Oracle9/ OLAP Services

Developer’s Guide to the Oracle OLAP API

Release 1 (9.0.1)

June 2001
Part No. A88756-01

ORACLE

Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API, Release 1 (9.0.1)
Part No. A88756-01
Copyright © 2001, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark and Oracle9i is a trademark of Oracle Corporation. Other names may be
trademarks of their respective owners.

cContents

SENA US YOUT COMMEBNTS ..ottt ettt ettt ettt ettt et et aae et et ees e et ee et et s eeaenes vii
Pl I AC R ... oottt ettt ettt ettt ettt ettt ettt ettt ettt ettt eens iX
(©40] 0)YZ=1 0 1 £ (0] o 1T ETE TR TR Xi
Documentation ACCESSIDITITYcooviccc s Xi

1 Introduction to the OLAP API

OLAP AP OVEIVIEWoiviiiiiieieieie ettt sttt b et b et b e bbbttt bt es et s et en et nenbenes 1-1
Access to Data and Metadata Through the OLAP APL.........cooovieiiicece e 1-4
OLAP API SOftWare COMPONENTSc..ciiiriiiiiieieie sttt ettt st et see e e e sbe b saesaese e enens 1-8
Developing an OLAP API APPLICAtION ... i 1-13
Tasks That an OLAP API Application Performscccccoeveveiinicieiecie e sese e 1-17

2 Understanding OLAP API Metadata

Overview of the OLAP APl Metadatacccccccvivirieieiieciceeie st ese e srees 2-2
OLAP Metadata Objects in Oracle Enterprise Managerccouieiireienenene e 2-2
Overview of MDM Metadata Objects in the OLAP APl ... 2-5
1Y/ o Lo] B 1T g g T=T o 1T Lo 1K O TS SP 2-8
IMIAMLEVEL CLASS.... ..ottt st e st s e s be s ae e sresaeereesteeteeneennes . 2-11
1Yo L] o TT=T e Uod o YA O 1= TSRS 2-12
MAMLIStDIMENSION CIASSoiciiiiiieiieesese et a e nnesrenae e 2-18
MAMMEASULIE CHASS....cciiiiciiitiie et st e e be st e e besbe et e steenbesaeenbesreenees 2-19
1Yo VAN A T 01U (o @ T 1T RSP 2-22

Connecting to a Data Store

Overview of the CONNECLION PrOCESSccvciiiicic ittt ettt sr e saeeree st 3-1
Connection Classes in the OLAP AP ...t 3-4
Establishing @ CONNECTIONcccviiiiicccece et ene e 3-7
Cl1OSING @ CONNECTION ...ttt bbb e bbbt s et e st eb et e ebesbe st e be e s 3-11
INtErruPting @ CONNECTION.......cciierecceeeee ettt e e e e e e eneeneeneenen 3-11

Discovering the Available Metadata

Overview of the Procedure for Discovering Metadata............cccooeveevviviieinncnce s 4-1
Creating an MdmMMetadataProVIAE! ...t 4-3
Getting the ROOt MAMSCNEMA.......c.ooiiiii e 4-4
Getting the Contents of the ROOt MAMSChEMa..........ccv e 4-6
Getting the Characteristics of Metadata ODJECtS ... 4-7
Getting the Source for a Metadata ODjJECT..........ccciiiiiiiiiie s 4-8
Sample Code for Discovering Metadatac.ccoivveiererienenee s 4-9

Making Queries

How Does the OLAP APl Represent QUETIES?cccviveieeeiee s sie s sie s siesse e e e sreenes 5-1
Getting Primary SOUICE ODJECLSouiiiiiiiici ittt enas 5-3
Creating Derived SOUICE ODJECTScoiiiiiiiiiiie e e eb e 5-5
Getting and Working with Fundamental Source ObjJectsS..........ccocvvvriieieei e 5-9
Creating Constant, List and Range Source ODJECtS........c.ccoiiiiriiiiiiereeeeee e 5-12

Selecting Data

Selecting Elements Based 0N KeY ValUES...........ccoiiiiiiiiiie e 6-1
Selecting Elements Based on Element ValUEs ... 6-5
Selecting Elements Based 0N RANKccooiiiiiiiiinic e s re s 6-7
Selecting Elements Based on Hierarchical POSItiON.........cccoocoiiiiiiiiiiie 6-12

Performing Calculations

Performing NUMErical OPerations. ..ot s 7-1
Making Numerical COMPAIISONSccciiiiiiiieieiie ettt bbb e sb et se e sbe e 7-4
Working with Standard Numerical FUNCLIONScccoe i 7-5

10

11

Working with Aggregation MEethOdScccovvieiii i 7-7
Creating Your own Numerical FUNCHIONS..........cccooiiiiiiiiiiie e 7-10
WOTKING WIth STFINGS ..ot et e et ne e nne e ne e 7-11

Using a TransactionProvider

AN oo 10| A I =g [SF Tod € o] @ o] =T od £ ST 8-1
About TransactioNProvider ODJECTS.........oiiiiiiii e 8-10

Retrieving Query Results

Retrieving the Results OF @ QUEIYoiiiiiiii e 9-1
Navigating a CompoundCursor for Different Displays of Data.............ccccocveviiiiiiiininnnns 9-9
Specifying the Behavior 0F @ CUISOIcc.coviiii i 9-17
Calculating Extent and Starting and Ending Positions of a Value...........ccccocoiiiinicne 9-19
Specifying Fetch Sizes and FEtch BIOCKSccoiiiiiiiiieee e 9-23

Understanding Cursor Classes and Concepts

Overview of the OLAP API CUrsOr ODJECES........ccooeiiiiiiieiee e 10-2
CUFSOE CHASS ...vtireiti ettt r e 10-4
CursorManagerSpecifiCation ClasS........cooiiiiiiiiiic e e 10-10
CUrsorSPECITICAtION CIASScoiiiiiiieiee bbb bbb 10-11
(01U 011V TaF= T =] O oL 10-15
CursorManagerUpdateLiStENer Class.........cooiiiiiiiiie et 10-20
About Cursor POSItions and EXTENT ..ot 10-22
About Fetch Sizes and Fetch BIOCKS............ccooiiiiiiiiccceee e 10-32

Creating Dynamic Queries

W AN o To 10 | Al K=Ta] o] b= 1 (=T @] o] =Tt £ TSRS 111
Overview of Template and Related CIaSSes ... 11-3
EXample Of @ TEMPIALE ... b e et b e 11-8

Setting Up the Development Environment

COMPONENT OVEIVIBW ...ttt sttt et b et b et b e b sb e s b e b se et e et e e eseanbabeenesbesbeneas A-1
Location of Files on the OLAP Services COMPULETcccvevieiirerieeeiese s s seere e seeeeeenens A-2

Setting Up on Your Application Development COMPULETcccccveevvviiviinene s A-3

Considerations for Deploying Your APPlication ... A-4
B Using the Smart Agent Naming Service

Role of a Naming Service in the CONNECLION PrOCESS.........cociiiiiiiiiiiiie e B-1

Getting the CORBA Stub Using VisiBroker Smart Agentcccoovveivvnievnniesesene e B-2
Index

Vi

Send Us Your Comments

Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API, Release 1 (9.0.1)
Part No. A88756-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

FAX - 781-684-5880. Attn: Oracle9i OLAP Services
Postal service:

Oracle Corporation

Oracle OLAP Services Documentation

200 Fifth Avenue

Waltham, MA 02451-8720

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Vii

viii

Preface

What this manual is about

The Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API introduces Java
programmers to the Oracle®OLAP API the Java application programming interface
for Oracle OLAP Services. Through OLAP Services, the OLAP API provides access
to data stored in an Oracle database. The OLAP API’s capabilities for querying,
manipulating, and presenting data are particularly suited to applications that
perform Online Analytical Processing.

Intended audience

This manual is intended for Java programmers who are responsible for creating
applications that perform Online Analytical Processing. It assumes that you are
already familiar with Java, relational database management systems, data
warehousing, and Online Analytical Processing (OLAP) concepts.

Before you begin

Before you can use the OLAP API you must set up the OLAP API client files in your
Java development environment. You must also have access to an Oracle database
instance. In addition, that database must include data that has been prepared as a
data wardhouse and supplied with metadata using the OLAP management feature
in Oracle Enterprise Manager.

Related information

For information on setting up the OLAP API client files, see Appendix A of this
document. For information on installing Oracle with OLAP Services, see Oracle 9i
Installation Guide. For information on data warehouse and metadata requirements,

see Oracle9i OLAP Services Concepts and Administration Guide. For information on
how to define the metadata used by OLAP Services, see the Oracle Enterprise
Manager Help topics for the OLAP management feature.

Structure of this document

The Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API is structured as
follows:

Chapter 1 provides an overview of Oracle OLAP Services and introduces the
OLAP API.

Chapter 2 describes the OLAP API metadata.

Chapter 3 and Chapter 4 describe how to connect and discover the available
metadata.

Chapter 5 describes how to create specifications for queries.
Chapter 6 describes how to select data.

Chapter 7 describes how to perform calculations.

Chapter 8 describes how to use OLAP API transactions.

Chapter 9 and Chapter 10 describe how to use cursors to retrieve data into your
application.

Chapter 11 describes how to create and use templates to create dynamic queries.
Appendix A provides information on how to set up the OLAP API client files.

Appendix B provides information on how to use the Smart Agent Naming
Service when making connections.

Related documentation

You will find the following documentation helpful when using the OLAP APl and
OLAP Services:

Oracle9i OLAP Services Concepts and Administration Guide — Describes how to
use OLAP Services. It introduces the basic concepts underlying business
analysis and multidimensional querying, as well as the basic tools used for
application development and system administration.

Oracle9i OLAP Services OLAP API Reference — Provides online reference
documentation for the OLAP API, the Java application programming interface
for Oracle OLAP Services.

« Oracle9i OLAP Services Developer’s Guide to the OLAP DML — Explains how
application developers can perform complex data analysis tasks (such as
forecasts, models, allocations, and some types of non-additive aggregation) by
using the OLAP DML.

« Oracle9i Data Warehousing Guide — Discusses the database structures, concepts,
and issues involved in creating a data warehouse to support OLAP solutions.

Conventions

Text conventions
You will find the following text conventions in this document.

Convention Usage

Boldface text Used for notes and other secondary information in tables (for
example, Note).

Fi xed-wi dt h text Indicates Java package, interface, class, method, field (constant),
and exception names. Also indicates examples and anything
that you must type exactly as it appears.

Italic text Indicates emphasis, a new term, and titles of documents.

Conventions for examples

The examples included in this document are simplified for the purpose of
clarification. They do not include the error handling that is required for good
programming style.

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

Xi

Xii

accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program web site at

htt p: // waw or acl e. comi accessi bi lity/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

http://www.oracle.com/accessibility/

1

Introduction to the OLAP API

Chapter summary

List of topics

This chapter introduces the Oracle® OLAP API to application developers who plan
to use it in their Java applications.

This chapter includes the following topics:

=« OLAP API Overview

= Access to Data and Metadata Through the OLAP API
« OLAP API Software Components

« Developing an OLAP API Application

« Tasks That an OLAP API Application Performs

OLAP API Overview

What is the OLAP API?

The OLAP APl is a Java application programming interface (API) through which an
application can access data for online analytical processing (OLAP). It is the API
that is supplied with OLAP Services, an Oracle component.

The purpose of the OLAP API is to facilitate the development of OLAP
applications, which allow users to dynamically select, aggregate, calculate, and
perform other analytical tasks on data through a graphical user interface. Typically,
the user interface of an OLAP application displays data in multidimensional
formats, such as graphs and crosstabs.

Introduction to the OLAP APl 1-1

OLAP API Overview

In general, OLAP applications are developed within the context of business
intelligence and data warehousing systems, and the features of the OLAP API are
optimized for this type of application. With the OLAP API, a Java application can
access, manipulate, and display data in multidimensional terms. The OLAP API
also makes it possible to define a query in a step-by-step process that allows for
undoing individual query steps without recreating the entire query. Such multistep
queries are easy to modify and refine dynamically.

Multidimensional concepts and the OLAP API

Data warehousing and OLAP applications are based on a multidimensional view of
data, and they work with queries that represent selections of data. The following
definitions introduce concepts that reflect the multidimensional view and are basic
to data warehousing, OLAP, and the OLAP API:

Dimension. A structure that categorizes data. Commonly used dimensions are
customer, product, and time. Typically, a dimension is associated with one or
more hierarchies. Several distinct dimensions, combined with measures, enable
end users to answer business questions. For example, a Time dimension that
categorizes data by month helps to answer the question, "Did we sell more
widgets in January or June?"

Measure. Data, usually numeric and additive, that can be examined and
analyzed. Typically, a given measure is categorized by one or more dimensions,
and it is described as “dimensioned by” them.

Hierarchy. A logical structure that uses ordered levels as a means of organizing
dimension elements in parent-child relationships. Typically, end users can
expand or collapse the hierarchy by drilling down or up on its levels.

Level. A position in a hierarchy. For example, a time dimension might have a
hierarchy that represents data at the day, month, quarter, and year levels.

Attribute. A descriptive characteristic of the elements of a dimension that an
end user can specify to select data. For example, end users might choose
products using a Color attribute.

Query. A specification for a particular set of data, which is referred to as the
query’s result set. The specification may require selecting, aggregating,
calculating, or otherwise manipulating data. If such manipulation is required, it
is an intrinsic part of the query.

1-2 Oracle9i/ OLAP Services Developer’s Guide to the Oracle OLAP API

OLAP API Overview

Two additional data warehouse and OLAP concepts, cube and edge, are not
intrinsic to the OLAP API, but are often incorporated into the design of applications
that use the OLAP API.

« Cube. A logical organization of multidimensional data. Typically, the edges of a
cube contain dimension values, and the body of a cube contains measure
values. For example, sales data can be organized into a cube whose edges
contain values from the time, product, and customer dimensions and whose
body contains values from the sales measure.

« Edge. One side of a cube. Each edge contains values from one or more
dimensions. Although there is no limit to the number of edges on a cube, data is
often organized for display purposes along three edges, which are referred to as
the row edge, column edge, and page edge.

For more information about all of these concepts, see the Oracle Data Warehousing
Guide.

What type of data can an application access through the OLAP API?

The OLAP API, as part of OLAP Services, makes it possible for Java applications
(including applets) to access data that resides in an Oracle data warehouse. A data
warehouse is a relational database that is designed for query and analysis, rather
than transaction processing. Warehouse data often conforms to a star or snowflake
schema, which represents a multidimensional data model. The star or snowflake
schema consists of one or more fact tables and one or more dimension tables that
are related through foreign keys. Typically, a data warehouse is created from a
transaction processing database by an extraction transformation transport (ETT)
tool, such as Oracle Warehouse Builder.

In order for the OLAP API to access the data in a given data warehouse, a database
administrator must first ensure that the data warehouse is configured according to a
star or snowflake schema. Then the database administrator must use the OLAP
management feature in Oracle Enterprise Manager to create the required metadata,
which can be defined as “data about the data.” Once the metadata is in place, an
application can access both the data and the metadata through the OLAP API.

The collection of warehouse data for which a database administrator has created
metadata using the OLAP management feature of Oracle Enterprise Manager is
referred to as the data store to which the OLAP API gives access.

Introduction to the OLAP API 1-3

Access to Data and Metadata Through the OLAP API

What can an application do with the OLAP API?
Through the OLAP API, an application can do the following:

« Establish a connection to a data store.
« Explore the metadata to discover what data is available for viewing or analysis.

= Create queries that manipulate the data according to the needs of application
users (for example, selecting, aggregating, and calculating data).

= Retrieve query results that are structured for display in multidimensional
format.

« Modify existing queries, rather than totally redefine them, as application users
refine their analyses.

Context for OLAP API development

The OLAP API is aJava API, so it has all the advantages of the Java environment. It
is platform independent, and it provides the benefits of an object-oriented API, such
as abstraction, encapsulation, polymorphism, and inheritance. These strengths are
built into the OLAP API, and because the client application is written in Java, its
code can also take advantage of them.

As the programming interface for OLAP Services, the OLAP API is part of Oracle.
The OLAP API development environment includes an Oracle database, an OLAP
service, and the OLAP management feature in Oracle Enterprise Manager. The
OLAP management feature in Oracle Enterprise Manager is an important
companion to the OLAP API, because it generates the metadata that the OLAP API
requires for accessing data that is stored in an Oracle database.

In order to work with the OLAP API, application developers should have
familiarity with Java, object-oriented programming, relational databases, data
warehousing, and multidimensional OLAP concepts.

Access to Data and Metadata Through the OLAP API

Distinction between data and metadata

OLAP API metadata describes the data that is available to the OLAP API through a
given connection. The metadata records three things:

« The fact that a given set of data exists. For example, a sales measure exists in the
data store.

1-4 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Access to Data and Metadata Through the OLAP API

« The structure of that set of data. For example, the sales measure is dimensioned
by customer, product, and time.

= The characteristics of that set of data. For example, the sales measure contains
numeric values, and it has a descriptive name that can be used in reports.

In contrast, the fact that 3542 dollars worth of boys outerwear was sold in Atlanta
during January 1999 is data, not metadata.

These examples distinguish between the metadata and the data for a measure called
Sales. The OLAP API makes a similar distinction between the metadata and the
data for dimensions. For example, the fact that a product dimension exists and that
it has text values as elements is metadata. In contrast, the fact that one of its
elements is “boys outerwear” is data.

MDM model in the OLAP API

The OLAP API’s multidimensional metadata (MDM) model describes data in
multidimensional terms, which are familiar to OLAP and data warehousing
audiences. For example, it includes objects for measures, dimensions, hierarchies,
and attributes.

The following are some of the Java classes that are supplied by the OLAP API in its
implementation of the MDM model:

« MinVeasure
« MInDi nensi on
« MnHi erarchy

« Mnlievel
« MnmAttribute
« MinSchemn

« MniVet adat aPr ovi der

An MinSchena is a container for MidnmVeasur e, MInDi mensi on, and other
MdnScherma objects. An MinSchena corresponds to a measure folder in the OLAP
management feature of Oracle Enterprise Manager. Note that an MinScherma does
not necessarily correspond to a relational schema.

An Mdmvet adat aPr ovi der gives an application access to metadata objects that
were created by a database administrator using the OLAP management feature of
Oracle Enterprise Manager. To obtain access to the metadata, an application uses
the get Root Schema method in Minivet adat aPr ovi der . This method returns the

Introduction to the OLAP APl 1-5

Access to Data and Metadata Through the OLAP API

top-level MinSchema, which contains all the Mdmveasur e and MInDi nensi on
objects that are accessible through this particular Minivet adat aPr ovi der . The
MdnDi nensi on and Mdmvieasur e objects might be organized in a hierarchical tree,
with subschemas nested under the top-level schema. Using the get Measur es,

get Di nensi ons, and get SubSchenmas methods on all the nested MinSchena
objects, an application navigates through the metadata and discovers what data is
available. In addition, the application can use methods to obtain the related

MidmHi er ar chy, MidrmLevel , and MdmAt t r i but e objects.

Chapter 2 provides detailed information about the OLAP API metadata.

Access to data through the OLAP API

An Midm\veasur e or MdnDi nensi on represents data in the data store. For example,
an MdmMveasur e called sal esAnpbunt might represent a set of numeric elements
whose values are dollar sales figures, and an MinDi nmensi on called pr oduct Di m
might represent a set of text elements whose values are product names. However,
an application cannot create a query on the data using an Miniveasur e or

MdnDi nensi on. As metadata, MinmVeasur e and MinDi nensi on objects provide
descriptive information about data, but they do not provide the ability to query on
that data. And an application must create a query in order to select, calculate, and
otherwise manipulate data for analysis.

In order to create a query on the data for an Mdnmveasur e or MdnDi nensi on, an
application calls the get Sour ce method on the MiniMeasur e or MidnDi mensi on.
This method creates a Sour ce object that represents the data for the purpose of
querying. A Sour ce is a specification for a query that defines a result set, and in
this case, the result set is the data for the MimVeasur e or MidnDi nensi on.

In addition to representing the data for metadata objects, Sour ce objects can
represent the data for any query that an application creates. For example, a Sour ce
might specify a query for a selection of MdnDi nensi on values (January, February,
March) or a calculation of the values of one MiniVeasur e minus those of another
(sal esAnpbunt minus uni t Cost). An application can use the powerful methods
on Sour ce and its subclasses to combine data in any way that the user requires.
And each new query is a new Sour ce.

When an application prepares to display the data for a given Sour ce, it creates a
Cur sor for the Sour ce. The application then uses this Cur sor to request and
retrieve the data from the OLAP service. When an application makes a request for
data, it can specify the typical amount of data that it requires at a given time (for
example, enough to fill a 40-cell table on the screen). The OLAP service then
handles the issues related to efficient retrieval. The application does not need to

1-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Access to Data and Metadata Through the OLAP API

manage the timing, sizing, and caching of the data blocks that it retrieves through
the OLAP API.

Because the primary focus of most OLAP applications is making queries against the
data store, a significant proportion of their data manipulation code works with the
following classes, each of which has methods for selecting, calculating, and
otherwise manipulating data.

« Source

« Bool eanSour ce
« Nunber Sour ce
« StringSource

One of the useful characteristice of Sour ce objects is that they make no distinction
between dimensions and measures. All Sour ce objects behave in the same way.

Access to data in a relational data store

To be accessed through the OLAP API, relational data must be stored in an instance
of an Oracle database that has OLAP Services installed with it. The data must be in
a data warehouse, and it must be organized according to a star or snowflake
schema. For information about creating a data warehouse and about star and
snowflake schemas, see the Oracle9i DataWarehousing Guide.

A database administrator uses the OLAP management feature in Oracle Enterprise
Manager to add metadata to the data warehouse. The OLAP management feature
makes it possible to organize data within one or more folders, which are containers
for measures that are related by subject matter. Sometimes measure folders are
referred to as business areas. The data store for an OLAP service includes all of the
measure folders that are defined in the OLAP management feature of Oracle
Enterprise Manager.

Access to data in an analytic workspace

The OLAP API also provides the ability to work with data and metadata that is
managed by OLAP Services in an analytic workspace. The procedures for using the
OLAP API are essentially the same in either case. However, the preparation of the
data and metadata is different.

For more information about using an analytic workspace, see the Oracle9i OLAP
Services Developer’s Guide to the OLAP DML.

Introduction to the OLAP API 1-7

OLAP API Software Components

User connection requirements

In addition to ensuring that data and metadata have been prepared appropriately,
an application developer must ensure that application users can make a connection
to the data store through OLAP Services and that users have database privileges
that give them access to the data. For information about setting up an OLAP service
for such connections, see the Oracle9i OLAP Services Concepts and Administration
Guide.

OLAP API Software Components

Component overview

The OLAP API is the programming interface for OLAP Services. When a Java
application calls methods on OLAP API Java classes, it uses the OLAP API client
software to communicate with an OLAP service, which typically resides on a
different computer. An OLAP service is a child process of an Oracle database
instance. The communication between the OLAP API client software and an OLAP
service is provided through Common Object Request Broker Architecture (CORBA).
The following diagram shows the application using the OLAP API client software
to communicate with the OLAP service.

Application

OLAP API Client Software

CORBA

OLAP service

An application that uses the OLAP API client software (that is, calls methods in
OLAP API classes) can reside on a single computer, or it can be divided into
separate parts on different computers. For example, the end-user portion can be
separate from the portion that makes OLAP API calls. In this case, software on three
computers could be involved.

1-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

OLAP API Software Components

OLAP API client software

The OLAP API client software is a set of Java packages containing classes that
implement the programming interface to an OLAP service. An application calls the
methods on these classes for discovering, querying, processing, and retrieving data.

To use the OLAP API classes as you develop your application, import them into
your Java code in the standard way. When you deliver your application to users,
include the OLAP API classes with the application. You must also deliver the
CORBA implementation that is supplied with OLAP Services.

In order to develop an OLAP API application, you must have the Java Development
Kit (JDK) from Sun Microsystems. Users must have a Java Runtime Environment
(JRE) whose version number is compatible with the JDK you used for development.

For information about Java version requirements and about setting up the OLAP
API client software, see Appendix A. For detailed information about the OLAP API
classes and methods, see the Oracle9i OLAP Services OLAP API Reference and
subsequent chapters of this guide.

OLAP service software

The software that implements the server side of the OLAP API is an integral part of
an OLAP service. It includes modules that interact with the OLAP API client
software through CORBA, as well as software that interacts with the associated
Oracle database. In response to requests from the OLAP API client software, the
OLAP service does the following:

« Retrieves data from the database as needed and in the most efficient way
possible

« Processes the data (for example, aggregating or calculating new values)

« Sends the data to the OLAP API client software in the most efficient block sizes
possible

Because the server-side OLAP API software is an integral part of an OLAP service,
no special installation steps are required to make it available. Furthermore, a
CORBA implementation is provided with OLAP Services, in order to facilitate
connections between the OLAP API client software and an OLAP service.

Before an application can access a data store through the OLAP API, the CORBA
software must be running on the OLAP Services computer, and the connection
between the OLAP service and the Oracle database must be in place.

Introduction to the OLAP API 1-9

OLAP API Software Components

For information about configuring an OLAP service for connecting with the
database, see the Oracle9i OLAP Services Concepts and Administration Guide.

CORBA support

The OLAP API client software and an OLAP service communicate through an
implementation of the CORBA specification. Using CORBA makes it possible for
the Java-language client software to communicate with the OLAP service code,
which is written in C++. It also maintains the object-oriented context in which the
OLAP API was designed.

The CORBA implementation that is used by OLAP Services is VisiBroker from
Borland. On the OLAP Services computer, VisiBroker for C++ is automatically
installed. You, as an application developer, install the VisiBroker for Java files on
your application development computer when you install the OLAP API as
described in Appendix A. On most platforms, you also use the CORBA naming
service that is built into Oracle for finding the OLAP service to which you will
connect.

CORBA requires an Object Request Broker (ORB) both on the OLAP API client
computer and on the OLAP Services computer. When an application calls a method
that requires an interaction with an OLAP service, the client ORB intercepts the call,
interacts with the OLAP Services ORB to find the object on the server side that can
implement the request, passes the parameters, invokes the object’s method, and
returns the results.

Both the OLAP API client software and the OLAP service interact with their
respective ORBs using the CORBA Interface Definition Language (IDL), which
solves the problem of translation between Java and C++. The transport protocol that
is used by a CORBA connection is Internet Inter-ORB Protocol (110P), which
transfers messages between the ORBs over a TCP/IP connection.

For more information about the CORBA specification, explore the Object
Management Group (OMG) Web pages at wwv. ong. or g.

Application configurations

A typical OLAP API application is designed for either a two-tier or a three-tier
configuration. Each tier represents an area of functionality, not a physical computer.
That is, each tier can be implemented on a single computer or on more than one.

1-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

OLAP API Software Components

Two-tier configuration

In a two-tier configuration, the application is typically a standalone that provides
the graphical user interface to the end user, as well as the OLAP API data
manipulation capabilities. Thus, the two tiers for the configuration are the
application tier and the data server tier. Communication between the two is through
the OLAP API, using IIOP, as described in “CORBA support” on page 1-10.

The following diagram shows the two tiers and the 11OP communications between
them.

Application
Application (end-user and data manipulation)
Tier OLAP API Client Software
ORB
IDL
IIOP
_ N
IDL ~
ORB
Data RDBMS
Server .
Tier OLAP service
Y
L v

Three-tier configuration

In a three-tier configuration, the application is divided into two components. One
provides the graphical user interface to the end user, and the other provides the
OLAP API data manipulation capabilities. These two components represent the
application end-user tier and the application server tier.

An application server is a functional component of an application. It performs a
service, such as data manipulation, for multiple instances of the end-user
component. For example, an application server might be called by a Web server to
respond to requests from end users who are accessing Web pages.

Introduction to the OLAP APl 1-11

OLAP API Software Components

In addition to the two application-specific tiers, the three-tier configuration includes
the data server tier with the OLAP service and the Oracle database. Communication
between the application server tier and the data server tier is through the OLAP
API using IIOP, as described in “CORBA support” on page 1-10. Communication
between the two application tiers is completely up to you, as the application
developer. For example, a Web application might use Hypertext Transfer Protocol
(HTTP), and it might employ a Web server to make the connection.

The following diagram shows the three tiers and the communications among them.

A;ﬂ?&gg? Application
Tier (end-user component)
HTTP
B Application
Application (end-user and data manipulation)
Server OLAP API Client Software
Tier ORB
IDL
IOP
— m
IDL N~
ORB
Data RDBMS
Server .
Tier OLAP service
N
L v

1-12 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Developing an OLAP API Application

Developing an OLAP API Application

Overview of the development process

As an application developer, you perform the following steps to create an OLAP
API application:

1.
2.
3.

4,
5.

Decide on general design issues.
Decide on requirements for end-user queries.

Design OLAP API Tenpl at e objects that create end-user queries. This is an
optional step.

Write and test the Java code for the application.

Deploy the application to users.

The rest of this topic presents a general description of each step.

Step 1: Decide on general design issues
Consider broad questions such as the following:

Will the application be a standalone application (two-tier architecture), or will it
be divided, with end-user code on a separate tier from the data manipulation
code (three-tier architecture)?

Will the application always access the same known metadata (for example,
describing employee data whose structure is constant), or must it discover what
metadata is available every time it makes a connection?

Step 2: Decide on requirements for end-user queries

Specify, in as much detail as possible, the nature of the queries that the end user will
be able to make. Because the OLAP API makes it possible to define queries in a
step-by-step process, it is also important to decide on the query modification
capabilities that the application will offer the user. Consider questions such as the
following:

By what criteria will the end user select data through the application’s dialog
boxes? For example, will the application present a list of dimensions? Can the
user drill up and down on the hierarchy of a dimension? Are there attributes of
dimensions that the user can specify for selecting data (for example, color or

Introduction to the OLAP APl 1-13

Developing an OLAP API Application

size)? Can the user make selections based on data values (for example,
population over 20,000)?

As the user refines a query through a series of steps, can the user undo a step in
the process to return the query to an earlier state?

As the user refines a query, can the user specify the scope of an undo request?
For example, the undo request might apply only to the values of one field out of
many in the selection dialog box.

Planning the end-user queries is a crucial step in the application design process, so
you should complete it as thoroughly as possible. Ideally, you should create an
end-user query model that identifies all the conceptual query objects with which the
application user interface will deal. This strategy takes advantage of the strengths of
object-oriented design, and it allows for a clear correspondence between user
interface objects and OLAP API objects.

The following are examples of conceptual query objects for an application user
interface:

Dimension. This object has hierarchies on which the user can drill and attributes
from which the user can select.

Dimension selection. This object represents a selection of dimension elements.

Edge. This object represents one side of a cube and has related dimension
objects.

Cube. This multidimensional object has related edge objects. It also has a related
measure.

Each of these conceptual query objects can be represented by an OLAP API
Tenpl at e object.

Step 3: Design OLAP API Template objects that create end-user queries

An optional step in implementing an OLAP API application is designing Tenpl at e
objects. This step is recommended because, the use of Tenpl at e objects offers the
following benefits:

1-14

Dynamic queries. With a Tenpl at e, you can create a modifiable query. That is,
when you have created one query and you want to execute another one that is
similar but not identical, you do not have to create an entirely new query. You
simply make a small change to the existing query. Thus, the query is dynamic,
rather than static.

Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Developing an OLAP API Application

« Refinement and rollback of queries. With a Tenpl at e, you can capture a series
of steps that a user has completed when specifying a query. Each step refines
the query further and is recorded as a new query state. If the user decides to
cancel one or more of the specification steps, you can rollback the query to an
earlier state.

« Matching of code to user interface characteristics. When you design a
Tenpl at e, you can make it correspond directly to the operations that a user
performs. For example, if your application includes a balance sheet, you can
create a balance sheet Tenpl at e that incorporates all the appropriate
characteristics (such as a method of aggregation) and behaviors (such as
automatic totalling).

For a more detailed example of how Tenpl at e objects mirror the query-building
aspects of an application’s user interface, imagine an application that allows the
user to create a three-dimensioned cube of data through the following steps:

1. Choose a measure whose data will be in the cube.
2. Select the values for each dimension that will provide structure to the cube.
3. Specify the placement of the dimensions on the three edges of the cube.

As the application developer for this interface, you would design a Tenpl at e
subclass for each of the following objects: dimension, dimension selection, edge,
and cube. As part of the design, you would specify methods on the Tenpl at e
subclasses that allow you to combine objects as needed. For example, the edge
Tenpl at e class might have an addDi mensi on method, and the cube Tenpl at e
class might have an addEdge method. Once you have implemented the dimension,
dimension selection, edge, and cube Tenpl at e classes, you can use them again and
again in your application. They are basic building blocks in your application’s code
for querying and manipulating data.

In this stage of the application design process, you should make detailed
specifications for each Tenpl at e in the application. For information about
designing Tenpl at e objects, see Chapter 11.

Step 4: Write and test the Java code for the application

Up to this step, you have not written any Java code. You have considered questions
about the design of your application, and you have made detailed specifications for

Introduction to the OLAP APl 1-15

Developing an OLAP API Application

the Tenpl at e objects that your application will include. Now you must do the
following to implement the application:

1.

4.

Set up the OLAP API client software on your development computer, as
described in Appendix A. If you are designing a three-tiered application, the
development computer (from the OLAP API point of view) is the middle-tier
computer.

Identify the data store that you will use for developing and testing the
application. Ensure that the data is structured as a star or snowflake schema in
an Oracle data warehouse, and ensure that the OLAP management feature in
Oracle Enterprise Manager has provided the metadata.

Write the Java classes for your application, importing the OLAP API classes as
needed. Among the Java classes that you write, include the Tenpl at e classes
that you designed.

Test your application using the test data store.

For information about coding an application that uses the OLAP API, see the
subsequent chapters of this guide and the Oracle9i OLAP Services OLAP API
Reference. See*“Tasks That an OLAP API Application Performs” on page 1-17 for a
description of the tasks that an application typically performs.

Step 5: Deploy the application to users

Keep the following in mind when you deploy your application:

Include the OLAP API Java classes along with the ones that you have
developed.

Ensure that the user’s computer (or the middle tier computer) has access to an
OLAP service using CORBA.

Ensure that the user has access to an appropriate Oracle data warehouse with
metadata prepared by the OLAP management feature in Oracle Enterprise
Manager. Access must be through the OLAP service.

Provide documentation for your application, giving installation instructions
and explaining the user interface that you have created.

1-16 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Tasks That an OLAP API Application Performs

Tasks That an OLAP API Application Performs

Overview of application tasks
An application that uses the OLAP API typically performs the following tasks:

« Connecting to the data store

« Discovering the available metadata

« Selecting and calculating data through queries
« Gaining access to query results

The rest of this topic briefly describes these tasks, and the rest of this guide provides
detailed information.

Task: Connecting to the data store

Before an application can connect to the data store, it must obtain the CORBA stub
that resides on the OLAP API client computer and represents the OLAP service to
which the connection will be made. The application can use a CORBA name-space
browsing procedure outside the OLAP API to get the name of the OLAP service.
With this name in hand, the application can obtain the stub. The application then
uses the OLAP API Connect i onManager and Connect i on objects to specify the
stub and establish the connection.

For more information about connecting, see Chapter 3.

Task: Discovering the available metadata

Having established a connection, the application creates an
Mdmvet adat aPr ovi der . This object gives access to all the metadata objects in the
data store.

To discover the available metadata, an application uses the get Root Schena
method on the MdnmVet dat aPr ovi der to obtain the top-level measure folder for all
of its metadata objects. The application then gets the dimensions, measures, and
subfolders that are under the root. Once the application has all the dimensions and
measures, it can interrogate them to get their attributes, hierarchies, levels, and
other characteristics.

Having determined the metadata objects that it has to work with, the application
can present relevant lists of objects to the user for data selection and manipulation.

Introduction to the OLAP APl 1-17

Tasks That an OLAP API Application Performs

For a description of the metadata objects, see Chapter 2. For information about how
an application can discover the available metadata, see Chapter 4.

Task: Selecting and calculating data through queries

The heart of any OLAP application lies in the construction of queries against the
data store. The application user interface provides ways for the user to select data
and specify what should be done with it. Then, the data manipulation code
translates these instructions into queries against the data store. The queries can be
as simple as a selection of dimension elements, or they can be complex, including
several aggregations and calculations on measure values.

The OLAP API object that specifies a query is a Sour ce. Therefore, a significant
portion of any OLAP API application is devoted to dealing with Sour ce objects.

You can manipulate Sour ce objects directly, using methods such as sel ect,

r enove, and appendVal ues to create selections. In addition, you can use methods
such as pl us, di v,and t ot al to calculate values. Sour ce and its subclasses,
Number Sour ce, St ri ngSour ce, and Bool eanSour ce, have a rich assortment of
methods for manipulating data. The most powerful method in Sour ce isj oi n,
which gives you the ability to combine Sour ce objects in almost any way
imaginable.

If you are implementing a simple user interface, you might use only the methods on
the Sour ce classes to select and manipulate the data that users specify in the
interface. However, if you want to offer your users multistep selection procedures
and the ability to modify queries or undo individual steps in their selections, you
should use Tenpl at e classes as described in the topic “Developing an OLAP API
Application” on page 1-13. Within the code for each Tenpl at e, you use the
methods on the Sour ce classes, but the Tenpl at e classes themselves allow you to
modify and refine even the most complex query. In addition, you can minimize
your work by writing general-purpose Tenpl at e classes and reusing them in
various parts of your application.

For information about working with Sour ce objects, see Chapter 5. For information
about working with Tenpl at e objects, see Chapter 11.

Task: Gaining access to query results

1-18

When users of an OLAP application are selecting, calculating, combining, and
generally manipulating data, they also want to see the results of their work. This
means that the application must retrieve the result sets of queries from the data
store and display the data in multidimensional form. To retrieve a result set for a

Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Tasks That an OLAP API Application Performs

query through the OLAP API, the application creates a Cur sor based on the
Sour ce that specifies the query.

Because the OLAP API was designed to deal with a multidimensional view of data,
a Sour ce can have a multidimensional result set. For example, a Sour ce can
represent an Mdmveasur e that is structured by three MinDi mensi on objects. The
Cur sor for this Sour ce has a structure that mirrors the Sour ce itself; that is, the
Cur sor organization is based on the same three MUnDi mensi on objects.

To retrieve all the items of data through a Cur sor , the application can loop through
the multidimensional Cur sor structure. This design is well adapted to the
requirements of standard user interface objects for painting the computer screen. It
is especially well adapted to the display of data in multidimensional format.

For more information about using Cur sor objects to retrieve data, see Chapter 9.

Introduction to the OLAP APl 1-19

Tasks That an OLAP API Application Performs

1-20 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

2

Understanding OLAP API Metadata

Chapter summary

This chapter describes the metadata objects that the OLAP API provides, and
explains how these objects relate to the metadata objects that a database
administrator specifies when preparing the data in Oracle Enterprise Manager.

List of topics

This chapter includes the following topics:

Overview of the OLAP API Metadata

OLAP Metadata Objects in Oracle Enterprise Manager
Overview of MDM Metadata Objects in the OLAP API
MdmDimension Class

MdmLevel Class

MdmHierarchy Class

MdmListDimension Class

MdmMeasure Class

MdmAttribute Class

Understanding OLAP API Metadata 2-1

Overview of the OLAP API Metadata

Overview of the OLAP API Metadata

Multidimensional metadata model

The OLAP API provides a Java application with access to a multidimensional view
of data in an Oracle database. The OLAP API design includes objects that are
consistent with that view and are familiar to data warehousing and OLAP
developers. For example, it has objects for measures, dimensions, hierachies, levels,
and attributes. In this release, the OLAP API design incorporates an object-oriented
model called MDM (multidimensional metadata). The OLAP API can also be
extended to support other models.

The data in an Oracle database must be prepared by a database administrator in
order to support the MDM model. Even though recent SQL enhancements have
introduced some multidimensional objects, such as dimension, there are other
objects and characteristics that must be added.

Data preparation

A database administrator starts with a data warehouse that is organized according
to a star or snowflake schema. The schema specifies dimension tables as well as fact
tables, which contain measures.

Using the OLAP management feature in Oracle Enterprise Manager, the
administrator adds metadata to the data warehouse. The objects provided in this
step supply the metadata required for OLAP Services to access the data. The
metadata objects that are created in Oracle Enterprise Manager map to MDM
metadata objects in the OLAP API.

Oracle Enterprise Manager is an administrative tool that is provided with Oracle.
OLAP management is one of the choices offered within Oracle Enterprise Manager.

The topic,“OLAP Metadata Objects in Oracle Enterprise Manager” on page 2-2

briefly describes the metadata that a database administrator prepares for use with
OLAP Services.

OLAP Metadata Objects in Oracle Enterprise Manager

Oracle Enterprise Manager’s OLAP management feature

Using the Oracle Enterprise Manager graphical user interface for OLAP
management, a database administrator adds metadata to a data warehouse. The

2-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

OLAP Metadata Objects in Oracle Enterprise Manager

end result, within the graphical user interface, is the creation of one or more
measure folders that contain one or more measures. The measures have dimensions,
and the dimensions have hierarchies, levels, and attributes. Each of these OLAP
objects maps directly to an MDM object in the OLAP API.

The collection of warehouse data for which a database administrator has created
metadata using the OLAP management feature of Oracle Enterprise Manager is
referred to as the data store to which the OLAP API gives access.

For detailed information about using the OLAP management feature of Oracle
Enterprise Manager, see the Oracle Enterprise Manager Help system.

Note that the OLAP management feature includes a cube object which does not
map directly to any MDM object. Database administrators use cubes in Oracle
Enterprise Manager to specify the dimensions of each measure, as well as other
characteristics. Once the dimensions are specified, they are firmly associated with
their measures in the metadata, so this type of cube object is not needed in the
MDM model.

Database administrators also work with materialized views in the OLAP
management feature of Oracle Enterprise Manager. These are relevant to query
optimization, but they do not map to objects in the MDM model.

The rest of this topic briefly describes the OLAP management objects in Oracle
Enterprise Manager that map directly to MDM objects in the OLAP API.

Dimensions in Oracle Enterprise Manager

The dimension property sheet in the OLAP management feature of Oracle
Enterprise Managergives a database administrator the ability to specify the
following for a given OLAP dimension.

« General characteristics, such as the name of the dimension and the schema from
which its data is drawn.

« Levels, which record the levels of the dimension. The database administrator
typically specifies one or more levels for each OLAP dimension.

« Hierarchies, which specify the parent-child relationships between the levels.
The database administrator typically specifies at least one hierarchy for each
OLAP dimension. If there is only one level for the dimension, then no hierarchy
is specified and the dimension is a simple, non-hierarchical list.

« Attributes, which record characteristics of the level elements for the dimension.
For example, an attribute might record the gender of each customer in the
customers dimension.

Understanding OLAP API Metadata 2-3

OLAP Metadata Objects in Oracle Enterprise Manager

« OLAP options, which record characteristics of the dimension or its levels,
hierarchies, or attributes. For example, there are options for the plural name of
the dimension, for its default hierarchy, and for the display names and
descriptions for its levels, hierarchies, and attributes.

Typically, a database administrator specifies one or more columns in a database
table to serve as the basis for each OLAP level, hierarchy, and attribute.

A database administrator creates cubes after creating dimensions. A cube is a set of
dimensions that provide organizational structure for measures. When database
administrators are adding a dimension to a cube, they can specify an alias for the
dimension.

Measures in Oracle Enterprise Manager

The cube property sheet in the OLAP management feature of Oracle Enterprise
Manager gives a database administrator the ability to specify that a given measure
belongs to a given cube. Because a cube is a set of dimensions that provide
organizational structure for measures, specifying that a given measure belongs to a
given cube specifies the dimensions of that measure. This is essential information
for the OLAP API, where the dimensionality of a measure is one of its most
important features.

To identify the data for a measure, the database administrator typically specifies a
column in a fact table where the measure’s data resides. As an alternative, the
database administrator can specify a calculation or transformation that produces the
data.

Measure folders in Oracle Enterprise Manager

Once a database administrator has created measures (first creating dimensions and
cubes), the next step is to create one or more groups of measures called measure
folders. Typically, the measures in a given folder are related by subject matter. That
is, they all pertain to the same business area. For example, there might be three
separate folders for financials, sales, and human resources.

The measures in a given measure folder can belong to different cubes, and they can
be from more than one schema.

The database administrator must create at least one measure folder because the
scope of the data that an OLAP API application can access is defined in terms of
measure folders. That is, an OLAP APl MinmVet adat aPr ovi der gives access only
to the measures that are contained in measure folders. Of course, each measure’s
dimensions are included, along with its hierarchies, levels, and attributes.

2-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of MDM Metadata Objects in the OLAP API

In this context, it is important to understand that measure folders can be nested.
This means that a given measure folder can have subfolders that have their own
measures, and even their own subfolders. Thus, a database administrator can
arrange measures in a hierarchy of folders, and an OLAP API

Mdmvet adat aPr ovi der can give access to all of the measure folders and their
subfolders.

Overview of MDM Metadata Objects in the OLAP API

MDM Java classes

The OLAP API implementation of the MDM model is represented by classes in the
oracle.express.mdm package. Most of the classes in this package implement
metadata objects, such as dimensions and measures. The following list introduces
the subclasses of the MdmObiject class.

« The Minbj ect class has the following subclasses: MdnScherna and
MinSour ce.

« The MdnBour ce class has the following subclasses: MdmDi nensi onedObj ect
and MdnDi nensi on.

« The MInDi nensi onedQhj ect class has the following subclasses:
MimAt t ri but e and MdnmiVeasur e.

« The MdnDi nensi on class has the following subclasses:
MdmHi er ar chi cal Di mensi on and Minii st Di nensi on.

« The MdnHi er ar chi cal Di nensi on class has the following subclasses:
MdmHi er ar chy and MinLevel .

Understanding OLAP API Metadata 2-5

Overview of MDM Metadata Objects in the OLAP API

The diagram below shows this structure.

MdmObiject
I I
MdmSchema MdmSource
I I
MdmDimension MdmDimensionedObject
I I
MdmAttribute MdmMeasure
I I
MdmHierarchicalDimension MdmListDimension
I I
MdmHierarchy MdmLevel

Mapping of Oracle Enterprise Manager objects to MDM objects

An application accesses metadata objects by creating an OLAP API
Mdmvet adat aPr ovi der and using it to discover the available metadata objects in
the data store.

2-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of MDM Metadata Objects in the OLAP API

The metadata objects that a database administrator specifies in Oracle Enterprise
Manager map directly to MDM metadata objects that are accessible through the
Mdmvet adat aPr ovi der . The following table presents the typical mapping.

Oracle Enterprise Manager Objects MDM Metadata Objects
Dimension MimHi er ar chy or Minii st Di nensi on
Hierarchy MinHi er ar chy
Level MinmLevel
Measure Mimveasur e
Attribute MimAt tri but e
Measure Folder MinSchema

This chapter describes the MDM metadata objects. For information about how an
application discovers the available MDM metadata objects in the data store, see
Chapter 4.

MdmSchema class

An MinSchenma represents a set of data that is used for navigational purposes. An
MinScherma is a container for Mdmveasur e, MdnDi nensi on, and other
MdnSchemma objects. An MinSchena is equivalent to a folder or directory that
contains associated items. It does not correspond to a relational schema in the
Oracle database. Instead, it corresponds to a measure folder, which can include data
from several relational schemas and which was created by a database administrator
using the OLAP management feature of Oracle Enterprise Manager.

Data that is accessible through the OLAP API is arranged under a top-level
MinScherma, which is referred to as the root MinmSchena. Under the root, there are
one or more subschemas. To begin navigating the metadata, an application calls the
get Root Scherma method on the MiniVet adat aPr ovi der, as explained in
Chapter 4.

The root MdnSchena contains all the MinVeasur e and MInDi nensi on objects that
are in the data store. That is, if the root MinSchema has subschemas that contain
Mdmveasur e and MdnDi nensi on objects, the root MinSchenma also contains those
objects.

An MinSchena has methods for getting all the Mdmveasur e, MdnDi nensi on, and
MdnSchemma objects that it contains. The root MinSchenm also has a method for

Understanding OLAP API Metadata 2-7

MdmDimension Class

getting the measure MdnDi nensi on, whose elements are all the MiniVeasur e
objects in the data store.

MdmSource class

An MinSour ce represents a measure, dimension, or other set of data (such as an
attribute) that is used for analysis. This abstract class is the basis for some important
MDM metadata classes, such as Mimveasur e, MdnDi mensi on, and

MiImAt t ri but e.

MdnSour ce objects represent data, but they do not provide the ability to create
queries on that data. Their function is informational, recording the existence,
structure, and characteristics of the data. They do not give access to the data values.

In order to access the data values for a given MinSour ce, an application calls the
get Sour ce method on the MinSour ce. This method returns a Sour ce through
which an application can create queries on the data represented by the MinSour ce.
The following line of code creates a Sour ce from an MdnDi nensi on called

ndmPr oduct sDi m

Sour ce product sO m = mdnmPr oduct sO m get Sour ce() ;

A Sour ce that is the result of the get Sour ce method on an MinSour ce is called a
primary Sour ce. An application creates new Sour ce objects from this primary
Sour ce as it selects, calculates, and otherwise manipulates the data. Each new
Sour ce specifies a new query.

For more information about working with Sour ce objects, see Chapter 5.

The rest of this chapter describes the subclasses of MinSour ce, along with other
classes, such as MdnDi nensi onDef i ni ti on and MinDi nensi onMenber Type,
that are closely related.

MdmDimension Class

Description of an MdmDimension

An MdnDi mensi on represents a list of elements that can organize a set of data. For
example, if you have a set of sales figures for a given year and you organize them
by month, the list of months is a dimension of the sales data. The values of the
month dimension act as indexes for identifying each particular value in the set of
sales data.

2-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

MdmDimension Class

In the OLAP API, the abstract MUnDi mensi on class represents the general concept

of a list of elements that can organize data. MinDi nensi on has an abstract subclass
called MdrHi er ar chi cal Di nensi on, which represents a list that has hierarchical
characteristics.

The following concrete subclasses of MUnDi nensi on represent the specific kinds of
MdnDi nensi on objects that can be used in analysis.:

« MinLevel , which represents a list of elements that supply one level of a
hierarchical structure. Each element can have a parent and one or more
children. The parents and children of a given MiniLevel element are not within
the given Minievel . They are elements of different MinlLevel objects.

« MnHi er ar chy, which represents a list of elements arranged in a hierarchical
structure that has levels based on parent-child relationships. Each element can
have a parent and one or more children, and all of these elements are within the
MdnHi er ar chy.

Though the parent and child elements are within the MinHi er ar chy, they
correspond to elements in MdnLevel objects. Therefore, loosely speaking, an
MdnHi er ar chy is composed of Minievel objects. Some MidrHi er ar chy
objects are simply composed of MiniLevel objects. Others are unions of one or
more subordinate MinHi er ar chy objects, which in turn, are composed of
Mdnmievel objects.

« MinLi st Di nensi on, which represents a simple list of elements that play no
part in any hierarchical structure. The elements have no parents and no
children.

Both MdrmLevel and MidnHi er ar chy are concrete subclasses of the abstract
MinHi er ar chi cal Di nensi on class.

An MdnDi mensi on can have one or more MdmAt t r i but e objects. Each of these
objects maps the elements of the MidnDi mensi on to values representing some
characteristic of the elements. To obtain the MdmAt t r i but e objects for a given
MdnDi nensi on, call its get At t ri but es method.

An MinDi mensi on has an MdnDi mensi onDef i ni ti on, which represents the
structure of the underlying data, and an MdnDi nensi onMenber Type, which
represents the basic nature of the elements. These two objects hold important
information about the MdnDi mensi on to which they belong. For a given

MdmDi nensi on, you use its get Def i ni ti on and get Menber Type methods to
obtain these related objects.

Understanding OLAP API Metadata 2-9

MdmDimension Class

Information held by an MdmDimensionDefinition

An MiInDi mensi onDef i ni ti on indicates the structure of the underlying data on
which the MdnDi mensi on is based. The MinDi nensi onDef i ni ti on class is
abstract. Therefore, instances are always one of the following subclasses:

« MinBaseDi nensi onDefi ni ti on, which indicates that the MUnDi mensi on
has underlying data structured as a single list. For example, an Minievel is
often based on a single column in a relational table.

« MnmUni onDi mensi onDef i ni ti on, which indicates that the MdnDi nensi on
has underlying data structured as the union of two or more lists. For example,
an MidrHi er ar chy can be based on two or more columns in a relational table,
one column for each Minievel .

« MImAli asDi mensi onDef i ni ti on, which indicates that the MUnDi nensi on
acts as a proxy (that is, an alias) for another MUnDi nensi on.

An MInDi mensi on that has an MdmuUni onDi nensi onDef i ni ti on has regions. A
region of a given MinDi mensi on is another MUnDi nensi on that represents a
subset of the elements of the given MinDi mensi on. For example, an

MdmDi nensi on for calendar year might have one region that represents quarters
and another region that represents months. To obtain the regions of an

MdmDi nensi on, you call the get Regi ons method on its

Midmni onDi mensi onDefi ni ti on.

Information held by an MdmDimensionMemberType

An MinDi mensi onMenber Type indicates the basic nature of the elements in the
MdmDi nensi on. It holds a description for each element, and it often provides
methods for finding out other information about individual elements. The

MdmDi nensi onMenber Type class is abstract. Therefore, instances are always one
of the following subclasses:

« MiIniTi mreMenber Type, which indicates that the MinDi mensi on elements
represent time periods. An MiInTi neMenber Type has methods for finding out
the end date and time span for each element.

« MimMveasur eMenber Type, which indicates that the MinDi mensi on elements
are all the MimVeasur e objects in the data store. There is only one
MiImDi nensi on with an Mdmveasur eMenber Type, and it is referred to as the
measure MinDi mensi on. You can obtain the measure MdnDi mensi on by
calling the get Measur eDi mensi on method on the root MinSchemna.

2-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmLevel Class

« Mintt andar dMenber Type, which indicates that the MdnDi mensi on elements
have no specific characteristics. Most MinDi nensi on objects have an
Mdntt andar dMenber Type.

MdmLevel Class

Description of an MdmLevel

An MirLevel isan MdnHi er ar chi cal Di mensi on whose parents and children
are elements from other MinmLevel objects. The elements from a given Minievel
correspond to a subset of the elements in an MdHi er ar chy.

A given MinlLevel is based on a level that was specified by a database
administrator in the OLAP management feature of Oracle Enterprise Manager.
Typically, the database administrator specified a column in a database table to
provide the elements for the level.

Even though the elements of an MinlLevel have parent-child relationships, an
Mdmievel is represented as a simple list. The parent-child relationships among the
elements are recorded in the parent and ancestors attributes, which you can obtain
by calling the get Par ent Rel at i on and get Ancest or sRel at i on methods on
the Midnievel . Sometimes the parent and ancestors attributes are referred to as
parent and ancestors relations.

Typically, an MinlLevel has an MinBaseDi nensi onDefi ni ti on, because the
underlying data is structured as a single list.

Elements of an MdmLevel

The list of elements in an MidnlLevel includes only the elements in that one level.
The values of the elements must be unique. However, uniqueness can be achieved
by a database administrator who defines the level using two relational columns. For
example, a level that represents cities can be defined in the relational database
based on both the city column and the state column. This makes it possible for the
value “Springfield” to appear for two different elements in the city level: one
appears for Springfield, Illinois and another appears for Springfield, Massachusetts.

The following table lists the elements for an Minievel called ndnQuart er, which
records the three-month quarters for a level MdnHi er ar chy called

Understanding OLAP API Metadata 2-11

MdmHierarchy Class

nmdnTi mesDi nCal Hi er. This MinHi er ar chy covers four years, so the number of
elements in ndnQuar t er is 16.

Elements of
mdmQuart er

1998-Q1
1998-Q2
1998-Q3
1998-Q4
1999-Q1
1999-Q2
1999-Q3
1999-Q4
2000-Q1

2001-Q4

MdmHierarchy Class

Description of an MdmHierarchy

An MirmHi er ar chy isan MidnHi er ar chi cal Di nensi on that includes all the
elements of one or more hierarchical structures. That is, all the parents and children
are within the MinHi er ar chy.

Even though the parent-child relationships exist in the MdnHi er ar chy, its elements
are represented as a simple list. The relationships among the elements are recorded

in the parent and ancestors attributes, which you can obtain by calling the

get Par ent Rel ati on and get Ancest or sRel ati on methods on the

MdHi er ar chy. You can obtain the region for each element by calling the

get Regi onAt tri but e method on the MdnDi nensi onDefi ni ti on of the

MdmHi er ar chy. Sometimes the parent, ancestors, and region attributes are referred
to as parent, ancestors, and region relations.

2-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmHierarchy Class

Typically, an MinHi er ar chy is one of the following two types:

Level MinHi er ar chy, which represents a hierarchical structure whose regions
are MdnlLevel objects. For example, a level MinHi er ar chy for calendar year
might have as its regions MdnLevel objects for year, quarter, month and day.

A level MdnHi er ar chy has an Mdnni onDi nensi onDef i ni ti on, and its
regions are MinlLevel objects. The return value from its get Hi er ar chy Type
method is LEVEL_HIERARCHY. A level MinHi er ar chy is based on a
hierarchy that was defined by a database administrator in the OLAP
management feature of Oracle Enterprise Manager.

Union MdnHi er ar chy, which represents a dimension that has one or more
subordinate hierarchical structures. These structures are represented by one or
more level MinH er ar chy objects. An example, of an MinHi er ar chy with
two structures is a union MdnHi er ar chy for time that has two regions, one for
the calendar year and another for the fiscal year. Each region is a level

MdmHi er ar chy.

A union MdnHi er ar chy has an Minni onDi nensi onDefi ni ti on and its
regions are MUnHi er ar chy objects. The return value from its

get Hi er ar chyType method is UNION_HIERARCHY. A union

MdmHi er ar chy is based on a dimension that was defined as having one or
more hierarchies by a database administrator in the OLAP management feature
of Oracle Enterprise Manager.

When working with level and union MinHi er ar chy objects in the current release
of the OLAP API, keep the following points in mind.

Call the get At t ri but es method on a union MinHi er ar chy, not on its
subordinate level MdnHi er ar chy objects or their MdnLevel objects.

Create queries on Sour ce objects that are based on a level MdnHi er ar chy, not
on a union MinHi er ar chy.

Call the get Par ent Rel ati on and get Ancest or sRel ati on methods on a
level MdnHi er ar chy, not on a union MdHi er ar chy.

Call the get Regi onAt t ri but e method on the

MdmUni onDi nensi onDef i ni ti on of alevel MdnmHi er ar chy, not of a union
MidmHi er ar chy. This method returns the MdmAt t r i but e that records the
Mimievel towhich each MinHi er ar chy element belongs.

Understanding OLAP API Metadata 2-13

MdmHierarchy Class

Elements of a level MdmHierarchy

The elements of a level MidrHi er ar chy include all of the elements of all of its
regions. The values of the elements in a particular level MinHi er ar chy must be
unique. The following examples present the elements of two level MinHi er ar chy
objects, one for calendar year and the other for fiscal year.

Example: A level MdmHierarchy for calendar year

The following table lists the elements for a level MinHi er ar chy called

mdnli mesDi nCal Hi er, which includes the elements from four Mini_evel objects:
mdnear , mdnQuar t er , mdnivbnt h, and ndnDay. The number of elements is 1529:
4 year elements, 16 quarter elements, 48 month elements, and 1461 day elements.

Elements of
mdnili mesDi nCal H er

1998
1998-Q1
1998-01
01-JAN-98
02-JAN-98
03-JAN-98

01-FEB-98
02-FEB-98
03-FEB-98

1998-Q2
1998-04

01-APR-98
02-APR-98
03-APR-98

1999

2-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmHierarchy Class

Elements of
mdnili mesDi nCal H er

1999-Q1
1999-01

01-JAN-99

02-JAN-99
03-JAN-99

Example: A level MdmHierarchy for fiscal year

The following table lists the elements for a level MinHi er ar chy called

mdnli mesDi nFi sHi er, which includes the elements from four Mini_evel objects:
mdnti sYear, mdnFi sQuart er, mdni shont h, and ndnFi sDay. The number of
elements is 1529: 4 fiscal year elements, 16 fiscal quarter elements, 48 fiscal month
elements, and 1461 fiscal day elements.

In this example, the mdnFi sDay MinLevel is based on the same relational
database column on which the ndnDay Mim_evel is based (see the earlier example
for calendar year). Therefore, the values of the elements for these two Min_evel
objects are identical. However, this does not mean that the elements themselves are
identical. The elements in ndnDay are distinct from the elements in ndnFi sDay;
only the values of the two sets of elements are the same.

Elements of
tinmesDi nFi sHi er

F1S-1998
F1S-1998-Q1
FI1S-1998-01
01-JUL-98
02-JUL-98
03-JUL-98

01-AUG-98
02-AUG-98

Understanding OLAP API Metadata 2-15

MdmHierarchy Class

Elements of
timesDi nFi sHi er

03-AUG-98

FIS-1998-Q2
FIS-1998-04
01-OCT-98)
02-OCT-98
03-OCT-98

F1S-1999

FI1S-1999-Q1
FI1S-1999-01
01-JUL-99
02-JUL-99
03-JUL-99

Terminology: Nodes and leaves

A level MidnHi er ar chy represents a tree structure with parent-child relationships.
Elements in the lowest MdnLevel are referred to as leaves, and the elements in the
Mdmievel objects above the lowest level are referred to as nodes. Nodes have
children; leaves do not.

Elements of a union MdmHierarchy

The elements of a union MdnHi er ar chy include all of the elements of all of its
regions. Another way to say this is that a union MdnHi er ar chy includes all of the
elements of all of the MdnLevel objects in all of its subordinate MdnHi er ar chy
objects. In hierarchical terms, the set of elements includes all of the leaves (the
elements at the lowest level) and all of the nodes (the elements at the levels above
the lowest one) for all the hierarchies.

2-16 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmHierarchy Class

Distinct elements in the regions of a union MdmHierarchy

The elements in the regions of a union MinHi er ar chy are totally distinct. That is, a
given element does not appear in more than one region of a union MinHi er ar chy.
This is the case even if the database administrator in the OLAP management feature
of Oracle Enterprise Manager specified the same level in two different hierarchies of
a dimension. When this happens, OLAP Services creates two different MidnlLevel
objects, one for each level MdrHi er ar chy.

Though the elements of a union MidrHi er ar chy are distinct, the values of the
elements are not required to be unique. Therefore in the example below, the leaf
elements of the two regions of the union MinHi er ar chy have values that are
identical.

Example: A union MdmHierarchy for time

Consider a union MinHi er ar chy called ndmTi nesDi m which has two regions.
The first region is the MinHi er ar chy called mdnili mesDi nCal Hi er, which has
1529 elements. The second region is the MdnHi er ar chy called

ndniTi mesDi nFi sHi er, which also has 1529 elements. The set of elements for
nmdnli mesDi mis the union of the elements from its two MdmHi er ar chy objects.
Because no element can appear in both MinHi er ar chy objects, ndmTi nesDi mhas
3058 elements. Note that a calendar year begins on January 1, while a fiscal year
begins on July 1.

The following table lists the elements of the union MdmHi er ar chy called

ndnli mesDi m To distinguish the elements of ndnDay and ndnFi sDay, whose
values are identical, the word “(fiscal)” appears next to the values for ndnt¥i sDay.
The ndnDay and ndnFi sDay objects were introduced earlier in the examples for
the elements of a level MdnHi er ar chy.

Elements of
mdmli nesDi m

1998
1998-Q1
1998-01
01-JAN-98

1999
1999-Q1

Understanding OLAP API Metadata 2-17

MdmListDimension Class

Elements of
mdnili nesDi m

1999-01
01-JAN-99

FI1S-1998
FIS-1998-Q1
FIS-1998-01
01-JUL-98 (fiscal)

F1S-1999

FIS-1999-Q1
FIS-1999-01
01-JUL-99 (fiscal)

MdmListDimension Class

Description of an MdmListDimension

An MinLi st Di mensi on is a simple lest of elements that have no hierarchical
characteristics. That is, the notion of having a parent or a child is not relevant for the
elements of an MinLi st Di nensi on.

Elements of an MdmListDimension

A given MinrLi st Di nensi on is based on a dimension that was specified as having
a single level and no hierarchy by a database administrator in the OLAP
management feature of Oracle Enterprise Manager.

2-18 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmMeasure Class

The following table lists the elements of an Minli st Di mensi on called ndntCol or .

Elements of nmdnCol or
Black

Blue

Cyan

Green

Magenta
Red

Yellow

White

MdmMeasure Class

Description of an MdmMeasure

An Mim\veasur e represents a set of data that is organized by one or more
MdmDimension objects. The structure of the data is similar to that of a
multidimensional array. Like the dimensions of an array, the MUnDi nensi on
objects that organize an Mim\veasur e provide the indexes for identifying individual
cells.

For example, suppose you have an Mimveasur e for sales data, and the data is
organized by product, time, customer, and channel (with channel representing the
marketing method, such as direct or indirect.). You can think of the data as
occupying a four-dimensional array with the product, time, customer and channel
dimensions providing the organizational structure. The values of these four
dimensions are indexes for identifying each particular cell in the array, which
contains a single sales value. You must specify a value for each dimension in order
to identify a value in the array. In relational terms, the MUdnDi mensi on objects
constitute a compound (that is, composite) primary key for the Minmveasur e.

The values of an Minmveasur e are usually numeric, but this is not necessary.

Elements of an MdmMeasure

A given MimMeasur e is based on an OLAP measure that was created by a database
administrator in the OLAP management feature of Oracle Enterprise Manager. In

Understanding OLAP API Metadata 2-19

MdmMeasure Class

most cases, the database administrator specified a column in a fact table to act as the
basis for the OLAP measure (alternatively, the database administrator specified a
mathematical calculation or a data transformation). In many but not all cases, the
database administrator also specified at least one hierarchy for each of the
measure’s OLAP dimensions, as well as an aggregation method. OLAP Services
uses all of this information to identify the number of elements in the Mim\veasur e
and the value of each element.

MdmMeasure elements are determined by MdmDimension elements

The set of elements that are in an Mim\veasur e is determined by the structure of its
MImDi nensi on objects. That is, each element of an Mim\veasur e is identified by a
unique combination of elements from its MinDi mensi on objects.

Typically, the MdDi nensi on objects of an MimVeasur e are union MinHi er ar chy
objects. That is, they have at least one hierarchical structure. It is important to
remember that the elements of a union MinHi er ar chy include all of the leaves and
all of the nodes for all of the level MdHi er ar chy objects that represent its regions.
Because of this structure, the values of the elements of an Minmveasur e are of two
kinds:

« Values from the fact table column (or fact-table calculation) on which the
MimVeasur e is based, as specified in the OLAP management feature of Oracle
Enterprise Manager. These values belong to Mim\veasur e elements that are
identified by a combination of leaf MdnHi er ar chy elements.

« Aggregated values that OLAP Services has provided. These values belong to
MimVeasur e elements that are identified by at least one node element from an
MdmHi er ar chy. The method for aggregation (for example, addition) was
specified by the database administrator in the OLAP management feature of
Oracle Enterprise Manager.

As an example, imagine an Minmveasur e called mdnini t Cost that is dimensioned
by union MidnHi er ar chy objects called mdnili nesDi mand ndnPr oduct sDi m
Each MiHi er ar chy has leaf elements (for example, 01-JAN-99 in mdnili mesDi n),
and each MinHi er ar chy has node elements (for example, 1999-Q1 in

mdnTi mesDi n). A unique combination of two elements, one from each

MdmHi er ar chy, identifies each ndnmni t Cost element, and every possible
combination is used to specify the entire mdnini t Cost element set.

Some ndimni t Cost elements are identified by a combination of leaf elements (for
example, a particular product item and a particular month). Other ndnini t Cost
elements are identified by a combination of node elements (for example, a
particular product group and a particular quarter). Still other mdmiini t Cost

2-20 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmMeasure Class

elements are identified by a mixture of leaf and node elements. The values of the
nmdnni t Cost elements that are identified only by leaf elements come directly from
the column in the database fact table (or fact table calculation). They represent the
lowest level of data. However, for the elements that are identified by at least one
node element, OLAP Services provides the values. These higher-level values
represent aggregated, or rolled-up data.

Thus, the data represented by an Mdmveasur e is a mixture of fact table data from
the data store and aggregated data that OLAP Services makes available for
analytical manipulation.

Example: An MdmMeasure with two MdmDimension objects

The table below lists some of the elements of the MinmVeasur e called

mdmni t Cost , which is described above. This MidnmVeasur e has

mdnPr oduct sDi mand ndnili mesDi mas its MimDi nensi on objects. Each of these
objects is a union MinHi er ar chy with regions that are level MinHi er ar chy
objects. For example, the level MdHi er ar chy objects for ndniTi nesDi mare
ndnili mesDi mCal Hi er and ndnTi mesDi nFi sHi er, and the level

MdmHi er ar chy for mdnPr oduct sDi mis ndnPr oduct sDi mHi er .

Because there are so many elements in the Mdmveasur e, the table shows only a few
of them. For example, for ndmTi nesDi m you should imagine that the ellipses
(indicated by dots) cover additional days, months, quarters, and years in the

mdnTi mesDi nCal Hi er region, as well as the entire ndnili mesDi nFi sHi er
region.

mdnPr oduct sDi nHi er has three levels, which represent the product category
(such as Boys), the product subcategory (such as Outerwear - Boys), and the
individual product item (such as #23110). The table shows only one element from
each level, and the ellipses cover all the rest.

Almost all the elements shown in the table are aggregated. The ones that are not
aggregated are marked with an asterisk. These nonaggregated elements are the ones
that are identified by the lowest level elements of both ndnPr oduct sDi mand
ndnili mesDi m

Elements of Elements of Elements of
mdnPr oduct sDi m mdnili nesDi m ndnni t Cost
Boys 1998 12,800,444.00
Boys 1998-Q1 4,563,150.00
Boys 1998-01 1,837,254.00

Understanding OLAP API Metadata 2-21

MdmaAttribute Class

Elements of Elements of Elements of

ndnPr oduct sDi m mdnii mesDi m nmdnni t Cost
Boys 01-JAN-98 185,346.00
Boys 02-JAN-98 232,590.00
Boys 03-JAN-98 155,403.00
Outerwear -Boys 1998 6,473,065.00
Outerwear -Boys 1998-Q1 2,000,317.00
Outerwear -Boys 1998-01 637,482.00
Outerwear -Boys 01-JAN-98 27,009.00
Outerwear -Boys 02-JAN-98 20,346.00
Outerwear -Boys 03-JAN-98 12,498.00
23110 1998 847,362.00
23110 1998-Q1 200,635.00
23110 1998-01 60,735.00
23110 01-JAN-98 2,226.00 *
23110 02-JAN-98 1,709.00 *
23110 03-JAN-98 2,047.00 *

MdmaAttribute Class

Description of an MdmAttribute

An MimAt t ri but e represents a particular characteristic of the elements of an
MImDi nensi on. An MdmAt t r i but e maps one element of the MidnDi mensi on to a
particular value. A typical example is an MdmAt t r i but e that records the gender of
each customer in an MinDi nensi on called ndmCust oner sDi m In this case, the
elements of the MimAt t r i but e have the values “Female” and “Male”.

The values of an MUMAt t ri but e might be St ri ng values (such as “Female”),
numeric values (such as 45), or objects (such as MinLevel objects).

2-22 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

MdmaAttribute Class

Like an MinmVeasur e, an MdmAt t r i but e has elements that are organized by its
MdnDi nmensi on. For example, the gender MdmAt t r i but e has one element (with
“Female” or “Male” as its value) for each element of the MdnDi nensi on called
nmdmCust oner sDi m

Typically, not all of the elements of an MinDi mensi on have meaningful mappings
to the values of a given MImAt t r i but e. For example, the gender MdmAt t ri but e
applies only to the lowest level of ndnCust oner sDi m because gender makes no
sense for higher levels such as cities or states. If an MdmAt t r i but e does not apply
to some elements of an MInDi mensi on, then their MdmAt t r i but e values are

nul | .

Some MdmAt t r i but e objects provide a mapping that is one-to-many, rather than
one-to-one. Therefore, a given element in an MdnDi nensi on might map to a whole
set of MUmAt t r i but e elements. For example, the MdmAt t r i but e that serves as the
ancestors attribute for an MinHi er ar chy maps each MinHi er ar chy element to its
set of ancestor MinHi er ar chy elements.

Elements of an MdmAttribute

A given MUmAt t ri but e is based on an attribute that was specified for a dimension
or a level by a database administrator in the OLAP management feature of Oracle
Enterprise Manager.

The following table lists the elements for an MimAt t r i but e called

nmdmCust oner sDi mGender , which is based on the MinDi nensi on called
nmdmCust oner sDi m Note that the values of the MImAt t ri but e are nul | for the
city, country, and region levels. There are meaningful values only for the customer
level, where each customer is represented by a number.

Elements of Elements of
mdnCust omer sDi m nmdnCust onmer sDi nGender
Africa nul |
South Africa nul |
Cape Town nul |
5420 Female
11650 Female
17880 Male

Understanding OLAP API Metadata 2-23

MdmaAttribute Class

Elements of Elements of
ndnCust oner sDi m nmdnCust oner sDi nGender
24120 Female
67720 Male
73960 Male

2-24 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

3

Connecting to a Data Store

Chapter summary

This chapter explains the procedure for connecting to a data store through the
OLAP API.

List of topics
This chapter includes the following topics:

= Overview of the Connection Process
« Connection Classes in the OLAP API
« Establishing a Connection

« Closing a Connection

« Interrupting a Connection

Overview of the Connection Process

Context for making a connection

Chapter 1 describes the software components that are involved when your
application accesses data through the OLAP API. A review of the interaction among
the components can be helpful in understanding what happens when your
application establishes a connecton. The following steps describe a typical
interaction among the components:

1. The application code makes a request for data by calling the OLAP API client
software.

Connecting to a Data Store 3-1

Overview of the Connection Process

2. The OLAP API client software makes a call to the CORBA software, which
passes the request to the OLAP service.

3. The OLAP service retrieves data from the Oracle database and performs the
selections or calculations specified by the application.

4. The OLAP service fulfills the data request by passing the data to the application
through the CORBA and OLAP API software.

What happens when you open a connection
When your application establishes a connection, the following events take place:

1. At the request of the application, the CORBA software establishes a connection
between the application and the particular OLAP service that the application
specified.

2. On behalf of the application, the OLAP service establishes a connection with its
parent Oracle database instance. The connection is made with the user ID and
password that were specified by the application. The scope of the data that is
available to the application depends on the access rights assigned to the user
ID.

Note that once the connection is established, your application can access the data
store or it can access an analytic workspace, which is managed separately by the
OLAP service. For more information about accessing an analytic workspace, see
Oracle9i OLAP Services Developer’s Guide to the OLAP DML.

Prerequisites for connecting

This chapter describes the OLAP API classes and methods that an application uses
to establish a connection. Before attempting to use these classes and methods, you
must ensure that your development environment is set up correctly. The
development environment includes the application development computer, on
which your OLAP API application will run, as well as the computer on which the
OLAP service is running.

Ensure that your development environment meets the following requirements:

« The Oracle database and the OLAP service are running. Note that when the
OLAP service is running, the CORBA software on the OLAP service computer
is ready to accept connections.

3-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of the Connection Process

= Your Oracle database user ID has access to the relational schemas on which the
data store is based, and the user ID is set up to connect to the database through
the OLAP service.

« The CORBA software is in place and ready to run on the application
development computer.

« The OLAP API jar files are on the application development computer and are
accessible to the application code.

See Appendix A for information about the OLAP API jar files and the CORBA
software for the application development computer. For information about setting
up a user ID to connect through an OLAP service, see the Oracle9i OLAP Services
Concepts and Administration Guide.

Coding steps for making a connection
To make a connection, perform the following steps:

1. Get a CORBA stub that represents the OLAP service to which the connection
will be made.

2. Create a Properti es object and put into it all the connection parameters that
are required. For example, include the Oracle database user ID and password.

3. Make the connection by calling a method on one of the OLAP API connection
classes, which are described in “Connection Classes in the OLAP API” on page
3-4.

These steps are explained in more detail in the topic “Establishing a Connection” on
page 3-7.

OLAP API classes involved in making a connection
You use the following OLAP API classes to make a connection:

« Connecti onManager class
« Connecti on class
« Connecti onPar anet er | nf o class

These classes are described in more detail in the topic “Connection Classes in the
OLAP API” on page 3-4. In addition to these OLAP API classes, you use CORBA
classes, as described in “Step 1: Getting the CORBA stub for the first connect
method parameter” on page 3-7.

Connecting to a Data Store 3-3

Connection Classes in the OLAP API

Connection Classes in the OLAP API

Overview of the connection classes

The OLAP API connection classes are in the or acl e. expr ess. connecti on
package. This topic focuses on the three important classes in the package:
Connect i onManager, Connecti on, and Connect i onPar anet er | nf 0. One of
the remaining classes, Dat abase, is discussed briefly in Chapter 4.

ConnectionManager class

A Connect i onManager establishes a connection when you call its connect
method. However, before you make this call, you must initialize the
Connect i onManager .

To initialize a Connect i onManager , you use thei ni t method in

Connect i onManager . Because the method is overloaded, you can use either of its
two forms. One form is appropriate for standalone Java applications. The other
form is appropriate for Java applets.

« init(),which initializes the singleton Connect i onManager that is
appropriate for use by all standalone Java applications. This
Connect i onManager uses the singleton default ORB.

« init(java.appl et. Appl et appl et), which creates a new
Connect i onManager that is appropriate for use by the specified applet. This
Connect i onManager uses the ORB that was initialized with the applet.

For simplicity, the OLAP APl documentation uses the term “application” to refer to
both standalone applications and applets.

Once you have initialized the Connect i onManager , use the connect method in
Connect i onManager to establish the connection. One of the parameters to the
connect method is a java Pr opert i es object that holds the connection
parameters (such as user name and password) for the connection.

A Connect i onManager can also provide information about the appropriate
connection parameters through its get Connect i onPar anet er | nf o method. The
reason that this method can be useful is because the parameters that are appropriate
for connecting to one OLAP service might be different from the parameters that are
appropriate for connecting to another OLAP service. If there is any reason to believe
that more than the usual user ID and password parameters are required, then you
can use the get Connect i onPar anet er | nf o method to find out what is needed.

3-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Connection Classes in the OLAP API

The following table presents an overview of the methods in Connect i onManager .

Method

Return Value

init()

The singleton Connect i onManager for Java
applications.

init(java.applet. Applet applet)

A new Connect i onManager for the specified Java
applet.

getConnectionParameterinfo

A Li st of Connecti onPar anet er | nf o objects, each
of which represents a parameter that is relevant for
making a connection to a particular OLAP service.

connect

A Connect i on object that represents a connection
between an application and an OLAP service.

getOpenConnections

The Set of Connect i on objects that were created
through this Connect i onManager and that are
currently active.

For sample code that uses the Connect i onManager class, see “Step 2: Creating a
Properties object for the second connect method parameter” on page 3-9 and “Step
3: Making the connection using the connect method” on page 3-10.

Connection class

A Connect i on object represents a connection between an application and an
OLAP service, which is a child process of an Oracle database instance. You create a
Connect i on object when you call the connect method on a

Connect i onManager .

Most of the methods on Connect i on merely provide information about the OLAP
service. For example, one method returns the name of the host computer, and
another method returns the name of the OLAP service.

The following table presents the most important methods in the Connect i on class.

Method

Return Value

cl ose

Closes the connection.

Connecting to a Data Store 3-5

Connection Classes in the OLAP API

Method Return Value

i sOpen A bool ean value that indicates whether the connection is
currently active.

get Def aul t Dat abase A Dat abase object that represents the Oracle database
instance that is the parent of the OLAP service for the
connection. Use this method when creating an

Mimvet adat aPr ovi der, as described in Chapter 4.

For sample code that uses the Connect i on class, see “Step 3: Making the
connection using the connect method” on page 3-10.

ConnectionParameterinfo

A Connect i onPar anet er | nf o object holds information about a single parameter
that can be used for making a connection.

Before making a connection, you can call the get Par anet er | nf o method on the
Connect i onManager in order to discover the connection parameters that are
appropriate to the configuration of a particular OLAP service. The

get Par anet er | nf o method interrogates the OLAP service and returns a Li st of
Connect i onPar amet er | nf 0 objects, one for each appropriate parameter. You can
then call the methods on each Connect i onPar anet er | nf o object to find out the
name of the parameter, whether it is required or optional, and the possible choices
for the values of the parameter.

With this information, you can present choices to an end user through a graphical
user interface, and collect the connection parameter information that is appropriate
for that user. Having assembled the information to be specified, you can use the
put method on a Properti es object to store all the parameter names and values
in the Properti es object. Finally, you can pass the Pr opert i es object to the
connect method on the Connect i onManager .

Discovering appropriate parameters for making a connection can be an iterative
process. For example, you might call the get Connect i onPar anet er | nf o
method once specifying an empty Pr opert i es object, but after you discover the
properties that are relevant, you might make another call. This time you specify the
Pr operti es object populated with the parameters and values that were identified
by the first call. Depending on the parameters and values specified, the second call
to the get Connect i onPar anet er | nf o method might return a longer list of
appropriate parameters that you can specify when making the connection.

3-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Establishing a Connection

The following table presents an overview of the methods on a
Connect i onPar anet er | nf o object. Each Connect i onPar anet er | nf o object
provides information about a single parameter.

Method Return Value

get Nane The name of the parameter.

get Descri ption The description of the parameter.

get Choi ces An array of St ri ng values that includes every valid value that
an application can specify for the parameter.

get Val ue The default value for the parameter.

i sRequi red A bool ean value that indicates whether the parameter is
required.

For sample code that uses the Connect i onPar anet er | nf o class, see “Step 2:
Creating a Properties object for the second connect method parameter” on page 3-9.

Establishing a Connection

The connect method and its parameters

The communications link between an application and an OLAP service is through a
CORBA implementation, as described in Chapter 1. The method that makes the
connection is the connect method in Connect i onManager , and it requires the
following parameters:

« The CORBA stub that identifies the OLAP service
« AProperti es object that holds connection parameters
To establish a connection, complete the three steps described in this topic.

Note that the connect method is overloaded. There is an alternative version that
accepts a third argument, which is the Local e for the connection. See the Oracle9i
OLAP Services OLAP API Reference for details about this version of the connect
method.

Step 1: Getting the CORBA stub for the first connect method parameter

The communications link between an application and an OLAP service is through a
CORBA implementation, as described in Chapter 1. The method that makes the

Connecting to a Data Store 3-7

Establishing a Connection

connection is the connect method on Connect i onManager , and it requires two
parameters.

The first parameter to the connect method is a CORBA stub. This is a Java object
that resides on the application computer and represents the OLAP service to which
the connection will be made. Your application must use a CORBA naming service to
obtain the stub. Oracle provides a CORBA naming service for use on most
platforms. However, on some platforms the VisiBroker naming Service called Smart
Agent is used. See the read me file for your installation of OLAP Services to find out
which naming service is appropriate in your environment. If you will use Smart
Agent, see Appendix B for coding information.

The following sample code for getting the stub uses the Oracle CORBA naming
service and the Java Naming and Directory Interface (JNDI). The code uses the
following three classes, which are in the Java Development Kit supplied by Sun
Microsystems:

= javax.nam ng. | nitial Context
= javax. nanmi ng. Cont ext
« java.util.Hashtabl e

In addition, the code uses a constant from the Ser vi ceCt x class, which resides in
an Oracle CORBA naming service j ar file that is supplied with your Oracle
installation. See Appendix A for details.

The sample code specifies the following information:

« The URL that locates the target Oracle database for the connection. The URL
has the following components, which are separated by colons.

The prefix sess_i i op
The host name. In the sample code, itis/ /| abl. us. oracl e. com
The listener port number for 11OP services. In the sample code, it is 2481.

The system identifier (SID) for the Oracle database instance. In the sample code,
itisbml212.

= The object name for the OLAP service that will accept the connection. The name
includes its directory name in the namespace and the name of the published
object. In the sample code, itis/ Bl / OLAPSer vi ce.

« The user ID for the database connection. In the sample code, it is hepbur n.

« The password for the database connection. In the sample code, itist r acey.

3-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Establishing a Connection

You can find out the information to specify for your own environment by talking to
the OLAP Services database administrator. For detailed information about the
syntax of the specifications, see the Oracle CORBA Developer’s Guide and Reference.

i nport org. onyg. CCRBA (j ect ;

inport oracle.aurora.jndi.sess_iiop. ServiceQx;
i nport j avax. nam ng. Gont ext ;

inport javax.naming.lnitial Context;

inport java.util.Hashtabl e;

Sring serviceURL = "sess_iiop://|abl. us. oracl e.com2481: bni212";
Sring object Nane = "/ B/ Q.APServi ce";

Sring useridvVal ue = "hepburn”;

Sring passwordval ue = "tracey";

/1 Make hashtabl e to hol d environment paraneters for initial context
Hasht abl e env = new Hasht abl e() ;

env. put (Cont ext . URL_PKG PREFI XES, "oracle.aurora.jndi");

env. put (Cont ext . SEAUR TY_PRINO PAL, useri dval ue);

env. put (Cont ext . SEQUR TY_CREDENTI ALS, passwor dval ue) ;

env. put (Cont ext . SEQUR TY_CREDENTI ALS, ServiceGx. NON SSL LAA N ;

/]l Get the GORBA stub for the QAP service

javax. naming. Context ic = new I nitial Context(env);

org. ongy. GCRBA (hj ect servi ceSub = (org. ong. GORBA (hj ect)
(ic.lookup(servicelRL + object Nane));

Step 2: Creating a Properties object for the second connect method parameter

The second parameter to the connect method on Connect i onManager is aJava
Pr operti es object that holds the parameters for the connection.

The following sample code adds user ID and password parameters to a
Properti es object called connPar ans. Note that the access privileges that are
granted to the user ID determine the scope of the data that will be visible in the
application.

Properties connParans = new Properties();
Sring useridNane = "Wserl D';

Sring useridVal ue = "hepburn”;

Sring passwordNane = "Password”;

Sring passwordval ue = "tracey";

connPar ans. put (useri d\ane, useri dval ue);
connPar ans. put (passwor dNane, passwor dval ue) ;

Connecting to a Data Store 3-9

Establishing a Connection

If an application must prompt the user for information to be used as connection
parameters, it can call the get Connect i onPar anet er | nf o method on

Connect i onManager . This method returns a list of

Connect i onPar anet er | nf o objects, each of which describes one parameter.
Then, the application can call methods on the Connect i onPar anet er | nf o
objects to get information about the parameters. Using this information, the
application can prompt the user to specify parameter values for the connection, and
the application can fill in the Pr oper t i es object appropriately.

The following sample code prints the name and description for each parameter, just
to illustrate how to work with a list of ConnectionParameterinfo objects.

Gonnect i onManager cm = Gonnect i onManager.init();
Li st cpi Li st = cm get Gonnect i onPar anet er | nf o(servi ceStub, new Properties());
Iterator conlt = cpiList.iterator();
Systemout . println("CGonnection Paraneters:");
vhile (conlt.hasNext ()) {
Gonnect i onPar aneterl nfo cpi = (Connect i onParanet erl nfo) conlt. next();
Systemout. printIn("\tNane : " + cpi.getNane() + "\tDescription: " +
cpi . get Description());

Step 3: Making the connection using the connect method

To make a connection, you initialize a Connect i onManager and call the connect
method on it. When calling the connect method, you pass the following two
parameters, which are described earlier in this topic:

« The CORBA stub (called ser vi ceSt ub in earlier code examples)

« TheProperti es object that holds the connection parameters (called
connPar ans in an earlier code example)

The following lines of code make a connection for a standalone application.

Gonnect i onManager cm = Gonnect i onManager.init();
Gonnecti on conn = cm connect (servi ceX ub, connParns) ;

3-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Interrupting a Connection

Closing a Connection

Using the close method

When you have completed your work with the data store, use the cl ose method
on the Connect i on object. In the following sample code, the Connect i on object is
called conn.

conn. cl ose();

What happens when you close a connection
When you close a connection, the following events take place:

1. The OLAP service terminates the connection that it made on behalf of your
application with the Oracle database instance.

2. The CORBA software terminates the connection between your application and
the OLAP service.

Interrupting a Connection

When to interrupt a connection

If an OLAP API method is taking too long to execute, and it is acceptable for your
application to break off its connection with the OLAP service, you can use the

i nt errupt method on Connecti onl nt err upt er. Terminating a connection in
this way is not a routine procedure, and you should use it only under extraordinary
circumstances.

Preparing to use the interrupt method

Typically, an application runs in a thread that establishes a connection and executes
queries. Your application must prepare for using the i nt er r upt method by
creating a second thread for interrupting the connection. The second thread waits
for notification by the first thread that an interruption is needed.

Connecting to a Data Store 3-11

Interrupting a Connection

Using the interrupt method

When the first thread tells the second thread to terminate the connection, the second
thread does the following:

1. Calls the get Renpt eSt ub method on the Connect i on object that represents
the connection to be interrupted. The method returns the CORBA stub for the
Connecti on.

2. Uses the constructor to create a new Connect i onl nt er r upt er, specifying
the CORBA stub for the Connect i on as a parameter.

3. Callsthei nt errupt method on the new Connecti onl nterrupter to
terminate the connection.

3-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

A

Discovering the Available Metadata

Chapter summary

This chapter explains the procedure for discovering the metadata in a data store
through the OLAP API.

List of topics
This chapter includes the following topics:

« Overview of the Procedure for Discovering Metadata
« Creating an MdmMetadataProvider

« Getting the Root MdmSchema

« Getting the Contents of the Root MdmSchema

« Getting the Characteristics of Metadata Objects

« Getting the Source for a Metadata Object

« Sample Code for Discovering Metadata

Overview of the Procedure for Discovering Metadata

Scope of the available metadata: the data store

The OLAP API provides access to a collection of Oracle data for which a database
administrator has created metadata using the OLAP management feature of Oracle
Enterprise Manager. This collection of data and metadata is the data store for the
application. Both the data and the metadata reside in the Oracle database instance.

Discovering the Available Metadata 4-1

Overview of the Procedure for Discovering Metadata

Potentially, the data store includes all of the measure folders that were created by
the database administrator in the OLAP management feature of Oracle Enterprise
Manager. However, the scope of the data store that is visible when a given
application is running depends on the database privileges that apply to the user ID
through which the connection was made. A user sees all of the measure folders (as
MdnSchemma objects) that the database administrator created, but the user sees the
measures and dimensions that are contained in those measure folders only if he or
she has access rights to the relational tables on which the measures and dimensions
are based.

MDM metadata

When the database administrator created the metadata, Oracle Enterprise Manager
made measures, dimensions, and other OLAP objects. In the OLAP API, these
objects are accessed as multidimensional metadata (MDM) objects, as described in
Chapter 2. The mapping between the OLAP objects from Oracle Enterprise
Manager and the MDM objects is automatically performed by OLAP Services.

Purpose of discovering the metadata

The metadata objects in the data store help your application to make sense of the
data. They provide a way for you to find out what data is available, how it is
structured, and what its characteristics are.

Therefore, after connecting, your first step is to find out what metadata is available.
Armed with this knowledge, you can present choices to the end user about what
data should be selected or calculated and how it should be displayed.

Steps in discovering the metadata

Before investigating the metadata, your application must make a connection to the
OLAP service and its parent Oracle database, as described in Chapter 3. Then, your
application performs the following steps:

1. Create an Minivet adat aPr ovi der
2. Get the root MinSchena from the Mdmvet adat aPr ovi der

3. Get the contents of the root MinSchema, which include Mim\Veasur e,
MdnDi nensi on, Mdmveasur eDi nensi on, and MinSchena objects. In
addition, get the contents of any subschemas.

4. Get the characteristics of each Mdmveasur e and MInDi nensi on. For example,
for each Mdm\veasur e get its MUnDi nensi on objects, and for each

4-2 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Creating an MdmMetadataProvider

MdnDi nensi on find out whether it is a union MinHi er ar chy , a level
MdnHi er ar chy, an Mdnievel , or an Minii st Di mensi on.

The next four topics in this chapter describe these steps in detail.

Discovering metadata and making queries

After you discover the metadata, you typically go on to create queries for selecting,
calculating, and otherwise manipulating the data. In order to work with data in
these ways, you must get the Sour ce objects that OLAP Services has created to
represent the data for querying. These Sour ce objects are referred to as primary
Sour ce objects.

This chapter focuses on the initial step of discovering the available metadata, but it
also briefly mentions the step of getting a primary Sour ce from a metadata object.
Subsequent chapters of this guide explain how you work with primary Sour ce
objects and create queries based on them.

Creating an MdmMetadataProvider

Function of an MdmMetadataProvider

An Mdm\vet adat aPr ovi der gives access to the metadata in a data store. It maps
the metadata objects, such as measures, dimensions, and measure folders, that a
database administrator created in the OLAP management feature of Oracle
Enterprise Manager to the corresponding MDM objects, such as Mim\Veasur e,
MinDi mensi on, and MinfSchena.

Creating some preliminary objects
Before you can create an Mim\et adat aPr ovi der, you must do the following:

« CreateaTransacti onProvi der, which is required for constructing a
Dat aPr ovi der.

« Create a Dat aPr ovi der, which is required for constructing an
Mim\vet adat aPr ovi der.

« Get the default Dat abase, which is required for constructing an
Mimvet adat aPr ovi der .

Discovering the Available Metadata 4-3

Getting the Root MdmSchema

Transacti onProvi der is an interface, and Dat aPr ovi der is an abstract class.
Therefore, in your code, you use instances of the concrete classes called
ExpressTransacti onProvi der and Expr essDat aPr ovi der .

The following code creates the preliminary objects on a Connection called conn.
Chapter 3 explains how to create a Connection.

Expr essTransacti onProvi der tp = new ExpressTransacti onProvi der();
Expr essDat aPr ovi der dp = new Expr essDat aPr ovi der (conn, tp);
Dat abase db = conn. get Def aul t Dat abase() ;

The Transact i onProvi der and Dat aPr ovi der objects that are created in these
steps are the ones that you use throughout your work with the data store. For
example, when you create certain Sour ce objects, you use methods on this

Dat aPr ovi der object.

Creating the MdmMetadataProvider

The following code creates an Minmvet adat aPr ovi der using the preliminary
objects described earlier.

MinMet adat aPr ovi der np = new MinMet adat aPr oi vder (db, dp);

Getting the Root MdmSchema

Function of the root MdmSchema

The metadata objects that are accessible through a given Mim\vet adat aPr ovi der
are organized in a tree-like structure, with the root MinSchena at the top. Under
the root MinScherra are MdmVeasur e objects, MdnDi mensi on objects, and one or
more MinSchema objects, which are referred to as subschemas.

Subschemas have their own MiniVeasur e and MInDi nensi on objects. Optionally,
they can have their own subschemas as well.

The root MdnSchema contains all the Minmiveasur e and MInDi nensi on objects that
are in the subschemas. Therefore, a given Minveasur e or MinDi nensi on always
appears twice in the tree. It appears once under the root MinSchema and again
under the subschema.

The starting point for discovering the available metadata objects is the root
MinSchemma, which is the top of the tree. The following diagram illustrates an
example in which one subschema has two Mim\veasur e objects and two

MdmDi nensi on objects. Another subschema has one MinVeasur e object and two

4-4 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Getting the Root MdmSchema

MdnDi nensi on objects. The root MidnSchema contains, in addition to the two
subschemas, all three MdmVeasur e objects and all four MdnDi nensi on objects.

Root MdmSchema

— MdmMeasurel
— MdmMeasure2
— MdmMeasure3
— MdmDimensionl
— MdmDimension2
— MdmDimension3

— MdmDimension4

— MdmSchemal
MdmMeasurel
MdmMeasure2
MdmDimensionl
MdmDimension2

— MdmSchema?2
MdmMeasure3
MdmDimension3

MdmDimension4

Using the OLAP management feature of Oracle Enterprise Manager, a database
administrator arranges dimensions and measures under one or more top-level
measure folders. When OLAP Services maps the measure folders to MinSchema
objects, it always creates the root MinSchena above the MinSchenma objects for the
top-level measure folders. Therefore, even if the database administrator creates only
one measure folder, its corresponding MinSchenma will be a subschema under the
root.

Discovering the Available Metadata 4-5

Getting the Contents of the Root MdmSchema

For more information about MDM metadata objects and how they map to OLAP
objects in the OLAP management feature of Oracle Enterprise Manager, see
Chapter 2.

Calling the getRootSchema method

The following code gets the root MinSchena for an Minivet adat aPr ovi der
called mp.

MinSchena root = np. get Root Schena() ;

Getting the Contents of the Root MdmSchema

MdmSchema contents

The root MinSchema contains Mimveasur e, MInDi mensi on, and MinSchena
objects. In addition, the root MinSchena has a measure MinDi nensi on that lists
all the Mdmveasur e objects.

Calling the getMeasures method

The following code gets a Li st of Mim\Veasur e objects that are in an MinSchema
called schema.

Li st neasures = schena. get Measures();

Calling the getDimensions method

The following code gets a Li st of MinDi mensi on objects that are in the
MinSchena called schema.

Li st dins = schena. get D nensi ons() ;

Calling the getSubSchemas method

The following code gets a Li st of MinmSchema objects that are in the MinScherma
called schema.

Li st subSchemas = schena. get SubSchenas();

4-6 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Getting the Characteristics of Metadata Objects

Calling the getMeasureDimension method

The following code gets the measure MinDi mensi on that is in the root
MinSchemma. Use this method only on the root MinSchena. It makes no sense to use
it on subschemas, because only the root MinSchena has a measure

MinDi nensi on.

MinMeasur eD nensi on ndnMeasur eD m = r oot . get Measur eD nensi on() ;

Getting the contents of subschemas

For each MinSchenma that is under the root MinSchenm, you can call the
get Measur es, get Di nensi ons, and get SubSchemas methods. The procedures
are the same as those for getting the contents of the root MinSchensa.

Getting the Characteristics of Metadata Objects

Getting the MdmDimension objects for an MdmMeasure

A primary characteristic of an Mdm\veasur e is that it has related MdnDi mensi on
objects. The following code gets a Li st of MdnDi mensi on objects for an
Mimveasur e called sales.

Li st dinsC(f Sal es = mingal esAnount . get D nensi ons() ;

The get Measur el nf o method in the sample code provided later in this chapter
shows one way to iterate through the MdmDi nensi on objects belonging to a given
Mim\veasur e.

Getting the related objects for an MdmDimension

An MInDi mensi on has related MdnDi nensi onDef i ni ti on and

MdmDi nensi onMenber Type objects, which you can obtain by calling its

get Defi ni ti on and get Menber Type methods. If it is an MdHi er ar chy, it also
has regions, which you can obtain by calling the get Regi ons method on its
Midrmni onDi mensi onDefi ni ti on.

The get Di M nf 0 method in the sample code provided later in this chapter shows
one way to get the following metadata objects for a given MidnDi nmensi on:

« Its MdnDi mensi onMenber Type
« ItsMimAttri but e objects

Discovering the Available Metadata 4-7

Getting the Source for a Metadata Object

« Its concrete class and hierarchy type
« Its parent, ancestors, and region attributes
« Its MdnDi mensi onDefinition

« Itsregions. That s, if it is a union MdrmHi er ar chy, the code obtains its
component MinHi er ar chy objects. If it is a level MdnHi er ar chy, the code
objains its component MirrLevel objects

« Its default level MdHi er ar chy, if it is union MdnHi er ar chy.

Methods are also available for obtaining other MdnDi mensi on characteristics. See
the Oracle9i OLAP Services OLAP API Reference for descriptions of all the methods
on the MDM classes.

Getting the Source for a Metadata Object

Difference between a metadata object and its Source

A metadata object represents a set of data, but it does not provide the ability to
create queries on that data. Its function is informational, recording the existence,
structure, and characteristics of the data. It does not give access to the data values.

In order to access the data values for a given metadata object, an application gets
the Sour ce object that represents its data. A Sour ce that represents the data for a
metadata object is called a primary Sour ce.

Calling the getSource method

To get the primary Sour ce for a metadata object, an application calls the

get Sour ce method on that metadata object. For example, if an application needs
to display the sales figures for 1999, it must first use the get Sour ce method on the
MimMveasur e called ndnSal esAnount .

Sour ce sal esAmount = mdn$al esAmount . get Sour ce() ;

An application can call the get Sour ce method on any object that is an instance of
a concrete subclass of MinSour ce. The following is a list of the concrete subclasses:

« MnHi erarchy
« Mnlievel
« MnlLi st Di nensi on

4-8 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

« MnmAttribute
« MnVeasure

For more information about getting and working with primary Sour ce objects, see
Chapter 5

Sample Code for Discovering Metadata

Description of the sample code

The sample code that follows is a simple Java program called

Sanpl eMet adat abDi scover er. The program discovers the metadata objects that
are under the root MinSchenma of any data store. The program’s output lists the
names and related objects for the MinmVeasur e and MidnDi nensi on objects in the
root MdmSchena and its subschemas.

After presenting the program code, this topic presents the output of the program
when it is run against a data store that consists of the Sales History relational
schema, which is provided with the installation of OLAP Services. In the OLAP
management feature of Oracle Enterprise Manager, the Sales History schema is
represented as the SH_CAT measure folder. Through an OLAP API connection, the
SH_CAT measure folder maps to an MinSchena that is also called SH_CAT.

The Sanpl eMet adat aDi scover er program includes one piece of code that is
specific to the SH_CAT MdnSchena. This code gets the primary Sour ce for an
MdmDi nmensi on for which the return value of the get Nanme method is PRODUCTS _
DIM.

In most cases, an application will not search for a metadata object using its internal
name (such as PRODUCTS_DIM), and it will not use the System out . println
method to produce output. However, this sample code uses these techniques
because they offer the advantage of simplicty.

SampleMetadataDiscoverer program

To establish a connection, this program calls a hypothetical method called
connect OnLabl on a hypothetical class called MyConnect i on. To close the
connection, the program calls a method called

Discovering the Available Metadata 4-9

Sample Code for Discovering Metadata

MyConnect i on. cl oseConnect i on. The code for these methods is not shown
here, but the procedure for connecting is described in Chapter 3.

package nyt est package;

inport comsun.java.util.collections.Arraylist;
inport comsun.java. util.collections.List;
inport comsun.java.util.collections.lterator;

i nport oracl e. express. connect i on. Gonnect i on;
i nport oracl e. express. connect i on. Dat abase;

i nport oracl e. express. ndm *;

i nport oracl e. ol api . net adat a. Met adat aChj ect ;

i nport oracl e. ol api . dat a. sour ce. Sour ce;
i nport oracl e. express. ol api . dat a. ful | . Expr essDat aPr ovi der ;

public class Sanpl eMet adat abi scoverer {

static final int TERSE = O;
static final int VERBCEE = 1,

publ i ¢ Sanpl eMet adat aD scover er () {
}

public static void main(Sring[] args) {

/1 Gonnect to the service
Gonnecti on conn = M/Gonnect i on. connect OnLabl();

/1 Get the default database
Dat abase db = conn. get Def aul t Dat abase() ;

/1 Qreate an MinMet adat aPr ovi der
MinMet adat aPr ovi der np =
M/Connect i on. cr eat eMet adat aPr ovi der (conn, db);

/1 Get netadata info about the root MinSchena and its subschenas
Mingchena root = null;
try {
root = np. get Root Schena() ;
Systemout . printl n("***Root MinEchena: " + root. get Nane());
MInD nensi on neasur el m = root . get Measur eD nensi on() ;
Systemout. println("******Measure MinD nensi on: " +
neasur eD mget Nare()) ;
get Schenal nfo(root, TERSE);

4-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

} catch (BException e) {
Systemout. printl n("***Exception encountered : " + e.toSring());

}

/1 Make a Source object out of the PRODUCTS D M MinD nensi on
Systemout . println("***Making a Source object for PRODUCTS DM);

MInD nensi on productD m= nul | ;
try {
List rootD ns = root.get D nensions();
Iterator rootDmter = rootDins.iterator();
while (productDm== null & rootD mter.hasNext()) {
MInDi nensi on ab m= (MInD nensi on) rootO mter.next();
if (aD mgetNane(). equal s("PROIDUCTS O M))
product D m= ab m
}
Sour ce product = product D mget Source();
Systemout . printl n("******Nade the Source");
} catch (Bxception e) {
Systemout . println("******Exception encountered : " + e.toString());

}

/1 QA ose the connection
M/Qnnect i on. cl oseConnect i on(conn) ;

}

// hhkhkhkhhhhkhkhhhhhhdhdhhhhhhhhhdhdhdhhhhhhhhdddhdrrrhhhhdddrdxx

/1 Method for getting info about an MinSchena
public static void get Schenmal nf o(MinBchena schema, int outputStyle) {

Systemout . println("***Schena: " + schena. get Nane());
/] Get the Mingchena’ s dinension info
MinD nensi on oneD m= nul | ;
try {
Li st dins = schena. get D nensi ons() ;
Iterator dimter =dins.iterator();

Systemout. printin(" ");
S/St em OUt . pl’l ntl n("**") ’
Systemout.printin(" ");

while (dimter.hasNext()) {
oneD m= (MInDi nension) dimter.next();
get D minfo(oneDm outputXyle);
Systemout. printin(" ");

S,st em OUt prl ntl n("**") .

Discovering the Available Metadata 4-11

Sample Code for Discovering Metadata

Systemout.printin(" ");
}
} catch (Exception e) {
Systemout. println("******Exception encountered : " + e.toSring());

}

/] Get the Minschen®’ s neasure info
MinMeasur e oneMeasure = nul | ;
try {
Li st neasures = schena. get Measures();
Iterator neaslter = neasures.iterator();
whil e (neaslter. hasNext()) {
oneMeasure = (MinMeasure) neaslter. next();
get Measur el nf o(oneMeasure, out put Syl e);

Systemout.printin(" ");
Systemout. printin(" ");
}
} catch (Bxception e) {
Systemout . println("******Exception encountered : " + e.toSring());

}

/1 Get the Minschena’ s subschema info
Minschena oneSchena = nul | ;

try {
Li st subSchenmas = schera. get SubSchemas() ;

Iterator subSchenalter = subSchenas.iterator();
whi | e (subSchenal ter. hasNext ()) {
oneSchena = (MinSchena) subSchenal ter. next();
get Schenal nf o(oneSchena, VERBCEE) ;

} catch (BException e) {
Systemout . printl n("***Exception encountered : " + e.toSring());

}
}

// kkhkkhkkhkkhkkhkhhkhkkkkkhkkhkkhkhkhkhhhkhkkkkkhkkhkhkhhhhhkhkkhkkkhkhkhkhkhhhhkkkkkkhkkhkdkkkx%x

/1 Method for getting info about an MiInD nensi on
public static void getD mnfo(MInD nension dim int outputStyle) {

Systemout . println("******MinD nensi on Nane: " + di mget Nane());
Systemout . print| n("*********Pagcription: " + di mgetDescription());

if (outputSyle == VERBCEE) ({

4-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

/] Get MInD nensi onMenber Type for the MinD nensi on
try {
MInD nensi onMenber Type di nMenber Type = di m get Menber Type() ;
i f (di mvenber Type i nstanceof Min& andar dMenber Type)
Systemout . print| n("*********Neper Type: MInBt andar dMenber Type") ;
i f (di mvenber Type i nstanceof MinTi meMenber Type)
Systemout . printl n("*********Nenper Type: MInTi neMenber Type") ;
i f (di mvenber Type i nstanceof MinMeasur eMenber Type)
Systemout . printl n("*********Nponper Type: MinMeasur eMenber Type");
} catch (Exception e) {

Systemout. printl n("***Exception encountered : " + e.toSring());
}
/1 Get attributes of the MInD nension
try {

List attributes = dimgetAttributes();
Iterator attrlter = attributes.iterator();
while (attriter. hasNext())
Systemout. printl n("********x*Atrjpute: " +
((Minttribute) attriter.next()).getNane());
} catch (Exception e) {
Systemout. printl n("***Exception encountered : " + e.toSring());

}

/] Get concrete class and hierarchy type of the MinD nensi on
Sring kinddD m= nul | ;
try {
if (diminstanceof MinkLi stD nension) {
kindd O m= "ListDni;
Systemout. print| n("******x*x*" + di mget Nane() +
' is an Minki st D nensi on");

else if (diminstanceof MinH erarchy)
swi tch(((MinH erarchy) din).getH erarchyType()) {
case (MimH erarchy. UN ON_ H ERARCHY) :
kinddDm= "UionH er";
Systemout. print| n("******x*xx" + di mget Nane() +
' is a union MinH erarchy");
br eak;
case (MimH erarchy. LEVEL_H ERARCHY) :
kindGD m= "Level Her";
Systemout. print| n("******xxx" + di mget Nane() +
"is alevel MinH erarchy");
br eak;
case (MimH erarchy. VALUE H ERARCHY) :

Discovering the Available Metadata 4-13

Sample Code for Discovering Metadata

kinddD m= "ValueH er";

Systemout. print| n("******x*xx" + di mget Nane() +
' is a val ue MinH erarchy");

br eak;

}

el se {
kinddD m= "Level ";
Systemout. print| n("******x*x*" + dimget Nane() + " is an Mimevel ");

}
} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toSring());

}

/] For level MinH erarchy, get parent, ancestors, and region attributes

if (kindd D mequal s("Level Her"))
{
Systemout. printl n("*********Pgrent attribute: " +

((MInH erarchi cal O nensi on) di). get Parent Rel ati on(). get Nane());
Systemout. print| n("*********Ancestors attribute: " +

((MInH erarchi cal D nensi on) din).get Ancest orsRel ation().get Nane());
Systemout. print| n("*********Ragjon attribute: " +

((MInthi onD nensi onDefinition) dimgetDefinition())

.get RegionAttribute(). get Nane());
}

/] Get the MinD nensi onDefinition for the MInD nensi on
MInD nensi onDefi nition dinbef = dimgetDefinition();
/1 For union or |evel MinH erarchy, list the regions and default hierarchy
if ((kind&dGD mequal s("UnionHer")) || (kinddD mequal s("LevelHer")))
{
try {
Systemout . println(" ");
Systemout . printl n("*********The fol |owing are the regions of " +
di mget Nane());
Li st regi ons = ((Minmuhi onD nensi onDefi ni ti on)di nef). get Regi ons() ;
Iterator reglter = regions.iterator();
while (reglter.hasNext()) {
MInD nensi on oneRegi on = (MInD nensi on) reglter. next();
Systemout. print| n("*x**x*x*xxx%xt 4+ oneRegi on. get Nane()) ;
i f (oneRegi on. hasMinTag(MinMet adat aPr ovi der . DEFALLT_H ERARCHY _TAQ)
Systemout. print| n("****x*xxxxkxxkx(The " + oneRegi on. get Nane() +
"region is the default MinH erarchy)");
}
} catch (BException e) {
Systemout. printl n("***Exception encountered : " + e.toSring());

4-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

}

/1 For union or |evel MinH erarchy, get region info
if ((kind&dD mequal s("UnionHer")) || (kinddD mequal s("LevelHer")))
{
try {
Systemout.printin(" ");
Systemout . print| n("*********| nf or pat i on about the regions of " +
dimgetNane() + ":");
Li st regi ons = ((Mirmuhi onD nensi onDefi ni ti on)di nef). get Regi ons() ;
Iterator reglter = regions.iterator();
while (reglter.hasNext()) {
MInD nensi on oneRegi on = (MInD nensi on) reglter. next();
get O m nf o(oneRegi on, VERBCEE);

}
} catch (Exception e) {
Systemout. printl n("***Excepti on encountered : " + e.toString());
}
}
}
Systemout. printin(" ");

}

// kkhkkhkkhkkhkkhkhhkhkkkkkhkhkkhkhkhkhhhkhkhkhkkkhkkkhkhkhhhhhkhkkhkkkhkhkhkhhhhhkkkkkkhkkhkdkkkx%x

/1 Method for getting info about an MinMeasure
public static void get Measur el nf o(MinMeasur e neasure, int outputyle) {
Systemout. println("******Measure: " + neasure. get Nane());

if (outputSyle == VERBCEE) ({

/] Get the dinensions of the MinMeasure
try {
List nb ns = neasure. get D nensi ons() ;
Iterator nbniter = nDns.iterator();
while (nmb mter. hasNext ())
Systemout . printl n("*********[j ngnsi on of the Measure: " +
((MInDi nension) nbniter.next()).get Nane());
} catch (Exception e) {
Systemout. println("******Exception encountered : " + e.toSring());

Discovering the Available Metadata 4-15

Sample Code for Discovering Metadata

Output from the SampleMetadataDiscoverer program

The output from the sample program consists of text lines produced by Java
statements such as the following one.

Systemout. println("***Root Mingchena: " + root.get Nane());

The code uses the get Nane method because its return value is brief. An alternative
would be to use the get Descri pti on method, but the output would be more
verbose.

When the program is run on the Sales History schema, the output includes the
following items;

The name of the root MinSchenm, which is ROOT.

The name of the measure MUnDi nensi on for the root MinSchema. The name is
MEASUREDIMENSION.

The names and descriptions of the MinDi nensi on objects in the root
MinSchenma.

The names of the MidmVeasur e objects in the root MinSchena.

Names, descriptions, and additional information about the MUnDi nensi on and
Mdmveasur e objects in the SH_CAT MinSchena.

Because the SH _CAT Minschenm is the only subschema under the root
MidnSchenmg, its MUnDi nensi on and Mdmveasur e objects are identical to those
in the root.

Two lines that indicate that the code got the primary Sour ce for the
MdnDi nensi on that has the name PRODUCTS_DIM.

Here is the output. In order to conserve space, some blank lines have been omitted.

***Root MinSchena: ROOT
*xkxkxMpasure MInD nensi on: MEASURED MENSI ON
***Schema: ROOT

hhkhkhkhhkhhkhhkhkhhhhhhdhhhhhhhhhhhdddhhdrrhhhddixx

*xkxkx MInD nensi on Nane: CHANNELS DM
*xxxxkxxxDpgeription: Channel Val ues

hhkhkhkhhhhkhhkhhhhhdhdhhhhhhhhhhhdddhhdhrhhhdddhdx

*xxx%x MInD nensi on Nane: QUSTOMERS DM
*xxx%kxx%xPpscription: Qustoner D nension Val ues

kkhkkhkkhkkhkkhkhhkhkhkkkkhkkhkkhkkhkhkhhhhhkhkhkkkkhkhkhkhkhhhhhkkkkkkkdkhkk*x*%

4-16 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

** k% MInD mensi on Nane: PRCDUCTS O M
*x*x%kxx%xPpscription: Product D nension Val ues

hhkhkhkhhkhhkhhkhhhhhdhhhhhhhhhhhhhdddhhdrrhhhdddhdxx

*xkxkx MInD nensi on Nane: PROMOTI ONS DM
*xkkkxkkxDpscription: Pronotion Val ues

hhkhkhkhhhhkhhkhhhhhdhhdhhhhhhhhhhhdddhhdhrhhkhdddhdxx

*xxx%x MinD nensi on Nane: TIMES DM
*RkkkxxxxDescription: Tine D nension Val ues

kkhkkhkkhkkhkhkhhkhkhkkkkkkkhkhkhhhhhkhkhkkkkhkhkhkhkhhhkhhkkkkkkkdkkdkkx*%

*xkxkkMpasure: SALES AMOUNT
*HxkxkMpasure: SALES QUANTI TY
*¥xxkxxkMpasure: UNT Q0BT
*xxkxxkMpasure: UINT PR CE

***Qubschema: SH CAT
***Schema: SH CAT

kkhkkhkkhkkhkhkhhkhkhkkkkhkkkhkkhkhkhhhhhkhkhkkkkhkhkhkhkhkhhhhkkkkkk*kx**%

**xxxx MinD nensi on Nane: CHANNELS O M
*rxxxkxxxDescription: Channel Val ues
xxxxkxxxxNenber Type: MIn® andar dMenber Type
*xkxxxksx Atribute: Long Description
rrkxkxxkxNtribute: Short Description
Frkxkxxkx CHANNELS DOMis a uni on MinH erar chy

x*xxx%xx*x%*xThe fol lowing are the regions of CHANNELS DM
*k ok kK xkkxkx CHANNEL ROLLUP
Frkxkkxkxkkxkxk(The CHANNEL_ROLUP region is the default MinH erarchy)

*xkxkxxkx | nformati on about the regions of CHANNELS DM
*xxx%kx MinD nensi on Nane: CHANNEL_ROLLUP
*xxx%kxx%xPpscription: Sandard Channel s

rxxxkxxxxNenber Type: MIn® andar dMenber Type

Frkxkxxkx CHANNEL_RALLUP i s a | evel MinH erarchy
*xkxkxxkxPgrent attribute: PARENTRELATI ON

*rkxkxxkxk Ancestors attribute: ANCESTARSRELATI ON
*¥xxxkxxxxRpgion attribute: LEVELRELATI ON

Discovering the Available Metadata 4-17

Sample Code for Discovering Metadata

*rxxx%x%+*The fol lowng are the regions of GHANNEL_ROLLWP
************O_W\I\E_ TOI'N_

************O-PN\E__O_ASS

************O_W\I\E__

*xxxkkxxx | nf ormati on about the regions of CHANNEL ROLLUP:
*xkkkx MInD nensi on Nane: CHANNEL. TOTAL

*rxxxkxxxDescription: Channel Total for the standard hierarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

Fxxxkkxxx CHANNEL_TOTAL is an MinLevel

*xxkxk MInD mensi on Nane: CHANNEL. LASS

*xkxkxxkxPpgeription: Channel dass |evel of the standard hi erarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

FRkkkkxxx CHANNEL_CLASS is an MinmLevel

*rxxk MInD nensi on Nare: CHANNEL

*rxxxxxrxDescription: Channel |evel of the standard hi erarchy
rrkxkxxkxNenber Type: MIn® andar dMenber Type

FRkEkxExACCHANNEL is an Mimevel

hhkhkhkhhkhhkhhkhkhhhhdhhdhhhhhhhdhhhhdddhhdrrhhhdddhdx

*rxxxk MInD nensi on Narre: QUSTOMERS DI M
*xkxkxkkxDascription: Qustoner O nension Val ues
*rxxxkkkkMenber Type: Min®t andar dvenber Type

*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute
*********Ntri bute

Long Description
Short Description
Frst Name

Last Nane
Gender

Mrrital Satus
Year of Brth

I ncone Level
Qedit Limt
Sreet Address
Postal Code
Phone Nunber

E nai |

FRkkkkxxx QUSTOMERS D Mis a uni on MinH erar chy

xxxxxx%%*The fol | ow ng are t he regi ons of AISTOMERS DM
*kkkokkk ko xxk (FOG ROLLUP
***************(The GECI;_R]_L[P regi onis the default MimH erarChy)

4-18 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

************QST_R]_LLP

*rxxxkkxx | nformati on about the regions of QUSTOMERS DM
*k%%% MinD nensi on Nane: GEQG ROLLWP
*rxxxxkkxDescription: Standard

rxkxkxxkxNenber Type: MIn® andar dMenber Type
rrkxkxxkx(FEOG RALUP is a |l evel MiInH erarchy
FRkkkxxkxParent attribute: PARENTRELATI ON

*Rkkkkxxx Ancestors attribute: ANCESTCRSRELATI ON
*xkkxxkxxRagion attribute: LEVELRELATI ON

*xxxxxxxxThe fol [owing are the regions of GBEOG ROLLUP
Fxxxxxxxxxx % (FQS TOTAL

Kok ko kkkkkxkk RE ON

Hxxxkkxkxxk ok QUBREQ ON

*k kK kxk k% x QOUNTRY

*kkkkxkkk*xxx QTATE

************O TY

*k Kok ok kkxk k% QUSTOMER

*x%xxxkxx | nf ornati on about the regions of GEGG ROLLUP:

*xxx%x MInD nensi on Nane: GEQG TOTAL

*HRx*kxxxxxDescription: Geography Total for the standard GQUSTOMER hi erarchy
rxkxkxxkx Nenber Type: MIn® andar dMenber Type

*********GECIB_TOTN- is an MinLevel

***xxx* NInD nensi on Nane: REG ON

*rxkkxxxxDescription: Region |evel of the standard QUSTOMER hi erarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

*xxxxxx**REQON i s an MinLevel

%% MinD nensi on Nane: SUBREA ON

*rxxxkkxxDescription: Subregion |evel of the standard QUSTOMER hi erar chy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

*xxkxxxx*QUBREAON i s an MinLevel

**xxx* NInD mensi on Nane: QOUNTRY

*xkxkxkkxDascription: Gountry |evel of the standard AQUSTOMER hi erarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

xxkxxx%% QQUNTRY i s an MinLevel

***%*xx MinD nensi on Nane: STATE

*rxxxxxrxDescription: State level of the standard GUSTOMER hi erar chy
rrkxkxxkxNenber Type: MIn® andar dMenber Type

*xxxxxx** QTATE i s an MinLevel

Discovering the Available Metadata 4-19

Sample Code for Discovering Metadata

*axkk MInD nensi on Nane: A TY

xxxx%kxx%xPpscription: Aty level of the standard GQUSTOMER hi erar chy
*rxxxkkkkMenber Type: Min®t andar dvenber Type

*rkxkxxxXQTY is an Mimevel

*akkk MInD nensi on Nane: QUSTOMER

*rxxxxxxxDescription: Qustoner |evel of standard GQUSTOMER hi erarchy
*Rkkkexxx Menber Type: MinSt andar dMenber Type

FrRxxxFAFFABTOMR is an Minbevel

**xkxk MInD nensi on Nae: QUST_ROLLWP

*kkkkk k% x DpgOf | pt| on: S andard

rxxxkxxxxNenber Type: MIn® andar dMenber Type
rrxxkxxxx QUST_RALUP is a | evel MinH erarchy
FRkkkxxkxParent attribute: PARENTRELATI ON
*rxxxkxrxk Ancestors attribute: ANCESTCRSRELATI ON
*xkxxxksxRagion attribute: LEVELRELATI ON

*x*xxx%xxThe fol lowing are the regions of QUST_RALWP
************OBT TOTN_
************S‘I’A‘I‘E

************O TY

************QSTC)\E

*xkxxxkxx | nf ornati on about the regions of QUST ROLLUP:

*xxx%kx MInD nensi on Nane: QUST_TOTAL

*x*x%kxx%xPpscription: Qustoner Total for the standard CUSTOMER hi erar chy
rxkxkxxkx Nenber Type: MIn® andar dMenber Type

*********CLST_TOTN- is an MinLevel

*x%xxx MInD nensi on Nane: STATE

*rkxkxxxxDescription: State level of the standard QUSTOMER hi erarchy
xxxxkxxxxNenber Type: MIn® andar dMenber Type

*rkxkxxA*STATE 1S an Minbevel

*axkkk MInD nensi on Nane: A TY

*xxxxkxx%xPpscription: Aty level of the standard GQUSTOMER hi erar chy
*Rkkkxexxex Menber Type: MinSt andar dMenber Type

*rkxxxx*XQTY is an Mimevel

**xx%% MInD nensi on Nane: QUSTOMER

*xkxkxxkxPpgeription: Qustoner |evel of standard GUSTOMER hi erar chy
*rxxxkkkkMenber Type: Min®t andar dvenber Type

4-20 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

Frxxxxxxx QUSTOMER i s an Minbevel

hhkhkhkhhhhkhhhhhhhdhdhhhhhhhhhhhdddhhdrrhhhdddhdx

*xkx%x MInD nensi on Nane: PRCDUCTS O M
*rxxxkxrxDescription: Product O nension Val ues
rxxxkxxxxNenber Type: MIn® andar dMenber Type
*xkxxxskx pttribute: Long Description
*rxxkkxkxAtribute: Short Description
FRkkkkxxx PRODUCTS D Mis a uni on MinH erar chy

*x*x%xx%*xThe fol |l owi ng are the regions of PRCDUCTS DM
*k kK kkk k% PROD ROLLUP
***************(The Pm)_m_LlP regi onis the default MimH erarChy)

*rxxxkkkx | nformati on about the regions of PRODUCTS DM
*xxxxx MinD nensi on Nane: PROD RALLWP
*rxxxkxxxDescription: Standard

rxkxkxxekxNenber Type: MIn® andar dMenber Type
rrxxkxxxx PROD RALLUP is a | evel MinH erarchy
FRkkkxxkxParent attribute: PARENTRELATI ON

*Rkkkkxkx Ancestors attribute: ANCESTCRSRELATI ON
*xkxxxkxxRagion attribute: LEVELRELATI ON

*x*xxx%%*xThe fol | owing are the regions of PROD ROLLLP
Kk kokkkkkxxxx PRCD TOTAL

*k kKK xk k% x CATEGORY

Fok ok ok okok xokok k% % QBCATEGORY

*ok ok ok ok ok ok % %% DRODUCT

*xxxxkxxx | nf or mat i on about the regions of PROD ROLLUP

*xxx%kx MInD nensi on Nane: PROD TOTAL

*rxxxkkxxDescription: Product Total for the standard PRCDUCT hierarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

*********Fm)_TOTAL is an MinLevel

xxxx NInD nensi on Nane: CATERRY

*x*x%kxx%xPpscription: Category |evel of standard PRODUCT hi erarchy
xxxxkxxxxNenber Type: MIn® andar dMenber Type

*xkkxxx%% CATEQRY i s an MinLevel

*x%xx% MInD nensi on Nanme: SUBCATEQCRY

*rxxxxkxkxDescription: Sub-category |evel of standard PRCDUCT hierarchy
*xkkkxkkxNenber Type: MIn® andar dMenber Type

Discovering the Available Metadata 4-21

Sample Code for Discovering Metadata

*xxxxeent G BOATEGRY i s an MinLevel

**x %% NInD nensi on Nane: PRCDUCT

*HRxkxxxxxDescription: Product |evel of standard PRODUCT hi erarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

*xxxxx%x** PRODUCT i s an MinLevel

hhkhkhkhhhhkhhkhhhhhdhdhhhhhhhdhhhhdddhhdrdrhhhdddhdx

*rxxxk MInD nensi on Narre: PROMOTI ONS_ DM
*xkkkxkkxDpscription: Pronotion Val ues
rxkxkxxkxNenber Type: MIn® andar dMenber Type
*xkxxxksx Atribute: Long Description
*rxxkkxkxAtribute: Short Description
*xkxkxxxx PROMOT ONS D Mis a union MinH erar chy

*x*xx*xx%*xThe followng are the regions of PROMOII ONS O M
************FRJ\D m_LLP
Frkxkkxkxkkxkxk(The PROMD ROLLUP region is the default MinH erar chy)

*rxxxkkxx | nformati on about the regions of PROMOTIONS DM
***%%x MinD nensi on Name: PROMD ROLLLP
*xkkkxkkxDascription: Sandard Pronotions

rrkxkxxkxNenber Type: MIn® andar dMenber Type
Frkxkxxkx PROMD ROLLUP is a | evel MInH erarchy
*xkkkxkxxParent attribute: PARENTRELATI ON

*Rkkkkxkx Ancestors attribute: ANCESTCRSRELATI ON
*xkkkxkkxRegion attribute: LEVELRELATI ON

*rxxx%x%+*The fol lowng are the regions of PROMD RCLLUP
Fok ok kokok ok kk ok x % PROMD TOTAL

*k kK %k k% k% x CATEGORY

*ok ok ok okok ko ok k% % QBCATEGORY

*k kK xk Kk %% x PROMD

*xkxkxxkx| nformati on about the regi ons of PROMD ROLLUP

*xxxxx NeinD nmensi on Nane: PRO\,D_TOTN-

***x*xxxxxDescription: Promotions Total for the standard PROMOI CN hi erar chy
xxxxkxxxxNenber Type: MIn® andar dMenber Type

*********HX)\D_TOFN_ is an MinLevel

*x%x%% MInD nensi on Nanme: CATEQCRY

*xkxkxxkxPpgeription: Category |evel of the standard PROMOI ON hi erar chy
*xkxkxkkxNenber Type: MIn® andar dMenber Type

4-22 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

*xxxninxx OATEGCRY | s an MinLevel

FRk%** MIND nensi on Nane: SUBCATEQCRY

*RkkkkxxxDescription: Sub-category |evel of the standard PROMOTI ON hi erarchy
*rxxxkkkxkMenber Type: Mingt andar dvenber Type

Frxxkkkrx QUBCATEQCRY is an Minbevel

*xxx%x MInD nensi on Nane: PROMD

*x*x%kxx%xPpscription: Pronotion | evel of the standard PROMOTI ON hi erar chy
xxxxkxxxxNenber Type: MIn® andar dMenber Type

*rxxEkxEFXPROMD IS an Minbevel

kkhkkhkkhkkhkhkhhkhkhkkkkhkkkhkkhkhkhhhhhkhkhkkkkhkhkhkhkhhhhhkkkkkkkdkkdkkx*%

*xxx%x MinD nensi on Nane: TIMES DM
*RkkkxxxxDescription: Tine D nension Val ues
*xkkkxkkxMenber Type: MIng®t andar dMenber Type
*xkxxxksx Atribute: Long Description
rxkxkxxkxNtribute: Short Description
Frxxxxxxx At bute: Period Nunber
FRkkkkxxxNtribute: Period Nunber of Days
xxxxkxxxxMtribute: Period End Date
*xxxkxxx s T| MES Dl M is a union MInH erar chy

*x*xx%xx%*xThe followng are the regions of TIMES DM
************m_ m_LLP

FREkFFxHxxxx*x3F(The CAL_RALUP region is the default MinH erarchy)
************Fl S m_LLP

*xkxkxkkx|nfornmati on about the regions of TIMES DM
**xkxk MInD mensi on Nane: CAL_ ROLLUP

**xxkkk%% Dpgerj ption: Cal endar

rxxxkxxxxNenber Type: MIn® andar dMenber Type
rxxxkxxxxCAL ROALWP is a level MinH erarchy
FrxxxxxrxParent attribute: PARENTRELATI ON
*rxxxkkrxk Ancestors attribute: ANCESTCRSRELATI ON
*kkkkxxxxRagion attribute: LEVELRELATI ON

*xxxxxxxxThe fol lowng are the regions of CAL ROALWP
************YEAR

************Qm

************'\D\Iﬂ_'

************mY

Discovering the Available Metadata 4-23

Sample Code for Discovering Metadata

*xkxkxxkx | nformati on about the regions of CAL_ROLUP
*xkxkx MInD nensi on Nane: YEAR

*rxkkxxxxDescription: Year |evel of the Cal endar hierarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type
*rkxkxkxxYEAR is an MimLevel

*rxx%x MInD nensi on Nae: QUARTER

*rxxxxxrxDescription: Quarter |evel of the Cal endar hierarchy
*Rkkkexxx Menber Type: MinSt andar dMenber Type
FRkEkREFQUARTER IS an Mimevel

**xkxk MInD nensi on Narre: MONTH

*rxxxxxxxDescription: Month level of the Gal endar hierarchy
rxkxkxxkxNenber Type: MIn® andar dMenber Type

*rkkkxk kA MINTH | s an MimLevel

*xxx%x MinD nensi on Nane: DAY

*xkx%kxxxxPpgeription: Day | evel of the Cal endar hierarchy
rrkxkxxkxNenber Type: MIn® andar dMenber Type

xhRxkxkxAXDAY | s an Minmevel

*Rkkx MInD nensi on Nane: HS ROLLWP
*xkkkxkkxDpscription: H scal

*xkkkxkkxMenber Type: MIn®t andar dMenber Type
FrxxxkxrxE S RALWP is a level MinH erarchy
FRkkkxxkxParent attribute: PARENTRELATI ON
*Rkkkkxkx Ancestors attribute: ANCESTCRSRELATI ON
*rkkkkxkxRegion attribute: LEVELRELATION

*xxxxx%xxThe fol lowng are the regions of FIS ROALUP
************Fl S YENQ

************Fl S_QJARTEQ

************Fl S '\D\"’H

************Fl S VE<

************mY

*xkxkxxkx | nformati on about the regions of HS ROALU
*xxx%x MinD nensi on Nane: H S_YEAR

*rxxkxxxxDescription: Year |evel of the Fscal hierarchy
FRkkxxkxxxMenber Type: Mingt andar dMenber Type

*kkkxkxkxxF S YEAR | S an MinLevel

**xxxx % MinD mensi on Nare: FI' S QUARTER
*RxkxxxxxDescription: Quarter level of the Fscal hierarchy

4-24 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Sample Code for Discovering Metadata

rrkxkxxkxNenber Type: MIn® andar dMenber Type
*rxkkkxxkx) S QUARTER i s an MinLevel

*xkkkx MInD nensi on Nane: F S_MONTH

*xkxkxxkxPpgeription: Month | evel of the Fiscal hierarchy
rxkxkxxkxNenber Type: MIn® andar dMenber Type

*kkkxkxxxx | S MINTH i s an MinLevel

*xxx%x MinD nensi on Nane: H S WEEK

*rkkxxxxxDescription: Veéek |evel of the Fscal hierarchy
FRkkxxxxxMenber Type: Min®t andar dMenber Type

*RkkxxkxxF S \WHEK | s an MinLevel

**xkxk MInD nensi on Nae: DAY

*rkxkxxxxDescription: Day |evel of the Gal endar hierarchy
rxxxkxxxxNenber Type: MIn® andar dMenber Type

*rxxkxxFX DAY | s an MinLevel

kkhkkhkkhkkhkhkhhkhkhkkkkhkkkhkkhkhkhhhhhkhkhkkkkhkhkhkhkhkhhkhhkkkkkkkdkkdkkx*%

*xxxkkMeasure: SALES QUANTI TY

*xkxxxkxx [mensi on of the Measure: CHANNELS DM
*xxx%kxx%%x) nensi on of the Measure: QUSTOMERS DM
*x*xxx%5%x [mensi on of the Measure: PRODUCTS DM
*xxxkxx%%x[) nensi on of the Measure: PROMOTIONS DM
**xxxxxx%%x[) nensi on of the Measure: TIMES DM

**kxxMeasure: SALES AMOUNT

*rxxxkkx k[mensi on of the Measure: CHANNELS DM
*xxxxxxxx 0 nensi on of the Measure: QSTOMERS DM
*xxxxxkxx [mensi on of the Measure: PRODUCTS DM
*rxxkkkkx [mensi on of the Measure: PROMOTIONS DM
*xxxxxxxx [nensi on of the Measure: TIMES DM

*kkkkk Mbasyr e U\IT_PROE
x*xkxkx%x) mensi on of the Measure: PRCDUCTS DM
*xxx&xx%%x[) nensi on of the Measure: TIMES DM

*HxkxkMpasure: UNT_QOBT
*xxx%kxx%x[) nensi on of the Measure: PRODUCTS DM
*xxx%kxx%x[) nensi on of the Measure: TIMES DM

***Maki ng a Source object for PRODUCTS DM
*x*xxxNade the Source

Discovering the Available Metadata 4-25

Sample Code for Discovering Metadata

4-26 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

D

Chapter summary

Making Queries

This chapter introduces Sour ce objects which are the OLAP API objects that are
the specifications for queries.

List of topics

This chapter includes the following topics:

How Does the OLAP API Represent Queries?

Getting Primary Source Objects

Creating Derived Source Objects

Getting and Working with Fundamental Source Objects

Creating Constant, List and Range Source Objects

How Does the OLAP API Represent Queries?

What objects represent queries?
In the OLAP API, queries are represented by two objects:

The specification for a query is represented by a Sour ce object. Sour ce objects

merely describe the data. They are not actual result sets.

The result set of a query is a Cur sor object. Cur sor objects are the objects that
you use to actually retrieve data from the database.

Only some of the query specifications represented by Sour ce objects represent
queries that the OLAP service can retrieve from a database and process. The kinds

Making Queries 5-1

How Does the OLAP API Represent Queries?

of Sour ce objects for which you can define a Cur sor and the use of Cur sor
objects are described more completely in Chapter 9.

Sour ce objects are immutable. You cannot change a Sour ce object once it has been
created. When you want to present a Sour ce object as changeable to your users (for
example, to support what-if analysis), use a Sour ce object defined by a Tenpl at e
object. Tenpl at e objects themselves have state and can be modified at any time.
For more information on using Tenpl at e objects, see Chapter 11.

What are the subclasses of the Source class?

As outlined in the following table, the Sour ce class has different subclasses for
different data types. Each of the subclasses defines methods that are type-specific
versions of various Sour ce methods and methods that perform type-specific

operations.
Class Java Type of Element Values OLAP API Data Type

Bool eanSour ce bool ean values Boolean

Dat eSour ce Java Dat e objects Date

Nurrber Sour ce doubl e, fl oat,int,orshort Double, Float, Integer,
values, or some combination of Short, or Number.
these numerical values

StringSource Java St ri ng objects String

For more information on these subclasses, see the online reference documentation
for the OLAP API. For more information on OLAP API data type, see “Getting and
Working with Fundamental Source Objects” on page 5-9.

What kinds of Source objects are there?
The OLAP API has the following kinds of Sour ce objects:

« Primary Sour ce objects which are Sour ce objects that correspond to metadata
objects. Primary Sour ce objects have a structure that is similar to the metadata
objects from which they are created.

« Derived Sour ce objects which are new Sour ce objects that are created by
manipulating existing Sour ce objects.

« Fundamental Sour ce objects which are Sour ce objects that represent data
types and functions that are intrinsic to the OLAP API.

5-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Getting Primary Source Objects

« Constant, list, and range Sour ce objects which are simple nondimensional
Sour ce objects that you can use as operands when making selections and
calculations.

Since a Sour ce is an object, you must obtain an object reference to it in order to use
it. The way you obtain an object reference to a Sour ce varies by the kind of
Sour ce.

Getting Primary Source Objects

How to get primary Source objects
To get a primary Sour ce object you take the following steps:

1. Create the metadata data object for which you want to create a corresponding
Sour ce object as described in Chapter 2.

2. Use the get Sour ce method to create a Sour ce object from the metadata
object.

Example: Getting the Source for an MdmDimension

Assume that you have browsed through the metadata of a schema, identified an
MdnDi nmensi on that has time values for both the fiscal year and the calendar year,
and created an object named ndnili nesDi mto represent it. To get the Sour ce for
this union dimension, you use the following syntax.

Source tinesD m= ranTi nesD m get Source() ;

Structure of a Source created from an MdmDimension

A primary Sour ce that you create from an MdnDi nensi on is a specification for a
simple list of elements. This kind of Sour ce does not have any keys itself, but it
usual acts as a key to other Sour ce objects. A primary Sour ce created from an
MinDi nensi on is called a nondimensional Sour ce. You can think of it as a table
with only a single column that holds the values of its elements.

Example: Structure of a nondimensional Source

In “Example: Getting a primary Source for an MdmMeasure” on page 5-4, we
created a Sour ce named t i nresDi mfrom an MdnDi nensi on named
ndnmTi mesDi m The Sour ce named t i nesDi mhas the same structure as

Making Queries 5-3

Getting Primary Source Objects

nmdnli mesDi nCal Hi er that is illustrated in “Elements of a union MdmHierarchy”
on page 2-16. It consists of a simple non-indexed list of elements.

Example: Getting a primary Source for an MdmMeasure

Assume that there is an Mdmveasur e for which you have created an object named
nmdnni t Cost . To create a primary Sour ce named uni t Cost for ndnni t Cost ,
you use the following code:

Source unitGost = mdnhi t Gost . get Sour ce;

Structure of a Source created from a MdmMeasure or an MdmAttribute

A primary Sour ce that you create from an MidnmVeasur e oran MimAt tri but e isa
specification for a data set that has one or more keys. Each of these keys is a
primary Sour ce that was created from a MdDi nensi on. In other words, this kind
of Sour ce represents a set of data that is organized by one or more primary

Sour ce objects that have been created from MinDi mensi on objects.

You can conceptualize a primary Sour ce created from an MimVeasur e or an
MdmAt t ri but e as a multidimensional array. The Sour ce objects that were created
from MdnDi nensi on objects and that act as its keys are the dimensions of the array.
The values of its dimensions are indexes for identifying each particular cell in the
array, which contains a single value. You must specify a value for each dimension in
order to identify a value in the array. Thus, the set of elements that are in a
dimensional Sour ce is determined by the structure of the Sour ce objects that act
as its keys.

In relational terms, you can also conceptualize a Sour ce that you create from an
MimMeasur e or an MUmMAt t ri but e as a table that has one column for its elements
and one column for the elements of each of the Sour ce objects that act as its keys.
A Sour ce object that is a key to another Sour ce is often a primary key in a table in
the underlying database. Consequently, when one Sour ce is a key to another

Sour ce, you can think of the Sour ce that is the key as a foreign key. When a

Sour ce has foreign keys, the primary key of the Sour ce is a composite key (or
multisegmented key) that consists of its foreign keys. Each element of one Sour ce
is identified by a set of elements of the Sour ce objects that are its foreign keys.

The Sour ce objects that act as the keys of a dimensional primary Sour ce are
known as inputs. An input is a foreign key to a Sour ce object for which values have
not yet been specified. A Sour ce object that has an input knows the identity and
characteristics of the input Sour ce but does not know the values of the elements of
the input. As a result, when a Sour ce has inputs, the primary keys to its elements

5-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Creating Derived Source Objects

are not fully specified and the OLAP service cannot identify the elements of the
Sour ce. Thus, the query specification represented by a Sour ce that has an input is
incomplete. Consequently, you cannot create a Cur sor on a primary Sour ce and,
therefore, you cannot retrieve its values into the application. To retrieve the values
represented by a dimensional primary Sour ce, you must derive a new Sour ce
from it by specifying elements for the values of the Sour ce objects that act as its
keys as described in “Selecting Elements Based on Key Values” on page 6-1.

Example: Structure of a dimensional Source

In “Example: Getting a primary Source for an MdmMeasure” on page 5-4, we
created a primary Sour ce named uni t Cost from the MimVeasur e named
nmdmuni t Cost . The Sour ce named uni t Cost has a structure that is similar to the
structure of the MimVeasur e named ndrni t Cost illustrated in “Elements of an
MdmMeasure” on page 2-19. It consists of elements that are indexed by the
elements of pr oduct sDi mand ti mesDi m The specification for the primary Source
named uni t Cost does not include values for the Sour ce objects that act as its
keys (that is, pr oduct sDi mand ti nesDi m). In order to retrieve one or more
elements of uni t Cost , you must specify the key values for pr oduct sDi mand for
t i mesDi mthat will uniquely identify the desired elements. For information on
selecting key values, see “Selecting Elements Based on Key Values” on page 6-1.

Creating Derived Source Objects

How to create derived Source objects

You can derive new Sour ce objects from existing Sour ce objects by using the
methods in the Sour ce class and its subclasses or by using the gener at eSour ce
method in the Tenpl at e class. Tenpl at e objects are extensions to the OLAP API
that represent end-user concepts such as cubes, edges, and selections. They form a
bridge between the requirements of the user interface and the powerful, but
abstract, OLAP API logical model. Unlike other OLAP API objects, Tenpl at e
objects have state. Consequently, they can be modified at any time, even after they
have been incorporated into some larger Sour ce. The Sour ce defined by a
Tenpl at e can be said to be dynamic in the sense that it can be changed. For more
information about Tenpl at e objects and how to define and work with Sour ce
objects within them, see Chapter 11.

Introducing the OLAP API Source methods
The OALP API includes primitive methods and shortcut methods.

Making Queries 5-5

Creating Derived Source Objects

Primitive methods

The primitive j oi n method is the single most important Sour ce creation method
in the OLAP API. The primitive j oi n method combines the elements of this

Sour ce (sometimes called the base Sour ce) and another Sour ce (called the joined
Sour ce) and filters this result set using a third Sour ce (called the comparison
Source) in the specified manner. Using an optional parameter, you can also use the
primitive j oi n method to add the joined Sour ce as a dimension (or key) to the
new Sour ce. The primitive j oi n method is discussed in more detail in
“Introducing the join method” on page 5-7 and documented in detail the online
reference documentation for the OLAP API.

The following table outlines the other primitive methods in the OLAP API.

Primitive Method Description
alias Creates a new Sour ce object that is the same as the base
Sour ce object, but that has the base Sour ce as its type.
di stinct Removes the duplicate rows (tuples) in this Sour ce
object.
extract When the elements of the base Sour ce are other Sour ce

objects, creates a new Sour ce that has the base Sour ce
as an extraction input.

position Creates a new Sour ce object with the same structure as
the base Sour ce and whose elements are the position of
the elements of the base Sour ce.

val ue Creates a new Sour ce object that has the elements of the
base Sour ce and that has the base Sour ce as an input.

These methods are documented in the online reference documentation provided for
the OLAP API. For more information about using these methods to create derived
Sour ce objects, see Chapter 6 and Chapter 7.

Shortcut methods

The OLAP API provides various shortcut and convenience methods that you can
use instead of the primitive j oi n method. These methods include shortcuts for the
primitive j oi n method, as well as shortcut methods such as appendVal ue, at ,
cumul ativel nterval ,first,ge,interval,sel ect Val ues, and

sort Ascendi ng.

5-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Creating Derived Source Objects

These methods are documented in the online reference documentation provided for
the OLAP API. For more information about deriving Source objects using these
methods, see Chapter 6 and Chapter 7.

Introducing the join method

The most important primitive method in the OLAP API is the primitive j oi n
method.

Syntax: the primitive join method
The signature of the primitive j oi n method is shown below:

Sour ce j oi n(Sour ce j oi ned,

Sour ce conpari son,
int conpari sonRul e,
bool ean vi si bl €)

The parameters are described below:

j oi ned is the Sour ce that you want to join to this Sour ce.

conpari son is the Sour ce that you want to use as a filter for the join.

conpari sonRul e is the rule that determines how the method uses the
comparison Sour ce to filter the result set. Specify a value for this parameter
using one of the Sour ce. COMPARI SON_RULE fields.

COVPARI SON_RULE_SELECT specifies that the new Sour ce contains only
those elements that appear in the comparison Sour ce.

COVPARI SON_RULE_ASCENDI NG, like COVPARI SON_RULE_SEL ECT,
specifies that the new Sour ce contains only those elements that appear in
the comparison Sour ce, additionally, once the rows of the cross-product
have been intersected by the comparison Sour ce, the remaining rows are
sorted by the value of the joined Sour ce according to the position defined
in the comparison Sour ce.

COVPARI SON_RULE_DESCENDI NG, like COVPARI SON_RULE_SEL ECT,
specifies that the new Sour ce contains only those elements that appear in
the comparison Sour ce, additionally, once the rows of the cross-product
have been intersected by the comparison Sour ce, the remaining rows are
sorted by the value of the joined Sour ce according to the reverse position
defined in the comparison Sour ce.

Making Queries 5-7

Creating Derived Source Objects

« COVPARI SON_RULE_ REMOVE specifies that the new Sour ce created by a
join contains only those elements that do not appear in the comparison
Sour ce.

« Vi si bl eisaflag that specifies whether you want the joined Sour ce object to
be an output of the new Sour ce. Whent r ue is specified, the joined Sour ce
becomes a dimension of the new Sour ce and the values of the joined Sour ce
become the elements of that dimension.

The result of the primitive join method

The result of the join method is a new Sour ce object. Depending on the complexity
of the Sour ce objects that you are joining, the resulting Sour ce object may be
simple or complex:

= When you join two nondimensional Sour ce objects, the new Sour ce is
dimensioned by the joined Sour ce and the new Sour ce is simply the
cross-product of the two Sour ce objects.

= When you join dimensional Sour ce objects, the new Sour ce has the combined
dimensionality of the base, joined, and comparison Sour ce objects.
Additionally, when you specify t r ue for the value of the vi si bl e parameter,
the joined Sour ce becomes a dimension or key of the new Sour ce. (For details
on how the dimensions of the new Sour ce are determined, see the online Help
for the primitive j oi h method.)

Example: Select option of join

Assume that you have a Sour ce named ny St at es that does not have any inputs
or outputs and whose elements are CA, MA, and NY and a Sour ce named

my Pr oduct s that does not have any inputs or outputs and whose elements are
Dresses - Girls and Shirts - Girls. Now we issue the following code.

Sring[] values = new Sring[] {"Ny', "CA'};
Sour ce newSour ce = nyProducts. j oi n(nyStat es, val ues,
Sour ce. COMPAR SON RLE_SHLECT, true);

When processing this code, the OLAP service takes the cross-product of

myPr oduct s and my St at es, and then selects from the result only those rows for
which the value of region is in the set of values {"NY", "CA"}. Another way of
describing this processing is to say that the st at es output (column) is intersected
with the comparison set {"NY", "CA"}.

5-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Getting and Working with Fundamental Source Objects

This yields the result set shown below. Notice that the rows containing "MA" have
been removed.

Input Elements

states product
CA Dresses - Girls
CA Shirts - Girls
NY Dresses - Girls
NY Shirts - Girls

Getting and Working with Fundamental Source Objects

What is Type in the OLAP API?

Type in the OLAP API is the set of Sour ce elements from which a Sour ce object
obtains the values of its elements. You can retrieve the OLAP API type of a Sour ce
using the get Type method that the Sour ce class inherits from the

Dat aDescri pt or class.

When you create a new Sour ce object by using a method on an existing Sour ce
object, typically the type of the new Sour ce object is the base Sour ce. In other
words, the elements of the new Sour ce object are obtained from the set of elements
of the base Sour ce object.

For example, assume that you have a Sour ce object named cust oner whose
elements are the unique numerical identifier for each customer. The OLAP API type
of customer is Integer. Assume, additionally, that you use the sel ect method on
customer to create another Sour ce object named cust oner Sel ecti on. The
OLAP API type of cust onmer Sel ecti onis cust oner.

Making Queries 5-9

Getting and Working with Fundamental Source Objects

What are the OLAP API data types?
The OLAP API data types and their relationship to each other are shown in the

following table.

OLAP API
Data Type

Description

Value

A Sour ce object with any OLAP API data type.

Date

A Source object whose elements are Java Dat e objects.

Number

A Sour ce object with any of OLAP APl numerical data type.

Double

A Sour ce object whose values have the Java doubl e data type.

Float

A Sour ce object whose values have the Java f | oat data type.

Integer

A Sour ce object whose values have the Java i nt data type.

Short

A Sour ce object whose values have the Java short data type.

String

A Source object whose elements are Java St r i ng objects.

Boolean

A Sour ce object whose values have the Java bool ean data type.

Empty

A Sour ce object that does not have any elements defined for it.

Null

A Sour ce object that has a single element with the value of nul | .

Retrieving the OLAP API data type of a Source

You can retrieve the OLAP API data type of a Sour ce using the get Dat aType
method that the Sour ce class inherits from the Dat aDescr i pt or class.

Also, because the OLAP API is an object-oriented API, it provides a
Fundanent al Met adat aObj ect to represent each of the fundamental Java data
types and the Java St r i ng object. These objects are known as the OLAP API data
types. You can create a Sour ce object that represents a
Fundanent al Met adat aObj ect .

Creating Objects that Represent OLAP API Data Types

You can retrieve the objects that represent the OLAP API data types using methods

on the Fundanent al Met adat aPr ovi der . Each of these methods returns a

5-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Getting and Working with Fundamental Source Objects

Fundanent al Met adat aQbj ect . The OLAP API data types and the methods you
use to retrieve them are shown in the following table.

OLAP API Data Type

Method That Retrieves This Data Type

Value get Val ueDat aType
Boolean get Bool eanDat aType
Date get Dat eDat aType
Number get Nunber Dat aType
Double get Doubl eDat aType
Float get Fl oat Dat aType
Integer get | nt eger Dat aType
Short get Short Dat aType
String getStringDataType
Empty get Enpt yDat aType
To retrieve an empty Sour ce, use the
Dat aPr ovi der . get Enpt ySour ce method.
Null get Voi dDat aType

To retrieve a null Sour ce, use the
Dat aPr ovi der . get Voi dSour ce method.

Steps: Creating a Source that represents an OLAP API data type
To create a Sour ce object that represents an OLAP API data type, take the

following steps:

1. Getthe Fundanent al Met adat aPr ovi der by using the
get Fundanent al Met adat aPr ovi der method on the Dat aPr ovi der class.

2. Create the Fundanent al Met adat aChj ect object that represents the OLAP
API data type by using the appropriate method on the
Fundanent al Met adat aPr ovi der class.

3. Create a Sour ce from the objects returned in Step 1 by using the
Fundanent al Met adat aCbj ect . get Sour ce method.

Making Queries 5-11

Creating Constant, List and Range Source Objects

Example: Creating a Source for the OLAP API Boolean data type

The code shown below creates a Sour ce object that represents the OLAP API
Boolean data type.

Fundanent al Met adat athj ect nyFundanent al Met adat aPr ovi der =
nyDat aPr ovi der . get Fundanent al Met adat aPr ovi der () ;
Fundanent al Met adat aChj ect ol apBool eanFundChj =
nyFundanent al Met adat aPr ovi der . get Bool eanType() ;
Sour ce ol apBool eanDat aType = ol apBool eanFund(j . get Sour ce() ;

Now you can use ol apBool eanDat aType to check to see if the OLAP API data
type of any other Sour ce is Boolean.

Creating Constant, List and Range Source Objects

How to create constant, list, and range Source objects

You create simple nondimensional Sour ce objects that you can use as operands by
using the cr eat eConst ant Sour ce, cr eat eLi st Sour ce, and
cr eat eRangeSour ce methods on the Dat aPr ovi der class.

Example: Creating a constant Source

Assume that you have an object named nyDat aPr ovi der that represents the
Dat aPr ovi der used by your application and that, for computational purposes,
you want a Sour ce with a single element that has a value of 4. To create this
Sour ce you issue the following code

Nunber Sour ce nyConst ant Four = nyDat aPr ovi der . cr eat eConst ant Sour ce(4) ;

5-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

S

Selecting Data

Chapter summary
This chapter discusses how to make data selections using the OLAP API.

List of topics
This chapter includes the following topics:

= Selecting Elements Based on Key Values
= Selecting Elements Based on Element Values
= Selecting Elements Based on Rank

= Selecting Elements Based on Hierarchical Position

Selecting Elements Based on Key Values

Why you need to specify values for the keys of a Source

As mentioned in “What objects represent queries?”” on page 5-1, even though it
helps to think of a Sour ce object as a tabular or dimensional result set, a Sour ce
actually is not a result set. Instead, a Sour ce object is a specification for a query that
defines a result set. As part of this specification, a Sour ce object keeps track of the
keys for which values have been specified. Looking at keys from this point of view,
you can say that a Sour ce object has two different types of keys:

= Inputs which are keys for which values have not yet been specified. When a
primary Sour ce object has other Sour ce objects that act as its keys, these
Sour ce objects are always inputs. Thus, the query specification represented by a
dimensioned primary Sour ce or any other Sour ce that has an input is

Selecting Data 6-1

Selecting Elements Based on Key Values

incomplete. You cannot create a Cur sor for this type of Sour ce and,
consequently, you cannot retrieve the query specified by the Sour ce.

« Outputs which are keys for which values have been specified. When a Sour ce
has only outputs, the primary key to its elements are fully specified. The query
that this type of Sour ce specifies is determinable. You can create a Cur sor for
this type of Sour ce and use the Cur sor to retrieve the data set specified by the
Sour ce.

If you want to create a Cur sor on a Sour ce object, all of the keys of the Sour ce
must be outputs. Consequently, to display a primary dimensional Sour ce, you
must first specify values for the keys of that Sour ce. Specifying values for the keys
of a Sour ce is called changing inputs to outputs.

How to turn inputs into outputs?

The need to specify values for the keys of a dimensional Sour ce with inputs is so
universal, that the OLAP API has aj oi n shortcut method to support it. To specify
values for the keys of a dimensional Sour ce, thereby changing an input to an
output, use the following j oi n method where the original Sour ce is the Sour ce
object that has the input that you want to become an output and the joined Sour ce
is the input you want to change.

join (Source joi ned)
This is a shortcut for the following j oi n method.
join (joined, enptySource, Source. COMPAR SON RULE REMDVE, true);

Note that the comparison Sour ce is the empty Sour ce that has no elements.
Consequently, even though the COVPARI SON_RULE REMOVE constant is specified,
no elements are removed as a result of the comparison. Also, because the vi si bl e
flag is setto t r ue, the joined Sour ce becomes an output of the new Sour ce.

Additionally, since many of the methods of Sour ce class and its subclasses are
actually shortcut and convenience methods that implicitly call the j oi n method,
some of these methods also change inputs to outputs.

How does the structure of a dimensional Source determine its processing?

The way a dimensional Sour ce is processed is determined by its structure. When a
Sour ce has both inputs and outputs, its elements (tuples) are identified by the set
of its input and output values. In this case, each set of possible input values
typically identifies a number of elements (tuples). Within this subset of data, the

6-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Key Values

tuples are arranged by output. When a Sour ce has inputs, many Sour ce methods
work on this subset of data.

For example, when a Cur sor is opened on a Sour ce, the OLAP service loops over
its outputs in order to produce the data, but it (arbitrarily) qualifies away any of its
inputs. Additionally, the OLAP service loops over the outputs of a Sour ce when it
processes any aggregation methods like aver age and t ot al . In this sense, moving
a Sour ce from the list of inputs to the list of outputs is similar to moving a column
out of the GROUP BY list in SQL.

For more information on the structure of a Sour ce with inputs, see “Finding the
position of elements” on page 6-7; for more information on fastest-varying and
slowest-varying columns, see “What is the effect of input-output order on Source
structure?” on page 6-3.

What is the effect of input-output order on Source structure?

The structure of a dimensioned Sour ce is determined by the order in which you
turn the inputs of the Sour ce into outputs. The fastest-varying column is always
the column that contains the elements of the Sour ce. For a Sour ce that has
outputs, the first output that was created is the fastest-varying key column; the last
output that was created is the slowest-varying key column.

When you string two j oi n methods together in a single statement, the firstj oi n
(reading left to right) is processed first. Consequently, when creating a single
statement containing several j oi n methods, make sure that the input that you want
to be the fastest-varying of the new Sour ce is the joined Sour ce in the firstj oi n
in the statement.

You can retrieve the inputs of a Sour ce using the get | nput s method that the
Sour ce class inherits from the Dat aDescr i pt or class. You can retrieve the
outputs of a Sour ce using the get Qut put s method that the Sour ce class inherits
from the Dat aDescri pt or class.

Example: Effect of input-output order on Source structure

Assume that you have a primary Sour ce hamed uni t Cost that you created from
a Mimveasur e object named ndnni t Cost . The Sour ce named uni t Cost has
inputs of t i nresDi mand pr oduct sDi m and no outputs.The t i mesDi mand

pr oduct sDi mSour ce objects do not have any inputs or outputs. The order in
which you turn the inputs of uni t Cost into outputs determines the structure of a
Sour ce on which you can create a Cur sor.

Selecting Data 6-3

Selecting Elements Based on Key Values

Joining first to timesDim

Assume also that you issue the following code to turn the inputs of the primary
Sour ce named uni t Cost into outputs.

Source newSource = unitQost.join(tinesDn).joi n(productshm;

This code strings two j oi h methods together. Because

uni t Cost.joi n(ti mesDi n) is processed first, the key values for t i mesDi mare
the first key values specified. You can also say that t i mesDi m is the first output
defined for the new Sour ce. After the firstj oi n is processed, the query
specification represented by the resulting unnamed Sour ce consists of the name of
its input (that is, pr oduct sDi i) and both the name and the element values of its
output (that is, t i mesDi m). You can think of the new unnamed Sour ce as having
the structure depicted below.

Output2 Outputl Element
product sDim timesDim uni t _Cost
Boys
49780

After the second j oi n is processed, the query specification represented by
newSour ce consists of the names and the element values of both of its output (that
is, t i mesDi mand pr oduct sDi n). Since t i mesDi mwas the first key for which
values were specified, it is the fastest-varying output and the new Sour ce has the
structure depicted below.

Output2 Outputl Element
product sDim ti mesDi m uni t _Cost
Boys 1998 4,000
Boys
Boys 31-DEC-01 10
49780 1998 500

6-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Element Values

Output2 Outputl Element

49780

49780 31-DEC-01 9

Joining first to productsDim

Assume that you issue the following code to turn the inputs of unitCost into
outputs.

Source newSource = unitQGost.joi n(productshDim.join(tinesDm;

This code strings two j oi h methods together. Because

uni t Cost . j oi n(product sDi n) is processed first, pr oduct sDi mis the first
output defined for the new Sour ce. Consequently, pr oduct sDi mis the
fastest-varying output and the new Sour ce has the structure depicted below.

Output2 Outputl Element
timesDim productsDim unitCost
1998 Boys 4,000
1998
1998 49780 500
31-DEC-01 Boys 10
31-DEC-01
31-DEC-01 48780 9

Selecting Elements Based on Element Values

How you select elements based on value

Typically, you use one of the following shortcut methods to select one or more
elements in a Sour ce based on its value:

« Source. sel ect (Bool eanSour ce), Sour ce. sel ect Val ue(Sour ce),
Sour ce. sel ect Val ues(Sour ce) , and
Sour ce. sel ect Val ues(Sour ce[]) methods.

Selecting Data 6-5

Selecting Elements Based on Element Values

« Bool eanSour ce. sel ect Val ue(bool ean) and
Bool eanSour ce. sel ect Val ues(bool ean[]) methods.

« Nunber Sour ce. sel ect Val ue(doubl e),
Nunmber Sour ce. sel ect Val ue(int),
Nurmber Sour ce. sel ect Val ue(fl oat), and
Number Sour ce. sel ect Val ue(short) methods and the
Nunmber Sour ce. sel ect Val ues(doubl e[]),
Number Sour ce. sel ect Val ues(float[]),
Number Sour ce. sel ect Val ues(int[]),and
Number Sour ce. sel ect Val ues(short[]) methods.

« StringSource. sel ectVal ue(String) and
StringSource. sel ect Val ues(String[]) methods.

You can also select elements using the primitive j oi n method by using the
COVPARI SON_RULE_SEL ECT constant as shown below.

Source Source::join (Source joined,
Sour ce conpari son,
Sour ce. COMPAR SON_ RULE._SHLECT,
bool ean vi si bl €)

Example: Selecting based on element values

Assume that you have a primary Sour ce objects named t i mresDi mthat you
created from an MdDi nensi on object named ndnili mesDi mand whose elements
are the calendar values.

To select only the those values for 1996, you can issue the following code.

Source tinesSel = tinesD msel ect Val ue("1996");

Example: Selecting based on key values and element values

Assume that you have three primary Sour ce objects named pr oduct sDi m
pronoti onsDi m channel sDi mandti mesDi m that you got from

MdmDi nensi on objects and that you have a primary Sour ce object named sal es
that you got from an Mimveasur e object. The pr oduct sDi m pr onoti onsDi m
channel sDi mandt i mesDi mobjects do not have any keys (that is, they are not
dimensional). The sales Source object is multidimensional. It has pr oduct sDi m
pronot i onsDi m channel sDi mandti mesDi mas dimensions or keys.

6-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Rank

To select all of the products that sold more than $10,000,000 in 1996, you can issue
the following code.

Source pronotionSel = pronotionsD msel ect Val ue("Prono total ");

Sour ce channel Sel = channel sO m sel ect Val ue(" Channel total ");

Source tineSel = tinesO msel ect Val ue("1996");

Source bi gSel | ers = product sDO msel ect (sal es. gt (10000000)) .
join(promotionSel).join(timeSel).join(channel Sel);

Selecting Elements Based on Rank

What is ranking?

When a Sour ce is sorted according to some attribute (or attributes), then the
position of the elements of the Sour ce represents a kind of ranking — the so-called
unique ranking. Finding the position of an element is discussed in “Finding the
position of elements” on page 6-7.

There are many other types of rankings that are not unique and that are called
variant rankings. These are discussed in “Ranking elements in different ways” on
page 6-10.

Finding the position of elements

The posi ti on method returns a Sour ce that represents the position of any given
element in the original Sour ce. The new Sour ce has the type of Integer and has
the original Sour ce as an input. The posi t i on method returns a Sour ce that
represents the position of any given element of the base Sour ce. If the base

Sour ce is sorted according to some attribute (or attributes), then the position
represents a kind of ranking - the so called unique ranking.

Selecting Data 6-7

Selecting Elements Based on Rank

You can also use the shortcut methods described in the following table to find
elements based on their position in a Sour ce object or to find the position of
elements with the specified value or values.

Method

Description

at (pos)

Identifies the values of elements in a Sour ce that have
the specified position. There are two versions of this
method. One version allows you specify the position
using a Sour ce object; in the other, you specify position
using ani nt value.

first()

Identifies the element or elements in a Sour ce that have
position 1.

last ()

Identifies the element or elements in a Sour ce that have
the largest position value.

posi ti onOf Val ue(val ue)

Identifies the positions of elements in a Sour ce that
have the specified value. There are two versions of this
method. One version allows you specify the value using
a Sour ce; in the other, you specify value using a
String.

posi ti onOf Val ues(val ues)

Identifies the positions of elements in a Sour ce that
have the specified values. There are two versions of this
method. One version allows you specify the value using
a Sour ce; in the other, you specify value using an array
of St ri ng objects.

Example: Finding the positions of elements when there are no keys

Assume that there is a Sour ce named pr oduct s whose elements are the unique
identifiers of products. To create a new Sour ce whose elements are the positions of
the elements of pr oduct s, issue the following code.

Sour ce product sPosi ti on = products. position();

6-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Rank

A tabular representation of pr oduct sPosi t i on showing the position of the
elements in pr oduct s is shown below. Note that the posi t i on() method is one

based.

Input

Element

product s

Integer

395

400

405

415

420

425

|0 B~ W N

Example: Finding the positions of elements when there are inputs

Assume that there is a Sour ce named uni t sSol dByCount ry (shown below) that
has an input of pr oduct s, an output of count r i es, and elements whose values
are the total number of units for each product sold for each country.

Input Output Element Position
pr oduct countries Integer
395 Australia 500 1
395 United 800 2
States
49780 Australia 10000 1
49780 United 50 2
States
49780

Selecting Data 6-9

Selecting Elements Based on Rank

To create a new Sour ce named posi ti onUni t sSol dByCount r y whose elements
are the positions of the elements of uni t sSol dByCount ry, issue the following
code.

Sour ce posi tionthitsSol dByGountry = unitsSol dByGountry. position();

Ranking elements in different ways

The following table provides example code for ranking elements in different ways
where the Sour ce (named base) whose elements you want to rank has two inputs
named i nput 1 and i nput 2.

Rank Example Code

ascending Sour ce sortedTupl es = base. sort Ascendi ng()

descending | Source sortedTupl es = base. sort Descendi ng()

same order | Source sortedTupl es = base. sort Ascendi ng

as another (Source sort Val ue)

Sour ce

reverse Sour ce sortedTupl es = base. sort Descendi ng

order as (Source sort Val ue)

another

Sour ce

minimum Sour ce sortedTupl es = base. j oi n(i nput 1) . sort Descendi ng(i nput 2) ;

Sour ce equi val ent RankedTupl es =
sortedTupl es. j oi n(i nput 2, input?2);
Nunber Sour ce nminRank = sort edTupl es.
posi ti ond Val ues(equi val ent RankedTupl es) . ni ni nung) ;

The minimum ranking differs from unique ranking in the way it deals with
ties (elements in the Sour ce that share the same value for the attribute). All
ties are given the same rank, which is the minimum possible.

maximum Sour ce sortedTupl es = base. | oi n(i nput 1) . sort Descendi ng(i nput 2) ;
Sour ce equi val ent RankedTupl es =
sortedTupl es. j oi n(input 2, input?2);
Nunber Sour ce naxRank = sort edTupl es. posi ti on(f Val ues
(‘equi val ent RankedTupl es) . naxi nun{) ;

The maximum ranking differs from unique ranking in the way it deals with
ties (elements in the Sour ce that share the same value for the attribute). All
ties are given the same rank, which is the maximum possible rank.

6-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Rank

Rank

Example Code

average

Sour ce sortedTupl es = base. | oi n(i nput 1) . sort Descendi ng(i nput 2;
Sour ce equi val ent RankedTupl es =
sortedTupl es. j oi n(i nput 2, input?2);
Nunber Sour ce aver ageRank = sort edTupl es. posi ti on(Val ues
(‘equi val ent RankedTupl es) . aver age() ;

The average ranking differs from unique ranking in the way it deals with
ties (elements in the Sour ce that share the same value for the attribute). All
ties are given the same rank, which is equal to the average unique rank for
the tied values.

packed

Sour ce tupl es = base.join(o
utputl);
Source firstEui val ent Tupl e = tuples.join(input2, input2. first();
Sour ce packedrRank = firstEqui val ent Tupl e.j oi n(tupl es).
sort Descendi ng(i nput 2) . posi ti onf Val ues(base. val ue() .
join(tine.value());

Packed ranking, also called dense ranking, is distinguished from minimum
ranking by the fact that the ranks are packed into consecutive integers.

percentile

Sour ce sortedTupl es = base. | oi n(i nput 1) . sort Descendi ng(i nput 2) ;
Sour ce equi val ent RankedTupl es =
sortedTupl es. j oi n(i nput 2, input?2);
Nunber Sour ce ninRank = sortedTupl es.
posi ti onCF Val ues(equi val ent RankedTupl es) . mi ni nung) ;
Nunber Sour ce percentile = nminRank. mnus(1).tinmes(100).
di v(sortedTupl es. count ());

This code uses the following formula to calculate the percentile of an
attribute A for a Sour ce S with Nelements.

Percentile(x) = nunber of el enents
(for which the Adiffers fromA(x))
that cone before x in the ordering * 100 / N

The percentile, then, is equivalenttothe mi ni mumrank -1 * 100 / N

Selecting Data 6-11

Selecting Elements Based on Hierarchical Position

Rank Example Code

ntile Nunber Source n = ... ;
Sour ce sortedTupl es = base. j oi n(i nput 1) . sort Descendi ng(i nput 2) ;
Nunber Sour ce uni queRank = sortedTupl e.
posi ti onCf Val ues(base. val ue(). j oi n(i nput 1. val ue());
Nunber Source ntil e = uni queRank. ti nes(n).
di v(sortedTupl es. count()).ceiling();

In this code, the ntile ranking for a given n is defined by dividing the
ordered Sour ce of size count into n buckets, where the bucket with rank k
is of size. The ntile rank is equivalent to the following formula.

cei i ng*((uni queRank*n)/count).

Selecting Elements Based on Hierarchical Position

Primary Source objects that you use to navigate a hierarchy

To navigate with a hierarchy you need to create two primary Source objects: a
primary Sour ce that corresponds to the hierarchy, and a primary Sour ce that
represents the parent-child relationships within this hierarchy.

Creating a primary Source that represents a default hierarchy

To do create a primary Sour ce that represents a default hierarchy, you take the
following steps:

1. Retrieve the default hierarchy of the MinDi mensi on by taking the following
steps:

a. Check to see if the MinDi mensi on is a union dimension by checking to see
if it has an Mdmuni onDi mensi onDef i ni ti on.

b. If the MdnDi mensi on has an Mdmni onDi mensi onDef i ni ti on, then
check to see if it has a regions that are MdHi er ar chy objects.

c. Ifthe MinmDi mensi on has regions that are MinHi er ar chy objects, select
the MdnHi er ar chy that is its default hierarchy.

2. Make the default hierarchy a Sour ce object, by calling the get Sour ce method
on it.

6-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Hierarchical Position

Sample code: Retrieving a default hierarchy

The get MyDef aul t Hi er ar chy retrieves the default hierarchy of an

MdnDi nensi on is shown below. This method calls the get MyRegi ons method
that retrieves the regions of an MdnDi nensi on which, in turn, calls the

get MyMdnini onDi nensi onDef i ni ti on method that checks to see if the
MinDi nensi on is a union dimension.

/!l nethod that gets all of the Regions of an Minb nensi on
private MinH erarchy get M/Defaul t H erar chy(MInD nensi on ndnb n) {
Li st hierarchies = get M/Regi ons(mdndi n) ;
if (hierarchies == null)
return null;
for (Iterator iterator = hierarchies.iterator(); iterator.hasNext();) {
MInH erarchy hier = (MinH erarchy) iterator. next();
i f (hier. hasMinTag(MinMet adat aPr ovi der . DEFALLT_H ERARCHY _TAQ)
return hier;
}

return nul |;

}

/] nethod that gets all of the Regions of an MinD nensi on
private List get MRegi ons(MInD nensi on ndnD nension) {
Minthi onD nensi onDefi nition uni onO nDef =
get MyMinthi onDi nensi onDef i ni tion (ndnD nension);
if (unionDnDef !=null)
return uni onD nDef. get M/Regi ons() ;
return nul l;

}

/1 nethod that checks to see if MinD nension is a Lhi onD nensi on
privat e Minthi onD nensi onDefi ni ti on get MyMiInthi onD nensi onDef i ni ti on(
MinD nensi on
ndnD nension) {
MInD nensi onDefi nition di nDef = mdnD nensi on. get Definition();
if((dimef = null) || (!(dinbef instanceof Minhi onD nensionDefinition)))
return null;
return (Minthi onD nensi onDefi nition) di nbef;
return nul l;

}

Selecting Data 6-13

Selecting Elements Based on Hierarchical Position

Creating a primary Source for the parent-child relationship

If an MidnHi er ar chy is a level hierarchy, it’s elements are in parent-child
relationship to each other. To create a Sour ce object that represents the parent-child
relationships within a hierarchy, you take the following steps:

1. Create an MimAt t r i but e that represents the parent-child relationships by
using the get Par ent Rel at i on method on the MinHi er ar chy.

2. Create a Sour ce from the MdmAttribute created in step 1 by using the
get Sour ce method.

Creating Source objects for other relationships

A feature of the OLAP API representation of a relation, such as a parent-child
relation, is that it is directional. A Sour ce object that represents a parent-child
relation maps the children to the parent, but not the parents to the children. By
contrast, in SQL a table that represent thea realtionship is non-directional. The basic
reason is that the OLAP API, unlike SQL, uses the structure of Sour ce objects to
automatically determine how they j oi n. Since in the OLAP API relations are
directional, if you want a relation to be in the opposite direction, you need to invert
it.

Assume that there is a Sour ce named par ent Chi | d on a hierarchy named

| evel Hi er ar chy. To create Sour ce objects that represent other relationships, you
j oi n these two Sour ce objects in different ways. In other words, as shown in the
followng table, you can create new Sour ce objects that represent the children,
siblings, and grandparents in the hierarchy by using the j oi n method on the

Sour ce that represents the parentCihld relation.

Code Description

Sour ce chil dParent = Selects those elements of the hierarchy
| evel H erarchy. j oi n(parent Chi | d, whose parent is the given element.
| evel H erarchy. val ue());

Sour ce siblingParent = Selects those elements of the hierarchy
| evel H erarchy. j oi n(parent Chi | d, whose parent is the same as the parent of
parent); the given element.

Source grandParent = Selects those elements of the hierarchy
parent Chi | d. j oi n(| evel H erar chy, whose parents are the parents of the
parent Chi | d) ; given element.

6-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Hierarchical Position

Example: Drilling down

Assume that there is an MdnDi mensi on object for which you have created a

Sour ce named pr oduct sDi m Assume also that this MinDi mensi on object has a
default hierarchy for which you have created an MdVHi er ar chy called

prodSt dHi er Gbj and a Sour ce called pr odHei r . You use the following code to
drill down the "Trousers - Women" division of the hierarchy.

/] Get the parent relation fromthe hierarchy
MinAttri but e prodH erParent j = prodStdH er (bj . get Parent Rel ati on();
S ringSource prodH erParent = prodH er Parent (j . get Sour ce() ;
/1 Select children of Trousers - Vénen
/] - Reverse the parent relation to get a children relation
Source prodH erhildren = prodH er. j oi n(prodH er Parent, prodH er.val ue());
/I - Note the join is hidden because we only want the chil dren of
[/l - Trousers - VWnen, and not Trousers - Vénen itself
Sour ce trousersChildren = prodH er Chil dren. j oi n(prodH er,
cont ext . get Dat aPr ovi der () . cr eat eConst ant Sour ce(" Trousers - Vnen"), fal se);
/] Select Shirts - Boys, Trousers - V@nen, and Shorts - Men
Source prodH erSel = prodH er. sel ect Val ues(new String|[]
{"Shirts - Boys","Trousers - V@nen","Shorts - Men"});
/] Insert the children of Trousers - Vénen after Trousers - Vénen
/1 (which is 2nd val ue)
Source drilledProdH erSel = prodH er Sel . appendVal ues(trousersChil dren);
/] This selection has the effect of sorting the result in hierarchical order.
Source result = prodH er. sel ect Val ues(dri | | edProdH er Sel) ;

Creating a Source with duplicate inputs

Suppose we want to do a region-to-region comparison in some way. Specifically,
suppose we want to create a data view in which the regions appear on both the
rows and the columns. In the OLAP API you use the al i as() and the val ue()
methods to do this. The al i as() method creates a new Sour ce that mirrors
exactly the original Sour ce in terms of its data, its inputs, and its outputs. The only
difference is that the original Sour ce becomes the type of the alias Sour ce. The
val ue() method creates a new Sour ce that has the original Sour ce as both its
type and as an input.

Technique for creating duplicate inputs

Assume that there would naturally be an input-output match between input A of
the original Sour ce (called base) and some output B of the joined Sour ce in the
j oi n shown below.

Source result = base.joi n(joi ned, conparison);

Selecting Data 6-15

Selecting Elements Based on Hierarchical Position

To avoid this input-output match, and hence keep A as an input of the result, use
the following procedure.

//Ceate an alias for B called B

Source B2 = B alias();

/[l Qreate a variant of the original called base2

/I know that input Awll natch to B

Source base2 = base.join(B B2.value());

/I Now j oi n base2 and j oi ned

[/ know that input B2 will not match to Bin joined
Source preResult = base2.j oi n(j oi ned, conparison);
/[/Finally, jointo the B2 and regain the input A
Source result = preResult.join(B2, Avalue());

Example: Creating a Source with duplicate inputs or outputs

Assume that we have a Sour ce named r egi on that does not have any inputs or
outputs and whose elements are the names of geographical regions. Assume also
that we want to create a data view in which the regions appear on both the rows
and the columns. For each cell in this table we want to show the percentage
difference between the areas (in square miles) of the regions. In other words, we
want to create a Sour ce named r egi onConpar i son that has two inputs -- both of
them the Sour ce named r egi ons.

The following code shows how you do this.

//Qeate an alias for region that is for the row

Source rowRegion = region.alias();

//Qeate an alias for region that is for the col um

Source col unmRegi on = regi on. alias();

/] Oreate rowRegi onArea whi ch has an input of rowRegion,

/1 an output of area,

/1l and el enents whose val ues are the same as those of region

Sour ce rowRegi onArea = area. j oi n(rowRegi on. val ue());

/] Oreate col unmRegi onArea whi ch has an input of col umRegi on,

/1 an output of area,

/1 and el enents whose val ues are the same as those of region

Sour ce col urmRegi onArea = area. j oi n(col unmRegi on. val ue());

/] Conpute the val ues of the cells

Sour ce areaConpari son = r owRegi onAr ea. di v(col utmRegi onAr ea) . ti nes(100) ;
[/ Qreate a new Source with outputs rather than inputs

Sour ce regi onConpari son = ar eaConpari son. j oi n(rowRegi on. j oi n(col ummRegi on))

The first two lines of code create two new Sour ce objects that are aliases for the
Sour ce named r egi on. These Sour ce objects are called r owRegi on and
col unmmRegi on.

6-16 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Selecting Elements Based on Hierarchical Position

The next two lines of code create Sour ce objects, named r owRegi onAr ea and

col unmmRegi onAr ea, that represent the areas of r owRegi on and col utmRegi on
respectively. To create r owRegi onAr ea, we j oi n ar ea which has the input of
regi on tor owRegi on. val ue() which has an input of r owRegi on and the same
elements as r egi on. The r owRegi onAr ea Sour ce has an input of r owRegi on, an
output of ar ea, and elements whose values are the same as those of r egi on. To
create col utmRegi onAr ea, we j oi n area which has the input of r egi on to

col unmmRegi on. val ue() which has an input of col unmRegi on and the same
elements as r egi on. The Sour ce named col unmRegi onAr ea has an input of
col unmmRegi on, an output of ar ea, and elements whose values are the same as
those of r egi on. These j oi n calls have the effect of replacing the r egi on input
with r owRegi on or col utmRegi on, which, since they both have the names as
regions as data, makes no real difference to the value of ar ea.

The next line of code performs the needed computation. Because r owRegi onAr ea
has r owRegi on as an input and col utmRegi onAr ea has col utmRegi on as an
area, the new Sour ce named ar eaConpar i son has two inputs, r owRegi on and
col unmmRegi on, both of whose elements are the names of regions. What we have
done is to effectively create a Sour ce object that has duplicate inputs.

The final step of changing inputs to outputs is easy. We merely j oi n
ar eaConpar i son to its inputs (r owRegi on and col utmRegi on).

Selecting Data 6-17

Selecting Elements Based on Hierarchical Position

6-18 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

v

Performing Calculations

Chapter summary
This chapter discusses how you perform calculations using the OLAP API.

List of topics
This chapter includes the following topics:

« Performing Numerical Operations

« Making Numerical Comparisons

« Working with Standard Numerical Functions
« Working with Aggregation Methods

« Creating Your own Numerical Functions

« Working With Strings

Performing Numerical Operations

How do you perform numerical operations?

Using the OLAP API you perform basic numeric operations using Nunber Sour ce
methods such as m nus. There are separate versions of each of these methods that
you can use to specify a literal doubl e, f | oat ,i nt, or short value. There is also a
version of each of these method that takes a Nunber Sour ce as an argument.

Performing Calculations 7-1

Performing Numerical Operations

The OLAP API methods that you use to perform basic numeric operations include
those outlined in the following table.

Method Description

di v(rhs) Divides the value of each element of the Number Sour ce by the
specified value.

intpart () Identifies the integer portion of the value of each element of the
Nunber Sour ce.

m nus(rhs) Subtracts the specified value from the value of each element of
the Nunber Sour ce.

negat e() Negates the value of each of the elements of the
Nunber Sour ce.

pl us(rhs) Adds the specified value to the value of each element of the
Nunmber Sour ce

ren(rhs) Divides the value of each element of the Number Sour ce by the
specified double value and determines the remainder for each
operation.

times (rhs) Multiplies the value of each element of the Nunber Sour ce by

the specified value.

Example: Subtracting the same value from all elements

Assume, as shown below. that there is a Nunber Sour ce named uni t _Cost that
has outputs of pr oduct sDi mand t i mesDi mand a type of Integer.

Output2 Outputl Element
product sDim ti mesDi m uni t _Cost
Boys 1998 4000
Boys
Boys 31-DEC-01 10
49780 1998 500
49780
49780 31-DEC-01 9

7-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Performing Numerical Operations

Now assume that you want to subtract 10% of the sales from each element to find
the adjusted income for each product. To do this you use the following code.

Nunber Sour ce per cent Adj ust ment = unit_Cost. minus(unit_GCost.tines(.10));

The new Nunber Sour ce, named per cent Adj ust nent , has the following
structure and values.

Output2 Outputl Element
product sDim ti mesDi m uni t _Cost
Boys 1998 3600
Boys
Boys 31-DEC-01 9
49780 1998 450
49780
49780 31-DEC-01 8

Example: Subtracting the values of one NumberSource from another

Assume that you have the Nunber Sour ce named uni t Cost described in the
previous example and that you also have the Nunber Sour ce named
uni t Manuf act uri ngCost shown below.

Output Output Element
product sDi m ti mesDim Integer
Boys 1998 600
Boys
Boys 31-DEC-01 3
49780 1998 250
49780
49780 31-DEC-01 2

Performing Calculations 7-3

Making Numerical Comparisons

Now assume that you want to calculate the non-manufacturing for each product. To
do this you need to subtract the manufacturing costs from the unit costs using the
code shown below.

Nunber Sour ce nonManuf act uri ngGost = uni t Gost . ni nus(uni t Manuf act uri ngGost) ;

The new Number Sour ce has the structure and values shown below.

Output Output Element
product sDi m ti mesDi m Integer
Boys 1998 3400
Boys
Boys 31-DEC-01 7
49780 1998 250
49780
49780 31-DEC-01 7

For a more complete explanation of these methods, see Oracle OLAP API Reference.

Making Numerical Comparisons

How do you make numerical comparisons?

The Nunber Sour ce class has a humber of methods make numerical comparisons.
These methods compare the value of each element in a Nunmber Sour ce to a
specified value. These methods return a Bool eanSour ce that has the same
structure as the original Nunber Sour ce and that has an element that is true when
the comparison for a given element of the original Nunber Sour ce is true, or false
when the comparison is false. There are separate versions of each of these methods
that you can use to specify a literal doubl e, f| oat ,i nt, orshort value.

7-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Working with Standard Numerical Functions

List of numerical comparison methods

The numerical comparison methods provided with the OLAP API include those
listed in the following table.

Method

Description

€q

Compares each element of the Nurmber Sour ce to the specified value, and
determines if it is an equal value

ge

Compares each element of the Nurmber Sour ce to the specified value, and
determines if it is a greater or equal value.

gt

Compares each element of the Nurmber Sour ce to the specified value, and
determines if it is a greater value.

Compares each element of the Nurmber Sour ce to the specified value, and
determines if it is a lesser or equal value.

Compares each element of the Nurmber Sour ce to the specified value, and
determines if it is a lesser value.

ne

Compares each element of the Nurmber Sour ce to the specified value, and
determines if it is an unequal value.

For a more complete explanation of these methods, see Oracle OLAP API Reference.

Working with Standard Numerical Functions

How do the standard numerical functions work?

The OLAP API has many methods that represent standard numerical functions.
When you use these functions with a Nunber Sour ce, they return a new

Number Sour ce that has the same structure as the original Nunber Sour ce and
whose elements have the values of the original Nurber Sour ce modified according
to the function. For example, the abs() method returns a new Nurber Sour ce
each of whose elements has the absolute value of the value of the corresponding
element in the original Nunber Sour ce.

You can also write your own functions as described in “Creating Your own
Numerical Functions” on page 7-10.

Performing Calculations 7-5

Working with Standard Numerical Functions

List of methods that represent standard functions

The OLAP API methods that represent standard functions include those listed in
the following table.

Method Description
abs() Calculates the absolute value of each element of the Nunber Sour ce.
arccos() Calculates the angle value (in radians) of the value (interpreted as a

cosine) of each element of the Nunber Sour ce.

arcsin() Calculates the angle value (in radians) of the value (interpreted as a
sine) of each element of the Nunber Sour ce.

arctan() Calculates the angle value (in radians) of the value (interpreted as a
tangent) of each element of the Nunber Sour ce.

cos() Calculates the cosine of the value (interpreted as an angle value in
radians) of each element of the Nunber Sour ce.

cosh() Calculates the hyperbolic cosine of the value (interpreted as an angle
value in radians) of each element of the Nunber Sour ce

1 og() Calculates the natural logarithm of the value of each element of the
Number Sour ce.

pow(r hs) Raises the value of each element of the Nunber Sour ce to the
specified value.

round(mul tipl e) | Rounds the value of each element of the Nunber Sour ce to the
nearest multiple of the specified value.

sin() Calculates the sine of the value (interpreted as an angle) of each
element of the Nunber Sour ce.

si nh() Calculates the hyperbolic sine of the value (interpreted as an angle)
of each element of the Nunber Sour ce.

sqrt() Calculates the square root of each element of the Nunber Sour ce.

tan() Calculates the tangent of the value (interpreted as an angle) of each

element of the Nunber Sour ce.

tanh() Calculates the hyperbolic tangent of the value (interpreted as an
angle) of each element of the Nunber Sour ce.

For a more complete explanation of these methods, see Oracle OLAP API Reference.

7-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Working with Aggregation Methods

Working with Aggregation Methods

What are the aggregation methods?

The numerical aggregation methods provided by the OLAP API include the
methods in the following table. You can also write your own aggregation functions
as described in “Creating Your own Numerical Functions” on page 7-10.

Method Description
aver age Calculates the average of the values of a Nunber Sour ce.
maxi mim Identifies the largest value of a Nunber Sour ce.
m ni mum Identifies the smallest value of a Nunber Sour ce.
t ot al Calculates the sum of the values of a Nunber Sour ce.

There are two different versions of each of the numerical aggregation methods. One
version excludes all null values when making its calculations. The other version
allows you to specify whether or not you want null values included in the
calculation. Each version returns a new Nunber Sour ce that, for each set of input
values, has an element whose value is the sum of all of the elements in the original
Number Sour ce that have the same set of input values

How do the aggregations methods work?

Standard numerical methods like st dev() work on each element in a

Number Sour ce. An aggregation method is a method like t ot al () that uses the
values in a series of Sour ce elements to perform its calculations. When a

Number Sour ce does not have any inputs, this method creates a new

Nunmber Sour ce with a single element whose value is the sum of the values of the
elements in the original Nunber Sour ce.

When a Nunber Sour ce has inputs, each set of input values identifies a subset of
elements (tuples) that are arranged by the outputs of the Nunber Sour ce (if any). In
this case, an aggregation method works on each set of uniquely positioned
elements. In other words, when a Nunber Sour ce has inputs, an aggregation
method calculates the result of the function for each subset.

For more information on how OLAP API methods determine the position of an
element and therefore how they determine what elements to use when calculating
the values of aggregation methods, see “Finding the position of elements” on page
6-7.

Performing Calculations 7-7

Working with Aggregation Methods

Example: Calculating the sum of the elements when a Source does not have inputs

Assume that you have the Sour ce named uni t sSol dByCount ry (shown below)
whose elements are the total number of units for each product sold for each country.

Output Output Element
products countries Integer
395 Australia 1300
395 United 800
States
49780 Australia 10050
49780 United 50
States
49780

Now assume that you want to total these values. Since both pr oduct s and
count ri es are outputs, when you issue the code shown below, the new
Number Sour ce calculates the total number of units sold for all products in all
countries.

Nunber Source total UhitsSold = unitsSol dyByGountry.total ();

The new Nunber Sour ce called t ot al Uni t sSol d has only a single element that is
the total of the values of the elements of uni t sSol dByCount ry.

Element

Integer

11350

7-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Working with Aggregation Methods

Example: Calculating the sum of the elements when a Source has inputs

Assume that you have the Sour ce named uni t sSol dByCount ry (shown below)
whose elements are the total number of units for each product sold for each country.

Output Input Element
countries products Integer
Australia 395 1300
Australia 49780 10050
United States 49780 50
United States 395 800

Now assume that you total these values. Since pr oduct is input, when you issue
the code shown below, the new Nunber Sour ce calculates the total number of units
sold for all products in each countries;. It does not calculate the total for all products

in all countries.

Nunber Sour ce total UhitsSol dByGountry = uni tsSol dByGountry.total ();

The new Nunber Sour ce called t ot al Uni t sSol dByCount ry has the structure

and values shown below.

Input Elements
countries Integer
Australia 11350
United States 850

Performing Calculations 7-9

Creating Your own Numerical Functions

Creating Your own Numerical Functions

Creating parameters

The alias method can be used to create parameters. “Example: Creating a function”
on page 7-10 shows how to create a new function using the al i as method. You can
only create cell or row calculation functions in this way. To create client aggregation
or position-based functions you use the ext r act method.

Example: Creating a function

The following function takes a number and multiplies it by 1.05. The function has
one parameter, called par am which is created by calling the al i as method on the
fundamental Sour ce representing the Number OLAP API data type which is the
set of all numbers. Note how the val ue method is used to make the parameter an
input of the function.

/1 Get the Source that represents the nunber data type

Nunber Sour ce nunber =(Nurber Sour ce) dat aPr ovi der

. get Fundanent al Defi ni ti onProvi der ()

. get Nunber Dat aType()

. get Sour ce() ;

/I reate a paraneter

Nunber Sour ce par am = (Nunber Sour ce) nunber . al i as() ;

//Ceate a function

Nunber Sour ce functi on = ((Nunber Sour ce) paramval ue()).ti nes(1.05);

The function created in this way is effectively the same as the built-in functions
provided by the OLAP API. It can be used by joining the function to the parameter
and the required parameter expression as shown below. You can then apply the
function to a Sour ce named sal es as shown below.

//Use the function
Nunber Source sales = .. .;

Nunber Source fsal es = function.joi n(param sales);

Example: Creating a parameterized selection

Assume you want to create a product selection defined to be the set of all products
for which the uni t sSol d measure is greater than the value specified by a
parameter. The parameter must be specified before data can be fetched from this
Sour ce. You can create this parameter using the following code.

/1 Get the Source that represents the nunber data type

7-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Working With Strings

Nunber Sour ce nunber = dat aProvi der

. get Fundanent al Defi ni ti onProvi der ()

. get Nunioer Dat aType()

. get Sour ce() ;

/I reate a paraneter

Nunber Sour ce par am = (Nunber Sour ce) nunber . al i as() ;

[/ Qreate a paraneterized sel ection

Source products = ...;

Nunber Source unitsSold = ... ;

Sour ce product Sel ection = product s. sel ect (uni tsSol d. gt (paramval ue()));

To set the value of the parameter to 100, you write the following code.

Sour ce uni tsSol dGM100 = product Sel ecti on. j oi n(param 100);

Example: Creating an aggregation function

Assume that you want to create a weighted average function. To do so, you write
the following code.

//Define an aggregation function

Nunber Source weight = ...;

[/l Qreate a paraneter

Nunber Sour ce param = (Nunber Sour ce) nunber . al i as();

//Oeate a function

Nunber Sour ce wei ght edAver age = paramextract (). ti nes(wei ght). average();

As with the example of a standard function “Example: Creating a function” on page
7-10, this code first creates a parameter named par amfor the function to use.
However, since this is an aggregation function, the code uses the ext r act ()
method with par amwhen it calculates the final result.

To use this function, you issue the following code.

/1 Use the aggregation function

Nunber Source sales = ...;

Nunber Sour ce par angal es = dp. cr eat eConst ant Sour ce(par am sel ect Val ues(sal es)) ;
Sour ce wei ght edSal es = wei ght edAver age. j oi n(par angal es) ;

Working With Strings

String manipulation methods

The St ri ngSour ce class defines methods that are string-specific versions of
various Sour ce methods that you can use to append, insert, select, and remove

Performing Calculations 7-11

Working With Strings

elements whose values are Java St r i ng objects. The St ri ngSour ce class also has
methods that you can use to manipulate the elements of the St ri ngSour ce
objects. These methods include those listed in the following table.

Method Description
I engt h() Determines the length of each element of the St ri ngSour ce.
textFill (w dth) Reformats each element of the St ri ngSour ce to the specified

width by adding blank spaces.

toLower case() Converts the alphabetic characters of each element of the
St ri ngSour ce into lowercase.

t oUpper case() Converts the alphabetic characters of each element of the
St ri ngSour ce into uppercase.

trim) Removes the leading and trailing blank spaces from each
element of the St ri ngSour ce.

trimeadi ng() Removes the leading blank spaces from each element of the
Stri ngSour ce.

trinfrailing Removes the trailing blank spaces from each element of the
StringSource.

Substring methods

The OLAP API provides the methods that you can use to manipulate substrings
within the elements of a St r i ngSour ce. These methods include those listed in the
following table.

Method Description

i ndexdf (substring, from ndex) Searches each element of the St ri ngSour ce
beginning at the specified character position
and identifies the position of the first
character of the specified substring.

renove (index, |ength) Removes the characters between the specified
character positions from each element of the
StringSource

replace (oldString, newString) Searches each element of the St ri ngSour ce
for the specified substring, and replaces it
with a different substring when it is found

substring (index, |ength) Selects the characters between the specified
character positions from each element of the
StringSource

7-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Working With Strings

There are two different versions of each of these methods. In one version you
specify the values using Sour ce objects, in the other you specify the values using
literal values.

Performing Calculations 7-13

Working With Strings

7-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

8

Using a TransactionProvider

Chapter summary

List of topics

This chapter is describes the Oracle OLAP API Tr ansact i on and

Transacti onProvi der interfaces and describes how you use implementations of
those interfaces in an application. You must create a Tr ansact i onPr ovi der
before you can create a Dat aPr ovi der, and you must use methods on the
Transacti onProvi der to prepare and commita Tr ansact i on before you can
create a Cur sor for a derived Sour ce.

This chapter includes the following topics:
« About Transaction Objects

« About TransactionProvider Objects

About Transaction Objects

About creating a query in a Transaction

The Oracle OLAP API is transactional. Each step in creating a query occurs in the
context of a Tr ansact i on. One of the first actions of an OLAP API application is to
create a Tr ansact i onPr ovi der. The Transact i onPr ovi der provides
Transact i on objects to the application.

The Transact i onProvi der ensures the following:

« ATransacti on isisolated from other Tr ansact i on objects. Operations
performed in a Tr ansact i on are not visible in, and do not affect, other
Transact i on objects.

Using a TransactionProvider 8-1

About Transaction Objects

« Ifanoperationina Transact i on fails, its effects are undone (the
Transact i on is rolled back).

« The effects of a completed Tr ansact i on persist.

When you create a derived Sour ce by calling a method on another Sour ce, that
Sour ce is created in the context of the current Tr ansact i on. The Sour ce is active
in the Transact i on in which you create it or in a child Tr ansact i on of that
Transacti on.

You get or set the current Tr ansact i on, or begin a child Tr ansact i on, by calling
methods on a Tr ansact i onPr ovi der . Inachild Tr ansact i on you can change
the state of a Tenpl at e that you created in the parent Tr ansact i on. By
displaying the data specified by the Sour ce produced by the Tenpl at e in the
parent Tr ansact i on and also displaying the data specified by the Sour ce
produced by the Tenpl at e in the child Tr ansact i on, you can provide the end
user of your application with the means of performing what-if analysis.

Types of Transaction objects
The OLAP API has the following two types of Tr ansact i on objects:

« Avread Transact i on. Initially, the current Tr ansact i on is a read
Transacti on. Aread Tr ansact i on is required for creating a Cur sor to fetch
data from an OLAP service. For more information on Cur sor objects, see
Chapter 9.

« Awrite Transacti on. A write Transact i on is required for creating a
derived Sour ce or for changing the state of a Tenpl at e. For more information
on creating a derived Sour ce, see Chapter 5. For information on Tenpl at e
objects, see Chapter 11.

In the initial read Tr ansact i on, if you create a derived Sour ce or if you change
the state of a Tenpl at e object, then a child write Tr ansact i on is automatically
generated. That child Tr ansact i on becomes the current Tr ansact i on.

If you then create another derived Sour ce or change the Tenpl at e state again,
that operation occurs in the same write Tr ansact i on. You can create any number
of derived Sour ce objects, or make any number of Tenpl at e state changes, in that
same write Tr ansact i on. You can use those Sour ce objects, or the Sour ce
produced by the Tenpl at e, to define a complex query.

Before you can create a Cur sor to fetch the result set specified by a derived
Sour ce, you must move the Sour ce from the child write Tr ansact i on into the
parent read Tr ansact i on. To do so, you prepare and commit the Tr ansact i on.

8-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

About Transaction Objects

Preparing and committing a Transaction

To move a Sour ce that you created in a child Tr ansact i on into the parent read
Transact i on, call the pr epar eCurr ent Tr ansacti on and

conmi t Current Transact i on methods on the Tr ansact i onPr ovi der . When
you commit a child write Tr ansact i on, a Sour ce you created in the child
Transact i on moves into the parent read Tr ansact i on. The child Tr ansacti on
disappears and the parent Tr ansact i on becomes the current Tr ansact i on. The
Sour ce is active in the current read Tr ansact i on and you can therefore create a
Cur sor for it.

The following figure illustrates the process of moving a Sour ce created in a child
write Tr ansact i on into its parent read Tr ansact i on. The figure has a box that
represents a read Tr ansact i on, t 1, in which an application gets MUnDi nensi on
and MidmVeasur e objects and gets primary Sour ce objects from them. The
application then creates derived Sour ce objects by making selections on the
primary Sour ce objects fromt 1.

When the application calls the sel ect Val ues method on pr oduct s, a primary
Sour ce, the write Tr ansact i on t 2 is created, which is represented by a box
below t 1. The derived Sour ce objects pr odSel andti nmeSel are created int 2.
Also int 2 the application joins the derived Sour ce objects to the uni t Cost
primary Sour ce to create the uni t Cost For Sel ect i ons derived Sour ce. The
application then calls the pr epar eCurr ent Tr ansact i on and

conmi t Current Transact i on methods on the Tr ansact i onPr ovi der , which
prepares thet 2 Tr ansact i on and commits it. Committing t 2 makes the new
Sour ce objects that were created in t 2 visible and active int 1, the parent read
Transact i on. The application can then create a Cur sor for

Using a TransactionProvider 8-3

About Transaction Objects

uni t Cost For Sel ecti ons. Thet 2 Transact i on is no longer active and it

disappears.
t1 = The initial Transaction t 1 = After committing t2, this read Transaction
is a read Transaction. is again the current Transaction.
/I Get MdmDimension objects. /I Sources from t2 now exist in t1.
/I Get MdmMeasure objects. /I Transaction t2 diappears.
/I Get primary Sources from /I Create a Cursor for unitCostForSelections.
/I those metadata objects. /I Display the result set.

Creating a derived

Source begins the child Committing the child Transaction

write Transaction, t2. makes the new Sources visible

in the parent Transaction.

t2 = A write Transaction is now
the current Transaction.

/I Create derived Sources from the primary Sources

StringSource prodSel, timeSel;
NumberSource unitCostForSelections;

prodSel = products.selectValues(new String [] {"P1", "P2", "P3"});
timeSel = times.selectValues(new String[] {"T1", "T2", "T3", "T4"});

unitCostForSelections = unitCost.join(timeSel).join(prodSel);

transactionProvider.prepareCurrentTransaction();
transactionProvider.commitCurrentTransaction();

About Transaction and Template objects

Getting and setting the current Tr ansact i on, beginning a child Tr ansact i on,
and rolling back a Tr ansact i on are operations that you use to allow an end user
to make different selections starting from a given state of a dynamic query. This
creating of alternatives based on an initial state is known as what-if analysis.

To present the end user with alternatives based on the same initial query, you do the
following:

1. Create a Tenpl at e ina parent Tr ansact i on and set the initial state for the
Tenpl at e.

8-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

About Transaction Objects

2. Getthe Sour ce produced by the Tenpl at e, create a Cur sor to retrieve the
result set, get the values from the Cur sor, and then display the results to the
end user.

3. Beginachild Transact i on and modify the state of the Tenpl at e.

4. Getthe Sour ce produced by the Tenpl at e in the child Tr ansact i on, create
a Cur sor, get the values, and display them.

You can then replace the first Tenpl at e state with the second one or discard the
second one and retain the first.

Beginning a child Transaction

To begin a child Tr ansact i on, call the begi nSubt r ansact i on method on the
Transacti onProvi der you are using. Initially, the child Transacti on is aread
Transact i on. If you then change the state of a Tenpl at e, a child write
Transact i on begins automatically. The write Tr ansact i on is a child of the child
read Tr ansact i on.

To get the data specified by the Sour ce produced by the Tenpl at e, you prepare
and commit the write Tr ansact i on into its parent read Tr ansact i on. You can
then create a Cur sor to fetch the data. The changed state of the Tenpl at e is not
visible in the original parent. The changed state does not become visible in the
parent until you prepare and commit the child read Tr ansact i on into the parent
read Tr ansact i on.

The following figure illustrates beginning a child Tr ansact i on. In the figure, a
box represents t 1, which isaread Tr ansact i on in which a TopBot t onifenpl at e
object exists. TopBot t onTTenpl at e is an example of a Tenpl at e that is described
in Chapter 11.

A second box represents t 2, which is a write Tr ansact i on begun when the state
of the Tenpl at e changes to specify selecting the top ten values, which results from
the following operations.

t opNBot t om set TopBot t onType(TCP) ;
t opNBot t om set N 10) ;

Int 2, the prepar eCurrent Transacti on and conmi t Current Transacti on
methods are called on the Tr ansact i onPr ovi der . The changes to the state of the
TopBot t onTenpl at e become active int 1 and t 2 disappears. The get Sour ce
method on the Dynam cDef i ni ti on created by the TopBot t onirenpl at e is
called. A Cur sor for the Sour ce is created, which retrieves the data from the
OLAP service. The values from the Cur sor are displayed.

Using a TransactionProvider 8-5

About Transaction Objects

A third box in the figure represents the read Tr ansact i on t 3, which is a child of
t 1 that results from the following operation.

t 1. begi nSubt ransacti on() ;

A fourth box represents t 4, which is a write Tr ansact i on that begins as a result
of the following changes to the state of the TopBot t onTTenpl at e.

t opNBot t om set TopBot t onType(BOTTQV) ;
t opNBot t om set N 15) ;

The Sour ce produced by the TopBot t oniTenpl at e now represents the selection
of the bottom fifteen values. In t 4, the pr epar eCur r ent Tr ansact i on and
conmi t Cur rent Transact i on methods are called on the

Transacti onProvi der. The changes to the state of the TopBot t omTenpl at e
made int 4 become active int 3 and t 4 disappeatrs.

Int 3, the get Sour ce method is called on the Dynani cDef i ni ti on, a Cur sor
for the Sour ce is created, and values from the Cur sor are displayed. The
prepar eCurrent Transacti on and comi t Cur r ent Tr ansact i on methods
are called. The result is that the state of the TopBot t oniTfenpl at e fromt 3,
representing the bottom fifteen values, moves into t 1 and replaces the state of the
TopBot t onTenpl at e that represented the top ten values. The t 3 Tr ansacti on
disappears and t 1 is again the current Tr ansact i on.

8-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

About Transaction Objects

In the following figure, t p is the Tr ansact i onPr ovi der .

t1 = The initial read t1 = After committing t2 and again after
Transaction. committing t3, t1 is the current Transaction.
/I Create a TopBottomTemplate, tp.beginSubtransaction() ; // begins t3
/I topNBottom.

/I After committing t3, the Source

/I After committing t2, get the Source /I produced by topNBottom is generated
/I produced by topNBottom. /I using the state defined in t4.

/I Create a Cursor for the

/I for the Source. Display the values.

Changing the state of topNBottom
automatically begins t2. The state of topNBottom
defined in t2 is now

t2 = The current Transaction active in t1.

is now a write Transaction.

/I Change the state of topNBottom

topNBottom.setTopBottomType(TOP);

topNBottom.setN(10); The state changes
I/l Prepare and commit the current Transaction. from t3 are now
tp.prepareCurrentTransaction(); active in t1 and t3
tp.commitCurrentTransaction(); disappears.

Beginning a child Transaction creates t3.
t3 = The current Transaction is a read Transaction.

\/
/I The state of topNBottom /I After submitting t4, t3 is the current Transaction.
I is the one defined in t2. | // The state of topNBottom is the one defined in t4.

{ /I Get the Source produced by topNBottom. Create
{ /l a Cursor for the Source and display the values.

! Il Prepare and commit t3.

| tp.prepareCurrentTransaction();

| tp.commitCurrentTransaction();

Changing the state of

topNBottom begins t4. The state changes
are now active in t3

t4 = The current Transaction and t4 disappears.

is a write Transaction.

/I Change the state of topNBottom
topNBottom.setTopBottomType(BOTTOM);
topNBottom.setN(15);

/l Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

Using a TransactionProvider 8-7

About Transaction Objects

After beginning a child read Tr ansact i on, you can begin a child read

Transact i on of that child, or a grandchild of the initial parent Tr ansact i on. For
an example of creating child and grandchild Tr ansact i on objects, see “Example:
Using child Transaction objects” on page 8-11.

About rolling back a Transaction

You roll back, or undo, a Tr ansact i on by calling the

rol | backCur rent Tr ansact i on method on the Tr ansact i onPr ovi der you
are using. Rolling back a Tr ansact i on discards any changes that you made
during that Tr ansact i on and makes the Tr ansact i on disappeatr.

Before rolling back a Tr ansact i on, you must close any Cur sor Manager objects
you created in that Tr ansact i on. After rolling back a Tr ansact i on, any Sour ce
objects that you created or Tenpl at e state changes that you made in the
Transacti on are no longer valid. Any Cur sor objects you created for those

Sour ce objects are also invalid.

Once you roll back a Tr ansact i on, you cannot prepare and commit that
Transact i on. Likewise, once you commita Tr ansact i on, you cannot roll it
back.

Example: Rolling back a Transaction

The following example creates a TopBot t onTenpl at e and sets its state. The
example begins a child Tr ansact i on that sets a different state for the
TopBot t onTenpl at e and then rolls back the child Tr ansact i on. The
Transacti onProvi der istp.

/*

* The current Transaction is a read Transaction, t1.

* (Yeate a TopBottonTenpl at e using product as the base

* and dp as the DataProvider.

*/

TopBot t onTenpl at e t opNBot t om = new TopBot t onTenpl at e(product, dp);

/*
* Changing the state of a Tenplate requires a wite Transaction, so a
* wite child Transaction, t2, is automatically started.
*/

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TAP_BOTTCM TYPE _TCP) ;

t opNBot t om set N 10) ;

topNBottom set Ori teri on(si ngl eSel ecti ons. get Source());

8-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

About Transaction Objects

/] Prepare and coomit the Transaction t2.
t p. prepareQurrent Transaction();
tp. commt Qurrent Transacti on(); /1t2 disappears

/*
* The current Transaction is now t1.
* Qeate a Qursor and display the results (operations not shown).

*/

[/l Sart achild Transaction, t3. It is a read Transacti on.

t p. begi nSubt ransacti on(); /1 t3 is the current Transaction
/*

* (Change the state of topNBottom Changing the state requires a

* wite Transaction so Transaction t4 starts autonatically,

*/
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TAP_BOTTCM TYPE BOTTQV) ;
t opNBot t om set N 15) ;

/] Prepare and coomit the Transaction.
t p. prepareQurrent Transaction();
tp. commt Qurrent Transacti on(); /1 t4 disappears

/*

* Qeate a Qursor and display the results. // t3 is the current Transaction
* dose the QursorManager for the Qursor created in t3.

* Lhdo t3, which discards the state of topNBottomthat was set in t4.

*/

tp. rol | backQurrent Tr ansact i on() /1 t3 disappears

/* Transaction t1 is nowthe current Transaction and the state of
* topNBottomis the one defined in t2.
*/

Getting and setting the current Transaction

You get the current Tr ansact i on by calling the get Cur rent Tr ansacti on
method on the Tr ansact i onPr ovi der you are using, as in the following
example.

Transaction t1 = get Current Transacti on();

Using a TransactionProvider 8-9

About TransactionProvider Objects

To make a previously saved Tr ansact i on the current Tr ansact i on, you call the
set Current Transact i on method on the Tr ansact i onPr ovi der, as in the
following example.

set Current Transaction(tl);

About TransactionProvider Objects

Using TransactionProvider objects

In the Oracle OLAP API, the Transact i onProvi der interface is implemented by
the Expr essTransacti onPr ovi der concrete class. Before you create a

Dat aPr ovi der , you must create a new instance of an

ExpressTransacti onProvi der. You then pass that Tr ansact i onPr ovi der to
the Dat aPr ovi der constructor. The Tr ansact i onPr ovi der provides
Transact i on objects to your application.

A Transacti onProvi der has the following methods:

Method Return Value

begi nSubt ransacti on A Transact i on that is a child Transaction of the
current Tr ansact i on.

conmi t Current Transacti on Void. This method moves any changes made in the
current child Transaction into the parent
Transacti on.

get Current Transacti on The current Tr ansact i on. Use this method to save
the current Tr ansact i on. You can then set a
different saved Tr ansact i on as the current
Transacti on.

prepar eCurrent Transacti on Void. This method prepares the current child
Transact i on to be committed into the parent
Transacti on.

rol | backCurrent Transacti on Void. This method discards the current child
Transact i on, in effect rolling back any OLAP API
operations an application performed in the context
of the child Tr ansact i on. The parent

Transact i on becomes the current Tr ansact i on.

set Current Transacti on Void. This method sets a Tr ansact i on as the
current Tr ansact i on.

As described in “Preparing and committing a Transaction” on page 8-3, you use the

8-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About TransactionProvider Objects

prepar eCurrent Transacti on and commi t Cur r ent Tr ansact i on methods to
make a derived Sour ce that you created in a child write Tr ansact i on visible in
the parent read Tr ansact i on. You can then create a Cur sor for that Sour ce.

If you are using Tenpl at e objects in your application, you might also use the other
methods on Tr ansact i onPr ovi der to do the following:

« Beginachild Transacti on.
« Getthecurrent Transact i on so you can save it.
« Setthe current Tr ansact i on to a previously saved one.

« Rollback, or undo, the current Tr ansact i on, which discards any changes
made in the Transacti on. Once a Tr ansact i on has been rolled back, it is
invalid and cannot be committed. Once a Tr ansact i on has been committed, it
cannot be rolled back. If you created a Cur sor fora Source ina
Transact i on, you must close the Cur sor Manager before rolling back the
Transacti on.

Example: Using child Transaction objects

To demonstrate how to use Tr ansact i on objects to modify dynamic queries, the
following example builds on the TopBot t oniTest application defined in

Chapter 11. To help track the Tr ansact i on objects, the example saves the different
Transact i on objects with calls to the get Cur r ent Tr ansact i on method.

Replace the last five lines of the code from the TopBot t onirest class with the
following.
/*
* The parent Transaction is the current Transaction at this point.
* Save the parent read Transaction as parent T1.
*/
Transacti on parent T1 = tp. get Qurrent Transacti on();

/1 Begin a child Transaction of parentT1.
tp. begi nSubtransaction(); // This is a read Transacti on.

/1 Save the child read Transaction as chil dT2.
Transaction childT2 = tp.get Qurrent Transaction();

/*

* Change the state of the TopBottonTenpl ate. This starts a

* wite Transaction, a child of the read Transaction chil dT2.
*/

Using a TransactionProvider 8-11

About TransactionProvider Objects

t opNBot t om set N 15) ;
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TAP_BOTTAM TYPE BOTTQN) ;

/1 Save the child wite Transaction as witeT3.
Transaction witeT3 = tp.getQurrent Transaction();

/] Prepare and cormit the wite Transaction witeT3.

try{
cont ext . get Tr ansact i onPr ovi der () . prepar eQur r ent Tr ansact i on() ;
}

cat ch(Not Cormi t t abl eExcepti on e){
Systemout . printl n("Caught exception " +e + ".");

}

cont ext . get Transact i onPr ovi der () . comm t Qurr ent Tr ansact i on() ;

/
The commit noves the changes nade in witeT3 into its parent,
the read Transaction childT2. The witeT3 Transaction

di sappears. The current Transaction is now chil dT2

again but the state of the TopBottonTenpl at e has changed.

E TR S S I S T N

Qeate a Qursor and display the results of the changes to the
TopBot t onTenpl ate that are visible in chil dT2.

*/

creat eQur sor (t opNBot t om get Sour ce());

/1 Begin a grandchild Transaction of the initial parent.
tp. begi nSubtransaction(); // This is a read Transacti on.

/1 Save the grandchild read Transaction as grandchi| dT4.
Transacti on grandchi | dT4 = tp. get Qurrent Transaction();

/ *
* (Change the state of the TopBottonTenpl ate. This starts another
* wite Transaction, a child of grandchil dT4.
*/

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TAP_BOITAM TYPE TCP) ;

/1 Save the wite Transaction as witeTs.
Transaction witeTs = tp.getQurrent Transaction();

/] Prepare and comit writeTb.

try{
cont ext . get Tr ansact i onPr ovi der () . prepar eQur r ent Tr ansact i on() ;

}

8-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About TransactionProvider Objects

cat ch(Not Conm t t abl eException e){
Systemout . println("Caught exception " +e + ".");

}

cont ext . get Transact i onProvi der (). comm t Qurr ent Tr ansact i on() ;

/*

* Transaction grandchil dT4 is now the current Transaction and the
* changes nade to the TopBottonTenpl ate state are visible.

*/

I/l Ceate a Qursor and display the results visible in grandchil dT4.
creat eQur sor (t opNBot t om get Source());

// Commt the grandchild into the child.
try{
cont ext . get Transact i onPr ovi der () . prepar eQur r ent Tr ansact i on() ;
}
cat ch(Not Conm t t abl eException e){
Systemout . println("Caught exception " +e +".");

}

cont ext . get Transact i onProvi der (). comm t Qurr ent Tr ansact i on() ;

* Transaction childT2 is nowthe current Transacti on.

* | nstead of preparing and conmtting the grandchild Transaction,
* you coul d rol I back the Transaction, as in the foll ow ng

* method cal | :

* rol | backQurrent Transacti on();

* |f you roll back the grandchi|ld Transaction, then the changes
* you nade to the TopBottonTenpl ate state in the grandchild

* are discarded and childT2 is the current Transaction.

*/

/!l Cormt the child into the parent.

try{
cont ext . get Tr ansact i onPr ovi der () . prepar eQur r ent Tr ansact i on() ;

}
cat ch(Not Conmi t t abl eException e){

Systemout . println("Caught exception " +e + ".");

}

cont ext . get Transact i onProvi der (). comm t Qurr ent Tr ansact i on() ;
/*

* Transaction parent TL is nowthe current Transaction. Again,
* you could roll back the childT2 Transaction instead of

Using a TransactionProvider 8-13

About TransactionProvider Objects

* preparing and comitting it. If you did so, then the changes
* you nade in childT2 are discarded. The current Transaction

* woul d be parent T1, which woul d have the original state of

* the TopBottonTenpl ate, without any of the changes nade in

* the grandchild or the child transactions.

} // end of nain() nethod
} /1 end of TopBottonTest class

8-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

9

Chapter summary

Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP
API Cur sor and how to gain access to those results. This chapter also describes
how to customize the behavior of a Cur sor to fit your method of displaying the
results. For information on the class hierarchies of Cur sor and its related classes,
and for information on the Cur sor concepts of position, fetch size, and extent, see
Chapter 10.

List of topics

This chapter includes the following topics:

Retrieving the Results of a Query

Navigating a CompoundCursor for Different Displays of Data
Specifying the Behavior of a Cursor

Calculating Extent and Starting and Ending Positions of a Value

Specifying Fetch Sizes and Fetch Blocks

Retrieving the Results of a Query

Steps in retrieving the results of a query

A query is an OLAP API Sour ce that specifies the data that you want to retrieve
from an OLAP service and any calculations you want the OLAP service to perform

Retrieving Query Results 9-1

Retrieving the Results of a Query

on that data. A Cur sor is the object that retrieves, or fetches, the result set specified
by a Sour ce. Creating a Cur sor for a Sour ce involves the following steps:

1. Getaprimary Sour ce from an Mintbj ect or create a derived Sour ce
through operations on a Dat aPr ovi der or a Sour ce. For information on
getting or creating Sour ce objects, see Chapter 5.

2. Ifthe Sour ce is a derived Sour ce, prepare and commit the Tr ansacti onin
which you created the Sour ce. To prepare and commit the Tr ansact i on, call
the pr epar eCurrent Transact i on and commi t Cur r ent Tr ansact i on
methods on your Tr ansact i onPr ovi der . For more information on preparing
and committing a Tr ansact i on, see Chapter 8.

3. Create a Cur sor Manager Speci fi cati on by calling the
cr eat eCur sor Manager Speci fi cat i on method on your Dat aPr ovi der
and passing that method the Sour ce.

4. Create a Speci fi edCur sor Manager by calling the cr eat eCur sor Manager
method on your Dat aPr ovi der and passing that method the
Cur sor Manager Speci fi cati on.

5. Create a Cur sor by calling the cr eat eCur sor method on the
Cur sor Manager .

Example: Creating a Cursor

The following example creates a Cur sor for the derived Sour ce named

guer ySour ce. The example uses a Tr ansact i onPr ovi der named t p and a
Dat aPr ovi der named dp. The example creates a

Cur sor Manager Speci fi cati on named cur sor Mhgr Spec, a

Speci fi edCur sor Manager named cur sor Mhgr, and a Cur sor named
quer yCur sor.

Finally, the example closes the Speci f i edCur sor Manager . When you have
finished using the Cur sor , you should close the Speci fi edCur sor Manager to
free resources.

tryf{
t p. prepar eQurrent Transacti on();

cat ch(Not Commi t t abl eException e){
Systemout. println("Caught exception " +e +".");

}

tp. comm t Qurrent Transacti on();
Qur sor Manager Speci fi cation cur sor Mgr Spec =

9-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Retrieving the Results of a Query

dp. cr eat eQur sor Manager Speci fi cat i on(quer ySour ce) ;
Soeci fi edQur sor Manager cur sor Migr =
dp. cr eat eQur sor Manager (cur sor Mgr Spec) ;
Qursor queryQursor = cursor Mgr. createQursor();
cur sor Mgr . cl ose() ;

Getting values from a Cursor

The Cur sor interface encapsulates the notion of a current position and has methods
for moving the current position. The Cur sor interface has two subinterfaces:

Val ueCur sor and ConpoundCur sor . The Oracle OLAP API has implementations
of these subinterfaces. Calling the cr eat eCur sor method on a Cur sor Manager
returns either a Val ueCur sor or a ConpoundCur sor implementation, depending
on the Sour ce for which you are creating the Cur sor .

A Val ueCur sor is returned for a Sour ce that has a single set of values. A
Val ueCur sor has a value at its current position. A Val ueCur sor has methods for
getting the value at the current position.

A ConmpoundCur sor is created for a Sour ce that has more than one set of values,
which is a Sour ce that has one or more outputs. Each set of values of the Sour ce
is represented by a child Val ueCur sor of the ConpoundCur sor. A
ConpoundCur sor has methods for getting its child Cur sor objects.

The structure of the Sour ce determines the structure of the Cur sor . A Sour ce can
have nested outputs, which occurs when one or more of the outputs of the Sour ce
is itself a Sour ce with outputs. If a Sour ce has a nested output, then the
ConpoundCur sor for that Sour ce has a child ConpoundCur sor for that nested
output.

The ConpoundCur sor coordinates the positions of its child Cur sor objects. The
current position of the CompoundCur sor specifies one set of positions of its child
Cur sor objects.

For an example of a Sour ce that has only one level of output values, see “Example:
Getting ValueCursor objects from a CompoundCursor” on page 9-5. For an example
of a Sour ce that has nested output values, see “Example: Getting values from a
CompoundCursor with nested outputs” on page 9-6.

Example: Getting a single value from a ValueCursor

An example of a Sour ce that represents a single set of values is one returned by the
get Sour ce method on an MdnDi mensi on, such as an MinDi mensi on that
represents a hierarchical list of product values. Creating a Cur sor for that Sour ce

Retrieving Query Results 9-3

Retrieving the Results of a Query

returns a Val ueCur sor . Calling the get Cur r ent Val ue method returns the
product value at the current position of that Val ueCur sor .

The following example gets the Sour ce from ndnPr oduct Hi er, which is an
MdnDi nensi on that represents product values, and creates a Cur sor for that
Sour ce. The example sets the current position to the fifth element of the

Val ueCur sor and gets the product value from the Cur sor . The example then
closes the Cur sor Manager . In the example, dp is the Dat aPr ovi der .

Sour ce product Sour ce = madnir oduct H er . get Sour ce() ;
/*
* Because productSource is a prinary Source, you do not need to
* prepare and commit the current Transaction.
*/
Qur sor Manager Speci fi cation cur sor Mgr Spec =

dp. cr eat eQur sor Manager Speci fi cat i on(pr oduct Sour ce) ;
Soeci fi edQur sor Manager cur sor Migr =

dp. cr eat eQur sor Manager (cur sor Mgr Spec) ;

Qursor product Qursor = cursor Mgr. createQursor();
// Cast the Qursor to a Val ueQursor.
Val ueQur sor product Val ues = (Val ueQursor) product Qursor;
/] Set the position to the fifth el enent of the Val ueQursor.
pr oduct Val ues. set Posi tion(5);
/*
* Product values are strings. Get the Sring value at the current
* position.
*/
Sing val ue = product Val ues. get Qurrent Sring();
/1 QA ose the Specifi edQur sor Manager .
cur sor Mgr . cl ose() ;

Example: Getting all the values from a ValueCursor

This example uses the same Sour ce as “Getting values from a Cursor” on page 9-3.
This example uses ado. . . whi | e loop and the next method of the Val ueCur sor
to move through the positions of the Val ueCur sor . The next method begins at a
valid position and returns t r ue when an additional position exists in the Cur sor .
It also advances the current position to that next position.

The example sets the position to the first position of the Val ueCur sor. The
example loops through the positions and uses the get Cur r ent Val ue method to
get the value at the current position.

/1 productVal ues is the Val ueQursor for product Source
pr oduct Val ues. set Posi tion(1);

9-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Retrieving the Results of a Query

do {
Systemout . printl n(product Val ues. get Qurrent Val ue) ;

}
vhi | e(product Val ues. next ());

Example: Getting ValueCursor objects from a CompoundCursor

The values of the result set represented by a ConpoundCur sor are in the child
Val ueCur sor objects of the ConpoundCur sor . To get those values, you must get
the child Val ueCur sor objects from the ConmpoundCur sor .

An example of a ConpoundCur sor is one that is returned by calling the

cr eat eCur sor method on a Cur sor Manager for a Sour ce that represents the
values of a measure as specified by selected values from the dimensions of the
measure.

The following example uses a Sour ce, named sal esAnount , that results from
calling the get Sour ce method on an Mimveasur e that represents monetary
amounts for sales. The dimensions of the measure are MdnDi mensi on objects
representing products, customers, times, channels, and promotions. This example
uses Sour ce objects that represent selected values from those dimensions. The
names of those Sour ce objects are pr odSel , cust Sel ,ti meSel , chanSel , and
pr onoSel . The creation of the Sour ce objects representing the measure and the
dimension selections is not shown.

The example joins the dimension selections to the measure, which results in a

Sour ce named sal esFor Sel ect i ons. The example creates a Cur sor , named
sal esFor Sel Cur sor, for sal esFor Sel ect i ons. The example casts the Cur sor
to a ConmpoundCur sor , named sal esConpndCr sr, and gets the base

Val ueCur sor and the outputs from the ConpoundCur sor . Each output is a

Val ueCur sor, in this case. The outputs are returned in a Li st . The order of the
outputs in the Li st is the inverse of the order in which the dimensions were joined
to the measure. In the example, dp is the Dat aPr ovi der and t p is the

Transacti onProvi der.

Sour ce sal esFor Sel ections = sal esAnount . j oi n(prodSel)
.join(cust Sel)
.join(tineSel)
.j oi n(chanSel)
.join(promSel);

/] Prepare and conmit the current Transaction

try{

t p. prepar eQurrent Transacti on();

}

Retrieving Query Results 9-5

Retrieving the Results of a Query

cat ch(Not Commi t t abl eException e){
output. println("Caught exception " +e +".");

}

tp. commt Qurrent Transacti on();

/I Geate a Qursor for sal esFor Sel ecti ons
Qur sor Manager Speci fi cation cur sor Mgr Spec =

dp. cr eat eQur sor Manager Speci fi cat i on(sal esFor Sel ecti ons) ;
Soeci fi edQur sor Manager cur sor Migr =

dp. cr eat eQur sor Manager (cur sor Migr Spec) ;

Qursor sal esFor Sel Qursor = cursor Mhgr. creat eQursor();
/] Cast sal esForSel Qursor to a GonpoundQur sor
GonpoundQur sor sal esConpndQ sr = (GonpoundQur sor) sal esVal ues;
/] Get the base Val ueQursor
Val ueQur sor speci fi edSal esVval s
/1l Get the outputs
Li st outputs = sal esConpndQ sr. get Qut puts();
Val ueQur sor promoSel Val s = (Val ueQursor) out puts. get (0);
Val ueQur sor chanSel Val s = (Val ueQursor) outputs.get(1);
Val ueQursor tineSel Vals = (Val ueQursor) outputs.get(2);
Val ueQursor cust Sel Val s = (Val ueQursor) outputs. get(3);
Val ueQur sor prodSel Val s = (Val ueQursor) outputs.get(4);
/*
* You can now get the val ues fromthe Val ueQursor objects.
* Wen you have finished using the Qursor objects, close the
* Speci fi edQur sor Manager .
*/
cur sor Mgr . cl ose()

sal esConpndCr sr. get Val ueQur sor ();

Example: Getting values from a CompoundCursor with nested outputs

This example uses the same sales amount measure as “Example: Getting
ValueCursor objects from a CompoundCursor” on page 9-5, but it joins the
dimension selections to the measure differently. The example joins two of the
dimension selections together. It then joins the result to the Sour ce that results
from joining the single dimension selections to the measure. The resulting Sour ce,
sal esFor Sel ecti ons, represents a query has nested outputs, which means it has
more than one level of outputs.

The ConpoundCur sor that this example creates for sal esFor Sel ecti ons
therefore also has nested outputs. The ConpoundCur sor has a child base

Val ueCur sor and as its outputs has three child Val ueCur sor objects and one
child ConpoundCur sor .

9-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Retrieving the Results of a Query

The example joins the selection of promotion dimension values, pr onoSel , to the
selection of channel dimension values, chanSel . The result is chanByPr onoSel , a
Sour ce that has channel values as its base values and promotion values as the
values of its output. The example joins to sal esAnmount the selections of product,
customer, and time values, and then joins chanByPr onpoSel . The resulting query is
represented by sal esFor Sel ecti ons.

The example prepares and commits the current Tr ansact i on and creates a
Cur sor, named sal esFor Sel Cur sor, for sal esFor Sel ecti ons.

The example casts the Cur sor to a ConpoundCur sor, named sal esConpndCr sr,
and gets the base Val ueCur sor and the outputs from it. In the example, dp is the
Dat aPr ovi der andt p isthe Tr ansacti onPr ovi der.

Sour ce chanByPromoSel = chanSel . j oi n(pronoSel) ;
Sour ce sal esFor Sel ections = sal esAnount . j oi n(prodSel)
.join(custSel)
.join(tineSel)
.j oi n(chanByPr ono&el) ;
/] Prepare and coomit the current Transaction
try{
t p. prepar eQurrent Transacti on();
}
cat ch(Not Gonmi t t abl eExcepti on €){
output. println("Caught exception " +e + ".");
}

tp. comm t Qurrent Transact i on() ;

/Il Geate a Qursor for sal esForSel ections
Qur sor Manager Speci fi cati on cur sor Mgr Spec =

dp. cr eat eQur sor Manager Speci fi cat i on(sal esFor Sel ecti ons) ;
Soeci fi edQur sor Manager cur sor Migr =

dp. cr eat eQur sor Manager (cur sor Migr Spec) ;

Qursor sal esFor Sel Qursor = cursor Mhgr. creat eQursor () ;
/*
* Send the Qursor to a nethod that does different operations
* dependi ng on whet her the Qursor is a GonpoundQursor or a
* Val ueQur sor .
*/
print Qur sor (sal esFor Sel Qursor) ;
cur sor Mgr . cl ose() ;
/*
* ..Hsewhere in the code is the public printQursor nethod and the
* private _printTupl e nethod. The printQursor nethod has a do...while
* | oop that noves through the positions of the Qursor passed to it.

Retrieving Query Results 9-7

Retrieving the Results of a Query

At each position, the nethod prints the nunber of the iteration
through the |1 oop and then a col on and a space. The output object is
a PrintWiter. The nethod calls the private _printTupl e nethod and
then prints a newline. A"tuple" is the set of output Val ueQursor
val ues specified by one position of the parent GonpoundQursor. The
nethod prints one line for each position of the parent

GonpoundQur sor .

If the Qursor passed to the _printTuple nethod is a Val ueQursor,

the nethod prints the value at the current position of the Val ueCursor.
If the Qursor passed in is a GonpoundQursor, the nethod gets the
outputs of the ConpoundQursor and iterates through the outputs,
recursively calling itself for each output. The nethod then gets the
base Val ueQursor of the ConpoundQursor and calls itself again.

public void printQursor(Qursor rootQursor) {
int i =1;
do {
output.print(i++ +": ");
_print Tupl e(root Qursor);
output.print("\n");
out put. flush();

}
whi | e(root Qursor. next());

}

private void _printTupl e(Qursor cursor) {
i f(cursor instanceof ConpoundQursor) {
GonpoundQur sor conpoundCur sor = (GonpoundQur sor) cur sor ;
/] Put an open parenthesis before the val ue of each out put
output.print("(");
Iterator iterQutputs = conmpoundQursor. getQutputs().iterator();
Qursor output = (Qursor)iterQutputs. next();
_print Tupl e(out put);
whi | e(iterQut puts. hasNext ()) {
/] Put a conma after the value of each out put
output.print(",");
_printTupl e((Qursor)iterQutputs. next());
}

/1 Put a cooma after the value of the |ast output
output.print(",");

/] Get the base Val ueQursor

_pri nt Tupl e(conpoundCQur sor . get Val ueQur sor ()) ;

/*

9-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Navigating a CompoundCursor for Different Displays of Data

* Put a close parenthesis after the base val ue to indicate
* the end of the tuple.

*/

output.print(")");

el se if(cursor instanceof Val ueQursor) {
Val ueQursor val ueQursor = (Val ueQursor) cursor;
i f (val ueQursor. hasQurrent Val ue())
print (val ueQursor. get Qurrent Val ue());
el se /1 1f this position has a null val ue
print("NA");

Navigating a CompoundCursor for Different Displays of Data

About Navigating a CompoundCursor

With methods on a ConrpoundCur sor you can easily move through, or navigate, its
structure and get the values from its Val ueCur sor descendents. Data from a
multidimensional OLAP query is often displayed in a crosstab format, or as a table
or agraph.

To display the data for multiple rows and columns, you loop through the positions
at different levels of the ConpoundCur sor depending on the needs of your display.
For some displays, such as a table, you loop through the positions of the parent
ConpoundCur sor . For other displays, such as a crosstab, you loop through the
positions of the child Cur sor objects.

Example: Navigating for a table view

To display the results of a query in a table view, in which each row contains a value
from each output Val ueCur sor and from the base Val ueCur sor , you determine
the position of the top-level, or root, ConpoundCur sor and then iterate through its
positions. The following example displays only a portion of the result set at one
time. It creates a Cur sor for a Sour ce that represents a query that is based on a
measure that has unit cost values. The dimensions of the measure are the product
and time dimensions. The creation of the primary Sour ce objects and the derived
selections of the dimensions is not shown.

The example joins the Sour ce objects representing the dimension value selections
to the Sour ce representing the measure. It prepares and commits the current

Retrieving Query Results 9-9

Navigating a CompoundCursor for Different Displays of Data

Transact i on and then creates a Cur sor . It casts the Cur sor toa

ConpoundCur sor . The example sets the position of the ConpoundCur sor , iterates
through twelve positions of the ConpoundCur sor , and prints out the values
specified at those positions. The Tr ansact i onPr ovi der ist p and the

Dat aPr ovi der isdp. The out put objectisaPrintWiter.

Source unitPriceByDay = unitPrice.joi n(product Sel)
.join(tineSel);
try{
t p. prepar eQurrent Transaction();
}
cat ch(Not Commi t t abl eException e){
output. println("Caught exception " +e +".");
}

tp. commt Qurrent Transacti on();

/Il Geate a Qursor for unitPriceByDay
Qur sor Manager Speci fi cation cur sor Mgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(uni t Pri ceByDay);
Soeci fi edQur sor Manager cur sor Migr =
dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
Qursor unitPriceByDayQursor = cursor Mgr. creat eQursor();

/] Cast the Qursor to a ConpoundQursor
GonpoundQur sor root Qursor = (ConmpoundQur sor) wunit Pri ceByDayQur sor;

/] Determine a starting position and the nunber of rows to display
int start =7;
int nunRows = 12;
/*
* |terate through the specified positions of the root ConpoundQursor.
* Assune that the Qursor contains at |east (start + nunRows) positions.
*/
for(int pos = start; pos < start + nunRows; pos++) {
/1 Set the position of the root ConpoundQursor
root Qur sor . set Posi tion(pos);
/1 Print the val ues of the output Val ueQursors
out put . print (root Qursor. get Qut put s().get(0).getQurrentVal ue() + "\t");
out put. print(rootQursor.getQutputs().get(1).getQurrentValue() + "\t");
I/ Print the val ue of the base Val ueQursor and a new |ine
out put . pri nt (root Qursor. get Val ueQursor (). get Qurrent Val ue() + "\n");
out put . flush();
¥

cur sor Mgr . cl ose() ;

9-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Navigating a CompoundCursor for Different Displays of Data

If the time selection for the query has eight values, such as the first day of each
calendar quarter for the years 1999 and 2000, and the product selection has three
values, then the result set of the uni t Pri ceByDay query has twenty-four
positions. The preceding example displays something like the following table,
which has the values specified by positions 7 through 18 of the ConpoundCur sor .

01-JU_-99 815 57
01-JU-99 1050 23
01-JU-99 2055 22
01- OCT-99 815 56
01- OCT-99 1050 24
01- CT-99 2055 21
01- JAN-00 815 58
01- JAN-00 1050 24
01- JAN-00 2055 24
01- APR- 00 815 59
01- APR- 00 1050 24
01- APR- 00 2055 25

Example: Navigating for a crosstab view without pages

This example uses the same query as “Example: Navigating for a table view” on
page 9-9. In a crosstab view, the first row is column headings, which are the values
fromti nmeSel in this example. The output for t i meSel is the faster varying
output because the t i neSel dimension selection was joined to the measure first.
The remaining rows begin with a row heading. The row headings are values from
the slower varying output, which is pr oduct Sel . The remaining positions of the
rows, under the column headings, contain the uni t Pri ce values specified by the
set of the dimension values.

To display the results of a query in a crosstab view, you specify the positions of the
children of the top-level ConpoundCur sor and then iterate through their positions.
The example gets the values but does not include code for putting the values in the
appropriate cells of the crosstab display.

Source unitPriceByDay = unitPrice.joi n(product Sel)
.join(tineSel);
try{
t p. prepar eQurrent Transaction();

cat ch(Not Commi t t abl eException e){
output. println("Caught exception " +e +".");

}

tp. commt Qurrent Transacti on();

Retrieving Query Results 9-11

Navigating a CompoundCursor for Different Displays of Data

/]l Geate a Qursor for unitPriceByDay
Qur sor Manager Speci fi cati on cur sor Mgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(uni t Pri ceByDay) ;
Soeci fi edQur sor Manager cur sor Migr =
dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
Qursor unitPriceByDayQursor = cursor Mgr. creat eQursor ();

/] Cast the Qursor to a GonpoundQursor

GonpoundQur sor root Qursor = (CompoundQur sor) unit Pri ceByDayQur sor;
/*

* Determine a starting position and the nunber of rows to display.
* colSart is the position in columQursor at which the current

* display starts and ronstart is the position in rowQursor at

* which the current display starts.

*/

int coStart = 1;

int ronart = 1;

Sring product Val ue;

Sring tineval ue;

doubl e price;

int nunProducts = 3;

int nunbays = 12;

/] Get the outputs and the Val ueQursor

GonpoundQur sor root Qursor = (ConmpoundQursor) unit Pri ceByDayQur sor;

Li st outputs = root Qursor.get Qutputs();

/] The first output has the val ues of tineSel, the slower varying out put
Val ueQursor rowQursor = (Val ueQursor) outputs.get(0);

/1 The second out put has the faster varying val ues of product Sel

Val ueQur sor col umQursor = (Val ueQursor) outputs. get(1);

Val ueQur sor unitPriceVal ues = root Qursor. get Val ueQursor ();// Prices

/1 Loop through positions of the faster varying output Qursor
for(int pPos = col Start; pPos < col Sart + nunProducts; pPos++) {
col umQur sor . set Posi ti on(pPos) ;
/1 Loop through positions of the slower varying output Qursor
for(int tPos = rondart; tPos < rowstart + nunbays; tPos++) {
rowQur sor . set Posi ti on(t Pos);
/*
* Get the values. Sending the val ues to the appropriate
* di spl ay nechani smis not shown.
*/
product Val ue = col umQursor.get Qurrent Sring();
tineVal ue = ronwQursor.getQurrent Sring();

9-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Navigating a CompoundCursor for Different Displays of Data

price = unitPriceVal ues. get Qurrent Doubl e();

}
}

cur sor Mgr. cl ose() ;

The following crosstab view is a display of the values from the result set specified
by the uni t Pri ceByDay query.

815 1050 2055
01-JAN-99 56 22 21
01-APR-99 57 22 21
01-JUL-99 57 23 22
01-OCT-99 56 24 21
01-JAN-00 58 24 24
01-APR-00 59 24 25
01-JUL-00 59 25 25
01-OCT-00 61 25 26

Example: Navigating for a crosstab view with pages

This example creates a Sour ce that is based on a sales amount measure. The
dimensions of the measure are the customer, product, time, channel, and promotion
dimensions. The Sour ce objects for the dimensions represent selections of the
dimension values. The creation of those Sour ce objects is not shown.

The query that results from joining the dimension selections to the measure Sour ce
represents total sales amount values as specified by the values of its outputs.

The example creates a Cur sor for the query and then sends the Cur sor to the
pri nt AsCr osst ab method, which prints the values from the Cur sor ina
crosstab. That method calls other methods that print page, column, and row values.

The fastest varying output of the Cur sor is the selection of customers, which has
three values that specify all of the customers from France, the UK, and the USA. The
customer values are the column headings of the crosstab. The next fastest varying
output is the selection of products, which has four values that specify types of
products. The page dimensions are selections of two time values, which are the first

Retrieving Query Results 9-13

Navigating a CompoundCursor for Different Displays of Data

and second calendar quarters of the year 2000, one channel value, which is the
direct channel, and one promotion value, which is all promotions.

The Transact i onProvi der ist p and the Dat aPr ovi der is dp. The out put
objectisaPrintWiter.

Sour ce sal esAmount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.joi n(product Sel) ;
.join(tineSel);
.j oi n(channel Sel) ;
.join(promotionSel);
try{
t p. prepar eQurrent Transacti on();

cat ch(Not Commi t t abl eException e){
output. println("Caught exception" +e +".");

}

tp. comm t Qurrent Transact i on() ;

I/l Geate a Qursor for sal esAnount sFor Sel ecti ons
Qur sor Manager Speci fi cati on cur sor Mgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(sal esAnount sFor Sel ecti ons) ;
Soeci fi edQur sor Manager cur sor Migr =
dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
Qursor sal esFor Sel Qursor = cursor Mhgr. creat eQursor () ;

/1 Send the Qursor to the printAsQosstab net hod
print AsQr osst ab(sal esFor Sel Qursor) ;

cur sor Mgr . cl ose() ;
/] Hsewhere in the code are the private nethods.

/1 This nethod expects a ConpoundQur sor.

private void printAsQ osstab(Qursor cursor) {
/1 Cast the Qursor to a ConpoundQursor
GonpoundQur sor root Qursor = (GonpoundQur sor) cur sor;
List outputs = root Qursor. get Qut puts();
int nQutputs = outputs. size();

/1l Set the initial positions of all outputs
Iterator outputlter = outputs.iterator();
while (outputlter.hasNext())
((Qursor) outputlter.next()).setPosition(1);
/*
* The last output is fastest-varying; it represents col ums.
* The second to | ast output represents rows.

9-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Navigating a CompoundCursor for Different Displays of Data

* ANl other outputs are on the page.

*/
Qursor col Qursor = (Qursor) outputs.get(nQutputs - 1);
Qursor rowQursor = (Qursor) outputs. get(nQutputs - 2);
ArraylLi st pageQursors = new ArraylList();
for (int i =0; i <nQutputs - 2; i+t {

pageQur sor s. add(out puts. get (i));

}

/1l Get the base Val ueQursor, which has the data val ues
Val ueQur sor dataQursor = root Qursor. get Val ueQursor ();

/1 Print the pages of the crosstab
pri nt Pages(pageQursors, 0, rowQursor, col Qursor, dataQursor);

}

/!l Prints the pages of a crosstab
private void printPages(List pageQursors, int pagel ndex, Qursor rowQursor,
Qursor col Qursor, Val ueQursor dataQursor) {
/]l Get a Qursor for this page
Qursor pageQursor = (Qursor) pageQursors. get (pagel ndex) ;

/1 Loop over the values of this page di nension
do {
/1 1f this is the fastest-varying page dinension, print a page
i f (pagel ndex == pageQursors.size() - 1) {
/1 Print the val ues of the page di nensions
pri nt PageHeadi ngs(pageQur sors) ;

[l Print the col um headi ngs
pri nt Gol umHeadi ngs(col Qursor);

Il Print the rows
pri nt Rows(rowQur sor, col Qursor, dataQursor);

/1 Print a couple of blank lines to delimt pages
output.println();
output.println();

}

/*

* |f this is not the fastest-varying page, recurse to the
* next fastest varying di nension.

*/

el se {

Retrieving Query Results 9-15

Navigating a CompoundCursor for Different Displays of Data

pri nt Pages(pageQur sors, pagel ndex + 1, rowQursor, col Qursor,
dat aQursor);

}
} while (pageQursor.next());

/] Reset this page dinension Qursor to its first elenent.
pageQur sor . set Posi tion(1);

}

/I Prints the val ues of the page dinensions on each page
private void print PageHeadi ngs(Li st pageQursors) {
/1l Print the values of the page di nensi ons
Iterator pagelter = pageQursors.iterator();
whi | e (pagel ter.hasNext())
output. println(((Val ueQursor) pagelter.next()).getQurrentVal ue());
output.printin();
}

/1 Prints the col um headi ngs on each page
private void print Gol ummHeadi ngs(Qursor col Qursor) {
do {
output.print("\t");
out put. print (((Val ueQursor) col Qursor).getQurrentVal ue());
} while (col Qursor.next());
output.println();
col Qursor. setPosition(1);

}

/I Prints the rows of each page
private void print Rows(Qursor rowQursor, Qursor col Qursor,
Val ueQur sor dat aQursor) {
/1 Loop over rows
do {
/1 Print row di nensi on val ue
output. print (((Val ueQursor) rowQursor).getQirrentVal ue());
output.print("\t");
/1 Loop over col urms
do {
/1 Print data val ue
out put . pri nt (dat aQursor. get Qurrent Val ue());
output.print("\t");
} while (col Qursor.next());
output.println();

/1l Reset the colum Qursor to its first el enent

9-16 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Specifying the Behavior of a Cursor

col Qursor. setPosition(1);
} while (rowQursor.next());

// Reset the row Qursor to its first el enent
rowQur sor. set Position(1);

}

The crosstab output of this example looks like the following.

Pronotion total
D rect
2000- Q1

Quter wear - Men

Quter wear - \dnen
Quter wear - Boys
Quter wear - Grls

Pronotion total
D rect
2000- Q@

Quter wear - Men

Quter wear - \dnen
Quter wear - Boys
Quter wear - Grls

FR

750563.
984461.
693382.
926520.

FR

683521.
840024.
600382.
901558.

50
00
00
50

00
50
50
00

Specifying the Behavior of a Cursor

About specifying the behavior of a Cursor

W

938014. 00
1388755. 50
799452. 00
977291. 50

W

711945. 00
893587. 50
755031. 00
909421. 50

us
12773925. 50
15421979. 00
9183052. 00
11854203. 00

us

9947221. 50
12484221. 00
8791240. 00
9975927. 00

You can specify the following aspects of the behavior of a Cur sor .

« The fetch size of a Cur sor, which is the number of elements of the result set that

the Cur sor retrieves during one fetch operation.

= The shape of the fetch block of a Cur sor . The fetch block is the set of elements of
each descendent Val ueCur sor that the parent ConpoundCur sor retrieves.
The shape of the fetch block is the levels of the ConpoundCur sor at which you

set the fetch sizes.

Retrieving Query Results 9-17

Specifying the Behavior of a Cursor

= Whether the OLAP service calculates the extent of the Cur sor . The extent is the
total number of positions of the Cur sor . If the Cur sor is a child Cur sor of a
ConpoundCur sor , its extent is relative to any slower varying outputs.

« Whether the OLAP service calculates the positions in the parent Cur sor at
which the value of a child Cur sor starts or ends.

To specify the behavior of Cur sor, you use methods on the

Cur sor Speci fi cat i on for that Cur sor . To get the Cur sor Speci fi cati on for
a Cur sor, you use methods on the Cur sor Manager Speci fi cati on that you
create for a Sour ce.

Note: Specifying the calculation of the extent or the starting or ending position in a
parent Cur sor of the current value of a child Cur sor can be a very expensive
operation. The calculation can require considerable time and computing resources.
You should only specify these calculations when your application needs them.

For more information on the relationships of Sour ce, Cur sor,
Cur sor Speci fi cati on, and Cur sor Manager Speci fi cat i on objects or the
concepts of fetch size, extent, or Cur sor positions, see Chapter 10.

Example: Getting CursorSpecification objects from a CursorManagerSpecification

This example creates a Sour ce, creates a Cur sor Manager Speci fi cati on for the
Sour ce, and then gets the Cur sor Speci fi cat i on objects from a

Cur sor Manager Speci fi cati on. The root Cur sor Speci fi cati on isthe

Cur sor Speci fi cat i on for the top-level ConpoundCur sor .

Sour ce sal esAmount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.joi n(product Sel) ;
.join(tineSel);
.j oi n(channel Sel) ;
.join(promotionSel);
try{
t p. prepar eQurrent Transacti on();

cat ch(Not Commi t t abl eException e){
output. println("Caught exception" +e +".");

}

tp. comm t Qurrent Transact i on() ;
/1 Geate a Qursor for sal esAmount sFor Sel ecti ons

Qur sor Manager Speci fi cati on cur sor Mgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(sal esAnount sFor Sel ecti ons) ;

9-18 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Calculating Extent and Starting and Ending Positions of a Value

/] Get the root QursorSpecification of the QursorManager Speci fi cati on.
GonpoundCQur sor Speci fi cation root Qur sor Spec =
(GonpoundQur sor Speci fi cation) cursor Migr Spec. get Root Qur sor Speci fi cation();

/] Get the Qursor Specification for the base val ues
Val ueQur sor Speci fi cati on baseVal ueSpec =
r oot Qur sor Spec. get Val ueQur sor Speci fi cation();

/1 Get the Qursor Specification objects for the outputs
Li st out put Specs = root Qur sor Spec. get Qut put s();
Val ueQur sor Speci fi cati on promSel Val CSpec =

(Val ueQur sor Speci fi cation) out put Specs. get (0);
Val ueQur sor Speci fi cati on chanSel Val Cec =

(Val ueQur sor Speci fi cation) out put Specs. get (1);
Val ueQur sor Speci fication tineSel Val Csec =

(Val ueQur sor Speci fi cation) out put Specs. get(2);
Val ueQur sor Speci fi cation prodSel Val Csec =

(Val ueQur sor Speci fi cation) out put Specs. get (3);
Val ueQur sor Speci fi cation cust Sel Val Cec =

(Val ueQur sor Speci fi cation) out put Specs. get (4);

Once you have the Cur sor Speci fi cat i on objects, you can use their methods to
specify the behavior of the Cur sor objects that correspond to them.

Calculating Extent and Starting and Ending Positions of a Value

About specifying the calculation of extent and the starting and ending positions of a
value in its parent

To manage the display of the result set retrieved by a ConpoundCur sor , you
sometimes need to know the extent of its child Cur sor components. You might also
want to know the position at which the current value of a child Cur sor starts in its
parent ConpoundCur sor . You might want to know the span of the current value of
a child Cur sor . The span is the number of positions of the parent Cur sor that the
current value of the child Cur sor occupies. You can calculate the span by
subtracting the starting position of the value from its ending position and
subtracting 1.

Before you can get the extent of a Cur sor or get the starting or ending positions of
a value in its parent Cur sor, you must specify that you want the OLAP service to
calculate the extent or those positions. To specify the performance of those
calculations, you use methods on the Cur sor Speci fi cat i on for the Cur sor.

Retrieving Query Results 9-19

Calculating Extent and Starting and Ending Positions of a Value

Example: Specifying the calculation of the extent of a Cursor

This example specifies calculating the extent of a Cur sor . The example uses the
Cur sor Manager Speci fi cati on from “Example: Getting CursorSpecification
objects from a CursorManagerSpecification” on page 9-18.

GonpoundCur sor Speci fi cation root Qursor Spec =
(GonpoundQur sor Speci fi cation) cursor Mgr Spec. get Root Qur sor Speci fi cation();
r oot Qur sor Spec. set Ext ent Cal cul ati onSpeci fi ed(true);

You can use methods on a Cur sor Speci fi cat i on to determine whether the
Cur sor Speci fi cat i on specifies the calculation of the extent of a Cur sor asin
the following example.

bool ean i sSet = root Qursor Spec. i sExt ent Cal cul ati onSpeci fied();

Example: Specifying the calculation of starting and ending positions in a parent

This example specifies calculating the starting and ending positions of the current
value of a child Cur sor in its parent Cur sor . The example uses the

Cur sor Manager Speci fi cati on from “Example: Getting CursorSpecification
objects from a CursorManagerSpecification” on page 9-18.

GonpoundQur sor Speci fi cation root Qursor Spec =
(GonpoundQur sor Speci fi cation) cursor Mgr Spec. get Root Qur sor Speci fi cation();
/*
* Get the List of QursorSpecification objects for the outputs.
* |terate through the list, specifying the cal culation of the extent
* for each output QursorSpecification.
*/
Iterator iterQutput Specs = root Qursor Spec. get Qut puts().iterator();
Val ueQur sor Speci fi cation val Qursor Spec = (Val ueQur sor Speci fi cat i on)
i terQut put Specs. next () ;
whi | e(i t er Qut put Specs. hasNext ()) {
val Qur sor Spec. set Parent St art Cal cul ati onSpeci fi ed(true);
val Qur sor Spec. set Par ent EndCal cul ati onSpeci fi ed(true);
val Qur sor Spec = (Val ueQur sor Speci fi cation) iterQut put Specs. next ();
}

You can use methods on a Cur sor Speci fi cat i on to determine whether the
Cur sor Speci fi cat i on specifies the calculation of the starting or ending
positions of the current value of a child Cur sor in its parent Cur sor , as in the
following example.

bool ean isSet;
Iterator iterQutput Specs = root Qursor Spec. get Qutputs().iterator();

9-20 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Calculating Extent and Starting and Ending Positions of a Value

Val ueQur sor Speci fi cati on val Qursor Spec = (Val ueQur sor Speci fi cat i on)
i t er Qut put Specs. next () ;
vhi | e(i t er Qut put Specs. hasNext ()) {
i sSet = val Qursor Spec. i sParent Start Cal cul ati onSpeci fi ed();
i sSet = val Qursor Spec. i sParent EndCal cul ati onSpeci fied();
val Qur sor Spec = (Val ueQur sor Speci fi cation) iterQutput Specs. next () ;

}

Example: Calculating the span of the positions in the parent of a value

This example determines the span of the positions in a parent ConmpoundCur sor of
the current value of a child Cur sor for two of the outputs of the

ConpoundCur sor . The example uses the sal esAnount sFor Sel ecti ons

Sour ce from “Example: Navigating for a crosstab view with pages” on page 9-13.

The example gets the starting and ending positions of the current values of the time
and product selections and then calculates the span of those values in the parent
Cur sor . The parent is the root ConpoundCur sor . The Tr ansact i onPr ovi der is
t p, the Dat aPr ovi der isdp, and out put isaPrintWiter.

Sour ce sal esAmount sFor Sel ecti ons = sal esAmount . j oi n(cust oner Sel)
.joi n(product Sel) ;
.join(tineSel);
.j oi n(channel Sel) ;
.join(promotionSel);
try{
t p. prepar eQurrent Transaction();

cat ch(Not Commi t t abl eException e){
output. println("Caught exception " +e +".");

}

t p. comm t Qurrent Transact i on() ;

/1l Geate a QursorManager Specification for sal esAnount sFor Sel ecti ons
Qur sor Manager Speci fi cati on cur sor Mgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(sal esAnount sFor Sel ecti ons) ;

/] Get the root QursorSpecification fromthe Qursor Manager Speci fi cati on.
GonpoundCQur sor Speci fi cation root Qur sor Spec =

(GonpoundQur sor Speci fi cation) cursor Migr Spec. get Root Qur sor Speci fi cation();
/1 Get the Qursor Specification objects for the outputs

Li st out put Specs = root Qur sor Spec. get Qut put s() ;

Val ueQur sor Speci fication tinmeSel Val Csec =

(Val ueQur sor Speci fi cati on) out put Specs. get(2); \\ output for tine

Val ueQur sor Speci fi cation prodSel Val Cspec =

Retrieving Query Results 9-21

Calculating Extent and Starting and Ending Positions of a Value

(Val ueQur sor Speci f i cati on) out put Specs. get(3) \\ output for product

/1 Specify the calculation of the starting and endi ng positions
ti meSel Val Cpec. set Parent S art Cal cul ati onSpeci fied(true);

ti meSel Val Cpec. set Par ent EndCal cul at i onSpeci fied(true);

prodSel Val Cpec. set Parent Start Cal cul ati onSpeci fi ed(true);

pr odSel Val Cpec. set Par ent EndCal cul at i onSpeci fi ed(true);

/]l Geate the QursorMnager and the Qursor
Soeci fi edQur sor Manager cur sor Migr = dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
GonpoundQur sor cursor = (GonpoundQur sor) cur sor Mgr. creat eQursor () ;

/] Get the child Qursor objects

Val ueQur sor baseVal Qursor = cursor. get Val ueQursor () ;

Li st outputs = cursor.get Qutputs();

Val ueQur sor promoSel Val s = (Val ueQursor) outputs. get (0);
Val ueQursor chanSel Val s = (Val ueQursor) outputs.get(1);
Val ueQursor tineSel Vals = (Val ueQursor) outputs.get(2);
Val ueQursor cust Sel Val s = (Val ueQursor) outputs. get(3);
Val ueQursor prodSel Val s = (Val ueQursor) outputs. get(4);

/1 Set the position of the root ConpoundQursor

cursor. set Posi ti on(15);

/*

* Get the values at the current position and determne the span
* of the values of the tinme and product outputs.

*/

out put. print(promSel Val s.getQurrentVal ue() + ", ");

output. print(chanSel Val s. getQurrentVal ue() + ", ");
output.print(tinmeSel Val s.getQurrentValue() + ",)
output. print(custSel Val s.getQurrentVal ue() + ", ");
output. print(prodSel Val s. get QurrentVal ue() + ",)
out put . printl n(baseVal Qursor. get Qurrent Val ue());

/] Determine the span of the values of the two fastest varying outputs
int span;

span = (prodSel Val s. get Parent End() - prodSel Val s. getParent S art()) -1);
output.println("The span of " + prodSel Val s. get Qurrent Val ue() +

" at the current positionis " + span +".")

span = (tineSel Val s. get ParentEnd() - tineSel Vals.getParentSart()) -1);
output.println("The span of " + tineSel Val s. get Qurrent Val ue() +

" at the current positionis " + span +".")

cur sor Mgr . cl ose() ;

9-22 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Specifying Fetch Sizes and Fetch Blocks

This example produces the following output.

Pronotion total, DOrect, 2000-QL, Quter wear - Men, US 9947221.50
The span of Quter wear - Men at the current positionis 3.
The span of 2000-@@ at the current position is 12.

Specifying Fetch Sizes and Fetch Blocks

About specifying fetch sizes and fetch blocks

The number of elements of a Cur sor that the OLAP service sends to the client
application during one fetch operation depends on the fetch size specified for that
Cur sor . For a CompoundCur sor , you can set the fetch size on the

ConpoundCur sor itself or at one or more levels of its descendent Cur sor
components. Setting the fetch size on a ConpoundCur sor specifies that fetch size
for its child Cur sor components.

The set of elements the Cur sor retrieves in a single fetch is the fetch block. The
shape of the fetch block is determined by the set of Cur sor components on which
you set the fetch sizes. For more information on fetch sizes and fetch blocks, see
Chapter 10.

You specify the shape of the fetch block and the specific fetch sizes according to the
needs of your display of the data. To display the results of a query in a table view,
you specify the fetch size on the top-level ConpoundCur sor .

To display the results in a crosstab view, you specify the fetch sizes on the children
of the top-level ConpoundCur sor . For a crosstab that displays the results of a
query that has nested levels of outputs, you might specify fetch sizes at different
levels of the children of the component ConpoundCur sor objects.

You use methods on a Cur sor Speci fi cat i on to set the default fetch size for its
Cur sor . For a CompoundCur sor Speci fi cat i on, you can specify setting the
fetch sizes on its children and thereby determine the shape of the fetch block.

If a default fetch size is set on a Cur sor Speci fi cat i on, you can use the

set Fet chSi ze method on the Cur sor for that Cur sor Speci fi cati onto
change the fetch size of the Cur sor . By default, the root Cur sor Speci fi cati on
of a Cur sor Manager Speci fi cat i on has the fetch size set to 100.

Retrieving Query Results 9-23

Specifying Fetch Sizes and Fetch Blocks

Example: Specifying the fetch size and fetch block for a table view

This example creates a Sour ce that represents the sales amount measure values as
specified by selections of values from the dimensions of the measure. The product
and customer selections each have ten values, the time selection has four values,
and the promotion and channel selections each have one value. Assuming that a
sales amount exists for each set of dimension values, the result set of the query has
300 elements (10*10*3*1*1).

To match a display of the elements that contains only twenty rows, the example sets
a fetch size of twenty elements on the top-level ConpoundCur sor . Because the
default fetch size is automatically set on the root Cur sor Speci fi cat i on, which
in this example is the ConmpoundCur sor Speci fi cat i on for the top-level
ConmpoundCur sor , the example just uses the set Fet chSi ze method on the
ConpoundCur sor to change the fetch size. The fetch block is the set of output and
base values specified by twenty positions of the top-level ConpoundCur sor . The
Transacti onProvi der ist p and the Dat aPr ovi der is dp.

Sour ce sal esAmount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.joi n(product Sel) ;
.join(tineSel);
.j oi n(channel Sel) ;
.join(promotionSel);
try{
t p. prepar eQurrent Transacti on();
}
cat ch(Not Commi t t abl eException e){
output. println("Caught exception" +e +".");
}

tp. commt Qurrent Transacti on();

[/l Geate a Qursor for sal esAnount sFor Sel ecti ons
Qur sor Manager Speci fi cation cur sor Mgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(sal esAnount sFor Sel ecti ons) ;
Soeci fi edQur sor Manager cur sor Migr = dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
Qursor cursor = cursorMgr. createQursor();

/] Set the fetch size of the top-1evel GonpoundQursor to 20
cur sor . set Fet chS ze(20) ;

Example: Using extents to specify the fetch sizes for a crosstab view

This example modifies the example in “Example: Navigating for a crosstab view
without pages” on page 9-11. In this example, the number of times that the f or

9-24 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Specifying Fetch Sizes and Fetch Blocks

loops are repeated depends upon the extent of the Cur sor . As the conditional
statement of the f or loops, instead of specifying the number of positions that the
Cur sor has, this example gets the extent of the Cur sor and uses the extent as the
condition. The optimal fetch block for the crosstab display is a fetch block that
contains, for each position of the ConpoundCur sor , the extent of the child Cur sor
elements at that position.

This example creates a Cur sor Manager Speci fi cati on and gets the root

Cur sor Speci fi cati on. It casts the root Cur sor Speci ficationasa
ConpoundCur sor Speci fi cat i on. The example specifies setting the default fetch
sizes on the children of the root ConpoundCur sor Speci fi cat i on and it specifies
the calculation of its extent.

The example sets the fetch size on each output Val ueCur sor equal to the extent of
the Val ueCur sor . It then gets the displayable portion of the crosstab by looping
through the positions of the child Val ueCur sor objects.

Source unitPriceByDay = unitPrice.joi n(product Sel)
.join(tineSel);
try{
t p. prepar eQurrent Transaction();
}
cat ch(Not Commi t t abl eException e){
output. println("Caught exception " +e +".");

}

tp. commt Qurrent Transacti on();

/1 Ceate a QursorManager Speci fication for unitPriceByDay

Qur sor Manager Speci fi cation cur sor Mgr Spec =

dp. cr eat eQur sor Manager Speci fi cati on(uni t Pri ceByDay) ;

/*

* Get the root QursorSpecification and cast it to a

* ConpoundQur sor Speci fi cati on

*/

GonpoundCQur sor Speci fi cation root Spec =

(GonpoundQur sor Speci fi cation) cursor Mgr Spec. get Root Qur sor Speci fi cation();
/*

* Joecify setting the fetch size on the child Qursor objects

* and cal cul ating the extent of the positions in the Qursor

*/

r oot Spec. speci f yDef aul t Fet chS zehChi | dren() ;

r oot Spec. set Ext ent Cal cul ati onSpeci fi ed(true);

/]l Geate the QursorMnager and the Qursor
Soeci fi edQur sor Manager cur sor Migr =

Retrieving Query Results 9-25

Specifying Fetch Sizes and Fetch Blocks

dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
Qursor unitPriceByDayQursor = cursor Mgr. creat eQursor ();

/] Cast the Qursor to a GonpoundQursor

GonpoundQur sor root Qursor = (CompoundQur sor) unit Pri ceByDayQur sor;

/*

* Determine a starting position and the nunber of rows to display.

* The position in col umQursor at which the current display starts
*is colSart and rowstart is the position in rowQursor at which

* the current display starts.

*/

int cooSart = 1,

int ronart = 1;

Sring product Val ue;

Sring tineVal ue;

doubl e price;

/*

* The nunber of val ues fromthe Val ueQursor objects for products and
* days are nowinitialized as 1 because the Val ueQursor objects have
* at |least one el enent.

*/

int nunProducts = 1;

int nunbays = 1,

/1 Get the Val ueQursor and the outputs

GonpoundCur sor root Qursor = (ConmpoundQur sor) unit Pri ceByDayQur sor;

Li st outputs = root Qursor.get Qutputs();

/] The first output has the val ues of tineSel, the slower varying out put
Val ueQursor rowQursor = (Val ueQursor) outputs.get(0);

/1 The second out put has the faster varying val ues of product Sel

Val ueQur sor col umQursor = (Val ueQursor) outputs.get(1);

Val ueQur sor unit PriceVal ues = root Qursor. get Val ueQursor ();// Prices

/1 Loop through the positions of the faster varying output CQursor
for(int pPos = col Start; pPos < col Sart + nunProducts; pPos++) {
col uimQur sor . set Posi ti on(pPos) ;
/]l Get the extents of the output Val ueQursor objects
nunProduct s = col unmQur sor . get Extent () ;
nunbays = rowQursor. get Extent () ;
/1 Set the fetch sizes
col uimQur sor . set Fet chS ze(nunr oduct s) ;
rowQur sor . set Fet chS ze(nunibnt hs) ;
/1 Loop through the positions of the slower varying output Qursor
for(int tPos = rondart; tPos < rowstart + nunbays; tPos++) {
rowQur sor . set Posi tion(t Pos);

9-26 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Specifying Fetch Sizes and Fetch Blocks

/*
* Get the values. Sending the val ues to the appropriate
* di spl ay nechani smis not shown.
*/

product Val ue = col umQursor.get Qurrent Sring();

tineVal ue = ronwQursor.getQurrent Sring();

price = unitPriceVal ues. get Qurrent Doubl e();

Retrieving Query Results 9-27

Specifying Fetch Sizes and Fetch Blocks

9-28 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

10

Understanding Cursor Classes and
Concepts

Chapter summary

This chapter describes the Oracle OLAP API Cur sor class and its related classes,
which you use to retrieve and gain access to the results of a query. This chapter also
describes the Cur sor concepts of position, fetch size, and extent. For examples of
creating and using a Cur sor and its related objects, see Chapter 9.

List of topics

This chapter includes the following topics:

Overview of the OLAP API Cursor Objects
Cursor Class

CursorManagerSpecification Class
CursorSpecification Class

CursorManager Class
CursorManagerUpdateListener Class
About Cursor Positions and Extent

About Fetch Sizes and Fetch Blocks

Understanding Cursor Classes and Concepts 10-1

Overview of the OLAP API Cursor Objects

Overview of the OLAP API Cursor Objects

About the Cursor class and its related classes

A Cur sor retrieves the result set defined by a Sour ce. Creating a Cur sor fora
Sour ce requires at least two intermediate steps. After creating a Sour ce that
defines the data that you want to retrieve from the data store, you create a Cur sor
for that Sour ce by doing the following:

1.

Creating a Cur sor Manager Speci fi cat i on by passing the Sour ce to the
creat eCur sor Manager Speci fi cati on method on the Dat aPr ovi der that
you are using. The Cur sor Manager Speci fi cati on has

Cur sor Speci fi cat i on objects in a structure that mirrors the values and
outputs of the Sour ce.

Creating a Cur sor Manager by calling the cr eat eCur sor Manager method
on the Dat aPr ovi der and passing it the Cur sor Manager Speci fi cati on.
The Cur sor Manager creates Cur sor objects. It also manages the local data
cache for its Cur sor objects and is aware of changes to the Sour ce for a
dynamic query.

Creating a Cur sor by calling the cr eat eCur sor method on the

Cur sor Manager . The structure of the Cur sor mirrors the structures of the
Cur sor Manager Speci fi cati on and the Sour ce. The

Cur sor Speci fi cat i on objects of a Cur sor Manager Speci fi cati on
specify the behavior of their corresponding Cur sor objects.

For an example of creating a Cur sor, see Chapter 9.

This architecture provides great flexibility in fetching data from a result set and in
selecting data to display. You can do the following:

Create more than one Cur sor Manager Speci fi cat i on object for the same
Sour ce. You can specify different behavior on the Cur sor Speci fi cati on
components of the various Cur sor Manager Speci fi cati on objects in order
to retrieve and display different sets of values from the same result set. You
might want to do this when displaying the data from a Sour ce in different
formats, such as in a table and a crosstab.

Receive notification that the Sour ce produced by the Tenpl at e has changed.

If you add a Cur sor Manager Updat eLi st ener to the Cur sor Manager fora
Sour ce, then the Cur sor Manager notifies the

Cur sor Manager Updat eLi st ener when the Sour ce for a dynamic query has

10-2 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of the OLAP API Cursor Objects

changed and you that therefore need to update the
Cur sor Manager Speci fi cat i on for the Cur sor Manager .

Update the Cur sor Manager Speci fi cati on for a Cur sor Manager . If you
are using Tenpl at e objects to produce a dynamic query and the state of a
Tenpl at e changes, then the Sour ce produced by the Tenpl at e changes. If
you have created a Cur sor for the Sour ce produced by the Tenpl at e, then
you need to replace the Cur sor Manager Speci fi cat i on for the

Cur sor Manager with an updated Cur sor Manager Speci fi cat i on for the
changed Sour ce. You can then create a new Cur sor from the

Cur sor Manager .

Create different of Cur sor objects from the same Cur sor Manager and set
different fetch sizes on those Cur sor objects. You might do this when you want
to display the same data as a table and as a graph.

Sources for which you cannot create a Cursor

Some Sour ce objects are not queries, which means the Sour ce is either an
incomplete specification or it does not specify data that a Cur sor can retrieve from
the data store. The following are Sour ce objects for which you cannot create a

Cur sor.

A Sour ce that has an unspecified input and is therefore an incomplete
specification of the data to retrieve.

A Sour ce that specifies an operation that is not computationally possible. An
example is a Sour ce that specifies an infinite recursion.

A Sour ce that defines an infinite result set. An example is the fundamental
Sour ce that represents the set of all St ri ng objects.

A Sour ce that has no elements or includes another Sour ce that has no
elements. Examples are a Sour ce returned by the get Enpt ySour ce method
on Dat aPr ovi der and another Sour ce derived from the empty Sour ce.
Another example is a derived Sour ce that results from selecting a value from a
primary Sour ce that you got from an MinDi mensi on and the selected value
does not exist in the dimension.

Cursor objects and Transaction objects

When you create a derived Sour ce or change the state of a Tenpl at e, you create
the Sour ce in the context of the current Tr ansact i on. The Sour ce is active in the
Transact i on in which you create it or in a child Tr ansact i on of that

Understanding Cursor Classes and Concepts 10-3

Cursor Class

Transacti on. A Sour ce must be active in the current Tr ansact i on for you to
be able to create a Cur sor for it.

Creating a derived Sour ce occurs in awrite Tr ansact i on. Creating a Cur sor
occursinaread Tr ansact i on. After creating a derived Sour ce, and before you
can create a Cur sor for that Sour ce, you must change the write Tr ansact i on
into aread Tr ansact i on by calling the pr epar eCurr ent Tr ansact i on and
conmmi t Current Transact i on methods on the Tr ansacti onPr ovi der your
application is using. For information on Tr ansact i on and

Transacti onProvi der objects, see Chapter 8.

Cursor Class

Cursor class hierarchy

The Oracle OLAP API defines the following three interfaces in the
oracl e. ol api . dat a. cur sor package:

Cur sor An abstract superclass that encapsulates the notion of a
current position.

Val ueCur sor A Cur sor that has a value at the current position. A
Val ueCur sor has no child Cur sor objects.

ConmpoundCur sor A Cur sor that has child Cur sor objects, which are a child
Val ueCur sor for the values of its Sour ce and an output
child Cur sor for each output of the Sour ce.

10-4 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Cursor Class

The following figure shows the class hierarchy of the Cur sor classes. The
ConmpoundCur sor and Val ueCur sor interfaces extend the Cur sor interface.

<<interface>>
Cursor
FETCH_SIZE_NOT_SPECIFIED

getExtent() : long

getFetchSize() : int
getParentEnd() : long
getParentStart() : long
getPosition() : long

getSource() : Sourceldentifier
next() : boolean

setFetchSize(int fetchSize) : void
setPosition(long position) : void

| : |

<<interface>> <<interface>>
CompoundCursor ValueCursor
getOutputs() : List getCurrentBoolean() : boolean
getValueCursor() : ValueCursor getCurrentDate() : Date
getCurrentDouble() : double

getCurrentFloat() : float
getCurrentinteger() : int
getCurrentShort() : short
getCurrentSource() : Sourceldentifier
getCurrentString() : String
getCurrentValue() : Object
hasCurrentValue() : boolean

Structure of a Cursor

The structure of a Cur sor mirrors the structure of its Sour ce. If the Sour ce does
not have any outputs, the Cur sor for that Sour ce isa Val ueCur sor . If the
Sour ce has one or more outputs, the Cur sor for that Sour ce isa

ConpoundCur sor . A ConpoundCur sor has as children a base Val ueCur sor,
which has the values of the base of the Sour ce of the ConpoundCur sor, and one
or more output Cur sor objects.

Understanding Cursor Classes and Concepts 10-5

Cursor Class

The output of a Sour ce is another Sour ce. An output Sour ce can itself have
outputs. The child Cur sor for an output of a Sour ce is a Val ueCur sor if the
output Sour ce does not have any outputs and a ConpoundCur sor if it does.

For example, suppose you have created a derived Sour ce called pr oduct Sel that
represents a selection of product identification values from a primary Sour ce that

represents values from a dimension of products. You have selected 815, 1050, and

2055 as the values for pr oduct Sel . If you create a Cur sor for pr oduct Sel , then
that Cur sor isa Val ueCur sor because pr oduct Sel has no outputs.

You have also created a derived Sour ce called t i meSel that represents a selection
of day values from a primary Sour ce that represents a dimension of time values.
The values of t i meSel are 1- JAN- 00, 1- APR- 00, 1- JUL- 00, and 1- OCT- 00.

You have an Mim\veasur e that represents values for the price of product units. The
MidmVeasur e has as inputs the MinDi mensi on objects representing products and
times. You get a Sour ce called uni t Pri ce from the measure. The Sour ce has
products and times as inputs.

You join product Sel andti meSel tounitPri ce tocreate a Sour ce,
uni t Pri ceByDay, which has pr oduct Sel andti neSel as outputs, as in the
following:

unit PriceByDay = unitPrice.join(productSel).join(tineSel);

The result set defined by uni t Pri ceByDay is unit price values organized by the
outputs. Since t i meSel is joined to the result of
unitPrice.join(productSel),tineSel isthe slower varying output, which
means that the result set specifies the set of selected products for each selected time
value. For each time value the result set has three product values so the product
values vary faster than the time values. The values of the base Val ueCur sor of
uni t Pri ceByDay are the fastest varying of all, because there is one price value for
each product for each day.

You then create a Cur sor, quer yCur sor, for uni t Pri ceByDay. Since

uni t Pri ceByDay has outputs, quer yCur sor is a ConmpoundCur sor . The base
Val ueCur sor of quer yCur sor has values from uni t Pri ce, which is the base
Sour ce of the operation that created uni t Pri ceByDay. The outputs for

quer yCur sor are a Val ueCur sor that has values from pr oduct Sel and a
Val ueCur sor that has values fromt i meSel .

The following figure illustrates the structure of quer yCur sor . The top box
represents quer yCur sor, which is the parent ConpoundCur sor . The bottom row

10-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Cursor Class

of three boxes represents the three children of quer yCur sor, which are the base
Val ueCur sor and the two output Val ueCur sor objects.

queryCursor
CompoundCursor
Base
¢ Output 1 Output 2 ¢ ValueCursor
ValueCursor for ValueCursor for ValueCursor for
timeSel productSel unitPrice

The following table displays the values from quer yCur sor in a table. The left
column has time values, the middle column has product values, and the right
column has the unit price of the specified product on the specified day.

Day Product Price of Unit
01-JAN-00 815 58
01-JAN-00 1050 24
01-JAN-00 2055 24
01-APR-00 815 59
01-APR-00 1050 24
01-APR-00 2055 25
01-JUL-00 815 59
01-JUL-00 1050 25
01-JUL-00 2055 25
01-OCT-00 815 61
01-OCT-00 1050 25
01-OCT-00 2055 26

For examples of getting the values from a Val ueCur sor , see Chapter 9.

Understanding Cursor Classes and Concepts 10-7

Cursor Class

Specifying the behavior of a Cursor

The Cur sor Speci fi cati on objects of a Cur sor Manager Speci fi cati on
specify some aspects of the behavior of their corresponding Cur sor objects. You
must specify the behavior on a Cur sor Speci f i cat i on before creating the
corresponding Cur sor . If you have specified the behavior, you can successfully use
the following Cur sor methods:

« getExtent

« getFetchSize

« get Parent End

« QetParentStart
« setFetchSize

Before you can use the Cur sor methods listed above, you must specify the
behavior by calling the following Cur sor Speci fi cat i on methods:

«» setDefaultFetchSize

« setExtentCal cul ati onSpecified

« setParent EndCal cul ati onSpeci fi ed

« setParentStart Cal cul ati onSpecified

« specifyDefaul t Fet chSi zeOnChil dren
(for a CorrpoundCur sor Speci fi cati on only)

A Cur sor Speci fi cati on also has methods you can use to discover if the
behavior is specified. Those methods are the following:

« IsExtentCal cul ati onSpecified
« isParent EndCal cul ati onSpecifi ed
« JisParent StartCal cul ati onSpecified

For examples of specifying Cur sor behavior, see Chapter 9. For information on
fetch sizes, see “What is the fetch size of a Cursor?” on page 10-32. For information
on the extent of a Cur sor, see “What is the extent of a Cursor?” on page 10-30. For
information on the starting and ending positions in a parent Cur sor of the current
value of a Cur sor , see “About the parent starting and ending positions in a
Cursor” on page 10-28.

10-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Cursor Class

Cursor methods

All Cur sor objects have the following methods:

Method

Return Value

get Ext ent

The number of elements of the Cur sor .

get Fet chSi ze

The fetch size for the Cur sor.

get Par ent End

The position of the parent Cur sor at which the current value of
the child Cur sor ends.

get Parent Start

The position of the parent Cur sor at which the current value of
the child Cur sor starts.

get Posi tion

The position of the current element of the Cur sor .

get Sour ce

The Sour cel denti fi er for the Cur sor.

next

A bool ean that indicates whether an additional element exists
in the Cur sor and that the current position of the Cur sor has
advanced to that element.

set Fet chSi ze

Void. This method specifies the fetch size for the Cur sor .

set Position

Void. This method sets the current position of the Cur sor .

CompoundCursor methods

In addition to the methods inherited from Cur sor, a ConpoundCur sor has the

following methods:

Method

Return Value

get Qut put s

A Li st that contains the outputs of the ConpoundCur sor .

get Val ueCur sor

The base Val ueCur sor for the ConpoundCur sor.

ValueCursor methods

In addition to the methods inherited from Cur sor, a Val ueCur sor has the

following methods:

Method

Return Value

get Curr ent Bool ean

The bool ean value at the current position.

get Current Dat e

The Dat e value at the current position.

Understanding Cursor Classes and Concepts 10-9

CursorManagerSpecification Class

Method Return Value
get Current Doubl e The doubl e value at the current position.
get Curr ent Fl oat The f | oat value at the current position.

get Current | nt eger Thei nt value at the current position.

get Curr ent Short The short value at the current position.

get Curr ent Sour ce The Sour ce at the current position.

getCurrent String The St ri ng value at the current position.

get Current Val ue The value at the current position.

hasCurrent Val ue A bool ean that indicates whether a value exists at the current
position.

CursorManagerSpecification Class

About the CursorManagerSpecification class

A Cur sor Manager Speci fi cat i on for a Sour ce has one or more

Cur sor Speci fi cat i on objects. The structure of those objects reflects the
structure of the Sour ce. For example, a Sour ce that has outputs has a top-level, or
root, Cur sor Speci fi cat i on for the Sour ce, a child Cur sor Speci fi cati on for
the values of the Sour ce, and a child Cur sor Speci fi cat i on for each output of
the Sour ce.

A Sour ce that does not have any outputs has only one set of values. A
Cur sor Manager Speci fi cat i on for that Sour ce therefore has only one
Cur sor Speci fi cati on. That Cur sor Speci fi cati on is the root

Cur sor Speci fi cati on of the Cur sor Manager Speci fi cati on.

The structure of a Cur sor reflects the structure of its

Cur sor Manager Speci fi cati on. A Cur sor can be asingle Cur sor , fora

Sour ce with no outputs, or a Cur sor with child Cur sor objects, for a Sour ce
with outputs. Each Cur sor corresponds to a Cur sor Speci fi cati on inthe

Cur sor Manager Speci fi cati on. You use Cur sor Speci fi cat i on methods to
specify aspects of the behavior of the corresponding Cur sor .

If your application uses Tenpl at e objects, and a change occurs in the state of a

Tenpl at e so that the structure of the Sour ce produced by the Tenpl at e changes,
then any Cur sor Manager Speci fi cat i on objects that the application created for
the Sour ce expire. If a Cur sor Manager Speci fi cat i on expires, you must create

10-10 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

CursorSpecification Class

a new Cur sor Manager Speci fi cati on. You can then either use the new

Cur sor Manager Speci fi cati on to replace the old

Cur sor Manager Speci fi cati on of a Cur sor Manager or use it to create a new
Cur sor Manager . You can discover if a Cur sor Manager Speci fi cati on has
expired by calling the i sExpi r ed method on the

Cur sor Manager Speci fi cati on.

CursorManagerSpecification Methods
A Cur sor Manager Speci fi cat i on has the following methods:

Method Return Value

get Root Cur sor Speci fi cati on | The top-level Cur sor Speci fi cati on.

get Transacti on The Transact i on in which the
Cur sor Manager Speci fi cati on was created.

i sExpired A bool ean that indicates whether the
Cur sor Manager Speci fi cati on has expired.

CursorSpecification Class

About the CursorSpecification class

A Cur sor Speci fi cati on specifies certain aspects of the behavior of the Cur sor
that corresponds to it. You do not create a Cur sor Speci fi cati on directly. You
pass a Sour ce to the cr eat eCur sor Manager Speci fi cat i on method of a

Dat aPr ovi der and the Cur sor Manager Speci fi cati on returned has a root
Cur sor Speci fi cat i on for that Sour ce. If the Sour ce has outputs, the

Cur sor Manager Speci fi cati on also has a child Cur sor Speci fi cati on for
the values of the Sour ce and one for each output of the Sour ce.

With Cur sor Speci fi cati on methods, you can do the following:
« Getthe Sour ce that corresponds to the Cur sor Speci fi cati on.
« Getor set the default fetch size for the corresponding Cur sor .

« OnaConmpoundCur sor Speci fi cati on, specify that the default fetch size is
set on the children of the corresponding Cur sor .

« Specify that the OLAP service should calculate the extent of a Cur sor .

« Find out if calculating the extent is specified.

Understanding Cursor Classes and Concepts 10-11

CursorSpecification Class

« Specify that the OLAP service should calculate the starting or ending position
of the current value of the corresponding Cur sor in its parent Cur sor . If you
know the starting and ending positions of a value in the parent, then you can
determine how many faster varying elements the parent Cur sor has for that
value.

« Find out if calculating the starting or ending position of the current value of the
corresponding Cur sor in its parent is specified.

« AcceptaCursor SpecificationVisitor.

For more information, see “About Cursor Positions and Extent” on page 10-22 and
“About Fetch Sizes and Fetch Blocks” on page 10-32.

The Oracle OLAP API defines the following three classes in the
oracl e. ol api . dat a. sour ce package:

Cur sor Speci fication An abstract superclass that implements
methods inherited by its subclasses.

Val ueCur sor Speci fication A Cur sor Speci fi cati on fora Source
that has values and no outputs.

ConmpoundCur sor Speci fication A CursorSpecificationforaSource
that has one or more outputs. A
ConmpoundCur sor Speci fi cati on has
component child Cur sor Speci fi cati on
objects.

A Cur sor has the same structure as its Cur sor Manager Speci fi cati on. For
every Val ueCur sor Speci fi cati on or ConpoundCur sor Speci fi cati on ofa
Cur sor Manager Speci fi cati on, a Cur sor has a corresponding Val ueCur sor
or ConpoundCur sor . To be able to get certain information or behavior from a

Cur sor, your application must specify that it wants that information or behavior
by calling methods on the corresponding Cur sor Speci fi cat i on before it creates
the Cur sor.

10-12 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

CursorSpecification Class

CursorSpecification methods

All Cur sor Speci fi cati on objects have the following methods. The set methods
specify the behavior of the Cur sor that corresponds to the

Cur sor Speci fi cati on.

Method

Return Value

acceptVisitor

An Obj ect . This method accepts a

Cur sor Speci fi cati onVi sitor.For
more information, see the Oracle9i OLAP
Services OLAP API Reference

get Def aul t Fet chSi ze

The fetch size set as the default on the
Cur sor Speci fi cati on.

get Sour ce

The Sour ce for the
Cur sor Speci fi cati on.

i sExt ent Cal cul ati onSpecified

A bool ean that indicates whether the
Cur sor Speci fi cat i on specifies the
calculation of the extent of the Cur sor .

i sPar ent EndCal cul ati onSpecifi ed

A bool ean that indicates whether the
Cur sor Speci fi cat i on specifies the
calculation of the ending position in the
parent Cur sor for the current value of the
child Cur sor.

i sParent Start Cal cul ati onSpeci fied

A bool ean that indicates whether the
Cur sor Speci fi cati on specifies the
calculation of the starting position in the
parent Cur sor for the current value of the
child Cur sor.

set Def aul t Fet chSi ze

Void. This method specifies a default fetch
size for the Cur sor . If a default fetch size
is specified on a Cur sor Speci fi cati on,
then you can change the fetch size on the
Cursor.

set Ext ent Cal cul ati onSpeci fied

Void. This method specifies whether to
calculate the extent of the Cur sor .

Understanding Cursor Classes and Concepts 10-13

CursorSpecification Class

Method Return Value

set Par ent EndCal cul ati onSpeci fi ed Void. This method specifies whether to
calculate the ending position in the parent
Cur sor for the current value of the
Cursor.

set Parent Start Cal cul ati onSpeci fi ed | Void. This method specifies whether to
calculate the starting position in the parent
Cur sor for the current value of the

Cur sor.

CompoundCursorSpecification methods

In addition to the methods it inherits from Cur sor Speci fi cati on,a
ConpoundCur sor Speci fi cat i on has the following methods:

Method Return Value

accept Visitor An Obj ect . This method accepts a
Cur sor Speci ficationVisitor.

get Qut put s ALi st of the Cur sor Speci fi cation
objects that are the outputs of this
ConpoundCur sor Speci fi cati on.

get Val ueCur sor Speci fi cation The Val ueCur sor Speci fi cat i on for this
ConpoundCur sor Speci fi cati on.

speci f yDef aul t Fet chSi zeOnChi | dr en | Void. This method specifies that the default
fetch size is set on the child

Cur sor Speci fi cati on objects of this
ConpoundCur sor Speci fi cati on. This
method has two versions, one that supplies
a fetch size and one that does not.

ValueCursorSpecification methods

In addition to the methods it inherits from Cur sor Speci fi cati on,a
Val ueCur sor Speci fi cat i on has an override of the following method:

Method Return Value

accept Visitor An bj ect . This method accepts a
Cur sor Speci ficationVisitor.

10-14 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

CursorManager Class

CursorManager Class

About the CursorManager class

A Cur sor Manager manages the buffering of data for the Cur sor objects it creates.
To create a Cur sor Manager , call the cr eat eCur sor Manager method on a
Dat aPr ovi der and pass it a Cur sor Manager Speci fi cati on.

You can create more than one Cur sor from the same Cur sor Manager , which is
useful for displaying data from a result set in different formats such as a table or a
graph. All of the Cur sor objects created by a Cur sor Manager have the same
specifications, such as the default fetch sizes and the levels at which fetch sizes are
set. Because the Cur sor objects have the same specifications, they can share the
data managed by the Cur sor Manager .

A Cur sor Manager has methods for creating a Cur sor, for discovering whether
the Cur sor Manager Speci fi cati on for the Cur sor Manager needs updating,
and for adding or removing a Cur sor Manager Updat eLi st ener. The

Speci fi edCur sor Manager interface adds methods for updating the

Cur sor Manager Speci fi cati on, for discovering if the

Speci fi edCur sor Manager is open, and for closing it. The

cr eat eCur sor Manager method on Dat aPr ovi der returns an implementation of
the Speci f i edCur sor Manager interface.

When your application no longer needs a Speci fi edCur sor Manager , it should
close it to free resources in the application and in the OLAP service. To close the
Speci fi edCur sor Manager, call its cl ose method.

Updating the CursorManagerSpecification for a CursorManager

If your application is using OLAP API Tenpl at e objects and the state of a

Tenpl at e changes in a way that alters the structure of the Sour ce produced by
the Tenpl at e, then any Cur sor Manager Speci fi cati on objects for the Sour ce
are no longer valid. You need to create new Cur sor Manager Speci fi cati on
objects for the changed Sour ce.

After creating a new Cur sor Manager Speci fi cat i on, you can create a new
Cur sor Manager for the Sour ce. You do not, however, need to create a new
Cur sor Manager . You can call the updat eSpeci fi cati on method on the
existing Cur sor Manager to replace the previous

Cur sor Manager Speci fi cati on with the new

Cur sor Manager Speci fi cati on. You can then create a new Cur sor from the
Cur sor Manager .

Understanding Cursor Classes and Concepts 10-15

CursorManager Class

To find out if the Cur sor Manager Speci fi cat i on for a Cur sor Manager needs
updating, call the i sSpeci fi cat i onUpdat eNeeded method on the

Cur sor Manager . You can also use a Cur sor Manager Updat eLi st ener to listen
for events generated by changes in a Sour ce. For more information, see
“CursorManagerUpdateListener Class” on page 10-20.

CursorManager class hierarchy
The following table lists most of the Cur sor Manager interfaces and classes:

Cur sor Manager An interface that has defines methods
for all Cur sor Manager objects.

Abstract Cur sor Manager A Cur sor Manager that implements
methods for adding and removing
Cur sor Manager Updat eLi st ener
objects. For more information, see
“CursorManagerUpdateListener Class”
on page 10-20.

Speci fi edCur sor Manager An interface that defines additional
methods for a Cur sor Manager .

ExpressSpeci fi edCur sor Manager A class that implements the
Speci fi edCur sor Manager interface
and extends
Abstract Cur sor Manager . In the
Oracle OLAP API, the
cr eat eCur sor Manager method on
Dat aPr ovi der returns an instance of
this class.

The following figure shows the relationships of the Cur sor Manager classes
described in the preceding table. A solid line and a closed arrowhead indicate that a
class extends the class to which the arrow points. A dotted line and an open

10-16 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

CursorManager Class

arrowhead indicate that the class implements the interface to which the arrow

points.

<<interface>>
CursorManager

addCursorM.

createCursor() : Cursor
isSpecificationUpdateNeeded() : boolean
removeCursorManagerUpdateListener(CursorManagerUpdateListener |) : void

anagerUpdateListener(CursorManagerUpdateListener |) : void

AbstractCursorManager

addCursorManagerUpdateListener(CursorManagerUpdateListener I) : void
createCursor() : Cursor
removeCursorManagerUpdateListener(CursorManagerUpdateListener I) : void

<<interface>>
SpecifiedCursorManager

close() : void
isOpen() : boolean

updateSpecification(CursorManagerSpecification cursorManagerSpecification) : void

ExpressSpecifiedCursorManager

close() : void

createCursor() : Cursor

getRemoteStub() : Corba.Object

isOpen() : boolean

isSpecificationUpdateNeeded() : boolean
updateSpecification(CursorManagerSpecification cursorManagerSpecification) : void

Understanding Cursor Classes and Concepts 10-17

CursorManager Class

CursorManager methods

All Cur sor Manager objects have the following methods:

Method Return Value

addCur sor Manager Updat elLi st ener Void. This method adds a
Cur sor Manager Updat eLi st ener tothe
Cur sor Manager .

creat eCursor A Cur sor whose structure is specified by
the Cur sor Manager Speci fi cati on of
the Cur sor Manager .

i sSpeci ficati onUpdat eNeeded A bool ean that indicates whether the
Cur sor Manager needs to update its
Cur sor Manager Speci fi cati on.

r enoveCur sor Manager Updat eLi st ener | Void. This method removes a
Cur sor Manager Updat eLi st ener from
the Cur sor Manager .

AbstractCursorManager methods

An Abst r act Cur sor Manager implements the following methods of the
Cur sor Manager interface:

Method Return Value

addCur sor Manager Updat eLi st ener Void. This method adds a
Cur sor Manager Updat eLi st ener tothe
Cur sor Manager .

r enoveCur sor Manager Updat eLi st ener | Void. This method removes a
Cur sor Manager Updat eLi st ener from
the Cur sor Manager .

10-18 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

CursorManager Class

SpecifiedCursorManager methods

A Speci fi edCur sor Manager has the following methods:

Method Return Value
cl ose Void. This method closes the Speci f i edCur sor Manager
and releases the resources associated with it.
i sOpen A bool ean that indicates whether the

Speci fi edCur sor Manager is open.

updat eSpeci fication Void. This method replaces the
Cur sor Manager Speci fi cat i on of the
Speci fi edCur sor Manager .

ExpressSpecifiedCursorManager methods

In addition to the methods it inherits from Abst r act Cur sor Manager, an
Expr essSpeci fi edCur sor Manager implements the following methods:

Method

Return Value

cl ose

Void. This method closes the
Expr essSpeci fi edCur sor Manager and releases
the resources associated with it.

creat eCursor

A Cursor.

get Renot eSt ub

A stub for a CORBA object that an application can
use in constructing a new
Recei veOnl yCur sor Manager .

i sOpen

A bool ean that indicates whether the
Expr essSpeci fi edCur sor Manager is open.

i sSpeci ficati onUpdat eNeeded

A bool ean that indicates whether the
Expr essSpeci fi edCur sor Manager needs to
update its Cur sor Manager Speci fi cati on.

updat eSpeci fication

Void. This method replaces the
Cur sor Manager Speci fi cati on for the
Expr essSpeci fi edCur sor Manager .

Understanding Cursor Classes and Concepts 10-19

CursorManagerUpdateListener Class

CursorManagerUpdateListener Class

About the CursorManagerUpdateListener class

Cur sor Manager Updat eLi st ener is an interface that has methods that receive
Cur sor Manager Updat eEvent objects. Oracle OLAP Services generates a

Cur sor Manager Updat eEvent object in response to a change that occurs in a
Sour ce that is produced by a Tenpl at e or when a Cur sor Manager updates its
Cur sor Manager Speci fi cati on. Your application can use a

Cur sor Manager Updat eLi st ener to listen for events that indicate it might need
to create new Cur sor objects from the Cur sor Manager or to update its display of
data from a Cur sor .

To use a Cur sor Manager Updat eLi st ener , implement the interface, create an
instance of the class, and then add the Cur sor Manager Updat eLi st ener to the
Cur sor Manager for a Sour ce. When a change to the Sour ce occurs, the

Cur sor Manager calls the appropriate method on the

Cur sor Manager Updat eLi st ener and passes ita

Cur sor Manager Updat eEvent . Your application can then perform the tasks
needed to generate new Cur sor objects and update the display of values from the
result set that the Sour ce defines.

You can implement more than one version of the
Cur sor Manager Updat eLi st ener interface. You can add instances of them to the
same Cur sor Manager .

CursorManagerUpdateListener methods
A Cur sor Manager Updat eLi st ener has the following methods:

Method Return Value

cur sor Manager Dat aUpdat ed Void. Called by a Cur sor Manager when
it becomes aware that its Sour ce has
changed so that the data specified by
Sour ce is different but the structure of
the Sour ce has not changed.

cur sor Manager Speci fi cati onUpdat ed Void. Called by a Cur sor Manager when
its Cur sor Manager Speci fi cati on
has been updated.

cur sor Manager St r uct ur eUpdat ed Void. Called by a Cur sor Manager when
it becomes aware that the structure of its
Sour ce has changed.

10-20 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

CursorManagerUpdateListener Class

About the CursorManagerUpdateEvent class

Oracle OLAP Services generates a Cur sor Manager Updat eEvent object in
response to a change that occurs in a Sour ce that is produced by a Tenpl at e or
when a Cur sor Manager updates its Cur sor Manager Speci fi cati on.

You do not directly create instances of this class. Oracle OLAP Services generates
Cur sor Manager Updat eEvent objects and passes them to the appropriate
methods of any Cur sor Manager Updat eLi st ener objects you have added to a
Cur sor Manager . The Cur sor Manager Updat eEvent has afield that indicates the
type of event that occurred. A Cur sor Manager Updat eEvent has methods you
can use to get information about it.

CursorManagerUpdateEvent fields
A Cur sor Manager Updat eEvent has the following fields:

Field Meaning

CURSOR_MANAGER _DATA _UPDATED Indicates that the Sour ce for a

Cur sor Manager has changed so
that the data specified by Sour ce is
different but the structure of the
Sour ce has not changed

CURSOR_MANAGER SPECI FI CATI ON_UPDATED Indicates that the Cur sor Manager

has updated its
Cur sor Manager Speci fi cati on.

CURSOR_MANAGER STRUCTURE UPDATED Indicates that the Sour ce for a

Cur sor Manager has changed and
the structure of the Sour ce is
different.

CursorManagerUpdateEvent methods
A Cur sor Manager Updat eEvent has the following methods:

Method

Return Value

get Cur sor Manager

The Cur sor Manager that originated the event.

getID

A constant the identifies the type of event that occurred, such as
CURSOR_MANAGER STRUCTURE _UPDATED.

Understanding Cursor Classes and Concepts 10-21

About Cursor Positions and Extent

About Cursor Positions and Extent

About positions of a Cursor

A Cur sor has one or more positions. The current position of a Cur sor is the
position that is currently active in the Cur sor . To move the current position of a
Cur sor call the set Posi ti on or next methods on the Cur sor.

Oracle OLAP Services does not validate the position that you set on the Cur sor
until you attempt an operation on the Cur sor, such as calling the

get Cur r ent Val ue method. If you set the current position to a negative value or to
a value that is greater than the number of positions in the Cur sor and then attempt
a Cur sor operation, the Cur sor throws a Posi ti onQut Of BoundsExcepti on.

Positions of a ValueCursor

The current position of a Val ueCur sor specifies a value, which you can retrieve.
For example, pr oduct Sel , a derived Sour ce described in “Structure of a Cursor”
on page 10-5, is a selection of three products from a primary Sour ce that specifies a
dimension of products and their hierarchical groupings. The Val ueCur sor for
product Sel has three elements. The following example gets the position of each
element of the Val ueCur sor, and displays the value at that position. The out put
objectisaPrintWiter.

/1 product Sel Val Qursor is the Val ueQursor for product el
do {
out put . print (product Sel Val Qursor. getPosition + " : ");
out put . print| n(product Sel Val Qur sor . get Qurrent Val ue) ;

}
whi | e(product Sel Val Qur sor. next () ;

The above example displays the following:

1: 815
2 : 1050
3 : 2055

The following example sets the current position of pr oduct Sel Val Cur sor to 2
and retrieves the value at that position.

pr oduct Sel Val Qur sor. set Posi tion(2);
out put . printl n(product Sel Val Qur sor. get Qur rent Val ue) ;

The above example displays the following:
1050

10-22 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Cursor Positions and Extent

For more examples of getting the current value of a Val ueCur sor , see Chapter 9.

Positions of a CompoundCursor

A ConpoundCur sor has one position for each set of the elements of its descendent
Val ueCur sor objects. The current position of the ConpoundCur sor specifies one
of those sets.

For example, uni t Pri ceByDay, the Sour ce described in “Structure of a Cursor”
on page 10-5, has values from a measure, uni t Pri ce. The values are the prices of
product units at different times. The outputs of uni t Pri ceByDay are Sour ce
objects that represent selections of four day values from a time dimension and three
product values from a product dimension.

The result set for uni t Pri ceByDay has one measure value for each tuple (each set
of output values), so the total number of values is twelve (one value for each of the
three products for each of the four days). Therefore, the quer yCur sor
ConpoundCur sor created for uni t Pri ceByDay has twelve positions.

Each position of quer yCur sor specifies one set of positions of its outputs and its
base Val ueCur sor . For example, position 1 of quer yCur sor defines the
following set of positions for its outputs and its base Val ueCur sor :

« Position 1 of output 1 (the Val ueCur sor forti neSel)
« Position 1 of output 2 (the Val ueCur sor for pr oduct Sel)

« Position 1 of the base Val ueCur sor for quer yCur sor (This position has the
value from the uni t Pri ce measure that is specified by the values of the
outputs.)

The following figure illustrates the quer yCur sor ConpoundCur sor with its base
Val ueCur sor and its outputs. Each Cur sor is represented by a box. The positions
of the elements of the Cur sor appear outside the box. For the child Cur sor objects,
the values at those positions appear inside the box. For the ConpoundCur sor , the

Understanding Cursor Classes and Concepts 10-23

About Cursor Positions and Extent

set of positions of its Val ueCur sor objects that are specified at each position
appear inside the box.

queryCursor
CompoundCursor

Positions
Output1 =1, Output 2 =1,
Output 1 =1, Output 2 = 2,
Output 1 =1, Output 2 = 3,
Output 1 =2, Output 2 =1,
Output 1 = 2, Output 2 = 2,
Output 1 = 2, Output 2 = 3,
Output 1 = 3, Output 2 = 1,
Output 1 = 3, Output 2 = 2,
Output 1 = 3, Output 2 = 3,
10 | Output 1 =4, Output 2 = 1,
11 | Output 1 =4, Output 2 = 2,
12 | Output 1 =4, Output 2 = 3,

|
v J v

Positions Positions Positions
1| 01-JAN-00 1| 815 1| n

2 | 01-APR-00 2 1050
3| 01-JUL-00 3 2055
4

©Coo~NOOSsWNE

VvC
VvC
VvC
VvC
VC
VC
VC
VC
VC
VC
VC
VC

L 1 1 e 1 I A R 1
RPRPRPRRPRRPRRRPRPEPRPRRERRR

01-OCT-00

Output 1 Output 2 Base ValueCursor
ValueCursor for ValueCursor for with specified values
timeSel productSel from unitPrice

Note: The Val ueCur sor for quer yCur sor has only one position because only one
value of uni t Pri ce is specified by any one set of values of the outputs. For a
query like uni t Pri ceByDay, the Val ueCur sor of its Cur sor has only one value,
and therefore only one position, at a time for any one position of the root
ConpoundCur sor .

The following figure illustrates one possible display of the data from
qguer yCur sor . It is a crosstab view with four columns and five rows. In the left

10-24 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Cursor Positions and Extent

column are the day values. In the top row are the product values. In each of the
intersecting cells of the crosstab is the price of the product on the day.

815 1050 2055
01-JAN-00 58 24 24
01-APR-00 59 24 25
01-JUL-00 59 25 25
01-OCT-00 61 25 26

A ConmpoundCur sor coordinates the positions of its Val ueCur sor objects relative
to each other. The current position of the ConpoundCur sor specifies the current
positions of its descendent Val ueCur sor objects. For example, the following
operations set the position of quer yCur sor and then get the current values and the
positions of the child Cur sor objects.

GonpoundQur sor root Qursor = (ConpoundQur sor) quer yQur sor;
Val ueQur sor baseVal ueQur sor = root Qur sor. get Val ueQur sor () ;
Li st outputs = root Qursor.get Qut puts();

Val ueQursor out putl = (Val ueCursor) outputs. get(0);
Val ueQur sor out put2 = (Val ueCursor) outputs. get(1);
int pos = 5;

root . set Posi ti on(pos);

Systemout . printl n(" ConpoundQur sor position set to

+pos + ")

Systemout. println("QC position =" + rootQursor.getPosition() + ".");
Systemout. printin("Qutput 1 position =" + outputl. getPosition() +
", value =" + outputl. getQurrentVal ue());
Systemout. println("Qutput 2 position =" + output2. getPosition() +
", value =" + output?2.getQurrentVal ue());
Systemout. println("MC position =" + baseVal ueQursor. get Position() +
", value =" + baseVal ueQursor. get Qurrent Val ue());

The above example displays the following:

GonpoundQur sor position set to 5.
QC position = 5.

Qutput 1 position = 2, val ue
Qutput 2 position = 2, val ue
VC position =1, value = 24

01- APR 00
1050

The positions of quer yCur sor are symmetric in that the result set for
uni t Pri ceByDay always has three product values for each time value. The
Val ueCur sor for product Sel , therefore, always has three positions for each

Understanding Cursor Classes and Concepts 10-25

About Cursor Positions and Extent

value of the t i neSel Val ueCursor.Theti meSel output Val ueCur sor is
slower varying than the pr oduct Sel Val ueCur sor.

In an asymmetric case, however, the number of positions in a Val ueCur sor is not
always the same relative to its slower varying output. For example, if the price of
units for product 2055 on October 1, 2000 were null because that product was no
longer being purchased by that date, and if null values were suppressed in the
query, then quer yCur sor would only have eleven positions. The Val ueCur sor
for pr oduct Sel would only have two positions when the position of the

Val ueCur sor forti meSel was 4.

Example: Positions in an asymmetric query

This example of an asymmetric result set is produced by revising the query from
“Structure of a Cursor” on page 10-5 as follows.

product ByPri cehDay = product Sel . joi n(unitPrice).join(tineSel);

Now the result of the query is the products by price on a day. The base values of
product ByPri ceOnDay are the values from pr oduct Sel as specified by the
valuesof uni t Pri ceandti nmeSel .

Because pr oduct ByPri ceOnDay is a derived Sour ce, this example prepares and
commits the current Tr ansacti on. The Transacti onPr ovi der in the example
ist p. For information on Tr ansact i on objects, see Chapter 8.

The example creates a Cur sor for pr oduct ByPri ceOnDay, loops through the
positions of the ConpoundCur sor, gets the position and current value of each child
Val ueCur sor object, and displays the positions and values.

/I Prepare and commit the current Transaction.
try{

t p. prepar eQurrent Transaction();
}
cat ch(Not Commi t t abl eExcepti on e){

output. println("Caught exception " +e +".");
}

tp. commt Qurrent Transacti on();

/I Geate the Qursor. The DataProvider is dp.
Qur sor Manager Speci fi cati on cur sor Mgr Spec =

dp. cr eat eQur sor Manager Speci fi cat i on(pr oduct ByPri ceQnlay) ;
Qur sor Manager cur sor Manager = dp. cr eat eQur sor Manager (cur sor Mgr Spec) ;
Qursor queryQursor2 = cursor Manager . creat eQursor () ;

/1 Get the Val ueQursor and the outputs

10-26 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Cursor Positions and Extent

GonpoundQur sor root Qursor = (ConpoundQur sor) quer yQur sor 2;
Val ueQur sor baseVal ueQur sor = root Qur sor. get Val ueQur sor ();
Li st outputs = root Qursor.get Qutputs();

Val ueQursor outputl = (Val ueCursor) outputs. get(0);

Val ueQursor out put2 = (Val ueQursor) outputs. get(1);

/] Get the positions and val ues and di spl ay them
Systemout. printin(" QCGC\t\tQutput 1 \tQutput 2 \t\VC');
Systemout. println("position \tposition:value " +
"\tposition:val ue \tposition:val ue");
do {
Systemout . println(" " +root.getPosition() +
"\t\t " + outputl.getPosition() +
" ¢ " + outputl. getQurrentVal ue() +
"\t " + output2.getPosition() +
"o " + output2 getQurrentVal ue() +
"\t " + baseVal ueQursor.getPosition() +
" @ " + baseVal ueQursor. get Qurrent Val ue());

}
whi | e(quer yQur sor 2. next () ;

This example displays the following:

ac Qitput 1 Qutput 2 \C
posi tion posi ti on: val ue posi ti on: val ue posi ti on: val ue
1 1 : 01-JANOO 1 : 58 1 : 815
2 1 : 01-JAN OO0 2 . 24 1 : 1050
3 1 01- JAN- 00 2 24 2 2055
4 2 01- APR 00 1 59 1 815
5 2 01- APR 00 2 24 1 1050
6 2 01- APR 00 3 25 1 2055
7 3 01-JU- 00 1 59 1 815
8 3 01-JU.-00 2 25 1 1050
9 3 01-JU.-00 2 25 2 2055
10 4 01-CT- 00 1 61 1 815
11 4 01- CCT- 00 2 25 1 1050
12 4 01- CCT- 00 3 26 1 2055

The Val ueCur sor with uni t Pri ce values (output 2) has only two positions for
01-JAN-00 and 01-JUL-00 because it has only two different values for those days.
The prices of two of the products are the same on those two days: 24 for products
1050 and 2055 on January 1, 2000 and 25 for those same two products on July 1,
2000. The base Val ueCur sor for quer yCur sor 2 has two positions when the

ti meSel value is 01-JAN-00 or 01-JUL-00 because each of the uni t Pri ce values
for those days is not unique.

Understanding Cursor Classes and Concepts 10-27

About Cursor Positions and Extent

About the parent starting and ending positions in a Cursor

To effectively manage the display of the data you get from a ConpoundCur sor ,
you sometimes need to know how many faster varying values exist for the current
slower varying value. For example, suppose that you are displaying in a crosstab
one row of values from an edge of a cube, then you might want to know how many
columns to draw in the display for the row.

To find out how many faster varying values exist for the current value of a child
Cur sor, you find the starting and ending positions of that current value in the
parent Cur sor . Subtract the starting position from the ending position and then
add 1, as in the following.

I ong span = (cursor.getParentEnd() - cursor.getParentSart()) + 1;

The result is the span of the current value of the child Cur sor in its parent Cur sor,
which tells you how many values of the fastest varying child Cur sor exist for the
current value. Calculating the starting and ending positions is costly in time and
computing resources, so you should only specify that you want those calculations
performed when your application needs the information.

An Oracle OLAP API Cur sor enables your application to have only the data that it
is currently displaying actually present on the client computer. For information on
specifying the amount of data for a Cur sor, see “What is the fetch size of a
Cursor?” on page 10-32.

From the data on the client computer, however, you cannot determine at what
position of its parent Cur sor the current value of a child Cur sor begins or ends. To
get that information, you use the get Par ent St art and get Par ent End methods
ofaCursor.

For example, suppose your application has a Sour ce named cube, that represents
a cube that has an asymmetric edge. The cube has four outputs. The cube Sour ce
defines products with sales amounts greater than $5,000 purchased by customers in
certain cities during the first three months of the calendar year 2000. The products
were sold through the direct sales channel (S) during a television promotion (TV).

You create a Cur sor for that Sour ce and call it cubeCur sor . The
ConpoundCur sor cubeCur sor has the following child Cur sor objects:

« outputl,aVal ueCursor for the promotion values
« output2,aVal ueCursor for the channel values
« output 3, aVal ueCursor for the time values

« output4,aVal ueCursor for the customer values

10-28 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Cursor Positions and Extent

« The base Val ueCur sor , which has values that are the products with sales
amounts over $5,000.

The following figure illustrates the parent, cubeCur sor , with the values of its child
Cur sor objects layered horizontally. The slowest varying output, with the
promotion values, is at the top and the fastest varying child, with the product
values, is at the bottom. The only portion of the edge that you are currently
displaying in the user interface is the block between positions 7 and 9 of

cubeCur sor, which is shown within the bold border. The positions, 1 through 10,
of cubeCur sor appear above the top row.

1 2 3 4 5 6 7 8 9 10
TV
S
2000-01 2000-02 2000-03
Bonn London Bonn London | Paris Bonn London
1050 2055 815 1050 1555 935 1050 935 1050 3690

The current value of the output Val ueCur sor for the time Sour ce is 2000-02. You
cannot determine from the data within the block that the starting and ending
positions of the current value, 2000-02, in the parent, cubeCur sor, are 4 and 7,
respectively.

The cubeCur sor from the previous figure is shown again in the following figure,
this time with the range of the positions of the parent, cubeCur sor , for each of the
values of the child Cur sor objects. By subtracting the smaller value from the larger

Understanding Cursor Classes and Concepts 10-29

About Cursor Positions and Extent

value and adding one, you can compute the span of each value. For example, the
span of the time value 2000-02 is (7 - 4 + 1) = 4.

1 2 3 4 5 6 7 8 9 10
1-10
1-10
1to3 4107 8to 10
lto2 3to3 4t05 6106 7to7 8to8 9to 10
ltol 2to 2 3to3 4t04 5to5 6106 7to7 8to8 9to 9 10to 10

To specify that you want the OLAP service to calculate the starting and ending
positions of a value of a child Cur sor in its parent Cur sor, call the

set Parent St art Cal cul ati onSpeci fi ed and

set Par ent EndCal cul ati onSpeci f i ed methods on the

Cur sor Speci fi cat i on corresponding to the Cur sor . You can determine
whether calculating the starting or ending positions is specified by calling the
i sParent Start Cal cul ati onSpeci fi ed or

i sPar ent EndCal cul ati onSpeci fi ed methods on the

Cur sor Speci fi cat i on. For an example of specifying these calculations, see
Chapter 9.

What is the extent of a Cursor?

The extent of a Cur sor is the total number of elements it contains relative to any
slower varying outputs. The following figure illustrates the number of positions of
each child Cur sor of cubeCur sor relative to the value of its slower varying
output. The child Cur sor objects are layered horizontally with the slowest varying
output at the top.

The total number of elements in cubeCur sor is 10 so the extent of cubeCur sor is
therefore 10. That number is above the top row of the figure. The top row is the

Val ueCur sor for the promotion value and the next row down is the

Val ueCur sor for the channel value. The extent of each of those Val ueCur sor
objects is 1 because they each have only one value.

The third row down represents the time values. Its extent is 3, since there are 3
months values. The next row down is the Val ueCur sor for the customers by city.
The extent of its elements depends on the value of the slower varying output, which

10-30 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Cursor Positions and Extent

is time. The extent of the customers Val ueCur sor for the first month is 2, for the
second month it is 3, and for the third month it is 2.

The bottom row is the base Val ueCur sor for the cubeCur sor ConpoundCur sor .
Its values are products. The extent of the elements of the products Val ueCur sor
depends on the values of the customers Val ueCur sor and the time Val ueCur sor .
For example, since two products values are specified by the first set of month and
city values (1050 and 2055 for Bonn in 2000-01), the extent of the products

Val ueCur sor for that set is 2. For the second set of values for customers and times
(2000-10, London), the extent of the products Val ueCur sor is 1, and so on.

10
1
1
1 2 3
1 2 1 2 3 1 2
1 2 1 1 2 1 1 1 1 2

The extent is information that you can use, for example, to display the correct
number of columns or correctly-sized scroll bars. The extent, however, can be
expensive to calculate. For example, a Sour ce that represents a cube might have
four outputs. Each output might have hundreds of values. If all null values and zero
values of the measure for the sets of outputs are eliminated from the result set, then
to calculate the extent of the ConpoundCur sor for the Sour ce, the OLAP service
must traverse the entire result space before it creates the ConpoundCur sor . If you
do not specify that you wants the extent calculated, then the OLAP service only
needs to traverse the sets of elements defined by the outputs of the cube as specified
by the fetch size of the Cur sor and as needed by your application.

To specify that you want the OLAP service to calculate the extent for a Cur sor, call
the set Ext ent Cal cul ati onSpeci fi ed method on the

Cur sor Speci fi cat i on corresponding to the Cur sor . You can determine
whether calculating the extent is specified by calling the

i SExt ent Cal cul ati onSpeci fi ed method on the Cur sor Speci fi cati on. For
an example of specifying the calculation of the extent of a Cur sor , see Chapter 9.

Understanding Cursor Classes and Concepts 10-31

About Fetch Sizes and Fetch Blocks

About Fetch Sizes and Fetch Blocks

What is the fetch size of a Cursor?

An OLAP API Cur sor represents the entire result set for a Sour ce. The Cur sor is
avirtual Cur sor, however, because it retrieves only a portion of the result set at a
time from the OLAP service. A Cur sor Manager manages a virtual Cur sor and
retrieves results from the OLAP service as your application needs it. By managing
the virtual Cur sor, the Cur sor Manager relieves your application of a substantial
burden.

The amount of data that a Cur sor retrieves in a single fetch operation is
determined by the fetch size specified for the Cur sor . For a ConpoundCur sor , the
amount of data fetched in a single operation is the product of the fetch sizes of all of
its descendent Val ueCur sor objects. The total set of values retrieved in a single
fetch is the fetch block for the Cur sor . You specify fetch sizes in order to limit the
amount of data your application needs to cache on the local computer and to
maximize the efficiency of the fetch by customizing it to meet the needs of your
method of displaying of the data.

When you create a Cur sor Manager Speci fi cati on for a Sour ce, as the first
step in creating a Cur sor , the OLAP service specifies a default fetch size on the root
Cur sor Speci fi cati on of the Cur sor Manager Speci fi cati on. By calling
methods on the Cur sor Speci fi cat i on objects of the

Cur sor Manager Speci fi cati on, you can specify a default fetch size or specify
setting the fetch size at other levels of a ConpoundCur sor .

If the fetch size is specified on a Cur sor Speci fi cat i on, then you can get or set
the fetch size for the corresponding Cur sor by calling the get Fet chSi ze or

set Fet chSi ze method on that Cur sor . For a ConpoundCur sor, you can set
different fetch sizes for child Cur sor objects at different levels in the outputs.

A Cur sor has a local fetch size if the size of the fetch block is specified for that

Cur sor . Not all of the Cur sor objects in a ConpoundCur sor can have local fetch
sizes. The structure of a ConpoundCur sor is like a tree, with the hierarchy of

Cur sor objects starting at the topmost (root) Cur sor and going down through all
the child Cur sor objects. Any path through the hierarchy, starting from the root
and going down to a leaf Val ueCur sor , can contain one, and only one, Cur sor
with a local fetch size. Specifying the fetch size on a parent Cur sor affects all of the
child Cur sor objects of that parent. This means that a fetch block can contain no
more than the number of elements of each child Cur sor specified by the fetch size.

10-32 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Fetch Sizes and Fetch Blocks

The following figure shows an example of a path through the hierarchy of a
Cur sor tree in which the Cur sor objects with local fetch sizes are shaded.

root

N\

Any path from the root to
one of the leaves contains
exactly one Cursor with a
local fetch size.

Cursor without local fetch size

Cursor with local fetch size

About determining the shape of a fetch block

leaf

In a ConpoundCur sor , the levels at which you set the fetch sizes determine the
shape of the fetch block of the ConpoundCur sor . The optimal fetch block for a
ConpoundCur sor depends on the way you intend to navigate the Cur sor and
display the data. After determining how to display the data, you should do the

following:

« Specify a fetch block that is large enough to contain all the data required for the
portion of the result set that you are displaying in the user interface. For
example, if you display the data in a table and the size of the window means
that 25 rows are visible at a time, then the fetch block should contain at least 25
rows. If it is any smaller than this, the Cur sor needs to make multiple trips to
the OLAP service to fill the display.

« Specify fetch sizes on the Cur sor objects that you use to loop through the result
set. For example, for a table view, set fetch sizes on the root Cur sor and for a
crosstab view, set fetch sizes on the child Cur sor objects.

Understanding Cursor Classes and Concepts 10-33

About Fetch Sizes and Fetch Blocks

« Keep the product of all of the fetch sizes relatively small because the product
determines the total number of cells in the fetch block. If the product of all the
fetch sizes is too large, then you lose the advantages of the virtual Cur sor .

For examples of specifying fetch sizes and fetch blocks for different displays, see
Chapter 9.

About sharing fetch blocks

You can create two or more Cur sor objects from the same Cur sor Manager and
use both Cur sor objects simultaneously. The Cur sor objects can share the data
managed by the Cur sor Manager , rather than having separate data caches, because
the shape of the fetch blocks is the same for both Cur sor objects. The shape of the
fetch blocks is determined by the levels of the Cur sor Manager Speci fi cati on
on which the fetch size is specified.

An example is an application that displays the results of a query to the user as both
a table and a graph. The application creates a Cur sor Manager Speci fi cati on
for a Sour ce and then creates a Cur sor Manager for the

Cur sor Manager Speci fi cat i on. The application creates two separate Cur sor
objects from the same Cur sor Manager , one for a table view and one for a graph
view. The two views share the same query and display the same data, just in

10-34 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

About Fetch Sizes and Fetch Blocks

different formats. The following figure illustrates the relationship between the
Sour ce, the Cur sor objects, and the views.

Table View Bar Graph View !ﬁm
1000's —
tableView : View graphView : View
tableCursor : Cursor graphCursor : Cursor

queryCM : CursorManager

queryCMS : CursorManagerSpecification

querySource : Source

Understanding Cursor Classes and Concepts 10-35

About Fetch Sizes and Fetch Blocks

10-36 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

11

Creating Dynamic Queries

Chapter summary

List of topics

This chapter describes the Oracle OLAP API Tenpl at e class and its related classes,
which you use to create dynamic queries. This chapter also provides examples of
implementations of those classes.

This chapter includes the following topics:
= About Template Objects
« Overview of Template and Related Classes

« Example of a Template

About Template Objects

Features of Template objects

The Tenpl at e class is the basis of a very powerful feature of the Oracle OLAP API.
You use Tenpl at e objects to create modifiable Sour ce objects. With those Sour ce
objects, you can create dynamic queries that can change in response to end-user
selections. Tenpl at e objects also offer a convenient way for you to translate
user-interface elements into OLAP API operations and objects.

These features are briefly described below. The rest of this chapter describes the
Tenpl at e class and the other classes you use to create dynamic Sour ce objects.
For information on the Tr ansact i on objects that you use to make changes to the
dynamic Sour ce and to either save or discard those changes, see Chapter 8.

Creating Dynamic Queries 11-1

About Template Objects

About creating a dynamic Source

The main feature of a Tenpl at e is its ability to produce a dynamic Sour ce. That
ability is based on two of the other objects that a Tenpl at e uses: instances of the
Dynani cDefi ni ti on and Met adat aSt at e classes.

When a Sour ce is created, a Sour ceDef i ni ti on is automatically created. The
Sour ceDef i ni ti on has information about how the Sour ce was created. Once
created, the Sour ce and its Sour ceDef i ni t i on are paired immutably. The
get Sour ce method of a Sour ceDef i ni t i on gets its paired Sour ce.

Dynani cDefi ni ti on isa subclass of Sour ceDef i niti on. ATenpl at e creates a
Dynani cDefi ni ti on, which acts as a proxy for the Sour ceDef i ni ti on of the
Sour ce produced by the Tenpl at e. This means that instead of always getting the
same immutably paired Sour ce, the get Sour ce method on the

Dynani cDef i ni ti on gets whatever Sour ce is currently produced by the

Tenpl at e. The instance of the Dynarmi cDef i ni t i on does not change even
though the Sour ce that it gets is different.

The Sour ce that a Tenpl at e produces can change because the values, including
other Sour ce objects, that the Tenpl at e uses to create the Sour ce can change. A
Tenpl at e stores those values in a Met adat aSt at e. A Tenpl at e provides
methods to get the current state of the Met adat aSt at e, to get or set a value, and to
set the state. You use those methods to change the data values the Met adat aSt at e
stores.

You use a Dynami cDef i ni ti on to get the Sour ce produced by a Tenpl at e. If
your application changes the state of the values that the Tenpl at e uses to create
the Sour ce, for example, in response to end-user selections, then the application
uses the same Dynami cDef i ni ti on to get the Sour ce again, even though the
new Sour ce defines a result set different than the previous Sour ce.

The Sour ce produced by a Tenpl at e can be the result of a series of Sour ce
operations that create other Sour ce objects, such as a series of selections, sorts,
calculations, and joins. You put the code for those operations in the

gener at eSour ce method of a Sour ceCGener at or for the Tenpl at e. That
method returns the Sour ce produced by the Tenpl at e. The operations use the
data stored in the Met adat aSt at e.

You might build an extremely complex query that involves the interactions of
dynamic Sour ce objects produced by many different Tenpl at e objects. The end
result of the query building is a Sour ce that defines the entire complex query. If
you change the state of any one of the Tenpl at e objects that you used to create the
final Sour ce, then the final Sour ce represents a result set different than that of the

11-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of Template and Related Classes

previous Sour ce. You can thereby modify the final query without having to
reproduce all of the operations involved in defining the query.

About translating user interface elements into OLAP API objects

You design Tenpl at e objects to represent elements of the user interface of an
application. Your Tenpl at e objects turn the selections that the end user makes into
OLAP API query-building operations that produce a Sour ce. You then create a
Cur sor to fetch the result set defined by the Sour ce from the OLAP service. You
get the values from the Cur sor and display them to the end user. When an end
user makes changes to the selections, you change the state of the Tenpl at e. You
then get the Sour ce produced by the Tenpl at e, create a new Cur sor, get the new
values, and display them.

Overview of Template and Related Classes

What classes do | use to create a Template?

In the OLAP API, several classes work together to produce a dynamic Sour ce. In
designing a Tenpl at e, you must implement or extend the following:

« The Tenpl at e abstract class
« The Met adat aSt at e interface
« The Sour ceGener at or interface

Instances of those three classes, plus instances of other classes that the OLAP service
creates, work together to produce the Sour ce that the Tenpl at e defines. The
classes that the OLAP service provides, which you create by calling factory
methods, are the following:

« Dat aProvider

« DynamicDefinition

What is the relationship between the classes that produce a dynamic Source?

The classes that produce a dynamic Sour ce work together as follows:
« A Tenpl at e has methods that create a Dynami cDef i ni ti on and that get and
set the current state of a Met adat aSt at e. An extension to the Tenpl at e

abstract class adds methods that get and set the values of fields on the
Met adat aSt at e.

Creating Dynamic Queries 11-3

Overview of Template and Related Classes

« The Met adat aSt at e implementation has fields for storing the data to use in
generating the Sour ce for the Tenpl at e. When you create a new Tenpl at e,
you pass the Met adat aSt at e to the constructor of the Tenpl at e. When you
call the get Sour ce method on the Dynani cDefi ni ti on, the
Met adat aSt at e is passed to the gener at eSour ce method on the
Sour ceCener at or .

« The Dat aProvi der is used in creating a Tenpl at e and by the
Sour ceCener at or in creating new Sour ce objects.

« The Sour ceGener at or implementation has a gener at eSour ce method that
uses the current state of the data in the Met adat aSt at e to produce a Sour ce
for the Tenpl at e. You pass in the Sour ceGener at or to the
creat eDynami cDef i ni ti on method on the Tenpl at e to create a
Dynani cDefi ni ti on.

« The Dynami cDefinition hasaget Sour ce method that gets the Sour ce
produced by the Sour ceGener at or . The Dynani cDef i ni ti on serves as a
proxy for the immutably paired Sour ceDef i ni ti on of that Sour ce.

The following figure illustrates the relationship of the classes described in the
preceding list. The arrows on the right indicate that the Dat aPr ovi der and

Met adat aSt at e objects are passed to the Tenpl at e constructor and that the
Sour ceCener at or is passed to the cr eat eDynami cDef i ni ti on method on the
Tenpl at e. The arrows on the left indicate that a Dynami cDef i ni ti on is returned
by the cr eat eDynam cDef i ni ti on method and that the same Sour ce is
returned by the gener at eSour ce method on the Sour ceGener at or and the

get Sour ce method on the Dynani cDef i niti on.

11-4 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of Template and Related Classes

DataProvider

//Methods not shown

DataProvider and
initial MetadataState

<<interface>>
MetadataState

passed to Template
constructor.

clone() : Object

Template

Template(MetadataState initialState, DataProvider dataProvider)

getCurrentState() : MetadataState

createDynamicDefinition(SourceGenerator sourceGenerator) :
DynamicDefinition

setCurrentState(MetadataState state) : void

Template creates a
DynamicDefinition based
on the SourceGenerator
passed in.

SourceGenerator passed to
createDynamicDefinition.

<<interface>>

SourceGenerator The generateSource
method uses the
generateSource(MetadataState state) : Source MetadataState from

Source

//Methods not shown

the Template.

The generateSource method
produces the Source returned
by the getSource method on
DynamicDefinition.

DynamicDefinition

getCurrent() : SourceDefinition

getSource() : Source

getTemplate() : Template

acceptVisitor(DataDescriptionDefinitionVisitor visitor, Object context) : Object
getDataDescriptor() : DataDescriptor

getSourceGenerator() : SourceGenerator

Creating Dynamic Queries 11-5

Overview of Template and Related Classes

Template class

You use a Tenpl at e to produce a modifiable Sour ce. A Tenpl at e has methods
for creating a Dynami cDef i ni ti on and for getting and setting the current state of
the Tenpl at e. In extending the Tenpl at e class, you add methods that provide
access to the fields on the Met adat aSt at e for the Tenpl at e. The Tenpl at e
creates a Dynam cDef i ni ti on that you use to get the Sour ce produced by the
Sour ceCener at or for the Tenpl at e.

The Tenpl at e abstract class implements the following methods:

Method Return Value

creat eDynam cDefinition A Dynami cDefi ni ti on thatis a proxy for the

Sour ceDef i ni ti on that is immutably paired to the
Sour ce generated by the Sour ceGener at or passed
to this method.

getCurrent St ate The current state of the Met adat aSt at e for the
Tenpl at e.
setCurrent State Void. This method specifies the Met adat aSt at e

passed in as the current state for the Tenpl at e.

For an example of a Tenpl at e implementation, see “Example: Implementing a
Template” on page 11-9.

MetadataState interface

An implementation of the Met adat aSt at e interface stores the current state of the
values for a Tenpl at e. A Met adat aSt at e must include a cl one method that
creates a copy of the current state.

When instantiating a new Tenpl at e, you pass a Met adat aSt at e to the

Tenpl at e constructor. The Tenpl at e has methods for getting and setting the
values stored by the Met adat aSt at e. The gener at eSour ce method on the
Sour ceCener at or for the Tenpl at e uses the Met adat aSt at e when the method
produces a Sour ce for the Tenpl at e.

For an example of a Met adat aSt at e implementation, see “Example:
Implementing a MetadataState” on page 11-12.

11-6 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Overview of Template and Related Classes

SourceGenerator interface

An implementation of Sour ceGener at or must include a gener at eSour ce
method, which produces a Sour ce for a Tenpl at e. A Sour ceGener at or must
produce only one type of Sour ce, such as a Bool eanSour ce, a Nunber Sour ce,
ora StringSour ce. In producing the Sour ce, the gener at eSour ce method
uses the current state of the data represented by the Met adat aSt at e for the
Tenpl at e.

To get the Sour ce produced by the gener at eSour ce method, you create a
Dynani cDefi ni ti on by passing the Sour ceGener at or to the

creat eDynami cDef i ni ti on method on the Tenpl at e. You then get the Sour ce
by calling the get Sour ce method on the Dynami cDef i ni ti on.

A Tenpl at e can create more than one Dynami cDef i ni ti on, each with a
differently implemented Sour ceGener at or . The gener at eSour ce methods on
the different Sour ceGener at or objects use the same data, as defined by the
current state of the Met adat aSt at e for the Tenpl at e, to produce Sour ce objects
that define different queries.

For an example of a Sour ceGener at or implementation, see “Example:
Implementing a SourceGenerator” on page 11-13.

DynamicDefinition class

Dynani cDefi ni ti on is asubclass of Sour ceDef i ni ti on. You create a

Dynani cDefi ni ti on by calling the cr eat eDynamni cDef i ni ti on method on a
Tenpl at e and passing it a Sour ceGener at or . You get the Sour ce produced by
the Sour ceGener at or by calling the get Sour ce method on the

Dynani cDefiniti on.

A Dynami cDefi ni ti on created by a Tenpl at e is a proxy for the

Sour ceDefi ni ti on of the Sour ce produced by the Sour ceGener at or. The
Sour ceDefi ni ti on isimmutably paired to its Sour ce. If the state of the
Tenpl at e changes, then the Sour ce produced by the Sour ceGener at or is
different. Because the Dynani cDef i ni ti on is a proxy, you use the same
Dynani cDefi ni ti on to get the new Sour ce even though that Sour ce has a
different Sour ceDefi ni ti on.

The get Cur r ent method of a Dynani cDef i ni ti on returns the

Sour ceDefi ni ti on immutably paired to the Sour ce that the gener at eSour ce
method currently returns. For an example of the use of a Dynani cDef i ni ti on,
see “Example: Getting the Source produced by the Template” on page 11-14.

Creating Dynamic Queries 11-7

Example of a Template

Example of a Template

Designing the Template

The design of a Tenpl at e reflects the query-building elements of the user interface
of an application. For example, suppose you want to develop an application that
allows the end user to create a query that requests a number of values from the top
or bottom of a list of values. The values are from one dimension of a measure. The
other dimensions of the measure are limited to single values.

The user interface of your application has a dialog box that allows the end user to
do the following:

« Select a radio button that specifies whether the data values should be from the
top or bottom of the range of values.

« Select a measure from a drop-down list of measures.

= Select a number from a field. The number specifies the number of data values to
display.

= Select one of the dimensions of the measure as the base of the data values to
display. For example, if the user selects the product dimension, then the query
specifies some number of products from the top or bottom of the list of
products. The list is determined by the measure and the selected values of the
other dimensions.

« Click a button to bring up a Single Selections dialog box through which the end
user selects the single values for the other dimensions of the selected measure.
After selecting the values of the dimensions, the end user clicks an OK button
on the second dialog box and returns to the first dialog box.

« Click an OK button to generate the query. The results of the query appear.

To generate a Sour ce that represents the query that the end user creates in the first
dialog box, you design a Tenpl at e called TopBot t onirenpl at e. You also design
asecond Tenpl at e, called Si ngl eSel ecti onTenpl at e, to create a Sour ce that
represents the end user’s selections of single values for the dimensions other than
the base dimension. The designs of your Tenpl at e objects reflect the user interface
elements of the dialog boxes.

11-8 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Example of a Template

In designing the TopBot t onTenpl at e and its Met adat aSt at e and
Sour ceCGener at or, you do the following:

« Create aclass called TopBot t oniTenpl at e that extends Tenpl at e. To the
class, you add methods that get the current state of the Tenpl at e, set the
values specified by the user, and then set the current state of the Tenpl at e.

« Create aclass called TopBot t onTTenpl at eSt at e that implements
Met adat aSt at e. You provide fields on the class to store values for the
Sour ceCener at or to use in generating the Sour ce produced by the
Tenpl at e. The values are set by methods of the TopBot t onTTenpl at e.

« Create aclass called TopBot t onifenpl at eGener at or that implements
Sour ceCener at or . Inthe gener at eSour ce method of the class, you provide
the operations that create the Sour ce specified by the end user’s selections.

Using your application, an end user selects sales amount as the measure and
products as the base dimension in the first dialog box. From the Single Selections
dialog box, the end user selects customers from San Francisco, the first quarter of
2000, the direct channel, and billboard promotions as the single values for each of
the remaining dimensions.

The query that the end user has created requests the ten products that have the
highest total sales amount values of those sold through the direct sales channel to
customers from San Francisco during the first calendar quarter of the year 2000
while a billboard promotion was occurring.

For examples of implementations of the TopBot t onifenpl at e,

TopBot t onTenpl at eSt at e, and TopBot t onTenpl at eGener at or objects, and
an example of an application that uses them, see “Example: Implementing a
Template” on page 11-9, “Example: Implementing a MetadataState” on page 11-12,
“Example: Implementing a SourceGenerator” on page 11-13, and “Example: Getting
the Source produced by the Template” on page 11-14.

Example: Implementing a Template

The following is an implementation of the TopBot t omTenpl at e class described in
“Designing the Template” on page 11-8.

package nyTest Package;
i nport oracl e. ol api . dat a. sour ce. Dat aPr ovi der ;
i nport oracl e. ol api . dat a. sour ce. Dynam cDefini ti on;

i nport oracl e. ol api . dat a. sour ce. Sour ce;
i nport oracl e. ol api . dat a. sour ce. Tenpl at €;

Creating Dynamic Queries 11-9

Example of a Template

inport oracle. ol api . transacti on. net adat aSt at eManager . Met adat aSt at e;

/**
* (Qeates a TopBottonTenpl ateState, a TopBott onTenpl at eGener at or,
* and a DynamicDefinition. Gets the current state of the
* TopBot t onTenpl ateState and the values it stores. Sets the data val ues
* stored by the TopBottonTenpl ateSate and sets the changed state as
* the current state.
*/
public class TopBottonTenpl ate extends Tenpl ate {
public static final int TQP_BOITOM TYPE TCP = 0;
public static final int TGP_BOITOM TYPE BOTTQM = 1,

/] Variable to store the Dynam cDefinition.
private DynamcDefinition _definition;

/ **
* Qreates a TopBottonTenpl ate with default type and nunber val ues
* and a specified base di nensi on.
*/
publ i ¢ TopBott onTenpl at e(Sour ce base, DataProvi der dataProvider) {
super (new TopBot t onTenpl at e at e(base, TAP_BOITAM TYPE TCP, 0),
dat aProvi der);
/1 Geate the DynamcDefinition for this Tenplate. Geate the
/] TopBot t onTenpl at eGenerat or that the Dynam cDefinition uses.
_definition =
creat eDynami cDef i ni ti on(new TopBot t onTenpl at eGener at or (dat aPr ovi der)) ;
}

/**
* Gets the Source produced by the TopBott onTenpl at eGener at or
* fromthe Dynami cDefinition.
*/
public final Source getSource() {
return _definition. getSource();

}

/**

* Gets the Source that is the base of the values in the result set.

* Returns null if the state has no base.

*/

public Source getBase() {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrent S ate();
return state. base;

}

11-10 Oracle9i OLAP Services Developer’'s Guide to the Oracle OLAP API

Example of a Template

/**

* Sets a Source as the base.

*/

public void setBase(Source base) {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrent S ate();
st at e. base = base;
setQurrent S ate(state);

}

/**

* Gets the Source that specifies the neasure and the single

* sel ections fromthe di nensions other than the base.

*/

public Source getCriterion() {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrentSate();
return state.criterion;

}

/**

* Specifies a Source that defines the neasure and the single val ues

* sel ected fromthe di nensi ons other than the base.

* The S ngl eSel ecti onTenpl at e produces such a Source.

*/

public void setQiterion(Source criterion) {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrent S ate();
state.criterion = criterion;
setQurrent S ate(state);

}

/ **
* Gets the type, which is either TGP_BOITCM TYPE TCP or
* TCQP_BOTTAOM TYPE BOTTGM
*/
public int getTopBottonType() {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrent S ate();
return state.topBottonType;
}

/**
* Sets the type.
*/
publ i c void set TopBottonType(int topBottonType) {
if ((topBottoniype < TCP_BOITCM TYPE TCP) | |
(topBott onType > TCP_BOITAOM TYPE BOTTCM)

Creating Dynamic Queries 11-11

Example of a Template

throw new | I | egal Argunent Excepti on(" | nval i dTopBot t onType") ;
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrent S ate();
stat e. t opBot t onType = t opBot t onType;
setQurrent S ate(state);

}

/**

* @ets the nunber of val ues sel ect ed.

*/

public float getN) {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrentSate();
return state. N

}

/**

* Sets the nunber of values to select.

*/

public void setNfloat N {
TopBot t onTenpl ateState state = (TopBottonTenpl ateState) getQurrent S ate();
state.N= N
setQurrent S ate(state);

}

}

Example: Implementing a MetadataState

The following is an implementation of the TopBot t onTTenpl at eSt at e class
described in “Designing the Template” on page 11-8.

package nyTest Package;

i nport oracl e. ol api . dat a. sour ce. Sour ce;
i nport oracle. ol api . transacti on. net adat ast at eManager . Met adat aSt at e;

/**

* Sores data that can be changed by its TopBottonTenpl at e.

* The data is used by a TopBottonTenpl at eGenerat or in produci ng
* a Source for the TopBottonTenpl at e.

*/
public final class TopBottonTenpl ateSate

i npl enents doneabl e, MetadataState {

public int topBottoniype;

public float N

public Source criterion;

public Source base;

11-12 Oracle9i OLAP Services Developer’'s Guide to the Oracle OLAP API

Example of a Template

/**

* (reates a TopBottonTenpl ateSt at e.

*/

publ i ¢ TopBott onTenpl at eXt at e(Sour ce base, int topBottonType, float N {
thi s. base = base;
thi s. topBottonType = t opBottonType;
this.N=N

}

/**
* (Qreates a copy of this TopBottonTenpl ateS at e.
*/
public final bject clone() {
try {
return super. clone();
}
cat ch(d oneNbt Suppor t edExcepti on e) {
return nul | ;
}
}
}

Example: Implementing a SourceGenerator

The following is an implementation of the TopBot t oniTenpl at eGener at or class
described in “Designing the Template” on page 11-8.

package nyTest Package;

i nport oracl e. ol api . dat a. sour ce. Dat aPr ovi der ;

i nport oracl e. ol api . dat a. sour ce. Sour ce;

i nport oracl e. ol api . dat a. sour ce. Sour ceGenerat or ;
i nport java.lang. Mat h;

/**

* Produces a Source for a TopBottonTenpl ate based on the data
* val ues of a TopBottonTenpl at eS at e.
*/
public final class TopBottonTenpl at eGener at or
i npl enents SourceGenerat or {
/1 Sore the DataProvider.
private DataProvi der _dataProvi der;

/**

Creating Dynamic Queries 11-13

Example of a Template

* (reates a TopBottonTenpl at eGener at or .
*/
publ i ¢ TopBot t onTenpl at eGener at or (Dat aPr ovi der dat aProvi der) {
_dataProvi der = dataProvi der;

}

/**

* Generates a Source for a TopBottonTenpl ate using the current
* state of the data val ues stored by the TopBottonTenpl at e at e.
*/
publ i c Source generateSour ce(MtadataState state) {
TopBot t onTenpl at eStat e cast S ate = (TopBott onTenpl at eSt at e) st at e;
if (castSate.criterion == null)
t hr ow new Nul | Poi nt er Excepti on(" Qi teri onPar anmet er M ssing"));
Sour ce sortedBase = nul | ;
if (castSate.topBottonType == TCP_BOTTOM TYPE_TCP)
sortedBase = cast St ate. base. sort Descendi ng(cast State.criterion);
el se
sortedBase = cast St ate. base. sort Ascendi ng(cast Sate.criterion);
return sortedBase.interval (1, Math.round(castSate.N);

Example: Getting the Source produced by the Template

After you have stored the selections made by the end user in the Met adat aSt at e
for the Tenpl at e, use the get Sour ce method on the Dynani cDef i ni ti on to get
the Sour ce created by the Tenpl at e. This section provides an example of an
application that uses the TopBot t omTenpl at e described in “Example:
Implementing a Template” on page 11-9. For brevity, the code does not contain
much exception handling.

The Cont ext class used in the example has methods that do the following:
« Connects to an OLAP service.
« Opens a database.

« Gets metadata objects for the measure and the dimensions selected by the end
user.

« Gets primary Sour ce objects from the metadata objects.
The example does the following:

« Gets primary Sour ce objects from the Cont ext .

11-14 Oracle9i OLAP Services Developer’'s Guide to the Oracle OLAP API

Example of a Template

« Createsa Si ngl eSel ecti onTenpl at e for selecting single values from some
of the dimensions of the measure.

« Creates a TopBot t onifenpl at e and stores selections made by the end user.

« Gets the Sour ce produced by the TopBot t omTenpl at e.

=« Creates a Cur sor for that Sour ce.

« Gets the values from the Cur sor and displays them.

The following example does not include the code for interacting with the end user
or for implementing the Si ngl eSel ecti onTenpl at e or the Met adat aSt at e
and Sour ceGener at or objects for the Si ngl eSel ecti onTenpl at e. The
example class has a method for creating a Cur sor and a method for printing the
values of the Cur sor . All other operations occur in the mai n method. The

Cont ext object supplies the connection to the database, the Dat aPr ovi der and
the Transact i onPr ovi der, and primary Sour ce objects.

package nyTest Package;

i nport
i nport
i nport
i npor t
i nport
i nport
i nport
i nport
i nport
i npor t
i npor t
i nport

/**

oracl e. ol api
oracl e. ol api
oracl e. ol api
oracl e. ol api
oracl e. ol api
oracl e. ol api
oracl e. ol api
oracl e. ol api
oracl e. ol api

. dat a. sour ce. Sour ce;

. dat a. sour ce. Stri ngSour ce;

. dat a. sour ce. Dat aPr ovi der ;

. dat a. sour ce. Qur sor Manager Speci fi cat i on;
. dat a. cur sor. Qur sor Manager ;

. dat a. sour ce. Speci f i edQur sor Manager ;
.data. cursor. Qursor;

. dat a. cursor . Val ueQur sor;

.transaction. Not Conmi t t abl eExcept i on;

nyTest Package. Cont ext ;
nyTest Package. TopBot t onTenpl at e;
nyTest Package. S ngl eSel ecti onTenpl at e;

* (Qeates a query that specifies a nunber of val ues fromthe top or
* bottomof a list of values fromone of the dinensions of a neasure.
* The list is deternmined by the measure and by singl e val ues from

* the other dinensions of the neasure. D splays the results of the

* query.

*/

public class TopBottonTest {

/**

* Prints the val ues of the Qursor.

*/

public static void printQursor(Qursor cursor) {

Creating Dynamic Queries 11-15

Example of a Template

}

/

/*

* Because the result is a single set of values with no outputs,
* cast the Qursor to a ValueQursor and print out the val ues.

*/

Val ueQur sor val ueQursor = (Val ueQursor) cursor;

int i =1;

do {
Systemout. printin(i +". " + val ueQursor.getQurrent Val ue());
i ++;

} while(val ueQursor. next());

**

* Oeates a Qursor.
*/

public static void createQursor(Source choice, DataProvider dp) {

}

Qur sor Manager Speci fi cati on cur sor Mhgr Spec =
dp. cr eat eQur sor Manager Speci fi cati on(choi ce) ;
Speci fi edQur sor Manager cur sor Manager =
dp. cr eat eQur sor Manager (cur sor Migr Spec) ;
Qursor cursor = cursor Manager . creat eQursor () ;
/1 Print the values of the Qursor.
printQursor(cursor);
/1 dose the QursorManager .
cur sor Manager . cl ose() ;

public static void main(Sring[] args) {

/*
* reate a (ontext object and fromit get the DataProvi der and
* the primary Source objects for the neasure and the di nensions.
*/
Gontext context = new Gontext();
Dat aProvi der dp = cont ext. get Dat aProvi der () ;
Source[] sources = context. get Pri narySour cesByNang(
new Sring[]{"SALES AMONI", "PROIDUCTS DM, "QSTOMERS DM,
"CHANNBLS DM, "TIMES DM, "PROMOTI ONS D M});
Sour ce sal esAmount = sources[0] ;
S ringSource product = (StringSource)sources| 1];
S ringSource custoner = (SringSource)sources|?];
S ringSource channel = (S ringSource)sources| 3] ;
SringSource time = (SringSource)sources[4];
S ringSource prono = (StringSource) sour ces| 5] ;
/*
* (Qeate a SingleSel ectionTenpl ate to produce a Source that

11-16 Oracle9i OLAP Services Developer’'s Guide to the Oracle OLAP API

Example of a Template

* gpecifies a single value for each of the di nensions ot her

* than the base for the sel ected neasure.

*/
S ngl eSel ecti onTenpl ate si ngl eSel ections =

new S ngl eSel ecti onTenpl at e(sal esAmount, dp);
si ngl eSel ecti ons. addSel ecti on((Stri ngSour ce) cust oner,
"San Francisco");

si ngl eSel ecti ons. addSel ecti on((StringSource) tine, "2000-Q");
/1 Sis the direct sales channel
si ngl eSel ecti ons. addSel ecti on((StringSource) channel, "S');
si ngl eSel ecti ons. addSel ecti on((St ringSource) prono, "billboard");
/*

* (reate a TopBottonTenpl ate and set the paraneters sel ected by
* the end user, including a dinension as the base and the

* Source produced by the S ngleSel ecti onTenpl ate as the

* criterion.

*/
TopBot t onTenpl at e t opNBot t om = new TopBot t onTenpl at e(product, dp);
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TAP_BOITAM TYPE TCP) ;
t opNBot t om set N 15) ;
topNBottom set Ori teri on(si ngl eSel ecti ons. get Source());
/*

* Wth nethods on the Transacti onProvi der, prepare and conmit

* the transacti on.

*/
tryf

cont ext . get Tr ansact i onPr ovi der () . prepar eQur r ent Tr ansact i on() ;
}
cat ch(Not Cormi t t abl eException e){

Systemout . println("Cannot prepare current Transaction. " +

"Caught exception " +e +".");

}
cont ext . get Transact i onProvi der (). conmi t Qurrent Tr ansact i on() ;
/*

* Get the Source produced by the TopBottonienpl at e,

* create a Qursor for it and display the results.

*/
creat eQur sor (t opNBot t om get Source(), dp);

Creating Dynamic Queries 11-17

Example of a Template

11-18 Oracle9i OLAP Services Developer’'s Guide to the Oracle OLAP API

A

Setting Up the Development Environment

Appendix summary

This appendix describes the steps you take to set up your development
environment for creating applications that use the OLAP API.

List of topics
This chapter includes the following topics:

« Component Overview
« Location of Files on the OLAP Services Computer
= Setting Up on Your Application Development Computer

« Considerations for Deploying Your Application

Component Overview

Components provided by the Oracle installation

Chapter 1 describes the software components that are involved in an application
that uses the OLAP API. The Oracle installation provides all of the components that
run on the OLAP Services computer. In addition, the installation provides j ar files
that are needed on the application development computer for creating an OLAP
API client application.

As an application developer, you must copy these j ar files from the OLAP Services
computer to the computer on which you will write your Java application. The files
that you copy supply the OLAP API client software and CORBA software that is
used by the OLAP API.

Setting Up the Development Environment A-1

Location of Files on the OLAP Services Computer

Components required on the application development computer
The application development computer must have the following components:

« OLAP APIj ar files, which represent the OLAP API client software. The Oracle
installation provides these files, along with OLAP API reference documentation
and sample Java progams that use the OLAP API.

« VisiBroker for Javaj ar files, which support the underlying CORBA connection
between your application and OLAP Services. The Oracle installation provides
these files.

« Oracle CORBA naming service j ar files, which provide CORBA naming
services so your application can find an OLAP service. The Oracle installation
provides these files.

« The Java Development Kit (JDK) version 1.1.8. The Oracle installation does not
provide the JDK. For information about obtaining and using it, see the Sun
Microsystems Java Web site at j ava. sun. com

Location of Files on the OLAP Services Computer

OLAP API jar files

The Oracle installation of OLAP Services places the following OLAP APl j ar files
on the OLAP Services computer. It places them in the ol ap/ ol api/lib
subdirectory of the Oracle home directory.

col l ections.jar

express_connon. j ar
express_connection. jar
express_mimj ar

express_ol api _comon. j ar

express_ol api _data. jar

express_ol api _data full.jar
express_ol api _data recei veQnly.jar
express_ol api _i ndep. j ar
express_spl.jar

Note that the col | ecti ons. j ar file includes the Sun Microsystems backport of
the collections framework from Java version 1.2.

A-2 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

Setting Up on Your Application Development Computer

VisiBroker for Java jar files

The installation places the following version 3.4 VisiBroker for Java j ar files on the
OLAP Services computer. It places them in the | i b subdirectory of the Oracle home
directory.

vbjorb.jar
vbj app. j ar
vbjtools.jar

Oracle CORBA naming service jar files

The installation places the following Oracle CORBA naming service j ar files on the
OLAP Services computer. It places them inthel i b orj avavni | i b subdirectory of
the Oracle home directory.

aurora client.jar
aurora_client_orbdep.jar
aurora_client_orbindep.jar

Setting Up on Your Application Development Computer

Installing the jar files

To make the j ar files accessible in your development environment, perform the
following steps:

1. Copy the OLAP API, VisiBroker, and Oracle CORBA naming service j ar files
to your application development computer. Place them in a location that makes
them accessible to the Java integrated development environment (IDE) that you
are using. An example of an IDE is Oracle JDeveloper.

2. Edit your Java CLASSPATH environment variable to include the paths of the
files on your computer.

3. Inthe IDE, make any specifications that are required to make the files accessible
for importing classes into your programs.

Installing the OLAP API reference documentation

If you want to access the Oracle9i OLAP Services OLAP API Reference files on your
application development computer, locate the j ar files that contain them in the
ol ap/ ol api / doc subdirectory of the Oracle home directory on the OLAP Services

Setting Up the Development Environment A-3

Considerations for Deploying Your Application

computer. Consult the r eadn®e. t xt file in that directory for instructions on how to
install the files and access them in your Web browser.

The Oracle9i OLAP Services OLAP API Reference was created using the javadoc tool
provided by Sun Microsystems.

Installing the sample programs

If you want to run the Java sample programs on your application development
computer, locate the jar file that contains them in the olap/olapi/shprog
subdirectory of the Oracle home directory on the OLAP Services computer. Consult
the readme.txt file in that directory for instructions on how to install the files and
run the sample programs.

The sample programs access data and metadata that is in the Sales History schema,
which is provided with the Oracle installation.

Considerations for Deploying Your Application

OLAP API and VisiBroker for Java classes

When you deploy an application, ensure that its configuration includes the OLAP
API and VisiBroker for Java j ar files.

CORBA naming service

If your application uses the Oracle CORBA naming service, ensure that you include
the Oracle CORBA naming service j ar files when you deploy your application. If
you write your application for use with the VisiBroker Smart Agent naming service,
make the software for that naming service available with your application.

Java Runtime Environment (JRE)

When you deploy your application, ensure that users are running a version of the
Java Runtime Environment (JRE) that is compatible with the JDK version that you
used for developing your application.

A-4 Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

B

Using the Smart Agent Naming Service

Appendix summary

This appendix describes how to use the VisiBroker Smart Agent haming service in
order to get a CORBA stub for making an OLAP API connection.

List of topics

This chapter includes the following topics:
« Role of a Naming Service in the Connection Process

« Getting the CORBA Stub Using VisiBroker Smart Agent

Role of a Naming Service in the Connection Process

Overview of connection steps
The connection process involves the following three steps:
1. Geta CORBA stub.
2. Create aProperti es object for passing parameters to the connect method.
3. Call the connect method.

See Chapter 3 for a description of these steps.

How a naming service is used in the connection steps

A naming service locates an object, such as an OLAP service, that is accessible in the
CORBA environment. A naming service is involved only in the first of the three
connection steps, when you are getting a CORBA stub.

Using the Smart Agent Naming Service B-1

Getting the CORBA Stub Using VisiBroker Smart Agent

Different naming services on different platforms

Chapter 3 describes the code for getting a CORBA stub using the Oracle CORBA
naming service. However, on some platforms, you should write code that uses the
VisiBroker Smart Agent haming service instead. The rest of this appendix describes
the code for getting the CORBA stub using VisiBroker Smart Agent.

See the read me file for your installation of OLAP Services for information about
whether the procedures described in this appendix are relevant on your platform.

Getting the CORBA Stub Using VisiBroker Smart Agent

What is a CORBA stub?

A CORBA stub is a Java object that resides on the application computer and
represents the OLAP service to which a connection will be made. To obtain the stub,
you execute methods that are provided by a CORBA naming service.

What do you do with a CORBA stub?

In the connection steps that are described in Chapter 3, you pass the stub as a
parameter to the connect method on a Connect i onManager . The stub helps to
identify the service to which the connection will be made.

Code for getting the CORBA stub

The following sample code for getting the stub uses the Smart Agent naming
service that is compatible with version 3.4 of VisiBroker for Java. The code initializes
an ORB object (called myORB in the code) and creates a stub that represents an
OLAP service. The code specifies the following three identifiers:

« The name of the computer on which the Smart Agent and the OLAP service
reside. This host name was specified by a database administrator in the
OSAgentAddr setting in OLAP Services Instance Manager. In this sample code,
the name is LABL.

« The port number for the Smart Agent. This name was specified by a database
administrator in the OSAgentPort setting in OLAP Services Instance Manager.
In this sample code, the port number is 10160.

« The name of the OLAP service. In this sample code, the service name is
OLAPSrv1.

B-2 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

Getting the CORBA Stub Using VisiBroker Smart Agent

You can find out the computer name, the port number, and the OLAP service name
by asking your OLAP Services database administrator.

i nport org. ony. CCRBA CRB;

Properties orbParans = Systemget Properties();
Sring addrNane = " CRBagent Addr";

Sring addrVal ue = "LABL";

Sring portNane = "CRBagent Port";

Sring portVal ue = "10160";

or bPar ans. put (addr Nane, addr Val ue) ;

or bPar ans. put (port Nane, portVal ue);

Sring[] dumyArgs = {"A', "B'};

GRB nyGRB = GRB.i ni t (durmyAr gs, or bPar ans) ;
Sring serviceXring = "LABL: QAAPS V1",

org. ongy. GCRBA (hj ect serviceSub =
((comvi si geni c. vbroker. orb. GRB) nyCRB) . bi nd(
"I OL: Expr essConnect i onMbdul e/ Server I nt erface: 1. 0",
servicestring, null, null);

An alternative way to specify the Smart Agent computer name and port number is
by providing them as parameters to the Java Runtime Environment (JRE) when the
application executes. For our example, the following parameters could be specified
when the application is executed. For each one, “-D” indicates that what follows is a
JRE parameter.

- DORBagent Addr =LAB1 - DCRBagent Por t =10160

With these parameters specified, the application can use the ORB. i ni t () method
with no parameters.

Using the Smart Agent Naming Service B-3

Getting the CORBA Stub Using VisiBroker Smart Agent

B-4 Oracle9/ OLAP Services Developer’s Guide to the Oracle OLAP API

A

AbstractCursorManager class methods, 10-18
aggregation functions
creating, 7-11
aggregation methods
explanation of, 7-7
list of, 7-7
using, 7-8,7-9
alias method
description, 5-6
example, 6-15, 6-16
analytic workspace, 1-7,3-2
ancestors attributes
example of getting, 4-7
for MdmHierarchy objects, 2-12
for MdmLevel objects, 2-11

application
configurations, 1-10
deployment, 1-16, A-4

development steps, 1-13

tasks performed by, 1-17
asymmetric result set, Cursor positions in an,
attributes

ancestors, 2-11,2-12

definition, 1-2

in Oracle Enterprise Manager, 2-3

MdmAttribute objects, 2-22

parent, 2-11,2-12

region, 2-12

Source objects for, 5-4

10-26

Index

B

Boolean OLAP API data type, 5-10
BooleanSource objects, 5-2

C

Common Object Request Broker Architecture
naming service, 3-8, B-1
obtaining CORBA stub for connecting,
software provided, A-2
used in OLAP API, 1-10
CompoundCursor class, 10-4
methods, 10-9
CompoundCursor objects
getting children of, example, 9-5
navigating for a crosstab view, example,
9-13
navigating for a table view, example, 9-9
positions of, 10-23
CompoundCursorSpecification class,
methods, 10-14
configuration
three-tier application, 1-11
two-tier application, 1-11
connect method
example of calling, 3-10
example of preparing first parameter, 3-7, B-2
example of preparing second parameter, 3-9
introduction, 3-4
overview of parameters, 3-7
Connection objects
description, 3-5
example of closing, 3-11

3-7,B-2

9-11,

10-12

Index-1

example of creating, 3-10
ConnectionManager objects

description, 3-4

example of initializing, 3-10
ConnectionParameterlnfo objects

description, 3-6

example of using, 3-10
connections

classes for, 3-4

closing, 3-11

interrupting, 3-11

overview, 3-2

prerequisites, 3-2

steps for establishing, 3-7

summary of steps for establishing, 3-3
constant Source objects

definition, 5-2

example, 5-12
CORBA.. See Common Object Request Broker

Architecture

crosstab view

navigating Cursor for, example, 9-11, 9-13
current position in a Cursor, definition, 10-22
Cursor class

architecture, advantages of, 10-2

hierarchy, 10-5

methods, 10-9
Cursor objects

created in the current Transaction, 10-3

creating, example, 9-2

current position, definition, 10-22

extent calculation, example, 9-20

extent definition, 10-30

faster and slower varying components, 10-6

fetch block definition, 10-32

fetch size definition, 10-32

getting children of, example, 9-5

getting the values of, examples, 9-3

parent starting and ending position, 10-28

position, 10-22

Source objects for which you cannot create,

span of a value, example of calculating, 9-21

span, definition, 10-28
specifying fetch size for a crosstab view,
example, 9-24

Index-2

specifying fetch size for a table view,
example, 9-24
specifying the behavior of, 9-17, 10-8

starting and ending positions of a value, example

of calculating, 9-20
structure, 10-5
CursorManager class, 10-15
hierarchy, 10-16
methods, 10-18
CursorManager objects

closing before rolling back a Transaction, 8-11

creating, example, 9-2
updating the
CursorManagerSpecification, 10-15
CursorManagerSpecification class, 10-10
creating object, example, 9-2
methods, 10-11
CursorManagerUpdateEvent class, 10-21
fields, 10-21
methods, 10-21
CursorManagerUpdateListener class, 10-20
methods, 10-20
CursorSpecification class, 10-11
methods, 10-13
CursorSpecification objects
getting from a CursorManagerSpecification,
example, 9-18

D

data store
connecting to, 3-2
definition, 1-3
exploring, 4-2
organized in folders, 1-7
scope of, 4-2
data types
OLAP API, 5-10
data warehouse
definition, 1-3
Database objects
creating, 4-4

needed to create MdmMetadataProvider, 4-3

DataProvider objects
creating, 4-4

needed to create MdmMetadataProvider,
Date OLAP API data type, 5-10
DateSource objects, 5-2
default hierarchy
example of getting, 4-7
retrieving, 6-13
derived Source objects
creating, 6-1to 7-13
definition, 5-2
description, 5-5
introduced, 5-5
dimensions
definition, 1-2
in Oracle Enterprise Manager, 2-3
MdmDimension objects, 2-8
Source objects for, 5-3
distinct method
description, 5-6
drilling down a hierarchy, 6-15
dynamic queries, 11-1
DynamicDefinition class, 11-7

E

4-3

elements
finding position of, 6-7 to 6-10
of a level MdmHierarchy, 2-14
of a union MdmHierarchy, 2-16
of an MdmAttribute, 2-23
of an MdmLevel, 2-11
of an MdmListDimension, 2-18
of an MdmMeasure, 2-19
ranking, 6-10to 6-12
selecting by value, 6-5to 6-6
sorting, 6-10 to 6-12
ExpressSpecifiedCursorManager class
methods, 10-19
ExpressTransactionProvider class, 8-10
extent of a Cursor
definition, 10-30
example of calculating, 9-20
use of, 10-31
extract method
description, 5-6

F

faster varying Cursor components, 10-6

fetch block of a Cursor
definition, 10-32
determining shape of, 10-33
sharing, 10-34

fetch size of a Cursor
definition, 10-32
example of specifying, 9-24
reasons for specifying, 10-32
specifying, 10-32

Float OLAP API data type, 5-10

fundamental Source objects, 5-9
creating, 5-11,5-12
definition, 5-2

G

getSource method

example, 5-3,5-4

for creating primary Source objects, 5-3to05-5

for getting Source produced by a Template,
example, 11-14

in DynamicDefinition class, 11-2, 11-7

in MdmSource class, 2-8

simple example, 4-8

H

hierarchies
creating Source objects for, 6-12
definition, 1-2
drilling down, 6-15
in Oracle Enterprise Manager, 2-3
MdmHierarchy objects, 2-12
node and leaf terminology, 2-16
retrieving default, 4-7, 6-13

input-output order

determining, 6-3, 6-5

effect on Source structure, 6-3, 6-5
inputs

changing to outputs, 6-2 to 6-5

Index-3

defined, 6-1

turning into outputs, 6-2
installation for application development, A-1
Integer OLAP API data type, 5-10

J
Java Development Kit, version required, A-2
join method
changing inputs to outputs, 6-2
example, 5-8, 6-3to 6-5, 6-7, 6-15, 6-16
result, 5-8
syntax, 5-7
to change inputs to outputs, 6-2 to 6-5
K
keys
determining order of, 6-2to 6-5
inputs, 6-1
kinds, 6-1
outputs, 6-1
specifying values for, 6-2
L

leaf in a hierarchy, 2-16

level MdmHierarchy, 2-13

levels
definition, 1-2
in Oracle Enterprise Manager, 2-3
MdmLevel objects, 2-11

list Source objects, 5-2

Long OLAP API data type, 5-10

M

MDM. See multidimensional metadata model
MdmAttribute objects
creating Source objects for, 5-4
description, 2-22
elements, 2-23
example of getting, 4-7
MdmDimension objects
creating Source objects for, 5-3

Index-4

description, 2-8
example of getting related objects, 4-7
introduction, 1-6
regions, 2-10
related MdmAttribute objects, 2-9
related MdmDimensionDefinition objects,
related MdmDimensionMemberType
objects, 2-10
MdmDimensionDefinition objects
description, 2-10
example of getting, 4-7
MdmDimensionMemberType objects
description, 2-10
example of getting, 4-7
MdmHierarchy objects
creating Source objects for, 6-12
description, 2-12
elements of a level MdmHierarchy, 2-14
elements of a union MdmHierarchy, 2-16
level type description, 2-13
union type description, 2-13
MdmLevel objects
description, 2-11
elements, 2-11
MdmListDimension objects
description, 2-18
elements, 2-18
MdmMeasure objects
creating Source objects for, 5-4
description, 2-19
elements, 2-19
example of getting their dimensions, 4-7
introduction, 1-6
kinds of values, 2-20
MdmMetadataProvider objects
creating, 4-4
description, 4-3
introduction, 1-5
MdmObiject class, 2-5
MdmSchema objects
description, 2-7
getting contents of, 4-6
getting the root, 4-6
introduction, 1-5
root, 2-7,4-4

2-10

MdmSource objects, 2-8
measure folders
in Oracle Enterprise Manager, 2-4
mapped to MdmSchema objects, 2-7
measure MdmDimension objects, 4-7
measures
definition, 1-2
in Oracle Enterprise Manager, 2-4
MdmMeasure objects, 2-19
Source objects for, 5-4
metadata
definition, 1-3
discovering, 4-1
distinguished from data, 1-4
mapping OEM to MDM, 2-6
preparation for OLAP API, 1-3,2-2
sample code for discovering, 4-9to 4-25
MetadataState class, 11-6
example of implementation, 11-12
multidimensional metadata model (MDM)
description, 2-2
introduction, 1-5

N

nested outputs
getting values from a Cursor with, example,
of a Source, definition, 9-3
node in a hierarchy, 2-16
Number OLAP API data type, 5-10
NumberSource objects, 5-2
numeric comparisons
performing, 7-4to7-5
numeric functions
creating, 7-10
methods representing, 7-6
numeric methods
using, 7-5to7-11
numeric operations
example, 7-2,7-3
list of methods for, 7-2,7-5
performing, 7-1to7-4

9-6

O

OLAP API
definition, 1-1
deploying an application, A-4
installing for application development, A-1
software components, 1-8

types, 5-9
OLAP API data types
listed, 5-10

objects that represent, 5-10
retrieving, 5-10
OLAP management tool, 2-2
OLAP Services
OLAP API connection, 1-8
Oracle Enterprise Manager
OLAP management feature, 2-2
outputs
changing from inputs, 6-2 to 6-5
defined, 6-1
getting from a CompoundCursor, example,
getting from a CompoundCursorSpecification,
example, 9-18
getting nested, example, 9-6
in a CompoundCursor, 10-5, 10-28, 10-30
positions of, 10-23

P

parameterized selections

creating, 7-10
parameters

creating, 7-10
parent attributes

example of getting, 4-7

for MdmHierarchy objects, 2-12

for MdmLevel objects, 2-11
parent-child relationships

creating Source objects for, 6-14
position

parent starting and ending, 10-28
position method

described, 6-7

description, 5-6

example, 6-8to6-10

Index-5

shortcuts, 6-7

positions
CompoundCursor, 10-23
Cursor, 10-22
of elements, 6-7 to 6-10
ValueCursor, 10-22

primary Source objects
definition, 5-2
for parent-child relationship, 6-14
from MdmDimension object, 5-3
from MdmHierarchy objects, 6-12
from MdmMeasure objects, 5-4
from MdmSource objects, 2-8
getting, 5-3t05-5
result of getSource method, 4-8
structure, 5-3,5-4,5-5

primitive methods, 5-6

Q

queries
dynamic, 11-1
Source objects that are not, 10-3
specifications for, 5-1
steps in retrieving results of, 9-1

R

range Source objects, 5-2
ranking elements, 6-10to 6-12
read Transaction object, 8-2
region attributes

example of getting, 4-7

for MdmHierarchy objects, 2-12
regions

example of getting, 4-7

of an MdmDimension, 2-10
relationships

Source objects for, 6-14
retrieving OLAP API data types, 5-10
root MdmSchema

description, 2-7

function of, 4-4

obtaining, 4-6

Index-6

S

Sales History schema
accessing through sample programs, A-4
list of metadata objects in, 4-16
metadata discovery program, 4-9
sample programs, A-4
selecting data, 6-1to 6-17
selecting elements
based on element values, 6-5to 6-7
based on hierarchical position, 6-12to 6-17
based on key values, 6-11t0 6-5
based on rank, 6-7 to 6-12
selectValue method
example, 6-7
self-relation
Source object for, 6-15, 6-16
Short OLAP API data type, 5-10
slower varying Cursor components, 10-6, 10-25
sorting elements, 6-10 to 6-12
Source class
convenience methods, 5-6
methods, 5-5
primitive methods, 5-6
shortcut methods, 5-6
subclasses, 5-2
Source methods
alias, 5-6
distinct, 5-6
extract, 5-6
for numeric functions, 7-6
join, 5-7,5-8
position, 5-6
string, 7-11to7-13
value, 5-6
Source objects
active in a Transaction object, 8-2, 10-3
constant, 5-2
definition, 5-1
derived, 5-2
for attributes, 5-4
for dimensions, 5-3
for measures, 5-4
for relationships, 6-14
for self-relation, 6-15, 6-16

fundamental, 5-2

getting, 5-3to5-5

getting a modifiable Source from a

DynamicDefinition, 11-7

list, 5-2

modifiable, 11-1

OLAP API data type, 5-10

primary, 5-2,5-3

range, 5-2

structure, 5-3,5-4
SourceGenerator class, 11-7

example of implementation, 11-13
span of a value in a Cursor

definition, 9-19, 10-28

example of calculating, 9-21
SpecifiedCursorManager class methods, 10-19
SpecifiedCursorManager objects

closing, 10-15

returned by the createCursorManager

method, 10-15

string methods, 7-11to 7-13
String OLAP API data type, 5-10
StringSource objects, 5-2
subschemas

description, 4-4

getting contents, 4-7

T

table view

navigating Cursor for, example, 9-9
Template class, 11-6

designing, 11-8

example of implementation, 11-9

methods, 11-6
Template objects

benefits of using, 1-14

classes used to create, 11-3

for creating modifiable Source objects, 11-1

introductory example, 1-15

relationship of classes producing a dynamic

Source, 11-3

Transaction objects used in, 8-4
Transaction objects

child read and write, 8-2

committing, 8-3
creating a Cursor in the current, 10-3
current, 8-2
example of using child, 8-11
getting the current, 8-9
preparing, 8-3
read, 8-2
rolling back, 8-8
setting the current, 8-9
using in Template classes, 8-4
write, 8-2
TransactionProvider interface, 8-10
methods, 8-10
TransactionProvider objects

creating, 4-4
needed to create MdmMetadataProvider, 4-3
tuple

definition, 10-23

in a Cursor, example, 9-7
type

definition, 5-9

OLAP APl data, 5-10

U

union MdmHierarchy, 2-13

Vv

value method
description, 5-6
Value OLAP API data type, 5-10
ValueCursor class, 10-4
methods, 10-9
ValueCursor objects
getting from a parent CompoundCursor,
example, 9-5
getting values from, example, 9-3,9-4
position, 10-22
ValueCursorSpecification class, 10-12
methods, 10-14
virtual Cursor
definition, 10-32
VisiBroker Smart Agent
example of getting CORBA stub, B-2

Index-7

finding out if needed, B-2

w

what-if analysis, 8-2,8-4
workspace, 1-7,3-2
write Transaction object, 8-2

Index-8

	Send Us Your Comments
	Preface
	Conventions
	Documentation Accessibility

	1 Introduction to the OLAP API
	OLAP API Overview
	Access to Data and Metadata Through the OLAP API
	OLAP API Software Components
	Developing an OLAP API Application
	Tasks That an OLAP API Application Performs

	2 Understanding OLAP API Metadata
	Overview of the OLAP API Metadata
	OLAP Metadata Objects in Oracle Enterprise Manager
	Overview of MDM Metadata Objects in the OLAP API
	MdmDimension Class
	MdmLevel Class
	MdmHierarchy Class
	MdmListDimension Class
	MdmMeasure Class
	MdmAttribute Class

	3 Connecting to a Data Store
	Overview of the Connection Process
	Connection Classes in the OLAP API
	Establishing a Connection
	Closing a Connection
	Interrupting a Connection

	4 Discovering the Available Metadata
	Overview of the Procedure for Discovering Metadata
	Creating an MdmMetadataProvider
	Getting the Root MdmSchema
	Getting the Contents of the Root MdmSchema
	Getting the Characteristics of Metadata Objects
	Getting the Source for a Metadata Object
	Sample Code for Discovering Metadata

	5 Making Queries
	How Does the OLAP API Represent Queries?
	Getting Primary Source Objects
	Creating Derived Source Objects
	Getting and Working with Fundamental Source Objects
	Creating Constant, List and Range Source Objects

	6 Selecting Data
	Selecting Elements Based on Key Values
	Selecting Elements Based on Element Values
	Selecting Elements Based on Rank
	Selecting Elements Based on Hierarchical Position

	7 Performing Calculations
	Performing Numerical Operations
	Making Numerical Comparisons
	Working with Standard Numerical Functions
	Working with Aggregation Methods
	Creating Your own Numerical Functions
	Working With Strings

	8 Using a TransactionProvider
	About Transaction Objects
	About TransactionProvider Objects

	9 Retrieving Query Results
	Retrieving the Results of a Query
	Navigating a CompoundCursor for Different Displays of Data
	Specifying the Behavior of a Cursor
	Calculating Extent and Starting and Ending Positions of a Value
	Specifying Fetch Sizes and Fetch Blocks

	10 Understanding Cursor Classes and Concepts
	Overview of the OLAP API Cursor Objects
	Cursor Class
	CursorManagerSpecification Class
	CursorSpecification Class
	CursorManager Class
	CursorManagerUpdateListener Class
	About Cursor Positions and Extent
	About Fetch Sizes and Fetch Blocks

	11 Creating Dynamic Queries
	About Template Objects
	Overview of Template and Related Classes
	Example of a Template

	A Setting Up the Development Environment
	Component Overview
	Location of Files on the OLAP Services Computer
	Setting Up on Your Application Development Computer
	Considerations for Deploying Your Application

	B Using the Smart Agent Naming Service
	Role of a Naming Service in the Connection Process
	Getting the CORBA Stub Using VisiBroker Smart Agent

	Index

