal es-sal es. pl an)
PRCDUCT: TENTS
---1F SALES SALES. PLAN LT 0 THEN 0 BLSE . 05*(SALES- SALES. PLAN) - - -

DSTRCT JANDG FER96 MARD6 APRI6 VAYO6 JUNBG

BOSTON 229.53 0. 00 0. 00 0. 00 584. 51 749. 13
ATLANTA 0.00 0. 00 0.00 190.34 837.62 1,154.87
H CAO 0.00 0. 00 0.00 84.06 504. 95 786. 81

4-38 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Substitution Expressions

Substitution Expressions

What is a substitution expression?

A substitution expression allows you to substitute the value of the expression for
the expression itself in a command or function.

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that the
expression should be evaluated with the ampersand and substitute the resulting
value before it evaluates the rest of the expression.

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable
that holds the name of another variable, the value of the expression becomes the
data in the second variable. Ampersand substitution lets you write more general
programs that can operate on data that is chosen when the program is run.

Note: You cannot use ampersand substitution in model equations.

Example: Using ampersand substitution

Suppose you have a variable called CURNAME that holds the name of one of the
dimensions in the analytic workspace (PRODUCT). If you execute the following
command, then REPORT produces the single value, PRODUCT, which is the actual
value stored in the CURNAME variable, as shown below.

report curnane

However, if you execute the following command, then REPORT produces the
values of the dimension PRODUCT, as shown below.

report &curnane

Working with Expressions 4-39

Working with NA Values

How are substitution expressions processed?

Although ampersand substitution lets you write more general programs that can
handle different variables and data, program lines that use ampersand substitution
are executed less efficiently. Lines with ampersand substitution are not compiled;
instead these lines are interpreted when the program runs.

Other ways to write general programs

To avoid ampersand substitution, you can use the IF or SWITCH command instead.
For more information about the IF or SWITCH command, see the entry for the
command in the OLAP DML Reference.

Related information
For more information, see the following table.

IF you want documentation about . .. THEN see.. ..

IF and SWITCH commands, the entry for the command in the OLAP DML
Reference

writing conditional commands in the “Controlling the Flow of Execution” on page

OLAP DML, 8-19

Working with NA Values

Definition: NA value

There are cases in which you might specify an operation for which no data is
available. For example, there might be no appropriate value for a given cell in a
variable, for the return value of a function, or for the value of an expression that
includes an arithmetic operator. In these cases, an NA (Not Available) value is
automatically supplied.

NA is the value of any cell to which a specific data value has not been assigned or
for which data cannot be calculated. An NA value has no specific data type.

When NA values are relevant

Certain functions (for example, the aggregation functions) return an NA value
when the information that is requested with the function is not available or cannot

4-40 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with NA Values

be calculated. Similarly, an expression whose value cannot be calculated has NA as
its value.

To set the value of a variable or relation to NA, you can use the = command, as
shown in the following example.

sal es = NA

If SALES is a dimensioned variable, then the = command loops through all of the
values of SALES, setting them to NA.

Overview: Controlling how NA values are treated

The following options and functions control how NA values are treated in
expressions:

Using the PROPERTY command you can set the value of the NATRIGGER
property on a dimensioned variable so that when a cell of the variable that
contains an NA value is read, the value of the NATRIGGER expression is
substituted for the NA value in the operation it is executing. You can use this
substitution to increase the efficiency of some kinds of calculations and to
eliminate the need for some formula objects.

The following options control how NA values are treated in aggregation
functions and in arithmetic operations with the addition (+) and subtraction (-)
operators.

« The NASKIP option controls how NA values are treated in aggregation
functions.

« The NASKIP2 option controls how NA values are treated in arithmetic
operations with the addition (+) and subtraction (-) operators.

The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function
in an expression to control the format of its value.

Working with NATRIGGER property

An NATRIGGER property expression is evaluated before applying the NAFILL
function or the NASKIP, NASKIP2, or NASPELL options. If the NATRIGGER
expression is NA, then the NAFILL function and the NA options have an effect.

Working with Expressions 4-41

Working with NA Values

Additionally, the NATRIGGER property allows you a good deal of flexibility about
handling NA values:

= You can make NA triggers recursive or mutually recursive by including
triggered objects within the value expression. You must set the RECURSIVE
option to YES before a formula, program, or other NATRIGGER expression can
invoke a trigger expression again while it is executing. For limiting the number
of triggers that can execute simultaneously, see the TRIGGERMAXDEPTH
option.

= You can replace the NA value in the cells of the variable with the NATRIGGER
expression value by setting the TRIGGERSTOREOK option to YES and setting
the STORETRIGGERVAL property on the variable to YES.

The ROLLUP and AGGREGATE commands and the AGGREGATE function ignore
the NATRIGGER property setting for a variable during a rollup or aggregation
operation. Additionally, when an EXPORT (EIF file or pipeline) command is
executed, the NATRIGGER property expression on a variable is not evaluated when
the variable is simply exported; the NATRIGGER property expression is only
evaluated if the variable is part of an expression that is calculated during the export
operation.

Using NASKIP

The NASKIP option controls how NA values are treated in aggregation functions.

« By default, the NASKIP option is set to YES, and NA values are ignored by
aggregation functions. Only expressions with actual values are used in
calculations.

« If you set the NASKIP option to NO, then NA values are considered as input to
aggregation functions. If any of the values being considered are NA, then the
function returns NA for that value.

Setting NASKIP to NO is useful for cases in which having NA values in the data
makes the calculation itself invalid. For example, when you use the MOVINGMAX
function, you specify a range from which to select the maximum value.

« If NASKIP is YES (the default), then MOVINGMAX returns NA only when all
the values in the range are NA.

« If NASKIP is NO and any value in the range is NA, then MOVINGMAX returns
NA.

4-42 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with NA Values

Using NASKIP2

The NASKIP2 option controls how NA values are treated in arithmetic operations
with the addition (+) and subtraction (-) operators.

« By default, the value of the NASKIP2 option is NO. NA values are treated as
NAs in arithmetic operations using the addition (+) and subtraction (-)
operators. If any of the operands being considered is NA, then the arithmetic
operation evaluates to NA. For example, by default, 2+NA results in NA.

« If you set the value of the NASKIP2 option to YES, then zeroes are substituted
for NA values in arithmetic operations using the addition (+) and subtraction (-)
operators. The two special cases of NA+ NA and NA- NA both result in NA.

Using NAFILL

NASKIP and NASKIP2 do not change your data. They only affect the results of
calculations on your data. If you would prefer a more targeted influence on any
kinds of expressions, not just functions or addition (+) and subtraction (-)
operations, and also have the option of making an actual change in your data, then
you can use the NAFILL function.

The effect of the NAFILL function is limited to the single expression you specify. It
can be any kind of expression, not just a function or an addition (+) or subtraction
(-) operation. In addition, you can use NAFILL to substitute anything for the NAs in
the expression, not just zeroes. Moreover, using assignment statements, you can use
NAFILL to make a permanent substitution for NAs in your data.

NAFILL returns the value of a specified expression unless its value is NA, in which
case NAFILL returns the substitute value you specify.

Example 1: Using NAFILL

The following command uses NAFILL, but does not change the data in storage. It
merely fetches the data in the SALES variable with each NA replaced with the
number 1.

fetch nafill(sales, 1)

Example 2: Using NAFILL

The following command uses NAFILL to replace the NA values in the SALES
variable with the number 1 and then assign those values to the variable. This makes
the substitution permanent in your data.

sales = nafill(sales, 1)

Working with Expressions 4-43

Working with NA Values

Example 3: Using NAFILL

The following command illustrates the use of NAFILL for more specialized
purposes. By substituting zeros for NA values, NAFILL in this example forces the
AVERAGE function to include NA values when it counts the number of values it is

averaging.

show average(nafill (sales 0.0) district)

4-44 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

D

Populating OLAP DML Data Objects

Chapter summary

This chapter provides an overview of how you populate OLAP DML data objects
that hold source data and how to populate OLAP DML variables with calculated
values.

List of topics
This chapter includes the following topics:

« Overview: Populating an Analytic Workspace
« Maintaining Dimensions and Composites

« Assigning Values to Data Objects

« Calculating and Analyzing Data

« Aggregating Data

Overview: Populating an Analytic Workspace

Process: Populating an analytic workspace

To use an analytic workspace, there must be data in it. There are two basic types of
data: fact data and dimensions. Fact data is stored in variable workspace objects;
dimensions, containing dimension members, are stored in dimension workspace
objects.

Populating OLAP DML Data Objects 5-1

Overview; Populating an Analytic Workspace

Variables and dimensions can be populated:

« By loading data from the relational database. For example, you might load sales
fact data into a variable from a sale fact table, load time dimension members
from a time dimension table, custom dimension members from a customer
dimension table, and product dimension members from a product dimension
table.

= Asthe result of a calculation. For example, a sales forecast variable might be
populated using the results of a forecasting function.

= Asan alternative to loading data from the relational database, you can load
data from a flat file using data loaders controlled through the OLAP DML.

There are other types of workspace objects that are discussed later in this guide.
Like variables and dimensions, this objects must also be populated from the
relational database, as the result of a calculation, or from a flat file.

Process: Populating data objects in an analytic workspace

To explicitly populate the source data objects in an analytic workspace, take the
following steps:

1. Specify the values for each dimension. These values provide indexes to the
actual data, which is stored in the analytic workspace’s variables.

2. Specify the values for each relation. These values indicate the relationships
between dimensions.

3. For variables that provide the source data for your application, specify the
actual data values.

You can populate an analytic workspace using programs written using the OLAP
DML’s SQL commands and data loading commands.

5-2 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Maintaining Dimensions and Composites

OLAP DML commands that populate source data objects

The OLAP DML commands that you typically use to populate source data objects
are listed in the following table.

Command

Description

Assigns the results of an expression to a variable, option, or relation; or
assigns the result of a model to a variable or, when the result is numeric, to
a dimension value. For more information, see “Assigning Values to Data
Obijects” on page 5-13, “Definition: Solution variable” on page 7-2, and the
topic for the EQUAL command in the OLAP DML Reference.

MAINTAIN

Adds, deletes, renames, moves, or merges values in a dimension; and
adds, deletes, and merges values in a composite. For more information, see
“Maintaining Dimensions and Composites” on page 5-3 and the topic for
the command in the OLAP DML Reference.

FILEREAD

Stores the data that is read from an input file into a dimension, composite,
relation, or variable. For more information, see Chapter 11 and the topic
for the command in the OLAP DML Reference.

SQL

Retrieves data from a relational database into a dimension or variable. For
more information, see Chapter 10 and the topic for the command in the
OLAP DML Reference.

IMPORT

Copies the data and definitions from one analytic workspace into another.
For more information, see the topic for the command in the OLAP DML
Reference.

Maintaining Dimensions and Composites

How do you specify dimension values?

The first step in populating an analytic workspace is to store values in the analytic
workspace’s dimensions. The list of stored dimension values is called the
dimension’s default status list. When you first attach an analytic workspace, the
default status list is the current status list of each dimension.

You can add, delete, merge, reposition, or change dimension values using the
MAINTAIN command. Consequently, storing and manipulating the values of a
dimension is called maintaining the dimension.

Populating OLAP DML Data Objects 5-3

Maintaining Dimensions and Composites

Who can maintain dimensions?

You can only maintain a dimension when you have permission to both maintain
and read the dimension. Maintain permission is implicitly denied whenever read
permission is restricted for a dimension, even when you specify maintain
permission for the dimension.

By default, you have permission to both read and maintain dimensions. However,
either or both of these permissions can be changed using the PERMIT command.

For more information on using the PERMIT command, see “Adding Security to an
Analytic Workspace” on page 2-20 and the topic for the PERMIT command in the
OLAP DML Reference.

How maintaining a dimension affects dimension status

As outlined in the following table, using the MAINTAIN command sometimes
affects dimension status.

IF you use the MAINTAIN command with . .. THEN ...

the ADD, DELETE, MERGE, or MOVE keyword the dimension’s status is reset to ALL
and the current status of a dimension is not ALL, before it performs the requested
maintenance.

a dimension that has a pushed status list (that is, a | that dimension’s pushed status list is
status list that was created using the PUSH cleared, and popping that dimension
commands), has no effect.

For more information on popping and pushing values, see “Introducing Dimension
Status” on page 6-2 and the entries for the POP and PUSH commands in the OLAP
DML Reference.

Avoiding deferred maintenance

When you maintain a dimension, the objects that are dimensioned by it must be
modified. If these objects are in memory, then they are modified immediately; if
these objects are not in memory, then maintenance is deferred until they are loaded
into memory.

In situations that involve a lot of dimension maintenance and a large update at the
end, deferred maintenance can trigger errors. Examples are issuing a MAINTAIN
DELETE ALL command, or performing a data load in which a large number of
values is added to a dimension. Before starting such projects, load into memory the
objects that are dimensioned by the dimension you are maintaining so that deferred

5-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Maintaining Dimensions and Composites

maintenance is unnecessary. You can do this by using commands similar to the
following, where the sample dimension is PRODUCT.

limt name to obj (isby product)
| oad &val ues(nane)
nai ntain product add ...

Overview: Adding values to dimensions

To add new values to the end of a dimension or composite, use the MAINTAIN
command with the ADD keyword. The actual way that the values are added, and
the arguments that you use vary depending on whether you are adding values to a
non-time dimension, a time dimension, or a composite.

You can use the MAINTAIN command with the MERGE keyword as a quick way to
make sure all dimension values on a separate list are included in a dimension.
When you use this syntax, the new values from the list are automatically added and
the duplicates are ignored. This method of entering dimension values can save a
significant amount of time when you have a large number of values to enter.

You can use MERGE with dimensions of any data type, including time data types.
However, because the ADD keyword provides a quick way of adding time
dimension values, the MERGE keyword may not be as useful with time dimensions
as with TEXT or ID dimensions.

Adding values to non-time dimensions

You can use the MAINTAIN command with the ADD keywords to add values to a
non-time dimension in the following ways:

= You can merely specify the values that you want to add. In this case, the values
are added to the end of the list of dimension values.

= You can specify both the values that you want to add and where you want the
values to be placed.

Example: Adding values to non-time dimensions

This command adds ATLANTA at the beginning of the list of cities and inserts
PEORIA after OMAHA.

nai ntain city add ' ATLANTA first, 'PECR A after ' QVAHA

Populating OLAP DML Data Objects 5-5

Maintaining Dimensions and Composites

Displaying the default status list for the CITY dimension shows that the new values
have been added in the appropriate places in the list.

show val ues(city nost at us)
ATLANTA

CONOCRD

LI NOOLN

NEW YCRK

OVAHA

PECR A

SEATTLE

Adding values to time dimensions

You can use the MAINTAIN command with the ADD keyword to add new values
to time dimensions (that is, dimensions with the DAY, WEEK, MONTH, QUARTER,
or YEAR data type). You can specify what values you want to add by specifying:

« The number of periods to add at the beginning or end of an existing list of
dimension values.

« Alistof values. (In this case, you can specify the values as text literals or as date
or text expressions.)

Regardless of how you specify the values, keep the following points in mind:

= You can specify any date that falls within the time period you want to add. For
example, to add the month January 1999, you can specify any date from
01JAN99 through 31JAN99. The DATEORDER option is used to resolve any
ambiguities.

« When adding values to a time dimension that does not yet have values, you
must specify only the first and last values you want to add for the dimension.
The gaps are automatically filled in with appropriate values for the intervening
time periods.

5-6 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Maintaining Dimensions and Composites

Adding date values to time dimensions

When you add a dimension value by specifying a DATE expression or a text value
that represents a complete date, keep the following points in mind:

If a time dimension already has values, then you can add values only at the
beginning or the end of the existing list. To add values, you must specify only
the first or last value you want to add. The gap between the existing list and the
value you specify is automatically filled in.

When you specify a time dimension value as a date, you must provide only the
date components that are relevant for the type of dimension you are
maintaining:

For a DAY or WEEK dimension, you must supply the day, month, and year
components.

For a MONTH or QUARTER dimension, you must supply only the month
and year (for example, JUN98 or 0698 for June 1998).

For a YEAR dimension, you must specify only the year (for example, 98 for
1998).

For more information on the valid input styles for dates, see the entry for the
DATEORDER option in the OLAP DML Reference.

Adding text values to time dimensions

When you add a dimension value by specifying the values as text literals or TEXT
or ID expressions (rather than as a date), keep the following points in mind:

If you use a TEXT expression, then each element or line is treated as a separate
value.

The values can be in either one of the following formats:

The format specified by the VNF (value name format) for the dimension (or
in the default format for the type of dimension you are maintaining when
the dimension does not have a VNF). In this case, each value explicitly
indicates the time period you want to add. For example, if the VNF for a
MONTH dimension is <MI'XT><YY>, then the value JAN99 represents the
month January 1999.

A valid input style for date values. For more information on the valid input
styles for dates, see the entry for the DATEORDER option in the OLAP
DML Reference.

Populating OLAP DML Data Objects 5-7

Maintaining Dimensions and Composites

For more information on the default formats for time dimensions, see the entry for
the VNF command in the OLAP DML Reference.

Example: Adding values to a time dimension

Suppose you define a new time dimension, called QTR, with a data type of
QUARTER, and you add dimension values for the quarters in 1998 and 1999. You
must add only the first and last dimension values you want, and the intervening
values will be filled in automatically.

To add the first and last quarters, you can specify any dates that fall within those
quarters.

define qtr dinension quarter
maintain qtr add ' 01JANBS’ ’ 31DERY

Displaying the default status list for the dimension shows the new dimension
values.

Q.98
Q.98
.98
Q. 98
Q. 99
Q. 99
GB. 99

5-8 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Maintaining Dimensions and Composites

Updating relations when you merge new values

When you are merging values into a dimension it is a good practice to update any
relations that involve that dimension:

« Insome cases, using the simplified syntax of the MAINTAIN command shown
below, you can update a relation at the same time you merge values into a
dimension.

MA NTAI N di nensi on MERGE [exp [RELATE rel ation]]

The exp argument specifies a dimensioned expression whose values you want
to merge into the dimension; for example, the name of a dimensioned text
variable that contains dimension values.

The RELATE relation phrase specifies the name of the relation that you want to
update.

Note: The exp argument must be dimensioned and at least one of these
dimensions must also be in the definition of the relation that is specified in the
RELATE relation phrase.

« Inother cases, you need to explicitly update any relations that involve that
dimension.

For the complete syntax for the MAINTAIN command, see the entry for the
command in the OLAP DML Reference. For information about explicitly updating
relations, see “Assigning Values to Data Objects” on page 5-13.

Example: Merging values into a composite

Suppose you want to define a composite, named COMP_PRODDIST, that is made
up of all combinations of the first three values of the PRODUCT dimension and the
first five values of the DISTRICT dimension. You can efficiently include all 15 values
with the following commands.

def i ne conp_proddi st conposite <product district>
limt product to first 3

limt district tofirst 5

nai ntai n conp_proddi st nerge <product district>

This method works with conjoint dimensions as well.

Populating OLAP DML Data Objects 5-9

Maintaining Dimensions and Composites

Deleting values from dimensions

You can use the MAINTAIN command with the DELETE keyword to remove
values from a dimension. Using the MAINTAIN command with DELETE keyword,
you select the values that you want to delete in much the same way that you select
values using the LIMIT command. You can select for deletion:

= Onevalue, a list of values, a range of values, or all values

« The values that match a list of values of a named related dimension

« The values that are first, last, or in a specified position in the dimension
« The values that meet a Boolean criterion

« Afteritis sorted according to a specified criterion, the top or bottom n values of
the dimension, or the top or bottom n performers, by percentage, of the
dimension

« Forahierarchical dimension, the values that have a certain relationship within
the hierarchy

= The values in the dimension that match the values in a valueset

You delete values from a dimension with a time data type (that is, DAY, WEEK,
MONTH, QUARTER, or YEAR) the same way that you delete values from any
other dimension except that you can delete values only from the beginning or the
end of the existing list of values.

Example: Deleting values from a dimension

Suppose that you want remove from CITY all those cities with a population of less
than 75,000 people. Before you issue the command, the default status list for the
CITY dimension contains the six values shown below.

show val ues (city nost at us)
ATLANTA

CONOCRD

LI NOOLN

CLUMBUS

PECR A

SEATTLE

You use the variable POPULATION.C, which contains the population for each city.
nmaintain city delete population.c It 75000

5-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Maintaining Dimensions and Composites

Assuming that only Lincoln and Peoria have populations of fewer than 75,000, the
default status list of the CITY dimension now contains the following values.

show val ues (city nost at us)
ATLANTA
CONOCRD
LUMBUS
SEATTLE

Deleting values from conjoint dimensions

You can use the MAINTAIN command with the DELETE keyword to delete values
from a conjoint dimension.

You can also delete values from a conjoint dimension by using the MAINTAIN
command directly on the base dimension of the conjoint dimension. When you
delete a value from the base dimension, any values associated with that base
dimension value are deleted from the conjoint dimension.

Example: Deleting dimension values from a conjoint dimension

Suppose you have a conjoint dimension named PROD_DIST with the base
dimensions of PRODUCT and DISTRICT. To delete the value

<’ SNONSHCES' ' ATLANTA' > from that conjoint dimension, you would use the
following command.

nmai ntain PROD O ST del ete < SNOMHES ' ATLANTA >

Changing the position of dimension values

For dimensions that have a non-time data type, you can use the MAINTAIN
command with the MOVE keyword to change the position of one or more values in
a dimension list. You cannot change the position of a value in a time dimension or
in a composite.

When you want to store the dimension values in alphabetical order, you can first
use the SORT command to temporarily sort the values, and then use the
MAINTAIN command to store the values in the sorted order.

Example: Changing the position of dimension values
Use the TEXT variable TEXTVAR to move SEATTLE to the end of the list of cities.

textvar = ' SEATTLE
nmai ntain city nove textvar |ast

Populating OLAP DML Data Objects 5-11

Maintaining Dimensions and Composites

Storing dimension values in sorted order

You can store the values of a dimension in sorted order by taking the following
actions:

1. Limit the dimension to all of its values.
LIMT di nensi on TO ALL
2. Sort the dimension values based on your desired sorting criterion.
SCRT dinension A sort-criterion
Note: To sort the values alphabetically, sort by the dimension itself.
3. Store the dimension values in their sorted order.
MA NTAI N di nensi on MOVE VALUES(di nensi on) Fl RST
Note: To sort the values alphabetically, sort by the dimension itself.

Note: You cannot use the MAINTAIN command to save the sorted order as the
permanent order of a time dimension. The values of a time dimension must be
stored in increasing chronological order.

For more information on using the SORT command, see the entry for the command
in the OLAP DML Reference.

Example: Storing dimension values in alphabetical order

Suppose that the default status list for the CITY dimension contains the following
values.

show val ues (city nost at us)
ATLANTA

QONOCRD

LI NOOLN

GLUMBUS

PECR A

SEATTLE

The following commands sort the values of CITY in alphabetical order and then
store the values in that order.

sort city acity
nai ntain city nmove val ues(city) first

5-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Assigning Values to Data Objects

The default status list of CITY reflects the new sorted order.

show val ues (city nost at us)
ATLANTA

CLUMBUS

QONOCRD

LI NOOLN

PECR A

SEATTLE

Maintaining composites and conjoint dimensions

Both composites and conjoint dimensions are lists of dimension-value combinations
in which one value is taken from each of the dimensions on which the composite or
conjoint dimension is based. Composites and conjoint dimensions differ in the way
that they are maintained.

Maintaining composites
Composites are internal structures that are automatically maintained. Consequently,

the simplest way to maintain a composite is to merely maintain its base dimensions
and let the values in the composite be maintained automatically.

In most cases, it is not necessary to do anything to maintain composites. However, if
you want to have a very fine degree of control, you may have to explicitly maintain
the composite. In this case, you can use the MAINTAIN command to add, delete,
and merge values.

Maintaining conjoint dimensions

Conjoint dimensions, unlike composites, are actual dimensions that you must
explicitly maintain. Conjoint dimensions are not automatically maintained. In
programs, you use the MAINTAIN command to maintain the values in a conjoint
dimension.

Assigning Values to Data Objects

Introducing the assignment statement

An expression creates temporary data — you can display the resulting values, but
these values are not automatically saved in your analytic workspace. If you want to
save the result of an expression, then you store it in an object that has the same data

Populating OLAP DML Data Objects 5-13

Assigning Values to Data Objects

type and dimensions as the expression. You use an assignment statement to store
the value that is the result of the expression in the object.

An assignment statement is composed of the OLAP DML = operator that is

preceded by an expression (on the left) and followed by an expression (on the right).

tar get - expressi on = sour ce- expr essi on

The assignment statement sets the value of the target expression equal to the results

of the source expression.

Using OLAP DML objects in assignment statements

The following table outlines the OLAP DML objects that you can use in assignment
statements and indicates whether you can use them as a target or source expression.

Object Target Expression Source Expression
Variable Yes Yes
Relation Yes Yes
Dimension Only in models when the result of | Yes
the expression is numeric
Composite No Yes
Worksheet Yes Yes
Function No Yes
Formula No Yes
Valueset No Yes

How values are assigned to variables

When you use the = operator to assign the value of a single-cell expression to a
single-cell, a single value is stored. However, when you use the = operator to assign

the value of a single-cell expression to a target variable that has one or more

dimensions, then a loop is performed over the values in status for each dimension
of the target variable and assigns a data value to the corresponding cells of the

variable.

5-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Assigning Values to Data Objects

Example 1: Assigning values to variables

The denp analytic workspace contains the CHOICEDESC variable that is
dimensioned by CHOICE. Before you enter data for the variable, the variable’s cells
contain only NA values.

aace CHO CEDESC
REPCRT NA
QRAPH NA
ANALYZE NA
DATA NA
QT NA

Suppose you initialize the CHOICEDESC variable using the following command.
CHO CEDESC = JAO NOHARS (' Description for * CHA (B
Now all of the CHOICEDESC variable’s cells contain the appropriate values.

aHa e CHO CECESC

REPCRT Description for REPCRT
GRAPH Description for GRAPH
ANALYZE Description for ANALYZE
DATA Description for DATA
QT Description for QUT

Example 2: Assigning values to variables

The following example shows an expression that is dimensioned by MONTH,
PRODUCT, and DISTRICT and is assigned to a new variable. The expression
calculates a 1997 sales plan based on unit sales in 1996.

define units.plan integer <month product district>
limt nonth to year ' YRO7'
units.plan = lag(units 12 nonth) * 1.15

How values are assigned to variables with composites

When assigning data to variables with composites, the source expression is
evaluated for every combination of the dimension values in status for the target
variable, including combinations of the sparse dimensions for which the target
variable currently has no cells. If the source expression is not NA for those
combinations where the target currently has no cells, then new cells are created and
the data is assigned to them.

Populating OLAP DML Data Objects 5-15

Assigning Values to Data Objects

When you use the = command to assign values to a target variable that has a
composite, the following happens automatically:

« Creates any missing target variable cells that are being assigned non-NA values.

« Adds to the composite all the dimension-value combinations that correspond to
those new cells.

Thus, both the target variable and the composite might be larger after an
assignment. If you want to assign values only to cells that already exist in the target
variable, then use the ACROSS keyword in the = command.

The OLAP DML gives you the ability to specify a different evaluation behavior
when it assigns data to variables with composites. You can alter the default
evaluation behavior of the assignment statement so that the source expression is
evaluated only for those combinations of the dimension values in status for which
the target variable currently has cells.

Because the composite of the sparse dimension is what keeps track of which
combinations of the sparse dimensions have data cells, you use the following syntax
to specify this different evaluation behavior.

varname = expressi on ACRCSS conposite

The varname argument is the name of the variable. It is the target to which the data
is assigned.

The expression argument is the source expression that holds the data that will be
assigned to the target variable.

The ACROSS keyword indicates that you want to alter the default evaluation
behavior and cause the evaluation of the composite of the target variable.

The composite argument is the composite for the sparse dimensions on the target
variable. If the variable was defined with a named composite, then specify the name
of the composite. If the variable was defined with an unnamed composite, then use
the SPARSE keyword to refer to the unnamed composite (for example, SPARSE
<MARKET PRODUCT>).

Example: Assigning values to variables with composites

To have data assigned from SALES only into existing data cells of SPARSE_SALES,
whose associated dimension values are in status, use the following command.

sparse_sal es = sal es across sparse<product narket >

The ACROSS keyword is particularly helpful when the source expression is a single
value. If there are no limits on the dimensions of SPARSE_SALES, then an

5-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Assigning Values to Data Objects

assignment command like the following will create cells for every combination of
dimension values because there are no cases where the source expression is NA.

sparse_sales = 0
This defeats the purpose of a sparse variable.

In contrast, the following command will set only existing cells of SPARSE_SALES to
0.

sparse_sal es = 0 across sparse<product narket >

Assigning values to relations

You can assign values to a relation using an assignment statement. When executing
the assignment statement, a loop is performed over the values in status for each
dimension of the target relation and assigns a data value to the corresponding cell
of the target relation.

You can assign values to a relation with a text dimension by assigning one of the
following:

« A text value of the dimension.

= Aninteger that represents the position of the dimension value in the
dimension’s default status list.

Assigning values to dimensions

In most cases, you cannot use an assignment statement to assign values to
dimensions. However, in model equations, if the result of a calculation is numeric,
then you can use the = operator to assign the results to a dimension value.
However, equations (that is, expressions) in models differ in several ways from
expressions used in other contexts. For more information on working with models,
see Chapter 7 and the topic for the MODEL command in the OLAP DML Reference.

Assigning values to specific cells of a data object

You can use a QDR with the target of an assignment statement. This lets you assign
a value to specific cells in a data object.

The following example assigns the value 10200 to the data cell of the SALES
variable that is specified in the qualified data reference. If the variable named

Populating OLAP DML Data Objects 5-17

Calculating and Analyzing Data

SALES does not already have a value in the cell associated with BOSTON, TENTS,
and JAN99, then the value is added to the variable.

sal es(narket * BOSBTON product ' TENTS nonth ' JAND9') = 10200

Related information

For more information, see the following table.

IF you want documentation about . . .

THEN see . ..

how values are stored in data objects,

Chapter 3

assigning values to data objects,

the entry for the = command in the OLAP
DML Reference

updating relations when you merge values
into a dimension,

“Updating relations when you merge new
values” on page 5-9

QDRs,

“Specifying a Single Value for the Dimension
of an Expression” on page 4-16

Calculating and Analyzing Data

How to calculate and analyze data using the OLAP DML
Typically, using the OLAP DML, you calculate and analyze data in the following

ways:

« Perform common calculations using built-in OLAP DML functions that are
described in detail in the OLAP DML Reference and outlined in “Categories of

OLAP DML functions” on page 5-19.

« Aggregate (or roll up) data in variables that are dimensioned by one or more
hierarchical dimensions as outlined in “Aggregating Data” on page 5-19.

= Create populated solution variables using the MODEL object as described in

Chapter 7.

5-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Aggregating Data

Categories of OLAP DML functions

The OLAP DML provides built-in functions for numeric analysis. The categories of
these functions are described below.

Category Description
Numeric cell-by-cell Functions that operate on each cell of an expression or variable.
Time-series Functions that retrieve values from a previous or future time period

and perform calculations on those values.

Forecasts and regression | Functions that analyze trends in your data.

Statistical Functions that perform calculations for statistical analysis.
Financial Functions that perform calculations for financial analysis.
Aggregation Functions that return an aggregate value, generally consisting of a

single value for many values of the input expression.

For more information on the functions in these categories, see the categorized list of
functions in the OLAP DML Reference. For more information on working with
numeric expressions, see “Numeric Expressions” on page 4-23.

Aggregating Data

What does “aggregating data” mean?

If you have a variable that is dimensioned by one or more hierarchical dimensions,
then you can calculate the totals of the variable’s data at the upper levels of each
hierarchy from the detail data — that is, the data at the lowest level of the hierarchy.
This is called aggregating.

For more information on hierarchical dimensions and variables defined with
hierarchical dimensions, see “Defining Hierarchical Dimensions and Variables That
Use Them” on page 3-20.

Specifying how and when data is aggregated

You can use the OLAP DML to aggregate the data. You define an aggregation map
object that specifies which data should be pre-calculated when the AGGREGATE
command is executed, and which data should be calculated on the fly.

Populating OLAP DML Data Objects 5-19

Aggregating Data

For information about the aggregation map (AGGMAP) object, the AGGREGATE
command and function, and other aggregate commands (such as RELATION,
CACHE, and AGGINFO), see the OLAP DML Reference. For information on
designing, writing, and debugging programs, see Chapter 8 and Chapter 9.

5-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

S

Limiting an Application’s View of the Data

Chapter summary

List of topics

This chapter introduces dimension status and the use of the LIMIT command to
temporarily change your view of the data in an analytic workspace.

This chapter includes the following topics:

Introducing Dimension Status

Limiting Using a Simple List of Values

Limiting Using a Boolean Expression

Limiting to the Top or Bottom Values of a Sorted Dimension
Limiting to the Values of a Related Dimension

Limiting Based on the Position of a Value in a Dimension
Limiting Based on a Relationship Within a Hierarchy
Limiting Composites and Conjoint Dimensions

Working with Null Status

Working with Valuesets

Limiting an Application’s View of the Data 6-1

Introducing Dimension Status

Introducing Dimension Status

Definition: Current status list

The current status list of a dimension is an ordered list of currently accessible values
for the dimension. Values that are in the current status list of a dimension are said to
be “in status.”

If you are familiar with relational database terminology, then you can think of the
current status list of a dimension as a view of the dimension. Whether or not a
dimension value is in status determines your view of the data from all of the objects
that are dimensioned by it. In general, when an OLAP DML command is processed,
only those values that are in status are accessed.

« For dimensions, only those dimension values that are in the current status list
are accessed; and for dimensioned objects, only those values that are indexed by
dimension values that are in the current status list are accessed.

« Asaloop is performed through dimensioned objects, it uses the order of the
dimension values in the current status list to determine the order in which to
access the object’s values.

Whether or not a dimension value is in status merely restricts your view of the
value during a given session; it does not permanently affect the values that are
stored in the analytic workspace.

Definition: Default status list

When you first attach an analytic workspace, the current status list of each
dimension consists of all of the dimension’s values that have read permission, in the
order in which the values are stored. This list of values is called the default status
list for the dimension.

Changing the default status list

6-2

You can change the default status list of a dimension in the following ways:

= You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command. For more information on storing and maintaining
dimension values, see “Maintaining Dimensions and Composites” on page 5-3
and the entry for the MAINTAIN command in OLAP DML Reference.

= You can change the read permission of values that are associated with a
dimension by using the PERMIT command or the PERMITRESET command.

Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introducing Dimension Status

For more information on using these commands, see “Adding Security to an
Analytic Workspace” on page 2-20 and the topics for the commands in OLAP

DML Reference.

Changing the current status list

You can change the current status list for a dimension by using:

« The LIMIT command to change the values and the order of the values in a
dimension’s current status list.

« The SORT command to arrange the order of values in a dimension’s current

status list.

If you are familiar with relational database concepts and terminology, then it may
help you to think of using a LIMIT command to “set or change dimension status” or
“limit a dimension” in an analytic workspace as similar to using the SQL SELECT
statement to “select a view” in a relational database. Changing dimension status
merely restricts your view of the data during a given session. No matter how you
change the current status list of a dimension, the changes have no permanent effect
on your analytic workspace; every dimension retains all of its values.

Identifying and retrieving status lists

You can use the following commands and functions to identify and retrieve the
status of dimension values.

Command or
function

Description

INSTAT function

Checks whether a dimension value is in the current status list of a
dimension.

STATFIRST function

Retrieves the first value in the current status list of a dimension.

STATLAST function

Retrieves the last value in the current status list of a dimension.

Limiting an Application’s View of the Data 6-3

Introducing Dimension Status

Command or

function Description
STATUS command Sends to the current outfile the status of one or more values in a
dimension, or the status of all dimensions in an analytic
workspace.
VALUES function Retrieves different values depending on the keyword that you
specify:

« Ifyou specify the NOSTATUS keyword, then the function
retrieves the default status list of a dimension list.

« If you specify the STATUS keyword, then the function
retrieves the current status list of a dimension.

« Depending on whether you specify the INTEGER keyword,
the function either returns a multiline text value that contains
one dimension value per line or returns, as integers, the
position numbers of the dimension values.

Saving and restoring dimension status
You can save the current status of a dimension in the following ways.

« If you want to save the current status or value of a dimension for use in any
session, then use a named valueset. Use the DEFINE VALUESET command to
define the valueset.

« If you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

« If you want to save, access, or update the current status or value of a dimension,
an option, a single-cell variable, a valueset, or a single-cell relation for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Contexts are the most sophisticated way to save object values for use in an analytic
workspace. With contexts, you can access and update the saved object values,
whereas PUSH and POP simply allow you to save and restore values. Typically, you
only used the PUSH and POP commands within a program to make changes that
apply only during the program’s execution.

6-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Limiting Using a Simple List of Values

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..
storing and maintaining values in a “Maintaining Dimensions and Composites”
dimension, on page 5-3
the CONTEXT, POP, POPLEVEL, PUSH, “Preserving the Session Environment” on
and PUSHLEVEL commands, page 8-25
the entries for the commands in OLAP DML
Reference

changing the read permission of dimension | “Adding Security to an Analytic Workspace”
values using the PERMIT or on page 2-20

PERMITRESET commands, the topics for the commands in OLAP DML
Reference

sorting dimension values, the entry for the SORT command in OLAP
DML Reference

Limiting Using a Simple List of Values

Overview: Limiting to a simple list of values

A common way of selecting data is to limit a dimension to a value or list of values.
The simplified syntax for using the LIMIT command in this way is shown below.

LIMT di nensi on TO val ues
The values argument can consist of any combination of;

« Dimension values, expressed as literal values separated by commas, or as a
multiline text expression, each line of which is a value of the dimension.

« Ranges of dimension values, expressed as valuel TO value2.

« Integer values that represent the logical positions of dimension values,
expressed as comma-separated integers.

« Ranges of integer values that represent the logical positions of dimension
values, expressed as valuel TO value2.

= Valuesets.

Limiting an Application’s View of the Data 6-5

Limiting Using a Simple List of Values

Example: Limiting to literal values

Suppose that you want a report of footwear sales in Boston for January through
March 1995. The following commands limit the appropriate dimensions and request
the report.

limt nonth to ' JANDS' ' FEB9S ' NARDS
limt product to ' FOOTVEAR

limt district to ' BOBTON

report sales

The report output looks like this.

------------- SALES ----mmmmmem-
------------- MONTH - - - - = === - - - -

PRCOUCT JANDS FEB95 NARD5

FOOTVEAR 91,406.82 86, 827.32 100, 199. 46

Limiting using time values

You can use the LIMIT command to limit dimension status for the value of a time
dimension. When you specify a value of a time dimension (that is, a dimension with
a data type of DAY, WEEK, MONTH, QUARTER, or YEAR), the value can be in:

« The format specified by the VNF (value name format) for the dimension (or in
the default VNF for the type of dimension you are limiting when the dimension
does not have a VNF).

« Avalid input style for date values, as described in the DATEORDER option.

When you specify a time dimension value as a date, you only need to provide the
date components that are relevant for the type of dimension you are limiting.

IF you specify avalue fora. .. THEN you must specify the . ..
DAY or WEEK dimension, day, month, and year.
MONTH or QUARTER dimension, month and year (for example, JUN95 or 0695

for June 1995).

YEAR dimension, year (for example, 95 for 1995).

If you specify a DATE expression or a text value that represents a complete date,
then you can specify any date that falls within the time period that is represented by

6-6 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Limiting Using a Boolean Expression

the desired dimension value. The DATEORDER option is used automatically to
resolve any ambiguities.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

the valid input styles for dates, the entry for the DATEORDER option in
OLAP DML Reference

VNF (value name format), the entry for the VNF command in OLAP
DML Reference

Limiting Using a Boolean Expression

Overview: Limiting using a Boolean expression

You can use the LIMIT command to limit a dimension according to the result of a
Boolean expression. The simplified syntax for using the LIMIT command in this
way is shown below:

LIMT di nensi on TO Bool ean- expr essi on

When you use this form of the LIMIT command, the values that are currently in
status are replaced with those dimension values for which the Boolean expression is
TRUE.

Example: Limiting using a Boolean expression

In this example, the values of the TOTAL function are broken out by PRODUCT
and compared to a literal (that is, the number 12000000). The LIMIT command
replaces the values that are currently in status for the PRODUCT dimension with
the values of the PRODUCT dimension whose sales, totaled for all months and
districts, are greater than 12 million.

limt product to total (sales product) gt 12000000

Limiting an Application’s View of the Data 6-7

Limiting Using a Boolean Expression

How to construct a Boolean expression

When you are constructing a Boolean expression, keep the following points in
mind:

= The Boolean expression must be dimensioned by the dimension whose status is
being set.

« The data types of the expressions you are comparing in the Boolean expression
must be similar.

For example, the following Boolean expression has similar data types on both
sides of the Boolean operator GT.

limt market to units. mgt 50000

How LIMIT handles Boolean expressions with more than one dimension

An understanding of how the LIMIT command handles Boolean expressions with
more than one dimension is important to the successful use of the command.

The result of a simple Boolean expression is a single value. When you use the LIMIT
command with a Boolean expression, no looping is performed through the
dimensions to create and return an array of values for the expression. Instead, the
first value in the dimension’s status list is identified for each dimension in the
expression, the expression using those values is evaluated, and a single value is
returned.

If you want the result of the Boolean expression to have dimensionality, then use the
EVERY, ANY, or NONE functions, which let you specify the dimensions of the
result of the Boolean expression.

Example: How LIMIT handles Boolean expressions with many dimensions

Suppose that the MONTH, DISTRICT, and PRODUCT dimensions of the deno
analytic workspace have the dimension status shown below.

The current status of MINTH i s:
JANDS TO MAROS

The current status of DSTRCT is:
BOSTON

The current status of PRODUCT is:
AL

Now you want products that have more than $90,000 worth of sales in at least one
of the months to be in status for the PRODUCT dimension. By issuing the following

6-8 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Limiting Using a Boolean Expression

command, you can see which values in the current dimension status meet this
condition.

report sales gt 90000

As shown below, the report displays YES in both the FOOTWEAR and CANOES
rows. Both of these products have sold more than $90,000 on at least one occasion
during January through March 1995.

--------- SALES GT 90000- - - ------
------------- MONTH - = = = = === - - - -
PRODUCT JANDS FEBO5 MARDS
TENTS NO NO ND
CANCES NO NO YES
RACQLETS NO NO NO
SPCRTSVEAR NO NO NO
FOOTVEAR YES NO YES

You might think that limiting the PRODUCT dimension using only the simple
Boolean expression sal es gt 90000 (as shown below) would give you your
desired result.

limt product to sales gt 90000
status product
report sal es

However, when the Boolean expression is evaluated, no looping is performed
through the SALES variable to create and return an array of values for the
PRODUCT dimension. Instead, only the first value in the dimension’s status list is
used for each dimension in SALES other than the PRODUCT dimension. In this case,
JANOS is used for the value of the MONTH dimension of the SALES variable and
BOSTON is used for the value of the DISTRICT dimension.

For JAN95 and BOSTON, the Boolean expression evaluates to TRUE only for the
FOOTWEAR product. Consequently, only FOOTWEAR is in status for the
PRODUCT dimension.

Limiting an Application’s View of the Data 6-9

Limiting Using a Boolean Expression

As shown below, a report of sales in Boston only displays values for the
FOOTWEAR product that have sold more than $90,000 on at least one occasion
during January through March 1995.

The current status of PRCDUCT is:

------------- SALES -----cmmnn-
------------- MONTH === = - - - == -

PRODUCT JANDS FEBO5 MRS

FOOTVEAR 91,406.82 86, 827.32 100, 199. 46

Limiting a dimension to all dimension values that match the expression

The way to limit a dimension to all dimension values that match a Boolean
expression is to use the ANY function with the Boolean expression.

Example: Limiting using the ANY function with a Boolean expression

The LIMIT command (shown below) illustrates how to use the ANY function to
limit the PRODUCT dimension to all dimension values that have a value of more
than $90,000 in the SALES variable (that is, CANOES and FOOTWEAR):

« The first argument for the ANY function (that is, sal es gt 90000) is the
Boolean expression you want to evaluate.

« The second argument for the ANY function (that is, pr oduct) indicates the
dimensionality of the result of the Boolean expression.

In this example, when the Boolean function is evaluated, a test is performed for
TRUE values along the PRODUCT dimension, and returns an array of values.

limt product to any(sal es gt 90000, product)
status product
report sal es

The PRODUCT dimension has both CANOES and FOOTWEAR in status. Both of
these products sold more than $90,000 on at least one occasion during January
through March 1995.

As shown below, a report for sales in Boston displays both the CANOES and
FOOTWEAR products.

The current status of PRCDUCT is:
CANCES, FQOTVEAR
DO STR CT: BOSTON

6-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting to the Top or Bottom Values of a Sorted Dimension

------------- SALES - ---cmeeen
------------- MONTH - - === <= - - - -
PRODUCT JANDS FEB95 NARDS
CANCES 66,013.92 76,083.84 91, 748.16
FOOTVEAR 91,406.82 86,827.32 100, 199. 46

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

creating expressions, Chapter 4

converting data types, the entry for the CONVERT function in
OLAP DML Reference

the ANY function, the entry for the function in OLAP DML
Reference

Limiting to the Top or Bottom Values of a Sorted Dimension

Limiting to the top or bottom values

You can set the dimension values that are currently in status to the top or bottom
performers based on a criterion represented as an expression. The simplified syntax
for using the LIMIT command in this way is shown below:

LIMT di nensi on TO [BOTTGM TAP] n BASEDON expr essi on

Example: Limiting to the top or bottom values

Suppose the status list is sorted in descending order according to the values of
SALES, and only the top two performers are kept in status. Here the TOP and
BASEDON keywords are used to limit the status of a dimension, using the values of
a variable as a criterion.

limt product to ' SPCRTSVEAR
limt nonth to ' JUL96'
limt district to top 2 basedon sal es

Limiting an Application’s View of the Data 6-11

Limiting to the Top or Bottom Values of a Sorted Dimension

Suppose that you issue the following REPORT command.

report down district sales

The following report is produced, which shows the results of the LIMIT commands.
PRODUCT: SPCRTSVEAR

- SAES--
D STR CT JuL96

DALLAS 220, 416. 81
ATLANTA 211, 666. 14

Limiting to the top or bottom performers, by percentage

You can set the dimension values that are currently in status to the top or bottom
performers, by percentage, based on a criterion represented as an expression. The
simplified syntax for using the LIMIT command in this way is shown below.

LIMT di nensi on TO [BOTTQM TQP] percent PERCENTGF expr essi on

This construction sorts values based on their contribution, by percentage, to an
expression and then places the identified values in status.

It can happen that the last item in status, based on a PERCENTOF criterion, is one
of a number of dimension values having the same associated criterion value. In this
case, LIMIT includes all dimension values with that criterion value in the resulting
status, even when that causes the total of the criterion value to far exceed the
specified percentage.

Note: Do not use a criterion expression that changes its own value.

Example: Limiting to the top or bottom performers by percentage

Suppose you want to sort products in descending order by each product’s
contribution to TOTAL(SALES) and then add values to the status list, starting from
the top, until the cumulative total of SALES by PRODUCT reaches or exceeds 30
percent of all sales. To limit the dimension in this way, you can use the following
command.

limt product to top 30 percentof total (sales, product)

The following commands produce a report for January through March 1995 of
products in the Boston district that reached or exceeded 30 percent of all sales.

limt nonth to ' JANBS ' FEBOS ' MAROS
limt district to ' BOSTON

6-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting to the Values of a Related Dimension

limt product to top 30 percentof total (sales, product)
report sales

This output of the report is shown below.

------------- SALES -----ammee-
------------- MONTH - - = < < === - - - -
PRODUCT JANDS FEB95 NARDS
FOOTVEAR 91,406.82 86,827.32 100, 199. 46
CANCES 66,013.92 76,083.84 91,748.16

Limiting to the Values of a Related Dimension

Overview: Limiting to the values of related dimensions

You can use the LIMIT command to limit a dimension to the values of one or more
related dimensions. The simplified syntax for using the LIMIT command in this
way is shown below:

LIMT dinension TOreldim[rel dimval]

The reldim argument is the name of a relation or a dimension that is related to the
dimension being limited. Using a relation name allows you to choose which relation
is used when there is more than one.

The reldim-val argument is a list of values of the related dimension, and not the
dimension being limited. If this argument is present in a LIMIT command, then
status is obtained by selecting the values of the dimension being limited, which are
related to the related-dimension values. If valuelist is omitted, then the current
status of related-dimension is used.

For the complete syntax for the LIMIT command, see the entry for the command in
OLAP DML Reference.

Example: Limiting with a related dimension

The following command limits DISTRICT to BOSTON and ATLANTA, which are in
the EAST region.

limt district to region 'EAST

Limiting an Application’s View of the Data 6-13

Limiting to the Values of a Related Dimension

This command limits PRODUCT to SPORTSWEAR and FOOTWEAR, which are in
the division that appears last in the list of DIVISION values.

limt product to division last 1

How status is determined when you limit to a related dimension

When you limit a dimension to a related dimension, the current status list is created
in a two-step process, as shown in the following table.

1. The values in the dimension’s current status list are arranged in the order of the
values of the related dimension.

2. If there is more than one value of the dimension for any value of the related
dimension, then the values in the dimension’s current status list are arranged in
the order of their default status list.

Suppressing the sort when you limit to a related dimension

The LIMIT.SORTREL option controls whether or not a sort is done when you limit a
dimension to a related dimension. You can suppress the sort that occurs when you
limit a dimension to a related dimension by setting LIMIT.SORTREL to NO. This
can significantly improve performance when the dimension you are limiting is
large.

Note: When LIMIT.SORTREL is NO, printed output of a dimension may not appear
in logical order.

Limiting using related time dimensions

Every time dimension (with a data type of DAY, WEEK, MONTH, QUARTER, or
YEAR) is related to every other time dimension through an implicit relation. When
you limit the values of a time dimension by specifying another time dimension as
the related dimension, the implicit relation is used by default.

For example, you can issue the following command.
[imt nmonth to quarter year

This command will temporarily limit QUARTER to YEAR, then limit MONTH to
QUARTER, and finally restore QUARTER to its original status.

However, if an explicit relation is defined between the two time dimensions, then
you can override the default by specifying the name of the explicit relation as the
related dimension.

6-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting Based on the Position of a Value in a Dimension

Related information
For more information, see the following table.

IF you want documentation about . .. THEN see.. ..

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

working with values in time dimensions, “Defining Dimensions” on page 3-4
“OLAP DML Data Types” on page 4-2

sorting the current status list, the entry for the SORT command in OLAP
DML Reference

Limiting Based on the Position of a Value in a Dimension

Overview: Limiting based on a value’s position in a dimension

Using the LIMIT command, you can set dimension status based on the position of
values in either:

« The dimension you are limiting

« Anunrelated dimension

Limiting using a value’s position in its dimension

You can use the LIMIT command with the FIRST, LAST, NTH, and POSLIST
keywords to set dimension status based on the position of a value within a
dimension.

The simplified syntax for using the LIMIT command in this way is shown below.
LIMT di nensi on TO {Fl RST n| LAST n| NTH n| PCBLI ST posl i st - exp}

The FIRST, LAST, and NTH keywords specify where the value is in the dimension’s
full set of values. The n argument following it specifies the number of values.

The POSLIST keyword indicates that the poslist-exp argument following it is a text
expression, each line of which is a numeric value that evaluates to a numeric
position of the dimension being limited.

For the complete syntax for the LIMIT command, see the entry for the command in
OLAP DML Reference.

Limiting an Application’s View of the Data 6-15

Limiting Based on a Relationship Within a Hierarchy

Limiting using a value’s position in an unrelated dimension

You can use the LIMIT command with the NOCONVERT keyword to insert a value
into a dimension’s status list based on the numeric position of the values in the
status list of the unrelated dimension. This is particularly useful when the two
dimensions are in different analytic workspaces (for example, when there is a
one-to-one correspondence between the product dimension in two analytic
workspaces).

The simplified syntax for using the LIMIT command to keyword to insert a value
into a dimension’s status list based on the numeric position of the values in the
status list of the unrelated dimension is shown below:

LIMT di mensi on TO NOOONVERT unr el at ed- di nensi on

The unrelated-dimension argument specifies the name of a dimension not related to
the dimension being limited.

For the complete syntax for the LIMIT command, see the entry for the command in
OLAP DML Reference.

Limiting Based on a Relationship Within a Hierarchy

Overview: Limiting based on a relationship within a hierarchy

You can use the LIMIT command to use a family tree to place dimension values in
status. You can limit a dimension as follows:

= You can limit a dimension to the parents, children, ancestors, or descendants of
each value in a list of specified values or for each value in status.

= You can also find the descendants based on a particular parent relationship.
This is useful with hierarchical dimensions that contain both a detail level and
levels that are aggregations of lower levels. To use the LIMIT command in this
way, you must ensure that the analytic workspace contains a relation that holds
the parent for each value of the dimension.

Syntax: Limiting based on a relationship within a hierarchy

6-16

The simplified syntax for using the LIMIT command to limit a dimension based on
a relationship within a hierarchy is shown below.

LIMT di mensi on TO { PARENTS CH LDREN ANCESTCRS| DESCENDANTS H ERARCHY} -
USI NG parent-rel [val uel i st]

Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting Based on a Relationship Within a Hierarchy

The PARENTS keyword finds the parent of each value in valuelist or, when there is
no valuelist, it finds the parent for each value in status. It uses the parent-rel to look
up the parent.

The CHILDREN keyword finds the children of each value in valuelist or, when there
is no valuelist, finds the children for each value in status. It uses the parent-rel to look
up the children.

The ANCESTORS keyword finds the ancestors (that is, parents, grandparents, and
so on) of each value in valuelist or, when there is no valuelist, finds the ancestors of
each value in status.

The DESCENDANTS keyword finds the descendants (that is, children,
grandchildren, and so on) of each value in valuelist or, when there is no valuelist,
finds descendants for each value in status.

The HIERARCHY keyword is similar to DESCENDANTS and finds the
descendants (that is, children, grandchildren, and so on) based on the value of the
parent-rel argument.

The parent-rel argument is the name of a relation between the dimension and itself.
For each dimension value, the relation holds another value of the dimension that is
its parent dimension value (the one immediately above it in a given hierarchy). This
parent-relation can have more than one dimension.

The valuelist argument can be any inclusive list of values.

For more information on using the HIERARCHY keyword, see “Differences
between HIERARCHY and DESCENDANTS keywords” on page 6-17. For the
complete syntax of the LIMIT command, see the entry for the command in OLAP
DML Reference.

Differences between HIERARCHY and DESCENDANTS keywords

Both the HIERARCHY and DESCENDANTS keywords of the LIMIT command
allow you to set the status of a dimension based on its family tree; however, the
different keywords give you different results.

One difference is the order of the values:

« DESCENDANTS groups the values by level (all children, and then all
grandchildren).

« HIERARCHY places each group of children next to its parent.

Limiting an Application’s View of the Data 6-17

Limiting Based on a Relationship Within a Hierarchy

Additionally, if you use the HIERARCHY keyword, then you can include the
additional arguments described in the following table that let you further
manipulate the contents of the current status list.

IFyouwantto... THEN use the. ..

list children before their parents, INVERTED keyword.

skip n generations for each value in valuelist, | SKIP n phrase.
or, when there is no valuelist skip n
generations for each value in status,

include n generations down from each value | DEPTH n phrase.
of valuelist or, when there is no valuelist,
include n generations for each value in
status,

run a command, represented as a text RUN textexp phrase.
expression, every time it constructs a group
of children,

exclude the original values from the current | NOORIGIN keyword.
status list,

Example: Skipping generations
Suppose your application issues the following command.

limt narket to hierarchy depth 2 skip 1 using narket.narket ' TONUS

In processing this command, the parent relation is searched (MARKET.MARKET) to
find the children and the grandchildren (DEPTH 2) of TOTUS and discards the first
generation (SKIP 1).

The resulting status follows.

TONUS
BCSTON
ATLANTA
H CAO
DALLAS
CENVER
SEATTLE

Note that TOTUS is included in status. With HIERARCHY, the original values are
included in status.

6-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting Based on a Relationship Within a Hierarchy

Example: Sorting a group of children

When you are using the HIERARCHY keyword with the LIMIT command, you can
use the RUN keyword to execute a command, specified as a text expression, every
time a group of children is constructed. This lets you further manipulate the values
that are being placed in status.

The following command not only limits the values of the MARKET dimension to
descendants using the MARKET.MARKET self-relation but also, every time a group
of children is constructed, sorts the values in the MARKET dimension in increasing
order based on unit sales.

limt rmarket to hierarchy run 'sort market a unit.m using narket. narket

Note: In this example, when you use KEEP or REMOVE instead of TO with the
LIMIT command, the SORT command has no effect.

Example: Drilling down on a hierarchy using a relation

Suppose you want to drill down on districts from the region level of the MARKET
dimension. This is a two step process.

Step 1

The first step in the process is to limit the MARKET dimension, which has
embedded totals at the district, region, and total U.S. level, to the region-level data.
This is done using the relation MLV.MARKET, which is a relation between
MARKET and MARKETLEVEL.

The following command produces the report shown below it, which shows the
values of MLV.MARKET.

report niv. narket

MARKET M.V. MARKET
TONUS TOUS
EAST REG ON
BCSTON DO STR CT
ATLANTA DO STR CT
CENTRAL REG ON
H A0 D STR CT
DALLAS D STR CT
VEEST REG ON
CENVER DO STR CT
SEATTLE DO STR CT

Limiting an Application’s View of the Data 6-19

Limiting Based on a Relationship Within a Hierarchy

The following commands limit the values of MARKET to the desired values and
display the values that are currently in status for the MARKET dimension.

limt narket to nmv.market ' REQ N
status narket

The current status of MARKET is:
EAST, CENTRAL, VST

Step 2

The second step in the process is to drill down on the district-level data from the
region level. You can use the self-relation MARKET.MARKET to perform the drill
down. For each value of the MARKET dimension, this relation contains the name of
its parent.

DEFI NE MARKET. MARKET RELATI ON MARKET <MARKET>
LD Sl f-relation for the Market D nension

A report of MARKET.MARKET produces the following output.

MARKET MARKET. MARKET
TONUS NA
EAST TOTUS
BOSTON CENTRAL
ATLANTA EAST
CENTRAL TOTUS
H CAO CENTRAL
DALLAS CENTRAL
VEST TOTUS
CENVER VEEST
SEATTLE VEEST

The following commands limit MARKET to the children of the EAST, CENTRAL,
and WEST regions and drill down to the district-level data by using the CHILDREN
keyword with the LIMIT command.

limt narket to nmv.market ' REG ON
limt rmarket to children using narket. narket

6-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting Composites and Conjoint Dimensions

A report of MARKET produces the following output and shows the values that are
now in status.

H CAO
DALLAS
CENVER
SEATTLE

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

hierarchical dimensions “Defining Hierarchical Dimensions and
Variables That Use Them” on page 3-20

Limiting Composites and Conjoint Dimensions

How to limit a composite

You cannot explicitly limit the values of a composite. Composites are not
dimensions and, therefore, do not have any independent status. The values of a
composite that are in status are determined by the values that are in status in the
base dimensions of the composite. In general, when OLAP DML functions and
commands deal with objects that are defined with composites, the default behavior
is to treat those objects as if no SPARSE keyword or named composite had been
used when the object was defined.

You can use the LIMIT command to set status for the dimensions of a variable that
is defined with a composite in the same way you would when the variable is not
defined with a composite.

Limiting an Application’s View of the Data 6-21

Limiting Composites and Conjoint Dimensions

Example: Limiting dimensions used by a composite

Suppose your analytic workspace contains a variable named COUPONS that is
dimensioned by MONTH and (using the PROD_MARKET composite) PRODUCT
and MARKET as shown in the following definition.

CEFl NE GOUPONS VAR ABLE | NTEGER <MINTH PRCD_VARKET <PRODUCT MARKET>>

The following commands display the default status of all of the base dimensions of
the COUPONS variable.

status coupons

The current status of MINTH i s:
AL

The current status of PRODUCT is:
AL

The current status of MARKET is:
AL

Later, when you want to access only the values of COUPON that apply to
sportswear, you limit the base dimension PRODUCT as shown below.

limt product to ' SPCRTSVEAR
stat us coupons

The current status of MINTH i s:
AL

The current status of PRODUCT is:
SPCRTSVEAR

The current status of MARKET is:
AL

Ways of limiting a conjoint dimension
You can limit a conjoint dimension in either of the following ways:
« Limit the base dimensions.

« Limit the conjoint dimension itself.

6-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting Composites and Conjoint Dimensions

Limiting a conjoint dimension using value combinations

To limit a conjoint dimension to a list of values, you can use the following
constructions:

« Specify the actual values, surrounding each combination with angle brackets.
limt proddist to < TENTS 'BCBTON > < FOOIVEAR ' DENVER >

« Use avariable name for the values, surrounding the combination with angle

brackets.
prodnane = ' CANCES
di stnane = ' SEATTLE

limt proddist to <prodnane di st nane>

« Create a multiline list, in which each line is a combination surrounded by angle
brackets and separated by \ n (the linefeed escape sequence).

nanelist = nytext = '<\" TENTS’ \'BOSTON’ >\ n <\' FOOTWEAR’ \' DENVER ' >'
limt proddist to nanelist

Limiting conjoint dimensions using base dimension values

Because there is an implicit relation between a conjoint dimension and its base
dimensions, you can limit the conjoint dimension by limiting the base dimensions.

For example, the following command limits a conjoint dimension named
PRODDIST to all conjoint values having CANOES as one of the values of the base
dimension PRODUCT.

limt proddist to product ' CANCES

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

conjoint dimensions, “Defining Variables That Handle Sparse Data
Efficiently” on page 3-15

Limiting an Application’s View of the Data 6-23

Working with Null Status

Working with Null Status

Setting the current status to null (empty status)

You can set the current status list of a dimension to null (empty status) only when
you have explicitly specified that you want null status to be permitted. You can give
this permission in either of two ways:

« Setthe OKNULLSTATUS option to YES. This specification indicates that null
status should be allowed whenever it occurs except when the IFNONE
argument is present in a LIMIT command.

« Use the NULL keyword in a LIMIT command to set the status of a particular
dimension or valueset to null. You can do this by specifying TO NULL or KEEP
NULL. This specification indicates that null status should be allowed for this
LIMIT command only.

If you have not used either of these two methods to give permission for null status
and you execute a LIMIT command that would result in null status, then the status
is not changed to null when the command is executed. Instead, the status remains
the same as it was before the command was issued.

Note: You cannot use the IFNONE and NULL keywords in the same LIMIT
command.

Managing null status in a program

An IFNONE argument in a LIMIT command indicates that you do not want
program execution to take its normal course when a dimension’s status is set to
null. Therefore, when IFNONE is present, a branch is performed to the IFNONE
label and the status is not set to null, even if OKNULLSTATUS is YES. If the NULL
keyword is present together with IFNONE, then the inconsistency is signaled with
an error.

Tip: Using the IFNONE argument provides limited flexibility for handling null
status because it simply branches to a label. For more flexibility, investigate the
possibility of setting the OKNULLSTATUS option to control whether or not
execution will branch when status is null, and the possibility of using a WHILE
loop to test for null status.

6-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with Valuesets

Errors when you limit status to a null value

An error will not be signaled when you try to limit the status of a dimension or
valueset that has no values, unless you explicitly list values that do not exist. For
example, if you have not added any values to a newly defined dimension WEEK,
then the following command does not cause an error.

limt week to first 10
However, the following command does cause an error because PETE is not a value.
limt week to ' PETE

Similarly, the following command causes an error because WEEK does not have a
value at position 20.

limt week to 20

Working with Valuesets

Definition: Valueset

A valueset is an OLAP DML object that contains a list of dimension values for a
particular dimension. You use a valueset to save a dimension status list for later use.
The values in a valueset can be saved across OLAP Services sessions. When you
attach an analytic workspace, each dimension has all of the values in the default
status list. You can then limit a dimension to the values stored in the valueset for
that dimension. When you first define a valueset, its value is null. After defining a
valueset, you use the LIMIT command to assign values from the dimension to the
valueset. You can use the LIMIT command with valuesets in many of the ways that
you use it with dimensions. For example, you can use the LIMIT command to
expand, reduce, and replace values in the list of values of a valueset.

Creating a valueset
To create a valueset, take the following steps.

1. Define a valueset for the dimension values. Use the DEFINE command with the
VALUESET keyword.

2. Limit the dimension for which you want to create a valueset to the values you
want to save.

3. Limit the valueset you created in Step 1 to the dimension you limited in Step 2.

Limiting an Application’s View of the Data 6-25

Working with Valuesets

Example: Creating a valueset

This example adds the valueset LINESET to the demonstration analytic workspace.
It is dimensioned by LINE and, therefore, it can be limited by the current values of
the LINE dimension. The LD command attaches a description to the object.

The following OLAP DML commands produce the output shown below them.

limt line to first 2

status |ine

The current status of LINE is:
REVENE, OO

The following OLAP DML commands produce the output shown below them.

define lineset val ueset |ine

| d Val ueset for LINE di nension val ues
limt lineset to line

show val ues(| i neset)

REVENLE

s

Limiting using a valueset

Once you have defined a valueset, you can use it to limit a dimension with a single
LIMIT command.

For example, the following command limits the LINE dimension to the values
stored in the LINESET valueset and displays the new status of LINE.

limt line to lineset

status |ine

The current status of LINEis:
REVENLE OOGS

Example: Limiting using a valueset

The following commands limit DISTRICT to the districts in which sportswear sales
exceeded $1,000,000 in 1996. The current status list for the DISTRICT dimension is
saved in the valueset SPORTS.DISTRICT. Once you have created the valueset, you
can limit the DISTRICT dimension to the same values with one LIMIT command.

define sports.district valueset district

limt product to ' SPCRTSVWEAR

limt nonth to year ' YRO6

limt sports.district to total (sales district) gt 1000000
limt district to sports.district

6-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with Valuesets

The following OLAP DML command produce the output shown below it.

status district
The current status of DSTRCT is:
ATLANTA TO DENVER

Changing the values of a valueset

You can use the LIMIT command to change the values in a valueset. The simplified
syntax for using the LIMIT command in this way is shown below:

LIMT val ueset keyword sel ection
The valueset argument specifies the name of the valueset you want to change.

The keyword that you specify determines how the command affects the values that
are currently in the valueset. The following table outlines the use of the keywords.

IFyouwantto... THEN use the LIMIT command with . ..

replace the values that are currently in the either the TO or COMPLEMENT keyword.
valueset with new values,

remove values from the current valueset, either the REMOVE or KEEP keyword.
expand the valueset, either the ADD or INSERT keyword.
sort the values in the valueset, the SORT keyword.

The selection argument specifies the selection criteria that you want to be used to
determine what values to assign to the valueset. In general, you can use the same
arguments when you are using the LIMIT command to select values for a valueset
that you can use when you use the LIMIT command to limit a dimension.

For the complete syntax of the LIMIT command, see the entry for the command in
OLAP DML Reference.

Identifying and retrieving the values in a valueset

You can use the following commands and functions to identify and retrieve
dimension values that are in a valueset.

Command or function Description
INSTAT function Checks whether a dimension value is in a valueset.
STATFIRST function Retrieves the first value in a valueset.

Limiting an Application’s View of the Data 6-27

Working with Valuesets

Command or function Description
STATLAST function Retrieves the last value in a valueset.
STATUS command Sends to the current outfile the status of one or more values in a
valueset.
VALUES function Retrieves the values in a valueset. Depending on whether you

specify the INTEGER keyword, the function either returns a
multiline text value that contains one dimension value per line
or returns, as integers, the position numbers of the values in the
existing dimension, not in the valueset.

For more information on these commands and functions, see the entry for the
command or function in OLAP DML Reference.

Retrieving the values in a valueset

Suppose an analytic workspace contains a valueset called MONTHSET that has the
values JAN95, MAY95, and DEC95. You can use the VALUES function to list the
values in that valueset.

The following OLAP DML command produces the output shown below it.

show val ues(nont hset)
JANDS
MAY95
DECOS

Retrieving the dimension positions of values in a valueset

Suppose that you want to retrieve the position of the values in the MONTHSET
valueset, rather than retrieve the actual values themselves. To retrieve the position
of values, you use the VALUES function with the INTEGER keyword. When you
use this keyword, the position numbers are returned instead of the actual
dimension values that are included in a valueset. The position numbers that are
returned do not represent positions in the valueset; they represent positions in the
dimension on which the valueset is based.

The following OLAP DML command produces the output shown below it.

show val ues(nont hset i nteger)
61
65
72

6-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with Valuesets

The value JAN95 is shown as the sixty-first value in the MONTH dimension,
MAY95 as the sixty-fifth value, and DEC95 as the seventy-second value, although
they are the first, second, and third values in MONTHSET.

Limiting an Application’s View of the Data 6-29

Working with Valuesets

6-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

v

Working with Models

Chapter summary
This chapter describes how to use OLAP DML models to calculate data.

List of topics
This chapter includes the following topics:

« Using Models to Calculate Data

« Creating a Nested Hierarchy of Models
« Basic Modeling Commands

« Compiling a Model

« Running a Model

« Debugging a Model

« Modeling for Multiple Scenarios

Using Models to Calculate Data

Definition: OLAP DML model

A model is a set of interrelated equations that can assign results either to a variable
or to a dimension value. For example, in a financial model, you can assign values to
specific line items, such as GROSS.MARGIN or NET.INCOME.

gross. margin = revenue - cogs

Working with Models 7-1

Using Models to Calculate Data

If an = command assigns data to a dimension value or refers to a dimension value
in its calculations, then it is called a dimension-based equation. A dimension-based
equation does not refer to the dimension itself, but only to the values of the
dimension. Therefore, if the model contains any dimension-based equations, then
you must specify the name of each of these dimensions in a DIMENSION command
at the beginning of the model.

Definition: Solution variable

If a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model.

The solution variable is both a source of data and the assignment target of model
equations. It holds the input data used in dimension-based equations, and the
calculated results are stored in designated values of the solution variable. For
example, when you run a financial model based on the LINE dimension, you might
specify ACTUAL as the solution variable.

Dimension-based equations provide flexibility in financial modeling. Since you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the ACTUAL variable, the BUDGET variable, or any other
variable that is dimensioned by LINE.

Example: Creating an OLAP DML model

Suppose that you define a model, called INCOME.CALC, that will calculate line
items in the income statement.

define i ncone. cal ¢ nodel
ld Galculate line itens in incone statenent

After defining the model, you can use OLAP Worksheet or the MODEL command
to enter the contents of the model. A model can contain DIMENSION commands, =
commands, and comments. All the DIMENSION commands must come before the
first equation. For the current example, you can enter the lines shown in the
following program.

CEFl NE | NOOME. CALC MODEL

LD Galculate line itens in incone statenent

MIDEL

di rension |ine

net.incone = opr.incone - taxes

opr.income = gross.nmargin - (marketing + selling + r.d)
gross. nargi n = revenue - cogs

END

7-2 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Using Models to Calculate Data

When you enter the equations in a model, you can place them in any order. When
you compile the model, either with the COMPILE command or by running the
model, the order in which the model equations will be solved is determined. If the
calculated results of one equation are used as input to another equation, then the
equations are solved in the order in which they are needed.

To run the INCOME.CALC model and use ACTUAL as the solution variable, you
execute the following command.

i ncone. cal ¢ act ual

If the solution variable has dimensions other than the dimensions on which model
equations are based, then a loop is performed automatically over the current status
list of each of these “extra” dimensions. For example, ACTUAL is dimensioned by
MONTH and DIVISION, as well as by LINE. If DIVISION is limited to ALL, and
MONTH is limited to OCT96 to DEC96, then the INCOME.CALC model is solved
for the three months in the status for each of the divisions.

How dimension values are treated in a model

If a model contains an = command that assigns data to a dimension value, then the
dimension is limited temporarily to that value, performs the calculation, and then
restores the dimension’s initial status.

For example, a model might have the following commands.

di nension |ine
gross. nargi n = revenue - cogs

If you specify ACTUAL as the solution variable when you run the model, then the
following code is constructed and executed.

push |ine

limt line to gross. nargin

actual = actual (line revenue) - actual (line cogs)
pop line

This behind-the-scenes construction lets you perform complex calculations with
simple model equations. For example, line item data might be stored in the
ACTUAL variable, which is dimensioned by LINE. However, detail line item data
might be stored in a variable named DETAIL.DATA, with a dimension named
DETAIL.LINE.

Working with Models 7-3

Creating a Nested Hierarchy of Models

If your analytic workspace contains a relation between LINE and DETAIL.LINE,
which specifies the line item to which each detail item pertains, then you might
write model equations such as the following ones.

revenue = total (detail.data |ine)
expenses = total (detail.data |ine)

The relation between DETAIL.LINE and LINE is used automatically to aggregate
the detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the LINE
dimension. For example, while the equation for the REVENUE item is calculated,
LINE is temporarily limited to REVENUE, and the TOTAL function returns the total
of detail items for the REVENUE value of LINE.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

overall understanding of the modeling the entry for the MODEL command in

capabilities of the OLAP DML, OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Creating a Nested Hierarchy of Models

How to include one model in another

The INCLUDE command allows you to include one model within another model. A
model can contain only one INCLUDE command. The INCLUDE command must
come before any equations in the model, and it can specify the name of just one
model to include. The model that contains the INCLUDE command is referred to as
the parent model. The included model is referred to as the base model.

You can nest models by placing an INCLUDE command in a base model. For
example, model M1 can include model M2, and model M2 can include model M3.
The nested models form a hierarchy. In this example, M1 is at the top of the
hierarchy, and M3 is at the root.

7-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Creating a Nested Hierarchy of Models

Working with the INCLUDE command

If a model contains an INCLUDE command, then it cannot contain any
DIMENSION commands. A parent model inherits its dimensions, if any, from the
DIMENSION commands in the root model of the included hierarchy. In the
example just given, models M1 and M2 both inherit their dimensions from the
DIMENSION commands in model M3.

The INCLUDE command allows you to create modular models. If certain equations
are common to several models, then you can place these equations in a separate
model and include that model in other models as needed.

The INCLUDE command also facilitates what-if analyses. An experimental model
can draw equations from a base model and selectively replace them with new
equations. To support what-if analysis, you can use equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed.

After you compile a model, either by running it or by using the COMPILE
command, you can run an OLAP DML program called MODEL.COMPRPT to
produce a report on the structure of the compiled model. If you run
MODEL.COMPRPT after compiling a model that contains a masked equation, then
you will find that the masked equation is not shown in the report.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..
overall understanding of the modeling the entry for the MODEL command in
capabilities of the OLAP DML, OLAP DML Reference

about masked equations and what-if analyses, | the entry for the INCLUDE command in
OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Working with Models 7-5

Basic Modeling Commands

Basic Modeling Commands

OLAP DML commands for defining and running models

The following table lists the most common OLAP DML commands that you will use
when you define and run models.

Command

Description

DEFINE

Adds a new model to an analytic workspace.

MODEL

Enters completely new contents into a new or existing model.

DIMENSION

Lists one or more dimensions that are referred to in dimension-based
equations in the model.

INCLUDE

Specifies a base model to include in the parent model.

Performs a calculation and assigns the result to a target. The target can be
a variable or it can be represented by a dimension value.

COMPILE

Compiles a model without running it and saves the compiled code in the
workspace dictionary. If you run a new or revised model without first
compiling it, then the model is compiled automatically at that time.

Writing equations in a model

When you write the equations in a model, you should keep these points in mind:

= Within a single dimension-based equation, all the dimension values must
belong to the same dimension.

« If amodel equation is based on a time dimension (with a data type of DAY,
WEEK, MONTH, QUARTER, or YEAR), then you must use the dimension’s
VNF (value name format), rather than a date format, to specify the dimension’s

values.

= You cannot use ampersand substitution in model equations.

7-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Basic Modeling Commands

Writing DIMENSION and INCLUDE commands

When you write DIMENSION and INCLUDE commands, you should keep these
points in mind:

Any DIMENSION commands or INCLUDE command must come before the
first equation in a model.

In the DIMENSION commands, you must list the names of all the dimensions
on which model equations are based. In the following example,
GROSS.MARGIN, REVENUE, and COGS are values of the LINE dimension, so
LINE is specified in a DIMENSION command.

di nension |ine
gross. nargi n = revenue - cogs

DIMENSION commands must also list any dimension that is an argument to a
function that refers to a dimension value. In the following example, MONTH
must be specified in a DIMENSION command.

di nension line, nonth
revenue = | ag(revenue, 1, nonth) * 1.05

If a model contains an INCLUDE command, then it cannot contain any
DIMENSION commands. The included model (or the root model in a
hierarchy) must contain the DIMENSION commands needed by the parent
model(s).

If a model equation assigns results to a dimension value, then code is
constructed that loops over the values of any of the other nontarget dimensions
listed in the DIMENSION commands. The nontarget dimension listed first in
the DIMENSION commands is treated as the slowest-varying dimension.

A model will execute most efficiently when you observe the following
guidelines for coordinating the dimensions in DIMENSION commands and the
dimensions of the solution variable:

« List the model’s target dimension as the first dimension in the DIMENSION
commands and as the last dimension in the definition of the solution
variable.

« In DIMENSION commands, list the nontarget dimensions in the reverse
order of their appearance in the definition of the solution variable. This
means that the nontarget dimensions will have the same order in the model
and in the solution variable in terms of fastest-varying and slowest-varying
dimension.

Working with Models 7-7

Compiling a Model

« If the solution variable has dimensions that are not used or referred to in model
equations, then do not include them in DIMENSION commands.

« If your analytic workspace contains a variable whose name is the same as a
dimension value, or if the same dimension value exists in two different
dimensions, then there could be ambiguities in your model equations. Since you
can use a variable and a dimension value in exactly the same way in a model
equation, a name might be the name of a variable, or it might be a value of any
dimension in your analytic workspace.

= Your DIMENSION commands are used to determine whether each name
reference in an assignment statement (that is, the = command) is a variable or a
dimension value. “Compiling a Model” on page 7-8 explains how the name
references are resolved.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

overall understanding of the modeling the entry for the MODEL command in

capabilities of the OLAP DML, OLAP DML Reference

assigning values to objects, “Assigning Values to Data Objects” on page
5-13
the entry for the = command in OLAP DML
Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Compiling a Model

Using the COMPILE command

When you finish writing the commands in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model.
If you do not use the COMPILE command before you run the model, then the
model will be compiled automatically before it is solved.

7-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Compiling a Model

Resolving name references

When you compile a model, either by using the COMPILE command or by running
the model, the model compiler examines each equation to determine whether the
assignment target and each data source is a variable or a dimension value.

To resolve each name reference, the following procedure is used.

1. The dimensions in the DIMENSION commands are searched, in the order they
are listed, to determine whether the name matches a dimension value of a listed
dimension. The search concludes as soon as a match is found.

2. If the name does not match a value of a listed dimension, then the variables in
the attached analytic workspaces are searched to find a match.

Analyzing dependencies with equation blocks

After resolving each name reference, the model compiler analyzes dependencies
between the equations in the model. A dependence exists when the expression on
the right-hand side of the equal sign in one equation refers to the assignment target
of another equation. If an = command indirectly depends on itself as the result of
the dependencies among equations, then a cyclic dependence exists between the
equations.

The model compiler structures the equations into blocks and orders the equations
within each block, and the blocks themselves, to reflect dependencies. The compiler
can produce three types of solution blocks: simple blocks, step blocks, and
simultaneous blocks.

Simple blocks
Simple blocks include equations that are independent of each other and equations
that have dependencies on each other that are noncyclic.

If a block contains equations that solve for values A, B, and C, then a noncyclic
dependence can be illustrated as shown below where the arrows indicate that A
depends on B, and B depends on C.

A >B >»C

Step blocks

Step blocks include equations that have a cyclic dependence that is a one-way
dimensional dependence. A dimensional dependence occurs when the data for the

Working with Models 7-9

Compiling a Model

current dimension value depends on data from previous or later dimension values.
The dimensional dependence is one way when the data depends on previous values
only or later values only, but not both.

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. If a block contains equations that solve
for values A and B, then a one-way dimensional dependence can be illustrated as
shown in the figure below where arrows indicate that A depends on B, and B
depends on the value of A from a previous time period.

A » B > LAG(A)

Simultaneous blocks

Simultaneous blocks include equations that have a cyclic dependence that is other
than one-way dimensional. The cyclic dependence may be two-way dimensional, or
it may involve no dimensional qualifiers at all.

An example of a cyclic dependence that is two-way dimensional can be illustrated
as shown below where the arrows indicate that A depends on the value of B from a
future period, while B depends on the value of A from a previous period.

A » LEAD(B) > LAG(A)

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as shown below where the arrows indicate that A
depends on B and B depends on A.

A >B A

7-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Running a Model

Related information
For more information, see the following table.

IF you want documentation about . . .

THEN see . ..

overall understanding of the modeling
capabilities of the OLAP DML,

the entry for the MODEL command in
OLAP DML Reference

individual OLAP DML commandes,

the entry for the command in OLAP DML

Reference

Running a Model

Points to remember when running a model
When you run a model, you should keep these points in mind:

Before you run a model, the input data must be available in the solution
variable. For example, before running the INCOME.CALC model (shown
earlier in this chapter) with ACTUAL as the solution variable, you must have
current data in the REVENUE, COGS, MARKETING, SELLING, R.D, and
TAXES line items of ACTUAL.

Before running a model that contains a block of simultaneous equations, you
might want to check or modify the values of some OLAP DML options that
control the solution of simultaneous blocks. Simultaneous equations are
discussed in the section entitled “Solving simultaneous equations” on page
7-12.

If your model contains any dimension-based equations, then you must provide
a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all the dimensions on which model equations are based, and it
can have “extra” dimensions as well.

When you run a model, a loop is performed automatically over the values in
the current status list of each of the extra dimensions of the solution variable.

If a model equation bases its calculations on data from previous time periods
(for example, if you use a LAG function), then the solution variable must
contain data for these previous periods. If it does not, or if the first value of the
time dimension is in the status, then the results of the calculation will be NA.

Working with Models 7-11

Running a Model

Using data from past and future time periods

Several OLAP DML functions make it easy for you to use data from past or future
time periods. For example, the LAG function returns data from a specified previous
time period, and the LEAD function returns data from a specified future period.
The OLAP DML Reference lists some built-in functions that are useful in analyzing
financial data.

When you run a model that uses past or future data in its calculations, you must
make sure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement (that is, the = command)
that bases an estimate of the REVENUE line item for the current month on the
REVENUE line item for the previous month.

di nension |ine nonth

revenue = lag(revenue, 1, nonth) * 1.05

If the MONTH dimension is limited to APR96 to JUN96 when you run the model,
then you must be sure that the solution variable contains REVENUE data for
MARG96.

If your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, if you want to calculate data for the months
of April through June of 1996, and if the model retrieves data from one month in the
future, then the solution variable must contain data for July 1996 when you run the
model.

Solving simultaneous equations

An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation, and compares the new value to the
value from the previous iteration. If the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. If the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

If all the equations in the block converge, then the block is considered solved. If any
equation diverges or fails to converge within a specified number of iterations, then
the solution of the block (and the model) fails and an error occurs.

You can use OLAP DML options to exercise control over the solution of
simultaneous equations. For example, you can specify the solution method to use,

7-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Debugging a Model

the factors to use in testing for convergence and divergence, the maximum number
of iterations to perform, and the action to take when the = command diverges or
fails to converge. For more information about the options, see the entry for the
MODEL command in OLAP DML Reference.

Debugging a Model

How do you debug a model?

You debug a model in much the same way that you debug an OLAP DML program.
There are two main methods for debugging OLAP DML programs. As outlined
below, the method that you use depends on the degree of debugging that you want

to perform.
Method Description
Debugging file Creates a debugging file that logs the progress of a program
execution so you can analyze it for errors.
OLAP DML Allows you to interactively step through programs one line at a
debugger time and displays the current values of OLAP DML objects. The
OLAP DML debugger is used from within OLAP Worksheet.

For more information on debugging in the OLAP DML, see Chapter 9.

Working with Models 7-13

Debugging a Model

Tools for debugging models

The OLAP DML provides an assortment of tools that will help you debug your
models. You use these tools in OLAP Worksheet. These tools are listed in the

following table.

Tool

Purpose

MODTRACE

An option that controls whether each line of a model is displayed
while you run the model. When MODTRACE is set to YES, the
model lines are displayed, and you can observe the order in
which the equations are solved.

TRACE

A command that lets you step through the model line by line or
block by block. At each step, model execution is suspended so
that you can type special debugger commands or any other
OLAP DML commands to examine the model environment. The
debugging environment and the TRACE command are available
only when you are using OLAP Worksheet.

WATCH

A command that lets you monitor the value of specific
assignment targets in a model. Each time the target is assigned a
new value, this value is displayed. The debugging environment
and the WATCH command are available only when you are
using OLAP Worksheet.

MODEL.COMPRPT

A program that produces a report on the structure of a compiled
model. The report shows how model equations are grouped into
blocks.

MODEL.DEPRPT

A program that produces a report on the dependencies in model
equations. The report lists the assignment target and data sources
for each equation and specifies any dimensions of the
dependencies in the equation.

MODEL.XEQRPT

A program that produces a report on the solution status of a
model. If the model contains simultaneous equations, then the
report specifies the values of the options that control
simultaneous solutions.

INFO

A function that lets you obtain specific information about a
model that you have compiled or executed.

7-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Modeling for Multiple Scenarios

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

the programs that produce debugging reports, | the entry for the MODEL command in the
OLAP DML Reference

using the TRACE and WATCH commands, the entry for the command in OLAP DML
Reference

Chapter 9

Modeling for Multiple Scenarios

Calculating several sets of figures

Instead of calculating a single set of figures for a month and division, you might
want to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget figures
based on different sets of input figures. For example, you might want to calculate
profit based on “optimistic,” “pessimistic,” and “best-guess” figures.

Building a scenario model
To build a scenario model, you follow these steps.

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.
3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

Suppose, for example, you want to calculate profit figures based on optimistic,
pessimistic, and best-guess revenue figures for each division. The steps for building
this scenario model are explained in the next few sections.

Working with Models 7-15

Modeling for Multiple Scenarios

Defining a scenario dimension

You can call the scenario dimension SCENARIO, and give it values that represent
the scenarios you want to calculate. For this example you can give it the values
OPTIMISTIC, PESSIMISTIC and BESTGUESS.

define scenari o di nension text
| d Nanes of scenarios
nai ntain scenari o add optimstic pessimstic bestguess

Defining a solution variable dimensioned by the scenario dimension

For this example the solution variable should be dimensioned by DIVISION as well
as by SCENARIO. Like the BUDGET variable in the denp analytic workspace, your
solution variable can also be dimensioned by MONTH and by LINE. You can call
the variable PLAN.

define plan deci mal <month |ine division scenari o>
Id Scenarios for financials

Entering input data into the solution variable

For this example, you need to enter input data, such as revenue and cost of goods
sold, into the PLAN variable.

For the best-guess data, you can use the data in the BUDGET variable. Limit the
LINE dimension to the input line items, and then copy the BUDGET data into the
PLAN variable.

limt scenario to ' BESTGAESS

limt line to " REVENE QO '"MARKETING "SHLING 'RD

pl an = budget

You might want to base the optimistic and pessimistic data on the best-guess data.
For example, optimistic data might be 15 percent higher than best-guess data, and
pessimistic data might be 12 percent less than best-guess data. With LINE still
limited to the input line items, execute the following commands.

plan(scenario 'CPTIMSTIC) = 1.15 * plan(scenari o ' BESTAESS)
plan(scenario 'PESSSMSTIC) = .88 * plan(scenari o ' BESTAESS)

Writing a model to calculate results based on the input data

The final step in building a scenario model is to write a model that calculates results
based on input data. The model might contain calculations very similar to those in
the BUDGET.CALC model shown earlier in this chapter.

7-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Modeling for Multiple Scenarios

You can use the same equations for each scenario or you can use different equations.
For example, you might want to calculate the cost of goods sold and use a different
constant factor in the calculation for each scenario. To use a different constant factor
for each scenario, you can define a variable dimensioned by SCENARIO and place
the appropriate values in the variable. If the name of your variable is COGSVAL,
then your model might include the following equation for calculating the COGS
line item.

cogs = cogsval * revenue

By using variables dimensioned by SCENARIO, you can introduce a great deal of
flexibility into your scenario model.

Similarly, you might want to use a different constant factor for each division. You
can define a variable dimensioned by DIVISION to hold the values for each
division. For example, if labor costs vary from division to division, then you might
dimension COGSVAL by DIVISION as well as by SCENARIO.

When you run your model, you specify PLAN as the solution variable. For
example, if your model is called SCENARIO.CALC, then you solve the model with
this command.

scenario.calc plan

A loop is performed automatically over the current status list of each of the
dimensions of PLAN. Therefore, if the SCENARIO dimension is limited to ALL
when you run the SCENARIO.CALC model, then the model is solved for all three
scenarios — OPTIMISTIC, PESSIMISTIC, and BESTGUESS.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

overall understanding of the modeling the entry for the MODEL command in

capabilities of the OLAP DML, OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Working with Models 7-17

Modeling for Multiple Scenarios

7-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

8

Chapter summary

List of topics

Designing Programs

This chapter provides information about writing, compiling, testing, and calling

programs that are written in the OLAP DML.

This chapter includes the following topics:

Introduction to OLAP DML Programs
Invoking Programs

Defining and Editing Programs
Using Variables in Programs
Passing Arguments

Writing User-Defined Functions
Controlling the Flow of Execution
Directing Output

Preserving the Session Environment
Handling Errors

Compiling Programs

Testing Programs

Designing Programs 8-1

Introduction to OLAP DML Programs

Introduction to OLAP DML Programs

Definition: OLAP DML program

An OLAP DML program is a stored procedure, which is written in the OLAP DML,
that acts on data in the analytic workspace and helps you accomplish some analytic
workspace management or analysis task. You can write OLAP DML programs to
perform analytic workspace tasks that you must do repeatedly, or you can write
them as part of an application that you are developing.

Types of programs

Two main types of OLAP DML programs

There are two main types of OLAP DML programs: programs that do not return
values and programs that return values.

How you can use programs that do not return values

You can use an OLAP DML program that does not return a value as a standalone
program or as the main program or subprogram of a multiprogram application.
These programs behave like OLAP DML commands.

How you can use programs that return values

You can use a user-defined function in commands and expressions in the same way
that you use built-in OLAP DML functions. For more information on user-defined
functions, see “Writing User-Defined Functions” on page 8-16. For more
information on built-in OLAP DML functions, see the OLAP DML Reference.

Related information

For more information about invoking, writing, and compiling programs, see the rest
of this chapter; for more information on testing and debugging OLAP DML
programs, see Chapter 9.

In contrast to the form of a program, the content is related to the job it was created
to do, and it is the individual lines of a program that provide its content. Program
lines that accomplish specific purposes are discussed in other chapters in this guide.

8-2 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Invoking Programs

For more information on these tasks, see the following table.

IF you want documentation about . . .

THEN see . ..

using data from a SQL database,

« Chapter 10

« theentry for the SQL command in OLAP
DML Reference

reading data from a file, Chapter 11.
producing reports, Chapter 12.
using a model for financial data, « Chapter7

« the entry for the DEFINE MODEL
command in OLAP DML Reference

details on the syntax and usage of
individual OLAP DML commands,
functions, options, and programs,

OLAP DML Reference.

Invoking Programs

Invoking programs that do not return values

There are two ways that you can invoke an OLAP DML program that does not
return a value:

Using the CALL command — You can invoke a program by using the CALL
command. You enclose arguments in parentheses and they are passed by value.
For example, suppose you create a simple program named HELLO that takes a
text literal as an input argument. You can use the CALL command in the main
program of your application to invoke the program.

call hello ("Hello Wrld)

You typically use the CALL command to invoke a program when you are using
an OLAP DML program that does not return values as a subprogram.

As a command — You can invoke a program as a command. In this case, you do
not enclose the program’s arguments in parentheses, and the arguments are
passed as text strings (not by value). For example, you can invoke the HELLO
program in OLAP Worksheet by issuing the following command.

hello "Hello Verl d

Designing Programs 8-3

Invoking Programs

You typically invoke a program in this way when it is a standalone or main
program.

Syntax: CALL command
The syntax for using the CALL command to invoke a program is shown below.
CALL programnane [(argl [arg2 ...])]
The program-name argument is the name of the program to be called.

The argl and arg2 arguments are optional and specify any arguments that are
expected by the called program. You can declare these arguments in the called
program with the ARGUMENT command, or you can reference them in the
program with the ARG function. When the program uses the ARGUMENT
command and you use the CALL command to invoke the program, specify the
arguments so that they match the positions of the arguments that are declared in the
called program.

For the complete syntax of the CALL command, see the entry for the command in
OLAP DML Reference.

Invoking user-defined functions

A user-defined function is a program that does not return a value. You invoke
user-defined functions in the same way as you use OLAP DML built-in functions.
You merely use the program’s name in an expression and enclose the program’s
arguments, if any, in parentheses. The arguments are passed by value, not as text.

For example:
= You can use the program name as an expression in a command.

The following REPORT command uses the value that is returned by the
user-defined function ISRECENT that has a single argument, ACTUAL.

report isrecent(actual)

= You can use the = command to assign the return value of the function to a
variable.

The following command assigns the return value of the user-defined function
named TEMPSALES to a temporary variable called MYTEMPSALES.

nyt enpsal es = tenpsal es

8-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Defining and Editing Programs

Important: Although you can also run user-defined functions as standalone
programs or invoke them using the CALL command, in these cases, the return
value of the function is discarded.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

using arguments, “Passing Arguments” on page 8-11

the CALL command, the entry for the command in OLAP DML
Reference

user-defined functions, ;Vi/giting User-Defined Functions” on page

Defining and Editing Programs

Defining a program
A program, like a dimension or a variable, is an OLAP DML object. You can define

it using the DEFINE command. The following example defines a program named
HELLO using the DEFINE command.

define hell o program

Once you have defined a program object, you need to add command lines to it
using an editor.

Editing programs

OLAP DML programs can be editing using a program editor or using commands in
the OLAP DML.

Using an editor

OLAP Worksheet provides an editor that you can use to edit programs and
formulas. To access the program editor from within OLAP Worksheet, type the
EDIT command followed by the program name.

To save the program, choose Save from the File menu in OLAP Worksheet.

Designing Programs 8-5

Defining and Editing Programs

Procedure: Using OLAP Worksheet to edit a program

If you want to edit the program using OLAP Worksheet, then follow the procedure
outlined below.

1.
2.

Start OLAP Worksheet.

Connect to an analytic workspace.

Refer to the OLAP Worksheet Help system for details.
If necessary, define the program.

For example, to define a program named SALESREP, enter the following
command in the Command Input window in OLAP Worksheet.

define sal esrep program

To use the Edit Window in OLAP Worksheet, enter the EDIT command and the
program name in the Command Input window.

For example, to edit the SALESREP program, enter the following command.
edit salesrep

If you do not want to use the Edit Window, you can enter the program contents
in the Command Input window. You can use one of the following modes.

« Enter one line of code at a time in the Command Input window. For
example, enter PROGRAM, enter each line of code, and then enter END to
stop adding contents to the program. (Default mode)

« Choose Preferences from the Options menu in OLAP Worksheet. In the
Preferences dialog box, deselect Execute on Enter. You can now enter the
entire contents of the program in the Command Input window. To save the
program contents, choose the play button or Ctrl-Enter on the keyboard.

Using OLAP DML commands

The OLAP DML allows you to edit the contents of a program from the OLAP
Worksheet command line or using an OLAP DML program. You may edit the
contents of a program immediately after it has been defined, or immediately after
using the CONSIDER command.

8-6 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Defining and Editing Programs

Formatting guidelines for editing programs
Use the following formatting guidelines as you add lines to your program:

Each line of code can have a maximum of 4000 characters.

To continue a single command on the next line, place a hyphen (-) at the end of
the line to be broken. The hyphen is called a continuation character.

Note: You cannot use a continuation character in the middle of a text literal.

To write more than one command on a single line, separate the commands with
semi-colons (;).

Enclose literal text in single quotation marks ('). To include a single quotation
mark within literal text, precede it with a backslash (\).

Precede comments with double quotation marks ("). You can place a comment,
preceded by double quotation marks, either at the beginning of a line or at the
end of a line, after some commands.

Example: Defining and add contents to a simple program
The following program named HELLO produces the phrase “Hello World.”

DEFI NE HELLO PROZRAM
PROGRAM
show ' Hel |l o Worl d

END

Related information
For more information, see the following table.

IF you want documentation about . ..

THEN see.. ..

escape sequences,

“Text data types” on page 4-3

individual OLAP DML commands,

the topic for the command in OLAP DML
Reference

Designing Programs 8-7

Using Variables in Programs

Using Variables in Programs

Temporary and local OLAP DML variables

Variables, such as SALES or UNITS, that hold the data in your analytic workspaces
are permanent variables. These variables persist from one OLAP Services session to
another. However, you might not need to save variables that your programs use to
hold processing information while they manipulate data. So that you do not clutter
your analytic workspaces with unnecessary variables, you can define temporary
and local variables:

« Atemporary variable has a value only during the current OLAP Services
session. When you update the analytic workspace, only the definitions of the
variables are saved. When you exit from the analytic workspace, the data values
are discarded.

« Alocal variable is a single-cell variable that exists only for the duration of the
program in which it is defined. Using local variables within a program is a
useful alternative to using temporary variables.

Local variables have no dimensions, so you cannot use them for storing
dimensioned data. Because they exist only for the duration of the program in which
they are defined, you cannot store information in a local variable in one program
and then use that variable in another program. If you must store dimensioned data,
or use information in more than one program, then you should define a temporary
variable instead.

Global versus modular design approaches

The purpose of most OLAP DML programs is to manipulate data. Depending on
your programming style and the requirements of your application, you might use
either of the following approaches:

« Use permanent and inplace variables, to which all programs have access. This
approach requires less programming overhead (for example, fewer definitions),
but it is less modular. If you are not careful, then programs can interfere with
one another when they set the values of permanent variables.

« Use program arguments, local variables, and return values. This approach
forces you to write modular programs with clear input and output
responsibilities.

8-8 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Using Variables in Programs

Most applications combine these approaches, using permanent and inplace
variables and user-defined functions when they are appropriate. In general,
modular programs are considered to be easier to read, debug, and maintain.

Defining temporary variables

You define temporary variables with the TEMP keyword in the DEFINE command,
as in the following example.

define total . sal es deci mal tenp

Defining temporary variables for use in programs helps you avoid cluttering your
analytic workspace with temporary data, but it still adds objects to your analytic
workspace. For most simple applications, the addition of a few temporary objects is
not a problem. However, in complex applications that require many programs, the
number of temporary objects can sometimes get very large, and this can affect the
application’s performance.

Defining local variables

You must specify local variables at the beginning of your program, before any
executable commands. You specify a local variable with the VARIABLE command,
which has the following syntax.

VAR ABLE nane dat at ype

The name argument specifies the name of the variable. To minimize confusion or
problems, you should avoid using the same name for both an analytic workspace
variable and a local variable. When both an analytic workspace variable and a local
variable have the same name, then the local variable usually takes precedence.
However, in a few commands and functions that operate on OLAP DML objects (for
example, the OBJ function), the defined variable takes precedence.

The datatype argument specifies the data type of the local variable. A local variable
can have a data type of BOOLEAN, DATE, DECIMAL, ID, INTEGER,
SHORTDECIMAL, SHORTINTEGER, or TEXT.

For the complete syntax of the VARIABLE command and for a list of the commands
and functions for which the defined variable takes precedence, see the entry for the
VARIABLE command in OLAP DML Reference. For more information on data
types, see “OLAP DML Data Types” on page 4-2.

Designing Programs 8-9

Using Variables in Programs

Example: Defining local variables

The program named WEST.RPT, listed below, includes definitions for two local
variables named DATA and RPT.MONTH.

CEFl NE VEEST. RPT PROGRAM

LD Produce report for Wstern Sales D strict

PRORAM

variable data text
variable _rpt.nonth text
limt nonth to last 3

Related information

For more information, see the following table.

IF you want documentation about . ..

THEN see.. ..

OLAP DML data types,

“OLAP DML Data Types” on page 4-2

permanent variables,

The topic for the DEFINE VARIABLE
command in OLAP DML Reference

temporary variables,

The topic for the DEFINE VARIABLE
command in OLAP DML Reference

local variables,

the topic for the VARIABLE command in
OLAP DML Reference

individual OLAP DML commands,

the topic for the command in OLAP DML
Reference

8-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Passing Arguments

Passing Arguments

Two methods for accepting arguments
The OLAP DML provides two ways for you to accept arguments in a program:

« ARGUMENT command — You can use the ARGUMENT command to declare
arguments in a program. ARGUMENT allows you to use both simple and
complex arguments, such as expressions. ARGUMENT also makes it
convenient to pass arguments from one program to another, or to create your
own user-defined functions.

« ARG functions — You can use the ARG, ARGS, and ARGFR functions in any
program to retrieve arguments from a command. These functions are primarily
useful for simple text arguments. For information on these functions, see OLAP
DML Reference.

Using the ARGUMENT command

The ARGUMENT command lets you declare an argument of any data type,
dimension, or valueset. Any ARGUMENT commands must precede the first
executable line in the program. When you run the program, these declared
arguments are initialized with the values you provided as arguments to the
program. The program can then use these arguments in the same way it would use
local variables.

Example: Using the ARGUMENT command

Suppose you are writing a program, called PRODUCT.RPT. The PRODUCT.RPT
program produces a report, and you want to supply an argument to the report
program that specifies the text that should appear for an NA value in the report. In
the PRODUCT.RPT program, you can use the declared argument NATEXT in an =
command to set the NASPELL option to the value provided as an argument.

argunent natext text
naspel | = nat ext

To specify M ssi ng as the text for NA values, you can execute the following
command.

Gl | product.rpt (' Mssing')

Designing Programs 8-11

Passing Arguments

Using multiple arguments

A program can declare as many arguments as needed. When the program is
executed with arguments specified, the arguments are matched positionally with
the declared arguments in the program.

When you run the program, you must separate arguments with spaces rather than
with commas or other punctuation. Punctuation is treated as part of the arguments.

Example 1: Using multiple arguments

Suppose, in the PRODUCT.RPT program, that you want to supply a second
argument that specifies the column width for the data columns in the report. In the
PRODUCT.RPT program, you would add a second ARGUMENT command to
declare the integer argument to be used in setting the value of the COLWIDTH
option.

argunent natext text
argunent w dt hamt integer
naspel | = nat ext

col w dth = w dt hant

To specify eight-character columns, you could run the PRODUCT.RPT program
with the following command.

call product.rpt ('Mssing 8)

Example 2: Using multiple arguments

If the PRODUCT.RPT program also requires the name of a product as a third
argument, then in the PRODUCT.RPT program you would add a third
ARGUMENT command to handle the product argument, and you would set the
status of the PRODUCT dimension using this argument.

argunent natext text
argunent w dt hant integer
argunent rptprod product
naspel | = nat ext

col w dth = w dt han

limt product to rptprod

You can run the PRODUCT.RPT program with the following command.
Gl | product.rpt ('Mssing 8 ' TENIS)

In this example, the third argument is specified in uppercase letters with the
assumption that all the dimension values in the analytic workspace are in uppercase
letters.

8-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Passing Arguments

Passing arguments as text with ampersand substitution

It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to pass a more complicated text
argument, such as an argument that is composed of more than one dimension value
or is composed of the text of an expression. In these cases, you want to substitute
the text you pass, exactly as you specify it, wherever the argument name appears.

To indicate that you want a text argument handled in this way, you precede the
argument name with an ampersand when you use it in the command lines of your
program. Specifying arguments in this way is called ampersand substitution.

When you use ampersand substitution to pass the names of OLAP DML objects to a
program (rather than their values), the program has access to the objects themselves
because the names are known to the program. This is useful when the program
must manipulate the objects in several operations.

Example: Passing multiple dimension values

If you want to specify exactly two products for the PRODUCT.RPT program
discussed earlier, then you could declare two dimension-value arguments to handle
them. But if you want to be able to specify any number of products using LIMIT
keywords, then you can use a single argument with ampersand substitution.

Suppose you use the following commands in your program.

argunent natext text
argunent w dt hamt integer
argunent rptprod text

limt product to & ptprod

You can run the program and specify that you want the first three products in the
report.

call product.rpt ("Mssing' 8 'first 3')

The single quotation marks are necessary to indicate that “first 3” should be taken
as a single argument, rather than two separate arguments separated by a space.

Designing Programs 8-13

Passing Arguments

Example: Passing the text of an expression

Suppose you have a program named CUSTOM.RPT that includes a REPORT
command, but you want to be able to use the program to present the values of an
expression, such assal es - expense, as well as single variables.

customtbl 'sales - expense’

Note: You must enclose the expression in single quotation marks. Because the
expression contains punctuation (the minus sign), the quotation marks are
necessary to indicate that the entire expression is a single argument.

In the CUSTOM.RPT program, you could use the following commands to produce a
report of this expression.

argunent rptexp text
report & ptexp

Ampersand substitution and performance

It is not possible to compile and save any program line that contains an ampersand.
Instead, the line is evaluated at run time, which can reduce the speed of your
programs. Therefore, to maximize performance, avoid using ampersand
substitution when another technique is available.

Passing OLAP DML object names and keywords

For the following types of arguments, you must always use an ampersand to make
the appropriate substitution:

« Names of OLAP DML objects, such as UNITS or PRODUCT

« Command keywords, such as COMMA or NOCOMMA in the REPORT
command, or A or D in the SORT command

Example: Passing OLAP DML object names and keywords

Suppose you design a program called SALES.RPT that produces a report on a
variable that is specified as an argument and sorts the PRODUCT dimension in the
order that is specified in another argument. You would run the SALES.RPT
program by executing a command like the following one.

sales.rpt units d

8-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Passing Arguments

In the SALES.RPT program, you can use the following commands.

argunent varnane text

argunent sortkey text

sort product &sortkey &arnane
report &arnane

After substituting the arguments, these commands are executed in the SALES.RPT
program.

sort product d units
report units

Passing expression arguments by value

You can also pass expressions into a program by value. This means that the
program receives its argument as the values that are the result of an expression
rather than as the expression itself. Because this type of argument provides only the
value of the expression, it does not give the program access to any OLAP DML
object that is used in the original expression.

To pass an expression’s value as an argument, you must execute the program with
the CALL command and enclose its arguments in parentheses immediately
following the program name.

CALL programane(argurentl [argunent2 ...])

By using the CALL command to execute a program from within another program,
you can use expressions to construct arguments “on the fly.” In this way, the
arguments passed to the second program can vary according to what has already
happened in the first program.

Example 1: Passing expression arguments by values

Suppose the first argument for your program PRODUCT.RPT specifies the text that
you want used for NA values. You might already have that text stored in a variable
(for example, TEMP1). Rather than supplying the text as an argument, you can
specify the name of the variable as an argument.

call product.rpt(tenpl)

In this case, the argument that is passed into the PRODUCT.RPT program is not the
literal text’ t enpl’ , but the current value of the variable TEMP1. You can still pass
literal text into the program, but you must enclose the text in single quotation
marks.

call product.rpt(’Mssing)

Designing Programs 8-15

Writing User-Defined Functions

Example 2: Passing expression arguments by values

In the program lines below, an argument has been passed that indicates the type of

report that should be produced. The report program is called with an argument that
specifies the text to be used for NA values. Because that text varies with the type of

report, an expression is used as the argument to supply the appropriate text.

argunent reptype text
call product.rpt(if reptype eq 'Revenue’ then 'Mssing else 'Not Available’)

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

ampersand substitution, “Substitution Expressions” on page 4-39

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Writing User-Defined Functions

Definition: User-defined function

When an OLAP DML program returns a value, it is called a user-defined function.
This means you can use it in commands and expressions in the same way you use
OLAP DML functions.

A user-defined function is a program that contains a RETURN command followed
by an expression. The RETURN command returns a single value when the program
terminates.

RETURN expr essi on

Data type of a user-defined function

When you create a user-defined function, define the program with a data type or
dimension name, using the following syntax of the DEFINE command.

CEFl NE pr ogr amarre PROGRAM [dat at ype| di nensi on

The datatype argument specifies the data type of the value to be returned by the
program when it is called as a function.

8-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Writing User-Defined Functions

The dimension argument specifies the name of a dimension whose value the
program returns when it is called as a function. The return value will be a single
value of the dimension, not a position (integer). The dimension must be defined in
the same analytic workspace as the program. The value that is returned by the
program has the data type that is specified in the definition. If you specify a
dimension name, then the program returns a value of that dimension.

The return expression in the program should match the data type that is specified in
its definition. If the data type of the return value does not match the data type that
is specified in its definition, then the value is converted to the data type in the
definition.

If you do not specify a data type for the program, then the return value is converted
to the data type that is required by the context from which the program was called.

For the complete syntax of the DEFINE PROGRAM command, see the entry for the
command in OLAP DML Reference.

Arguments in a user-defined function

User-defined functions can accept arguments. A user-defined function returns only
a single value. However, if you supply an argument to a user-defined function
when you are using the function in a context that loops over a dimension (for
example, in a REPORT command), then the function returns results with the same
dimension as its argument.

You must declare the arguments using the ARGUMENT command within the
program, and you must specify the arguments in parentheses following the name of
the program. For more information about using arguments with programs, see
“Passing Arguments” on page 8-11 and the entry for the ARGUMENT command in
OLAP DML Reference.

Example: User-defined function

Description

Suppose your analytic workspace contains a variable called UNITS.PLAN, which is
dimensioned by the PRODUCT, DISTRICT, and MONTH dimensions. The variable

holds integer data that indicates the number of product units that are expected to be
sold.

Suppose also that you define a program named UNITS_GOALS_MET. This
program is a user-defined function. It accepts three dimension-value arguments that

Designing Programs 8-17

Writing User-Defined Functions

specify a given cell of the UNITS.PLAN variable, and it accepts a fourth argument
that specifies the number of units that were actually sold for that cell. The program
returns a Boolean value to the calling program. It returns YES when the actual
figure comes up to within 10 percent of the planned figure; it returns NO when the
actual figure does not.

Program Code
The definition of the UNITS_GOALS_MET program is listed below.

DEFINE UN TS GOAL_MET PROGRAM BOOLEAN

LD Tests whether actual units net the planned estinate
"ProgramlInitialization

argunent userprod text

argunent userdist text

argunent usernont h text

argunent userunits integer

vari abl e answer bool ean

trap on errorl abel

push product district nonth

" Pr ogr am Body

limt product to userprod

limt district to userdist

limt nmonth to usernonth

if (units.plan - userunits) / units.plan gt .10

then answer = no
el se answer = yes
"Normal Exit

pop product district nonth
return answer

" Abnor nal Exi t

errorl| abel :

pop product district nonth
signal errornane errortext
B\D

Invoking the Program

To execute the UNITS_GOAL_MET program and store the return value in a variable
called SUCCESS, you can use an assignment statement.

success = units_goal _net (' TENTS ' BOSTAN ' JUNDE 2000)

8-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Controlling the Flow of Execution

Related information

For more information, see the following table.

IF you want documentation about . . .

THEN see . .

invoking programs that return values,

“Invoking Programs” on page 8-3

using arguments with programs,

“Passing Arguments” on page 8-11

the entry for the ARGUMENT command in
OLAP DML Reference

built-in OLAP DML functions,

the OLAP DML Reference

individual OLAP DML commandes,

Reference

the topic for the command in OLAP DML

Controlling the Flow of Execution

Control structures that modify the sequence of command execution

Ordinarily, the lines of a program are executed sequentially — in linear fashion.
However, a well-designed program controls the flow of execution by using OLAP
DML commands that redirect the path of execution when appropriate.

You can use the following control structures to modify the sequence of command

execution.

Command or
Keyword

Action

Event that Triggers Action

IF command

Executes alternative commands or
groups of commands.

A specified Boolean condition
is or is not met.

WHILE command

Executes a group of commands
repeatedly.

As long as a specified Boolean
condition is met.

FOR command

Executes a command or a group of
commands.

Once for each value of a
dimension.

GOTO command

Branches to a specific labeled
location.

Issuing the command.

SWITCH command

Branches to particular branch in a
multipath branch.

A specific criterion is met.

TRAP command

Branches to a specific labeled
location.

An error occurs during
program execution.

Designing Programs 8-19

Controlling the Flow of Execution

Command or
Keyword

Action

Event that Triggers Action

IFNONE keyword
inaLIMIT, REPORT,
ROW, or HEADING
command

Branches to a specific labeled
location.

An attempt to set status
would result in no values or
null status.

RETURN command

Branches out of a program or
returns to a calling program before
the final command in the program.

Issuing the command.

For more information on an individual command, see the entry for the command in
OLAP DML Reference.

Guidelines for constructing a label
When creating a label, follow these guidelines:

= The first character in the label must be a letter, a period (.), or an underscore

-

= The remaining characters in a label can be any combination of letters, numbers,
periods, or underscores.

« Alabel must be followed immediately by a colon (:).

= Make sure that the first eight characters are unique. A label can contain up to
3999 characters (the maximum length of a text line minus 1 character for the
colon that identifies a label). However, because only the first eight characters of
a label name are used, you can experience problems with label names greater
than eight characters when the first eight characters are not unique.

Alternatives to the GOTO command

While GOTO makes it easy to branch within a program, frequent use of it can
obscure the logic of your program, making it difficult to follow its flow. This is
particularly true when you have a complex program with several labels and GOTO
commands that skip over large portions of code.

To keep the logic of your programs clear, minimize your use of GOTO.

8-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Controlling the Flow of Execution

Sometimes a GOTO command is the best programming technique, but often there
are better alternatives. For example:

« Instead of using GOTO commands in an IF command, you can often place your
alternative sets of commands between DO and DOEND commands within the
IF command itself.

« If each set of commands is long or you want to use them in more than one place
in your program, then you might consider placing them in subprograms. Then,
you can use the IF command to choose between two different programs, or use
the SWITCH command to choose among many different programs.

Example: Using the FOR command to loop over the values in a given dimension

The FOR command executes the commands in the loop for each value in the current
status of the dimension. You must limit the dimension to the desired values before
executing the FOR command. For example, you can produce a series of output lines
that show the price for each product.

limt nonth to first 1

limt product to all

for product

show j oi nchars(’ Price for ' product ': $ price)

Each output line has the following format.

Price for TENTS $165. 50

Example: Using the FOR command to loop over the values in several dimensions

When your data is multidimensional, you can specify more than one dimension in a
FOR command to control the order of processing. For example, you can use the
following command to control the order in which dimension values of the UNITS
data are processed.

for nonth district product
units = ...

When this assignment statement is executed, the MONTH dimension varies the
slowest, the DISTRICT dimension varies the next slowest, and the PRODUCT
dimension varies the fastest. Thus, a loop is performed over all products for the first
district before doing the next district, and over all districts for the first month before
doing the next month.

Designing Programs 8-21

Controlling the Flow of Execution

Within the FOR loop, each specified dimension is temporarily limited to a single
value while it executes the commands in the loop. You can therefore work with
specific combinations of dimension values within the loop.

Example: Using the FOR command to loop over values in several dimensions

If actual figures for unit sales are stored in a variable called UNITS and projected
figures for unit sales are stored in a variable called UNITS.PLAN, then the code in
your loop can compare these figures for the same combination of dimension values.

limt month to first 1
limt product to all
limt district to all
for district product
do
if (units.plan - units)/units.plan gt .1
then show j oi nchar s(-
"Uhit sales for ' product ' in’ -
district ' are not within 10%of plan.’)
doend

These lines of code are processed as described below.
1. The data is limited to a specific month.
2. All the districts and products are placed in status, and the FOR loop is entered.

3. Inthe FOR loop, the actual figure is tested against the planned figure. If the unit
sales figure for TENTS in BOSTON is more than 10 percent below the planned
figure, then the following message is sent to the current outfile.

Lhit sales for TENTS in BOSTON are not within 10%of plan.
4. After processing all the products, the FOR loop is complete for the first district.
5. The loop is executed for the second district, and so on.

Note: While the FOR loop executes, each dimension that is specified in a FOR
command is limited temporarily to a single value. If you specified DISTRICT in the
FOR loop, but not PRODUCT, then all the values of PRODUCT would be in status
while the FOR loop executed. The IF command would then test data for only the
first value of the PRODUCT dimension.

8-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Directing Output

Examples: Branching in a program to avoid setting null status

Example: Branching using IFNONE keyword

Your program might try to set or refine the status of the PRODUCT dimension to
include only the products for which unit sales are greater than 500. If no products
have unit sales of more than 500, then you can use the IFNONE keyword to specify
that execution branch to the NOVALS label.

limt product keep units gt 500 ifnone noval s

In the commands following the NOVALS label, you can handle the special situation
in which no products have units sales greater than 500.

Example: Alternative to branching using IFNONE keyword

As an alternative to branching to an IFNONE label, you can also handle null status
for a dimension with the OKNULLSTATUS option. If you set OKNULLSTATUS to
YES, then you will be allowed to set the status of a dimension to null. You can then
check for null status and execute appropriate commands with an IF command, or
you can handle null status as one of the cases in a SWITCH command.

oknul I status = yes
limt nonth to sales gt sal esnum
if statlen(rmonth) It 1

then goto showerr

Directing Output

Directing output to a file

To send output to a file, use the OUTFILE command followed by a file name. A file
will be created with that name. The file name that you specify must follow the
standard filename format for your operating system.

The OUTFILE command changes the routing for all subsequent output. Therefore, if
you route a report to a file, then you should reroute output to the default outfile
before leaving the program. If you want to send subsequent output to the default
outfile, then place the OUTFILE EOF command directly after your report
commands. To make sure the OUTFILE EOF command is executed when errors
cause abnormal termination of the program, also place the command in the
abnormal exit section.

Designing Programs 8-23

Directing Output

Example: Directing output to a file

Suppose you have a program called YEAR.END.SALES, and you want to save the
report it creates in a file. Type the following commands to write a file of the report
in the working directory of your analytic workspace. You can specify a full path
name when you want to use a different drive or directory.

outfile yearend. txt
year . end. sal es
outfile eof

Now the file contains the YEAR.END.SALES report. You can add more reports to
the same file with the APPEND keyword for OUTFILE. Suppose you have another
program called YEAR.END.EXPENSES. Add its report to the file with the following
commands. Note that without APPEND, the OUTFILE command overwrites the
expense report.

outfile append yearend.t xt
year . end. expenses
outfile eof

Routing error messages

You can route error messages to a file by setting the ECHOPROMPT option to YES.
echopronpt = yes

When you set ECHOPROMPT to YES, input lines and error messages are echoed, as
well as output lines, to the current outfile.

The next topic explains that you can use the DBGOUTFILE command to create a
log, or debugging file, of your program’s execution. When you create a debugging
file and set ECHOPROMPT to YES, input lines and error messages are routed to the
debugging file instead of to the current outfile.

If you set ECHOPROMPT to YES, then remember to save and restore its original
value with the PUSH and POP commands.

Setting paging options

Paging options such as BMARGIN and LSIZE have separate values for the default
outfile and for files. Executing the OUTFILE command sets the paging options to
their current values for the specified output destination. To make sure the paging
options have the values you want, set them after executing the OUTFILE command.

When you set paging options for the default outfile, the new values remain in effect
until you reset them. However, when you set paging options for a file, the new

8-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Preserving the Session Environment

values remain in effect only as long as you continue sending output to the same file.
When an OUTFILE command that routes output to a different destination is
executed, including a different file, the paging options return to their default values
for files.

Therefore, if you want the paging options to have a particular value for afile, then
you must reset the options each time you use the OUTFILE command for the file.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

creating a debugging file and debugging “Debugging with a Debugging File” on page

with files, 9-2

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Preserving the Session Environment

Environment settings

One advantage to the modular design approach is that each program has a clearly
defined area of responsibility, and it does not affect the workings of other programs.
To make this possible, each program must act as a “good citizen” by saving global
settings before it changes them and restoring global settings before it finishes
execution.

There are two types of environment settings:

« Session environment — The dimension status, option values, and output
destination that are in effect before a program is run make up the session
environment.

« Program environment — The dimension status, option values, and output
destination that you use in a program make up the program environment.

Changing the program environment

To perform a task within a program, you often need to change the output
destination or some dimension and option values. For example, you might run a
monthly sales report that always shows the last six months of sales data. You might

Designing Programs 8-25

Preserving the Session Environment

want to show the data without decimal places, include the text “No Sales” where
the sales figure is zero, and send the report to a file. To set up this program
environment, you can use the following commands in your program.

limt nonth to last 6
decimals = 0

zspell = 'No Sal es’
outfile nmonsal es. txt

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that will be set in the
program. In the normal and abnormal exit sections at the end of the program, you
can restore the saved environment, so that other programs do not need to be
concerned about whether any values have been changed. In addition, if you have
sent output to a file, then the exit sections should return the output destination to
the default outfile.

Ways to save and restore the program and session environments
The following suggestions let you save the environment of a program or a session:

« If you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

« If you want to save, access, or update the current status or value of a dimension,
an option, a single-cell variable, a valueset, or a single-cell relation for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Contexts are the most sophisticated way to save object values for use during a
session of OLAP Services. With contexts, you can access and update the saved
object values, whereas PUSH and POP simply allow you to save and restore values.
Typically, you use the PUSH and POP commands within a program to make
changes that apply only during the program'’s execution.

Using PUSH to save a dimension’s status or an option’s value

The PUSH command saves the current status of a dimension, the value of an option,
or the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the
program, use the following command in the initialization section.

push deci nal s

8-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Preserving the Session Environment

You do not need to know the original value of the option to save it or to restore it
later. You can restore the saved value with the POP command.

pop deci nal s

You must make sure the POP command is executed when errors cause abnormal
termination of the program as well as when the program ends normally. Therefore,
you should place the POP command in the normal and abnormal exit sections of the
program.

Using PUSH to save several values at once

You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH command, and you can restore the values
with a single POP command, as shown in the following example.

push nonth deci nal s zspel |

pop nmont h deci nal s zspel |

Using PUSHLEVEL and POPLEVEL to save several values at once

If you are saving the values of several dimensions and options, then the
PUSHLEVEL and POPLEVEL commands provide an alternative and more
convenient way to save and restore the session environment. You first use the
PUSHLEVEL command to establish a level marker. Once the level marker is
established, you use the PUSH command to save the status of dimensions and the
values of options or single-cell variables.

For example, you can use the PUSHLEVEL command to establish a level marker
called FIRSTLEVEL, and then use PUSH to save the current values.

pushl evel 'firstlevel’
push nonth deci nal s zspel |

The level marker can be any text that is enclosed in single quotation marks. It can
also be the name of a single-cell ID or TEXT variable, whose value becomes the
name of the level marker. In the exit sections of the program, you can then use the
POPLEVEL command to restore all the values you saved since establishing the
FIRSTLEVEL marker.

popl evel ’'firstlevel’

Designing Programs 8-27

Preserving the Session Environment

If you place more than one PUSH command between the PUSHLEVEL and
POPLEVEL commands, then all the objects that are specified in those PUSH
commands are restored with a single POPLEVEL command.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you only need to type the list of objects once. You also reduce the
risk of omitting an object from the list or misspelling the name of an object.

Nesting PUSHLEVEL and POPLEVEL commands

You can nest PUSHLEVEL and POPLEVEL commands to save certain groups of
values in one place in a program and other groups of values in another place in a
program. The next example shows two sets of nested PUSHLEVEL and POPLEVEL
commands.

pushl evel 'firstlevel’
push pagesi ze decinal s "Saves val ues i n FI RSTLEVEL

pushl evel ’secondl evel ’
push nont h product "Saves val ues in SECONDLEVEL

popl evel ’'secondl evel’ "Restores val ues i n SECONDLEVEL

popl evel 'firstlevel’ "Restores values in Fl RSTLEVEL

Normally, you will not use more than one set of PUSHLEVEL and POPLEVEL
commands in a single program. However, the nesting feature comes into play
automatically when one program calls another program and each program contains
a set of PUSHLEVEL and POPLEVEL commands.

Using CONTEXT to save several values at once

As an alternative to using PUSHLEVEL and POPLEVEL, you can use the
CONTEXT command and CONTEXT function. With these, you can access and
update your saved object values, as well as save and restore them. For details about
using named contexts, see the entries for the CONTEXT command and the
CONTEXT function in OLAP DML Reference.

8-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Handling Errors

Handling Errors

Overview: Handling errors

A well-designed program handles errors gracefully and reports each error in an
informative way. The OLAP DML provides commands such as TRAP to help you
detect and report errors in your programs.

How an error is signaled

When an error occurs anywhere in a program, the error is signaled. To signal the
error, the following actions are performed.

1. The name of the error is stored in the ERRORNAME option, and the text of the
error message is stored in the ERRORTEXT option.

2. If ECHOPROMPT is YES, then the error message is sent to the current outfile or
to the debugging file, when there is one.

3. Iferror trapping is off, then the execution of the program is halted. If error
trapping is on, then the error is trapped.

How an error is trapped

To make sure the program works correctly, you should anticipate errors and set up a
system for handling them. You can use the TRAP command to turn on an
error-trapping mechanism in a program. If error trapping is on when an error is
signaled, then the execution of the program is not halted. Instead, the following
actions are performed.

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP command

3. Executes the commands following the label

Designing Programs 8-29

Handling Errors

Handling errors while saving the session environment

To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL command before the TRAP command and
your PUSH commands after the TRAP command.

pushl evel 'firstlevel’
trap on error
push . . .

In the abnormal exit section of your program, place the ERROR label (followed by a
colon) and the commands that restore the session environment and handle errors.
The abnormal exit section might look like this.

error:
popl evel ’'firstlevel’
outfile eof

These commands restore saved dimension status and option values and reroute
output to the default outfile.

Suppressing error messages

If you do not want to produce the error message that is normally provided for a
given error, then you can use the NOPRINT keyword with the TRAP command.

trap on error noprint

When you use the NOPRINT keyword with TRAP, control branches to the ERROR
label, and an error message is not issued when an error occurs. The commands
following the ERROR label are then executed.

When you suppress the error message, you might want to produce your own
message in the abnormal exit section. The SHOW command produces the text you
specify but does not signal an error.

trap on error noprint

error:

show ' The report will not be produced.’

The program continues with the next command after producing the message.

8-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Handling Errors

Identifying the error that occurred

All errors have names. Whenever an error is signaled, the error name is stored in
the ERRORNAME option. If you want to perform one set of activities when one
type of error occurs, and a different set of activities if another type of error occurs,
then you can test the value of the ERRORNAME option.

To find out what the value of ERRORNAME will be for specific error conditions,
you can check the dimension _MSGID in the expr ess. db analytic workspace. The
error messages are contained in the variable _MSGTEXT, which is dimensioned by
_MSGID. To see this list, execute the following command.

report w60 _nsgtext

Many of the error messages contained in _MSGTEXT are constructed so that
appropriate values can be substituted in the message at the time it is produced (for
example, the name of an OLAP DML object). These substitutions are indicated by a
percent sign (%9 followed by one or more characters in the _ MSGTEXT value. In
most cases, you can understand the purpose and condition of the message without
knowing exactly what will be substituted.

When you need to, you can use the SIGNAL command to send to the current outfile
the ERRORNAME and ERRORTEXT of the last error that occurred. The SIGNAL
command has the following format.

SIG\AL errornane [nessage]

Creating your own error messages

All errors that occur when commands or command sequences do not conform to its
requirements are signaled automatically. In your program, you can establish
additional requirements for your own application. When a requirement is not met,
you can execute the SIGNAL command to signal an error.

You can give the error any name. When the SIGNAL command is executed, the
error name you specify is stored in the ERRORNAME option, just as an error name
is stored. If you specify your own error message in the SIGNAL command, then
your message is produced just as an error message is produced. When you are
using a TRAP command to trap errors, a SIGNAL command branches to the TRAP
label after the error message is produced.

Designing Programs 8-31

Handling Errors

Example: Signaling an error

Suppose your program produces a report that can present from one to nine months
of data. You can signal an error when the program is called with an argument value
greater than nine. In this example, NUMMONTHS is the name of the argument that
must be no greater than nine.

sel ect:

trap on error

push nont h

limt nonth to nummont hs

if statlen(nonth) gt 9
then signal toormany -

" You can specify no nore than 9 nonths.’
report down district wé units
fini sh:
pop nont h
return
error:
pop nont h
if errornane eq ' TOOMANY

then show ' No report produced

If you do not specify your own message in a SIGNAL command, then Express the
error name and a default message are produced.

ERROR (TAOMANY) Pl ease contact the administrator of your O acle Express Server
appl i cation.

If you want to produce a warning message without branching to an error label, then
you can use the SHOW command.

sel ect:
limt nonth to numont hs
if statlen(nmonth) gt 9
then do
show ' You can sel ect no nore than 9 nonths.’
goto finish
doend
report down district wé units
finish:
pop nont h
return

8-32 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Handling Errors

Handling errors in nested programs

When you write a program that runs another program, the second program is
nested within the first program. The second program might, in turn, run another
nested program.

The error-handling section in each program should restore the environment. It can
also handle any special error conditions that are particular to that program. For
example, if your program signals its own error, then you can include commands
that test for that error.

Any other errors that occur in a nested program should be passed up through the

chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want
the error message to be produced:

« Method 1 — The error message is produced immediately, and the error
condition is then passed through the chain of programs.

=« Method 2 — The error is passed through the chain of programs first, and the
error message is produced at the end of the chain.

The SIGNAL command is used in both methods.

Example: Producing the error message immediately

For Method 1, use a TRAP command in each nested program, but do not use the
NOPRINT keyword. When an error occurs, an error message is produced
immediately, and execution branches to the trap label.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute a SIGNAL command with the PRGERR
keyword.

signal prgerr

When you use the PRGERR keyword with the SIGNAL command, no error message
is produced, and the name PRGERR is not stored in ERRORNAME. The SIGNAL
command signals an error condition that is passed up to the program from which
the current program was run. If the calling program contains a trap label, then
execution branches to that label.

Designing Programs 8-33

Handling Errors

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, you can pass the error condition up through the entire
chain. Each program has commands like these.

trap on error
"Body of programand normal exit conmands

return
error:

"Brror-handling and exit conmands

signal prgerr

Example: Producing the error message at the end of the chain

For Method 2, use a TRAP command with the NOPRINT keyword. When an error
occurs in a nested program, execution branches to the trap label, but the error
message is suppressed.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute the following SIGNAL command.

signal errornane errortext

The ERRORNAME option contains the name of the original error, and the
ERRORTEXT option contains the error message for the original error. The SIGNAL
command shown above passes the original error name and error text to the calling
program. If the calling program contains a trap label, then execution branches to
that label.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, the original error message is produced at the end of the
chain. Each program has commands like these.

trap on error noprint
"Body of programand normal exit conmands

return
error:

"Brror-handling and exit conmands

signal errornane errortext

8-34 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Compiling Programs

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see.. ..

testing and debugging programs, Chapter 9

individual OLAP DML commandes, the topic for the command in OLAP DML
Reference

Compiling Programs

When a program is compiled

You can explicitly compile a program by using the COMPILE command. If you do
not explicitly compile a program, then it is compiled when you run the program for
the first time after you have edited it.

Example: Using the COMPILE command

The following is an example of a COMPILE command that compiles the MYPROG
program.

conpi | e nyprog

For the syntax of the COMPILE commands, see the entry for the command in OLAP
DML Reference.

Example: Compilation errors

Suppose you misspell the dimension MONTH in a LIMIT command in the
MYPROG program.

limt notnh to last 6

When the COMPILE command encounters this command, it produces the following
message.

BERROR MOIMNH does not exi st in any attached dat abase.
In MYPROG PROGRAM
limt notnh to last 6

N

You can edit the program to correct the error and then try to compile it again.

Designing Programs 8-35

Compiling Programs

How a program is compiled

When a program is compiled, it translates the program commands into efficient
processed code that executes much more rapidly than the original text of the
program. If errors are encountered in the program, then the compilation is not
completed, and the program is considered to be uncompiled.

Note: Program lines that include ampersand substitution will not be compiled.
However, the presence of such lines does not constitute an error. A program whose
other lines compiled correctly is considered to be a compiled program.

Compiling and updating

After you compile a program, the compiled code is used each time you run the
program in the current OLAP Services session. When you update your analytic
workspace after compiling a program, the compiled code is saved in your analytic
workspace and uses it when you run the program in future sessions. Therefore, you
should be sure to update your analytic workspace after compiling a program.

Compiling, exporting, and importing

After you export a program from a source analytic workspace, if you import the
program to a target analytic workspace, then the compiled code is not exported or
imported. Therefore, after you import a program to a target analytic workspace, you
need to compile the program and update the target analytic workspace.

To keep an application analytic workspace compact and uncluttered, application
builders often define and test objects in a test analytic workspace, and then import
the tested objects to the final analytic workspace. When you follow this procedure,
remember to compile your programs in the final analytic workspace.

Compiling with object definitions

When your program defines an object and then uses the object in the program, the
program will not compile. When COMPILE encounters the reference to the object, it
treats the reference as a misspelling because the object does not yet exist in the
analytic workspace.

8-36 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Testing Programs

Finding out if a program has been compiled

You can use the ISCOMPILED choice of the OBJ function to determine whether a
specific program in your analytic workspace has been compiled since the last time it
was modified. The function returns a Boolean value.

show obj (i sconpi | ed ' nyprogram)

For the syntax of the OBJ function, see the entry for the function in OLAP DML
Reference.

Testing Programs

Testing a program by running it
Even when your program compiles cleanly, you must also test the program by

running it. Running a program helps you detect errors in commands with
ampersand substitution, errors in logic, and errors in any nested programs.

To test a program by running it, use a full set of test data that is typical of the data
that the program will process. To confirm that you test all the features of the
program, including error-handling mechanisms, run the program several times,
using different data and responses. Use test data that:

« Falls within the expected range
« Falls outside the expected range

« Causes each section of a program to execute

Using SHOW commands

Each time you run the program, confirm that the program executes its commands in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW commands in the program to
produce diagnostic or status messages. Then delete the SHOW commands after
your tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the
next section.

For the syntax of the SHOW command, see the entry for the command in OLAP
DML Reference.

Designing Programs 8-37

Testing Programs

Using the BADLINE option

When you set the BADLINE option to YES, additional information will be
produced, along with any error message when a bad line of code is encountered.
When the error occurs, the error message, the name of the program, and the
program line that triggered the error are sent to the current outfile.

You can edit the specified program to correct the error and then run the original
program.

For the syntax of the BADLINE option, see the entry for the option in OLAP DML
Reference.

Example: Using the BADLINE option
In a simple program called TEST, the variable MYINTL is divided by zero.

DEFl NE TEST PROGRAM
PROGRAM

variabl e nyint1 integer
variabl e nyint2 integer

nyintl =0
nyi nt2 = 250/ nyi nt 1
END

If you run the program when the DIVIDEBYZERO option is set to NO, then an error
occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

BERROR (MKXEQL) A division by zero was attenpted. (If you want NA to be
returned as the result of a division by zero, set the DM DEBYZERO option to
YES.)

In TEST PROGRAM

nyi nt2 = 250/ nyi nt 1

8-38 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

9

Debugging Programs

Chapter summary
This chapter explains how to debug programs that are written in the OLAP DML.

List of topics
This chapter includes the following topics:
« Overview: Debugging in OLAP DML
« Debugging with a Debugging File
« Debugging with OLAP Worksheet
« OLAP DML Debugger Commands

Overview: Debugging in OLAP DML

How you debug OLAP DML

There are two main methods for debugging OLAP DML programs: using a
debugging file, and using the OLAP DML debugger from within OLAP Worksheet.
The method that you use depends on the degree of debugging that you want to
perform and how the OLAP DML code is executed.

Debugging using a debugging file

If you are executing OLAP DML code through the OLAP API, you can use a
debugging file that logs the progress of program execution so you can analyze it for
errors.

Debugging Programs 9-1

Debugging with a Debugging File

For more information on working with a debugging file, see “Debugging with a
Debugging File” on page 9-2.

Debugging using the OLAP DML debugger

If you are executing OLAP DML code from within OLAP Worksheet, you can use
the OLAP DML debugger when you want to debug by interactively stepping
through a program one line at a time while displaying the current values of OLAP
DML objects.

The exact steps that you take to use OLAP Worksheet depend on the location of the
program you want to debug and the type of session in which OLAP Worksheet
runs. For more information, see “Debugging with OLAP Worksheet” on page 9-5,
and “OLAP DML Debugger Commands” on page 9-6.

Debugging with a Debugging File

Why you debug using a debugging file
If your program contains an error in logic, then the program might execute without
producing an error message, but it will execute the wrong set of commands or
produce incorrect results. For example, suppose you write a Boolean expression
incorrectly in an IF command (for example, you use NE instead of EQ). The
program will execute the commands you specified, but it will do so under the
wrong conditions.

To find an error in program logic, you often need to see the order in which the
commands are being executed. One way you can do this is to create a debugging
file and then examine the file to diagnose any problems in your programs.

Creating a debugging file

Command you use to create a debugging file

To create a debugging file, you use the DBGOUTFILE command. The simplified
syntax of the DBGOUTFILE command is shown below.

DBGOUTH LE {ECH [APPEND] file-id [NOCAGHE }

The EOF keyword specifies that the current debugging file should be closed, and
that debugging output should no longer be sent to a file.

9-2 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Debugging with a Debugging File

The APPEND keyword specifies that the output should be added to the end of an
existing disk file. If you omit this argument and a file exists with the specified name,
then the new output replaces the current contents of the file.

The argument file-id specifies the name of the file to receive the debugging output.

The NOCACHE keyword causes the OLAP DML to write to the debugging file each
time it executes a line of code. Without this keyword, file /0 activity is reduced by
saving text and writing it periodically to the file.

For the complete syntax of the DBGOUTFILE command, see the entry for the
command in OLAP DML Reference, which you can access by selecting Language
from the Help menu in OLAP Worksheet.

Specifying the contents of the debugging file

Using the DBGOUTFILE command merely creates a file for debugging. To specify
that you want each program line to be sent, as it executes, to the debugging file, set
the PRGTRACE option to YES.

As outlined below, using either the ECHOPROMPT or IFCOPY option, you can also
specify that additional information should be included in the debugging file.

IF you want the debugging file to interweave the

program lines with . .. THEN set the . ..

both the program’s input and error messages, ECHOPROMPT option to YES.
only the program’s input, IFCOPY option to YES.

For the syntax of the ECHOPROMPT, IFCOPY, and PRGTRACE options, see the
entry for each option in OLAP DML Reference.

Example: Debugging using a debugging file

Creating a debugging file
The following commands create a useful debugging file called debug. t xt in the
current working directory.

prgtrace = yes
echopronpt = yes
dbgout fil e ’ debug. t xt’

Debugging Programs 9-3

Debugging with a Debugging File

After executing these commands, you can run your program as usual. To close the
debugging file, execute this command.

dbgout fil e eof

Sample Program Code
In the following sample program, the first LIMIT command has a syntax error.

DEFI NE ERRCR TRAP PROGRAM
PRORAM

trap on trapl abel

limt nonth to first badarg
limt product to first 3
limt district to first 3
report sal es

trapl abel :
signal errornane errortext
END

Debugging File Output

With PRGTRACE and ECHOPROMPT both set to YES and with DBGOUTFILE set
to send debugging output to a file called debug. t xt , the following text should be
sent to the debug. t xt file when you execute the ERROR_TRAP program.

(PRG BRRIR_TRAP)

(PRG=- BRRIR TRAP) trap on trapl abel

(PRG: BRRR TRAP)

(PRG BRRR TRAP) limt nmonth to first badarg

ERROR BADARG does not exist in any attached dat abase.
(PRG: ERRIR TRAP) trapl abel :

(PRG= ERRIR TRAP) signal errorname errortext

BERROR BADARG does not exist in any attached database.

Related information
For more information, see the following table.

IF you want documentation about . .. THEN see.. ..

specifying the file to use for output, “Directing Output” on page 8-23

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

9-4 Oracle9i OLAP Services Developer’'s Guide to the OLAP DML

Debugging with OLAP Worksheet

Debugging with OLAP Worksheet

How does OLAP Worksheet help you debug?

OLAP Worksheet allows you to use the TRACE or WATCH commands to
interactively step through your program, pausing to examine the current values of
OLAP DML objects and specifying how many program lines to execute. It also
allows you to set watch points where execution will stop when data values meet
certain conditions.

Starting the OLAP DML debugger

Access to the OLAP DML debugger is through the TRACE command, which
controls the list of programs that are traced by the debugger. To use the TRACE
command, you must be connected to OLAP Services using OLAP Worksheet.

To debug a single program, attach the analytic workspace in which the program
resides, and use the TRACE command to add that program to the trace list.

execute 'trace quarter.rpt’

Procedure: Debugging a program located on the OLAP Services computer

To debug a program that is located on the same computer as that on which OLAP
Services is running, take the following steps:

1. Choose Connect from the File menu to display the Login dialog box.

2. Specify the server name, password, and computer name in the Login dialog
box. If necessary, enter a user name, domain name, and password in the
appropriate boxes. For details, refer to the OLAP Worksheet Help system.

3. Choose OK.

4. Once you have connected to the OLAP Services instance, attach the analytic
workspace that contains the program that you want to debug. To attach an
analytic workspace, enter a DATABASE ATTACH command in the command
input window in OLAP Worksheet.

Example:
dat abase attach deno

5. Add your program to the trace list by entering the TRACE command in the
command input window.

Debugging Programs 9-5

OLAP DML Debugger Commands

Example:
trace quarter.rpt

For more information on the TRACE command, see “OLAP DML Debugger
Commands” on page 9-6.

6. Run your program by entering the program name in the command input
window.

Example:
quarter.rpt

When your program runs, the debugger suspends the program’s execution
according to the settings you have specified and displays the double-line arrow
prompt in the output pane of the command input window.

7. Either select the debugger commands from the Debug menu or enter the
debugger commands in the command input window to examine your
program’s execution. For more information on using the debugger commands,
see “OLAP DML Debugger Commands” on page 9-6.

8. Leave the debugging environment by issuing the GO debugger command
without any argument to have the program complete execution. If necessary,
type go again to leave the debugging environment. The prompt returns to its
single-line form (- >) in the output pane.

OLAP DML Debugger Commands

Accessing the debugging environment

Access to the debugging environment is through the TRACE command, which
controls the list of programs that is traced. To use the TRACE command, you must
be connected to an analytic workspace from OLAP Worksheet. You enter OLAP
DML commands in the comm