
Oracle9 i Real Application Clusters

Deployment and Performance

Release 1 (9.0.1)

July 2001

Part No. A89870-02

Oracle9i Real Application Clusters Deployment and Performance, Release 1 (9.0.1)

Part No. A89870-02

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Author: Mark Bauer.

Primary Contributors: David Austin, Mitch Flatland, Bill Kehoe, Kotaro Ono, Stefan Pommerenk, Jim
Rawles, Joao Rimoli, and Michael Zoll.

Contributors: Lance Ashdown, Cathy Baird, Bill Bridge, Wilson Chan, Gang Chen, Carol Colrain, Sohan
DeMel, Merrill Holt, John Kennedy, Raj Kumar, Tirthankar Lahiri, Neil MacNaughton, Vinay Srihari,
Bob Thome, Alex Tsukerman, and Tak Wang.

Graphic Designer: Valarie Moore.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and SQL*Loader, Secure Network Services, SQL*Plus, Real Application
Clusters, Oracle Call Interface, Oracle9i, Oracle8i, Oracle8, Oracle Parallel Server, Oracle Forms, Oracle
TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Server Manager, Oracle Net, Net8, PL/SQL,
and Pro*C are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

iii

Contents

List of FiguresList of Tables

Send Us Your Comments .. xvii

Preface .. xix

What’s New in Cluster Software Deployment and Performance? xxix

Part I Introduction to Deployment in Real Application Clusters

1 Introduction to Application Deployment for Real Application Clusters

Taking Full Advantage of Oracle9i Features ... 1-2
Implementing Oracle9i Features with Real Application Clusters .. 1-2

High Availability and Failover in Real Application Clusters .. 1-2
Primary/Secondary and Active/Active Instance Configurations................................. 1-3

Oracle Net in Real Application Clusters ... 1-3
The Shared Server in Real Application Clusters.. 1-4
Connection Load Balancing .. 1-4
Transparent Application Failover in Real Application Clusters ... 1-4
PL/SQL in Real Application Clusters ... 1-5
Recovery Manager (RMAN) in Real Application Clusters .. 1-6
Cluster File Systems in Real Application Clusters .. 1-6

Deployment Phases for Real Application Clusters.. 1-7

iv

2 Online E-Commerce and Data Warehousing Application Deployment in Real
Application Clusters

Cache Fusion and E-Commerce Applications for Real Application Clusters......................... 2-2
Flexible Implementation with Cache Fusion .. 2-2
Deployment Strategies for Real Application Clusters-Based Applications 2-3

Transition to N-tier Architectures .. 2-3
Benefits of N-Tier Architectures with Real Application Clusters.. 2-5

Monitoring and Tuning Performance in N-Tier Environments 2-5
Deploying Data Warehousing Applications for Real Application Clusters 2-6

Speed-Up for Data Warehousing Applications on Real Application Clusters.................... 2-6
Flexible Parallelism within Real Application Clusters Environments 2-6

Dynamic Parallel-Aware Query Optimization... 2-7
Load Balancing for Multiple Concurrent Parallel Operations.. 2-8
Using Parallel Instance Groups ... 2-8
Disk Affinity ... 2-9

Deployment and Tuning of Real Application Clusters Applications 2-10
Configuring and Tuning Applications on Real Application Clusters 2-11
Administrative Aspects of System Scaling for Real Application Clusters 2-11

Part II Scaling Applications and Designing Databases for Real Application
Clusters

3 Scaling Applications for Real Application Clusters

Overview of Development Techniques in Real Application Clusters 3-2
Begin with an Analysis .. 3-2

SQL Statement Execution in Real Application Clusters ... 3-3
Block Accesses During INSERT Statement Execution .. 3-3
Block Accesses During UPDATE Statement Execution .. 3-5
Block Accesses During DELETE Statement Execution.. 3-6
Block Accesses During SELECT Statement Execution .. 3-6

Workload Distribution Concepts in Real Application Clusters .. 3-7
Functional Partitioning .. 3-7
Separating E-Commerce and Data Warehousing Processing .. 3-8
Departmental and User Partitioning.. 3-8

v

Physical Table Partitioning ... 3-9
Transaction Partitioning .. 3-9

Workload Characterization in Real Application Clusters .. 3-11
Step 1: Define Your System’s Major Functional Areas.. 3-11
Step 2: Estimate Each Functional Area’s System Resource Consumption......................... 3-11
Step 3: Analyze Each Functional Area’s Data Access Pattern.. 3-13

Step 3.1: Identify Table Access Requirements and Define Overlaps 3-13
Step 3.2: Define the Access Type for Each Overlap.. 3-14
Step 3.3: Identify Transaction Volumes.. 3-14
Step 3.4: Classify Overlaps... 3-15

Scaling-Up and Partitioning in Real Application Clusters .. 3-16

4 Database Design Techniques for Real Application Clusters

Principles of Database Design for Real Application Clusters... 4-2
Using Free List Groups For Concurrent Inserts from Multiple Nodes 4-3

Deciding Whether to Create Database Objects with Free List Groups................................. 4-3
Identifying Critical Tables Before Migrating to Real Application Clusters.................. 4-4

Determining FREELIST GROUPS Reorganization Needs.. 4-4
Creating Tables, Clusters, and Indexes with FREELISTS and FREELIST GROUPS 4-5

FREELISTS Parameter .. 4-5
FREELIST GROUPS Parameter ... 4-5
Creating FREELISTS and FREELIST GROUPS for Clustered Tables 4-6
Creating FREELISTS for Indexes... 4-7

Associating Instances and User Sessions with Free List Groups... 4-7
Associating Instances with Free List Groups .. 4-8
Associating User Processes with Free List Groups .. 4-8

Preallocating Extents.. 4-9
Preallocating Extents with The ALLOCATE EXTENT Clause 4-9
Preallocating Extents by Setting MAXEXTENTS, MINEXTENTS, and INITIAL

Parameters 4-10
Preallocating Extents by Setting the INSTANCE_NUMBER Parameter 4-11
Extent Preallocation Examples .. 4-11

Using Sequence Numbers in Real Application Clusters .. 4-13
Detecting Global Conflicts for Sequences ... 4-13
Using Database Tables to Generate Sequence Numbers .. 4-13

vi

Tablespace Design in Real Application Clusters.. 4-14
Extent Management and Locally Managed Tablespaces .. 4-15

Identifying Extent Management Issues.. 4-15
Minimizing Extent Management Operations.. 4-15
Using Locally Managed Tablespaces.. 4-15

Index Issues for Real Application Clusters Design ... 4-16
Reducing Inter-Instance Concurrent Changes To Index Blocks .. 4-17

Using Reverse Key Indexes to Distribute Index Access .. 4-17
Assigning Different Subsequences to Each Instance to Reduce Index Contention ... 4-17
Using INSTANCE_NUMBER to Generate Index Keys.. 4-17
Reducing Index Contention by Partitioning Tables by Range...................................... 4-17

Minimizing Table Locks to Optimize Performance ... 4-19
Disabling Table Locks for Individual Tables .. 4-19
Setting DML_LOCKS to Zero ... 4-19

Object Creation and Performance in Real Application Clusters... 4-20
Conclusions and a Summary of Guidelines .. 4-21

Part III Real Application Clusters Performance Monitoring and Tuning

5 General Tuning Recommendations for Real Application Clusters

Overview of Tuning Real Application Clusters.. 5-2
Statistics for Monitoring Real Application Clusters Performance ... 5-2

The Content of Real Application Clusters Statistics .. 5-2
Recording Statistics for Tuning... 5-3

Tracing Execution History with the TRACE_ENABLED Parameter............................. 5-3
Significant Real Application Clusters Statistics.. 5-4

Using Views to Evaluate Real Application Clusters Performance.. 5-5
Using V$SYSSTAT for Real Application Clusters Statistics ... 5-5
Using V$SYSTEM_EVENT for Real Application Clusters Statistics..................................... 5-7
Using Other Views to Obtain Real Application Clusters Statistics 5-8

Measuring Workload Performance in Real Application Clusters ... 5-9
General Tuning Recommendations for Workload Performance ... 5-10

Measuring Workload Performance.. 5-10
Using V$CLASS_CACHE_TRANSFER and V$FILE_CACHE_TRANSFER for Real

Application Clusters Statistics 5-10

vii

Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, V$BH, and

V$FILE_CACHE_TRANSFER 5-11
Estimating I/O Synchronization Costs ... 5-11

Determining the Costs of Synchronization In Real Application Clusters 5-12
Calculating CPU Service Time Required .. 5-12
Measuring Global Cache Coherency and Contention... 5-13

Maintaining Application Profiles per Transaction per Unit of Time........................... 5-15
Measuring Global and Local Work Ratios in Real Application Clusters 5-16
Calculating the Global Cache Synchronization Costs Due to Contention in Real Application
Clusters ... 5-18

Contention for the Same Data Blocks .. 5-18
Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, and V$BH......

5-19
Contention for Segment Headers and Free List Blocks .. 5-19
Contention for Resources other than Database Blocks ... 5-20

Contention for the Data Dictionary Cache and The Row Cache.................................. 5-20
Contention for the Library Cache ... 5-21

Contention Problems Specific to Applications Running on Real Application Clusters .. 5-21
Using Sequence Number Multipliers ... 5-21
Using the CACHE Clause When Creating Oracle Sequences 5-21

Resolving Performance Problems in Real Application Clusters-Based Applications........ 5-22
Query Tuning Tips ... 5-22

Using Large Block Sizes.. 5-22
Increasing the Value for DB_FILE_MULTIBLOCK_READ_COUNT 5-22

Application Tuning Tips ... 5-23
Diagnosing Performance Problems ... 5-23

GCS Statistics for Monitoring Contention and CPU Usage .. 5-24
Advanced Queuing and Real Application Clusters... 5-24

Queue Table Instance Affinity.. 5-24
Global Cache Service Resource Acquisition ... 5-25
Advanced Queuing and Queue Table Cache Transfers ... 5-25

6 Tuning Real Application Clusters and Inter-Instance Performance

How Cache Fusion Produces Current and Consistent Read Blocks ... 6-2
Improved Scalability with Cache Fusion .. 6-4

viii

Block Transfers Using High Speed Interconnects.. 6-5
Elimination of I/O for Forced Disk Writes of Blocks .. 6-5
Partitioning Data To Further Reduce Hot Spots Due to Blocks Modified by Multiple

Instances 6-6
The Interconnect and Interconnect Protocols for Real Application Clusters 6-6

Influencing Interconnect Processing.. 6-6
Performance Expectations of Cache Fusion ... 6-6
Monitoring Cache Fusion and Inter-Instance Performance ... 6-7
Cache Fusion and Performance Monitoring Goals .. 6-7
Statistics for Monitoring Real Application Clusters and Cache Fusion 6-8

Creating Real Application Clusters Data Dictionary Views with CATCLUST.SQL 6-9
Global Dynamic Performance Views... 6-10
Analyzing Global Cache and Cache Fusion Statistics ... 6-11

Procedures for Monitoring Global Cache Statistics.. 6-11
Analyzing Global Enqueue Statistics... 6-16

Procedures for Analyzing Global Enqueue Statistics... 6-16
Analyzing GES Resource, Message, and Memory Resource Statistics 6-18

How GES Workloads Affect Performance... 6-19
Procedures for Analyzing GES Resource Statistics .. 6-19

GES Message Statistics Processing ... 6-21
Procedure for Analyzing GES Message Statistics ... 6-22

Analyzing Block Mode Conversions by Type .. 6-23
Using the V$LOCK_ACTIVITY View to Analyze Block Mode Conversions............. 6-24
Using the V$CLASS_CACHE_TRANSFER View to Identify Block Mode Conversions by

Block Class 6-24
Using the V$CACHE_TRANSFER View to Identify Hot Objects 6-24

Analyzing Latch Statistics in Real Application Clusters... 6-25
Procedures for Analyzing Latch Statistics ... 6-25

Using the V$SYSTEM_EVENT View to Identify Performance Problems............................. 6-27
Real Application Clusters Events in V$SYSTEM_EVENT.. 6-28

Events Related to Server Coordination Resources ... 6-29
General Observations for Tuning Inter-Instance Performance.. 6-29

ix

Part IV Using Oracle Enterprise Manager to Monitor and Tune Real Application
Clusters Databases

7 Monitoring Performance with Oracle Performance Manager

Oracle Performance Manager Overview .. 7-2
Starting Oracle Performance Manager ... 7-5
Displaying Charts ... 7-5

Using the Statistics Charts... 7-7
Total Ping Chart... 7-7
Global Cache Timeouts Chart.. 7-7
Global Cache CR Request Chart.. 7-7
Global Cache Lock Convert Chart .. 7-8
Instance Ping Chart ... 7-8
Global Cache CR Timeouts by Instance Chart .. 7-8
Global Cache Convert Timeouts by Instance Chart ... 7-8
Global Cache Freelist Waits by Instance Chart ... 7-9
Global Cache CR Request by Instance Chart .. 7-9
Global Cache Lock Convert by Instance Chart ... 7-9
Ping by File Chart.. 7-9
File Ping by Instance Chart .. 7-9
Ping by Block Class Chart .. 7-10
Ping by Object Chart ... 7-10
Object Ping by Instance Chart ... 7-10
Maximum Ping by Block Chart ... 7-10
Library Cache Lock Chart .. 7-10
Library Cache Lock by Instance Chart ... 7-11
Row Cache Lock Chart ... 7-11
Row Cache Lock by Instance Chart .. 7-11
Global Cache Current Block Request Chart .. 7-11
Global Cache Current Block Request by Instance Chart ... 7-12
Global Cache Current Block Instance Activity Chart .. 7-12
File I/O Rate Default Chart ... 7-12
File I/O Rate by Object Default Chart.. 7-12
File I/O Rate by Instance Default Chart .. 7-12
Lock Activity Default Chart... 7-12

x

Sessions Default Chart .. 7-12
Users Default Chart... 7-13
Users Per Instance Default Chart .. 7-13
Active Users Chart... 7-13
Active Users by Instance Chart ... 7-13
Clusters Data Block Ping by Instance Chart .. 7-13

Part V Real Application Clusters Reference

A Configuring Multi-Block Lock Assignments (Optional)

Before You Override the Global Cache and Global Enqueue Service Resource Control
Mechanisms ... A-2
Deciding Whether to Override Global Cache Service and Global Enqueue Service Processing
A-2

When to Use Locks ... A-3
Setting GC_FILES_TO_LOCKS ... A-4

GC_FILES_TO_LOCKS Syntax... A-4
Lock Assignment Examples .. A-5
Blocking Factor, Extent Allocation, and Free List Groups... A-10

Dynamic Allocation of Blocks on Lock Boundaries .. A-10
Moving a Segment’s High Water Mark... A-11

Additional Considerations for Setting GC_FILES_TO_LOCKS.. A-14
Expanding or Adding Datafiles... A-14
Files To Avoid Including in GC_FILES_TO_LOCKS Settings .. A-14

Database Design Considerations and Free List Groups .. A-15
Associating Locks with Free Lists ... A-15
Tuning Parallel Execution on Real Application Clusters... A-16

Analyzing Real Application Clusters I/O Statistics.. A-17
Analyzing Real Application Clusters I/O Statistics Using V$SYSSTAT........................... A-17

Monitoring Multi-Block Lock Usage by Detecting False Forced Writes A-19
Lock Names and Lock Formats.. A-21

Lock Names and Lock Name Formats.. A-21
Lock Names .. A-22
Lock Types and Names... A-22

xi

B A Case Study in Real Application Clusters Database Design

Case Study Overview... B-2
Case Study: From Initial Database Design to Real Application Clusters B-3

Eddie Bean Catalog Sales .. B-3
Eddie Bean Database Tables ... B-3
Eddie Bean Users .. B-4
The Eddie Bean Application Profile... B-4

Analyzing Access to Tables... B-5
Table Access Analysis Worksheet.. B-5

Estimating Volume of Operations .. B-5
Calculating I/Os for Each Operation ... B-6
I/Os for Each Operation for Sample Tables .. B-8

Case Study: Table Access Analysis .. B-9
Analyzing Transaction Volume by Users ... B-10

Transaction Volume Analysis Worksheet... B-10
Case Study: Transaction Volume Analysis... B-11

ORDER_HEADER Table .. B-11
ORDER_ITEM Table ... B-12
ACCOUNTS_PAYABLE Table.. B-13

Case Study: Initial Partitioning Plan .. B-14
Case Study: Further Partitioning Plans ... B-15

Design Option 1 ... B-16
Design Option 2 ... B-16

Partitioning Indexes ... B-17
Implement and Tune Your Design .. B-17

Glossary

Index

xii

xiii

List of Figures

2–1 N-tier Architecture Middleware Components and Real Application Clusters............ 2-4
2–2 Disk Affinity Example .. 2-10
4–1 Node Affinity for Transactions Against Tables Partitioned by Range........................ 4-18
6–1 Cache Fusion Ships Blocks from Cache to Cache Across the Interconnect 6-3
7–1 Expanding Charts.. 7-6
A–1 Mapping Locks to Data Blocks.. A-6
A–2 GC_FILES_TO_LOCKS Example 5... A-8
A–3 GC_FILES_TO_LOCKS Example 6... A-8
A–4 GC_FILES_TO_LOCKS Example 7... A-9
A–5 GC_FILES_TO_LOCKS Example 8... A-9
A–6 A File with a High Water Mark That Moves as Oracle Allocates Blocks.................... A-11
A–7 Allocating Blocks within An Extent.. A-13
A–8 Extents and Free List Groups... A-15
B–1 Number of I/Os for Each SELECT or INSERT Operation .. B-6
B–2 Case Study: Partitioning Users and Data... B-14
B–3 Case Study: Partitioning Users and Data: Design Option 1.. B-15
B–4 Case Study: Partitioning Users and Data: Design Option 2.. B-16

xiv

xv

List of Tables

3–1 Example of Overlapping Tables.. 3-13
3–2 Example of Table Access Types .. 3-14
3–3 Example of Table Transaction Volumes... 3-14
5–1 Memory Trace Files and Their Locations... 5-4
5–2 Statistics and their Classes in V$SYSSTAT.. 5-5
5–3 Global Cache Coherency and Contention Views and Their Statistics......................... 5-13
7–1 Performance Charts... 7-3
A–1 When to Use Locks.. A-3
A–2 Interpreting the Forced Write Rate ... A-19
A–3 Locks Types and Names... A-22
B–1 Eddie Bean Sample Tables ... B-3
B–2 Table Access Analysis Worksheet... B-5
B–3 Number of I/Os for each Operation: Sample ORDER_HEADER Table....................... B-8
B–4 Number of I/Os for each Operation: Other Sample Tables.. B-8
B–5 Case Study: Table Access Analysis Worksheet... B-9
B–6 Transaction Volume Analysis Worksheet ... B-10
B–7 Case Study: Transaction Volume Analysis: ORDER_HEADER Table........................ B-11
B–8 Case Study: Transaction Volume Analysis: ORDER_ITEM Table............................... B-12
B–9 Case Study: Transaction Volume Analysis: ACCOUNTS_PAYABLE Table B-13

xvi

xvii

Send Us Your Comments

Oracle9 i Real Application Clusters Deployment and Performance, Release 1 (9.0.1)

Part No. A89870-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

Oracle9i Real Application Clusters Deployment and Performance explains the

deployment issues for applications that use an Oracle9i Real Application Clusters

database. This manual also provides post-deployment information about tuning

Real Application Clusters environments for optimal performance.

Information in this manual applies to Real Application Clusters as it runs on all

operating systems. Where necessary, this manual refers to platform-specific

documentation.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

See Also: The Oracle9i Real Application Clusters Documentation
Online Roadmap to help you use the online Oracle9i Real

Application Clusters Documentation set

xx

Audience
Oracle9i Real Application Clusters Deployment and Performance is written for database

administrators and application developers working with Real Application Clusters.

To use this document you should have a conceptual understanding of Real

Application Clusters processing and its software and hardware components as

described in Oracle9i Real Application Clusters Concepts and you should have

installed Real Application Clusters using the document Oracle9i Real Application
Clusters Installation and Configuration and related platform-specific documentation.

Organization
The five parts of this book and their contents are:

Part I: Introduction to Real Application Clusters Deployment
Part One introduces the high-level aspects of deploying applications in Real

Application Cluster by describing how to take advantage of Oracle9i features. It

also describes deployment of internet-based applications in e-commerce and data

warehousing environments.

Chapter 1, "Introduction to Application Deployment for Real Application
Clusters"
This chapter provides an overview of deployment issues for Real Application

Clusters environments.

Chapter 2, "Online E-Commerce and Data Warehousing Application
Deployment in Real Application Clusters"
This chapter briefly describes the deployment of online e-commerce-based and data

warehousing applications for Real Application Clusters.

Part II: Scaling and Designing Applications for Oracle9 i Real Application
Clusters
Part Two describes technical issues and database design techniques for deploying

scalable applications with Real Application Clusters.

Chapter 3, "Scaling Applications for Real Application Clusters"
This chapter describes how to optimize the scalability of your applications for

deployment in Real Application Clusters environments.

xxi

Chapter 4, "Database Design Techniques for Real Application Clusters"
This chapter describes Real Application Clusters database design issues such as

block and extent operations, contention reduction, and resource control strategies.

Part III: Oracle9 i Real Application Clusters Performance Monitoring and
Tuning
Part Three describes procedures for monitoring and tuning performance in Real

Application Clusters.

Chapter 5, "General Tuning Recommendations for Real Application
Clusters"
This chapter presents general tuning recommendations for Real Application

Clusters.

Chapter 6, "Tuning Real Application Clusters and Inter-Instance
Performance"
This chapter describes how to monitor and tune inter-instance performance in Real

Application Clusters.

Part IV: Monitoring and Tuning Real Application Clusters Databases with
Oracle Enterprise Manager
Part Four describes monitoring the performance of Real Application Clusters

databases using Oracle Enterprise Manager.

Chapter 7, "Monitoring Performance with Oracle Performance Manager"
This chapter explains how monitor and tune Real Application Clusters databases

with Oracle Enterprise Manager.

Part V: Oracle Real Application Clusters Reference
Part Five contains reference information for Real Application Clusters deployment

and performance.

Appendix A, "Configuring Multi-Block Lock Assignments (Optional)"
This appendix explains how to override the Real Applications default resource

control mechanisms.

xxii

Appendix B, "A Case Study in Real Application Clusters Database
Design"
This appendix describes a case study for deploying Real Application Clusters.

Glossary
The glossary defines terms used in this book as well as terms relevant to the subject

matter of this book.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Real Application Clusters Documentation Online Roadmap

■ Oracle9i Real Application Clusters Concepts

■ Oracle9i Real Application Clusters Installation and Configuration

■ Oracle9i Real Application Clusters Administration

■ Oracle Real Application Clusters Guard Administration and Reference Guide

■ Your platform-specific Oracle Real Application Clusters Guard installation

guide

Installation Guides
■ Your platform-specific Oracle Real Application Clusters Guard installation

guide

■ Oracle9i Installation Guide for Compaq Tru64, Hewlett-Packard HPUX, IBM-AIX,

Linux, and Sun Solaris-based systems

■ Oracle9i Database Installation Guide for Windows

■ Oracle Diagnostics Pack Installation

Operating System-Specific Administrative Guides
■ Oracle9i Administrator’s Reference for Compaq Tru64, Hewlett-Packard HPUX,

IBM-AIX, Linux, and Sun Solaris-based systems

■ Oracle9i Database Administrator’s Guide for Windows

Oracle9 i Real Application Clusters Management
■ Oracle9i Real Application Clusters Administration

xxiii

■ Oracle Enterprise Manager Administrator’s Guide

■ Getting Started with the Oracle Diagnostics Pack

Generic Documentation
■ Oracle9i Database Concepts

■ Oracle Net Services Administrator’s Guide

■ Oracle9i Database Reference

■ Oracle9i Database New Features

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information about how these schemas were created and how to use

them.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

xxiv

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xxv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xxvi

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxvii

Documentation Accessibility
Oracle's goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

technology vendors to address technical obstacles so that our documentation can be

accessible to all of our customers. For additional information, visit the Oracle

Accessibility Program Web site at:

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples

in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a

line of text that consists solely of a bracket or brace.

xxviii

xxix

What’s New in Cluster Software
Deployment and Performance?

This section describes the features of Oracle9i release 1 (9.0.1) as they pertain to

application deployment and tuning in Real Application Clusters. This section

contains the following topic:

■ Oracle9i Release 1 (9.0.1) New Features for Application Deployment and

Tuning in Real Application Clusters

See Also: Oracle9i Real Application Clusters Concepts for a more

complete explanation of new features for Real Application Clusters

xxx

Oracle9 i Release 1 (9.0.1) New Features for Application Deployment and
Tuning in Real Application Clusters

The Oracle9i release 1 (9.0.1) Real Application Clusters features and enhancements

described in this section are part of an effort to simplify application deployment.

Real Application Clusters is a new architecture offering scalability and high

availability features that exceed the capabilities of previous Oracle cluster software

releases.

■ Cache Fusion’s breakthrough technology simplifies the deployment for many
types of online e-commerce and decision support (DSS) applications

You can deploy a wide variety of application types on Real Application

Clusters without significant code modifications.

■ Cache Fusion automatically controls resource assignments for files accessed
by applications in Real Application Clusters environments

You no longer have to assign locks to datafiles or partition your application

when launching applications on Oracle cluster software. In addition, Real

Application Clusters introduces direct cache-to-cache block transfers to

improve performance.

■ Three new views allow you to examine how Oracle is mastering resources:

– V$GCSHVMASTER_INFO for Global Cache Service resources except those

belonging to files mapped to a particular master

– V$GCSPFMASTER_INFO for Global Cache Service resources belonging to

files mapped to instances

– V$HVMASTER_INFO for Global Enqueue Service resources

These views track the current and previous master instances and the number of

global cache (V$GCSHVMASTER_INFO) and global cache resources belonging to

a file accessed frequently by a single instance (V$GCSPFMASTER_INFO), as well

as the number of re-masterings of enqueue (V$HVMASTER_INFO) resources.

See Also: Part One, "Introduction to Deployment in Real

Application Clusters"

See Also: Part Two, "Scaling Applications and Designing

Databases for Real Application Clusters"

xxxi

■ Automatic undo management:

– Oracle Corporation recommends that you deploy Real Application Clusters

applications using automatic undo management. Automatic undo

management minimizes the administrative overhead of managing undo

tablespaces.

See Also: Oracle9i Real Application Clusters Administration for more

information on using automatic undo management

xxxii

Part I
 Introduction to Deployment in Real

Application Clusters

Part One introduces the topic of application development for Real Application

Clusters. Part One explains how to take advantage of Oracle’s high availability and

scalability features in Real Application Clusters environments. The chapters in Part

One are:

■ Chapter 1, "Introduction to Application Deployment for Real Application

Clusters"

■ Chapter 2, "Online E-Commerce and Data Warehousing Application

Deployment in Real Application Clusters"

Introduction to Application Deployment for Real Application Clusters 1-1

1
Introduction to Application Deployment for

Real Application Clusters

This chapter describes Oracle Real Application Clusters application deployment

issues. This chapter first explains considerations for taking advantage of the

scalability features of Real Application Clusters. It then explains some of the general

issues of application deployment in Real Application Clusters environments.

This chapter includes the following topics:

■ Taking Full Advantage of Oracle9i Features

■ Implementing Oracle9i Features with Real Application Clusters

■ Deployment Phases for Real Application Clusters

Taking Full Advantage of Oracle9i Features

1-2 Oracle9i Real Application Clusters Deployment and Performance

Taking Full Advantage of Oracle9 i Features
To optimally deploy applications within Oracle9i Real Application Clusters

environments, consider the issues for the Oracle features described in this chapter.

Proper implementation of these features minimizes deployment and integration

problems. It also ensures that your system takes full advantage of the breakthrough

technology of Cache Fusion and the high-performance features of Real Application

Clusters.

The feature descriptions in this chapter provide a starting point for Real

Application Clusters application deployment. For additional information about

these features, refer to other Oracle documentation as noted.

Implementing Oracle9 i Features with Real Application Clusters
You should consider several application deployment issues to optimize Oracle9i
Real Application Clusters performance. These issues relate to features that are

unique to Oracle and that enhance the performance of Real Application Clusters.

The features discussed in this section are:

■ High Availability and Failover in Real Application Clusters

■ Oracle Net in Real Application Clusters

■ The Shared Server in Real Application Clusters

■ Connection Load Balancing

■ Transparent Application Failover in Real Application Clusters

■ PL/SQL in Real Application Clusters

■ Recovery Manager (RMAN) in Real Application Clusters

■ Cluster File Systems in Real Application Clusters

High Availability and Failover in Real Application Clusters
High availability systems are systems that have redundant hardware and software

that maintains operations despite failures. Well designed high availability systems

avoid having single points-of-failure. When failures occur, failover moves the

processing performed by the failed component to the backup component. Oracle’s

failover process quickly re-masters resources, recovers partial or failed transactions,

and rapidly restores the system.

Implementing Oracle9i Features with Real Application Clusters

Introduction to Application Deployment for Real Application Clusters 1-3

You can combine many Oracle products and features to create highly reliable

computing environments. Doing this requires capacity and redundancy planning.

You must also set expectations and examine your service level agreements. In

addition, consider your overall system costs and your return on investment. There

are also other practical considerations such as selecting the appropriate hardware

and deciding whether to use idle machines that simultaneously serve as part of

your high availability configuration.

Primary/Secondary and Active/Active Instance Configurations
Primary/Secondary configurations are the least complicated type of high

availability configuration to set up. These are also the easiest type of configurations

to administer. For example, the administrative overhead for a primary database in

this configuration is the same as the overhead of a single instance configuration.

In Primary/Secondary configurations, the second instance does not have to remain

idle. For example, you can use the second instance for read-only operations.

You do not have significant scalability with Primary/Secondary configurations, but

you do have high availability. Active/active instance configurations, on the other

hand, are more complex to configure. In Active/Active configurations, performance

is the critical factor.

Oracle Real Application Clusters Guard, which is an enhanced configuration of Real

Application Clusters, offers yet another high availability solution. Real Application

Clusters Guard tightly integrates Oracle’s enhanced recovery features within the

cluster framework of your platform. Real Application Clusters Guard is only

available on specific UNIX configurations.

Oracle Net in Real Application Clusters
Oracle Net enables services and their applications to reside on different computers

and allows them to communicate with each other. Oracle Net establishes network

sessions and transfers data between clients and servers or between two servers.

Real Application Clusters requires Oracle Net to enable connectivity; you must

install Oracle Net on each machine in your network.

See Also: Oracle9i Real Application Clusters Concepts for more
information about Real Application Clusters and high availability
and for more conceptual information about Real Application Clus-
ters Guard

See Also: The Oracle Net Services Administrator’s Guide for more

information about Oracle Net

Implementing Oracle9i Features with Real Application Clusters

1-4 Oracle9i Real Application Clusters Deployment and Performance

The Shared Server in Real Application Clusters
Real Application Clusters with the functionality of the shared server can process

thousands of concurrently connected database users. Shared server is extremely

efficient at managing the connection load for many users; shared server operates

similarly to the way that transaction monitors work.

Real Application Clusters with shared server significantly enhances the

performance of applications running on two or more smaller computers. You do

not need to rewrite your applications to use shared server. In fact, some

applications perform better with shared server than without.

With shared server configurations, user processes connect to a dispatcher. The

dispatcher then directs multiple incoming network session requests to a common

queue. When a server process becomes available, the dispatcher connects the

incoming request to the idle dispatcher. When the connection is no longer needed,

the server process is available for another request. Thus, a small set of server

processes can serve a large number of clients.

Connection Load Balancing
The connection load balancing feature automatically distributes connections

among active instances. Connection load balancing does this based on the workload

of the different nodes and instances in a cluster. You can use connection load
balancing, in both shared server and dedicated server environments. Real

Application Clusters and Cache Fusion combined with connection load balancing

allow you to run many types of applications without application or data

partitioning.

Transparent Application Failover in Real Application Clusters
The transparent application failover (TAF) feature automatically reconnects

applications to the database if the connection fails. Because the re-connection

happens automatically within the OCI library, you do not need to change the client

application to use TAF.

Because most TAF functionality is implemented in the client-side network libraries

(OCI), the client must use the Oracle Net OCI libraries to take advantage of TAF

Note: You must install Oracle Net to use shared server and its

load balancing features.

Implementing Oracle9i Features with Real Application Clusters

Introduction to Application Deployment for Real Application Clusters 1-5

functionality. Therefore, to implement TAF in Real Application Clusters, make sure

you use JDBC OCI instead of PL/SQL packages.

You can also use TAF in Primary/Secondary Instance configurations. If you do this,

then use the INSTANCE_ROLEparameter in the Connect Data portion of the connect

descriptor to configure explicit secondary instance connections.

To use TAF, you must have a license for the Oracle9i Enterprise Edition. Because

TAF was designed for Real Application Clusters, it is much easier to configure TAF

for that environment. However, TAF is not restricted for use with Real Application

Clusters environments. You can also use TAF for single instance Oracle. In addition,

you can use TAF for the following system types:

■ Oracle Real Application Clusters Guard

■ Replicated Systems

■ Data Guard

PL/SQL in Real Application Clusters
PL/SQL is Oracle's procedural extension of SQL. PL/SQL is an advanced

fourth-generation programming language that offers features such as data

Note: Although Real Application Clusters supports both thin

JDBC and JDBC OCI, TAF is only supported with JDBC OCI.

See Also: Oracle9i Real Application Clusters Administration for

information about using the INSTANCE_ROLEparameter in Real

Application Clusters and the Oracle Net Services Administrator’s
Guide for more detailed information and examples on this

parameter

See Also:

■ Oracle9i Real Application Clusters Concepts for more conceptual

information on Oracle Real Application Clusters Guard and

TAF in Real Application Clusters

■ Oracle Net Services Administrator’s Guide and the Oracle Call
Interface Programmer’s Guide for more information on TAF

■ Oracle9i Replication for more information on Oracle replication

Implementing Oracle9i Features with Real Application Clusters

1-6 Oracle9i Real Application Clusters Deployment and Performance

encapsulation, overloading, collection types, exception handling, and information

hiding. PL/SQL also offers seamless SQL access, tight integration with the Oracle

server, as well as tools, portability, and security.

Recovery Manager (RMAN) in Real Application Clusters
Recovery Manager (RMAN) is an Oracle tool that you can use to backup, copy,

restore, and recover datafiles, control files, and archived redo logs. You can invoke

RMAN as a command line utility or use it through the Oracle Enterprise Managers.

RMAN automates many backup and recovery tasks. For example, RMAN

automatically locates the appropriate backups for each datafile and copies them to

the correct destinations. This eliminates the manual, error-prone effort of using

operating system commands to accomplish the same task.

You must accurately configure RMAN so that all instances can access all the archive

logs throughout the cluster. When one instance fails, the surviving instance that

performs recovery must access the archive logs of the failed instance.

Cluster File Systems in Real Application Clusters
Oracle9i supports cluster file systems on a limited number of platforms. Cluster file

systems simplify Real Application Clusters installation and management. Using

cluster file systems eliminates the need to manage raw devices. Cluster file systems

also offers scalable, low latency, highly resilient file systems that significantly reduce

storage costs. For details on how to implement cluster file systems, refer to your

vendor cluster file system documentation.

See Also: The PL/SQL User’s Guide and Reference for more

information about PL/SQL

See Also: Oracle9i Real Application Clusters Administration for

details on configuring RMAN for use with Real Application

Clusters and Oracle9i Recovery Manager User’s Guide and Reference
for detailed information on RMAN

Deployment Phases for Real Application Clusters

Introduction to Application Deployment for Real Application Clusters 1-7

Deployment Phases for Real Application Clusters
The next chapter in Part One examines application development for online

e-commerce and decision support systems. The remainder of this book examines

the design and performance phases of deployment for Real Application Clusters.

1. Design your application considering the issues described in Chapter 3, "Scaling

Applications for Real Application Clusters" and Chapter 4, "Database Design

Techniques for Real Application Clusters".

2. Install your application, populate your database, and launch the application.

3. Monitor your Real Application Clusters environment, examine performance,

and tune your Real Application Clusters database and application as described

in and Part III and Part IV.

Deployment Phases for Real Application Clusters

1-8 Oracle9i Real Application Clusters Deployment and Performance

Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters 2-1

2
Online E-Commerce and Data Warehousing
Application Deployment in Real Application

Clusters

This chapter discusses the deployment of online e-commerce (OLTP) and data

warehousing applications in Oracle Real Application Clusters environments. This

chapter also briefly describes application performance tuning.

This chapter includes the following topics:

■ Cache Fusion and E-Commerce Applications for Real Application Clusters

■ Flexible Implementation with Cache Fusion

■ Deployment Strategies for Real Application Clusters-Based Applications

■ Deploying Data Warehousing Applications for Real Application Clusters

■ Deployment and Tuning of Real Application Clusters Applications

Cache Fusion and E-Commerce Applications for Real Application Clusters

2-2 Oracle9i Real Application Clusters Deployment and Performance

Cache Fusion and E-Commerce Applications for Real Application
Clusters

Cache Fusion processing makes the Real Application Clusters database the optimal

deployment server for online e-commerce applications. This is because these types

of applications require:

■ High availability

■ Scalability

■ Load balancing according to demand fluctuations

To accommodate high availability, Cache Fusion offers multi-instance processing

capabilities to re-distribute workloads to surviving instances without interrupting

processing. Real Application Clusters also automatically re-masters resources to

give the instance with the most activity on a particular datafile, for example, a

greater share of control over the resources for that datafile.

Cache Fusion also provides excellent scalability so that if you add or replace nodes,

Oracle automatically re-masters resources and evenly distributes processing loads

without reconfiguration or application re-partitioning. Real Application Clusters

also takes advantage of Oracle load balancing features.

Real Application Clusters’ application workload management is dynamic. Real

Application Clusters can alter workloads in real-time based on changing business

requirements. This occurs in a manageable environment with minimal

administrative overhead. The dynamic resource allocation capabilities of the Cache

Fusion architecture provide optimal performance for online applications with great

deployment flexibility.

Flexible Implementation with Cache Fusion
E-commerce requirements, especially the requirements of online transaction

processing systems, have workloads that change frequently. To accommodate this,

Real Application Clusters deployments remain flexible and dynamic. They provide

a wide range of service levels that, for example, might fluctuate due to:

■ Varying user demands

■ Peak scalability issues like trading storms (bursts of high volumes of

transactions)

■ Varying availability of system resources

Deployment Strategies for Real Application Clusters-Based Applications

Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters 2-3

To address these requirements, it is impractical and often too complex to partition

packaged e-commerce applications, due to the limited access to table partitioning.

Once deployed, such applications can access hundreds, or even thousands, of

tables. Moreover, application partitioning is a difficult if not impossible task. A

common recommendation is that you use a larger server or that you segment the

application or application modules across distinct databases.

Segmenting applications, however, can fragment data and constrain a global

enterprise-wide view of your information. Cache Fusion eliminates such

requirements by dynamically migrating database resources to adapt to changing

business requirements and workloads.

Cache Fusion dynamically allocates database resources to nodes based on data

access patterns. This makes the data available on demand. In other words, if an

instance recently accessed the data, the data is always in a local cache. The Cache

Fusion architecture also migrates resources to accelerate data access, thus making

Real Application Clusters a high performance e-commerce database platform.

Because re-partitioning efforts cannot keep pace with the rapid changes in system

demand, Real Application Clusters also takes advantage of other features such as

the shared server. Shared server greatly enhances scalability by providing

connection pooling and Connection Load Balancing.

Deployment Strategies for Real Application Clusters-Based
Applications

Tightly integrated, two-, three-, and n-tier architectures are rapidly replacing

traditional, distributed designs. These architectures use a component-based

approach to systems deployment. This means that in addition to the design and

front-end development tasks required to launch viable web-based applications for

Real Application Clusters, you may also need to consider your middleware

performance requirements.

Transition to N-tier Architectures
Expensive servers residing in multiple locations are being rapidly replaced by

individual servers connected to middleware components. Newer n-tier

architectures are obviously less costly because they eliminate redundant server

hardware. They also eliminate redundant database connections and reduce the

amount of data that must travel through the network.

Deployment Strategies for Real Application Clusters-Based Applications

2-4 Oracle9i Real Application Clusters Deployment and Performance

In addition, traditional architectures are transitioning from requiring static,

inflexible connections to using full-time, internet-based connectivity. This is

especially true for business-to-business (B2B) models. Real Application Clusters

allows seamless integration into the n-tier model’s component-based architecture as

shown in Figure 2–1.

Figure 2–1 N-tier Architecture Middleware Components and Real Application Clusters

Browser
Client

Browser

Database

Real
Application
Clusters

Web
Server

Application
Server

E-Commerce
Applications

LDAP
Server

Deployment Strategies for Real Application Clusters-Based Applications

Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters 2-5

Benefits of N-Tier Architectures with Real Application Clusters
N-tier architectures provide enhanced scalability by encapsulating application

functions within smaller subcomponents. These components are then linked within

the n-tier framework. This combination:

■ Decreases the network load on any one part of the infrastructure

■ Minimizes or eliminates single-points-of-failure

■ Significantly reduces network traffic

N-tier architectures also improve manageability by reducing hardware and

software overhead. In addition, n-tier architectures offer high availability and

increased reliability by providing connection pooling and enhanced load balancing.

Monitoring and Tuning Performance in N-Tier Environments
Because n-tier environments have more interrelated, interdependent components

than traditional models, you should monitor and tune the performance of your Real

Application Clusters environment at the following levels:

■ Application

■ Database

■ Operating System

See Also: The Oracle9i Database Performance Guide and Reference
and the Oracle9i Data Warehousing Guide for information that is

specific to tuning the Oracle database, and your vendor’s

documentation for operating system tuning information

Deploying Data Warehousing Applications for Real Application Clusters

2-6 Oracle9i Real Application Clusters Deployment and Performance

Deploying Data Warehousing Applications for Real Application Clusters
This section discusses deploying data warehousing systems in Real Application

Clusters environments by briefly describing the data warehousing features

available in shared disk architectures. The topics in this section are:

■ Speed-Up for Data Warehousing Applications on Real Application Clusters

■ Dynamic Parallel-Aware Query Optimization

Speed-Up for Data Warehousing Applications on Real Application Clusters
E-businesses strategically use data warehousing systems to acquire customers and

expand markets. For example, company product promotions gather information

using data warehousing systems to customize client lists that best fit the profiles of

the company’s target demographics.

Real Application Clusters is ideal for data warehousing applications because it

augments the single instance benefits of Oracle. Real Application Clusters does this

by maximizing the processing available on all nodes of a cluster to provide

speed-up and scale-up for data warehousing systems.

Flexible Parallelism within Real Application Clusters Environments
Oracle’s parallel execution feature uses multiple processes to execute SQL

statements on one or more CPUs. Parallel execution is available on both single

instance and Real Application Clusters databases.

Real Application Clusters takes full advantage of parallel execution by distributing

parallel processing to all the nodes in your cluster. The number of processes that

can participate in parallel operations depends on the degree of parallelism (DOP)
assigned to each table or index.

Function Shipping On loosely coupled systems, Oracle’s parallel execution

technology uses a function shipping strategy to perform work on remote nodes.

Oracle’s parallel architecture uses function shipping when the target data is located

on the remote node. This delivers efficient parallel execution and eliminates

unneeded inter-node data transfers over the interconnect.

See Also: Oracle9i Data Warehousing Guide for detailed

information about implementing data warehousing in Real

Application Clusters environments

Deploying Data Warehousing Applications for Real Application Clusters

Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters 2-7

Exploitation of Data Locality On some hardware systems, powerful data locality

capabilities were more relevant when shared nothing hardware systems were

popular. However, almost all current cluster systems use a shared disk architecture.

On shared nothing systems, each node has direct hardware connectivity to a subset

of disk devices. On these systems it is more efficient to access local devices from the

owning nodes. Real Application Clusters exploits this affinity of devices to nodes

and delivers performance that is superior to shared nothing systems using

multi-computer configurations and a shared disk architecture.

As with other elements of Cache Fusion, Oracle’s strategy works transparently

without data partitioning. Oracle dynamically detects the disk on which the target

data resides and makes intelligent use of the data’s location in the following two

ways:

■ Oracle spawns parallel execution server processes on nodes where the data to

be processed is located

■ Oracle assigns local data partitions to each sub-process to eliminate or minimize

inter-node data movement

Dynamic Parallel-Aware Query Optimization
Oracle’s cost-based optimizer considers parallel execution when determining the

optimal execution plans. The optimizer dynamically computes intelligent heuristic

defaults for parallelism based on the number of processors.

An evaluation of the costs of alternative access paths—table scans versus indexed

access, for example—takes into account the degree of parallelism available for the

operation. This results in Oracle selecting execution plans that are optimized for

parallel execution.

Oracle also makes intelligent decisions in Real Application Clusters environments,

with regard to intra-node and inter-node parallelism. In intra-node parallelism, for

example, if a SQL statement requires six query sub-processes and six CPUs are idle

on the local node (the node to which the user is connected), the SQL statement is

processed using local resources. This eliminates query coordination overhead across

multiple nodes.

Continuing with this example: if there are only two CPUs on the local node, then

those two CPUs and four CPUs of another node are used to complete the SQL

statement. In this manner, Oracle uses both inter-node and intra-node parallelism to

provide speed-up for query operations.

Deploying Data Warehousing Applications for Real Application Clusters

2-8 Oracle9i Real Application Clusters Deployment and Performance

In all real world data warehousing applications, SQL statements are not perfectly

partitioned across the different parallel execution servers. Therefore, some CPUs in

the system complete the assigned work and become idle sooner than others.

Oracle’s parallel execution technology is able to dynamically detect idle CPUs and

assign work to these idle CPUs from the execution queue of the CPUs with greater

workloads. In this way, Oracle efficiently re-distributes the query workload across

all of the CPUs in the system. Real Application Clusters extends these efficiencies to

clusters by re-distributing the work across all the nodes of the cluster.

Load Balancing for Multiple Concurrent Parallel Operations
Load balancing distributes parallel execution server processes to spread CPU and

memory use evenly among nodes. It also minimizes communication and remote

I/O among nodes. Oracle does this by allocating servers to the nodes that are

running the fewest number of processes.

The load balancing algorithm maintains an even load across all nodes. For example,

if a DOP of 8 is requested on an 8-node system with 1 CPU for each node, the

algorithm places 2 servers on each node. If the entire parallel execution server

group fits on one node, the load balancing algorithm places all the processes on a

single node to avoid communications overhead. For example, if you use a DOP of 8

on a 2-node cluster with 16 CPUs for each node, the algorithm places all 16 parallel

execution server processes on one node.

Using Parallel Instance Groups
You can control which instances allocate parallel execution server processes with

instance groups. To do this, assign each active instance to at least one or more

instance groups. Then dynamically control which instances spawn parallel

processes by activating a particular group of instances.

Establish instance group membership on an instance-by-instance basis by setting

the INSTANCE_GROUPS initialization parameter to a name representing one or

more instance groups. For example, on a 32-node system owned by both a

Marketing and a Sales organization, you could assign half the nodes to one

organization and the other half to the other organization using instance group

names. To do this, assign nodes 1-16 to the Marketing organization using the

following parameter syntax in your initialization parameter file:

sid | 1-16 |.INSTANCE_GROUPS=marketing

Then assign nodes 17-32 to Sales using the following syntax in the parameter file:

sid | 17-32 |.INSTANCE_GROUPS=sales

Deploying Data Warehousing Applications for Real Application Clusters

Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters 2-9

Activate the nodes owned by Sales to spawn a parallel execution server process by

entering the following:

ALTER SESSION SET PARALLEL_INSTANCE_GROUP = 'sales';

In response, Oracle allocates parallel execution server processes to nodes 17-32. The

default value for PARALLEL_INSTANCE_GROUP is all active instances.

Disk Affinity
Disk affinity refers to the relationship of an instance to the data that it accesses. The

more often an instance accesses a particular set of data, the greater the affinity that

instance has to the disk on which the data resides.

Disk affinity minimizes data shipping and internode communication on a shared

nothing architecture. Disk affinity can thus significantly increase parallel operation

throughput and decrease response time.

Disk affinity is used for parallel table scans, parallel temporary tablespace
allocation, parallel DML, and parallel index scans. It is not used for parallel table

creation or parallel index creation. Access to temporary tablespaces preferentially

uses local datafiles. It guarantees optimal space management extent allocation.

Disks striped by the operating system are treated by disk affinity as a single unit.

Without disk affinity, Oracle attempts to balance the allocation of parallel execution

servers evenly across instances. With disk affinity, Oracle allocates parallel

execution servers for parallel table scans on the instances that are closest to the

requested data.

Note: An instance can belong to one or more groups. You can

enter multiple instance group names with the INSTANCE_GROUPS
parameter using a comma as a separator.

Deployment and Tuning of Real Application Clusters Applications

2-10 Oracle9i Real Application Clusters Deployment and Performance

In the disk affinity example in Figure 2–2, table T is distributed across 3 nodes, and

a full table scan on table T is being performed.

Figure 2–2 Disk Affinity Example

■ If a query requires 2 instances, then two instances from the set 1, 2, and 3 are

used.

■ If a query requires 3 instances, then instances 1, 2, and 3 are used.

■ If a query requires 4 instances, then all four instances are used.

■ If there are two concurrent operations against table T, each requiring 3 instances

(and enough processes are available on the instances for both operations), then

both operations use instances 1, 2, and 3. Instance 4 is not used. In contrast,

without disk affinity, instance 4 is used.

Deployment and Tuning of Real Application Clusters Applications
Testing application scalability, availability, and load balancing is one of the most

challenging aspects of internet-based deployment. In rapid prototyping

environments, you can internally test and benchmark your site with a limited

number of Real Application Clusters instances on a test hardware platform.

All applications have limits on the number of users they support given the

constraints of specific hardware and software architectures. To accommodate

See Also: Oracle9i Real Application Clusters Concepts for more

information on instance affinity

Instance
1

Table T

Instance
2

Table T

Instance
3

Table T

Instance
4

Deployment and Tuning of Real Application Clusters Applications

Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters 2-11

anticipated demand, you can estimate the traffic loads on your system and

determine how many nodes you need. You should also consider peak workloads.

Your scalability tests must also simulate user access to your web site. To do this,

configure your traffic generator to issue pseudo get commands as used in the

Hypertext Transfer Protocol (http). This tests your system’s performance and load

processing capabilities under fairly realistic conditions.

You can then conduct structured, web-based testing using traffic generators to

stress-test your system. This type of persistent testing against your most aggressive

performance goals should reveal design and capacity limitations.

After making further enhancements as dictated by your testing results, prototype

your site to early adopters. This enables you to obtain real-world benchmarks

against which you can further tune your system’s performance.

Configuring and Tuning Applications on Real Application Clusters
As mentioned in Chapter 1, Real Application Clusters takes advantage of several

features that enhance scalability. For example, the shared server allows more users

to access your system and efficiently controls database connectivity among users.

Optimizing application performance requires that you develop a representative

workload profile using a tool that computes each application module’s CPU and

Program Global Area (PGA) memory usage. Oracle also records statistics about

programs as well as information about how program modules connect to the

database. The recommendations for developing workload profiles and tuning

applications for Real Application Clusters appear in Chapter 3, "Scaling

Applications for Real Application Clusters".

Administrative Aspects of System Scaling for Real Application Clusters
You may need to add nodes before deployment or during production to

accommodate growth requirements or to replace failed hardware. Adding a node to

your Real Application Clusters environment involves two main steps:

■ Adding a node at the clusterware layer

■ Adding a node at the Oracle layer

To add a node, connect the hardware according to your vendor’s installation

instructions. Then install the clusterware and the operating system-dependent layer

(OSD). Complete the installation of the instance on the new node using the Oracle

Universal Installer (OUI) and the Oracle Database Configuration Assistant (DBCA).

Deployment and Tuning of Real Application Clusters Applications

2-12 Oracle9i Real Application Clusters Deployment and Performance

The next part of this book describes application scaling and database design for

Real Application Clusters.

See Also: Oracle9i Real Application Clusters Administration for

detailed procedures on adding nodes and instances

Part II
 Scaling Applications and Designing

Databases for Real Application Clusters

Part Two describes the issues for scaling applications and designing databases for

Real Application Clusters. Part Two includes the following chapters:

■ Chapter 3, "Scaling Applications for Real Application Clusters"

■ Chapter 4, "Database Design Techniques for Real Application Clusters"

Scaling Applications for Real Application Clusters 3-1

3
Scaling Applications for Real Application

Clusters

This chapter describes methods for scaling applications for deployment in Oracle
Real Application Clusters environments. This chapter provides a methodical

approach to application design as well as procedures for resolving application

performance issues. Topics in this chapter include:

■ Overview of Development Techniques in Real Application Clusters

■ SQL Statement Execution in Real Application Clusters

■ Workload Distribution Concepts in Real Application Clusters

■ Workload Characterization in Real Application Clusters

■ Scaling-Up and Partitioning in Real Application Clusters

Overview of Development Techniques in Real Application Clusters

3-2 Oracle9i Real Application Clusters Deployment and Performance

Overview of Development Techniques in Real Application Clusters
In general, application deployment for Oracle Real Application Clusters should

not be significantly different than application deployment for single instance
environments. There are, however, special topics and particular techniques that you

should keep in mind. This chapter explains these issues and provides a high-level

development methodology for deploying Real Application Clusters-based

applications to optimize Oracle9i features.

Begin with an Analysis
To use Real Application Clusters to improve overall database throughput, conduct

a detailed analysis of your database design and your application’s workload. This

ensures that you fully exploit the added processing power provided by the

additional nodes. Even if you are using Real Application Clusters only for high

availability, careful analysis enables you to more accurately predict your system

resource requirements.

A primary characteristic of high performance Real Application Clusters systems is

that they minimize the computing resources used for Cache Fusion processing.

That is, these systems minimize the number of inter-instance resource operations.

Before beginning your analysis, however, you must understand how Real

Application Clusters accesses database blocks when processing SQL statements that

are issued by your applications. This is described in the following section.

SQL Statement Execution in Real Application Clusters

Scaling Applications for Real Application Clusters 3-3

SQL Statement Execution in Real Application Clusters
Most transactions involve a mixture of INSERT, UPDATE, DELETE, and SELECT
statements. Exactly what percentage of these statement types that each transaction

uses depends on the transaction type. Likewise, each of these operations accesses

certain types of database blocks. You can categorize these block types as:

■ Data blocks

■ Index blocks (root, branch, and leaf)

■ Segment header blocks

■ Rollback segment header blocks

■ Rollback segment blocks

Block access modes control concurrent access to database blocks in a cache. In the

buffer cache, a block can be accessed in any of the following modes:

■ X, or exclusive current read (XCUR)

■ S, or shared current read (SCUR)

■ N, or null, or consistent read (CR)

The Global Cache Service (GCS) maintains block access modes. To see a buffer’s

state as well as information about each buffer header, query the STATUS column of

the V$BH dynamic performance view.

Block Accesses During INSERT Statement Execution
When Oracle executes INSERT statements, Oracle reads the segment header of a

database object. This might mean that an INSERT statement must read a segment

free list in the segment header of a table or an index to locate a block with sufficient

space into which to fit a new row.

Therefore, to process inserts, Oracle reads the current, or most up-to-date version of

the header block. If there is enough free space in the block after completing the

insert, then the block remains on the free list and the transaction reads the

corresponding data block and writes to it. For this sequence of events:

■ The segment header is acquired in SCUR mode, which means that the instance
must request a global S mode

See Also: Oracle9i Real Application Clusters Concepts for a detailed

description of how the Global Cache Service performs data access

SQL Statement Execution in Real Application Clusters

3-4 Oracle9i Real Application Clusters Deployment and Performance

■ The data block is acquired in XCUR mode, or globally in X mode

If the remaining free space in the block is insufficient after the insert operation, then

Oracle removes the block from the free list. This means Oracle updates the segment

header block containing the free list. For this sequence of events:

1. The segment header block is first acquired in SCUR mode (global S mode).

2. After checking the block, Oracle escalates the buffer access mode to XCUR,

(global X).

3. Oracle removes the block from the free list.

4. If a new block beyond the current high water mark is used, then Oracle raises

the high water mark.

5. The data block is read in XCUR mode and written to disk.

This scenario assumes that freelist groups were not defined for the segment. In that

case, Oracle stores the high water mark as well as a map of allocated extents in the

segment header.

If Oracle allocates an additional extent to insert into an object, then Oracle raises the

high water mark and updates the extent map. In other words, Oracle changes the

segment header block in a consistent fashion; this also requires that Oracle lock the

header block in exclusive mode.

For an insert into a table with an index, even more data block accesses are required.

First, Oracle reads the header block of the index segment in SCUR mode, then

Oracle reads the root and branch blocks in SCUR mode. Finally, Oracle reads the

leaf block in XCUR mode.

Depending on the height of the index tree, Oracle would also have to read more

branch blocks. If a free list modification is required, then Oracle escalates the index

segment header access mode to XCUR. If there is concurrency for the segment

header due to free list modifications, then Oracle sends the header block back and

forth between multiple instances. Using free list groups at table creation effectively

achieves free list partitioning.

Note: For the preceding explanations and the following

descriptions, assume Oracle has cached all the blocks required for

the operation in memory.

SQL Statement Execution in Real Application Clusters

Scaling Applications for Real Application Clusters 3-5

Block Accesses During UPDATE Statement Execution
An UPDATE statement always acquires a database block in its current version and

sets the buffer to XCUR mode. Globally, this maps to a request for the block in S

mode. Assuming all blocks are cached, an UPDATE transaction:

1. Reads the buffer in XCUR mode and gets the block in X mode.

2. Writes to the buffer and modifies a row.

3. If the updated row fits into the same block, then the instance does not need to

acquire new blocks from the free list and the modification is complete; segment

header access is unnecessary.

4. The instance retains exclusive access and the GCS sends the block to the

requesting instance.

5. The local instance releases the resource or retains it in NULL mode. The local

instance also requests the block in exclusive mode for subsequent updates; this

can involve other Cache Fusion block transfers.

If the table has an index, then the UPDATE statement:

1. Reads the root block of the index in SCUR mode.

2. Reads one or more branch blocks in SCUR mode.

3. Reads the leaf block and pins it into the cache in SCUR mode.

4. Reads the data block in XCUR mode.

5. Modifies the data block.

If the index key value was changed, then Oracle:

1. Re-reads the root and branch blocks in SCUR mode.

2. Reads the leaf block in XCUR mode.

3. Modifies the index key value for the updated row. This can involve deleting the

key value from the current block and acquiring another leaf block in XCUR

mode.

During the update operation with an index, a block can be transferred out of the

cache of the updating instance at any time and would have to be reacquired. The

shared global resources on the root and branch blocks are not a performance issue,

See Also: "Using Free List Groups For Concurrent Inserts from

Multiple Nodes" on page 4-3

SQL Statement Execution in Real Application Clusters

3-6 Oracle9i Real Application Clusters Deployment and Performance

as long as another instance reads only these blocks. If a branch block has to be

modified because a leaf block splits, then Oracle escalates the S mode to an X mode,

thus increasing the probability of conflict. The dispersion of key values in an index

can be very important. With monotonically increasing index keys, a hot spot can be

created in the right edge of the index key.

Block Accesses During DELETE Statement Execution
Oracle accesses blocks in the cache for a delete in a similar way that it does for an

update. Oracle scans the table for the block containing the row to be deleted.

Therefore, if the table does not have an index, the transaction reads the segment

header, reads the block, and then modifies the block. The transaction can create free

space in the block so that if the data in the block drops below PCTUSED, the block is

linked to the free list.

Consequently, the transaction acquires the segment header or free list group block

in exclusive mode. Then the block in question is returned to the instance’s free list

group, if there is one. To avoid excess overhead during peak processing periods,

you should schedule massive deletions to occur during off-peak hours.

Block Accesses During SELECT Statement Execution
A SELECT statement reads a buffer in either SCUR or CR mode. To access a buffer

in SCUR mode, such as for segment headers, a global shared resource must be

acquired. Most of the buffer accesses for SELECT statements are in CR mode and

may not involve global resource operations. When a transaction needs to acquire a

buffer in CR mode, three scenarios are possible:

■ If another instance holds the needed block in exclusive mode, then the holding

instance creates a consistent read version of the block and ships the block to the

requesting instance. No resource operations are involved.

■ If another instance holds the needed block in shared mode, then the holding

instance transfers a copy of the block to the requesting instance; the requesting

instance is granted a shared mode on the block.

■ If no other instance has the block in its cache, then the requesting instance is

granted a shared mode on the block and the instance reads it from disk.

For tables that have read-only data, you can greatly minimize the overhead for

SELECT statements by putting read-only tables into read-only tablespaces. Do this

See Also: "Index Issues for Real Application Clusters Design" on

page 4-16

Workload Distribution Concepts in Real Application Clusters

Scaling Applications for Real Application Clusters 3-7

using the ALTER TABLESPACE READ ONLYstatement. Making a tablespace

read-only has two main advantages:

■ Recovery occurs more quickly

■ You only need to backup the tablespace once

Workload Distribution Concepts in Real Application Clusters
Partitioning distributes workloads among existing Real Application Clusters

instances to effectively use hardware resources. With Cache Fusion in Real

Application Clusters, partitioning is less critical. This is because the default cache

coherency mechanism consumes fewer machine resources than the I/O-based

forced disk write architecture used in previous Oracle releases.

To reduce Real Application Clusters overhead, each instance in a cluster should

ideally perform most DML operations against a set of database tables that is not

frequently modified by other instances. However, variables such as CPU and

memory use are also important factors. In many cases, the performance and

scalability gains of distributing data access based on load surpasses the loss of

performance due to excess inter-instance communication.

There are no strict rules about implementing application partitioning. In general,

however, you can apply several strategies to partition application workloads. These

strategies are not necessarily mutually exclusive and are discussed in the following

sections:

■ Functional Partitioning

■ Separating E-Commerce and Data Warehousing Processing

■ Departmental and User Partitioning

■ Physical Table Partitioning

■ Transaction Partitioning

Functional Partitioning
Functional partitioning is often the first logical approach to achieve an optimally

performing environment in terms of Real Application Clusters overhead. Modules

and functional areas usually share only a small subset of Oracle objects, so

contention is limited.

See Also: Appendix A, "Configuring Multi-Block Lock

Assignments (Optional)"

Workload Distribution Concepts in Real Application Clusters

3-8 Oracle9i Real Application Clusters Deployment and Performance

On the other hand, as you integrate all modules of your application, there will

always be common objects for a given set of modules on any workload. In other

words, it is impossible to completely eliminate Real Application Clusters overhead.

Therefore, the ideal partitioning strategy depends on how the modules interact, as

well as on how each module uses system resources.

Separating E-Commerce and Data Warehousing Processing
Another application partitioning method is to separate online e-commerce

processing from data warehousing workloads. For example, by executing long

running reports on one node, you can reduce excessive CPU use on another node

dedicated to OLTP. This improves overall response times for OLTP users while

providing more CPU power for reporting.

Although some Real Application Clusters overhead is expected when the reports

read data recently modified by OLTP transactions, it is very unlikely that the

overhead substantially affects performance. Reports require consistent read

versions of buffers modified by the OLTP instance. To accommodate the data

warehousing instance’s requests, the OLTP instance constructs the consistent read

buffers and transfers them to the data warehousing instance. In this case, there are

minimal resource operations.

Departmental and User Partitioning
An alternative partitioning method that increases scalability is departmental and

user partitioning. There are several methods for implementing departmental and

user partitioning.

For one type of departmental partitioning, separate the tables by access groups

based on geographic location. For example, assume a hotel reservation system

processes room requests for hotels worldwide. In this case, you might partition the

application by geographic markets such as:

■ European Market

■ North American Market

■ Central and South American Market

■ Asia Pacific Market

Workload Distribution Concepts in Real Application Clusters

Scaling Applications for Real Application Clusters 3-9

Physical Table Partitioning
By accurately implementing table partitioning by range, you can reduce concurrent

access to the same blocks of a particular table from different instances. An example

of employing table partitioning to reduce overhead is the way Oracle Applications

11i implements batch job processing.

One of the main tables used for batch processing in Oracle Applications is FND_
CONCURRENT_REQUESTS, which is a batch queue table. When a user requests a

batch job, Oracle inserts a row into the queue. The Concurrent Managers are

processes that periodically query the queue, pick up requests to be run, and update

the requests’ statuses.

In a Real Application Clusters configuration with Concurrent Managers processing

batch requests from two instances, there can be a high volume of DML statements

on FND_CONCURRENT_REQUESTS. The DML statements might consist of INSERT
statements from the requesting users and UPDATE statements from the Concurrent

Managers. This can increase the cache transfer frequencies for blocks belonging to

that table and its indexes.

To reduce Real Application Clusters overhead, partition the FND_CONCURRENT_
REQUESTS based on the INSTANCE_NUMBER column. When a user submits a

request, Oracle reads INSTANCE_NUMBER from V$INSTANCE and stores its value

with other request information. That way, Oracle places requests generated from

users connected to different instances on different partitions.

By default, each Concurrent Manager only processes requests from the instance to

which it is connected, which means a single table partition. This nearly eliminates

contention on FND_CONCURRENT_REQUESTS and its indexes, most of which were

created as local indexes.

Similar table partitioning techniques can be very effective at reducing Real

Application Clusters overhead for tables subject to very high volumes of DML

activity. However, carefully consider the development costs associated with

application changes needed to implement that type of solution. With Cache Fusion,

most applications can achieve acceptable scalability without code changes.

Transaction Partitioning
Transaction partitioning is the lowest level partitioning method. This method

requires a three-tiered architecture where clients and servers are separated by a

See Also: Oracle9i Database Administrator’s Guide for more

information on creating and managing partitioned tables

Workload Distribution Concepts in Real Application Clusters

3-10 Oracle9i Real Application Clusters Deployment and Performance

transaction monitor processing layer. Based on the content of a transaction, the

transaction monitor routes transactions that act on specific tables by way of specific

nodes. The correct node for execution of the transaction is a function of the actual

data values being used in the transaction. This process is more commonly known as

data dependent routing.

Using this method, you can create and load your tables using any method because

the transaction monitor determines which node processes a particular transaction.

Transaction partitioning also enables you to achieve fine-grained transaction

control. This makes transaction processing monitors very scalable. However,

significant development effort is required to deploy this method.

You can accomplish data-dependent routing in one of two ways. If the partitioning

of the tables fits well within actual partition usage patterns, in other words, you

partitioned the table by locations and users are similarly partitionable, then you can

accomplish manual routing by having users connect to the instance that is running

the relevant application. Otherwise, the administration of data-dependent routing

can be complex and can involve additional application code.

You can simplify the process if the application uses a transaction monitor or remote

procedure call (RPC) mechanism. It is possible to place code into the transaction

monitor’s configuration that defines a data-dependent routing strategy. You must

base this code on the input RPC arguments. Similarly, you could code this strategy

within the procedural code using case statements to determine which instance

should execute a particular transaction.

Workload Characterization in Real Application Clusters

Scaling Applications for Real Application Clusters 3-11

Workload Characterization in Real Application Clusters
One of the most important steps in developing scalable systems is to perform

workload characterization studies. By understanding the application load

characteristics, you can properly plan for growth and make use of the system

resources available to provide optimal performance and scalability.

An accurate workload characterization can help you decide how to partition your

application for Real Application Clusters. The steps discussed in this section

describe a methodology for workload characterization to implement functional

partitioning:

■ Step 1: Define Your System’s Major Functional Areas

■ Step 2: Estimate Each Functional Area’s System Resource Consumption

■ Step 3: Analyze Each Functional Area’s Data Access Pattern

Step 1: Define Your System’s Major Functional Areas
Identify the major functions of your application. For example, assume a major hotel

chain develops a system to automate the following high-level functions:

■ Reservations

■ Property Management and Maintenance

■ Sales and Marketing

■ Front Desk, Concierge, and Dining Facilities Management

Also determine which users are going to access the data from each of the functional

areas.

Step 2: Estimate Each Functional Area’s System Resource Consumption
It is important to estimate how much system resources, such as CPU, memory, and

so on, that each module or functional area is expected to consume during peak

system use. If the system is not yet in production, then this involves predicting the

behavior of hypothetical workloads. Often, this estimation is not very precise.

If your system is already in production, or if you have a test system with similar

characteristics, then it is easier to compute key performance indicators by module

or functional area. For that, you should have an easy way to determine what

application module a given database session is running. The PROGRAM column in

the V$SESSION view gives you the name of the executable running on the client

Workload Characterization in Real Application Clusters

3-12 Oracle9i Real Application Clusters Deployment and Performance

side. If different modules run the same executable, then that information is not

adequate. In these cases, use Oracle’s DBMS_APPLICATION_INFO package to

provide additional information.

For instance, Oracle Applications 11i calls the DBMS_APPLICATION_INFO.SET_
MODULE procedure to register the Oracle Forms and Oracle Reports names in the

MODULE column in V$SESSION. This is useful because you can gather all relevant

session statistics from V$SESSTAT, join them to V$SESSION and group them by

MODULE. Then you can break down instance statistics by module to produce a

workload profile. The following example syntax does this:

SELECT s.module, SUM(st.value)
FROM V$SESSION S, V$SESSTAT ST
WHERE s.sid=st.sid
AND st.statistic#=12 /* CPU used by this session */
GROUP BY s.module

Another Oracle workload characterization feature is the BEFORE LOGOFF ON
DATABASE event trigger. Use this trigger with the information from V$SESSION to

gather relevant statistics from sessions just before they disconnect and store those

statistics in a table. Because this operation requires only one INSERT … AS
SELECT statement for each session, the associated overhead can be minimal.

However, take care not to gather too many unnecessary statistics that might

increase the trigger overhead. With that in mind, you can use this trigger in a

production environment with minimal effect on performance. The following syntax

is an example of this:

CREATE OR REPLACE TRIGGER my_logoff
BEFORE LOGOFF ON DATABASE
BEGIN
 INSERT INTO w_session
 (instance_number , logoff_time , sid , audsid , module , program , cpu, pgamem)
 SELECT p.value,
SYSDATE,s1. sid , s1.audsid , s1.module , s1.program , s2.value , s3.value
 FROM V$SESSION s1, V$MYSTAT s2, V$MYSTAT s3, V$PARAMETER p
 WHERE s2.statistic #=12 /* CPU used by this session */
and s3.statistic #=21 /* session pga memory max */
ANDs1.sid =s2.sid
ANDs1.sid =s3.sid
ANDp.name =' instance_number ';
END;
/

After computing CPU and memory use for each module during peak system use,

the possibilities in terms of application partitioning become clearer and solutions

Workload Characterization in Real Application Clusters

Scaling Applications for Real Application Clusters 3-13

also become more obvious. With this type of information, you can distribute

application modules among existing instances so that you can fully exploit the

capacity of each node.

However, you should not base your partitioning strategy only on system resource

consumption. In some cases, in high volume OLTP systems with different

application modules frequently modifying the same tables, Real Application

Clusters overhead can become an important factor for determining the ideal scaling

configuration. In this case, also consider how each functional area accesses data.

Step 3: Analyze Each Functional Area’s Data Access Pattern
Functional areas that access disjoint sets of tables perform best with Real

Application Clusters. For that reason, your focus in data access analysis should be

to identify and study tables that are accessed by more than one functional area—in

other words, overlaps among functional areas.

Step 3.1: Identify Table Access Requirements and Define Overlaps
Determine which tables each functional area accesses and identify the overlaps.

Overlaps are tables that users from more than one functional area access. Table 3–1

shows the overlapping tables from this example in bold; the remaining tables are

accessed exclusively by the functions denoted by the column headings.

Your objective is to identify overlaps that can cause global conflicts and thus might

adversely affect application performance. In this example, both functions

See Also: Oracle9i Supplied PL/SQL Packages Reference for more

information about Oracle packages

Table 3–1 Example of Overlapping Tables

Hotel Reservation
Operations

Front Desk
Operations

Table 1 Table 12

Table 7 Table 14

Table 15 Table 15

Table 11 Table 16

Table 19 Table 19

Table 20 Table 20

Workload Characterization in Real Application Clusters

3-14 Oracle9i Real Application Clusters Deployment and Performance

concurrently access three tables. The remaining tables that are accessed exclusively

require fewer resources.

Step 3.2: Define the Access Type for Each Overlap
Determine the access type for each overlap as shown in Table 3–2.

Table 3–2 Example of Table Access Types

In this example, both functions access:

■ Table 15 for selects

■ Table 19 for inserts

■ Table 20 for updates

Step 3.3: Identify Transaction Volumes
Estimate the number of transactions that you expect the overlaps to generate as

shown in Table 3–3.

Table 3–3 Example of Table Transaction Volumes

Overlap Access
Type by
Reservations

Overlapping
Tables

Overlap
Access Type
by Front Desk

S (Select)

I (Insert)

U (Update)

Table 15

Table 19

Table 20

S

I

U

Transaction
Overlap by
Reservations Overlaps

Transaction
Overlap by Front
Desk

S (10 per second)

I (100 per second)

U (50 per second)

Table 15

Table 19

Table 20

S (50 per second)

I (10 per second)

U (90 per second)

Workload Characterization in Real Application Clusters

Scaling Applications for Real Application Clusters 3-15

Given these transaction volumes, the overlap tables can be a performance problem.

However, if the application infrequently accesses the tables, the volumes shown in

Table 3–3 may not be a problem.

Step 3.4: Classify Overlaps
Use the following criteria to determine how to improve the scalability of tables

accessed by more than one functional area:

■ Ignore non-overlapping tables, select-only overlaps, and low-frequency

overlaps. From the previous example, you would ignore tables 1, 7, 11, 12, 14,

15, and 16.

■ Partition your application to minimize the number of high frequency overlaps

occurring from different instances. In other words, try to place functional areas

subject to high frequency overlaps in the same instance.

■ Remaining overlaps can be resolved using other techniques like departmental

partitioning or physical table partitioning.

■ Keep in mind that some overlapping occurs in any system, and in most cases,

Cache Fusion provides acceptable performance with no need for code changes.

■ You can minimize the effect of high frequency INSERT overlaps by using free

list groups in the insert intensive tables.

See Also : "Using Free List Groups For Concurrent Inserts from

Multiple Nodes" on page 4-3

Scaling-Up and Partitioning in Real Application Clusters

3-16 Oracle9i Real Application Clusters Deployment and Performance

Scaling-Up and Partitioning in Real Application Clusters
If you have properly partitioned your application for Real Application Clusters,

then as the size of your database increases you can maintain the same partitioning

strategy and simultaneously achieve optimal performance. The partitioning method

to use when adding new functionality depends on the types of data the new

functions access. If the functions access disjoint data, then your existing partitioning

scheme should be adequate. If the new functions access the same data as the

existing functions, then you may need to change your partitioning strategy.

If your application attracts more users than you expected, then you may need to

add more instances. Adding a new instance can also require that you repartition

your application.

Before adding instances to your Real Application Clusters environment, analyze the

new instance’s data access requirements. If the new instance accesses its own subset

of data, or data that is not accessed by existing instances, then your current

partitioning strategy should adequately prevent data contention. However, if the

new instance accesses existing data, consider the following issues:

■ If you are adding new functionality to the new instance and the new

functionality requires access to existing tables, then consider revising your

partitioning strategy.

■ You may also need to alter your partitioning strategy if you reassign some users

of an existing application to the additional instance.

See Also: Oracle9i Real Application Clusters Administration for

information about adding instances

Database Design Techniques for Real Application Clusters 4-1

4
Database Design Techniques for Real

Application Clusters

This chapter describes database design techniques for Oracle Real Application
Clusters environments. The sections in this chapter include:

■ Principles of Database Design for Real Application Clusters

■ Using Free List Groups For Concurrent Inserts from Multiple Nodes

■ Using Sequence Numbers in Real Application Clusters

■ Tablespace Design in Real Application Clusters

■ Index Issues for Real Application Clusters Design

■ Object Creation and Performance in Real Application Clusters

■ Conclusions and a Summary of Guidelines

Principles of Database Design for Real Application Clusters

4-2 Oracle9i Real Application Clusters Deployment and Performance

Principles of Database Design for Real Application Clusters
When designing database layouts for shared Oracle Real Application Clusters
databases, remember that accessing globally shared data from multiple nodes
increases transaction processing costs. In other words, multi-node transactions

incur more wait time and higher CPU consumption than transactions processed on

single node systems. Because of this, if you carefully consider the data access

patterns of your applications, your resulting database design will enhance

scalability.

In general, you can improve scalability by:

■ Assigning transactions with similar data access characteristics to specific nodes

■ Creating data objects with parameters that enable more efficient access when

globally shared

The most scalable and efficient application designs for clustered systems enable a

high degree of transaction affinity to the data that the transactions access. The more

local your application’s data access, the more efficient your application. In this case,

the application minimizes the costs of cross-instance synchronization.

All applications running on multi-node systems have some data with low node

affinity. This data is shared across the cluster and thus requires synchronization.

Cache Fusion, however, reduces the costs associated with globally shared database

partitions by more efficiently synchronizing this data across multiple nodes.

Some database resources can become critical when certain transactions execute in

Real Application Clusters environments. For example, an excessive rate of

inter-instance changes to a small number of hot data blocks that are in the same

table can cause increased inter-instance messaging, context switches, and general

processing overhead. If a table has one or more indexes, then the maintenance cost

can increase even more due to the relative complexity of index changes.

Searching for free space and allocating it when inserting new data can require

access to space management structures, such as segment free lists. Also, you must

carefully configure sequence number generation if every node in the cluster uses

sequence numbers.

Using Free List Groups For Concurrent Inserts from Multiple Nodes

Database Design Techniques for Real Application Clusters 4-3

Using Free List Groups For Concurrent Inserts from Multiple Nodes
When data is frequently inserted into a table from multiple nodes and the table is

not partitioned, use free list groups to avoid performance issues. In such situations,

contention can be due to concurrent access to data blocks, table segment headers,

and other global resource demands.

Free list groups separate the data structures associated with the free space

management of a table into disjoint sets that are available for individual instances.

With free list groups, the contention among processes working on different

instances is reduced because data blocks with sufficient free space for inserts are

managed separately for each instance.

Another efficient way of avoiding overhead due to concurrency when inserting

data from different nodes is to use partitioned tables. However, in this case the

application has to make sure that there is affinity between data in the partitions.

Cache Fusion resolves concurrency on shared data between instances by using

cache-to-cache transfers. This reduces the overhead associated with maintaining

cache coherency. To avoid inter-instance concurrency altogether, use free list

groups. However, before building tables, indexes, or clusters with free list groups

and free lists, determine whether the feature is useful for the application.

Deciding Whether to Create Database Objects with Free List Groups
Before designing your database for a particular application, you should understand

how frequently data is added to, modified, or read from your database tables. If

you use multiple nodes and users or application modules are routed to a particular

node, then concurrency among instances can be low. Thus, you would not have to

use any particular design strategy.

Free lists and free list groups are usually needed when random inserts to a table

from multiple instances occur frequently. Processes looking for space in data blocks

can contend for the same blocks and table headers. Performance can be adversely

affected by the degree of concurrency and the overhead of shipping data and

header blocks from one instance to another. In these cases, using free list groups can

improve performance.

See Also: Oracle9i Real Application Clusters Concepts for a

conceptual overview of free list groups

See Also: For more information on partitioning, refer to

"Workload Distribution Concepts in Real Application Clusters" on

page 3-7.

Using Free List Groups For Concurrent Inserts from Multiple Nodes

4-4 Oracle9i Real Application Clusters Deployment and Performance

Identifying Critical Tables Before Migrating to Real Application Clusters
To migrate your application from a single instance environment to Real Application

Clusters, identify the tables that are subject to a high rate of inserts. Do this by

querying V$SQL and searching for INSERT commands as in the following example:

SELECT SUBSTR(SQL_TEXT,80), DECODE(COMMAND_TYPE,2,’INSERT’),EXECUTIONS
FROM V$SQL
WHERE COMMAND_TYPE = 2
ORDER BY EXECUTIONS;

Search for the table name in the string for the statements with the highest number of

executions. These statements and the indexes that are built on them are candidates

for free list groups. Remember to also consider the application partitioning strategy.

In other words, a table can be subject to excessive insert rates, but if the INSERT
statements always occur from the same instance, you do not need to increase the

FREELIST GROUPS parameter for the table. In these cases, changing to free lists

would still be beneficial for performance.

Determining FREELIST GROUPS Reorganization Needs
You can monitor free list group performance by examining the rate of cache

transfers and forced disk writes using the V$CLASS_CACHE_TRANSFERview.

V$CLASS_CACHE_TRANSFERview contains information about the number of

cache transfers that occurred since instance startup for each class of block. If your

output from the following select statement example shows a relatively high amount

for segment header and/or free list forced disk writes (more than 5% of the total),

then consider changing the FREELIST GROUPS parameter for some tables to

improve performance.

SELECT CLASS, (X_2_NULL_FORCED_STALE + X_2_S_FORCED_STALE) CACHE_TRANSFER
FROM V$CLASS_CACHE_TRANSFER;

Because V$CLASS_CACHE_TRANSFERdoes not identify cache transfers by object

name, you can use other views to identify the objects that significantly contribute to

the number of cache transfers. For example, V$CACHE_TRANSFER has information

about each block in the buffer cache that is transferred. Block class number 4

identifies segment headers and block class number 6 identifies free list blocks. The

Using Free List Groups For Concurrent Inserts from Multiple Nodes

Database Design Techniques for Real Application Clusters 4-5

output from the following select statement can show objects that could benefit from

increased free list groups values:

SELECT NAME, CLASS#, SUM(XNC) CACHE_TRANSFER
FROM V$CACHE_TRANSFER
WHERE CLASS# IN (4,6)
GROUP BY NAME, CLASS#
ORDER BY CACHE_TRANSFER DESC;

Creating Tables, Clusters, and Indexes with FREELISTS and FREELIST GROUPS
Create free lists and free list groups by specifying the FREELISTS and FREELIST
GROUPSstorage parameters in CREATE TABLE, CREATE CLUSTER or CREATE
INDEX statements. The database can be opened in either exclusive or shared mode.

If you need to use free list groups, then the general rule is to create at least one free

list group for each Real Application Clusters instance.

FREELISTS Parameter
The FREELISTS parameter specifies the number of free lists in each free list

group. The default and minimum value of FREELISTS is 1. The maximum value

depends on the data block size. If you specify a value that is too large, then an error

message informs you of the maximum value. The optimal value for FREELISTS
depends on the expected number of concurrent inserts for each free list group for a

particular table.

FREELIST GROUPS Parameter
Each free list group is associated with one or more instances at startup. The default

value of FREELIST GROUPSis 1. This means that all existing free lists of a segment

Note: Certain views such as V$CLASS_CACHE_TRANSFERare

only available after you execute the CATCLUST.SQL script.

Note: You cannot change the value of FREELIST GROUPS with

the ALTER TABLE, ALTER CLUSTER, or ALTER INDEXstatements

unless the table or cluster is exported, dropped, rebuilt, and

reloaded. However, you can dynamically change FREELISTS with

the ALTER TABLE, ALTER INDEX, or ALTER CLUSTER
statements.

Using Free List Groups For Concurrent Inserts from Multiple Nodes

4-6 Oracle9i Real Application Clusters Deployment and Performance

are available to all instances. As mentioned, you would typically set FREELIST
GROUPS equal to the number of instances in Real Application Clusters.

Free list group blocks with enough free space for inserts and updates are effectively

disjoint once Oracle allocates them to a particular free list group. However, once

data blocks that are allocated to one instance are freed by another instance, they are

no longer available to the original instance. This might render some space unusable

and possibly create a skew.

Example The following statement creates a table named department that has

seven free list groups, each of which contains four free lists:

 CREATE TABLE department
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13))
 STORAGE (INITIAL 100K NEXT 50K
 MAXEXTENTS 10 PCTINCREASE 5
 FREELIST GROUPS 7 FREELISTS 4);

Creating FREELISTS and FREELIST GROUPS for Clustered Tables
Use clustered tables to store records from different tables if the records are

frequently accessed as a group by one or more SELECT statements. Using clustered

tables can thus improve performance by reducing the overhead for processing

reads. However, clustered tables may be less useful for DML statements.

You cannot specify FREELISTS and FREELIST GROUPS storage parameters in the

CREATE TABLE statement for a clustered table. Instead, specify free list parameters

for the entire cluster rather than for individual tables. This is because clustered

tables use the storage parameters of the CREATE CLUSTER statement.

Real Application Clusters allows clusters (other than hash clusters) to use multiple

free lists and free list groups. Some hash clusters can also use multiple free lists and

free list groups if you created them with a user-defined key for the hashing function

and the key is partitioned by instance.

Note: With multiple free list groups, the free list structure is

detached from the segment header and located in the free list block,

which is a separate block. This reduces contention for the segment

header and provides separate free block lists for instances.

Using Free List Groups For Concurrent Inserts from Multiple Nodes

Database Design Techniques for Real Application Clusters 4-7

Creating FREELISTS for Indexes
You can also use the FREELISTS and FREELIST GROUPS parameters in the

CREATE INDEX statement. However, you should be aware that inserting into an

index differs from inserting into a table because the block Oracle uses is determined

by the index key value.

For example, assume you have a table with multiple free list groups that also has an

index with multiple free list groups. If two sessions connect to different instances

and insert rows into that table, then Oracle uses different blocks to store the table

data. This minimizes cache block transfers for the affected data segment. However,

index segment cache block transfers can still occur if these sessions insert similar

index key values. Therefore, you can only anticipate a slight reduction in cache

transfers for the index segment header because Oracle must use more header blocks

to store the index free lists.

Associating Instances and User Sessions with Free List Groups
When Oracle creates an object with multiple free list groups, the number of a free

list group block becomes part of the object’s data dictionary definition. It is

important to realize that instances and users need to be associated with a free list

group block. You can establish this association statically by assigning a fixed

instance number to an instance using an initialization parameter, or by specifying

the instance number in DDL statements.

The following topics describe:

■ Associating Instances with Free List Groups

■ Associating User Processes with Free List Groups

Note: Using the TRUNCATE TABLEtable_name REUSE STORAGE
syntax removes extent mappings for free list groups and resets the

high water mark to the beginning of the first extent.

See Also: Oracle9i SQL Reference for more information on the SQL

mentioned in this section

Using Free List Groups For Concurrent Inserts from Multiple Nodes

4-8 Oracle9i Real Application Clusters Deployment and Performance

Associating Instances with Free List Groups
You can associate an instance with free list groups as follows:

The SET INSTANCE clause is useful when an instance fails and users re-connect to

other instances. For example, consider a database where space is preallocated to the

free list groups in a table. If an instance fails and all the users are failed over to other

instances, then their session can be set to use the free list group associated with the

failed instance.

If you omit the SET INSTANCE clause, then the failed over sessions would start

inserting data into blocks and extents allocated to the instance they failed over to.

Later, when the failed instance is restored and the users connect to it again, the data

they inserted would be part of a set of blocks associated with the other instance’s

free list group. Thus, inter-instance communication could increase.

Associating User Processes with Free List Groups
User processes are automatically associated with free lists based on the Oracle

process ID of the process in which they are running as shown in the following

example:

You can use the ALTER SESSION SET INSTANCE statement to use the free list

group associated with a particular instance.

INSTANCE_NUMBER
parameter

You can use various SQL clauses with the INSTANCE_
NUMBER initialization parameter to associate extents of

data blocks with instances.

SET INSTANCE
clause

You can use the SET INSTANCE clause of the ALTER
SESSION statement to ensure a session uses the free list

group associated with a particular instance regardless of

the instance to which the session is connected. For

example:

ALTER SESSION SET INSTANCE = inst_no

+(oracle_pid modulo #free_lists_for_object) 1

Using Free List Groups For Concurrent Inserts from Multiple Nodes

Database Design Techniques for Real Application Clusters 4-9

Preallocating Extents
Before Oracle inserts rows into a table, the table only has an initial extent with a

number of free blocks allocated to it. Otherwise the table is empty. Therefore, you

should attempt to preallocate space for the table in a free list group. This guarantees

an optimal allocation of extents containing free blocks to the free list groups, and

therefore to the instances. Preallocation also avoids extent allocation overhead.

The advantage of doing this is that the physical storage layout can be determined in

advance. Moreover, the technique of allocating extents enables you to select the

physical file or volume from which the new extents are allocated. However, you

should consider whether and how to implement the ALLOCATE EXTENTclause and

a few Oracle initialization parameters when you preallocate as described in the

following paragraphs:

■ Preallocating Extents with The ALLOCATE EXTENT Clause

■ Preallocating Extents by Setting MAXEXTENTS, MINEXTENTS, and INITIAL

Parameters

■ Preallocating Extents by Setting the INSTANCE_NUMBER Parameter

■ Extent Preallocation Examples

Preallocating Extents with The ALLOCATE EXTENT Clause
The ALLOCATE EXTENT clause of the ALTER TABLE or ALTER CLUSTER
statement enables you to preallocate an extent to a table, index, or cluster with

parameters to specify the extent size, datafile, and a group of free lists with which

to associate the object.

Exclusive and Shared Modes and the ALLOCATE EXTENT Clause You can use the ALTER
TABLE (or CLUSTER) ALLOCATE EXTENT statement while the database is running

in exclusive mode, as well as in shared mode. When an instance runs in exclusive

mode, the instance still follows the same rules for locating space. A transaction can

use the master free list or the specific free list group for that instance.

The SIZE Parameter and the ALLOCATE EXTENT CLAUSE The SIZE parameter of the

ALLOCATE EXTENT clause is the extent size in bytes, rounded up to a multiple of

the block size. If you do not specify SIZE , then Oracle calculates the extent size

according to the values of the NEXT and PCTINCREASE storage parameters.

Oracle does not use the value of SIZE as a basis for calculating subsequent extent

allocations, which are determined by the values set for the NEXTand PCTINCREASE
parameters.

Using Free List Groups For Concurrent Inserts from Multiple Nodes

4-10 Oracle9i Real Application Clusters Deployment and Performance

The DATAFILE Parameter and the ALLOCATE EXTENT Clause This parameter specifies the

datafile from which to take space for an extent. If you omit this parameter, then

Oracle allocates space from any accessible datafile in the tablespace containing the

table.

The filename must exactly match the string stored in the control file; it is

case-sensitive. You can check the FILE_NAME column of the DBA_DATA_FILES
data dictionary view for this string.

The INSTANCE Parameter and the ALLOCATE EXTENT Clause This parameter assigns the

new space to the free list group associated with the instance number integer. At

startup, each instance acquires a unique instance number that maps the instance to

a group of free lists. The lowest instance number is 1, not 0; the maximum value is

operating system-specific. The syntax is:

ALTER TABLE tablename ALLOCATE EXTENT (... INSTANCE n)

where n maps to the free list group with the same number. If the instance number is

greater than the number of free list groups, then it is hashed as follows to determine

the free list group to which it is assigned:

If you do not specify the INSTANCE parameter, then the new space is assigned to

the table but not allocated to any group of free lists. Such space is included in the

master free list of free blocks as needed when no other space is available.

Preallocating Extents by Setting MAXEXTENTS, MINEXTENTS, and INITIAL
Parameters
You can prevent automatic extent allocations by preallocating extents to free list

groups associated with particular instances, and by setting MAXEXTENTS to the

current number of extents (preallocated extents plus MINEXTENTS). You can

minimize the initial allocation when you create the table or cluster by setting

Note: Use a value for INSTANCE that corresponds to the number

of the free list group you wish to use—rather than the actual

instance number.

See Also: Oracle9i Real Application Clusters Administration for more

information about the INSTANCE parameter

+modulo(n,#_freelistgroups) 1

Using Free List Groups For Concurrent Inserts from Multiple Nodes

Database Design Techniques for Real Application Clusters 4-11

MINEXTENTS to 1 (the default) and by setting INITIAL to its minimum value (two

data blocks, or 10K for a block size of 2048 bytes).

To minimize contention among instances for data blocks, create multiple datafiles

for each table and associate each instance with a different file.

If you expect to increase the number of nodes in your system, then allow for

additional instances by creating tables or clusters with more free list groups than

the current number of instances. You do not have to allocate space to those free list

groups until it is needed. Only the master free list of free blocks has space allocated

to it automatically.

To associate a data block with a free list group, either bring the data block below

PCTUSED by a process running on an instance using that free list group, or

specifically allocate the block to that free list group. Therefore, a free list group that

is never used does not leave unused free data blocks.

Preallocating Extents by Setting the INSTANCE_NUMBER Parameter
The INSTANCE_NUMBER initialization parameter enables you to start an instance

and ensure that it uses the extents allocated to it for inserts and updates. This

ensures that it does not use space allocated for other instances. The instance cannot

use data blocks in another free list belonging to another instance, unless the

instance is restarted with the other instance’s INSTANCE_NUMBER. However, you

can override the instance number during a session by using an ALTER SESSION
statement.

Extent Preallocation Examples
This section provides examples in which extents are preallocated.

Example 1 The following example statement allocates an extent for table

DEPARTMENTfrom the datafile DEPT_FILE7 to instance number 7:

 ALTER TABLE department
 ALLOCATE EXTENT (SIZE 20K
 DATAFILE ’dept_file7’
 INSTANCE 7);

Example 2 The following SQL statement creates a table with three free list groups,

each containing ten free lists:

 CREATE TABLE table1 ... STORAGE (FREELIST GROUPS 3 FREELISTS 10);

Using Free List Groups For Concurrent Inserts from Multiple Nodes

4-12 Oracle9i Real Application Clusters Deployment and Performance

The next SQL statement then allocates new space, dividing the allocated blocks

among the free lists in the second free list group:

 ALTER TABLE table1 ALLOCATE EXTENT (SIZE 50K INSTANCE 2);

In a Real Application Clusters environment that runs more instances than the value

you have set for the FREELIST GROUPS storage parameter, multiple instances

share the new space allocation. In this example, every third instance to start up is

associated with the same group of free lists.

Example 3 The following CREATE TABLE statement creates a table named

EMPLOYEEwith one initial extent and three groups of free lists. The three ALTER
TABLE statements allocate one new extent to each group of free lists:

 CREATE TABLE employee ...
 STORAGE (INITIAL 4096
 MINEXTENTS 1
 MAXEXTENTS 4
 FREELIST GROUPS 3);
 ALTER TABLE employee
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile1’ INSTANCE 1)
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile2’ INSTANCE 2)
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile3’ INSTANCE 3);

To prevent automatic allocations, MAXEXTENTS is set to 4 which is the sum of the

values of MINEXTENTS and FREELIST GROUPS.

When you need additional space beyond this allocation, use the ALTER TABLE
statement to increase MAXEXTENTS before allocating additional extents. For

example, if the second group of free lists requires additional free space for inserts

and updates, you could set MAXEXTENTS to 5 and allocate another extent for that

free list group:

 ALTER TABLE employee ...
 STORAGE (MAXEXTENTS 5)
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile2’ INSTANCE 2);

Using Sequence Numbers in Real Application Clusters

Database Design Techniques for Real Application Clusters 4-13

Using Sequence Numbers in Real Application Clusters
When designing applications for Real Application Clusters, use Oracle sequence

numbers whenever possible. To optimize sequence number use, each instance’s

cache must be large enough to accommodate the sequences. The default cache size

holds 20 sequence numbers. To increase this, for example to hold 200, use this

syntax:

ALTER SEQUENCE sequence_name CACHE 200;

Using the ordering feature suppresses caching in Real Application Clusters. But

note that it is normal to lose some numbers after executing the SHUTDOWN
command or after instance failures. This is true even in single instance

configurations.

If ordering is essential, then you may need to disable sequence caching. In this case,

expect some performance overhead.

Detecting Global Conflicts for Sequences
If sequences are insufficiently cached or not cached at all, then performance

problems can result with an increase in service times. If you experience

performance problems, then examine the statistics in the V$SYSTEM_EVENTview as

described in the following two points to determine whether the problem is due to

the use of Oracle sequences:

■ A problem with sequences appears in V$SYSTEM_EVENTas extended average

wait times for row cache locks in the range of a few hundred milliseconds. The

proportion of time waited for row cache locks to the total time waited for

non-idle events will be relatively high.

■ For the DC_SEQUENCES parameter, the ratio of DLM_CONFLICTS to DLM_
REQUESTSwill be high. If this ratio exceeds 10 to 15%, and the row cache lock

wait time is a significant portion of the total wait time, then it is likely that the

service time deterioration is due to insufficiently cached sequences.

Using Database Tables to Generate Sequence Numbers
If your application cannot afford to lose a sequence number, then you may want to

implement sequences by storing them in database tables. However, there is

significant performance overhead associated with the mechanism required for

See Also: Oracle9i Database Concepts for more information about

sequences

Tablespace Design in Real Application Clusters

4-14 Oracle9i Real Application Clusters Deployment and Performance

implementing this strategy. This is true even in single instance environments. As a

general recommendation, rows storing sequence numbers should be locked for only

a very brief period.

In Real Application Clusters, there can be additional overhead associated with the

cache coherence needed for buffers storing sequence numbers. If a single data block

stores several sequence numbers, and if more than one instance needs those

sequence numbers, then the data block can be frequently transferred among the

instances.

To minimize that overhead, set PCTFREE to a very high value so Oracle stores only

a single row of the table containing the sequence numbers in each data block. In

that case, the cache transfers only occur when the instances concurrently request the

same sequence number.

Tablespace Design in Real Application Clusters
Your goal in tablespace design is to group database objects according to their data

access distribution patterns. If you consider the dependency analyses and

transaction profiles of your database objects, then you can divide tablespaces into

containers for the following objects:

■ Frequently and randomly modified tables and indexes belonging to particular

functional areas

■ Frequently and randomly modified tables and indexes with a lower probability

of having affinity to any functional area

■ Tables and indexes that are mostly READ or READ-ONLY and infrequently

modified

Consider the following additional criteria for separating database objects into

tablespaces:

■ Tables should be separated from indexes

■ Assign read-only tables to READ-ONLY tablespaces

■ Group smaller reference tables in the same tablespace

Grouping database objects that belong to different functional areas into different

tablespaces using this strategy can improve dynamic resource mastering. This

works best if you adopt a functional partitioning strategy as described in Chapter 3.

Oracle’s dynamic resource re-mastering by datafiles algorithm re-distributes GCS

resources where they are needed most. This re-mastering strategy improves

resource operations efficiency. That is, Oracle re-masters resources to the instance

Tablespace Design in Real Application Clusters

Database Design Techniques for Real Application Clusters 4-15

with which the resources are most closely associated based on access patterns. As a

result, resource operations after re-mastering require minimal communication with

remote instances through the Global Enqueue Service (GES) and Global Cache
Service (GCS).

In rare cases, you can further reduce GCS traffic by changing the default resource

control policy for some tablespaces, as described in Appendix A, "Configuring

Multi-Block Lock Assignments (Optional)".

Extent Management and Locally Managed Tablespaces
Allocating and deallocating extents are expensive operations that you should

minimize. Most of these operations in Real Application Clusters require

inter-instance coordination. In addition, a high rate of extent management

operations can more adversely affect performance in Real Application Clusters

environments than in single instance environments. This is especially true for

dictionary managed tablespaces.

Identifying Extent Management Issues
If the “row cache lock” event is a significant contributor to the non-idle wait time in

V$SYSTEM_EVENT, then there is contention in the data dictionary cache. Extent

allocation and deallocation operations could cause this.

V$ROWCACHE provides data dictionary cache information for DC_USED_EXTENTS
and DC_FREE_EXTENTS. This is particularly true when the values for DLM_
CONFLICTS for those parameters increase significantly over time. This means that

excessive extent management activity is occurring.

Minimizing Extent Management Operations
Proper storage parameter configuration for tables, indexes, temporary segments,

and rollback segments decreases extent allocation and deallocation frequency. Do

this using the INITIAL, NEXT, PCTINCREASE, MINEXTENTS, and OPTIMAL
parameters.

Using Locally Managed Tablespaces
You can greatly reduce extent allocation and deallocation overhead if you use

locally managed tablespaces. For optimal performance and space use, segments in

See Also: Oracle9i Real Application Clusters Concepts for more

information about dynamic resource remastering

Index Issues for Real Application Clusters Design

4-16 Oracle9i Real Application Clusters Deployment and Performance

locally managed tablespaces should ideally have similar space allocation

characteristics. This enables you to create the tablespace with the proper uniform

extent size that corresponds to the ideal extent size increment calculated for the

segments.

For example, you could put tables with relatively high insert rates in a tablespace

with a 10MB uniform extent size. On the other hand, you can place small tables

with limited DML activity in a tablespace with a 100K uniform extent size. For an

existing system where tablespaces are not organized by segment size, this type of

configuration can require significant reorganization efforts with limited benefits.

For that reason, the compromise is to create most of your tablespaces as locally

managed with AUTOALLOCATE instead of UNIFORM extent allocation.

Index Issues for Real Application Clusters Design
In high volume OLTP systems, inter-instance concurrent index block accesses can

increase the cost of Real Application Clusters processing. This is because the

commonly used B+-Tree index structures usually contribute to higher Cache Fusion

activity. A right-growing tree can incur frequent cache transfers of one particular leaf

block.

While traversing the tree structure, branch blocks might have to be requested from

another instance that recently modified them. Leaf block splits are vulnerable

because three blocks need to be modified in one transaction. For very high

transaction volumes occurring from different instances, you may need to reduce

inter-instance concurrent changes to:

■ Leaf and branch blocks

■ Root blocks

■ Index segment headers

The following section addresses how to reduce leaf, branch, and root block

contention. You can reduce index segment header concurrent changes by using free

list groups as described under the heading "Using Free List Groups For Concurrent

Inserts from Multiple Nodes" on page 4-3.

See Also: Oracle9i SQL Reference for more information about the

AUTOALLOCATE and UNIFORM clauses of the CREATE
TABLESPACEstatement

Index Issues for Real Application Clusters Design

Database Design Techniques for Real Application Clusters 4-17

Reducing Inter-Instance Concurrent Changes To Index Blocks
This section describes the following four strategies to isolate or distribute access to

different parts of an index and to improve performance:

■ Using Reverse Key Indexes to Distribute Index Access

■ Assigning Different Subsequences to Each Instance to Reduce Index Contention

■ Using INSTANCE_NUMBER to Generate Index Keys

■ Reducing Index Contention by Partitioning Tables by Range

Using Reverse Key Indexes to Distribute Index Access
Use reverse key indexes to avoid right-growing index trees. By reversing the keys,

you can achieve a broader spread of index keys over the leaf blocks of an index and

thus reduce the probability of accessing the same leaf and branch blocks from

multiple instances.

Assigning Different Subsequences to Each Instance to Reduce Index Contention
For indexes based on sequence numbers, you can assign different subsequences to

each instance. In the case of database objects that can be partitioned based on

certain characteristics, this might adequately distribute the access patterns.

Using INSTANCE_NUMBER to Generate Index Keys
For other sequentially assigned values, adjust the index value and use INSTANCE_
NUMBER to generate the index key, as shown in the following formula:

Reducing Index Contention by Partitioning Tables by Range
Another effective way to reduce index contention is to partition tables by range and

to create local indexes on them.

Note: Reverse key indexes do not allow index range scans so

carefully consider this before using them.

+*index key = (instance_number -1) 100000 Sequence number

Index Issues for Real Application Clusters Design

4-18 Oracle9i Real Application Clusters Deployment and Performance

Figure 4–1 shows how transactions operating on records stored in tables partitioned

by range can minimize leaf and branch block contention.

Figure 4–1 Node Affinity for Transactions Against Tables Partitioned by Range

See Also: "Scaling Applications for Real Application Clusters" on

page 3-1 for guidelines on physical table partitioning

implementation.

Root
node

Leaf
node

Leaf
node

Leaf
node

Leaf
node

Root
node

A-H I-M N-S T-Z

Index
header
block

Instance 1
Transactions

on records
A-M

Instance 2
Transactions
on records
N-Z

Minimizing Table Locks to Optimize Performance

Database Design Techniques for Real Application Clusters 4-19

Minimizing Table Locks to Optimize Performance
In Real Application Clusters, Oracle uses inter-instance communication to globally

coordinate table locks. Because most applications do not need to lock entire tables,

you can disable table locks to improve locking efficiency with minimal adverse

side-effects. There are two methods for disabling table locks as described under the

following headings:

■ Disabling Table Locks for Individual Tables

■ Setting DML_LOCKS to Zero

Disabling Table Locks for Individual Tables
To prevent users from acquiring table locks, use the following statement:

 ALTER TABLE table_name DISABLE TABLE LOCK

Users attempting to lock tables with disabled locks receive an error. To re-enable

table locking, use the following statement:

 ALTER TABLE table_name ENABLE TABLE LOCK

This syntax forces all currently executing transactions to commit before enabling the

table lock. The statement does not wait for new transactions to start after issuing the

ENABLE statement.

To determine whether a table has its table lock enabled or disabled, query the

TABLE_LOCKcolumn in the USER_TABLESdata dictionary table. If you have select

privilege on DBA_TABLES or ALL_TABLES, then query the table lock state of other

user’s tables.

Setting DML_LOCKS to Zero
You can set table locks set for an entire instance using the DML_LOCKS initialization

parameter. If you do not need to use the DROP TABLE, CREATE INDEX, and LOCK
TABLE statements, then set DML_LOCKS to zero to minimize lock conversions and

achieve maximum performance.

Note: Oracle cannot execute DDL statements against tables with

disabled locks.

Object Creation and Performance in Real Application Clusters

4-20 Oracle9i Real Application Clusters Deployment and Performance

SQL*Loader checks the flag to ensure that there is not a non-parallel direct load

running against the same table. This forces Oracle to create new extents for each

session.

Object Creation and Performance in Real Application Clusters
As a general database design rule, you should only use DDL statements for

maintenance tasks, not during normal system operations. Therefore, in most

systems, the frequency of new object creation and other DDL statements should be

very small.

However, if your application frequently creates objects, some performance

degradation may occur. This is because object creation requires inter-instance

coordination. A high ratio of DLM_CONFLICTS to DLM_REQUESTSon the DC_
OBJECT_IDS row cache in V$ROWCACHE,along with excessive wait times for the

row cache lock event in V$SYSTEM_EVENT, indicates that different instances in

your cluster are issuing significant amounts of concurrent DDL statements.

To improve object creation performance is such situations, set event 10297 so that it

caches OBJECT_ID values. This improves concurrent object creation. To set event

10297, add the following line to your initialization parameter file:

event="10297 trace name context forever, level 1"

If you set the additional level argument to 1, then the caching behavior is

automatically adjustable. Otherwise, you can set level to the desired cache size.

Note: If you set DML_LOCKS to zero on one instance, then you

must set it to zero on all instances. If you use non-zero values with

the DML_LOCKS parameter, the values need not be identical on all

instances.

See Also: Oracle9i Database Utilities for more information on

SQL*Loader

Conclusions and a Summary of Guidelines

Database Design Techniques for Real Application Clusters 4-21

Conclusions and a Summary of Guidelines
Cache Fusion introduces an improved diskless algorithm that handles cache

coherency more efficiently than Oracle’s earlier architectures. This enables you to

implement simpler database designs while achieving optimal performance.

Response time and throughput requirements ultimately determine whether you

should implement a partitioning strategy and how stringent your strategy needs to

be. Response time and throughput requirements also determine how much effort

you should invest to achieve an optimal database design.

A careful analysis of your system’s workload should serve as the optimal basis for

allocating work to particular instances. This analysis should consider:

■ System resource consumption

■ Data access distributions by functional area

■ Functional dependencies

Moreover, implementing a strategy that considers these points makes your system

more robust and thus more scalable.

Generally speaking, 80% or more of your overhead results from 20% or less of a

given workload. If you first attempt to deal with the 20% by observing some simple

guidelines, then you can produce tangible benefits with minimal effort. You can

address these workload problems by implementing any or all of the following:

■ Define free list groups for partitioned as well as non-partitioned data that is

frequently modified.

■ Use read-only tablespaces wherever data remains constant.

■ Use locally managed tablespaces to reduce extent management costs.

■ Use Oracle sequences to generate unique numbers and set the CACHEparameter

to a high value if needed.

■ If possible, reduce concurrent changes to index blocks. However, if index key

values are not modified by multiple instances, or if the modification rate is not

excessive, the overhead may be acceptable. In extreme cases, you can apply

techniques like physical table partitioning.

Conclusions and a Summary of Guidelines

4-22 Oracle9i Real Application Clusters Deployment and Performance

Part III
 Real Application Clusters Performance

Monitoring and Tuning

Part Three describes how to monitor performance statistics and adjust parameters

to improve Real Application Clusters performance. Part Three contains the

following chapters:

■ Chapter 5, "General Tuning Recommendations for Real Application Clusters"

■ Chapter 6, "Tuning Real Application Clusters and Inter-Instance Performance"

See Also: Chapter 7, "Monitoring Performance with Oracle

Performance Manager" for more information on using Oracle

Enterprise Manager to monitor and tune Real Application Clusters

databases

General Tuning Recommendations for Real Application Clusters 5-1

5
General Tuning Recommendations for Real

Application Clusters

This chapter provides an overview of tuning issues for Oracle Real Application
Clusters. It presents a general methodology for tuning applications for Real

Application Clusters environments and includes the following topics:

■ Overview of Tuning Real Application Clusters

■ Statistics for Monitoring Real Application Clusters Performance

■ Using Views to Evaluate Real Application Clusters Performance

■ Measuring Workload Performance in Real Application Clusters

■ General Tuning Recommendations for Workload Performance

■ Determining the Costs of Synchronization In Real Application Clusters

■ Measuring Global and Local Work Ratios in Real Application Clusters

■ Calculating the Global Cache Synchronization Costs Due to Contention in Real

Application Clusters

■ Resolving Performance Problems in Real Application Clusters-Based

Applications

■ Advanced Queuing and Real Application Clusters

See Also : Chapter 7, "Monitoring Performance with Oracle

Performance Manager" for more information on using Oracle
Enterprise Manager to monitor and tune Real Application Clusters

databases

Overview of Tuning Real Application Clusters

5-2 Oracle9i Real Application Clusters Deployment and Performance

Overview of Tuning Real Application Clusters
Cache Fusion resolves the types of inter-instance contention that were once

responsible for most Real Application Clusters overhead: read/write and

write/write contention. Because Cache Fusion virtually eliminates forced disk
writes, release 1 (9.0.l) of Real Application Clusters requires less tuning than

previous releases to achieve scalability.

Many single instance tuning practices are useful for Real Application Clusters

applications. However, you must also effectively size the buffer cache and shared

pool. You must also tune your shared disk subsystems with Real Application

Clusters-specific goals in mind. In addition, you should collect Real Application

Clusters-specific statistics and monitor views using the methods described in this

chapter.

With experience, you can anticipate many performance problems before deploying

Real Application Clusters applications. However, even the most effective tuning

cannot overcome problems caused by poor analysis or database and application

design flaws. Therefore, make sure you have thoroughly considered the issues

discussed in Part II of this book, "Scaling Applications and Designing Databases for

Real Application Clusters", before evaluating and tuning performance.

Statistics for Monitoring Real Application Clusters Performance
This section provides a brief description of Real Application Clusters application

performance statistics. Topics in this section include:

■ The Content of Real Application Clusters Statistics

■ Recording Statistics for Tuning

■ Significant Real Application Clusters Statistics

Oracle maintains most statistics in the local System Global Area (SGA). Access

these statistics using SQL statements against V$ views as described in this chapter.

The Content of Real Application Clusters Statistics
Real Application Clusters-specific statistics appear as message request counters or

timed statistics. Message request counters include statistics showing the number of

a certain type of block mode conversion. Timed statistics, for example, reveal the

total or average time waited for read and write I/O on particular operations.

Statistics for Monitoring Real Application Clusters Performance

General Tuning Recommendations for Real Application Clusters 5-3

Recording Statistics for Tuning
Oracle Corporation recommends that you record statistics about the rates at which

certain events occur. Also record information about specific transactions within

your Real Application Clusters environment. Do this with utilities such as Oracle9i
Statspack or UTLBSTAT and UTLESTAT by recording statistics over a period of time

to capture them for specific measurement intervals. In addition, Oracle9i Statspack

has a page dedicated to displaying Real Application Clusters performance

information.

These utilities compute statistics counts per second and per transaction. You can

also use them to measure the number of statement executions and the number of

business transactions that applications submit.

For example, an insurance application might define a transaction as the processing

of an insurance quote. This transaction might be composed of several DML

operations and queries. If you know how many of these quotes your system

processes in a certain time interval, then divide that value by the number of quotes

completed in the interval. Do this over a period of time to gauge performance.

Performance trends in application profiles appear in terms of the resources used per

transaction and the application workload. The counts per transaction are useful for

detecting changing workload patterns, while rates indicate the workload intensity.

Tracing Execution History with the TRACE_ENABLED Parameter
You can trace the execution history of Oracle using the TRACE_ENABLEDparameter.

The TRACE_ENABLED parameter is set to true by default to control tracing of the

execution history, or code path, of Oracle. Oracle Support uses this information for

debugging.

In Real Application Clusters, you must set this parameter to the same value for all

instances. You can set TRACE_ENABLED within your initialization parameter file,

or by using the ALTER SYSTEM SET statement.

When TRACE_ENABLED is set to true , Oracle records information in specific files

when errors occur. Table 5–1 shows the types of files and the UNIX default

destination directories in which Oracle records the execution history.

Statistics for Monitoring Real Application Clusters Performance

5-4 Oracle9i Real Application Clusters Deployment and Performance

Oracle records this information for all instances, even if only one instance

terminates. This allows Oracle to retain diagnostics for the entire cluster.

Although the overhead incurred from this processing is not excessive, you can

improve performance by setting TRACE_ENABLED to false . You might do this, for

example, to meet high-end benchmark requirements. However, if you leave this

parameter set to false , you may lose valuable diagnostic information. Therefore,

always set TRACE_ENABLED to true to trace system problems and to reduce

diagnostic efforts in the event of unexplained instance failures.

Significant Real Application Clusters Statistics
The most significant statistics for Real Application Clusters are:

■ Cache-related statistics such as consistent gets, db block gets, and db block
changes

■ Cache Fusion related statistics, such as global cache current block receive time
or global cache current block send time

■ global cache lock open and convert requests, and global cache wait times, such

as global cache gets, global cache converts, and waits for events such as

Null-to-X conversions

■ I/O statistics such as physical reads, physical writes, DBWR cross-instance
writes, and wait times for reads and writes

Two of the most important views for displaying Real Application Clusters-specific

statistics are V$SYSSTAT and V$SYSTEM_EVENT. The next section provides more

details about the contents of these and other views for tuning Real Application

Clusters.

Table 5–1 Memory Trace Files and Their Locations

Trace File Type Destination Directory

User $ORACLE_HOME/rdbms/log/user_dump_dest

Background $ORACLE_HOME/rdbms/log/background_dump_dest

Core $ORACLE_HOME/dbs/core_dump_dest

Using Views to Evaluate Real Application Clusters Performance

General Tuning Recommendations for Real Application Clusters 5-5

Using Views to Evaluate Real Application Clusters Performance
This section describes the content and use of several views for monitoring Real

Application Clusters. The topics in this section are:

■ Using V$SYSSTAT for Real Application Clusters Statistics

■ Using V$SYSTEM_EVENT for Real Application Clusters Statistics

■ Using Other Views to Obtain Real Application Clusters Statistics

Using V$SYSSTAT for Real Application Clusters Statistics
The V$SYSSTAT view provides statistics about your entire Real Application

Clusters environment. That is, the statistics are global. Real Application

Clusters-specific statistics in V$SYSSTAT belong to classes 8, 32, and 40 as shown in

Table 5–2.

Table 5–2 Statistics and their Classes in V$SYSSTAT

Statistic Name Class

consistent gets 8

db block gets 8

db block changes 8

gcs messages sent 32

ges messages sent 32

physical reads 8

physical writes 8

DBWR cross-instance writes 40

global lock sync gets 32

global lock async gets 32

global lock get time 32

global lock sync converts 32

global lock async converts 32

global lock convert time 32

global lock releases 32

global cache gets 40

Using Views to Evaluate Real Application Clusters Performance

5-6 Oracle9i Real Application Clusters Deployment and Performance

global cache get time 40

global cache converts 40

global cache convert time 40

global cache cr blocks received 40

global cache cr block receive time 40

global cache current blocks received 40

global cache current block receive time 40

global cache cr blocks served 40

global cache cr block build time 40

global cache cr block flush time 40

global cache cr block send time 40

global cache current blocks served 40

global cache current block pin time 40

global cache current block flush time 40

global cache current block send time 40

global cache freelist waits 40

global cache defers 40

global cache convert timeouts 40

global cache blocks lost 40

global cache blocks corrupt 40

global cache prepare failures 40

Table 5–2 Statistics and their Classes in V$SYSSTAT

Statistic Name Class

Using Views to Evaluate Real Application Clusters Performance

General Tuning Recommendations for Real Application Clusters 5-7

Using V$SYSTEM_EVENT for Real Application Clusters Statistics
The V$SYSTEM_EVENT view provides statistics about the frequency with which

Oracle processes have to wait for events. They also show the number of timeouts

for these events and their cumulative and average durations. These events are also

referred to as waits. The statistics in V$SYSTEM_EVENT that are relevant to Real

Application Clusters are:

■ buffer busy

■ buffer busy due to global cache

■ cr request retry

■ db file parallel write

■ db file scattered read

■ db file sequential read

■ enqueue

■ global cache cr request

■ global cache busy

■ global cache null to s

■ global cache null to x

■ global cache open s

■ global cache open x

■ global cache s to x

■ KJC: Wait for msg sends to complete

■ library cache pin

■ log file sync

■ row cache lock

Using Views to Evaluate Real Application Clusters Performance

5-8 Oracle9i Real Application Clusters Deployment and Performance

You can also analyze operating system statistics that reveal CPU use and disk I/O.

The procedures in this chapter can help you analyze these statistics to determine the

amount of CPU that Oracle uses for certain background processes such as:

■ Global Cache Service Processes (LMSn)

■ Database Writer (DBWn)

■ Global Enqueue Service Daemon (LMD)

Using Other Views to Obtain Real Application Clusters Statistics
Other important statistics appear in the following views:

■ V$CACHE

■ V$LOCK_ACTIVITY

■ V$GES_STATISTICS

The statistics in these views that are relevant to Real Application Clusters relate to

the following performance issues:

■ Buffer cache use

■ Types of block mode conversions

■ Resource control activity with regard to block classes and files

■ Number of blocked convert requests

■ Messages the Global Cache Service (GCS) sends and receives

Note: The FORCED WRITES columns in V$CACHEshould always

be 0 (zero) in Oracle9i.

Measuring Workload Performance in Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-9

Measuring Workload Performance in Real Application Clusters
In Real Application Clusters, application performance and scalability are

determined by the rate and cost of synchronization among instances. You can

measure the costs by identifying how effectively transactions use CPU resources to:

■ Send and receive messages

■ Maintain block modes and resources required to guarantee global cache

coherency

You can also calculate CPU time spent:

■ At the Inter-Process Communication (IPC) layer

■ To process block requests

■ In processing read and write I/O caused by synchronization between nodes

■ For application processing, such as parsing SQL statements, fetching rows, and

sorting

Statistics about these events appear in V$ tables such as V$SYSTEM_EVENT. The

response time for each transaction depends on the number of resource operations.

Response time also depends on the time required to process the instructions, plus

the delay or wait time for each request. Disk I/O incurred when using non-default

resource control increases response time.

Contention on certain resources adds to the cost of each measurable component. For

example, the following events can result in waits for busy buffers:

■ Frequent I/O requests to certain disks

■ Contention for the same data or index blocks by local and remote transactions

This can in turn increase costs for each transaction and increase your operating

system overhead.

As described in Chapter 3, you can create Real Application Clusters applications

that are more scalable and that perform well by designing them to minimize

inter-node synchronization and communication requirements. Scalable applications

meet user service level requirements by minimizing either the rate or the cost of

synchronization.

General Tuning Recommendations for Workload Performance

5-10 Oracle9i Real Application Clusters Deployment and Performance

General Tuning Recommendations for Workload Performance
Consider some of the tuning recommendations to improve workload performance

as described in this section. The topics in this section are:

■ Measuring Workload Performance

■ Using V$CLASS_CACHE_TRANSFER and V$FILE_CACHE_TRANSFER for

Real Application Clusters Statistics

■ Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, and

V$BH

■ Estimating I/O Synchronization Costs

Measuring Workload Performance
In Real Application Clusters, application performance and scalability are

determined by the rate and cost of synchronization among instances. Overhead

from the Global Cache and Global Enqueue Services might occur when transactions

wait for I/O events and block access mode convert requests. Conflicts for blocks

between local and remote transactions while opening or converting block access

modes can increase synchronization costs. For example, you can estimate the cost of

a transaction or request using the following formula:

Using V$CLASS_CACHE_TRANSFER and V$FILE_CACHE_TRANSFER for Real
Application Clusters Statistics

Use the V$CLASS_CACHE_TRANSFERand V$FILE_CACHE_TRANSFER views to

determine the rate of cache block transfers and their block access mode conversion

rates. V$CLASS_CACHE_TRANSFERprovides a summary of forced disk write

activity for each block class. V$FILE_CACHE_TRANSFER shows the amount of

cache transfer activity occurring in your environment on a per-file basis.

Both of these views have several different types of forced write columns. There is one

forced write column for each type of conversion. However, the columns in these

views that refer to forced writes remain 0 (zero). A non-zero value indicates that

cache transfers are occurring.

+++ + + +++CPUapps CPUsyncio CPUipc CPUgcs CPUges WAITsyncio WAITipc WAITgcs WAITges

General Tuning Recommendations for Workload Performance

General Tuning Recommendations for Real Application Clusters 5-11

Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, V$BH, and
V$FILE_CACHE_TRANSFER

The V$CACHE, V$CACHE_TRANSFER, and V$BH views show the block classes and

blocks that Oracle transfers over the interconnect on a per-object basis. Use the

FORCED_READS and FORCED_WRITES columns in these views to determine which

objects and blocks your Real Application Clusters instances use. This information

can help characterize your system’s workload. The FORCED_WRITES column

provides a count of how often a certain block experiences a forced disk write out of

a local buffer cache because the current version was requested by another instance.

Also use V$FILE_CACHE_TRANSFER to identify files that experience cache

transfers. If a file shows significant cache transfer activity, then it could also mean

the file is experiencing excessive forced disk write activity.

Estimating I/O Synchronization Costs
I/O synchronization costs can adversely affect performance. To evaluate the effects

of I/O synchronization, use the V$SYSSTAT view for the counts of the following

request statistics:

■ DBWR cross-instance writes

■ Physical writes

■ Physical reads

Also refer to the V$SYSTEM_EVENTview for time waited and average waits for the

following statistics:

■ db file parallel write

■ db file sequential read

■ db file scattered read

To estimate the time waited for reads incurred by re-reading data blocks that Oracle

had to write to disk due to requests from other instances, divide the statistic, for

example, the time waited for db file sequential reads, by the percentage of read I/O

caused by previous cache flushes as shown in this formula where lock buffers for

Determining the Costs of Synchronization In Real Application Clusters

5-12 Oracle9i Real Application Clusters Deployment and Performance

read is the value for block access mode conversions from N to S derived from

V$LOCK_ACTIVITY and physical reads is a value from the V$SYSSTAT view:

Similarly, estimate the proportion of the time waited for database file cross-instance

writes caused by cache transfers by dividing the db file parallel write time in

V$SYSTEM_EVENTS where DBWR cross-instance writes and physical writes are values

from V$SYSSTAT:

Determining the Costs of Synchronization In Real Application Clusters
This section explains how to determine the cost incurred by synchronization and

coherency processing between instances due to additional CPU time, I/O, and

global resource processing and contention. To do this, examine Oracle statistics as

described in the following sections:

■ Calculating CPU Service Time Required

■ Measuring Global Cache Coherency and Contention

■ Measuring Global and Local Work Ratios in Real Application Clusters

■ Calculating the Global Cache Synchronization Costs Due to Contention in Real

Application Clusters

■ Measuring Global Cache Coherency and Contention

Calculating CPU Service Time Required
To derive the CPU service time required per transaction, divide the CPU used by a

session as shown in V$SYSSTAT by the number of user commits or the number of

business transactions. Note that this is the amount of time required by the user

process to execute in either user or kernel mode. This does not include the time

spent by the operating system kernel on behalf of a transaction.

lock buffers for read

physical reads

DBWR cross-instance writes

physical writes

Determining the Costs of Synchronization In Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-13

This measure is useful for comparing how single instance environment applications

behave when running in exclusive mode as compared to how application run in

Real Application Clusters environments. This measure is also useful for comparing

the effects of different workloads and application design changes.

Measuring Global Cache Coherency and Contention
Table 5–3 describes some of the statistics in the V$SYSSTAT and V$SYSTEM_EVENT
global cache coherency-related views.

Table 5–3 Global Cache Coherency and Contention Views and Their Statistics

View Statistics

Refer to

V$SYSSTAT
to count
requests for
the actions
shown to the
right.

global cache gets (count of new resources opened)

global cache converts (count of conversions for blocks)

global cache cr blocks received (count of consistent read buffers received from the Global
Cache Service process (LMS))

global cache cr blocks served (count of consistent read buffers sent by LMS)

global cache current blocks received (count of current blocks received)

global cache current blocks served (count of current buffers sent to remote instance)

Note: Also refer to the convert type-specific rows in V$LOCK_ACTIVITY .

Refer to

V$SYSSTAT
for the
amount of
time needed
for the actions
shown to the
right.

global cache get time

global cache convert time

global cache cr block receive time

global cache cr block build time

global cache cr block flush time

global cache cr block send time

global cache current block receive time

global cache current block pin time

global cache current block flush time

global cache current block send time

Determining the Costs of Synchronization In Real Application Clusters

5-14 Oracle9i Real Application Clusters Deployment and Performance

Refer to the following statistics and views for indicators of high contention or

excessive delays:

■ global cache cr timeouts and global cache convert timeouts as found in

V$SYSSTAT

■ global cache busy and buffer busy due to global cache as found in

V$SYSTEM_EVENT

Refer to

V$SYSTEM_
EVENT for
time waited
for the events
shown to the
right.

cr request retry

global cache null to X

global cache null to S

global cache S to X

global cache open X

global cache open S

global cache cr request

global cache freelist wait

global cache bg acks

global cache pending ast

global cache retry prepare

global cache cr cancel wait

global cache pred cancel wait

View Statistics

Determining the Costs of Synchronization In Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-15

Maintaining Application Profiles per Transaction per Unit of Time
As mentioned, it is useful to maintain application profiles per transaction and per

unit of time. This enables you to compare two distinct workloads and to detect

workload changes. These rates are also helpful in determining capacities and for

identifying throughput issues. To do this, Oracle Corporation recommends that you

incorporate the following ratios of statistics in your performance monitoring scripts:

The Global Cache Service (GCS) performs block mode conversions at a per

transaction rate of:

■ global cache gets

■ global cache converts

Block transfer throughput consists of the per transaction rates of:

■ global cache cr blocks received

■ global cache cr blocks served

■ global cache current blocks received

■ global cache current blocks served

Or per transaction rates of cache convert waits for block mode conversions such as:

■ global cache null to X

■ global cache null to S

■ global cache S to X

Or per transaction rates of cache open waits for block mode conversions such as:

■ global cache open X

■ global cache open S

Calculate the same statistics per second or per minute by dividing the total counts

or times waited by the appropriate measurement interval.

Note: To record timed statistics, set the TIMED_STATISTICS
parameter to true . Oracle records these statistics in hundredths of

seconds. If you are not actively collecting statistics, however, set

TIMED_STATISTICS to false to avoid the performance overhead

required to collect statistics.

Measuring Global and Local Work Ratios in Real Application Clusters

5-16 Oracle9i Real Application Clusters Deployment and Performance

Measuring Global and Local Work Ratios in Real Application Clusters
The percentage of buffers accessed for global work, or the percentage of

cache-to-cache block transfers caused by inter-instance synchronization, can be

important measures of how efficiently your application processes share data. These

percentages can also reveal whether you have designed your database for optimum

scalability.

Use the following calculation based on statistics from V$SYSSTAT to determine the

percentage of buffer accesses for local operations, in other words, reads and

changes of database buffers that are not subject to block mode conversions:

Also consider the following formula where lock buffers for read is from V$LOCK_
ACTIVITY :

This calculation implies the percent of physical reads by user processes for local

work only; it does not refer to forced reads.

In the previous formula, subtract lock buffers for read from the physical read statistic

in V$SYSSTAT. Base the local write ratio entirely on the corresponding values from

V$SYSSTAT.

Apart from determining the proportion of local and global work (the degree of

partitioning) you can also use these percentages to detect changing workload

patterns. Moreover, these percentages represent the probability that a data block

access is either local or global. You can therefore use this information as a rough

estimator in scalability calculations.

((consistent gets db block gets) (global cache gets global cache converts) 100)

(consistent gets db block gets)

+ +- *

+

(physical reads - (lock buffers for read)) 100

physical reads

*

Measuring Global and Local Work Ratios in Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-17

In addition to these ratios, the proportion of delays due to unavailable resources is

easy to derive using the formula:

Or more generally:

When the GCS opens resources and performs block mode conversions, the

percentage of waits that are caused by unavailable resources (resources that are

being acquired or released) can indicate contention. The contention can be due to

either delays in opening or converting block modes or very high contention on

small sets of buffers.

Once you identify a problem area, such as a high ratio of global busy waits,

converts, and gets, obtain more detail about the problem by referring to the

following three views:

■ V$FILE_CACHE_TRANSFER

■ V$CACHE

■ V$CLASS_CACHE_TRANSFER

The statistics in these views identify the files and blocks shared by all instances.

These shared files may be responsible for most inter-instance synchronization costs

and global cache coherency processing.

You can also query these views to learn about block mode conversions for each file

or for each block class. Indirectly, this also indicates the number cache transfers due

to the shared cache architecture.

100 (buffer busy due to global cache)

buffer busy + buffer busy due to global cache

*

100 (buffer busy due to global cache)

consistent gets+db block gets

*

Calculating the Global Cache Synchronization Costs Due to Contention in Real Application Clusters

5-18 Oracle9i Real Application Clusters Deployment and Performance

Calculating the Global Cache Synchronization Costs Due to Contention
in Real Application Clusters

Reduced throughput and degradation of transaction response times are the result of

increased inter-instance synchronization costs. These problems can have several

sources as described in this section under the following headings:

■ Contention for the Same Data Blocks

■ Contention for Segment Headers and Free List Blocks

■ Contention for Resources other than Database Blocks

■ Contention Problems Specific to Applications Running on Real Application

Clusters

Contention for the Same Data Blocks
Contention for the same data blocks occurs if rows commonly accessed from

multiple instances are spread over a limited range of blocks. The probability of this

happening depends on the access distribution of the data within the table as a result

of the application’s behavior.

The probability of contention can also depend on the block size. For example, more

rows fit into an 8K block than into a 4K block. The PCTFREE that you defined for

the table can also affect the level of contention. In fact, database block size and

PCTFREEcan be part of your Real Application Clusters design strategy: your goal is

to reduce the number of rows for each block and thus the probability of conflicting

access. Indicators of very hot globally accessed blocks include frequent convert

timeouts or consistent read timeouts.

If you see a high proportion of global cache resource waits per transaction, then

consider determining which files and blocks are accessed frequently from all nodes.

The following describes how to use three views to identify files that are

experiencing contention.

Calculating the Global Cache Synchronization Costs Due to Contention in Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-19

Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, and V$BH
The V$CACHE, V$CACHE_TRANSFER, and V$BH views show the block classes and

blocks that Oracle transfers over the interconnect on a per-object basis. The value

for FORCED_WRITES in these views should always be 0 (zero). This is because an

LMS process transfers blocks directly to the remote instance’s cache. LMS processes

ship both the consistent read and the current blocks. In this case, the LMS process

starts, but its role is reduced.

With Cache Fusion, the values in the FORCED_READScolumn indicates the number

of times Oracle transferred a current version of particular block from another cache.

Therefore, evaluating the values in the FORCED_READS column helps identify

tables and indexes that are subject to high cache fusion activity.

Contention for Segment Headers and Free List Blocks
Contention for segment headers can occur when Oracle must read table or index

headers while many transactions simultaneously update them. This usually

happens when transactions search for blocks with enough free space to hold the

data to be inserted or updated. Oracle also updates a segment header if Oracle adds

new extents or additional free blocks the table.

New applications that insert a significant amount of data from multiple nodes can

become serious performance bottlenecks. This is because Oracle copies the segment

header block containing the free lists into another instance’s cache. This can result

in a single point of contention.

You can significantly improve this situation by creating free list groups for the

tables and indexes causing the problem. The advantage of using free list groups is

to partition access to segment free lists according to instance. This reduces conflicts

between among when the INSERT and DELETE rates are excessive.

Note: Automatic segment-space management in Oracle9i
eliminates the need to create multiple free lists or free list groups.

Calculating the Global Cache Synchronization Costs Due to Contention in Real Application Clusters

5-20 Oracle9i Real Application Clusters Deployment and Performance

Contention for Resources other than Database Blocks
Contention for resources other than database blocks should be infrequent.

However, when this occurs, it adversely affects performance. Usually, there are two

areas that can exhibit such problems as discussed in the following sections:

■ Contention for the Data Dictionary Cache and The Row Cache

■ Contention for the Library Cache

Contention for the Data Dictionary Cache and The Row Cache
The use of uncached Oracle sequences or poorly configured space parameters for a

table or tablespace can cause frequent data dictionary changes. If Oracle frequently

reads data dictionary objects and updates them from more than one instance, then

Oracle flushes the changes to the redo log and sends the block to the requesting

instance. Unfortunately, these objects are often used in recursive, internal

transactions while other resources are held. Due to the complexity of these internal

data dictionary transactions, this processing can cause serious delays.

These delays increase the values for the row cache lock wait count and time waited
statistics in V$SYSTEM_EVENT. Thus, these events become two of the most

waited-for events. The percentage of time waited for row cache locks should never

be more than 5% of the total wait time.

Query the V$ROWCACHE view to determine which objects in the row cache might be

causing delays. Oracle’s response to your query is the name of the row cache object

type, such as DC_SEQUENCES or DC_USED EXTENTS, as well as the GCS requests

and GCS conflicts for these objects. If the conflicts exceed 10 to 15 percent of the

requests, and if the row cache lock wait time is excessive, then resolve the conflicts

by caching sequence numbers, defragmenting the tablespaces, or by tuning the

space parameters.

Most frequently, problems occur when Oracle creates sequences without the CACHE
option. In these cases, the values for DC_SEQUENCES show high GCS conflict rates.

Frequent space management operations due to fragmented tablespaces or

inadequate extent sizes can result in cache transfers for DC_USED_EXTENTS and

DC_FREE_EXTENTS objects in the data dictionary cache.

Frequent data dictionary changes usually affect data blocks from the data

dictionary tables. These blocks normally belong to file number 1. In this situation,

you can find copies of these blocks in each instance’s buffer cache when you query

V$CACHE or V$CACHE_TRANSFER.

Calculating the Global Cache Synchronization Costs Due to Contention in Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-21

Contention for the Library Cache
Library cache performance problems in Real Application Clusters are rare. They

usually manifest themselves as excessive wait times for library cache pins. They can

result from frequent re-parsing of cursors or from the loading of procedures and

packages. Query the DLM columns in the V$LIBRARYCACHE view to obtain more

detail about this problem.

Cross-instance invalidations of library cache objects should be rare. However, such

invalidations can occur if you drop objects referenced by a cursor that is executed in

two instances.

Contention Problems Specific to Applications Running on Real Application Clusters
There are some significant contention problems that you should avoid in Real

Application Clusters environments. These contention problems result from inserts

into index blocks when multiple instances share sequence generators for primary

key values. You can minimize these problems by doing the following as described

in this section:

■ Using Sequence Number Multipliers

■ Using the CACHE Clause When Creating Oracle Sequences

Using Sequence Number Multipliers
A sequence number multiplier can prevent instances from inserting new entries

into the same index. For example, use a multiplier such as SEQUENCE_NUMBER x

INSTANCE_NUMBER x 1,000,000,000. This multiplier greatly increases the likelihood

that a sequence number for an instance is unique.

Using the CACHE Clause When Creating Oracle Sequences
Always use the CACHE clause when creating Oracle sequences. Creating sequences

without using the CACHE clause can create excess overhead. It can also cause

synchronization overhead if both instances use the same sequence.

Note: Oracle stores rows from the data dictionary in a separate

cache. Oracle also uses a different buffer format for these rows than

the buffer format Oracle uses in the data buffer cache.

See Also: Oracle9i SQL Reference for more information about

SEQUENCE_NUMBER, INSTANCE_NUMBER, and the CACHE clause

Resolving Performance Problems in Real Application Clusters-Based Applications

5-22 Oracle9i Real Application Clusters Deployment and Performance

Resolving Performance Problems in Real Application Clusters-Based
Applications

This section explains how to identify and resolve performance problems in Real

Application Clusters-based applications. It contains the following topics:

■ Query Tuning Tips

■ Application Tuning Tips

■ Diagnosing Performance Problems

Query Tuning Tips
Query-intensive applications benefit from tuning techniques that maximize the

amount of data for each I/O request. Before trying these techniques, monitor

performance both before and after implementing them to assess their effectiveness.

The techniques are:

■ Using Large Block Sizes

■ Increasing the Value for DB_FILE_MULTIBLOCK_READ_COUNT

Using Large Block Sizes
Use a large block size to increase the number of rows that each operation retrieves.

A large block size also reduces the depth of your application’s index trees. Your

block size should be at least 8K if your database is used primarily for processing

queries.

Increasing the Value for DB_FILE_MULTIBLOCK_READ_COUNT
Also set the value for DB_FILE_MULTIBLOCK_READ_COUNT to the largest possible

value. Doing this improves the speed of full table scans by reducing the number of

reads required to scan the table. Note that your system I/O is limited by the block

size multiplied by the number of blocks read.

If you use operating system striping, then set the stripe size to DB_FILE_
MULTIBLOCK_READ_COUNTmultiplied by the DB_BLOCK_SIZE times 2. If your

system can differentiate index stripes from table data stripes, then use a stripe size

of DB_BLOCK_SIZE multiplied by 2 for indexes.

Resolving Performance Problems in Real Application Clusters-Based Applications

General Tuning Recommendations for Real Application Clusters 5-23

Also remember to:

■ Use read-only tablespaces for data and indexes

■ Define tablespaces holding temporary segments as type TEMPORARY

Application Tuning Tips
Transaction-based applications generally write more data to disk than other

application types. You can use several methods to optimize transaction-based

applications. However, you cannot use these techniques on all types of systems.

Monitor your application’s performance both before and after initiating these

methods to make sure it is acceptable.

To improve the ability of the database writer processes (DBWn) to write large

amounts of data quickly, use asynchronous I/O. Oracle uses multiple DBWn

processes to improve performance.

If you have partitioned users by instance and if you have enough space to

accommodate the multiple free lists, then use free list groups. This helps your

application avoid dynamic data partitioning. You can also manually partition tables

by value. If the access is random, then consider using a smaller block size.

In addition to these points, also:

■ Be aware of contention on related indexes and sequence generators

■ Consider using a multi-tiered architecture to route users to achieve data affinity

and to use failover

Diagnosing Performance Problems
If your application is not performing well, then analyze each component of the

application to identify which components are causing problems. To do this, check

the operating system and GCS statistics for signs of contention or excessive CPU

usage as explained under the next heading. Measurable block mode conversions

that are excessive can reveal high read/write activity or high CPU requirements by

GCS components.

Note: Not all platforms support asynchronous I/O.

Advanced Queuing and Real Application Clusters

5-24 Oracle9i Real Application Clusters Deployment and Performance

GCS Statistics for Monitoring Contention and CPU Usage
If your application is not performing optimally, then consider examining statistics

as described in the following points:

■ Use standard tuning techniques by running Statspack or UTLBSTAT and

UTLESTAT. Then query the V$SQL view. Examine the statistics from this view

and analyze the hit ratios in the shared pool and the buffer cache.

■ Examine the dynamic performance table statistics that are created when you

run CATCLUST.SQL.

■ Use the V$LOCK_ACTIVITY table to monitor block mode conversion rates.

■ Use the V$BH table to identify which blocks are being forced written to disk.

The V$BH table sums the number of times each block’s access modes are

downgraded from exclusive to null.

■ The V$CACHE_TRANSFER view shows rows from the V$CACHE table where the

exclusive-to-null count is non-zero.

Advanced Queuing and Real Application Clusters
Using advanced queuing in Real Application Clusters environments introduces

functionality and performance-related issues as described in this section:

■ Queue Table Instance Affinity

■ Global Cache Service Resource Acquisition

■ Advanced Queuing and Queue Table Cache Transfers

Queue Table Instance Affinity
Queue table instance affinity enables you to assign primary and secondary instance

properties to queue tables. This allows automatic assignment of queue table

ownership when instances shut down and restart. You can evaluate queue table

instance affinity by querying the following views:

■ DBA_QUEUE_TABLES

■ USER_QUEUE_TABLES

Advanced Queuing and Real Application Clusters

General Tuning Recommendations for Real Application Clusters 5-25

Global Cache Service Resource Acquisition
GCS resource acquisition is more expensive than local resource or local enqueue

acquisition. If you improperly deploy advanced queuing, then its resource control

behavior can adversely affect performance in Real Application Clusters

environments. To avoid this, consider implementing the following:

■ Increase the number of blocks that are added to a free list when advancing the

high water mark

■ Disable the table locks on queue tables

■ Reduce the number of COMMITs

Advanced Queuing and Queue Table Cache Transfers
In general, cache transfers of queue table data blocks and queue table index blocks

can occur under the following circumstances:

■ Queues are accessed simultaneously from different instances

■ Oracle incorrectly assigns queue table ownership so that a queue monitor

schedules a queue from an instance that is different from the instance where the

enqueue or dequeue operations are performed

■ Oracle must perform space transactions on the queue table

You can reduce the frequency of cache block transfers by:

■ Increasing the number of blocks that Oracle adds to a free list when advancing

the high water mark

■ Using free lists and free list groups for the queue table indexes

■ Partitioning applications to access a queue from only one instance

■ Partitioning applications to create queue tables for each instance

See Also: "Disabling Table Locks for Individual Tables" on

page 4-19 for more information on disabling table locks

See Also : Oracle9i Application Developer’s Guide - Advanced
Queuing for general information about using Advanced Queuing

Advanced Queuing and Real Application Clusters

5-26 Oracle9i Real Application Clusters Deployment and Performance

Tuning Real Application Clusters and Inter-Instance Performance 6-1

6
Tuning Real Application Clusters and

Inter-Instance Performance

This chapter describes Oracle Real Application Clusters- and Cache Fusion-related

statistics and provides procedures that explain how to use them to monitor and

tune performance. This chapter also briefly explains how Cache Fusion resolves

reader/writer and writer/writer conflicts in Real Application Clusters by

describing Cache Fusion’s benefits in general terms that apply to most system and

application types. The topics in this chapter include:

■ How Cache Fusion Produces Current and Consistent Read Blocks

■ The Interconnect and Interconnect Protocols for Real Application Clusters

■ Performance Expectations of Cache Fusion

■ Monitoring Cache Fusion and Inter-Instance Performance

■ Cache Fusion and Performance Monitoring Goals

■ Statistics for Monitoring Real Application Clusters and Cache Fusion

■ Using the V$SYSTEM_EVENT View to Identify Performance Problems

See Also: Oracle9i Real Application Clusters Concepts for an

overview of Cache Fusion processing

How Cache Fusion Produces Current and Consistent Read Blocks

6-2 Oracle9i Real Application Clusters Deployment and Performance

How Cache Fusion Produces Current and Consistent Read Blocks
When one instance requests the most current copy of a data block and that copy is

in the memory cache of a remote instance, Cache Fusion resolves the read/write or

write/write conflict using remote memory access, not disk access.

When an instance sends a request for a consistent-read copy or current image of a

block to a holding instance, the holding instance logs the changes made to the block

and forces a log flush. Global Cache Service Processes (LMSn) on the holding

instance transmit the requested image of the block, as consistent read blocks or

current blocks, directly from the holding instance’s buffer cache to the requesting

instance’s buffer cache across a high speed interconnect.

Figure 6–1 illustrates how Cache Fusion enables the buffer cache of one node to

send data blocks directly to the buffer cache of another node using low latency, high

speed interconnects. This reduces the need for expensive disk I/O. Cache Fusion

also leverages new interconnect technologies for low latency, user-space based,

interprocessor communication. This potentially lowers CPU use by reducing

operating system context switches for inter-node messages.

How Cache Fusion Produces Current and Consistent Read Blocks

Tuning Real Application Clusters and Inter-Instance Performance 6-3

Figure 6–1 Cache Fusion Ships Blocks from Cache to Cache Across the Interconnect

Note: Cache Fusion is always enabled.

Shared
servers

GCS

LMS

Node 1

SGA Cache Fusion

Shared
servers

GCS

LMS

Node 2

SGA

Database
Files

Database
Files

Database
Files Redo

Logs (2)
Redo

Logs (2)

Shared Disk Subsystem

LGWR LGWRDBWR DBWR

How Cache Fusion Produces Current and Consistent Read Blocks

6-4 Oracle9i Real Application Clusters Deployment and Performance

Improved Scalability with Cache Fusion
Cache Fusion improves application transaction throughput and scalability by

providing:

■ Resolution of writer/writer and reader/writer cache coherency conflicts

without disk I/O

■ Reduced context switches and thus, reduced CPU use due to shorter sequences

for round-trip messages

■ Significantly reduced CPU use for User-mode IPC platforms

■ Current and consistent-read block transfers by way of high speed interconnects

Applications with hot spots due to blocks read or modified by multiple instances or

benefit the most from Cache Fusion. Packaged applications also scale better as a

result of Cache Fusion. Applications in which online transaction processing (OLTP)

and reporting functions execute on separate nodes can also take advantage of Cache

Fusion. In particular, the more critical OLTP response times benefit significantly

from Cache Fusion.

Reporting functions that access data from tables modified by OLTP functions

receive consistent read versions of data blocks by way of high speed interconnects.

Oracle9i release 1 (9.0.1) reduces the forced disk writes of data blocks. Performance

gains are derived primarily from reduced X-to-S block access mode conversions and

the corresponding reduction in disk I/O for X-to-S block access mode conversions.

Furthermore, the instance that was changing the cached data block before it

received a read request for that block from another instance did not have to request

exclusive access to the block again for subsequent changes. This is because the

instance that was changing the block retains the block in exclusive mode after the

block is shipped to the reading instance.

With Cache Fusion in Oracle9i release 1 (9.0.1), when an instance requests a block in

exclusive mode that is currently dirty and in another instance’s cache, Oracle still

performs an X-to-N block mode conversion (or X-to-S if the block was globally

clean). However, this down-convert operation is less expensive in release 1 (9.0.1) in

terms of overhead, because the requesting instance receives the block by way of the

interconnect. This is significantly faster than the forced disk write processing typical

of previous Oracle releases.

How Cache Fusion Produces Current and Consistent Read Blocks

Tuning Real Application Clusters and Inter-Instance Performance 6-5

Block Transfers Using High Speed Interconnects
Because Cache Fusion exploits high speed IPCs, Real Application Clusters benefits

from the performance gains of the latest technologies for low latency

communication across cluster interconnects. You can expect even greater

performance gains if you use more efficient protocols, such as Virtual Interface
Architecture (VIA) and user-mode IPCs.

Cache Fusion reduces CPU use by taking advantage of user-mode IPCs, also known

as memory-mapped IPCs, for UNIX, Windows NT, and Windows 2000 platforms. If

the appropriate hardware support is available, then operating system context
switches are minimized beyond the basic reductions achieved with Cache Fusion

alone. This also eliminates costly data copying and system calls.

If efficiently implemented by your hardware, then user-mode IPCs can reduce CPU

use. This is because user processes can communicate without using the operating

system kernel in user-mode IPC architectures. In other words, user processes do not

have to switch from user execution mode to kernel execution mode.

Elimination of I/O for Forced Disk Writes of Blocks
Cache Fusion practically eliminates disk I/O for data and undo segment blocks by

transmitting current block mode versions and consistent-read blocks directly from

one instance’s buffer cache to another. This can reduce the latency required to

resolve writer/writer and reader/writer conflicts by as much as 90 percent.

Cache Fusion resolves concurrency, as mentioned, without disk I/O. Cache Fusion

expends only one tenth of the processing effort that was required by disk-based

parallel cache management. To do this, Cache Fusion only incurs overhead for:

■ Pinning a current block, logging the changes to the block, forcing a log flush,

and sending the block

Or when requesting a consistent read version:

■ Processing the request and constructing a consistent-read copy of the requested

block in memory and transferring it to the requesting instance

Note: All applications achieve performance gains from Cache

Fusion. The degree of improvement depends on your operating

system, your application’s workload, and your overall system

configuration.

The Interconnect and Interconnect Protocols for Real Application Clusters

6-6 Oracle9i Real Application Clusters Deployment and Performance

On some platforms this can take less than one millisecond.

Partitioning Data To Further Reduce Hot Spots Due to Blocks Modified by Multiple
Instances

You can accurately assess hot spots due to blocks modified by multiple instances by

evaluating global cache resource busy and buffer busy due to global cache
statistics using V$SYSTEM_EVENT as described in Table 5–3 on page 5-14. If your

application has hot spots, consider using one of the partitioning techniques in

Chapter 3 to further reduce the cost of writer/writer conflicts.

The Interconnect and Interconnect Protocols for Real Application
Clusters

The primary components affecting Cache Fusion performance are the interconnect

and the inter-node communication protocols. The interconnect bandwidth, its

latency, and the efficiency of the IPC protocol determine the speed with which

Cache Fusion processes consistent-read block requests.

Influencing Interconnect Processing
Once your interconnect is operative, you cannot significantly influence its

performance. However, you can influence an interconnect protocol’s efficiency by

adjusting the IPC buffer sizes.

Performance Expectations of Cache Fusion
Cache Fusion performance levels can vary in terms of latency and throughput from

application to application. Performance is further influenced by the type and

mixture of transactions that your system processes.

The performance gains from Cache Fusion also vary with each workload. The

hardware, the interconnect protocol specifications, and the operating system

resource use also affect performance.

See Also: Oracle9i Real Application Clusters Installation and
Configuration for a list of the supported interconnect protocols

See Also: For more information, consult your vendor-specific

interconnect documentation

Cache Fusion and Performance Monitoring Goals

Tuning Real Application Clusters and Inter-Instance Performance 6-7

If your application did not demonstrate a significant amount of consistent-read or

write/write contention prior to Cache Fusion, then your performance with Cache

Fusion will likely remain unchanged. However, if your application experienced

numerous block mode conversions and heavy disk I/O as a result of

consistent-read or writer/writer conflicts, your performance with Cache Fusion

should improve significantly.

The following section, "Monitoring Cache Fusion and Inter-Instance Performance",

describes how to evaluate Cache Fusion performance in more detail.

Monitoring Cache Fusion and Inter-Instance Performance
This section describes how to obtain and analyze Real Application Clusters and

Cache Fusion statistics to monitor inter-instance performance. Topics in this section

include:

■ Cache Fusion and Performance Monitoring Goals

■ Statistics for Monitoring Real Application Clusters and Cache Fusion

■ Using the V$SYSTEM_EVENT View to Identify Performance Problems

Cache Fusion and Performance Monitoring Goals
The main goal of monitoring Cache Fusion and Real Application Clusters

performance is to determine the cost of global processing and to quantify the

resources required to maintain coherency and synchronize the instances. Do this by

analyzing the performance statistics from several views as described in the

following sections. Use these monitoring procedures on an on-going basis to

observe processing trends and to optimize processing.

Many statistics measure the work done by different components of the database

kernel, such as the cache layer, the transaction layer, or the I/O layer. Moreover,

timed statistics allow you to accurately determine the amount of time spent

processing certain requests or the amount of time waited for specific events. From

these statistics, you can derive work rates, wait times, and efficiency ratios.

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-8 Oracle9i Real Application Clusters Deployment and Performance

Statistics for Monitoring Real Application Clusters and Cache Fusion
Oracle collects Cache Fusion-related performance statistics from the buffer cache

and Global Cache Service (GCS) layers. Oracle also collects general Real

Application Clusters statistics for block requests and block mode conversion waits.

You can use several views to examine these statistics.

Maintaining an adequate history of system performance helps identify trends as

these statistics change. This helps identify problems that contribute to increased

response times and reduced throughput. A history of performance trends is also

helpful in identifying workload changes and peak processing requirements.

Procedures in this section use statistics grouped according to the following topics:

■ Analyzing Global Cache and Cache Fusion Statistics

■ Analyzing Global Enqueue Statistics

■ Analyzing GES Resource, Message, and Memory Resource Statistics

■ GES Message Statistics Processing

■ Analyzing Latch Statistics in Real Application Clusters

As described in Chapter 5, consider maintaining statistics from the V$SYSSTAT
view and the V$SYSTEM_EVENT view on a per second and per transaction basis.

This reveals a general profile of the workload. Relevant observations from these

views are:

■ Requests or counts per transaction, for example, global cache current blocks

served per transaction

■ Wait times or elapsed times per transaction, for example, time per transaction

for waits for busy buffers, and block mode convert times per transaction

■ Requests or counts per second

See Also:

■ Chapter 5 for additional suggestions on which statistics to

collect and how to use them to compute performance ratios

■ Chapter 7 for more information on statistics gathered by Oracle
Enterprise Manager, and for information on using Oracle

Enterprise Manager to monitor Real Application Clusters

environments

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-9

■ Average times per request, for example, average time to receive a consistent

read buffer from another instance

By maintaining these statistics, you can accurately estimate the effect of an

increasing cost for a certain type of operation on transaction response times. Major

increases in work rates or average delays also contribute to identifying capacity

issues.

You must set the parameter TIMED_STATISTICS to true to make Oracle collect

statistics for most views discussed in the procedures in this section. The timed

statistics from views discussed in this chapter are displayed in units of 1/100ths of a

second.

Creating Real Application Clusters Data Dictionary Views with CATCLUST.SQL
You must run CATCLUST.SQL to create Real Application Cluster-related views and

tables for storing and viewing statistics. To run this script, you must have SYSDBA
privileges.

CATCLUST.SQL creates the standard V$ dynamic views, as well as:

■ GV$CACHE

■ GV$CACHE_TRANSFER

■ GV$CLASS_CACHE_TRANSFER

■ GV$FILE_CACHE_TRANSFER

■ GV$ROWCACHE

■ GV$LIBRARYCACHE

Even though the shared disk architecture eliminates forced disk writes, V$FILE_
CACHE_TRANSFER, V$CLASS_CACHE_TRANSFER,and V$CACHE_TRANSFER still

show the number of block mode conversions per block class or object. However, as

mentioned, the FORCED_WRITES column will be 0 (zero). This indicates that, for

example, an X-to-N conversion resulted in a cache block transfer without incurring

forced disk writes.

See Also: Oracle9i Database Reference for more information on

dynamic performance views

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-10 Oracle9i Real Application Clusters Deployment and Performance

Global Dynamic Performance Views
Each active instance has its own set of instance-specific views. You can also query

global dynamic performance views to retrieve the V$ view information from all

qualified instances. Global dynamic performance views’ names are prefixed with

GV$. A global fixed view is available for all dynamic performance views except:

■ V$ROLLNAME

■ V$CACHE_LOCK

■ V$LOCK_ACTIVITY

■ V$LOCKS_WITH_COLLISIONS

The global view contains all columns from the instance-specific view, with an

additional column, INST_ID of datatype INTEGER. This column displays the

instance number from which the associated V$ information was obtained. You can

use the INST_ID column as a filter to retrieve V$ information from a subset of

available instances. For example, the query retrieves information from the V$ views

on instances 2 and 5:

 SELECT * FROM GV$LOCK WHERE INST_ID = 2 or INST_ID = 5;

Each global view contains a GLOBALhint that creates a query executed in parallel to

retrieve the contents of the local views on each instance.

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and you

attempt to query a GV$ view, then Oracle spawns one additional parallel execution
server process for this purpose. The extra process is not available for parallel

operations other than GV$ queries.

If you have reached the limit of PARALLEL_MAX_SERVERSon an instance and issue

multiple GV$ queries, then all but the first query will fail. In most parallel queries, if

a server process could not be allocated it would result in either an error or a

sequential execution of the query by the query coordinator.

Note: If PARALLEL_MAX_SERVERS is set to zero for an instance,

then additional parallel execution server processes do not spawn to

accommodate a GV$ query.

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-11

Analyzing Global Cache and Cache Fusion Statistics
Oracle collects global cache statistics at the buffer cache layer within an instance.

These statistics include counts and timings of requests for global resources.

Requests for global resources for data blocks originate in the buffer cache of the

requesting instance. Before a request enters the GCS request queue, Oracle allocates

data structures in the System Global Area (SGA) to track the state of the request.

These structures are called resources.

To monitor global cache statistics, query the V$SYSSTAT view and analyze its

output as described in the following procedures and equations.

Procedures for Monitoring Global Cache Statistics
Complete the following steps to analyze global cache statistics.

1. Use the following syntax to query V$SYSSTAT:

 SELECT NAME,VALUE FROM V$SYSSTAT WHERE NAME LIKE ’%global cache%’;

Oracle responds with output similar to:

NAME VALUE
--- ----------
global cache blocks corrupt 0
global cache blocks lost 0
global cache claim blocks lost 0
global cache convert time 287709
global cache convert timeouts 0
global cache converts 137879
global cache cr block build time 4328
global cache cr block flush time 9565
global cache cr block receive time 742421
global cache cr block send time 10119
global cache cr blocks received 448301
global cache cr blocks served 442322

See Also:

■ "Flexible Parallelism within Real Application Clusters

Environments" on page 2-6

■ Oracle9i Database Reference for restrictions on GV$ views and

complete descriptions of all related parameters and V$

dynamic performance views

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-12 Oracle9i Real Application Clusters Deployment and Performance

global cache current block flush time 10944
global cache current block pin time 27318
global cache current block receive time 254702
global cache current block send time 2819
global cache current blocks received 132248
global cache current blocks served 130538
global cache defers 4836
global cache freelist waits 0
global cache get time 15613
global cache gets 9178
global cache prepare failures 0
23 rows selected.

2. Calculate the average latency of a consistent block request, in other words, its

round-trip time, as:

The result, which should typically be about 15 milliseconds depending on your

system configuration and volume, is the average latency of a consistent-read

request round-trip from the requesting instance to the holding instance and

back to the requesting instance. If your CPU has limited idle time and your

system typically processes long-running queries, then the latency may be

higher. However, it is possible to have an average latency of less than one

millisecond with User-mode IPC.

Request latency can also be influenced by a high value for the DB_MULTI_
BLOCK_READ_COUNT parameter. This is because a requesting process can issue

more than one request for a block depending on the setting of this parameter.

Correspondingly, the requesting process may wait longer.

3. For a high number of incoming requests, especially in report-intensive

applications, or if there are multiple nodes from which requests are dispatched

to an LMS process, the round-trip time can increase because LMS’ service time

increases. To determine whether the length of the delay is caused by LMS

global cache cr block receive time

global cache cr blocks received

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-13

overhead, compute the average service time per request using the following

equation:

Over a period of time during peak processing intervals, track the average LMS

service time per request and the total round-trip time per request as presented

in this step.

To determine which part of the service time correlates most with the total

service time, derive the time waited to queue the consistent-read request, the

time needed to build the consistent-read block, the time waited for a log flush

and the time spent to send the completed request using the following three

equations.

Time needed to build the consistent-read block:

Time waited for a log flush:

Time spent to send the completed request:

By calculating these averages, you can account for almost all the processing

steps of a consistent read block request. The remaining difference between the

total round-trip time and the LMS service time per request is the queuing time

global cache cr [queue + build + flush + send] time

global cache cr blocks served

global cache cr block build time

global cache cr blocks served

global cache cr block flush time

global cache cr blocks served

global cache cr block send time

global cache cr blocks served

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-14 Oracle9i Real Application Clusters Deployment and Performance

for the Global Enqueue Service Daemon (LMD) to dispatch the request to the

LMS process and the processing time for LMS and network IPC time.

4. Calculate the average latencies for a request for a current block:

The following equation is for receiving a current block:

5. Calculate which part of the time is spent to serve a request for a current block:

The service time for a current block request encompasses the pin time and the send

time. The next two equations help you determine processing times for the various

steps of a cache transfer.

Determining pin time:

Determining send time:

global cache current block receive time

global cache current blocks received

global cache current block [pin + flush + send] time

global cache current blocks served

global cache current block pin time

global cache current blocks served

global cache current block send time

global cache current blocks served

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-15

6. Calculate the average convert times and average get times using one of these

formulas:

When analyzing the results from this step, consider the following points:

■ High convert times can indicate excessive global concurrency.

■ A large number of global cache gets, global cache converts, and rapid increases

in average convert or get times indicates excessive contention for GCS

operations

■ For Global Enqueue Service (GES) operations, refer to "Analyzing Global

Enqueue Statistics" on page 6-16

■ Latencies for resource operations can be excessive due to overall system

workload or system problems.

Oracle increments global cache gets when a new resource is opened. A convert

is counted when there is already an open resource and Oracle converts the

resource to another mode.

Therefore, the elapsed time for a get includes the allocation and initialization of

new resources. If the average cache get or average convert times are excessive,

then your system may be experiencing timeouts.

If the global cache convert times or global cache get times are excessive, then

refer to statistics in the V$SYSTEM_EVENT view to identify events with a high

value for TIME_WAITED statistics.

7. Analyze block mode conversion timeouts by examining the value for global
cache convert timeouts. If your V$SYSSTAT output shows a value other than

zero for this statistic, then check your system for congestion or high contention.

In general, convert timeouts should not occur; their existence indicates serious

performance problems.

Note: A reasonable value for a cache get is 20 to 30 milliseconds

while converts should average 10 to 20 milliseconds.

global cache convert time

global cache converts

global cache get time

global cache gets
or

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-16 Oracle9i Real Application Clusters Deployment and Performance

8. Analyze the global cache consistent-read timeouts by examining the value for

this statistic in your V$SYSSTAT output. Oracle increments this statistic after

the system waits too long for the completion of a consistent-read request. If this

statistic shows a value other than zero, then too much time has elapsed after the

initiation of a consistent-read request and a timeout has occurred. If this

happens, then you also usually find that the average time for consistent-read

request completions has increased. If you have timeouts and the latency is high,

then your system may have an excessive workload or there may be excessive

contention for data blocks. Timeouts might also indicate IPC or network

problems.

Analyzing Global Enqueue Statistics
Global enqueue statistics provide latencies and counts for Global Enqueue Service
(GES) activity. Oracle collects global enqueue statistics from the GES API layer. All

Oracle clients to the GES make their requests to the GES through this layer. Thus,

global resource statistics include global enqueue requests originating from all layers

of the kernel while global cache statistics relate to buffer cache activity.

Use the procedures in this section to monitor data from the V$SYSSTAT view to

derive GES latencies, counts, and averages. This helps estimate the Real Application

Clusters workload generated by an instance.

Procedures for Analyzing Global Enqueue Statistics
Use the following procedures to view and analyze statistics from the V$SYSSTAT
view for global enqueue processing.

1. Use this syntax to query V$SYSSTAT:

 SELECT NAME, VALUE FROM V$SYSSTAT WHERE NAME LIKE ’%global lock%’;

Oracle responds with output similar to:

NAME VALUE
-- ----------
global lock sync gets 703
global lock async gets 12748
global lock get time 1071
global lock sync converts 303
global lock async converts 41
global lock convert time 93
global lock releases 573
7 rows selected.

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-17

Use your V$SYSSTAT output to perform the calculations and analyses

described in procedures 2 through 5.

2. Calculate the average global enqueue get time using this formula:

If the result is more than 20 or 30 milliseconds, then query the TIME_WAITED
column in the V$SYSTEM_EVENT view using the descending (DESC) keyword

to identify which resource events are waited for most frequently using this

query:

 SELECT TIME_WAITED, AVERAGE_WAIT
 FROM V$SYSTEM_EVENT
 ORDER BY TIME_WAITED DESC;

Oracle increments global lock gets when Oracle opens a new global enqueue for a

resource. A convert is counted when there is already an open global enqueue on a

resource and Oracle converts the global enqueue access mode to another mode.

Thus, the elapsed time for a get includes the allocation and initialization of a new

global enqueue. If the average global enqueue get (global cache get time) or

average global enqueue (from the above formula) conversion times are excessive,

then your system may be experiencing timeouts.

If the global enqueue conversion times or global enqueue get times are high, then

refer to statistics in the V$SYSTEM_EVENTview to identify events with a high value

for TIME_WAITED statistics.

3. Calculate the average global lock convert time using this formula:

If the result is more than 20 milliseconds, then query the TIME_WAITEDcolumn

in the V$SYSTEM_EVENT view using the DESC keyword to identify the event

causing the delay.

global lock get time

(global lock sync gets + global lock async gets)

global lock convert time

(global lock sync converts + global lock async converts)

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-18 Oracle9i Real Application Clusters Deployment and Performance

4. As mentioned, global enqueue statistics apply only to operations that do not

involve data blocks. To determine which types of resources may be causing

performance problems, divide the global enqueue get and global enqueue

conversion statistics into two categories:

■ Synchronous Operations

Synchronous global enqueue gets include, for example, global lock sync

gets. To determine the proportion of the time required for synchronous

global enqueue gets, divide the global lock gets time or global lock convert

time by the corresponding number of synchronous operations.

■ Asynchronous Operations

Asynchronous global enqueue operations include, for example, global lock
async gets. These are typically global enqueue operations from

non-blocking process to synchronize inter-instance activity. You can derive

the proportion of the total time using the same calculation as you used for

synchronous operations. In this way, you can determine the proportion of

work and the cost of global enqueue requests.

Normally, if the proportion of global enqueue requests other than global

cache requests dominates the cost for all global resource operations, the

V$SYSTEM_EVENT view shows high wait times for row cache locks,

enqueues or library cache pins.

5. Analyze the V$LIBRARYCACHEand V$ROWCACHE views to observe GES

activity on local resources. These views have GES-specific columns that identify

GES resource use. Analyze these views for GES activity if you have frequent

and extended waits for library cache pins, enqueues, or DFS Lock Handles.

Analyzing GES Resource, Message, and Memory Resource Statistics
Use GES resource and message statistics to monitor GES latency and workloads.

These statistics appear in the V$GES_CONVERT_LOCALand V$GES_CONVERT_
REMOTE views.

These views record average convert times, count information, and timed statistics

for global enqueue requests. The V$GES_CONVERT_LOCALview shows statistics for

local GES enqueue operations. The V$GES_CONVERT_REMOTEview shows values

for remote GES enqueue conversions. These views display the average convert

times in 100ths of a second.

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-19

How GES Workloads Affect Performance
The Global Enqueue Service (GES) manages all the non-Cache Fusion intra- and

inter-instance resource operations. High GES workload request rates can adversely

affect performance. The GES performs local enqueue resource operations entirely

within the local node, or in other words, without sending messages. Remote

enqueue resource operations require sending messages to and waiting for responses

from other nodes. Most down-converts, however, are local operations for the GES.

The following procedures for analyzing GES resource and message statistics appear

in two groups. The first group of procedures explains how to monitor GES

resources. The second group explains how to monitor message statistics.

Procedures for Analyzing GES Resource Statistics
Use the following procedures to obtain and analyze statistics from the V$GES_
CONVERT_LOCAL and V$GES_CONVERT_REMOTE views for GES resource

processing.

You must enable event 29700 to populate the V$GES_CONVERT_LOCAL and V$GES_
CONVERT_REMOTEviews. Do this by entering the following syntax in your

initialization parameter file:

 EVENT="29700 TRACE NAME CONTEXT FOREVER"

1. Use this syntax to query the V$GES_CONVERT_LOCAL view:

 SELECT CONVERT_TYPE,
 AVERAGE_CONVERT_TIME,
 CONVERT_COUNT
 FROM V$GES_CONVERT_LOCAL;

Oracle responds with output similar to:

CONVERT_TYPE AVERAGE_CONVERT_TIME CONVERT_COUNT
-------------------------------------- -------------------- -------------
NULL -> SS 0 0
NULL -> SX 0 0

Note: The $GES_CONVERT_LOCAL and V$GES_CONVERT_
REMOTE views still include rows for block mode conversions from

and to SSX, although SSX no longer exists. Therefore, the value in

the CONVERT_COUNT and AVERAGE_CONVERT_TIME columns for

SSX conversions is always zero.

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-20 Oracle9i Real Application Clusters Deployment and Performance

NULL -> S 1 146
NULL -> SSX 0 0
NULL -> X 1 92
SS -> SX 0 0
SS -> S 0 0
SS -> SSX 0 0
SS -> X 0 0
SX -> S 0 0
SX -> SSX 0 0
SX -> X 0 0
S -> SX 0 0
S -> SSX 0 0
S -> X 3 46
SSX -> X 0 0
16 rows selected.

2. Use this syntax to query the V$GES_CONVERT_REMOTE view:

 SELECT * FROM V$GES_CONVERT_REMOTE;

Oracle responds with output that is identical in format to the output from the

V$GES_CONVERT_LOCAL view.

Use output from the V$GES_CONVERT_LOCAL and V$GES_CONVERT_REMOTE
views to perform the calculation described in the following procedure that

performs a join over the two views.

3. Calculate the ratio of local-to-remote global enqueue resource operations using

this query:

 SELECT
 r.CONVERT_TYPE,
 r.AVERAGE_CONVERT_TIME,
 l.AVERAGE_CONVERT_TIME,
 r.CONVERT_COUNT,
 l.CONVERT_COUNT,
 FROM V$GES_CONVERT_LOCAL l, V$GES_CONVERT_REMOTE r
 WHERE r.convert_count <> 0 OR l.convert_count <> 0
 GROUP BY r.CONVERT_TYPE;

4. It is useful to maintain a history of workloads and latencies for block mode

conversions. Changes in resource requests per transaction without increases in

average latencies usually result from changing application workload patterns.

The deterioration of both request rates and latencies usually indicates an

increased rate of resource conflicts or an increased workload due to message

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-21

latencies, system problems, or timeouts. If the LMD processes show excessive

CPU consumption, or if consumption is greater than 20 percent of the CPU

while overall system resource consumption is normal, then consider binding

the LMD process to a specific processor if the system has more than one CPU.

The instance starts at least one LMS process; the instance sometimes starts more

than one LMS process depending on the availability of system resources.

If latencies increase, then examine CPU data and other operating system

statistics that you can obtain using utilities such as sar, vmstat and netstat on

UNIX or Perfmon on Windows NT and Windows 2000.

5. Derive an estimate of CPU busy time for LMD from the V$SYSTEM_EVENT
view.

For a quick estimate of the CPU time spent by LMD, transform the wait time

event for LMD presented in the V$SYSTEM_EVENTview. To do this, look for

the event name ges remote messages that represents the time that the LMD

process is idle. The TIME_WAITED column contains the accumulated idle time

for LMD in units of hundredths of a second.

To derive the busy time, divide the value for TIME_WAITED by the length of

the measurement interval after normalizing it to seconds. In other words, a

value of 17222 centiseconds is 172.22 seconds. The result is the idle time of the

LMD process, or the percentage of idle time. Subtract that value from 1 and the

result is the busy time for the LMD process. This is a fairly accurate estimate

when compared with operating system utilities that provide information about

CPU utilization per process.

GES Message Statistics Processing
The GES sends messages for both Global Cache and Global Enqueue Services either

directly or with flow control. For both methods, the GES attaches a marker, known

as a ticket, to each message. The allotment of tickets for each GES is limited.

However, the GES can re-use tickets indefinitely.

The LMS process, with the LMD process, manages flow-controlled messaging. LMS

sends messages to remote instances, and it does this until no more tickets are

available. When the GES runs out of tickets, messages must wait in a flow control

Note: You should have beginning and ending snapshots to make

accurate calculations.

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-22 Oracle9i Real Application Clusters Deployment and Performance

queue until outstanding messages have been acknowledged and more tickets are

available.

The rationing of tickets prevents one node from sending an excessive amount of

messages to another node during periods of heavy inter-instance communication.

This also prevents one node with heavy remote consistent-read block requirements

from assuming control of messaging resources throughout a cluster at the expense

of other, less-busy nodes.

The V$GES_STATISTICS view contains the following statistics about message

activity:

■ messages sent directly

■ messages flow controlled

■ messages sent indirectly

■ messages received

■ flow control messages sent

■ flow control messages received

Procedure for Analyzing GES Message Statistics
Use the following procedure to obtain and analyze message statistics in the V$GES_
STATISTICS view.

1. Use this syntax to query the V$GES_STATISTICS view:

 SELECT * FROM V$GES_STATISTICS;

Oracle responds with output similar to:

STATISTIC# NAME VALUE
---------- -- ----------
 0 messages sent directly 140019
 1 messages flow controlled 1211
 2 messages sent indirectly 9485
 3 messages received 155287
 4 flow control messages sent 0
 5 flow control messages received 0
 6 dynamically allocated enqueues 0
 7 dynamically allocated resources 0
 8 gcs msgs received 154079
 9 gcs msgs process time(ms) 192866
 10 ges msgs received 1198

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-23

 11 ges msgs process time(ms) 355
 12 msgs causing lmd to send msgs 256
 13 lmd msg send time(ms) 0
 14 gcs side channel msgs actual 1304
 15 gcs side channel msgs logical 130400
 16 gcs pings refused 68
 17 gcs writes refused 3
 18 gcs error msgs 0
 19 gcs out-of-order msgs 30
 20 gcs immediate (null) converts 1859
 21 gcs immediate cr (null) converts 5
 22 gcs immediate (compatible) converts 38
 23 gcs immediate cr (compatible) converts 5
 24 gcs blocked converts 49570
 25 gcs queued converts 159
 26 gcs blocked cr converts 124860
 27 gcs compatible basts 0
 28 gcs compatible cr basts 0
 29 gcs cr basts to PIs 0
 30 dynamically allocated gcs resources 0
 31 dynamically allocated gcs shadows 0
 32 gcs recovery claim msgs actual 0
 33 gcs recovery claim msgs logical 0
 34 gcs write request msgs 17
 35 gcs flush pi msgs 7
 36 gcs write notification msgs 0
37 rows selected.

Analyzing Block Mode Conversions by Type
This section describes how to analyze output from three views to quantify block

mode conversions by type. The tasks and the views discussed in this section are:

■ Using the V$LOCK_ACTIVITY View to Analyze Block Mode Conversions

■ Using the V$CLASS_CACHE_TRANSFER View to Identify Block Mode

Conversions by Block Class

■ Using the V$CACHE_TRANSFER View to Identify Hot Objects

Note: Oracle support may request information from your V$GES_
STATISTICS output for debugging.

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-24 Oracle9i Real Application Clusters Deployment and Performance

Using the V$LOCK_ACTIVITY View to Analyze Block Mode Conversions
The V$LOCK_ACTIVITY view summarizes how many block mode up- and

down-converts have occurred during an instance’s lifetime. X-to-N or X-to-S

down-converts denote the number of times a block mode was down-converted

because another instance attempted to modify a block that is currently held in

exclusive mode on another instance.

Using the V$CLASS_CACHE_TRANSFER View to Identify Block Mode
Conversions by Block Class
The V$CLASS_CACHE_TRANSFER view summarizes block mode conversion

activity.

■ Data blocks

■ Segment headers

■ Extent headers

■ Undo blocks

With a shared disk architecture, the FORCED_WRITES column is always 0 (zero)

because X-to-N or X-to-S down-converts do not result in forced disk writes.

Using the V$CACHE_TRANSFER View to Identify Hot Objects
The V$CACHE_TRANSFERview helps identify hot blocks and hot objects.

All three views provide different levels of detail. You can monitor the V$LOCK_
ACTIVITY view to generate an overall Real Application Clusters workload profile.

Use information from the V$LOCK_ACTIVITY view to record the rate at which

block mode conversions occur.

For more details, use the V$CLASS_CACHE_TRANSFER view to identify the type of

block on which block mode conversions are occurring. Once you have identified the

class, use the V$CACHE_TRANSFERview to obtain details about a particular table or

index and the file and block numbers on which there is significant block mode

conversion activity.

If your response time or throughput requirements are no longer being met, then

examine the V$LOCK_ACTIVITY, V$CLASS_CACHE_TRANSFER, V$CACHE,

V$CACHE_TRANSFERor V$FILE_CACHE_TRANSFER views. In addition, you

might also examine:

■ V$SYSSTAT to identify an increase in resource requests per transaction

Statistics for Monitoring Real Application Clusters and Cache Fusion

Tuning Real Application Clusters and Inter-Instance Performance 6-25

■ V$SYSSTEM_EVENT to identify longer waits for global cache resources or

consistent read server requests per transaction

■ Global and local work done as described in Chapter 5 to see if there is a

noticeable change in performance percentages

In summary, a change in your application profile and work rates typically warrants

a detailed analysis using the previously-mentioned views. Apart from diagnosing

performance problems of existing applications, these views are also useful when

developing applications or when deciding on a partitioning strategy.

Analyzing Latch Statistics in Real Application Clusters
Latches are low-level locking mechanisms that protect SGA data structures. You

can use the V$LATCH and V$LATCH_MISSES views to monitor latch contention

within the GCS. These views show information about a particular latch, its statistics,

and the location in the code from where the latch is acquired.

For normal operations, the value of latch statistics is limited. In some cases, multiple

latches can improve performance to a limited degree for certain layers. Excessive

latch contention degrades performance and is often the result of one or both of the

following:

■ Higher level performance issues or a poorly tuned system

■ Oracle internal inefficiencies or performance bugs

Use the following procedures to identify latch contention. However, Oracle does

not recommend that you monitor these statistics on a regular basis and derive

conclusions solely on the basis of latching issues.

In the majority of cases, latch contention will not be your actual performance

problem. On the other hand, record information from these procedures if the TIME_
WAITED value for the latch free wait event is excessive and if it ranks among the

events that accrue the largest times as indicated by the V$SYSTEM_EVENT view. In

addition, gathering this information might be useful to Oracle Support or Oracle

Development.

Procedures for Analyzing Latch Statistics
Use the following procedures to analyze latch, Real Application Clusters, and GCS-

and GES-related statistics.

1. Query the V$LATCH view using this syntax:

 SELECT NAME, GETS, MISSES, SLEEPS FROM V$LATCH;

Statistics for Monitoring Real Application Clusters and Cache Fusion

6-26 Oracle9i Real Application Clusters Deployment and Performance

2. If the output reveals a high ratio of sleeps to misses (usually, a ratio above 1

indicates performance issues), then attempt to determine where the sleeps

occur. To do this, execute this query on the V$LATCH_MISSES view:

 SELECT PARENT_NAME, WHERE, SLEEP_COUNT
 FROM V$LATCH_MISSES
 ORDER BY SLEEP_COUNT DESC;

Oracle responds with output similar to:

Use your V$LATCH and V$LATCH_MISSES output to perform the following

procedures.

3. Calculate the ratio of gets to misses using your V$LATCH output from step 1 in

this section using the following formula:

Excessive numbers for misses usually indicate contention for the same

resources. Acceptable ratios range from 90 to 95%.

4. Analyze the ratio of sleeps to misses using your V$LATCH_MISSESoutput from

step 1 in this section. This ratio determines how often a process sleeps when it

cannot immediately get a latch.

A ratio of 2 means that for each miss, a process attempts to get a latch twice

before acquiring it. A high number of sleeps-to-misses usually indicates process

PARENT_NAME WHERE SLEEP_COUNT

------------------- -------------------- ------------

ges resource hash list kjrrmas1: lookup master n 39392

cache buffers chains kcbgtcr: kslbegin 27738

library cache kglhdgn: child: 15408

shared pool kghfnd: min scan 6876

cache buffers chains kcbrls: kslbegin 2124

shared pool kghalo 1667

ges process parent kjucll: delete lock from 1464

7 rows selected.

gets

misses

Using the V$SYSTEM_EVENT View to Identify Performance Problems

Tuning Real Application Clusters and Inter-Instance Performance 6-27

scheduling delays or high operating system workloads. It can also indicate

internal inefficiencies or high concurrency on one resource. For example, when

many resources are opened simultaneously, then processes might have to wait

for a resource latch.

In the V$LATCH_MISSES view, the WHERE column shows the function in which

the latch is acquired. This information is useful in determining internal

performance problems. Usually, the latch slept on for long periods shows up in

the V$SESSION_WAIT or V$SYSTEM_EVENT views under the ’latch free’ wait

event category.

The next section describes using the V$SYSTEM_EVENT view in more detail.

Using the V$SYSTEM_EVENT View to Identify Performance Problems
Data about Cache Fusion and Real Application Clusters events appears in the

V$SYSTEM_EVENT view. To identify events for which processes have waited the

longest, query the V$SYSTEM_EVENT view on the TIME_WAITED column using the

descend (DESC) keyword. The TIME_WAITED column shows the total wait time for

each system event listed.

By generating an ordered list of wait events, you can easily locate performance

bottlenecks. Each COUNT represents a voluntary context switch. The TIME_WAIT
value is the cumulative time that processes waited for particular system events. The

values in the TOTAL_TIMEOUT and AVERAGE_WAIT columns provide additional

information about system efficiency.

Oracle Corporation recommends dividing the sum of values from the TOTAL_
WAITS and TIME_WAITED columns by the number of transactions, as outlined in

Chapter 5. Transactions in this sense can be defined as business transactions, for

example, insurance quotes, order entry, and so on. Or you can define them on the

basis of user commits or executions, depending on your perspective.

Using the V$SYSTEM_EVENT View to Identify Performance Problems

6-28 Oracle9i Real Application Clusters Deployment and Performance

The goal is to estimate which event type contributes the most to transaction

response times, because in general:

By this rationale, the total wait time can be divided into subcomponents of the wait

time as shown in the following equations where tm is time waited:

It is also useful to derive the total wait time by adding the individual events and

observing the percentages that are spent waiting for each event. This enables you to

derive the major cost factors for transaction response times. Reducing the time for

the largest proportion of the waits has the most significant effect on response time.

Real Application Clusters Events in V$SYSTEM_EVENT
The following events appearing in the V$SYSTEM_EVENT output represent waits

for Real Application Clusters events:

■ global cache cr request

■ library cache pin

■ buffer busy due to global cache

■ global cache busy

■ global cache open x

■ global cache open s

■ global cache null to x

■ global cache s to x

■ global cache null to s

response time

number of transactions
=

CPU time

number of transactions
+

wait time

number of transactions

total wait time

number of transactions
=

(db file sequential read tm)

number of transactions
+ + . . .

(global cache cr request tm)

number of transactions

Using the V$SYSTEM_EVENT View to Identify Performance Problems

Tuning Real Application Clusters and Inter-Instance Performance 6-29

Events Related to Server Coordination Resources
You can monitor other events in addition to those listed under the previous heading

because performance problems can be related to server coordination processing

within Real Application Clusters. These events are:

■ Row cache locks

■ Enqueues

■ Library cache pins

■ DFS lock handle

General Observations for Tuning Inter-Instance Performance
If the time waited for global cache events is high relative to other types of waits,

then look for increased latencies, contention, or excessive system workloads. Do this

using V$SYSSTAT statistics and operating system performance monitors. Excessive

global cache busy or buffer busy waits indicates increased contention in the buffer

cache.

If excessive wait time is used by waits for non-buffer cache resources as shown by

statistics in the rows row cache lock, enqueues, and library cache pin, then monitor the

V$ROWCACHE and V$LIBRARYCACHE views for Real Application Cluster-related

issues. Specifically, observe the values in the DLM columns of each of these views.

Real Application Clusters problems commonly arise from poorly managed space

parameters or sequence numbers that are not cached. In such cases, processes wait

for row cache locks and enqueues and the V$ROWCACHE view shows excessive

conflicts for certain dictionary caches.

Note: In OLTP systems with data block address locking and a

high degree of contention, it is not unusual when the global cache

wait events represent a high proportion of the sum of the total time
waited.

Using the V$SYSTEM_EVENT View to Identify Performance Problems

6-30 Oracle9i Real Application Clusters Deployment and Performance

Part IV
 Using Oracle Enterprise Manager to

Monitor and Tune Real Application
Clusters Databases

Part Four contains information about using Oracle Enterprise Manager to monitor

and tune the performance of Real Application Cluster databases. The chapter in

Part Four is:

■ Chapter 7, "Monitoring Performance with Oracle Performance Manager"

Monitoring Performance with Oracle Performance Manager 7-1

7
Monitoring Performance with Oracle

Performance Manager

This chapter presents the Oracle Performance Manager performance and tuning

charts for Oracle Real Application Clusters. You must install and configure Oracle

Performance Manager to display the charts. This chapter describes only Oracle

Performance Manager features specific to Real Application Clusters. Use this

chapter as a supplement to general information contained in the Getting Started with
the Oracle Standard Management Pack.

This chapter covers the following topics:

■ Oracle Performance Manager Overview

■ Starting Oracle Performance Manager

■ Displaying Charts

See Also:

■ Oracle9i Real Application Clusters Installation and Configuration
for further information about installing Oracle Performance

Manager

■ Oracle9i Database Performance Guide and Reference for detailed

information about the statistics these charts display and how to

interpret these statistics

■ Oracle9i Database Reference for more information about the fields

in these charts and the V$ views from which they are derived

■ Oracle Enterprise Manager Administrator’s Guide for charts and

statistics that are specific to Oracle Enterprise Manager

Oracle Performance Manager Overview

7-2 Oracle9i Real Application Clusters Deployment and Performance

Oracle Performance Manager Overview
Oracle stores tuning and performance information for a Real Application Clusters

database in a set of dynamic performance tables known as V$ fixed views. Each

active instance has its own set of fixed views. You can use Oracle Performance

Manager to query a global dynamic performance (GV$) view to retrieve the related

V$ view information from all instances.

Oracle Performance Manager displays the retrieved information in a variety of

tabular and graphic performance charts for Real Application Clusters. The statistics

represent the aggregate performance of all instances of a cluster database running

on cluster. The statistics are displayed in individual charts and include information

about data block pings, lock activity, file I/O, and session and user information.

You can also use the Performance Manager to display an overview of several key

statistics on one chart.

Performance monitoring is crucial for realizing the full potential of the system.

There are several key performance metrics that you should constantly monitor to

keep Real Application Clusters in peak operating condition. The Oracle

Performance Manager, part of the Diagnostics Pack, is an available option to Oracle

Enterprise Manager. It is an application designed to capture, compute, and present

performance data that help database administrators analyze key performance

metrics.

Oracle Performance Manager can be run with or without Oracle Enterprise

Manager. If you choose to run it as a standalone product, Oracle Enterprise

Manager does not have to be configured.

Real Application Clusters performance metrics are compiled into charts that are

viewable with Oracle Performance Manager, as shown in Table 7–1.

Oracle Performance Manager Overview

Monitoring Performance with Oracle Performance Manager 7-3

Table 7–1 Performance Charts

Chart Description

Total Ping Chart Displays the ping count on all instances of the cluster
database

Global Cache
Timeouts Chart

Displays three time out and wait statistics

Global Cache CR
Request Chart

Shows the average global cache consistent read (CR) request
time, theglobal cache cr timeouts, and theGlobal Cache
Service Processes (LMSn) use

Global Cache Lock
Convert Chart

Shows the global cache lock converts for a cluster database

Instance Ping Chart Identifies the instance that is contributing the most to the
ping count

Global Cache CR
Timeouts by Instance
Chart

Displays global cache consistent read (CR) timeouts for all
instances of a cluster database

Global Cache Freelist
Waits by Instance
Chart

Measuresglobal cache freelist waits for all instances of a
cluster database

Global Cache CR
Request by Instance
Chart

Displays global cache consistent read (CR) requests for all
instances of a cluster database

Global Cache Lock
Convert by Instance
Chart

Displays row cache lock converts for all instances of a cluster
database

Ping by File Chart Identifies Ping count for all database files of the cluster database

File Ping by Instance
Chart

Shows the total number of pings for a given file from each
instance of a cluster database

Ping by Block Class
Chart

Shows the ping count for all block classes of a cluster database

Ping by Object Chart Shows the ping count for all database objects in a cluster
database

Oracle Performance Manager Overview

7-4 Oracle9i Real Application Clusters Deployment and Performance

Object Ping by
Instance Chart

Shows the ping count for a given database objects by each
instance of a cluster database

Maximum Ping by
Block Chart

Displays the most frequently pinged block numbers

Library Cache Lock
Chart

Displays the waiting time for library cache lock for the entire
cluster database

Library Cache Lock by
Instance Chart

Shows library cache locks for all instances of a cluster database

Row Cache Lock Chart This chart displays row cache locks for a cluster database
(Data dictionary contention)

Row Cache Lock by
Instance Chart

Displays row cache locks for all instances of a cluster database

Global Cache Current
Block Request Chart

Displays the average global cache current block request time
and average global cache current block serve time

Global Cache Current
Block Request by
Instance Chart

Displays the same information as the Global Cache Current
Block Request Chart, but on a per instance basis

Global Cache Current
Block Instance Activity
Chart

Shows global cache current block requests for all instances of a
cluster database. (Identifies the instance that is causing the
maximum pinging activity through theinterconnect)

File I/O Rate Default
Chart

Displays the rate of physical reads and writes for all files
in the cluster database

File I/O Rate by
Object Default Chart

Displays the rate of reads and writes per datafile in the
cluster database

File I/O Rate by
Instance Default Chart

Displays the rate of reads and writes per instance in the
cluster database

Lock Activity Default
Chart

Displays the statistics on the lock activity rate for all the
different lock types across all instances of the cluster
database

Sessions Default Chart Displays the sessions attached to the cluster database and
related information

Users Default Chart Displays the total number of user sessions logged on to
the cluster database

Users Per Instance
Default Chart

Displays the number of users logged on to the cluster for
each instance

Chart Description

Displaying Charts

Monitoring Performance with Oracle Performance Manager 7-5

Starting Oracle Performance Manager
To use the Oracle Enterprise Manager Console, start the following components:

■ Oracle Intelligent Agent

■ Oracle Performance Manager

Displaying Charts
To display charts:

1. Follow the basic navigation procedures described in Oracle9i Real Application
Clusters Installation and Configuration.

2. In the navigator, expand Databases or Clusters Instance > Cluster Database.

You will see the list of available charts, as shown in Figure 7–1.

See Also: Oracle9i Real Application Clusters Installation and
Configuration for instructions

Displaying Charts

7-6 Oracle9i Real Application Clusters Deployment and Performance

Figure 7–1 Expanding Charts

3. In the Oracle Clusters object folder, select a chart, then click Show Chart.

The chart is displayed in a separate window.

Displaying Charts

Monitoring Performance with Oracle Performance Manager 7-7

Using the Statistics Charts
The following describes the use of the charts available in the current release. Note

that if you are running software version 8.1.7 or earlier, you will have access to a

different subset of these charts:

Total Ping Chart
This chart is used to get the forced disk write or ping count for a cluster database.

When the ping count is converted to ping rate, an event is defined against the ping

rate with a specified threshold limit. When ping rate exceeds this limit, the event

will be triggered to notify you about excessive forced disk writing activity in the

system.

Global Cache Timeouts Chart
This chart displays three time out and wait statistics on:

■ Global cache CR timeouts

■ Global cache convert timeouts

■ Global cache freelist waits

These three statistics can be used to identify interconnect network congestion. See

the descriptions for the Global Cache CR Timeouts by Instance, Global Cache

Convert Timeouts by Instance, and Global Cache FreeList Waits by Instance charts

for more information on these statistics.

Global Cache CR Request Chart
This chart shows, in milliseconds, for the entire cluster database:

■ Average global cache CR request time

■ Global cache CR timeouts

■ Global Cache Service LMS process use

The average CR request time is defined as the ratio of sum of global cache CR block

receive time and multiplied by 10 to the sum of global cache cr blocks received.

The global cache CR block receive time is defined as total time taken for a

consistent read request to complete. The global cache CR blocks received is defined

as the count of CR blocks received from another instance when it cannot satisfy the

CR block request from its local cache. The global cache CR timeouts refer to CR

requests that have long delays and have timed out. The Global Cache Service
(GCS) use is defined as the ratio of global cache CR block serve time to the global

Displaying Charts

7-8 Oracle9i Real Application Clusters Deployment and Performance

cache current blocks served. These statistics are defined as follows: The global

cache CR block serve time represents the accumulated time that it took the Global

Cache Service process to serve a consistent read block request. For each request, the

start time is recorded immediately after the Global Cache Service process takes a

request off the request queue. The interval is completed after the block is sent. The

global cache cr blocks served is the number of requests for a consistent read block

served by the Global Cache Service process.

Global Cache Lock Convert Chart
This chart displays the average global cache convert time and average global cache
get time, in milliseconds, across the entire cluster database. The global cache gets is

defined as the count of new locks opened by an instance. The global cache get time

is defined as the total amount of time including any waiting time taken to process a

global cache get request. The global cache converts is defined as the count of lock

conversions for existing locks for an instance. The global cache convert time is

defined as the total amount of time including any waiting time taken to process a

global cache convert request. The average convert time is defined as the ratio of

sum of global cache convert time and multiplied by 10 to the sum of global cache

converts for all instances of a cluster database. The average get time is defined as

the ratio of sum of global cache get time and multiplied by 10 to the sum of global

cache gets for all instances of a cluster database.

Instance Ping Chart
This chart is a drilldown from the Total Ping Chart. It is used to identify the instance

that is contributing the most to the ping count. If certain instances generate more

pings than others, this can indicate that there is contention among their workloads.

Global Cache CR Timeouts by Instance Chart
This chart measures the number of requests for a consistent read (CR) block that

have long delays and have timed out. If the rate of change of global cache CR

timeouts is more than zero for any instance, then this indicates that it is

experiencing high IPC, slow interconnect network, or dropped network packets.

When this happens, an EM event related to IPC issues will be generated.

Global Cache Convert Timeouts by Instance Chart
This chart displays the number of times a lock convert request by an instance in the

Global Cache Service is timed out. This is useful for measuring high contention or

I/O workload on the disk. If the rate of change of global cache convert timeouts is

more than zero for any instance, then this indicates that it is experiencing high I/O

Displaying Charts

Monitoring Performance with Oracle Performance Manager 7-9

workload activity on the disk. When this happens you will be alerted to look into

disk problems, deadlocks, and so forth.

Global Cache Freelist Waits by Instance Chart
This chart measures the usage of releasable locks. If the rate of change of global

cache freelist waits is more than zero for any instance, then this indicates that more

locks are consumed than are released by LMS process.

Global Cache CR Request by Instance Chart
This chart displays the same information as in Global Cache CR Request Chart, on

per instance basis. The only difference between this chart and the Global Cache CR

Request Chart is that these statistics should be read per instance and not for the

entire cluster database.

Global Cache Lock Convert by Instance Chart
This chart displays the same information as in Global Cache Lock Convert chart, on

a per instance basis. Here the average convert time is defined as the ratio of sum of

global cache convert time and multiplied by 10 to the sum of global cache converts

for each instance of a cluster database. Similarly, the average get time is defined as

the ratio of sum of global cache get time and multiplied by 10 to the sum of global

cache gets for each instance of a cluster database.

Ping by File Chart
This chart displays the total number of pings for all datafiles of the cluster database.

By using this chart you can identify the database file that has the maximum ping

count. You should consider physically distributing these files to reduce I/O delays.

Another option would be to partition the application to increase the percentage of

local work on the objects contained in the files to reduce the excessive pinging.

File Ping by Instance Chart
This chart is a drilldown from the Ping by File chart. Having identified the file with

highest ping count, by using this chart you can determine how much each instance

is contributing to this file’s ping count. Once the instance has been identified, you

should consider localizing the contents of this file to the node on which this

instance runs for reducing the pings.

Displaying Charts

7-10 Oracle9i Real Application Clusters Deployment and Performance

Ping by Block Class Chart
This chart displays the total number of pings experienced by each block class for all

instances of a cluster database. Once the top pinged block class has been identified,

use the V$PING view to obtain details about a particular table or index and the file

and block numbers on which there is significant lock conversion activity. An

additional drilldown chart (not visible at the top level) is available. It displays the

total number of pings experienced by each block class for a given instance of a

cluster database.

Ping by Object Chart
This chart is displayed as a drill-down from Instance Ping chart. This chart displays

the number of pings for all database objects in a given file by each instance of a

cluster database. The database objects with the most pings are considered hot spots
and sources of performance problems. You should consider identifying the

transactions that are accessing these hot spot objects by querying V$SQLAREA view

to get the sql_text. After the transactions are identified, you should consider

binding these transactions to a single instance to reduce cross-pinging from other

instances. Another option would be to partition the data in this object by using

hashing so that each transaction gets its data from its partitioned data range.

Object Ping by Instance Chart
This chart is a drilldown from Ping by Object chart. This chart displays the total

number of pings contributed by each instance of a cluster database to the given

database object. This helps in identifying the instance that is causing the most pings

for a given database object. Once the instance has been identified, you should

consider making this object data locally available to the instance.

Maximum Ping by Block Chart
This chart displays the most frequently pinged block numbers for a given database

object in a database file. The most pinged block numbers are the hot spots and

sources of contention between instances. After identifying these block numbers, you

should consider reducing the number of rows contained in these blocks and

redistributing the data. One way to do this would be to reduce the database block

size.

Library Cache Lock Chart
This chart displays the waiting time for library cache objects. This wait time can be

high due to parsing or invalidating cursors. Library Cache Lock displays DLM_
LOCK_REQUESTS, DLM_PIN_REQUESTS, and DLM_INVALIDATIONS statistics for

Displaying Charts

Monitoring Performance with Oracle Performance Manager 7-11

the entire cluster database. These statistics are defined as follows: The DLM_LOCK_
REQUESTS statistics represents the number of times a lock was requested for a

database object. The DLM_PIN_REQUESTS statistics represents the number of times

a pin was requested for a database object. The DLM_INVALIDATIONS statistic

represents the number of invalidation pings received from other instances.

Library Cache Lock by Instance Chart
This chart displays the same information as the Library Cache Lock chart, on per

instance basis. The only important difference in the definition is that here these

statistics should be read as per instance and not for the entire cluster database.

Row Cache Lock Chart
This chart displays DLM_REQUESTS, DLM_CONFLICTS, and percentage of DLM_
REQUESTS that result in DLM_CONFLICTS for the whole cluster database. These are

useful for analyzing dictionary contention. The DLM_REQUESTS represents the

number of DLM requests. A DLM request for a lock is issued for each

consistent-read block request. The DLM_CONFLICTSrepresents the number of DLM

lock request conflicts. A DLM conflict occurs when another instance already owned

a lock on a CR block in mode that conflicts with the mode requested by this

instance. The percentage value is computed as the ratio of total number of DLM_
CONFLICTS to the total number of DLM_REQUESTS for all instances of a cluster

database.

Row Cache Lock by Instance Chart
This chart displays the same information as Row Cache Lock Chart, but on a per

instance basis. The only important difference in the definition is that here these

statistics should be read as per instance and not for the entire cluster database.

Global Cache Current Block Request Chart
This chart displays the average global cache current block request time and average

global cache current block serve time, in milliseconds, for the entire cluster

database. The average global cache current block request time is defined as the ratio

of global cache current block receive time and multiplied by 10 to the global cache
current blocks received. The average global cache current block serve time is

defined as the ratio of global cache current block serve time and multiplied by 10 to

the global cache current blocks served.

Displaying Charts

7-12 Oracle9i Real Application Clusters Deployment and Performance

Global Cache Current Block Request by Instance Chart
This chart displays the same information as Global Cache Current Block Request

Chart, but on a per instance basis. The only important difference in the definition is

that here these statistics should be read as per instance and not for the entire cluster

database.

Global Cache Current Block Instance Activity Chart
This chart can be used to determine how this instance’s pings are themselves

distributed across the interconnect. This chart displays global cache current block
pin time, global cache current block flush time, and global cache current block
send time, in milliseconds, for the given instance. This helps in pin pointing the

cause of excessive pinging activity for the given instance, such as whether the given

instance is spending too much time in block pinning to the local cache, block

flushing to the disk, or block sending across the interconnect.

File I/O Rate Default Chart
This chart displays the rate of physical reads and writes for all files in the database.

You can drill down to obtain the same information either at the instance level or at

the file level

File I/O Rate by Object Default Chart
This chart displays the rate of reads and writes per datafile in the database

File I/O Rate by Instance Default Chart
This chart displays the rate of reads and writes per instance in the database

Lock Activity Default Chart
This chart displays the statistics on the lock activity rate for all the different lock

types across the cluster. You can drill down to obtain lock activity information for a

particular lock type at the instance level. The global cache usability enhancements

in Oracle9i Release 1 (9.0.1) simplified the lock activity histograms.

Sessions Default Chart
This chart displays the sessions attached to the cluster database and related

information, such as instance name, session ID, session serial number, process ID,

status, and user name

Displaying Charts

Monitoring Performance with Oracle Performance Manager 7-13

Users Default Chart
This chart displays the total number of user sessions logged on to the cluster

database, regardless of whether activity is generated. This information is also

available for each instance.

Users Per Instance Default Chart
This chart displays the number of users logged on to each instance

Active Users Chart
This chart displays the total number of active users on the cluster database

Active Users by Instance Chart
This chart displays the number of active users on each instance of the cluster

database.

Clusters Data Block Ping by Instance Chart
This chart displays the block pings per instance in the cluster database

Displaying Charts

7-14 Oracle9i Real Application Clusters Deployment and Performance

Part V
 Real Application Clusters Reference

Part Five contains Oracle Real Application Clusters reference information. The

Appendices in Part Five are:

■ Appendix A, "Configuring Multi-Block Lock Assignments (Optional)"

■ Appendix B, "A Case Study in Real Application Clusters Database Design"

■ Glossary

Configuring Multi-Block Lock Assignments (Optional) A-1

A
Configuring Multi-Block Lock Assignments

(Optional)

This appendix explains how to configure locks to cover multiple blocks. Refer to

this appendix only for rare circumstances to override Oracle Real Application
Clusters’ default resource control scheme as performed by the Global Cache
Service (GCS) and the Global Enqueue Service (GES). The topics in this appendix

are:

■ Before You Override the Global Cache and Global Enqueue Service Resource

Control Mechanisms

■ Deciding Whether to Override Global Cache Service and Global Enqueue

Service Processing

■ Setting GC_FILES_TO_LOCKS

■ Additional Considerations for Setting GC_FILES_TO_LOCKS

■ Database Design Considerations and Free List Groups

■ Tuning Parallel Execution on Real Application Clusters

■ Analyzing Real Application Clusters I/O Statistics

■ Monitoring Multi-Block Lock Usage by Detecting False Forced Writes

■ Lock Names and Lock Formats

Before You Override the Global Cache and Global Enqueue Service Resource Control Mechanisms

A-2 Oracle9i Real Application Clusters Deployment and Performance

Before You Override the Global Cache and Global Enqueue Service
Resource Control Mechanisms

Oracle strongly recommends that you avoid overriding the resource control

performed by the Global Cache and Global Enqueue Services. The default scheme

provides exceptional performance for almost all system types in almost all Real

Application Clusters environments. In addition, assigning locks requires additional

administrative and tuning effort. Therefore, using the default scheme is preferable

to performing the complex tasks required to override the default strategy as

described in this appendix.

Deciding Whether to Override Global Cache Service and Global
Enqueue Service Processing

Cache Fusion provides exceptional scalability and performance using

cache-to-cache transfers of data that is not cached locally. In other words, before an

instance reads a data block from disk, Oracle attempts to obtain the requested data

from another instance’s cache. If the requested block exists in another cache, then

the data block is transferred across the interconnect from the holding instance to

the requesting instance.

Real Application Clusters’ resource control scheme guarantees the integrity of

changes to data made by multiple instances. By default, each data block in an

instance’s buffer cache is protected by the Global Cache Service. The GCS tracks the

access modes, roles, privileges, and states of these resources.

In rare situations, you may want to override the GCS, and the Global Enqueue

Service by configuring multi-block locks where one lock covers multiple data blocks

in a file. If blocks are frequently accessed from the same instance, or if blocks are

accessed from multiple nodes but in compatible modes such as shared mode for

concurrent reads, then a lock configuration may improve performance.

To do this, set the GC_FILES_TO_LOCKS parameter and specify the number of

locks that Oracle uses for particular files. The syntax of the parameter also enables

you to specify lock allocations for groups of files as well as the number of

contiguous data blocks to be covered by each lock. If you indiscriminately use

Note: Only use the information in this appendix for exceptional

cases. An example of this is an application where the data access

patterns are almost exclusively read-mostly.

Deciding Whether to Override Global Cache Service and Global Enqueue Service Processing

Configuring Multi-Block Lock Assignments (Optional) A-3

values for GC_FILES_TO_LOCKS, then adverse performance such as excessive

forced disk writes can result. Therefore, only set GC_FILES_TO_LOCKS for:

■ Read-only or read-mostly files and tablespaces

■ Partitioned data access, where data in a particular file are only or mostly

modified by one instance

■ Datafiles other than those associated with temporary tablespaces, tablespaces

marked as READ ONLY, and tablespace containing rollback segments

When to Use Locks
Using multiple locks for each file can be useful for the types of data shown in

Table A–1.

Using locking can cause additional cross-instance cache management activity

because conflicts can occur between instances that modify different database blocks.

Resolution of false forced disk writes or excessive forced disk writes can require

writing several blocks from the cache of the instance that currently owns access to

the blocks.

Table A–1 When to Use Locks

Situation Reason

When the data is
mostly read-only.

A few locks can cover many blocks without requiring frequent
lock operations. These locks are released only when another
instance needs to modify the data. Assigning locks can result in

better performance on read-only data with parallel execution
processing. If the data is strictly read-only, then consider
designating the tablespace as read-only.

When the data can be
partitioned according
to the instance which is
likely to modify it.

Lock assignments that you define to match this partitioning
scheme allow instances to hold disjoint sets of locks. This reduces
the need for lock operations.

When a large amount
of data is modified by
a relatively small set of
instances.

Lock assignments permit access to an un-cached database block to
proceed without Parallel Cache Management activity. However,
this is only possible if the block is already in the requesting
instance’s cache.

Setting GC_FILES_TO_LOCKS

A-4 Oracle9i Real Application Clusters Deployment and Performance

Setting GC_FILES_TO_LOCKS
Set the GC_FILES_TO_LOCKS initialization parameter to specify the number of

locks covering data blocks in a datafile or set of datafiles. This section covers:

■ GC_FILES_TO_LOCKS Syntax

■ Lock Assignment Examples

■ Blocking Factor, Extent Allocation, and Free List Groups

GC_FILES_TO_LOCKS Syntax
The syntax for the GC_FILES_TO_LOCKS parameter enables you to specify the

relationship between locks and files. The syntax for this parameter is:

GC_FILES_TO_LOCKS="{file_list =#locks [! blocks] [EACH][:]} . . ."

Where:

The default value for !blocks is 1. When you specify blocks, contiguous data blocks

are covered by each of the #lock locks. To specify a value for blocks, use the

exclamation point (!) separator. You would primarily specify blocks, and not specify

the EACH keyword to allocate sets of locks to cover multiple datafiles.

Always set the !blocks value to avoid interfering with the data partitioning gained

by using free list groups. Normally you do not need to preallocate extents. When a

file_list file_list specifies a single file, range of files, or list of files and

ranges as follows: fileidA[-fileidC][,fileidE[-fileidG]] ...

Query the data dictionary view DBA_DATA_FILES to find the

correspondence between file names and file ID numbers.

#locks Sets the number of locks to assign to file_list .

!blocks Specifies the number of contiguous data blocks to be covered

by each lock; also called the blocking factor

EACH Specifies #locks as the number of locks to be allocated to each file

in file_list .

Note: All instance must have identical values for GC_FILE_TO_
LOCKS. Also, do not use spaces within the quotation marks of the

GC_FILES_TO_LOCKS parameter syntax.

Setting GC_FILES_TO_LOCKS

Configuring Multi-Block Lock Assignments (Optional) A-5

row is inserted into a table and Oracle allocates new extents, Oracle allocates

contiguous blocks that are specified with !blocks in GC_FILES_TO_LOCKS to the

free list group associated with an instance.

Lock Assignment Examples
For example, you can assign 300 locks to file 1 and 100 locks to file 2 by adding the

following line to your initialization parameter file:

 GC_FILES_TO_LOCKS = "1=300:2=100"

The following entry specifies a total of 1500 locks: 500 each for files 1, 2, and 3:

 GC_FILES_TO_LOCKS = "1-3=500EACH"

By contrast, the following entry specifies a total of only 500 locks spread across the

three files:

 GC_FILES_TO_LOCKS = "1-3=500"

The following entry indicates that Oracle should use 1000 distinct locks to protect

file 1. The data in the files is protected in groups of 25 contiguous locks.

 GC_FILES_TO_LOCKS = "1=1000!25"

If you define a datafile with the AUTOEXTEND clause or if you issue the ALTER
DATABASE ... DATAFILE ... RESIZE statement, then you may also need to

adjust the lock assignment.

When you add new datafiles, decide whether these new files should be subject to

the default control of the GCS or whether you want to assign locks using the GC_
FILES_TO_LOCKS initialization parameter.

Setting GC_FILES_TO_LOCKS

A-6 Oracle9i Real Application Clusters Deployment and Performance

The following examples show different methods of mapping blocks to locks and

how the same locks are used on multiple datafiles.

Figure A–1 Mapping Locks to Data Blocks

Example 1 Figure A–1 shows an example of mapping blocks to locks for the

parameter value GC_FILES_TO_LOCKS = "1=60:2-3=40:4=140:5=30" .

In datafile 1 shown in Figure A–1, 60 locks map to 120 blocks, which is a multiple of

60. Each lock covers two data blocks.

In datafiles 2 and 3, 40 locks map to a total of 160 blocks. A lock can cover either one

or two data blocks in datafile 2, and two or three data blocks in datafile 3. Thus, one

lock can cover three, four, or five data blocks across both datafiles.

In datafile 4, each lock maps exactly to a single data block, since there is the same

number of locks as data blocks.

In datafile 5, 30 locks map to 170 blocks, which is not a multiple of 30. Each lock

therefore covers five or six data blocks.

Each lock illustrated in Figure A–1 can be held in either shared read mode or

read-exclusive mode.

Data
File 4

Data
File 5

140 blocks 170 blocks 120 blocks

Data
File 1

Data
File 2

Data
File 3

60 blocks 100 blocks

PCM Locks
241 to 270

PCM Locks
101 to 240

PCM Locks
61 to 100

PCM Locks
1 to 60

5 or 6 blocks
per lock

1 block
per lock

3, 4, or 5
blocks per lock

2 blocks
per lock

Setting GC_FILES_TO_LOCKS

Configuring Multi-Block Lock Assignments (Optional) A-7

Example 2 The following parameter setting allocates 500 locks to datafile 1; 400 locks

each to files 2, 3, 4, 10, 11, and 12; 150 locks to file 5; 250 locks to file 6; and 300 locks

collectively to files 7 through 9:

 GC_FILES_TO_LOCKS = "1=500:2-4,10-12=400EACH:5=150:6=250:7-9=300"

This example assigns a total of (500 + (6*400) + 150 + 250 + 300) = 3600 locks. You

can specify more than this number of locks if you add more datafiles.

Example 3 In Example 2, 300 locks are allocated to datafiles 7, 8, and 9 collectively

with the clause "7-9=300". The keyword EACH is omitted. If each of these datafiles

contains 900 data blocks, then for a total of 2700 data blocks, then each lock covers

nine data blocks. Because the datafiles are multiples of 300, the nine locks cover

three data blocks in each datafile.

Example 4 The following parameter value allocates 200 locks each to files 1 through

3; 50 locks to datafile 4; 100 locks collectively to datafiles 5, 6, 7, and 9; and 20 locks

in contiguous 50-block groups to datafiles 8 and 10 combined:

 GC_FILES_TO_LOCKS = "1-3=200EACH 4=50:5-7,9=100:8,10=20!50"

In this example, a lock assigned to the combined datafiles 5, 6, 7, and 9 covers one

or more data blocks in each datafile, unless a datafile contains fewer than 100 data

blocks. If datafiles 5 to 7 contain 500 data blocks each and datafile 9 contains 100

data blocks, then each lock covers 16 data blocks: one in datafile 9 and five each in

the other datafiles. Alternatively, if datafile 9 contained 50 data blocks, half of the

locks would cover 16 data blocks (one in datafile 9); the other half of the locks

would only cover 15 data blocks (none in datafile 9).

The 20 locks assigned collectively to datafiles 8 and 10 cover contiguous groups of

50 data blocks. If the datafiles contain multiples of 50 data blocks and the total

number of data blocks is not greater than 20 times 50, that is, 1000, then each lock

covers data blocks in either datafile 8 or datafile 10, but not in both. This is because

each of these locks covers 50 contiguous data blocks. If the size of datafile 8 is not a

multiple of 50 data blocks, then one lock must cover data blocks in both files. If the

sizes of datafiles 8 and 10 exceed 1000 data blocks, then some locks must cover more

than one group of 50 data blocks, and the groups might be in different files.

Setting GC_FILES_TO_LOCKS

A-8 Oracle9i Real Application Clusters Deployment and Performance

Example 5 GC_FILES_TO_LOCKS="1-2=4"

In this example, four locks are specified for files 1 and 2. Therefore, the number of

blocks covered by each lock is eight ((16+16)/4). The blocks are not contiguous.

Figure A–2 GC_FILES_TO_LOCKS Example 5

Example 6 GC_FILES_TO_LOCKS="1-2=4!8"

In this example, four locks are specified for files 1 and 2. However, the locks must

cover eight contiguous blocks.

Figure A–3 GC_FILES_TO_LOCKS Example 6������������
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

��
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

�����������

Setting GC_FILES_TO_LOCKS

Configuring Multi-Block Lock Assignments (Optional) A-9

Example 7 GC_FILES_TO_LOCKS="1-2=4!4EACH"

In this example, four locks are specified for file 1 and four for file 2. The locks must

cover four contiguous blocks.

Figure A–4 GC_FILES_TO_LOCKS Example 7

Example 8 GC_FILES_TO_LOCKS="1=4:2=0"

In this example, file 1 has multi-block lock control with 4 locks. On file 2, locks are

allocated.

Figure A–5 GC_FILES_TO_LOCKS Example 8��
�
���������������

������
File 2

File 1 Lock 1

Lock 2

Lock 3

Lock 4

Lock 5

Lock 6

Lock 7

Lock 8

�������������
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

Setting GC_FILES_TO_LOCKS

A-10 Oracle9i Real Application Clusters Deployment and Performance

Blocking Factor, Extent Allocation, and Free List Groups
Use the !blocks option of GC_FILES_TO_LOCKS to align the extents of contiguous

blocks allocated to an object with lock coverage. When using the !blocks notation,

contiguous data blocks are covered by one lock. For example:

GC_FILES_TO_LOCKS="12=1000!25"

Allocates 1000 locks to file 12 with a periodicity of 25, in other words one lock

covers 25 contiguous blocks.

If an extent definition (INITIAL EXTENT , NEXT EXTENT) for a table corresponds

to !blocks, then in this case the 25 contiguous blocks covered by a lock coincide with

the extent boundaries. In other words, all the blocks covered by a multi-block lock

are in the same extent.

This is important when using free list groups. When no more blocks exist with free

space, Oracle allocates a new extent. The blocks in this extent are then allocated to a

particular free list group. If not properly configured, then locks can also cover

blocks from another extent which might be in the free list group used by another

instance. This results in false forced disk writes.

If you do not use the blocking factor as described in this section, then the same lock

can cover blocks from different extents allocated to distinct free list groups, thus

incurring additional overhead. This situation is what free list groups are supposed

to avoid.

Dynamic Allocation of Blocks on Lock Boundaries
To accommodate growth, the strategy of dynamically allocating blocks to free list

groups is more effective than the preallocation of extents.

You can also use the !blocks option of GC_FILES_TO_LOCKSto dynamically allocate

blocks to a free list from the high water mark within a lock boundary. This method

does not eliminate all forced writes on the segment header. Instead, this method

allocates blocks as needed so you do not have to preallocate extents.

Because locks are owned by instances, blocks are allocated on a per-instance

basis—and that is why they are allocated to free list groups. Within an instance,

blocks can be allocated to different free lists.

See Also: "Extent Preallocation Examples" on page 4-11 before

using the methods described in this section

Setting GC_FILES_TO_LOCKS

Configuring Multi-Block Lock Assignments (Optional) A-11

Using this method, you can either explicitly allocate the !blocks value, or leave the

balance of new blocks covered by the existing lock. If you choose the latter, there

still may be contention for the existing locks by allocation to other instances.

Moving a Segment’s High Water Mark
A segment’s high water mark is the current limit to the number of blocks that have

been allocated within the segment. If you are allocating extents dynamically, the

high water mark is also the lock boundary. The lock boundary and the number of

blocks that will be allocated at one time within an extent must coincide. This value

must be the same for all instances.

Consider the example in Figure A–6 with four blocks for each lock (!4). Locks have

been allocated before the block content has been entered. If Oracle fills data block

D2, held by Lock 2, and then allocated another range of four blocks, only the

number of blocks fitting within the lock boundary are allocated. In this case, this

includes blocks 7 and 8. Both of these are protected by the current lock. With the

high water mark at 8, when instance 2 allocates a range of blocks, all four blocks 9 to

12 are allocated, covered by Lock 3. The next time instance 1 allocates blocks it will

get blocks 13 to 16, covered by Lock 4.

Figure A–6 A File with a High Water Mark That Moves as Oracle Allocates Blocks

Example This example assumes that GC_FILES_TO_LOCKS has the following

setting for both instances:

GC_FILES_TO_LOCKS = "1000!5"

File
Header

Segment
Header

Free
List

1 2 3 4 5 6 7 8
DataDataDataDataFree

Lock 1 Lock 2

Group
1

List
Group
2

9 10 11 12
DataDataDataData

Lock 3

Shifted high
water mark

Initial high
water mark

Setting GC_FILES_TO_LOCKS

A-12 Oracle9i Real Application Clusters Deployment and Performance

With the EACH option specified, each file in file_list is allocated #locks
number of locks. Within each file, !blocks specifies the number of contiguous data

blocks to be covered by each lock.

Figure A–7 shows the incremental process by which the segment grows:

■ Stage 1 shows an extent in which instance 1 allocates 5 data blocks, which are

protected by Lock 2.

■ Stage 2 shows instance 2 allocating 5 more data blocks, protected by Lock 3.

■ Stage 3 shows instance 1 once more allocating 5 data blocks, protected by

Lock 4.

In this way, if user A on Instance 1 is working on block 10, no one else from either

instance can work on any block in the range of blocks covered by Lock 2. This

includes blocks 6 through 10.

Setting GC_FILES_TO_LOCKS

Configuring Multi-Block Lock Assignments (Optional) A-13

Figure A–7 Allocating Blocks within An Extent

Instance 1 Instance 2Segment A

Instance 1 Instance 2

Free list
Free list

Allocation B:

Segment A

High water

Instance 1 Instance 2Segment A

Free list

2

1

3

group 2

5 Blocks

Allocation C:
5 Blocks

group 1

group 1

Mark 2

High water
Mark 3

High
Mark 2

Allocation A:
5 Blocks

Free list
group 1

Free list
group 2

Free list
group 2

Lock 1

Lock 2

Additional Considerations for Setting GC_FILES_TO_LOCKS

A-14 Oracle9i Real Application Clusters Deployment and Performance

Additional Considerations for Setting GC_FILES_TO_LOCKS
Setting GC_FILES_TO_LOCKSin Real Application Clusters has further

implications. For example, setting it can increase monitoring overhead and you may

have to frequently adjust the parameter when the database grows or when you add

files. Moreover, you cannot dynamically change the setting for GC_FILES_TO_
LOCKS. To change the setting, you must stop the instances, alter the setting, and

restart all the instances. In addition, consider the following topics in this section:

■ Expanding or Adding Datafiles

■ Files To Avoid Including in GC_FILES_TO_LOCKS Settings

Expanding or Adding Datafiles
Sites that run continuously cannot afford to shut down for parameter value

adjustments. Therefore, when you use the GC_FILES_TO_LOCKS parameter,

remember to provide room for growth or room for files to extend.

You must also carefully consider how you use locks on files that do not grow

significantly, such as read-only or read-mostly files. It is possible that better

performance would result from assigning fewer locks for multiple blocks. However,

if the expected CPU and memory savings due to fewer locks do not outweigh the

administrative overhead, use the resource control scheme of the Global Cache and

Global Enqueue Services.

Files To Avoid Including in GC_FILES_TO_LOCKS Settings
Never include the following types of files in the GC_FILES_TO_LOCKS parameter

list:

■ Files that contain rollback segments.

■ Files that are part of a TEMPORARY tablespace.

■ Files with read-only data within a tablespace that is explicitly set to READ
ONLY; the exception to this is a single lock that you can assign to ensure the

tablespace does not have to contend for spare locks—but setting this lock is not

mandatory—you can still leave this tablespace unassigned.

Database Design Considerations and Free List Groups

Configuring Multi-Block Lock Assignments (Optional) A-15

Database Design Considerations and Free List Groups
When data is frequently inserted into a table from multiple nodes and the table is

not partitioned, you can use free list groups to avoid performance issues. Free list

groups separate the data structures associated with the free space management of a

table into disjoint sets that are available for individual instances. However, if you

override the Global Cache and Global Enqueue Services, consider assigning locks

with free lists as described under the following topic.

Associating Locks with Free Lists
If each extent in a table is in a separate datafile, you can use the GC_FILES_TO_
LOCKS parameter to allocate specific ranges of locks to each extent, so that each set

of locks is associated with only one group of free lists.

Figure A–8 shows multiple extents in separate files. The GC_FILES_TO_LOCKS
parameter allocates 10 locks to files 8 and 10, and 10 locks to files 9 and 11. Extents

A and C are in the same free list group, and extents B and D are in another free list

group. One set of locks is associated with files 8 and 10, and a different set of locks

is associated with files 9 and 11. You do not need separate locks for files that are in

the same free list group, such as files 8 and 10, or files 9 and 11.

Figure A–8 Extents and Free List Groups

This example assumes total partitioning for reads as well as writes. If more than one

instance updates blocks, then it is desirable to have more than one lock for each file

to minimize forced reads and writes. This is because even with a shared lock, all

������
������������������������
������������������

File 8, Extent A

File 9, Extent B

File 10, Extent C

File 11, Extent D

Free List Group 1

Free List Group 2

GC_FILES_TO_LOCKS = 8, 10:10; 9, 11:10

Database Design Considerations and Free List Groups

A-16 Oracle9i Real Application Clusters Deployment and Performance

blocks held by a lock are subject to forced reads when another instance tries to read

even one of the blocks held in exclusive mode.

Tuning Parallel Execution on Real Application Clusters
To optimize parallel execution in Real Application Clusters environments when not

using the default resource control scheme, you must accurately set the GC_FILES_
TO_LOCKS parameter. Data block address locking in its default behavior assigns

one lock to each block. For example, during a full table scan, a lock must be

acquired for each block read into the scan. To accelerate full table scans, you use

one of the following three possibilities:

■ For datafiles containing truly read-only data, set the tablespace to read only.

Then lock operations do not occur.

■ Alternatively, for data that is mostly read-only, assign very few hashed locks

(for example, 2 shared locks) to each datafile. Then these are the only locks you

have to acquire when you read the data.

■ If you want data block address or fine-grain locking, group the blocks

controlled by each lock, using the ! option. This has advantages over default

data block address locking because with the default, you would need to acquire

one million locks in order to read one million blocks. When you group the

blocks, you reduce the number of locks allocated by the grouping factor. Thus a

grouping of !10 would mean that you would only have to acquire one tenth as

many locks as with the default. Performance improves due to the dramatically

reduced amount of lock allocation. As a rule of thumb, performance with a

grouping of !10 is comparable to the speed of hashed locking.

To speed up parallel DML operations, consider using hashed locking or a high

grouping factor rather than database address locking. A parallel execution

server works on non-overlapping partitions; it is recommended that partitions

not share files. You can thus reduce the number of lock operations by having

only 1 hashed lock for each file. Because the parallel execution server only

works on non-overlapping files, there are no lock pings.

The following guidelines affect memory usage, and thus indirectly affect

performance:

■ Never allocate locks for datafiles of temporary tablespaces.

■ Allocate specific locks for the SYSTEM tablespace. This practice ensures that

data dictionary activity such as space management never interferes with the

data tablespaces at a cache management level (error 1575).

Analyzing Real Application Clusters I/O Statistics

Configuring Multi-Block Lock Assignments (Optional) A-17

Analyzing Real Application Clusters I/O Statistics
If you set GC_FILES_TO_LOCKS, then Cache Fusion is disabled. In this case, you

can use three statistics in the V$SYSSTAT view to measure the I/O workload

related to global cache synchronization:

■ DBWR cross-instance writes

■ Remote instance undo header writes

■ Remote instance undo block writes

DBWR cross-instance writes occur when Oracle resolves inter-instance data block

contention by writing the requested block to disk before the requesting node can

use it.

Cache Fusion eliminates the disk I/O for current and consistent-read versions of

blocks. This can lead to a substantial reduction in physical writes and reads

performed by each instance.

Analyzing Real Application Clusters I/O Statistics Using V$SYSSTAT
You can obtain the following statistics to quantify the write I/Os required for global

cache synchronization.

1. Use this syntax to query the V$SYSSTAT view:

 SELECT NAME, VALUE FROM V$SYSSTAT
 WHERE NAME IN (’DBWR cross-instance writes’,
 ’remote instance undo block writes’,
 ’remote instance undo header writes’,
 ’physical writes’);

Oracle responds with output similar to:

NAME VALUE
--- ----------
physical writes 41802
DBWR cross-instance writes 5403
remote instance undo block writes 0
remote instance undo header writes 2
4 rows selected.

Where the statistic physical writes refers to all physical writes that occurred from

a particular instance performed by DBWR, the value for DBWR cross-instance
writes accounts for all writes caused by writing a dirty buffer containing a data

Analyzing Real Application Clusters I/O Statistics

A-18 Oracle9i Real Application Clusters Deployment and Performance

block that is requested for modification by another instance. Because the DBWR

process also handles cross-instance writes, DBWR cross-instance writes are a

subset of all physical writes.

2. Calculate the ratio of Real Application Clusters-related I/O to overall physical

I/O using this equation:

3. Use this equation to calculate how many writes to rollback segments occur

when a remote instance needs to read from rollback segments that are in use by

a local instance:

The ratio shows how much disk I/O is related to writes to rollback segments.

4. To estimate the number or percentage of reads due to global cache

synchronization, use the number of lock requests for conversions from

NULL(N) to Shared mode (S) counted in V$LOCK_ACTIVITY and the physical
reads statistics from V$SYSSTAT.

The following formula computes the percentage of reads that are only for local

work where lock buffers for read represents the N-to-S block access mode

conversions:

These so-called forced reads occur when a cached data block that was previously

modified by the local instance had to be written to disk. This is due to a request

from another instance, so the block is then re-acquired by the local instance for

a read.

DBWR cross-instance writes

physical writes

(remote instance undo header writes+
remote instance undo block writes)

DBWR cross-instance writes

*(physical reads (lock buffers for read)) 100

physical reads

-

Monitoring Multi-Block Lock Usage by Detecting False Forced Writes

Configuring Multi-Block Lock Assignments (Optional) A-19

Monitoring Multi-Block Lock Usage by Detecting False Forced Writes
False forced writes occur when Oracle down-converts a lock that protects two or

more blocks if the blocks are concurrently updated from different nodes. Assume

that each node is updating a different block covered by the same lock. In this case,

each node must write both blocks to disk even though the node is updating only

one of them. This is necessary because the same lock covers both blocks.

Statistics are not available to show false forced write activity. To assess false forced

write activity you can only consider circumstantial evidence as described in this

section.

The following SQL statement shows the number of lock operations causing a write,

and the number of blocks actually written:

 SELECT VALUE/(A.COUNTER + B.COUNTER + C.COUNTER) "PING RATE"
 FROM V$SYSSTAT,
 V$LOCK_ACTIVITY A,
 V$LOCK_ACTIVITY B,
 V$LOCK_ACTIVITY C
 WHERE A.FROM_VAL = ’X’
 AND A.TO_VAL = ’NULL’
 AND B.FROM_VAL = ’X’
 AND B.TO_VAL = ’S’
 AND C.FROM_VAL = ’X’
 AND C.TO_VAL = ’SSX’
 AND NAME = ’DBWR cross-instance writes’;

Table A–2 shows how to interpret the forced disk write rate.

Table A–2 Interpreting the Forced Write Rate

Forced Disk
Write Rate Meaning

Less than 1 False forced writes may be occurring, but there are more lock operations

than forced disk writes. DBWR is writing blocks fast enough, resulting in
no writes for lock activity. This is also known as a soft ping, meaning I/O
activity is not required for the forced disk write, only lock activity.

Equal to 1 Each lock activity involving a potential write causes the write to occur.
False forced writes may be occurring.

Greater than 1 False forced writes are definitely occurring.

Monitoring Multi-Block Lock Usage by Detecting False Forced Writes

A-20 Oracle9i Real Application Clusters Deployment and Performance

Use this formula to calculate the percentage of false forced writes:

Then check the total number of writes and calculate the number due to false forced

writes:

 SELECT Y.VALUE "ALL WRITES",
 Z.VALUE "PING WRITES",
 Z.VALUE * pingrate "FALSE PINGS",
 FROM V$SYSSTAT Z,
 V$SYSSTAT Y,
 WHERE Z.NAME = ’DBWR cross-instance writes’
 AND Y.NAME = ’physical writes’;

Here, ping_rate is given by the following SQL statement:

 CREATE OR REPLACE VIEW PING_RATE AS
 SELECT ((VALUE/(A.COUNTER+B.COUNTER+C.COUNTER))-1)/
 (VALUE/(A.COUNTER+B.COUNTER+C.COUNTER)) RATE
 FROM V$SYSSTAT,
 V$LOCK_ACTIVITY A,
 V$LOCK_ACTIVITY B,
 V$LOCK_ACTIVITY C
 WHERE A.FROM_VAL = ’X’
 AND A.TO_VAL = ’NULL’
 AND B.FROM_VAL = ’X’
 AND B.TO_VAL = ’S’
 AND C.FROM_VAL = ’X’
 AND C.TO_VAL = ’SSX’
 AND NAME = ’DBWR cross-instance writes’;

The goal is not only to reduce overall forced disk writes, but also to reduce false

forced writes. To do this, look at the distribution of instance locks in GC_FILES_
TO_LOCKS and check the data in the files.

* 100
(ping_rate - 1)

ping_rate

Lock Names and Lock Formats

Configuring Multi-Block Lock Assignments (Optional) A-21

Lock Names and Lock Formats
The following section describes the lock names and lock formats of locks. The topics

in this section are:

■ Lock Names and Lock Name Formats

■ Lock Names

■ Lock Types and Names

Lock Names and Lock Name Formats
Internally, Oracle global lock name formats used one of the following formats:

■ type ID1 ID2

■ type, ID1, ID2

■ type (ID1, ID2)

Where:

For example, a space management lock might be named ST00. A lock might be

named BL 1 900.

The clients of the lock manager define the lock type, for example BL for a lock, and

two parameters, id1 and id2, and pass these parameters to the GCS API to open a

lock. The lock manager does not distinguish between different types of locks. Each

component of Oracle defines the type and the two parameters for its own needs, in

other words, id1 and id2 have a meaning consistent with the requirements of each

component.

type A two-character type name for the lock type, for example, BL, TX, TM

ID1 The first lock identifier. The meaning and format of this identifier differs

from one lock type to another.

ID2 The second lock identifier. The meaning and format of this identifier

differs from one lock type to another.

Lock Names and Lock Formats

A-22 Oracle9i Real Application Clusters Deployment and Performance

Lock Names
All locks are Buffer Cache Management locks. Buffer Cache Management locks are

of type BL. The syntax of lock names is type ID1 ID2 , where:

Examples of lock names are:

Lock Types and Names
There are several different types and names of locks as shown in Table A–3:

type Is always BL because locks are buffer locks.

ID1 The database address of the blocks.

ID2 The block class.

BL (100, 1) This is a data block with lock element 100.

BL (1000, 4) This is a segment header block with lock element 1000.

BL (27, 1) This is an undo segment header with rollback segment #10. The

formula for the rollback segment is 7 + (10 * 2).

Table A–3 Locks Types and Names

Type Lock Name Type Lock Name

CF Controlfile Transaction PS Parallel Execution Process
Synchronization

CI Cross-Instance Call Invocation RT Redo Thread

DF Datafile SC System Commit Number

DL Direct Loader Index Creation SM SMON

DM Database Mount SN Sequence Number

DX Distributed Recovery SQ Sequence Number Enqueue

FS File Set SV Sequence Number Value

KK Redo Log Kick ST Space Management Transaction

IN Instance Number TA Transaction Recovery

IR Instance Recovery TM DML Enqueue

IS Instance State TS Temporary Segment (also
Table-Space)

Lock Names and Lock Formats

Configuring Multi-Block Lock Assignments (Optional) A-23

MM Mount Definition TT Temporary Table

MR Media Recovery TX Transaction

IV Library Cache Invalidation UL User-Defined Locks

L[A-P] Library Cache Lock UN User Name

N[A-Z] Library Cache Pin WL Begin written Redo Log

Q[A-Z] Row Cache XA Instance Registration Attribute
Lock

PF Password File XI Instance Registration Lock

PR Process Startup

Table A–3 Locks Types and Names

Type Lock Name Type Lock Name

Lock Names and Lock Formats

A-24 Oracle9i Real Application Clusters Deployment and Performance

A Case Study in Real Application Clusters Database Design B-1

B
A Case Study in Real Application Clusters

Database Design

This appendix describes a case study that presents a methodology for designing

systems optimized for Oracle Real Application Clusters.

■ Case Study Overview

■ Case Study: From Initial Database Design to Real Application Clusters

■ Analyzing Access to Tables

■ Analyzing Transaction Volume by Users

■ Case Study: Initial Partitioning Plan

■ Partitioning Indexes

■ Implement and Tune Your Design

Case Study Overview

B-2 Oracle9i Real Application Clusters Deployment and Performance

Case Study Overview
The case study presented in this appendix provides techniques for designing new

applications for use with Real Application Clusters. You can also use these

techniques to evaluate existing applications and determine how well suited they are

for migration to Real Application Clusters.

This case study assumes you have made an initial database design. To optimize

your Real Application Clusters design, follow this methodology:

1. Develop an initial database design.

2. Analyze access to tables.

3. Analyze transaction volume.

4. Decide how to partition users and data.

5. Decide how to partition indexes, if necessary.

6. Implement and tune your design.

Note: Always remember that your goal is to minimize contention:

doing so results in optimized performance.

See Also: Part II, "Scaling Applications and Designing Databases

for Real Application Clusters", for detailed information on this

methodology

Case Study: From Initial Database Design to Real Application Clusters

A Case Study in Real Application Clusters Database Design B-3

Case Study: From Initial Database Design to Real Application Clusters
This case study is a practical demonstration of analytical techniques. Although your

specific applications will differ from the example in this appendix, this case study

should help you to understand the process. The topics in this section are:

■ Eddie Bean Catalog Sales

■ Eddie Bean Database Tables

■ Eddie Bean Users

■ The Eddie Bean Application Profile

Eddie Bean Catalog Sales
The case study is about the fictitious Eddie Bean catalog sales company. This

company has many order entry clerks processing telephone orders for various

products. Shipping clerks fill orders and accounts receivable clerks handle billing.

Accounts payable clerks handle orders for supplies and services the company

requires internally. Sales managers and financial analysts run reports on the data.

This company’s financial application has three business processes operating on a

single database:

■ Order entry

■ Accounts payable

■ Accounts receivable

Eddie Bean Database Tables
Tables from the Eddie Bean database include:

Table B–1 Eddie Bean Sample Tables

Table Contents

order_header Order number, customer name and address.

order_item Products ordered, quantity, and price.

organizations Names, addresses, phone numbers of customers and suppliers.

accounts_payable Tracks the company’s internal purchase orders and payments
for supplies and services.

budget Balance sheet of the company’s expenses and income.

forecasts Projects future sales and records current performance.

Case Study: From Initial Database Design to Real Application Clusters

B-4 Oracle9i Real Application Clusters Deployment and Performance

Eddie Bean Users
Various application users access the database to perform different functions:

■ Order entry clerks

■ Accounts payable clerks

■ Accounts receivable clerks

■ Shipping clerks

■ Sales manager

■ Financial analyst

The Eddie Bean Application Profile
Operation of the Eddie Bean application is fairly consistent throughout the day:

order entry, order processing, and shipping occur all day. These functions are not

for example, segregated into separate one-hour time slots.

About 500 orders are entered each day. Each order header is updated about 4 times

during its lifetime. So we expect about 4 times as many updates as inserts. There are

many selects, because many employees are querying order headers: people doing

sales work, financial work, shipping, tracing the status of orders, and so on.

There are on average 4 items for each order. Order items are never updated: an item

can be deleted and another item entered. The order_header table has four

indexes. Each of the other tables has a primary key index only.

Budget and forecast activity has a much lower volume than the order tables. They

are read frequently, but modified infrequently. Forecasts are updated more often

than budgets, and are deleted once they go into actuals.

The vast bulk of the deletes are performed as a nightly batch job. This maintenance

activity does not, therefore, need to be included in the analysis of normal

functioning of the application.

Analyzing Access to Tables

A Case Study in Real Application Clusters Database Design B-5

Analyzing Access to Tables
Begin by analyzing the existing (or expected) access patterns for tables in your

database. Then decide how to partition the tables and group them according to

access pattern.

■ Table Access Analysis Worksheet

■ Case Study: Table Access Analysis

Table Access Analysis Worksheet
List all your high-activity database tables in a worksheet like the one shown in

Table B–2:

To complete this worksheet, estimate the volume of each type of operations. Then

calculate the number of reads and writes (I/Os) the operations entail.

Estimating Volume of Operations
For each type of operation to be performed on a table, enter a value reflecting the
normal volume you would expect in a day.

Table B–2 Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Note: The emphasis throughout this analysis is on relative
values—gross figures describing the normal use of an application.

Even if an application does not yet exist, you can project the types

of users and estimate relative levels of activity. Maintenance

activity on the tables is not generally relevant to this analysis.

Analyzing Access to Tables

B-6 Oracle9i Real Application Clusters Deployment and Performance

Calculating I/Os for Each Operation
For each value in the Operations column, calculate the number of I/Os that will be

generated using a worst-case scenario. The SELECT operation involves read access,

and the INSERT, UPDATE and DELETE operations involve both read and write

access. These operations access not only data blocks, but also any related index

blocks.

For example, Figure B–1 illustrates read and write access to data in a large table in

which two levels of the index are not in the buffer cache and only a high level index

is cached in the System Global Area (SGA).

Figure B–1 Number of I/Os for Each SELECT or INSERT Operation

Note: The number of I/Os generated for each operation changes

by table depending on the access path of the table, and the table’s

size. It also changes depending on the number of indexes a table

has. A small index, for example, can have only a single index

branch block.

Lower Level
Index Branch

Index
Leaf Block

Data
Block

Cached

Not Cached

Index
Root

Index
Branch

INSERTSELECT

Read

Read

Read

Read

Read/Write

Read/Write

Analyzing Access to Tables

A Case Study in Real Application Clusters Database Design B-7

In this example, assuming that you are accessing data by way of a primary key, a

SELECT requires three I/Os:

1. One I/O to read the first lower level index block.

2. One I/O to read the second lower level index block.

3. One I/O to read the data block.

An INSERT or DELETE statement requires at least five I/Os:

1. One I/O to read the data block.

2. One I/O to write the data block.

3. Three I/Os per index: 2 to read the index entries and 1 to write the index.

One UPDATE in this example entails seven I/Os:

1. One I/O to read the first lower level index block.

2. One I/O to read the second lower level index block.

3. One I/O to read the data block.

4. One I/O to write the data block.

5. One I/O to read the first lower level index block again.

6. One I/O to read the second lower level index block again.

7. One I/O to write the index block.

Note: If all of the root and branch blocks are in the SGA, then a

SELECT can entail only two I/Os: read leaf index block, read data

block.

Note: An INSERT or DELETE affects all indexes, but an UPDATE
sometimes affects only one index. Check the number of changed

index keys.

Analyzing Access to Tables

B-8 Oracle9i Real Application Clusters Deployment and Performance

I/Os for Each Operation for Sample Tables
In the case study, the number of I/Os for each operation differs from table to table

because the number of indexes differs from table to table.

Table B–3 shows how many I/Os are generated by each type of operation on the

order_header table. It assumes that the order_header table has four indexes.

Table B–4 shows how many I/Os generated for each operation for each of the other

tables in the case study, assuming each of them has a primary key index only.

For this analysis, you can disregard the fact that changes made to data also generate

rollback segment, entailing additional I/Os. These I/Os are instance-based.

Therefore, they should not cause problems with your Real Application Clusters

applications.

Table B–3 Number of I/Os for each Operation: Sample ORDER_HEADER Table

Operation SELECT INSERT UPDATE DELETE

Type of Access read read/write read/write read/write

Number of I/Os 3 14 7 14

Note: Adjust these figures depending upon the actual number of

indexes and access path for each table in your database.

Table B–4 Number of I/Os for each Operation: Other Sample Tables

Operation SELECT INSERT UPDATE DELETE

Type of Access read read/write read/write read/write

Number of I/Os 3 5 7 5

See Also: Oracle9i Database Concepts for more information about

indexes

Analyzing Access to Tables

A Case Study in Real Application Clusters Database Design B-9

Case Study: Table Access Analysis
Table B–5 shows rough figures reflecting normal use of the application in the case

study.

You can make the following conclusions from the data in Table B–5:

■ Only the order_header and order_item tables have significant levels of write

access.

■ organizations , by contrast, is predominantly a read-only table. While a

certain number of INSERT, UPDATE, and DELETEoperations will maintain it, its

normal use is SELECT-only.

Table B–5 Case Study: Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

order_header 20,000 60,000 500 7,000 2,000 14,000 1,000 14,000

order_item 60,000 180,000 2,000 10,000 0 0 4,030 20,150

organizations 40,000 120,000 10 50 100 700 0 0

budget 300 900 1 5 2 14 0 0

forecasts 500 1,500 1 5 10 70 2 10

accounts_payable 230 690 50 250 20 140 0 0

Analyzing Transaction Volume by Users

B-10 Oracle9i Real Application Clusters Deployment and Performance

Analyzing Transaction Volume by Users
Begin by analyzing the existing (or expected) access patterns for tables in your

database. Then partition the tables and group them according to access pattern.

■ Transaction Volume Analysis Worksheet

■ Case Study: Transaction Volume Analysis

Transaction Volume Analysis Worksheet
For each table with a high volume of write access, analyze the transaction volume

per day for each type of user.

Use worksheets like the one in Table B–6:

Begin by estimating the volume of transactions by each type of user and then

calculate the number of I/Os required.

Note: For read-only tables, you do not need to analyze transaction

volume by user type.

Table B–6 Transaction Volume Analysis Worksheet

Table Name:

Type of User No.Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Analyzing Transaction Volume by Users

A Case Study in Real Application Clusters Database Design B-11

Case Study: Transaction Volume Analysis
The following tables show transaction volume analysis of the three tables in the case

study that have high write access levels: order_header , order_item , and

accounts_payable .

ORDER_HEADER Table
Table B–7 shows rough estimates for values in the order_header table in the case

study.

You can make the following conclusions from the data in Table B–7:

■ Order entry clerks perform all inserts on this table

■ Accounts receivable and shipping clerks perform all updates

■ Sales managers and financial analysts only perform select operations

■ Accounts payable clerks never use the table

Deletes are performed as a maintenance operation, so you do not need to consider

them in this analysis. Furthermore, the application developers realize that sales

managers normally access data for the current month, whereas financial analysts

access mostly historical data.

Table B–7 Case Study: Transaction Volume Analysis: ORDER_HEADER Table

Table Name: ORDER_HEADER

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order entry clerk 25 5,000 15,000 500 7,000 0 0 0 0

Accounts payable
clerk

5 0 0 0 0 0 0 0 0

Accounts
receivable clerk

5 6,000 18,000 0 0 1,000 7,000 0 0

Shipping clerk 4 4,000 12,000 0 0 1,000 7,000 0 0

Sales manager 2 3,000 9,000 0 0 0 0 0 0

Financial analyst 2 2,000 6,000 0 0 0 0 0 0

Analyzing Transaction Volume by Users

B-12 Oracle9i Real Application Clusters Deployment and Performance

ORDER_ITEM Table
Table B–8 shows rough estimates for values in the order_item table in the case

study.

The following conclusions can be drawn from Table B–8:

■ Order entry clerks perform all inserts on this table

■ Updates are rarely performed

■ Accounts receivable clerks, shipping clerks, sales managers and financial

analysts perform a heavy volume of select operations on the table

■ Accounts payable clerks never use the table

The order_header table has more writes than order_item because the order

header tends to require more changes of status, such as address changes, than the

list of available products. The order_item table is seldom updated because new

items are listed as journal entries.

Table B–8 Case Study: Transaction Volume Analysis: ORDER_ITEM Table

Table Name: ORDER_ITEM

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order entry clerk 25 15,000 45,000 2,000 10,000 0 0 20 100

Accounts payable
clerk

5 0 0 0 0 0 0 0 0

Accounts
receivable clerk

5 18,000 54,000 0 0 0 0 10 50

Shipping clerk 4 12,000 36,000 0 0 0 0 0 0

Sales manager 2 9,000 27,000 0 0 0 0 0 0

Financial analyst 2 6,000 18,000 0 0 0 0 0 0

Analyzing Transaction Volume by Users

A Case Study in Real Application Clusters Database Design B-13

ACCOUNTS_PAYABLE Table
Table B–9 shows rough figures for the Accounts_payable table in the case study.

Although this table does not have a particularly high level of write access, we have

analyzed it because it contains the main operation that the accounts payable clerks

perform.

You can make the following conclusions from the data in this table:

■ Accounts payable clerks send about 50 purchase orders per day to suppliers.

These clerks are the only users who change the data in this table.

■ Financial analysts occasionally study the information.

Deletes are performed as a maintenance operation, so you do not need to consider

them in this analysis.

Table B–9 Case Study: Transaction Volume Analysis: ACCOUNTS_PAYABLE Table

Table Name: ACCOUNTS_PAYABLE

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order
entry
clerk

25 0 0 0 0 0 0 0 0

Accounts
payable
clerk

5 200 600 50 250 20 140 0 0

Accounts
receivable
clerk

5 0 0 0 0 0 0 0 0

Shipping
clerk

4 0 0 0 0 0 0 0 0

Sales
manager

2 0 0 0 0 0 0 0 0

Financial
analyst

2 30 90 0 0 0 0 0 0

Case Study: Initial Partitioning Plan

B-14 Oracle9i Real Application Clusters Deployment and Performance

Case Study: Initial Partitioning Plan
In the case study, the large number of order entry clerks doing heavy insert activity

on the order_header and order_item tables should not be separated across

machines. You should concentrate these users on one node along with the two

tables they use most. A good starting point is to set aside one node for the Order

Entry clerks, and one node for all other users as illustrated in Figure B–2.

Figure B–2 Case Study: Partitioning Users and Data

The system in Figure B–2 is probably well balanced across nodes. The database

intensive reporting done by financial analysts takes a significant amount of system

resources, whereas the transactions run by the order entry clerks are relatively

simple.

Attempting to use load balancing by manipulating the number of users across the

system is typically useful, but not always critical. Reducing contention has a more

significant effect on tuning than implementing load balancing does.

Partitioning
Users

Partitioning
Data

Instance 2Instance 1

OE Clerks

O
R

D
E

R
_H

E
A

D
E

R

O
R

D
E

R
_IT

E
M

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

O
R

G
A

N
IZ

A
T

IO
N

S

B
U

D
G

E
T

AP Clerks
AR Clerks

Shipping Clerks
Sales Managers

Financial Analysts

F
O

R
E

C
A

S
T

S

Case Study: Initial Partitioning Plan

A Case Study in Real Application Clusters Database Design B-15

Case Study: Further Partitioning Plans
In the case study it is also clear that accounts payable data is written exclusively by

accounts payable clerks. You can thus effectively partition this data onto a separate

instance as shown in Figure B–3.

Figure B–3 Case Study: Partitioning Users and Data: Design Option 1

When all users needing write access to a certain part of the data are concentrated on

one node, the global enqueues all reside on that node. In this way, resource

ownership does not move between instances. Based on this analysis, you have two

design options as described under the following headings.

Partitioning
Users

Partitioning
Data

Instance 3Instance 1

OE Clerks

O
R

D
E

R
_IT

E
M

Instance 2

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

AP Clerks

O
R

G
A

N
IZ

A
T

IO
N

S

B
U

D
G

E
T

F
O

R
E

C
A

S
T

S

AR Clerks
Shipping Clerks
Sales Manager

Financial Analysts

O
R

D
E

R
_H

E
A

D
E

R

Case Study: Initial Partitioning Plan

B-16 Oracle9i Real Application Clusters Deployment and Performance

Design Option 1
You can set up your system as shown in Figure B–3 with all order entry clerks on

one instance to minimize contention for exclusive GCS resources on the tables. This

allows sales managers and financial analysts to get up-to-the-minute information.

Since they do want data that is predominantly historical, there should not be too

much contention for current records.

Design Option 2
Alternatively, you could implement a separate temporary table for order_item/
order_header as shown in Figure B–4. This table is only for recording new order

information. Overnight, you could incorporate changes into the main table against

which all queries are performed. This solution would work well if it is not required

that financial analysis have current data. This is probably an acceptable solution

only if they are primarily interested in looking at historical data. This would not be

appropriate if the financial analysts needed up-to-the-minute data.

Figure B–4 Case Study: Partitioning Users and Data: Design Option 2

Partitioning
Users

Partitioning
Data

Instance 3Instance 1

OE Clerks

O
R

D
E

R
_H

E
A

D
E

R
_T

E
M

P

O
R

D
E

R
_IT

E
M

_T
E

M
P

Instance 2

AR Clerks
Shipping Clerks

Sales Mangagers
Financial Analysts

O
R

D
E

R
_H

E
A

D
E

R

O
R

D
E

R
_IT

E
M

O
R

G
A

N
IZ

A
T

IO
N

S

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

AP Clerks

B
U

D
G

E
T

F
O

R
E

C
A

S
T

S

Implement and Tune Your Design

A Case Study in Real Application Clusters Database Design B-17

Partitioning Indexes
You need to consider index partitioning if multiple nodes in your system are

inserting into the same index. In this situation, you must ensure that different

instances insert into different points within the index.

Implement and Tune Your Design
Up to this point, you conducted an analysis using estimated figures. To finalize

your design you must now either prototype the application or actually implement

it. By observing the actual system, you can tune it further.

To do this, try the following techniques:

■ Identify blocks that are being forced written and determine where contention

exists.

■ Consider moving users from one instance to another to reduce forced disk

writes and false forced writes.

■ If there are forced disk writes on inserts, then adjust the free lists or use

multiple sequence number generators so that inserts occur in different parts of

the index.

Note: This problem is avoided in the Eddie Bean case study

because application and data usage are partitioned.

See Also: Oracle9i Database Performance Guide and Reference

Implement and Tune Your Design

B-18 Oracle9i Real Application Clusters Deployment and Performance

Glossary-1

Glossary

alert file

A file that contains information about error messages and exceptions that can occur

during database operations. Each database instance maintains one alert file.

buffer busy due to global cache

Buffer busy due to global cache is a wait event that is signaled when a process has

to wait for a block to become available because another process is obtaining a

resource for this block.

buffer busy waits

Buffer busy waits is a wait event that is signaled when a process cannot get a buffer

because another process is using the buffer at that moment.

cache convert waits

The cache convert waits per transactions statistic is the total number of waits for all

up-convert operations, such as global cache null to S, global cache null to X, and

global cache S to X.

Cache Fusion

Cache Fusion allows the direct transfer of data blocks between instances by way of

an interconnect without causing forced writes to disk. That is, when one instance

needs a current or consistent-read copy of a data block from another instance for a

query or DML operation, the holding instance can transmit the block directly into

the cache of the requesting instance.

Glossary-2

cache open waits

The cache open waits per transactions statistic is the total number of waits for

global cache open S and global cache open X.

cluster

A set of instances that typically run on different nodes. Each instance coordinates

with the others when accessing the shared database residing on disk.

Cluster Manager (CM)

Cluster Manager is an operating system-dependent component that discovers and

tracks the membership state of nodes by providing a common view of membership

across the cluster. The Cluster Manager also monitors process health. The Lock
Monitor Process (LMON), a background process that monitors the health of the

Global Cache Service (GCS), registers and de-registers from the CM. The CM also

manages recovery from any network card or cable failures.

connection load balancing

A feature that balances the number of active connections among various instances

and shared server dispatchers for the same service. Because of service registration’s

ability to register with remote listeners, a listener is always aware of all instances

and dispatchers. This way, a listener can send an incoming client request for a

specific service to the least loaded instance and least loaded dispatcher regardless of

its location.

connect-time failover

A client connect request is forwarded to another listener if the first listener is not

responding. Connect-time failover is enabled by service registration, because the

listener knows whether an instance is up prior to attempting a connection.

consistent gets

Consistent gets are the number of buffers that are obtained in consistent read (CR)

mode.

consistent read

The Global Cache Service (GCS) ensures that a consistent read block (also known as

the master copy data block) is maintained. The consistent read block is the master

block version that holds all the changes. It is held in at least one System Global Area

(SGA) in the cluster if the block is to be changed. If an instance needs to read the

block, then the current version of the block can reside in many buffer caches as a

shared resource. Thus, the most recent copy of the block in all System Global Areas

Glossary-3

contains all changes made to that block by all instances, regardless of whether any

transactions on those instances have committed.

Console

The Oracle Enterprise Manager Console gives you a central point of control for the

Oracle environment through an intuitive graphical user interface (GUI) that

provides powerful and robust system management.

control file

A file that records the physical structure of a database and contains the database

name, the names and locations of associated databases and online redo log files, the

timestamp of the database creation, the current log sequence number, checkpoint

information and various other records about the database’s structure and health.

CR blocks received per transaction

The number of CR blocks shipped from the instance that has a block in exclusive

access mode to the instance requesting a CR version of this block.

cr request retry

The cr request retry statistic is a wait that is incurred whenever Oracle re-submits a

consistent read request when Oracle detects that the holding instance is no longer

available.

data dependent routing

A method of routing data based on how the data is used within an application.

datafile

A file that contains the contents of logical database structures, such as tables and

indexes. One or more datafiles form a logical unit of storage called a tablespace. A

datafile can be associated with only one tablespace and only one database.

db block changes

Db block changes is a statistic that shows the number of current buffers obtained in

exclusive mode for DML.

db block gets

db block gets is a statistic that shows the number of current buffers obtained for a

read.

Glossary-4

Database Writer (DBWn)

The DBWn processes are responsible for writing modified (dirty) buffers in the

database buffer cache to disk.

DBWR cross-instance writes

DBWR cross-instance writes (also known as forced writes) are the number of writes

that an instance has to perform to disk to make a previously exclusively held block

available for another instance to read into its buffer cache. DBWR cross-instance

writes are practically eliminated with Cache Fusion, unless you specify a value

greater than 0 (zero) for the GC_FILES_TO_LOCKS parameter.

dedicated server

A server that requires a dedicated server process for each user process. There is one

server process for each client. Oracle Net sends the address of an existing server

process back to the client. The client then resends its connect request to the server

address provided. Contrast this with the shared server.

degree of parallelism (DOP)

The degree of parallelism specifies the number of processes, or threads, used in

parallel operations. Each parallel process or thread can use one or two parallel

execution processes depending on the SQL statement’s complexity.

DFS Lock Handles

DFS Lock Handles are pointers to global resources. To perform operations on global

enqueue service resources, the process first needs to acquire a DFS handle.

disk affinity

Disk affinity is the relationship between data on a disk and the instance that needs

to access it. True disk affinity is only available in shared nothing disk

configurations. This enables you to partition tablespaces across disks such that each

partition is accessed by one and only one instance. The instance accessing the data

on that disk has disk affinity.

dispatcher

A process that enables many clients to connect to the same server without the need

for a dedicated server process for each client. A dispatcher handles and directs

multiple incoming network session requests to shared server processes. See also

shared server.

Glossary-5

flow control messages sent

The number of flow-control (nullreq and nullack) messages that are sent by the

LMS process.

flow control messages received

The number of flow-control (nullreq and nullack) messages received by the LMD

process.

forced disk writes

Forced disk writes refer to the forced writing of a data block to disk by one instance

when the data block is requested by another instance for a DML operation. Forced

Writes are practically eliminated in Oracle9i with Cache Fusion, but they remain

relevant if you specify 1:1 or 1:n releasable or fixed resources with the GC_FILES_
TO_LOCKS parameter. In this case, Cache Fusion is disabled.

global cache bg acks

Global cache bg acks is a wait event that only can occur during startup or shutdown

of an instance when the LMS process finalizes its operations.

global cache busy

The global cache busy statistic is a wait event that occurs whenever a session has to

wait for an ongoing operation on the resource to complete.

global cache cr cancel wait

The global cache cr cancel wait statistic is a wait event that occurs whenever a

session waits for the AST to complete for a canceled block access request.

Cancelling the request is part of the Cache Fusion Write Protocol.

global cache converts

Global cache converts are resource converts of buffer cache blocks. This statistic is

incremented whenever GCS resources are converted from Null to Exclusive, Shared

to Exclusive, or Null to Shared.

global cache convert time

Global cache convert time is the accumulated time that all sessions require to

perform global conversions on GCS resources.

global cache convert timeouts

Global cache convert timeouts are incremented whenever a resource operation

times out.

Glossary-6

global cache cr block flush time

Global cache cr block flush time is the time waited for a log flush when a CR

request is served. Once LGWR has completed flushing the changes to a buffer that

is on the log flush queue, LMS can send it. It is part of the serve time.

global cache cr blocks received

When a process requests a consistent read for a data block that is not in its local

cache, it sends a request to another instance. Once the request is complete, in other

words, the buffer has been received, Oracle increments the statistic.

global cache cr block receive time

The global cache cr block receive time statistic records the total time required for

consistent read requests to complete. In other words, it records the accumulated

round-trip time for all requests for consistent read blocks.

global cache cr blocks served

The global cache cr blocks served statistic is the number of requests for a consistent

read block served by LMS. Oracle increments this statistic when the block is sent.

global cache cr block build time

The global cache cr block build time statistic is the time that the LMS process

requires to create a consistent read block on the holding instance

global cache cr block send time

The global cache cr block send time statistic is the time required by LMS to initiate a

send of a consistent read block. For each request, timing begins when the block is

sent and stops when the send has completed. This statistic only measures the time it

takes to initiate the send; it does not measure the time elapsed before the block

arrives at the requesting instance.

global cache cr cancel wait

Await event that occurs when a session waits for the acquisition interrupt to

complete for a canceled CR request. Cancelling the CR request is part of the Cache

Fusion write protocol.

global cache cr request

The global cache cr request statistic is a wait event that occurs whenever a process

has to wait for a pending CR request to complete. The process waited for either

shared access to a block to be granted before reading the block from disk into the

cache, or it waited for the LMS of the holding instance to send the block.

Glossary-7

global cache cr timeouts

The global cache cr timeouts statistic identifies a request for a consistent read block

that has an excessive delay and that has timed out. This could be due to system

performance problems, a slow interconnect network, or dropped network packets.

The value of this statistic should always be 0 (zero).

global cache current block flush time

The global cache current block flush time statistic is the time it takes to flush the

changes to a block to disk, otherwise known as a forced log flush, before the block is

shipped to the requesting instance

global cache current block pin time

The global cache current block pin time statistic is the time it takes to the pin the

current block before shipping it to the requesting instance. Pinning a block is

necessary to disallow further changes to the block while it is prepared to be shipped

to another instance.

global cache current blocks received

The global cache current blocks received statistic is the number of current blocks

received from the holding instance over the interconnect.

global cache current block receive time

The global cache current block receive time statistic is the accumulated round-trip

time for all requests for current blocks

global cache current block send time

The global cache current block send statistic is the time it takes to send the current

block to the requesting instance over the interconnect.

global cache current blocks served

The global cache current blocks served statistic is the number of current blocks

shipped to the requesting instance over the interconnect

global cache freelist wait

The global cache freelist wait statistic is a wait event that occurs when Oracle must

wait after it detects that the local element free list is empty.

global cache freelist waits

The global cache freelist waits statistic is the number of times Oracle found the

resource element free list empty.

Glossary-8

global cache gets

The global cache gets statistic is the number of buffer gets that result in opening a

new resource with the GCS.

global cache get time

The global cache get time statistic is the accumulated time of all sessions needed to

open a GCS resource for a local buffer.

global cache initialization parameters

Global cache initialization parameters are initialization parameters that determine

the size of the collection of global that protect the database buffers on all instances.

global cache null to S

The global cache null to S statistic is a wait event that occurs whenever a session has

to wait for a resource conversion to complete.

global cache null to X

The global cache null to X statistic is a wait event that occurs whenever a session

has to wait for this resource conversion to complete.

global cache open S

The global cache open S statistic is a wait event that occurs when a session has to

wait for receiving permission for shared access to the requested resource.

global cache open X

The global cache open X statistic is a wait event that occurs when a session has to

wait for receiving a exclusive access to the requested resource.

global cache S to X

The global cache S to X statistic is a wait event that occurs whenever a session has to

wait for this resource conversion to complete.

global cache pending ast

The global cache pending ast statistic is a wait event that can occur when a process

waits for an acquisition interrupt before Oracle closes a resource element.

Note: Manually setting GC_FILES_TO_LOCKS overrides the

default resource control behavior in Real Application Clusters.

Glossary-9

global cache pred cancel wait

A wait event that occurs when a session must wait for the acquisition interrupt to

complete for a canceled predecessor read request. Cancelling a predecessor read

request is part of the Cache Fusion write protocol.

global cache retry prepare

The global cache retry prepare statistic is a wait event that occurs whenever Oracle

fails to prepare a buffer for a consistent read or Cache Fusion request, and when

Oracle cannot ignore or skip this failure.

Global Cache Service (GCS)

The Global Cache Service is the process that implements Cache Fusion. It maintains

block modes for blocks in the global role and is responsible for block transfers

among instances. The Global Cache Service accomplishes these tasks using

background processes such as the Global Cache Service process (LMS) and the

Global Enqueue Service process (GES).

Global Cache Service Processes (LMSn)

The Global Cache Service Processes (LMSn) handle remote Global Cache Service

messages. Current Real Application Clusters software provides for up to 10 Global

Cache Service Processes. The number of LMSn processes varies depending on the

amount of messaging traffic among nodes in the cluster. The LMSn processes

handle the acquisition interrupt and blocking interrupt requests from the remote

instances for Global Cache Service resources. For cross-instance consistent read

requests, LMSn creates a consistent read version of the block and sends it to the

requesting instance. LMSn also controls the flow of messages to remote instances.

global database name

The global database name is the full name of the database that uniquely identifies it

from another database. The global database name is of the form database_
name.database_domain , for example, sales.us.acme.com.

Global Enqueue Service (GES)

This service coordinates enqueues that are shared globally.

Global Enqueue Service Daemon (LMD)

The Global Enqueue Service Daemon (LMD) is the resource agent process that

manages Global Enqueue Service resource requests. The LMD process also handles

deadlock detection Global Enqueue Service requests. Remote resource requests are

requests originating from another instance.

Glossary-10

Global Enqueue Service Monitor (LMON)

The background Global Enqueue Service Monitor (LMON) monitors the entire

cluster to manage global resources. LMON manages instance and process

expirations and the associated recovery for the Global Cache and Global Enqueue

Services. In particular, LMON handles the part of recovery associated with global

resources. LMON-provided services are also known as cluster group services

(CGS).

global lock async converts

The global lock async converts statistic is the number of resources that Oracle

converted from an incompatible mode.

global lock sync gets

The global lock sync gets statistic is the number of GCS resources that Oracle must

open synchronously. Sync gets are mostly for GES resources (for example, library

cache resources).

global lock async gets

The global lock async gets statistic is the number of GES resources that Oracle must

open asynchronously. Async gets are only used for GES resources and include the

number of global cache gets.

global lock get time

The global lock get time statistic is the accumulated time for all GES resources that

Oracle needed to open.

global lock sync converts

The global lock sync converts statistic is the number of GES resources that Oracle

converted from an incompatible mode. Sync converts occur mostly for GES

resources.

global lock convert time

The global lock convert time statistic is the accumulated time for all global lock sync

converts and global lock async converts.

high water mark

The high water mark is the highest limit within a segment for which space has been

allocated to store data blocks. When a commit executes, if the new limit is greater

than the previous limit, the high water mark is updated.

Glossary-11

hybrid database

A hybrid database is one that has both OLTP and Data Warehouse processing

characteristics.

initialization parameter file

The initialization parameter file is a file with parameter settings that initialize the

database (init db_name.ora). In the case of Real Application Clusters, it

initializes the instances within a cluster (initsid.ora). The default single

initialization parameter file is known as SPFILE.ORA .

instance

For a Real Application Clusters database, each node within the cluster has an

instance of the running Oracle9i software referencing the database.

When a database is started on a database server (regardless of the type of

computer), Oracle allocates a memory area called the System Global Area (SGA)
and starts one or more Oracle processes. This combination of the SGA and the

Oracle processes is called an instance. The memory and processes of an instance

efficiently manage the database's data and serve the database users. You can

connect to any instance to access information within a Real Application Clusters

database.

Each instance has unique Oracle System Identifier (SID), instance name, instance
number, rollback segments, and thread ID.

instance groups

Use instance groups to limit the number of instances that participate in a parallel

operation. You can create any number of instance groups, each consisting of one or

more instances. You can then specify which instance group is to be used for any or

all parallel operations. Parallel execution servers will only be used on instances that

are members of the specified instance group.

instance name

Represents the name of the instance and is used to uniquely identify a specific

instance when multiple instances share common service names. The instance name

is identified by the INSTANCE_NAME parameter in the initialization parameter file.

The instance name is identical to Oracle System Identifier (SID).

instance number

A number that associates extents of data blocks with particular instances. The

instance number enables you to start up an instance and ensure that it uses the

Glossary-12

extents allocated to it for inserts and updates. This ensures that it does not use space

allocated for other instances. The instance cannot use data blocks in another free list

unless the instance is restarted with that instance number.

You can use various SQL options with the INSTANCE_NUMBER initialization

parameter to associate extents of data blocks with instances.

The instance number is depicted by the INSTANCE_NUMBER parameter in the

instance initialization file, init sid .ora .

interconnect

An interconnect is an arrangement of data paths that in the case of Real Application

Clusters and Cache Fusion allows data to be sent between caches of disjoint nodes

Inter-Process Communication (IPC)

The inter-process communication layer is an operating system-dependent

component that enables transfers of messages, consistent-read, and current versions

of data blocks between instances on different nodes.

Lock Manager Servers (LMSn)

See Global Cache Service Processes (LMSn).

listener

The listener process is a separate process residing on the server that listens for

incoming client connection requests and manages server traffic. The listener brokers

the client request, handing the request to the server when the server is available.

Every time a client (or server acting as a client) requests a network session with a

server, a listener receives the actual request. If the client’s information matches the

listener’s information, then the listener grants a connection to the server.

Lock Manager Daemon Process (LMD)

See Global Enqueue Service Daemon (LMD).

Lock Manager Server Process (LMS)

See Global Cache Service Processes (LMSn).

Lock Monitor Process (LMON)

See Global Enqueue Service Monitor (LMON).

Glossary-13

load balancing

Load balancing is the even distribution of active database connections among

instances. In the context of parallel execution, load balancing refers to the

distribution of parallel execution server processes to spread work among the CPUs

and memory resources.

lock buffers for read

The lock buffers for read statistic is the number of up-converts from Null to Shared.

lock gets per transaction

The lock gets per transaction statistic is the number of global lock sync gets and

global lock async gets per transaction.

lock converts per transaction

The lock converts per transaction statistic is the number of global local sync

converts and global lock async converts per transaction.

messages flow controlled

The number of messages intended to be sent directly but that are instead queued

and delivered later by LMD/LMS.

messages received

The number of messages received by the LMD process.

messages sent directly

The number of messages sent directly by Oracle processes.

messages sent indirectly

The number of messages explicitly queued by Oracle processes.

Multi-threaded server (MTS)

See shared server.

Net8

See Oracle Net.

node

A node is machine where an instance resides.

Glossary-14

operating system context switches

Operating system context switches occur when a thread’s time allotment has

elapsed, when a thread with a higher priority has become ready to run, or when a

running thread needs to wait, for example, for I/O to complete.

operating system-dependent layer (OSD)

The operating system-dependent (OSD) layer is a software layer that consists of

several software components developed either by vendors for UNIX platforms, or

by Oracle for NT installations of the Oracle database. The OSD layer maps the key

operating system/cluster-ware services required for operation of Real Application

Clusters.

Oracle Data Gatherer

The Oracle Data Gatherer collects performance statistics for the Oracle Performance
Manager. You must install the Oracle Data Gatherer on a node on your network.

Oracle Enterprise Manager

A system management tool that provides an integrated solution for centrally

managing your heterogeneous environment. Oracle Enterprise Manager combines a

graphical console, management server, Oracle Intelligent Agent, repository

database, and tools to provide an integrated, comprehensive systems management

platform for managing Oracle products.

Oracle Enterprise Manager Console

The Oracle Enterprise Manager Console is a suite of GUI tools that make up the

Oracle Enterprise Manager product.

Oracle Intelligent Agent

The Oracle Intelligent Agent is a process that runs on each of the node that

functions as the executor of jobs and events sent by the console by way of the

Management Server. The Oracle Intelligent Agent ensures high availability since the

agent can function regardless of the status of the Console or network connections.

Oracle Net

Oracle Net is the foundation of Oracle's family of networking products, allowing

services and their applications to reside on different computers and communicate

as peer applications. The main function of Oracle Net is to establish network

sessions and transfer data between a client machine and a server or between two

servers. Once a network session is established, Oracle Net acts as a data courier for

the client and the server.

Glossary-15

Oracle Parallel Server Management

See Server Management.

Oracle Performance Manager

Oracle Performance Manager is an add-on application for Oracle Enterprise
Manager that offers a variety of tabular and graphic performance statistics for Real

Application Clusters. The statistics represent the aggregate performance for all

instances.

Oracle Real Application Clusters

See Real Application Clusters.

Oracle System Identifier (SID)

An Oracle System Identifier is a name that identifies a specific instance of a running

pre-release 8.1 Oracle database. For a Real Application Clusters database, each node
within the cluster has an instance referencing the database. The database name,

specified by the DB_NAMEparameter in the init db_name.ora file, and unique

thread ID make up each node’s SID. The thread ID starts at 1 for the first instance in

the cluster, and is incremented by 1 for the next instance, and so on.

For pre-release 8.1 databases, SID identified the database. The SID was included in

the part of the connect descriptor in a tnsnames.ora file, and in the definition of

the network listener in the listener.ora file.

Oracle9 i Enterprise Edition

Oracle9i Enterprise Edition is an object-relational database management system

(ORDBMS). It provides the applications and files to manage a database. All other

Real Application Clusters components are layered on top of the Oracle9i Enterprise

Edition.

parallel automatic tuning

Parallel automatic tuning automatically controls values for all parameters related to

parallel execution. These parameters affect several aspects of server processing,

namely, the degree of parallelism (DOP), the adaptive multi-user feature, and

memory sizing. Initialize and automatically tune parallel execution by setting the

initialization parameter PARALLEL_AUTOMATIC_TUNING to true .

Glossary-16

parallel execution

Parallel execution refers to multiple processes operating together to complete a

single database transaction. Parallel execution works on both single and multiple

instance Oracle installations. Parallel execution is also referred to parallel query.

physical reads

The physical reads statistic is the number of disk reads that had to be performed

when a request for a data block could not be satisfied from a local cache..

physical writes

The physical writes statistic is the number of write I/Os performed by the DBWn

processes. This number includes the number of DBWR cross instance writes (forced

writes) in Oracle9i when GC_FILES_TO_LOCKS is set. Setting GC_FILES_TO_
LOCKS for a particular datafile will enable the use of the old ping protocol, and will

not leverage the Cache Fusion architecture.

ping

Pings are actually forced disk writes which were common in previous Oracle

cluster software products. Pings occurred because a data block can only be modified

by one instance at a time. Before Real Application Clusters, if one instance modifies

a data block that another instance requires, then whether a forced disk write occurs

depends on the type of request submitted for the block. If the requesting instance

needs the block for modification, then the holding instance’s resources on the data

block must be converted accordingly. The first instance must write the block to disk

before the requesting instance can read it. This constitutes a forced disk write to a

block.

PMON process

PMON is a process monitor database process that performs process recovery when a

user process fails. PMON is responsible for cleaning up the cache and freeing

resources that the process was using. PMON also monitors dispatcher and server

processes and restarts them if they have failed. As a part of service registration,

PMON registers instance information with the listener.

raw devices

Raw devices are disks or partitions on disk drives that do not have a file system set

up on them. Raw devices are used for Real Application Clusters since they enable

the sharing of disks.

Glossary-17

raw volumes

See raw devices.

Real Application Clusters

An architecture that allows multiple instances to access a shared database of

datafiles. Real Application Clusters is also a software component that provides the

necessary Real Application Clusters scripts, initialization files, and datafiles to make

the Oracle9i Enterprise Edition a Real Application Clusters database.

Recovery Manager (RMAN)

RMAN is an Oracle tool that enables you to back up, copy, restore, and recover

datafiles, control files, and archived redo logs. It is included with the Oracle server

and does not require separate installation. You can invoke RMAN as a command

line utility from the operating system (O/S) prompt or use the GUI-based

Enterprise Manager Backup Manager.

redo log file

A redo log file is a file that contains a record of all changes made to data in the

database buffer cache. If an instance failure occurs, then the redo log files are used

to recover the modified data that was in memory.

remote instance undo block writes

The remote instance undo block writes statistic is the number of rollback segment

undo blocks written to disk by DBWn as part of a forced write.

remote instance undo header writes

The remote instance undo header writes statistic is the number of rollback segment

header blocks written to disk by DBWn as part of a forced write.

repository database

A repository database, such as that used by Oracle Enterprise Manager, is a set of

tables in an Oracle database, to store data to manage Real Application Clusters

environments. This database is separate from any shared Real Application Clusters

database on the nodes.

reverse key indexes

Reverse key indexes reverse the bytes of each column indexed while keeping the

column order. This avoids performance degradation in Real Application Clusters

where index modifications concentrate on a small set of leaf blocks. Reversing the

keys of You cannot use reverse key indexes for index range scans.

Glossary-18

rollback segment

Rollback segments contain transactions to undo changes to data blocks for

uncommitted transactions. Rollback segments also provide read consistency to roll

back transactions and to recover the database. Each node typically has two rollback

segments that are identified with a naming convention of RBSthread_id_rollback_
number by the ROLLBACK_SEGMENTS parameter in the instance initialization file.

seed database

A seed database is a preconfigured, ready-to-use database that requires minimal

user input to create.

Server Management

Server Management (SRVM) is a comprehensive, integrated system management

solution for managing Real Application Clusters environments. Server

Management enables you to manage multi-instance databases in heterogeneous

environments. Server Management is part of the open client/server architecture of

Oracle Enterprise Manager. In addition to managing cluster databases, Server

Management enables you to schedule jobs, perform event management, monitor

performance, and obtain statistics to tune Real Application Clusters databases.

service name

A service name is a logical representation of a database, which is the way a

database is presented to clients. A database can be presented as multiple services

and a service can be implemented as multiple database instances. The service name

is a string that is the global database name, a name comprised of the database

name (DB_NAME) and domain name (DB_DOMAIN), entered during installation or

database creation.

If you are not sure what the global database name is, then you can obtain it from the

combined values of the SERVICE_NAMES parameter in the initialization file.

service registration

Service registration is a feature by which the PMON process (or shared server

Dispatcher processes when using shared server) automatically registers information

with a listener. Because this information is registered with the listener, you do not

need to configure the listener.ora file with this static information.

shared server

The shared server is a server configured to allow many user processes to share very

few server processes. This means increases the number of users that can be

supported. With shared server, many user processes connect to a dispatcher. The

Glossary-19

dispatcher directs multiple incoming network session requests to a common queue.

An idle shared server process from a shared pool of server processes picks up a

request from the queue. This means a small pool of server processes can serve a

large amount of clients. Contrast this with dedicated server.

star schemas

Star schemas are query-centric schemas that when represented in a diagram have a

fact table at the center. The fact table usually contains the data element that is

central to queries operating against the schema. A fact table is often quite large and

is surrounded by several dimension tables that contain data that are attributes of the

data in the fact table. Star schemas simplify query development because it is

intuitive as to how to join attributes in the dimension tables with the fact table data.

Star schemas are best suited for data warehousing environments and are thus less

useful for OTLP environments.

striping

Striping refers to the interleaving of a related block of data across disks. If you

properly implement striping, then it reduces I/O and improves performance.

Because striping software is operating system-dependent, rely on your vendor

documentation to ensure proper installation and configuration. There are two

primary methods of striping, single-user or multi-user. These terms describe the type

of environments in which each type of striping is most beneficial. The latter is

commonly implemented for Real Application Clusters. With multi-user striping, the

performance improvement is due to simultaneous disk arm movements reading

related data on multiple hard drives. The degree to which average disk access time

improves is proportional to the number of drives.

System Change Number (SCN)

System change numbers uniquely identify a committed transaction and the changes

it makes. Within Real Application Clusters, system change numbers must not only

be maintained within an instance, but they must also be synchronized across all

instances with a cluster.

System Global Area (SGA)

The System Global Area is a group of shared memory structures that contain data

and control information for an Oracle instance.

tablespace

A tablespace is a logical portion of an Oracle database used to allocate storage for

table and index data. Each tablespace corresponds to one or more physical datafiles.

Glossary-20

Every Oracle database has a tablespace called SYSTEM and can have additional

tablespaces. A tablespace is used to group related logical structures. For example,

tablespaces commonly group all of an application’s objects to simplify

administrative operations.

Transmission Control Protocol/Interconnect Protocol (TCP/IP)

TCP/IP is a set of protocols that allow cooperating computers to share resources

across a network.

thread ID

The thread ID is the number of a redo thread for an instance. Any available redo

thread number can be used, but an instance cannot use the same thread number as

another instance.

transaction monitor

A transaction monitor is a class of software products that provide a transaction

execution layer above the operating system. Transaction monitors combine database

updates and submit them to a database. In doing this, the transaction monitor

manages some of the consistency and correctness of the database. The monitor

ensures that the rules of transaction atomicity are adhered to; updates take place

completely or not at all. The advantages of using transaction monitors include

increased throughput.

transparent application failover (TAF)

Transparent application failover is a runtime failover mechanism for

high-availability environments, such as Real Application Clusters and Oracle Real

Application Clusters Guard, that refers to the failover and re-establishment of

application-to-service connections. It allows client applications to automatically

reconnect to the database if the connection fails, and optionally resume a SELECT
statement that was in progress. This reconnect happens automatically from within

the Oracle Call Interface (OCI) library.

User Datagram Protocol (UDP)

The User Datagram Protocol is a similar protocol to TCP/IP, however, it is simpler

to administer. It is considered less reliable than TCP/IP because, for example, it

does not guarantee message ordering.

User-mode IPC

User-mode IPC (Inter-process Communication) is an IPC-based protocol that

directly accesses network hardware. As opposed to kernel-mode IPC, with

Glossary-21

user-mode IPC the protocol avoids the overhead of copying data into kernel space,

making system calls, and incurring context switches.

Virtual Interface Architecture (VIA)

Virtual Interface Architecture is an implementation of user mode IPC.

Glossary-22

Index-1

Index
A
Active Users by Instance Chart, 7-13

in Oracle Performance Manager, 7-13

Active Users Chart

in Oracle Performance Manager, 7-13

Active/Active configurations

and Real Application Clusters, 1-3

adding nodes, 2-11

administration

aspects of scaling in Real Application

Clusters, 2-11

advanced queuing

and queue table cache transfers, 5-25

and queue table instance affinity, 5-24

in Real Application Clusters, performance, 5-24

affinity

tables and advanced queuing, 5-24

ALL_TABLES view, 4-19

ALLOCATE EXTENT

DATAFILE clause, 4-10

INSTANCE clause, 4-10

ALLOCATE EXTENT clause

DATAFILE clause, 4-10

exclusive mode, 4-9

in exclusive mode, 4-9

INSTANCE clause, 4-10

instance number, 4-11

preallocating extents, 4-11

SIZE clause, 4-9

allocation

automatic, 4-11, 4-12

Cache Fusion resources, A-7

extents, 4-11, 4-12

extents, dynamic, A-15

GCS resources, A-15

of Cache Fusion resources, A-7

ALTER CLUSTER statement

ALLOCATE EXTENT clause, 4-9, 4-11

ALTER DATABASE statement

DATAFILE RESIZE, A-5

ALTER SESSION SET INSTANCE statement, 4-8

ALTER SESSION statement

SET INSTANCE clause, 4-8

ALTER TABLE statement

ALLOCATE EXTENT, 4-9

allocating extents, 4-11, 4-12

DISABLE TABLE LOCK clause, 4-19

ENABLE TABLE LOCK clause, 4-19

MAXEXTENTS clause, 4-12

ALTER TABLESPACE statement

READ ONLY clause, 3-7

analysis

of applications for Real Application

Clusters, 3-2

application profile

case study example, B-4

applications

analysis for Real Application Clusters, 3-2

designing, B-2

development for Real Application Clusters, 3-2

diagnosing performance problems of, 5-23

performance problems, 5-22

performance profiles, 5-15

scalability, 6-4

table access patterns, 3-2

transactions, 3-2

tuning queries of, 5-22

Index-2

AUTOEXTEND clause, A-5

average global cache CR request time, 7-3, 7-7

B
B2B models

in Real Application Clusters, 2-4

block size

and contention, 5-18

increasing for query performance, 5-22

blocks

contention, 4-11, A-15

dynamic allocation of on resource

boundaries, A-10

minimizing contention for, 4-11

branch blocks

minimizing contention for, 4-17

C
CACHE

clause, for Oracle sequences, 5-21

Cache Fusion

and e-commerce applications, 2-2

and performance issues for, 6-6

benefits, 6-4

performance, 6-1

performance monitoring goals, 6-7

processing, minimizing overhead for, 3-2

resources, associating with free lists, A-15

resources, exclusive, A-6

resources, shared, A-6

resources, specifying, A-5

sources of performance statistics for, 6-8

tuning, 6-1

cache transfers

of queue table data blocks in advanced

queuing, 5-25

case study

in Real Application Clusters, B-2

CATCLUST.SQL script, 6-9

using to create views for Real Application

Clusters, 6-9

Charts, Statistics, 7-7

cluster file systems

in Real Application Clusters, 1-6

clustered tables

with free lists and free list groups, 4-6

clusters

allocating extents, 4-11

free list groups, 4-9

free lists, 4-6

hash cluster, 4-6

parallel execution tuning, A-16

Clusters Data Block Ping by Instance Chart

in Oracle Performance Manager, 7-13

compatibility

shared and exclusive modes, 4-9

component-based architectures, 2-4

concurrency

inserts and updates, 4-5

consistent read

processing for and tuning issues, 6-2

consistent-read blocks, 6-2

contention

and block size, 5-18

block, 4-11, A-15

for resources, 5-20

minimizing for blocks, 4-11

specific to applications on Real Application

Clusters, 5-21

table data, 4-11

context switches

reduced with Cache Fusion, 6-4

control files

data files, 4-10

cost-based optimizer, 2-7

CPU service time required

calculating, 5-12

CPU utilization

reduced with Cache Fusion, 6-4

CR time outs, chart, 7-7

CREATE CLUSTER statement, 4-6

FREELIST GROUPS clause, 4-5

FREELISTS clause, 4-5

CREATE statement

setting FREELISTS and FREELIST GROUPS, 4-5

CREATE TABLE statement

clustered tables, 4-6

examples, 4-11

Index-3

FREELISTS clause, 4-5

initial storage, 4-11

Current Block Request Chart, Global Cache, 7-11

current image

for consistent read processing and tuning

of, 6-2

D
data blocks

cache transfers in advanced queuing, 5-25

contention for, causes of, 5-18

types accessed by transactions, 3-3

data dictionary

querying views, 6-9

data dictionary cache

contention for, 5-20

data locality

in Real Application Clusters, 2-7

data warehousing

deploying applications for in Real Application

Clusters, 2-6

separating from e-commerce, 3-8

database

design techniques for Real Application

Clusters, 4-2

designing, B-2

database design

case study example, B-3

data-dependent routing, 3-10

DATAFILE clause

table, 4-11

datafiles

allocating extents, 4-10

multiple files for each table, 4-11, A-15

DB_FILE_MULTIBLOCK_READ_COUNT

increasing for full table scans, 5-22

DBA_QUEUE_TABLES

analyzing table and instance affinity in advanced

queuing, 5-24

DBA_TABLES table, 4-19

dedicated server

and connection load balancing, 1-4

degree of parallelism (DOP), 2-6

DELETE

block access during, 3-6

departmental partitioning method, 3-8

deployment

of Real Application Clusters, 1-7

strategies for Real Application Clusters, 2-3

techniques for application development, 3-2

designing

databases for Real Application Clusters, 4-2

diagnosing

performance problems, 5-23

DISABLE TABLE LOCK clause, 4-19

disk affinities

and parallel query, 2-9

disk affinity, 2-9

dlm_requests, chart, 7-11

DML_LOCKS parameter

and performance, 4-19

dynamic performance view

creating, 6-9

E
e-commerce

applications in Real Application Clusters, 2-2

separating from data warehousing, 3-8

ENABLE TABLE LOCK clause, 4-19

error messages

storage options, 4-5

event 29700

enabling for GES resource statistics

collection, 6-19

exclusive mode

free lists, 4-5, 4-9

specifying instance number, 4-11

startup, 4-11

execution history

tracing of with TRACE_ENABLED

parameter, 5-3

extents

allocating GCS resources, A-15

allocating to instance, 4-8, 4-11

initial allocation, 4-11

not allocated to instance, 4-10

preallocating, 4-9

preallocating to free list groups, 4-10

Index-4

size, 4-9

specifying a file, 4-10

F
failover

and Real Application Clusters, 1-2

false forced disk writes, A-20

false forced writes, A-19

false pings, A-3

features

new, xxx

taking advantage of, 1-2

File I/O Rate by Instance Default Chart

in Oracle Performance Manager, 7-4, 7-12

File I/O Rate by Object Default Chart

in Oracle Performance Manager, 7-4, 7-12

File I/O Rate Default Chart

in Oracle Performance Manager, 7-4, 7-12

File Ping by Instance Chart

in Oracle Performance Manager, 7-3, 7-9

files

allocating extents, 4-10

flow-controlled messaging

and the GES, 6-21

forced disk writes, A-20

false, A-19, A-20

identifying by block class, 6-24

forced disk writes, chart, 7-7

free list groups

assigning to session, 4-8

for concurrent inserts, 4-3

setting !blocks, A-4

free lists

cluster, 4-6

creating for clustered tables, 4-6

creating for indexes, 4-7

examples, 4-6

GCS resources, A-15

hash cluster, 4-6

in exclusive mode, 4-5, 4-9

number of lists, 4-5

FREELIST GROUPS

determining reorganization needs, 4-4

parameter, use, 4-5

parameter, use with indexes, 4-7

FREELIST GROUPS clause, 4-5, 4-12

FREELISTS

creating for clustered tables, 4-6

creating for indexes, 4-7

examples of use, 4-6

parameter, use, 4-5

parameter, use with indexes, 4-7

STORAGE clause, 4-5

FREELISTS clause, 4-5

maximum value, 4-5

function shipping, 2-6

functional partitioning, 3-7

G
GC_FILES_TO_LOCKS parameter, A-6, A-16

associating GCS resources with extents, A-15

examples, A-5

reducing false pings, A-20

setting, A-4

syntax, A-4

GCS

resource acquisition, 5-25

resource statistics, analyzing, 6-19

GCS LMS process utilization, 7-7

GCS resources, A-16

contention, A-15

mapping blocks to, A-15

geographic

partitioning method, 3-8

GES

message statistics, analyzing, 6-21

resources, analyzing, 6-19

statistics, analyzing, 6-18

statistics, for monitoring contention, 5-24

global cache

coherence, measuring, 5-13

Global Cache Convert Timeouts By Instance

Chart, 7-8

Global Cache CR Request By Instance Chart, 7-9

Global Cache CR Request by Instance Chart

in Oracle Performance Manager, 7-3

Global Cache CR Request Chart, 7-7

in Oracle Performance Manager, 7-3

Index-5

global cache CR request time, average, 7-3, 7-7

Global cache CR timeouts, 7-7

Global Cache CR Timeouts By Instance Chart, 7-8

Global Cache CR Timeouts by Instance Chart

in Oracle Performance Manager, 7-3

Global Cache Current Block Instance Activity

Chart, 7-12

in Oracle Performance Manager, 7-4

Global Cache Current Block Request By Instance

Chart, 7-12

Global Cache Current Block Request by Instance

Chart

in Oracle Performance Manager, 7-4

Global Cache Current Block Request Chart, 7-11

in Oracle Performance Manager, 7-4

Global Cache Freelist Waits By Instance Chart, 7-9

Global Cache Freelist Waits by Instance Chart

in Oracle Performance Manager, 7-3

Global Cache Lock Convert By Instance Chart, 7-9

Global Cache Lock Convert by Instance Chart

in Oracle Performance Manager, 7-3

Global Cache Lock Convert Chart, 7-8

in Oracle Performance Manager, 7-3

global cache statistics

analyzing, 6-11

global cache synchronization costs

calculating, 5-18

Global Cache Timeouts Chart, 7-7

in Oracle Performance Manager, 7-3

global enqueue statistics

analyzing, 6-16

GLOBAL hint, 6-10

global V$ view tables, 7-2

global work ratios

measuring, 5-16

GV$CACHE view, 6-9

GV$CACHE_TRANSFER view, 6-9

GV$CLASS_CACHE_TRANSFER view, 6-9

GV$FILE_CACHE_TRANSFER view, 6-9

GV$LIBRARYCACHE view, 6-9

GV$ROWCACHE view, 6-9

H
hash clusters, 4-6

high availability

and Real Application Clusters, 1-2

high water mark, A-11

moving, A-11

hot blocks

identifying, 6-24

I
identifiers

for resources, A-21

incremental growth, 4-11

indexes

issues for inter-instance contention, 4-16

partitioning, case study example, B-17

reverse-key, for minimizing contention, 4-17

using with free lists and free list groups, 4-7

INITIAL storage parameter

minimum value, 4-11

INSERTS

concurrent, 4-5

free space unavailable, 4-9

processing within Oracle, 3-3

INST_ID column, 6-10

INSTANCE clause

allocating, 4-11

SET INSTANCE statement, 4-8

Instance Ping Chart

in Oracle Performance Manager, 7-3

INSTANCE_NUMBER parameter, 4-8

setting, 4-11

INSTANCE_ROLE

use of in secondary instance connections, 1-5

instances

adding, 3-16

adding instances, 4-11

associated with data file, 4-11

associated with extent, 4-8

associating with free list groups, 4-7

free list, 4-9

instance number, 4-11

number, 4-8

scalability, 3-16

interconnect

and performance, 6-6

Index-6

protocols for Real Application Clusters, 6-6

intra-node parallelism, 2-7

IPCs

and Cache Fusion, 6-5

L
latches

analyzing statistics for, 6-25

leaf blocks

minimizing contention for, 4-17

library cache

contention for, 5-21

Library Cache Lock By Instance Chart, 7-11

Library Cache Lock by Instance Chart

in Oracle Performance Manager, 7-4

Library Cache Lock Chart, 7-10

in Oracle Performance Manager, 7-4

LMS

and flow-controlled messaging, 6-21

load balancing, 2-8

local work ratios

measuring, 5-16

Lock Activity Chart, 7-12

Lock Activity Default Chart

in Oracle Performance Manager, 7-4

lock activity rate, chart, 7-12

locks

deciding whether to use by setting GC_FILES_

TO_LOCKS, A-2

setting pre-9.0.1 release locks with GC_FILES_

TO_LOCKS, A-2

when to use pre-9.0.1 release locks, A-3

M
mapping blocks to Cache Fusion resources, A-6

MAXEXTENTS storage parameter

automatic allocations, 4-11

preallocating extents, 4-12

Maximum Ping By Block Chart, 7-10

Maximum Ping by Block Chart

in Oracle Performance Manager, 7-4

memory-mapped IPCs

and Cache Fusion, 6-5

message statistics

analyzing, GES, 6-22

messages

as processed by the GES, 6-21

migration

identifying critical tables beforehand, 4-4

returning to exclusive mode, 4-9

MINEXTENTS storage parameter

automatic allocations, 4-11, 4-12

default, 4-11

monitoring

goals of, 6-7

procedures for, 6-7

statistics for Real Application Clusters, 5-2

N
new features, xxx

nodes

adding, 2-11, 4-11

n-tier architectures

benefits of, 2-5

in Real Application Clusters, 2-3

monitoring and tuning performance of, 2-5

O
Object Ping by Instance Chart

in Oracle Performance Manager, 7-4

objects

creation of and effect on performance, 4-20

identifying contention, 5-11

using free list groups to create, 4-3

online transaction processing

in Real Application Clusters, 2-2

operating system

striping for performance, 5-22

Oracle

compatibility, 4-9

Oracle Enterprise Manager

starting

Oracle Performance Manager, 7-5

Oracle Net

in Real Application Clusters, 1-3

Index-7

Oracle Performance Manager, 7-2

displaying charts, 7-5

overview, 7-2

starting, 7-5

overlaps

of tables in applications, 3-13

P
packaged applications

scalability for, 6-4

parallel execution

and load balancing, 2-8

clusters, A-16

parallel instance groups, 2-8

parallelism

in Real Application Clusters, 2-6

parallel-aware query optimization, 2-7

parameters

storage, 4-5, 4-9

partitioning

and scalability, 3-16

by transaction, 3-9

case study example, B-14

data, in data files, 4-11

departmental, 3-8

functional, 3-7

physical table, 3-9

user, 3-8

users, 3-8

partitioning data

free lists, A-15

GCS resources, A-15

table data, A-15

PCTFREE

and contention, 5-18

PCTINCREASE parameter

table extents, 4-9

performance

expectations and Cache Fusion, 6-6

maintaining history of, 6-8

measuring workloads, 5-9

primary components affecting, 6-6

problems in applications in Real Application

Clusters, 5-22

problems, diagnosing, 5-23

problems, identifying, 6-27

tuning and inter-instance performance, 6-1

Ping By Block Chart, 7-10

Ping By Block Class Chart

in Oracle Performance Manager, 7-10

Ping by Block Class Chart

in Oracle Performance Manager, 7-3

Ping By File Chart

in Oracle Performance Manager, 7-9

Ping by File Chart

in Oracle Performance Manager, 7-3

Ping By Object Chart

in Oracle Performance Manager, 7-10

Ping by Object Chart

in Oracle Performance Manager, 7-3

Ping By Object Drilldown Chart

in Oracle Performance Manager, 7-10

PL/SQL

in Real Application Clusters, 1-5

preallocating

extents, 4-9

extents to free list groups, 4-10

Primary/Secondary configurations

and Real Application Clusters, 1-3

profiles

of application performance, 5-15

protocols

interconnect, 6-5

R
reader/writer conflicts

and Cache Fusion, 6-1

Real Application Clusters

deployment phases, 1-7

disk affinities, 2-9

parallel execution, A-16

recording statistics

for tuning, 5-3

resource acquisition

and the GCS, 5-25

resources

block mode conversions, analyzing by

type, 6-23

Index-8

contention for, 5-20

convert timeouts, analyzing, 6-15

GCS resource, A-15

identifier, A-21

name format, A-21

response times

degradation, causes of, 5-18

reverse-key indexes

for minimizing contention, 4-17

RMAN

in Real Application Clusters, 1-6

routing, data-dependent, 3-10

row cache

contention for, 5-20

Row Cache Lock By Instance Chart, 7-11

Row Cache Lock by Instance Chart

in Oracle Performance Manager, 7-4

Row Cache Lock Chart, 7-11

in Oracle Performance Manager, 7-4

S
scalability

and partitioning, 3-16

assessing by measuring workloads, 5-9

with Cache Fusion, 6-4

scaling applications, 3-1

segment header

processing during inserts, 3-3

segment headers

and new applications, 5-19

contention for, 5-19

segments

header, A-22

SELECT

block access during, 3-6

sequence number multipliers, 5-21

sequence numbers

global conflict detection for, 4-13

using, 4-13

sequences

contention when not using the CACHE

option, 5-20

uncached and contention, 5-20

server coordination events, 6-29

Sessions Chart

in Oracle Performance Manager, 7-12

Sessions Default Chart

in Oracle Performance Manager, 7-4

setting locks, A-2

shared resource system, 4-11

shared server

and connection load balancing, 1-4

in Real Application Clusters, 1-4

SIZE clause

allocating extents, 4-11

space

allocating extents, 4-11

not allocated to instance, 4-10

unavailable in exclusive mode, 4-9

space parameters

and contention, 5-20

SQL statements

execution of in Real Application Clusters, 3-3

starting

Oracle Performance Manager, 7-5

starting up

exclusive mode, 4-11

statistics

analyzing, GES, 6-22

and their classes in V$SYSSTAT, 5-5

contents of, 5-2

for high contention, 5-14

from V$SYSTEM_EVENT, 5-7

GES, for monitoring contention, 5-24

global cache, analyzing, 6-11

list of most important for Real Application

Clusters, 5-4

recording for tuning, 5-3

setting TIMED_STATISTICS for collection, 6-9

views containing, 5-8

where maintained, 5-2

where Oracle collects from, 6-8

Statistics Charts, 7-7

Statspack

using to monitor for contention, 5-24

storage options

clustered tables, 4-5

extent size, 4-9, 4-11

table, 4-5

Index-9

striping

and disk affinity, 2-9

synchronization

calculating costs of, 5-18

determining the costs of, 5-12

T
table

affinity and advanced queuing, 5-24

table access analysis

case study example, B-5

TABLE_LOCK column, 4-19

tables

allocating extents, 4-11

cluster, 4-6

contention, 4-11

free space unavailable, 4-9

GCS resource, A-15

initial storage, 4-11

locks, disabling, 4-19

multiple files, 4-11

overlapping, 3-13

read-only, 3-6

tablespaces

design, for access distribution, 4-14

three-tier architectures, 2-3

throughput

with Cache Fusion, 6-4

TIMED_STATISTICS

setting for statistics collection, 6-9

Total Ping Chart, 7-7

in Oracle Performance Manager, 7-3, 7-7

trace files

locations of, 5-4

TRACE_ENABLED parameter

tracing execution history, 5-3

tracing

of execution history with TRACE_

ENABLED, 5-3

transaction processing monitor, 3-10

transaction volume

case study example, B-10

transactions

types of DML involved, 3-3

transparent application failover

in Real Application Clusters, 1-4

tuning

general recommendations, 5-10

overview of for Real Application Clusters, 5-2

queries, 5-22

two-tier architectures, 2-3

U
UPDATE

block access during, 3-5

user

moving among instances, 3-16

partitioning method, 3-8

user processes

associating with free list groups, 4-8

user sessions

associating with free list groups, 4-7

USER_QUEUE_TABLES

analyzing table and instance affinity in advanced

queuing, 5-24

USER_TABLES table, 4-19

user-mode IPCs

and Cache Fusion, 6-4, 6-5

Users Default Chart, 7-13

in Oracle Performance Manager, 7-4

Users Logged On Chart, 7-13

Users Per Instance Default Chart

in Oracle Performance Manager, 7-4, 7-13

UTLBSTAT

for recording statistics, 5-3

using to monitor for contention, 5-24

UTLESTAT

for recording statistics, 5-3

using to monitor for contention, 5-24

V
V$ fixed views, 7-2

V$BH

identifying contended objects with, 5-11, 5-19

using to identify forced writes, 5-24

V$BH view, 3-3

V$CACHE

Index-10

identifying contended objects with, 5-11, 5-19

V$CACHE_LOCK view, 6-10

V$CACHE_TRANSFER

identifying contended objects with, 5-11, 5-19

using for monitoring contention, 5-24

V$CLASS_CACHE_TRANSFER

for statistics gathering, 5-10

V$FILE_CACHE_TRANSFER

statistics gathering, 5-10

V$LOCK_ACTIVITY

monitoring block mode conversion rates, 5-24

V$LOCK_ACTIVITY view, 6-10

V$LOCKS_WITH_COLLISIONS view, 6-10

V$ROLLNAME view, 6-10

V$ROWCACHE

and contention, 5-20

V$SYSSTAT

for statistics, 5-5

V$SYSTEM_EVENT

and contention for resources, 5-20

events specific to Real Application

Clusters, 6-28

wait events and relevant statistics, 5-7

V$SYSTEM_EVENT view, 6-27

versions, Oracle

compatibility, 4-9

VIA

interconnect protocol, 6-5

views

creating for Real Application Clusters, 6-9

most important for Real Application Clusters

performance, 5-4

W
work ratios

measuring, 5-16

workloads

application performance, 5-15

characterization of in Real Application

Clusters, 3-11

concepts of distribution, 3-7

distinquishing e-commerce and data

warehousing, 3-8

general tuning recommendations, 5-10

measuring performance of, 5-9

object contention, 5-11

	Send Us Your Comments
	Preface
	What’s New in Cluster Software Deployment and Performance?
	1 Introduction to Application Deployment for Real Application Clusters
	Taking Full Advantage of Oracle9i Features
	Implementing Oracle9i Features with Real Application Clusters
	High Availability and Failover in Real Application Clusters
	Primary/Secondary and Active/Active Instance Configurations

	Oracle Net in Real Application Clusters
	The Shared Server in Real Application Clusters
	Connection Load Balancing
	Transparent Application Failover in Real Application Clusters
	PL/SQL in Real Application Clusters
	Recovery Manager (RMAN) in Real Application Clusters
	Cluster File Systems in Real Application Clusters

	Deployment Phases for Real Application Clusters

	2 Online E-Commerce and Data Warehousing Application Deployment in Real Application Clusters
	Cache Fusion and E-Commerce Applications for Real Application Clusters
	Flexible Implementation with Cache Fusion
	Deployment Strategies for Real Application Clusters-Based Applications
	Transition to N-tier Architectures
	Benefits of N-Tier Architectures with Real Application Clusters
	Monitoring and Tuning Performance in N-Tier Environments

	Deploying Data Warehousing Applications for Real Application Clusters
	Speed-Up for Data Warehousing Applications on Real Application Clusters
	Flexible Parallelism within Real Application Clusters Environments

	Dynamic Parallel-Aware Query Optimization
	Load Balancing for Multiple Concurrent Parallel Operations
	Using Parallel Instance Groups
	Disk Affinity

	Deployment and Tuning of Real Application Clusters Applications
	Configuring and Tuning Applications on Real Application Clusters
	Administrative Aspects of System Scaling for Real Application Clusters

	3 Scaling Applications for Real Application Clusters
	Overview of Development Techniques in Real Application Clusters
	Begin with an Analysis

	SQL Statement Execution in Real Application Clusters
	Block Accesses During INSERT Statement Execution
	Block Accesses During UPDATE Statement Execution
	Block Accesses During DELETE Statement Execution
	Block Accesses During SELECT Statement Execution

	Workload Distribution Concepts in Real Application Clusters
	Functional Partitioning
	Separating E-Commerce and Data Warehousing Processing
	Departmental and User Partitioning
	Physical Table Partitioning
	Transaction Partitioning

	Workload Characterization in Real Application Clusters
	Step 1: Define Your System’s Major Functional Areas
	Step 2: Estimate Each Functional Area’s System Resource Consumption
	Step 3: Analyze Each Functional Area’s Data Access Pattern
	Step 3.1: Identify Table Access Requirements and Define Overlaps
	Step 3.2: Define the Access Type for Each Overlap
	Step 3.3: Identify Transaction Volumes
	Step 3.4: Classify Overlaps

	Scaling-Up and Partitioning in Real Application Clusters

	4 Database Design Techniques for Real Application Clusters
	Principles of Database Design for Real Application Clusters
	Using Free List Groups For Concurrent Inserts from Multiple Nodes
	Deciding Whether to Create Database Objects with Free List Groups
	Identifying Critical Tables Before Migrating to Real Application Clusters

	Determining FREELIST GROUPS Reorganization Needs
	Creating Tables, Clusters, and Indexes with FREELISTS and FREELIST GROUPS
	FREELISTS Parameter
	FREELIST GROUPS Parameter
	Creating FREELISTS and FREELIST GROUPS for Clustered Tables
	Creating FREELISTS for Indexes

	Associating Instances and User Sessions with Free List Groups
	Associating Instances with Free List Groups
	Associating User Processes with Free List Groups

	Preallocating Extents
	Preallocating Extents with The ALLOCATE EXTENT Clause
	Preallocating Extents by Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters
	Preallocating Extents by Setting the INSTANCE_NUMBER Parameter
	Extent Preallocation Examples

	Using Sequence Numbers in Real Application Clusters
	Detecting Global Conflicts for Sequences
	Using Database Tables to Generate Sequence Numbers

	Tablespace Design in Real Application Clusters
	Extent Management and Locally Managed Tablespaces
	Identifying Extent Management Issues
	Minimizing Extent Management Operations
	Using Locally Managed Tablespaces

	Index Issues for Real Application Clusters Design
	Reducing Inter-Instance Concurrent Changes To Index Blocks
	Using Reverse Key Indexes to Distribute Index Access
	Assigning Different Subsequences to Each Instance to Reduce Index Contention
	Using INSTANCE_NUMBER to Generate Index Keys
	Reducing Index Contention by Partitioning Tables by Range

	Minimizing Table Locks to Optimize Performance
	Disabling Table Locks for Individual Tables
	Setting DML_LOCKS to Zero

	Object Creation and Performance in Real Application Clusters
	Conclusions and a Summary of Guidelines

	5 General Tuning Recommendations for Real Application Clusters
	Overview of Tuning Real Application Clusters
	Statistics for Monitoring Real Application Clusters Performance
	The Content of Real Application Clusters Statistics
	Recording Statistics for Tuning
	Tracing Execution History with the TRACE_ENABLED Parameter

	Significant Real Application Clusters Statistics

	Using Views to Evaluate Real Application Clusters Performance
	Using V$SYSSTAT for Real Application Clusters Statistics
	Using V$SYSTEM_EVENT for Real Application Clusters Statistics
	Using Other Views to Obtain Real Application Clusters Statistics

	Measuring Workload Performance in Real Application Clusters
	General Tuning Recommendations for Workload Performance
	Measuring Workload Performance
	Using V$CLASS_CACHE_TRANSFER and V$FILE_CACHE_TRANSFER for Real Application Clusters Statistics
	Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, V$BH, and V$FILE_CACHE_TRANSFER
	Estimating I/O Synchronization Costs

	Determining the Costs of Synchronization In Real Application Clusters
	Calculating CPU Service Time Required
	Measuring Global Cache Coherency and Contention
	Maintaining Application Profiles per Transaction per Unit of Time

	Measuring Global and Local Work Ratios in Real Application Clusters
	Calculating the Global Cache Synchronization Costs Due to Contention in Real Application Clusters
	Contention for the Same Data Blocks
	Identifying Contended Objects with V$CACHE, V$CACHE_TRANSFER, and V$BH

	Contention for Segment Headers and Free List Blocks
	Contention for Resources other than Database Blocks
	Contention for the Data Dictionary Cache and The Row Cache
	Contention for the Library Cache

	Contention Problems Specific to Applications Running on Real Application Clusters
	Using Sequence Number Multipliers
	Using the CACHE Clause When Creating Oracle Sequences

	Resolving Performance Problems in Real Application Clusters-Based Applications
	Query Tuning Tips
	Using Large Block Sizes
	Increasing the Value for DB_FILE_MULTIBLOCK_READ_COUNT

	Application Tuning Tips
	Diagnosing Performance Problems
	GCS Statistics for Monitoring Contention and CPU Usage

	Advanced Queuing and Real Application Clusters
	Queue Table Instance Affinity
	Global Cache Service Resource Acquisition
	Advanced Queuing and Queue Table Cache Transfers

	6 Tuning Real Application Clusters and Inter-Instance Performance
	How Cache Fusion Produces Current and Consistent Read Blocks
	Improved Scalability with Cache Fusion
	Block Transfers Using High Speed Interconnects
	Elimination of I/O for Forced Disk Writes of Blocks
	Partitioning Data To Further Reduce Hot Spots Due to Blocks Modified by Multiple Instances

	The Interconnect and Interconnect Protocols for Real Application Clusters
	Influencing Interconnect Processing

	Performance Expectations of Cache Fusion
	Monitoring Cache Fusion and Inter-Instance Performance
	Cache Fusion and Performance Monitoring Goals
	Statistics for Monitoring Real Application Clusters and Cache Fusion
	Creating Real Application Clusters Data Dictionary Views with CATCLUST.SQL
	Global Dynamic Performance Views
	Analyzing Global Cache and Cache Fusion Statistics
	Procedures for Monitoring Global Cache Statistics

	Analyzing Global Enqueue Statistics
	Procedures for Analyzing Global Enqueue Statistics

	Analyzing GES Resource, Message, and Memory Resource Statistics
	How GES Workloads Affect Performance
	Procedures for Analyzing GES Resource Statistics

	GES Message Statistics Processing
	Procedure for Analyzing GES Message Statistics

	Analyzing Block Mode Conversions by Type
	Using the V$LOCK_ACTIVITY View to Analyze Block Mode Conversions
	Using the V$CLASS_CACHE_TRANSFER View to Identify Block Mode Conversions by Block Class
	Using the V$CACHE_TRANSFER View to Identify Hot Objects

	Analyzing Latch Statistics in Real Application Clusters
	Procedures for Analyzing Latch Statistics

	Using the V$SYSTEM_EVENT View to Identify Performance Problems
	Real Application Clusters Events in V$SYSTEM_EVENT
	Events Related to Server Coordination Resources

	General Observations for Tuning Inter-Instance Performance

	7 Monitoring Performance with Oracle Performance Manager
	Oracle Performance Manager Overview
	Starting Oracle Performance Manager
	Displaying Charts
	Using the Statistics Charts
	Total Ping Chart
	Global Cache Timeouts Chart
	Global Cache CR Request Chart
	Global Cache Lock Convert Chart
	Instance Ping Chart
	Global Cache CR Timeouts by Instance Chart
	Global Cache Convert Timeouts by Instance Chart
	Global Cache Freelist Waits by Instance Chart
	Global Cache CR Request by Instance Chart
	Global Cache Lock Convert by Instance Chart
	Ping by File Chart
	File Ping by Instance Chart
	Ping by Block Class Chart
	Ping by Object Chart
	Object Ping by Instance Chart
	Maximum Ping by Block Chart
	Library Cache Lock Chart
	Library Cache Lock by Instance Chart
	Row Cache Lock Chart
	Row Cache Lock by Instance Chart
	Global Cache Current Block Request Chart
	Global Cache Current Block Request by Instance Chart
	Global Cache Current Block Instance Activity Chart
	File I/O Rate Default Chart
	File I/O Rate by Object Default Chart
	File I/O Rate by Instance Default Chart
	Lock Activity Default Chart
	Sessions Default Chart
	Users Default Chart
	Users Per Instance Default Chart
	Active Users Chart
	Active Users by Instance Chart
	Clusters Data Block Ping by Instance Chart

	A Configuring Multi-Block Lock Assignments (Optional)
	Before You Override the Global Cache and Global Enqueue Service Resource Control Mechanisms
	Deciding Whether to Override Global Cache Service and Global Enqueue Service Processing
	When to Use Locks

	Setting GC_FILES_TO_LOCKS
	GC_FILES_TO_LOCKS Syntax
	Lock Assignment Examples
	Blocking Factor, Extent Allocation, and Free List Groups
	Dynamic Allocation of Blocks on Lock Boundaries
	Moving a Segment’s High Water Mark

	Additional Considerations for Setting GC_FILES_TO_LOCKS
	Expanding or Adding Datafiles
	Files To Avoid Including in GC_FILES_TO_LOCKS Settings

	Database Design Considerations and Free List Groups
	Associating Locks with Free Lists
	Tuning Parallel Execution on Real Application Clusters

	Analyzing Real Application Clusters I/O Statistics
	Analyzing Real Application Clusters I/O Statistics Using V$SYSSTAT

	Monitoring Multi-Block Lock Usage by Detecting False Forced Writes
	Lock Names and Lock Formats
	Lock Names and Lock Name Formats
	Lock Names
	Lock Types and Names

	B A Case Study in Real Application Clusters Database Design
	Case Study Overview
	Case Study: From Initial Database Design to Real Application Clusters
	Eddie Bean Catalog Sales
	Eddie Bean Database Tables
	Eddie Bean Users
	The Eddie Bean Application Profile

	Analyzing Access to Tables
	Table Access Analysis Worksheet
	Estimating Volume of Operations
	Calculating I/Os for Each Operation
	I/Os for Each Operation for Sample Tables

	Case Study: Table Access Analysis

	Analyzing Transaction Volume by Users
	Transaction Volume Analysis Worksheet
	Case Study: Transaction Volume Analysis
	ORDER_HEADER Table
	ORDER_ITEM Table
	ACCOUNTS_PAYABLE Table

	Case Study: Initial Partitioning Plan
	Case Study: Further Partitioning Plans
	Design Option 1
	Design Option 2

	Partitioning Indexes
	Implement and Tune Your Design

	Glossary
	Index

