
Oracle9 i

Heterogeneous Connectivity Administrator’s Guide

Release 1 (9.0.1)

June 2001

Part No. A88789-01

Oracle9i Heterogeneous Connectivity Administrator’s Guide, Release 1 (9.0.1)

Part No. A88789-01

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Author: Ted Burroughs

Contributing Authors: Vira Goorah and Raghu Mani

Contributors: Jacco Draaijer, Kishan Peyetti, Sridhar Rajogopal, Paul Raveling, and Eric Voss

Graphics Designer: Valerie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Net Services, SQL*Plus, Oracle Call Interface, Oracle
Transparent Gateway, Oracle7, Oracle7 Server, Oracle8, Oracle8i, Oracle9i, PL/SQL, Pro*C, Pro*C/C++,
and Enterprise Manager are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xiii

Preface ... xv

1 Introduction

The Heterogeneous Challenge ... 1-2
The Heterogeneous Services Module in the Oracle Database Server 1-2
Integrating Heterogeneous Services Into the Oracle Server .. 1-4
Benefits of Heterogeneous Services .. 1-5

Remote Data Access ... 1-5
Elimination of Unnecessary Data Duplication... 1-5
Heterogeneous Database Integration .. 1-6
Application Development and End User Tools ... 1-6
Two-Phase Commit and Multi-Site Transactions .. 1-6
Query Optimization ... 1-6
Error Mapping and Logging... 1-7
Pass-Through Feature .. 1-7

2 Oracle Transparent Gateways and Generic Connectivity

Heterogeneous Connectivity Process Architecture .. 2-2
Heterogeneous Services Agents... 2-2
Types of Heterogeneous Services Agents .. 2-3

Oracle Transparent Gateways .. 2-3
Generic Connectivity.. 2-4
iii

Heterogeneous Services Components... 2-4
Transaction Service... 2-4
SQL Service.. 2-5

Configuring Heterogeneous Services.. 2-5
Data Dictionary Translations .. 2-6
Initialization Parameters.. 2-6
Capabilities .. 2-6

The Heterogeneous Services Data Dictionary... 2-6
Classes and Instances ... 2-7
Data Dictionary Views ... 2-8

Gateway Process Flow.. 2-8
Oracle Transparent Gateways for Non-Oracle Database Systems 2-10

3 Major Features

SQL and PL/SQL Support ... 3-2
Heterogeneous Replication ... 3-3
Passthrough SQL... 3-5

Using the DBMS_HS_PASSTHROUGH package .. 3-5
Considering the Implications of Using Pass-Through SQL ... 3-6
Executing Pass-Through SQL Statements ... 3-6

Executing Non-Queries .. 3-7
Executing Queries.. 3-11

Result Set Support .. 3-14
Introduction... 3-14
Result Set Support In Non-Oracle Systems:.. 3-14

Model 1.. 3-15
Model 2.. 3-15

Heterogeneous Services Support for Result Sets ... 3-15
Cursor mode... 3-16
Sequential Mode .. 3-16

Code Examples:... 3-17
OCI program fetching from result sets in cursor mode... 3-18
OCI program fetching from result sets in sequential mode.. 3-19
PL/SQL program fetching from result sets in cursor mode ... 3-21

Data Dictionary Translations .. 3-24
iv

Examples... 3-25
Date Time ... 3-27
Two Phase Commit Protocol... 3-28
Piecewise Long .. 3-28
SQL*Plus Describe Command ... 3-29
Constraints on SQL in a Distributed Environment ... 3-29

Resolving Remote and Heterogeneous References ... 3-29
Resolving Important Restrictions... 3-30
Updates, Inserts and Deletes... 3-34

Using Index and Table Statistics.. 3-35
Other Optimizations .. 3-36

Remote Join Optimization... 3-37
Optimizer Restrictions for non-Oracle Access.. 3-38

4 Using the Gateway

Setting Up Access to Non-Oracle Systems .. 4-2
Step 1: Install the Heterogeneous Services Data Dictionary .. 4-2
 Step 2: Set Up the Environment to Access Heterogeneous Services Agents 4-2

A Sample Entry for a Oracle Net Service Name ... 4-3
A Sample Listener Entry .. 4-3

Step 3: Create the Database Link to the Non-Oracle System ... 4-4
Step 4: Test the Connection ... 4-4

Initialization Parameters ... 4-6
Optimizing Data Transfers Using Bulk Fetch ... 4-8

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches 4-9
Controlling the Array Fetch Between Oracle Database Server and Agent 4-9
Controlling the Array Fetch Between Agent and Non-Oracle Server 4-9
Controlling the Reblocking of Array Fetches ... 4-9

Registering Agents ... 4-11
Enabling Agent Self-Registration ... 4-11

Using Agent Self-Registration to Avoid Configuration Mismatches 4-12
Understanding Agent Self-Registration... 4-13
Specifying HS_AUTOREGISTER.. 4-14

Disabling Agent Self-Registration.. 4-15
Oracle Database Server SQL Construct Processing ... 4-16
v

Using Synonyms ... 4-17
Example of a Distributed Query ... 4-17

Copying Data from the Oracle Database Server to the Non-Oracle Database System 4-19
Copying Data from the Non-Oracle Database System to the Oracle Database Server 4-21
Heterogeneous Services Data Dictionary Views .. 4-22

Understanding the Types of Views.. 4-22
Understanding the Sources of Data Dictionary Information ... 4-23
Using the General Views ... 4-24
Using the Transaction Service Views... 4-25
Using the SQL Service Views.. 4-26

Using Views for Capabilities and Translations... 4-26
Using Views for Data Dictionary Translations ... 4-26

Using the Heterogeneous Services Dynamic Performance Views .. 4-28
Determining Which Agents Are Running on a Host .. 4-28
Determining the Open Heterogeneous Services Sessions .. 4-28
Determining the Heterogeneous Services Parameters .. 4-29

5 Using Multithreaded Agents

Concepts.. 5-2
The Challenge of Dedicated Agent Architecture ... 5-2
The Advantage of Multithreading ... 5-2

Multithreaded Agent Architecture .. 5-4
Overview.. 5-4
The Monitor Thread ... 5-6
Dispatcher Threads... 5-7
Task Threads.. 5-7

Multithreaded Agent Administration... 5-8
Overview.. 5-8
Single Command Mode Commands.. 5-8
Shell Mode Commands.. 5-9

6 Performance Tips

Optimizing Heterogeneous Distributed SQL Statements .. 6-2
Using Gateways and Partition Views ... 6-2
Optimizing Performance of Distributed Queries... 6-3
vi

Choose the best SQL statement. .. 6-3
Use the cost-based optimizer... 6-3
Use views.. 6-3

7 Generic Connectivity

What Is Generic Connectivity? .. 7-2
Types of Agents .. 7-2
Generic Connectivity Architecture .. 7-3

Oracle and Non-Oracle Systems on Separate Machines.. 7-3
Oracle and Non-Oracle Systems on the Same Machine .. 7-4

SQL Execution... 7-6
Data Type Mapping ... 7-6
Generic Connectivity Restrictions.. 7-6

Supported Oracle SQL Statements.. 7-7
Functions Supported by Generic Connectivity .. 7-7

Configuring Generic Connectivity Agents .. 7-8
Creating the Initialization File .. 7-8
Editing the Initialization File .. 7-8
Setting Initialization Parameters for an ODBC-based Data Source 7-10

Setting Agent Parameters on Windows NT .. 7-10
Setting Agent Parameters on UNIX platforms.. 7-11

Setting Initialization Parameters for an OLE DB-based Data Source 7-12
ODBC Connectivity Requirements... 7-13
OLE DB (SQL) Connectivity Requirements .. 7-15
OLE DB (FS) Connectivity Requirements ... 7-16

Data Source Properties... 7-18

A Heterogeneous Services Initialization Parameters

HS_COMMIT_POINT_STRENGTH.. A-3
HS_DB_DOMAIN.. A-3
HS_DB_INTERNAL_NAME.. A-3
HS_DB_NAME... A-4
HS_DESCRIBE_CACHE_HWM... A-4
HS_FDS_CONNECT_INFO.. A-4
HS_FDS_SHAREABLE_NAME... A-6
vii

HS_FDS_TRACE_LEVEL.. A-6
HS_LANGUAGE... A-6

Character sets ... A-7
Language... A-7
Territory .. A-7

HS_LONG_PIECE_TRANSFER_SIZE... A-8
HS_NLS_DATE_FORMAT.. A-8
HS_NLS_DATE_LANGUAGE... A-8
HS_NLS_NCHAR... A-9
HS_NLS_TIMESTAMP_FORMAT.. A-9
HS_NLS_TIMESTAMP_TZ_FORMAT.. A-10
HS_OPEN_CURSORS.. A-10
HS_ROWID_CACHE_SIZE... A-10
HS_RPC_FETCH_REBLOCKING... A-11
HS_RPC_FETCH_SIZE.. A-11
HS_TIME_ZONE.. A-12
IFILE .. A-12

B Data Type Mapping

Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface B-2
Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface B-4

C DBMS_HS_PASSTHROUGH for Pass-Through SQL

Summary of Subprograms ... C-3
BIND_VARIABLE procedure.. C-4

Syntax. .. C-4
Parameters ... C-5
Exceptions.. C-5
Pragmas.. C-5

BIND_VARIABLE_NCHAR procedure ... C-6
Syntax ... C-6
Parameters ... C-6
Exceptions.. C-6
Pragmas.. C-6

BIND_VARIABLE_RAW procedure ... C-7
viii

Syntax.. C-7
Parameters .. C-7
Exceptions... C-7
Pragmas .. C-8

BIND_OUT_VARIABLE procedure ... C-8
Syntax.. C-8
Parameters .. C-9
Exceptions... C-9
Pragmas ... C-10

BIND_OUT_VARIABLE_NCHAR procedure.. C-10
Syntax... C-10
Parameters ... C-10
Exceptions.. C-11
Pragmas ... C-11

BIND_OUT_VARIABLE_RAW procedure .. C-11
Syntax... C-11
Parameters ... C-11
Exceptions.. C-12
Pragmas ... C-12

BIND_INOUT_VARIABLE procedure ... C-12
Syntax... C-13
Parameters ... C-13
Exceptions.. C-14
Pragmas ... C-14

BIND_INOUT_VARIABLE_NCHAR procedure... C-14
Syntax... C-14
Parameters ... C-15
Exceptions.. C-15
Pragmas ... C-15

BIND_INOUT_VARIABLE_RAW procedure.. C-16
Syntax... C-16
Parameters ... C-16
Exceptions.. C-17
Pragmas ... C-17

CLOSE_CURSOR function ... C-17
ix

Syntax ... C-17
Parameter... C-18
Exceptions.. C-18
Pragmas.. C-18

EXECUTE_IMMEDIATE function.. C-18
Syntax ... C-18
Parameter Description ... C-18
Returns ... C-19
Exceptions.. C-19
Pragmas.. C-19

EXECUTE_NON_QUERY function.. C-19
Syntax ... C-19
Parameter... C-20
Returns ... C-20
Exceptions.. C-20
Pragmas.. C-20

FETCH_ROW function... C-20
Syntax ... C-21
Parameters and Descriptions .. C-21
Returns ... C-21
Exceptions.. C-21
Pragmas.. C-21

GET_VALUE procedure ... C-22
Syntax ... C-22
Parameters ... C-23
Exceptions.. C-23
Pragmas.. C-23

GET_VALUE_NCHAR procedure ... C-24
Syntax ... C-24
Parameters ... C-24
Exceptions.. C-25
Pragmas.. C-25

GET_VALUE_RAW procedure.. C-25
Syntax ... C-25
Parameters ... C-26
x

Exceptions.. C-26
Pragmas ... C-26

OPEN_CURSOR function.. C-27
Syntax... C-27
Returns ... C-27
Exceptions.. C-27
Pragmas ... C-27

PARSE procedure... C-28
Syntax... C-28
Parameters ... C-28
Exceptions.. C-28
Pragmas ... C-28

D Data Dictionary Translation Support

Accessing the Non-Oracle Data Dictionary... D-1
Heterogeneous Services Data Dictionary Views .. D-2
Supported Views and Tables .. D-5
Data Dictionary Mapping ... D-7

Generic Connectivity Data Dictionary Descriptions ... D-8
ALL_CATALOG.. D-8
ALL_COL_COMMENTS.. D-9
ALL_CONS_COLUMNS.. D-9
ALL_CONSTRAINTS.. D-9
ALL_IND_COLUMNS... D-10
ALL_INDEXES... D-10
ALL_OBJECTS... D-12
ALL_TAB_COLUMNS... D-13
ALL_TAB_COMMENTS... D-14
ALL_TABLES... D-14
ALL_USERS... D-16
ALL_VIEWS... D-16
DICTIONARY... D-17
USER_CATALOG.. D-17
USER_COL_COMMENTS.. D-17
USER_CONS_COLUMNS.. D-17
xi

USER_CONSTRAINTS... D-18
USER_IND_COLUMNS... D-18
USER_INDEXES.. D-19
USER_OBJECTS.. D-21
USER_TAB_COLUMNS... D-21
USER_TAB_COMMENTS.. D-22
USER_TABLES... D-23
USER_USERS... D-24
USER_VIEWS... D-25
xii

Send Us Your Comments

Oracle9 i Heterogeneous Connectivity Administrator’s Guide, Release 1 (9.0.1)

Part No. A88789-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn.: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.
xiii

xiv

Preface

Oracle9i Heterogeneous Connectivity Administrator’s Guide describes implementation
issues for Oracle9i Heterogeneous Connectivity and introduces the tools and utilities
available to assist you in implementing and using this feature.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xv

g

s

g

Audience
Oracle9i Heterogeneous Connectivity Administrator’s Guide is intended for the followin
users:

■ Database administrators who want to administer distributed database systems that
involve the following:

■ Oracle to Oracle database links

■ Oracle to non-Oracle database links

■ Regular Oracle database server users who want to make use of the Heterogeneou
Services feature in the Oracle database server

■ Readers who want an high-level understanding of this product and how it works.

To use this document, you should be familiar with the following information:

■ Relational database concepts and basic database administration as described inOracle9i
Database Conceptsand the Oracle9i Database Administrator’s Guide.

■ The operating system environment under which database administrators are runnin
Oracle.

Organization
This document contains the following chapters:

Chapter 1, "Introduction"
Heterogeneous Services, an integrated module within the Oracle9i database server,

has been designed to access data in non-Oracle systems by means of either Oracle

Transparent Gateways or generic connectivity. This chapter introduces you to

Heterogeneous Services by describing the kinds of situations in which

Heterogeneous Services is needed and by explaining how Heterogeneous Services

fulfills this need.

Chapter 2, "Oracle Transparent Gateways and Generic Connectivity"
You can access a non-Oracle database system either by Transparent Gateways or

with Generic Connectivity. This chapter describes the architecture of Heterogeneous

Services insofar as it relates to each of these means of accessing a non-Oracle

system.
xvi

s.

ribes
Chapter 3, "Major Features"
This chapter describes the major features provided by Heterogeneous Services.

Chapter 4, "Using the Gateway"
This chapter explains how to use Oracle Transparent Gateways.

Chapter 5, "Using Multithreaded Agents"
This chapter explains what multithreaded agents are, how they contribute to the overall
efficiency of a distributed database system, and how to administer multithreaded agent

Chapter 6, "Performance Tips"
This chapter explains how to optimize distributed SQL statements, how to use

partition views with Oracle Transparent Gateways, and how to optimize the

performance of distributed queries.

Chapter 7, "Generic Connectivity"
This chapter describes the configuration and usage of generic connectivity agents.

Appendix A, "Heterogeneous Services Initialization Parameters"
This appendix lists Heterogeneous Services initialization parameters and gives

instructions how to set them.

Appendix B, "Data Type Mapping"
The tables in this appendix show how Oracle maps ANSI datatypes through ODBC and
OLE DB interfaces to supported Oracle datatypes when it is retrieving data from a
non-Oracle system.

Appendix C, "DBMS_HS_PASSTHROUGH for Pass-Through SQL"
The package, DBMS_HS_PASSTHROUGH, contains the procedures and functions for

pass-through SQL of Heterogeneous Services. This appendix documents each of

them.

Appendix D, "Data Dictionary Translation Support"
This appendix documents data dictionary translation support. It explains how to access
non-Oracle data dictionaries, lists Heterogeneous Services data dictionary views, desc
how to use supported views and tables, and explains data dictionary mapping.
xvii

n

ation.

teral,
g

ch is

n

ation.
Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Database New Features

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase documentatio
from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed document

To download free release notes, installation documentation, white papers, or other colla
please visit the Oracle Technology Network (OTN). You must register online before usin
OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

Many of the examples in this book use the sample schemas of the seed database, whi
installed by default when you install Oracle. Refer toOracle9i Sample Schemasfor
information on how these schemas were created and how you can use them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase documentatio
from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed document
xviii

teral,
g

To download free release notes, installation documentation, white papers, or other colla
please visit the Oracle Technology Network (OTN). You must register online before usin
OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms. The
following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are defined
in the text or terms that appear in a glossary,
or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target database
donot reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL keywords,
SQL*Plus or utility commands, packages and
methods, as well as system-supplied column
names, database objects and structures,
usernames, and roles.

You can specify this clause only for aNUMBER
column.

You can back up the database by using theBACKUP
command.

Query theTABLE_NAME column in theUSER_
TABLES data dictionary view.

Use theDBMS_STATS.GENERATE_STATS
procedure.
xix

hey
wn in

ides
Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. T
are displayed in a monospace (fixed-width) font and separated from normal text as sho
this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and prov
examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names, and
sample user-supplied elements. Such elements
include computer and database names, net
service names, and connect identifiers, as well
as user-supplied database objects and
structures, column names, packages and
classes, usernames and roles, program units,
and parameter values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Entersqlplus to open SQL*Plus.

The password is specified in theorapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

Thedepartment_id , department_name , and
location_id columns are in the
hr.departments table.

Set theQUERY_REWRITE_ENABLED initialization
parameter totrue.

Connect asoe user.

TheJRepUtil class implements these methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font represents
placeholders or variables.

You can specify theparallel_clause .

RunUold_release .SQL whereold_release
refers to the release you installed prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional items.
Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces. Enter
one of the options. Do not enter the vertical
bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xx

Documentation Accessibility
Oracle's goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

technology vendors to address technical obstacles so that our documentation can be

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the code
that are not directly related to the
example

■ That you can repeat a portion of the code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we have
omitted several lines of code not directly
related to the example.

Other notation You must enter symbols other than brackets,
braces, vertical bars, and ellipsis points as
shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply particular
values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these terms
in uppercase in order to distinguish them from
terms you define. Unless terms appear in
brackets, enter them in the order and with the
spelling shown. However, because these terms
are not case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates programmatic
elements that you supply. For example,
lowercase indicates names of tables, columns,
or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxi

accessible to all of our customers. For additional information, visit the Oracle

Accessibility Program Web site at

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples

in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a

line of text that consists solely of a bracket or brace.
xxii

Introdu
1

Introduction

Heterogeneous Services, an integrated module within the Oracle9i database server,

has been designed to access data in non-Oracle systems by means of either Oracle

Transparent Gateways or generic connectivity. This chapter introduces you to

Heterogeneous Services by describing the kinds of situations in which

Heterogeneous Services is needed and by explaining how Heterogeneous Services

fulfills this need.

This chapter contains these topics:

■ The Heterogeneous Challenge

■ The Heterogeneous Services Module in the Oracle Database Server

■ Integrating Heterogeneous Services Into the Oracle Server

■ Benefits of Heterogeneous Services

Note Also: For more information, please consult your gateway

documentation for individual gateways.
ction 1-1

The Heterogeneous Challenge
The Heterogeneous Challenge
Heterogeneous access is a challenge that affects many organizations. Many run

several different database systems. Each of these systems stores data and has a set

of applications that runs against it. Consolidation of this data into one database

system is often difficult. This is in large part due to the fact that many of the

applications that run against one database may not have an equivalent that runs

against another. Until such time as migration to one consolidated database system is

made feasible, it is necessary for the various heterogeneous database systems to

work together.

There are several problems to overcome before such inter operability becomes

possible. The database systems can have different access interfaces, different data

types, different capabilities, and different ways of handling error conditions. Even

when one relational database is trying to access another relational database the

differences are significant. In such a situation, the common features of the databases

include data access through SQL, two phase commit, and similar data types.

However, there are significant differences as well. SQL dialects can be different as

can transaction semantics. There can be some data types in one database that do not

exist in the other. The most significant area of difference is in the data dictionaries of

the two databases. Most data dictionaries contain similar information but the

information is structured for each in a completely different way.

There are several possible ways of overcoming this problem. In this book, we

describe the approach that Oracle has taken.

The Heterogeneous Services Module in the Oracle Database Server
If a client program wishes to access or modify data at several Oracle databases, it

can open up connections to each of them. This approach, however, has several

drawbacks. If data from the databases has to be joined, then the client will have to

contain logic that does that. If data integrity has to be guaranteed, then the client

will have to contain transaction coordination logic. An alternative approach is for

the client to connect to one Oracle database and shift the burden of joining data and

Note: The term "non-Oracle system" refers to the following:

■ Any system accessed by PL/SQL procedures written in C (that is, by
external procedures)

■ Any system accessed through SQL (that is, by Oracle Transparent
Gateways or generic connectivity)

■ Any system accessed procedurally (that is, by procedural gateways)
1-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

The Heterogeneous Services Module in the Oracle Database Server
transaction coordination to that database. We call the database that the client

program connects to the local database. We call any database other than this one a

remote database. The client program can access objects at any of the remote

databases using database links. The Oracle query processor will take care of the

joins and its transaction engine will take care of the transaction coordination.

The approach that Oracle has taken to solving the heterogeneous connectivity

problem is to allow a non-Oracle system to be one of the remote nodes in the above

scenario. From the client’s point of view the remote non-Oracle system will function

like a remote Oracle system would. It appears to understand the same SQL dialect

and to have the same data dictionary structure as an Oracle system. Access to a

non-Oracle system in this manner is done through a module in the Oracle server

called Heterogeneous Services. Using Heterogeneous Services with the client

program can do the following

■ Retrieve and modify data stored in a non-Oracle system using Oracle SQL

dialect.

■ Execute stored procedures at the non-Oracle system using Oracle PL/SQL calls.

■ Issue these SQL statements or PL/SQL calls from either Oracle client

applications like SQL*Plus or Oracle programmatic interfaces like Pro*C or

OCI.

The work done by the Heterogeneous Services module is, for the most part,

completely transparent to the end user. With only a few exceptions, you do not need

to do anything different to access a non-Oracle system than you would for accessing

an Oracle system. The Heterogeneous Services Module is used as enabling

technology for many of heterogeneous access products that Oracle Corporation

designs and for features including Oracle Transparent Gateways and Generic

Connectivity (both of which are discussed in detail in this book).

You generally implement Heterogeneous Services in one of the following ways:

■ You use an Oracle Transparent Gateway with Heterogeneous Services to access

a particular, commercially available, non-Oracle system for which that Oracle

Transparent Gateway has been designed. (For example, you use the Oracle

Note: Heterogeneous Services can also be used to call external

routines written in C using PL/SQL calls. This aspect of

Heterogeneous Services is not covered in this book. For more

information on external procedures please see Oracle9i SQL
Reference and Oracle9i Application Developer’s Guide - Fundamentals.
Introduction 1-3

Integrating Heterogeneous Services Into the Oracle Server
Transparent Gateway for Sybase on Solaris to access a Sybase database system

operating on a Sun Solaris platform.)

■ You use generic connectivity within Oracle Heterogeneous Services to access

non-Oracle databases through an ODBC or a OLE DB interface.

Integrating Heterogeneous Services Into the Oracle Server
Much of the processing power of Oracle Transparent Gateways for Oracle7 and

earlier versions of the sever has been integrated into Oracle8i and later versions of

the Oracle database server as a module called Heterogeneous Services.

In the all versions of the Oracle server and Oracle Transparent Gateways up to

Oracle7, much of the transaction processing code for the gateway was contained in

the gateway itself. However, much of the same code also existed within the Oracle

database server. Because of this redundancy, using a gateway placed an

unnecessary demand on system resources.

An additional redundancy existed whenever you tried to use more than one

gateway from the same database server. This was because each gateway contained

large segments of code that were common to all the gateways. This meant that

using more than one gateway at a time also placed an unnecessary demand on

system resources.

The approach that Oracle has taken for Oracle8i and later versions of the Oracle

database server has been to integrate all code that is redundant in either of these

two ways into the Heterogeneous Services module of the Oracle database server.

The advantage to this is that using gateways now requires less memory storage

space and processing power than it did in Oracle7 and earlier releases. The result is

a "thin" transparent gateway which functions based on the Heterogeneous Services

module of the database with the following benefits.
1-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Benefits of Heterogeneous Services
Benefits of Heterogeneous Services
This section describes the following additional features provided by the

Heterogeneous Services module:

■ Remote Data Access

■ Elimination of Unnecessary Data Duplication

■ Heterogeneous Database Integration

■ Application Development and End User Tools

■ Two-Phase Commit and Multi-Site Transactions

■ Query Optimization

■ Error Mapping and Logging

■ Pass-Through Feature

Remote Data Access
Remote data access provides distributed database system administrators with

several benefits.

Applications can take advantage of Oracle client-server capability to connect to a

remote server using Oracle Net. The remote server can then connect to the gateway

using a database link. So, because the Oracle architecture enables network

connections between each of the components, you have more options for locating

your data.

Remote access also gives you access to data outside your local environment. With

remote access, you can move application development onto cost-efficient

workstations or microcomputers. Also, with remote access, your data sources are

virtually unlimited. Remote access also enables you to choose the best environment

for your users. For example, data might be located on a platform that supports only

character-mode interfaces, but, with remote access, users can access the data from

desktop platforms that support graphical user interfaces.

Elimination of Unnecessary Data Duplication
An Oracle Transparent Gateway gives applications direct access to non-Oracle

database system data. This consequently eliminates the need to upload and

download large amounts of data to different locations. Reducing the need to upload

and download large amounts of data has the further consequence of reducing the
Introduction 1-5

Benefits of Heterogeneous Services
risk for unsynchronized or inconsistent data. And, by reducing the need for data

duplication, an Oracle transparent gateway reduces the disk storage needs across all

of your systems.

Heterogeneous Database Integration
The Oracle database server can accept a SQL statement that queries data stored in

several different databases. The Oracle database server with the Heterogeneous

Services module processes the SQL statement and passes the appropriate SQL

directly to other Oracle databases and through gateways to non-Oracle databases.

The Oracle database server then combines the results and returns them to the client.

This enables a query to be processed so that it spans the non-Oracle database

system, other databases, and local and remote Oracle data.

Application Development and End User Tools
An Oracle Transparent Gateway extends the range of user tools and application

development that you can use to access the databases. These user tools increase

application development and user productivity by reducing prototype,

development, and maintenance time. This means that current Oracle users do not

have to learn a new set of tools to access data stored in non-Oracle database system

databases. Instead, they can access Oracle and non-Oracle database system data

with a single set of tools. These tools can run on remote machines connected

through Oracle Net to the Oracle database server.

Two-Phase Commit and Multi-Site Transactions
In a distributed database system, the network might fail during a distributed

transaction, raising the risk of data inconsistencies. The Oracle transaction model

uses a two-phase commit protocol to protect the databases as the data is being

committed at sites participating in a distributed transaction. This feature ensures

that all database servers participating in the transaction must commit or roll back

the transaction statements. The two-phase commit protocol is also supported (with

some limitations) for non-Oracle systems when the user is accessing them through

an Oracle Transparent Gateway.

Query Optimization
Whenever possible, the Oracle database server passes the entire query to the

non-Oracle system to utilize the indexes and statistics of the non-Oracle system

tables.
1-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Benefits of Heterogeneous Services
When a query that involves multiple databases is processed, the Oracle database

server passes optimized statements to the remote servers and gateways involved in

the query to minimize the amount of data returned across the network.

Error Mapping and Logging
The gateway provides error mapping and logging. It does this by mapping the

non-Oracle database system error to an Oracle database server error message and

adding all of the relevant error messages generated by non-Oracle database system.

You can route messages to the client application, an operator console, an error log,

or any combination of these destinations as needed. Error mapping provides

database transparency for applications.

Pass-Through Feature
As mentioned in the previous sections, Heterogeneous Services technology can

allow clients to transparently access non-Oracle systems using Oracle SQL. In some

cases, however, it becomes necessary to use non-Oracle system SQL to access the

non-Oracle system. For such cases, Heterogeneous Services has a pass-through

feature which allows the user to bypass Oracle’s query processor and to issue

non-Oracle system SQL to the non-Oracle system through the gateway.
Introduction 1-7

Benefits of Heterogeneous Services
1-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Oracle Transparent Gateways and Generic Conne
2

Oracle Transparent Gateways and Generic

Connectivity

You can access a non-Oracle database system either by Transparent Gateways or

with Generic Connectivity. This chapter describes the architecture of Heterogeneous

Services insofar as it relates to each of these means of accessing a non-Oracle

system.

This chapter contains these topics:

■ Heterogeneous Connectivity Process Architecture

■ Heterogeneous Services Agents

■ Types of Heterogeneous Services Agents

■ Heterogeneous Services Components

■ Configuring Heterogeneous Services

■ The Heterogeneous Services Data Dictionary

■ Gateway Process Flow
ctivity 2-1

Heterogeneous Connectivity Process Architecture
Heterogeneous Connectivity Process Architecture
At a high level, Oracle heterogeneous connectivity process architecture is structured

as shown in Figure 2–1.

Figure 2–1 Oracle Heterogeneous Connectivity Process Architecture

The Heterogeneous Services module in the kernel talks to a Heterogeneous Services

agent process which, in turn, talks to the non-Oracle system. We can conceptually

divide the code into three parts:

■ The Heterogeneous Services Module in the Oracle database server. Most of the

heterogeneous connectivity related processing is done in this module.

■ Agent generic code. This is code in the agent that is generic to all

Heterogeneous Services based products. This consists, for the most part, of code

to communicate with the database and multithreading support.

■ The driver. This is the module that communicates with the non-Oracle system.

It is used to map calls from the Heterogeneous Services external application

programming interface (API) onto the native API of the non-Oracle system and

it is non-Oracle system specific.

Heterogeneous Services Agents
An agent is the process through which an Oracle server connects to a non-Oracle

system. The agent process consists of two components. These are agent generic code

and a non-Oracle system-specific driver. An agent exists primarily to isolate the

Oracle database server from third-party code. In order for a process to access the

non-Oracle system, the non-Oracle system client libraries have to be linked into it.

In the absence of the agent process, these libraries would have to be directly linked

into the Oracle database and problems in this code could cause the Oracle server to

go down. Having an agent process isolates the Oracle server from any problems in

Heterogenous
ServiceOracle Driver

Agent
Generic
Code

Remote
Database

Agent
2-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Types of Heterogeneous Services Agents
third-party code so that even if a fatal error takes place, only the agent process will

end.

An agent can reside in the following places:

■ On the same machine as the non-Oracle system

■ On the same machine as the Oracle server

■ On a machine different from either of these two

Agent processes are usually started when a user session makes its first non-Oracle

system access through a database link. These connections are made using Oracle’s

remote data access software, Oracle Net Services, which enables both client-server

and server-server communication. The agent process continues to run until the user

session is disconnected or the database link is explicitly closed.

Multithreaded agents behave slightly differently. They have to be explicitly started

and shut down by a database administrator instead of automatically being spawned

by Oracle Net Services.

Types of Heterogeneous Services Agents

Oracle Transparent Gateways
An agent process that accesses a non-Oracle system is called a gateway. (Note that

agents can also be used to execute external procedures.) Access to all gateways goes

through the Heterogeneous Services module in the Oracle server and all gateways

contain the same agent-generic code. Each gateway has a different driver linked in

which maps the Heterogeneous Services application programming interface (API)

to the client API of the non-Oracle system.

An Oracle Transparent gateway is a gateway that is designed for accessing a specific

non-Oracle system. Oracle Corporation provides gateways to access several

commercially produced non-Oracle systems; many of these gateways have been

ported to several platforms. For example, an Oracle Transparent Gateway for

Sybase on Solaris is the Solaris port of a gateway designed to access Sybase

database systems.

With Oracle Transparent Gateways, you can use an Oracle database server to access

data anywhere in a distributed database system without needing to know either the

location of the data or how it is stored. When the results of your queries are

See Also: For more information on multithreaded agents, please

see Chapter 5, "Using Multithreaded Agents"
Oracle Transparent Gateways and Generic Connectivity 2-3

Heterogeneous Services Components
returned to you by the Oracle database server, they are presented to you as if the

data stores from which they were taken all resided within a remote instance of an

Oracle distributed database.

Generic Connectivity
In addition to transparent gateways to various non-Oracle database systems, there

is a set of agents that comprise the Oracle generic connectivity feature.These agents

contain only generic code and the customer is responsible for providing the

necessary drivers. Oracle has generic connectivity agents for ODBC and OLE DB

that enable you to use ODBE and OLEDB drivers to access non-Oracle systems that

have an ODBC or an OLE DB interface.

To build a gateway to a specific non-Oracle system using generic connectivity, you

must connect an ODBC or OLE DB driver to the gateway for that non-Oracle

system. These drivers are not provided by Oracle corporation. However, as long as

Oracle Corporation supports the ODBC and OLE DB protocols, you can use the

generic connectivity feature to access any non-Oracle system that can be accessed

using an ODBC or OLE DB driver.

Generic connectivity has some limitations. The ODBC and OLEDB gateways have

to be installed in the same Oracle Home directory as the Oracle database server.

Connecting to one of these gateways from another Oracle database server is not

supported. Functionality of these gateways, especially when compared to Oracle

Transparent Gateways, is limited.

Heterogeneous Services Components

Transaction Service
The transaction service component of the Heterogeneous Services module makes it

possible for non-Oracle systems to be integrated into Oracle database server

transactions and sessions. When you access a non-Oracle system for the first time

over a database link within your Oracle user session, you transparently set up an

authenticated session in the non-Oracle system. At the end of your Oracle user

session, the authenticated session in the non-Oracle database system transparently

closes at the non-Oracle system.

See Also: For more information, see Chapter 7, "Generic

Connectivity"
2-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Configuring Heterogeneous Services
Additionally, one or more non-Oracle systems can participate in an Oracle

distributed transaction. When an application commits a transaction, Oracle’s

two-phase commit protocol accesses the non-Oracle database system to coordinate

transparently the distributed transaction. Even in those cases where the non-Oracle

system does not support all aspects of Oracle two-phase commit protocol, Oracle

can (with some limitations) support distributed transactions with the non-Oracle

system.

SQL Service
The standard query language (SQL) service handles the processing of all

SQL-related operations. The work done by the SQL service includes:

1. Mapping Oracle internal SQL-related calls to the Heterogeneous Services driver

application programing interface (API); this is in turn mapped by the driver to

the client API of the non-Oracle system.

2. Translating SQL statements from Oracle’s SQL dialect to the SQL dialect of the

non-Oracle system.

3. Translating queries that reference Oracle data dictionary tables to queries that

extract the necessary information from the non-Oracle system data dictionary.

4. Translating data from non-Oracle system data types to Oracle data types and

back.

5. Making up for missing functionality at the non-Oracle system by issuing

multiple queries to get the necessary data and doing post processing to get the

desired results

Configuring Heterogeneous Services
In the previous section, we described what the different heterogeneous components

do. These components consist entirely of generic code and, in order to work with so

many different non-Oracle systems, their behavior has to be configured. Each

gateway has configuration information stored in the driver module and this

information is uploaded to the server immediately after the connection to the

gateway has been established. We can divide this configuration information into

three parts:

■ Data Dictionary Translations

■ Initialization Parameters

■ Capabilities
Oracle Transparent Gateways and Generic Connectivity 2-5

The Heterogeneous Services Data Dictionary
Data Dictionary Translations
Data dictionary translations are views on non-Oracle system data dictionary tables

that help Heterogeneous Services translate references to Oracle data dictionary

tables into queries needed to retrieve the equivalent information from the

non-Oracle system data dictionary.

Initialization Parameters
Initialization parameters serve two functions.

■ They give the user a means of fine-tuning the gateway to optimize performance

and memory utilization for the gateway and the Heterogeneous Services

module.

■ They enable the user to tell the gateway (and, thereby, Heterogeneous Services)

how the non-Oracle system has been configured (for example what language

the non-Oracle system is running in). To put it another way, they give

Heterogeneous Services information about the configurable properties of the

non-Oracle system.

You can examine the initialization parameters for a session by querying the view

V$HS_PARAMETER. Users can set initialization parameters in gateway initialization

files.

Capabilities
Capabilities tell Heterogeneous Services about the limitations of the non-Oracle

system (such as what types of SQL statements are and are not supported) and how

to map Oracle data types and SQL expressions to their non-Oracle system

equivalents. In other words, they tell Heterogeneous Services about the

non-configurable properties of the non-Oracle system. Capabilities cannot be

changed by the user.

The Heterogeneous Services Data Dictionary
As mentioned in the previous section, configuration information is uploaded from

an agent to the Heterogeneous Services module immediately after the connection to

Note: For a more detailed explanation of data dictionary

translations, please see Appendix D, "Data Dictionary Translation

Support".
2-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

The Heterogeneous Services Data Dictionary
the agent has been established. Since this information can be very large in size, it is

inefficient to do uploads on each connection. Therefore, the first time an Oracle

database talks to an agent, the configuration information is uploaded and stored in

Heterogeneous Services data dictionary tables and thereafter no upload takes place

until something at the agent changes (for example, if a patch is applied or if the

agent is upgraded to a new version).

Classes and Instances
Using Heterogeneous Services, a user can access several non-Oracle systems from a

single Oracle database. This is illustrated in Figure 2–2

Figure 2–2 Accessing Multiple Non-Oracle Instances

Both the agents upload configuration information that is stored as part of the Oracle

data. This information is organized in the Heterogeneous Services data dictionary

as follows.

In the Heterogeneous Services data dictionary, Oracle organizes data by two levels

of granularity called class and instance. A class pertains to a specific type of

non-Oracle system. For example, you might want to access the class of Sybase

database systems with your Oracle database server. An instance defines

specializations within a class. For example, you might want to access several

separate instances within a Sybase database system. Instance information takes

precedence over class information, and class information takes precedence over

server-supplied defaults.

Agent

Agent

Non-Oracle System "X" instance

Non-Oracle System "Y" instance

Client Application

Oracle9i Server
Oracle Transparent Gateways and Generic Connectivity 2-7

Gateway Process Flow
Although it is possible to store data dictionary information at one level of

granularity by having completely separate definitions in the data dictionary for

each individual instance, this might lead to an unnecessarily large amount of

redundant data dictionary information. To avoid this, Oracle organizes the data

dictionary by two levels of granularity, in which each class definition (one level of

granularity) is shared by all the particular instances (a second level of granularity)

under that class.

For example, suppose that the Oracle database server accesses three instances of

Sybase and two instances of Ingres II. Sybase and Ingres II each have their own

code, requiring separate class definitions for the Oracle database server to access

them. The Heterogeneous Services data dictionary therefore would contain two

class definitions, one for Sybase and one for Ingres II, with five instance definitions,

one for each instance being accessed by the Oracle database server.

Data Dictionary Views
The Heterogeneous Services data dictionary views contain the following kinds of

information:

■ Names of instances and classes uploaded into the Oracle data dictionary

■ Capabilities, including SQL translations, defined for each class or instance

■ Data Dictionary translations defined for each class or instance

■ Initialization parameters defined for each class or instance

You can access information from the Oracle data dictionary by using fixed views.

The views are categorized into three main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

Gateway Process Flow
Figure 2–3 shows a typical gateway process flow. The steps explain the sequence of

events that occurs when a client application queries the non-Oracle database system

database through the gateway.

See Also: For more information on data dictionary views, see

Appendix D, "Data Dictionary Translation Support"
2-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Gateway Process Flow
Figure 2–3 Gateway Process Flow

1. The client application sends a query over Oracle Net to the Oracle database

server.

2. The Oracle database server sends the query over to the gateway using Oracle

Net.

3. For the first transaction in a session, the gateway logs into non-Oracle database

system using a username and password that is valid in the non-Oracle system.

4. The gateway converts the Oracle SQL statement into a SQL statement

understood by non-Oracle database system.

5. The gateway retrieves data using non-Oracle database system SQL statements.

6. The gateway converts retrieved data into a format compatible with the Oracle

database server.

7. The gateway returns query results to the Oracle database server, again using

Oracle Net Services.

O
ra

cl
e9

i S
er

ve
r

H
et

er
og

en
eo

us
 S

er
vi

ce
s

N
o

n
-O

ra
cl

e
S

ys
te

m

G
at

ew
ay

7

2

5

3

6

4

Oracle
Net

Oracle
Net

1 8

Oracle Net
Oracle Transparent Gateways and Generic Connectivity 2-9

Gateway Process Flow
8. The Oracle database server passes the query results to the client application by

using Oracle Net. The database link remains open until the gateway session is

finished or the database link is explicitly closed.

Oracle Transparent Gateways for Non-Oracle Database Systems
Oracle client applications can access non-Oracle database system data with Oracle

SQL just as if the data residing in the non-Oracle database system were stored in a

remote Oracle database. Combined data residing in both Oracle and non-Oracle

database system databases can be accessed by a single SQL statement performing

heterogeneous joins and subselects. This means you can develop a single set of

portable applications to use against both Oracle and non-Oracle database system

databases. In this way, you can continue to develop new information systems

without losing your investment in existing data and applications.

Also, transaction integrity for transactions involving updates to both Oracle and

non-Oracle database system databases from a single Oracle database server is

automatically protected by the Oracle two-phase commit feature.

Finally, synonyms in the Oracle database server can be used for transparent access

to the non-Oracle system. Synonyms within the Oracle database server that point to

database links to non-Oracle database system tables makes the physical location of

the data transparent to the client application. This allows the future migration of

data from the non-Oracle database system to Oracle to be transparent to client

applications.

Only the Oracle database server and Oracle Net are needed to set up a gateway to a

non-Oracle system. All other Oracle products are not necessary. However, using

other Oracle products with the gateway can greatly extend the capabilities of a

gateway.
2-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Major Fea
3

Major Features

This chapter describes the major features provided by Heterogeneous Services.

This chapter contains the following topics:

■ SQL and PL/SQL Support

■ Heterogeneous Replication

■ Passthrough SQL

■ Result Set Support

■ Data Dictionary Translations

■ Date Time

■ Two Phase Commit Protocol

■ Piecewise Long

■ SQL*Plus Describe Command

■ Constraints on SQL in a Distributed Environment

■ Using Index and Table Statistics

■ Other Optimizations

■ Optimizer Restrictions for non-Oracle Access
tures 3-1

SQL and PL/SQL Support

L/SQL
nts, if
e
st

ystems
ic

cle
 of

ils.
SQL and PL/SQL Support
SQL statements are translated and data types are mapped according to capabilities. P
calls are mapped to non-Oracle system stored procedures. In the case of SQL stateme
functionality is missing at the remote system, then either a simpler query is issued or th
statement is broken up into multiple queries and the desired results are obtained by po
processing in the Oracle database.

Even though Heterogeneous Services can, for the most part, incorporate non-Oracle s
into Oracle distributed sessions, there are several limitations to this. Some of the gener
limitations are:

1. Data manipulation language statements that update objects on the remote non-Ora
system should not reference any objects on the local Oracle database. An example
such a statement is:

INSERT INTO remote_table@link as SELECT * FROM local_table;

Such statements will cause an error to be raised.

2. There is no support forCONNECT BY clauses in SQL statements.

3. ROWID support is limited; consult individual gateway documentation for more deta
The Oracle Universal Rowid data type is not supported in any Oracle9i gateway.

4. LOBs, ADTs, and REFs are not supported.

5. PL/SQL in SQL is not supported. For example, a statement such as:

SELECT remote_func@link(a,b) FROM remote_table@link

will cause an error to be raised.

6. Remote packages are not supported.

7. Remote stored procedures can haveout arguments of type ref cursor but notin or
in-out objects.

Note: Even though Heterogeneous Services has all these features, they
are not necessarily available in all Heterogeneous Services based
gateways. Not only must there be generic support for these features, which
Heterogeneous Services provides, but there must also be support added to
the driver for them. Please consult your gateways documentation to
determine if a certain Heterogeneous Services feature is supported for
your gateway.
3-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Replication

alized

t a
 data

erver.

zed

iews

cle

dard
acle

ous
8. None of the Oracle9i gateways supports shared database links.

Heterogeneous Replication
Data can be replicated between a non-Oracle system and an Oracle server with materi
views.

Materialized views instantiate data captured from tables at the non-Oracle master site a
particular point in time. This instant is defined by a refresh operation, which copies this
to the Oracle server and synchronizes the copy on Oracle with the master copy on the
non-Oracle system. The "materialized" data is then available as a view on the Oracle s

Replication facilities provide mechanisms to schedule refreshes and to collect materiali
views into replication groups to facilitate their administration. Refresh groups permit
refreshing multiple materialized views just as if they were a single object.

Heterogeneous replication support is necessarily limited to a subset of the full
Oracle-to-Oracle replication functionality:

■ Only the non-Oracle system can be the master site. This is because materialized v
can be created only on an Oracle server.

■ Materialized views must use complete refresh. This is because fast refresh would
require Oracle-specific functionality in the non-Oracle system.

■ Not all types of materialized views can be created to reference tables on a non-Ora
system. Primary key and subquery materialized views are supported, but rowid and
object id materialized views are not supported. This is because there is no SQL stan
for the format and contents of rowids, and non-Oracle systems do not implement Or
objects.

Other restrictions apply to any access to non-Oracle data through Oracle's Heterogene
Services facilities. The most important of these are:

Note: In addition to these generic limitation, each gateway can have
additional limitations. Please consult the gateway documentation for
individual gateways for a complete list of limitations of the product.

See Also: Oracle9i Replication for a full description of materialized
views and replication facilities.
Major Features 3-3

Heterogeneous Replication

e
ata

by
uch
 the
us
■ Non-Oracle data types in table columns mapped to a fixed view must be compatibl
with (that is, have a mapping to or from) Oracle data types. This is usually true for d
types defined by ANSI SQL standards.

■ A subquery materialized view may not be able to use language features restricted
individual non-Oracle systems. In many cases Heterogeneous Services supports s
language features by processing queries within the Oracle server, but occasionally
non-Oracle systems impose limitations that cannot be diagnosed until Heterogeneo
Services attempts to execute the query.

9. The following examples illustrate basic setup and use of three materialized views to
replicate data from a non-Oracle system to an Oracle data store.

Example 1: Set up 3 materialized views and a refresh group for them.
1. Create a primary key materialized view of tablethsmv_customer@ remote_db

 CREATE MATERIALIZED VIEW pk_mv REFRESH COMPLETE AS
 SELECT * FROM thsmv_customer@remote_db WHERE "zip" = 94555;

2. Create a subquery materialized view of tablesthsmv_orders@ remote_db and
thsmv_customer@ remote_db

 CREATE MATERIALIZED VIEW sq_mv REFRESH COMPLETE AS
 SELECT * FROM thsmv_orders@remote_db o WHERE EXISTS
 (SELECT c."c_id" FROM thsmv_customer@remote_db c
 WHERE c."zip" = 94555 and c."c_id" = o."c_id");

3. Create a complex materialized view of data from multiple tables onremote_db

 CREATE MATERIALIZED VIEW cx_mv
 REFRESH COMPLETE AS
 SELECT c."c_id", o."o_id"
 FROM thsmv_customer@remote_db c,

thsmv_orders@remote_db o,
thsmv_order_line@remote_db ol

 WHERE c."c_id" = o."c_id"
 AND o."o_id" = ol."o_id";

Note: For the following examples,remote_db refers to the
non-Oracle system which you are accessing from your Oracle database
server.
3-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL

 the

s.
Example 2: Set up a refresh group for these 3 materialized views and
force a refresh
 BEGIN
 dbms_refresh.make('refgroup1',
 'pk_mv, sq_mv, cx_mv',
 NULL, NULL);
 END;
 /

Example 3: Force refresh of all 3 materialized views
 BEGIN
 dbms_refresh.refresh('refgroup1');
 END;
 /

Passthrough SQL
The pass-through SQL feature allows you to send a statement directly to a

non-Oracle system without being interpreted by the Oracle9i server. This feature can

be useful if the non-Oracle system allows for operations in statements for which

there is no equivalent in Oracle.

This section contains the following topics:

■ Passthrough SQL

■ Considering the Implications of Using Pass-Through SQL

■ Executing Pass-Through SQL Statements

Using the DBMS_HS_PASSTHROUGH package
You can execute Passthrough SQL statements directly at the non-Oracle system using
PL/SQL package DBMS_HS_PASSTHROUGH. Any statement executed with the
pass-through package is executed in the same transaction as standard SQL statement

The DBMS_HS_PASSTHROUGH package is a virtual package. It conceptually

resides at the non-Oracle system. In reality, however, calls to this package are

intercepted by Heterogeneous Services and mapped onto one or more

Heterogeneous Services application programming interface (API) calls. The driver,

in turn, maps these Heterogeneous Services API calls onto the API of the

non-Oracle system. The client application should invoke the procedures in the

package through a database link in exactly the same way as it would invoke a
Major Features 3-5

Passthrough SQL
non-Oracle system stored procedure. The special processing done by

Heterogeneous Services is transparent to the user.

Considering the Implications of Using Pass-Through SQL
When you execute a pass-through SQL statement that implicitly commits or rolls

back a transaction in the non-Oracle system, the transaction is affected. For

example, some systems implicitly commit the transaction containing a data

definition language (DDL) statement. Because the Oracle database server is

bypassed, the Oracle database server is unaware of the commit in the non-Oracle

system. Consequently, the data at the non-Oracle system can be committed while

the transaction in the Oracle database server is not.

If the transaction in the Oracle database server is rolled back, data inconsistencies

between the Oracle database server and the non-Oracle server can occur. This

situation results in global data inconsistency.

Note that if the application executes a regular COMMIT statement, the Oracle

database server can coordinate the distributed transaction with the non-Oracle

system. The statement executed with the pass-through facility is part of the

distributed transaction.

Executing Pass-Through SQL Statements
The table below shows the functions and procedures provided by the DBMS_HS_
PASSTHROUGH package that allow you to execute pass-through SQL statements.

See Also: Oracle9i Supplied PL/SQL Packages Reference for more

information about this package.

Procedure/Function Description

OPEN_CURSOR Opens a cursor

CLOSE_CURSOR Closes a cursor

PARSE Parses the statement

BIND_VARIABLE Binds IN variables

BIND_OUT_VARIABLE Binds OUT variables

BIND_INOUT_VARIABLE Binds IN OUT variables

EXECUTE_NON_QUERY Executes non-query

EXECUTE_IMMEDIATE Executes non-query without bind variables
3-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL
This section contains these topics:

■ Executing Non-Queries

■ Executing Queries

Executing Non-Queries
Non-queries include the following statements and types of statements:

■ INSERT

■ UPDATE

■ DELETE

■ DDL

To execute non-query statements, use the EXECUTE_IMMEDIATE function. For

example, to execute a DDL statement at a non-Oracle system that you can access

using the database link SalesDB , execute:

DECLARE
 num_rows INTEGER;

BEGIN
 num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@SalesDB
 ('CREATE TABLE DEPT (n SMALLINT, loc CHARACTER(10))');
END;

The variable num_rows is assigned the number of rows affected by the execution.

For DDL statements, zero is returned. Note that you cannot execute a query with

EXECUTE_IMMEDIATE and you cannot use bind variables.

Using Bind Variables: Overview Bind variables allow you to use the same SQL

statement multiple times with different values, reducing the number of times a SQL

statement needs to be parsed. For example, when you need to insert four rows in a

particular table, you can parse the SQL statement once and bind and execute the

SQL statement for each row. One SQL statement can have zero or more bind

variables.

FETCH_ROW Fetches rows from query

GET_VALUE Retrieves column value from SELECT statement or
retrieves OUT bind parameters

Procedure/Function Description
Major Features 3-7

Passthrough SQL
To execute pass-through SQL statements with bind variables, you must:

1. Open a cursor.

2. Parse the SQL statement at the non-Oracle system.

3. Bind the variables.

4. Execute the SQL statement at the non-Oracle system.

5. Close the cursor.

Figure 3–1 shows the flow diagram for executing non-queries with bind variables.
3-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL
Figure 3–1 Flow Diagram for Non-Query Pass-Through SQL

Using IN Bind Variables The syntax of the non-Oracle system determines how a

statement specifies a bind variable. For example, in Oracle you define bind variables

with a preceding colon, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME=:ename

Execute
non query

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

(optional)
Major Features 3-9

Passthrough SQL
In this statement, ename is the bind variable. In other non-Oracle systems you

may need to specify bind variables with a question mark, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME= ?

In the bind variable step, you must positionally associate host program variables (in

this case, PL/SQL) with each of these bind variables.

For example, to execute the above statement, you can use the following PL/SQL

program:

DECLARE
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 'UPDATE EMP SET SAL=SAL*1.1 WHERE ENAME=?');
 DBMS_HS_PASSTHROUGH.BIND_VARIABLE(c,1,’JONES’);
 nr:=DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY@SalesDB(c);
 DBMS_OUTPUT.PUT_LINE(nr||’ rows updated’);
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@salesDB(c);
END;

Using OUT Bind Variables In some cases, the non-Oracle system can also support OUT
bind variables. With OUTbind variables, the value of the bind variable is not known

until after the execution of the SQL statement.

Although OUTbind variables are populated after the SQL statement is executed, the

non-Oracle system must know that the particular bind variable is an OUT bind

variable before the SQL statement is executed. You must use the BIND_OUT_
VARIABLE procedure to specify that the bind variable is an OUT bind variable.

After the SQL statement is executed, you can retrieve the value of the OUT bind

variable using the GET_VALUE procedure.

Using IN OUT Bind Variables A bind variable can be both an IN and an OUT variable.

This means that the value of the bind variable must be known before the SQL

statement is executed but can be changed after the SQL statement is executed.

For IN OUT bind variables, you must use the BIND_INOUT_VARIABLE procedure

to provide a value before the SQL statement is executed. After the SQL statement is

executed, you must use the GET_VALUE procedure to retrieve the new value of the

bind variable.
3-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL
Executing Queries
The difference between queries and non-queries is that queries retrieve a result set

from a SELECT statement. The result set is retrieved by iterating over a cursor.

Figure 3–2 illustrates the steps in a pass-through SQL query. After the system parses

the SELECT statement, each row of the result set can be fetched with the FETCH_
ROW procedure. After the row is fetched, use the GET_VALUE procedure to retrieve

the select list items into program variables. After all rows are fetched you can close

the cursor.
Major Features 3-11

Passthrough SQL
Figure 3–2 Pass-through SQL for Queries

You do not have to fetch all the rows. You can close the cursor at any time after

opening the cursor, for example, after fetching a few rows.

Note: Although you are fetching one row at a time,

Heterogeneous Services optimizes the round trips between the

Oracle9i server and the non-Oracle system by buffering multiple

rows and fetching from the non-Oracle data system in one round

trip.

Fetch_row

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

For each
row

For each
column
3-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL
The next example executes a query:

DECLARE
 val VARCHAR2(100);
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 'select ename
 from emp
 where deptno=10’);
 LOOP
 nr := DBMS_HS_PASSTHROUGH.FETCH_ROW@SalesDB(c);
 EXIT WHEN nr = 0;
 DBMS_HS_PASSTHROUGH.GET_VALUE@SalesDB(c, 1, val);
 DBMS_OUTPUT.PUT_LINE(val);
 END LOOP;
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@SalesDB(c);
END;

After parsing the SELECT statement, the rows are fetched and printed in a loop

until the function FETCH_ROW returns the value 0.

Note Also: For more information on Passthrough SQL, please see
Appendix C, "DBMS_HS_PASSTHROUGH for Pass-Through SQL"
Major Features 3-13

Result Set Support

s,
w

vel
s

as

has.
ts of a

rns

re can
ave
laces
ursor

nput
d

cle
ues
/SQL

 has
 in
es is
Result Set Support

Introduction
Various relational databases allow stored procedures to return result sets. In other word
stored procedures will be able to return one or more sets of rows. This is a relatively ne
feature for any database.

Traditionally, database stored procedures worked exactly like procedures in any high-le
programming language. They had a fixed number of arguments which could be of typein ,
out , or in-out . If a procedure hadn arguments, it could return at mostn values as results.
However, suppose that somebody wanted a stored procedure to execute a query such
SELECT * FROM empand return the results. Theemp table might have a fixed number of
columns but there is no way of telling, at procedure creation time, the number of rows it
Because of this, no traditional stored procedure can be created that can return the resul
such a query. As a result, several relational database vendors added the capability of
returning results sets from stored procedures, but each kind of relational database retu
result sets from stored procedures in a different way.

Oracle has a data type called a ref cursor. Like every other Oracle data type, a stored
procedure can take this data type as an in or out argument. In Oracle, a stored procedu
return a result set in the following way. To return a result set, a stored procedure must h
an output argument of type ref cursor. It then opens a cursor for a SQL statement and p
a handle to that cursor in that output parameter. The caller can then fetch from the ref c
the same way as from any other cursor.

Oracle can do a lot more than simply return result sets. Ref cursors can be passed as i
arguments to PL/SQL routines to be passed back and forth between client programs an
PL/SQL routines or between several PL/SQL routines. Until recently, ref cursors in Ora
did not work in a distributed environment. This meant that you could pass ref cursor val
between PL/SQL routines in the same database or between a client program and a PL
routine, but they could not be passed from one database to another. As of Oracle9i, that
restriction has been removed in the case of Heterogeneous Services.

Result Set Support In Non-Oracle Systems:
Several non-Oracle systems allow stored procedures to return result sets but do so in
completely different ways. No other relational database management system (RDBMS)
anything like the Oracle ref cursor data type. Result sets are supported to some extend
DB2, Sybase, Microsoft SQL Server, and Informix. Result set support in these databas
based on one of the following two models.
3-14 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Result Set Support

r of

t sets.
se
.
r

rned

dure
t
n

y
er. In
ming
dures
f the

sor

er for
rs

y.
Model 1
When creating a stored procedure, the user can explicitly specify the maximum numbe
result sets that can be returned by that stored procedure. While executing, the stored
procedure can open anywhere from zero to its pre-specified maximum number of resul
After the execution of the stored procedure, a client program can obtain handles to the
result sets by using either an embedded SQL directive or calling a client library function
After that the client program can fetch from the result in the same way as from a regula
cursor.

Model 2
In this model, there is no pre-specified limit to the number of result sets that can be retu
by a stored procedure. Both Model 1 and Oracle have a limit. For Oracle the number of
result sets returned by a stored procedure can be at most the number of ref cursorout
arguments; for Model 1, the upper limit is specified using a directive in the stored proce
language. Another way that Model 2 differs from Oracle and Model 1 is that they do no
return a handle to the result sets but instead place the entire result set on the wire whe
returning from a stored procedure. For Oracle, the handle is the ref cursorout argument; for
Model 1, it is obtained separately after the execution of the stored procedure. For both
Oracle and Model 1, once the handle is obtained, data from the result set is obtained b
doing a fetch on the handle; we have a bunch of cursors open and can fetch in any ord
the case of Model 2, however, all the data is already on the wire, with the result sets co
in the order determined by the stored procedure and the output arguments of the proce
coming at the end. So the whole of the first result set must be fetched, then the whole o
second one, until all of the results have been fetched. Finally, the stored procedureout
arguments must be fetched.

Heterogeneous Services Support for Result Sets
As can be seen in the preceding sections, result set support exists among non-Oracle
databases in a variety of forms. All of these have to be mapped onto the Oracle ref cur
model. Due to the considerable differences in behavior among the various non-Oracle
systems, Heterogeneous Services result set support will have to behave in one of two
different ways depending on the non-Oracle system it is connected to.

Please note the following about Heterogeneous Services result set support:

■ Result set support is present in 9i Heterogeneous Services generic code but in ord
the feature to work in a gateway, the driver has to implement it as well. Not all drive
have implemented result set support and the customer must check in his
gateway-specific documentation to determine whether it is supported in that gatewa
Major Features 3-15

Result Set Support

.

s

stored

tly
en

ursor

d
ursor

t can

that
hat a
n of a

 the
ous

 result
n

ing:

y

■ Heterogeneous Services will support ref cursorout arguments from stored procedures
In andin-out arguments will not be supported.

■ The ref cursorout arguments will all be anonymous ref cursors. No typed ref cursor
are returned by Heterogeneous Services.

Cursor mode
Oracle generally behaves such that each result set returned by the non-Oracle system
procedure is mapped by the driver to anout argument of type ref cursor. The client
program sees a stored procedure with severalout arguments of type ref cursor. After
executing the stored procedure, the client program can fetch from the ref cursor in exac
the same way as it would from a ref cursor returned by an Oracle stored procedure. Wh
connecting to the gateway as described in Model 1, Heterogeneous Services will be in c
mode.

Sequential Mode
In Oracle, there is a pre-specified maximum number of result sets that a particular store
procedure can return. The number of result sets returned is at most the number of ref c
out arguments for the stored procedure. It can, of course, return fewer result sets, but i
never return more.

For the system described in Model 2, there is no pre-specified maximum of result sets
can be returned. In the case of Model 1, we know the maximum number of result sets t
procedure can return, and the driver can return to Heterogeneous Services a descriptio
stored procedure with that many ref cursorout arguments. If, on execution of the stored
procedure, fewer result sets than the maximum are returned, then the other ref cursorout
arguments will be set toNULL.

Another problem for Model 2 database servers is that result sets have to be retrieved in
order in which they were placed on the wire by the database. This prevents Heterogene
Services from running in cursor mode when connecting to these databases. To access
sets returned by these stored procedures, you must operate Heterogeneous Services i
sequential mode.

In sequential mode, the procedure description returned by the driver contains the follow

■ All the input arguments of the remote stored procedure

■ None of the output arguments

■ Oneout argument of type ref cursor (corresponding to the first result set returned b
the stored procedure)
3-16 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Result Set Support

 last

r in

d
ly

pens
The client fetches from this ref cursor and then calls the virtual package functiondbms_
hs_result_set.get_next_result_set to get the ref cursor corresponding to the
next result set. This function call is repeated until all result sets have been fetched. The
result set returned will actually be theout arguments of the remote stored procedure.

The major limitations of sequential mode are as follows:

■ Result sets returned by a remote stored procedure have to be retrieved in the orde
which they were placed on the wire

■ On execution of a stored procedure, all result sets returned by a previously execute
stored procedure will be closed (regardless of whether the data has been complete
fetched or not).

Code Examples:
All examples in this section use the following non-Oracle system stored procedure.

create or replace package rcpackage is
 type rctype is ref cursor;
end rcpackage;
/

create or replace procedure refcurproc
 (arg1 in varchar2, arg2 out varchar2,
 rc1 out rcpackage.rctype,
 rc2 out rcpackage.rctype) is
begin
 arg2 := arg1;
 open rc1 for select * from emp;
 open rc2 for select * from dept;
end;
/

This stored procedure assigns the input parameter arg1 to the output parameter arg2, o
the querySELECT * FROM emp in ref cursorrc1 , and opens the querySELECT *
FROM dept in ref cursorrc2 .

Note: For purposes of illustration, the following examples are presented
as if they were Oracle PL/SQL stored procedures. However, you can
create equivalent stored procedures for the DB2, Microsoft SQL Server,
and Sybase.
Major Features 3-17

Result Set Support
OCI program fetching from result sets in cursor mode
The following example shows OCI program fetching from result sets in cursor mode.

 OCIEnv *ENVH;
 OCISvcCtx *SVCH;
 OCIStmt *STMH;
 OCIError *ERRH;
 OCIBind *BNDH[4];
 OraText arg1[20];
 OraText arg2[20];
 OCIResult *arg3, *arg4;
 OCIStmt *rstmt1, *rstmt2;
 ub2 rcode[4];
 ub2 rlens[4];
 sb2 inds[4];
 OraText *stmt = (OraText *) "begin refcurproc@ link (:1,:2,:3,:4); end;";

 /* Handle Initialization code skipped */

 /* Prepare procedure call statement */

 OCIStmtPrepare(STMH, ERRH, stmt, strlen(stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

 /* Bind procedure arguments */

 inds[0] = 0;
 strcpy((char *) arg1, "Hello World");
 rlens[0] = strlen(arg1);
 OCIBindByPos(STMH, &BNDH[0], ERRH, 1, (dvoid *) arg1, 20, SQLT_CHR,
 (dvoid *) &(inds[0]), &(rlens[0]), &(rcode[0]),
 0, (ub4 *) 0, OCI_DEFAULT);

 inds[1] = 0;
 rlens[1] = 0;
 OCIBindByPos(STMH, &BNDH[1], ERRH, 2, (dvoid *) arg2, 20, SQLT_CHR,
 (dvoid *) &(inds[1]), &(rlens[1]), &(rcode[1]),
 0, (ub4 *) 0, OCI_DEFAULT);

 inds[2] = 0;
 rlens[2] = 0;
 OCIDescriptorAlloc(ENVH, (dvoid **) &arg3, OCI_DTYPE_RSET, 0,
 (dvoid **) 0);
 OCIBindByPos(STMH, &BNDH[2], ERRH, 3, (dvoid *) arg3, 0, SQLT_RSET,
 (dvoid *) &(inds[2]), &(rlens[2]), &(rcode[2]),
3-18 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Result Set Support

.

 0, (ub4 *) 0, OCI_DEFAULT);

 inds[3] = 0;
 rlens[3] = 0;
 OCIDescriptorAlloc(ENVH, (dvoid **) &arg4, OCI_DTYPE_RSET, 0,
 (dvoid **) 0);
 OCIBindByPos(STMH, &BNDH[3], ERRH, 4, (dvoid *) arg4, 0, SQLT_RSET,
 (dvoid *) &(inds[3]), &(rlens[3]), &(rcode[3]),
 0, (ub4 *) 0, OCI_DEFAULT);

 /* Execute procedure */

 OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot *) 0,
 (OCISnapshot *) 0, OCI_DEFAULT);

 /* Convert result set descriptors to statement handles */

 OCIResultSetToStmt(arg3, ERRH);
 OCIResultSetToStmt(arg4, ERRH);
 rstmt1 = (OCIStmt *) arg3;
 rstmt2 = (OCIStmt *) arg4;

 /* After this the user can fetch from rstmt1 and rstmt2 */

OCI program fetching from result sets in sequential mode
The following example shows OCI program fetching from result sets in sequential mode

 OCIEnv *ENVH;
 OCISvcCtx *SVCH;
 OCIStmt *STMH;
 OCIError *ERRH;
 OCIBind *BNDH[2];
 OraText arg1[20];
 OCIResult *rset;
 OCIStmt *rstmt;
 ub2 rcode[2];
 ub2 rlens[2];
 sb2 inds[2];
 OraText *stmt = (OraText *) "begin refcurproc@ link (:1,:2); end;";
 OraText *n_rs_stm = (OraText *)
 "begin :ret := DBMS_HS_RESULT_SET.GET_NEXT_RESULT_SET@ link ; end;";

 /* Prepare procedure call statement */
Major Features 3-19

Result Set Support
 /* Handle Initialization code skipped */

 OCIStmtPrepare(STMH, ERRH, stmt, strlen(stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

 /* Bind procedure arguments */

 inds[0] = 0;
 strcpy((char *) arg1, "Hello World");
 rlens[0] = strlen(arg1);
 OCIBindByPos(STMH, &BNDH[0], ERRH, 1, (dvoid *) arg1, 20, SQLT_CHR,
 (dvoid *) &(inds[0]), &(rlens[0]), &(rcode[0]),
 0, (ub4 *) 0, OCI_DEFAULT);

 inds[1] = 0;
 rlens[1] = 0;
 OCIDescriptorAlloc(ENVH, (dvoid **) &rset, OCI_DTYPE_RSET, 0,
 (dvoid **) 0);
 OCIBindByPos(STMH, &BNDH[1], ERRH, 2, (dvoid *) rset, 0, SQLT_RSET,
 (dvoid *) &(inds[1]), &(rlens[1]), &(rcode[1]),
 0, (ub4 *) 0, OCI_DEFAULT);

 /* Execute procedure */

 OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot *) 0,
 (OCISnapshot *) 0, OCI_DEFAULT);

 /* Convert result set to statement handle */

 OCIResultSetToStmt(rset, ERRH);
 rstmt = (OCIStmt *) rset;

 /* After this the user can fetch from rstmt */

 /* Issue get_next_result_set call to get handle to next_result set */

 /* Prepare Get next result set procedure call */

 OCIStmtPrepare(STMH, ERRH, n_rs_stm, strlen(n_rs_stm), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

 /* Bind return value */

 OCIBindByPos(STMH, &BNDH[1], ERRH, 1, (dvoid *) rset, 0, SQLT_RSET,
3-20 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Result Set Support
 (dvoid *) &(inds[1]), &(rlens[1]), &(rcode[1]),
 0, (ub4 *) 0, OCI_DEFAULT);

 /* Execute statement to get next result set*/

 OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot *) 0,
 (OCISnapshot *) 0, OCI_DEFAULT);

 /* Convert next result set to statement handle */

 OCIResultSetToStmt(rset, ERRH);
 rstmt = (OCIStmt *) rset;

 /* Now rstmt will point to the second result set returned by the
 remote stored procedure */

 /* Repeat execution of get_next_result_set to get the output
 arguments */

PL/SQL program fetching from result sets in cursor mode
Assume that the tableloc_emp is a local table exactly like the remoteemp table. The same
assumption applies forloc_dept .

 declare
 rc1 rcpackage.rctype;
 rec1 loc_emp%rowtype;
 rc2 rcpackage.rctype;
 rec2 loc_dept%rowtype;
 arg2 varchar2(20);

 begin

 -- Execute procedure

 refcurproc@ link ('Hello World', arg2, rc1, rc2);

 -- Fetch 20 rows from the remote emp table and insert them
 -- into loc_emp

 for i in 1 .. 20 loop
 fetch rc1 into rec1;
 insert into loc_emp (rec1.empno, rec1.ename, rec1.job,
 rec1.mgr, rec1.hiredate, rec1.sal,
Major Features 3-21

Result Set Support
 rec1.comm, rec1.deptno);
 end loop;

 -- Close the ref cursor

 close rc1;

 -- Fetch 5 rows from the remote dept table and insert them
 -- into loc_dept

 for i in 1 .. 5 loop
 fetch rc2 into rec2;
 insert into loc_dept values (rec2.deptno, rec2.dname, rec2.loc);
 end loop;

 -- Close the ref cursor

 close rc2;

 end;

PL/SQL program fetching from result sets in sequential mode

loc_emp and loc_dept are same as above. outarguments is a table with columns
corresponding to the out arguments of the remote stored procedure

 declare
 rc1 rcpackage.rctype;
 rec1 loc_emp%rowtype;
 rc2 rcpackage.rctype;
 rec2 loc_dept%rowtype;
 rc3 rcpackage.rctype;
 rec3 outargs%rowtype;

 begin

 -- Execute procedure

 refcurproc@ link ('Hello World', rc1);

 -- Fetch 20 rows from the remote emp table and insert them
 -- into loc_emp

 for i in 1 .. 20 loop
 fetch rc1 into rec1;
3-22 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Result Set Support
 insert into loc_emp (rec1.empno, rec1.ename, rec1.job,
 rec1.mgr, rec1.hiredate, rec1.sal,
 rec1.comm, rec1.deptno);
 end loop;

 -- Close ref cursor

 close rc1;

 -- Get the next result set returned by the stored procedure

 rc2 := dbms_hs_result_set.get_next_result_set@ link ;

 -- Fetch 5 rows from the remote dept table and insert them
 -- into loc_dept

 for i in 1 .. 5 loop
 fetch rc2 into rec2;
 insert into loc_dept values (rec2.deptno, rec2.dname, rec2.loc);
 end loop;

 --Close ref cursor

 close rc2;

 -- Get the output arguments from the remote stored procedure
 -- Since we are in sequential mode, they will be returned in the
 -- form of a result set

 rc3 := dbms_hs_result_set.get_next_result_set@ link ;

 --Fetch them and insert them into the outarguments table

 fetch rc3 into rec3;
 insert into outarguments (rec3.col);

--Close ref cursor

 close rc3;

 end;
Major Features 3-23

Data Dictionary Translations

tion
e
ntain

les,

e

n

t one

ith
tion
ne or
plex
Data Dictionary Translations
Most database systems have some form of data dictionary. A data dictionary is a collec
of information about the database objects that have been created by various users of th
system. For a relational database, a data dictionary is a set of tables and views which co
information about the data in the database. This information includes information on the
users who are using the system and on the objects that they have created (such as tab
views, triggers and so forth). For the most part, all data dictionaries (regardless of the
database system) contain the same information but each database system organizes th
information in a different way.

For example, the Oracle data dictionary viewALL_CATLOGgives a list of tables, views, and
sequences in the database. It has three columns: the first is calledOWNER and is the name of
the owner of the object, the second is calledTABLE_NAME and is the name of the object,
and the third is calledTABLE_TYPE and is the type. This field has valueTABLE, VIEW,
SEQUENCE and so forth depending on the object type. However, in Sybase, the same
information is stored two tables calledsysusers andsysobjects whose column names
are quite different than those of OracleALL_CATALOG table. Additionally, in Oracle, the
table type is a string with valueTABLE, VIEW and so forth but in Sybase it is a letter. For
example, in Sybase,U means user table,S means system table,V means view, and so forth.

If the client program wanted information from the tableALL_CATALOGat Sybase then all it
would have to do is to send a query referencingALL_CATALOG@database link to a
gateway and Heterogeneous Services will translate this query to the appropriate one o
systables and send the translated query to Sybase.

select SU."name" OWNER, SO."name" TABLE_NAME,
 decode(SO."type", ’U ’,’TABLE’, ’S ’, ’TABLE’, ’V ’, ’VIEW’)
TABLE_TYPE
from "dbo"."sysusers"@link SU, "dbo"."sysobjects"@link SO
where SU."uid" = SO."uid" and
 (SO."type" = ’V’ or SO."type" = ’S’ or SO."type" = ’U’)>

To relay such a translation of a query on an Oracle data dictionary table to the equivalen
on the non-Oracle system data dictionary table, Heterogeneous Services needs data
dictionary translations for that non-Oracle system. A data dictionary translation is a view
definition (essentially a select statement) over one or more non-Oracle system data
dictionary tables such that the view looks exactly like the Oracle data dictionary table, w
the same column names and the same information formatting. A data dictionary transla
need not be as simple as the one above. Often the information needed is not found in o
two tables but is scattered over many tables and the data dictionary translation is a com
join over those tables.
3-24 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Examples

y can

 of the
ll

mix,
acle.

g:
In some cases, an Oracle data dictionary table does not have a translation because the
information needed does not exist at the non-Oracle system. In such cases, the gatewa
decide not to upload a translation at all or can resort to an alternative approach called
mimicking. If the gateway wants to mimic a data dictionary table then it will let
Heterogeneous Services know and Heterogeneous Services will obtain the description
data dictionary table by querying the local database but when asked to fetch data, it wi
report that no rows were selected.

Examples
The examples given below show the output of some data dictionary queries sent to Infor
and they compare the results with those produced when querying the same view on Or

Example 1: Check current session's user name on Oracle and on Informix.

To check the current session’s user name on Oracle and on Informix, enter the followin

SQL select a.username, b.username from user_users a, user_users@ remote_db b;

 USERNAME USERNAME
 ------------------------------ ------------------------------
 THSU thsu

Example 2: Check current session's user ID on Oracle and on Informix.

To check the current session’s user ID on Oracle and on Informix, enter the following:

SQL select a.user_id, b.user_id from user_users a, user_users@ remote_db b;

 USER_ID USER_ID
 ---------- ----------
 25 0

Note: The following examples use Informix as the non-Oracle system.

Note: Oracle maintains usernames in uppercase, Informix maintains
them in lowercase.
Major Features 3-25

Examples

ser,
Example 3: Check constraints defined on a non-Oracle system for tables
owned by an arbitrary user.

To check constraints defined on a non-Oracle system for tables owned by an arbitrary u
enter the following:

SQL select constraint_name, table_name from all_constraints@ remote_db
 2 where owner = 'thsu';

 CONSTRAINT_NAME TABLE_NAME
 ------------------------------ ------------------------------
 u19942_5270 thsmv_order_line
 u24612_7116 thsmv_customer
 u24613_7117 thsmv_orders

Note: The Informix user ID is defaulted to zero because Informix does
not maintain numericUSER_ID values.This also illustrates the need to
use caution when accessing other information on the Oracle server. Even if
the connected non-Oracle system returns a value for its equivalent of
USER_ID, this is not aUSER_ID that is meaningful to the Oracle server
since it applies only to the non-Oracle system. It would not be meaningful
to do other Oracle data dictionary queries using the non-OracleUSER_ID
as a key.

Note: Informix uses a different form of constraint names than Oracle,
and its data dictionary maintains the table names in lowercase instead of
uppercase.

See Also: For more information on data dictionary translations, please
seeAppendix D, "Data Dictionary Translation Support"
3-26 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Date Time

stored

lar
nted
f the
Date Time
Oracle has five date time data types:

■ Timestamp

■ Timestamp with timezone

■ Timestamp with local timezone

■ Interval year to month

■ Interval day to second

Heterogeneous Services generic code supports Oracle datetime data types in SQL and
procedures. Oracle does not support these data types in data dictionary translations or
queries involving data dictionary translations.

Even though Heterogeneous Services generic code supports this, support for a particu
gateway depends on whether or not the driver for that non-Oracle system has impleme
datetime support. Support even when the driver implements it may be partial because o
limitations of the non-Oracle system. Users should consult the documentation for their
particular gateway on this issue.

The user must set the timestamp formats of the non-Oracle system in the gateway
initialization file. The parameters to set areHS_NLS_TIMESTAMP_FORMAT andHS_
NLS_TIMESTAMP_TZ_FORMAT. The user should also set the local time zone for the
non-Oracle system in the initialization file. Parameter to set isHS_TIME_ZONE.

See Also: Oracle9i SQL Reference for information on datetime data
types
Major Features 3-27

Two Phase Commit Protocol

hase
d the

ork
ed the

le,

r

stem
y
e of
Two Phase Commit Protocol
Heterogeneous Services provides the infrastructure for the implementation of the two-p
commit mechanism. The extent to which this is supported depends on the gateway, an
remote system. Please refer to individual gateway manuals for more information.

Piecewise Long
Earlier versions of gateways had limited support for theLONG data type.LONG is an Oracle
data type that can be used to store up to 2 gigabytes (GB) of character/raw data (LONG
RAW). These earlier versions restricted the amount ofLONG data to 4 MB. This was because
they would treatLONGdata as a single piece. This led to restrictions of memory and netw
bandwidth on the size of the data that could be handled. Current gateways have extend
functionality to support the full 2 GB of heterogeneousLONG data. They handle the data
piecewise between the agent and the Oracle server, thereby doing away with the large
memory and network bandwidth requirements.

There is a new Heterogeneous Services initialization parameter,HS_LONG_PIECE_
TRANSFER_SIZE, that can be used to set the size of the transferred pieces. For examp
let us consider fetching 2 GB ofLONG data from a heterogeneous source. A smaller piece
size means less memory requirement, but more round trips to fetch all the data. A large
piece size means fewer round trips, but more of a memory requirement to store the
intermediate pieces internally. Thus, the initialization parameter can be used to tune a sy
for the best performance, that is, for the best trade-off between round-trips and memor
requirements. If the initialization parameter is not set, the system defaults to a piece siz
64 KB.

See Also: For more information on two-phase commit protocol, see
"Managing Distributed Transactions" in the Oracle9i Administrator’s
Guide.

Note: This feature is not to be confused with piecewise operations on
LONG data on the client side. Piecewise fetch and insert operations on the
client side did work with the earlier versions of the gateways, and continue
to do so. The only difference on the client side is that, where earlier
versions of the gateways were able to fetch only up to 4 megabytes (MB)
of LONG data, now they can fetch the entire 2 GB ofLONG data. This is a
significant improvement, considering that 4 MB is only 0.2% of the data
type’s full capacity.
3-28 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Constraints on SQL in a Distributed Environment

neous

ee if

ent.

d
 at a

n the
SQL*Plus Describe Command
Until Oracle9i, you could not describe non-Oracle system objects using the SQL*Plus
DESCRIBE command. As of Oracle9i, functionality to do this has been added to
Heterogeneous Services. There are still some limitations. For instance, using Heteroge
links, you still cannot describe packages, sequences, synonyms, or types.

The SQL*PlusDESCRIBE command is implemented using theOCIDescribeAny call,
which was likewise unavailable before Oracle9i. TheOCIDescribeAny call can also
describe databases and schemas, which you cannot do through the SQL*PlusDESCRIBE
command. With Heterogeneous Services, you can do both.

In order to implement this functionality some additional driver logic is needed; not all
drivers may have implemented it. Please consult individual gateway documentation to s
this feature is supported in that gateway.

Constraints on SQL in a Distributed Environment
This section explains some of the constraints that exist on SQL in a distributed environm
These constraints apply to distributed environments that involve access to non-Oracle
systems or remote Oracle databases.

This section contains the following topics:

■ Resolving Remote and Heterogeneous References

■ Resolving Important Restrictions

■ Updates, Inserts and Deletes

Resolving Remote and Heterogeneous References

A statement can, with restrictions, be executed on any database node referenced in the
statement or the local node. If all objects referenced are resolved to a single, reference
node, then Oracle will attempt to execute a query at that node. You can force execution
referenced node by using the/*+ REMOTE_MAPPED */ or /*+ DRIVING_SITE */
hints. If a statement is forwarded to a different node than the node it was issued at, the
statement is said to beremote mapped.

Note: Many of the rules for Heterogeneous access also apply to remote
references. For more information, please see the distributed database
section of theOracle9i Database Administrator’s Guide.
Major Features 3-29

Constraints on SQL in a Distributed Environment

As
 rules

ll as
ns

g

ote
ys

for the

acle
The ways in which statements can, must, and cannot be remote mapped are subject to
specific rules or restrictions. If these rules are not all followed, then an error will occur.
long as the statements issued are consistent with all these rules, the order in which the
are applied does not matter.

Different constraints exist when you are using SQL for remote mapping in a distributed
environment. This distributed environment can include remote Oracle databases as we
databases that involve Oracle Transparent Gateways or Generic Connectivity connectio
between Oracle and non-Oracle systems.

Resolving Important Restrictions
The following section lists some of the different constraints that exist when you are usin
SQL for remote mapping in a distributed environment.

Rule A: A data definition language statement cannot be remote mapped.

In Oracle data definition language, the target object syntactically has no place for a rem
reference. Data definition language statements that contain remote references are alwa
executed locally. For Heterogeneous Services, this means it cannot create a database
non-Oracle database directly using SQL.

However, there is an indirect way using passthrough SQL.

Consider the following example:

begin
 dbms_hs.passthroughsql.execute_immediate@remote_db
 (
 ’create table x1 (c1 char, c2 number)’
);
end;

Rule B: Insert, Update and Delete statements with a remote target table must
be remote mapped.

This rule is more restrictive for non-Oracle remote databases than for a remote Oracle
database. This is because the remote system cannot fetch data from the originating Or
database while executing DML statements targeting tables in a non-Oracle system.

Note: In the examples that follow,remote_db refers to a remote
non-Oracle system whileremote_oracle_db refers to a remote
Oracle server.
3-30 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Constraints on SQL in a Distributed Environment

ent sent
r

nto a

cle
For example, to insert all local employees from the localemp1 table to a remote Oracle
emp2 table, use the following statement:

INSERT INTO emp2@remote_oracle_db SELECT * FROM emp1;

This statement is remote mapped to the remote database. The remote mapped statem
to the remote database contains a remote reference back to the originating database fo
emp1. Such a remote link received by the remote database is called a callback link.

In general however, gateways callback links are not supported. When you try to insert i
non-Oracle system using a select statement referencing a local table, an error occurs.

For example, consider the following statement:

INSERT INTO emp2@remote_db SELECT * from emp1;

The statement returns the following error message:

ORA-02025: all tables in the SQL statement must be at the remote database

The work around is to write a PL/SQL block:

declare
cursor remote_insert is select * from emp2;
begin

 for rec in remote_insert loop
 insert into emp1@ remote_db (empno, ename, deptno) values (
 rec.empno,
 rec.ename,
 rec.deptno
);
 end loop;
end;
/

Another special case are session specific SQL functions such asUSER, USERENV and
SYSDATE. These functions may need to be executed at the originating site. A remote
mapped statement containing these functions will contain a callback link. For a non-Ora
database where callbacks are not supported this could (by default) result in a restriction
error.

For example, consider the following statement:

DELETE FROM emp1@remote_db WHERE hiredata > sysdate;

The statement returns the following error message:
Major Features 3-31

Constraints on SQL in a Distributed Environment

, this

as

g
ted by

local
A full

lso
.

ORA-02070: database REMOTE_DBdoes not support special functions in this context

This often must be resolved by replacing special functions with a bind variable:

DELETE FROM emp1@remote_db WHERE hiredata > :1

Rule C: Object features like tables with nested table columns, ADT columns,
Opaque columns or Ref Columns cannot be remote mapped.

Currently, the above column types are not supported for heterogeneous access. Hence
limitation is not directly encountered.

Rule D: SQL statements containing operators and constructs that are not
supported at the remote site cannot be remote mapped.

Note that in our description of Rule B we already encountered special constructs such
callback links and special functions as examples of this.

If the statement is aselect (or dml with the target table local) and none of the remainin
rules would require the statement to be remote mapped the statement can still be execu
processing the query locally using the local SQL engine and the remoteselect operation.

The remoteselect operation is the operation to retrieve rows for remote table data as
opposed to other operations like full table scan and index access which retrieve rows of
table data. The remote table scan has a SQL statement associated with the operation.
table scan of tableemp1 is issued asSELECT * FROM emp1 (with the * expanded to the
full column list). Access for indexes is converted back to where clause predicates and a
filters that can be supported are passed down to theWHERE clause of the remote row source

You can check the SQL statement generated by the Oracle server by explaining the
statement and querying theOTHER column of the explain plan table for eachREMOTE
operation.

For example consider the following statement:

SELECT COUNT(*) FROM emp1@remote_db WHERE hiredate < sysdate;

The statement returns the following output:

COUNT(*)

 14

See Also: Using Index and Table Statistics for more information on
how to interpret explain plans with remote references.
3-32 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Constraints on SQL in a Distributed Environment

 the

the

enced
1 row selected.

The remote table scan is:

SELECT hiredate FROM emp1

Since the predicate converted to a filter cannot be generated back and passed down to
remote operation because sysdate is not supported by theremote_db or evaluation rules,
sysdate must be executed locally.

Rule E: SQL statement containing a table expression cannot be remote
mapped.

This limitation is not directly encountered since table expressions are not supported in
heterogeneous access module.

Rule F: If a SQL statement selects a long, the statement must be mapped to
the node where the table containing the long resides.

For example, consider the following statement:

SELECT long1 FROM table_with_long@ remote_db , dual;

The statement returns the following error message:

ORA-02025: all tables in the SQL statement must be at the remote database

This can be resolved by the following statement:

SELECT long1 FROM table_with_long@ remote_db WHERE long_idx = 1;

Rule G: The statement must be mapped to the node on which the table or
tables with columns referenced in the FOR UPDATE OF clause resides when
the SQL statement is of form "SELECT...FOR UPDATE OF..."

When the SQL statement is of the formSELECT...FOR UPDATE OF..., the
statement must be mapped to the node on which the table or tables with columns refer
in theFOR UPDATE OF clause resides.

For example, consider the following statement:

Note: Because the remote table scan operation is only partially related to
the original query, the number of row retrieved can be significantly larger
than you would expect and can have a significant impact on performance.
Major Features 3-33

Constraints on SQL in a Distributed Environment

present

.

.

le

abase

er

 SQL
SELECT ename FROM emp1@remote_db WHERE hiredate < sysdate FOR UPDATE OF empno

The statement returns the following error message:

ORA-02070: database REMOTE_DBdoes not support special functions in this context

Rule H: If the SQL statement contains a SEQUENCE or sequences, the
statement must be mapped to the site where each sequence resides.

This rule is not encountered for the heterogeneous access since remote non-Oracle
sequences are not supported. The restriction for remote non-Oracle access is already
because of the callback link restriction.

Rule I: If the statement contains a user defined operator or operators, the
statement must be mapped to the node where each operator is defined.

This rule is also already covered under the callback link restriction discussed in Rule B

Rule J: A statement containing duplicate bind variables cannot be remote
mapped.

The work around for this restriction is to use unique bind variables and bind by number

Updates, Inserts and Deletes
As discussed in the previous section, updates to remote non-Oracle objects through an
Oracle server are restricted by the missing callback feature support present in the Orac
database. This restricts data manipulation language (DML) upon remote non-Oracle
database objects to statements that reference all objects in that remote non-Oracle dat
or are literals or bind variables.

Because of this, no objects can be referenced from the originating Oracle server or oth
remote objects.

Also, as with any remote update, whether non-Oracle or a previous remote update, if a
update in an Oracle format is not supported, then an error is returned in the following
format:

ORA-2070: database ... does not support ... in this context.

Note: These restrictions do not apply to DML with a local target object
referencing non-Oracle or remote Oracle database objects.
3-34 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Using Index and Table Statistics

 that
d
by

rver.
You can perform DML to remote Oracle or non-Oracle target tables in an Oracle format
is not supported by using PL/SQL. Declare a cursor that selects the appropriate row an
executes the update for each row selected. The row may need to be unique, identified
selecting a primary key, or, if not available, a rowid.

Consider the following example:

declare
 v_empno number;
 cursor remote_update is select empno from emp1@ remote_db
 where ename = v_ename;
 cursor c1 is select ename from emp2 where comm IS NOT NULL;
begin
 for recl in c1 loop

 v_ename = recl.ename;
 for rec in remote_update loop
 update emp1@ remote_db set comm = 100 where empno rec.empno;
 end loop;
 end loop;

end;
/

Using Index and Table Statistics
Heterogeneous Services collects certain table and index statistics information on the
respective non-Oracle system tables and passes this information back to the Oracle se
The Oracle cost based optimizer uses this information when building the query plan.

For example consider the following statement where you create a table in the Oracle
database with 10 rows:

CREATE table_T1 (C1 number);

Analyze the table by issuing the following SQL statement:

ANALYZE table_T1 COMPUTE STATISTICS;

Now create a table in the non-Oracle system with 1000 rows:

CREATE TABLE remote_t1 (C1 number)

Issue the following SQL statement:

SELECT a.* FROM remote_t1@ remote_db a, T1 b
 where a.C1 = b.C1
Major Features 3-35

Other Optimizations

d

t:

t

The Oracle optimizer issues the following SQL statement to the agent:

SELECT C1 FROM remote_t1

This fetches all the 1000 rows from the non-Oracle system and performs the join in the
Oracle database.

Now, if we add a unique index on the columnC1 in the tableremote_t1 , and issue the
same SQL statement again, the agent receives the following SQL statement:

SELECT C1 FROM remote_t1 WHERE C1 = ?

for each value ofC1 in the local t1.

To verify the SQL execution plan, generate an explain plan for the SQL statement. Loa
utlxplan in theadmin directory first.

At the command prompt, type:

Explain plan for SELECT a.* FROM remote_t1@ remote_db a, T1 b
 where a.C1 = b.C1;

Then, run theutlxpls utility script by entering the following statement.

@utlxpls

The operation remote indicates that remote SQL is being referenced.

To find out what statement is sent, type the following statement at the command promp

select ID, OTHER from EXPLAIN_PLAN where OPERATION = ’REMOTE’;

Other Optimizations
There are several other optimizations that the cost based optimizer performs. The mos
important ones are remote sort elimination and remote joins.

Note: (’?’) is the bind parameter marker. Also, join predicates
containing bind variables generated by Oracle are only generated for
nested loop join methods.
3-36 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Other Optimizations
Remote Join Optimization
The following is an example of the remote join optimization capability of the Oracle
database.

Consider the following example:

explain plan for
select e.ename, d.dname, f.ename, f.deptno from
 dept d,
 emp@remote_db e,
 emp@remote_db f
 where e.mgr = f.empno
 and e.deptno = d.deptno
 and e.empno = f.empno;

@utlxpls

Issue the following statement:

SET longwidth 300
SELECT other FROM plan_table WHERE operation = ’REMOTE’;

Note: The explain plan that uses tables from a non-Oracle system can
differ from similar statements with local or remote Oracle table scans.
This is because of the limitation on the statistics available to Oracle for
non-Oracle tables. Most importantly, column selectivity is not available
for non-unique indexes of non-Oracle tables. Because of the limitation of
the statistics available, the following example is not necessarily what you
encounter when doing remote joins for yourself and is intended for
illustration only.

Table 3–1 Explain Plan

Operation Name Rows Bytes Cost Pstar

SELECT
STATEMENT

1 101 128

HASH JOIN 2K 132K 19

TABLE ACCESS
FULL

DEPT 21 462 1

REMOTE 2K 89K 16
Major Features 3-37

Optimizer Restrictions for non-Oracle Access

ote

the
You get the following output:

SELECT
A1."ENAME",A1."MGR",A1."DEPTNO",A1."EMPNO",A2."ENAME",A2."DEPTNO",A2."EMPNO",A2.
"EMPNO" FROM "EMP" A1,"EMP" A2 WHERE A1."EMPNO"=A2."EMPNO" AND
A1."MGR"=A2."EMPNO"

Optimizer Restrictions for non-Oracle Access
1. There are no column statistics for remote objects. This can result in poor execution

plans. Verify the execution plan and use hints to improve the plan.

2. There is no optimizer hint to force a remote join. However, there is a remote query
block optimization that can be used to rewrite the query slightly in order to get a rem
join.

For instance, the earlier example can be rewritten to the form:

select v.ename, d.dname, d.deptno from
 dept d,
 (select /*+ NO_MERGE */
 e.deptno deptno, e.ename ename emp@remote_db e, emp@remote_db f
 where e.mgr = f.empno
 and e.empno = f.empno;
)
 where v.deptno = d.deptno;

This guarantees a remote join because it has been isolated in a nested query with
NO_MERGE hint.
3-38 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Using the Ga
4

Using the Gateway

This chapter explains how to use Oracle Transparent Gateways.

This chapter contains the following sections:

■ Setting Up Access to Non-Oracle Systems

■ Initialization Parameters

■ Optimizing Data Transfers Using Bulk Fetch

■ Registering Agents

■ Oracle Database Server SQL Construct Processing

■ Using Synonyms

■ Copying Data from the Oracle Database Server to the Non-Oracle Database

System

■ Copying Data from the Non-Oracle Database System to the Oracle Database

Server

■ Heterogeneous Services Data Dictionary Views

■ Using the Heterogeneous Services Dynamic Performance Views
teway 4-1

Setting Up Access to Non-Oracle Systems
Setting Up Access to Non-Oracle Systems
This section explains the generic steps to configure access to a non-Oracle system.

.

The steps for setting up access to a non-Oracle system are:

■ Step 1: Install the Heterogeneous Services Data Dictionary

■ Step 2: Set Up the Environment to Access Heterogeneous Services Agents

■ Step 3: Create the Database Link to the Non-Oracle System

■ Step 4: Test the Connection

Step 1: Install the Heterogeneous Services Data Dictionary
To install the data dictionary tables and views for Heterogeneous Services, you

must run a script that creates all the Heterogeneous Services data dictionary tables,

views, and packages. On most systems the script is called caths.sql and resides

in $ORACLE_HOME/rdbms/admin .

 Step 2: Set Up the Environment to Access Heterogeneous Services Agents
To initiate a connection to the non-Oracle system, the Oracle9i server starts an agent

process through the Oracle Net listener. For the Oracle9i server to be able to connect

to the agent, you must:

1. Set up a Oracle Net service name for the agent that can be used by the Oracle9i
server. The Oracle Net service name descriptor includes protocol-specific

information needed to access the Oracle Net listener. The service name

descriptor must include the (HS=OK) clause to make sure the connection uses

Oracle9i Heterogeneous Services.

Note: The instructions for configuring your agent may differ

slightly from the following instructions. Please see the Installation
and User's Guide for your agent for more complete installation

information.

Note: The data dictionary tables, views, and packages may

already be installed on your Oracle9i server. Check for the existence

of Heterogeneous Services data dictionary views, for example,

SYS.HS_FDS_CLASS.
4-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Setting Up Access to Non-Oracle Systems
2. Set up the listener to listen for incoming request from the Oracle9i server and

spawn Heterogeneous Services agents. Modify the listener.ora file so that

the listener can start Heterogeneous Services agents, and then restart the

listener.

A Sample Entry for a Oracle Net Service Name
The following is a sample entry for the service name in the tnsnames.ora file:

Sybase_sales= (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun206)
 (PORT=1521))

 (CONNECT_DATA = (SID=SalesDB))

 (Heterogeneous Services = OK))

The description of this service name is defined in tnsnames.ora , the Oracle

Names server, or in third-party name servers using the Oracle naming adapter.

A Sample Listener Entry
The following is a sample entry for the listener in listener.ora :

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS= (PROTOCOL=tcp)
 (HOST = dlsun206)
 (PORT = 1521)
)
)
...
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC = (SID_NAME=SalesDB)
 (ORACLE_HOME=/home/oracle/megabase/8.1.3)
 (PROGRAM=tg4mb80)
)
)

Note: Please see the Installation and User’s Guide for your agent for

more information about how to define the Oracle Net service name.
Using the Gateway 4-3

Setting Up Access to Non-Oracle Systems
The value associated with PROGRAM keyword defines the name of the agent

executable. The agent executable must reside in the $ORACLE_HOME/bin directory.

Typically, you use SID_NAME to define the initialization parameter file for the agent.

Step 3: Create the Database Link to the Non-Oracle System
To create a database link to the non-Oracle system, use the CREATE DATABASE
LINK statement. The service name that is used in the USING clause of the CREATE
DATABASE LINK command is the Oracle Net service name.

For example, to create a database link to the SALES database on Sybase, enter:

CREATE DATABASE LINK sales
USING ‘Sybase_sales’;

Step 4: Test the Connection
To test the connection to the non-Oracle system, use the database link in a SQL or

PL/SQL statement. If the non-Oracle system is a SQL-based database, you can

execute a SELECT statement from an existing table or view using the database link.

For example, issue:

SELECT * FROM product@sales
WHERE product_name like '%pencil%';

When you try to access the non-Oracle system for the first time, the Heterogeneous

Services agent uploads information into the Heterogeneous Services data

dictionary. The uploaded information includes:

Type of Data Explanation

Capabilities of the
non-Oracle system

For example, the agent specifies whether it can perform a join, or
a GROUP BY.

SQL translation
information

The agent specifies how to translate Oracle functions and
operators into functions and operators of the non-Oracle system.

Data dictionary
translations

To make the data dictionary information of the non-Oracle
system available just as if it were an Oracle data dictionary, the
agent specifies how to translate Oracle data dictionary tables into
tables and views of the non-Oracle system.
4-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Setting Up Access to Non-Oracle Systems
Note: Most agents upload information into the Oracle9i data

dictionary automatically the first time they are accessed. Some

agent vendors may provide scripts, however, that you must run on

the Oracle9i server.

See Also: “Heterogeneous Services Data Dictionary Views” on

page 4-22 and Appendix D, "Data Dictionary Translation Support".
Using the Gateway 4-5

Initialization Parameters
Initialization Parameters
As mentioned in “Configuring Heterogeneous Services” on page 2-5, the user can

configure the gateway using initialization parameters. This is done by creating an

initialization file and setting the desired parameters in this file

Heterogeneous Services parameters are distinct from Oracle database server

initialization parameters. Heterogeneous Services initialization parameters are set in

the Heterogeneous Services initialization file and not in the Oracle init.ora file.

There is a Heterogeneous Services initialization file for each gateway instance. The

name of the file is init sid .ora , where sid is the Oracle system identifier used

for the gateway. In the case of generic connectivity, the file is located in the directory

$ORACLE_HOME/hs/admin and in the case of transparent gateways it is located in

the directory $ORACLE_HOME/product_name/admin where product_name is

the name of the product. So, the Sybase gateway initialization file is located in the

directory $ORACLE_HOME/tg4sybs/admin .

The syntax of the initialization file is as follows. The file contains a list of

initialization parameter settings each of which should be on a separate line. The

syntax to set an initialization parameter is:

[set] [private] parameter = value

The set and private keywords are optional. If the set keyword is present then the

variable will also be set in the environment. If the private keyword is present, the

parameter will not be uploaded to the server. In general, it recommended that this

keyword not be used - unless the initialization parameter value contains sensitive

information (like a password) that should not be sent over the network from

gateway to Oracle server.

Another initialization file can be included in an Heterogeneous Services

initialization file by using the ifile directive. The syntax for this is

ifile = pathname for file to be included

In the initialization parameter syntax, all keywords (SET, PRIVATE and IFILE) are

case insensitive. Initialization parameter names and values are case sensitive. Most

initialization parameters names will be uppercase. When there are any exceptions to

this rule, we will explicitly point them out.

Gateway initialization parameters can be divided into two groups. One is a set of

generic initialization parameters that are common to all gateways and the other is a

set of initialization parameters that are specific to individual gateways. The list of

generic initialization parameters is given below. Please refer individual gateway

documentation for the list of initialization parameters specific to that gateway.
4-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Initialization Parameters
■ HS_COMMIT_POINT_STRENGTH

■ HS_DB_DOMAIN

■ HS_DB_INTERNAL_NAME

■ HS_DB_NAME

■ HS_DESCRIBE_CACHE_HWM

■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_FDS_TRACE_FILE_NAME

■ HS_LANGUAGE

■ HS_LONG_PIECE_TRANSFER_SIZE

■ HS_NLS_DATE_FORMAT

■ HS_NLS_DATE_LANGUAGE

■ HS_NLS_NCHAR

■ HS_NLS_TIMESTAMP_FORMAT

■ HS_NLS_TIMESTAMP_TZ_FORMAT

■ HS_OPEN_CURSORS

■ HS_ROWID_CACHE_SIZE

■ HS_RPC_FETCH_REBLOCKING

■ HS_RPC_FETCH_SIZE

■ HS_TIME_ZONE

Do not use the private keyword when setting any of these parameters. Doing that

would cause the parameter not to be uploaded to the server and could cause errors

Note: Most (but not all) gateway initialization parameter follow

these conventions. For more information on initialization

parameters for individual gateways, please see your gateway

specific documentation.
Using the Gateway 4-7

Optimizing Data Transfers Using Bulk Fetch
in SQL processing. None of these parameters need be set in the environment, so the

set keyword need not be used either.

Optimizing Data Transfers Using Bulk Fetch
When an application fetches data from a non-Oracle system using Heterogeneous

Services, data is transferred:

■ From the non-Oracle system to the agent process

■ From the agent process to the Oracle database server

■ From the Oracle database server to the application

Oracle allows you to optimize all three data transfers, as illustrated in Figure 4–1.

Figure 4–1 Optimizing data transfers

This section contains the following topics:

Client

O
ra

cl
e

S
er

ve
r

A
ge

nt

N
o

n
-O

ra
cl

e
S

ys
te

m

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

Array fetch
with OCI/Pro*
or other tool
4-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Optimizing Data Transfers Using Bulk Fetch
■ Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

■ Controlling the Array Fetch Between Oracle Database Server and Agent

■ Controlling the Array Fetch Between Agent and Non-Oracle Server

■ Controlling the Reblocking of Array Fetches

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
You can optimize data transfers between your application and the Oracle9i server by

using array fetches. See your application development tool documentation for

information about array fetching and how to specify the amount of data to be sent

per network round trip.

Controlling the Array Fetch Between Oracle Database Server and Agent
When Oracle retrieves data from a non-Oracle system, the Heterogeneous Services

initialization parameter HS_RPC_FETCH_SIZEdefines the number of bytes sent per

fetch between the agent and the Oracle9i server. The agent fetches data from the

non-Oracle system until one of the following occurs:

■ It has accumulated the specified number of bytes to send back to the Oracle

database server.

■ The last row of the result set is fetched from the non-Oracle system.

Controlling the Array Fetch Between Agent and Non-Oracle Server
The initialization parameter HS_FDS_FETCH_ROWS determines the number of rows

to be retrieved from a non-Oracle system. Note that the array fetch must be

supported by the agent. See your agent-specific documentation to ensure that your

agent supports array fetching.

Controlling the Reblocking of Array Fetches
By default, an agent fetches data from the non-Oracle system until it has enough

data retrieved to send back to the server. That is, it keeps going until the number of

bytes fetched from the non-Oracle system is equal to or higher than the value of

HS_RPC_FETCH_SIZE. In other words, the agent reblocks the data between the

agent and the Oracle database server in sizes defined by the value of HS_RPC_
FETCH_SIZE.
Using the Gateway 4-9

Optimizing Data Transfers Using Bulk Fetch
When the non-Oracle system supports array fetches, you can immediately send the

data fetched from the non-Oracle system by the array fetch to the Oracle database

server without waiting until the exact value of HS_RPC_FETCH_SIZE is reached.

That is, you can stream the data from the non-Oracle system to the Oracle database

server and disable reblocking by setting the value of initialization parameter HS_
RPC_FETCH_REBLOCKING to OFF.

For example, assume that you set HS_RPC_FETCH_SIZE to 64 kilobytes (KB) and

HS_FDS_FETCH_ROWS to 100 rows. Assume that each row is approximately 600

bytes in size, so that the 100 rows are approximately 60 KB. When HS_RPC_FETCH_
REBLOCKING is set to ON, the agent starts fetching 100 rows from the non-Oracle

system.

Because there is only 60 KB of data in the agent, the agent does not send the data

back to the Oracle database server. Instead, the agent fetches the next 100 rows from

the non-Oracle system. Because there is now 120 KB of data in the agent, the first 64

KB can be sent back to the Oracle database server.

Now there is 56 KB of data left in the agent. The agent fetches another 100 rows

from the non-Oracle system before sending the next 64 KB of data to the Oracle

database server. By setting the initialization parameter HS_RPC_FETCH_
REBLOCKING to OFF, the first 100 rows are immediately sent back to the Oracle9i
server.
4-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Registering Agents
Registering Agents
Registration is an operation through which Oracle stores information about an

agent in the data dictionary. Agents do not have to be registered. If an agent is not

registered, Oracle stores information about the agent in memory instead of in the

data dictionary; when a session involving an agent terminates, this information

ceases to be available.

Self-registration is an operation in which a database administrator sets an

initialization parameter that lets the agent automatically upload information into

the data dictionary. In release 8.0 of the Oracle database server, an agent could

determine whether to self-register. In release 9.0, self-registration occurs only when

the HS_AUTOREGISTER initialization parameter is set to TRUE (default).

This section contains the following topics:

■ Enabling Agent Self-Registration

■ Disabling Agent Self-Registration

Enabling Agent Self-Registration
To ensure correct operation over heterogeneous database links, agent

self-registration automates updates to Heterogeneous Services configuration data

that describe agents on remote hosts. Agent self-registration is the default behavior.

If you do not want to use the agent self-registration feature, then set the

initialization parameter HS_AUTOREGISTER to FALSE.

Both the server and the agent rely on three types of information to configure and

control operation of the Heterogeneous Services connection. These three sets of

information are collectively called HS configuration data:

Note: HS_AUTOREGISTER is an Oracle initialization parameter

that you set in the init.ora file; it is not a Heterogeneous Services

initialization parameter that is set in the gateway initialization file.

Heterogeneous
Services Configuration
Data Description

Heterogeneous Services
initialization parameters

Provide control over various connection-specific details of
operation.
Using the Gateway 4-11

Registering Agents
Using Agent Self-Registration to Avoid Configuration Mismatches
HS configuration data is stored in the Oracle database server’s data dictionary.

Because the agent is possibly remote, and may therefore be administered separately,

several circumstances can lead to configuration mismatches between servers and

agents:

■ An agent can be newly installed on a separate machine so that the server has no

Heterogeneous Services data dictionary content to represent the agent’s HS

configuration data.

■ A server can be newly installed and lack the necessary HS configuration data

for existing agents and non-Oracle data stores.

■ A non-Oracle instance can be upgraded from an older version to a newer

version, requiring modification of the HS configuration data.

■ An Heterogeneous Services agent at a remote site can be upgraded to a new

version or patched, requiring modification of the HS configuration data.

■ A database administrator (DBA) at the non-Oracle site can change the agent

setup, possibly for tuning or testing purposes, in a manner which affects HS

configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in

all these scenarios. Specifically, agent self-registration enhances inter operability

between any Oracle database server and any Heterogeneous Services agent,

provided that each is at least as recent as Version 8.0.3. The basic mechanism for this

functionality is the ability to upload HS configuration data from agents to servers.

Capability definitions Identify details like SQL language features supported by the
non-Oracle datasource.

Data dictionary
translations

Map references to Oracle data dictionary tables and views into
equivalents specific to the non-Oracle data source.

See Also: "Specifying HS_AUTOREGISTER" on page 4-14.

Heterogeneous
Services Configuration
Data Description
4-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Registering Agents
Self-registration provides automatic updating of HS configuration data residing in

the Oracle database server data dictionary. This update ensures that the agent

self-registration uploads need to be done only once, on the initial use of a

previously unregistered agent. Instance information is uploaded on each

connection, not stored in the server data dictionary.

Understanding Agent Self-Registration
The Heterogeneous Services agent self-registration feature can:

■ Identify the agent and the non-Oracle data store to the Oracle database server.

■ Permit agents to define Heterogeneous Services initialization parameters for

use both by the agent and connected Oracle9i servers.

■ Upload capability definitions and data dictionary translations, if available, from

an Heterogeneous Services agent during connection initialization.

The information required to accomplish the above is accessed in the server data

dictionary by using these agent-supplied names:

■ FDS_CLASS

■ FDS_CLASS_VERSION

FDS_CLASS and FDS_CLASS_VERSION FDS_CLASS and FDS_CLASS_VERSION are

defined by Oracle or by third-party vendors for each individual Heterogeneous

Services agent and version. Oracle Heterogeneous Services concatenates these

names to form FDS_CLASS_NAME, which is used as a primary key to access class

information in the server data dictionary.

FDS_CLASS should specify the type of non-Oracle data store to be accessed and

FDS_CLASS_VERSION should specify a version number for both the non-Oracle

Note: When both the server and the agent are release 8.1 or

higher, the upload of class information occurs only when the class

is undefined in the server data dictionary. Similarly, instance

information is uploaded only if the instance is undefined in the

server data dictionary.

See Also: "Heterogeneous Services Data Dictionary Views" on

page 4-22 to learn how to use the Heterogeneous Services data

dictionary views.
Using the Gateway 4-13

Registering Agents
data store and the agent that connects to the it. Note that when any component of

an agent changes, FDS_CLASS_VERSION must also change to uniquely identify the

new release.

FDS_INST_NAME Instance-specific information can be stored in the server data

dictionary. The instance name, FDS_INST_NAME, is configured by the DBA who

administers the agent; how the DBA performs this configuration depends on the

specific agent in use.

The Oracle database server uses FDS_INST_NAME to look up instance-specific

configuration information in its data dictionary. Oracle uses the value as a primary

key for columns of the same name in these views:

■ FDS_INST_INIT

■ FDS_INST_CAPS

■ FDS_INST_DD

Server data dictionary accesses that use FDS_INST_NAME also use FDS_CLASS_
NAME to uniquely identify configuration information rows. For example, if you port

a database from class Sybase8.1.6 to class Sybase8.1.7, both databases can

simultaneously operate with instance name SCOTT and use separate sets of

configuration information.

Unlike class information, instance information is not automatically self-registered in

the server data dictionary.

■ If the server data dictionary contains instance information, it represents

DBA-defined setup details which fully define the instance configuration. No

instance information is uploaded from the agent to the server.

■ If the server data dictionary contains no instance information, any instance

information made available by a connected agent is uploaded to the server for

use in that connection. The uploaded instance data is not stored in the server

data dictionary.

Specifying HS_AUTOREGISTER
The Oracle database server initialization parameter HS_AUTOREGISTER enables or

disables automatic self-registration of Heterogeneous Services agents. Note that this

Note: This information is uploaded when you initialize each

connection.
4-14 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Registering Agents
parameter is specified in the Oracle initialization parameter file, not the agent

initialization file. For example, you can set the parameter as follows:

HS_AUTOREGISTER = TRUE

When set to TRUE, the agent uploads information describing a previously unknown

agent class or a new agent version into the server’s data dictionary.

Oracle recommends that you use the default value for this parameter (TRUE), which

ensures that the server’s data dictionary content always correctly represents

definitions of class capabilities and data dictionary translations as used in

Heterogeneous Services connections.

Disabling Agent Self-Registration
To disable agent self-registration, set the HS_AUTOREGISTER initialization

parameter as follows:

HS_AUTOREGISTER = FALSE

Disabling agent self-registration entails that agent information is not stored in the

data dictionary. Consequently, the Heterogeneous Services data dictionary views

are not useful sources of information. Nevertheless, the Oracle server still requires

information about the class and instance of each agent. If agent self-registration is

disabled, the server stores this information in local memory.

See Also: Oracle9i Database Reference for a description of this
parameter.
Using the Gateway 4-15

Oracle Database Server SQL Construct Processing
Oracle Database Server SQL Construct Processing
The gateway rewrites SQL statements when the statements need to be translated or

post-processed.

For example, consider a program that requests the following from the non-Oracle

database system database:

SELECT "COL_A" FROM "test"@SYBS
WHERE "COL_A" = INITCAP(’jones’);

The non-Oracle database system database does not recognize INITCAP , so the

Oracle database server does a table scan of test and filters the results locally. The

gateway rewrites the SELECT statement as follows:

SELECT "COL_A" FROM "test"@SYBS

The results of the query are sent to the gateway and are filtered by the Oracle

database server.

Consider the following UPDATE request:

UPDATE "test"@SYBS WHERE "COL_A" = INITCAP(’jones’);

In this case, the Oracle database server and the gateway cannot compensate for the

lack of support at the non-Oracle database system side, so an error is issued.

If you are performing operations on large amounts of data stored in the non-Oracle

database system database, keep in mind that some functions require data to be

moved to the integrating Oracle database server before processing can occur.
4-16 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Using Synonyms
Using Synonyms
You can provide complete data location transparency and network transparency by

using the synonym feature of the Oracle database server. When a synonym is

defined, you do not have to know the underlying table or network protocol. A

synonym can be public, which means that all Oracle users can refer to the synonym.

A synonym can also be defined as private, which means every Oracle user must

have a synonym defined to access the non-Oracle database system table.

The following statement creates a system wide synonym for the EMP table in the

schema of user ORACLE in the non-Oracle database system database:

SQL> CREATE PUBLIC SYNONYM EMP FOR "ORACLE"."EMP"@SYBS

Example of a Distributed Query
The following example joins data between the Oracle database server, an IBM DB2

database, and the non-Oracle database system database:

SQL> SELECT O.CUSTNAME, P.PROJNO, E.ENAME, SUM(E.RATE*P."HOURS")
 FROM ORDERS@DB2 O, EMP@ORACLE9 E, "PROJECTS"@SYBS P
 WHERE O.PROJNO = P."PROJNO"
 AND P."EMPNO" = E.EMPNO
 GROUP BY O.CUSTNAME, P."PROJNO", E.ENAME

Through a combination of views and synonyms, using the following SQL

statements, the process of distributed queries is transparent to the user:

SQL> CREATE SYNONYM ORDERS FOR ORDERS@DB2
SQL> CREATE SYNONYM PROJECTS FOR "PROJECTS"@SYBS
SQL> CREATE VIEW DETAILS (CUSTNAME,PROJNO,ENAME,SPEND)
 AS
 SELECT O.CUSTNAME, P."PROJNO", E.ENAME, SUM(E.RATE*P."HOURS")
 SPEND
 FROM ORDERS O, EMP E, PROJECTS P
 WHERE O.PROJNO = P."PROJNO"
 AND P."EMPNO" = E.EMPNO
 GROUP BY O.CUSTNAME, P."PROJNO", E.ENAME

Use the following SQL statement to retrieve information from the data stores in one

command:

SQL> SELECT * FROM DETAILS;

See Also: Oracle9i Database Administrator’s Guide for information
about synonyms.
Using the Gateway 4-17

Using Synonyms
The command retrieves the following table:

CUSTNAME PROJNO ENAME SPEND
-------- ------ ----- -----
ABC Co. 1 Jones 400
ABC Co. 1 Smith 180
XYZ Inc. 2 Jones 400
XYZ Inc. 2 Smith 180
4-18 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Copying Data from the Oracle Database Server to the Non-Oracle Database System
Copying Data from the Oracle Database Server to the Non-Oracle
Database System

Use the SQL*Plus COPY command to copy data from the local database to the

non-Oracle database system database. The syntax is as follows:

COPY FROMusername / password @db_name
INSERT destination_table USING query

The following example selects all rows from the local Oracle EMPtable, inserts them

into the EMP table on the non-Oracle database system database, and commits the

transaction:

SQL> COPY FROM SCOTT/TIGER@ORACLE9-
> INSERT SCOTT.EMP@SYBS -
> USING SELECT * FROM EMP

The COPY command supports APPEND, CREATE, INSERT, and REPLACE options.

However, INSERT is the only option supported when copying to non-Oracle

database system. The SQL*Plus COPY command does not support copying to tables

with lowercase table names. Use the following PL/SQL syntax with lowercase table

names:

DECLARE
 v1 oracle_table.column1 %TYPE;
 v2 oracle_table.column2 %TYPE;
 v3 oracle_table.column3 %TYPE;
 .
 .
 .
 CURSOR cursor_name IS SELECT * FROM oracle_table ;
BEGIN
 OPEN cursor_name ;
 LOOP
 FETCH cursor_name INTO v1, v2, v3, ... ;
 EXIT WHEN cursor_name %NOTFOUND;
 INSERT INTO destination_table VALUES (v1, v2, v3, ...);
 END LOOP;

 CLOSE cursor_name ;
END;
/

Using the Gateway 4-19

Copying Data from the Oracle Database Server to the Non-Oracle Database System
The following Oracle SQL INSERT statement is not supported for copying data

from the Oracle database server to non-Oracle database system:

INSERT INTO table_name SELECT column_list FROM table_name

For example, consider the following statement:

SQL> INSERT INTO SYBS_TABLE SELECT * FROM MY_LOCAL_TABLE

The statement returns the following error message:

ORA-2025: All tables in the SQL statement must be at the remote database

See Also: SQL*Plus User’s Guide and Reference for more

information about the COPY command.
4-20 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Copying Data from the Non-Oracle Database System to the Oracle Database Server
Copying Data from the Non-Oracle Database System to the Oracle
Database Server

The CREATE TABLE command lets you copy data from a non-Oracle database

system database to the Oracle database server. To create a table on the local

database and insert rows from the non-Oracle database system table, use the

following syntax:

CREATE TABLEtable_name AS query

The following example creates the table EMPin the local Oracle database and inserts

the rows from the EMP table of the non-Oracle database system database:

SQL> CREATE TABLE EMP AS SELECT * FROM SCOTT."EMP"@SYBS

Alternatively, you can use the SQL*Plus COPY command to copy data from the

non-Oracle database system database to the Oracle database server.

See Also: SQL*Plus User’s Guide and Reference for more

information about the COPY command.
Using the Gateway 4-21

Heterogeneous Services Data Dictionary Views
Heterogeneous Services Data Dictionary Views
You can use the Heterogeneous Services data dictionary views to access information

about Heterogeneous Services. This section addresses the following topics:

■ Understanding the Types of Views

■ Understanding the Sources of Data Dictionary Information

■ Using the General Views

■ Using the Transaction Service Views

■ Using the SQL Service Views

Understanding the Types of Views
The Heterogeneous Services data dictionary views, which all begin with the prefix

HS_, can be divided into four main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

Most of the data dictionary views are defined for both classes and instances.

Consequently, for most types of data there is a *_CLASS and an *_INST view.
4-22 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services Data Dictionary Views
Like all Oracle data dictionary tables, these views are read-only. Do not use SQL to

change the content of any of the underlying tables. To make changes to any of the

underlying tables, use the procedures available in the DBMS_HS package.

Understanding the Sources of Data Dictionary Information
The values used for data dictionary content in any particular connection on a

Heterogeneous Services database link can come from any of the following sources,

in order of precedence:

■ Instance information uploaded by the connected Heterogeneous Services agent

at the start of the session. This information overrides corresponding content in

the Oracle data dictionary, but is never stored into the Oracle data dictionary.

■ Instance information stored in the Oracle data dictionary. This data overrides

any corresponding content for the connected class.

■ Class information stored in the Oracle data dictionary.

If the Oracle database server runs with the HS_AUTOREGISTER server initialization

parameter set to FALSE, then no information is stored automatically in the Oracle

data dictionary. The equivalent data is uploaded by the Heterogeneous Services

Table 4–1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

HS_BASE_CAPS SQL service All capabilities supported by
Heterogeneous Services

HS_BASE_DD SQL service All data dictionary translation table
names supported by Heterogeneous
Services

HS_CLASS_CAPS Transaction service,
SQL service

Capabilities for each class

HS_CLASS_DD SQL service Data dictionary translations for each
class

HS_CLASS_INIT General Initialization parameters for each class

HS_FDS_CLASS General Classes accessible from this Oracle9i
server

HS_FDS_INST General Instances accessible from this Oracle9i
server
Using the Gateway 4-23

Heterogeneous Services Data Dictionary Views
agent on a connection-specific basis each time a connection is made, with any

instance-specific information taking precedence over class information.

You can determine the values of Heterogeneous Services initialization parameters

by querying the VALUEcolumn of the V$HS_PARAMETERview. Note that the VALUE
column of V$HS_PARAMETER truncates the actual initialization parameter value

from a maximum of 255 characters to a maximum of 64 characters, and it truncates

the parameter name from a maximum of 64 characters to a maximum of 30

characters.

Using the General Views
The views that are common for all services are as follows:

For example, you can access multiple Sybase gateways from an Oracle database

server. After accessing the gateways for the first time, the information uploaded

into the Oracle database server could appear as follows:

SQL> SELECT * FROM hs_fds_class;

FDS_CLASS_NAME FDS_CLASS_COMMENTS FDS_CLASS_ID
--------------------- ------------------------------ ------------
Sybase816 Uses Sybase driver, R1.1 1
Sybase817 Uses Sybase driver, R1.2 21

Two classes are uploaded: a class that accesses Sybase816 and a class that accesses

Sybase817. The data dictionary in the Oracle database server now contains

Note: It is not possible to determine positively what capabilities

and what data dictionary translations are in use for a given session

due to the possibility that an agent can upload instance

information.

View Contains

HS_FDS_CLASS

HS_FDS_INST

Names of the instances and classes that are uploaded into the
Oracle8i data dictionary

HS_CLASS_INIT Information about the Heterogeneous Services initialization
parameters
4-24 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services Data Dictionary Views
capability information, SQL translations, and data dictionary translations for both

Sybase816 and Sybase817.

In addition to this information, the Oracle database server data dictionary also

contains instance information in the HS_FDS_INST view for each non-Oracle

system instance that is accessed.

Using the Transaction Service Views
When a non-Oracle system is involved in a distributed transaction, the transaction

capabilities of the non-Oracle system and the agent control whether it can

participate in distributed transactions. Transaction capabilities are stored in the HS_
CLASS_CAPS tables.

The ability of the non-Oracle system and agent to support two-phase commit

protocols is specified by the 2PC type capability, which can specify one of the

following five types.

The transaction model supported by the driver and non-Oracle system can be

queried from Heterogeneous Services’ data dictionary view HS_CLASS_CAPS.

One of the capabilities is of the 2PC type:

Read-only (RO) The non-Oracle system can only be queried with SQL SELECT statements.
Procedure calls are not allowed because procedure calls are assumed to
write data.

Single-Site (SS) The non-Oracle system can handle remote transactions but not distributed
transactions. That is, it can not participate in the two-phase commit
protocol.

Commit
Confirm (CC)

The non-Oracle system can participate in distributed transactions. It can
participate in the server’s two-phase commit protocol but only as the
Commit Point Site. That is, it can not prepare data, but it can remember the
outcome of a particular transaction if asked by the global coordinator.

Two-Phase
Commit

The non-Oracle system can participate in distributed transactions. It can
participate in the server’s two-phase commit protocol, as a regular
two-phase commit node, but not as a Commit Point Site. That is, it can
prepare data, but it can not remember the outcome of a particular
transaction if asked to by the global coordinator.

Two-Phase
Commit
Confirm

The non-Oracle system can participate in distributed transactions. It can
participate in the server’s two-phase commit protocol as a regular
two-phase commit node or as the Commit Point Site. That is, it can prepare
data and it can remember the outcome of a particular transaction if asked
by the global coordinator.
Using the Gateway 4-25

Heterogeneous Services Data Dictionary Views
SELECT cap_description, translation
FROM hs_class_caps
WHERE cap_description LIKE '2PC%'
AND fds_class_name=‘MegaBase6’;

CAP_DESCRIPTION TRANSLATION
-- -----------
2PC type (RO-SS-CC-PREP/2P-2PCC) CC

When the non-Oracle system and agent support distributed transactions, the

non-Oracle system is treated like any other Oracle9i server. When a failure occurs

during the two-phase commit protocol, the transaction is recovered automatically. If

the failure persists, the in-doubt transaction may need to be manually overridden

by the database administrator.

Using the SQL Service Views
Data dictionary views that are specific for the SQL service contain information

about:

■ SQL capabilities and SQL translations of the non-Oracle data source

■ Data Dictionary translations to map Oracle data dictionary views to the data

dictionary of the non-Oracle system.

Using Views for Capabilities and Translations
The HS_*_CAPS data dictionary tables contain information about the SQL

capabilities of the non-Oracle data source and required SQL translations. These

views specify whether the non-Oracle data store or the Oracle database server

implements certain SQL language features. If a capability is turned off, then Oracle9i
does not send any SQL statements to the non-Oracle data source that require this

particular capability, but it still performs post-processing.

Using Views for Data Dictionary Translations
In order to make the non-Oracle system appear similar to an Oracle database server,

Heterogeneous Services connections map a limited set of Oracle data dictionary

Note: This section describes only a portion of the SQL

Service-related capabilities. Because you should never need to alter

these settings for administrative purposes, these capabilities are not

discussed here.
4-26 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services Data Dictionary Views
views onto the non-Oracle system’s data dictionary. This mapping permits

applications to issue queries as if these views belonged to an Oracle data dictionary.

Data dictionary translations make this access possible. These translations are stored

in Heterogeneous Services views whose names are suffixed with _DD .

For example, the following SELECT statement transforms into a Sybase query that

retrieves information about EMP tables from the Sybase data dictionary table:

SELECT * FROM USER_TABLES@salesdb
WHERE UPPER(TABLE_NAME)=’EMP’;

Data dictionary tables can be mimicked instead of translated. If a data dictionary

translation is not possible because the non-Oracle data source does not have the

required information in its data dictionary, Heterogeneous Services causes it to

appear as if the data dictionary table is available, but the table contains no

information.

To retrieve information for which Oracle data dictionary views or tables are

translated or mimicked for the non-Oracle system, you can issue the following

query on the HS_CLASS_DD view:

SELECT DD_TABLE_NAME, TRANSLATION_TYPE
FROM HS_CLASS_DD
WHERE FDS_CLASS_NAME=‘Sybase’;

DD_TABLE_NAME T
----------------------------- -
ALL_ARGUMENTS M
ALL_CATALOG T
ALL_CLUSTERS T
ALL_CLUSTER_HASH_EXPRESSIONS M
ALL_COLL_TYPES M
ALL_COL_COMMENTS T
ALL_COL_PRIVS M
ALL_COL_PRIVS_MADE M
ALL_COL_PRIVS_RECD M
...

The translation type T specifies that a translation exists. When the translation type is

M, the data dictionary table is mimicked.

See Also: Appendix D, "Data Dictionary Translation Support" for

a list of data dictionary views that are supported through

Heterogeneous Services mapping.
Using the Gateway 4-27

Using the Heterogeneous Services Dynamic Performance Views
Using the Heterogeneous Services Dynamic Performance Views
The Oracle database server stores information about agents, sessions, and

parameter. You can use the V$ dynamic performance views to access this

information. This section contains the following topics:

■ Determining Which Agents Are Running on a Host

■ Determining the Open Heterogeneous Services Sessions

Determining Which Agents Are Running on a Host
The following view shows generation information about agents:

Use this view to determine general information about the agents running on a

specified host. The following table shows the most relevant columns (for a

description of all the columns in the view, see Oracle9i Database Reference):

Determining the Open Heterogeneous Services Sessions
The following view shows which Heterogeneous Services sessions are open for the

Oracle database server:

View Purpose

V$HS_AGENT Identifies the set of Heterogeneous Services agents currently
running on a given host, using one row per agent process.

Table 4–2 V$HS_AGENT

Column Description

AGENT_ID Oracle Net session identifier used for connections to agent
(listener.ora SID)

MACHINE Operating system machine name

PROGRAM Program name of agent

AGENT_TYPE Type of agent

FDS_CLASS_ID The ID of the foreign data store class

FDS_INST_ID The instance name of the foreign data store
4-28 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Using the Heterogeneous Services Dynamic Performance Views
The following table shows the most relevant columns (for an account of all the

columns in the view, see Oracle9i Database Reference):

Determining the Heterogeneous Services Parameters
The following view shows which Heterogeneous Services parameters are set in the

Oracle database server:

The following table shows the most relevant columns (for an account of all the

columns in the view, see Oracle9i Database Reference):

View Purpose

V$HS_SESSION Lists the sessions for each agent, specifying the database link
used.

Table 4–3 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

AGENT_ID Oracle Net session identifier used for connections to agent
(listener.ora SID)

DB_LINK Server database link name used to access the agent NULLmeans that
no database link is used (eg, when using external procedures)

DB_LINK_OWNER Owner of the database link in DB_LINK

View Purpose

V$HS_PARAMETER Lists Heterogeneous Services parameters and values registered
in the Oracle database server.

Table 4–4 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

PARAMETER The name of the Heterogeneous Services parameter

VALUE The value of the Heterogeneous Services parameter
Using the Gateway 4-29

Using the Heterogeneous Services Dynamic Performance Views
Information about the database link that was used for establishing the distributed

connection, the startup time, and the set of initialization parameters used for the

session is also available.

All of the runtime information is derived from dynamically updated V$ tables. The

Distributed Access Manager has a refresh capability available through the menu

and toolbar that allows users to rerun queries if necessary and update the data.

When the data is refreshed, the tool verifies that the set of registered agents remains

the same. If it is not, the global view is updated.

See Also: Oracle Enterprise Manager Administrator’s Guide and

online help for more information about the Distributed Access

Manager.
4-30 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Using Multithreaded A
5

s.
Using Multithreaded Agents

This chapter explains what multithreaded agents are, how they contribute to the overall
efficiency of a distributed database system, and how to administer multithreaded agent

This chapter contains the following sections:

■ Concepts

■ Multithreaded Agent Architecture

■ Multithreaded Agent Administration

Note: Even though Heterogeneous Services supports multithreaded
agents, this functionality is not necessarily available in all Heterogeneous
Services based gateways. Not only must multithreaded agents have generic
support, which Heterogeneous Services provides, but support for
multithreaded agents must also be added to the driver.
gents 5-1

Concepts

 a per

up that

rate

racle

cessing
them,
al
ning
 not.
ate

uses a
lly
essions
Concepts
This section explains how multithreaded agents contribute to the overall efficiency of
Heterogeneous Services and Oracle Transparent Gateways.

This section contains the following topics:

■ The Challenge of Dedicated Agent Architecture

■ The Advantage of Multithreading

The Challenge of Dedicated Agent Architecture
In the architecture of past releases of Heterogeneous Service, agents are started up on
user-session and per database link basis. When a user session attempts to access a
non-Oracle system by means of a particular database link, an agent process is started
is exclusively dedicated to that user session and that database link. The agent process
terminates only when the user-session ends or when the database link is closed. Sepa
agent processes are started under the following conditions:

■ The same user-session uses two different database links to connect to the same
non-Oracle system

■ Two different user sessions use the same database link to access the same non-O
system.

This architecture is simple and straightforward. However, it has the disadvantage of
potentially consuming an unnecessarily large amount of system resources.

For example, suppose that there are several thousand user sessions simultaneously ac
the same non-Oracle system. Because an agent process is started up for each one of
there are also several thousand agent processes running concurrently as well as sever
thousand connections open to these agent processes. The agent processes are all run
regardless of whether each individual agent process is actually active at the moment or
Because of this, agent processes and open connections can consume an disproportion
amount of system resources without any discernible benefit.

The Advantage of Multithreading
Usually, only a small percentage of these agent processes are actually active at a given
moment. This makes it possible to more efficiently use system resources by using the
multithreaded agent feature of Oracle Transparent Gateways. The multithreaded agent
pool of shared agent processes. (The number of these shared agent processes is usua
considerably less than the number of user sessions.) The tasks requested by the user s
are put on a queue and are picked up by the first available multithreaded agent.
5-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Concepts
Note Also: For more information about multithreading, see the
following:

■ Oracle9i Database Administrator’s Guide

■ Oracle9i SQL Reference

■ Oracle Net Services Administrator’s Guide

■ Oracle Net Services Reference Guide
Using Multithreaded Agents 5-3

Multithreaded Agent Architecture
Multithreaded Agent Architecture
This section describes the architecture of multithreaded agents.

This section contains the following topics:

■ Overview

■ The Monitor Thread

■ Dispatcher Threads

■ Task Threads

Overview
In the architecture for multithreaded agents, there are three kinds of threads:

■ A singlemonitor thread

■ Severaldispatcher threads

■ Severaltask threads.

Typically there are many more task threads than dispatcher threads. The architecture is
shown inFigure 5–1.
5-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agent Architecture
Figure 5–1 Multithreaded Agent Architecture

Each request issued by a user session is represented inFigure 5–1 by a separate type of
arrow.

Each request is processed by means of the three different kinds of threads

■ The monitor thread is responsible for the following:

■ Maintaining communication with the listener

■ Monitoring the load on the process

■ Starting and stopping threads when required

Oracle9i Server

HS

Agent Process

Dispatcher 1 Dispatcher 2

Task Thread 1 Task Thread 2 Task Thread 3

Non-Oracle
 System

User-Session 1

Oracle9i Server

HS

User-Session 2
Using Multithreaded Agents 5-5

Multithreaded Agent Architecture

N,

ner
o
uld
ess is

. The

g

the

 to all
■ The dispatcher threads are responsible for the following:

■ Handling communication with the Oracle server

■ Passing task requests onto the task threads

■ The task threads handle requests from the Oracle processes

These three thread types roughly correspond to the Oracle multithreaded server’s PMO
dispatcher and shared server processes respectively.

Multi-threaded agents are started on a per system-identifier(SID) basis. Each TNS liste
that is running on a system listens for incoming connection requests for a set of SIDs. T
connect to a process by means of a listener, the SID in the SQL*Net connect string sho
be one of the SIDs that the listener is listening for. For each SID, a separate agent proc
started and incoming connections for that SID are handed over by the listener to that
process.

The agent process is pre-started. A separate agent control utility stops and starts the
multithreaded agent itself.

The Monitor Thread
The monitor thread is the first thread to be started with an multithreaded agent process
monitor thread does the following:

■ Creates the dispatcher and task threads

■ Registers the dispatcher threads it has created with all the listeners that are handlin
connections to this agent

■ While the dispatcher for this SID is running, the listener does not start a new
process when it gets an incoming connection. Instead, the listener hands over
connection to this same dispatcher.

■ Monitors the other threads and send load information about the dispatcher threads
the listener processes handling connections to this agent

Note: All requests from a user session go through the same dispatcher
thread, but can be serviced by different task threads. It is also possible for
several task threads to use the same connection to the non-Oracle system.

See Also: Multithreaded Agent Administration on page 5-8 for more
information on how to start and stop multithreaded agents using the agent
control utility.
5-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agent Architecture
■ This way, the listeners can hand over incoming connections to the least loaded
dispatcher.

■ Monitors each of the threads it has created

Dispatcher Threads
Dispatcher threads do the following:

■ Accept incoming connections and task requests from Oracle servers

■ Place incoming requests on a queue for a task thread to pick up

■ Send results of a request back to the server that issued the request

Task Threads
Task threads do the following:

■ Pick up requests from a queue

■ Perform the necessary operations.

■ Place the results on a queue for a dispatcher to pick up

Note: Once a user session establishes a connection with a dispatcher, all
requests from that user-session will go to the same dispatcher until the end
of the user session.
Using Multithreaded Agents 5-7

Multithreaded Agent Administration
Multithreaded Agent Administration
This section explains how you can administer multithreaded agents.

This section contains the following topics.

■ Overview

■ Single Command Mode Commands

■ Shell Mode Commands

Overview
The multithreaded agent is started and stopped by an agent control utility calledagtctl,
which works much likelsnrctl . The main differences are thatlsnrctl reads a
configuration file whereasaftctl takes information form the command line and writes it
to a control file. There is no equivalent for listener.ora as far asagtctl is concerned.

You can runagtctl in one of two ways:

1. Commands can be run from the UNIX (or DOS) shell

This mode is called single command mode

2. You can type ’agtct ’ and you will get anAGTCTL> prompt and you can type
commands from within theagtctl shell.

This mode is called shell mode

Single Command Mode Commands
The commands (in single command mode are) are as follows:

1. Startup

agtctl startup agent_name agent_sid

2. Shutdown

There are three variants of the shutdown command

1. agtctl shutdown <sid>

2. agtctl shutdown immediate <sid>

3. agtctl shutdown abort <sid>
5-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agent Administration

oing

tate

sid

th the
If you issue the first variant,agtctl will talk to the agent and ask it to terminate itself
gracefully. In other words, all sessions will complete the operations they are currently d
and then shutdown.

If you issue the second variant,agtctl will talk to the agent and tell it terminate
immediately. In other words, the agent process will exit immediately regardless of the s
of current sessions.

If you issue the third variant,agtctl will not talk to the agent at all. It will just issue a
system call to kill the agent process.

3. Setting parameters

agtctl set parameter_value agent_sid

4. Unsetting parameters

agtctl unset parameter agent_sid

5. Examining parameter values

agtctl show parameter agent_sid

6. Deleting all settings for a particular agent system identifier

agtctl delete agent_sid

Shell Mode Commands
In shell mode, you can startagtctl by typing ’agtctl ’ whereupon you will get an
’AGTCTL>’ prompt.

First, set the name of the agent sid that you are working with by typing

set agent_sid agent sid

All commands issued after this are assumed to be for this particular sid until the agent_
value is changed.

The commands are all the same as those for the single command mode commands wi
exception that you can drop the ’agtctl ’ andagent_sid .

To set an initialization parameter value, type:

set parameter value
Using Multithreaded Agents 5-9

Multithreaded Agent Administration
Use the following table to set your initialization parameters.

Table 5–1 Initialization Parameters for agtctl

parameter description

max_dispatchers (maximum number of dispatchers)

tcp_dispatcher (number of dispatchers listening on tcp - the rest are using ipc).

max_task_threads (number of task threads)

listener_address (address on which the listener is listening - needed for registration)

shutdown_address (address on which the agent should listen for shutdown messages
from agtctl)

language (language name)
5-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Performance
6

Performance Tips

This chapter explains how to optimize distributed SQL statements, how to use

partition views with Oracle Transparent Gateways, and how to optimize the

performance of distributed queries.

This chapter includes the following sections:

■ Optimizing Heterogeneous Distributed SQL Statements

■ Using Gateways and Partition Views

■ Optimizing Performance of Distributed Queries
 Tips 6-1

Optimizing Heterogeneous Distributed SQL Statements
Optimizing Heterogeneous Distributed SQL Statements
When a SQL statement accesses data from non-Oracle systems, it is said to be a

heterogeneous distributed SQL statement. To optimize heterogeneous distributed

SQL statements, follow the same guidelines as for optimizing distributed SQL

statements that access Oracle databases only. However, you must consider that the

non-Oracle system usually does not support all the functions and operators that

Oracle9i supports.

The Transparent Gateways tell Oracle (at connect time) which functions and

operators they do support. If the other data source does not support a function or

operator, then Oracle performs that function or operator. In this case, Oracle obtains

the data from the other data source and applies the function or operator locally. This

affects the way in which the SQL statements are decomposed and can affect

performance, especially if Oracle is not on the same machine as the other data

source.

Using Gateways and Partition Views
You can use partition views with Oracle Transparent Gateways release 8 or higher.

Make sure you adhere to the following rules:

The cost-based optimizer must be used, by using hints or setting the parameter

OPTIMIZER_MODE to ALL_ROWS or FIRST_ROWS_K, or FIRST_ROWS.

Indexes used for each partition must be the same. See the gateway-specific

documentation to find out whether the gateway sends index information of the

non-Oracle system to the Oracle Server. If the gateway sends index information to

the optimizer, then make sure that each partition uses the same number of indexes

and that you have indexed the same columns. If the gateway does not send index

information, then the Oracle optimizer is not aware of the indexes on partitions.

Indexes are, therefore, considered to be the same for each partition in the

non-Oracle system. If one partition resides on an Oracle server, then you cannot

have an index defined on that partition.

The column names and column data types for all branches in the UNION ALL view

must be the same. Non-Oracle system data types are mapped onto Oracle data

types. Make sure that the data types of each partition that reside in the different

non-Oracle systems all map to the same Oracle data types. To see how data types

are mapped onto Oracle data types, execute a DESCRIBE statement in SQL*Plus.
6-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Optimizing Performance of Distributed Queries
Optimizing Performance of Distributed Queries
You can improve performance of distributed queries in several ways:

Choose the best SQL statement.
In many cases, there are several SQL statements that can achieve the same result. If

all tables are on the same database, then the difference in performance between

these SQL statements might be minimal. But, if the tables are located on different

databases, then the difference in performance might be more significant.

Use the cost-based optimizer.
The cost-based optimizer uses indexes on remote tables, considers more execution

plans than the rule-based optimizer, and generally gives better results. With the

cost-based optimizer, performance of distributed queries is generally satisfactory.

Only on rare occasions is it necessary to change SQL statements, create views, or

use procedural code.

Use views.
In some situations, views can be used to improve performance of distributed

queries. For example:

■ Joining several remote tables on the remote database.

■ Sending a different table through the network.

■ Using procedural code.

On some rare occasions, it can be more efficient to replace a distributed query by

procedural code, such as a PL/SQL procedure or a precompiler program. This

option is mentioned here only for completeness, not because it is often needed.
Performance Tips 6-3

Optimizing Performance of Distributed Queries
6-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Generic Conne
7

Generic Connectivity

This chapter describes the configuration and usage of generic connectivity agents.

This chapter contains these topics:

■ What Is Generic Connectivity?

■ Supported Oracle SQL Statements

■ Configuring Generic Connectivity Agents

■ ODBC Connectivity Requirements

■ OLE DB (SQL) Connectivity Requirements

■ OLE DB (FS) Connectivity Requirements
ctivity 7-1

What Is Generic Connectivity?
What Is Generic Connectivity?
Generic connectivity is intended for low-end data integration solutions requiring

the ad hoc query capability to connect from an Oracle database server to non-Oracle

database systems. Generic connectivity is enabled by Oracle Heterogeneous

Services, allowing you to connect to non-Oracle systems with improved

performance and throughput.

Generic connectivity is implemented as either a Heterogeneous Services ODBC

agent or a Heterogeneous Services OLE DB agent. An ODBC agent and OLE DB

agent are included as part of your Oracle system. Be sure to use the agents shipped

with your particular Oracle system, installed in the same $ORACLE_HOME.

Any data source compatible with the ODBC or OLE DB standards described in this

chapter can be accessed using a generic connectivity agent.

This section contains the following topics:

■ Types of Agents

■ Generic Connectivity Architecture

■ SQL Execution

■ Data Type Mapping

■ Generic Connectivity Restrictions

Types of Agents
Generic connectivity is implemented as one of the following types of

Heterogeneous Services agents:

■ ODBC agent for accessing ODBC data providers

■ OLE DB agent for accessing OLE DB data providers that support SQL

processing—sometimes referred to as OLE DB (SQL)

■ OLE DB agent for accessing OLE DB data providers without SQL processing

support—sometimes referred to as OLE DB (FS)

Each user session receives its own dedicated agent process spawned by the first use

in that user session of the database link to the non-Oracle system. The agent process

ends when the user session ends.
7-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

What Is Generic Connectivity?
Generic Connectivity Architecture
To access the non-Oracle data store using generic connectivity, the agents work with

an ODBC or OLE DB driver. The Oracle database server provides support for the

ODBC or OLE DB driver interface. The driver that you use must be on the same

platform as the agent. The non-Oracle data stores can reside on the same machine as

the Oracle database server or on a different machine.

Oracle and Non-Oracle Systems on Separate Machines
Figure 7–1 shows an example of a configuration in which an Oracle and non-Oracle

database are on separate machines, communicating through an Heterogeneous

Services ODBC agent.

Figure 7–1 Oracle and Non-Oracle Systems on a Separate Machines

In this configuration:

1. A client connects to the Oracle database server through Oracle Net

Non-Oracle
system

Network

Machine 2

Client

Oracle
Net

Machine 1

Non-Oracle
component

Oracle9i

ODBC driver
manager

ODBC driver

Non-Oracle
system
client

HS

HS
ODBC
agent

Oracle
Net
Generic Connectivity 7-3

What Is Generic Connectivity?
2. The Heterogeneous Services component of the Oracle database server connects

through Oracle Net to the Heterogeneous Services ODBC agent

3. The agent communicates with the following non-Oracle components:

■ An ODBC driver manager

■ An ODBC driver

■ A non-Oracle client application

This client connects to the non-Oracle data store through a network.

Oracle and Non-Oracle Systems on the Same Machine
Figure 7–2 shows an example of a different configuration in which an Oracle and

non-Oracle database are on the same machine, again communicating through an

Heterogeneous Services ODBC agent.
7-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

What Is Generic Connectivity?
Figure 7–2 Oracle and non-Oracle Systems on the Same Machine

In this configuration:

1. A client connects to the Oracle database server through Oracle Net

2. The Heterogeneous Services component of the Oracle database server connects

through Oracle Net to the Heterogeneous Services ODBC agent

3. The agent communicates with the following non-Oracle components:

■ An ODBC driver manager

■ An ODBC driver

Client

Oracle
Net

Oracle
Net

Machine 1

Oracle9i

Non-Oracle
system

HS

ODBC driver
manager

ODBC driver

HS
ODBC
agent

Non-Oracle
system
client
Generic Connectivity 7-5

What Is Generic Connectivity?
The driver then allows access to the non-Oracle data store.

SQL Execution
SQL statements sent using a generic connectivity agent are executed differently

depending on the type of agent you are using: ODBC, OLE DB (SQL), or OLE DB

(FS). For example, if a SQL statement involving tables is sent using an ODBC agent

for a file-based storage system, the file can be manipulated as if it were a table in a

relational database. The naming conventions used at the non-Oracle system can also

depend on whether you are using an ODBC or OLE DB agent.

Data Type Mapping
The Oracle database server maps the data types used in ODBC and OLE DB

compliant data sources to supported Oracle data types. When the results of a query

are returned, the Oracle database server converts the ODBC or OLE DB data types

to Oracle data types. For example, the ODBC data type SQL_TIMESTAMP and the

OLE DB data type DBTYPE_DBTIMESTAMP are converted to Oracle’s DATE data

type.

Generic Connectivity Restrictions
Generic connectivity restrictions include:

■ A table including a BLOB column must have a separate column that serves as a

primary key

■ BLOB/CLOB data cannot be read through passthrough queries

■ Updates or deletes that include unsupported functions within a WHERE clause

are not allowed

■ Stored procedures are not supported

■ Generic connectivity agents cannot participate in distributed transactions; they

support single-site transactions only

Note: The ODBC driver may require non-Oracle client libraries

even if the non-Oracle database is located on the same machine.
7-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Supported Oracle SQL Statements
Supported Oracle SQL Statements
Generic connectivity supports the following statements, but only if the ODBC or

OLE DB driver and non-Oracle system can execute them and the statements contain

supported Oracle SQL functions:

■ DELETE

■ INSERT

■ SELECT

■ UPDATE

Only a limited set of functions are assumed to be supported by the non-Oracle

system. Most Oracle functions have no equivalent function in this limited set.

Consequently, although post-processing is performed by the Oracle database server,

many Oracle functions are not supported by generic connectivity, possibly

impacting performance.

If an Oracle SQL function is not supported by generic connectivity, then this

function is not supported in DELETE, INSERT, or UPDATE statements. In SELECT
statements, these functions are evaluated by the Oracle database server and

post-processed after they are returned from the non-Oracle system.

If an unsupported function is used in a DELETE, INSERT, or UPDATE statement, it

generates this Oracle error:

ORA-02070: database db_link_name does not support function in this context

Functions Supported by Generic Connectivity
Generic connectivity assumes that the following minimum set of SQL functions is

supported:

■ AVG(exp)

■ LIKE(exp)

■ COUNT(*)

■ MAX(exp)

■ MIN(exp)

■ NOT
Generic Connectivity 7-7

Configuring Generic Connectivity Agents
Configuring Generic Connectivity Agents
To implement generic connectivity on a non-Oracle data source, you must set the

agent parameters.

This section contains the following topics:

■ Creating the Initialization File

■ Editing the Initialization File

■ Setting Initialization Parameters for an ODBC-based Data Source

■ Setting Initialization Parameters for an OLE DB-based Data Source

Creating the Initialization File
You must create and customize an initialization file for your generic connectivity

agent. Oracle Corporation supplies sample initialization files named

iniths agent .ora , where agent is odbc or oledb , indicating which agent the

sample file can be used for, as in the following:

inithsodbc.ora
inithsoledb.ora

The sample files are stored in the $ORACLE_HOME/hs/admin directory .

To create an initialization file for an ODBC or OLE DB agent, copy the applicable

sample initialization file and rename the file to init HS_SID.ora , where HS_SID is

the system identifier you want to use for the instance of the non-Oracle system to

which the agent connects.

The HS_SID is also used to identify how to connect to the agent when you configure

the listener by modifying the listener.ora file. The HS_SID you add to the

listener.ora file must match the HS_SID in an init HS_SID.ora file, because

the agent spawned by the listener searches for a matching init HS_SID.ora file.

That is how each agent process gets its initialization information. When you copy

and rename your init HS_SID.ora file, ensure it remains in the $ORACLE_
HOME/hs/admin directory.

Editing the Initialization File
Customize the init HS_SID.ora file by setting the parameter values used for

generic connectivity agents to values appropriate for your system, agent, and

drivers. You must edit the init HS_SID.ora file to change the HS_FDS_CONNECT_
7-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Configuring Generic Connectivity Agents
INFO initialization parameter. HS_FDS_CONNECT_INFO specifies the information

required for connecting to the non-Oracle system.

Set the parameter values as follows:

[SET][PRIVATE] parameter =value

where:

For example, to enable tracing for an agent, set the HS_FDS_TRACE_LEVEL
parameter as follows:

HS_FDS_TRACE_LEVEL=ON

Typically, most parameters are only needed as initialization parameters, so you do

not need to use SET or PRIVATE. Use SET for parameter values that the drivers or

non-Oracle system need as environment variables.

See Also: "Initialization Parameters" on page 4-6 for more

information on parameters.

[SET][PRIVATE] are optional keywords. If you do not specify either SET or

PRIVATE, the parameter and value are simply used as an

initialization parameter for the agent.

SETspecifies that in addition to being used as an initialization

parameter, the parameter value is set as an environment

variable for the agent process.

PRIVATE specifies that the parameter value is private and not

transferred to the Oracle database server and does not appear

in V$ tables or in an graphical user interfaces.

SET PRIVATE specifies that the parameter value is set as an

environment variable for the agent process and is also private

(not transferred to the Oracle database server, not appearing

in V$ tables or graphical user interfaces).

parameter is the Heterogeneous Services initialization parameter that

you are specifying. See "Initialization Parameters" on page 4-6

for a description of all Heterogeneous Services parameters

and their possible values. The parameter is case-sensitive.

value is the value you want to specify for the Heterogeneous

Services parameter. The value is case-sensitive.
Generic Connectivity 7-9

Configuring Generic Connectivity Agents
PRIVATE is only supported for the follow Heterogeneous Services parameters:

■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_FDS_TRACE_FILE_NAME

You should only use PRIVATE for these parameters if the parameter value includes

sensitive information such as a username or password.

Setting Initialization Parameters for an ODBC-based Data Source
The settings for the initialization parameters vary depending on the type of

operating system.

Setting Agent Parameters on Windows NT
Specify a File data source name (DSN) or a System DSN which has previously been

defined using the ODBC Driver Manager.

When connecting using a File DSN, specify the value as follows:

HS_FDS_CONNECT_INFO=FILEDSN=file_dsn

When connecting using a System DSN, specify the value as follows:

HS_FDS_CONNECT_INFO=system_dsn

If you are connecting to the data source through the driver for that data source,

precede the DSN by the name of the driver, followed by a semi-colon (;).

Setting Parameters on NT: Example Assume a System DSN has been defined in the

Windows ODBC Data Source Administrator. In order to connect to this SQL Server

database through the gateway, the following line is required in init HS_SID.ora :

HS_FDS_CONNECT_INFO=sqlserver7

where sqlserver7 is the name of the System DSN defined in the Windows ODBC

Data Source Administrator.

The following procedure enables you to define a System DSN in the Windows

ODBC Data Source Administrator:

1. From the Start menu, choose Settings > Control Panel and select the ODBC
icon.
7-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Configuring Generic Connectivity Agents
2. Select the System DSN tab to display the system data sources.

3. Click Add.

4. From the list of installed ODBC drivers, select the name of the driver that the

data source will use. For example, select SQL Server.

5. Click Finish.

6. Enter a name for the DSN and an optional description. Enter other information

depending on the ODBC driver. For example, for SQL Server enter the SQL

Server machine.

7. Continue clicking Next and answering the prompts until you click Finish.

8. Click OK until you exit the ODBC Data Source Administrator.

Setting Agent Parameters on UNIX platforms
Specify a DSN and the path of the ODBC shareable library, as follows:

HS_FDS_CONNECT_INFO=dsn_value
HS_FDS_SHAREABLE_NAME=full_odbc_library_path_of_odbc_driver

HS_FDS_CONNECT_INFO is required for all platforms for an ODBC agent. HS_FDS_
SHAREABLE_NAME is required on UNIX platforms for an ODBC agent. Other

initialization parameters have defaults or are optional. You can use the default

values and omit the optional parameters, or you can specify the parameters with

values tailored for your installation.

Setting Parameters on UNIX: Example Assume that the odbc.ini file for connecting to

Informix using the Intersolve ODBC driver is located in /opt/odbc and includes

the following information:

[ODBC Data Sources]

Note: The name entered for the DSN must match the value of the

parameter HS_FDS_CONNECT_INFO that is specified in init HS_
SID .ora .

Note: Before deciding to accept the default values or change them,

see "Initialization Parameters" on page 4-6 for detailed information

on all the initialization parameters.
Generic Connectivity 7-11

Configuring Generic Connectivity Agents
Informix=INTERSOLV 3.11 Informix Driver

[Informix]
Driver=/opt/odbc/lib/ivinf13.so
Description=Informix
Database=personnel@osf_inf72
HostName=osf
LogonID=uid
Password=pwd

In order to connect to this Informix database through the gateway, the following

lines are required in init HS_SID.ora :

HS_FDS_CONNECT_INFO=Informix
HS_FDS_SHAREABLE_NAME=/opt/odbc/lib/libodbc.so
set INFORMIXDIR=/users/inf72
set INFORMIXSERVER=osf_inf72
set ODBCINI=/opt/odbc/odbc.ini

Note that the set statements are optional as long as they are specified in the working

account. Each database has its own set statements.

The HS_FDS_CONNECT_INFO parameter value must match the ODBC data source

name in the odbc.ini file.

Setting Initialization Parameters for an OLE DB-based Data Source
You can only set these parameters on the Windows NT platform.

Specify a data link (UDL) that has previously been defined:

SET|PRIVATE|SET PRIVATE HS_FDS_CONNECT_INFO="UDLFILE=data_link "

Or, specify the connection details directly:

SET|PRIVATE|SET PRIVATE HS_FDS_CONNECT_INFO="provider ; db[,CATALOG=catalog]"

where:

provider is the name of the provider as it appears in the registry. The

value is case sensitive.

db is the name of the database

catalog is the name of the catalog
7-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

ODBC Connectivity Requirements
HS_FDS_CONNECT_INFO is required for an OLE DB agent. Other initialization

parameters have defaults or are optional. You can use the default values and omit

the optional parameters, or you can specify the parameters with values tailored for

your installation.

ODBC Connectivity Requirements
To use an ODBC agent, you must have an ODBC driver installed on the same

machine as the Oracle database server. On Windows NT, you must have an ODBC

driver manager also located on the same machine. The ODBC driver manager and

driver must meet the following requirements:

■ On Windows NT machines, a thread-safe, 32-bit ODBC driver Version 2.x or 3.x

is required. You can use the native driver manager supplied with your

Windows NT system.

■ On UNIX machines, ODBC driver Version 2.5 is required. A driver manager is

not required.

The ODBC driver and driver manager on Windows NT must conform to ODBC

application program interface (API) conformance Level 1 or higher. If the ODBC

driver or driver manager does not support multiple active ODBC cursors, then it

restricts the complexity of SQL statements that you can execute using generic

connectivity.

The ODBC driver you use must support all of the core SQL ODBC data types and

should support SQL grammar level SQL_92. The ODBC driver should also expose

the following ODBC APIs:

Note: If the parameter value includes an equal sign (=), then it

must be surrounded by quotation marks.

Note: Before deciding to accept the default values or change them,

see "Initialization Parameters" on page 4-6 for detailed information

on all the initialization parameters.

Table 7–1 ODBC Functions (Page 1 of 3)

ODBC Function Comment

SQLAllocConnect
Generic Connectivity 7-13

ODBC Connectivity Requirements
SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLColumns

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch Recommended if used by the non-Oracle system.

SQLFetch

SQLForeignKeys Recommended if used by the non-Oracle system.

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetTypeInfo

SQLNumParams Recommended if used by the non-Oracle system.

SQLNumResultCols

SQLParamData

SQLPrepare

Table 7–1 ODBC Functions (Page 2 of 3)

ODBC Function Comment
7-14 Oracle9i Heterogeneous Connectivity Administrator’s Guide

OLE DB (SQL) Connectivity Requirements
OLE DB (SQL) Connectivity Requirements
These requirements apply to OLE DB data providers that have an SQL processing

capability and expose the OLE DB interfaces.

 Generic connectivity passes the username and password to the provider when

calling IDBInitialize::Initialize() .

OLE DB (SQL) connectivity requires that the data provider expose the following OLE

DB interfaces:

SQLPrimaryKeys Recommended if used by the non-Oracle system.

SQLProcedureColumns Recommended if used by the non-Oracle system.

SQLProcedures Recommended if used by the non-Oracle system.

SQLPutData

SQLRowCount

SQLSetConnectOption

SQLSetStmtOption

SQLStatistics

SQLTables

SQLTransact Recommended if used by the non-Oracle system.

Table 7–2 OLE DB (SQL) Interfaces

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and
Rowset objects)

ICommand Execute

ICommandPrepare Prepare

ICommandProperties SetProperties

ICommandText SetCommandText

ICommandWithParameters GetParameterInfo

Table 7–1 ODBC Functions (Page 3 of 3)

ODBC Function Comment
Generic Connectivity 7-15

OLE DB (FS) Connectivity Requirements
OLE DB (FS) Connectivity Requirements
These requirements apply to OLE DB data providers that do not have SQL

processing capabilities. If the provider exposes them, then OLE DB (FS) connectivity

uses OLE DB Index interfaces.

OLE DB (FS) connectivity requires that the data provider expose the following OLE

DB interfaces:

IDBCreateCommand CreateCommand

IDBCreateSession CreateSession

IDBInitialize Initialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

IErrorInfo 1 GetDescription, GetSource

IErrorRecords GetErrorInfo

ILockBytes (OLE) 2 Flush, ReadAt, SetSize, Stat,
WriteAt

IRowset GetData, GetNextRows,
ReleaseRows, RestartPosition

IStream (OLE) Read, Seek, SetSize, Stat,
Write

ISupportErrorInfo InterfaceSupportsErrorInfo

ITransactionLocal
(optional)

StartTransaction, Commit,
Abort

1 You can also use IErrorLookup with the GetErrorDescription method.
2 Required only if BLOBs are used in the OLE DB provider.

Table 7–3 OLE DB (FS) Interfaces (Page 1 of 2)

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and Rowset
objects)

Table 7–2 OLE DB (SQL) Interfaces

Interface Methods
7-16 Oracle9i Heterogeneous Connectivity Administrator’s Guide

OLE DB (FS) Connectivity Requirements
Because OLE DB (FS) connectivity is generic, it can connect to a number of different

data providers that expose OLE DB interfaces. Every such data provider must meet

the certain requirements.

IOpenRowset OpenRowset

IDBCreateSession CreateSession

IRowsetChange DeleteRows, SetData, InsertRow

IRowsetLocate GetRowsByBookmark

IRowsetUpdate Update (optional)

IDBInitialize Initialize, Uninitialize

IDBSchemaRowset GetRowset (tables, columns,
indexes; optionally also
procedures, procedure parameters)

ILockBytes (OLE) 1 Flush, ReadAt, SetSize, Stat,
WriteAt

IRowsetIndex 2 SetRange

IErrorInfo 3 GetDescription, GetSource

IErrorRecords GetErrorInfo

IRowset GetData, GetNextRows, ReleaseRows,
RestartPosition

IStream (OLE) Read, Seek, SetSize, Stat, Write

ITransactionLocal
(optional)

StartTransaction, Commit, Abort

ISupportErrorInfo InterfaceSupportsErrorInfo

ITableDefinition CreateTable, DropTable

IDBProperties SetProperties

1 Required only if BLOBs are used in the OLE DB provider.
2 Required only if indexes are used in the OLE DB provider.
3 You can use IErrorLookup with the GetErrorDescription method as well.

Table 7–3 OLE DB (FS) Interfaces (Page 2 of 2)

Interface Methods
Generic Connectivity 7-17

OLE DB (FS) Connectivity Requirements
Data Source Properties
The OLE DB data source must support the following initialization properties:

■ DBPROP_INIT_DATASOURCE

■ DBPROP_AUTH_USERID

■ DBPROP_AUTH_PASSWORD

The OLE DB data source must also support the following rowset properties:

■ DBPROP_IRowsetChange = TRUE

■ DBPROP_UPDATABILITY = CHANGE+DELETE+INSERT

■ DBPROP_OWNUPDATEDELETE = TRUE

■ DBPROP_OWNINSERT = TRUE

■ DBPROP_OTHERUPDATEDELETE = TRUE

■ DBPROP_CANSCROLLBACKWARDS = TRUE

■ DBPROP_IRowsetLocate = TRUE

■ DBPROP_OTHERINSERT = FALSE

Note: The data provider must expose bookmarks. This enables

tables to be updated. Without bookmarks being exposed, the tables

are read-only.

Note: Required if the userid has been supplied in the security file

Note: Required if the userid and password have been supplied in

the security file
7-18 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services Initialization Param
A

Heterogeneous Services Initialization

Parameters

Heterogeneous Services initialization files, like all Oracle parameter files, are

configuration settings stored as a text file in

You can set Heterogeneous Services parameters by editing the Oracle Transparent

Gateway initialization file, or by using the DBMS_HSpackage to set them in the data

dictionary. String values for Heterogeneous Services parameters must be lowercase.

This section contains the following topics:

■ HS_COMMIT_POINT_STRENGTH

■ HS_DB_DOMAIN

■ HS_DB_INTERNAL_NAME

■ HS_DB_NAME

■ HS_DESCRIBE_CACHE_HWM

■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_LANGUAGE

■ HS_LONG_PIECE_TRANSFER_SIZE

■ HS_NLS_DATE_FORMAT

■ HS_NLS_DATE_LANGUAGE

■ HS_NLS_NCHAR

■ HS_NLS_TIMESTAMP_FORMAT
eters A-1

■ HS_NLS_TIMESTAMP_TZ_FORMAT

■ HS_OPEN_CURSORS

■ HS_ROWID_CACHE_SIZE

■ HS_RPC_FETCH_REBLOCKING

■ HS_RPC_FETCH_SIZE

■ HS_TIME_ZONE

■ IFILE
A-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

HS_COMMIT_POINT_STRENGTH

Specifies a value that determines the commit point site in a heterogeneous

distributed transaction. HS_COMMIT_POINT_STRENGTH is similar to COMMIT_
POINT_STRENGTH, described in the Oracle9i Database Reference.

Set HS_COMMIT_POINT_STRENGTH to a value relative to the importance of the site

that is the commit point site in a distributed transaction. The Oracle database server

or non-Oracle system with the highest commit point strength becomes the commit

point site. To ensure that a non-Oracle system never becomes the commit point site,

set the value of HS_COMMIT_POINT_STRENGTH to zero.

HS_COMMIT_POINT_STRENGTH is important only if the non-Oracle system can

participate in the two-phase protocol as a regular two-phase commit partner and as

the commit point site. This is only the case if the transaction model is two-phase

commit confirm (2PCC).

HS_DB_DOMAIN

Specifies a unique network sub-address for a non-Oracle system. HS_DB_DOMAINis
similar to DB_DOMAIN, described in the Oracle9i Database Administrator’s Guide and

the Oracle9i Database Reference. HS_DB_DOMAIN is required if you use the Oracle

Names server. HS_DB_NAME and HS_DB_DOMAIN define the global name of the

non-Oracle system.

HS_DB_INTERNAL_NAME

Default value: 0

Range of values: 0 to 255

Default value: WORLD

Range of values: 1 to 119 characters

Note: HS_DB_NAME and HS_DB_DOMAIN must combine to form a

unique address.

Default value: 01010101
Heterogeneous Services Initialization Parameters A-3

Specifies a unique hexadecimal number identifying the instance to which the

Heterogeneous Services agent is connected. This parameter’s value is used as part

of a transaction ID when global name services are activated. Specifying a

non-unique number can cause problems when two-phase commit recovery actions

are necessary for a transaction.

HS_DB_NAME

Specifies a unique alphanumeric name for the data store given to the non-Oracle

system. This name identifies the non-Oracle system within the cooperative server

environment. HS_DB_NAME and HS_DB_DOMAIN define the global name of the

non-Oracle system.

HS_DESCRIBE_CACHE_HWM

Specifies the maximum number of entries in the describe cache used by

Heterogeneous Services. This limit is known as the describe cache high water mark.

The cache contains descriptions of the mapped tables that Heterogeneous Services

reuses so that it does not have to re-access the non-Oracle data store.

If you are accessing many mapped tables, then increase the high water mark to

improve performance. Note that increasing the high water mark improves

performance at the cost of memory usage.

HS_FDS_CONNECT_INFO

Range of values: 1 to 16 hexadecimal characters

Default value: HO

Range of values: 1 to 8 lowercase characters

Default value: 100

Range of values: 1 to 4000

Default value: none
A-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Specifies the information needed to bind to the data provider, that is, the non-Oracle

system. For generic connectivity, you can bind to an ODBC-based data source or to

an OLE DB-based data source. The information that you provide depends on the

platform and whether the data source is ODBC or OLE DB-based.

This parameter is required if you are using generic connectivity.

ODBC-based Data Source on Windows: You can use either a File DSN or a System DSN

as follows:

■ When connecting using a File DSN the parameter format is:

HS_FDS_CONNECT_INFO=FILEDSN=file_dsn

■ When connecting using a System DSN the parameter format is:

HS_FDS_CONNECT_INFO=system_dsn

If you are connecting to the data source through the driver for that data source, then

precede the DSN by the name of the driver, followed by a semi-colon (;).

ODBC-based Data Source on UNIX: Use a DSN with the following format:

HS_FDS_CONNECT_INFO=dsn

OLE DB-based Data Source (Windows NT Only): Use a universal data link (UDL) with the

following formats:

■ HS_FDS_CONNECT_INFO="UDLFILE=data_link "

■ HS_FDS_CONNECT_INFO="data_link_
provider;db [,CATALOG=catalog]"

which allows you to specify the connection details directly, and where:

– data_link_provider is the case-sensitive name of the provider as it

appears in the registry

– db is the name of the database

– catalog is the name of the catalog

Range of values: not applicable
Heterogeneous Services Initialization Parameters A-5

HS_FDS_SHAREABLE_NAME

Specifies the full path name to the ODBC library. This parameter is required when

you are using generic connectivity to access data from an ODBC provider on a

UNIX machine.

HS_FDS_TRACE_LEVEL

Specifies whether error tracing is enabled or disabled for generic connectivity.

Enable the tracing to see which error messages occur when you encounter

problems. The results are written to a generic connectivity log file, in the /log
directory under the $ORACLE_HOME directory.

HS_LANGUAGE

Provides Heterogeneous Services with character set, language, and territory

information of the non-Oracle data source. The value must use the following

format:

language [_ territory . character_set]

Note: Whenever the parameter value includes an equal sign (=), it

must be enclosed in quotation marks.

Default value: none

Range of values: not applicable

Default value: OFF

Range of values: ON or OFF

Default value: System-specific

Range of values: Any valid language name (up to 255 characters)
A-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Character sets
Ideally, the character sets of the Oracle database server and the non-Oracle data

source are the same. If they are not the same, Heterogeneous Services attempts to

translate the character set of the non-Oracle data source to the Oracle database

character set, and back again. The translation can degrade performance. In some

cases, Heterogeneous Services cannot translate a character from one character set to

another.

Language
The language component of the HS_LANGUAGE initialization parameter determines:

■ Day and month names of dates

■ AD, BC, PM, and AM symbols for date and time

■ Default sorting mechanism

Note that Oracle9i does not determine the language for error messages for the

generic Heterogeneous Services messages (ORA-25000 through ORA-28000).

These are controlled by the session settings in the Oracle database server.

Territory
The territory clause specifies the conventions for day and week numbering, default

date format, decimal character and group separator, and ISO and local currency

symbols. Note that:

Note: The national language support initialization parameters

affect error messages, the data for the SQL Service, and parameters

in distributed external procedures.

Note: The specified character set must be a superset of the

operating system character set on the platform where the agent is

installed.

Note: Use the HS_NLS_DATE_LANGUAGE initialization parameter

to set the day and month names, and the AD, BC, PM, and AM

symbols for dates and time independently from the language.
Heterogeneous Services Initialization Parameters A-7

■ You can override the date format using the initialization parameter HS_NLS_
DATE_FORMAT.

■ The level of National Language Support between the Oracle database server

and the non-Oracle data source depends on how the driver is implemented. See

the installation documentation for your platform for more information about

the level of National Language Support.

HS_LONG_PIECE_TRANSFER_SIZE

Sets the size of the piece of LONG data being transferred. A smaller piece size means

less memory requirement, but more round trips to fetch all the data. A larger piece

size means fewer round trips, but more of a memory requirement to store the

intermediate pieces internally. Thus, the initialization parameter can be used to tune

a system for the best performance, with the best trade-off between round trips and

memory requirements.

HS_NLS_DATE_FORMAT

Defines the date format for dates used by the target system. This parameter has the

same function as the NLS_DATE_FORMAT parameter for an Oracle database server.

The value of can be any valid date mask listed in the Oracle9i Database Reference, but

must match the date format of the target system. For example, if the target system

stores the date February 14, 2001 as 2001/02/14, set the parameter to

yyyy/mm/dd. Note that characters must be lowercase.

HS_NLS_DATE_LANGUAGE

Default value: 64 KB

Range of values: Any value up to 2 GB

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid date format mask (up to 255 characters)

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid NLS_LANGUAGE value (up to 255 characters)
A-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Specifies the language used in character date values coming from the non-Oracle

system. Date formats can be language independent. For example, if the format is

dd/mm/yyyy, all three components of the character date are numbers. In the

format dd-mon-yyyy, however, the month component is the name abbreviated to

three characters. The abbreviation is very much language dependent. For example,

the abbreviation for the month April is "apr", which in French is "avr" (Avril).

Heterogeneous Services assumes that character date values fetched from the

non-Oracle system are in this format. Also, Heterogeneous Services sends character

date bind values in this format to the non-Oracle system.

HS_NLS_NCHAR

Informs Heterogeneous Services of the value of the national character set of the

non-Oracle data source. This value is the non-Oracle equivalent to the NATIONAL
CHARACTER SET parameter setting in the Oracle CREATE DATABASE statement.

The HS_NLS_NCHAR value should be the character set ID of a character set

supported by the Oracle NLSRTL library.

HS_NLS_TIMESTAMP_FORMAT

Defines the timestamp format for dates used by the target system. This parameter

has the same function as the NLS_TIMESTAMP_FORMAT parameter for an Oracle

database server. The value of can be any valid timestamp mask listed in the Oracle9i

Database Reference, but it must match the date format of the target system. Note

that characters must be lowercase. For example:

HS_NLS_TIMESTAMP_FORMAT = yyyy-mm-dd hh:mi:ss.ff

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid national character set (up to 255 characters)

See Also: HS_LANGUAGE on page A-6.

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask
Heterogeneous Services Initialization Parameters A-9

HS_NLS_TIMESTAMP_TZ_FORMAT

Defines the default timestamp with time zone format for the timestamp with time

zone format used by the target system. This parameter has the same function as the

NLS_TIMESTAMP_TZ_FORMAT parameter for an Oracle database server. The value

of can be any valid timestamp with time zone mask listed in the Oracle9i Database

Reference, but must match the date format of the target system. Note that characters

must be lowercase. For example:

HS_NLS_TIMESTAMP_TZ_FORMAT = yyyy-mm-dd hh:mi:ss.ff tzh:tzm

HS_OPEN_CURSORS

Defines the maximum number of cursors that can be open on one connection to a

non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle database server.

Therefore, setting the same value as the OPEN_CURSORS initialization parameter in

the Oracle database server is recommended.

HS_ROWID_CACHE_SIZE

Specifies the size of the Heterogeneous Services cache containing the non-Oracle

system equivalent of ROWIDs. The cache contains non-Oracle system ROWIDs

needed to support the WHERE CURRENT OFclause in a SQL statement or a SELECT
FOR UPDATE statement.

Default value: Dynamic. Scope= ALTER SESSION

NLS_TIMESTAMP_TZ_FORMAT

Range of values: Derived from NLS_TERRITORY

Default value: 50

Range of values: 1 - value of Oracle’s OPEN_CURSORS initialization parameter

Default value: 3

Range of values: 1 to 32767
A-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

When the cache is full, the first slot in the cache is reused, then the second, and so

on. Only the last HS_ROWID_CACHE_SIZE non-Oracle system ROWIDs are cached.

HS_RPC_FETCH_REBLOCKING

Controls whether Heterogeneous Services attempts to optimize performance of data

transfer between the Oracle database server and the Heterogeneous Services agent

connected to the non-Oracle data store.

The following values are possible:

■ OFF disables reblocking of fetched data so that data is immediately sent from

agent to server

■ ON enables reblocking, which means that data fetched from the non-Oracle

system is buffered in the agent and is not sent to the Oracle database server

until the amount of fetched data is equal or higher than HS_RPC_FETCH_SIZE.
However, any buffered data is returned immediately when a fetch indicates that

no more data exists or when the non-Oracle system reports an error.

HS_RPC_FETCH_SIZE

Tunes internal data buffering to optimize the data transfer rate between the server

and the agent process.

Increasing the value can reduce the number of network round trips needed to

transfer a given amount of data, but also tends to increase data bandwidth and to

reduce response time or latency as measured between issuing a query and

completion of all fetches for the query. Nevertheless, increasing the fetch size can

increase latency for the initial fetch results of a query, because the first fetch results

are not transmitted until additional data is available.

After the gateway is installed and configured, you can use the gateway to access

non-Oracle database system data, pass non-Oracle database system commands

Default value: ON

Range of values: OFF, ON

Default value: 4000

Range of values: Decimal integer (byte count)
Heterogeneous Services Initialization Parameters A-11

from applications to the non-Oracle database system database, perform distributed

queries, and copy data.

HS_TIME_ZONE

Specifies the default local time zone displacement for the current SQL session. The

format mask, [+|-]hh:mm, is specified to indicate the hours and minutes before or

after UTC (Coordinated Universal Time—formerly Greenwich Mean Time) For

example:

HS_TIME_ZONE = [+ | -] hh:mm

IFILE

Use IFILE to embed another initialization file within the current initialization file;

the value should be an absolute path and should not contain environment variables;

the three levels of nesting limit does not apply.

Default value for ’[+
| -] hh:mm’:

Derived from NLS_TERRITORY

Range of values for
’[+ | -] hh:mm’:

Any valid datetime format mask

Default value: None

Range of values: Valid parameter filenames

See Also: IFILE in Oracle9i Database Reference.
A-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Type Ma
B

d

Data Type Mapping

Oracle9i maps the ANSI data types through ODBC and OLE DB interfaces to supported
Oracle data types. When the results of a query are returned, Oracle9i converts the ODBC or
OLE DB data types to Oracle data types.

The tables in this appendix show how Oracle maps ANSI data types through ODBC an
OLE DB interfaces to supported Oracle data types when it is retrieving data from a
non-Oracle system.

This appendix contains the following tables

■ Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface

■ Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface
pping B-1

Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface
Mapping ANSI Data Types to Oracle Data Types Through
an ODBC Interface

Table 7–4 Mapping ANSI Data Types to Oracle Data Types Through an ODBC
Interface

ANSI ODBC Oracle

NUMERIC(19,0) SQL_BIGINT NUMBER(19,0)

N/A SQL_BINARY RAW

CHAR SQL_CHAR CHAR

DATE SQL_DATE DATE

DECIMAL(p,s) SQL_DECIMAL(p,s) NUMBER(p,s)

DOUBLE PRECISION SQL_DOUBLE FLOAT(49)

FLOAT SQL_FLOAT FLOAT(49)

INTEGER SQL_INTEGER NUMBER(10)1

1 It’s possible under some circumstance for theINTEGER ANSI data type to map to Precision 38, but it
usually maps to Precision 10.

N/A SQL_LONGVARBINARY LONG RAW

N/A SQL_LONGVARCHAR LONG2

2 If an ANSI SQL implementation defines a large value for the maximum length ofVARCHAR data, then it is
possible that ANSIVARCHAR will map toSQL_LONGVARCHAR and OracleLONG. The same is true for
OLE DB DBTYPE_STRING (long attribute).

REAL SQL_REAL FLOAT(23)

SMALLINT SQL_SMALLINT NUMBER(5)

TIME SQL_TIME DATE

TIMESTAMP SQL_TIMESTAMP DATE

NUMERIC(3,0) SQL_TINYINT NUMBER(3)

VARCHAR SQL_VARCHAR VARCHAR
B-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface
Note: This table maps ODBC data types into equivalent ANSI and
Oracle data types. In some cases equivalence to ANSI data types is not
guaranteed to be exact because the ANSI SQL standard delegates
definition of numeric precision and maximum length of character data to
individual implementations. This table reflects a probable mapping
between ANSI and ODBC data types for a typical implementation of
ANSI SQL.
Data Type Mapping B-3

Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface
Mapping ANSI Data Types to Oracle Data Types Through
an OLE DB Interface

Table 7–5

ANSI OLE DB Oracle

NUMERIC(3,0) DBTYPE_UI1 NUMBER(3)

NUMERIC(3,0) DBTYPE_I1 NUMBER(3)

SMALLINT DBTYPE_UI2 NUMBER(5)

SMALLINT DBTYPE_I2 NUMBER(5)

NUMERIC(3,0) DBTYPE_BOOL NUMBER(5)

INTEGER DBTYPE_UI4 NUMBER(10)

INTEGER DBTYPE_I4 NUMBER(10)

NUMERIC(19,0) DBTYPE_UI8 NUMBER(19,0)

NUMERIC(19,0) DBTYPE_I8 NUMBER(19,0)

NUMERIC(p,s) DBTYPE_NUMERIC(p,s) NUMBER(p,s)

FLOAT DBTYPE_R4 FLOAT(23)

DOUBLE PRECISION DBTYPE_R8 FLOAT(49)

N/A DBTYPE_DECIMAL FLOAT(49)

VARCHAR DBTYPE_STR VARCHAR2

VARCHAR DBTYPE_WSTR VARCHAR2

NUMERIC(19,0) DBTYPE_CY NUMBER(19,0)

DATE DBTYPE_DBDATE DATE

TIME DBTYPE_DBTIME DATE

TIMESTAMP DBTYPE_TIMESTAMP DATE

N/A DBTYPE_BYTES RAW

N/A DBTYPE_BYTES (long
attribute)

LONG RAW

N/A DBTYPE_STRING (long
attribute)

LONG
B-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

DBMS_HS_PASSTHROUGH for Pass-Through
C

DBMS_HS_PASSTHROUGH for

Pass-Through SQL

The package, DBMS_HS_PASSTHROUGH, contains the procedures and functions for

pass-through SQL of Heterogeneous Services. This appendix documents each of

them.

This appendix contains these topics:

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_NCHAR procedure

■ BIND_VARIABLE_RAW procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_NCHAR procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_INOUT_VARIABLE_RAW procedure

■ CLOSE_CURSOR function

■ EXECUTE_IMMEDIATE function

■ EXECUTE_NON_QUERY function

■ FETCH_ROW function

■ GET_VALUE procedure

■ GET_VALUE_NCHAR procedure
 SQL C-1

■ GET_VALUE_RAW procedure

■ OPEN_CURSOR function

■ PARSE procedure
C-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Summary of Subprograms

Table C–1 DBMS_HS Package Subprograms

Subprogram Description

BIND_VARIABLE
procedure

Binds an IN variable positionally with a PL/SQL program
variable.

BIND_VARIABLE_NCHAR
procedure

Binds IN variables of type NVARCHAR2.

BIND_VARIABLE_RAW
procedure

Binds IN variables of type RAW.

BIND_OUT_VARIABLE
procedure

Binds an OUT variable with a PL/SQL program variable.

BIND_OUT_VARIABLE_
NCHAR procedure

Binds an OUT variable of data type NVARCHAR2 with a
PL/SQL program variable.

BIND_OUT_VARIABLE_
RAW procedure

Binds an OUT variable of data type RAW with a PL/SQL
program variable.

BIND_INOUT_VARIABLE
procedure

Binds IN OUT bind variables.

BIND_INOUT_VARIABLE_
NCHAR procedure

Binds IN OUT bind variables of data type NVARCHAR2

BIND_INOUT_
VARIABLE_RAW
procedure

Binds IN OUT bind variables of data type RAW

CLOSE_CURSOR
function

Closes the cursor and releases associated memory after the
SQL statement has been executed at the non-Oracle system

EXECUTE_IMMEDIATE
function

Executes a SQL statement immediately

EXECUTE_NON_QUERY
function

Executes any SQL statement other than a SELECT statement

FETCH_ROW function Fetches rows from a result set

GET_VALUE procedure Retrieves the select list items of SELECT statements after a
row has been fetched, and retrieves the OUT bind values after
the SQL statement has been executed
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-3

Summary of Subprograms
BIND_VARIABLE procedure

This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax.

DBMS_HS_PASSTHROUGH.BIND_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN dty);

Where dty is one of the following data types:

■ DATE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ NUMBER

GET_VALUE_NCHAR
procedure

Retrieves the select list items of SELECT statements after a
row has been fetched, and retrieves the OUT bind values after
the SQL statement has been executed. This procedure
operates on the NVARCHAR2 data type

GET_VALUE_RAW
procedure

Retrieves the select list items of SELECT statements after a
row has been fetched, and retrieves the OUT bind values after
the SQL statement has been executed. This procedure
operates on the RAW data type

OPEN_CURSOR function Opens a cursor for executing a pass-through SQL statement
at the non-Oracle system

PARSE procedure Parses a SQL statement at non-Oracle system

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_VARIABLE_NCHAR procedure

■ BIND_VARIABLE_RAW procedure

Table C–1 DBMS_HS Package Subprograms

Subprogram Description
C-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

■ VARCHAR2

Parameters

Exceptions

Pragmas
Purity levels defined: WNDS, RNDS

See Also:

■ BIND_VARIABLE_NCHAR procedure

■ BIND_VARIABLE_RAW procedure

Table C–2 BIND_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement. The
cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE.

pos Position of the bind variable in the SQL statement. Starts from
1

val Value that must be passed to the bind variable

Table C–3 BIND_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 The procedure is not executed in right order. Did you first open
the cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULL value was passed for a NOT NULL parameter
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-5

Summary of Subprograms
BIND_VARIABLE_NCHAR procedure
This procedure binds IN variables of type NVARCHAR2.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE_NCHAR (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN NVARCHAR2);

Parameters

Exceptions

Pragmas
Purity level defined: WNDS, RNDS

Table C–4 BIND_VARIABLE_NCHAR Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE.

pos Position of the bind variable in the SQL statement. Starts from
1.

val Value that must be passed to the bind variable

Table C–5 BIND_VARIABLE_NCHAR Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULL value was passed for a NOT NULL parameter
C-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
BIND_VARIABLE_RAW procedure
This procedure binds IN variables of type RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN RAW);

Parameters

Exceptions

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

Table C–6 BIND_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE.

pos Position of the bind variable in the SQL statement. Starts from
1.

val Value that must be passed to the bind variable

Table C–7 BIND_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULL value was passed for a NOT NULL parameter
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-7

Summary of Subprograms
Pragmas
Purity level defined: WNDS, RNDS

BIND_OUT_VARIABLE procedure
This procedure binds an OUT variable with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT dty);

Where dty is one of

■ DATE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ NUMBER

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

■ VARCHAR2

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_VARIABLE procedure

■ BIND_OUT_VARIABLE procedure
C-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Parameters

Exceptions

See Also: BIND_INOUT_VARIABLE_NCHAR procedure for

more information about OUT variables of data type RAW.

Table C–8 BIND_OUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val Variable in which the OUT bind variable will store its value.
The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALUE to
retrieve the value of the OUT parameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE.

Table C–9 BIND_OUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-9

Summary of Subprograms
Pragmas
Purity level defined: WNDS, RNDS

BIND_OUT_VARIABLE_NCHAR procedure
This procedure binds an OUT variable of data type NVARCHAR2 with a PL/SQL

program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT NVARCHAR2);

Parameters

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_NCHAR procedure

■ GET_VALUE procedure

Table C–10 BIND_OUT_VARIABLE_NCHAR Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val Variable in which the OUT bind variable will store its value.
The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALUE to
retrieve the value of the OUT parameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE_RAW.
C-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Exceptions

Pragmas
Pragmas defined: WNDS, RNDS

BIND_OUT_VARIABLE_RAW procedure
This procedure binds an OUT variable of data type RAW with a PL/SQL program

variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT RAW);

Parameters

Table C–11 BIND_OUT_VARIABLE_NCHAR Parameter Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table C–12 BIND_OUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-11

Summary of Subprograms
Exceptions

Pragmas
Pragmas defined: WNDS, RNDS

BIND_INOUT_VARIABLE procedure
This procedure binds IN OUT bind variables.

val Variable in which the OUT bind variable will store its value.
The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALUE to
retrieve the value of the OUT parameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE_RAW.

Table C–13 BIND_OUT_VARIABLE_RAW Parameter Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_NCHAR procedure

■ GET_VALUE procedure

Table C–12 BIND_OUT_VARIABLE_RAW Procedure Parameters

Parameter Description
C-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN OUT <dty>);

Where dty is one of

■ DATE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ NUMBER

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

■ VARCHAR2

Parameters

Table C–14 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the OUT value
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-13

Summary of Subprograms
Exceptions

Pragmas
Purity level defined: WNDS, RNDS

BIND_INOUT_VARIABLE_NCHAR procedure
This procedure binds IN OUT bind variables of data type NVARCHAR2.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_NCHAR (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN OUT NVARCHAR2);

Table C–15 BIND_INOUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_NCHAR procedure

■ GET_VALUE procedure
C-14 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Parameters

Exceptions

Pragmas
Pragmas defined: WNDS, RNDS

Table C–16 BIND_INOUT_VARIABLE_NCHAR Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed’ using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the out value

Table C–17 BIND_INOUT_VARIABLE_NCHAR Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-15

Summary of Subprograms
BIND_INOUT_VARIABLE_RAW procedure
This procedure binds IN OUT bind variables of data type RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN OUT RAW);

Parameters

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_NCHAR procedure

■ GET_VALUE procedure

Table C–18 BIND_INOUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the OUT value
C-16 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Exceptions

Pragmas
Pragmas defined: WNDS, RNDS

CLOSE_CURSOR function
This function closes the cursor and releases associated memory after the SQL

statement has been executed at the non-Oracle system. If the cursor was not open,

the operation is a no operation.

Syntax
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR (
 c IN BINARY_INTEGER NOT NULL);

Table C–19 BIND_INOUT_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_NCHAR procedure

■ GET_VALUE procedure
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-17

Summary of Subprograms
Parameter

Exceptions

Pragmas
Purity level defined: WNDS, RNDS

EXECUTE_IMMEDIATE function
This function executes a SQL statement immediately. Any valid SQL statement

except SELECT can be executed immediately, but the statement must not contain

any bind variables. The statement is passed in as a VARCHAR2 in the argument.

Internally, the SQL statement is executed using the PASSTHROUGH_SQL protocol

sequence of OPEN_CURSOR, PARSE, EXECUTE_NON_QUERY, CLOSE_CURSOR.

Syntax
EXECUTE_IMMEDIATE (s IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER);

Parameter Description

Table C–20 CLOSE_CURSOR Procedure Parameters

Parameter Description

c Cursor to be released.

Table C–21 CLOSE_CURSOR Procedure Exceptions

Exception Description

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also: OPEN_CURSOR function

Table C–22 EXECUTE_IMMEDIATE Procedure Parameters

Parameter Description

s VARCHAR2 variable with the statement to be executed
immediately.
C-18 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Returns
The number of rows affected by the execution of the SQL statement.

Exceptions

Pragmas
Purity level defined: NONE

EXECUTE_NON_QUERY function
This function executes any SQL statement other than a SELECT statement. A cursor

has to be open and the SQL statement has to be parsed before the SQL statement

can be executed.

Syntax
DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY (
 c IN BINARY_INTEGER NOT NULL)
 RETURN BINARY_INTEGER);

Table C–23 EXECUTE_IMMEDIATE Procedure Exceptions

Exception Description

ORA-28544 Max open cursors.

ORA-28551 SQL statement is invalid.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ EXECUTE_NON_QUERY function

■ BIND_INOUT_VARIABLE procedure
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-19

Summary of Subprograms
Parameter

Returns
The number of rows affected by the SQL statement in the non-Oracle system.

Exceptions

Pragmas
Purity level defined: NONE

FETCH_ROW function
This function fetches rows from a result set. The result set is defined with a SQL

SELECT statement.

Before the rows can be fetched, a cursor has to be opened, and the SQL statement

has to be parsed. When there are no more rows to be fetched, the function returns 0.

After a 0 return, the NO_DATA_FOUND exception occurs when:

■ A subsequent FETCH_ROW is attempted

Table C–24 EXECUTE_NON_QUERY Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

Table C–25 EXECUTE_NON_QUERY Function Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 BIND_VARIABLE procedure is not executed in right order. Did
you first open the cursor and parse the SQL statement?

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure
C-20 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
■ A GET_VALUE is attempted

Syntax
DBMS_HS_PASSTHROUGH.FETCH_ROW (
 c IN BINARY_INTEGER NOT NULL
 [,first IN BOOLEAN])
 RETURN BINARY_INTEGER);

Parameters and Descriptions

Returns
The returns the number of rows fetched. The function will return 0 if the last row

was already fetched.

Exceptions

Pragmas
Purity level defined: WNDS

Table C–26 FETCH_ROW Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

first Optional parameter to re-execute a SELECTstatement. Possible
values:

■ TRUE: re-execute SELECT statement.

■ FALSE: fetch the next row, or if executed for the first time
execute and fetch rows (default).

Table C–27 FETCH_ROW Function Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-21

Summary of Subprograms
GET_VALUE procedure
This procedure has two purposes:

■ To retrieve the select list items of SELECT statements after a row has been

fetched.

■ To retrieve the OUT bind values after the SQL statement has been executed.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT <dty>);

Where dty is one of:

■ DATE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ NUMBER

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

■ VARCHAR2

For retrieving values of data type RAW, see GET_VALUE_RAW.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure
C-22 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Parameters

Exceptions

Pragmas
Purity level defined: WNDS

Table C–28 GET_VALUE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUT bind variable or select list item will
store its value.

Table C–29 GET_VALUE Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing the GET_
VALUEafter the last row was fetched (i.e. FETCH_ROWreturned
0).

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-23

Summary of Subprograms
GET_VALUE_NCHAR procedure
This procedure, which operates on NVARCHAR2 data types, has two purposes:

■ To retrieve the select list items of SELECT statements after a row has been

fetched.

■ To retrieve the OUT bind values after the SQL statement has been executed.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_NCHAR (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT NVARCHAR2);

Parameters

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE_NCHAR procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_INOUT_VARIABLE_RAW procedure

Table C–30 GET_VALUE_NCHAR Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUT bind variable or select list item will
store its value.
C-24 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
Exceptions

Pragmas
Purity level defined: WNDS

GET_VALUE_RAW procedure
This procedure, which operates on RAW data types, has two purposes:

■ To retrieve the select list items of SELECT statements after a row has been

fetched.

■ To retrieve the OUT bind values after the SQL statement has been executed.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (

Table C–31 GET_VALUE_NCHAR Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing the GET_
VALUEafter the last row was fetched (i.e. FETCH_ROWreturned
0).

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE procedure

■ GET_VALUE_RAW procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_INOUT_VARIABLE_RAW procedure
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-25

Summary of Subprograms
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT RAW);

Parameters

Exceptions

Pragmas
Purity level defined: WNDS

Table C–32 GET_VALUE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUT bind variable or select list item will
store its value.

Table C–33 GET_VALUE_RAW Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing the GET_
VALUEafter the last row was fetched (i.e. FETCH_ROWreturned
0).

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-26 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
OPEN_CURSOR function
This function opens a cursor for executing a pass-through SQL statement at the

non-Oracle system. This function must be called for any type of SQL statement The

function returns a cursor, which must be used in subsequent calls. This call allocates

memory. To deallocate the associated memory, you call the procedure DBMS_HS_
PASSTHROUGH.CLOSE_CURSOR.

Syntax
DBMS_HS_PASSTHROUGH.OPEN_CURSOR ()
 RETURN BINARY_INTEGER;

Returns
The cursor to be used on subsequent procedure and function calls.

Exceptions

Pragmas
Purity level defined: WNDS, RNDS

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE procedure

■ GET_VALUE_NCHAR procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_INOUT_VARIABLE_RAW procedure

Table C–34 OPEN_CURSOR Function Exceptions

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded. Increase
Heterogeneous Services OPEN_CURSORS initialization
parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-27

Summary of Subprograms
PARSE procedure
This procedure parses a SQL statement at non-Oracle system.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 stmt IN VARCHAR2 NOT NULL);

Parameters

Exceptions

Pragmas
Purity level defined: WNDS, RNDS

See Also: BIND_INOUT_VARIABLE procedure

Table C–35 PARSE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR.

stmt Statement to be parsed.

Table C–36 PARSE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-28 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Summary of Subprograms
See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure

■ BIND_INOUT_VARIABLE_NCHAR procedure
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-29

Summary of Subprograms
C-30 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Translation Su
D

Data Dictionary Translation Support

Data dictionary information is stored in the non-Oracle system as system tables and

is accessed through ODBC or OLE DB application programming interfaces (APIs).

This appendix documents data dictionary translation support. It explains how to

access non-Oracle data dictionaries, lists Heterogeneous Services data dictionary

views, describes how to use supported views and tables, and explains data

dictionary mapping.

This appendix contains the following topics:

■ Accessing the Non-Oracle Data Dictionary

■ Heterogeneous Services Data Dictionary Views

■ Supported Views and Tables

■ Data Dictionary Mapping

Accessing the Non-Oracle Data Dictionary
Accessing a non-Oracle data dictionary table or view is identical to accessing a data

dictionary in an Oracle database. You issue a SELECT statement specifying a

database link. The Oracle9i data dictionary view and column names are used to

access the non-Oracle data dictionary. Synonyms of supported views are also

acceptable.

For example, the following statement queries the data dictionary table ALL_USERS
to retrieve all users in the non-Oracle system:

SQL SELECT * FROM all_users@sid1;

When you issue a data dictionary access query, the ODBC or OLE DB agent:
pport D-1

Heterogeneous Services Data Dictionary Views
1. Maps the requested table, view, or synonym to one or more ODBC or OLE DB

APIs (see "Data Dictionary Mapping"). The agent translates all data dictionary

column names to their corresponding non-Oracle column names within the

query.

2. Sends the sequence of APIs to the non-Oracle system.

3. Possibly converts the retrieved non-Oracle data to give it the appearance of the

Oracle8i data dictionary table.

4. Passes the data dictionary information from the non-Oracle system table to the

Oracle8i.

Heterogeneous Services Data Dictionary Views
Heterogeneous Services mapping supports the following list of data dictionary

views:

■ ALL_CATALOG

■ ALL_COL_COMMENTS

■ ALL_COL_PRIVS

■ ALL_COL_PRIVS_MADE

■ ALL_COL_PRIVS_RECD

■ ALL_CONSTRAINTS

■ ALL_CONS_COLUMNS

■ ALL_DB_LINKS

■ ALL_DEF_AUDIT_OPTS

■ ALL_DEPENDENCIES

■ ALL_ERRORS

■ ALL_INDEXES

■ ALL_IND_COLUMNS

■ ALL_OBJECTS

Note: The values returned when querying the generic

connectivity data dictionary may not be the same as the ones

returned by the Oracle Enterprise Manager DESCRIBE command.
D-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services Data Dictionary Views
■ ALL_SEQUENCES

■ ALL_SNAPSHOTS

■ ALL_SOURCE

■ ALL_SYNONYMS

■ ALL_TABLES

■ ALL_TAB_COLUMNS

■ ALL_TAB_COMMENTS

■ ALL_TAB_PRIVS

■ ALL_TAB_PRIVS_MADE

■ ALL_TAB_PRIVS_RECD

■ ALL_TRIGGERS

■ ALL_USERS

■ ALL_VIEWS

■ AUDIT_ACTIONS

■ COLUMN_PRIVILEGES

■ DBA_CATALOG

■ DBA_COL_COMMENTS

■ DBA_COL_PRIVS

■ DBA_OBJECTS

■ DBA_ROLES

■ DBA_ROLE_PRIVS

■ DBA_SYS_PRIVS

■ DBA_TABLES

■ DBA_TAB_COLUMNS

■ DBA_TAB_COMMENTS

■ DBA_TAB_PRIVS

■ DBA_USERS

■ DICTIONARY
Data Dictionary Translation Support D-3

Heterogeneous Services Data Dictionary Views
■ DICT_COLUMNS

■ DUAL

■ INDEX_STATS

■ PRODUCT_USER_PROFILE

■ RESOURCE_COST

■ ROLE_ROLE_PRIVS

■ ROLE_SYS_PRIVS

■ ROLE_TAB_PRIVS

■ SESSION_PRIVS

■ SESSION_ROLES

■ TABLE_PRIVILEGES

■ USER_AUDIT_OBJECT

■ USER_AUDIT_SESSION

■ USER_AUDIT_STATEMENT

■ USER_AUDIT_TRAIL

■ USER_CATALOG

■ USER_CLUSTERS

■ USER_CLU_COLUMNS

■ USER_COL_COMMENTS

■ USER_COL_PRIVS

■ USER_COL_PRIVS_MADE

■ USER_COL_PRIVS_RECD

■ USER_CONSTRAINTS

■ USER_CONS_COLUMNS

■ USER_DB_LINKS

■ USER_DEPENDENCIES

■ USER_ERRORS

■ USER_EXTENTS
D-4 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Supported Views and Tables
■ USER_FREE_SPACE

■ USER_INDEXES

■ USER_IND_COLUMNS

■ USER_OBJECTS

■ USER_OBJ_AUDIT_OPTS

■ USER_RESOURCE_LIMITS

■ USER_ROLE_PRIVS

■ USER_SEGMENTS

■ USER_SEQUENCES

■ USER_SNAPSHOT_LOGS

■ USER_SOURCE

■ USER_SYNONYMS

■ USER_SYS_PRIVS

■ USER_TABLES

■ USER_TABLESPACES

■ USER_TAB_COLUMNS

■ USER_TAB_COMMENTS

■ USER_TAB_PRIVS

■ USER_TAB_PRIVS_MADE

■ USER_TAB_PRIVS_RECD

■ USER_TRIGGERS

■ USER_TS_QUOTAS

■ USER_USERS

■ USER_VIEWS

Supported Views and Tables
Generic connectivity supports only these views and tables:

■ ALL_CATALOG
Data Dictionary Translation Support D-5

Supported Views and Tables
■ ALL_COL_COMMENTS

■ ALL_CONS_COLUMNS

■ ALL_CONSTRAINTS

■ ALL_IND_COLUMNS

■ ALL_INDEXES

■ ALL_OBJECTS

■ ALL_TAB_COLUMNS

■ ALL_TAB_COMMENTS

■ ALL_TABLES

■ ALL_USERS

■ ALL_VIEWS

■ DICTIONARY

■ USER_CATALOG

■ USER_COL_COMMENTS

■ USER_CONS_COLUMNS

■ USER_CONSTRAINTS

■ USER_IND_COLUMNS

■ USER_INDEXES

■ USER_OBJECTS

■ USER_TAB_COLUMNS

■ USER_TAB_COMMENTS

■ USER_TABLES

■ USER_USERS

■ USER_VIEWS

If you use an unsupported view, then you receive the Oracle8i message for no rows

selected.

If you want to query data dictionary views using SELECT... FROM DBA_* , first

connect as Oracle user SYSTEM or SYS. Otherwise, you receive the following error

message:
D-6 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
ORA-28506: Parse error in data dictionary translation for %s stored in %s

Using generic connectivity, queries of the supported data dictionary tables and

views beginning with the characters ALL_ may return rows from the non-Oracle

system when you do not have access privileges for those non-Oracle objects. When

querying an Oracle database with the Oracle data dictionary, rows are returned only

for those objects you are permitted to access.

Data Dictionary Mapping
The tables in this section list Oracle data dictionary view names and the equivalent

ODBC or OLE DB APIs used.

Table 7–6 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API

ALL_CATALOG SQLTables DBSCHEMA_CATALOGS

ALL_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

ALL_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

ALL_INDEXES SQLStatistics DBSCHEMA_STATISTICS

ALL_OBJECTS SQLTables, SQLProcedures,
SQLStatistics

DBSCHEMA_TABLES, DBSCHEMA_
PROCEDURES, DBSCHEMA_
STATISTICS

ALL_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

ALL_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

ALL_TABLES SQLStatistics DBSCHEMA_STATISTICS

ALL_USERS SQLTables DBSCHEMA_TABLES

ALL_VIEWS SQLTables DBSCHEMA_TABLES

DICTIONARY SQLTables DBSCHEMA_TABLES

USER_CATALOG SQLTables DBSCHEMA_TABLES

USER_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS
Data Dictionary Translation Support D-7

Data Dictionary Mapping
Generic Connectivity Data Dictionary Descriptions
The generic connectivity data dictionary tables and views provide this information:

■ Name, data type, and width of each column

■ The contents of columns with fixed values

In the descriptions that follow, the values in the Null? column may differ from the

Oracle9i data dictionary tables and views. Any default value is shown to the right

of an item.

ALL_CATALOG

USER_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

USER_INDEXES SQLStatistics DBSCHEMA_STATISTICS

USER_OBJECTS SQLTables, SQLProcedures,
SQLStatistics

DBSCHEMA_TABLES, DBSCHEMA_
PROCEDURES, DBSCHEMA_
STATISTICS

USER_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

USER_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

USER_TABLES SQLStatistics DBSCHEMA_STATISTICS

USER_USERS SQLTables DBSCHEMA_TABLES

USER_VIEWS SQLTables DBSCHEMA_TABLES

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW" or
SYNONYM

Table 7–6 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API
D-8 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
ALL_COL_COMMENTS

ALL_CONS_COLUMNS

ALL_CONSTRAINTS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) "R" or "P"

TABLE_NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADE" or
"NO ACTION"
or "SET NULL"

STATUS VARCHAR2(8) NULL
Data Dictionary Translation Support D-9

Data Dictionary Mapping
ALL_IND_COLUMNS

ALL_INDEXES

DEFERRABLE VARCHAR2(14) NULL

DEFERRED VARCHAR2(9) NULL

VALIDATED VARCHAR2(13) NULL

GENERATED VARCHAR2(14) NULL

BAD VARCHAR2(3) NULL

RELY VARCHAR2(4) NULL

LAST_CHANGE DATE NULL

Name Null? Type Value

INDEX_OWNER NOT NULL VARCHAR2(30)

INDEX_NAME NOT NULL VARCHAR2(30)

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

COLUMN_POSITION NOT NULL NUMBER

COLUMN_LENGTH NOT NULL NUMBER

DESCEND VARCHAR2(4) "DESC" or
"ASC"

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

INDEX_NAME NOT NULL VARCHAR2(30)

INDEX_TYPE VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

Name Null? Type Value
D-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
TABLE_TYPE CHAR(5) "TABLE"

UNIQUENESS VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION VARCHAR2(8) NULL

PREFIX_LENGTH NUMBER 0

TABLESPACE_NAME VARCHAR2(30) NULL

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

PCT_THRESHOLD NUMBER 0

INCLUDE_COLUMNS NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

PCT_FREE NUMBER 0

LOGGING VARCHAR2(3) NULL

BLEVEL NUMBER 0

LEAF_BLOCKS NUMBER 0

DISTINCT_KEYS NUMBER

AVG_LEAF_BLOCKS_PER_KEY NUMBER 0

AVG_DATA_BLOCKS_PER_KEY NUMBER 0

CLUSTERING_FACTOR NUMBER 0

STATUS VARCHAR2(8) NULL

NUM_ROWS NUMBER 0

SAMPLE_SIZE NUMBER 0

Name Null? Type Value
Data Dictionary Translation Support D-11

Data Dictionary Mapping
ALL_OBJECTS

LAST_ANALYZED DATE NULL

DEGREE VARCHAR2(40) NULL

INSTANCES VARCHAR2(40) NULL

PARTITIONED VARCHAR2(3) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

BUFFER_POOL VARCHAR2(7) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARCHAR2(15) NULL

PCT_DIRECT_ACCESS NUMBER 0

ITYP_OWNER VARCHAR2(30) NULL

ITYP_NAME VARCHAR2(30) NULL

PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS VARCHAR2(3) NULL

DOMIDX_STATUS VARCHAR2(12) NULL

DOMIDX_OPSTATUS VARCHAR2(6) NULL

FUNCIDX_STATUS VARCHAR2(8) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

OBJECT_NAME NOT NULL VARCHAR2(30)

SUBOBJECT_NAME VARCHAR2(30) NULL

OBJECT_ID NOT NULL NUMBER 0

DATA_OBJECT_ID NUMBER 0

Name Null? Type Value
D-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
ALL_TAB_COLUMNS

OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX " or
"PROCEDURE"

CREATED NOT NULL DATE NULL

LAST_DDL_TIME NOT NULL DATE NULL

TIMESTAMP VARCHAR2(19) NULL

STATUS VARCHAR2(7) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(106)

DATA_TYPE_MOD VARCHAR2(3) NULL

DATA_TYPE_OWNER VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER 0

DATA_DEFAULT LONG NULL

NUM_DISTINCT NUMBER 0

Name Null? Type Value
Data Dictionary Translation Support D-13

Data Dictionary Mapping
ALL_TAB_COMMENTS

ALL_TABLES

LOW_VALUE RAW(32) NULL

HIGH_VALUE RAW(32) NULL

DENSITY NUMBER 0

NUM_NULLS NUMBER 0

NUM_BUCKETS NUMBER 0

LAST_ANALYZED DATE NULL

SAMPLE_SIZE NUMBER 0

CHARACTER_SET_NAME VARCHAR2(44) NULL

CHAR_COL_DEC_LENGTH NUMBER 0

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

AVG_COL_LEN NUMBER 0

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30) NULL

CLUSTER_NAME VARCHAR2(30) NULL

Name Null? Type Value
D-14 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
IOT_NAME VARCHAR2(30) NULL

PCT_FREE NUMBER 0

PCT_USED NUMBER 0

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

LOGGING VARCHAR2(3) NULL

BACKED_UP VARCHAR2(1) NULL

NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER 0

AVG_SPACE NUMBER 0

CHAIN_CNT NUMBER 0

AVG_ROW_LEN NUMBER 0

AVG_SPACE_FREELIST_BLOCKS NUMBER 0

NUM_FREELIST_BLOCKS NUMBER 0

DEGREE VARCHAR2(10) NULL

INSTANCES VARCHAR2(10) NULL

CACHE VARCHAR2(5) NULL

TABLE_LOCK VARCHAR2(8) NULL

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

Name Null? Type Value
Data Dictionary Translation Support D-15

Data Dictionary Mapping
ALL_USERS

ALL_VIEWS

PARTITIONED VARCHAR2(3) NULL

IOT_TYPE VARCHAR2(12) NULL

TEMPORARY VARHCAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

NESTED VARCHAR2(3) NULL

BUFFER_POOL VARCHAR2(7) NULL

ROW_MOVEMENT VARCHAR2(8) NULL

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARHCAR2(15) NULL

SKIP_CORRUPT VARCHAR2(8) NULL

MONITORING VARCHAR2(3) NULL

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0

CREATED NOT NULL DATE NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER 0

TEXT NOT NULL LONG NULL

TYPE_TEXT_LENGTH NUMBER 0

TYPE_TEXT VARCHAR2(4000) NULL

Name Null? Type Value
D-16 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
DICTIONARY

USER_CATALOG

USER_COL_COMMENTS

USER_CONS_COLUMNS

OID_TEXT_LENGTH NUMBER 0

OID_TEXT VARCHAR2(4000) NULL

VIEW_TYPE_OWNER VARCHAR2(30) NULL

VIEW_TYPE VARCHAR2(30) NULL

Name Null? Type Value

TABLE_NAME VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or,
"VIEW" or
"SYNONYM"

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

Name Null? Type Value
Data Dictionary Translation Support D-17

Data Dictionary Mapping
USER_CONSTRAINTS

USER_IND_COLUMNS

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) R or P

TABLE_NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADE" or
"NOACTION" or
"SET NULL"

STATUS VARCHAR2(8) NULL

DEFERRABLE VARCHAR2(14) NULL

DEFERRED VARCHAR2(9) NULL

VALIDATED VARCHAR2(13) NULL

GENERATED VARCHAR2(14) NULL

BAD VARCHAR2(3) NULL

RELY VARCHAR2(4) NULL

LAST_CHANGE DATE NULL

Name Null? Type Value

INDEX_NAME VARCHAR2(30)

Name Null? Type Value
D-18 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
USER_INDEXES

TABLE_NAME VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

COLUMN_POSITION NUMBER

COLUMN_LENGTH NUMBER

DESCEND VARCHAR2(4) "DESC" or
"ASC"

Name Null? Type Value

INDEX_NAME NOT NULL VARCHAR2(30)

INDEX_TYPE VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE"

UNIQUENESS VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION VARCHAR2(8) NULL

PREFIX_LENGTH NUMBER 0

TABLESPACE_NAME VARCHAR2(30) NULL

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

PCT_THRESHOLD NUMBER 0

INCLUDE_COLUMNS NUMBER 0

Name Null? Type Value
Data Dictionary Translation Support D-19

Data Dictionary Mapping
FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

PCT_FREE NUMBER 0

LOGGING VARCHAR2(3) NULL

BLEVEL NUMBER 0

LEAF_BLOCKS NUMBER 0

DISTINCT_KEYS NUMBER

AVG_LEAF_BLOCKS_PER_KEY NUMBER 0

AVG_DATA_BLOCKS_PER_KEY NUMBER 0

CLUSTERING_FACTOR NUMBER 0

STATUS VARCHAR2(8) NULL

NUM_ROWS NUMBER 0

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

DEGREE VARCHAR2(40) NULL

INSTANCES VARCHAR2(40) NULL

PARTITIONED VARCHAR2(3) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

BUFFER_POOL VARCHAR2(7) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARHCAR2(15) NULL

PCT_DIRECT_ACCESS NUMBER 0

ITYP_OWNER VARCHAR2(30) NULL

ITYP_NAME VARCHAR2(30) NULL

PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS VARCHAR2(3) NULL

Name Null? Type Value
D-20 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
USER_OBJECTS

USER_TAB_COLUMNS

DOMIDX_STATUS VARCHAR2(12) NULL

DOMIDX_OPSTATUS VARCHAR2(6) NULL

FUNCIDX_STATUS VARCHAR2(8) NULL

Name Null? Type Value

OBJECT_NAME VARCHAR2(128)

SUBOBJECT_NAME VARCHAR2(30) NULL

OBJECT_ID NUMBER 0

DATA_OBJECT_ID NUMBER 0

OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX" or
"PROCEDURE"

CREATED DATE NULL

LAST_DDL_TIME DATE NULL

TIMESTAMP VARCHAR2(19) NULL

STATUS VARCHAR2(7) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(106)

Name Null? Type Value
Data Dictionary Translation Support D-21

Data Dictionary Mapping
USER_TAB_COMMENTS

DATA_TYPE_MOD VARCHAR2(3) NULL

DATA_TYPE_OWNER VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER NULL

DATA_DEFAULT LONG NULL

NUM_DISTINCT NUMBER NULL

LOW_VALUE RAW(32) NULL

HIGH_VALUE RAW(32) NULL

DENSITY NUMBER 0

NUM_NULLS NUMBER 0

NUM_BUCKETS NUMBER 0

LAST_ANALYZED DATE NULL

SAMPLE_SIZE NUMBER 0

CHARACTER_SET_NAME VARCHAR2(44) NULL

CHAR_COL_DECL_LENGTH NUMBER 0

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

AVG_COL_LEN NUMBER 0

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

Name Null? Type Value
D-22 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
USER_TABLES

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30) NULL

CLUSTER_NAME VARCHAR2(30) NULL

IOT_NAME VARCHAR2(30) NULL

PCT_FREE NUMBER 0

PCT_USED NUMBER 0

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

LOGGING VARCHAR2(3) NULL

BACKED_UP VARCHAR2(1) NULL

NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER 0

AVG_SPACE NUMBER 0

CHAIN_CNT NUMBER 0

AVG_ROW_LEN NUMBER 0

Name Null? Type Value
Data Dictionary Translation Support D-23

Data Dictionary Mapping
USER_USERS

AVG_SPACE_FREELIST_BLOCKS NUMBER 0

NUM_FREELIST_BLOCKS NUMBER 0

DEGREE VARCHAR2(10) NULL

INSTANCES VARCHAR2(10) NULL

CACHE VARCHAR2(5) NULL

TABLE_LOCK VARCHAR2(8) NULL

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

PARTITIONED VARCHAR2(3) NULL

IOT_TYPE VARCHAR2(12) NULL

TEMPORARY VARHCAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

NESTED VARCHAR2(3) NULL

BUFFER_POOL VARCHAR2(7) NULL

ROW_MOVEMENT VARCHAR2(8) NULL

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARCHAR2(15) NULL

SKIP_CORRUPT VARCHAR2(8) NULL

MONITORING VARCHAR2(3) NULL

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0

ACCOUNT_STATUS NOT NULL VARCHAR2(32) OPEN

LOCK_DATE DATE NULL

Name Null? Type Value
D-24 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping
USER_VIEWS

EXPIRY_DATE DATE NULL

DEFAULT_TABLESPACE NOT NULL VARCHAR2(30) NULL

TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30) NULL

CREATED NOT NULL DATE NULL

INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30) NULL

EXTERNAL_NAME VARCHAR2(4000) NULL

Name Null? Type Value

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER 0

TEXT LONG NULL

TYPE_TEXT_LENGTH NUMBER 0

TYPE_TEXT VARCHAR2(4000) NULL

OID_TEXT_LENGTH NUMBER 0

OID_TEXT VARCHAR2(4000) NULL

VIEW_TYPE_OWNER VARCHAR2(30) NULL

VIEW_TYPE VARCHAR2(30) NULL

Name Null? Type Value
Data Dictionary Translation Support D-25

Data Dictionary Mapping
D-26 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Index

A
agents

generic connectivity, 2-4

Heterogeneous Services

disabling self-registration, 4-15

registering, 4-11, 4-12, 4-13

specifying initialization parameters for, 4-4

application development

Heterogeneous Services

controlling array fetches between non-Oracle

server and agent, 4-9

controlling array fetches between Oracle

server and agent, 4-9

controlling reblocking of array fetches, 4-9

DBMS_HS_PASSTHROUGH package, 3-5

pass-through SQL, 3-5

using bulk fetches, 4-8

using OCI for bulk fetches, 4-9

array fetches, 4-9

agents, 4-9

B
bind queries

executing using pass-through SQL, 3-11

BIND_INOUT_VARIABLE procedure, 3-6, 3-10

BIND_OUT_VARIABLE procedure, 3-6, 3-10

BIND_VARIABLE procedure, 3-6

buffers

multiple rows, 3-12

bulk fetches

optimizing data transfers using, 4-8

C
CATHO.SQL script

installing data dictionary for Heterogeneous

Services, 4-2

character sets

Heterogeneous Services, A-7

CLOSE_CURSOR function, 3-6

commit point site

commit point strength, A-3

configuring

generic connectivity, 7-8

transparent gateways, 4-2

Copying data

COPY command, 4-19

from Oracle database server to SQL Server, 4-19

from SQL Server to Oracle database server, 4-21

INSERT statement, 4-20

CREATE TABLE command, 4-21

D
data dictionary

contents with generic connectivity, D-5

installing for Heterogeneous Services, 4-2

mapping for generic connectivity, D-7

Oracle server name/SQL Server name, D-7

translation support for generic

connectivity, D-1

data dictionary views

generic connectivity, D-5

Heterogeneous Services, 4-22, D-2

database links

heterogeneous systems, 4-4
Index-1

date formats

Heterogeneous Services, A-8, A-9

DBMS_HS_PASSTHROUGH package, 3-5

list of functions and procedures, 3-6

DBMS_HS_PASSTHROUGH.EXECUTE_

IMMEDIATE, C-18

describe cache high water mark

definition, A-4

drivers

ODBC, 7-13

OLE DB (FS), 7-16

OLE DB (SQL), 7-15

dynamic performance views

Heterogeneous Services, 4-28

determining open sessions, 4-28

determining which agents are on host, 4-28

E
EXECUTE_IMMEDIATE procedure, 3-6

restrictions, 3-7

EXECUTE_NON_QUERY procedure, 3-6

F
FDS_CLASS, 4-13

FDS_CLASS_VERSION, 4-13

FDS_INST_NAME, 4-14

FETCH_ROW procedure, 3-7

executing queries using pass-through SQL, 3-11

fetches

bulk, 4-8

optimizing round-trips, 3-12

G
Gateway

how it works, 2-8

remote data access, 1-5

two-phase commit, 1-6

generic connectivity

architecture, 7-3

Oracle and non-Oracle on same machine, 7-4

Oracle and non-Oracle on separate

machines, 7-3

configuration, 7-8

creating initialization file, 7-8

data dictionary

translation support, D-1

definition, 7-2

DELETE statement, 7-7

editing initialization file, 7-8

error tracing, A-6

Heterogeneous Services, 2-4

INSERT statement, 7-7

non-Oracle data dictionary access, D-1

ODBC connectivity requirements, 7-13

OLE DB (FS) connectivity requirements, 7-16

OLE DB (SQL) connectivity requirements, 7-15

restrictions, 7-6

setting parameters for ODBC source, 7-10

UNIX, 7-11

Windows NT, 7-10

setting parameters for OLE DB source, 7-12

SQL execution, 7-6

supported functions, 7-7

supported SQL syntax, 7-7

types of agents, 7-2

UPDATE statement, 7-7

GET_VALUE procedure, 3-7, 3-10

H
heterogeneous distributed systems

accessing, 4-2

Heterogeneous Services

agent registration, 4-11

avoiding configuration mismatches, 4-12

disabling, 4-15

enabling, 4-11

agents

self-registration, 4-13

application development

controlling array fetches between non-Oracle

server and agent, 4-9

controlling array fetches between Oracle

server and agent, 4-9

controlling reblocking of array fetches, 4-9

DBMS_HS_PASSTHOUGH package, 3-5

pass-through SQL, 3-5
Index-2

using bulk fetches, 4-8

using OCI for bulk fetches, 4-9

creating database links, 4-4

data dictionary views, 4-22, D-2

types, 4-22

understanding sources, 4-23

using general views, 4-24

using SQL service views, 4-26

using transaction service views, 4-25

defining maximum number of open

cursors, A-10

dynamic performance views, 4-28

V$HS_AGENT view, 4-28

V$HS_SESSION view, 4-28

generic connectivity

architecture, 7-3

creating initialization file, 7-8

definition, 7-2

editing initialization file, 7-8

non-Oracle data dictionary access, D-1

ODBC connectivity requirements, 7-13

OLE DB (FS) connectivity requirements, 7-16

OLE DB (SQL) connectivity

requirements, 7-15

restrictions, 7-6

setting parameters for ODBC source, 7-10

setting parameters for OLE DB source, 7-12

SQL execution, 7-6

supported functions, 7-7

supported SQL syntax, 7-7

supported tables, D-5

types of agents, 7-2

installing data dictionary, 4-2

optimizing data transfer, A-11

setting global name, A-4

setting up access using transparent

gateway, 4-2

setting up environment, 4-2

specifying cache high water mark, A-4

specifying cache size, A-10

specifying commit point strength, A-3

specifying domain, A-3

specifying instance identifier, A-3

SQL service, 2-5

testing connections, 4-4

transaction service, 2-4

tuning internal data buffering, A-11

HS_AUTOREGISTER initialization parameter

using to enable agent self-registration, 4-14

HS_BASE_CAPS view, 4-23

HS_BASE_DD view, 4-23

HS_CLASS_CAPS view, 4-23

HS_CLASS_DD view, 4-23

HS_CLASS_INIT view, 4-23

HS_COMMIT_POINT_STRENGTH initialization

parameter, A-3

HS_DB_DOMAIN initialization parameter, A-3

HS_DB_INTERNAL_NAME initialization

parameter, A-3

HS_DB_NAME initialization parameter, A-4

HS_DESCRIBE_CACHE_HWM initialization

parameter, A-4

HS_FDS_CLASS view, 4-23

HS_FDS_CONNECT_INFO initialization

parameter, A-4

specifying connection information, 7-9

HS_FDS_FETCH_ROWS initialization

parameter, 4-9

HS_FDS_INST view, 4-23

HS_FDS_SHAREABLE_NAME initialization

parameter, A-6

HS_FDS_TRACE initialization parameter, A-6

HS_FDS_TRACE_LEVEL initialization parameter

enabling agent tracing, 7-9

HS_LANGUAGE initialization parameter, A-6

HS_NLS_DATE_FORMAT initialization

parameter, A-8

HS_NLS_DATE_LANGUAGE initialization

parameter, A-8

HS_NLS_NCHAR initialization parameter, A-9

HS_OPEN_CURSORS initialization

parameter, A-10

HS_ROWID_CACHE_SIZE initialization

parameter, A-10

HS_RPC_FETCH_REBLOCKING initialization

parameter, 4-10, A-11

HS_RPC_FETCH_SIZE initialization

parameter, 4-9, A-11
Index-3

I
IFILE, A-12

L
listeners, 4-2

M
multiple rows

buffering, 3-12

N
National Language Support (NLS)

Heterogeneous Services, A-6

character set of non-Oracle source, A-9

date format, A-8

languages in character date values, A-8

O
OCI

optimizing data transfers using, 4-9

ODBC agents

connectivity requirements, 7-13

functions, 7-13

ODBC connectivity

data dictionary mapping, D-7

ODBC driver, 7-13

requirements, 7-13

specifying connection information

UNIX, A-5

Windows NT, A-5

specifying path to library, A-6

OLE DB (FS) drivers, 7-16

OLE DB (SQL) drivers, 7-15

OLE DB agents

connectivity requirements, 7-15, 7-16

OLE DB connectivity

data dictionary mapping, D-7

setting connection information, A-5

OLE DB drivers

data provider requirements, 7-16

initialization properties, 7-18

rowset properties, 7-18

OPEN_CURSOR procedure, 3-6

operating system dependencies, C-1

Oracle database server

SQL construct processing, 4-16

Oracle Net Services listener, 2-3, 4-2

Oracle precompiler

optimizing data transfers using, 4-9

OUT bind variables, 3-10

P
PARSE procedure, 3-6

pass-through SQL

avoiding SQL interpretation, 3-5

executing statements, 3-6

non-queries, 3-7

queries, 3-11

with bind variables, 3-8

with IN bind variables, 3-9

with IN OUT bind variables, 3-10

with OUT bind variables, 3-10

implications of using, 3-6

overview, 3-5

restrictions, 3-6

Q
queries

pass-through SQL, 3-11

R
reblocking, 4-9

rows

buffering multiple, 3-12

S
SELECT statement

accessing non-Oracle system, D-1

service names

specifying in database links, 4-4

SQL capabilities

data dictionary tables, 4-26
Index-4

SQL service

data dictionary views, 2-8, 4-22

Heterogeneous Services, 2-5

views

Heterogeneous Services, 4-26

Synonyms, 4-17

T
transaction service

Heterogeneous Services, 2-4

views

Heterogeneous Services, 4-25

transparent gateways

accessing Heterogeneous Services agents, 4-2

creating database links, 4-4

installing Heterogeneous Services data

dictionary, 4-2

testing connections, 4-4

Two-phase commit, 1-6

U
unsupported functions

generic connectivity, 7-7

V
V$HS_AGENT view

determining which agents are on host, 4-28

V$HS_PARAMETER view

listing HS parameters, 4-29

V$HS_SESSION view

determining open sessions, 4-29

variables

bind, 3-7
Index-5

Index-6

	Send Us Your Comments
	Preface
	1 Introduction
	The Heterogeneous Challenge
	The Heterogeneous Services Module in the Oracle Database Server
	Integrating Heterogeneous Services Into the Oracle Server
	Benefits of Heterogeneous Services
	Remote Data Access
	Elimination of Unnecessary Data Duplication
	Heterogeneous Database Integration
	Application Development and End User Tools
	Two-Phase Commit and Multi-Site Transactions
	Query Optimization
	Error Mapping and Logging
	Pass-Through Feature

	2 Oracle Transparent Gateways and Generic Connectivity
	Heterogeneous Connectivity Process Architecture
	Heterogeneous Services Agents
	Types of Heterogeneous Services Agents
	Oracle Transparent Gateways
	Generic Connectivity

	Heterogeneous Services Components
	Transaction Service
	SQL Service

	Configuring Heterogeneous Services
	Data Dictionary Translations
	Initialization Parameters
	Capabilities

	The Heterogeneous Services Data Dictionary
	Classes and Instances
	Data Dictionary Views

	Gateway Process Flow
	Oracle Transparent Gateways for Non-Oracle Database Systems

	3 Major Features
	SQL and PL/SQL Support
	Heterogeneous Replication
	Passthrough SQL
	Using the DBMS_HS_PASSTHROUGH package
	Considering the Implications of Using Pass-Through SQL
	Executing Pass-Through SQL Statements
	Executing Non-Queries
	Using Bind Variables: Overview
	Using IN Bind Variables
	Using OUT Bind Variables
	Using IN OUT Bind Variables

	Executing Queries

	Result Set Support
	Introduction
	Result Set Support In Non-Oracle Systems:
	Model 1
	Model 2

	Heterogeneous Services Support for Result Sets
	Cursor mode
	Sequential Mode

	Code Examples:
	OCI program fetching from result sets in cursor mode
	OCI program fetching from result sets in sequential mode
	PL/SQL program fetching from result sets in cursor mode

	Data Dictionary Translations
	Examples
	Example 1: Check current session's user name on Oracle and on Informix.
	Example 2: Check current session's user ID on Oracle and on Informix.
	Example 3: Check constraints defined on a non-Oracle system for tables owned by an arbitrary user.

	Date Time
	Two Phase Commit Protocol
	Piecewise Long
	SQL*Plus Describe Command
	Constraints on SQL in a Distributed Environment
	Resolving Remote and Heterogeneous References
	Resolving Important Restrictions
	Rule A: A data definition language statement cannot be remote mapped.
	Rule B: Insert, Update and Delete statements with a remote target table must be remote mapped.
	Rule C: Object features like tables with nested table columns, ADT columns, Opaque columns or Ref...
	Rule D: SQL statements containing operators and constructs that are not supported at the remote s...
	Rule E: SQL statement containing a table expression cannot be remote mapped.
	Rule F: If a SQL statement selects a long, the statement must be mapped to the node where the tab...
	Rule G: The statement must be mapped to the node on which the table or tables with columns refere...
	Rule H: If the SQL statement contains a SEQUENCE or sequences, the statement must be mapped to th...
	Rule I: If the statement contains a user defined operator or operators, the statement must be map...
	Rule J: A statement containing duplicate bind variables cannot be remote mapped.

	Updates, Inserts and Deletes

	Using Index and Table Statistics
	Other Optimizations
	Remote Join Optimization

	Optimizer Restrictions for non-Oracle Access

	4 Using the Gateway
	Setting Up Access to Non-Oracle Systems
	Step 1: Install the Heterogeneous Services Data Dictionary
	Step 2: Set Up the Environment to Access Heterogeneous Services Agents
	A Sample Entry for a Oracle Net Service Name
	A Sample Listener Entry

	Step 3: Create the Database Link to the Non-Oracle System
	Step 4: Test the Connection

	Initialization Parameters
	Optimizing Data Transfers Using Bulk Fetch
	Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
	Controlling the Array Fetch Between Oracle Database Server and Agent
	Controlling the Array Fetch Between Agent and Non-Oracle Server
	Controlling the Reblocking of Array Fetches

	Registering Agents
	Enabling Agent Self-Registration
	Using Agent Self-Registration to Avoid Configuration Mismatches
	Understanding Agent Self-Registration
	FDS_CLASS and FDS_CLASS_VERSION
	FDS_INST_NAME

	Specifying HS_AUTOREGISTER

	Disabling Agent Self-Registration

	Oracle Database Server SQL Construct Processing
	Using Synonyms
	Example of a Distributed Query

	Copying Data from the Oracle Database Server to the Non-Oracle Database System
	Copying Data from the Non-Oracle Database System to the Oracle Database Server
	Heterogeneous Services Data Dictionary Views
	Understanding the Types of Views
	Understanding the Sources of Data Dictionary Information
	Using the General Views
	Using the Transaction Service Views
	Using the SQL Service Views
	Using Views for Capabilities and Translations
	Using Views for Data Dictionary Translations

	Using the Heterogeneous Services Dynamic Performance Views
	Determining Which Agents Are Running on a Host
	Determining the Open Heterogeneous Services Sessions
	Determining the Heterogeneous Services Parameters

	5 Using Multithreaded Agents
	Concepts
	The Challenge of Dedicated Agent Architecture
	The Advantage of Multithreading

	Multithreaded Agent Architecture
	Overview
	The Monitor Thread
	Dispatcher Threads
	Task Threads

	Multithreaded Agent Administration
	Overview
	Single Command Mode Commands
	Shell Mode Commands

	6 Performance Tips
	Optimizing Heterogeneous Distributed SQL Statements
	Using Gateways and Partition Views
	Optimizing Performance of Distributed Queries
	Choose the best SQL statement.
	Use the cost-based optimizer.
	Use views.

	7 Generic Connectivity
	What Is Generic Connectivity?
	Types of Agents
	Generic Connectivity Architecture
	Oracle and Non-Oracle Systems on Separate Machines
	Oracle and Non-Oracle Systems on the Same Machine

	SQL Execution
	Data Type Mapping
	Generic Connectivity Restrictions

	Supported Oracle SQL Statements
	Functions Supported by Generic Connectivity

	Configuring Generic Connectivity Agents
	Creating the Initialization File
	Editing the Initialization File
	Setting Initialization Parameters for an ODBC-based Data Source
	Setting Agent Parameters on Windows NT
	Setting Parameters on NT: Example

	Setting Agent Parameters on UNIX platforms
	Setting Parameters on UNIX: Example

	Setting Initialization Parameters for an OLE DB-based Data Source

	ODBC Connectivity Requirements
	OLE DB (SQL) Connectivity Requirements
	OLE DB (FS) Connectivity Requirements
	Data Source Properties

	A Heterogeneous Services Initialization Parameters
	HS_COMMIT_POINT_STRENGTH
	HS_DB_DOMAIN
	HS_DB_INTERNAL_NAME
	HS_DB_NAME
	HS_DESCRIBE_CACHE_HWM
	HS_FDS_CONNECT_INFO
	ODBC-based Data Source on Windows:
	ODBC-based Data Source on UNIX:
	OLE DB-based Data Source (Windows NT Only):

	HS_FDS_SHAREABLE_NAME
	HS_FDS_TRACE_LEVEL
	HS_LANGUAGE
	Character sets
	Language
	Territory

	HS_LONG_PIECE_TRANSFER_SIZE
	HS_NLS_DATE_FORMAT
	HS_NLS_DATE_LANGUAGE
	HS_NLS_NCHAR
	HS_NLS_TIMESTAMP_FORMAT
	HS_NLS_TIMESTAMP_TZ_FORMAT
	HS_OPEN_CURSORS
	HS_ROWID_CACHE_SIZE
	HS_RPC_FETCH_REBLOCKING
	HS_RPC_FETCH_SIZE
	HS_TIME_ZONE
	IFILE

	B Data Type Mapping
	Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface
	Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface

	C DBMS_HS_PASSTHROUGH for Pass-Through SQL
	Summary of Subprograms
	BIND_VARIABLE procedure
	Syntax.
	Parameters
	Exceptions
	Pragmas

	BIND_VARIABLE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_VARIABLE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	CLOSE_CURSOR function
	Syntax
	Parameter
	Exceptions
	Pragmas

	EXECUTE_IMMEDIATE function
	Syntax
	Parameter Description
	Returns
	Exceptions
	Pragmas

	EXECUTE_NON_QUERY function
	Syntax
	Parameter
	Returns
	Exceptions
	Pragmas

	FETCH_ROW function
	Syntax
	Parameters and Descriptions
	Returns
	Exceptions
	Pragmas

	GET_VALUE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	GET_VALUE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	GET_VALUE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	OPEN_CURSOR function
	Syntax
	Returns
	Exceptions
	Pragmas

	PARSE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	D Data Dictionary Translation Support
	Accessing the Non-Oracle Data Dictionary
	Heterogeneous Services Data Dictionary Views
	Supported Views and Tables
	Data Dictionary Mapping
	Generic Connectivity Data Dictionary Descriptions
	ALL_CATALOG
	ALL_COL_COMMENTS
	ALL_CONS_COLUMNS
	ALL_CONSTRAINTS
	ALL_IND_COLUMNS
	ALL_INDEXES
	ALL_OBJECTS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TABLES
	ALL_USERS
	ALL_VIEWS
	DICTIONARY
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CONS_COLUMNS
	USER_CONSTRAINTS
	USER_IND_COLUMNS
	USER_INDEXES
	USER_OBJECTS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TABLES
	USER_USERS
	USER_VIEWS

	Index

