Oracle9

Heterogeneous Connectivity Administrator’'s Guide

Release 1 (9.0.1)

June 2001
Part No. A88789-01

ORACLE

Oracle9i Heterogeneous Connectivity Administrator’s Guide, Release 1 (9.0.1)

Part No. A88789-01

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Author: Ted Burroughs

Contributing Authors: Vira Goorah and Raghu Mani

Contributors: Jacco Draaijer, Kishan Peyetti, Sridhar Rajogopal, Paul Raveling, and Eric Voss
Graphics Designer: Valerie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Net Services, SQL*Plus, Oracle Call Interface, Oracle
Transparent Gateway, Oracle7, Oracle7 Server, Oracle8, Oracle8i, Oracle9i, PL/SQL, Pro*C, Pro*C/C++,
and Enterprise Manager are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Y=g (o WO ET o 10 SO0] 1 110 01=1 01 £ xiii
o =) =01 < PSSR XV

1 Introduction

The Heterogeneous ChallENge 1-2
The Heterogeneous Services Module in the Oracle Database Server..........ccocoeeveevivievinnenn 1-2
Integrating Heterogeneous Services Into the Oracle SErver........cccvievciciecvcce s 14
Benefits Of HEtErOgENEOUS SEIVICESc.oiiiiiieiiieie ittt et sae e 1-5
REMOTE DALA ACCESSeeeieeietie ittt ettt ettt et e st s b et e e st b e e beesbee e bt e sbeeenbeenbbeebeennee s 1-5
Elimination of Unnecessary Data DUpPliCatioNcccviviieiieiiie s 1-5
Heterogeneous Database INTegration ... e 1-6
Application Development and ENd USEr TOOISccoviiiiiiiiniiiniseeceeeees 1-6
Two-Phase Commit and Multi-Site TransactionsS..........cccocevierieeieieneie e 1-6
QUETY OPLIMIZATION ...ttt e et s bbbt e b b e 1-6
Error Mapping @nd LOGOINGccoiiiiiiiiiieiceniesiese sttt 1-7
PasS-TRrOUQGN FEATUIEcviiie ettt st te e snestesrenren 1-7

2 Oracle Transparent Gateways and Generic Connectivity

Heterogeneous Connectivity Process ArchiteCture ... 2-2
HeterogeneouUS SEIVICES AGENTS.oiii ettt sttt bbbttt be st e b sbesbe b e 2-2
Types of Heterogeneous SErvIiCES AGENTS ..o 2-3
Oracle TranSPAreNt GALEWAYScc.cceiveriiiieieieieeise e ste et ste et steaesaeeessesa e e ssesrestesresreses 2-3
GENEIIC CONNMECTIVITYue vttt bttt ettt s e b e b e et et sbesbeneas 2-4

Heterogeneous SErvices COMPONENTS. ..ottt st st ebe e sne e 2-4

TrANSACTION SEIVICE ...ttt ettt sttt st ettt et et e e et eseebeaneenesbenbeseens 2-4
SQL SEIVICE ... ctiitiecte ettt ettt ettt e et et e et e et e e bt e beeabeebeeabesbeeabesbeesbesbeesbesbe e beebeesbeeneenbeensebeenns 2-5
Configuring HeterogenNEOUS SEIVICES.ccvcviiiieiiieeie st se e et et e et e saeesae e e sreanees 2-5
Data Dictionary TranSIatiONSccoeiiieiiiii e 2-6
INTtIAlIZAtION PAFAMELETS.....otiiiiiicice bbbttt 2-6
CAPADIIITIES ... bbbttt 2-6
The Heterogeneous Services Data DICtIONAIY ..ot 2-6
ClaSSES AN INSTANCEScviietiieiirieiirieert ettt ettt b bbb sn b b s neens 2-7
Data DICLIONAIY VIBWScueiiieiie ettt ettt st e e st e te e s e be e st e ste et e sneentesneentenneas 2-8
GateWaY ProCESS FIOW.......c.ciiiiiieiiie bbb 2-8
Oracle Transparent Gateways for Non-Oracle Database Systems.........cccccevvvevvcrveieinennnn, 2-10

3 Major Features

1@ I=Ta [I od IV AST@ IR T U1 o] o To] o A0SR 3-2
Heterogeneous REPIICATIONcci it 3-3
PaSSTNFOUGN SQL.......oiiiiiiiieii bbbt b et bbbttt 3-5
Using the DBMS_HS PASSTHROUGBHKAGEcccceevririiire e see e 3-5
Considering the Implications of Using Pass-Through SQLccccccerinininiiiiieinenccee 3-6
Executing Pass-Through SQL STAteMENTS.........ccceiiiiiiiiiiieisieneie et 3-6
EXecUting NON-QUEKIESccviiieiieie it see et et sttt st et se e es e seeneeresresnesnenns 3-7
EXECULING QUEKIES.oeiieiieie ettt ettt sttt be st et e st et e ens e beeneesaeeneesreenees 3-11

RESUIT ST SUPPOIT ...ttt bbbt bbb bbb 3-14
LY oo [Tox (o] o USROS 3-14
Result Set Support In NoNn-Oracle SYSIEMS: ... 3-14

1Y/ [T [S RTRRSOS PR 3-15

MO 2. bbbttt ettt et b 3-15
Heterogeneous Services SUPPOIt for RESUIT SETS ..o 3-15
LOL UL 5T] gl 1o LTSRS 3-16

=T (U] AT LY/ oo -SSR 3-16

COAE EXAMPIES: ...t b bbbt bbbttt b e 3-17
OCI program fetching from result sets in CUrsor MOde...........ccoevrvireincineneenn 3-18

OCI program fetching from result sets in sequential mode..........cccccoevvveiciciecncnnn, 3-19
PL/SQL program fetching from result sets in cUrsor Modeccccooeieieicinenenncns 3-21

Data Dictionary TranSIatioNS............coiiiiiiii s 3-24

EXAIMPIES ...ttt bt bbb bbb bbb et b b a e re e 3-25

DIALE THIMIE ..ttt h ettt bbb e et e e bt e bt s b sb e b et st e ne e st e st ene e bt eb e beeaeere b e 3-27
Two Phase ComMMIt ProtOCOL ..ot e 3-28
PIECEWISE LONQ ...ttt ettt et et e e st et e eneesbeeneesbeeaestaeseesraestenreens 3-28
SQL*PIus Describe COMMANTcooiiiiiiiieiiee ettt sne 3-29
Constraints on SQL in a Distributed ENVIroNmMENtcccooivieieiii i 3-29
Resolving Remote and Heterogeneous REfErenCescccovvvveievieiiciccc e 3-29
Resolving IMportant ReSTFICIIONS. ..o 3-30
Updates, INSerts and DEIBLES........ccccvieiiiee et re e s 3-34
Using Index and Table STatiStiCS.........ccoiiiiiiiiie s 3-35
Other OPLIMIZALIONSc.eiiiiieiiece ettt bbbt b e bt e bt et bbbt nnenes 3-36
Remote JOIN OPtiMIZAtION ... e e 3-37
Optimizer Restrictions fOr NON-Oracle ACCESS.ccociiiiiiiiire e 3-38

4 Using the Gateway

Setting Up Access t0 NON-Oracle SYSTEMSouiiiiiiiiisee e 4-2
Step 1: Install the Heterogeneous Services Data DIiCtionarycccocueviennennenseneennens 4-2
Step 2: Set Up the Environment to Access Heterogeneous Services Agents.........cc.covee.e. 4-2

A Sample Entry for a Oracle Net Service Name ... 4-3
A SAMPIE LISTENET ENTIY ..ot 4-3
Step 3: Create the Database Link to the Non-Oracle Systemcccccceveveicvcivncv e, 4-4
Step 4: TeSt the CONNECTIONoouiiiiiieeee et 4-4

INTLIAlIZAtION PAFAMETEISociiie ettt b et esbe b bt e 4-6

Optimizing Data Transfers Using BUulK FETCh..........cc.coiiiiiiiiiic e 4-8
Using OCI, an Oracle Precompiler, or Another Tool for Array Fetchesccccoovinennne 4-9
Controlling the Array Fetch Between Oracle Database Server and Agent..........c.ccccoeennee. 4-9
Controlling the Array Fetch Between Agent and Non-Oracle Server..........cccocoeveevevicennnn, 4-9
Controlling the Reblocking of Array FEtCheS.........ccccov i 4-9

REGISTENTNG AGENTS ...ttt bbbt bttt se ekt nb bbbt bt s bt b e b e 4-11
Enabling Agent Self-RegiStrationcccccevieriiieiiiie s 4-11

Using Agent Self-Registration to Avoid Configuration Mismatches..............c...c....... 4-12
Understanding Agent Self-RegiStration.............coooiiiniiniinescesee e 4-13
Specifying HS_AUTOREGISTER.........ccoviiiiineereie et 4-14
Disabling Agent Self-RegiStration..........c.cccvccviiieiiiicie e 4-15
Oracle Database Server SQL CONSErUCE PrOCESSINGcccovrveiriiiriiiiiisieisiesese e 4-16

vi

L0] [[o RS} YA 1 10])4 1.1 1SS 4-17

Example of a Distributed QUETYcoiiiiiiiiiiiee et 4-17
Copying Data from the Oracle Database Server to the Non-Oracle Database System....... 4-19
Copying Data from the Non-Oracle Database System to the Oracle Database Server....... 4-21
Heterogeneous Services Data DiCtioNary VIBWScccociriiiiiiiiiiieeeeee s 4-22

Understanding the TYPES Of VIBWS......cc.cociiiiicssese e 4-22
Understanding the Sources of Data Dictionary Informationc.ccocco oo, 4-23
USING the GENETAL VIBWSceiiiiiiiiii ettt 4-24
Using the Transaction SEIVICE VIEWS.cc.coueveieiiieiisise e st seesie e seesaenesnas e snesnennes 4-25
USING the SQL SEIVICE VIBWS.....ccui ittt ettt saeesae e stesnaestennnens 4-26

Using Views for Capabilities and Translations. ..o 4-26

Using Views for Data Dictionary Translationsccocvvevvvvievieniene e 4-26
Using the Heterogeneous Services Dynamic Performance VIeWsS...........cccoovvevveiecceciecnenn, 4-28

Determining Which Agents Are RUNNING 0N & HOSEc.coviiiiiiiniieeeee e 4-28
Determining the Open Heterogeneous SErviCes SESSIONSccvcvvevererereenieriereeeeesieseanens 4-28
Determining the Heterogeneous Services Parameters..........cccccovvvvveeveeiesieeceseese e 4-29

Using Multithreaded Agents

(670] 0 [o7=] o] £ J TR TP U PP UPR TP 5-2
The Challenge of Dedicated Agent ArchiteCture ... 5-2
The Advantage of MUItItNreadingcccccce e 5-2

Multithreaded Agent ArChITECIUNEcoviieiiccc e 5-4
OVBIVIBW ...ttt ettt sttt sttt b et et e s e s e st e Rt e bt b e bt eb e e b e s be e b et e see s e n b e neeneene et e e beabeebe et nes 5-4
THe MONITOr TREEAMc.eiieiiiiie bbbttt 5-6
DiISPALCNEE TNIEAAS.e ittt bbbttt sttt b b e 5-7
TASK TRFEAAS. ...t ettt b et e besbesbenbe e 5-7

Multithreaded Agent AdMIiNIStrAatioN........ccccooiiiieii e 5-8
OVEBIVIBW ...ttt bbb bbbttt h e st e bt b e bt bt e bt b e e bt e bt b e e et e e e et eht et e et e bt ebe b e 5-8
Single Command Mode COMMEANTS.........coiiiiiiiiiiiie s 5-8
Shell MOde COMIMANTGS.......coiiiiiieeee bbbt b et sn e neens 5-9

Performance Tips

Optimizing Heterogeneous Distributed SQL Statements..........ccccoccevevevcrieieeie e 6-2
Using Gateways and PartitioN VIEWScccoov ittt sre e s sae e 6-2
Optimizing Performance of Distributed QUEIIES..........ccoeiiiiiiiiiiiie e 6-3

7

A

Choose the best SQL StateMENT.ccciveiiiieiicere e 6-3
Use the coSt-based OPTIMIZEN. ... e 6-3
USE VIBWWS. .ottt ekttt e b et b et b et bttt bttt 6-3

Generic Connectivity

What IS GeNEric CONNECLIVITY? ...uoiiiiii e resrenrennen 7-2
TYPES OF AGEINTS ...ttt bbb bbb bbb s et e bt e bt ebe et e be b b e b s 7-2
Generic CoNNECEIVILY AFCHITECTUIE ..o e 7-3

Oracle and Non-Oracle Systems on Separate Machings...........ccccvcevererievicininsinsinsiennns 7-3
Oracle and Non-Oracle Systems on the Same Machinecccocoveviiieinccccn e, 7-4
1@ I T ot U | 4 o] o RSO URPRTRN 7-6
(D1 e= R Y 0TI \Y, =T o] o 11 0T S 7-6
Generic ConNectiVity RESTFCIONS.......cccviiiiicicce et 7-6

Supported Oracle SQL STAtEMENTS.ccoiiiiiieier et 7-7
Functions Supported by Generic CONNECLIVILYc.ccvviviivieriere e 7-7

Configuring Generic CoNNECHIVILY AQENTScviiiiiice e 7-8
Creating the INItIalization File ... e 7-8
Editing the INitialization File ... 7-8
Setting Initialization Parameters for an ODBC-based Data SOUrCecccccvevevvevennenne, 7-10

Setting Agent Parameters on Windows NT ... 7-10
Setting Agent Parameters on UNIX platforms.........c.cccoovivniniincnc e 7-11
Setting Initialization Parameters for an OLE DB-based Data Sourcecccccevvevennnne 7-12

ODBC CoNNECLIVILY REQUITEMENTS ..ottt 7-13

OLE DB (SQL) Connectivity REQUIFEMENTS.......ccciveieieeiece s snens 7-15

OLE DB (FS) Connectivity REQUITEMENTSccoiiiiiiiiiieiisse st 7-16
Data SOUICE PrOPEITIES.c.oiviiitiiectiiect ettt ettt b e en e 7-18

Heterogeneous Services Initialization Parameters

HS_COMMIT_POINT_STRENGTH......eoereeeeoeeeeeoeesssseessssssssessesessssssssssssssessssssssesssssssseesennes A-3
HS. DB _DOMAIN...oovvveecoeereeeeeeeeeeeeeeeeseseesssseeessseeeeeseeessssesessseseesseseeseseeeessseseeessesesssesessssseeesees A-3
HS_DB_INTERNAL_NAMEoovveeeeereeeessseeeeeeeeeeeseessssssessssseesseseesssssssssssseesssesesssessssssseeesennes A-3
HS_ DB INAME ... eeveeeeeeees e eseseeesseseeess e esssesssseeseseesessssssesssseesesesssssssssessseeessessssssseeenennes A4
HS_DESCRIBE_CACHE_HWIM.........oieoereeeeoeeeeeeesesesseeeseseseeeseseesessseessseseeessssessssssssssseensees A-4
HS_FDS_CONNECT _INFQuuooovveeeeoreoeeeseseeeseseeeessessssssssssssseesseseesssssssssssssesssesesssessssssseeesennes A-4
HS_FDS_SHAREABLE_ NAME.coooeeoeseeeseeeeeeosessssssessssssssessssessssesssssssssssssesesssesssssssseesennes A-6

Vii

HS_FDS_TRACE_LEVEL .ovvoooooeeeeeeeeeeeeeeoesesessseeesssseeesesessssssssssssssssseesssssssesssssesesssessssssssssees A-6

HS LANGUAGE.coo ittt ettt ettt bbbt e sb et e sb e e sbe s e abe e abe e A-6
CRAIACTET SEES ...ttt bbbt bttt A-7
(=T [0 10 =T [T SRS PPN A-7
TOITTEONY .ottt e bbb bbbt b et bt b et b et bbbttt A-7

HS_LONG_PIECE_TRANSFER_SIZEccoiiitiiiiiiiese s A-8

HS _NLS DATE_FORMAT ..ottt ettt sttt ettt ettt sttt st s e sbe e sbesesbeeabe e A-8

HS NLS DATE_LANGUAGE.cco ottt sa e sa e b e b et A-8

HS_ NLS NCHAR. ...ttt bbbttt sttt nb e bbb sbe e A-9

HS_NLS_TIMESTAMP_FORMAT ..ottt ettt sttt sne e s A-9

HS _NLS TIMESTAMP_TZ FORMAT.......ccitiiitiitieie ettt ssese v e sneaenes A-10

HS_OPEN_CURSORS.......oiititt ittt ettt sttt se bbb nbe e anes A-10

HS_ROWID_CACHE_SIZE.......cci ittt st sbe e A-10

HS _RPC_FETCH_REBLOCKING.......c.cccottiiititeiititieieseseste st saete et esssressesessesassesassesasnes A-11

HS_RPC_FETCH_SIZE.......o ottt ettt s sbe s A-11

HS_TIME_ZONE ..ottt sttt ettt sttt ettt e b resbe e sbe e e A-12

LI E ottt E e bR bR bR e bt b ettt ettt et rer et A-12

B Data Type Mapping

Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface................... B-2
Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface................ B-4

C DBMS_HS_PASSTHROU@@HPass-Through SQL

SUMMArY Of SUDPIOGIaMSocuiiicccce et s a e eneas C-3
BIND_VARIABLE PrOCEAUIE........ccuiiiiiiiitietisie sttt ettt bbb e C-4
SYNTAX. .t C-14
PAFAIMELETS ...ttt b bbbt bR e b b e C-5
EXCOPTIONS ...ttt bbb bbb bbb e C-5
PrAgMES. ... e C-5
BIND_VARIABLE _NCHARDIOCEAUIEcovieiviiieiiesiesiesieseeseesieee et se et sse e s saenseeeneens C-6
)Y - GO UR T RUPRPRPN C-6
PAFAIMETEIS ..ot ettt bbb et e b e s b e e bt eh b e e bt e se e ebe e e e sbeeneesbe e e C-6

D (o7=] o)1 1 [o LTSS C-6

[=16 [0 F= TSP OTRTSPTR C-6
BIND_VARIABLE _RAWDIOCEAUIE ..ottt ettt st et eneas C-7

viii

PAFAMETEIS ...ttt b e b e bt e b e bt et e bt e b bt et e naenaean C-7
(o<1 o)1 1 [o LSS C-7
[=16 [0 F= T PSP PRSPPI C-8
BIND_OUT_VARIABLEPFOCEAUIEoviniiieieiieiieieeete ettt st snesae st e C-8
311 = U C-8
PAFAMELEIS ... ettt b bbbt r e nn e nee s C-9
EXCEPTIONS. ...ttt bbb bbbt b ettt C-9
g = 0 | g T SRS C-10
BIND_OUT_VARIABLE_NCHARIOCEAUIE.c.couiiiiiiiiieeieeese e C-10
SYNTAX .ttt C-10
PAFAIMELEIS ...ttt ettt b bbbt r e e e e C-10
(=] o (o] LSS TTP PR C-11
PRAOMES ... C-11
BIND_OUT_VARIABLE_RAWBIOCEAUIEooouiriiiiieiiieiisieisie it C-11
)Y 2= PP STRUPRTRPN C-11
PAFAMELEIS ... et b e b et b bt a e bt e nb e eb e e bt sae et e e C-11
(o= o)1 1 [LTSS C-12
L =16 [0 T TR C-12
BIND_INOUT_VARIABLE PrOCEAUIE ...c.cotiiieieiieie ettt st seeneeneas C-12
Y11= PSP C-13
PAAMELEIS ...t r et n e re e e C-13
EXCEPLIONS. ..ottt bbbttt bbbt C-14
[= 0 | g T SRS C-14
BIND_INOUT_VARIABLE_NCHARIIOCEAUIE.......ceiiiiiiiiiieiieieresie st C-14
SYNTAX .ttt C-14
PAFAIMELEIS ...ttt ettt b bbbt r e e e e C-15
(=] o (o] LTSRN C-15
PRAOMES ... e C-15
BIND_INOUT_VARIABLE_RAWIIOCEAUIE.......cueiieiiieiirieisiesie et C-16
)Y 2= PRSPPSO C-16
PAFAMELEIS ...ttt b e st e bt s e bbbt b sae et e e C-16
DT Co7=] o)1 1 [o LTSS C-17
L =16 [0 T T PP PPR TR C-17
CLOSE_CURSOBRINCHION ...ttt sttt sne st st seesbe e seeneeneas C-17

PAIAMELET ...ttt bbbt bbbt b e b e b b e C-18
DT (o7=] o)1 1 [TSR C-18
[=16 |1 0 T T T OSSP PR TSP C-18
EXECUTE_IMMEDIATEUNCLION.....c.ciiiiiiiieieste ettt C-18
R3] = G P C-18
Parameter DESCIIPTIONcoiiiiiiiie ettt sb b see s C-18
RETUITIS ...ttt bbbttt b et s b e e nbe e ae e sbe et e sbeeeesbe e st e C-19
DT (o7=] o)1 1 [LSS C-19
L =16 [0 T T T OSSP PR TSP C-19
EXECUTE_NON_QUERYNCLION.....cooiiiiiiieitiiie et st C-19
R3] = G P C-19
PAAMELET ... bbbttt bbb e C-20
RETUITIS ...ttt bbb b et be e eb e e ae e sbe e e sbeeeesbe et C-20
DT (o7=] o)1 1 [o 1SS C-20
L =10 [0 T T T ST PRRTRTPRP C-20
FETCH_ROMUNCEION ..ottt ettt b bt sn e nes C-20
R3] = G P Cc-21
Parameters and DESCIIPLIONSccuoiviiiiiiiieisese st C-21
RETUITIS ...ttt bbbttt b e bt be e eb e e ae e ebe e e e sbeeeesbe et e C-21
DT (o7=] o)1 1 [LSS C-21
L =10 [0 T T T OSSPSR C-21
GET_VALUBDIOCEAUIE ...ttt bbbt C-22
Y11= P C-22
PAAMELEIS ... bbbt et h e sb e nb e b e e b e C-23
EXCEPTIONS ...ttt bbb C-23
g = 10 | = P C-23
GET_VALUE_NCHAPBIOCEAUIEeeviiiiiiieristeisiesiete sttt se st ssse s ssesessenees C-24
SYNTAX .. e C-24
PAFAIMELETS ...ttt b b bt er e r b C-24
EXCOPTIONS ...ttt bbb bbb bbb nn s C-25
PragMES. ... C-25
GET_VALUE_RAWWIOCEAUIEcoeieceecese ettt e et sne st snenae e sne e C-25
)Y] - PO PR SRR C-25

(=] o (o] o LTS U U TTPPTT C-26

PRAOMES ... e C-26
OPEN_CURSORRINCEION 1..c.tiiiiieieietie ettt sa e enessesnesnesteseessesseseesnensenens c-27
)Y 2= PRSPPI C-27
RETUITIS ...ttt b et b e bt s e b e e nb e ebe et e sbe e besae et s C-27
DT (o7=] o)1 1 [o LTRSS c-27
L =16 [0 T TR C-27
PARSEDIOCEAUIE ...ttt bbbkt bbbt bttt C-28
Y11= PSP C-28
PAAMELEIS ... e b e e r e bt nne s C-28
EXCEPTIONS. ..ottt bbbt b ettt C-28
[= 0 | g T SRS C-28

Data Dictionary Translation Support

Accessing the Non-Oracle Data DiCtiONaryccccoiviviiieiiiese e D-1
Heterogeneous Services Data DICtioNary VIEWSccccciieeiiiie e D-2
Supported VIews and TabIes ... e D-5
DLV e W DI o3 o] aF: 1 VA \Y, F=1 o] o 11 o o PSS D-7
Generic Connectivity Data Dictionary DeSCriptionsccocevereienieieiieneieisesesese e D-8
ALL _CATALOG. ...ttt ettt se bt sttt ns et st n e D-8
ALL_COL_COMMENTS ..ottt bbbttt D-9
ALL_CONS_COLUMNS ..ottt ettt sttt D-9

ALL _CONSTRAINTS ..ottt bbbttt bttt n e D-9
ALL_IND_COLUMNS......coiitiiiiiiteie ettt bbbt D-10
ALL_INDEXES. ..ottt ettt sttt sttt D-10

ALL _OBUJIECTS ..ottt ettt sttt bbb e bttt sttt s n s D-12
ALL_TAB_COLUMNS ..ottt bbbt sttt D-13
ALL_TAB_COMMENTS.....cooititiitiiitiisieeit ettt sttt st D-14

ALL _TABLES.......o oottt ettt ettt bbbttt sttt n et D-14
ALL_USERS ...tttk bbbt D-16
ALL_VIBEWS ...ttt bbbttt et D-16
DICTIONARY ..ottt sttt ettt sttt sttt st s s b e s e st e s e et et s be e ebe e e te s ete st D-17

USER _CATALOG. ...ttt ettt ettt st st b et bttt sttt et et D-17
USER_COL_COMMENTS.....coiiitietreiee ettt D-17
USER_CONS_COLUMNS ..o ittt sttt D-17

Xi

USER_CONSTRAINTS ..ottt s D-18

USER_IND_COLUMNSeeeeeeeseeeeeeomeeeesssssesssssseesssesssssssessssssesssssssssssssssssssesssssessseesees D-18
USER_INDEXES. ..oovvvvceceeroeeeeseeeeeeseeesesseessessesssssseessseeesssssesssssseesesesssssssesssssseessseeesssseeees D-19
WEI =Tz 3 e)= N (o3 K= D-21
USER_TAB_COLUMNS ... eeereeereeeeeeosseeesssseesssssseesssessssssesssssssesssssessssssssssseesssssessseesees D-21
USER_TAB_COMMENTS.....ccoovvoeeeceeereeeseseeeeseeeeesesesssssssessssseeesseeessssessssssseessssesssseeees D-22
USER_TABLES ..o voveeeooereeesseeeseesseeossseessssesssssssesssseessssesssssssseessesesssssssssssseesseseessssesees D-23
USER_USERS ... vvvveeeoeseeseeesessssseesssseessesesessssssssssessssssssssssssessssssssessssssssesseesessseesees D-24
USER_VIEWS.....ceeoeeveeecoeoeeeeseeeseeseeeeosseessesseeesssseeseeeesssesessssseeeseseeses s essssseessseeeseseeeees D-25

Xii

Send Us Your Comments

Oracle9/ Heterogeneous Connectivity Administrator's Guide, Release 1 (9.0.1)
Part No. A88789-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227 Attn.: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

Xiii

Xiv

Preface

Oracle9i Heterogeneous Connectivity Administrator's Guide describes implementation
issues for OracleHeterogeneous Connectivity and introduces the tools and utilities
available to assist you in implementing and using this feature.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XV

Audience

Oracle9i Heterogeneous Connectivity Administrator's Guide is intended for the following
users:

Database administrators who want to administer distributed database systems that
involve the following:

« Oracle to Oracle database links
« Oracle to non-Oracle database links

Regular Oracle database server users who want to make use of the Heterogeneous
Services feature in the Oracle database server

Readers who want an high-level understanding of this product and how it works.

To use this document, you should be familiar with the following information:

Organization

Relational database concepts and basic database administration as des®itaetc@i
Database Conceptnd theOracle9i Database Administrator's Guide

The operating system environment under which database administrators are running
Oracle.

This document contains the following chapters:

Chapter 1, "Introduction”

Heterogeneous Services, an integrated module within the Oracle9i database server,
has been designed to access data in non-Oracle systems by means of either Oracle
Transparent Gateways or generic connectivity. This chapter introduces you to
Heterogeneous Services by describing the kinds of situations in which
Heterogeneous Services is needed and by explaining how Heterogeneous Services
fulfills this need.

Chapter 2, "Oracle Transparent Gateways and Generic Connectivity"

You can access a non-Oracle database system either by Transparent Gateways or
with Generic Connectivity. This chapter describes the architecture of Heterogeneous
Services insofar as it relates to each of these means of accessing a non-Oracle
system.

XVi

Chapter 3, "Major Features"
This chapter describes the major features provided by Heterogeneous Services.

Chapter 4, "Using the Gateway"
This chapter explains how to use Oracle Transparent Gateways.

Chapter 5, "Using Multithreaded Agents"

This chapter explains what multithreaded agents are, how they contribute to the overall
efficiency of a distributed database system, and how to administer multithreaded agents.

Chapter 6, "Performance Tips"

This chapter explains how to optimize distributed SQL statements, how to use
partition views with Oracle Transparent Gateways, and how to optimize the
performance of distributed queries.

Chapter 7, "Generic Connectivity"
This chapter describes the configuration and usage of generic connectivity agents.

Appendix A, "Heterogeneous Services Initialization Parameters"

This appendix lists Heterogeneous Services initialization parameters and gives
instructions how to set them.

Appendix B, "Data Type Mapping"

The tables in this appendix show how Oracle maps ANSI datatypes through ODBC and
OLE DB interfaces to supported Oracle datatypes when it is retrieving data from a
non-Oracle system.

Appendix C, "DBMS_HS PASSTHROUGH for Pass-Through SQL"

The package, DBMS_HS PASSTHROUG#éhNtains the procedures and functions for
pass-through SQL of Heterogeneous Services. This appendix documents each of
them.

Appendix D, "Data Dictionary Translation Support"

This appendix documents data dictionary translation support. It explains how to access
non-Oracle data dictionaries, lists Heterogeneous Services data dictionary views, describes
how to use supported views and tables, and explains data dictionary mapping.

Xvii

Related Documentation

xViii

For more information, see these Oracle resources:

« Oracle9i Database Concepts

« Oracle9i Database Administrator’'s Guide

« Oracle9i Database New Features

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase documentation
from

http/Amwwv.oraclebookshop.conv

Other customers can contact their Oracle representative to purchase printed documentation.

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using
OTN,; registration is free and can be done at

http:/technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http:/technet.oracle.com/docs/indexhtm

Many of the examples in this book use the sample schemas of the seed database, which is

installed by default when you install Oracle. RefeDtacle9i Sample Schemfs
information on how these schemas were created and how you can use them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase documentation
from

http/Amww.oraclebookshop.conv/

Other customers can contact their Oracle representative to purchase printed documentation.

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using
OTN; registration is free and can be done at

http/fechnet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http:/technet.oracle.com/docs/index.htm

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms. The
following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are defindtihen you specify this clause, you create an
in the text or terms that appear in a glossaryindex-organized table
or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target database
do notreside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only foNdJMBER
monospace elements supplied by the system. Such column.
(fixed-width elements include parameters, privileges, .
font) datatypes, RMAN keywords, SQL keywordsYou can back up the database by usingBA€KUP

SQL*Plus or utility commands, packages an(epmmand.

methods, as well as system-supplied columQuery theTABLE_NAMEolumn in thdUSER_
names, database objects and structures, TABLESdata dictionary view.

usernames, and roles. Use theDBMS_STATSSENERATE_STATS
procedure.

Xix

Convention

Meaning Example

lowercase
monospace
(fixed-width
font)

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace typeface indicates Entersqglplus to open SQL*Plus.
executables, filenames, directory names, anFl
sample user-supplied elements. Such elemen
include computer and database names, netBack up the datafiles and control files in the
service names, and connect identifiers, as wallsk1/oracle/dbs directory.

as user-supplied database objects and .

structures, column names, packages and L@Zﬂgﬁa{émemg'ju mhcsizegrit?;rg_name » and
classes, usernames and roles, program un'tﬁr.depaﬁments table.

and parameter values.
Set theQUERY_REWRITE_ENABLHiltialization
parameter torue.

pse password is specified in tompwd file.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown. Connect age user.

TheJRepUtil class implements these methods.

Lowercase monospace italic font representsYou can specify thparallel_clause

placeholders or variables. RunUold release .SQL whereold_release

refers to the release you installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. They
are displayed in a monospace (fixed-width) font and separated from normal text as shown in
this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;;

The following table describes typographic conventions used in code examples and provides
examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional item®ECIMAL (digits [, precision)
Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

XX

which is required. Do not enter the braces.

A vertical bar represents a choice of two or {ENABLE | DISABLE}

more options within brackets or braces. Ent

one of the options. Do not enter the vertical(féo'vIPRESS | NOCOMPRESS]
bar.

Convention Meaning Example

Horizontal ellipsis points indicate either:

« That we have omitted parts of the code CREATE TABLE ... AS subquery ;
that are not directly related to the

example
. That you can repeat a portion of the co e?itigge?ll . col2, ..., coln FROM
Vertical ellipsis points indicate that we have
omitted several lines of code not directly
related to the example.
Other notation You must enter symbols other than brackets,acctbal NUMBER(11,2);
braces, vertical bars, and ellipsis points as acct CONSTANT NUMBER(4) := 3:
shown. I
Italics Italicized text indicates placeholders or CONNECT SYSTEMystem_password
variables for which you must supply particula]5B NAME = database name

values.

UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these ternesnployees;
in uppercase in order to distinguish them fro . .
terms you define. Unless terms appear in SELECT * FROM USER_TABLES;
brackets, enter them in the order and with tHeROP TABLE hr.employees;
spelling shown. However, because these terms
are not case sensitive, you can enter them in
lowercase.

lowercase Lowercase typeface indicates programmaticSELECT last_name, employee_id FROM
elements that you supply. For example, employees;
I(;)rvxéitlaégase indicates names of tables, cqumrgaIpIus hr/hr

Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty3MU9;

mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

XXi

XXii

accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

1

Introduction

Heterogeneous Services, an integrated module within the Oracle9 database server,
has been designed to access data in non-Oracle systems by means of either Oracle
Transparent Gateways or generic connectivity. This chapter introduces you to
Heterogeneous Services by describing the kinds of situations in which
Heterogeneous Services is needed and by explaining how Heterogeneous Services
fulfills this need.

This chapter contains these topics:

« The Heterogeneous Challenge

« The Heterogeneous Services Module in the Oracle Database Server
« Integrating Heterogeneous Services Into the Oracle Server

« Benefits of Heterogeneous Services

Note Also: For more information, please consult your gateway
documentation for individual gateways.

Introduction 1-1

The Heterogeneous Challenge

The Heterogeneous Challenge

Heterogeneous access is a challenge that affects many organizations. Many run
several different database systems. Each of these systems stores data and has a set
of applications that runs against it. Consolidation of this data into one database
system is often difficult. This is in large part due to the fact that many of the
applications that run against one database may not have an equivalent that runs
against another. Until such time as migration to one consolidated database system is
made feasible, it is necessary for the various heterogeneous database systems to
work together.

There are several problems to overcome before such inter operability becomes
possible. The database systems can have different access interfaces, different data
types, different capabilities, and different ways of handling error conditions. Even
when one relational database is trying to access another relational database the
differences are significant. In such a situation, the common features of the databases
include data access through SQL, two phase commit, and similar data types.
However, there are significant differences as well. SQL dialects can be different as
can transaction semantics. There can be some data types in one database that do not
exist in the other. The most significant area of difference is in the data dictionaries of
the two databases. Most data dictionaries contain similar information but the
information is structured for each in a completely different way.

There are several possible ways of overcoming this problem. In this book, we
describe the approach that Oracle has taken.

Note: The term "non-Oracle system" refers to the following:

« Any system accessed by PL/SQL procedures written in C (that is, by
external procedures)

« Any system accessed through SQL (that is, by Oracle Transparent
Gateways or generic connectivity)

. Any system accessed procedurally (that is, by procedural gateways)

The Heterogeneous Services Module in the Oracle Database Server

If a client program wishes to access or modify data at several Oracle databases, it
can open up connections to each of them. This approach, however, has several
drawbacks. If data from the databases has to be joined, then the client will have to
contain logic that does that. If data integrity has to be guaranteed, then the client
will have to contain transaction coordination logic. An alternative approach is for
the client to connect to one Oracle database and shift the burden of joining data and

1-2 Oracle9i Heterogeneous Connectivity Administrator's Guide

The Heterogeneous Services Module in the Oracle Database Server

transaction coordination to that database. We call the database that the client
program connects to the local database. We call any database other than this one a
remote database. The client program can access objects at any of the remote
databases using database links. The Oracle query processor will take care of the
joins and its transaction engine will take care of the transaction coordination.

The approach that Oracle has taken to solving the heterogeneous connectivity
problem is to allow a non-Oracle system to be one of the remote nodes in the above
scenario. From the client’s point of view the remote non-Oracle system will function
like a remote Oracle system would. It appears to understand the same SQL dialect
and to have the same data dictionary structure as an Oracle system. Access to a
non-Oracle system in this manner is done through a module in the Oracle server
called Heterogeneous Services. Using Heterogeneous Services with the client
program can do the following

« Retrieve and modify data stored in a non-Oracle system using Oracle SQL
dialect.

« Execute stored procedures at the non-Oracle system using Oracle PL/SQL calls.

« Issue these SQL statements or PL/SQL calls from either Oracle client
applications like SQL*Plus or Oracle programmatic interfaces like Pro*C or
OCI.

Note: Heterogeneous Services can also be used to call external
routines written in C using PL/SQL calls. This aspect of
Heterogeneous Services is not covered in this book. For more
information on external procedures please see Oracle9i SQL
Reference and Oracle9i Application Developer’s Guide - Fundamentals.

The work done by the Heterogeneous Services module is, for the most part,
completely transparent to the end user. With only a few exceptions, you do not need
to do anything different to access a non-Oracle system than you would for accessing
an Oracle system. The Heterogeneous Services Module is used as enabling
technology for many of heterogeneous access products that Oracle Corporation
designs and for features including Oracle Transparent Gateways and Generic
Connectivity (both of which are discussed in detail in this book).

You generally implement Heterogeneous Services in one of the following ways:

« You use an Oracle Transparent Gateway with Heterogeneous Services to access
a particular, commercially available, non-Oracle system for which that Oracle
Transparent Gateway has been designed. (For example, you use the Oracle

Introduction 1-3

Integrating Heterogeneous Services Into the Oracle Server

Transparent Gateway for Sybase on Solaris to access a Sybase database system
operating on a Sun Solaris platform.)

=« You use generic connectivity within Oracle Heterogeneous Services to access
non-Oracle databases through an ODBC or a OLE DB interface.

Integrating Heterogeneous Services Into the Oracle Server

Much of the processing power of Oracle Transparent Gateways for Oracle7 and
earlier versions of the sever has been integrated into Oracle8i and later versions of
the Oracle database server as a module called Heterogeneous Services.

In the all versions of the Oracle server and Oracle Transparent Gateways up to
Oracle7, much of the transaction processing code for the gateway was contained in
the gateway itself. However, much of the same code also existed within the Oracle
database server. Because of this redundancy, using a gateway placed an
unnecessary demand on system resources.

An additional redundancy existed whenever you tried to use more than one
gateway from the same database server. This was because each gateway contained
large segments of code that were common to all the gateways. This meant that
using more than one gateway at a time also placed an unnecessary demand on
system resources.

The approach that Oracle has taken for Oracle8i and later versions of the Oracle
database server has been to integrate all code that is redundant in either of these
two ways into the Heterogeneous Services module of the Oracle database server.
The advantage to this is that using gateways now requires less memory storage
space and processing power than it did in Oracle7 and earlier releases. The result is
a "thin" transparent gateway which functions based on the Heterogeneous Services
module of the database with the following benefits.

1-4 Oracle9i Heterogeneous Connectivity Administrator's Guide

Benefits of Heterogeneous Services

Benefits of Heterogeneous Services

This section describes the following additional features provided by the
Heterogeneous Services module:

=« Remote Data Access

« Elimination of Unnecessary Data Duplication

« Heterogeneous Database Integration

« Application Development and End User Tools

» Two-Phase Commit and Multi-Site Transactions
« Query Optimization

« Error Mapping and Logging

» Pass-Through Feature

Remote Data Access

Remote data access provides distributed database system administrators with
several benefits.

Applications can take advantage of Oracle client-server capability to connect to a
remote server using Oracle Net. The remote server can then connect to the gateway
using a database link. So, because the Oracle architecture enables network
connections between each of the components, you have more options for locating
your data.

Remote access also gives you access to data outside your local environment. With
remote access, you can move application development onto cost-efficient
workstations or microcomputers. Also, with remote access, your data sources are
virtually unlimited. Remote access also enables you to choose the best environment
for your users. For example, data might be located on a platform that supports only
character-mode interfaces, but, with remote access, users can access the data from
desktop platforms that support graphical user interfaces.

Elimination of Unnecessary Data Duplication

An Oracle Transparent Gateway gives applications direct access to non-Oracle
database system data. This consequently eliminates the need to upload and
download large amounts of data to different locations. Reducing the need to upload
and download large amounts of data has the further consequence of reducing the

Introduction 1-5

Benefits of Heterogeneous Services

risk for unsynchronized or inconsistent data. And, by reducing the need for data
duplication, an Oracle transparent gateway reduces the disk storage needs across all
of your systems.

Heterogeneous Database Integration

The Oracle database server can accept a SQL statement that queries data stored in
several different databases. The Oracle database server with the Heterogeneous
Services module processes the SQL statement and passes the appropriate SQL
directly to other Oracle databases and through gateways to non-Oracle databases.
The Oracle database server then combines the results and returns them to the client.
This enables a query to be processed so that it spans the non-Oracle database
system, other databases, and local and remote Oracle data.

Application Development and End User Tools

An Oracle Transparent Gateway extends the range of user tools and application
development that you can use to access the databases. These user tools increase
application development and user productivity by reducing prototype,
development, and maintenance time. This means that current Oracle users do not
have to learn a new set of tools to access data stored in non-Oracle database system
databases. Instead, they can access Oracle and non-Oracle database system data
with a single set of tools. These tools can run on remote machines connected
through Oracle Net to the Oracle database server.

Two-Phase Commit and Multi-Site Transactions

In a distributed database system, the network might fail during a distributed
transaction, raising the risk of data inconsistencies. The Oracle transaction model
uses a two-phase commit protocol to protect the databases as the data is being
committed at sites participating in a distributed transaction. This feature ensures
that all database servers participating in the transaction must commit or roll back
the transaction statements. The two-phase commit protocol is also supported (with
some limitations) for non-Oracle systems when the user is accessing them through
an Oracle Transparent Gateway.

Query Optimization

Whenever possible, the Oracle database server passes the entire query to the
non-Oracle system to utilize the indexes and statistics of the non-Oracle system
tables.

1-6 Oracle9i Heterogeneous Connectivity Administrator's Guide

Benefits of Heterogeneous Services

When a query that involves multiple databases is processed, the Oracle database
server passes optimized statements to the remote servers and gateways involved in
the query to minimize the amount of data returned across the network.

Error Mapping and Logging

The gateway provides error mapping and logging. It does this by mapping the
non-Oracle database system error to an Oracle database server error message and
adding all of the relevant error messages generated by non-Oracle database system.
You can route messages to the client application, an operator console, an error log,
or any combination of these destinations as needed. Error mapping provides
database transparency for applications.

Pass-Through Feature

As mentioned in the previous sections, Heterogeneous Services technology can
allow clients to transparently access non-Oracle systems using Oracle SQL. In some
cases, however, it becomes necessary to use non-Oracle system SQL to access the
non-Oracle system. For such cases, Heterogeneous Services has a pass-through
feature which allows the user to bypass Oracle’s query processor and to issue
non-Oracle system SQL to the non-Oracle system through the gateway.

Introduction 1-7

Benefits of Heterogeneous Services

1-8 Oracle9i Heterogeneous Connectivity Administrator's Guide

2

Oracle Transparent Gateways and Generic
Connectivity

You can access a non-Oracle database system either by Transparent Gateways or
with Generic Connectivity. This chapter describes the architecture of Heterogeneous
Services insofar as it relates to each of these means of accessing a non-Oracle
system.

This chapter contains these topics:

« Heterogeneous Connectivity Process Architecture
« Heterogeneous Services Agents

« Types of Heterogeneous Services Agents

« Heterogeneous Services Components

« Configuring Heterogeneous Services

« The Heterogeneous Services Data Dictionary

« Gateway Process Flow

Oracle Transparent Gateways and Generic Connectivity 2-1

Heterogeneous Connectivity Process Architecture

Heterogeneous Connectivity Process Architecture

At a high level, Oracle heterogeneous connectivity process architecture is structured
as shown in Figure 2-1.

Figure 2—-1 Oracle Heterogeneous Connectivity Process Architecture

Agent
I I
Agent Remote
Oracle Heterogenous Generic Driver Database
Service Code

The Heterogeneous Services module in the kernel talks to a Heterogeneous Services
agent process which, in turn, talks to the non-Oracle system. We can conceptually
divide the code into three parts:

« The Heterogeneous Services Module in the Oracle database server. Most of the
heterogeneous connectivity related processing is done in this module.

« Agent generic code. This is code in the agent that is generic to all
Heterogeneous Services based products. This consists, for the most part, of code
to communicate with the database and multithreading support.

« Thedriver. This is the module that communicates with the non-Oracle system.
It is used to map calls from the Heterogeneous Services external application
programming interface (API) onto the native API of the non-Oracle system and
it is non-Oracle system specific.

Heterogeneous Services Agents

An agent is the process through which an Oracle server connects to a non-Oracle
system. The agent process consists of two components. These are agent generic code
and a non-Oracle system-specific driver. An agent exists primarily to isolate the
Oracle database server from third-party code. In order for a process to access the
non-Oracle system, the non-Oracle system client libraries have to be linked into it.
In the absence of the agent process, these libraries would have to be directly linked
into the Oracle database and problems in this code could cause the Oracle server to
go down. Having an agent process isolates the Oracle server from any problems in

2-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Types of Heterogeneous Services Agents

third-party code so that even if a fatal error takes place, only the agent process will
end.

An agent can reside in the following places:

« On the same machine as the non-Oracle system
« On the same machine as the Oracle server

« Onamachine different from either of these two

Agent processes are usually started when a user session makes its first non-Oracle
system access through a database link. These connections are made using Oracle’s
remote data access software, Oracle Net Services, which enables both client-server
and server-server communication. The agent process continues to run until the user
session is disconnected or the database link is explicitly closed.

Multithreaded agents behave slightly differently. They have to be explicitly started
and shut down by a database administrator instead of automatically being spawned
by Oracle Net Services.

See Also: For more information on multithreaded agents, please
see Chapter 5, "Using Multithreaded Agents"

Types of Heterogeneous Services Agents

Oracle Transparent Gateways

An agent process that accesses a non-Oracle system is called a gateway. (Note that
agents can also be used to execute external procedures.) Access to all gateways goes
through the Heterogeneous Services module in the Oracle server and all gateways
contain the same agent-generic code. Each gateway has a different driver linked in
which maps the Heterogeneous Services application programming interface (API)
to the client API of the non-Oracle system.

An Oracle Transparent gateway is a gateway that is designed for accessing a specific
non-Oracle system. Oracle Corporation provides gateways to access several
commercially produced non-Oracle systems; many of these gateways have been
ported to several platforms. For example, an Oracle Transparent Gateway for
Sybase on Solaris is the Solaris port of a gateway designed to access Sybase
database systems.

With Oracle Transparent Gateways, you can use an Oracle database server to access
data anywhere in a distributed database system without needing to know either the
location of the data or how it is stored. When the results of your queries are

Oracle Transparent Gateways and Generic Connectivity 2-3

Heterogeneous Services Components

returned to you by the Oracle database server, they are presented to you as if the
data stores from which they were taken all resided within a remote instance of an
Oracle distributed database.

Generic Connectivity

In addition to transparent gateways to various non-Oracle database systems, there
is a set of agents that comprise the Oracle generic connectivity feature. These agents
contain only generic code and the customer is responsible for providing the
necessary drivers. Oracle has generic connectivity agents for ODBC and OLE DB
that enable you to use ODBE and OLEDB drivers to access non-Oracle systems that
have an ODBC or an OLE DB interface.

To build a gateway to a specific non-Oracle system using generic connectivity, you
must connect an ODBC or OLE DB driver to the gateway for that non-Oracle
system. These drivers are not provided by Oracle corporation. However, as long as
Oracle Corporation supports the ODBC and OLE DB protocols, you can use the
generic connectivity feature to access any non-Oracle system that can be accessed
using an ODBC or OLE DB driver.

Generic connectivity has some limitations. The ODBC and OLEDB gateways have
to be installed in the same Oracle Home directory as the Oracle database server.
Connecting to one of these gateways from another Oracle database server is not
supported. Functionality of these gateways, especially when compared to Oracle
Transparent Gateways, is limited.

See Also: For more information, see Chapter 7, "Generic
Connectivity"

Heterogeneous Services Components

Transaction Service

The transaction service component of the Heterogeneous Services module makes it
possible for non-Oracle systems to be integrated into Oracle database server
transactions and sessions. When you access a non-Oracle system for the first time
over a database link within your Oracle user session, you transparently set up an
authenticated session in the non-Oracle system. At the end of your Oracle user
session, the authenticated session in the non-Oracle database system transparently
closes at the non-Oracle system.

2-4 Oracle9i Heterogeneous Connectivity Administrator's Guide

Configuring Heterogeneous Services

SQL Service

Additionally, one or more non-Oracle systems can participate in an Oracle
distributed transaction. When an application commits a transaction, Oracle’s
two-phase commit protocol accesses the non-Oracle database system to coordinate
transparently the distributed transaction. Even in those cases where the non-Oracle
system does not support all aspects of Oracle two-phase commit protocol, Oracle
can (with some limitations) support distributed transactions with the non-Oracle
system.

The standard query language (SQL) service handles the processing of all
SQL-related operations. The work done by the SQL service includes:

1. Mapping Oracle internal SQL-related calls to the Heterogeneous Services driver
application programing interface (API); this is in turn mapped by the driver to
the client API of the non-Oracle system.

2. Translating SQL statements from Oracle’s SQL dialect to the SQL dialect of the
non-Oracle system.

3. Translating queries that reference Oracle data dictionary tables to queries that
extract the necessary information from the non-Oracle system data dictionary.

4. Translating data from non-Oracle system data types to Oracle data types and
back.

5. Making up for missing functionality at the non-Oracle system by issuing
multiple queries to get the necessary data and doing post processing to get the
desired results

Configuring Heterogeneous Services

In the previous section, we described what the different heterogeneous components
do. These components consist entirely of generic code and, in order to work with so
many different non-Oracle systems, their behavior has to be configured. Each
gateway has configuration information stored in the driver module and this
information is uploaded to the server immediately after the connection to the
gateway has been established. We can divide this configuration information into
three parts:

« Data Dictionary Translations
« Initialization Parameters

« Capabilities

Oracle Transparent Gateways and Generic Connectivity 2-5

The Heterogeneous Services Data Dictionary

Data Dictionary Translations

Data dictionary translations are views on non-Oracle system data dictionary tables
that help Heterogeneous Services translate references to Oracle data dictionary
tables into queries needed to retrieve the equivalent information from the
non-Oracle system data dictionary.

Note: For a more detailed explanation of data dictionary
translations, please see Appendix D, "Data Dictionary Translation
Support".

Initialization Parameters

Capabilities

Initialization parameters serve two functions.

« They give the user a means of fine-tuning the gateway to optimize performance
and memory utilization for the gateway and the Heterogeneous Services
module.

« They enable the user to tell the gateway (and, thereby, Heterogeneous Services)
how the non-Oracle system has been configured (for example what language
the non-Oracle system is running in). To put it another way, they give
Heterogeneous Services information about the configurable properties of the
non-Oracle system.

You can examine the initialization parameters for a session by querying the view
V$HS_PARAMETERJsers can set initialization parameters in gateway initialization
files.

Capabilities tell Heterogeneous Services about the limitations of the non-Oracle
system (such as what types of SQL statements are and are not supported) and how
to map Oracle data types and SQL expressions to their non-Oracle system
equivalents. In other words, they tell Heterogeneous Services about the
non-configurable properties of the non-Oracle system. Capabilities cannot be
changed by the user.

The Heterogeneous Services Data Dictionary

As mentioned in the previous section, configuration information is uploaded from
an agent to the Heterogeneous Services module immediately after the connection to

2-6 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

The Heterogeneous Services Data Dictionary

the agent has been established. Since this information can be very large in size, it is
inefficient to do uploads on each connection. Therefore, the first time an Oracle
database talks to an agent, the configuration information is uploaded and stored in
Heterogeneous Services data dictionary tables and thereafter no upload takes place
until something at the agent changes (for example, if a patch is applied or if the
agent is upgraded to a new version).

Classes and Instances

Using Heterogeneous Services, a user can access several non-Oracle systems from a
single Oracle database. This is illustrated in Figure 2-2

Figure 2-2 Accessing Multiple Non-Oracle Instances

|aient Application |

/—l Agent |
I

| Non-Oracle System "X" -I—instance

Oracle9i Server

\—| Agent |
I

| Non-Oracle System "Y" -I—instance

Both the agents upload configuration information that is stored as part of the Oracle
data. This information is organized in the Heterogeneous Services data dictionary
as follows.

In the Heterogeneous Services data dictionary, Oracle organizes data by two levels
of granularity called class and instance. A class pertains to a specific type of
non-Oracle system. For example, you might want to access the class of Sybase
database systems with your Oracle database server. An instance defines
specializations within a class. For example, you might want to access several
separate instances within a Sybase database system. Instance information takes
precedence over class information, and class information takes precedence over
server-supplied defaults.

Oracle Transparent Gateways and Generic Connectivity 2-7

Gateway Process Flow

Although it is possible to store data dictionary information at one level of
granularity by having completely separate definitions in the data dictionary for
each individual instance, this might lead to an unnecessarily large amount of
redundant data dictionary information. To avoid this, Oracle organizes the data
dictionary by two levels of granularity, in which each class definition (one level of
granularity) is shared by all the particular instances (a second level of granularity)
under that class.

For example, suppose that the Oracle database server accesses three instances of
Sybase and two instances of Ingres Il. Sybase and Ingres Il each have their own
code, requiring separate class definitions for the Oracle database server to access
them. The Heterogeneous Services data dictionary therefore would contain two
class definitions, one for Sybase and one for Ingres Il, with five instance definitions,
one for each instance being accessed by the Oracle database server.

Data Dictionary Views

The Heterogeneous Services data dictionary views contain the following kinds of
information:

« Names of instances and classes uploaded into the Oracle data dictionary

« Capabilities, including SQL translations, defined for each class or instance
« Data Dictionary translations defined for each class or instance

« Initialization parameters defined for each class or instance

You can access information from the Oracle data dictionary by using fixed views.
The views are categorized into three main types:

« General views
« Views used for the transaction service

« Views used for the SQL service

See Also: For more information on data dictionary views, see
Appendix D, "Data Dictionary Translation Support”

Gateway Process Flow

Figure 2-3 shows a typical gateway process flow. The steps explain the sequence of
events that occurs when a client application queries the non-Oracle database system
database through the gateway.

2-8 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Gateway Process Flow

Figure 2-3 Gateway Process Flow

s
——

ONO

Oracle Net
1

8

o —_—

s (2]

i —2= (o, :
. Oracle 2
[Net >)
> @

5 & 219
2 G |-oe| == Oracle = &
E ? e Net O @ o
g 3 o
5 2 (6] S

1. The client application sends a query over Oracle Net to the Oracle database
server.

2. The Oracle database server sends the query over to the gateway using Oracle
Net.

3. For the first transaction in a session, the gateway logs into non-Oracle database
system using a username and password that is valid in the non-Oracle system.

4. The gateway converts the Oracle SQL statement into a SQL statement
understood by non-Oracle database system.

5. The gateway retrieves data using non-Oracle database system SQL statements.

6. The gateway converts retrieved data into a format compatible with the Oracle
database server.

7. The gateway returns query results to the Oracle database server, again using
Oracle Net Services.

Oracle Transparent Gateways and Generic Connectivity 2-9

Gateway Process Flow

8. The Oracle database server passes the query results to the client application by
using Oracle Net. The database link remains open until the gateway session is
finished or the database link is explicitly closed.

Oracle Transparent Gateways for Non-Oracle Database Systems

Oracle client applications can access non-Oracle database system data with Oracle
SQL just as if the data residing in the non-Oracle database system were stored in a
remote Oracle database. Combined data residing in both Oracle and non-Oracle
database system databases can be accessed by a single SQL statement performing
heterogeneous joins and subselects. This means you can develop a single set of
portable applications to use against both Oracle and non-Oracle database system
databases. In this way, you can continue to develop new information systems
without losing your investment in existing data and applications.

Also, transaction integrity for transactions involving updates to both Oracle and
non-Oracle database system databases from a single Oracle database server is
automatically protected by the Oracle two-phase commit feature.

Finally, synonyms in the Oracle database server can be used for transparent access
to the non-Oracle system. Synonyms within the Oracle database server that point to
database links to non-Oracle database system tables makes the physical location of
the data transparent to the client application. This allows the future migration of
data from the non-Oracle database system to Oracle to be transparent to client
applications.

Only the Oracle database server and Oracle Net are needed to set up a gateway to a
non-Oracle system. All other Oracle products are not necessary. However, using
other Oracle products with the gateway can greatly extend the capabilities of a
gateway.

2-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

3

Major Features

This chapter describes the major features provided by Heterogeneous Services.

This chapter contains the following topics:

SQL and PL/SQL Support
Heterogeneous Replication
Passthrough SQL

Result Set Support

Data Dictionary Translations
Date Time

Two Phase Commit Protocol
Piecewise Long

SQL*Plus Describe Command
Constraints on SQL in a Distributed Environment
Using Index and Table Statistics
Other Optimizations

Optimizer Restrictions for non-Oracle Access

Major Features 3-1

SQL and PL/SQL Support

Note: Even though Heterogeneous Services has all these features, they
are not necessarily available in all Heterogeneous Services based
gateways. Not only must there be generic support for these features, which
Heterogeneous Services provides, but there must also be support added to
the driver for them. Please consult your gateways documentation to
determine if a certain Heterogeneous Services feature is supported for
your gateway.

SQL and PL/SQL Support

SQL statements are translated and data types are mapped according to capabilities. PL/SQL
calls are mapped to non-Oracle system stored procedures. In the case of SQL statements, if
functionality is missing at the remote system, then either a simpler query is issued or the
statement is broken up into multiple queries and the desired results are obtained by post
processing in the Oracle database.

Even though Heterogeneous Services can, for the most part, incorporate non-Oracle systems
into Oracle distributed sessions, there are several limitations to this. Some of the generic
limitations are:

1.

Data manipulation language statements that update objects on the remote non-Oracle
system should not reference any objects on the local Oracle database. An example of
such a statement is:

INSERTINTO remote_table@link asSELECT*FROM local table;

Such statements will cause an error to be raised.
There is no support f&ONNECT BYtlauses in SQL statements.

ROWID support is limited; consult individual gateway documentation for more details.
The Oracle Universal Rowid data type is not supported in any Orazledvay.

LOBs, ADTs, and REFs are not supported.
PL/SQL in SQL is not supported. For example, a statement such as:
SELECT remote_func@link(a,b) FROM remote_table@link

will cause an error to be raised.
Remote packages are not supported.

Remote stored procedures can hawe arguments of type ref cursor but ot or
in-out objects.

3-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Replication

8. None of the Oraclé@ateways supports shared database links.

Note: In addition to these generic limitation, each gateway can have
additional limitations. Please consult the gateway documentation for
individual gateways for a complete list of limitations of the product.

Heterogeneous Replication

Data can be replicated between a non-Oracle system and an Oracle server with materialized
views.

See Also: Oracle9 Replication for a full description of materialized
views and replication facilities.

Materialized views instantiate data captured from tables at the non-Oracle master site at a
particular point in time. This instant is defined by a refresh operation, which copies this data
to the Oracle server and synchronizes the copy on Oracle with the master copy on the
non-Oracle system. The "materialized" data is then available as a view on the Oracle server.

Replication facilities provide mechanisms to schedule refreshes and to collect materialized
views into replication groups to facilitate their administration. Refresh groups permit
refreshing multiple materialized views just as if they were a single object.

Heterogeneous replication support is necessarily limited to a subset of the full
Oracle-to-Oracle replication functionality:

« Only the non-Oracle system can be the master site. This is because materialized views
can be created only on an Oracle server.

« Materialized views must use complete refresh. This is because fast refresh would
require Oracle-specific functionality in the non-Oracle system.

« Not all types of materialized views can be created to reference tables on a non-Oracle
system. Primary key and subquery materialized views are supported, but rowid and
object id materialized views are not supported. This is because there is no SQL standard
for the format and contents of rowids, and non-Oracle systems do not implement Oracle
objects.

Other restrictions apply to any access to non-Oracle data through Oracle's Heterogeneous
Services facilities. The most important of these are:

Major Features 3-3

Heterogeneous Replication

« Non-Oracle data types in table columns mapped to a fixed view must be compatible
with (that is, have a mapping to or from) Oracle data types. This is usually true for data
types defined by ANSI SQL standards.

« A subquery materialized view may not be able to use language features restricted by
individual non-Oracle systems. In many cases Heterogeneous Services supports such
language features by processing queries within the Oracle server, but occasionally the
non-Oracle systems impose limitations that cannot be diagnosed until Heterogeneous
Services attempts to execute the query.

9. The following examples illustrate basic setup and use of three materialized views to
replicate data from a non-Oracle system to an Oracle data store.

Note: For the following examplegsemote _db refers to the
non-Oracle system which you are accessing from your Oracle database
server.

Example 1: Set up 3 materialized views and a refresh group for them.
1. Create a primary key materialized view of tatfiemv_customer@ remote db

CREATE MATERIALIZED VIEW pk_mv REFRESH COMPLETE AS
SELECT*FROM thsmv_customer@remote_ db WHERE "zip" = 94555;

2. Create a subquery materialized view of talttessnv_orders@ remote_db and
thsmv_customer@ remote _db

CREATE MATERIALIZED VIEW sq_mv REFRESH COMPLETE AS
SELECT*FROM thsmv_orders@remote_ db 0 WHERE EXISTS
(SELECT c."c_id"FROM thsmv_customer@remote db ¢

WHERE c."zip"=94555and c."c_id" =o."c_id");

3. Create a complex materialized view of data from multiple tablesmoote_db

CREATE MATERIALIZED VIEW cx_mv
REFRESH COMPLETE AS
SELECT c"c_id",0."0_id"

FROM thsmv _customer@remote db c,
thsmv_orders@remote db o,
thsmv_order_line@remote_db ol

WHERE ¢."c_id"=0."c_id"

ANDo."o_id"=ol."o_id";

3-4 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL

Example 2: Set up a refresh group for these 3 materialized views and
force a refresh
BEGIN
dbms_refresh.make(refgroupl,
'pk_mv, sq_mv, cx_mv,
NULL, NULLY;
END;
/

Example 3: Force refresh of all 3 materialized views
BEGIN

dbms_refresh.refresh(refgroupl);

END;

/

Passthrough SQL

The pass-through SQL feature allows you to send a statement directly to a
non-Oracle system without being interpreted by the Oracle9 server. This feature can
be useful if the non-Oracle system allows for operations in statements for which
there is no equivalent in Oracle.

This section contains the following topics:

« Passthrough SQL

« Considering the Implications of Using Pass-Through SQL
« Executing Pass-Through SQL Statements

Using the DBMS_HS PASSTHROUfkkage

You can execute Passthrough SQL statements directly at the non-Oracle system using the
PL/SQL package DBMS_HS_PASSTHROUGH. Any statement executed with the
pass-through package is executed in the same transaction as standard SQL statements.

The DBMS_HS PASSTHROUGH package is a virtual package. It conceptually
resides at the non-Oracle system. In reality, however, calls to this package are
intercepted by Heterogeneous Services and mapped onto one or more
Heterogeneous Services application programming interface (API) calls. The driver,
in turn, maps these Heterogeneous Services API calls onto the API of the
non-Oracle system. The client application should invoke the procedures in the
package through a database link in exactly the same way as it would invoke a

Major Features 3-5

Passthrough SQL

non-Oracle system stored procedure. The special processing done by
Heterogeneous Services is transparent to the user.

See Also: Oracle9i Supplied PL/SQL Packages Reference for more
information about this package.

Considering the Implications of Using Pass-Through SQL

When you execute a pass-through SQL statement that implicitly commits or rolls
back a transaction in the non-Oracle system, the transaction is affected. For
example, some systems implicitly commit the transaction containing a data
definition language (DDL) statement. Because the Oracle database server is
bypassed, the Oracle database server is unaware of the commit in the non-Oracle
system. Consequently, the data at the non-Oracle system can be committed while
the transaction in the Oracle database server is not.

If the transaction in the Oracle database server is rolled back, data inconsistencies
between the Oracle database server and the non-Oracle server can occur. This
situation results in global data inconsistency.

Note that if the application executes a regular COMMITstatement, the Oracle
database server can coordinate the distributed transaction with the non-Oracle
system. The statement executed with the pass-through facility is part of the
distributed transaction.

Executing Pass-Through SQL Statements

The table below shows the functions and procedures provided by the DBMS_HS
PASSTHROUGphckage that allow you to execute pass-through SQL statements.

Procedure/Function Description

OPEN_CURSOR Opens a cursor

CLOSE_CURSOR Closes a cursor

PARSE Parses the statement

BIND_VARIABLE Binds IN variables

BIND_OUT_VARIABLE Binds OUT variables
BIND_INOUT_VARIABLE Binds IN OUT variables
EXECUTE_NON_QUERY Executes non-query
EXECUTE_IMMEDIATE Executes non-query without bind variables

3-6 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL

Procedure/Function Description

FETCH_ROW Fetches rows from query

GET_VALUE Retrieves column value from SELECT statement or
retrieves OUT bind parameters

This section contains these topics:
« Executing Non-Queries

« Executing Queries

Executing Non-Queries
Non-queries include the following statements and types of statements:

« INSERT

« UPDATE
« DELETE
« DDL

To execute non-query statements, use the EXECUTE_IMMEDIATEunction. For
example, to execute a DDL statement at a non-Oracle system that you can access
using the database link SalesDB , execute:

DECLARE
num_rows INTEGER;

BEGIN
num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@SalesDB
(CREATE TABLE DEPT (n SMALLINT, loc CHARACTER(10)));
END;

The variable num_rows is assigned the number of rows affected by the execution.
For DDL statements, zero is returned. Note that you cannot execute a query with
EXECUTE_IMMEDIATENd you cannot use bind variables.

Using Bind Variables: Overview Bind variables allow you to use the same SQL
statement multiple times with different values, reducing the number of times a SQL
statement needs to be parsed. For example, when you need to insert four rows in a
particular table, you can parse the SQL statement once and bind and execute the
SQL statement for each row. One SQL statement can have zero or more bind
variables.

Major Features 3-7

Passthrough SQL

To execute pass-through SQL statements with bind variables, you must:
Open a cursor.

Parse the SQL statement at the non-Oracle system.

Bind the variables.

Execute the SQL statement at the non-Oracle system.

o & w0 bdPRE

Close the cursor.

Figure 3-1 shows the flow diagram for executing non-queries with bind variables.

3-8 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Passthrough SQL

Figure 3—1 Flow Diagram for Non-Query Pass-Through SQL

Open
Cursor

l

Parse

v

v

Bind
Variable
(optional)

v

Execute
non query

—

Get
Value
(optional)

Close
Cursor

Using IN Bind Variables The syntax of the non-Oracle system determines how a
statement specifies a bind variable. For example, in Oracle you define bind variables

with a preceding colon, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME=:ename

Major Features 3-9

Passthrough SQL

In this statement, ename is the bind variable. In other non-Oracle systems you
may need to specify bind variables with a question mark, as in:

UPDATE EMP
SET SAL=SAL*11
WHERE ENAME="?

In the bind variable step, you must positionally associate host program variables (in
this case, PL/SQL) with each of these bind variables.

For example, to execute the above statement, you can use the following PL/SQL
program:

DECLARE
CINTEGER,;
nrINTEGER;
BEGIN
¢:=DBMS_HS PASSTHROUGH.OPEN_CURSOR@SalesDB;
DBMS_HS PASSTHROUGH.PARSE@SalesDB(c,

'UPDATE EMP SET SAL=SAL*1.1 WHERE ENAME=?);
DBMS_HS PASSTHROUGH.BIND_VARIABLE(c,1,JONES));
nr=DBMS_HS PASSTHROUGH.EXECUTE_NON_QUERY@SalesDB(c);
DBMS_OUTPUT.PUT_LINE(nr[rows updated);

DBMS _HS PASSTHROUGH.CLOSE CURSOR@salesDB(c);
END;

Using OUT Bind Variables In some cases, the non-Oracle system can also support OUT
bind variables. With OUTbind variables, the value of the bind variable is not known
until after the execution of the SQL statement.

Although OUTbind variables are populated after the SQL statement is executed, the
non-Oracle system must know that the particular bind variable is an OUTbind
variable before the SQL statement is executed. You must use the BIND_OUT _
VARIABLE procedure to specify that the bind variable is an OUTbind variable.

After the SQL statement is executed, you can retrieve the value of the OUTbind
variable using the GET_VALUEBEprocedure.

Using IN OUT Bind Variables A bind variable can be both an IN and an OUTvariable.
This means that the value of the bind variable must be known before the SQL
statement is executed but can be changed after the SQL statement is executed.

For IN OUT bind variables, you must use the BIND_INOUT_VARIABLE procedure
to provide a value before the SQL statement is executed. After the SQL statement is
executed, you must use the GET_VALUBprocedure to retrieve the new value of the
bind variable.

3-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

Passthrough SQL

Executing Queries

The difference between queries and non-queries is that queries retrieve a result set
from a SELECTstatement. The result set is retrieved by iterating over a cursor.

Figure 3-2 illustrates the steps in a pass-through SQL query. After the system parses
the SELECTstatement, each row of the result set can be fetched with the FETCH_
ROWprocedure. After the row is fetched, use the GET_VALUBprocedure to retrieve
the select list items into program variables. After all rows are fetched you can close
the cursor.

Major Features 3-11

Passthrough SQL

Figure 3-2 Pass-through SQL for Queries

Open
Cursor

l

Parse

v

Bind
Variable
(optional)

'

v

Fetch_row
For each
row

—

For each
column Get

| Value

v

Close
Cursor

You do not have to fetch all the rows. You can close the cursor at any time after
opening the cursor, for example, after fetching a few rows.

Note: Although you are fetching one row at a time,
Heterogeneous Services optimizes the round trips between the
Oracle9 server and the non-Oracle system by buffering multiple
rows and fetching from the non-Oracle data system in one round
trip.

3-12 Oracle9i Heterogeneous Connectivity Administrator's Guide

Passthrough SQL

The next example executes a query:

DECLARE

val VARCHAR2(100);

¢ INTEGER;

nr INTEGER,;

BEGIN
¢:=DBMS_HS PASSTHROUGH.OPEN_CURSOR@SalesDB;
DBMS_HS PASSTHROUGH.PARSE@SalesDB(c,
'select ename
from emp
where deptno=10);

LOOP
nr:=DBMS_HS_PASSTHROUGH.FETCH_ROW@SalesDB(c);
EXITWHEN nr=0;

DBMS_HS PASSTHROUGH.GET_VALUE@SalesDB(c, 1, val);
DBMS_OUTPUT.PUT_LINE(val);
END LOOP;
DBMS_HS PASSTHROUGH.CLOSE _CURSOR@SalesDB(c);
END;

After parsing the SELECTstatement, the rows are fetched and printed in a loop
until the function FETCH_ROWéturns the value 0.

Note Also: For more information on Passthrough SQL, please see
Appendix C, "DBMS_HS PASSTHROUGH for Pass-Through SQL"

Major Features 3-13

Result Set Support

Result Set Support

Introduction

Various relational databases allow stored procedures to return result sets. In other words,
stored procedures will be able to return one or more sets of rows. This is a relatively new
feature for any database.

Traditionally, database stored procedures worked exactly like procedures in any high-level
programming language. They had a fixed number of arguments which could be dfi types

out , orin-out . If a procedure had arguments, it could return at mastalues as results.
However, suppose that somebody wanted a stored procedure to execute a query such as
SELECT * FROM empnd return the results. Tleenptable might have a fixed number of
columns but there is no way of telling, at procedure creation time, the number of rows it has.
Because of this, no traditional stored procedure can be created that can return the results of a
such a query. As a result, several relational database vendors added the capability of
returning results sets from stored procedures, but each kind of relational database returns
result sets from stored procedures in a different way.

Oracle has a data type called a ref cursor. Like every other Oracle data type, a stored
procedure can take this data type as an in or out argument. In Oracle, a stored procedure can
return a result set in the following way. To return a result set, a stored procedure must have
an output argument of type ref cursor. It then opens a cursor for a SQL statement and places
a handle to that cursor in that output parameter. The caller can then fetch from the ref cursor
the same way as from any other cursor.

Oracle can do a lot more than simply return result sets. Ref cursors can be passed as input
arguments to PL/SQL routines to be passed back and forth between client programs and
PL/SQL routines or between several PL/SQL routines. Until recently, ref cursors in Oracle
did not work in a distributed environment. This meant that you could pass ref cursor values
between PL/SQL routines in the same database or between a client program and a PL/SQL
routine, but they could not be passed from one database to another. As ofiCizatie9
restriction has been removed in the case of Heterogeneous Services.

Result Set Support In Non-Oracle Systems:

Several non-Oracle systems allow stored procedures to return result sets but do so in
completely different ways. No other relational database management system (RDBMS) has
anything like the Oracle ref cursor data type. Result sets are supported to some extend in
DB2, Sybase, Microsoft SQL Server, and Informix. Result set support in these databases is
based on one of the following two models.

3-14 Oracle9i Heterogeneous Connectivity Administrator's Guide

Result Set Support

Model 1

When creating a stored procedure, the user can explicitly specify the maximum number of
result sets that can be returned by that stored procedure. While executing, the stored
procedure can open anywhere from zero to its pre-specified maximum number of result sets.
After the execution of the stored procedure, a client program can obtain handles to these
result sets by using either an embedded SQL directive or calling a client library function.
After that the client program can fetch from the result in the same way as from a regular
Ccursor.

Model 2

In this model, there is no pre-specified limit to the number of result sets that can be returned
by a stored procedure. Both Model 1 and Oracle have a limit. For Oracle the number of
result sets returned by a stored procedure can be at most the number of refutursor
arguments; for Model 1, the upper limit is specified using a directive in the stored procedure
language. Another way that Model 2 differs from Oracle and Model 1 is that they do not
return a handle to the result sets but instead place the entire result set on the wire when
returning from a stored procedure. For Oracle, the handle is the ref @usargument; for

Model 1, it is obtained separately after the execution of the stored procedure. For both
Oracle and Model 1, once the handle is obtained, data from the result set is obtained by
doing a fetch on the handle; we have a bunch of cursors open and can fetch in any order. In
the case of Model 2, however, all the data is already on the wire, with the result sets coming
in the order determined by the stored procedure and the output arguments of the procedures
coming at the end. So the whole of the first result set must be fetched, then the whole of the
second one, until all of the results have been fetched. Finally, the stored praxédure
arguments must be fetched.

Heterogeneous Services Support for Result Sets

As can be seen in the preceding sections, result set support exists among non-Oracle
databases in a variety of forms. All of these have to be mapped onto the Oracle ref cursor
model. Due to the considerable differences in behavior among the various non-Oracle
systems, Heterogeneous Services result set support will have to behave in one of two
different ways depending on the non-Oracle system it is connected to.

Please note the following about Heterogeneous Services result set support:

« Result set support is present in 9i Heterogeneous Services generic code but in order for
the feature to work in a gateway, the driver has to implement it as well. Not all drivers
have implemented result set support and the customer must check in his
gateway-specific documentation to determine whether it is supported in that gateway.

Major Features 3-15

Result Set Support

« Heterogeneous Services will support ref cumdr arguments from stored procedures.
In andin-out arguments will not be supported.

« The ref cursoout arguments will all be anonymous ref cursors. No typed ref cursors
are returned by Heterogeneous Services.

Cursor mode

Oracle generally behaves such that each result set returned by the non-Oracle system stored
procedure is mapped by the driver tooan argument of type ref cursor. The client

program sees a stored procedure with seweralarguments of type ref cursor. After

executing the stored procedure, the client program can fetch from the ref cursor in exactly
the same way as it would from a ref cursor returned by an Oracle stored procedure. When
connecting to the gateway as described in Model 1, Heterogeneous Services will be in cursor
mode.

Sequential Mode

In Oracle, there is a pre-specified maximum number of result sets that a particular stored
procedure can return. The number of result sets returned is at most the number of ref cursor
out arguments for the stored procedure. It can, of course, return fewer result sets, but it can
never return more.

For the system described in Model 2, there is no pre-specified maximum of result sets that
can be returned. In the case of Model 1, we know the maximum number of result sets that a
procedure can return, and the driver can return to Heterogeneous Services a description of a
stored procedure with that many ref cursot arguments. If, on execution of the stored
procedure, fewer result sets than the maximum are returned, then the other refutursor
arguments will be set tdULL

Another problem for Model 2 database servers is that result sets have to be retrieved in the
order in which they were placed on the wire by the database. This prevents Heterogeneous
Services from running in cursor mode when connecting to these databases. To access result
sets returned by these stored procedures, you must operate Heterogeneous Services in
sequential mode.

In sequential mode, the procedure description returned by the driver contains the following:
« All the input arguments of the remote stored procedure
« None of the output arguments

« Oneout argument of type ref cursor (corresponding to the first result set returned by
the stored procedure)

3-16 Oracle9i Heterogeneous Connectivity Administrator's Guide

Result Set Support

The client fetches from this ref cursor and then calls the virtual package futictien
hs_result_set.get next_result_set to get the ref cursor corresponding to the
next result set. This function call is repeated until all result sets have been fetched. The last
result set returned will actually be thaet arguments of the remote stored procedure.

The major limitations of sequential mode are as follows:

« Result sets returned by a remote stored procedure have to be retrieved in the order in
which they were placed on the wire

= On execution of a stored procedure, all result sets returned by a previously executed
stored procedure will be closed (regardless of whether the data has been completely
fetched or not).

Code Examples:
All examples in this section use the following non-Oracle system stored procedure.

Note: For purposes of illustration, the following examples are presented
as if they were Oracle PL/SQL stored procedures. However, you can
create equivalent stored procedures for the DB2, Microsoft SQL Server,
and Sybase.

create or replace package rcpackage is
type rctype is ref cursor;

end rcpackage;

/

create or replace procedure refcurproc
(arglinvarchar2, arg2 out varchar2,
rcl out repackage.rctype,
rc2 out repackage.rctype) is

begin
arg2 =argl;
open rcl for select * from emp;
open rc2 for select * from dept;

end;

/

This stored procedure assigns the input parameter argl to the output parameter arg2, opens

the querySELECT * FROM emp in ref cursorcl , and opens the queBELECT *
FROM dept in ref cursorc? .

Major Features 3-17

Result Set Support

OCI program fetching from result sets in cursor mode
The following example shows OCI program fetching from result sets in cursor mode.

OCIENnV *ENVH,;
OCISvcCix *SVCH;
OCISmMt*STMH;
OCIEmor *ERRH,;
OCIBind *BNDH[4];
OraText arg1[20];
OraText arg2[20];
OCIResult *arg3, *arg4;
OCIStmt *rstmtl, *rstmt2;
ub2 rcodef4];

ub2 rensf4];

sb2 indsf4];

OraText *stmt = (OraText *) "begin refcurproc@ link (1,2,:3,4);end;";

FHandle Initialization code skipped */
F Prepare procedure call statement */

OCISmtPrepare(STMH, ERRH, st strlen(stmt), OCI_ NTV_SYNTAX,
OCI_DEFAULT);

Bind procedure arguments */

inds[0] =0;

strepy((char *) argd, "Hello World");

rens[0] = stlen(argl);

OCIBindByPos(STMH, &BNDH[0], ERRH, 1, (dvoid *) argl, 20, SQLT_CHR,
(dvoid *) &(inds[0]), &(rlens[0]), &(rcode[0]),
0, (ub4#) 0, 0Cl_DEFAULT);

inds[1] =0;

ens[1]=0;

OCIBindByPos(STMH, &BNDH[1], ERRH, 2, (dvoid *) arg2, 20, SQLT_CHR,
(dvoid *) &(inds[1]), &(rens(1]), &(rcode[1]),
0, (ub4*) 0, 0CI_DEFAULT);

inds[2] =0;
rlens[2] =0;
OClIDescriptorAlloc(ENVH, (dvoid *) &arg3, OCI_ DTYPE_RSET, 0,
(dvoid*) 0);
OCIBindByPos(STMH, &NDH[2], ERRH, 3, (dvoid *) arg3, 0, SQLT_RSET,
(dvoid *) &(inds[2]), &(rlens[2]), &(rcode[2)),

3-18 Oracle9i Heterogeneous Connectivity Administrator's Guide

Result Set Support

0, (ub4*) 0, OCI_DEFAULT);

inds[3]=0;
rlens[3] =0;
OClIDescriptorAlloc(ENVH, (dvoid **) &argd, OCI_ DTYPE_RSET, 0,
(@void*) 0);
OCIBindByPos(STMH, &BNDH[3], ERRH, 4, (dvoid) arg4, 0, SQLT_RSET,
(dvoid *) &(inds[3]), &(rlens[3]), &(rcode[3]),
0, (ub4* 0, 0CI_DEFAULT);

F Execute procedure */

OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot*) 0,
(OCISnapshot*) 0, OCI_DEFAULT);

F Convert result set descriptors to statement handles */

OCIResultSetToStmi(arg3, ERRH);
OCIResultSetToStmi(argd, ERRH);
rstmtl = (OCIStmt*) arg3,;
rstmt2 = (OCIStmt) arg4;

* After this the user can fetch from rstmtl and rstmt2 */

OCI program fetching from result sets in sequential mode
The following example shows OCI program fetching from result sets in sequential mode.

OCIENnv *ENVH,;
OCISvcCix *SVCH,;
OCISMt*STMH,;
OCIEnor *ERRH,;
OCIBind *BNDH[Z];
OraText arg1[20];
OCIResult *rset;
OCISImt *rstmt;
ub2 rcodef2];
ub2 rens2);
sh2 inds[2];
OraText *stmt = (OraText *) "begin refcurproc@ link (:1,:2); end;";
OraText*n_rs_stm=(OraText*)
"begin ret: =DBMS_HS RESULT_SET.GET_NEXT_RESULT SET@ link ;end;",

* Prepare procedure call statement */

Major Features 3-19

Result Set Support

FHandle Initialization code skipped */

OCISmtPrepare(STMH, ERRH, st strlen(stmt), OCI_NTV_SYNTAX,
OCI_DEFAULT);

FBind procedure arguments */

inds[0] =0;

strepy((char *) argd, "Hello World");

rens[0] = stlen(argl);

OCIBindByPos(STMH, &BNDH[0], ERRH, 1, (dvoid *) argl, 20, SQLT_CHR,
(dvoid *) &(inds[Q]), &(rlens[0]), &(rcode[0]),
0, (ub4#) 0, 0Cl_DEFAULT);

inds[1] =0;

rlens[1] =0;

OClDescriptorAlloc(ENVH, (dvoid *¥) &rset, OCI_DTYPE_RSET, 0,

(void*) 0);

OCIBindByPos(STMH, &BNDHI[1], ERRH, 2, (dvoid *) rset, 0, SQLT_RSET,
(dvoid *) &(inds[1]), &(rlens[1]), &(rcodel[1]),
0, (ub4* 0, 0CI_DEFAULT);

F Execute procedure */

OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot*) 0,
(OCISnapshot*) 0, OCI_DEFAULT);

* Convert result set to statement handle */

OCIResultSetToStmt(rset, ERRH);
rstmt = (OCISImt *) rset;

F* After this the user can fetch from rstmt*/
FIssue get_next result_set call to get handle to next_result set*/
* Prepare Get next result set procedure call */

OCIStmtPrepare(STMH, ERRH, n_rs_stm, strlen(n_rs_stm), OCI_NTV_SYNTAX,
OCI_DEFAULT);

*Bind retum value ¥/

OCIBiNdByPos(STMH, &BNDHI[L], ERRH, 1, (dvoid *) rset, 0, SQLT_RSET,

3-20 Oracle9i Heterogeneous Connectivity Administrator's Guide

Result Set Support

(dvoid *) &Gnds[1]), &(rens]1]), &(rcode[1]),
0, (Ub4*)0,0CI_DEFAULT);

F Execute statement to get next result set*/

OCISimtExecute(SVCH, STMH, ERRH, 1,0, (CONST OCISnapshot) 0,
(OCISnapshot*) 0, OCI_DEFAULT);

¥ Convert next result set to statement handle */

OCIResultSetToStmi(rset, ERRH);
rstmt = (OCIStmt*) rset;

F Now rstmt will point to the second result set retumed by the
remote stored procedure */

F Repeat execution of get_next_result_set to get the output
arguments */

PL/SQL program fetching from result sets in cursor mode

Assume that the tablec_emp is a local table exactly like the remogenptable. The same
assumption applies féoc_dept

declare

rcl repackage.rctype;
recl loc_emp%rowtype;
rc2 rcpackage.rctype;
rec2 loc_dept%rowtype;
arg2 varchar2(20);

begin
— Execute procedure
refcurproc@ link (Hello World', arg2, rc1, rc2);

— Fetch 20 rows from the remote emp table and insert them
—intoloc_emp

foriin1..20loop
fetchrcl intorecl;
insertinto loc_emp (recl.empno, recl.ename, recl.job,
recl.mgr, recl.hiredate, recl.sal,

Major Features 3-21

Result Set Support

recl.comm, recl.deptno);
end loop;

— Close the ref cursor
closercl,

— Fetch 5 rows from the remote dept table and insert them
—intoloc_dept

foriin1..5loop
fetch rc2 into rec2;
insertinto loc_dept values (rec2.deptno, rec2.dname, rec2.loc);
end loop;
— Close the ref cursor
closerc2;
end;
PL/SQL program fetching from result sets in sequential mode

loc_emp andloc_dept are same as above. outarguments is a table with columns
corresponding to the out arguments of the remote stored procedure

declare

rcl rcpackage.rctype;
recl loc_emp%orowtype;
rc2 rcpackage.rctype;
rec2 loc_dept%rowtype;
rc3 repackage.rctype;
rec3 outargsyoromype;

begin
— Execute procedure
refcurproc@ link (Hello World', rc1);

— Fetch 20 rows from the remote emp table and insert them
—intoloc_emp

foriin1..20loop
fetchrclintorecl;

3-22 Oracle9i Heterogeneous Connectivity Administrator's Guide

Result Set Support

insertinto loc_emp (recl.empno, recl.ename, recl.job,
recl.mgr, recl.hiredate, recl.sal,
recl.comm, recl.deptno);
end loop;
— Close ref cursor
closercl;
— Get the next result set retumed by the stored procedure
rc2 =dbms_hs result_setget next result_set@ link

— Fetch 5 rows from the remote dept table and insert them
—intoloc_dept

foriin1..5loop

fetch rc2 into rec2;

insertinto loc_dept values (rec2.deptno, rec2.dname, rec2.loc);
end loop;
—Close ref cursor
closerc2;
— Get the output arguments from the remote stored procedure
— Since we are in sequential mode, they will be retumed in the
—form of a result set
rc3:=dbms_hs result_setget next resut_set@ link
—Fetch them and insert them into the outarguments table

fetch rc3into rec3;
insert into outarguments (rec3.col);

—Close ref cursor
closerc3;

end;

Major Features 3-23

Data Dictionary Translations

Data Dictionary Translations

Most database systems have some form of data dictionary. A data dictionary is a collection
of information about the database objects that have been created by various users of the
system. For a relational database, a data dictionary is a set of tables and views which contain
information about the data in the database. This information includes information on the
users who are using the system and on the objects that they have created (such as tables,
views, triggers and so forth). For the most part, all data dictionaries (regardless of the
database system) contain the same information but each database system organizes the
information in a different way.

For example, the Oracle data dictionary vidlwl._ CATLOQgives a list of tables, views, and
sequences in the database. It has three columns: the first iS@aIMBRNd is the name of
the owner of the object, the second is calléBLE_NAMEand is the name of the object,
and the third is calledABLE_TYPEand is the type. This field has valliaBLE, VIEW
SEQUENCENd so forth depending on the object type. However, in Sybase, the same
information is stored two tables callsgisusers andsysobjects whose column names
are quite different than those of OragleL. CATALOQGable. Additionally, in Oracle, the
table type is a string with valdéABLE, VIEW and so forth but in Sybase it is a letter. For
example, in Sybas&l means user tabl§ means system tablé,means view, and so forth.

If the client program wanted information from the taleL_ CATALOGat Sybase then all it
would have to do is to send a query referenéihj CATALOG@atabase link toa
gateway and Heterogeneous Services will translate this query to the appropriate one on
systables and send the translated query to Sybase.

select SU."name" OWNER, SO."name" TABLE_NAME,
decode(SO."type",'U ", TABLE,'S’, TABLE,, V', VIEW)
TABLE_TYPE
from "dbo"."sysusers'@link SU, "dbo"."sysobjects"@link SO
where SU."uid" = SO."uid" and
(SO."type"="V'or SO."type" =S or SO."type" ="U)>

To relay such a translation of a query on an Oracle data dictionary table to the equivalent one
on the non-Oracle system data dictionary table, Heterogeneous Services needs data
dictionary translations for that non-Oracle system. A data dictionary translation is a view
definition (essentially a select statement) over one or more non-Oracle system data
dictionary tables such that the view looks exactly like the Oracle data dictionary table, with
the same column names and the same information formatting. A data dictionary translation
need not be as simple as the one above. Often the information needed is not found in one or
two tables but is scattered over many tables and the data dictionary translation is a complex
join over those tables.

3-24 Oracle9i Heterogeneous Connectivity Administrator's Guide

Examples

Examples

In some cases, an Oracle data dictionary table does not have a translation because the
information needed does not exist at the non-Oracle system. In such cases, the gateway can
decide not to upload a translation at all or can resort to an alternative approach called
mimicking. If the gateway wants to mimic a data dictionary table then it will let
Heterogeneous Services know and Heterogeneous Services will obtain the description of the
data dictionary table by querying the local database but when asked to fetch data, it will
report that no rows were selected.

The examples given below show the output of some data dictionary queries sent to Informix,
and they compare the results with those produced when querying the same view on Oracle.

Note: The following examples use Informix as the non-Oracle system.

Example 1: Check current session's user name on Oracle and on Informix.

To check the current session’s user name on Oracle and on Informix, enter the following:

SQL select a.usemame, b.usemame from user_users a, user_users@ remote_ab b;
USERNAME USERNAME
THSU thsu

Note: Oracle maintains usernames in uppercase, Informix maintains
them in lowercase.

Example 2: Check current session's user ID on Oracle and on Informix.
To check the current session’s user ID on Oracle and on Informix, enter the following:

SQL selecta.user_id, b.user_id from user_users a, user_users@ remote_db b;
USER ID USER_ID

25 0

Major Features 3-25

Examples

Note: The Informix user ID is defaulted to zero because Informix does
not maintain numerit/SER_ID values.This also illustrates the need to

use caution when accessing other information on the Oracle server. Even if
the connected non-Oracle system returns a value for its equivalent of
USER_ID, this is not &USER_IDthat is meaningful to the Oracle server
since it applies only to the non-Oracle system. It would not be meaningful
to do other Oracle data dictionary queries using the non-Qu&#R_ID

as a key.

Example 3: Check constraints defined on a non-Oracle system for tables
owned by an arbitrary user.

To check constraints defined on a non-Oracle system for tables owned by an arbitrary user,
enter the following:

SQL select constraint_name, table_name from all_constraints@ remote_ab
2 where owner = thsu;

CONSTRAINT_NAME TABLE_NAME
ul19942 5270 thsmv_order_line
u24612_7116 thsmv_customer
u24613 7117 thsmv_orders

Note: Informix uses a different form of constraint names than Oracle,
and its data dictionary maintains the table names in lowercase instead of
uppercase.

See Also: For more information on data dictionary translations, please
seeAppendix D, "Data Dictionary Translation Support”

3-26 Oracle9i Heterogeneous Connectivity Administrator's Guide

Date Time

Date Time
Oracle has five date time data types:
« Timestamp
« Timestamp with timezone
« Timestamp with local timezone
« Interval year to month
« Interval day to second

Heterogeneous Services generic code supports Oracle datetime data types in SQL and store:
procedures. Oracle does not support these data types in data dictionary translations or
gueries involving data dictionary translations.

Even though Heterogeneous Services generic code supports this, support for a particular
gateway depends on whether or not the driver for that non-Oracle system has implemented
datetime support. Support even when the driver implements it may be partial because of the
limitations of the non-Oracle system. Users should consult the documentation for their
particular gateway on this issue.

The user must set the timestamp formats of the non-Oracle system in the gateway
initialization file. The parameters to set &8 NLS TIMESTAMP_FORMARdHS _
NLS_TIMESTAMP_TZ_FORMAThe user should also set the local time zone for the
non-Oracle system in the initialization file. Parameter to 4¢8isTIME_ZONE

See Also: Oracle9i SQL Reference for information on datetime data
types

Major Features 3-27

Two Phase Commit Protocol

Two Phase Commit Protocol

Heterogeneous Services provides the infrastructure for the implementation of the two-phase
commit mechanism. The extent to which this is supported depends on the gateway, and the
remote system. Please refer to individual gateway manuals for more information.

See Also: For more information on two-phase commit protocol, see
"Managing Distributed Transactions" in the Oracle@ministrator’s
Guide

Piecewise Long

Earlier versions of gateways had limited support fol ib&lGdata typeLONGs an Oracle

data type that can be used to store up to 2 gigabytes (GB) of character/raviDi(Ea (

RAW. These earlier versions restricted the amouhtOiXiGdata to 4 MB. This was because

they would treat ONCGdata as a single piece. This led to restrictions of memory and network
bandwidth on the size of the data that could be handled. Current gateways have extended the
functionality to support the full 2 GB of heterogeneb@NGdata. They handle the data
piecewise between the agent and the Oracle server, thereby doing away with the large
memory and network bandwidth requirements.

There is a new Heterogeneous Services initialization pararfi&et, ONG_PIECE_
TRANSFER_SIZE that can be used to set the size of the transferred pieces. For example,
let us consider fetching 2 GB bONGdata from a heterogeneous source. A smaller piece

size means less memory requirement, but more round trips to fetch all the data. A larger
piece size means fewer round trips, but more of a memory requirement to store the
intermediate pieces internally. Thus, the initialization parameter can be used to tune a system
for the best performance, that is, for the best trade-off between round-trips and memory
requirements. If the initialization parameter is not set, the system defaults to a piece size of
64 KB.

Note: This feature is not to be confused with piecewise operations on
LONGdata on the client side. Piecewise fetch and insert operations on the
client side did work with the earlier versions of the gateways, and continue
to do so. The only difference on the client side is that, where earlier
versions of the gateways were able to fetch only up to 4 megabytes (MB)
of LONGdata, now they can fetch the entire 2 GRONGdata. This is a
significant improvement, considering that 4 MB is only 0.2% of the data
type’s full capacity.

3-28 Oracle9i Heterogeneous Connectivity Administrator's Guide

Constraints on SQL in a Distributed Environment

SQL*Plus Describe Command

Until Oracle9, you could not describe non-Oracle system objects using the SQL*Plus
DESCRIBEcommand. As of OracléXunctionality to do this has been added to
Heterogeneous Services. There are still some limitations. For instance, using Heterogeneou:
links, you still cannot describe packages, sequences, synonyms, or types.

The SQL*PlusDESCRIBEcommand is implemented using B€IDescribeAny call,
which was likewise unavailable before OracléheOCIDescribeAny call can also
describe databases and schemas, which you cannot do through the SQIEPCRIBE
command. With Heterogeneous Services, you can do both.

In order to implement this functionality some additional driver logic is needed; not all
drivers may have implemented it. Please consult individual gateway documentation to see if
this feature is supported in that gateway.

Constraints on SQL in a Distributed Environment

This section explains some of the constraints that exist on SQL in a distributed environment.
These constraints apply to distributed environments that involve access to non-Oracle
systems or remote Oracle databases.

This section contains the following topics:
« Resolving Remote and Heterogeneous References
« Resolving Important Restrictions

« Updates, Inserts and Deletes

Resolving Remote and Heterogeneous References

Note: Many of the rules for Heterogeneous access also apply to remote
references. For more information, please see the distributed database
section of thedracle9i Database Administrator's Guide

A statement can, with restrictions, be executed on any database node referenced in the
statement or the local node. If all objects referenced are resolved to a single, referenced
node, then Oracle will attempt to execute a query at that node. You can force execution at a
referenced node by using the REMOTE_MAPPED */ or/*+ DRIVING_SITE */

hints. If a statement is forwarded to a different node than the node it was issued at, then the
statement is said to blemote mapped

Major Features 3-29

Constraints on SQL in a Distributed Environment

The ways in which statements can, must, and cannot be remote mapped are subject to
specific rules or restrictions. If these rules are not all followed, then an error will occur. As
long as the statements issued are consistent with all these rules, the order in which the rules
are applied does not matter.

Different constraints exist when you are using SQL for remote mapping in a distributed
environment. This distributed environment can include remote Oracle databases as well as
databases that involve Oracle Transparent Gateways or Generic Connectivity connections
between Oracle and non-Oracle systems.

Resolving Important Restrictions

The following section lists some of the different constraints that exist when you are using
SQL for remote mapping in a distributed environment.

Note: In the examples that followemote_db refers to a remote
non-Oracle system whileemote_oracle _db refers to a remote
Oracle server.

Rule A: A data definition language statement cannot be remote mapped.

In Oracle data definition language, the target object syntactically has no place for a remote
reference. Data definition language statements that contain remote references are always
executed locally. For Heterogeneous Services, this means it cannot create a database for the
non-Oracle database directly using SQL.

However, there is an indirect way using passthrough SQL.
Consider the following example:

begin

dbms_hs.passthroughsgl.execute_immediate@remote_db

‘create table x1 (c1 char, c2 number)
)

end;

Rule B: Insert, Update and Delete statements with a remote target table must
be remote mapped.

This rule is more restrictive for non-Oracle remote databases than for a remote Oracle
database. This is because the remote system cannot fetch data from the originating Oracle
database while executing DML statements targeting tables in a non-Oracle system.

3-30 Oracle9i Heterogeneous Connectivity Administrator's Guide

Constraints on SQL in a Distributed Environment

For example, to insert all local employees from the leogbl table to a remote Oracle
emp2 table, use the following statement:

INSERT INTO emp2@ remote_oracle db SELECT * FROM empl;

This statement is remote mapped to the remote database. The remote mapped statement se
to the remote database contains a remote reference back to the originating database for
empl. Such a remote link received by the remote database is called a callback link.

In general however, gateways callback links are not supported. When you try to insert into a
non-Oracle system using a select statement referencing a local table, an error occurs.

For example, consider the following statement:
INSERT INTO emp2@ remote_db SELECT *from emp1;

The statement returns the following error message:

ORA-02025: all tables in the SQL statement must be at the remote database

The work around is to write a PL/SQL block:

declare
cursor remote_insertis select * from emp2;

begin

for rec inremote_insertloop

insert into empl@ remote_adb (empno, ename, deptno) values (
rec.empno,

rec.ename,

rec.deptno

)

end loop;
end;
/

Another special case are session specific SQL functions s USEREN\and

SYSDATE These functions may need to be executed at the originating site. A remote
mapped statement containing these functions will contain a callback link. For a non-Oracle
database where callbacks are not supported this could (by default) result in a restriction
error.

For example, consider the following statement:
DELETE FROM empl@mote db WHERE hiredata > sysdate;

The statement returns the following error message:

Major Features 3-31

Constraints on SQL in a Distributed Environment

ORA02070: database = REMOTE_DBoes not support special functions in this context

This often must be resolved by replacing special functions with a bind variable:
DELETE FROM empl@mote db WHERE hiredata > :1

Rule C: Object features like tables with nested table columns, ADT columns,
Opaque columns or Ref Columns cannot be remote mapped.

Currently, the above column types are not supported for heterogeneous access. Hence, this
limitation is not directly encountered.

Rule D: SQL statements containing operators and constructs that are not
supported at the remote site cannot be remote mapped.

Note that in our description of Rule B we already encountered special constructs such as
callback links and special functions as examples of this.

If the statement is select (ordml with the target table local) and none of the remaining
rules would require the statement to be remote mapped the statement can still be executed by
processing the query locally using the local SQL engine and the reaiet¢ operation.

The remoteselect operation is the operation to retrieve rows for remote table data as
opposed to other operations like full table scan and index access which retrieve rows of local
table data. The remote table scan has a SQL statement associated with the operation. A full
table scan of tablemplis issued aSELECT * FROM empl (with the * expanded to the

full column list). Access for indexes is converted back to where clause predicates and also
filters that can be supported are passed down &/thERElause of the remote row source.

You can check the SQL statement generated by the Oracle server by explaining the
statement and querying t@ETHERcolumn of the explain plan table for eeREMOTE
operation.

See Also: Using Index and Table Statistifar more information on
how to interpret explain plans with remote references.

For example consider the following statement:
SELECT COUNT(*) FROM empl@remote_db WHERE hiredate < sysdate;

The statement returns the following output:
COUNT()

14

3-32 Oracle9i Heterogeneous Connectivity Administrator's Guide

Constraints on SQL in a Distributed Environment

1 row selected.

The remote table scan is:
SELECT hiredate FROM emp1
Since the predicate converted to a filter cannot be generated back and passed down to the

remote operation because sysdate is not supported bgrtimée_db or evaluation rules,
sysdate must be executed locally.

Note: Because the remote table scan operation is only partially related to
the original query, the number of row retrieved can be significantly larger
than you would expect and can have a significant impact on performance.

Rule E: SQL statement containing a table expression cannot be remote
mapped.

This limitation is not directly encountered since table expressions are not supported in the
heterogeneous access module.

Rule F: If a SQL statement selects a long, the statement must be mapped to

the node where the table containing the long resides.

For example, consider the following statement:

SELECT longl FROM table_with_long@ remote_ab , dual;

The statement returns the following error message:
ORA-02025: all tables in the SQL statement must be at the remote database

This can be resolved by the following statement:
SELECT longl FROM table_with_long@ remote_db WHERE long_idx =1,
Rule G: The statement must be mapped to the node on which the table or

tables with columns referenced in the FOR UPDATE OF clause resides when
the SQL statement is of form "SELECT...FOR UPDATE OF..."

When the SQL statement is of the foBELECT...FOR UPDATE OF..., the
statement must be mapped to the node on which the table or tables with columns referencec
in theFOR UPDATE OFclause resides.

For example, consider the following statement:

Major Features 3-33

Constraints on SQL in a Distributed Environment

SELECT ename FROM empl@emote db WHERE hiredate < sysdate FOR UPDATE OF empno

The statement returns the following error message:
ORA-02070: database = REMOTE DBoes not support special functions in this context

Rule H: If the SQL statement contains a SEQUENCE or sequences, the
statement must be mapped to the site where each sequence resides.

This rule is not encountered for the heterogeneous access since remote non-Oracle
sequences are not supported. The restriction for remote non-Oracle access is already present
because of the callback link restriction.

Rule I: If the statement contains a user defined operator or operators, the
statement must be mapped to the node where each operator is defined.

This rule is also already covered under the callback link restriction discussed in Rule B.

Rule J: A statement containing duplicate bind variables cannot be remote
mapped.

The work around for this restriction is to use unique bind variables and bind by number.

Updates, Inserts and Deletes

As discussed in the previous section, updates to remote non-Oracle objects through an
Oracle server are restricted by the missing callback feature support present in the Oracle
database. This restricts data manipulation language (DML) upon remote non-Oracle
database objects to statements that reference all objects in that remote non-Oracle database
or are literals or bind variables.

Because of this, no objects can be referenced from the originating Oracle server or other
remote objects.

Also, as with any remote update, whether non-Oracle or a previous remote update, if a SQL
update in an Oracle format is not supported, then an error is returned in the following
format:

ORA-2070: database ... does not support ... in this context.

Note: These restrictions do not apply to DML with a local target object
referencing non-Oracle or remote Oracle database objects.

3-34 Oracle9i Heterogeneous Connectivity Administrator's Guide

Using Index and Table Statistics

You can perform DML to remote Oracle or non-Oracle target tables in an Oracle format that
is not supported by using PL/SQL. Declare a cursor that selects the appropriate row and
executes the update for each row selected. The row may need to be unique, identified by
selecting a primary key, or, if not available, a rowid.

Consider the following example:

declare
V_empno number;
cursor remote_update is select empno from empl@ remote_adb
where ename =v_ename;
cursor ¢l is select ename from emp2 where comm IS NOT NULL;
begin
for recl in c1 loop
V_ename =recl.ename;
for rec in remote_update loop
update empl@ remote_adb setcomm =100 where empno rec.empno;
end loop;
end loop;
end;
/

Using Index and Table Statistics

Heterogeneous Services collects certain table and index statistics information on the
respective non-Oracle system tables and passes this information back to the Oracle server.
The Oracle cost based optimizer uses this information when building the query plan.

For example consider the following statement where you create a table in the Oracle
database with 10 rows:

CREATE table_T1 (C1 number);

Analyze the table by issuing the following SQL statement:
ANALYZE table_T1 COMPUTE STATISTICS;

Now create a table in the non-Oracle system with 1000 rows:
CREATE TABLE remote_t1 (C1 number)

Issue the following SQL statement:

SELECT a*FROMremote t1@ remote db a,Tlb
whereaC1=b.C1

Major Features 3-35

Other Optimizations

The Oracle optimizer issues the following SQL statement to the agent:

SELECT C1 FROMremote_tl

This fetches all the 1000 rows from the non-Oracle system and performs the join in the
Oracle database.

Now, if we add a unique index on the colu@hin the tableemote_t1 , and issue the
same SQL statement again, the agent receives the following SQL statement:

SELECT C1 FROMremote t1 WHEREC1="?

for each value of1 in the localtl.

Note: ('?") is the bind parameter marker. Also, join predicates
containing bind variables generated by Oracle are only generated for
nested loop join methods.

To verify the SQL execution plan, generate an explain plan for the SQL statement. Load
utlxplan in theadmin directory first.

At the command prompt, type:

Explain plan for SELECT a* FROM remote_t1@ remote db a,Tlb
wherea.C1=b.C1;

Then, run thaitlxpls utility script by entering the following statement.
@utixpls

The operation remote indicates that remote SQL is being referenced.
To find out what statement is sent, type the following statement at the command prompt:
select ID, OTHER from EXPLAIN_PLAN where OPERATION ='REMOTE;;

Other Optimizations

There are several other optimizations that the cost based optimizer performs. The most
important ones are remote sort elimination and remote joins.

3-36 Oracle9i Heterogeneous Connectivity Administrator's Guide

Other Optimizations

Remote Join Optimization

The following is an example of the remote join optimization capability of the Oracle
database.

Note: The explain plan that uses tables from a non-Oracle system can
differ from similar statements with local or remote Oracle table scans.
This is because of the limitation on the statistics available to Oracle for
non-Oracle tables. Most importantly, column selectivity is not available
for non-unigue indexes of non-Oracle tables. Because of the limitation of
the statistics available, the following example is not necessarily what you
encounter when doing remote joins for yourself and is intended for
illustration only.

Consider the following example:

explain plan for
select e.ename, d.dname, f.ename, f.deptno from
deptd,
emp@emote db e,
emp@emote_db f
where emgr =fempno
and e.deptno =d.deptno
and e.empno =fempno;

@utixpls

Table 3-1 Explain Plan

Operation Name Rows Bytes Cost Pstar
SELECT 1 101 128

STATEMENT

HASH JOIN 2K 132K 19

TABLE ACCESS DEPT 21 462 1

FULL

REMOTE 2K 89K 16

Issue the following statement:

SET longwidth 300
SELECT other FROM plan_table WHERE operation ='REMOTE,

Major Features 3-37

Optimizer Restrictions for non-Oracle Access

You get the following output:

SELECT

AL"ENAME"AL"MGR"AL"DEPTNO" A1"EMPNO"A2."ENAME",A2."DEPTNO"A2."EMPNO" A2,
"EMPNO" FROM "EMP" AL,"EMP" A2 WHERE A1."EMPNO"=A2."EMPNO" AND
AL"MGR"=A2."EMPNO"

Optimizer Restrictions for non-Oracle Access

1. There are no column statistics for remote objects. This can result in poor execution
plans. Verify the execution plan and use hints to improve the plan.

2. There is no optimizer hint to force a remote join. However, there is a remote query
block optimization that can be used to rewrite the query slightly in order to get a remote
join.

For instance, the earlier example can be rewritten to the form;

selectv.ename, d.dname, d.deptno from
deptd,
(select <+ NO_MERGE */
e.deptno deptno, e.ename ename emp@remote_db e, emp@remote_db f
where emgr =fempno
and e.empno =fempno;

)
where v.deptno = d.deptno;

This guarantees a remote join because it has been isolated in a nested query with the
NO_MERGE hint.

3-38 Oracle9i Heterogeneous Connectivity Administrator's Guide

A

Using the Gateway

This chapter explains how to use Oracle Transparent Gateways.

This chapter contains the following sections:

Setting Up Access to Non-Oracle Systems
Initialization Parameters

Optimizing Data Transfers Using Bulk Fetch
Registering Agents

Oracle Database Server SQL Construct Processing
Using Synonyms

Copying Data from the Oracle Database Server to the Non-Oracle Database
System

Copying Data from the Non-Oracle Database System to the Oracle Database
Server

Heterogeneous Services Data Dictionary Views

Using the Heterogeneous Services Dynamic Performance Views

Using the Gateway 4-1

Setting Up Access to Non-Oracle Systems

Setting Up Access to Non-Oracle Systems

This section explains the generic steps to configure access to a non-Oracle system.

Note: The instructions for configuring your agent may differ
slightly from the following instructions. Please see the Installation
and User's Guide for your agent for more complete installation
information.

The steps for setting up access to a non-Oracle system are:

« Step 1. Install the Heterogeneous Services Data Dictionary

« Step 2: Set Up the Environment to Access Heterogeneous Services Agents
« Step 3: Create the Database Link to the Non-Oracle System

= Step 4: Test the Connection

Step 1: Install the Heterogeneous Services Data Dictionary

To install the data dictionary tables and views for Heterogeneous Services, you
must run a script that creates all the Heterogeneous Services data dictionary tables,
views, and packages. On most systems the script is called caths.sql and resides
in SORACLE_HOME/rdbms/admin.

Note: The data dictionary tables, views, and packages may
already be installed on your Oracle9 server. Check for the existence
of Heterogeneous Services data dictionary views, for example,
SYS.HS_FDS_CLASS

Step 2: Set Up the Environment to Access Heterogeneous Services Agents

To initiate a connection to the non-Oracle system, the Oracle9 server starts an agent
process through the Oracle Net listener. For the Oracle9 server to be able to connect
to the agent, you must:

1. Setup a Oracle Net service name for the agent that can be used by the Oracle9
server. The Oracle Net service name descriptor includes protocol-specific
information needed to access the Oracle Net listener. The service name
descriptor must include the (HS=0K) clause to make sure the connection uses
Oracle9 Heterogeneous Services.

4-2 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Setting Up Access to Non-Oracle Systems

2. Set up the listener to listen for incoming request from the Oracle9 server and

spawn Heterogeneous Services agents. Modify the listener.ora file so that
the listener can start Heterogeneous Services agents, and then restart the
listener.

A Sample Entry for a Oracle Net Service Name
The following is a sample entry for the service name in the tnsnames.ora file:

Sybase_sales= (DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)
(HOST=dIsun206)
(PORT=1521))

(CONNECT_DATA = (SID=SalesDB))
(Heterogeneous Services = OK))

The description of this service name is defined in tnsnames.ora , the Oracle
Names server, or in third-party name servers using the Oracle naming adapter.

Note: Please see the Installation and User’s Guide for your agent for
more information about how to define the Oracle Net service name.

A Sample Listener Entry
The following is a sample entry for the listener in listener.ora

LISTENER =
(ADDRESS _LIST=
(ADDRESS= (PROTOCOL=tcp)
(HOST = disun206)
(PORT =1521)
)
)

SID_LIST LISTENER =
(SID_LIST=
(SID_DESC =(SID_NAME=SalesDB)
(ORACLE_HOME=home/oracle/megabase/8.1.3)
(PROGRAM=tg4mb80)

Using the Gateway 4-3

Setting Up Access to Non-Oracle Systems

The value associated with PROGRAKeyword defines the name of the agent
executable. The agent executable must reside in the SORACLE_HOME/bindirectory.
Typically, you use SID_NAMEto define the initialization parameter file for the agent.

Step 3: Create the Database Link to the Non-Oracle System

To create a database link to the non-Oracle system, use the CREATE DATABASE
LINK statement. The service name that is used in the USINGclause of the CREATE
DATABASE LINK command is the Oracle Net service name.

For example, to create a database link to the SALESdatabase on Sybase, enter:

CREATE DATABASE LINK sales
USING ‘Sybase_sales’

Step 4: Test the Connection

To test the connection to the non-Oracle system, use the database link in a SQL or
PL/SQL statement. If the non-Oracle system is a SQL-based database, you can
execute a SELECTstatement from an existing table or view using the database link.
For example, issue:

SELECT * FROM product@sales
WHERE product_name like %apencil9o’;

When you try to access the non-Oracle system for the first time, the Heterogeneous
Services agent uploads information into the Heterogeneous Services data
dictionary. The uploaded information includes:

Type of Data Explanation

Capabilities of the For example, the agent specifies whether it can perform a join, or

non-Oracle system a GROUP BY

SQL translation The agent specifies how to translate Oracle functions and

information operators into functions and operators of the non-Oracle system.

Data dictionary To make the data dictionary information of the non-Oracle

translations system available just as if it were an Oracle data dictionary, the
agent specifies how to translate Oracle data dictionary tables into
tables and views of the non-Oracle system.

4-4 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Setting Up Access to Non-Oracle Systems

Note: Most agents upload information into the Oracle9 data
dictionary automatically the first time they are accessed. Some
agent vendors may provide scripts, however, that you must run on
the Oracle9 server.

See Also: “Heterogeneous Services Data Dictionary Views” on
page 4-22 and Appendix D, "Data Dictionary Translation Support".

Using the Gateway 4-5

Initialization Parameters

Initialization Parameters

As mentioned in “Configuring Heterogeneous Services” on page 2-5, the user can
configure the gateway using initialization parameters. This is done by creating an
initialization file and setting the desired parameters in this file

Heterogeneous Services parameters are distinct from Oracle database server
initialization parameters. Heterogeneous Services initialization parameters are set in
the Heterogeneous Services initialization file and not in the Oracle init.ora file.
There is a Heterogeneous Services initialization file for each gateway instance. The
name of the file isinit sid .ora , where sid is the Oracle system identifier used
for the gateway. In the case of generic connectivity, the file is located in the directory
$ORACLE_HOME/hs/admin and in the case of transparent gateways it is located in
the directory $ORACLE_HOME/product_name/admin where product name is
the name of the product. So, the Sybase gateway initialization file is located in the
directory $ORACLE_HOME/tg4sybs/admin .

The syntax of the initialization file is as follows. The file contains a list of
initialization parameter settings each of which should be on a separate line. The
syntax to set an initialization parameter is:

[sef] [private] parameter = value

The set and private keywords are optional. If the set keyword is present then the
variable will also be set in the environment. If the private keyword is present, the
parameter will not be uploaded to the server. In general, it recommended that this
keyword not be used - unless the initialization parameter value contains sensitive
information (like a password) that should not be sent over the network from
gateway to Oracle server.

Another initialization file can be included in an Heterogeneous Services
initialization file by using the ifile directive. The syntax for this is

ifile = pathname for file to be included

In the initialization parameter syntax, all keywords (SET, PRIVATE and IFILE) are
case insensitive. Initialization parameter names and values are case sensitive. Most

initialization parameters names will be uppercase. When there are any exceptions to
this rule, we will explicitly point them out.

Gateway initialization parameters can be divided into two groups. One is a set of
generic initialization parameters that are common to all gateways and the other is a
set of initialization parameters that are specific to individual gateways. The list of
generic initialization parameters is given below. Please refer individual gateway
documentation for the list of initialization parameters specific to that gateway.

4-6 Oracle9i Heterogeneous Connectivity Administrator's Guide

Initialization Parameters

Note: Most (but not all) gateway initialization parameter follow
these conventions. For more information on initialization
parameters for individual gateways, please see your gateway

specific documentation.

HS_COMMIT_POINT_STRENGTH
HS_DB_DOMAIN
HS_DB_INTERNAL_NAME
HS_DB_NAME
HS_DESCRIBE_CACHE_HWM
HS_FDS_CONNECT_INFO
HS_FDS_SHAREABLE_NAME
HS_FDS_TRACE_LEVEL
HS_FDS_TRACE_FILE_NAME
HS_LANGUAGE
HS_LONG_PIECE_TRANSFER_SIZE
HS_NLS_DATE_FORMAT
HS_NLS_DATE_LANGUAGE
HS_NLS_NCHAR
HS_NLS_TIMESTAMP_FORMAT
HS_NLS_TIMESTAMP_TZ_FORMAT
HS_OPEN_CURSORS
HS_ROWID_CACHE_SIZE
HS_RPC_FETCH_REBLOCKING
HS_RPC_FETCH_SIZE
HS_TIME_ZONE

Do not use the private keyword when setting any of these parameters. Doing that
would cause the parameter not to be uploaded to the server and could cause errors

Using the Gateway 4-7

Optimizing Data Transfers Using Bulk Fetch

in SQL processing. None of these parameters need be set in the environment, so the
set keyword need not be used either.

Optimizing Data Transfers Using Bulk Fetch

When an application fetches data from a non-Oracle system using Heterogeneous
Services, data is transferred:

« From the non-Oracle system to the agent process
« From the agent process to the Oracle database server
« From the Oracle database server to the application

Oracle allows you to optimize all three data transfers, as illustrated in Figure 4-1.
Figure 4-1 Optimizing data transfers

Client

_
== >

Array fetch
with OCI/Pro*
or other tool

Oracle Server
T
1
)
)
1
H
1
()

| Agent

| Non-Oracle System |

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

This section contains the following topics:

4-8 Oracle9i Heterogeneous Connectivity Administrator's Guide

Optimizing Data Transfers Using Bulk Fetch

« Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
« Controlling the Array Fetch Between Oracle Database Server and Agent
« Controlling the Array Fetch Between Agent and Non-Oracle Server

« Controlling the Reblocking of Array Fetches

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

You can optimize data transfers between your application and the Oracle9 server by
using array fetches. See your application development tool documentation for
information about array fetching and how to specify the amount of data to be sent
per network round trip.

Controlling the Array Fetch Between Oracle Database Server and Agent

When Oracle retrieves data from a non-Oracle system, the Heterogeneous Services
initialization parameter HS_ RPC_FETCH_ SIZElefines the number of bytes sent per
fetch between the agent and the Oracle9 server. The agent fetches data from the
non-Oracle system until one of the following occurs:

« It has accumulated the specified number of bytes to send back to the Oracle
database server.

« The last row of the result set is fetched from the non-Oracle system.

Controlling the Array Fetch Between Agent and Non-Oracle Server

The initialization parameter HS_FDS FETCH_ROWi8termines the number of rows
to be retrieved from a non-Oracle system. Note that the array fetch must be
supported by the agent. See your agent-specific documentation to ensure that your
agent supports array fetching.

Controlling the Reblocking of Array Fetches

By default, an agent fetches data from the non-Oracle system until it has enough
data retrieved to send back to the server. That is, it keeps going until the number of
bytes fetched from the non-Oracle system is equal to or higher than the value of
HS_RPC_FETCH_SIZEIn other words, the agent reblocks the data between the
agent and the Oracle database server in sizes defined by the value of HS_RPC_
FETCH_SIZE

Using the Gateway 4-9

Optimizing Data Transfers Using Bulk Fetch

When the non-Oracle system supports array fetches, you can immediately send the
data fetched from the non-Oracle system by the array fetch to the Oracle database
server without waiting until the exact value of HS_RPC_FETCH_SIZHs reached.
That is, you can stream the data from the non-Oracle system to the Oracle database
server and disable reblocking by setting the value of initialization parameter HS_
RPC_FETCH_REBLOCKIN® OFF

For example, assume that you set HS_RPC_FETCH_SIZHo 64 kilobytes (KB) and
HS_FDS_FETCH_ROW®S 100 rows. Assume that each row is approximately 600
bytes in size, so that the 100 rows are approximately 60 KB. When HS_RPC_FETCH_
REBLOCKINGSs set to ON the agent starts fetching 100 rows from the non-Oracle
system.

Because there is only 60 KB of data in the agent, the agent does not send the data
back to the Oracle database server. Instead, the agent fetches the next 100 rows from
the non-Oracle system. Because there is now 120 KB of data in the agent, the first 64
KB can be sent back to the Oracle database server.

Now there is 56 KB of data left in the agent. The agent fetches another 100 rows
from the non-Oracle system before sending the next 64 KB of data to the Oracle
database server. By setting the initialization parameter HS_RPC_FETCH_
REBLOCKINGo OFF the first 100 rows are immediately sent back to the Oracle9
server.

4-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

Registering Agents

Registering Agents

Registration is an operation through which Oracle stores information about an
agent in the data dictionary. Agents do not have to be registered. If an agent is not
registered, Oracle stores information about the agent in memory instead of in the
data dictionary; when a session involving an agent terminates, this information
ceases to be available.

Self-registration is an operation in which a database administrator sets an
initialization parameter that lets the agent automatically upload information into
the data dictionary. In release 8.0 of the Oracle database server, an agent could
determine whether to self-register. In release 9.0, self-registration occurs only when
the HS_AUTOREGISTEMitialization parameter is set to TRUE(default).

Note: HS_AUTOREGISTER an Oracle initialization parameter
that you set in the init.ora file; it is not a Heterogeneous Services
initialization parameter that is set in the gateway initialization file.

This section contains the following topics:
« Enabling Agent Self-Registration
» Disabling Agent Self-Registration

Enabling Agent Self-Registration

To ensure correct operation over heterogeneous database links, agent
self-registration automates updates to Heterogeneous Services configuration data
that describe agents on remote hosts. Agent self-registration is the default behavior.
If you do not want to use the agent self-registration feature, then set the
initialization parameter HS_AUTOREGISTER FALSE

Both the server and the agent rely on three types of information to configure and
control operation of the Heterogeneous Services connection. These three sets of
information are collectively called HS configuration data:

Heterogeneous
Services Configuration
Data Description

Heterogeneous Services | Provide control over various connection-specific details of
initialization parameters | operation.

Using the Gateway 4-11

Registering Agents

Heterogeneous

Services Configuration

Data Description

Capability definitions Identify details like SQL language features supported by the
non-Oracle datasource.

Data dictionary Map references to Oracle data dictionary tables and views into

translations equivalents specific to the non-Oracle data source.

See Also: "Specifying HS_AUTOREGISTER" on page 4-14.

Using Agent Self-Registration to Avoid Configuration Mismatches

HS configuration data is stored in the Oracle database server’s data dictionary.
Because the agent is possibly remote, and may therefore be administered separately,
several circumstances can lead to configuration mismatches between servers and
agents:

An agent can be newly installed on a separate machine so that the server has no
Heterogeneous Services data dictionary content to represent the agent’s HS
configuration data.

A server can be newly installed and lack the necessary HS configuration data
for existing agents and non-Oracle data stores.

A non-Oracle instance can be upgraded from an older version to a newer
version, requiring modification of the HS configuration data.

An Heterogeneous Services agent at a remote site can be upgraded to a new
version or patched, requiring modification of the HS configuration data.

A database administrator (DBA) at the non-Oracle site can change the agent
setup, possibly for tuning or testing purposes, in a manner which affects HS
configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in
all these scenarios. Specifically, agent self-registration enhances inter operability
between any Oracle database server and any Heterogeneous Services agent,
provided that each is at least as recent as Version 8.0.3. The basic mechanism for this
functionality is the ability to upload HS configuration data from agents to servers.

4-12 Oracle9i Heterogeneous Connectivity Administrator's Guide

Registering Agents

Self-registration provides automatic updating of HS configuration data residing in
the Oracle database server data dictionary. This update ensures that the agent
self-registration uploads need to be done only once, on the initial use of a
previously unregistered agent. Instance information is uploaded on each
connection, not stored in the server data dictionary.

Understanding Agent Self-Registration
The Heterogeneous Services agent self-registration feature can:

« ldentify the agent and the non-Oracle data store to the Oracle database server.

« Permit agents to define Heterogeneous Services initialization parameters for
use both by the agent and connected Oracle9 servers.

« Upload capability definitions and data dictionary translations, if available, from
an Heterogeneous Services agent during connection initialization.

Note: When both the server and the agent are release 8.1 or
higher, the upload of class information occurs only when the class
is undefined in the server data dictionary. Similarly, instance
information is uploaded only if the instance is undefined in the
server data dictionary.

The information required to accomplish the above is accessed in the server data
dictionary by using these agent-supplied names:

. FDS_CLASS
. FDS_CLASS_VERSION

See Also: "Heterogeneous Services Data Dictionary Views" on
page 4-22 to learn how to use the Heterogeneous Services data
dictionary views.

FDS_CLASS and FDS_CLASS VERSION FDS CLASSand FDS_CLASS_ VERSIONre
defined by Oracle or by third-party vendors for each individual Heterogeneous
Services agent and version. Oracle Heterogeneous Services concatenates these
names to form FDS_CLASS_ NAMBEwvhich is used as a primary key to access class
information in the server data dictionary.

FDS_ CLASSshould specify the type of non-Oracle data store to be accessed and
FDS_CLASS_VERSIONhould specify a version number for both the non-Oracle

Using the Gateway 4-13

Registering Agents

data store and the agent that connects to the it. Note that when any component of
an agent changes, FDS_CLASS_VERSIONnust also change to uniquely identify the
new release.

Note: This information is uploaded when you initialize each
connection.

FDS_INST_NAME Instance-specific information can be stored in the server data
dictionary. The instance name, FDS_INST_NAMEis configured by the DBA who
administers the agent; how the DBA performs this configuration depends on the
specific agent in use.

The Oracle database server uses FDS_INST_NAMBo look up instance-specific
configuration information in its data dictionary. Oracle uses the value as a primary
key for columns of the same name in these views:

. FDS_INST_INIT
. FDS_INST_CAPS
. FDS_INST_DD

Server data dictionary accesses that use FDS_INST_NAMEalso use FDS_CLASS _
NAMBo uniquely identify configuration information rows. For example, if you port
a database from class Sybase8.1.6 to class Sybase8.1.7, both databases can
simultaneously operate with instance name SCOTTand use separate sets of
configuration information.

Unlike class information, instance information is not automatically self-registered in
the server data dictionary.

« Ifthe server data dictionary contains instance information, it represents
DBA-defined setup details which fully define the instance configuration. No
instance information is uploaded from the agent to the server.

« Ifthe server data dictionary contains no instance information, any instance
information made available by a connected agent is uploaded to the server for
use in that connection. The uploaded instance data is not stored in the server
data dictionary.

Specifying HS_AUTOREGISTER

The Oracle database server initialization parameter HS_ AUTOREGISTERNnables or
disables automatic self-registration of Heterogeneous Services agents. Note that this

4-14 Oracle9i Heterogeneous Connectivity Administrator's Guide

Registering Agents

parameter is specified in the Oracle initialization parameter file, not the agent
initialization file. For example, you can set the parameter as follows:

HS_AUTOREGISTER = TRUE

When set to TRUE the agent uploads information describing a previously unknown
agent class or a new agent version into the server’s data dictionary.

Oracle recommends that you use the default value for this parameter (TRUB, which
ensures that the server’s data dictionary content always correctly represents
definitions of class capabilities and data dictionary translations as used in
Heterogeneous Services connections.

See Also: Oracle9i Database Reference for a description of this
parameter.

Disabling Agent Self-Registration

To disable agent self-registration, set the HS_ AUTOREGISTERitialization
parameter as follows:

HS AUTOREGISTER =FALSE

Disabling agent self-registration entails that agent information is not stored in the
data dictionary. Consequently, the Heterogeneous Services data dictionary views
are not useful sources of information. Nevertheless, the Oracle server still requires
information about the class and instance of each agent. If agent self-registration is
disabled, the server stores this information in local memory.

Using the Gateway 4-15

Oracle Database Server SQL Construct Processing

Oracle Database Server SQL Construct Processing

The gateway rewrites SQL statements when the statements need to be translated or
post-processed.

For example, consider a program that requests the following from the non-Oracle
database system database:

SELECT"COL_A"FROM "test'@SYBS
WHERE "COL_A"=INITCAP(jones);

The non-Oracle database system database does not recognize INITCAP, so the
Oracle database server does a table scan of test and filters the results locally. The
gateway rewrites the SELECTstatement as follows:

SELECT"COL_A"FROM 'test'@SYBS

The results of the query are sent to the gateway and are filtered by the Oracle
database server.

Consider the following UPDATEequest:

UPDATE "test'@SYBS WHERE "COL_A"=INITCAP(jones));

In this case, the Oracle database server and the gateway cannot compensate for the
lack of support at the non-Oracle database system side, so an error is issued.

If you are performing operations on large amounts of data stored in the non-Oracle
database system database, keep in mind that some functions require data to be
moved to the integrating Oracle database server before processing can occur.

4-16 Oracle9i Heterogeneous Connectivity Administrator's Guide

Using Synonyms

Using Synonyms

You can provide complete data location transparency and network transparency by
using the synonym feature of the Oracle database server. When a synonym is
defined, you do not have to know the underlying table or network protocol. A
synonym can be public, which means that all Oracle users can refer to the synonym.
A synonym can also be defined as private, which means every Oracle user must
have a synonym defined to access the non-Oracle database system table.

The following statement creates a system wide synonym for the EMPtable in the
schema of user ORACLEN the non-Oracle database system database:

SQL>CREATE PUBLIC SYNONYM EMP FOR "ORACLE""EMP"@SYBS

See Also: Oracle9i Database Administrator’s Guide for information
about synonyms.

Example of a Distributed Query

The following example joins data between the Oracle database server, an IBM DB2
database, and the non-Oracle database system database:

SQL> SELECT O.CUSTNAME, P.PROJNO, E.ENAME, SUM(E.RATE*P."HOURS')
FROM ORDERS@DB2 O, EMP@ORACLEIE, "PROJECTS'@SYBS P
WHERE O.PROJNO = P."PROJNO"

AND P."EMPNO"=E.EMPNO
GROUP BY O.CUSTNAME, P."PROJNO", EENAME

Through a combination of views and synonyms, using the following SQL
statements, the process of distributed queries is transparent to the user:

SQL>CREATE SYNONYM ORDERS FOR ORDERS@DB2
SQL>CREATE SYNONYM PROJECTS FOR "PROJECTS'@SYBS
SQL> CREATE VIEW DETAILS (CUSTNAME,PROJINO,ENAME,SPEND)
AS
SELECT O.CUSTNAME, P."PROJNO", E.ENAME, SUM(E.RATE*P."HOURS")
SPEND
FROM ORDERS O, EMP E, PROJECTS P
WHERE O.PROJNO =P."PROJNO"
AND P."EMPNO" = E.EMPNO
GROUP BY O.CUSTNAME, P."PROJNO", EEENAME

Use the following SQL statement to retrieve information from the data stores in one
command:

SQL> SELECT * FROM DETALLS;

Using the Gateway 4-17

Using Synonyms

The command retrieves the following table:
CUSTNAME PROJNO ENAME SPEND

ABC Co. 1 Jones 400
ABC Co. 1 Smith 180
XYZInc. 2 Jones 400
XYZInc. 2 Smith 180

4-18 Oracle9i Heterogeneous Connectivity Administrator's Guide

Copying Data from the Oracle Database Server to the Non-Oracle Database System

Copying Data from the Oracle Database Server to the Non-Oracle
Database System

Use the SQL*Plus COPY command to copy data from the local database to the
non-Oracle database system database. The syntax is as follows:

COPY FROMusemame | password @lb_name
INSERT destination_table USING query

The following example selects all rows from the local Oracle EMPtable, inserts them
into the EMPtable on the non-Oracle database system database, and commits the
transaction:

SQL> COPY FROM SCOTT/TIGER@ORACLES-
>INSERT SCOTT.EMP@SYBS -
> USING SELECT * FROM EMP

The COPYcommand supports APPENDCREATEINSERT, and REPLACEoptions.
However, INSERT is the only option supported when copying to non-Oracle
database system. The SQL*Plus COPYcommand does not support copying to tables
with lowercase table names. Use the following PL/SQL syntax with lowercase table

names:

DECLARE
vl oracle_table.columnl %TYPE;
V2 oracle _table.column2 %TYPE;

V3 oracle_table.colurmn3 %TYPE;

CURSOR cursor name ISSELECT*FROM oracke table
BEGIN

OPEN cursor name ;

LOOP

FETCH cursor name INTO v, v2, V3,..;

EXIT WHEN cursor_name Y%NOTFOUND;

INSERT INTO destination_table VALUES(vI, V2, V3,.);
END LOOP;

CLOSE cursor_name ;

END;
/

Using the Gateway 4-19

Copying Data from the Oracle Database Server to the Non-Oracle Database System

See Also: SQL*Plus User’s Guide and Reference for more
information about the COPY command.

The following Oracle SQL INSERT statement is not supported for copying data
from the Oracle database server to non-Oracle database system:

INSERTINTO table name SELECT column list FROM table name

For example, consider the following statement:
SQL>INSERT INTO SYBS_TABLE SELECT *FROM MY _LOCAL _TABLE

The statement returns the following error message:
ORA-2025: Alltables in the SQL statement must be at the remote database

4-20 Oracle9i Heterogeneous Connectivity Administrator's Guide

Copying Data from the Non-Oracle Database System to the Oracle Database Server

Copying Data from the Non-Oracle Database System to the Oracle
Database Server

The CREATE TABLEcommand lets you copy data from a non-Oracle database
system database to the Oracle database server. To create a table on the local
database and insert rows from the non-Oracle database system table, use the
following syntax:

CREATE TABLE table name AS query

The following example creates the table EMPin the local Oracle database and inserts
the rows from the EMPtable of the non-Oracle database system database:

SQL> CREATE TABLE EMP AS SELECT * FROM SCOTT."EMP"@SYBS

Alternatively, you can use the SQL*Plus COPY command to copy data from the
non-Oracle database system database to the Oracle database server.

See Also: SQL*Plus User’s Guide and Reference for more
information about the COPY command.

Using the Gateway 4-21

Heterogeneous Services Data Dictionary Views

Heterogeneous Services Data Dictionary Views

You can use the Heterogeneous Services data dictionary views to access information
about Heterogeneous Services. This section addresses the following topics:

« Understanding the Types of Views

« Understanding the Sources of Data Dictionary Information
« Using the General Views

« Using the Transaction Service Views

« Using the SQL Service Views

Understanding the Types of Views

The Heterogeneous Services data dictionary views, which all begin with the prefix
HS_, can be divided into four main types:

« General views
« Views used for the transaction service
« Views used for the SQL service

Most of the data dictionary views are defined for both classes and instances.
Consequently, for most types of data there isa* CLASS and an *_INST view.

4-22 Oracle9i Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

Table 4-1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

HS_BASE_CAPS SQL service All capabilities supported by
Heterogeneous Services

HS_BASE_DD SQL service All data dictionary translation table

names supported by Heterogeneous
Services

HS_CLASS_CAPS

Transaction service,

Capabilities for each class

SQL service
HS_CLASS DD SQL service Data dictionary translations for each
class
HS_CLASS_INIT General Initialization parameters for each class
HS_FDS_CLASS General Classes accessible from this Oracle9
server
HS_FDS_INST General Instances accessible from this Oracle9

server

Like all Oracle data dictionary tables, these views are read-only. Do not use SQL to
change the content of any of the underlying tables. To make changes to any of the
underlying tables, use the procedures available in the DBMS_H$ackage.

Understanding the Sources of Data Dictionary Information

The values used for data dictionary content in any particular connection on a
Heterogeneous Services database link can come from any of the following sources,

in order of precedence:

« Instance information uploaded by the connected Heterogeneous Services agent
at the start of the session. This information overrides corresponding content in
the Oracle data dictionary, but is never stored into the Oracle data dictionary:.

« Instance information stored in the Oracle data dictionary. This data overrides
any corresponding content for the connected class.

« Class information stored in the Oracle data dictionary.

If the Oracle database server runs with the HS_ AUTOREGISTERerver initialization
parameter set to FALSE, then no information is stored automatically in the Oracle
data dictionary. The equivalent data is uploaded by the Heterogeneous Services

Using the Gateway 4-23

Heterogeneous Services Data Dictionary Views

agent on a connection-specific basis each time a connection is made, with any
instance-specific information taking precedence over class information.

Note: Itis not possible to determine positively what capabilities
and what data dictionary translations are in use for a given session
due to the possibility that an agent can upload instance
information.

You can determine the values of Heterogeneous Services initialization parameters
by querying the VALUEcolumn of the VSHS PARAMETE®ew. Note that the VALUE
column of V8HS_PARAMETERunNcates the actual initialization parameter value
from a maximum of 255 characters to a maximum of 64 characters, and it truncates
the parameter name from a maximum of 64 characters to a maximum of 30
characters.

Using the General Views

The views that are common for all services are as follows:

View Contains

HS_FDS_CLASS Names of the instances and classes that are uploaded into the

HS_FDS_INST Oracle8i data dictionary

HS_CLASS_INIT Information about the Heterogeneous Services initialization
parameters

For example, you can access multiple Sybase gateways from an Oracle database
server. After accessing the gateways for the first time, the information uploaded
into the Oracle database server could appear as follows:

SQL>SELECT *FROM hs_fds_class;

FDS CLASS NAME ~ FDS_CLASS COMMENTS FDS_CLASS ID

Sybase816 Uses Sybase driver, R1.1 1
Sybase817 Uses Sybase driver, R1.2 21

Two classes are uploaded: a class that accesses Sybase816 and a class that accesses
Sybase817. The data dictionary in the Oracle database server now contains

4-24 Oracle9i Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

capability information, SQL translations, and data dictionary translations for both
Sybase816 and Sybase817.

In addition to this information, the Oracle database server data dictionary also
contains instance information in the HS_FDS_INSTview for each non-Oracle
system instance that is accessed.

Using the Transaction Service Views

When a non-Oracle system is involved in a distributed transaction, the transaction
capabilities of the non-Oracle system and the agent control whether it can
participate in distributed transactions. Transaction capabilities are stored in the HS _
CLASS_CAPSables.

The ability of the non-Oracle system and agent to support two-phase commit
protocols is specified by the 2PC type capability, which can specify one of the
following five types.

Read-only (RO) The non-Oracle system can only be queried with SQL SELECT statements.
Procedure calls are not allowed because procedure calls are assumed to
write data.

Single-Site (§S) The non-Oracle system can handle remote transactions but not distributed
transactions. That is, it can not participate in the two-phase commit
protocol.

Commit The non-Oracle system can participate in distributed transactions. It can

Confirm (CC) participate in the server’s two-phase commit protocol but only as the
Commit Point Site. That is, it can not prepare data, but it can remember the
outcome of a particular transaction if asked by the global coordinator.

Two-Phase The non-Oracle system can participate in distributed transactions. It can

Commit participate in the server’s two-phase commit protocol, as a regular
two-phase commit node, but not as a Commit Point Site. That is, it can
prepare data, but it can not remember the outcome of a particular
transaction if asked to by the global coordinator.

Two-Phase The non-Oracle system can participate in distributed transactions. It can
Commit participate in the server’s two-phase commit protocol as a regular
Confirm two-phase commit node or as the Commit Point Site. That is, it can prepare

data and it can remember the outcome of a particular transaction if asked
by the global coordinator.

The transaction model supported by the driver and non-Oracle system can be
queried from Heterogeneous Services’ data dictionary view HS_CLASS_CAPS

One of the capabilities is of the 2PC type:

Using the Gateway 4-25

Heterogeneous Services Data Dictionary Views

SELECT cap_description, translation
FROM hs class caps

WHERE cap_description LIKE 2PC%'
AND fds_class name=MegaBase6

CAP_DESCRIPTION TRANSLATION

2PC type (RO-SS-CC-PREP/2P-2PCC) CC

When the non-Oracle system and agent support distributed transactions, the
non-Oracle system is treated like any other Oracle9 server. When a failure occurs
during the two-phase commit protocol, the transaction is recovered automatically. If
the failure persists, the in-doubt transaction may need to be manually overridden
by the database administrator.

Using the SQL Service Views

Data dictionary views that are specific for the SQL service contain information
about:

« SQL capabilities and SQL translations of the non-Oracle data source

« Data Dictionary translations to map Oracle data dictionary views to the data
dictionary of the non-Oracle system.

Note: This section describes only a portion of the SQL
Service-related capabilities. Because you should never need to alter
these settings for administrative purposes, these capabilities are not
discussed here.

Using Views for Capabilities and Translations

The HS_*_CAPSdata dictionary tables contain information about the SQL
capabilities of the non-Oracle data source and required SQL translations. These
views specify whether the non-Oracle data store or the Oracle database server
implements certain SQL language features. If a capability is turned off, then Oracle9
does not send any SQL statements to the non-Oracle data source that require this
particular capability, but it still performs post-processing.

Using Views for Data Dictionary Translations

In order to make the non-Oracle system appear similar to an Oracle database server,
Heterogeneous Services connections map a limited set of Oracle data dictionary

4-26 Oracle9i Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

views onto the non-Oracle system’s data dictionary. This mapping permits
applications to issue queries as if these views belonged to an Oracle data dictionary.
Data dictionary translations make this access possible. These translations are stored
in Heterogeneous Services views whose names are suffixed with _DD.

For example, the following SELECTstatement transforms into a Sybase query that
retrieves information about EMPtables from the Sybase data dictionary table:

SELECT *FROM USER_TABLES@salesdb
WHERE UPPER(TABLE_NAME)=EMP"

Data dictionary tables can be mimicked instead of translated. If a data dictionary
translation is not possible because the non-Oracle data source does not have the
required information in its data dictionary, Heterogeneous Services causes it to
appear as if the data dictionary table is available, but the table contains no
information.

To retrieve information for which Oracle data dictionary views or tables are
translated or mimicked for the non-Oracle system, you can issue the following
guery on the HS _CLASS DDview:

SELECT DD_TABLE_NAME, TRANSLATION_TYPE
FROM HS CLASS DD
WHERE FDS_CLASS NAME=Sybase’;

DD_TABLE_NAME T
ALL_ ARGUMENTS M
ALL_CATALOG T
ALL_CLUSTERS T
ALL_CLUSTER HASH_EXPRESSIONS M
ALL_COLL TYPES M
ALL_COL_COMMENTS T
ALL_COL_PRIVS M

ALL COL PRNVS MADE M
ALL COL PRVS RECD M

The translation type T specifies that a translation exists. When the translation type is
M the data dictionary table is mimicked.
See Also: Appendix D, "Data Dictionary Translation Support" for

a list of data dictionary views that are supported through
Heterogeneous Services mapping.

Using the Gateway 4-27

Using the Heterogeneous Services Dynamic Performance Views

Using the Heterogeneous Services Dynamic Performance Views

The Oracle database server stores information about agents, sessions, and
parameter. You can use the V$ dynamic performance views to access this
information. This section contains the following topics:

« Determining Which Agents Are Running on a Host

« Determining the Open Heterogeneous Services Sessions

Determining Which Agents Are Running on a Host
The following view shows generation information about agents:

View Purpose

V$HS_AGENT Identifies the set of Heterogeneous Services agents currently
running on a given host, using one row per agent process.

Use this view to determine general information about the agents running on a
specified host. The following table shows the most relevant columns (for a
description of all the columns in the view, see Oracle9i Database Reference):

Table 4-2 V$HS_AGENT

Column Description

AGENT_ID Oracle Net session identifier used for connections to agent
(listener.ora SID)

MACHINE Operating system machine name

PROGRAM Program name of agent

AGENT_TYPE Type of agent

FDS_CLASS_ID The ID of the foreign data store class

FDS_INST_ID The instance name of the foreign data store

Determining the Open Heterogeneous Services Sessions

The following view shows which Heterogeneous Services sessions are open for the
Oracle database server:

4-28 Oracle9i Heterogeneous Connectivity Administrator's Guide

Using the Heterogeneous Services Dynamic Performance Views

View

Purpose

V$HS_SESSION

Lists the sessions for each agent, specifying the database link
used.

The following table shows the most relevant columns (for an account of all the

columns in the view,

see Oracle9i Database Reference):

Table 4-3 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

AGENT_ID Oracle Net session identifier used for connections to agent
(listener.ora SID)

DB_LINK Server database link name used to access the agent NULL means that
no database link is used (eg, when using external procedures)

DB_LINK_OWNER | Owner of the database link in DB_LINK

Determining the Heterogeneous S

ervices Parameters

The following view shows which Heterogeneous Services parameters are set in the
Oracle database server:

View

Purpose

V$HS_PARAMETER

Lists Heterogeneous Services parameters and values registered
in the Oracle database server.

The following table shows the most relevant columns (for an account of all the
columns in the view, see Oracle9i Database Reference):

Table 4-4 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier
PARAMETER The name of the Heterogeneous Services parameter
VALUE The value of the Heterogeneous Services parameter

Using the Gateway 4-29

Using the Heterogeneous Services Dynamic Performance Views

Information about the database link that was used for establishing the distributed
connection, the startup time, and the set of initialization parameters used for the
session is also available.

All of the runtime information is derived from dynamically updated V$ tables. The
Distributed Access Manager has a refresh capability available through the menu
and toolbar that allows users to rerun queries if necessary and update the data.
When the data is refreshed, the tool verifies that the set of registered agents remains
the same. If it is not, the global view is updated.

See Also: Oracle Enterprise Manager Administrator’s Guide and

online help for more information about the Distributed Access
Manager.

4-30 Oracle9i Heterogeneous Connectivity Administrator’s Guide

D

Using Multithreaded Agents

This chapter explains what multithreaded agents are, how they contribute to the overall
efficiency of a distributed database system, and how to administer multithreaded agents.

This chapter contains the following sections:
« Concepts

« Multithreaded Agent Architecture

« Multithreaded Agent Administration

Note: Even though Heterogeneous Services supports multithreaded
agents, this functionality is not necessarily available in all Heterogeneous
Services based gateways. Not only must multithreaded agents have generic
support, which Heterogeneous Services provides, but support for
multithreaded agents must also be added to the driver.

Using Multithreaded Agents 5-1

Concepts

Concepts

This section explains how multithreaded agents contribute to the overall efficiency of
Heterogeneous Services and Oracle Transparent Gateways.

This section contains the following topics:
« The Challenge of Dedicated Agent Architecture
« The Advantage of Multithreading

The Challenge of Dedicated Agent Architecture

In the architecture of past releases of Heterogeneous Service, agents are started up on a per
user-session and per database link basis. When a user session attempts to access a
non-Oracle system by means of a particular database link, an agent process is started up that
is exclusively dedicated to that user session and that database link. The agent process
terminates only when the user-session ends or when the database link is closed. Separate
agent processes are started under the following conditions:

« The same user-session uses two different database links to connect to the same
non-Oracle system

« Two different user sessions use the same database link to access the same non-Oracle
system.

This architecture is simple and straightforward. However, it has the disadvantage of
potentially consuming an unnecessarily large amount of system resources.

For example, suppose that there are several thousand user sessions simultaneously accessing
the same non-Oracle system. Because an agent process is started up for each one of them,
there are also several thousand agent processes running concurrently as well as several
thousand connections open to these agent processes. The agent processes are all running
regardless of whether each individual agent process is actually active at the moment or not.
Because of this, agent processes and open connections can consume an disproportionate
amount of system resources without any discernible benefit.

The Advantage of Multithreading

Usually, only a small percentage of these agent processes are actually active at a given
moment. This makes it possible to more efficiently use system resources by using the
multithreaded agent feature of Oracle Transparent Gateways. The multithreaded agent uses a
pool of shared agent processes. (The number of these shared agent processes is usually
considerably less than the number of user sessions.) The tasks requested by the user sessions
are put on a queue and are picked up by the first available multithreaded agent.

5-2 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Concepts

Note Also: For more information about multithreading, see the
following:

« Oracle9i Database Administrator’'s Guide
« Oracle9i SQL Reference
« Oracle Net Services Administrator’'s Guide

« Oracle Net Services Reference Guide

Using Multithreaded Agents 5-3

Multithreaded Agent Architecture

Multithreaded Agent Architecture
This section describes the architecture of multithreaded agents.
This section contains the following topics:
« Overview
« The Monitor Thread
« Dispatcher Threads
« Task Threads

Overview
In the architecture for multithreaded agents, there are three kinds of threads:

« A singlemonitor thread
« Severalispatcherthreads
« Severatask threads.

Typically there are many more task threads than dispatcher threads. The architecture is
shown inFigure 5-1

5-4 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agent Architecture

Figure 5-1 Multithreaded Agent Architecture

User-Session 1 User-Session 2
Oracle9 Server Oracle9 Server
HS HS

Agent Process

Dispatcher 1 Dispatcher 2

\ ,'
\ \

Task Thread P Task Thread 3

Task Thread 1

|
Y V Y Y

Non-Oracle
System

Each request issued by a user session is represeitigtiia 5-1by a separate type of
arrow.

Each request is processed by means of the three different kinds of threads
« The monitor thread is responsible for the following:

« Maintaining communication with the listener

« Monitoring the load on the process

« Starting and stopping threads when required

Using Multithreaded Agents 5-5

Multithreaded Agent Architecture

« The dispatcher threads are responsible for the following:
« Handling communication with the Oracle server
« Passing task requests onto the task threads
« The task threads handle requests from the Oracle processes

These three thread types roughly correspond to the Oracle multithreaded server's PMON,
dispatcher and shared server processes respectively.

Note: All requests from a user session go through the same dispatcher
thread, but can be serviced by different task threads. It is also possible for
several task threads to use the same connection to the non-Oracle system.

Multi-threaded agents are started on a per system-identifier(SID) basis. Each TNS listener
that is running on a system listens for incoming connection requests for a set of SIDs. To
connect to a process by means of a listener, the SID in the SQL*Net connect string should
be one of the SIDs that the listener is listening for. For each SID, a separate agent process is
started and incoming connections for that SID are handed over by the listener to that
process.

The agent process is pre-started. A separate agent control utility stops and starts the
multithreaded agent itself.

See Also: Multithreaded Agent Administratioan page 5-8 for more
information on how to start and stop multithreaded agents using the agent
control utility.

The Monitor Thread

The monitor thread is the first thread to be started with an multithreaded agent process. The
monitor thread does the following:

« Creates the dispatcher and task threads

« Registers the dispatcher threads it has created with all the listeners that are handling
connections to this agent

« While the dispatcher for this SID is running, the listener does not start a new
process when it gets an incoming connection. Instead, the listener hands over the
connection to this same dispatcher.

« Monitors the other threads and send load information about the dispatcher threads to all
the listener processes handling connections to this agent

5-6 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agent Architecture

« This way, the listeners can hand over incoming connections to the least loaded
dispatcher.

« Monitors each of the threads it has created

Dispatcher Threads

Dispatcher threads do the following:
« Accept incoming connections and task requests from Oracle servers
« Place incoming requests on a queue for a task thread to pick up

« Send results of a request back to the server that issued the request

Note: Once a user session establishes a connection with a dispatcher, all
requests from that user-session will go to the same dispatcher until the end
of the user session.

Task Threads

Task threads do the following:
« Pick up requests from a queue
« Perform the necessary operations.

« Place the results on a queue for a dispatcher to pick up

Using Multithreaded Agents 5-7

Multithreaded Agent Administration

Multithreaded Agent Administration

Overview

This section explains how you can administer multithreaded agents.
This section contains the following topics.

« Overview

« Single Command Mode Commands

= Shell Mode Commands

The multithreaded agent is started and stopped by an agent control utilityacadigd

which works much likésnrctl . The main differences are thatrctl reads a
configuration file whereaaftctl takes information form the command line and writes it
to a control file. There is no equivalent for listener.ora as fagtasl is concerned.

You can rumagtctl in one of two ways:
1. Commands can be run from the UNIX (or DOS) shell
This mode is called single command mode

2. You can typeagtct ’and you will get aPAGTCTL>prompt and you can type
commands from within thagtctl shell.

This mode is called shell mode

Single Command Mode Commands

The commands (in single command mode are) are as follows:

1. Startup
agtctl startup agent_name agent_sid
2. Shutdown

There are three variants of the shutdown command
1. agtct shutdown <sid>

2. agtctl shutdown immediate <sid>

3. agtct shutdown abort <sic>

5-8 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agent Administration

If you issue the first varianagtctl will talk to the agent and ask it to terminate itself
gracefully. In other words, all sessions will complete the operations they are currently doing
and then shutdown.

If you issue the second variaagtctl will talk to the agent and tell it terminate
immediately. In other words, the agent process will exit immediately regardless of the state
of current sessions.

If you issue the third varianagtctl will not talk to the agent at all. It will just issue a
system call to kill the agent process.

3. Setting parameters
agct! set parameter_value agent_sid
4. Unsetting parameters

agtctl unset parameter agent_sid

5. Examining parameter values

agtctl show parameter agent_sid

6. Deleting all settings for a particular agent system identifier
agtctl delete agent sid

Shell Mode Commands

In shell mode, you can stagtctl by typing ‘agtctl " whereupon you will get an
"AGTCTL> prompt.

First, set the name of the agent sid that you are working with by typing

setagent_sid agent sid

All commands issued after this are assumed to be for this particular sid until the agent_sid
value is changed.

The commands are all the same as those for the single command mode commands with the
exception that you can drop thegtctl ' andagent sid

To set an initialization parameter value, type:

set parameter value

Using Multithreaded Agents 5-9

Multithreaded Agent Administration

Use the following table to set your initialization parameters.

Table 5-1 Initialization Parameters for agtct!

parameter description

max_dispatchers (maximum number of dispatchers)

tcp_dispatcher (number of dispatchers listening on tcp - the rest are using ipc).
max_task_threads (number of task threads)

listener_address (address on which the listener is listening - needed for registration)
shutdown_address (address on which the agent should listen for shutdown messages

from agtctl)

language (language name)

5-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

6

Performance Tips

This chapter explains how to optimize distributed SQL statements, how to use
partition views with Oracle Transparent Gateways, and how to optimize the
performance of distributed queries.

This chapter includes the following sections:
« Optimizing Heterogeneous Distributed SQL Statements
« Using Gateways and Partition Views

« Optimizing Performance of Distributed Queries

Performance Tips 6-1

Optimizing Heterogeneous Distributed SQL Statements

Optimizing Heterogeneous Distributed SQL Statements

When a SQL statement accesses data from non-Oracle systems, it is said to be a
heterogeneous distributed SQL statement. To optimize heterogeneous distributed
SQL statements, follow the same guidelines as for optimizing distributed SQL
statements that access Oracle databases only. However, you must consider that the
non-Oracle system usually does not support all the functions and operators that
Oracle9 supports.

The Transparent Gateways tell Oracle (at connect time) which functions and
operators they do support. If the other data source does not support a function or
operator, then Oracle performs that function or operator. In this case, Oracle obtains
the data from the other data source and applies the function or operator locally. This
affects the way in which the SQL statements are decomposed and can affect
performance, especially if Oracle is not on the same machine as the other data
source.

Using Gateways and Partition Views

You can use partition views with Oracle Transparent Gateways release 8 or higher.
Make sure you adhere to the following rules:

The cost-based optimizer must be used, by using hints or setting the parameter
OPTIMIZER_MODHo ALL_ROWSr FIRST_ROWS_Kor FIRST_ROWS

Indexes used for each partition must be the same. See the gateway-specific
documentation to find out whether the gateway sends index information of the
non-Oracle system to the Oracle Server. If the gateway sends index information to
the optimizer, then make sure that each partition uses the same number of indexes
and that you have indexed the same columns. If the gateway does not send index
information, then the Oracle optimizer is not aware of the indexes on partitions.
Indexes are, therefore, considered to be the same for each partition in the
non-Oracle system. If one partition resides on an Oracle server, then you cannot
have an index defined on that partition.

The column names and column data types for all branches in the UNION ALL view
must be the same. Non-Oracle system data types are mapped onto Oracle data
types. Make sure that the data types of each partition that reside in the different
non-Oracle systems all map to the same Oracle data types. To see how data types
are mapped onto Oracle data types, execute a DESCRIBEstatement in SQL*Plus.

6-2 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Optimizing Performance of Distributed Queries

Optimizing Performance of Distributed Queries

You can improve performance of distributed queries in several ways:

Choose the best SQL statement.

In many cases, there are several SQL statements that can achieve the same result. If
all tables are on the same database, then the difference in performance between
these SQL statements might be minimal. But, if the tables are located on different
databases, then the difference in performance might be more significant.

Use the cost-based optimizer.

The cost-based optimizer uses indexes on remote tables, considers more execution
plans than the rule-based optimizer, and generally gives better results. With the
cost-based optimizer, performance of distributed queries is generally satisfactory.
Only on rare occasions is it necessary to change SQL statements, create views, or
use procedural code.

Use views.

In some situations, views can be used to improve performance of distributed
gueries. For example:

« Joining several remote tables on the remote database.
« Sending a different table through the network.
« Using procedural code.

On some rare occasions, it can be more efficient to replace a distributed query by
procedural code, such as a PL/SQL procedure or a precompiler program. This
option is mentioned here only for completeness, not because it is often needed.

Performance Tips 6-3

Optimizing Performance of Distributed Queries

6-4 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

v

Generic Connectivity

This chapter describes the configuration and usage of generic connectivity agents.

This chapter contains these topics:

What Is Generic Connectivity?

Supported Oracle SQL Statements
Configuring Generic Connectivity Agents
ODBC Connectivity Requirements

OLE DB (SQL) Connectivity Requirements
OLE DB (FS) Connectivity Requirements

Generic Connectivity 7-1

What Is Generic Connectivity?

What Is Generic Connectivity?

Generic connectivity is intended for low-end data integration solutions requiring
the ad hoc query capability to connect from an Oracle database server to non-Oracle
database systems. Generic connectivity is enabled by Oracle Heterogeneous
Services, allowing you to connect to non-Oracle systems with improved
performance and throughput.

Generic connectivity is implemented as either a Heterogeneous Services ODBC
agent or a Heterogeneous Services OLE DB agent. An ODBC agent and OLE DB
agent are included as part of your Oracle system. Be sure to use the agents shipped
with your particular Oracle system, installed in the same $SORACLE_HOME

Any data source compatible with the ODBC or OLE DB standards described in this
chapter can be accessed using a generic connectivity agent.

This section contains the following topics:
« Types of Agents

« Generic Connectivity Architecture

« SQL Execution

« Data Type Mapping

« Generic Connectivity Restrictions

Types of Agents

Generic connectivity is implemented as one of the following types of
Heterogeneous Services agents:

« ODBC agent for accessing ODBC data providers

« OLE DB agent for accessing OLE DB data providers that support SQL
processing—sometimes referred to as OLE DB (SQL)

« OLE DB agent for accessing OLE DB data providers without SQL processing
support—sometimes referred to as OLE DB (FS)

Each user session receives its own dedicated agent process spawned by the first use
in that user session of the database link to the non-Oracle system. The agent process
ends when the user session ends.

7-2 Oracle9i Heterogeneous Connectivity Administrator’s Guide

What Is Generic Connectivity?

Generic Connectivity Architecture

To access the non-Oracle data store using generic connectivity, the agents work with
an ODBC or OLE DB driver. The Oracle database server provides support for the
ODBC or OLE DB driver interface. The driver that you use must be on the same
platform as the agent. The non-Oracle data stores can reside on the same machine as
the Oracle database server or on a different machine.

Oracle and Non-Oracle Systems on Separate Machines
Figure 7-1 shows an example of a configuration in which an Oracle and non-Oracle

database are on separate machines, communicating through an Heterogeneous
Services ODBC agent.

Figure 7-1 Oracle and Non-Oracle Systems on a Separate Machines

HS

Oracle Oracle

 Z—>
Oracle9i HS
ODBC
agent
Client b SREE e

i ODBC driver '<_|

1
i manager !

' ODBC driver !

-

E Non-Oracle : Network Non-Oracle

' system 7 Z system

1 client ;

e ot s s s

Machine 1 Machine 2

i~"7 Non-Oracle
L.-- component

In this configuration:

1. Aclient connects to the Oracle database server through Oracle Net

Generic Connectivity 7-3

What Is Generic Connectivity?

2. The Heterogeneous Services component of the Oracle database server connects
through Oracle Net to the Heterogeneous Services ODBC agent

3. The agent communicates with the following non-Oracle components:
« An ODBC driver manager
« An ODBC driver
« A non-Oracle client application

This client connects to the non-Oracle data store through a network.

Oracle and Non-Oracle Systems on the Same Machine

Figure 7-2 shows an example of a different configuration in which an Oracle and
non-Oracle database are on the same machine, again communicating through an
Heterogeneous Services ODBC agent.

7-4 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

What Is Generic Connectivity?

Figure 7-2 Oracle and non-Oracle Systems on the Same Machine

HS

Oracle Oracle
T Z—>
Oracle9i

HS

ODBC
agent
Client ~

I-O-DéC driver-i<_|

1 manager !

' ODBC driver '

Frm s ———. -

' system
! client

3 1
' Non-Oracle ,
1
1

Non-Oracle
system

Machine 1

In this configuration:
1. Aclient connects to the Oracle database server through Oracle Net

2. The Heterogeneous Services component of the Oracle database server connects
through Oracle Net to the Heterogeneous Services ODBC agent

3. The agent communicates with the following non-Oracle components:
« An ODBC driver manager
« An ODBC driver

Generic Connectivity 7-5

What Is Generic Connectivity?

SQL Execution

The driver then allows access to the non-Oracle data store.

Note: The ODBC driver may require non-Oracle client libraries
even if the non-Oracle database is located on the same machine.

SQL statements sent using a generic connectivity agent are executed differently
depending on the type of agent you are using: ODBC, OLE DB (SQL), or OLE DB
(FS). For example, if a SQL statement involving tables is sent using an ODBC agent
for a file-based storage system, the file can be manipulated as if it were a table in a
relational database. The naming conventions used at the non-Oracle system can also
depend on whether you are using an ODBC or OLE DB agent.

Data Type Mapping

The Oracle database server maps the data types used in ODBC and OLE DB
compliant data sources to supported Oracle data types. When the results of a query
are returned, the Oracle database server converts the ODBC or OLE DB data types
to Oracle data types. For example, the ODBC data type SQL_TIMESTAMRind the
OLE DB data type DBTYPE_DBTIMESTAM&re converted to Oracle’s DATEdata

type.

Generic Connectivity Restrictions

Generic connectivity restrictions include:

« Atable including a BLOB column must have a separate column that serves as a
primary key

« BLOB/CLOB data cannot be read through passthrough queries

« Updates or deletes that include unsupported functions within a WHER[Elause
are not allowed

« Stored procedures are not supported

« Generic connectivity agents cannot participate in distributed transactions; they
support single-site transactions only

7-6 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Supported Oracle SQL Statements

Supported Oracle SQL Statements

Generic connectivity supports the following statements, but only if the ODBC or
OLE DB driver and non-Oracle system can execute them and the statements contain
supported Oracle SQL functions:

« DELETE
« INSERT

« SELECT
« UPDATE

Only a limited set of functions are assumed to be supported by the non-Oracle
system. Most Oracle functions have no equivalent function in this limited set.
Consequently, although post-processing is performed by the Oracle database server,
many Oracle functions are not supported by generic connectivity, possibly
impacting performance.

If an Oracle SQL function is not supported by generic connectivity, then this
function is not supported in DELETE INSERT, or UPDATEstatements. In SELECT
statements, these functions are evaluated by the Oracle database server and
post-processed after they are returned from the non-Oracle system.

If an unsupported function is used in a DELETE INSERT, or UPDATEstatement, it
generates this Oracle error:

ORA-02070: database db_link_name does not support function in this context

Functions Supported by Generic Connectivity
Generic connectivity assumes that the following minimum set of SQL functions is

supported:

« AVG(exp)
« LIKE(exp)
« COUNT(¥)
« MAX(exp)

« MIN(exp)

« NOT

Generic Connectivity 7-7

Configuring Generic Connectivity Agents

Configuring Generic Connectivity Agents

To implement generic connectivity on a non-Oracle data source, you must set the
agent parameters.

This section contains the following topics:

« Creating the Initialization File

« Editing the Initialization File

« Setting Initialization Parameters for an ODBC-based Data Source

« Setting Initialization Parameters for an OLE DB-based Data Source

Creating the Initialization File

You must create and customize an initialization file for your generic connectivity
agent. Oracle Corporation supplies sample initialization files named

iniths agent .ora , where agent is odbc or oledb , indicating which agent the
sample file can be used for, as in the following:

inithsodbc.ora
inithsoledb.ora

The sample files are stored in the $SORACLE_HOME/hs/admin directory

To create an initialization file for an ODBC or OLE DB agent, copy the applicable
sample initialization file and rename the file to init HS_SID.ora , where HS_SID is
the system identifier you want to use for the instance of the non-Oracle system to
which the agent connects.

The HS_SID is also used to identify how to connect to the agent when you configure
the listener by modifying the listener.ora file. The HS_SID you add to the
listener.ora file must match the HS_SID inaninit HS _SID.ora file, because
the agent spawned by the listener searches for a matching init HS_SID.ora file.
That is how each agent process gets its initialization information. When you copy
and rename your init HS_SID.ora file, ensure it remains in the SORACLE _
HOME/hs/admin directory.

Editing the Initialization File

Customize the init HS_SiID.ora file by setting the parameter values used for
generic connectivity agents to values appropriate for your system, agent, and
drivers. You must edit the init HS_SID.ora file to change the HS_FDS CONNECT _

7-8 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Configuring Generic Connectivity Agents

INFO initialization parameter. HS_FDS_CONNECT _INF€pecifies the information
required for connecting to the non-Oracle system.

See Also: "Initialization Parameters" on page 4-6 for more
information on parameters.

Set the parameter values as follows;
[SET]PRIVATE] parameter =value
where:

[SET][PRIVATE] are optional keywords. If you do not specify either SET or
PRIVATE, the parameter and value are simply used as an
initialization parameter for the agent.

SET specifies that in addition to being used as an initialization
parameter, the parameter value is set as an environment
variable for the agent process.

PRIVATE specifies that the parameter value is private and not
transferred to the Oracle database server and does not appear
in V$ tables or in an graphical user interfaces.

SET PRIVATE specifies that the parameter value is set as an
environment variable for the agent process and is also private
(not transferred to the Oracle database server, not appearing
in V$ tables or graphical user interfaces).

parameter is the Heterogeneous Services initialization parameter that
you are specifying. See "Initialization Parameters" on page 4-6
for a description of all Heterogeneous Services parameters
and their possible values. The parameter is case-sensitive.

value is the value you want to specify for the Heterogeneous
Services parameter. The value is case-sensitive.

For example, to enable tracing for an agent, set the HS_FDS_ TRACE_LEVEL

parameter as follows:

HS_FDS TRACE_LEVEL=ON

Typically, most parameters are only needed as initialization parameters, so you do

not need to use SETor PRIVATE. Use SET for parameter values that the drivers or
non-Oracle system need as environment variables.

Generic Connectivity 7-9

Configuring Generic Connectivity Agents

PRIVATE is only supported for the follow Heterogeneous Services parameters:
. HS_FDS_CONNECT_INFO

. HS_FDS_SHAREABLE_NAME

. HS_FDS_TRACE_LEVEL

. HS_FDS_TRACE_FILE_NAME

You should only use PRIVATE for these parameters if the parameter value includes
sensitive information such as a username or password.

Setting Initialization Parameters for an ODBC-based Data Source

The settings for the initialization parameters vary depending on the type of
operating system.

Setting Agent Parameters on Windows NT

Specify a File data source name (DSN) or a System DSN which has previously been
defined using the ODBC Driver Managetr.

When connecting using a File DSN, specify the value as follows:
HS_FDS_CONNECT_INFO=FILEDSMe dsn

When connecting using a System DSN, specify the value as follows:
HS_FDS_CONNECT _INFGystem dsn

If you are connecting to the data source through the driver for that data source,
precede the DSN by the name of the driver, followed by a semi-colon (;).

Setting Parameters on NT: Example Assume a System DSN has been defined in the
Windows ODBC Data Source Administrator. In order to connect to this SQL Server
database through the gateway, the following line is required in init HS_SID.ora :

HS_FDS CONNECT_INFGgiserver?

where sqlserver7 is the name of the System DSN defined in the Windows ODBC
Data Source Administrator.

The following procedure enables you to define a System DSN in the Windows
ODBC Data Source Administrator:

1. From the Start menu, choose Settings > Control Panel and select the ODBC
icon.

7-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

Configuring Generic Connectivity Agents

2. Select the System DSN tab to display the system data sources.
3. Click Add.

4. From the list of installed ODBC drivers, select the name of the driver that the
data source will use. For example, select SQL Server.

5. Click Finish.

6. Enter a name for the DSN and an optional description. Enter other information
depending on the ODBC driver. For example, for SQL Server enter the SQL
Server machine.

Note: The name entered for the DSN must match the value of the
parameter HS_FDS CONNECT_INF@at is specified ininit HS_
SID.ora .

7. Continue clicking Next and answering the prompts until you click Finish.
8. Click OK until you exit the ODBC Data Source Administrator.

Setting Agent Parameters on UNIX platforms
Specify a DSN and the path of the ODBC shareable library, as follows:

HS_FDS_CONNECT INF@sn vale
HS_FDS_SHAREABLE_NAMEE odbc library path of odbe driver

HS_FDS_CONNECT_INF@ required for all platforms for an ODBC agent. HS_FDS _
SHAREABLE_NAMIE required on UNIX platforms for an ODBC agent. Other
initialization parameters have defaults or are optional. You can use the default
values and omit the optional parameters, or you can specify the parameters with
values tailored for your installation.

Note: Before deciding to accept the default values or change them,
see "Initialization Parameters" on page 4-6 for detailed information
on all the initialization parameters.

Setting Parameters on UNIX: Example ~ Assume that the odbc.ini file for connecting to
Informix using the Intersolve ODBC driver is located in /opt/odbc and includes
the following information:

[ODBC Data Sources]

Generic Connectivity 7-11

Configuring Generic Connectivity Agents

Informix=INTERSOLYV 3.11 Informix Driver

[Informix]
Driver=fopt/odbc/ib/ivinfl3.so
Description=Informix
Database=personnel@osf_inf72
HostName=osf

LogonID=uid

Password=pwd

In order to connect to this Informix database through the gateway, the following
lines are required in init HS_SID.ora :

HS_FDS_CONNECT _INFO=Informix

HS_FDS SHAREABLE_NAME=/optiodbc/ibfibodbc.so
set INFORMIXDIR=/usersfinf72

set INFORMIXSERVER=0sf inf72

set ODBCINI=/optiodbc/odoc.ini

Note that the set statements are optional as long as they are specified in the working
account. Each database has its own set statements.

The HS_FDS_CONNECT _INF@arameter value must match the ODBC data source
name in the odbc.ini file.

Setting Initialization Parameters for an OLE DB-based Data Source
You can only set these parameters on the Windows NT platform.

Specify a data link (UDL) that has previously been defined:
SETIPRIVATEJSET PRIVATE HS_FDS _CONNECT_INFO="UDLFILE=aa fink "

Or, specify the connection details directly:
SETIPRIVATE|SET PRIVATE HS_FDS_CONNECT_INFO=provider ; db[,CATALOG=catalog '

where:

provider is the name of the provider as it appears in the registry. The
value is case sensitive.

db is the name of the database

catalog is the name of the catalog

7-12 Oracle9i Heterogeneous Connectivity Administrator's Guide

ODBC Connectivity Requirements

Note: If the parameter value includes an equal sign (=), then it
must be surrounded by quotation marks.

HS_FDS_CONNECT_INF@ required for an OLE DB agent. Other initialization
parameters have defaults or are optional. You can use the default values and omit
the optional parameters, or you can specify the parameters with values tailored for
your installation.

Note: Before deciding to accept the default values or change them,
see "Initialization Parameters" on page 4-6 for detailed information
on all the initialization parameters.

ODBC Connectivity Requirements

To use an ODBC agent, you must have an ODBC driver installed on the same
machine as the Oracle database server. On Windows NT, you must have an ODBC
driver manager also located on the same machine. The ODBC driver manager and
driver must meet the following requirements:

« On Windows NT machines, a thread-safe, 32-bit ODBC driver Version 2.x or 3.x
is required. You can use the native driver manager supplied with your
Windows NT system.

« On UNIX machines, ODBC driver Version 2.5 is required. A driver manager is
not required.

The ODBC driver and driver manager on Windows NT must conform to ODBC
application program interface (API) conformance Level 1 or higher. If the ODBC
driver or driver manager does not support multiple active ODBC cursors, then it
restricts the complexity of SQL statements that you can execute using generic
connectivity.

The ODBC driver you use must support all of the core SQL ODBCdata types and
should support SQL grammar level SQL_92. The ODBC driver should also expose
the following ODBC APIs:

Table 7-1 ODBC Functions (Page 1 of 3)

ODBC Function Comment

SQLAllocConnect

Generic Connectivity 7-13

ODBC Connectivity Requirements

Table 7-1 ODBC Functions (Page 2 of 3)

ODBC Function Comment

SQLAIllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLColumns

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch Recommended if used by the non-Oracle system.

SQLFetch

SQLForeignKeys Recommended if used by the non-Oracle system.

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetTypelnfo

SQLNumParams Recommended if used by the non-Oracle system.

SQLNumResultCols

SQLParambData

SQLPrepare

7-14 Oracle9i Heterogeneous Connectivity Administrator's Guide

OLE DB (SQL) Connectivity Requirements

Table 7-1 ODBC Functions (Page 3 of 3)

ODBC Function Comment

SQLPrimaryKeys Recommended if used by the non-Oracle system.
SQLProcedureColumns Recommended if used by the non-Oracle system.
SQLProcedures Recommended if used by the non-Oracle system.
SQLPutData

SQLRowCount

SQLSetConnectOption

SQLSetStmtOption

SQLStatistics

SQLTables

SQLTransact Recommended if used by the non-Oracle system.

OLE DB (SQL) Connectivity Requirements

These requirements apply to OLE DB data providers that have an SQL processing
capability and expose the OLE DB interfaces.

Generic connectivity passes the username and password to the provider when
calling IDBInitialize::Initialize()

OLE DB (SQL) connectivity requires that the data provider expose the following OLE
DB interfaces:

Table 7-2 OLE DB (SQL) Interfaces

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsinfo GetColumnsinfo (Command and
Rowset objects)

ICommand Execute

ICommandPrepare Prepare

ICommandProperties SetProperties

ICommandText SetCommandText

ICommandWithParameters GetParameterinfo

Generic Connectivity 7-15

OLE DB (FS) Connectivity Requirements

Table 7-2 OLE DB (SQL) Interfaces

Interface

Methods

IDBCreateCommand

CreateCommand

IDBCreateSession

CreateSession

IDBlInitialize Initialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

|Errorinfo 1 GetDescription, GetSource

IErrorRecords GetErrorinfo

ILockBytes (OLE)

2

Write At

IRowset

GetData, GetNextRows,

IStream (OLE)

Read, Seek, SetSize, Stat,
Write

ISupportErrorinfo

InterfaceSupportsErrorinfo

ITransactionLocal
(optional)

StartTransaction, Commit,
Abort

1 You can also use IErrorLookup with the GetErrorDescription method.
2 Required only if BLOBs are used in the OLE DB provider.

OLE DB (FS) Connectivity Requirements

These requirements apply to OLE DB data providers that do not have SQL
processing capabilities. If the provider exposes them, then OLE DB (FS) connectivity

uses OLE DB Index interfaces.

OLE DB (FS) connectivity requires that the data provider expose the following OLE

DB interfaces:

Table 7-3 OLE DB (FS) Interfaces (Page 1 of 2)

Interface Methods

IAccessor GreateAccessor, ReleaseAccessor

IColumnsinfo GetColumnsinfo (Command and Rowset
objects)

7-16 Oracle9i Heterogeneous Connectivity Administrator's Guide

Flush, ReadAt, SetSize, Stat,

ReleaseRows, RestartPosition

OLE DB (FS) Connectivity Requirements

Table 7-3 OLE DB (FS) Interfaces

(Page 2 of 2)

Interface

Methods

IOpenRowset

OpenRowset

IDBCreateSession

CreateSession

IRowsetChange DeleteRows, SetData, InsertRow
IRowsetLocate GetRowsByBookmark
IRowsetUpdate Update (optional)

IDBInitialize Initialize, Uninitialize
IDBSchemaRowset GetRowset (tables, columns,

indexes; optionally also
procedures, procedure parameters)

ILockBytes (OLE)

1

Flush, ReadAt, SetSize, Stat,
WriteAt

IRowsetindex 2

SetRange

|IErrorinfo 3 GetDescription, GetSource
|IErrorRecords GetErrorinfo
IRowset GetData, GetNextRows, ReleaseRows,

RestartPosition

IStream (OLE)

Read, Seek, SetSize, Stat, Write

ITransactionLocal
(optional)

StartTransaction, Commit, Abort

ISupportErrorinfo

InterfaceSupportsErrorinfo

ITableDefinition

CreateTable, DropTable

IDBProperties

SetProperties

! Required only if BLOBs are used in the OLE DB provider.
2 Required only if indexes are used in the OLE DB provider.
3 You can use IErrorLookup with the GetErrorDescription method as well.

Because OLE DB (FS) connectivity is generic, it can connect to a number of different
data providers that expose OLE DB interfaces. Every such data provider must meet
the certain requirements.

Generic Connectivity 7-17

OLE DB (FS) Connectivity Requirements

Note: The data provider must expose bookmarks. This enables
tables to be updated. Without bookmarks being exposed, the tables
are read-only.

Data Source Properties
The OLE DB data source must support the following initialization properties:

« DBPROP_INIT_DATASOURCE
« DBPROP_AUTH_USERID

Note: Required if the userid has been supplied in the security file

« DBPROP_AUTH_PASSWORD

Note: Required if the userid and password have been supplied in
the security file

The OLE DB data source must also support the following rowset properties:
« DBPROP_IRowsetChange = TRUE

« DBPROP_UPDATABILITY = CHANGE+DELETE+INSERT

« DBPROP_OWNUPDATEDELETE = TRUE

« DBPROP_OWNINSERT = TRUE

« DBPROP_OTHERUPDATEDELETE = TRUE

« DBPROP_CANSCROLLBACKWARDS = TRUE

« DBPROP_IRowsetLocate = TRUE

« DBPROP_OTHERINSERT = FALSE

7-18 Oracle9i Heterogeneous Connectivity Administrator's Guide

A

Heterogeneous Services Initialization
Parameters

Heterogeneous Services initialization files, like all Oracle parameter files, are
configuration settings stored as a text file in

You can set Heterogeneous Services parameters by editing the Oracle Transparent
Gateway initialization file, or by using the DBMS_H$ackage to set them in the data
dictionary. String values for Heterogeneous Services parameters must be lowercase.

This section contains the following topics:
« HS_COMMIT_POINT_STRENGTH

« HS_DB_DOMAIN

. HS_DB_INTERNAL_NAME

. HS DB_NAME

« HS_DESCRIBE_CACHE_HWM

« HS_FDS_CONNECT_INFO

« HS_FDS_SHAREABLE_NAME

« HS_FDS_TRACE_LEVEL

« HS_LANGUAGE

« HS LONG_PIECE_TRANSFER_SIZE
« HS _NLS DATE_FORMAT

« HS_NLS DATE_LANGUAGE

« HS_NLS NCHAR

« HS_NLS TIMESTAMP_FORMAT

Heterogeneous Services Initialization Parameters A-1

. HS_NLS_TIMESTAMP_TZ_FORMAT
. HS_OPEN_CURSORS

. HS_ROWID CACHE_SIZE

. HS_RPC_FETCH_REBLOCKING

. HS_RPC_FETCH_SIZE

. HS_TIME_ZONE

. IFILE

A-2 Oracle9i Heterogeneous Connectivity Administrator's Guide

HS COMMIT_POINT_STRENGTH

Default value: 0

Range of values: 0 to 255

Specifies a value that determines the commit point site in a heterogeneous
distributed transaction. HS_ COMMIT_POINT_STRENGTisisimilar to COMMIT _
POINT_STRENGTHdescribed in the Oracle9i Database Reference.

Set HS_COMMIT_POINT_STRENGTb a value relative to the importance of the site
that is the commit point site in a distributed transaction. The Oracle database server
or non-Oracle system with the highest commit point strength becomes the commit
point site. To ensure that a non-Oracle system never becomes the commit point site,
set the value of HS_COMMIT_POINT_STRENGTbI zero.

HS_COMMIT_POINT_STRENGTislimportant only if the non-Oracle system can
participate in the two-phase protocol as a regular two-phase commit partner and as
the commit point site. This is only the case if the transaction model is two-phase
commit confirm (2PCC).

HS_DB_DOMAIN

Default value: WORLD

Range of values: 1 to 119 characters

Specifies a unique network sub-address for a non-Oracle system. HS_DB_DOMAINs
similar to DB_DOMAINdescribed in the Oracle9i Database Administrator’s Guide and
the Oracle9i Database Reference. HS_DB_DOMAINE required if you use the Oracle
Names server. HS_DB_NAMENnd HS_DB_DOMAINefine the global name of the
non-Oracle system.

Note: HS_DB_NAMENnd HS DB _DOMAINMnust combine to form a
unique address.

HS DB_INTERNAL_NAME

Default value: 01010101

Heterogeneous Services Initialization Parameters A-3

Range of values: 1 to 16 hexadecimal characters

Specifies a unique hexadecimal number identifying the instance to which the
Heterogeneous Services agent is connected. This parameter’s value is used as part
of a transaction ID when global name services are activated. Specifying a
non-unigque number can cause problems when two-phase commit recovery actions
are necessary for a transaction.

HS DB NAME
Default value: HO
Range of values: 1 to 8 lowercase characters

Specifies a unique alphanumeric name for the data store given to the non-Oracle
system. This name identifies the non-Oracle system within the cooperative server
environment. HS_DB_NAMEnd HS_DB_DOMAINlefine the global name of the
non-Oracle system.

HS_DESCRIBE_CACHE_HWM

Default value: 100
Range of values: 1 to 4000

Specifies the maximum number of entries in the describe cache used by
Heterogeneous Services. This limit is known as the describe cache high water mark.
The cache contains descriptions of the mapped tables that Heterogeneous Services
reuses so that it does not have to re-access the non-Oracle data store.

If you are accessing many mapped tables, then increase the high water mark to
improve performance. Note that increasing the high water mark improves
performance at the cost of memory usage.

HS_FDS_CONNECT_INFO

Default value: none

A-4 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Range of values: not applicable

Specifies the information needed to bind to the data provider, that is, the non-Oracle
system. For generic connectivity, you can bind to an ODBC-based data source or to
an OLE DB-based data source. The information that you provide depends on the
platform and whether the data source is ODBC or OLE DB-based.

This parameter is required if you are using generic connectivity.
ODBC-based Data Source on Windows: You can use either a File DSN or a System DSN
as follows:
=« When connecting using a File DSN the parameter format is:
HS FDS CONNECT INFO=FILEDSMe dsn

« When connecting using a System DSN the parameter format is:
HS_FDS_CONNECT _INFGystem dsn

If you are connecting to the data source through the driver for that data source, then
precede the DSN by the name of the driver, followed by a semi-colon (;).

ODBC-based Data Source on UNIX: Use a DSN with the following format:
HS_FDS_CONNECT_INFO=dsn

OLE DB-based Data Source (Windows NT Only): Use a universal data link (UDL) with the
following formats:

« HS_FDS_CONNECT_INFO="UDLFILEdata_link "

« HS_FDS_CONNECT_INFO=ata_link_
provider;db [, CATALOG=catalog 1"

which allows you to specify the connection details directly, and where:

— data_link_provider is the case-sensitive name of the provider as it
appears in the registry

— db is the name of the database

— catalog isthe name of the catalog

Heterogeneous Services Initialization Parameters A-5

Note: Whenever the parameter value includes an equal sign (=), it
must be enclosed in quotation marks.

HS FDS SHAREABLE_NAME

Default value: none

Range of values: not applicable

Specifies the full path name to the ODBC library. This parameter is required when
you are using generic connectivity to access data from an ODBC provider on a
UNIX machine.

HS FDS TRACE_LEVEL

Default value: OFF
Range of values: ON or OFF

Specifies whether error tracing is enabled or disabled for generic connectivity.
Enable the tracing to see which error messages occur when you encounter
problems. The results are written to a generic connectivity log file, in the /log
directory under the SORACLE_HOMéirectory.

HS_LANGUAGE

Default value: System-specific

Range of values: Any valid language name (up to 255 characters)

Provides Heterogeneous Services with character set, language, and territory
information of the non-Oracle data source. The value must use the following
format:

language [_ temitory . Character set]

A-6 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Note: The national language support initialization parameters
affect error messages, the data for the SQL Service, and parameters
in distributed external procedures.

Character sets

Ideally, the character sets of the Oracle database server and the non-Oracle data
source are the same. If they are not the same, Heterogeneous Services attempts to
translate the character set of the non-Oracle data source to the Oracle database
character set, and back again. The translation can degrade performance. In some
cases, Heterogeneous Services cannot translate a character from one character set to
another.

Note: The specified character set must be a superset of the
operating system character set on the platform where the agent is
installed.

Language
The language component of the HS_LANGUAGHitialization parameter determines:

« Day and month names of dates
« AD, BC, PM, and AM symbols for date and time
« Default sorting mechanism

Note that Oracle9 does not determine the language for error messages for the
generic Heterogeneous Services messages (ORA-25000 through ORA-28000).
These are controlled by the session settings in the Oracle database server.

Note: Usethe HS NLS DATE_LANGUAGAitialization parameter
to set the day and month names, and the AD, BC, PM, and AM
symbols for dates and time independently from the language.

Territory

The territory clause specifies the conventions for day and week numbering, default
date format, decimal character and group separator, and I1SO and local currency
symbols. Note that:

Heterogeneous Services Initialization Parameters A-7

« You can override the date format using the initialization parameter HS_NLS
DATE_FORMAT

« The level of National Language Support between the Oracle database server
and the non-Oracle data source depends on how the driver is implemented. See
the installation documentation for your platform for more information about
the level of National Language Support.

HS_LONG_PIECE_TRANSFER_SIZE

Default value: 64 KB

Range of values: Any value up to 2 GB

Sets the size of the piece of LONGdata being transferred. A smaller piece size means
less memory requirement, but more round trips to fetch all the data. A larger piece
size means fewer round trips, but more of a memory requirement to store the
intermediate pieces internally. Thus, the initialization parameter can be used to tune
a system for the best performance, with the best trade-off between round trips and
memory requirements.

HS NLS_DATE_FORMAT

Default value: Value determined by HS_LANGUAGRarameter

Range of values: Any valid date format mask (up to 255 characters)

Defines the date format for dates used by the target system. This parameter has the
same function as the NLS_DATE_FORMAparameter for an Oracle database server.
The value of can be any valid date mask listed in the Oracle9i Database Reference, but
must match the date format of the target system. For example, if the target system
stores the date February 14, 2001 as 2001/02/14, set the parameter to
yyyy/mm/dd. Note that characters must be lowercase.

HS_NLS_DATE_LANGUAGE

Default value: Value determined by HS_LANGUAGRarameter
Range of values: Any valid NLS_LANGUAGHRalue (up to 255 characters)

A-8 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Specifies the language used in character date values coming from the non-Oracle
system. Date formats can be language independent. For example, if the format is
dd/mm/yyyy, all three components of the character date are numbers. In the
format dd-mon-yyyy, however, the month component is the name abbreviated to
three characters. The abbreviation is very much language dependent. For example,
the abbreviation for the month April is "apr”, which in French is "avr" (Avril).

Heterogeneous Services assumes that character date values fetched from the
non-Oracle system are in this format. Also, Heterogeneous Services sends character
date bind values in this format to the non-Oracle system.

HS_NLS_NCHAR

Default value: Value determined by HS_LANGUAGRarameter

Range of values: Any valid national character set (up to 255 characters)

Informs Heterogeneous Services of the value of the national character set of the
non-Oracle data source. This value is the non-Oracle equivalent to the NATIONAL
CHARACTER SEPparameter setting in the Oracle CREATE DATABASEtatement.
The HS_NLS_NCHARalue should be the character set ID of a character set
supported by the Oracle NLSRTLIibrary.

See Also: HS_LANGUAGEN page A-6.

HS NLS_TIMESTAMP_FORMAT

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask

Defines the timestamp format for dates used by the target system. This parameter
has the same function as the NLS_TIMESTAMP_FORMAJarameter for an Oracle
database server. The value of can be any valid timestamp mask listed in the Oracle9i
Database Reference, but it must match the date format of the target system. Note
that characters must be lowercase. For example:

HS_NLS TIMESTAMP_FORMAT = yyyy-mm-dd hhmissff

Heterogeneous Services Initialization Parameters A-9

HS NLS_TIMESTAMP_TZ FORMAT

Default value: Dynamic. Scope= ALTER SESSION
NLS_TIMESTAMP_TZ_FORMAT

Range of values: Derived from NLS_TERRITORY

Defines the default timestamp with time zone format for the timestamp with time
zone format used by the target system. This parameter has the same function as the
NLS_TIMESTAMP_TZ FORMAJarameter for an Oracle database server. The value
of can be any valid timestamp with time zone mask listed in the Oracle9i Database
Reference, but must match the date format of the target system. Note that characters

must be lowercase. For example:
HS_NLS TIMESTAMP_TZ FORMAT =yyyy-mm-dd hh:mi:ss.ff zh:zm

HS_OPEN_CURSORS

Default value: 50
Range of values: 1 - value of Oracle’s OPEN_CURSORHRSitialization parameter

Defines the maximum number of cursors that can be open on one connection to a
non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle database server.
Therefore, setting the same value as the OPEN_CURSORSitialization parameter in

the Oracle database server is recommended.

HS_ROWID_CACHE_SIZE

Default value: 3

Range of values: 1to 32767

Specifies the size of the Heterogeneous Services cache containing the non-Oracle
system equivalent of ROWIDs. The cache contains non-Oracle system ROWIDs
needed to support the WHERE CURRENT €&use in a SQL statement or a SELECT

FOR UPDATEstatement.

A-10 Oracle9i Heterogeneous Connectivity Administrator’s Guide

When the cache is full, the first slot in the cache is reused, then the second, and so
on. Only the last HS_ ROWID_CACHE_SIZBon-Oracle system ROWIDs are cached.

HS RPC_FETCH_REBLOCKING

Default value: ON
Range of values: OFF, ON

Controls whether Heterogeneous Services attempts to optimize performance of data
transfer between the Oracle database server and the Heterogeneous Services agent
connected to the non-Oracle data store.

The following values are possible:

« OFFdisables reblocking of fetched data so that data is immediately sent from
agent to server

« ONenables reblocking, which means that data fetched from the non-Oracle
system is buffered in the agent and is not sent to the Oracle database server
until the amount of fetched data is equal or higher than HS_RPC_FETCH_SIZE
However, any buffered data is returned immediately when a fetch indicates that
no more data exists or when the non-Oracle system reports an error.

HS RPC_FETCH_SIZE

Default value: 4000

Range of values: Decimal integer (byte count)

Tunes internal data buffering to optimize the data transfer rate between the server
and the agent process.

Increasing the value can reduce the number of network round trips needed to
transfer a given amount of data, but also tends to increase data bandwidth and to
reduce response time or latency as measured between issuing a query and
completion of all fetches for the query. Nevertheless, increasing the fetch size can
increase latency for the initial fetch results of a query, because the first fetch results
are not transmitted until additional data is available.

After the gateway is installed and configured, you can use the gateway to access
non-Oracle database system data, pass non-Oracle database system commands

Heterogeneous Services Initialization Parameters A-11

from applications to the non-Oracle database system database, perform distributed
gueries, and copy data.

HS_TIME_ZONE

IFILE

Default value for '[+ Derived from NLS_TERRITORY
| -] hhimm’:

Range of values for Any valid datetime format mask
[+] -] hh:mm?’:

Specifies the default local time zone displacement for the current SQL session. The
format mask, [+]-]hh:mm, is specified to indicate the hours and minutes before or
after UTC (Coordinated Universal Time—formerly Greenwich Mean Time) For
example:

HS_TIME_ZONE = [+ |]hhrmm

Default value: None

Range of values: Valid parameter filenames

Use IFILE to embed another initialization file within the current initialization file;
the value should be an absolute path and should not contain environment variables;
the three levels of nesting limit does not apply.

See Also: IFILE in Oracle9i Database Reference.

A-12 Oracle9i Heterogeneous Connectivity Administrator’s Guide

B

Data Type Mapping

Oracle9 maps the ANSI data types through ODBC and OLE DB interfaces to supported
Oracle data types. When the results of a query are returned, Oaiedrts the ODBC or
OLE DB data types to Oracle data types.

The tables in this appendix show how Oracle maps ANSI data types through ODBC and
OLE DB interfaces to supported Oracle data types when it is retrieving data from a
non-Oracle system.

This appendix contains the following tables
« Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface
« Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface

Data Type Mapping B-1

Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface

Mapping ANSI Data Types to Oracle Data Types Through
an ODBC Interface

Table 7-4 Mapping ANSI Data Types to Oracle Data Types Through an ODBC

Interface

ANSI ODBC Oracle
NUMERIC(19,0) SQL_BIGINT NUMBER(19,0)
N/A SQL_BINARY RAW

CHAR SQL_CHAR CHAR
DATE SQL_DATE DATE
DECIMAL(p,s) SQL_DECIMAL(p,s) NUMBER(p,s)
DOUBLE PRECISION SQL_DOUBLE FLOAT(49)
FLOAT SQL_FLOAT FLOAT(49)
INTEGER SQL_INTEGER NUMBER(10)*
N/A SQL_LONGVARBINARY LONG RAW
N/A SQL_LONGVARCHAR LONG

REAL SQL_REAL FLOAT(23)
SMALLINT SQL_SMALLINT NUMBER(5)
TIME SQL_TIME DATE
TIMESTAMP SQL_TIMESTAMP DATE
NUMERIC(3,0) SQL_TINYINT NUMBER(3)
VARCHAR SQL_VARCHAR VARCHAR

1 It's possible under some circumstance fortWEEGERANSI data type to map to Precision 38, but it
usually maps to Precision 10.

2 If an ANSI SQL implementation defines a large value for the maximum lenytARCHARIata, then it is
possible that ANSVARCHARVill map toSQL_LONGVARCHA#Rd Oracld ONG The same is true for
OLE DB DBTYPE_STRINGlong attribute).

B-2 Oracle9/ Heterogeneous Connectivity Administrator's Guide

Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface

Note: This table maps ODBC data types into equivalent ANSI and
Oracle data types. In some cases equivalence to ANSI data types is not
guaranteed to be exact because the ANSI SQL standard delegates
definition of numeric precision and maximum length of character data to
individual implementations. This table reflects a probable mapping
between ANSI and ODBC data types for a typical implementation of
ANSI SQL.

Data Type Mapping B-3

Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface

Mapping ANSI Data Types to Oracle Data Types Through
an OLE DB Interface

Table 7-5

ANSI OLE DB Oracle
NUMERIC(3,0) DBTYPE_UI1 NUMBER(3)
NUMERIC(3,0) DBTYPE_|I1 NUMBER(3)
SMALLINT DBTYPE_UI2 NUMBER(5)
SMALLINT DBTYPE_I2 NUMBER(5)
NUMERIC(3,0) DBTYPE_BOOL NUMBER(5)
INTEGER DBTYPE_UI4 NUMBER(10)
INTEGER DBTYPE_l4 NUMBER(10)
NUMERIC(19,0) DBTYPE_UI8 NUMBER(19,0)
NUMERIC(19,0) DBTYPE_I8 NUMBER(19,0)
NUMERIC(p,s) DBTYPE_NUMERIC(p,s) NUMBER(p,s)
FLOAT DBTYPE_R4 FLOAT(23)
DOUBLE PRECISION DBTYPE_RS8 FLOAT(49)
N/A DBTYPE_DECIMAL FLOAT(49)
VARCHAR DBTYPE_STR VARCHAR2
VARCHAR DBTYPE_WSTR VARCHAR2
NUMERIC(19,0) DBTYPE_CY NUMBER(19,0)

DATE

DBTYPE_DBDATE

DATE

TIME DBTYPE_DBTIME DATE

TIMESTAMP DBTYPE_TIMESTAMP DATE

N/A DBTYPE_BYTES RAW

N/A DBTYPE_BYTES (long LONG RAW
attribute)

N/A DBTYPE_STRING (long LONG

attribute)

B-4 Oracle9/ Heterogeneous Connectivity Administrator's Guide

C

DBMS_HS PASSTHROU@H
PaSs-Through SQL

The package, DBMS_HS PASSTHROUGéhtains the procedures and functions for
pass-through SQL of Heterogeneous Services. This appendix documents each of
them.

This appendix contains these topics:

« BIND_VARIABLE procedure

« BIND_VARIABLE_NCHAR procedure

« BIND_VARIABLE_RAW procedure

« BIND_OUT_VARIABLE procedure

. BIND_OUT_VARIABLE_NCHAR procedure
. BIND_OUT_VARIABLE_RAW procedure

« BIND_INOUT_VARIABLE procedure

. BIND_INOUT_VARIABLE_NCHAR procedure
. BIND_INOUT_VARIABLE_RAW procedure
» CLOSE_CURSOR function

« EXECUTE_IMMEDIATE function

. EXECUTE_NON_QUERY function

« FETCH_ROW function

« GET_VALUE procedure

« GET _VALUE_NCHAR procedure

DBMS_HS_PASSTHROU®@HPass-Through SQL C-1

« GET_VALUE_RAW procedure
« OPEN_CURSOR function
« PARSE procedure

C-2 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

Summary of Subprograms

Table C—1 DBMS_HSPackage Subprograms

Subprogram Description

BIND_VARIABLE Binds an IN variable positionally with a PL/SQL program
procedure variable.

BIND_VARIABLE_NCHAR
procedure

BIND_VARIABLE_RAW
procedure

BIND_OUT_VARIABLE
procedure

BIND_OUT_VARIABLE_

NCHAR procedure

BIND_OUT_VARIABLE_

RAW procedure

BIND_INOUT_VARIABLE

procedure

BIND_INOUT_VARIABLE_
NCHAR procedure

BIND_INOUT _
VARIABLE_RAW
procedure

CLOSE_CURSOR
function

EXECUTE_IMMEDIATE
function

EXECUTE_NON_QUERY
function

FETCH_ROW function
GET_VALUE procedure

Binds IN variables of type NVARCHAR2

Binds IN variables of type RAW

Binds an OUTvariable with a PL/SQL program variable.

Binds an OUTvariable of data type NVARCHARvith a
PL/SQL program variable.

Binds an OUTvariable of data type RAWwith a PL/SQL
program variable.

Binds IN OUT bind variables.

Binds IN OUT bind variables of data type NVARCHAR2

Binds IN OUT bind variables of data type RAW

Closes the cursor and releases associated memory after the
SQL statement has been executed at the non-Oracle system

Executes a SQL statement immediately

Executes any SQL statement other than a SELECTstatement
Fetches rows from a result set

Retrieves the select list items of SELECTstatements after a

row has been fetched, and retrieves the OUTbind values after
the SQL statement has been executed

DBMS_HS_PASSTHROUHPass-Through SQL C-3

Summary of Subprograms

Table C-1 DBMS_HSPackage Subprograms

Subprogram

Description

GET_VALUE_NCHAR
procedure

GET_VALUE_RAW
procedure

OPEN_CURSOR function

PARSE procedure

Retrieves the select list items of SELECTstatements after a
row has been fetched, and retrieves the OUTbind values after
the SQL statement has been executed. This procedure
operates on the NVARCHAR®ata type

Retrieves the select list items of SELECTstatements after a
row has been fetched, and retrieves the OUTbind values after
the SQL statement has been executed. This procedure
operates on the RAWlata type

Opens a cursor for executing a pass-through SQL statement
at the non-Oracle system

Parses a SQL statement at non-Oracle system

BIND_VARIABLE procedure

See Also:

« OPEN_CURSOR function

« PARSE procedure

« BIND_VARIABLE_NCHAR procedure
« BIND_VARIABLE_RAW procedure

This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax.

DBMS _HS PASSTHROUGH.BIND_VARIABLE (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,

val IN ay),

Where dty is one of the following data types:

« DATE

= INTERVAL YEAR TO MONTH
= INTERVAL DAY TO SECOND

« NUMBER

C-4 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

« TIMESTAMP

« TIMESTAMP WITH TIMEZONE

« TIMESTAMP WITH LOCAL TIMEZONE
« VARCHAR2

See Also:
« BIND_VARIABLE_NCHAR procedure
« BIND_VARIABLE_RAW procedure

Parameters

Table C—2 BIND_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement. The
cursor must be opened and parsed using the routines OPEN_
CURSORNd PARSE

pos Position of the bind variable in the SQL statement. Starts from
1

val Value that must be passed to the bind variable

Exceptions

Table C-3 BIND_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 The procedure is not executed in right order. Did you first open
the cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULLvalue was passed for a NOT NULL parameter

Pragmas

Purity levels defined: WNDS, RNDS

DBMS_HS_PASSTHROU®@HPass-Through SQL C-5

Summary of Subprograms

BIND VARIABLE_NCHARrocedure
This procedure binds IN variables of type NVARCHAR2

Syntax

DBMS_HS PASSTHROUGH.BIND_VARIABLE NCHAR (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN NVARCHAR2);

Parameters

Table C-4 BIND_VARIABLE_NCHARProcedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSORNd PARSE

pos Position of the bind variable in the SQL statement. Starts from
1.

val Value that must be passed to the bind variable

Exceptions

Table C-5 BIND_VARIABLE_NCHARProcedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULLvalue was passed for a NOT NULL parameter

Pragmas

Purity level defined: WNDS, RNDS

C-6 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

See Also:
« OPEN_CURSOR function
« PARSE procedure

BIND VARIABLE RAWprocedure
This procedure binds IN variables of type RAW

Syntax

DBMS_HS PASSTHROUGH.BIND_VARIABLE RAW (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN RAW);

Parameters

Table C—6 BIND_VARIABLE_RAWProcedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSORNd PARSE

pos Position of the bind variable in the SQL statement. Starts from
1.

val Value that must be passed to the bind variable

Exceptions

Table C-7 BIND_VARIABLE RAWProcedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULLvalue was passed for a NOT NULL parameter

DBMS_HS_PASSTHROUHPass-Through SQL C-7

Summary of Subprograms

Pragmas
Purity level defined: WNDS, RNDS
See Also:
« OPEN_CURSOR function
« PARSE procedure
« BIND_VARIABLE procedure
« BIND_OUT_VARIABLE procedure

BIND_OUT_VARIABLEprocedure
This procedure binds an OUTvariable with a PL/SQL program variable.

Syntax

DBMS_HS_PASSTHROUGH.BIND OUT VARIABLE (
¢ IN BINARY INTEGERNOTNULL,
pos IN BINARY_INTEGERNOT NULL,
val OUT dy);

Where dty is one of

« DATE

« INTERVAL YEAR TO MONTH

« INTERVAL DAY TO SECOND

« NUMBER

« TIMESTAMP

« TIMESTAMP WITH TIMEZONE

« TIMESTAMP WITH LOCAL TIMEZONE
« VARCHAR2

C-8 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

See Also: BIND_INOUT_VARIABLE_NCHAR procedure for
more information about OUTvariables of data type RAW

Parameters

Table C-8 BIND_OUT _VARIABLEProcedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
val Variable in which the OUTbind variable will store its value.

The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALURo
retrieve the value of the OUTparameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE

Exceptions

Table C-9 BIND_OUT_VARIABLEProcedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.

DBMS_HS_PASSTHROUHPass-Through SQL C-9

Summary of Subprograms

Pragmas
Purity level defined: WNDS, RNDS

See Also:

« OPEN_CURSOR function

« PARSE procedure

« BIND_INOUT_VARIABLE_NCHAR procedure
« BIND_VARIABLE procedure

« BIND_VARIABLE_NCHAR procedure

« GET_VALUE procedure

BIND_OUT_VARIABLE_NCHARocedure

This procedure binds an OUTvariable of data type NVARCHAR®vith a PL/SQL
program variable.

Syntax

DBMS_HS PASSTHROUGH.BIND_OUT_VARIABLE (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT NVARCHARY2),

Parameters

Table C-10 BIND_OUT_VARIABLE_NCHARrocedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
val Variable in which the OUTbind variable will store its value.

The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALUBRo
retrieve the value of the OUTparameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE_RAW

C-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

Exceptions

Table C-11 BIND_OUT_VARIABLE_NCHARarameter Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Pragmas

Pragmas defined: WNDS, RNDS

BIND_OUT_VARIABLE_RAWfocedure

This procedure binds an OUTvariable of data type RAWwith a PL/SQL program
variable.

Syntax

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
¢ IN BINARY_INTEGERNOTNULL,
pos IN BINARY INTEGERNOT NULL,
val OUT RAWY);

Parameters

Table C-12 BIND_OUT _VARIABLE RAVProcedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

DBMS_HS_PASSTHROU@HPass-Through SQL C-11

Summary of Subprograms

Table C-12

BIND_OUT_VARIABLE _RAVProcedure Parameters

Parameter

Description

val

Variable in which the OUTbind variable will store its value.
The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALURo
retrieve the value of the OUTparameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE_RAW

Exceptions

Table C-13

BIND_OUT_VARIABLE_RAVParameter Exceptions

Exception

Description

ORA-28550
ORA-28552

ORA-28553
ORA-28555

The cursor passed is invalid.

Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

The position of the bind variable is out of range.

A NULL value was passed for a NOT NULL parameter.

Pragmas

Pragmas defined: WNDS, RNDS

See Also:

OPEN_CURSOR function

PARSE procedure
BIND_OUT_VARIABLE procedure
BIND_VARIABLE procedure
BIND_VARIABLE_NCHAR procedure
GET_VALUE procedure

BIND INOUT_VARIABLE procedure
This procedure binds IN OUT bind variables.

C-12 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Summary of Subprograms

Syntax

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (
¢ IN BINARY_INTEGERNOT NULL,
pos IN BINARY INTEGER NOTNULL,
val INOUT <dty>);

Where dty is one of

« DATE

« INTERVAL YEAR TO MONTH

« INTERVAL DAY TO SECOND

« NUMBER

« TIMESTAMP

« TIMESTAMP WITH TIMEZONE

« TIMESTAMP WITH LOCAL TIMEZONE
« VARCHAR2

Parameters

Table C-14 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val This value will be used for two purposes:

« To provide the IN value before the SQL statement is
executed

« To determine the size of the OUTvalue

DBMS_HS_PASSTHROU@HPass-Through SQL C-13

Summary of Subprograms

Exceptions

Table C-15

BIND_INOUT_VARIABLE Procedure Exceptions

Exception

Description

ORA-28550
ORA-28552

ORA-28553
ORA-28555

The cursor passed is invalid.

Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

The position of the bind variable is out of range.

A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined: WNDS, RNDS

See Also:

OPEN_CURSOR function

PARSE procedure
BIND_INOUT_VARIABLE_NCHAR procedure
BIND_OUT_VARIABLE procedure
BIND_INOUT_VARIABLE_NCHAR procedure
BIND_VARIABLE procedure
BIND_VARIABLE_NCHAR procedure
GET_VALUE procedure

BIND INOUT_VARIABLE_NCHARrocedure
This procedure binds IN OUT bind variables of data type NVARCHAR?2

Syntax

DBMS_HS PASSTHROUGH.BIND_INOUT_VARIABLE_NCHAR (
c IN BINARY_INTEGERNOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val INOUT NVARCHAR?2);

C-14 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Summary of Subprograms

Parameters

Table C-16 BIND_INOUT_VARIABLE_NCHARProcedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed’ using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
val This value will be used for two purposes:

« To provide the IN value before the SQL statement is
executed

« To determine the size of the out value

Exceptions

Table C-17 BIND_INOUT_VARIABLE _NCHAR Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.

Pragmas

Pragmas defined: WNDS, RNDS

DBMS_HS_PASSTHROU@HPass-Through SQL C-15

Summary of Subprograms

See Also:

« OPEN_CURSOR function

« PARSE procedure

« BIND_INOUT_VARIABLE procedure

« BIND_OUT_VARIABLE procedure

« BIND_INOUT_VARIABLE_NCHAR procedure
« BIND_VARIABLE procedure

« BIND_VARIABLE_NCHAR procedure

« GET_VALUE procedure

BIND INOUT_VARIABLE_RAWrocedure
This procedure binds IN OUT bind variables of data type RAW

Syntax

DBMS_HS_PASSTHROUGH.BIND_INOUT VARIABLE_RAW (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val INOUT RAW);

Parameters

Table C-18 BIND_INOUT_VARIABLE_RAWProcedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
val This value will be used for two purposes:

« To provide the IN value before the SQL statement is
executed

« To determine the size of the OUTvalue

C-16 Oracle9/ Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

Exceptions

Table C-19 BIND_INOUT_VARIABLE_RAWProcedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Pragmas

Pragmas defined: WNDS, RNDS

See Also:

« OPEN_CURSOR function

« PARSE procedure

« BIND_INOUT_VARIABLE procedure

« BIND_OUT_VARIABLE procedure

. BIND_INOUT_VARIABLE_NCHAR procedure
« BIND_VARIABLE procedure

« BIND_VARIABLE_NCHAR procedure

« GET_VALUE procedure

CLOSE_CURSOfiction

This function closes the cursor and releases associated memory after the SQL
statement has been executed at the non-Oracle system. If the cursor was not open,
the operation is a no operation.

Syntax

DBMS_HS_PASSTHROUGH.CLOSE_CURSOR (
¢ IN BINARY_INTEGER NOT NULL);

DBMS_HS_PASSTHROU@HPass-Through SQL C-17

Summary of Subprograms

Parameter

Table C-20 CLOSE_CURSORrocedure Parameters

Parameter Description
c Cursor to be released.
Exceptions

Table C-21 CLOSE_CURSORrocedure Exceptions

Exception Description
ORA-28555 A NULL value was passed for a NOT NULL parameter.
Pragmas

Purity level defined: WNDS, RNDS

See Also: OPEN_CURSOR function

EXECUTE_IMMEDIATHinction

This function executes a SQL statement immediately. Any valid SQL statement
except SELECTcan be executed immediately, but the statement must not contain
any bind variables. The statement is passed in as a VARCHARZ2n the argument.
Internally, the SQL statement is executed using the PASSTHROUGH_S@irotocol
sequence of OPEN_CURSORARSE EXECUTE_NON_QUERM.OSE_CURSOR

Syntax

EXECUTE_IMMEDIATE (s IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER);

Parameter Description

Table C-22 EXECUTE_IMMEDIATEProcedure Parameters

Parameter Description
s VARCHARZariable with the statement to be executed
immediately.

C-18 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

Returns
The number of rows affected by the execution of the SQL statement.

Exceptions

Table C-23 EXECUTE_IMMEDIATEProcedure Exceptions

Exception Description

ORA-28544 Max open cursors.

ORA-28551 SQL statement is invalid.

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.
Pragmas

Purity level defined: NONE

See Also:

» OPEN_CURSOR function

« PARSE procedure

« EXECUTE_NON_QUERY function

« BIND_INOUT_VARIABLE procedure

EXECUTE_NON_QUERction

This function executes any SQL statement other than a SELECTstatement. A cursor
has to be open and the SQL statement has to be parsed before the SQL statement
can be executed.

Syntax

DBMS_HS PASSTHROUGH.EXECUTE_NON_QUERY (
¢ IN BINARY_INTEGER NOT NULL)
RETURN BINARY_INTEGER);

DBMS_HS_PASSTHROU@HPass-Through SQL C-19

Summary of Subprograms

Parameter

Table C-24 EXECUTE_NON_QUERY Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

Returns
The number of rows affected by the SQL statement in the non-Oracle system.

Exceptions

Table C-25 EXECUTE_NON_QUERY Function Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 BIND_VARIABLE procedure is not executed in right order. Did
you first open the cursor and parse the SQL statement?

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.

Pragmas

Purity level defined: NONE

See Also:
« OPEN_CURSOR function
«» PARSE procedure

FETCH_ROMWnction

This function fetches rows from a result set. The result set is defined with a SQL
SELECTstatement.

Before the rows can be fetched, a cursor has to be opened, and the SQL statement
has to be parsed. When there are no more rows to be fetched, the function returns 0.
After a 0 return, the NO_DATA_FOUNE&Xception occurs when:

« A subsequent FETCH_ROW¢ attempted

C-20 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

« A GET_VALUHSs attempted

Syntax

DBMS HS_PASSTHROUGH.FETCH ROW (
¢ IN BINARY_INTEGERNOTNULL
[first N BOOLEAN))

RETURN BINARY_INTEGER);

Parameters and Descriptions

Table C-26 FETCH_ROW Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

first Optional parameter to re-execute a SELECTstatement. Possible
values:

. TRUE re-execute SELECTstatement.

. FALSE fetch the next row, or if executed for the first time
execute and fetch rows (default).

Returns

The returns the number of rows fetched. The function will return 0 if the last row
was already fetched.

Exceptions

Table C-27 FETCH_ROW Function Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.

Pragmas

Purity level defined: WNDS

DBMS_HS_PASSTHROU@HPass-Through SQL C-21

Summary of Subprograms

See Also:
« OPEN_CURSOR function
« PARSE procedure

GET_VALUBprocedure

This procedure has two purposes:

« To retrieve the select list items of SELECTstatements after a row has been
fetched.

« Toretrieve the OUTbind values after the SQL statement has been executed.

Syntax

DBMS_HS PASSTHROUGH.GET_VALUE (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT <dty>);

Where dty is one of:

« DATE

« INTERVAL YEAR TO MONTH

« INTERVAL DAY TO SECOND

« NUMBER

« TIMESTAMP

« TIMESTAMP WITH TIMEZONE

« TIMESTAMP WITH LOCAL TIMEZONE

« VARCHAR2

For retrieving values of data type RAWsee GET_VALUE_RAW

C-22 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Summary of Subprograms

Parameters

Table C-28 GET_VALUE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUTbind variable or select list item will
store its value.

Exceptions

Table C-29 GET_VALUE Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUNE&xception when executing the GET_
VALUEafter the last row was fetched (i.e. FETCH_ROWéturned
0).

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.

Pragmas

Purity level defined: WNDS

DBMS_HS_PASSTHROU@HPass-Through SQL C-23

Summary of Subprograms

See Also:

« OPEN_CURSOR function

« PARSE procedure

« FETCH_ROW function

« GET_VALUE_NCHAR procedure

« BIND_INOUT_VARIABLE_NCHAR procedure
« BIND_INOUT_VARIABLE_RAW procedure

GET_VALUE_NCHARocedure
This procedure, which operates on NVARCHAR#®ata types, has two purposes:

« To retrieve the select list items of SELECTstatements after a row has been
fetched.

« Toretrieve the OUTbind values after the SQL statement has been executed.

Syntax

DBMS_HS_PASSTHROUGH.GET VALUE_NCHAR (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT NVARCHARY2);

Parameters

Table C-30 GET_VALUE_NCHAR Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUTbind variable or select list item will
store its value.

C-24 Oracle9i Heterogeneous Connectivity Administrator’'s Guide

Summary of Subprograms

Exceptions

Table C-31

GET_VALUE_NCHAR Procedure Exceptions

Exception

Description

ORA-1403

ORA-28550

ORA-28552

ORA-28553
ORA-28555

Returns NO_DATA_FOUN&xception when executing the GET_
VALUEafter the last row was fetched (i.e. FETCH_ROWéturned
0).

The cursor passed is invalid.

Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

The position of the bind variable is out of range.

A NULLvalue was passed for a NOT NULL parameter.

Pragmas

Purity level defined: WNDS

See Also:

OPEN_CURSOR function

PARSE procedure

FETCH_ROW function

GET_VALUE procedure

GET_VALUE_RAW procedure
BIND_INOUT_VARIABLE_NCHAR procedure
BIND_INOUT_VARIABLE_RAW procedure

GET_VALUE_RAWocedure

This procedure, which operates on RAWHata types, has two purposes:

« To retrieve the select list items of SELECTstatements after a row has been

fetched.

« Toretrieve the OUThind values after the SQL statement has been executed.

Syntax

DBMS_HS_PASSTHROUGH.GET VALUE_RAW (

DBMS_HS_PASSTHROU@HPass-Through SQL C-25

Summary of Subprograms

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,

val OUT RAW);

Parameters

Table C-32 GET_VALUE_RAW Procedure Parameters

Parameter

Description

Cc

pos

val

Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

Position of the bind variable or select list item in the SQL
statement. Starts from 1.

Variable in which the OUTbind variable or select list item will
store its value.

Exceptions

Table C-33 GET_VALUE_RAW Procedure Exceptions

Exception

Description

ORA-1403

ORA-28550

ORA-28552

ORA-28553
ORA-28555

Returns NO_DATA_FOUNE&xception when executing the GET_
VALUEafter the last row was fetched (i.e. FETCH_ROWéturned
0).

The cursor passed is invalid.

Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

The position of the bind variable is out of range.

A NULLvalue was passed for a NOT NULL parameter.

Pragmas

Purity level defined: WNDS

C-26 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

See Also:

« OPEN_CURSOR function

« PARSE procedure

« FETCH_ROW function

« GET_VALUE procedure

« GET_VALUE_NCHAR procedure

« BIND_INOUT_VARIABLE_NCHAR procedure
« BIND_INOUT_VARIABLE_RAW procedure

OPEN_CURSORction

This function opens a cursor for executing a pass-through SQL statement at the
non-Oracle system. This function must be called for any type of SQL statement The
function returns a cursor, which must be used in subsequent calls. This call allocates
memory. To deallocate the associated memory, you call the procedure DBMS_HS
PASSTHROUGH.CLOSE_CURSOR

Syntax

DBMS_HS PASSTHROUGH.OPEN_CURSOR ()
RETURN BINARY_INTEGER;

Returns
The cursor to be used on subsequent procedure and function calls.

Exceptions

Table C-34 OPEN_CURSOR Function Exceptions

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded. Increase
Heterogeneous Services OPEN_CURSORHRSitialization
parameter.

Pragmas

Purity level defined: WNDS, RNDS

DBMS_HS_PASSTHROU@HPass-Through SQL C-27

Summary of Subprograms

See Also: BIND_INOUT_VARIABLE procedure

PARSEprocedure

This procedure parses a SQL statement at non-Oracle system.

Syntax

DBMS HS_PASSTHROUGH.GET VALUE RAW (
¢ IN BINARY INTEGERNOTNULL,
stmt IN' VARCHAR2 ~ NOT NULL);

Parameters

Table C-35 PARSE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR

stmt Statement to be parsed.

Exceptions

Table C-36 PARSE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULLvalue was passed for a NOT NULL parameter.
Pragmas

Purity level defined: WNDS, RNDS

C-28 Oracle9i Heterogeneous Connectivity Administrator's Guide

Summary of Subprograms

See Also:

OPEN_CURSOR function

PARSE procedure

FETCH_ROW function

GET_VALUE procedure
BIND_INOUT_VARIABLE_NCHAR procedure
BIND_INOUT_VARIABLE_NCHAR procedure

DBMS_HS_PASSTHROU@HPass-Through SQL C-29

Summary of Subprograms

C-30 Oracle9i Heterogeneous Connectivity Administrator's Guide

D

Data Dictionary Translation Support

Data dictionary information is stored in the non-Oracle system as system tables and
is accessed through ODBC or OLE DB application programming interfaces (APIs).
This appendix documents data dictionary translation support. It explains how to
access non-Oracle data dictionaries, lists Heterogeneous Services data dictionary
views, describes how to use supported views and tables, and explains data
dictionary mapping.

This appendix contains the following topics:

« Accessing the Non-Oracle Data Dictionary

« Heterogeneous Services Data Dictionary Views
« Supported Views and Tables

« Data Dictionary Mapping

Accessing the Non-Oracle Data Dictionary

Accessing a non-Oracle data dictionary table or view is identical to accessing a data
dictionary in an Oracle database. You issue a SELECTstatement specifying a
database link. The Oracle9i data dictionary view and column names are used to
access the non-Oracle data dictionary. Synonyms of supported views are also
acceptable.

For example, the following statement queries the data dictionary table ALL_USERS
to retrieve all users in the non-Oracle system:

SQL SELECT *FROM all_users@sid1;

When you issue a data dictionary access query, the ODBC or OLE DB agent:

Data Dictionary Translation Support D-1

Heterogeneous Services Data Dictionary Views

Maps the requested table, view, or synonym to one or more ODBC or OLE DB
APIs (see "Data Dictionary Mapping"). The agent translates all data dictionary
column names to their corresponding non-Oracle column names within the

query.

Sends the sequence of APIs to the non-Oracle system.

Possibly converts the retrieved non-Oracle data to give it the appearance of the

Oracle8i data dictionary table.

Passes the data dictionary information from the non-Oracle system table to the

Oracles8i.

Note: The values returned when querying the generic
connectivity data dictionary may not be the same as the ones
returned by the Oracle Enterprise Manager DESCRIBE command.

Heterogeneous Services Data Dictionary Views

Heterogeneous Services mapping supports the following list of data dictionary

Views:

ALL_CATALOG
ALL_COL_COMMENTS
ALL_COL_PRIVS
ALL_COL_PRIVS_MADE
ALL_COL_PRIVS_RECD
ALL_CONSTRAINTS
ALL_CONS_COLUMNS
ALL_DB_LINKS
ALL_DEF_AUDIT_OPTS
ALL_DEPENDENCIES
ALL_ERRORS
ALL_INDEXES
ALL_IND_COLUMNS
ALL_OBJECTS

D-2 Oracle9/ Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

ALL_SEQUENCES
ALL_SNAPSHOTS
ALL_SOURCE
ALL_SYNONYMS
ALL_TABLES
ALL_TAB_COLUMNS
ALL_TAB_COMMENTS
ALL_TAB_PRIVS
ALL_TAB_PRIVS_MADE
ALL_TAB_PRIVS_RECD
ALL_TRIGGERS
ALL_USERS
ALL_VIEWS
AUDIT_ACTIONS
COLUMN_PRIVILEGES
DBA_CATALOG
DBA_COL_COMMENTS
DBA_COL_PRIVS
DBA_OBJECTS
DBA_ROLES
DBA_ROLE_PRIVS
DBA_SYS_PRIVS
DBA_TABLES
DBA_TAB_COLUMNS
DBA_TAB_COMMENTS
DBA_TAB_PRIVS
DBA_USERS
DICTIONARY

Data Dictionary Translation Support

D-3

Heterogeneous Services Data Dictionary Views

. DICT_COLUMNS
. DUAL

. INDEX_STATS

. PRODUCT_USER_PROFILE
. RESOURCE_COST

. ROLE_ROLE_PRIVS

. ROLE_SYS PRIVS

. ROLE_TAB_PRIVS

. SESSION_PRIVS

. SESSION_ROLES

. TABLE_PRIVILEGES

. USER_AUDIT_OBJECT

. USER_AUDIT_SESSION

. USER_AUDIT_STATEMENT
. USER_AUDIT_TRAIL

. USER_CATALOG

. USER_CLUSTERS

. USER_CLU_COLUMNS

. USER_COL_COMMENTS

. USER_COL_PRIVS

. USER_COL_PRIVS_MADE

. USER_COL_PRIVS_RECD

. USER_CONSTRAINTS

. USER_CONS_COLUMNS

. USER_DB_LINKS

. USER_DEPENDENCIES

. USER_ERRORS

. USER_EXTENTS

D-4 Oracle9i Heterogeneous Connectivity Administrator's Guide

Supported Views and Tables

USER_FREE_SPACE
USER_INDEXES
USER_IND_COLUMNS
USER_OBJECTS
USER_OBJ_AUDIT_OPTS
USER_RESOURCE_LIMITS
USER_ROLE_PRIVS
USER_SEGMENTS
USER_SEQUENCES
USER_SNAPSHOT_LOGS
USER_SOURCE
USER_SYNONYMS
USER_SYS_PRIVS
USER_TABLES
USER_TABLESPACES
USER_TAB_COLUMNS
USER_TAB_COMMENTS
USER_TAB_PRIVS
USER_TAB_PRIVS_MADE
USER_TAB_PRIVS_RECD
USER_TRIGGERS
USER_TS_QUOTAS
USER_USERS
USER_VIEWS

Supported Views and Tables

Generic connectivity supports only these views and tables:

ALL_CATALOG

Data Dictionary Translation Support

D-5

Supported Views and Tables

« ALL_COL_COMMENTS

« ALL_CONS_COLUMNS

« ALL_CONSTRAINTS

« ALL_IND_COLUMNS

« ALL_INDEXES

« ALL_OBJECTS

« ALL_TAB_COLUMNS

« ALL_TAB_COMMENTS

« ALL_TABLES

« ALL_USERS

« ALL_VIEWS

« DICTIONARY

« USER_CATALOG

« USER_COL_COMMENTS
« USER_CONS_COLUMNS
« USER_CONSTRAINTS

« USER_IND_COLUMNS

« USER_INDEXES

« USER_OBJECTS

« USER_TAB_COLUMNS

« USER_TAB_COMMENTS
« USER_TABLES

« USER_USERS

« USER_VIEWS

If you use an unsupported view, then you receive the Oracle8i message for no rows
selected.

If you want to query data dictionary views using SELECT... FROM DBA_* , first
connect as Oracle user SYSTEMor SYS Otherwise, you receive the following error
message:

D-6 Oracle9/ Heterogeneous Connectivity Administrator's Guide

Data Dictionary Mapping

ORA-28506: Parse error in data dictionary translation for %s stored in %s

Using generic connectivity, queries of the supported data dictionary tables and
views beginning with the characters ALL_ may return rows from the non-Oracle
system when you do not have access privileges for those non-Oracle objects. When
guerying an Oracle database with the Oracle data dictionary, rows are returned only
for those objects you are permitted to access.

Data Dictionary Mapping

The tables in this section list Oracle data dictionary view names and the equivalent

ODBC or OLE DB APIs used.

Table 7-6 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API
ALL_CATALOG SQLTables DBSCHEMA_CATALOGS
ALL_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

ALL_CONS_COLUMNS

SQLPrimaryKeys, SQLForeignKeys

DB$CHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_CONSTRAINTS

SQLPrimaryKeys, SQLForeignKeys

DB$CHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_IND_COLUMNS

SQLStatistics

DBSCHEMA_STATISTICS

ALL_INDEXES

SQLStatistics

DBSCHEMA_STATISTICS

ALL_OBJECTS

SQLTables, SQLProcedures,
SQLStatistics

PROCEDURES, DBSCHEMA _
STATISTICS

ALL_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS
ALL_TAB_COMMENTS SQLTables DBSCHEMA_TABLES
ALL_TABLES SQLStatistics DBSCHEMA_STATISTICS
ALL_USERS SQLTables DBSCHEMA TABLES
ALL_VIEWS SQLTables DBSCHEMA TABLES
DICTIONARY SQLTables DBSCHEMA_TABLES
USER_CATALOG SQLTables DBSCHEMA_TABLES
USER_COL_COMMENTS | SQLColumns DBSCHEMA_COLUMNS

Data Dictionary Translation Support

DBSCHEMA_TABLES, DBSCHEMA

Data Dictionary Mapping

Table 7-6 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API
USER_CONS_COLUMNS | SQLPrimaryKeys, SQLForeignKeys =~ DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS
USER_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys ~ DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS
USER_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS
USER_INDEXES SQLStatistics DBSCHEMA_STATISTICS
USER_OBJECTS SQLTables, SQLProcedures, DBSCHEMA_TABLES, DBSCHEMA
SQLStatistics PROCEDURES, DBSCHEMA _
STATISTICS
USER_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS
USER_TAB_COMMENTS | SQLTables DBSCHEMA_TABLES
USER_TABLES SQLStatistics DBSCHEMA_STATISTICS
USER_USERS SQLTables DBSCHEMA_TABLES
USER_VIEWS SQLTables DBSCHEMA_TABLES

Generic Connectivity Data Dictionary Descriptions
The generic connectivity data dictionary tables and views provide this information:

« Name, data type, and width of each column
« The contents of columns with fixed values

In the descriptions that follow, the values in the Null? column may differ from the
Oracle9i data dictionary tables and views. Any default value is shown to the right
of an item.

ALL_CATALOG

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW" or
SYNONYM

D-8 Oracle9/ Heterogeneous Connectivity Administrator's Guide

Data Dictionary Mapping

ALL_COL_COMMENTS

Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
COMMENTS VARCHAR2(4000) NULL

ALL_CONS_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

ALL_CONSTRAINTS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) "R'or "P"

TABLE_NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADESr
"NO ACTION"
or "SET NULL"

STATUS

VARCHAR2(8) NULL

Data Dictionary Translation Support

Data Dictionary Mapping

Name Null? Type Value
DEFERRABLE VARCHAR2(14) NULL
DEFERRED VARCHAR2(9) NULL
VALIDATED VARCHAR2(13) NULL
GENERATED VARCHAR2(14) NULL
BAD VARCHAR2(3) NULL
RELY VARCHAR2(4) NULL
LAST_CHANGE DATE NULL
ALL_IND_COLUMNS

Name Null? Type Value
INDEX_OWNER NOT NULL VARCHAR2(30)
INDEX_NAME NOT NULL VARCHAR2(30)
TABLE_OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHARZ2(4000)

COLUMN_POSITION
COLUMN_LENGTH

NOT NULL NUMBER
NOT NULL NUMBER

DESCEND VARCHAR2(4) "DESCbr
"ASC"
ALL_INDEXES
Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
INDEX_NAME NOT NULL VARCHAR2(30)
INDEX_TYPE VARCHAR2(27) NULL
TABLE_OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)

D-10 Oracle9i Heterogeneous Connectivity Administrator's Guide

Data Dictionary Mapping

Name Null? Type Value
TABLE_TYPE CHAR(5) "TABLE"
UNIQUENESS VARCHAR2(9) "UNIQUEbF
"NONUNIQUE"
COMPRESSION VARCHAR2(8) NULL
PREFIX_LENGTH NUMBER 0
TABLESPACE_NAME VARCHAR2(30) NULL
INI_TRANS NUMBER 0
MAX_TRANS NUMBER 0
INITIAL_EXTENT NUMBER 0
NEXT_EXTENT NUMBER 0
MIN_EXTENTS NUMBER 0
MAX_EXTENTS NUMBER 0
PCT_INCREASE NUMBER 0
PCT_THRESHOLD NUMBER 0
INCLUDE_COLUMNS NUMBER 0
FREELISTS NUMBER 0
FREELIST_GROUPS NUMBER 0
PCT_FREE NUMBER 0
LOGGING VARCHAR2(3) NULL
BLEVEL NUMBER 0
LEAF_BLOCKS NUMBER 0
DISTINCT_KEYS NUMBER
AVG_LEAF_BLOCKS_PER_KEY NUMBER 0
AVG_DATA_BLOCKS PER_KEY NUMBER 0
CLUSTERING_FACTOR NUMBER 0
STATUS VARCHAR2(8) NULL
NUM_ROWS NUMBER 0
SAMPLE_SIZE NUMBER 0

Data Dictionary Translation Support

Data Dictionary Mapping

Name Null? Type Value
LAST_ANALYZED DATE NULL
DEGREE VARCHAR2(40) NULL
INSTANCES VARCHAR2(40) NULL
PARTITIONED VARCHAR2(3) NULL
TEMPORARY VARCHAR2(1) NULL
GENERATED VARCHAR2(1) NULL
SECONDARY VARCHAR2(1) NULL
BUFFER_POOL VARCHAR2(7) NULL
USER_STATS VARCHAR2(3) NULL
DURATION VARCHAR2(15) NULL

PCT_DIRECT_ACCESS
ITYP_OWNER
ITYP_NAME
PARAMETERS
GLOBAL_STATS
DOMIDX_STATUS
DOMIDX_OPSTATUS
FUNCIDX_STATUS

NUMBER 0
VARCHAR2(30) NULL
VARCHAR2(30) NULL
VARCHAR2(1000) NULL
VARCHAR2(3) NULL
VARCHAR2(12) NULL
VARCHAR2(6) NULL
VARCHAR2(8) NULL

ALL_OBJECTS

Name

Null? Type Value

OWNER
OBJECT_NAME
SUBOBJECT_NAME
OBJECT_ID
DATA_OBJECT_ID

NOT NULL VARCHAR2(30)
NOT NULL VARCHAR2(30)
VARCHAR2(30) NULL
NOT NULL NUMBER 0
NUMBER 0

D-12 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping

Name Null? Type Value
OBJECT_TYPE VARCHAR2(18) "TABLE or
"VIEW' or
"SYNONYMor
"INDEX" or
"PROCEDURE"
CREATED NOT NULL DATE NULL
LAST_DDL_TIME NOT NULL DATE NULL
TIMESTAMP VARCHAR2(19) NULL
STATUS VARCHAR2(7) NULL
TEMPORARY VARCHAR2(1) NULL
GENERATED VARCHAR2(1) NULL
SECONDARY VARCHAR2(1) NULL
ALL_TAB_COLUMNS
Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE VARCHAR2(106)
DATA_TYPE_MOD VARCHAR2(3) NULL
DATA_TYPE_OWNER VARCHAR2(30) NULL
DATA_LENGTH NOT NULL NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
NULLABLE VARCHAR2(1) "Y" or "N"
COLUMN_ID NOT NULL NUMBER
DEFAULT_LENGTH NUMBER 0
DATA_DEFAULT LONG NULL
NUM_DISTINCT NUMBER 0

Data Dictionary Translation Support D-13

Data Dictionary Mapping

Name Null? Type Value
LOW_VALUE RAW(32) NULL
HIGH_VALUE RAW(32) NULL
DENSITY NUMBER 0
NUM_NULLS NUMBER 0
NUM_BUCKETS NUMBER 0
LAST_ANALYZED DATE NULL
SAMPLE_SIZE NUMBER 0
CHARACTER_SET_NAME VARCHAR2(44) NULL
CHAR_COL_DEC_LENGTH NUMBER 0
GLOBAL_STATS VARCHAR2(3) NULL
USER_STATS VARCHAR2(3) NULL
AVG_COL_LEN NUMBER 0

ALL_TAB_COMMENTS

Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"
COMMENTS VARCHAR2(4000) NULL
ALL_TABLES
Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
TABLESPACE_NAME VARCHAR2(30) NULL
CLUSTER_NAME VARCHAR2(30) NULL

D-14 Oracle9/ Heterogeneous Connectivity Administrator's Guide

Data Dictionary Mapping

Name Type Value
IOT_NAME VARCHAR2(30) NULL
PCT_FREE NUMBER 0
PCT_USED NUMBER 0
INI_TRANS NUMBER 0
MAX_TRANS NUMBER 0
INITIAL_EXTENT NUMBER 0
NEXT_EXTENT NUMBER 0
MIN_EXTENTS NUMBER 0
MAX_EXTENTS NUMBER 0
PCT_INCREASE NUMBER 0
FREELISTS NUMBER 0
FREELIST_GROUPS NUMBER 0
LOGGING VARCHAR2(3) NULL
BACKED_UP VARCHAR2(1) NULL
NUM_ROWS NUMBER

BLOCKS NUMBER
EMPTY_BLOCKS NUMBER 0
AVG_SPACE NUMBER 0
CHAIN_CNT NUMBER 0
AVG_ROW_LEN NUMBER 0
AVG_SPACE_FREELIST_BLOCKS NUMBER 0
NUM_FREELIST_BLOCKS NUMBER 0

DEGREE
INSTANCES
CACHE
TABLE_LOCK
SAMPLE_SIZE
LAST_ANALYZED

VARCHAR2(10) NULL
VARCHAR2(10) NULL
VARCHAR2(5) NULL
VARCHAR2(8) NULL
NUMBER 0
DATE NULL

Data Dictionary Translation Support

D-15

Data Dictionary Mapping

Name Null? Type Value
PARTITIONED VARCHAR2(3) NULL
IOT_TYPE VARCHAR2(12) NULL
TEMPORARY VARHCAR2(1) NULL
SECONDARY VARCHAR2(1) NULL
NESTED VARCHAR2(3) NULL

BUFFER_POOL
ROW_MOVEMENT
GLOBAL_STATS

VARCHAR2(7) NULL
VARCHAR2(8) NULL
VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL
DURATION VARHCAR2(15) NULL
SKIP_CORRUPT VARCHAR2(8) NULL
MONITORING VARCHAR2(3) NULL
ALL_USERS

Name Null? Type Value
USERNAME NOT NULL VARCHAR2(30)
USER_ID NOT NULL NUMBER 0
CREATED NOT NULL DATE NULL
ALL_VIEWS

Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
VIEW_NAME NOT NULL VARCHAR2(30)
TEXT_LENGTH NUMBER 0
TEXT NOT NULL LONG NULL
TYPE_TEXT_LENGTH NUMBER 0
TYPE_TEXT VARCHAR2(4000) NULL

D-16 Oracle9i Heterogeneous Connectivity Administrator's Guide

Data Dictionary Mapping

Name Null? Type Value
OID_TEXT_LENGTH NUMBER 0
OID_TEXT VARCHAR2(4000) NULL
VIEW_TYPE_OWNER VARCHAR2(30) NULL
VIEW_TYPE VARCHAR2(30) NULL
DICTIONARY
Name Null? Type Value
TABLE_NAME VARCHAR2(30)
COMMENTS VARCHAR2(4000) NULL
USER_CATALOG
Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11) "TABLE" or,
"VIEW" or
"SYNONYM"
USER_COL_COMMENTS
Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
COMMENTS VARCHAR2(4000) NULL
USER_CONS_COLUMNS
Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)

Data Dictionary Translation Support

D-17

Data Dictionary Mapping

Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
POSITION NUMBER

USER_CONSTRAINTS

Name Null? Type Value
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)
CONSTRAINT_TYPE VARCHAR2(1) Br P
TABLE_NAME NOT NULL VARCHAR2(30)
SEARCH_CONDITION LONG NULL
R_OWNER VARCHAR2(30)
R_CONSTRAINT_NAME VARCHAR2(30)
DELETE_RULE VARCHAR2(9) "CASCADESr
"NOACTION' or
"SET NULL"
STATUS VARCHAR2(8) NULL
DEFERRABLE VARCHAR2(14) NULL
DEFERRED VARCHAR2(9) NULL
VALIDATED VARCHAR2(13) NULL
GENERATED VARCHAR2(14) NULL
BAD VARCHAR2(3) NULL
RELY VARCHAR2(4) NULL
LAST_CHANGE DATE NULL

USER_IND_COLUMNS

Name Null? Type Value

INDEX_NAME VARCHAR2(30)

D-18 Oracle9i Heterogeneous Connectivity Administrator's Guide

Data Dictionary Mapping

Name Null? Type Value
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
COLUMN_POSITION NUMBER
COLUMN_LENGTH NUMBER
DESCEND VARCHAR2(4) "DESCbr
"ASC"
USER_INDEXES
Name Null? Type Value
INDEX_NAME NOT NULL VARCHAR2(30)
INDEX_TYPE VARCHAR2(27) NULL
TABLE_OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11) "TABLE"
UNIQUENESS VARCHAR2(9) "UNIQUE'r
"NONUNIQUE"
COMPRESSION VARCHAR2(8) NULL
PREFIX_LENGTH NUMBER 0
TABLESPACE_NAME VARCHAR2(30) NULL
INI_TRANS NUMBER 0
MAX_TRANS NUMBER 0
INITIAL_EXTENT NUMBER 0
NEXT_EXTENT NUMBER 0
MIN_EXTENTS NUMBER 0
MAX_EXTENTS NUMBER 0
PCT_INCREASE NUMBER 0
PCT_THRESHOLD NUMBER 0
INCLUDE_COLUMNS NUMBER 0

Data Dictionary Translation Support D-19

Data Dictionary Mapping

Name Null? Type Value
FREELISTS NUMBER 0
FREELIST_GROUPS NUMBER 0
PCT_FREE NUMBER 0
LOGGING VARCHAR2(3) NULL
BLEVEL NUMBER 0
LEAF_BLOCKS NUMBER 0
DISTINCT_KEYS NUMBER

AVG_LEAF BLOCKS_PER_KEY NUMBER 0
AVG_DATA_BLOCKS_PER_KEY NUMBER 0
CLUSTERING_FACTOR NUMBER 0
STATUS VARCHAR2(8) NULL
NUM_ROWS NUMBER 0
SAMPLE_SIZE NUMBER 0
LAST_ANALYZED DATE NULL
DEGREE VARCHAR2(40) NULL
INSTANCES VARCHAR2(40) NULL
PARTITIONED VARCHAR2(3) NULL
TEMPORARY VARCHAR2(1) NULL
GENERATED VARCHAR2(1) NULL
SECONDARY VARCHAR2(1) NULL
BUFFER_POOL VARCHAR2(7) NULL
USER_STATS VARCHAR2(3) NULL
DURATION VARHCAR2(15) NULL
PCT_DIRECT_ACCESS NUMBER 0
ITYP_OWNER VARCHAR2(30) NULL
ITYP_NAME VARCHAR2(30) NULL
PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS

VARCHAR2(3)

D-20 Oracle9i Heterogeneous Connectivity Administrator's Guide

NULL

Data Dictionary Mapping

Name Null? Type Value

DOMIDX_STATUS VARCHAR2(12) NULL
DOMIDX_OPSTATUS VARCHAR2(6) NULL
FUNCIDX_STATUS VARCHAR2(8) NULL

USER_OBJECTS

Name Null? Type Value
OBJECT_NAME VARCHAR2(128)
SUBOBJECT_NAME VARCHAR2(30) NULL
OBJECT_ID NUMBER 0
DATA_OBJECT_ID NUMBER 0
OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX" or
"PROCEDURE"
CREATED DATE NULL
LAST_DDL_TIME DATE NULL
TIMESTAMP VARCHAR2(19) NULL
STATUS VARCHAR2(7) NULL
TEMPORARY VARCHAR2(1) NULL
GENERATED VARCHAR2(1) NULL
SECONDARY VARCHAR2(1) NULL

USER_TAB_COLUMNS

Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE VARCHAR2(106)

Data Dictionary Translation Support D-21

Data Dictionary Mapping

Name Null? Type Value
DATA_TYPE_MOD VARCHAR2(3) NULL
DATA_TYPE_OWNER VARCHAR2(30) NULL
DATA_LENGTH NOT NULL NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
NULLABLE VARCHAR2(1) "Y" or "N"
COLUMN_ID NOT NULL NUMBER
DEFAULT_LENGTH NUMBER NULL
DATA_DEFAULT LONG NULL
NUM_DISTINCT NUMBER NULL
LOW_VALUE RAW(32) NULL
HIGH_VALUE RAW(32) NULL
DENSITY NUMBER 0
NUM_NULLS NUMBER 0
NUM_BUCKETS NUMBER 0
LAST_ANALYZED DATE NULL
SAMPLE_SIZE NUMBER 0
CHARACTER_SET_NAME VARCHAR2(44) NULL
CHAR_COL_DECL_LENGTH NUMBER 0
GLOBAL_STATS VARCHAR2(3) NULL
USER_STATS VARCHAR2(3) NULL
AVG_COL_LEN NUMBER 0
USER_TAB_COMMENTS
Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

D-22 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping

Name Null? Type Value
COMMENTS VARCHAR2(4000) NULL

USER_TABLES

Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30)
VARCHAR2(30) NULL
VARCHAR2(30) NULL

TABLESPACE_NAME
CLUSTER_NAME

IOT_NAME VARCHAR2(30) NULL
PCT_FREE NUMBER

PCT_USED NUMBER

INI_TRANS NUMBER

MAX_TRANS NUMBER
INITIAL_EXTENT NUMBER

NEXT_EXTENT NUMBER

MIN_EXTENTS NUMBER

MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER

FREELISTS NUMBER
FREELIST_GROUPS NUMBER

LOGGING VARCHAR2(3) NULL
BACKED_UP VARCHAR2(1) NULL
NUM_ROWS NUMBER

BLOCKS NUMBER
EMPTY_BLOCKS NUMBER

AVG_SPACE NUMBER

CHAIN_CNT NUMBER
AVG_ROW_LEN NUMBER

Data Dictionary Translation Support

Data Dictionary Mapping

Name Null? Type Value
AVG_SPACE_FREELIST_BLOCKS NUMBER 0
NUM_FREELIST_BLOCKS NUMBER 0
DEGREE VARCHAR2(10) NULL
INSTANCES VARCHAR2(10) NULL
CACHE VARCHAR2(5) NULL
TABLE_LOCK VARCHAR2(8) NULL
SAMPLE_SIZE NUMBER 0
LAST_ANALYZED DATE NULL
PARTITIONED VARCHAR2(3) NULL
IOT_TYPE VARCHAR2(12) NULL
TEMPORARY VARHCAR2(1) NULL
SECONDARY VARCHAR2(1) NULL
NESTED VARCHAR2(3) NULL
BUFFER_POOL VARCHAR2(7) NULL
ROW_MOVEMENT VARCHAR2(8) NULL
GLOBAL_STATS VARCHAR2(3) NULL
USER_STATS VARCHAR2(3) NULL
DURATION VARCHAR2(15) NULL
SKIP_CORRUPT VARCHAR2(8) NULL
MONITORING VARCHAR2(3) NULL
USER_USERS

Name Null? Type Value
USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0
ACCOUNT_STATUS NOT NULL VARCHAR2(32) OPEN
LOCK_DATE DATE NULL

D-24 Oracle9/ Heterogeneous Connectivity Administrator’s Guide

Data Dictionary Mapping

Name Null? Type Value
EXPIRY_DATE DATE NULL
DEFAULT_TABLESPACE NOT NULL VARCHAR2(30) NULL
TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30) NULL
CREATED NOT NULL DATE NULL

INITIAL_RSRC_CONSUMER_GROUP

EXTERNAL_NAME

VARCHAR2(30) NULL
VARCHAR2(4000) NULL

USER_VIEWS

Name Null? Type Value
VIEW_NAME NOT NULL VARCHAR2(30)
TEXT_LENGTH NUMBER 0
TEXT LONG NULL
TYPE_TEXT_LENGTH NUMBER 0
TYPE_TEXT VARCHAR2(4000) NULL
OID_TEXT_LENGTH NUMBER 0
OID_TEXT VARCHAR2(4000) NULL
VIEW_TYPE_OWNER VARCHAR2(30) NULL
VIEW_TYPE VARCHAR2(30) NULL

Data Dictionary Translation Support

D-25

Data Dictionary Mapping

D-26 Oracle9i Heterogeneous Connectivity Administrator's Guide

A

agents
generic connectivity, 2-4
Heterogeneous Services
disabling self-registration, 4-15
registering, 4-11,4-12, 4-13
specifying initialization parameters for, 4-4
application development
Heterogeneous Services
controlling array fetches between non-Oracle
server and agent, 4-9
controlling array fetches between Oracle
server and agent, 4-9
controlling reblocking of array fetches, 4-9
DBMS_HS_PASSTHROUGH package, 3-5
pass-through SQL, 3-5
using bulk fetches, 4-8
using OCI for bulk fetches, 4-9
array fetches, 4-9
agents, 4-9

B

bind queries

executing using pass-through SQL, 3-11
BIND_INOUT_VARIABLE procedure, 3-6, 3-10
BIND_OUT_VARIABLE procedure, 3-6, 3-10
BIND_VARIABLE procedure, 3-6
buffers

multiple rows, 3-12
bulk fetches

optimizing data transfers using, 4-8

Index

C

CATHO.SQL script
installing data dictionary for Heterogeneous
Services, 4-2
character sets
Heterogeneous Services, A-7
CLOSE_CURSOR function, 3-6
commit point site
commit point strength, A-3
configuring
generic connectivity, 7-8
transparent gateways, 4-2
Copying data
COPY command, 4-19
from Oracle database server to SQL Server, 4-19
from SQL Server to Oracle database server, 4-21
INSERT statement, 4-20
CREATE TABLE command, 4-21

D

data dictionary
contents with generic connectivity, D-5
installing for Heterogeneous Services, 4-2
mapping for generic connectivity, D-7
Oracle server name/SQL Server name, D-7
translation support for generic
connectivity, D-1
data dictionary views
generic connectivity, D-5
Heterogeneous Services, 4-22, D-2
database links
heterogeneous systems, 4-4

Index-1

date formats
Heterogeneous Services, A-8, A-9
DBMS_HS_PASSTHROUGH package, 3-5
list of functions and procedures, 3-6
DBMS_HS _PASSTHROUGH.EXECUTE_
IMMEDIATE, C-18
describe cache high water mark
definition, A-4
drivers
ODBC, 7-13
OLEDB (FS), 7-16
OLE DB (SQL), 7-15
dynamic performance views
Heterogeneous Services, 4-28
determining open sessions, 4-28
determining which agents are on host, 4-28

E

EXECUTE_IMMEDIATE procedure, 3-6
restrictions, 3-7
EXECUTE_NON_QUERY procedure, 3-6

F

FDS_CLASS, 4-13
FDS_CLASS_VERSION, 4-13
FDS_INST_NAME, 4-14
FETCH_ROW procedure, 3-7
executing queries using pass-through SQL, 3-11
fetches
bulk, 4-8
optimizing round-trips, 3-12

G

Gateway
how it works, 2-8
remote data access, 1-5
two-phase commit, 1-6
generic connectivity
architecture, 7-3
Oracle and non-Oracle on same machine, 7-4
Oracle and non-Oracle on separate
machines, 7-3

Index-2

configuration, 7-8
creating initialization file, 7-8
data dictionary
translation support, D-1
definition, 7-2
DELETE statement, 7-7
editing initialization file, 7-8
error tracing, A-6
Heterogeneous Services, 2-4
INSERT statement, 7-7
non-Oracle data dictionary access, D-1
ODBC connectivity requirements, 7-13
OLE DB (FS) connectivity requirements, 7-16
OLE DB (SQL) connectivity requirements, 7-15
restrictions, 7-6
setting parameters for ODBC source, 7-10
UNIX, 7-11
Windows NT, 7-10
setting parameters for OLE DB source, 7-12
SQL execution, 7-6
supported functions, 7-7
supported SQL syntax, 7-7
types of agents, 7-2
UPDATE statement, 7-7
GET_VALUE procedure, 3-7,3-10

H

heterogeneous distributed systems
accessing, 4-2
Heterogeneous Services
agent registration, 4-11
avoiding configuration mismatches, 4-12

disabling, 4-15
enabling, 4-11
agents

self-registration, 4-13
application development

controlling array fetches between non-Oracle
server and agent, 4-9

controlling array fetches between Oracle
server and agent, 4-9

controlling reblocking of array fetches, 4-9

DBMS_HS PASSTHOUGH package, 3-5

pass-through SQL, 3-5

using bulk fetches, 4-8
using OCI for bulk fetches, 4-9
creating database links, 4-4
data dictionary views, 4-22, D-2
types, 4-22
understanding sources, 4-23
using general views, 4-24
using SQL service views, 4-26
using transaction service views, 4-25
defining maximum number of open
cursors, A-10
dynamic performance views, 4-28
V$HS_AGENT view, 4-28
V$HS_SESSION view, 4-28
generic connectivity
architecture, 7-3
creating initialization file, 7-8
definition, 7-2
editing initialization file, 7-8
non-Oracle data dictionary access, D-1
ODBC connectivity requirements, 7-13
OLE DB (FS) connectivity requirements, 7-16
OLE DB (SQL) connectivity
requirements, 7-15
restrictions, 7-6
setting parameters for ODBC source, 7-10
setting parameters for OLE DB source, 7-12
SQL execution, 7-6
supported functions, 7-7
supported SQL syntax, 7-7
supported tables, D-5
types of agents, 7-2
installing data dictionary, 4-2
optimizing data transfer, A-11
setting global name, A-4
setting up access using transparent
gateway, 4-2
setting up environment, 4-2
specifying cache high water mark, A-4
specifying cache size, A-10
specifying commit point strength, A-3
specifying domain, A-3
specifying instance identifier, A-3
SQL service, 2-5
testing connections, 4-4

transaction service, 2-4
tuning internal data buffering, A-11
HS_AUTOREGISTER initialization parameter
using to enable agent self-registration, 4-14
HS_BASE_CAPS view, 4-23
HS_BASE_DD view, 4-23
HS_CLASS_CAPS view, 4-23
HS_CLASS_DD view, 4-23
HS_CLASS_INIT view, 4-23
HS_COMMIT_POINT_STRENGTH initialization
parameter, A-3
HS_DB_DOMAIN initialization parameter, A-3
HS_DB_INTERNAL_NAME initialization
parameter, A-3
HS_DB_NAME initialization parameter, A-4
HS_DESCRIBE_CACHE_HWAM initialization
parameter, A-4
HS_FDS_CLASS view, 4-23
HS_FDS_CONNECT_INFO initialization
parameter, A-4
specifying connection information, 7-9
HS_FDS_FETCH_ROWS initialization
parameter, 4-9
HS_FDS_INST view, 4-23
HS_FDS_SHAREABLE_NAME initialization
parameter, A-6
HS_FDS_TRACE initialization parameter, A-6
HS_FDS_TRACE_LEVEL initialization parameter
enabling agent tracing, 7-9
HS_LANGUAGE initialization parameter, A-6
HS _NLS DATE_FORMAT initialization
parameter, A-8
HS_NLS_DATE_LANGUAGE initialization
parameter, A-8
HS_NLS_NCHAR initialization parameter, A-9
HS_OPEN_CURSORS initialization
parameter, A-10
HS_ROWID_CACHE_SIZE initialization
parameter, A-10
HS_RPC_FETCH_REBLOCKING initialization
parameter, 4-10, A-11
HS_RPC_FETCH_SIZE initialization
parameter, 4-9, A-11

Index-3

IFILE, A-12

L

listeners, 4-2

M

multiple rows
buffering, 3-12

N

National Language Support (NLS)
Heterogeneous Services, A-6
character set of non-Oracle source, A-9
date format, A-8
languages in character date values, A-8

o

OocClI
optimizing data transfers using, 4-9
ODBC agents
connectivity requirements, 7-13
functions, 7-13
ODBC connectivity
data dictionary mapping, D-7
ODBC driver, 7-13
requirements, 7-13
specifying connection information
UNIX, A-5
Windows NT, A-5
specifying path to library, A-6
OLE DB (FS) drivers, 7-16
OLE DB (SQL) drivers, 7-15
OLE DB agents
connectivity requirements, 7-15, 7-16
OLE DB connectivity
data dictionary mapping, D-7
setting connection information, A-5
OLE DB drivers
data provider requirements, 7-16
initialization properties, 7-18

Index-4

rowset properties, 7-18
OPEN_CURSOR procedure, 3-6
operating system dependencies, C-1
Oracle database server

SQL construct processing, 4-16
Oracle Net Services listener, 2-3, 4-2
Oracle precompiler

optimizing data transfers using, 4-9
OUT bind variables, 3-10

P

PARSE procedure, 3-6
pass-through SQL
avoiding SQL interpretation, 3-5
executing statements, 3-6
non-queries, 3-7
queries, 3-11
with bind variables, 3-8
with IN bind variables, 3-9
with IN OUT bind variables, 3-10
with OUT bind variables, 3-10
implications of using, 3-6
overview, 3-5
restrictions, 3-6

Q

queries
pass-through SQL, 3-11

R

reblocking, 4-9
rows
buffering multiple, 3-12

S

SELECT statement

accessing non-Oracle system, D-1
service names

specifying in database links, 4-4
SQL capabilities

data dictionary tables, 4-26

SQL service
data dictionary views, 2-8, 4-22
Heterogeneous Services, 2-5
views
Heterogeneous Services, 4-26
Synonyms, 4-17

T

transaction service

Heterogeneous Services, 2-4

Vviews

Heterogeneous Services, 4-25

transparent gateways

accessing Heterogeneous Services agents,

creating database links, 4-4

installing Heterogeneous Services data

dictionary, 4-2

testing connections, 4-4

Two-phase commit, 1-6

U

4-2

unsupported functions
generic connectivity, 7-7

Vv

V$HS_AGENT view

determining which agents are on host, 4-28

V$HS_PARAMETER view

listing HS parameters, 4-29
V$HS_SESSION view

determining open sessions, 4-29
variables

bind, 3-7

Index-5

Index-6

	Send Us Your Comments
	Preface
	1 Introduction
	The Heterogeneous Challenge
	The Heterogeneous Services Module in the Oracle Database Server
	Integrating Heterogeneous Services Into the Oracle Server
	Benefits of Heterogeneous Services
	Remote Data Access
	Elimination of Unnecessary Data Duplication
	Heterogeneous Database Integration
	Application Development and End User Tools
	Two-Phase Commit and Multi-Site Transactions
	Query Optimization
	Error Mapping and Logging
	Pass-Through Feature

	2 Oracle Transparent Gateways and Generic Connectivity
	Heterogeneous Connectivity Process Architecture
	Heterogeneous Services Agents
	Types of Heterogeneous Services Agents
	Oracle Transparent Gateways
	Generic Connectivity

	Heterogeneous Services Components
	Transaction Service
	SQL Service

	Configuring Heterogeneous Services
	Data Dictionary Translations
	Initialization Parameters
	Capabilities

	The Heterogeneous Services Data Dictionary
	Classes and Instances
	Data Dictionary Views

	Gateway Process Flow
	Oracle Transparent Gateways for Non-Oracle Database Systems

	3 Major Features
	SQL and PL/SQL Support
	Heterogeneous Replication
	Passthrough SQL
	Using the DBMS_HS_PASSTHROUGH package
	Considering the Implications of Using Pass-Through SQL
	Executing Pass-Through SQL Statements
	Executing Non-Queries
	Using Bind Variables: Overview
	Using IN Bind Variables
	Using OUT Bind Variables
	Using IN OUT Bind Variables

	Executing Queries

	Result Set Support
	Introduction
	Result Set Support In Non-Oracle Systems:
	Model 1
	Model 2

	Heterogeneous Services Support for Result Sets
	Cursor mode
	Sequential Mode

	Code Examples:
	OCI program fetching from result sets in cursor mode
	OCI program fetching from result sets in sequential mode
	PL/SQL program fetching from result sets in cursor mode

	Data Dictionary Translations
	Examples
	Example 1: Check current session's user name on Oracle and on Informix.
	Example 2: Check current session's user ID on Oracle and on Informix.
	Example 3: Check constraints defined on a non-Oracle system for tables owned by an arbitrary user.

	Date Time
	Two Phase Commit Protocol
	Piecewise Long
	SQL*Plus Describe Command
	Constraints on SQL in a Distributed Environment
	Resolving Remote and Heterogeneous References
	Resolving Important Restrictions
	Rule A: A data definition language statement cannot be remote mapped.
	Rule B: Insert, Update and Delete statements with a remote target table must be remote mapped.
	Rule C: Object features like tables with nested table columns, ADT columns, Opaque columns or Ref...
	Rule D: SQL statements containing operators and constructs that are not supported at the remote s...
	Rule E: SQL statement containing a table expression cannot be remote mapped.
	Rule F: If a SQL statement selects a long, the statement must be mapped to the node where the tab...
	Rule G: The statement must be mapped to the node on which the table or tables with columns refere...
	Rule H: If the SQL statement contains a SEQUENCE or sequences, the statement must be mapped to th...
	Rule I: If the statement contains a user defined operator or operators, the statement must be map...
	Rule J: A statement containing duplicate bind variables cannot be remote mapped.

	Updates, Inserts and Deletes

	Using Index and Table Statistics
	Other Optimizations
	Remote Join Optimization

	Optimizer Restrictions for non-Oracle Access

	4 Using the Gateway
	Setting Up Access to Non-Oracle Systems
	Step 1: Install the Heterogeneous Services Data Dictionary
	Step 2: Set Up the Environment to Access Heterogeneous Services Agents
	A Sample Entry for a Oracle Net Service Name
	A Sample Listener Entry

	Step 3: Create the Database Link to the Non-Oracle System
	Step 4: Test the Connection

	Initialization Parameters
	Optimizing Data Transfers Using Bulk Fetch
	Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
	Controlling the Array Fetch Between Oracle Database Server and Agent
	Controlling the Array Fetch Between Agent and Non-Oracle Server
	Controlling the Reblocking of Array Fetches

	Registering Agents
	Enabling Agent Self-Registration
	Using Agent Self-Registration to Avoid Configuration Mismatches
	Understanding Agent Self-Registration
	FDS_CLASS and FDS_CLASS_VERSION
	FDS_INST_NAME

	Specifying HS_AUTOREGISTER

	Disabling Agent Self-Registration

	Oracle Database Server SQL Construct Processing
	Using Synonyms
	Example of a Distributed Query

	Copying Data from the Oracle Database Server to the Non-Oracle Database System
	Copying Data from the Non-Oracle Database System to the Oracle Database Server
	Heterogeneous Services Data Dictionary Views
	Understanding the Types of Views
	Understanding the Sources of Data Dictionary Information
	Using the General Views
	Using the Transaction Service Views
	Using the SQL Service Views
	Using Views for Capabilities and Translations
	Using Views for Data Dictionary Translations

	Using the Heterogeneous Services Dynamic Performance Views
	Determining Which Agents Are Running on a Host
	Determining the Open Heterogeneous Services Sessions
	Determining the Heterogeneous Services Parameters

	5 Using Multithreaded Agents
	Concepts
	The Challenge of Dedicated Agent Architecture
	The Advantage of Multithreading

	Multithreaded Agent Architecture
	Overview
	The Monitor Thread
	Dispatcher Threads
	Task Threads

	Multithreaded Agent Administration
	Overview
	Single Command Mode Commands
	Shell Mode Commands

	6 Performance Tips
	Optimizing Heterogeneous Distributed SQL Statements
	Using Gateways and Partition Views
	Optimizing Performance of Distributed Queries
	Choose the best SQL statement.
	Use the cost-based optimizer.
	Use views.

	7 Generic Connectivity
	What Is Generic Connectivity?
	Types of Agents
	Generic Connectivity Architecture
	Oracle and Non-Oracle Systems on Separate Machines
	Oracle and Non-Oracle Systems on the Same Machine

	SQL Execution
	Data Type Mapping
	Generic Connectivity Restrictions

	Supported Oracle SQL Statements
	Functions Supported by Generic Connectivity

	Configuring Generic Connectivity Agents
	Creating the Initialization File
	Editing the Initialization File
	Setting Initialization Parameters for an ODBC-based Data Source
	Setting Agent Parameters on Windows NT
	Setting Parameters on NT: Example

	Setting Agent Parameters on UNIX platforms
	Setting Parameters on UNIX: Example

	Setting Initialization Parameters for an OLE DB-based Data Source

	ODBC Connectivity Requirements
	OLE DB (SQL) Connectivity Requirements
	OLE DB (FS) Connectivity Requirements
	Data Source Properties

	A Heterogeneous Services Initialization Parameters
	HS_COMMIT_POINT_STRENGTH
	HS_DB_DOMAIN
	HS_DB_INTERNAL_NAME
	HS_DB_NAME
	HS_DESCRIBE_CACHE_HWM
	HS_FDS_CONNECT_INFO
	ODBC-based Data Source on Windows:
	ODBC-based Data Source on UNIX:
	OLE DB-based Data Source (Windows NT Only):

	HS_FDS_SHAREABLE_NAME
	HS_FDS_TRACE_LEVEL
	HS_LANGUAGE
	Character sets
	Language
	Territory

	HS_LONG_PIECE_TRANSFER_SIZE
	HS_NLS_DATE_FORMAT
	HS_NLS_DATE_LANGUAGE
	HS_NLS_NCHAR
	HS_NLS_TIMESTAMP_FORMAT
	HS_NLS_TIMESTAMP_TZ_FORMAT
	HS_OPEN_CURSORS
	HS_ROWID_CACHE_SIZE
	HS_RPC_FETCH_REBLOCKING
	HS_RPC_FETCH_SIZE
	HS_TIME_ZONE
	IFILE

	B Data Type Mapping
	Mapping ANSI Data Types to Oracle Data Types Through an ODBC Interface
	Mapping ANSI Data Types to Oracle Data Types Through an OLE DB Interface

	C DBMS_HS_PASSTHROUGH for Pass-Through SQL
	Summary of Subprograms
	BIND_VARIABLE procedure
	Syntax.
	Parameters
	Exceptions
	Pragmas

	BIND_VARIABLE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_VARIABLE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	CLOSE_CURSOR function
	Syntax
	Parameter
	Exceptions
	Pragmas

	EXECUTE_IMMEDIATE function
	Syntax
	Parameter Description
	Returns
	Exceptions
	Pragmas

	EXECUTE_NON_QUERY function
	Syntax
	Parameter
	Returns
	Exceptions
	Pragmas

	FETCH_ROW function
	Syntax
	Parameters and Descriptions
	Returns
	Exceptions
	Pragmas

	GET_VALUE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	GET_VALUE_NCHAR procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	GET_VALUE_RAW procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	OPEN_CURSOR function
	Syntax
	Returns
	Exceptions
	Pragmas

	PARSE procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	D Data Dictionary Translation Support
	Accessing the Non-Oracle Data Dictionary
	Heterogeneous Services Data Dictionary Views
	Supported Views and Tables
	Data Dictionary Mapping
	Generic Connectivity Data Dictionary Descriptions
	ALL_CATALOG
	ALL_COL_COMMENTS
	ALL_CONS_COLUMNS
	ALL_CONSTRAINTS
	ALL_IND_COLUMNS
	ALL_INDEXES
	ALL_OBJECTS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TABLES
	ALL_USERS
	ALL_VIEWS
	DICTIONARY
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CONS_COLUMNS
	USER_CONSTRAINTS
	USER_IND_COLUMNS
	USER_INDEXES
	USER_OBJECTS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TABLES
	USER_USERS
	USER_VIEWS

	Index

