Oracle9

Globalization Support Guide

Release 1 (9.0.1)

July 2001
Part No. A90236-02

ORrRACLE

Oracle9i Globalization Support Guide, Release 1 (9.0.1)

Part No. A90236-02

Copyright © 1996, 2001 Oracle Corporation. All rights reserved.
Primary Author: Paul Lane

Contributors: Cathy Baird, Winson Chu, Jessica Fan, Yu Gong, Claire Ho, Simon Law, Peter Linsley,
Den Raphaely, Shige Takeda, Linus Tanaka, Makoto Tozawa, Barry Trute, Michael Yau, Hiro Yoshioka,
Sergiusz Wolicki, Simon Wong

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Oracle9i, Enterprise Manager, Pro*COBOL, SQL*Forms, SQL*Plus,
Oracle Call Interface, Oracle Forms, Oracle Net Services, PL/SQL, Pro*C, Pro*C/C++, and Trusted
Oracle are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks
of their respective owners.

Contents

SENA US YOUI COMIMENTS oo e ettt e et e e ee e et e e s eeeeeeeee e e e e eeseseeeseeeeeseneeens XV
o =) =01 < XVii

1 Globalization Support

Oracle Server Globalization SUpPpPOrt ArchiteCture...........ccooieiiiiiiieneee e 1-2
Locale-Independent OPEratioN..........ccociiiiiiiiiiee e 1-2
MUIEIEIEr AFCRITECTUTIEvieecee e 1-4
{81 Tole Lo (=IO USROS URURPRURTN 1-5

Globalization SUPPOIt FEATUIES.........oiiiiiece bbbttt 1-5
(=T o B E=To [T B] o] o L0 o APPSOV RUPPRPRPN 1-6
IR a1 Te] 5 18] o] o o] o ST SO SRS PR 1-6
Date and TimMe FOIMALScocoviiiiiirise ettt sa e re e sneseeneees 1-6
Monetary and NUMEIIC FOIMALS......c.ccciiiiieiiiciciee sttt st e et snesresre e 1-7
LO=1 =15 [0 F- 1 TSSOSO PRSPPI 1-7
LINQUISTIC SOTTING. ...ttt bbbt bbbttt 1-7
(O g T 1= Tod (T g T=1 S]] o] o [0] o AP SS 1-7
LOLUES] (o] 1 0142214 o] o H USRS PR VRPN 1-8

2 Choosing a Character Set

Character ST ENCOAING.......ccoiiiiiiiiiieie ettt bbb bbbt b e be bt sbe b b e 2-2
What is an Encoded CharacCter SEL? ..o 2-2
Which Characters t0 ENCOUE?ceiiiiiiiirsieei sttt 2-3
How Many Languages Does a Character Set SUPPOIT?.......ccoiiirineieiceeeee e 2-4

How are Characters ENCOAEA?.........ooviiiiiii ettt e s 2-8

Oracle's Naming Convention for Character SEtS ... 2-10
Choosing an Oracle Database Character Set ..o 2-10
Interoperability with System Resources and Applications ... 2-11
Character SEt CONVEISIONcuiiiiiiiirie sttt sttt se ettt e e ese e e sneeseneas 2-11
DAtabase SCHEMIAS.......c.ciiiiiii bbbttt bbb 2-12
Performance IMPLICATIONS.ooii e e 2-12
[LEES] £ o1 o] o OSSR 2-12
Choosing an Oracle NCHAR CharacCter Set.........ccocovvieieieiisisise e sese e e 2-13
Restrictions on Character Sets Used to Express Names and TeXtcccccceveveniniennninnne. 2-13
Summary of Datatypes and Supported Encoding SChemes..........cccccoveiieincnnicicicieenns 2-15
Changing the Character Set After Database Creation............cccccoevvivvievievencnesesee e 2-15
Monolingual Database SCENAITOccuiiieiiiicc et sre s 2-16
Character SEt CONVEISIONcuviiiiiiiiiie sttt sttt sb et st se et et es e nesneeneneas 2-16
Multilingual Database SCENAITOS.......cc.ccciviiiiriree e e e e ere e e aneas 2-18
Restricted MUlItIiNQUAl SUPPOIT........oviiiic e 2-18
Unrestricted MUltilingual SUPPOTT..........ccooiiiiiiiere e 2-19

3 Setting Up a Globalization Support Environment

SEttiNg NLS ParamETerScoiuiiitiiiiiete ettt sr et n e ene e 3-2
Choosing a Locale with the NLS_LANG Initialization Parameterccccoeevevviviivicnsinnnnnnns 3-4
Specifying NLS_LANG as an Environment Variable...........c.ccoccoiiinii 3-6
NLS_LANG EXAMPIES ...ttt 3-6
Overriding Language and Territory SPecifications..........cccccoovvivievininiencnenerecee e 3-6
NLS Database Parametersc.ooe ittt et ettt st sne e 3-7
CheCKing NLS PArameterS.......c.ccoiiiiiiieiiiieiiieetinieie sttt ettt e sr e sn bbb an e ene e 3-7
INLS VIBWS .ottt ettt sk ettt s b e bbbtk ettt et et nn e 3-7
1O 10 I B o Tex £ o] o OSSR TSR PRURTPRPRP 3-8
Language and Territory PArameEterS.ttt 3-8
Date and TimMe PArGMELEIScoiiiiiiiiiiiisie ettt ettt b et bbbttt naenes 3-14
DAt FOIMALS ...ttt ettt b e b bt e e bt s e nb e e nn e 3-14
THMIE FOIMIALS... .ot e e s e e te s be e beete et e ete e beeaeesbeenresbeeneesreennes 3-17
CalENAr PAFAMELET ..ottt ettt sb bbb 3-21
CalENAAT FOIMALS.ot bbb e b e ne ettt ettt be b e 3-21
NLS CALENDAR ..ottt ettt se bttt ettt sete b e te b nenrns 3-23

NUMIEIIC PAFAMEBLEIS ...ttt et e e s eb e e e e bt e s e st e e s s ba e e sebbesesnbaessrbeeean 3-24

N[0T g LT ol =0T T L £ TSSOSO 3-24
NLS_NUMERIC_CHARACTERS ..ottt sre b sne e 3-25
MONELANY PAIAIMELEIS ...ttt bbbt e st e et e e srbeebeessbeenbeennbe s 3-26
CUITENCY FOIMMALSoiiitiitiii ittt n st sre s 3-26
NLS_CURRENCQ Y ...ttt sttt ettt et et bbbt sbe et 3-26
NLS_ISO_CURRENC Y ..ottt ittt ettt ettt sttt see e st sbe e sbe e sbe e abeseate e 3-28
NLS DUAL_CURRENCY ..ottt sttt sttt st s sae e sve e sbe e sbe s asesaaseseas 3-29
NLS_MONETARY_CHARACTERSooiiieiiere ettt sne e 3-30
INLS _CREDIT .ottt sttt ettt ettt st ettt e e e e st e besa e s e sbe e ebe e ebe e abe e 3-31
NS DEBIT .ottt b et b ettt e et e b et e sbebesb et e sbeseabe e ebe e abe e abe e 3-31
LiNQUIStiC SOrtiNg ParameEtersccccieiiiieicieice st a e snesrenne s 3-31
NS _SORT .. iiiteitste sttt ettt sttt b ettt et e e b e e et e st et e sbebesb e b e sbe s e ebe e ebe e abe e abe e 3-32
NLS COMP ..ottt ettt b e bt b e et e et e e et e b et e sbebesa et e sb e s e abe e et e e ebe e abe e 3-33
NLS_LIST_SEPARATORttt ettt sttt se et sb e sb et e b sbe e 3-34
CharaCter SET PAraMELETcci ittt bbb bbb et s et ebe bbb 3-34
NLS_NCHAR_CONV_EXCP ..ottt ettt sttt sttt snesre e sne e 3-34

Linguistic Sorting

Overview of Oracle’s Sorting Capabilities ... 4-2
YT Lo I =T T T= o £ 4-2
USING LINQUISTIC SOMTS.....cviiiiiicieiece ettt et et et et esae et e saeebesaeenteaneesreanees 4-2
MonoliNQUAl LINQUISTIC SOMTS.......ciiuiiiiiiitiiiteisieee ettt 4-3
Multilingual LINQUISTIC SOTTSccviiiiiiiire ettt nne e 4-3
General Linguistic Sorting INformation ... 4-6
USING LINQUISTIC TNOEXES ..ottt bbbttt 4-9
Linguistic Indexes for Multiple LangUAQESc.coververeirieie e sese e e e 4-10
Requirements for LINQUISTIC INAEXEScouoiiiiiiiiieieee et e 4-11
Case-INSENSItIVE SEAICNING ..o it e 4-12
CustomMiziNg LINQUISTIC SOMS......ccuiiiiiieieicieise st sne s 4-12

Supporting Multilingual Databases with Unicode

(@A VA TNV LY o) L L T eTo Yo [5-2
YAV A AT R ERL L oo Yo [2 5-2
UNICOAE ENCOTING ...ttt bbb bbbttt 5-2

vi

Implementing a Unicode Solution in the Database...........cccocviiiiiiiiiiciiceen 5-4

Enabling Multilingual Support with Unicode Databases............c.cccveireiineieneinciiciieas 5-4
Enabling Multilingual Support with Unicode Datatypes.........ccoceverereererierisineesiesieseseseens 5-5
How to Choose Between a Unicode Database and a Unicode Datatype Solution.............. 5-7
Comparison of UNICOde SOIULIONScccoiiiiiiiiiiiiiieceeeee s 5-9
UNICOAE CASE STUAIESviviiiiiiiiitectte sttt ettt bbb nnne 5-12
Migrating Data to UNICOUE...........cooiiiiie ettt sttt e ne e sre e sae s 5-14
Migrating to a Unicode Database..........cocoiriiriiiriiiiiise et 5-15
Migrating to Use the NCHAR DatatyPesS.......cceiveieiiieiiiisiesnsese e siesesieseeseeseseseesesessesnens 5-16
Designing Database Schemas to Support Multiple Languagesccocoeveveicinininienenncne 5-17
SPECITYING COIUMN LIMITS ..ottt 5-17
Storing Data of MUltiple LanNQUAgES.......c.ccevieriirieericecee et 5-18
Storing DOCUMENTS IN LOBS........cooiiiiiiee ettt esre e sre e 5-19

Unicode Programming

Overview of Unicode Programmmingc.cccvcveiieiieieeie i ste et esve e esae e e saesnnesnesnees 6-2
Database Access Product Stack and UNICOE ..ot 6-2
SQL and PL/SQL Programming With UnNiCOdecccecvviiiiiiiiiinii e 6-4
Using the UTL_FILE Package With NCHAR ... 6-10
OCI Programming With UNICOOE..........c.ccoiiiiiiiiiiee e 6-11
OCI UnNicode Code CONVEISIONciiieiiiieiiieiesiereste sttt et sse e sse e sse e b sessesesseseeneneas 6-11
When NLS_LANG is Set to UTF8 or AL32UTF8 iN OCl.....cccccviviieniiiiiiseneenee e 6-15
Binding and Defining SQL CHAR Datatypes in OCIccccooeiiinninniieeeee e 6-15
Binding and Defining SQL NCHAR Datatypes in OClccccvcvvieieiineicicieeeeese e 6-16
Binding and Defining CLOB and NCLOB Unicode Data in OCl..........c.ccccovcviievieiiininnnns 6-17
UNICOAE MOAE TN OCH ..ot st ettt be et e 6-18
Pro*C/C++ Programming With UNICOOE.........cccoveieiiiiec e 6-20
Pro*C/C++ Data Conversion in UNICOOEccoiiiiiiineiiieie e 6-20
Using the VARCHAR DAatAtyPEcovcerieiirieiirieie ettt 6-21
Using the NVARCHAR DatatyPecoveveieieieisese s se st stesie s seeseesassessesnessenses 6-22
Using the UVARCHAR DALAYEc.coviieiiiiiieisese sttt et 6-22
JDBC and SQLJ Programming With UNICOE............ccccoiiiiiiiiiiiicneceseeseese e 6-23
Java String Bind and Define in UNICOAE.........cccoveieiieicire e 6-23
JDBC RESTIICTION. ...ttt ettt bbb bbb bbbt e bt e bbbt bt 6-25
Java Data Conversion iN UNICOOEccooiiirieiiieieise et sne s 6-25

ODBC and OLEDB Programming With UNiCOde.............ccccovviiiiiiieiieie e 6-27

Unicode-Enabled Drivers in ODBC and OLEDB.............ccccoociiieiiniciecce e 6-27
OCI Dependency iN UNICOAEcoeieieiieicieiceee e e se e ene e snesnens 6-27
ODBC and OLEDB Code Conversion in UNICOE.........c.ccvevviieieiieeie e 6-28
ODBC UNICOAE DAALYES. ... cviueitiiitiietisieiisieiestesestee ettt sb bbb bbb 6-29
OLEDB UNICOAE DatatyPeS....ueiveveriirieieieeieieseeeeesesiessesressessessessesaessessessesssssessssesssssssesessens 6-30
AADIO A CCESS ...ttt sttt ettt ettt ettt ettt R bRt E e e b e b e e be e be b e e nreenrre s 6-31

7 SQL Programming

Locale-Dependent SQL FUNCLIONS. ..ottt s 7-2
Default SPECITICATIONS.......ovitiiciiee e 7-3
SPECITYING PAramEtErS......ccviviiiiiiie ettt eseese e e s nesresresrenrenes 7-3
UNacceptable PArametersottt sbe b sn 7-5
CONVERT FUNCHION.iitiiiitieieie ettt st sttt ese b e s seeneebesbeseesaeneas 7-5
INSTR, LENGTH, and SUBSTR Functions and Character SetS...........ccooevvviereinieinieinenens 7-6
LIKE Conditions and Character SELScooiiiiiiiiiiieinese e e 7-8
Character Set SQL FUNCLIONSoiuiiiiiieieeee ettt 7-9
NLSSORT FUNCLIONoviitiiitiietiieie sttt ettt eb et 7-9

Time/Date/Calendar FOIMALS.ccoiiiiiii ettt b e sbe e 7-12
DAt FOIMALS ...ttt bttt bbb bt e s e sb e et sbeebe e e b saeas 7-12

NUMEEIC FOPMIALS. ...t bbbt bbbt se et et nnne 7-13

IMISCEITANEOUS TOPIICS ..ttt bbbt b bbbt ettt b et e bbbt e 7-14
The ConcatenNation OPEIALON.........coiiiiirieieriete ettt e 7-14

8 OCI Programming

USING the OCT NLS FUNCLIONS......c.iiiiiiiiciieistet ettt bbbt 8-2
NLS Language Information REtrieVal ..o 8-2
OCTNISGELINTO ...t bbb ettt b bt b ettt seesne e 8-3
OCI_NIS_IMAXBUTFSZ ..ottt st ettt s b e ae et et sbesaeneas 8-7
NLS Language Information Retrieval Sample Code........cccccoovvivviiineiencrcicieeeese e 8-7
String Manipulation IN OCH ... 8-8
OCIMUItIBYtETOWIAECRAN ...ttt 8-10
OCIMuUltiBytelNSiZE TOWIAECRATcveiicceee e 8-11
OCIWIdeCharTOMUILIBYTEccooieiecie ettt sne s 8-12
OCIWIideCharIinSizETOMUITIBYLEccoiviiiiiiiiee e 8-12

Vii

viii

(@104 AViV4To (5108 g T= 1 gl o] W0 1Y/ =1 (RO 8-13

O CIWIECNAITOUPPET ...ttt ettt ettt se et sb bbbt b e bt b e e b e ene e 8-14
(O 108 LVATo [T @ o T] 1 (o] 1 0] o SRS 8-14
OCIWIAECNAI STINCIMIPcviietet ettt bbb bbb bbbt b e ebe e 8-15
OCIWIHECNAISTICAL. ...ttt ettt sttt b et et et e eseeseaneeneneas 8-16
OCIWIAECNAISIICNT ...ttt ettt b et b e bbb ebe et 8-17
O 101 LVA JTo [T 0] o =T 2] 1 o] o)V O P TP SO PRURPPUR 8-17
OCIWIAECNAISIIIEN ...ttt sttt s e ne b e 8-18
OCIWIAECNAISIINCALeveviieieiieiereeeree ettt b et sb e b eb et be e ebe et e 8-18
O 101 LVA JTo [-T0] o =T 2] 1 1 0 16) o)V SO P TSR PRURUPUR 8-19
OCIWIAECNAISTITCNL ...ttt se ettt s e neeneneas 8-19
OCIWideCharStrCaseCONVEISIONcuiiiieeiteriete ettt sttt sae e sre e sbe e bt sbeseebeseeseneas 8-20
OCIWideCharDisplayLength ... s 8-21
OCIWideCharMUItiBYTELENGLNcoiiiiiiiieiie e 8-21
L@ 1O 1Y L0122 (=S € £ 1 Y o SR 8-22
OCITMUITIBYTESTIINCIM ...ttt bbbt ebe e 8-22
OCTMUIIBYTESTICALc.eveeetiete ettt eb e en e ene e 8-23
OCTMUIIBYLESIICPY ... ettt sttt ettt st s r et st et e e e e eneenaeneeneerenen 8-24
OCTMUIIBYTIESIIIEN ...t e st e ar e re e e sreannes 8-24
OCTMUIIBYTESTINCALeeeceiceeete ettt bbb ene e 8-25
L@ 1O 1Y U122 (=S 4 e o) SR 8-25
OCIMultiByteStrnDisplayLength.........c.coooii s 8-26
OCIMUItIBYteStrCaSECONVEISIONc.civiiiiieiiiieiiieiete ettt sttt e b ene b 8-27
String Manipulation SAMPIE COE.........ccccvieiiriieec e 8-27
Character Classification iN OC ... e 8-28
OCIWIAECNAITSAINUIM ...ttt sttt r e neene e 8-29
OCIWIAECAIISAIPNA. ...t et e e renes 8-29
OCIWIAECNAITSCNTIT ... et 8-30
OCIWIdECNANISDIGIT......cveiitiieieiieiere ettt bbbt eb e b ene e 8-30
(@108 | VAV To [T @1 o F= g £ -1 o] o 1SS 8-31
OCIWIAECNAITSLOWET ...ttt bbb bbb ebe e 8-31
OCIWIAECNAITSPIINT ...ttt sttt r e ene e 8-32
OCIWIAECRNAIISPUNCL ...ttt ettt sb bbb sb e b e b et neas 8-32
OCIWIAECNAITSSPACEcveeiiiieiieiere et bbb ettt be e 8-32
OCIWIAECNAIISUPPET ...ttt bttt r bt b et b e ab et b e e b ene e 8-33

(@104 AV AV ATo [=T@3 g T T £ (o | o) (SR 8-33

OCIWIdeCharISSINGIEBYTE........coiiiciiieiiee bbb 8-34
Character Set CONVErsion iN OCH ..o 8-35
OCICHArSEITOUNICOEc.viiiiieiteiie sttt bbb b ettt b et sbeene s 8-36
OCIUNICOOBTOCRNAISELeeiiiiiiieiie sttt sttt sttt ne e neenesresresnens 8-36
OCICharSetConversionIsReplacementUSEd ... 8-37
Messaging MechaniSm iN OCl ..ot re s 8-39
O CIMESSAGEOPIEN ...ttt ittt ar b e e et e e en et nreare s 8-39
(O 1O 11V oL = o =T - S 8-40
(O 1@ 1Y oI To [T Lo SRS 8-41
LIMISGEN ...ttt sttt b et b et e b e et e et et et e e et e sbetesb et e e b e s e abe e et e e ebe e ete e 8-42
Text Message File FOIMAL.......ccociviieces e sre e 8-42
MESSAGE EXAMIPIE ... bbbttt 8-43

Java Programming

Overview Of Oracledi JAVA SUPPOIT.......coiii et 9-2
IDBC .ttt bbb bRt Ee e Rt R bR bR e R e R e h Rt et ettt Re et ettt r et 9-3
Accessing SQL CHAR Datatypes UsSiNg JDBC........cccoovvvririneieneneeseeseees e srese e 9-4
Accessing SQL NCHAR Datatypes USiNg JDBCccccooiiiinininineeiee e 9-7
Using the oracle.SQLCHAR CIaSS ..ot e 9-8
Retrieving Data to oracle.SqLCHAR ClaSS.......ccccoviiiiiieieiesese s snens 9-8
INLS RESTFICTIONS ...ttt bbb bbbttt et ettt be b b 9-10
LS] N SO 9-13
Using Unicode characters in SQLJ ProgramiS........cocvcvieirieneneseseseeseesseseeseessesesesssssessenns 9-13
Using the oracle.Sql.NSIING CIaSS ... e 9-14
JaVa ViIrtUAL IMABCKITNE.c.oiii ettt ettt sbe e 9-14
JaVE STOTEA PrOCEAUIES ..ottt bbbttt bttt 9-16
Java Serviets and Java SEIVEr PAgES........cccciiiieiiiieii ettt sttt sre s 9-18
CORBA QNA EJB ...ttt ettt s et s st s et e et e b e et et b et s et nennenes 9-21
CORBA ORB...... ottt bbbk bbb bbbttt bbbt e bt 9-21
ENTEIrPriSE JAVA BEANS.......cc.iitiiiiie ittt e bbbttt e 9-25
Configurations for Multilingual APPlICAtIONS............ccoiviiriiiiiir s 9-28
Configuring a Multilingual Database...........c.cceiveveiirieiisrsnre e 9-28
Globalizing the Java Server ODJECES........ccciiiieeiieese et 9-29
Clients Of DIifferent LANQUAGEScoiiriirieinieirieisieisie ettt 9-30

10

Multilingual Demo Applications iN SQLUJ........ccooiiiiiiii e 9-31

The Database SCREMIA.........cciciiiiec et e re e re s baeneas 9-31
JAVA STOFEA PrOCEAUIEScviiiiiieiiiteie ettt bbbt bbbttt ens 9-32
THE SQLI CHENT.....oiiiiciee ettt s bttt ettt b e s et e ne st nentenes 9-35
Character Set Scanner Utility
Overview of Choosing and Migrating Character Sets...........cccocvcvviieiievienie e 10-2
(DT (7 W A0 | L= 1 (o] o [FS OSSPSR 10-2
Character SEt CONVEISIONScoiiiiiiieiirieisieesie sttt sttt se ettt st e b et et et e 10-4
Database Character Set MiIgrationccocceiieiiiiece e 10-6
DAtA SCANNINGttt bbbtk bbbt bbbt bbbt bbb 10-7
CONVEISION OF DALA......c.ciiiieiieieeee ettt et b bbb bbb 10-7
What is the Character Set Scanner ULHIItY?ccooi i 10-9
Conversion Tests 0N Character Data...........ccccoveieiiiicceccce e 10-10
AACCESS PrIVIIEOES ...t sttt eeneenennen 10-10
RESTIICTIONS. ...ttt bbbttt ettt b e bbb bbb et se e s et e st b b 10-10
Database Containing Data From Two or More Character Sets...........ccoceveveiereneeennnn 10-11
Database Containing Data Not From the Database Character Set...........ccccocevvvvcicienenn, 10-11
Scan ModesS IN The SCANNET ..o e et 10-11
FUIL DAAhaSE SCAN.....cceiiiiicic ettt s te et et e e s e st eenbesbeeneesaeenresaeennas 10-12
USEE TADIES SCAN ...ttt 10-12
SINGIE TADIE SCAN ... ettt e s te st e eeere e 10-12
USING THE SCANNET ...ttt 10-12
Before USING the SCANNETc.cv e e 10-13
COMPALIDTTITY .o bbb e bbb ene 10-13
INVOKING ThE SCANNET ..ottt b e eb et 10-14
Getting Online Help fOr the SCANNETc.cocv e 10-14
THE Parameter FIlEot et ebe s 10-15
1o gl gL gl o o T 41T (T USRS 10-16
ARRALY ot bbb bbb R bR bt bbbt b et b e ettt et et e 10-16
BOUNDARIES.......oo ottt ettt ettt sttt sans 10-17
(O N o 11U OSSOSO 10-17
FEEDBACK ...ttt bbb bbbt bbbt bbb 10-17
FROMUCHAR. ..ottt ettt bbbttt bbbt nennne 10-18
FROMMNUCHAR ..ottt et bbb s ettt st e bt e b e te b ne b nenaens 10-18

11

o 1 SRS 10-19
LA S T RPT et e bbb bbb bbb e bR bbb 10-19
LOG ettt bR bR b e bRt Re e Rt Rt R bRt re ettt neneens 10-19
MAXBLOCKS. ..ottt sttt e e bttt et sttt e be st e te st e te st ere st e se st enennens 10-20
PARFILE ..ottt et sa bbbt b e bbb be e 10-20
PROCESS ...ttt ettt b et b ettt ettt s bbbt e et e s e et e s e et et ebe et e e ebe e eteeas 10-21
SUPPRESS ..ottt sttt et ettt s bbb e st b et b bR et Rt R e a R a R et st et nen 10-21
TABLE ..ot R Rt b et bbbt b e 10-21
LI O L0 1 OSSPSR 10-22
TONCHAR .o ettt bbb st e s e st e st e be st et e b e be b e te b e re b renrns 10-22
USER ... b bbbt b et b et b e bbb et e 10-22
USERID ..ottt b etttk ekttt et sttt e e b e ettt et et e ene e 10-22
SAMPIE SCANNEE SESSTONSecviiiiiiectirt ettt sb ettt b et b e eb e e b 10-23
Sample Session of Full Database SCanccccoveveiiieiecisie e 10-23
Sample Session of User Tables SCaN ..o 10-24
Sample Session of Single Table SCan...........coccoii s 10-25
IS Tor= | L= =T o o] o £SO 10-26
Database Scan SUMMaAry REPOITcoiiiiiiiee e 10-27
Individual EXCEPTION REPOIT.....c.ciiiiiiiiiiriesee e 10-33
Storage and Performance Considerations in the SCANNEr ... 10-35
0] = o [@0 S [0 [=] = U (o] o 1= USSR 10-35
Performance CoNSIABIAtIONS.ccciiiiiiiie et ne s 10-36
Scanner Utility Reference Material.........c.ccoooviiiieiiccccc e 10-37
SCANNET VIBWUS ...ttt ettt b bbbtk bbbt bbb e b e e s e e b e et ene et et e 10-37
SCANNET IMESSAGES ...veieitiirisie ittt e r e e e b b e 10-40
Oracle Locale Builder Utility
Overview of the Locale BUilder ULHTY ... 11-2
Configuring Unicode Fonts for the Locale BUIlderccocvviviiiincieicccec e 11-2
The Locale BUIlder INTEITACEoc.oiiiiiee e 11-3
Locale BUilder GENEral SCIEEMNScociiiiiriiieiieeeee ettt see e 11-4
RESEFICTIONS ...ttt bbbttt bt b ens 11-5
Setting the Language Definition with the Locale Builder..........c.cccoooivieiiicicccc e, 11-8
Setting the Territory Definition with the Locale Builder............ccccooiiniiininiiiiciees 11-11

Xi

12

Xii

Setting the Character Set Definition with the Locale Builder.........c..ccoooovveiiivciiivcie i, 11-16

Character Sets with User-Defined CharaCters...........cooeeiiiiinienieiene e 11-17
Oracle's Character Set Conversion ArchiteCtUre ..o 11-18
UNICOAE 3.1 PriVAte USE ATcuoiiiiiitiiieiie ittt st 11-19
UDC CroSS REFEIEINCEScvieiiiiticecte ettt ettt be st e st e s e s be et e s aeeresaeenas 11-19
Character Set Definition File CONVENLIONS.........cociiiiiiiee e 11-19
Locale Builder Character Set SCENAIIOcceiveiiiiiiiiiiese e 11-20
Sorting with the Locale BUITAEN ... 11-25
Changing the Sort Order for Accented Characters...........ccocvevviiieiieninic s 11-28
Changing the Sort Order for One Accented Charactercccoecviieeveiievesie s 11-31
GENEratiNg NLB FIlEScoooiiiiieiiee et 11-33
USING the NEW NLB FIlESc.voiciceicece s e 11-34
Customizing Locale Data
CUStOMIZING CharaCter SEIS......ciiiiiiriie ettt st e e e e ere e e enesrenreans 12-2
Character Set Customization EXamMPIe ..o 12-2
Using User-Defined Character Sets and JaVa ..o 12-4
Customizing TiME ZONE DaAta........cccccvieiiiriieieieeeees e re e neerenre e 12-6
CUSTOMIZING CAlENUAIS......ccoi ittt e et e sreenbesreenes 12-7
NLS Calendar ULHITYcooiiiiiiie e 12-7
NLS Data INstallation ULtyccooviiiiiiiiiiecccc s st sne 12-8
)Y - PSPPI 12-8
RETUIN COBS ...ttt st e st e et e beeab e st e easesbeentesaeebesbeeseestaestesreens 12-9
LT o = PSSR 12-9
Locale Data

IS 0 T T Vo =SSR A-2
TraNSIAtEO IMIESSAQESc.vveuiiitieie et ecte ettt e e e e sttt e b e ss e s beaae e sbe e e e steeeesteestestaebeansenbeeneenreenes A-4
B =]] 0] =TSRSS A-5
L0 g T (o1 1= ST £ OSSP SOU ST PPRPPRRPRIIN A-6
Asian Language CharaCter SELSiciiiieiiee st sre s A-8
European Language CharaCler SETS ...ttt A-9
Middle Eastern Language CharaCter SELS ... A-15
UNIVErsal CRAraCIEE SETS.........oouiiiiiiiiiiei et se e A-18
Character Set CONVEIrSION SUPPOIT........oiiiiiiiiiiiittreeie et A-18

SUDSELS AN SUPEISELS ...ttt bbbt bbbttt b e bbb b A-19

LINQUISTIC SOTTING ...ttt bbbt bbbt bbbttt A-22
L= 1 [=T 0 [0 - TS V) 1= 0 1RSSR A-26
ODSOIETE LOCAIE DALAc.ccvieciieciirecst ettt A-28

AL24UTFFSS Character SEt DESUPPOIT.....c.ciiiiiiiieiiie ettt A-30

B Unicode Character Code Assignments

Unicode Character Code ASSIGNIMENTSccoiiiiiiiiiiriiieie et B-2
L I 3 = o o7 To 1 o USSP B-3
L0 I =tV T 1 0T ISR B-3
Glossary
Index

Xiii

Xiv

Send Us Your Comments

Oracle9 j Globalization Support Guide, Release 1 (9.0.1)
Part No. A90236-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

This manual provides information about Oracle’s Globalization Support
capabilities.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

Xvii

Audience

This manual is written for database administrators, system administrators, and
database application developers who need to ensure that their database or
applications include globalization support.

To use this document, you need to be familiar with relational database concepts,
basic Oracle server concepts, and the operating system environment under which
you are running Oracle.

In addition to administrators, experienced users of Oracle and advanced database
application designers will find information in this manual useful. However,
database application developers should also refer to the Oracle9i Application
Developer’s Guide - Fundamentals and to the documentation for the tool or language
product they are using to develop Oracle database applications.

Organization
This document contains:
Chapter 1, "Globalization Support"
This chapter contains an overview of globalization and Oracle’s approach to

globalization.

Chapter 2, "Choosing a Character Set"
This chapter describes how to choose a character set.

Chapter 3, "Setting Up a Globalization Support Environment"
This chapter contains sample scenarios for enabling globalization capabilities.

Chapter 4, "Linguistic Sorting"
This chapter describes linguistic sorting.

Chapter 5, "Supporting Multilingual Databases with Unicode"
This chapter describes Unicode considerations for databases.

Chapter 6, "Unicode Programming"
This chapter describes how to program in a Unicode environment.

xViii

Chapter 7, "SQL Programming"
This chapter describes globalization considerations for SQL programming.

Chapter 8, "OCI Programming"
This chapter describes globalization considerations for OCI programming.

Chapter 9, "Java Programming"
This chapter describes globalization considerations for Java.

Chapter 10, "Character Set Scanner Utility"

This chapter describes how to use the Character Set Scanner utility to analyze
character data.

Chapter 11, "Oracle Locale Builder Utility"

This chapter explains how to use the Oracle Locale Builder utility to customize
locales.

Chapter 12, "Customizing Locale Data"
This chapter shows how to customize NLS data objects.

Appendix A, "Locale Data"
This chapter describes the languages, territories, character sets, and other locale

data supported by the Oracle server.

Appendix B, "Unicode Character Code Assignments"
This chapter lists Unicode code point values.

Glossary
The glossary contains definitions of globalization support terms.

Xix

Related Documentation

Conventions

XX

For more information, see this Oracle resource:

« Oracle9i Application Developer’s Guide - Fundamentals

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http//technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/ftechnet.oracle.com/docs/index.htm

This section describes the conventions used in the text and code examples of the
this documentation set. It describes:

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Bold

Italics

UPPERCASE
monospace
(fixed-width font)

lowercase
monospace
(fixed-width font)

Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

Italic typeface indicates book titles,

emphasis, syntax clauses, or placeholders.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Oracle9i Database Concepts

You can specify the parallel_clause.

Run Uold_release .SQL where old_release
refers to the release you installed prior to
upgrading.

You can specify this clause only for a NUMBER
column.

You can back up the database using the BACKUP
command.

Query the TABLE_NAMEolumn in the USER _
TABLEStable in the data dictionary view.

Specify the ROLLBACK_SEGMENTarameter.
Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and

provides examples of their use.

XXi

Convention

Meaning

Example

(]

{}

Other notation

Italics

UPPERCASE

lowercase

XXii

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

Italicized text indicates variables for
which you must supply particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

DECIMAL (digits [, precision])

{ENABLE | DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT coll, col2, ..., col
employees;

n FROM

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) = 3;

CONNECT SYSTEMystem_password

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

XXili

XXiV

1

Globalization Support

This chapter provides an overview of Oracle Globalization Support. It includes the
following topics:

« Oracle Server Globalization Support Architecture

« Globalization Support Features

Globalization Support 1-1

Oracle Server Globalization Support Architecture

Oracle Server Globalization Support Architecture

Oracle's Globalization Support architecture allows you to store, process, and
retrieve data in native languages. It ensures that database utilities, error messages,
sort order, date, time, monetary, numeric, and calendar conventions automatically
adapt to any native language and locale. In the past, Oracle’s Globalization Support
capabilities were referred to as National Language Support (NLS) features. National
Language Support is a subset of Globalization Support because the Oracle database
can do more than handle one national language or store data in one character set.
Globalization Support allows you to develop multilingual applications and
software products that can be accessed and run from anywhere in the world
simultaneously without modification. The applications can render content in native
users’ languages and locale preferences.

Locale-Independent Operation

Oracle's Globalization Support architecture is implemented with the Oracle NLS
Runtime Library (NLSRTL). The NLS Runtime library provides a comprehensive
suite of language-independent functions that allow proper text and character
processing and language convention manipulations. Behavior of these functions for
a specific language and territory is governed by a set of locale-specific data
identified and loaded at runtime.

Figure 1-1 illustrates loading locale-specific data at runtime. For example, French
and Japanese locale data are loaded.

1-2 Oracle9i Globalization Support Guide

Oracle Server Globalization Support Architecture

Figure 1-1 Loading Locale-specific Data at Runtime

Multilingual
Database

(¢
QLU
‘Q}‘\o\)’b

7
s e

German French Japanese
Data Data Data

The locale-specific data is stored in a directory specified by the ORA_NLS*
environment variable. For each new release of the Oracle database, there is a
different ORA_NLSdata directory. For Oracle9i, the ORA_NLS33directory is used.
For example, on most UNIX platforms, the ORA_NLS33environment variable
should be set to $ORACLE_HOME/ocommon/nis/admin/data . On Win32
platforms, use the default that is set by the installer if the ORACLE_HOMdirectory
contains just one release of Oracle.

Table 1-1 Location of NLS Data

Release Environment Variable
7.2 ORA_NLS

7.3 ORA_NLS32
8.0,8.1,9.0.1 ORA_NLS33

If your system is running in a multi-version Oracle environment, you must ensure
that the appropriate ORA_NLS*variable (for example, ORA_NLS33 is set and that
the corresponding NLS datafiles for that release are available.

A boot file is used to determine the availability of the NLLS objects that can be
loaded. Oracle supports both system and user boot files. The user boot file gives

Globalization Support 1-3

Oracle Server Globalization Support Architecture

you the flexibility to tailor what NLS locale objects will be available for the
database, thus helping you control memory consumption. Also, new locale data can
be added and some locale data components can be customized.

See Also: Chapter 11, "Oracle Locale Builder Utility" for more
information about data customization

Multitier Architecture

The Oracle9i database is implemented using a multitier architecture. The
language-dependent operations are controlled by several parameters and
environment variables on both the client and the database server. On the database
server, each session started on behalf of a client may run in the same or a different
locale, and have the same or different language requirements specified.

A database itself also has a set of session-independent NLS parameters specified at
its creation time. Two of the parameters specify the database character set and the
national (Unicode) character set. The parameters specify the character set used to
store text data in the database. Other parameters, like language and territory, are
used to evaluate CHECKconstraints.

If the client session and the database server specify different character sets, the
Oracle9i database converts character set strings automatically.

From a Globalization Support perspective, all applications, even those running on
the same physical machine as the Oracle instance, are considered clients. For
example, when SQL*Plus is started by the Unix user who owns the Oracle software
from the Oracle home in which the RDBMS software is installed, and SQL*Plus
connects to the database through an adapter by specifying the ORACLE_SID,
SQL*Plus is considered a client and its behavior is ruled by client-side NLS
parameters. Another example is when the middle tier is an application server and
the different sessions spawned by it are considered to be separate client sessions.

When a client application is started, it initializes its client NLS environment from
environment settings. All NLS operations performed locally are executed using
these settings. Examples of local NLS operations are display formatting (using item
format masks) in Oracle Developer applications or user OCI code executing NLS
OCI functions with OCI environment handles.

See Also: Chapter 8, "OCI Programming”

When the application connects to a database, a session is created on the server. The
new session initializes its NLS environment from NLS instance parameters specified
in the initialization parameter file. These settings can be subsequently changed by

1-4 Oracle9i Globalization Support Guide

Globalization Support Features

Unicode

an ALTER SESSIONstatement. The statement changes only the session NLS
environment. It does not change the local client NLS environment. The session NLS
settings are used to process SQL and PL/SQL statements that are executed on the
server.

Immediately after the connection, if the NLS_LANGenvironment setting is defined
on the client side, an implicit ALTER SESSIONstatement synchronizes the client
and the session NLS environments.

See Also: Chapter 3, "Setting Up a Globalization Support
Environment"

Unicode is a universal encoded character set that allows you to store information
from any language using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language.

Incorporating Unicode into client-server or multitiered applications and websites
offers significant cost savings over the use of legacy character sets. Unicode enables
a single software product or a single website to be targeted across multiple
platforms, languages, and countries without re-engineering. It also allows data to be
transported through many different systems without corruption.

See Also:
« Chapter 5, "Supporting Multilingual Databases with Unicode"

« Chapter 6, "Unicode Programming"

Globalization Support Features

Oracle's standard features include

« Language Support

« Territory Support

« Date and Time Formats

=« Monetary and Numeric Formats
«» Calendars

« Linguistic Sorting

« Character Set Support

Globalization Support 1-5

Globalization Support Features

« Customization

Language Support

The Oracle9i database allows you to store, process, and retrieve data in native
languages. The languages that can be stored in an Oracle9i database are all
languages written in scripts that are encoded by Oracle-supported character sets.
Through the use of Unicode databases and datatypes, Oracle9i supports most
contemporary languages.

Additional support is available for a subset of the languages. The Oracle9i database
knows, for example, how to display dates using translated month names or how to
sort text data according to cultural conventions.

When this manual uses the term language support, it refers to the additional
language-dependent functionality, not to the ability to store text of the given
language.

For some of the supported languages, Oracle provides translated error messages
and a translated user interface of the database utilities.

See Also:

« "Languages" on page A-2 for a complete list of Oracle language
names and abbreviations

« "Translated Messages" on page A-4

Territory Support

The Oracle9i database supports cultural conventions that are specific to
geographical locations. The default local time format, date format, numeric and
monetary conventions depend on the local territory setting. By setting different NLS
parameters, the database session can use different cultural settings. For example,
you can set British pound sterling (GBP) as the primary currency and the Japanese
yen (JPY) as the secondary currency for a given database session even when the
territory is defined as AMERICA

See Also: "Territories" on page A-5

Date and Time Formats

Different conventions for displaying the hour, day, month, and year can be handled
in local formats. For example, in the United Kingdom, the date is displayed using
the DD-MON-YYY Yformat, while Japan commonly uses the YYYY-MON-DCformat.

1-6 Oracle9i Globalization Support Guide

Globalization Support Features

Time zones and daylight saving support are also available.
See Also:
« Chapter 3, "Setting Up a Globalization Support Environment"
« Oracle9i SQL Reference

« Oracle9i Database Administrator’s Guide

Monetary and Numeric Formats

Calendars

Currency, credit, and debit symbols can be represented in local formats. Radix
symbols and thousands separators can be defined by locales. For example, in the
US, the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the
amount $1,234 has different meanings in different countries.

Many different calendar systems are in use around the world. Oracle supports
seven different calendar systems: Gregorian, Japanese Imperial, ROC Official
(Republic of China), Thai Buddha, Persian, English Hijrah, and Arabic Hijrah.

See Also: "Calendar Systems" on page A-26 for a complete list of
calendars

Linguistic Sorting

Oracle9i provides linguistic definitions for culturally accurate sorting and case
conversion. Some of the definitions have two versions. The basic definition treats
strings as sequences of independent characters. The extended definition recognizes
pairs of characters that should be treated as special cases.

Strings that are converted to upper case or lower case using the basic definition
always retain their lengths. Strings converted using the extended definition may get
longer or shorter.

See Also: Chapter 4, "Linguistic Sorting"

Character Set Support

Oracle supports a large number of single-byte, multibyte, and fixed-width encoding
schemes that are based on national, international, and vendor-specific standards.

Globalization Support 1-7

Globalization Support Features

See Also: "Character Sets" on page A-6 for a complete list of
supported character sets

Customization
You can customize locale data and calendar settings.

Locale Data

Oracle allows you to customize all locale data such as language, character set,
territory, or linguistic sort using the Oracle Locale Builder.

See Also: Chapter 11, "Oracle Locale Builder Utility"

Calendar

You can define ruler eras for imperial calendars and deviation days for lunar
calendars.

See Also: "Customizing Calendars" on page 12-7

1-8 Oracle9i Globalization Support Guide

2

Choosing a Character Set

This chapter explains how to choose a character set. It includes the following topics:

Character Set Encoding
Choosing an Oracle Database Character Set
Monolingual Database Scenario

Multilingual Database Scenarios

Choosing a Character Set 2-1

Character Set Encoding

Character Set Encoding

When computer systems process characters, they use numeric codes instead of the
graphical representation of the character. For example, when the database stores the
letter A, it actually stores a numeric code that is interpreted by software as that
letter. These numeric codes are important in all databases. They are especially
important when working in a global environment because of the need to convert
between different character sets.

What is an Encoded Character Set?

An encoded character set is specified when you create a database. The choice of
character set determines what languages can be represented in the database. This
choice influences how you create the database schema and develop applications
that process character data. It also influences interoperability with operating system
resources and database performance.

A group of characters (for example, alphabetic characters, ideographs, symbols,
punctuation marks, and control characters) can be encoded as an encoded character
set. An encoded character set assigns unique numeric codes to each character in the
character repertoire. Table 2-1 shows examples of characters that are assigned a
numeric code value.

Table 2-1 Encoded Characters in the ASCIl Character Set

Character Description Code Value
! Exclamation Mark 21
Number Sign 23
$ Dollar Sign 24
1 Number 1 31
2 Number 2 32
3 Number 3 33
A Uppercase A 41
B Uppercase B 42
C Uppercase C 43
a Lowercase a 61
b Lowercase b 62
c Lowercase ¢ 63

2-2 Oracle9i Globalization Support Guide

Character Set Encoding

There are many different coded character sets used throughout the computer
industry. Oracle supports most national, international, and vendor-specific encoded
character set standards. The complete list of character sets supported by Oracle is
listed in Appendix A, "Locale Data". Character sets differ in the following ways:

« The number of characters available

« The characters available (the character repertoire)

« The writing scripts and the languages represented
« The code values assigned to each character

« The encoding scheme used to represent a character

These differences are discussed throughout this chapter.

Which Characters to Encode?

When you choose a character set, first decide what languages you wish to store in
the database. The characters that are encoded in a character set depend on the
writing systems that are represented.

Writing Systems
A writing system can be used to represent a language or group of languages. For

the purposes of this book, writing systems can be classified into two categories:
phonetic and ideographic.

Phonetic Writing Systems ~ Phonetic writing systems consist of symbols that represent
different sounds associated with a language. Greek, Latin, Cyrillic, and Devanagari
are all examples of phonetic writing systems based on alphabets. Note that
alphabets can represent more than one language. For example, the Latin alphabet
can represent many Western European languages such as French, German, and
English.

Characters associated with a phonetic writing system (alphabet) can typically be
encoded in one byte because the character repertoire is usually smaller than 256
characters.

Ideographic Writing Systems Ideographic writing systems consist of ideographs or
pictographs that represent the meaning of a word, not the sounds of a language.
Chinese and Japanese are examples of ideographic writing systems that are based
on tens of thousands of ideographs. Languages that use ideographic writing
systems may use a syllabary as well. Syllabaries provide a mechanism for

Choosing a Character Set 2-3

Character Set Encoding

communicating phonetic information along with the pictographs when necessary.
For instance, Japanese has two syllabaries: Hiragana, normally used for
grammatical elements, and Katakana, normally used for foreign and onomatopoeic
words.

Characters associated with an ideographic writing system typically must be
encoded in more than one byte because the character repertoire has tens of
thousands of characters.

Punctuation, Control Characters, Numbers, and Symbols In addition to encoding the
script of a language, other special characters, such as punctuation marks, need to be
encoded such as punctuation marks (for example, commas, periods, and
apostrophes), numbers (for example, Arabic digits 0-9), special symbols (for
example, currency symbols and math operators) and control characters for
computers (for example, carriage returns, tabs, and NULL).

Writing Direction Most Western languages are written left to right from the top to the
bottom of the page. East Asian languages are usually written top to bottom from the
right to the left of the page, though exceptions are frequently made for technical
books translated from Western languages. Arabic and Hebrew are written right to
left from the top to the bottom.

Another consideration is that numbers reverse direction in Arabic and Hebrew. So
even though the text is written right to left, numbers within the sentence are written
left to right. For example, "l wrote 32 books" would be written as "skoob 32 etorw I".
Regardless of the writing direction, Oracle stores the data in logical order. Logical
order means the order used by someone typing a language, not how it looks on the
screen.

How Many Languages Does a Character Set Support?

Different character sets support different character repertoires. Because character
sets are typically based on a particular writing script, they can thus support
different languages. When character sets were first developed in the United States,
they had a limited character repertoire and even now there can be problems using
certain characters across platforms. The following CHARand VARCHARNharacters
are represented in all Oracle database character sets and transportable to any
platform:

« Uppercase and lowercase English characters A-Z and a-z
« Arabic digits 0-9

« The following punctuation marks:

2-4 Oracle9i Globalization Support Guide

Character Set Encoding

% ‘ ' (
) y + -
) / \

: < >

— | _ &
~ { } |
@ " []

« The following control characters:
- <space>
— <horizontal tab>
— <vertical tab>
— <form feed>
If you are using:
= Characters outside this set
« Unicode datatypes (NCHARr NVARCHARharacters)
then take care that your data is in well-formed strings.

During conversion from one character set to another, Oracle expects CHARand
VARCHARtems to be well-formed strings encoded in the declared database
character set. If you put other values into the string (for example, using the CHRor
CONVERTunction), the values may be corrupted when they are sent to a database
with a different character set.

If you are currently using only two or three well-established character sets, you may
not have experienced any problems with character conversion. However, as your
enterprise grows and becomes more global, problems may arise with such
conversions. Therefore, Oracle Corporation recommends that you use Unicode
databases and datatypes.

Choosing a Character Set 2-5

Character Set Encoding

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode"

ASCII Encoding

The ASCII and IBM EBCDIC character sets support a similar character repertoire,
but assign different code values to some of the characters. Table 2-2 shows how
ASCII is encoded. Row and column headings denote hexadecimal digits. To find the
encoded value of a character, read the column number followed by the row number.
For example, the value of the character A is 0x41.

Table 2-2 7-Bit ASCIl Coded Character Set

0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F \% f v
7 BEL ETB : 7 G W g w
8 BS CAN (8 H X h X
9 TAB EM) 9 | Y i y
A LF SUB * J z j z
B VT ESC + ; K [k {
C FF FS , < L \ | |
D CR GS - = M] m }
E SO RS . > N A n ~
F sl us / ? 0 0 DEL

Over the years, character sets evolved to support more than just monolingual
English in order to meet the growing needs of users around the world. New
character sets were quickly created to support other languages. Typically, these new
character sets supported a group of related languages, based on the same script.
For example, the ISO 8859 character set series was created to support different
European languages.

2-6 Oracle9i Globalization Support Guide

Character Set Encoding

Table 2-3 ISO 8859 Character Sets

Standard Languages Supported

1SO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

1SO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

1SO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

1SO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

1SO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

I1SO 8859-6 Arabic

1SO 8859-7 Greek

1SO 8859-8 Hebrew

1SO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish, Turkish)

1SO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

1SO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

1SO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician, German,
Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic, Norwegian,
Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish, Welsh)

1SO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,

Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish)

Character sets evolved and provided restricted multilingual support. They were
restricted in the sense that they were limited to groups of languages based on
similar scripts. More recently, there has been a push to remove boundaries and
limitations on the character data that can be represented through the use of an
unrestricted or universal character set. Unicode is one such universal character set
that encompasses most major scripts of the modern world. The Unicode character

Choosing a Character Set 2-7

Character Set Encoding

set provides support for a character repertoire of approximately 49,000 characters
and continues to grow.

How are Characters Encoded?

Different types of encoding schemes have been created by the computer industry.
The character set you choose affects what kind of encoding scheme will be used.
This is important because different encoding schemes have different performance
characteristics, and these characteristics can influence your database schema and
application development requirements. The character set you choose will typically
use one of the following types of encoding schemes:

« Single-Byte Encoding Schemes
— 7-Bit Encoding Schemes
— 8-Bit Encoding Schemes
« Multibyte Encoding Schemes
— Fixed-Width Multibyte Encoding Schemes
— Variable-Width Multibyte Encoding Schemes

Single-Byte Encoding Schemes

Single byte encoding schemes are the most efficient encoding schemes available.
They take up the least amount of space to represent characters and are easy to
process and program with because one character can be represented in one byte.

7-Bit Encoding Schemes ~ Single-byte 7-bit encoding schemes can define up to 128
characters and normally support just one language. One of the most common
single-byte character sets, used since the early days of computing, is ASCII
(American Standard Code for Information Interchange).

8-Bit Encoding Schemes Single-byte 8-bit encoding schemes can define up to 256
characters and often support a group of related languages. One example is ISO
8859-1, which supports many Western European languages. Figure 2-1 illustrates a
typical 8-bit encoding scheme.

2-8 Oracle9i Globalization Support Guide

Character Set Encoding

TMOoOONMmMEPFCOoS N poars —= O

Figure 2—-1 8-Bit Encoding Schemes

—
M
(A
o
n
|
m

-

= I

B=F *°

0g]
_q::
=
+ e o~ e H
BT o e B (e N T N PR SR e
=00 —— O Hh S —
- =87 [ERTTRN T E

ﬂ
L

el
L

e I
T AN ES T AT T

OZErmYHIOoOmmoOmIEm o
L e e S I U Ty S VI L W i
0 bd—pa el W OE S D 4N T TS

.
I

=
]
-
I

o
=

Multibyte Encoding Schemes

]
=
m

bz i e T T T 1A Sy e s o Toes o T
TR TT =T s e OO Zarh
—= 0 e (o (D (D (T 50 D Qe Qo O Q0
ST e T T i - O O O D Do T TH T

Multibyte encoding schemes are needed to support ideographic scripts used in
Asian languages like Chinese or Japanese because these languages use thousands of
characters. These schemes use either a fixed number of bytes to represent a

character or a variable number of bytes per character.

Fixed-Width Multibyte Encoding Schemes In a fixed-width multibyte encoding scheme,
each character is represented by a fixed number of n bytes, where n is greater than

or equal to two.

Variable-Width Multibyte Encoding Schemes A variable-width encoding scheme uses

one or more bytes to represent a single character. Some multibyte encoding schemes

use certain bits to indicate the number of bytes that will represent a character. For

example, if two bytes is the maximum number of bytes used to represent a

character, the most significant bit can be toggled to indicate whether that byte is a

single-byte character or the first byte of a double-byte character. In other schemes,
control codes differentiate single-byte from double-byte characters. Another
possibility is that a shift-out code is used to indicate that the subsequent bytes are
double-byte characters until a shift-in code is encountered.

Choosing a Character Set

2-9

Choosing an Oracle Database Character Set

Oracle's Naming Convention for Character Sets
Oracle uses the following naming convention for character set names:

<language_or_region><#_of bits_representing_a._character><standard_name>[S | C]

Note that UTF8 and UTFE are exceptions to this naming convention.

Some examples are:

=« US7ASCII is the U.S. 7-bit ASCII character set

« WEB8ISO8859P1 is the Western European 8-bit ISO 8859 Part 1 character set

« JA16SIJIS is the Japanese 16-bit Shifted Japanese Industrial Standard character
set

The optional "S" or "C" at the end of the character set name is used to differentiate
character sets that can be used only on the server (S) or only on the client (C).

On Macintosh platforms, the server character set should always be used. The
Macintosh client character sets are obsolete. On EBCDIC platforms, if available, the
"S" version should be used on the server and the "C" version on the client.

Choosing an Oracle Database Character Set
Oracle uses the database character set for:
« Data stored in SQL CHARdatatypes (CHARVARCHARZCLOB and LONG)
« ldentifiers such as table names, column names, and PL/SQL variables
« Entering and storing SQL and PL/SQL program source

Consider the following questions when you choose an Oracle character set for the
database:

« What languages does the database need to support?

« What are interoperability concerns with system resources and applications?
« What are the performance implications?

« What are the restrictions?

Several character sets may meet your current language requirements, but you
should consider future language requirements as well. If you know that you will
need to expand support in the future for different languages, picking a character set
with a wider range now will prevent the need for migration later. The Oracle

2-10 Oracle9i Globalization Support Guide

Choosing an Oracle Database Character Set

character sets listed in Appendix A, "Locale Data" are named according to the
languages and regions which are covered by a particular character set. In the case of
regions covered, some character sets (for example, the 1ISO character sets) are also
listed explicitly by language. You may want to see the actual characters that are
encoded. Most character sets are based on national, international, or vendor product
documentation, or are available in standards documents.

Interoperability with System Resources and Applications

While the database maintains and processes the actual character data, there are
other resources that you must depend on from the operating system. For example,
the operating system supplies fonts that correspond to the character set you have
chosen. Input methods that support the desired languages and application software
must also be compatible with a particular character set.

Ideally, a character set should be available on the operating system and is handled
by your application to ensure seamless integration.

Character Set Conversion

If you choose a character set that is different from what is available on the operating
system, the Oracle database can convert the operating system character set to the
database character set. However, there is some character set conversion overhead,
and you need to make sure that the operating system character set has an
equivalent character repertoire to avoid data loss.

Character set conversions can sometimes cause data loss. For example, if you are
converting from character set A to character set B, the destination character set B
must have the same character set repertoire as A. Any characters that are not
available in character set B will be converted to a replacement character, which is
most often specified as a question mark, (?), or a linguistically related character. For
example, & (a with an umlaut) will be converted to a. If you have distributed
environments, consider using character sets with similar character repertoires to
avoid loss of data.

Character set conversion may require copying strings between buffers multiple
times before the data reaches the client. Therefore, if possible, use the same
character sets for the client and the server to optimize performance.

Choosing a Character Set 2-11

Choosing an Oracle Database Character Set

See Also: Chapter 10, "Character Set Scanner Utility"

Database Schemas

By default, the character datatypes CHARand VARCHAR2re specified in bytes, not
characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes
for storing character data.

This works well if the database character set uses a single-byte character encoding
scheme because the number of characters will be the same as the number of bytes. If
the database character set uses a multibyte character encoding scheme, there is no
such correspondence. That is, the number of bytes no longer equals the number of
characters since a character can consist of one or more bytes. Thus, column widths
must be chosen with care to allow for the maximum possible number of bytes for a
given number of characters. You can overcome this problem by switching to
character semantics when defining the column size.

See Also: Oracle9i Database Concepts for more information about
character semantics

Performance Implications

There can be different performance overheads in handling different encoding
schemes, depending on the character set chosen. For best performance, you should
try to choose a character set that avoids character set conversion and uses the most
efficient encoding for the languages desired. Single-byte character sets are more
optimal for performance than multibyte character sets, and they also are the most
efficient in terms of space requirements. However, single-byte character sets limit
how many languages you can use.

Restriction

ASCIlI-based character sets are supported only on ASClI-based platforms. Similarly,
you can use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In
order to do this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is
native to the platform. Therefore, it is not possible to use a fixed-width, multibyte
character set as the database character set. Currently, this restriction applies only to
the AL16UTF16 character set.

2-12 Oracle9i Globalization Support Guide

Choosing an Oracle Database Character Set

Choosing an Oracle NCHAR Character Set

In some cases, you may wish to choose an alternate character set for the database

because:

« The properties of a different character encoding scheme may be more desirable
for extensive character processing operations

« Programming in the alternate character set is easier

SQL NCHARJatatypes have been redefined to support Unicode data only. You can
store the data in either UTF-8 or UTF-16 encodings.

See Also:

Unicode"

Chapter 5, "Supporting Multilingual Databases with

Restrictions on Character Sets Used to Express Names and Text

Table 2-4 lists the restrictions on the character sets that can be used to express
names and other text in Oracle.

Table 2-4 Restrictions on Character Sets Used to Express Names and Text

Single-Byte
or Variable
Name Fixed-Width ~ Width Comments
column names Yes Yes
schema objects Yes Yes
comments Yes Yes
database link names Yes No
database names Yes No
filenames (datafile, log file, control Yes No
file, initialization parameter file)
instance names Yes No
directory names Yes No
keywords Yes No Can be expressed in English ASCII or EBCDIC
characters only
recovery manager filenames Yes No

Choosing a Character Set

2-13

Choosing an Oracle Database Character Set

Table 2-4 Restrictions on Character Sets Used to Express Names and Text (Cont.)

Single-Byte
or Variable
Name Fixed-Width Width Comments
rollback segment names Yes No The ROLLBACK_SEGMENT@rameter does not
support NLS
stored script names Yes Yes
tablespace names Yes No

2-14 Oracle9iGlo

For a list of supported string formats and character sets, including LOBdata (LOB
BLOB CLOB and NCLOB, see Table 2—-6.

The character encoding scheme used by the database is defined at database creation
as part of the CREATE DATABAS&atement. All SQL CHARdatatype columns
(CHARCLOB VARCHARZand LONG), including columns in the data dictionary;,
have their data stored in the database character set. In addition, the choice of
database character set determines which characters can name objects in the
database. SQL NCHARJatatype columns (NCHARNCLOBand NVARCHAR2se the
national character set.

After the database is created, the character set choices cannot be changed, with
some exceptions, without re-creating the database. Hence, it is important to
consider carefully which character sets to use. The database character set should
always be a superset or equivalent of the client's operating system's native character
set. The character sets used by client applications that access the database usually
determine which superset is the best choice.

If all client applications use the same character set, then this is the normal choice for
the database character set. When client applications use different character sets, the
database character set should be a superset of all the client character sets. This
ensures that every character is represented when converting from a client character
set to the database character set.

When a client application operates with a terminal that uses a different character
set, then the client application's characters must be converted to the database
character set, and vice versa. This conversion is performed automatically, and is
transparent to the client application, except that the number of bytes for a character
string may be different in the client character set and the database character set. The
character set used by the client application is defined by the NLS_LANGparameter.

balization Support Guide

Choosing an Oracle Database Character Set

Summary of Datatypes and Supported Encoding Schemes
Table 2-5 lists the supported encoding schemes associated with different datatypes.

Table 2-5 Supported Encoding Schemes for Datatypes

Multibyte Multibyte
Datatype Single Byte Non-Unicode Unicode
CHAR Yes Yes Yes
VARCHAR2 Yes Yes Yes
NCHAR No No Yes
NVARCHAR2 No No Yes
BLOB Yes Yes Yes
CLOB Yes Yes Yes
LONG Yes Yes Yes
NCLOB No No Yes

Table 26 lists the supported datatypes associated with Abstract Data Types (ADT).

Table 2—-6 Supported Datatypes for Abstract Datatypes

Abstract Datatype CHAR NCHAR BLOB CLOB NCLOB
Object Yes No Yes Yes No
Collection Yes No Yes Yes No

Note: BLOBsprocess characters as a series of byte sequences.
The data is not subject to any NLS-sensitive operations.

Changing the Character Set After Database Creation

In some cases, you may wish to change the existing database character set. For
example, you may find that the number of languages that need to be supported in
your database have increased. In most cases, you will need to do a full
export/import to properly convert all data to the new character set. However, if,
and only if, the new character set is a strict superset of the current character set, it is
possible to use the ALTER DATABASE CHARACTER SHatement to expedite the
change in the database character set.

Choosing a Character Set 2-15

Monolingual Database Scenario

See Also: Chapter 10, "Character Set Scanner Utility" for more
information about character set conversion

Monolingual Database Scenario

The simplest example of an NLS database setup is when both the client and the
server run in the same language environment and use the same character encoding.
This monolingual scenario has the advantage of fast response because the overhead
associated with character set conversion is avoided. Figure 2-2, illustrates this:

Figure 2-2 Monolingual Database Scenario

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

You can also use a multitier architecture, as illustrated in Figure 2-3:

Figure 2-3 Multitier Monolingual Database Scenario

Japanese
(JA16EUC)
Application ']a

Server
(JAL16EUC)

Character Set Conversion

You may need to convert character sets in a client/server computing environment
because a client application resides on a different computer platform from that of
the server, and both platforms do not use the same character encoding schemes.

2-16 Oracle9i Globalization Support Guide

Monolingual Database Scenario

Character data passed between client and server must be converted between the
two encoding schemes. Character conversion occurs automatically and
transparently via Oracle Net.

You can convert between any two character sets, as shown in Figure 2—4:

Figure 2—4 Character Set Conversion

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

Character
Conversion

Windows &2
(JA16SJIS)

However, in cases where a target character set does not contain all characters in the
source data, replacement characters are used. If, for example, a server uses
US7ASCII and a German client WE8ISO8859P1, the German character 3 is replaced
with ? and & is replaced with a.

Replacement characters may be defined for specific characters as part of a character
set definition. When a specific replacement character is not defined, a default
replacement character is used. To avoid the use of replacement characters when
converting from client to database character set, the server character set should be a
superset (or equivalent) of all the client character sets. In Figure 2-2, the server's
character set was not chosen wisely. If German data is expected to be stored on the
server, a character set that supports German letters, such as WE8ISO8859P1, is
needed for both the server and the client.

In some variable-width multibyte cases, character set conversion may introduce
noticeable overhead. You need to carefully evaluate your situation and choose
character sets to avoid conversion as much as possible. Having the appropriate
character set for the database and the client will avoid the overhead of character
conversion, as well as possible data loss.

Choosing a Character Set 2-17

Multilingual Database Scenarios

Multilingual Database Scenarios

Note that some character sets support multiple languages. This is typical when the
languages have related writing systems or scripts. For example, Table 2-7 illustrates
that WE8ISO8859P1 supports the following Western European languages:

Table 2-7 WE8ISO8859P1 Example

Catalan Finnish Icelandic Portuguese
Danish French Italian Spanish
Dutch German Norwegian Swedish
English

The reason WE8ISO8859P1 supports the languages above is because they are all
based on a similar writing script. This situation is called restricted multilingual
support. In this case, they are all Latin-based scripts.

Restricted Multilingual Support

In Figure 2-5, both clients have access to the server's data, though the German client
requires character conversion because it is using the WESDEC character set.

Figure 2-5 Restricted Multilingual Support

(WEBISO8859P1)

Western
European
Server

Character
Conversion

French :IZ German

(WESISO8859P1) (WESDEC)

2-18 Oracle9i Globalization Support Guide

Multilingual Database Scenarios

Character conversion is necessary, but both French and German are Latin-based
scripts, so you can use WE8ISO8859P1.

Unrestricted Multilingual Support

Often, unrestricted multilingual support is needed, and a universal character set
such as Unicode is necessary as the server database character set. Unicode has two
major encoding schemes: UTF-16 and UTF-8. UTF-16 is a two-byte fixed-width
format; UTF-8 is a multibyte format with a variable width. The Oracle9i database
provides support for UTF-8 as a database character set and both UTF-8 and UTF-16
as the national character set. This enhancement is transparent to clients who already
provide support for multi-byte character sets.

Character set conversion between a UTF-8 database and any single-byte character
set introduces very little overhead. Conversion between UTF-8 and any multibyte
character set has some overhead but there is no conversion loss problem except that
some multibyte character sets do not support user-defined characters during
character set conversion to and from UTF-8.

See Also: Appendix A, "Locale Data”

Figure 2-6, shows how a database can support many different languages. Here,
Japanese, French, and German clients are all accessing the same database based on
the Unicode character set. Note that each client accesses only data that it can
process. If Japanese data were retrieved, modified, and stored by the German client,
all Japanese characters would be lost during the character set conversion.

Choosing a Character Set 2-19

Multilingual Database Scenarios

Figure 2—6 Unrestricted Multilingual Support Scenario

]]

i
French ::Z German <2
Client Client
(WE8ISO8859P1) (WESDEC)

Character Character

Conversion Conversion

Unicode
Database
(UTF8)

Character Character
Conversion Conversion

]

Japanese & Japanese
Client Client
(JA16EUC) (JA16SJIS)

Figure 2-6 illustrates a Unicode solution for a client/server architecture. You can
also use a multitier architecture, as illustrated in Figure 2-7.

2-20 Oracle9i Globalization Support Guide

Multilingual Database Scenarios

Figure 2—7 Multitier Unrestricted Multilingual Support Scenario

French
Client

Browser

German
Client
o
Unicode UTF8
Database pr—
(UTF8) —
) —
Application
Server
(UTF8) Japanese
UTF8 Client

Browser

Figure 2-7 illustrates a multitier Unicode solution. Using this all-UTF8 architecture,
you eliminate the need for character conversion.

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode”

Choosing a Character Set 2-21

Multilingual Database Scenarios

2-22 Oracle9i Globalization Support Guide

Setting Up a Globalization Support
Environment

This chapter tells how to set up a globalization support environment. It includes the
following topics:

Setting NLS Parameters

Choosing a Locale with the NLS_LANG Initialization Parameter
Checking NLS Parameters

Date and Time Parameters

Calendar Parameter

Numeric Parameters

Monetary Parameters

Linguistic Sorting Parameters

Character Set Parameter

Setting Up a Globalization Support Environment 3-1

Setting NLS Parameters

Setting NLS Parameters

NLS parameters determine the locale-specific behavior on both the client and the
server. NLS parameters can be specified in the following ways:

As initialization parameters on the server. You can include parameters in the
initialization parameter file to specify a default session NLS environment. These
settings have no effect on the client side; they control only the server's behavior.
For example:

NLS_TERRITORY ="CZECH REPUBLIC"

In addition, NLS_LENGTH_SEMANTIC&d NLS_CONV_EXCPan be set using
the ALTER SYSTEMtatement.

As environment variables on the client. You can use NLS parameters to specify
locale-dependent behavior for the client, and also to override the default values
set for the session in the initialization parameter file. For example, on a UNIX
system:

% setenvNLS_SORT FRENCH

As ALTER SESSION parameters. NLS parameters that are set in an ALTER
SESSIONstatement can be used to override the default values that are set for
the session in the initialization parameter file or set by the client with
environment variables.

ALTER SESSION SETNLS_SORT =FRENCH,;

See Also: Oracle9i SQL Reference for more information about the
ALTER SESSIONstatement

As SQL function parameters. NLS parameters can be used explicitly to
hardcode NLS behavior within a SQL function. Doing so will override the
default values that are set for the session in the initialization parameter file, set
for the client with environment variables, or set for the session by the ALTER
SESSIONstatement. For example:

TO_CHAR(hiredate, DDIMON/YYYY', 'nis_date_language = FRENCH)

The database character set and the national character set are specified in the
CREATE DATABASS&atement.

3-2 Oracle9i Globalization Support Guide

Setting NLS Parameters

See Also: Oracle9i SQL Reference for more information about the
CREATE DATABAS&atement

Table 3-1 shows the precedence order when using NLS parameters. Higher priority
settings will override lower priority settings. For example, a default value will have
the lowest possible priority, and can be overridden by any other method. Explicitly
setting an NILS parameter within a SQL function overrides all other settings —
default, initialization parameter, environment variable, and ALTER SESSION
parameters.

Table 3-1 Parameter Settings and Their Priorities

Highest Priority

Explicitly set in SQL functions

Set by an ALTER SESSIONstatement
Set as an environment variable

Specified in the initialization parameter file

a A W N

Default

Lowest Priority

Table 3-2 lists the NLS parameters available with the Oracle server.

Table 3-2 NLS Parameters and their Scope

Scope:
1= INIT.ORA,
E= Environment Variable,
Parameter Description Default A= Alter Session
NLS_ CALENDAR Calendar system Gregorian I,E, A
NLS_COMP SQL, PL/SQL operator Binary ILE, A
comparison
NLS_CREDIT Credit accounting symbol NLS_TERRITORY - E, -
NLS CURRENCY Local currency symbol NLS_TERRITORY ILLE A
NLS_DATE_FORMAT Date format NLS_TERRITORY I,E, A
NLS_DATE_LANGUAGE Language for day and month NLS_LANGUAGE ILE A
names
NLS_DEBIT Debit accounting symbol NLS_TERRITORY - E,-

Setting Up a Globalization Support Environment 3-3

Choosing a Locale with the NLS_LANG Initialization Parameter

Table 3-2 NLS Parameters and their Scope (Cont.)

NLS ISO_CURRENCY ISO international currency NLS TERRITORY I,E A
symbol
NLs_LANG Language, territory, character AMERICAN_ - E, -
set AMERICA.
US7ASCII
NLS_LANGUAGE Language NLS_LANG - A
NLS LENGTH_SEMANTICS How strings are treated Byte - A
NLS_LIST_SEPARATOR Character separating itemsin NLS_TERRITORY - E, -
a list
NLS MONETARY_ Monetary symbol for dollar NLS_TERRITORY - E, -
CHARACTERS and cents (or their
equivalents)
NLS_NCHAR_CONV_EXCP Reports data loss during a - E, -
character type conversion
NLS_NUMERIC_ Decimal character and group NLS_TERRITORY I, E, A
CHARACTERS separator
NLS_SORT Character Sort Sequence NLS_LANGUAGE ILE, A
NLS_TERRITORY Territory NLS_LANG - A
NLS_TIMESTAMP_FORMAT Timestamp NLS_TERRITORY ILE,A
NLS_TIMESTAMP_TZ_ Timestamp with Timezone NLS_TERRITORY ILLE A
FORMAT
NLS_DUAL_CURRENCY Dual currency symbol NLS_TERRITORY ILE,A

Choosing a Locale with the NLS_LANG Initialization Parameter

A locale is a linguistic and cultural environment in which a system or program is
running. Setting the NLS_LANGparameter is the simplest way to specify locale
behavior. It sets the language and territory used by the client application. It also sets
the character set of the client, which is the character set of data entered or displayed
by a client program.

The NLS_LANGparameter has three components (language, territory, and character
set) in the form:

NLS_LANG =language_termitory.charset

Each component controls the operation of a subset of NLS features:

3-4 Oracle9i Globalization Support Guide

Choosing a Locale with the NLS_LANG Initialization Parameter

language Specifies conventions such as the language used for Oracle messages,
sorting, day names, and month names. Each supported language has a
unique name; for example, AMERICANFRENCHor GERMANThe language
argument specifies default values for the territory and character set
arguments. If language is not specified, the value defaults to AMERICANFor
a complete list of languages, see Appendix A, "Locale Data".

territory Specifies conventions such as the default date, monetary, and numeric
formats. Each supported territory has a unique name; for example,
AMERICA FRANCEor CANADAIf territory is not specified, the value
defaults from the language value. For a complete list of territories, see
Appendix A, "Locale Data".

charset Specifies the character set used by the client application (normally that of
the user's terminal). Each supported character set has a unique acronym, for
example, US7ASCII , WE8ISO8859P1, WESDECWESEBCDIC500Q0r
JA16EUC Each language has a default character set associated with it. For a
complete list of character sets, see Appendix A, "Locale Data".

Note: All components of the NLS_LANGdefinition are optional,
any item left out will default. If you specify territory or charset, you
must include the preceding delimiter [underscore () for territory,
period (.) for charset]. Otherwise, the value will be parsed as a
language name.

The three arguments of NLS_LANGcan be specified in many combinations, as in the
following examples:

NLS_LANG = AMERICAN_AMERICA.US7ASCII

or
NLS_LANG =FRENCH_CANADAWESDEC

or
NLS_LANG =JAPANESE_JAPAN.JA16EUC
Note that illogical combinations can be set but will not work properly. For example,

the following specification tries to support Japanese by using a Western European
character set:

NLS_LANG =JAPANESE JAPAN.WESDEC

Setting Up a Globalization Support Environment 3-5

Choosing a Locale with the NLS_LANG Initialization Parameter

Because WESDEC does not support any Japanese characters, you would be unable
to store Japanese data.

Specifying NLS_LANG as an Environment Variable

You can set NLS_LANGas an environment variable at the command line. For
example, on UNIX, you can specify the value of NLS_LANGby entering a statement
similar to the following:

% setenvNLS_LANG FRENCH_FRANCE.WESDEC

NLS_LANG Examples

Because NLS_LANGs an environment variable, it is read by the client application at
startup time. The client communicates the information defined by NLS_LANGto the
server when it connects to the database server.

The following examples show how date and number formats are affected by the
NLS_LANGparameter.

% setenv NLS_LANG American_America WESISO8859P1
SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;

ENAME HIREDATE SAL
Clark 09-DEC-88 419583
Miller 23-MAR-92 4366.67
Strauf3 01-APR-95 3795.87

If NLS_LANGIs set with the language as French, the territory as France, and the
character set as Western European 8-bit 1ISO 8859-1, then the same query returns the
following information:

% setenv NLS_LANG French_France. WESISO8859P1
SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;

ENAME HIREDATE SAL
Clark 09/12/88 419583
Miller 23/03/92 4366,67
Straufd 01/04/95 379587

Overriding Language and Territory Specifications

The NLS_LANG parameter sets the language and territory environment used by
both the server session (for example, SQL command execution) and the client
application (for example, display formatting in Oracle tools). Using this parameter

3-6 Oracle9i Globalization Support Guide

Checking NLS Parameters

ensures that the language environments of both database and client application are
automatically the same.

The language and territory components of the NLS_LANGparameter set the default
values for the other NLS parameters, such as date format, numeric characters, and
linguistic sorting. Each of these detailed parameters can be set in the client
environment to customize the language and territory values.

Note that NLS parameters in the client environment are ignored if NLS_LANGs not
set.

If the NLS_LANGparameter is not set, the server session environment remains
initialized with values of NLS LANGUAGHILS TERRRITORYand other NLS
instance parameters from the initialization parameter file. You can modify these
parameters and restart the instance to change the defaults.

You might want to modify your NLS environment dynamically during the session.
To do so, you can use NLS_LANGUAGHILS TERRITORYand other NLS parameters
in the ALTER SESSIONstatement.

The ALTER SESSIONstatement modifies only the session environment. The local
client NLS environment is not modified, unless the client explicitly retrieves the
new settings and modifies its local environment. SQL*Plus is an example of an
application that retrieves new settings; Oracle Developer is an example of an
application that does not retrieve new settings.

NLS Database Parameters

When a new database is created during the execution of CREATE DATABASE
statement, the NLS database environment is established. The current NLS instance
parameters, as defined by the initialization parameter file, are stored in the data
dictionary along with the database and national character sets.

Checking NLS Parameters

NLS Views

You can find the values for NLS parameters in some views or by using an OCI
function call.

Applications can check the current session, instance and database NLS parameters
by querying the following data dictionary views:

Setting Up a Globalization Support Environment 3-7

Language and Territory Parameters

OCI Functions

NLS_SESSION_PARAMETERSBows the current NLS parameters of the session
guerying the view.

NLS_INSTANCE_PARAMETERS&ows the current NLS parameters of the
instance, that is, NLS parameters read from the initialization parameter file at
instance startup. The view shows only parameters that were explicitly set.

NLS_DATABASE_PARAMETERI®ws the current NLS parameters of the
database, including the database character set.

V$NLS_VALID_VALUEScan be used to see which language, territory, linguistic
and character set definitions are supported by the server.

See Also: Oracle9i Database Reference

User applications can query client NLS settings with the OCINIsGetinfo function.

See Also: Chapter 8, "OCI Programming" for the description of
OCINIsGetInfo

Language and Territory Parameters

NLS LANGUAGENd NLS_TERRITORYparameters are general NLS parameters that
describe NLS behavior of locale-dependent operations.

NLS_LANGUAGE

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION
Default value: Derived from NLS_LANG

Range of values: Any valid language name

NLS_LANGUAGEpecifies the default conventions for the following session
characteristics:

Language for server messages

Language for day and month names and their abbreviations (specified in the
SQL functions TO_CHARind TO_DATH

Symbols for equivalents of AM, PM, AD, and BC. (A.M., PM., A.D., and B.C.
are only valid if NLS_LANGUAGIS set to AMERICAN

3-8 Oracle9i Globalization Support Guide

Language and Territory Parameters

« Default sorting sequence for character data when ORDER BYs specified.
(GROUP BYuses a binary sort, unless ORDER BYs specified.)

« Writing direction
« Affirmative and negative response strings

The value specified for NLS_LANGUAGIH the initialization parameter file is the
default for all sessions in that instance. For example, to specify the default session
language as French, the parameter should be set as follows:

NLS_LANGUAGE =FRENCH

In this case, the server message

ORA-00942: table or view does not exist

will appear as

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the
$ORACLE_HOMHroduct_name /mesg directory, or the equivalent. Multiple
versions of these files can exist, one for each supported language, using the filename
convention:

<product id ><language abbrev >MSB

For example, the file containing the server messages in French is called ORAF.MSB
with F being the language abbreviation for French.

Messages are stored in these files in one specific character set, depending on the
language and operating system. If this is different from the database character set,
message text is automatically converted to the database character set. If necessary;, it
will be further converted to the client character set if it is different from the database
character set. Hence, messages will be displayed correctly at the user's terminal,
subject to the limitations of character set conversion.

The default value of NLS_LANGUAGHay be operating system specific. You can
alter the NLS_LANGUAGRarameter by changing the value in the initialization
parameter file and then restarting the instance.

For more information on the default value, see your operating system-specific
Oracle documentation.

The following examples show behavior before and after setting NLS_LANGUAGE
ALTER SESSION SET NLS L ANGUAGE=Italian;

Setting Up a Globalization Support Environment 3-9

Language and Territory Parameters

SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL

Clark 09-Dic-88 4195.83

Miller 23-Mar-87 4366.67

Straul? 01-Apr-95 3795.87

SQL>ALTER SESSION SET NLS | ANGUAGE=German,

SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL

Clark 09-DEZ-88 4195.83

Miller 23-MAR-87 4366.67

Strau? 01-APR-95 3795.87

NLS_LENGTH_SEMANTICS

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, ALTER SESSIONand
ALTER SYSTEM

Default value: BYTE

Range of values: BYTE|] CHAR

NLS_LENGTH_SEMANTICé&nables you to create CHARVARCHARZ2and LONG
columns using either byte or character length semantics. NCHARNVARCHARZLOB
and NCLORcolumns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with
existing applications.

NLS_LENGTH_SEMANTICS8oes not apply to tables in SYSand SYSTEMThe data
dictionary will always use byte semantics.

NLS_TERRITORY

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION
Default value: Derived from NLS_LANG

Range of values: Any valid territory name

NLS_TERRITORYspecifies the conventions for the following default date and
numeric formatting characteristics:

3-10 Oracle9i Globalization Support Guide

Language and Territory Parameters

« Date format

« Decimal character and group separator
« Local currency symbol

« 1SO currency symbol

« Dual currency symbol

« Week start day

« Credit and debit symbol

« 1SO week flag

« List separator

The value specified for NLS_ TERRITORYin the initialization parameter file is the
default for the instance. For example, to specify the default as France, the parameter
should be set as follows:

NLS_TERRITORY =FRANCE

In this case, numbers would be formatted using a comma as the decimal character.

You can alter the NLS_TERRITORYparameter by changing the value in the
initialization parameter file and then restarting the instance. The default value of
NLS TERRITORYcan be operating system specific.

If NLS_LANGIs specified in the client environment, the value in the initialization
parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new
NLS_TERRITORWalue in an ALTER SESSIONstatement. Modification of NLS_
TERRITORYresets all derived NLS session parameters to default values for the new
territory.

To change the territory dynamically to France, issue the following statement:
ALTER SESSION SETNLS_TERRITORY=France;

The following examples show behavior before and after setting NLS_TERRITORY

SQL>DESCRIBE SalaryTable;
Name Null? TYPE
SALARY NUMBER

Setting Up a Globalization Support Environment 3-11

Language and Territory Parameters

SQL> column SALARY format L999,999.99;
SQL> SELECT *from SalaryTable;
SALARY

$100,000.00
$150,000.00

ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

SQL> SELECT *from SalaryTable;
SALARY

DM100,000.00
DM150,000.00

ALTER SESSION SETNLS_LANGUAGE =German;
Sizungwurdege andert.

SQL> SELECT *from SalaryTable;
SALARY

DM100,000.00
DM150,000.00

ALTER SESSION SETNLS TERRITORY = France;
Sizungwurdege andert.

SQL> SELECT *from SalaryTable;
SALARY

F100,000.00
F150,000.00

Note that the symbol for currency units changed, but no monetary conversion
calculations were performed. The numeric characters did not change because they
were hardcoded by the SQL*Plus statement.

ALTER SESSION

The default values for language and territory can be overridden during a session by
using the ALTER SESSIONstatement. For example:

% setenvNLS_LANG ftalian_ltaly. WESDEC

3-12 Oracle9i Globalization Support Guide

Language and Territory Parameters

SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL

Clark 09-Dic-88 419583
Miller 23-Mar-87 4366,67
Straul? 01-Apr-95 379587

ALTER SESSION SET NLS_LANGUAGE =German
NLS_DATE_FORMAT ='DD.MON.YY'
NLS_NUMERIC_CHARACTERS =",

SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL

Clark 09.DEZ88 4195.83
Miller 23MAR.87 4366.67
Strau3 01.APR95 379587

This feature implicitly determines the language environment of the database for
each session. An ALTER SESSIONstatement is automatically executed when a
session connects to a database to set the values of the database parameters NLS
LANGUAGENd NLS_TERRITORMo those specified by the language and
territory arguments of NLS_LANGIf NLS_LANGSs not defined, no implicit
ALTER SESSIONstatement is executed.

When NLS_LANGs defined, the implicit ALTER SESSIONs executed for all
instances to which the session connects, for both direct and indirect connections. If
the values of NLS parameters are changed explicitly with ALTER SESSIONduring a
session, the changes are propagated to all instances to which that user session is
connected.

Messages and Text

All messages and text should be in the same language. For example, when running
an Oracle Developer application, messages and boilerplate text seen by the user
originate from three sources:

Setting Up a Globalization Support Environment 3-13

Date and Time Parameters

« Messages from the server
« Messages and boilerplate text generated by Oracle Forms
« Messages and boilerplate text defined as part of the application

The application is responsible for meeting the last requirement. NLLS takes care of
the other two.

Date and Time Parameters

Oracle enables you to control many aspects of date and time display.

Date Formats

Many different date formats are used throughout the world. Some typical ones are
shown in Table 3-3.

Table 3-3 Date Formats

Country Description Example
Estonia dd.mm.yyyy 28.02.1998
Germany dd-mm-rr 28-02-98
Japan rr-mm-dd 98-02-28
UK dd-mon-rr 28-Feb-98
us dd-mon-rr 28-Feb-98

NLS_DATE_FORMAT

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default format for a particular territory

Range of values: Any valid date format mask

This parameter defines the default date format to use with the TO_CHARand TO _
DATEfunctions. The default value of this parameter is determined by NLS _
TERRITORYThe value of this parameter can be any valid date format mask, and
the value must be surrounded by quotation marks. For example:

3-14 Oracle9i Globalization Support Guide

Date and Time Parameters

NLS _DATE_FORMAT ="MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double
guotes. Note that every special character (such as the double quote) must be
preceded with an escape character. The entire expression must be surrounded with
single quotes. For example:

NLS_DATE_FORMAT ="\"Today\s date\" MM/DDYYYY'

As another example, to set the default date format to display Roman numerals for
months, you would include the following line in the initialization file:

NLS_DATE_FORMAT="DDRM YYYY"

With such a default date format, the following SELECTstatement would return the
month using Roman numerals (assuming today's date is February 12, 1997):

SELECT TO_CHAR(SYSDATE) CURRDATE
FROM DUAL;
CURRDATE

12111997

The value of this parameter is stored in the internal date format. Each format
element occupies two bytes, and each string occupies the number of bytes in the
string plus a terminator byte. Also, the entire format mask has a two-byte
terminator. For example, "MM/DD/YY" occupies 12 bytes internally because there
are three format elements, two one-byte strings (the two slashes), and the two-byte
terminator for the format mask. The format for the value of this parameter cannot
exceed 24 bytes.

Note: The applications you design may need to allow for a
variable-length default date format. Also, the parameter value must
be surrounded by double quotes. Single quotes are interpreted as
part of the format mask.

You can alter the default value of NLS_DATE_FORMABY changing its value in the
initialization file and then restarting the instance, and you can alter the value during
a session using an ALTER SESSION SET NLS_DATE_FORMst&tement.

Setting Up a Globalization Support Environment 3-15

Date and Time Parameters

See Also: Oracle9i SQL Reference formore information about date
format elements

Date Formats and Partition Bound Expressions ~ Partition bound expressions for a date
column must specify a date using a format that requires the month, day, and 4-digit
year to be fully specified. For example, the date format MM-DD-YYYY requires that
the month, day, and 4-digit year are fully specified. In contrast, the date format
DD-MON-YY (11-jan-97, for example) is invalid because it relies on the current date
for the century.

Use TO_DATEoO specify a date format which requires the full specification of
month, day, and 4-digit year. For example:

TO_DATE(114an-1997, ‘de-mon-yyyy)

If the default date format, specified by NLS_DATE_FORMA®f your session does
not support specification of a date independent of the current century (if your
default date format is MM-DD-YY for example), then you must take one of the
following actions:

« Use TO_DATHEoO express the date in a format that requires you to fully specify
the day, month, and 4-digit year.

« Change the value of NLS_DATE_FORMAfDr the session to support the
specification of dates in a format which requires you to fully specify the day,
month, and 4-digit year.

See Also: Oracle9i SQL Reference for more information about
using TO_DATE

NLS_DATE_LANGUAGE

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_LANGUAGE

Range of values: Any valid language name

This parameter specifies the language for the spelling of day and month names by
the functions TO_CHARind TO_DATE overriding that specified implicitly by NLS
LANGUAGENLS_DATE_LANGUAGH=S the same syntax as the NLS_LANGUAGE
parameter, and all supported languages are valid values. For example, to specify the
date language as French, the parameter should be set as follows:

3-16 Oracle9i Globalization Support Guide

Date and Time Parameters

Time Formats

NLS_DATE_LANGUAGE =FRENCH

In this case, the query

SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy)
FROM DUAL,

returns

Mercredi:12 Février 1997

Month and day name abbreviations are also in the specified language. For example:
SELECT TO_CHAR(SYSDATE, 'Dy:dd Mon yyyy)

FROM DUAL,

Me:12 Fév 1997

The default date format also uses the language-specific month name abbreviations.
For example, if the default date format is DD-MON-YYYthen the above date can be
inserted as follows:

INSERT INTO tablename VALUES ("12-Fév-1997Y;
The abbreviations for AM, PM, AD, and BC are also returned in the language

specified by NLS_DATE_LANGUAGHRIote that numbers spelled using the TO_CHAR
function always use English spellings. For example:

SELECT TO_CHAR(TO DATE(12+-év), Day: ddspth Month)

FROM DUAL,

returns:

Mercredi: twelfth Février

You can alter the default value of NLS_DATE_LANGUAGHEy changing its value in
the initialization parameter file and then restarting the instance. You can alter the

value during a session using an ALTER SESSION SET NLS_DATE_LANGUAGE
statement.

Many different time formats are used throughout the world. Some typical time
formats are shown in Table 3-4.

Setting Up a Globalization Support Environment 3-17

Date and Time Parameters

Table 3-4 Time Formats

Country Description Example
Estonia hh24:mi:ss 13:50:23
Germany hh24:mi:ss 13:50:23

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

us hh:mi:ssxff am 1:50:23.555 PM

NLS_TIMESTAMP_FORMAT

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, Environment Variable,
and ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask

NLS_TIMESTAMP_FORMAdefines the default timestamp format to use with TO _
CHARand TO_TIMESTAMHMunctions. The value must be surrounded by quotation
marks as follows:

NLS_TIMESTAMP_FORMAT =YYYY-MM-DD HH:MI.SS.FF
An example is:
TO_TIMESTAMP(11-nov-2000 01:00:00.336', 'dd-mon-yyyy hh:mi:ss.ff)

You can specify the value of NLS_TIMESTAMP_FORMAJy setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

You can also alter the value of NLS_TIMESTAMP_FORMAJy changing its value in
the initialization parameter file and then restarting the instance. To alter the value
during a session, use the ALTER SESSION SETEtatement.

NLS_TIMESTAMP_TZ_FORMAT

Parameter type: String

3-18 Oracle9i Globalization Support Guide

Date and Time Parameters

Parameter scope: Dynamic, Initialization Parameter, Environment Variable,
and ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask

NLS_TIMESTAMP_TZ_FORMAdefines the default timestamp with time zone
format to use with TO_CHARnd TO_TIMESTAMP_TZunctions. The value must be
surrounded by quotation marks as follows:

NLS_TIMESTAMP_TZ FORMAT ="YYYY-MM-DD HH:MI:SS.FF TZH.TZM

An example is:
TO_TIMESTAMP_TZ(2000-08-20, 05:00:00.55 America/Los_Angeles,, yyyy-mm-dd
hh:missff TZR)

You can specify the value of NLS_TIMESTAMP_TZ_FORMAdy setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

You can also alter the value of NLS_TIMESTAMP_TZ FORMA3dy changing its value
in the initialization parameter file and then restarting the instance. To alter the value
during a session, use the ALTER SESSION SETBtatement.

See Also: Oracle9i SQL Reference for more information about date
format elements and time zone formats

Time Zone Parameters for Databases You can create a database with a specific time
zone by specifying:

« Adisplacement from UTC (Coordinated Universal Time, formerly Greenwich
Mean Time). The following example sets the time zone of the database to Pacific
Standard time (eight hours behind UTC):

CREATE DATABASE ... SET TIME_ZONE ="08:00",

« Atime zone region. The following example also sets the time zone of the
database to Pacific Standard time in the United States:

CREATE DATABASE ... SET TIME_ZONE ="PST ",
To see a listing of valid region names, query the VSTIMEZONE_NAMESiew.

The database time zone is relevant only for TIMESTAMP WITH LOCAL TIME ZONE
columns. Oracle normalizes all TIMESTAMP WITH LOCAL TIME ZONfata to the

Setting Up a Globalization Support Environment 3-19

Date and Time Parameters

time zone of the database when the data is stored on disk. If you do not specify the
SET TIME_ZONElause, then Oracle uses the operating system’s time zone of the
server. If the operating system’s time zone is not a valid Oracle time zone, the
database time zone defaults to UTC.

After the database has been created, you can change the time zone by issuing the
ALTER DATABASE SET TIME_ZONfatement and then shutting down and starting
up the database. The following example sets the time zone of the database to
London time:

ALTER DATABASE SET TIME_ZONE = "Europe/London’’;

To find out the time zone of a database, use the DBTIMEZONHunction as shown in
the following example:

SELECT dbtimezone FROM dual;

DBTIME

-08:00
Time Zone Parameters for Sessions ~ You can change the time zone parameter of a user
session by issuing an ALTER SESSIONstatement;
« O/SLocal Time Zone
ALTER SESSION SET TIME_ZONE =local;

« Database Time Zone
ALTER SESSION SET TIME_ZONE = DBTIMEZONE;

« An absolute time difference
ALTER SESSION SET TIME_ZONE ="05:00}

« A named region
ALTER SESSION SET TIME_ZONE ='America/New_YorK;

You can use the environment variable ORA_SDTZo set the default client session
time zone. This variable takes input like DB_TZ OS_TZ time zone region or
numerical time zone offset. If ORA_SDT4s set to DB_TZ the session time zone will
be the same as the database time zone. If it is set to OS_TZ the session time zone
will be same as the operating system’s time zone. If ORA_SDT4s set to an invalid
Oracle time zone, Oracle uses the operating system’s time zone as default session

3-20 Oracle9i Globalization Support Guide

Calendar Parameter

time zone. If the operating system’s time zone is not a valid Oracle time zone, the
session time zone defaults to UTC. To find out the time zone of a user session, use
the SESSIONTIMEZONEunction as shown in the following example:

SELECT sessiontimezone FROM dual;
SESSIONTIMEZONE

-08.00

See Also: Chapter 12, "Customizing Locale Data"

Calendar Parameter

Oracle allows you to control calendar-related items through the use of parameters.

Calendar Formats
The type of calendar information stored for each territory is as follows:

« First Day of the Week
« First Calendar Week of the Year
« Number of Days and Months in a Year

« First Year of Era

First Day of the Week

Some cultures consider Sunday to be the first day of the week. Others consider
Monday to be the first day of the week. A German calendar starts with Monday.

Table 3-5 First Day of the Week

Marz 1998
Mo Di Mi Do Fr Sa So
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29

30 31

Setting Up a Globalization Support Environment 3-21

Calendar Parameter

First Calendar Week of the Year

Many countries, Germany, for example, use weeks for scheduling, planning, and
bookkeeping. Oracle supports this convention.

In the ISO standard, the year relating to an ISO week number can be different from
the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

week always starts on a Monday and ends on a Sunday.

« IfJanuary 1 falls on a Friday, Saturday, or Sunday, then the week including
January 1 is the last week of the previous year, because most of the days in the

week belong to the previous year.

« IfJanuary 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the
week is the first week of the new year, because most of the days in the week

belong to the new year.

To support the 1SO standard, the IW format element is provided that returns the

1ISO week number.

A typical example with four or more days in the first week is:

Table 3-6 Day of the Week Example 1

January 1998
Mo Tu We Th Fr Sa Su
1 2 3 4 <= 1st week of 1998
5 6 7 8 9 10 11 <= 2nd week of 1998
12 13 14 15 16 17 18 <= 3rd week of 1998
19 20 21 22 23 24 25 <= 4th week of 1998
26 27 28 29 30 31 <= 5th week of 1998

A typical example with three or fewer days in the first week is:

Table 3-7 Day of the Week Example 2

January 1999
Mo Tu We Th Fr Sa Su
1 2 3 <=53rd week of 1998
4 5 6 7 8 9 10 <= 1st week of 1999
11 12 13 14 15 16 17 <=2nd week of 1999

3-22 Oracle9i Globalization Support Guide

Calendar Parameter

Table 3-7 Day of the Week Example 2

January 1999
18 19 20 21 22 23 24 <= 3rd week of 1999
25 26 27 28 29 30 31 <= 4th week of 1999

Number of Days and Months in a Year
Oracle supports six calendar systems in addition to the default Gregorian:

« Japanese Imperial—uses the same number of months and days as Gregorian,
but the year starts with the beginning of each Imperial Era

« ROC Official—uses the same number of months and days as Gregorian, but the
year starts with the founding of the Republic of China

« Persian—has 12 months of equal length

« Thai Buddha—uses a Buddhist calendar

« Arabic Hijrah—has 12 months with 354 or 355 days
« English Hijrah—has 12 months with 354 or 355 days

First Year of Era

The Islamic calendar starts from the year of the Hegira. The Japanese Imperial
calendar starts from the beginning of an Emperor's reign. For example, 1998 is the
tenth year of the Heisei era. It should be noted, however, that the Gregorian system
is also widely understood in Japan, so both 98 and Heisei 10 can be used to
represent 1998.

NLS_CALENDAR

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Gregorian

Range of values: Any valid calendar format name

Many different calendar systems are in use throughout the world. NLS_CALENDAR
specifies which calendar system Oracle uses.

NLS_CALENDARan have one of the following values:

Setting Up a Globalization Support Environment 3-23

Numeric Parameters

« Arabic Hijrah

« English Hijrah

« Gregorian

« Japanese Imperial

« Persian

« ROC Official (Republic of China)
« Thai Buddha

For example, if NLS_CALENDARS set to "Japanese Imperial”, the date format is E
YY-MM-DD and the date is May 15, 1997, then the SYSDATHS displayed as follows:

SELECT SYSDATE FROM DUAL;
SYSDATE

H09-05-15

Numeric Parameters

Oracle allows you to control how numbers appear.

Numeric Formats

The database must know the number-formatting convention used in each session to
interpret numeric strings correctly. For example, the database needs to know
whether numbers are entered with a period or a comma as the decimal character
(234.00 or 234,00). Similarly, the application needs to be able to display numeric
information in the format expected at the client site.

Some typical ones are shown in Table 3-8.

Table 3-8 Numeric Formats

Country Example Numeric Formats
Estonia 1234 567,89
Germany 1.234.567,89
Japan 1,234,567.89
UK 1,234,567.89
us 1,234,567.89

3-24 Oracle9i Globalization Support Guide

Numeric Parameters

NLS_NUMERIC_CHARACTERS

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default decimal character and group separator for a

particular territory
Range of values: Any two valid numeric characters

This parameter specifies the decimal character and grouping separator, overriding
those defined implicitly by NLS_TERRITORYThe group separator is the character
that separates integer groups (that is, the thousands, millions, billions, and so on).
The decimal character separates the integer and decimal parts of a number.

Any character can be the decimal or group separator. The two characters specified
must be single-byte, and both characters must be different from each other. The
characters cannot be any numeric character or any of the following characters: plus
(+), hyphen (-), less than sign (<), greater than sign (>).

The characters are specified in the following format:
NLS_NUMERIC_CHARACTERS ="<decimal_character><group_separator>"

The grouping separator is the character returned by the number format mask G. For
example, to set the decimal character to a comma and the grouping separator to a
period, the parameter should be set as follows:

NLS _NUMERIC_CHARACTERS =",."

Both characters are single byte and must be different. Either can be a space.

SQL statements can include numbers represented as numeric or text literals.
Numeric literals are not enclosed in quotes. They are part of the SQL language
syntax and always use a dot as the decimal separator and never contain a group
separator. Text literals are enclosed in single quotes. They are implicitly or explicitly
converted to numbers, if required, according to the current NLS settings. For
example, in the following statement:

INSERT INTO SIZES (ITEMID, WIDTH, HEIGHT, QUANTITY)
VALUES (618, '45,5, 27.86, TO_NUMBER(1.234'9G999));

618 and 27.86 are numeric literals. The text literal '45,5' is implicitly converted to the
number 45.5 (assuming that WIDTHis a NUMBERolumn). The text literal '1.234" is

Setting Up a Globalization Support Environment 3-25

Monetary Parameters

explicitly converted to a number 1234. This statement is valid only if NLS_
NUMERIC_CHARACTERSset to ",.".

You can alter the default value of NLS_NUMERIC_CHARACTERSeither of these
ways:

« Change the value of NLS_NUMERIC_CHARACTERSthe initialization
parameter file and then restart the instance.

« Usethe ALTER SESSION SET NLS_NUMERIC_CHARACTER$mMent to
change the parameter’'s value during a session.

Monetary Parameters

Oracle allows you to control how currency and financial symbols appear.

Currency Formats

Many different currency formats are used throughout the world. Some typical ones
are shown in Table 3-9.

Table 3-9 Currency Format Examples

Country Example
Estonia 1 234,56 kr
Germany 1.234,56 DM
Japan ¥1,234.56
UK £1,234.56
us $1,234.56

NLS_CURRENCY

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default local currency symbol for a particular territory

Range of values: Any valid currency symbol string

This parameter specifies the character string returned by the number format mask
L, the local currency symbol, overriding that defined implicitly by NLS_

3-26 Oracle9i Globalization Support Guide

Monetary Parameters

TERRITORYFor example, to set the local currency symbol to "Dfl " (including a
space), the parameter should be set as follows:

NLS_CURRENCY ="Dfi"

In this case, the query

SELECT TO_CHAR(TOTAL, L099G999D99) “TOTAL"
FROM ORDERS WHERE CUSTNO =586;

returns
TOTAL

Dfl 12.673,49
You can alter the default value of NLS_ CURRENCNY changing its value in the

initialization parameter file and then restarting the instance. You can alter its value
during a session using an ALTER SESSION SET NLS CURRENEé&tstement.

Setting Up a Globalization Support Environment 3-27

Monetary Parameters

NLS_ISO_CURRENCY

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid territory name

This parameter specifies the character string returned by the number format mask
C, the 1SO currency symbol, overriding the value defined implicitly by NLS_
TERRITORY

Local currency symbols can be ambiguous. For example, a dollar sign (3$) can refer
to US dollars or Australian dollars. I1SO Specification 4217 1987-07-15 defines unique
"international” currency symbols for the currencies of specific territories or
countries.

For example, the ISO currency symbol for the US Dollar is USD. For the Australian
Dollar, it is AUD. To specify the ISO currency symbol, the corresponding territory
name is used.

NLS_ISO_CURRENCHas the same syntax as the NLS_ TERRITORYparameter, and
all supported territories are valid values. For example, to specify the ISO currency
symbol for France, the parameter should be set as follows:

NLS_ISO_CURRENCY =FRANCE

In this case, the query

SELECT TO_CHAR(TOTAL, 'C099G999D99) "TOTAL"
FROM orders WHERE custno =586;

returns

TOTAL

FRF12.67349

You can alter the default value of NLS_ISO_CURRENCWy changing its value in the
initialization parameter file and then restarting the instance. You can alter its value
during a session using an ALTER SESSION SET NLS_ISO_CURRENGdtement.

Typical ISO currency symbols are shown in Table 3-10.

3-28 Oracle9i Globalization Support Guide

Monetary Parameters

Table 3-10 SO Currency Examples

Country Example

Estonia 1234 567,89 EEK
Germany 1.234.567,89 DEM
Japan 1,234,567.89 JPY
UK 1,234,567.89 GBP
us 1,234,567.89 USD

NLS_DUAL_CURRENCY

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default dual currency symbol for a particular territory

Range of values: Any valid name

You can use this parameter to override the default dual currency symbol defined in
the territory. When starting a new session without setting NLS_DUAL_CURRENCY
you will use the default dual currency symbol defined in the territory of your
current language environment. When you set NLS_DUAL_CURRENQCYou will start
up a session with its value as the dual currency symbol.

Simon-check these

NLS_DUAL_CURRENGWas introduced to help support the Euro. The following
Table 3-11 lists the character sets that support the Euro symbol:

Table 3-11 Character Sets that Support the Euro Symbol

Name Description Euro Code Value
D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German O0x9F
DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish O0x5A
S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish O0x5A
IBEBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 0x9F
FSEBCDIC1147 EBCDIC Code Page 1147 8-bit French 0x9F
WESPC858 IBM-PC Code Page 858 8-bit West European 0xDF
WE8ISO8859P15 1SO 8859-15 West European 0xA4

Setting Up a Globalization Support Environment 3-29

Monetary Parameters

Table 3-11 Character Sets that Support the Euro Symbol (Cont.)

EESMSWIN1250
CL8MSWIN1251
WESMSWIN1252
EL8MSWIN1253
WESEBCDIC1047E
WESEBCDIC1140
WESEBCDIC1140C
WESEBCDIC1145
WESEBCDIC1146
WESEBCDIC1148
WESEBCDIC1148C
EL81SO8859P7
IW8MSWIN1255
AR8BMSWIN1256
TR8MSWIN1254
BLT8MSWIN1257
VN8MSWIN1258
THSTISASCII
AL32UTF8

UTF8

AL16UTF16

UTFE
ZHT16HKSCS

ZHS32GB18030
WEB8BS2000E

MS Windows Code Page 1250 8-bit East European
MS Windows Code Page 1251 8-bit Latin/Cyrillic
MS Windows Code Page 1252 8-bit West European
MS Windows Code Page 1253 8-bit Latin/Greek
Latin 1/0Open Systems 1047

EBCDIC Code Page 1140 8-bit West European
EBCDIC Code Page 1140 Client 8-bit West European
EBCDIC Code Page 1145 8-bit West European
EBCDIC Code Page 1146 8-bit West European
EBCDIC Code Page 1148 8-bit West European
EBCDIC Code Page 1148 Client 8-bit West European
1SO 8859-7 Latin/Greek

MS Windows Code Page 1255 8-bit Latin/Hebrew
MS Windows Code Page 1256 8-Bit Latin/Arabic
MS Windows Code Page 1254 8-bit Turkish

MS Windows Code Page 1257 Baltic

MS Windows Code Page 1258 8-bit Vietnamese
Thai Industrial 620-2533 - ASCII 8-bit

Unicode 3.0 UTF-8 Universal character set
Unicode 3.0 UTF-8 Universal character set
Unicode 3.0 UTF-16 Universal character set
UTF-EBCDIC encoding of Unicode 3.0

MS Windows Code Page 950 with Hong Kong
Supplementary Character Set

GB18030-2000
Siemens EBCDIC.DF.04 8-bit West European

0x80
0x88
0x80
0x80

Ox9F
Ox9F
0x9F
Ox9F
Ox9F
0x9F
0xA4
0x80
0x80
0x80
0x80
0x80
0x80
E282AC
E282AC
20AC
CA4653

NLS_MONETARY_CHARACTERS

Parameter type: String

Parameter scope: Environment Variable

3-30 Oracle9i Globalization Support Guide

Linguistic Sorting Parameters

NLS_CREDIT

NLS_DEBIT

Default value: Derived from NLS_TERRITORY
Range of values: Any valid name

NLS_MONETARY_CHARACTE®RScifies the characters that indicate monetary units,
such as the dollar sign ($) for U.S. dollars, and the cent symbol (¢) for cents.

The two characters specified must be single-byte and cannot be the same as each
other. They also cannot be any numeric character or any of the following characters:
plus (+), hyphen (-), less than sign (<), greater than sign (>).

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any string, maximum of 9 bytes (not including null)

NLS_CREDITsets the symbol that displays a credit in financial reports. The default
value of this parameter is determined by NLS_TERRITORY

This parameter can be specified only in the client environment. It can be retrieved
through the OCIGetNIsInfo function.

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any string, maximum of 9 bytes (not including null)

NLS_DEBIT sets the symbol that displays a debit in financial reports. The default
value of this parameter is determined by NLS_TERRITORY

This parameter can be specified only in the client environment. It can be retrieved
through the OCIGetNIsInfo function.

Linguistic Sorting Parameters

Oracle allows you to choose how data is sorted through the use of linguistic
parameters.

Setting Up a Globalization Support Environment 3-31

Linguistic Sorting Parameters

Oracle provides many different types of sorts, but achieving a linguistically correct
sort frequently harms performance. This is a trade-off the database administrator
needs to make on a case-by-case basis. A typical case would be when sorting
Spanish. In traditional Spanish, ch and Il are distinct characters, which means that
the correct order would be: cerveza, colorado, cheremoya, lago, luna, llama.

See Also: Chapter 4, "Linguistic Sorting"

NLS_SORT
Parameter type: String
Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION
Default value: Default character sort sequence for a particular language
Range of values: BINARY or any valid linguistic definition name

This parameter specifies the type of sort for character data, overriding that defined
implicitly by NLS_LANGUAGE

The syntax of NLS_SORTis:
NLS SORT={BINARY| name}
BINARY specifies a binary sort and namespecifies a particular linguistic sort sequence.

For example, to specify the linguistic sort sequence called German, the parameter should be
set as follows:

NLS SORT =German
The name given to a linguistic sort sequence has no direct connection to language

names. Usually, however, each supported language has an appropriate linguistic
sort sequence defined that uses the same name.

3-32 Oracle9i Globalization Support Guide

Linguistic Sorting Parameters

NLS_COMP

Note: When the NLS_SORTparameter is set to BINARY, the
optimizer can, in some cases, satisfy the ORDER B¥lause without
doing a sort (by choosing an index scan).

When NLS_SORTis set to a linguistic sort, a sort is always needed
to satisfy the ORDER B¥lause if the linguistic index does not exist
for the linguistic sort order specified by NLS_SORTIf the linguistic
index exists for the linguistic sort order specified by NLS_SORTthe
optimizer can, in some cases, satisfy the ORDER B¥lause without
doing a sort (by choosing an index scan).

You can alter the default value of NLS_SORTby changing its value in the
initialization parameter file and then restarting the instance. You can alter its value
during a session using an ALTER SESSION SET NLS_SORstatement.

A complete list of linguistic definitions is provided in Table A-10, "Monolingual
Linguistic Sorts".

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable and ALTER
SESSION

Default value: Binary

Range of values: BINARY or ANSI

You can use this parameter to avoid the cumbersome process of using NLS_SORTin
SQL statements. Normally, comparison in the WHERElause and in PL/SQL blocks
is binary. To use linguistic comparison, the NLSSORTfunction must be used.
Sometimes this can be tedious, especially when the linguistic sort needed has
already been specified in the NLS_SORTsession parameter. You can use NLS_COMP
in such cases to indicate that the comparisons must be linguistic according to the
NLS_SORTsession parameter. This is done by altering the session:

ALTER SESSION SETNLS_COMP =ANS|

To specify that comparison in the WHEREIause is always binary, issue the following
statement:

ALTER SESSION SET NLS_COMP =BINARY;

Setting Up a Globalization Support Environment 3-33

Character Set Parameter

As a final note, when NLS_COMHBs set to ANSI, a linguistic index improves the
performance of the linguistic comparison.

To enable a linguistic index, use the syntax:
CREATE INDEX i ON {(NLSSORT(col, NLS_SORT=FRENCH));

NLS_LIST_SEPARATOR

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY
Range of values: Any valid character

NLS_LIST_SEPARATORpecifies the character to use to separate values in a list of
values.

The character specified must be single-byte and cannot be the same as either the
numeric or monetary decimal character, any numeric character, or any of the
following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),
period (.).

Character Set Parameter

You can specify the character set used for the client.

NLS_NCHAR_CONV_EXCP

3-34

Parameter type: String

Parameter scope: Environment Variable, ALTER SYSTEMALTER SESSION
Default value: FALSE

Range of values: TRUE, FALSE

NLS_NCHAR_CONV_EXG@termines whether data loss during an implicit or
explicit character type conversion will report an error.

Oracle9/ Globalization Support Guide

A

Linguistic Sorting

This chapter explains how characters are sorted in an Oracle environment. Its
sections are:

Overview of Oracle’s Sorting Capabilities
Using Binary Sorts
Using Linguistic Sorts

Using Linguistic Indexes

Linguistic Sorting 4-1

Overview of Oracle’s Sorting Capabilities

Overview of Oracle’s Sorting Capabilities

Different languages have different sort orders. What’s more, different cultures or
countries using the same alphabets may sort words differently. For example, in
Danish, the letter / is after Z, while Y and Uare considered to be variants of the
same letter. Sort order can be case sensitive or insensitive and can ignore accents or
not. It can also be either phonetic or based on the appearance of the character, such
as ordering by the number of strokes or by radicals for East Asian ideographs.
Another common sorting issue is when letters are combined. For example, in
traditional Spanish, ch is a distinct character, which means that the correct order is:
cerveza, colorado, cheremoya, and so on. This means that the letter ¢ cannot be
sorted until checking to see if the next letter is an h.

Oracle provides several different types of sort, and can achieve a linguistically
correct sort as well as the new multilingual ISO standard (14651), which is designed
to handle many languages at the same time.

Using Binary Sorts

Conventionally, when character data is stored, the sort sequence is based on the
numeric values of the characters defined by the character encoding scheme. This is
called a binary sort. Binary sorts are the fastest type of sort, and produce reasonable
results for the English alphabet because the ASCII and EBCDIC standards define
the letters A to Z in ascending numeric value. Note, however, that in the ASCII
standard, all uppercase letters appear before any lowercase letters. In the EBCDIC
standard, the opposite is true: all lowercase letters appear before any uppercase
letters.

When characters used in other languages are present, a binary sort generally does
not produce reasonable results. For example, an ascending ORDER BYjuery would
return the character strings ABG ABZ BCD ABG in the sequence, when the A has a
higher numeric value than B in the character encoding scheme. For languages using
Chinese characters, a binary sort is not usually linguistically meaningful.

Using Linguistic Sorts

To produce a sort sequence that matches the alphabetic sequence of characters,
another sort technique must be used that sorts characters independently of their
numeric values in the character encoding scheme. This technique is called a
linguistic sort. A linguistic sort operates by replacing characters with numeric
values that reflect each character’s proper linguistic order.

4-2 Oracle9i Globalization Support Guide

Using Linguistic Sorts

Oracle offers two kinds of linguistic sorts:
« Monolingual Linguistic Sorts, commonly used for European languages

« Multilingual Linguistic Sorts, commonly used for Asian languages

Monolingual Linguistic Sorts

Oracle makes two passes when comparing strings in monolingual sorts. The first
pass is to compare the major value of entire string from the major table and the
second pass is to compare the minor value from the minor table. Each major table
entry contains the Unicode codepoint and major value. Usually, letters with the
same appearance will have the same major value. Oracle defines letters with
diacritic and case differences for the same major value but different minor values.
Table 4-1 illustrates sample values for sorting a, A, &, and A,

Table 4-1 Sample Glyphs and Their Major and Minor Codepoint Values

Glyph Major Value Minor Value
a 15 5

A 15 10

a 15 15

A 15 20

Multilingual Linguistic Sorts

Oracle9i provides multilingual linguistic sorts so that you can sort more than one
language as part of one sort. This is useful for certain regions or languages that have
complex sorting rules or global multilingual databases. Additionally, Oracle9i still
supports all the sort orders defined by previous releases.

For Asian language data or multilingual data, Oracle provides a sorting mechanism
based on an 1SO standard (1SO14651) and the Unicode 3.0 standard. Multilingual
linguistic sorts also work for Asian language sorts ordered by the number of
strokes, PinYin, or radicals. In addition, they can handle canonical equivalence and
surrogate codepoint pairs. You can define up to 1.1 million codepoints in one sort.

For example, in Oracle9i, a French sort is supported, but the new multilingual
linguistic sort for French can also be applied by changing the sort order from
French to French_M , where _Mrepresents the new 1SO standard (ISO 14651) for
multilingual sorting. By doing so, the sorting order will be based on the GENERIC _
Msorting order (ISO standard) and will be able to sort at the secondary level from

Linguistic Sorting 4-3

Using Linguistic Sorts

right to left. Oracle Corporation recommends using a multilingual linguistic sort if
the tables contain multilingual data. If the tables contain only pure French, for
memory usage concern, a French monolingual sort may get better performance.
You have to make a trade-off between extensibility and performance.

To use a multilingual linguistic sort, you can specify the default sort order by
setting the environment variable NLS_SORTor using the NLSSORTunction.

% setenvNLS_SORT=French M

or
NLSSORT(,NLS_SORT=French_M)

You can create new linguistic indexes based on multilingual linguistic sorts just as
you did for monolingual linguistic sorts. However, if you do not want to change
every index hint of your SQL statements, but you do need to use those new
multilinguistic sorts. Here are the steps:

DROP INDEX index_tablel;
CREATE INDEX index_table1 ON table1(col, NLS_SORT=French_M);
COMMIT;

Multilingual Sorting Levels
Oracle evaluates multilingual sorts at three levels of precision:

« Primary Level Sorts
« Secondary Level Sorts

« Tertiary Level Sorts

Primary Level Sorts A primary level sort distinguishes between base characters, such
as the difference between characters a and b. It is up to individual locales to define
if a is before b, b is before a, or they are equal. The binary representation of the
characters is completely irrelevant. If a character is an ignorable character, it is
assigned a primary level weight (or order) of zero, which means it is ignored at the
primary level. Ignorable characters on all other levels are also defined by the use of
weight zero. At the primary level, the following words are not distinguished
between uppercase and lowercase words and can appear in different orders.

Bat
bat
BAT
BET
Bet

4-4 Oracle9i Globalization Support Guide

Using Linguistic Sorts

bet

Secondary Level Sorts A secondary level sort distinguishes between base characters
(the primary level sort), plus it distinguishes the different diacritical marks on a
given base character. For example, the character A differs from the character A only
because it has a diacritical mark. Thus, A and A differ on the secondary level but
they are the same on the primary level because they are derived from the same base
character A.

SELECT words FROM rdictionary; —~with a secondary level sort
words

resume
résumé
Résumé
Resumes
resumes
résumeés

Tertiary Level Sorts A tertiary level sort distinguishes between base characters
(primary level sort), diacritical marks (secondary level sort), and the different cases
of characters. It can also include difference of special characters such as +, -, and *.
For example, characters a and A are different on the tertiary level and equal on the
primary and secondary levels because they only have a case difference. Another
example is that characters & and A are equal on the primary level and different on
secondary and tertiary levels. The final example is that the primary order for the
dash character - is 0. That is, it is ignored on the primary and secondary levels. If a
dash is compared with another character whose primary level order is nonzero, for
example, the character u, then no result for the primary level is available because u
is not compared with anything. In this case, Oracle finds a difference between - and
u, but only at the tertiary level. For example:

SELECT words FROM rdictionary; —with a tertiary level sort
words

resume

Resume

résumé

Résumé

resumes

résumés

Resumes

Résumés

Linguistic Sorting 4-5

Using Linguistic Sorts

General Linguistic Sorting Information
You should consider the following issues when sorting:

« Ignorable Characters

« Contracting Characters

« Expanding Characters

« Context-Sensitive Characters
« Canonical Equivalence

« Surrogate Characters

« Reverse Secondary Sorting

« Character Rearrangement for Thai/Lao Characters

Ignorable Characters

When sorting, some characters can or should be ignored. For example, a dash in
multi-lingual could be treated the same for sorting purposes as

multilingual . These characters are called ignorable characters. There are two
kinds of ignorable characters: accents and punctuation.

Examples of ignorable accent characters:

« rble can be treated as role

« naive can be treated as naive

Examples of ignorable punctuation characters:

« multi-lingual can be treated as multilingual

« e-mail can be treated as email

Contracting Characters

Sorting elements usually consist of a single character, but, in some locales, two or
more characters in a character string must be considered as a single sorting element
during sorting. For example, in Spanish, the string ch is composed of two
characters. These characters are called contracting characters or group characters in
multilingual linguistic sorting and special combination letters in monolingual
linguistic sorting. The important difference is that a composed character can be
displayed as a single character on a terminal (if desired), while a contracting
character is only used for sorting, and its component characters must be rendered
separately. Note that a contracting character is not a Unicode-composed character.

4-6 Oracle9i Globalization Support Guide

Using Linguistic Sorts

Expanding Characters

In some locales, one character must be sorted as if it was a character string. An
example is the German character 3 (sharp s). It is sorted exactly the same as the
string SS. Another example is that 6 sorts as if it were oe, after od and before of .
These characters are known as expanding characters in multilingual linguistic
sorting and special letters in monolingual linguistic sorting. Just as with
contracting characters, the replacement string for an expanding character is only
meaningful for sorting.

Context-Sensitive Characters

In Japanese, a prolonged sound mark (resembles an em dash — represents a length
mark that lengthens the vowel of the preceding character. Depending on the vowel,
the result will sort in a different order. This is called context-sensitive sorting. For
example, after the character ka, the —ength mark indicates a long a and is treated
the same as a, while after the character ki , the —ength mark indicates a longi and
is treated the same as i . Transliterating this to Latin characters, a sort might look
like this:

kaa —kaaand ka—are the same
ka_

kai —kai follows ka- because iis after a
kia

ki —kii and ki— are the same

ki—

Canonical Equivalence

One Unicode code point may be equivalent to a sequence of base character code
points plus combining characters (accent marks) code points, regardless of locales in
use. This is called the Unicode canonical equivalence. For example, & equals its base
letter a and a combining character diaeresis. A linguistic flag, Canonical_
equivalence=TRUE , which you can set in the definition file, indicates that all
canonical equivalence rules defined in Unicode 3.0 need to be applied. You can
change this flag to FALSEto speed up the comparison and ordering functions if all
the data is in its composed form.

Surrogate Characters

You can extend UTF-16 and UTF-8 to encode more than 1 million characters. These
extended characters are called surrogate pairs. Multilingual linguistic sorts can
support up to one million surrogate pairs. However, surrogate characters cannot be

Linguistic Sorting 4-7

Using Linguistic Sorts

defined as contracting characters, expanding characters, or context-sensitive
characters.

Reverse Secondary Sorting

In French, the sorting of strings with accented characters compares base characters
from left to right, but compares accented characters from right to left. For example,
by default, an accented character is placed after its unaccented variant. Then the
two strings Edit and Edit are in proper French order. They are equal on the
primary level, and the secondary order is determined by examining accented
characters from right to left. Individual locales can request that the accented
characters and related diacritical marks be sorted with the right-to-left rule. This is
specified in a locale specification file by using a linguistic flag.

See Also: Chapter 11, "Oracle Locale Builder Utility" for more
information about customizing a sort

Character Rearrangement for Thai/Lao Characters

In Thai and Lao, some characters must first be swapped with their following
character before sorting. Normally, these types of character are symbols
representing vowel sounds, and the next character will be a consonant. Consonants
and vowels must be swapped before sorting. A linguistic flag is used to enable you
to specify all the characters to be swapped.

Base Letters

Base letters are defined in a base letter table, which maps each letter to its base
letter. For example, a, A, &, and A all map to a, which is the base letter. This concept
is particularly relevant for working with Oracle9i Text.

See Also: Oracle Text Reference

Special Letters

Special letters is the term used in monolingual sorts. They are called expanding
characters in multilingual sorts.

See Also: "Expanding Characters" on page 4-7

4-8 Oracle9i Globalization Support Guide

Using Linguistic Indexes

Special Combination Letters

Special combination letters is the term used in monolingual sorts. They are called
contracting letters in multilingual sorts.

See Also: "Contracting Characters" on page 4-6

Special Uppercase Letters

One lowercase letter may map to multiple uppercase letters. For example, in
traditional German, the uppercase letters for 3 are SS.

Special cases like these are also handled when converting uppercase characters to
lowercase, and vice versa. Such case-conversion issues are handled by the NLS
UPPERNLS_LOWERand NLS_INITCAP functions, according to the conventions
established by the linguistic sort sequence. (The standard functions UPPERLOWER
and INITCAP cannot handle these special cases.)

Special Lowercase Letters

Oracle supports special lowercase letters, so one letter may map to multiple base
letters. An example is the Turkish uppercase | becoming a small, dotless i .

Using Linguistic Indexes

Linguistic sorting is language-specific and requires more data processing than
binary sorting. Binary sorting ASCII is accurate and fast because it is in order. When
data of multiple languages is stored in the database, you may want your
applications to collate a result set returned from a SELECTstatement using the
ORDER BY¥lause with different collating sequences based upon the language being
used. You can accomplish this without sacrificing performance by using linguistic
indexes, a feature introduced in Oracle8i. While a linguistic index for a column
slows down inserts and updates, it greatly improves the performance of linguistic
sorting with the ORDER BY¥lause.

You can create a function-based index that uses languages other than English. The
index does not change the linguistic sort order determined by NLS SORTThe index
simply improves the performance. An example is:

CREATE INDEX nIs_index ON my_table (NLSSORT(name, 'NLS_SORT = German));

Linguistic Sorting 4-9

Using Linguistic Indexes

So

SELECT *FROM my_table WHERE NLSSORT(name) IS NOT NULL
ORDER BY name;

returns the result much faster than without an index.

See Also: Oracle9i Database Concepts for more information about
function-based indexes

Linguistic Indexes for Multiple Languages
There are three ways to build linguistic indexes for data in multiple languages:

« Build a linguistic index for each language that the application needs to support.
This approach offers simplicity but requires more disk space. For each index,
the rows in the language other than the one on which the index is built are
collated together at the end of the sequence. The following example builds
linguistic indexes for French and German.

CREATE INDEX french_index ON emp (NLSSORT(emp_name, NLS_SORT=FRENCH));
CREATE INDEX german_index ON emp (NLSSORT(emp_name, NLS_SORT=GERMAN));

Which index to use is based on the NLS_SORTsession parameters or the
arguments of the NLSSORTunction you specified in the ORDER BY¥lause. For
example, if the session variable NLS SORTis set to FRENCHyou can use
french_index and when it is set to GERMAN/ou can use german_index

« Build asingle linguistic index for all languages. This can be accomplished by
including a language column (LANG_COlin the example below) that contains
NLS_LANGUAGEalues for the corresponding column on which the index is
built as a parameter to the NLSSORTunction. The following example builds a
single linguistic index for multiple languages. With this index, the rows with
the same values for NLS_LANGUAGEre collated together.

CREATE INDEX i ON t (NLSSORT(col,'NLS_SORT='| LANG_COL));
Which index to use is based on the argument of the NLSSORTfunction you
specified in the ORDER Blause.

« Build a single linguistic index for all languages using one of the sorting
sequences such as GENERIC_Mr FRENCH_Mrhese indexes collate characters
according to the rules defined in 1SO 14651.

CREATE INDEX i on t (NLSSORT(col, NLS_SORT=GENERIC_M),

4-10 Oracle9i Globalization Support Guide

Using Linguistic Indexes

See Also: Chapter 4, "Linguistic Sorting"” for more information
about the different Unicode sorting sequences

Requirements for Linguistic Indexes

If you want to use a single linguistic index or multiple linguistic indexes, some
requirements must be met for the linguistic index. The first requirement is that the
QUERY_REWRITE_ENABLEMDItialization parameter must be set to TRUE This is
not a specific requirement for linguistic indexes, but for all function-based indexes.
Here is an example of setting QUERY_REWRITE_ENABLED

ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;

The second requirement, which is specific to linguistic indexes, is that NLS_COMP
needs to be set to ANSI. There are various ways to set NLS_COM#Hror example:

ALTER SESSION SETNLS_COMP =ANS];

The third requirement is that NLS_SORTheeds to indicate the linguistic definition
you want to use for the linguistic sort. If you want a French linguistic sort order,
NLS_SORTheeds to be set to FRENCHIf you want a German linguistic sort order,
NLS_SORTheeds to beset to GERMAN

There are various ways to set NLS_SORTAIthough the following example uses an
ALTER SESSIONstatement, it is probably better for you to set NLS_SORTas a client
environment variable so that you can use the same SQL statements for all languages
and different linguistic indexes can be used, based on NLS_SORTbeing set in the
client environment. The following is an example of setting NLS_SORT

ALTER SESSION SET NLS_SORT=FRENCH;

The fourth requirement is that you need to use the cost-based optimizer with the
optimizer mode set to FIRST_ROWSbecause linguistic indexes are not recognized
by the rule-based optimizer. The following is an example of setting the optimizer
mode:

ALTER SESSION SET OPTIMIZER_MODE =FIRST_ROWS,;
The last thing is that you need to set WHERE NLSSORDlumn_name) to IS NOT
NULLwhen you want to use ORDER BY column_namewhere column_name is the

column with the linguistic index. This is necessary only when you use an ORDER BY
clause.

Linguistic Sorting 4-11

Using Linguistic Indexes

The following example shows how to set up a French linguistic index. For NLS_
SORTyou may want to set it in the client environment variable instead of with the
ALTER SESSIONstatement.

ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;

ALTER SESSION SETNLS_COMP =ANS;

ALTER SESSION SETNLS_SORT=FRENCH;

ALTER SESSION SET OPTIMIZER_MODE =FIRST_ROWS;

CREATE TABLE test(col VARCHAR(20) NOT NULL);

CREATE INDEX test idx ON test(NLSSORT(col, NLS_SORT=FRENCH));
SELECT * FROM test WHERE NLSSORT(col) IS NOT NULL ORDER BY col;
SELECT * FROM test WHERE col >'JJJ:

See Also: Oracle9i Database Concepts for more information about
function-based indexes

Case-Insensitive Searching

You can create a function-based index that improves the performance of
case-insensitive searches. For example:

CREATE INDEX case_insensitive_ind ON my_table(NLS_UPPER(empname));
SELECT * FROM my_table WHERE NLS_UPPER(empname) = KARL',

Customizing Linguistic Sorts
You can customize sorting with the Locale Builder Utility.

See Also: Chapter 11, "Oracle Locale Builder Utility"

4-12 Oracle9i Globalization Support Guide

D

Supporting Multilingual Databases with

Unicode

This chapter illustrates how to use Unicode in an Oracle database environment. It
includes the following topics:

Overview of Unicode

Implementing a Unicode Solution in the Database
Unicode Case Studies

Migrating Data to Unicode

Designing Database Schemas to Support Multiple Languages

Supporting Multilingual Databases with Unicode 5-1

Overview of Unicode

Overview of Unicode

Dealing with many different languages in the same application or database has
been complicated and difficult for a long time. To overcome the limitations of
existing character encodings, several organizations began working on the creation
of a global character set in the late 1980s. The need for this became even greater
with the development of the World Wide Web in the mid-1990s. The Internet has
changed how we do business today, with an emphasis on the global market that has
made a universal character set a major requirement. This global character set needs
to contain all major living scripts, support legacy data and implementations, and be
simple enough that a single implementation of a product is sufficient for worldwide
use. This character set should also support multilingual users and organizations,
conform to international standards, and enable world-wide interchange of data.
This global character set exists, is in wide use, and is called Unicode.

What is Unicode?

Unicode is a universal encoded character set that allows you to store information
from any language using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language.

The Unicode standard has been adopted by many software and hardware vendors.
Many operating systems and browsers now support Unicode. Unicode is required
by modern standards such as XML, Java, JavaScript, LDAP, CORBA 3.0, and WML.
It is also synchronized with the ISO/IEC 10646 standard.

Oracle started supporting Unicode as a database character set in Oracle?. In
Oracle9i, Unicode support has been expanded so that you can find the right
solution for your globalization needs. Oracle9i supports Unicode 3.0, the third
version of the Unicode standard.

See Also: http://www.unicode.org for more information
about the Unicode standard

Unicode Encoding

There are two different ways to encode Unicode 3.0 characters:
« UTF-16 Encoding
« UTF-8 Encoding

5-2 Oracle9i Globalization Support Guide

Overview of Unicode

UTF-16 Encoding

UTF-16 encoding is the 16-bit encoding of Unicode in which the character codes
0x0000 through 0x007F contain the ASCII characters. One Unicode character can be
2 bytes or 4 bytes in this encoding. Characters from both European and most Asian
scripts are represented in 2 bytes. Surrogate pairs (described below) are represented
in 4 bytes.

UTF-8 Encoding

UTF-8 is the 8-bit encoding of Unicode. It is a variable-width encoding in which the
character codes 0x00 through 0x7F have the same meaning as ASCII. One Unicode
character can be 1 byte, 2 bytes, 3 bytes or 4 bytes in this encoding. Characters from
the European scripts are represented in either 1 or 2 bytes, while characters from
most Asian scripts are represented in 3 bytes. Surrogate pairs (described below) are
represented in 4 bytes.

Note: Converting from UTF-8 to UTF-16 is a simple bit-wise
operation that is defined in the Unicode standard

Surrogate Pairs

You can extend Unicode to encode more than 1 million characters. These extended
characters are called surrogate pairs. Surrogate pairs are designed to allow
representation of characters in Unicode 3.0 and future extensions of the Unicode
standard. Surrogate pairs require 4 bytes in UTF-8 and UTF-16 encoding.

Sample UTF-16 and UTF-8 Encodings

Figure 5-1 shows some characters and their character codes in UTF-16 and UTF-8
encoding. The last character is a treble clef (a music symbol), a surrogate pair that
has been added to the Unicode 3.0 standard.

Supporting Multilingual Databases with Unicode 5-3

Implementing a Unicode Solution in the Database

Figure 5-1 Sample UTF-16 and UTF-8 Encodings

Char UTF-16 UTF-8

A 0041 41
c 0063 63
0 O0F6 C3 86
i 4E9C E4 BAOC
é D834 DD1E FO 9D 84 9E

Implementing a Unicode Solution in the Database

You can store Unicode characters in an Oracle9i database in two ways. The
following sections explain how to use the two Unicode solutions and how to choose
between them:

« Enabling Multilingual Support with Unicode Databases
« Enabling Multilingual Support with Unicode Datatypes

You can create a Unicode database that allows you to store UTF-8 encoded
characters as SQL CHARdatatypes (CHARVARCHARZCLOB and LONG) If you
prefer to implement Unicode support incrementally, you can store Unicode data in
either the UTF-16 or UTF-8 encoding form in SQL NCHARJatatypes (NCHAR
NVARCHARZNd NCLOB. The SQL NCHARJatatypes are called Unicode datatypes
because they are used for storing Unicode data only.

Note: You can combine a Unicode database solution with a
Unicode datatype solution.

Enabling Multilingual Support with Unicode Databases

The Oracle9i database has the concept of a database character set, which specifies
the encoding to be used in the SQL CHARdatatypes as well as the metadata such as
table names, column names, and SQL statements. A Unicode database is a database
with UTF-8 as the database character set. There are three Oracle character sets that
implement the UTF-8 encoding. The first two are designed for ASClI-based
platforms while the third one should be used on EBCDIC platforms.

5-4 Oracle9i Globalization Support Guide

Implementing a Unicode Solution in the Database

« AL32UTF8

The AL32UTF8 character set encodes characters in one to three bytes. Surrogate
pairs require four bytes. It is for ASClI-based platforms.

« UTF8

The UTF8 character set encodes characters in one to three bytes. Surrogate pairs
require six bytes. It is for ASClI-based platforms.

« UTFE

The UTFE character set should be used as the database character set on EBCDIC
platforms to support the UTF-8 encoding.

Note: The UTF8 character set is used throughout this chapter, but
all technical details apply to the other two character sets unless
otherwise specified

Example 5-1 Creating a Database with a Unicode Character Set

To create a database with the UTF8 character set, use the CREATE DATABASE
statement. For example:

CREATE DATABASE myunicodedatabase
CONTROL FILE REUSE
LOGFILE ‘u0l/oracle/utfdb/redoO.log’ SIZE 1M REUSE
lu0l/oracle/utfdb/redo02.log’ SIZE 1M REUSE

DATAFILE ‘/u0l/oracle/utidb/systemO1.dbf SIZE 10M REUSE
AUTOEXTENT ON
NEXT 10M MAXSIZE 200M

CHARACTER SET UTF8

Note: The database character set needs to be specified when you
create the database

Enabling Multilingual Support with Unicode Datatypes

An alternative to storing Unicode data in the database is to use the SQL NCHAR
datatypes. You can store Unicode characters into columns of these datatypes
regardless of how the database character set has been defined. The NCHARJatatype
has been redefined in Oracle9i to be a Unicode datatype exclusively. In other words,
it stores data in the Unicode encoding only. You can use the SQL NCHARJatatypes

Supporting Multilingual Databases with Unicode 5-5

Implementing a Unicode Solution in the Database

in the same way you use the SQL CHARdatatypes. You can create a table using the
NVARCHAR2Znd NCHARJatatypes as follows:

CREATE TABLE product

(d NUMBER

ename NCHAR(100)
description NVARCHAR2(1000))

The encoding used in the SQL NCHARJatatypes is specified as the national
character set of the database. You can specify one of the following two Oracle
character sets as the national character set:

« AL16UTF16

This is the default character set for SQL NCHARJatatypes. The character set
encodes Unicode data in the UTF-16 encoding.

« UTF8

When UTF8 is specified for SQL NCHARJatatypes, the data stored in the SQL
datatypes is in UTF-8 encoding.

By default, data is stored in the UTF-16 encoding in the SQL NCHARJatatypes, and
the length specified in the NCHARind NVARCHARR2olumns is always in the number
of characters instead of the number of bytes.

You can specify the national character set for the SQL NCHARJatatypes when you
create a database using the CREATE DATABAS§&atement. The following command
creates a database with WE8ISO8859P1 as the database character set and
AL16UTF16 as the national character set.

Example 5-2 Creating a Database with a National Character Set

CREATE DATABASE myunicodedatabase
CONTROL FILE REUSE
LOGFILE /uOl/oracle/utfdb/redo01.log' SIZE 1M REUSE
lu0L/oracle/utfdb/redo02.log’ SIZE 1M REUSE

DATAFILE ‘uOl/oracle/utfdb/systemO1.dbf SIZE 10M REUSE
AUTOEXTENT ON
NEXT 10M MAXSIZE 200M

CHARACTER SET WESISO8859P1

NATIONAL CHARACTER SET AL16UTF16

This example also illustrates the fact that you can store Unicode data in a
non-Unicode database by using SQL NCHARJatatypes.

5-6 Oracle9i Globalization Support Guide

Implementing a Unicode Solution in the Database

See Also: "Migrating to Use the NCHAR Datatypes" on page 5-16
for more information about migrating data to the NCHARJatatype

How to Choose Between a Unicode Database and a Unicode Datatype Solution

In order to choose the right Unicode solution for your database, you need to
consider the following:

Programming environment

What are the main programming languages used in your applications? How do
they support Unicode?

Ease of migration

How easily can your data and applications be migrated to take advantage of the
Unicode solution?

Performance

How much performance overhead are you willing to accept in order to use
Unicode in the database?

Type of data

Is your data mostly Asian or European? Do you need to store multilingual
documents into LOBcolumns?

Type of applications

What type of applications are you implementing: a packaged application or a
customized end-user application?

This section describes some general guidelines for choosing a Unicode database or a
Unicode datatype solution. The final decision largely depends on your exact
environment and requirements.

When Should You Use a Unicode Database?
You should use a Unicode database when:

1.

You need easy code migration for Java or PL/SQL.

If your existing application is mainly written in Java and PL/SQL and your
main concern is to minimize the code change required to support multiple
languages, you may want to use a Unicode database solution. As long as the
datatypes used to stored your data remain as the SQL CHARdatatypes, the Java
and PL/SQL accessing these columns do not need to change.

Supporting Multilingual Databases with Unicode 5-7

Implementing a Unicode Solution in the Database

2. You need easy data migration from ASCII.

If the database character set of your existing database is US7ASCII, you may
want to choose a Unicode database solution because you can migrate your
database using a single ALTER DATABASEtatement. No data conversion is
required because ASCII is a subset of UTF-8.

3. You have evenly distributed multilingual data.

If the multilingual data will be evenly distributed in your existing schema
tables and you are not sure which ones will contain multilingual data, then you
should use the Unicode database solution because it does not require you to
identify which columns store what data.

4. Your SQL statements and PL/SQL code contain Unicode data.

If you need to write SQL statements and PL/SQL code in Unicode, you must
use the Unicode database solution. SQL statements and PL/SQL code are
converted into the database character set before being processed. If your SQL
statements and PL/SQL code contain characters that cannot be converted to
your database character set, those characters will be lost. A common place
where you would use Unicode data in a SQL statement is in a string literal.

5. You want to store multilingual documents as BLOB and use Oracle Text for
content searching.

You must use a Unicode database in this case. The BLOBdata is converted to the
database character set before being indexed by Oracle Text. If your database
character set is not UTF8, then data will be lost when the documents contain
characters that cannot be converted to the database character set.

After you decide to use a Unicode database solution, you need to decide which
UTF-8 character set is best for your database. See Table 5-1 for advantages and
disadvantages of Unicode database solutions.

When Should You Use Unicode Datatypes?
You should use Unicode datatypes when:

1. You want to add multilingual support incrementally.

If you want to add Unicode support to your existing database without
migrating the character set, you should consider using Unicode datatypes to
store Unicode. You can add columns of the SQL NCHARJatatypes to existing
tables or new tables to support multiple languages incrementally.

2. You want to build a packaged application.

5-8 Oracle9i Globalization Support Guide

Implementing a Unicode Solution in the Database

If you are building a packaged application that will be sold to customers, you
may want to build the application using SQL NCHARJatatypes. This is because
the SQL NCHARlatatype is a reliable Unicode datatype in which the data is
always stored in Unicode, and the length of the data is always specified in
UTF-16 code units. As a result, you need only test the application once, and
your application will run on customer databases with any database character
set.

3. You want better performance with single-byte database character sets.

If performance is your biggest concern, you should consider using a single-byte
database character set and storing Unicode data in the SQL NCHARJatatypes.
Databases using a multibyte database character set such as UTF8 have a
performance overhead.

4. You require UTF-16 support in Windows clients.

If your applications are written in Visual C/C++ or Visual Basic running on
Windows, you may want to use the SQL NCHARJatatypes because you can
store UTF-16 data in these datatypes in the same way that you store it in the
wchar_t buffer in Visual C/C++ and string buffer in Visual Basic. You can
avoid buffer overflow in your client applications because the length of the
wchar_t andstring datatypes match the length of the SQL NCHARJatatypes
in the database.

Once you decide to use a Unicode datatype solution, you need to decide which
character set to choose as your national character set. See Table 5-2 for advantages
and disadvantages of Unicode datatype solutions.

Note: You can use a Unicode database in conjunction with
Unicode datatypes

Comparison of Unicode Solutions

Oracle9i provides two solutions to store Unicode characters in the database: a
Unicode database solution and a Unicode datatype solution. After you select the
Unicode database solution, the Unicode datatype solution or the combination of
both, you need to determine the character set to be used in the Unicode database
and/or the Unicode datatype. Different Unicode character sets have different
advantages and disadvantages. Table 5-1 and Table 5-2 illustrate advantages and
disadvantages for different Unicode solutions:

Supporting Multilingual Databases with Unicode 5-9

Implementing a Unicode Solution in the Database

Table 5-1 Unicode Database Solutions

Database

Character Set Advantages Disadvantages

AL32UTF8 1. Surrogate pair Unicode characters 1. You cannot specify the length of SQL CHAR
are stored in the standard 4 bytes types in the number of characters (Unicode
representation, and there is no code points) for surrogate characters. For
data conversion upon retrieval example, surrogate characters are treated as
and insertion of those surrogate one code point rather than the standard of two
characters. Also, the storage for code points.
those characters requires less disk 2. The binary order for SQL CHARcolumns is
space than that of the same different from that of SQL NCHARolumns
characters encoded in UTF8. - -

when the data consists of surrogate pair
Unicode characters. As a result, CHARcolumns
NCHARolumns do not always have the same
sort for identical strings.

UTF8 1. You can specify the length of SQL 1. Surrogate pair Unicode characters are stored
CHARtypes as a number of as 6 bytes instead of the 4 bytes defined by the
characters. Unicode standard. As a result, Oracle has to

2. The binary order on the SQL CHAR convert data for those surrogate characters.
columns is always the same as
that of the SQL NCHARolumns
when the data consists of the same
surrogate pair Unicode characters.
As a result, CHARcolumns and
NCHARolumns have the same
sort for identical strings.

UTFE 1. Same as UTF8. This is the only 1. Sameas UTF8.

Unicode character set for the 2. UTFE is not a standard encoding in the

EBCDIC platform.

Unicode standard. As a result, clients
requiring standard UTF-8 encoding must go
through data conversion from UTFE to the
standard encoding upon retrieval and
insertion.

5-10 Oracle9i Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 5-2 Unicode Datatype Solutions

National

Character Set

Advantages

Disadvantages

AL16UTF16

UTF8

1.

Asian data in AL16UTF16 is generally
more compact than in UTF8. As a result,
you will save disk space and have less
disk 170 when most of your multilingual
data stored in the database is Asian data.

Generally speaking, processing strings
encoded in the AL16UTF16 character set
is faster than those encoded in UTF8
because, in most cases, Oracle9i processes
characters in an AL16UTF16 encoded
string as fixed-width characters.

The maximum length limits for the
NCHARind NVARCHAR2olumns are 1000
and 2000 characters respectively. Because
it is fixed-width, the lengths are
guaranteed.

European data in UTF8 is generally more
compact than in AL16UTF16. As a result,
you will save disk space and have better
response time when most of your
multilingual data stored in the database is
European data.

The maximum length limits for the
NCHARind NVARCHARRolumns are 2000
and 4000 characters respectively, which is
more than those for NCHAR1000) and
NVARCHARR000) in AL16UTF16.
Although the maximum length of the
NCHARind NVARCHARR2olumns are
larger in UTF8, the actual storage size is
still bound by the byte limits of 2000 and
4000 bytes respectively. For example, you
can store 4000 UTF8 characters in an
NVARCHAR2olumn if all the characters
are single byte, but only 4000/3
characters if all the characters are three
bytes.

1.

European ASCII data requires more
disk space to store in AL16UTF16 than
in UTF8. If most of your data is
European data, the disk space usage is
not as efficient as using UTFS8.

The maximum length limits for NCHAR
and NVARCHAR2re 1000 and 2000
characters, which is less than those for
NCHAR?2000) and NVARCHAR®R000)

in UTF8.

Asian data requires more disk space to
store in UTF8 than in AL16UTF16. If
most of your data is Asian data, the
disk space usage is not as efficient as
using AL16UTF16.

Although you can specify larger length
limits for NCHARand NVARCHAR/ou
are not guaranteed to be able to insert
the number of characters specified by
these limits. This is because it is
variable-width.

Processing strings encoded in UTF8 is
generally slower than those encoded in
AL16UTF16 because UTF8 encoded
strings consist of variable-width
characters.

Supporting Multilingual Databases with Unicode 5-11

Unicode Case Studies

Unicode Case Studies

This section describes a few typical scenarios for storing Unicode characters in an
Oracle9i database.

Example 5-3 Unicode Solution with a Unicode Database

An American company running a Java application would like to add German and
French support in the next release of their application, and add Japanese support at
a later time. The company currently has the following system configuration:

« The existing database has a database character set of US7ASCII.

« All character data in the existing database is composed of ASCII characters.
« PL/SQL stored procedures are used in the database.

= The database is around 300 GB.

« There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose UTF8 for the database character set
because of the following reasons:

« The database is very large and the scheduled downtime is short. How fast the
database can be migrated to support Unicode is vital. Because the database is in
US7ASCII, the easiest and fastest way of enabling the database to support
Unicode is to switch the database character set to UTF8 by issuing the ALTER
DATABASEtatement. No data conversion is required because US7ASCII is a
subset of UTFS.

« Because most of the code is written in Java and PL/SQL, changing the database
character set to UTF8 is unlikely to break existing code. Unicode support will be
automatically enabled in the application.

« Because the application will support French, German, and Japanese, there will
be few surrogate characters. Both AL32UTF8 and UTF8 are suitable.

Example 5-4 Unicode Solution with Unicode Datatypes

A European company running its applications mainly on Windows platforms wants
to add new Windows applications written in Visual C/C++, which will use the
existing database to support Japanese and Chinese customer names. The company
currently has the following system configuration:

« The existing database has a database character set of WE8ISO8859P1.

5-12 Oracle9i Globalization Support Guide

Unicode Case Studies

All character data in the existing database is composed of Western European
characters.

The database is around 50 GB.

In this case, a typical solution is to use NCHARind NVARCHAR®&atatypes to store
Unicode characters, and keep WEB8ISO8859P1 as the database character set and use
AL16UTF16 as the national character set. The reasons for this are:

Migrating the existing database to a Unicode database required data conversion
because the database character set is WE8ISO8859P1 (a Latin 1 character set),
which is not a subset of UTF8. As a result, there will be some overhead in
converting the data to UTF8.

The additional languages are supported in new applications only, so there is no
dependency on the existing applications or schemas. It is simpler to use the
Unicode datatype in the new schema and keep the existing schemas
unchanged.

Only customer name columns require Unicode support. Using a single NCHAR
column meets the customer’s requirements without migrating the entire
database.

Because the languages to be supported are mostly Asian languages,
AL16UTF16 should be used as the national character set so that disk space is
used more efficiently.

Lengths are treated in terms of characters in the SQL NCHARJatatypes. This is
the same as the way they are treated when using wchar_t strings in Windows
C/C++ programs. This reduces programming complexity.

Existing applications using the existing schemas are unaffected.

Example 5-5 Unicode Solution with Both a Unicode Database and Unicode Datatypes

A Japanese company wants to develop a new Java application on Oracle9i. The
company projects that the application will support as many languages as possible in
the long run.

In order to store documents as is, the company decided to use the BLOB
datatype to store documents of multiple languages.

The company may also want to generate UTF-8 XML documents from the
relational data for business-to-business data exchange.

The back-end has Windows applications written in C/C++ using ODBC to
access the Oracle database.

Supporting Multilingual Databases with Unicode 5-13

Migrating Data to Unicode

In this case, the typical solution is to create a Unicode database using AL32UTF8 as
the database character set and use the SQL NCHARJatatypes to store multilingual
data. The national character set should be set to AL16UTF16. The reasons for this
solution are:

« When documents of different languages are stored as BLOBs Oracle Text
requires the database character set to be one of the UTF-8 character sets.
Because the applications may retrieve relational data as UTF-8 XML format
(where surrogate characters are stored as four bytes), AL32UTF8 should be
used as the database character set to avoid redundant data conversion when
UTF-8 data is retrieved or inserted.

« Because applications are new and written in both Java and Windows C/C++,
the company should use the SQL NCHARJatatype for its relational data as both
Java and Windows support the UTF-16 character datatype and the length of a
character string is always measured in the number of characters.

« If most of the data is for Asian languages, AL16UTF16 should be used in
conjunction with the SQL NCHARJatatypes because AL16UTF16 offers better
performance and storage efficiency.

Migrating Data to Unicode

It is important to separate the task of character set migration from the task of
database version migration, For example, if you have an Oracle8i non-Unicode
database and you want to migrate it to an Oracle9i Unicode database, you must first
migrate it to Oracle9i, then migrate the data to Unicode.

This section describes how to migrate your data to Unicode in Oracle9i. "Migrating
to Use the NCHAR Datatypes" on page 5-16 describes how to migrate non-Unicode
SQL CHARdatatypes to SQL NCHARJatatypes. It also describes how to migrate
pre-Oracle9i SQL NCHARJatatypes to Oracle9i SQL NCHARJatatypes.

Before you actually migrate your data to Unicode, you need to identify areas of
possible data character set conversions and truncation of data. Oracle strongly
recommends that you analyze your database using the Character Set Scanner Utility
for possible problems before actually migrating the database.

See Also: Chapter 10, "Character Set Scanner Utility"

5-14 Oracle9i Globalization Support Guide

Migrating Data to Unicode

Migrating to a Unicode Database

There are three general approaches when migrating data from non-Unicode
character set to Unicode:

« Full Export and Import
« The ALTER DATABASE CHARACTER SET Statement

« The ALTER DATABASE CHARACTER SET Statement and Selective Imports
and Exports

Full Export and Import

In most cases, a full export and import is recommended to properly convert all data
to a Unicode character set. It is important to be aware of data truncation issues
because character datatype columns might need to be extended before importing to
handle the increase of data byte size.

The steps to migrate to Unicode using a full export and import are:

1. Scan the database to identify columns that need to be extended. Use the
Character Set Scanner Utility.

See Also: Chapter 10, "Character Set Scanner Utility"

2. Export the entire database.

3. Create a new database using either UTF8 or AL32UTF8 on ASClI-based
platforms, using UTFE on EBCDIC platforms.

4. Create the tables identified in step 1 with extended columns size.

5. Import the.DMP file exported in step 2 to the new database.

The ALTER DATABASE CHARACTER SET Statement

If, and only if, the current database character set is US7ASCII and all the data is in
the 7-bit range, you can use the ALTER DATABASE CHARACTER Sfatement to
expedite migration to a Unicode database character set. Note that this approach
cannot be taken on EBCDIC platforms because UTFE is not a strict superset of any
EBCDIC character set.

Use the following steps to migrate to Unicode using the ALTER DATABASE
CHARACTER SEStatement:

1. Scan the database to make sure all data is in the 7-bit range. Use the Character
Set Scanner Utility.

Supporting Multilingual Databases with Unicode 5-15

Migrating Data to Unicode

See Also: Chapter 10, "Character Set Scanner Utility"

2. Change the database character set to UTF8 or AL32UTF8 using the ALTER
DATABASE CHARACTER SE&tement.

See Also: "Changing the Character Set After Database Creation"
on page 2-15 for the steps to change the database character set

The ALTER DATABASE CHARACTER SET Statement and Selective Imports and
Exports

Another approach is to issue an ALTER DATABASE CHARACTER SHatement
followed by selective imports. This methods can be used when the distributions of
convertible data are known and they are stored within a small number of tables.

The steps to migrate to Unicode using selective imports are:

1. Scan the database to identify tables that contain convertible data.
2. Export those tables identified in step 1.

3. Delete all rows from those table identified in step 1.

4

Change the database character set to UTF8 or AL32UTF8 with the ALTER
DATABASE CHARACTER SE#&tement.

5. Import the dump files into the database.

Migrating to Use the NCHAR Datatypes

The Oracle Server introduced in release 8.0 a national character (NCHARdatatype
that allows for a second, alternate character set in addition to the original database
character set. NCHARupports a number of special, fixed-width Asian character sets
that were introduced to provide for higher performance processing of Asian
character data.

In Oracle9i, the SQL NCHARJatatypes are limited to the Unicode character set
encoding (UTF8 and AL16UTF16) only. Any other Oracle8 Server character sets that
were available under the NCHARJatatype, including Asian character sets (for
example, JA16SJISFIXED), will no longer be supported.

The migration steps for existing NCHARNVARCHARnd NCLOBcolumns through
export and import are as follows:

1. Export all SQL NCHARoolumns from the Oracle8 or Oracle8i database.
2. Drop the SQL NCHAR: olumns.

5-16 Oracle9i Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

3. Upgrade database to Oracle9i.
4. Import the SQL NCHARolumns into Oracle9i.

The Oracle9i migration utility can also convert your Oracle8 and Oracle8i NCHAR
columns to 9i NCHARolumns. A SQL NCHARupgrade script called utlchar.sql

is supplied with the migration utility. You should run it at the end of the migration
to convert your Oracle8 and Oracle8i NCHARolumns to the new Oracle9i NCHAR
columns. Once the script has been executed the data cannot be downgraded,
because there is no downgrade SQL NCHARscript. The only way for you move back
to Oracle8 or Oracle8i is to drop all NCHARolumns, downgrade the database, and
import the old NCHARJata from a previous Oracle8 or Oracle8i export file. Make
sure your have a backup (export file) of your Oracle8 or Oracle8i NCHARdata, in
case you need to downgrade your database in the future.

To take advantage of the new Unicode NCHARJatatypes, you can also use the
Export and Import utilities to migrate SQL CHARcolumns to SQL NCHARolumns:

1. Export the SQL CHARcolumns that you want to convert to SQL NCHAR
2. Drop the columns that were just exported.

3. Import the columns as SQL NCHARolumns.

See Also:

« Oracle9i Database Utilities for a description of export and import
procedures

» Oracle9i Database Migration for NCHARmigration information

Designing Database Schemas to Support Multiple Languages

In addition to choosing a Unicode solution, the following should also be taken into
consideration when the database schema is designed to support multiple
languages:

« Specifying Column Limits
« Storing Data of Multiple Languages

« Storing Documents in LOBs
Specifying Column Limits

When you use NCHARind NVARCHAR®atatypes for storing multilingual data, the
column limit specified for a column is always in character semantics (which is in

Supporting Multilingual Databases with Unicode 5-17

Designing Database Schemas to Support Multiple Languages

terms of the number of Unicode code units). The following table shows the
maximum size of the NCHAR and NVARCHAR?2 datatypes for the ALT16UTF16
and UTF8 national character sets.

Maximum Size of NCHAR Maximum Size of
National Character Set Datatype NVARCHAR?2 Datatype
ALT16UTF16 1000 characters 2000 characters
UTF8 2000 bytes 4000 bytes

When you use CHARand VARCHAR2iatatypes for storing multilingual data, the
column limit specified for each column is, by default, in number of bytes. If the
database needs to support Thai, Arabic, or multibyte languages such as Chinese
and Japanese, the limits for the CHARVARCHARand VARCHARZ2o0lumns may need
to be extended. This is because the number of bytes required to encode these
languages in UTF8 or AL32UTF8 may be significantly larger than those for English
and Western European languages. For example, one Thai character in the Thai
character set requires 3 bytes in UTF8 or AL32UTF8. In addition, the maximum
limits for CHARVARCHARand VARCHAR2latatypes are 2000 bytes, 4000 bytes, and
4000 bytes respectively. If applications need to store more than 4000 bytes, you
should use the CLOBdatatype for the data.

Storing Data of Multiple Languages

The Unicode character set includes characters of most written languages around the
world, but it does not tell you the language to which a given character belongs. In
other words, a character such as & does not contain information about whether it is
a French or German character. In order to provide information in the language a
user desires, data stored in a Unicode database should accompany the language
information to which the data belongs.

There are many ways for a database schema to relate data to a language. Here is one
example.

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language
column (language_id) of CHARor VARCHAR2atatype to the product table to
identify the language of the corresponding product information. This enables
accessing applications to retrieve the information in the desired language. The
possible values for this language column are the 3-letter abbreviations of the valid
NLS_ LANGUAGHKalues of the database.

5-18 Oracle9i Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

See Also: Appendix A, "Locale Data", for a list of NLS_LANGUAGE
values and their abbreviations

You can also create a view to select the data of the current language. For example:

CREATE OR REPLACE VIEW product AS
SELECT product_id, product_name
FROM products_table
WHERE language_id =sys_context(USERENV,LANGY);

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control allows you to limit the degree to which a user can view
information in a table or view. Typically, this is done by appending a WHERElause.
Once you add a WHERIElause as a fine-grained access policy to a table or view,
Oracle9i automatically appends the WHERElause to any SQL statements on the
table at run time so that only those rows satisfying the WHEREIlause can be
accessed.

You can use this feature to avoid specifying the desired language of an user in the
WHEREIlause in each and every SELECTstatement in your applications. The
following WHEREIlause limits the view of a table to the rows corresponding to the
desired language of a user:

WHERE language_id=sys_context(userenv, LANG)

When you specify this WHERElause as a fine-grained access policy for your

product_table as follows:

DBMS_RLSADD_POLICY (scott, ‘product_table', lang_policy’, 'scott,
language_id=sys_context(userenv, LANG), 'select);

Then any SELECTstatement on the table product_table will automatically
append the WHEREIlause.

Storing Documents in LOBs

You can store documents in multiple languages in CLOB NCLOBor BLOBand set up
Oracle Text to enable content search for the documents.

1. Datain CLOBcolumns is always stored as UTF-16 internally when the database
character set is of varying width, such as UTF8 or AL32UTF8. Document
contents are converted to UTF-16 when they are inserted into a CLOBcolumn.
This means that the storage space required for an English document doubles

Supporting Multilingual Databases with Unicode 5-19

Designing Database Schemas to Support Multiple Languages

when the data is converted. Storage for an Asian language document, such as
Japanese, in a CLOBcolumn requires less storage space than the same document
in a LONGcolumn using UTF8 (typically around 30% less, depending on the
contents of the document).

2. Documents in NCLOBare also stored as UTF-16 regardless of the database
character set or national character set. The storage space requirement is the
same as in CLOB Document contents are converted to UTF-16 when they are
inserted into a NCLOBcolumn. If you want to store multilingual documents in a
non-Unicode database, you should choose NCLOBHowever, content search on
NCLOBs not yet supported.

3. Documents in BLOBformat are stored as they are. No data conversion occurs
during insert and retrieval. However, SQL string manipulation functions (such
as LENGTHor SUBSTR and collation functions (such as NLS_SORTand ORDER
BY) are not applicable to the BLOBdatatype.

The following table lists the advantages and disadvantages for datatypes when
storing documents:

Table 5-3 Comparison of Datatypes for Document Storage

Datatypes Advantages Disadvantages
CLOB 1. Content search support 1. Dependent on database character
set

2. String manipulation support
Data conversion

2
3. Cannot store binary documents

NCLOB 1. Independent on database
character set

1. No content search support
2. Data conversion
3

2. String manipulation support Cannot store binary documents

BLOB 1. Independent on database 1. No string manipulation support
character set

2. Content search support

3. No data conversion, data store
asis

4. Can store binary documents
such as Word or Excel

5-20 Oracle9i Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

Creating Indexes for Document Content Search

Oracle Text allows you to build indexes for content search on multilingual
documents stored as CLOBsand BLOBs It uses a language-specific lexer to parse
the CLOBor BLOBdata and produces a list of searchable keywords.

You need to create a multi-lexer for multilingual document searching to work. The
multi-lexer chooses a language-specific lexer for each row, based on a language
column. This section describe the high level steps to create indexes for documents in
multiple languages.

See Also: Oracle Text Reference

Creating Multi-Lexers

The first step in creating the multi-lexer is the creation of language-specific lexer
preferences for each language supported. The following example creates English,
French, and Japanese lexers with PL/SQL procedures:

ctx_ddl.create preference(english_lexer, basic_lexer);

ctx_ddl.set attribute(english_lexer,index_themes',yes));
ctx_ddl.create_preference(gemrman _lexer, basic_lexer);
ctx_ddl.set_attribute(german_lexer',’composite’,german);
ctx_ddl.set_attribute(german_lexer,'altemate_speling'/german);
ctx_ddl.set_attribute(german_lexer,'mixed_case',yes);

ctx_ddl.create preference(japanese_lexer, JAPANESE VGRAM LEXER);

Once the language-specific lexer preferences are created, they need to be gathered
together under a single multi-lexer preference. First, create the multi-lexer
preference, using the MULTI_LEXERobject:

ctx_ddl.create _preference(global_lexer, multi_lexer);
Now we must add the language-specific lexers to the multi-lexer preference using
the add_sub_lexer call:

ctx_ddladd _sub_lexer('global_lexer, 'german’, ‘german_lexer);
ctx_ddladd_sub_lexer(global_lexer, japanese’, japanese_lexer);
ctx_ddladd_sub_lexer(global_lexer, ‘default,'english_lexer);

This nominates the german_lexer preference to handle German documents, the

japanese_lexer preference to handle French documents, and the english_
lexer preference to handle everything else, using DEFAULTas the language.

Supporting Multilingual Databases with Unicode 5-21

Designing Database Schemas to Support Multiple Languages

Building Indexes for Documents Stored as CLOBSs

The multi-lexer decides which lexer to use for each row based on a language
column. This is a character column in the table which stores the language of the
document in the text column. You should use the Oracle language name to identify
the language of a document in this column. For instance, if you use CLOBsto store
your documents, then you must add the language column to the table where the
documents are stored:

CREATE TABLE globaldoc (
doc id NUMBER PRIMARY KEY,
language VARCHAR2(30),
text CLOB
)

To create an index for this table, use the multi-lexer preference and specify the name
of the language column:

CREATE INDEX globalx ON globaldoc(text)

indextype IS ctxsys.context
parameters (lexer global_lexer
language column language));

Creating Indexes for Documents Stored as BLOBs

In addition to the language column, the character set and format columns must be
added in the table where your documents are stored. The character set column
stores the character set of the documents using the Oracle character set names. The
format column specifies whether a document is a text or binary document. For
instance, your table would looks like:

CREATE TABLE globaldoc
doc id NUMBER PRIMARY KEY,
language VARCHAR2(30),
characterset VARCHAR2(30),

fomat VARCHAR2(10),

text BLOB

)

With the format column, you may put word-processing or spreadsheet documents
into the table and specify binary in the format column. For text documents such as
HTML, XML and text, you may put them into the table and specify text in the
format column. With the character set column, you can store text documents in
different character sets.

5-22 Oracle9i Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

When you create the index, specify the names of the format and character set
columns:

CREATE INDEX globalx ON globaldoc(text)
indextype is ctxsys.context
parameters (filter inso_fitter
lexer global_lexer
language column language
format column format
charset column characterset);

You may use the charset_filter if all documents are in text format.

Supporting Multilingual Databases with Unicode 5-23

Designing Database Schemas to Support Multiple Languages

5-24 Oracle9i Globalization Support Guide

6

Unicode Programming

This chapter illustrates programming issues when dealing with Unicode. It contains
the following topics:

Overview of Unicode Programming

SQL and PL/SQL Programming with Unicode
OCI Programming with Unicode

Pro*C/C++ Programming with Unicode

JDBC and SQLJ Programming with Unicode
ODBC and OLEDB Programming with Unicode

Unicode Programming 6-1

Overview of Unicode Programming

Overview of Unicode Programming

Oracle9i offers several database access products for inserting and retrieving
Unicode data. Oracle offers database access products for most commonly used
programming environments such as Java and C/C++. Data is transparently
converted between the database and client programs, which ensures that client
programs are independent of the database character set and national character set.
In addition, client programs are sometimes even independent of the character
datatype, such as NCHARr CHARused in the database.

To avoid overloading the database server with data conversion operations, Oracle9i
always tries to move them to the client side database access products. In a few
cases, data must be converted in the database, and you should be aware of the
performance implications. Details of the data conversion paths taken are discussed
in this chapter.

Database Access Product Stack and Unicode

Oracle Corporation offers a comprehensive set of database access products that
allow programs from different development environments to access Unicode data
stored in the database. These products are listed in Table 6-1.

Table 6-1 Unicode Programming Environments

Programming
Environment Oracle Offers

C/C++ Oracle Call Interface (OCI)
Oracle Pro*C/C++
Oracle ODBC Driver
Oracle OLE DB Driver

Visual Basic Oracle ODBC Driver
Oracle OLE DB Driver

Java Oracle JDBC OCI Driver
Oracle SQLJ

PL/SQL Oracle PL/SQL and SQL

Figure 6-1 shows how the database access products can access the database.

6-2 Oracle9i Globalization Support Guide

Overview of Unicode Programming

Figure 6-1 Oracle Database Access Products

Visual Basic Programs
VBScript using ADO C/C++ Programs Java Programs
OLE DB Pro*C/C++ oo
ODBC ro
JDBC
Oracle Call Interface (OCI) Thin
Oracle
Net

Oracle9 |

PL/SQL Oracle Net on TCP/IP

SQL

1. The Oracle Call Interface (OCI) is the lowest level API that the rest of the
client-side database access products use. It provides a flexible way for C/C++
programs to access Unicode data stored in SQL CHARand NCHARJatatypes.
Using OCI, you can programmatically specify the character set (UTF-8, UTF-16,
and others) for the data to be inserted or retrieved.

2. Oracle Pro*C/C++ allows you to embed SQL and PL/SQL in your programs. It
uses OCI’s Unicode capabilities to provide UTF-16 and UTF-8 data access for
SQL CHARand NCHARJatatypes.

3. The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs
running on Windows platforms to access Unicode data stored in SQL CHARand
NCHARlatatypes of the database. It provides UTF-16 data access by
implementing the SQLWCHARterface specified in the ODBC standard
specification.

4. The Oracle OLE DB driver enables C/C++, Visual Basic, and VBScript
programs running on Windows platforms to access Unicode data stored in SQL
CHARand NCHARlJatatypes. It provides UTF-16 data access through wide string
OLE DB datatypes.

5. Oracle JDBC drivers are the primary Java programmatic interface for accessing
an Oracle9i database. Oracle provides two client-side JDBC drivers. The JDBC
OCI driver that is used by Java applications and required Oracle OCI library,

Unicode Programming 6-3

SQL and PL/SQL Programming with Unicode

the JDBC Thin driver is a pure Java driver that is primarily used by Java applets
and only support the Oracle Net protocol over TCP/IP. Both drivers support
Unicode data access to SQL CHARand NCHARJatatypes in the database.

6. Oracle SQLJ acts like a preprocessor that translates embedded SQL in a Java
program into a Java source file with JDBC calls. It offers you a higher level
programmatic interface to access databases. Like JDBC, SQLJ provides Unicode
data access to SQL CHARand NCHARJatatypes in the database.

7. The PL/SQL and SQL engines process PL/SQL programs and SQL statements
on behalf of client-side programs such as OCI and server-side PL/SQL stored
procedures. They allow PL/SQL programs to declare NCHARand NVARCHAR?2
variables and access SQL NCHARJatatypes in the database.

The following sections describe how each of the above database access products
supports Unicode data access to an Oracle9i database and offer examples for using
those products.

SQL and PL/SQL Programming with Unicode

SQL is the fundamental language with which all programs and users access data in
an Oracle database either directly or indirectly. PL/SQL is a procedural language
that combines the data manipulating power of SQL with the data processing power
of procedural languages. Both SQL and PL/SQL can be embedded in other
programming languages. This section describes Unicode-related features in SQL
and PL/SQL that you can deploy for multilingual applications.

SQL NCHAR Datatypes
There are three SQL NCHARJatatypes:

= NCHAR
= NVARCHAR2
= NCLOB

When you define a table column or PL/SQL variables in NCHARthe length
specified is always in the number of characters. For example, the following
statement:

CREATE TABLE tab1 (coll NCHAR(30));

creates a column with a maximum character length of 30. The maximum byte length
is the multiple of the maximum character length and the maximum number of bytes

6-4 Oracle9i Globalization Support Guide

SQL and PL/SQL Programming with Unicode

per character. For example, if the national character set is UTF8, the above statement
defines a maximum byte length of 90 bytes.

The national character set is defined when the database is created. In Oracle9i, the
national character set can be either UTF8 or AL16UTF16.

You can define a maximum column size of 2000 characters when the national
character set is UTF8 and 1000 when it is AL16UTF16. The actual data is subject to
the maximum byte limit of 2000. The two size constraints must be satisfied at the
same time. In PL/SQL, the maximum length of NCHARJata is 32767 bytes. You can
define an NCHARvariable of up to 32767 characters, but the actual data cannot
exceed 32767 bytes. If you insert a value that is shorter than the column length,
Oracle blank pads the value to the smaller value between maximum character
length and maximum byte length.

The NVARCHAR®@atatype specifies a variable length national character set character
string. When you create a table with an NVARCHARRolumn, you supply the
maximum number of characters. Oracle subsequently stores each value in the
column exactly as you specify it, provided the value does not exceed the column’s
maximum length. It does not pad the string value to the maximum length. Lengths
for NVARCHARZre always treated as being in units of characters, just as for NCHAR

The maximum column size allowed is 4000 characters when the national character
set is UTF8 and 2000 when it is AL16UTF16. NVARCHARRolumns can be defined
up to 4000 bytes, the actual maximum length of a column allowed is the number of
characters that fit into no more than 4000 bytes. In PL/SQL, the maximum length
for NVARCHAR® 32767 bytes. You can define NVARCHARGgariables up to 32767
characters, but the actual data cannot exceed 32767 bytes.

The following statement creates a table with one NVARCHARRZolumn of 2000
characters in length. If the national character set is UTF8, the following will create a
column with maximum character length of 2000 and maximum byte length of 4000.

CREATE TABLE tab1 (coll NVARCHAR2(2000));

NCLOBs a character large object containing multibyte characters, with a maximum
size of 4 gigabytes. Unlike BLOBs NCLOBshave full transactional support so
changes made through SQL, the DBMS_LOBackage, or OCI participate fully in
transactions. NCLOBvalue manipulations can be committed and rolled back. Note,
however, that you cannot save an NCLOBocator in a PL/SQL or OCI variable in
one transaction and then use it in another transaction or session.

NCLOBvalues are stored in the database using the UTF-16 character set, which has a
fixed width. Oracle translates the stored Unicode value to the character set
requested on the client or on the server, which can be fixed-width or variable-width.

Unicode Programming 6-5

SQL and PL/SQL Programming with Unicode

When you insert data into an NCLOBcolumn using a varying-width character set,
Oracle converts the data into UTF-16 Unicode before storing it in the database. This
happens whether the national character set is UTF8 or AL16UTF16.

Implicit Conversion

Oracle supports implicit conversions between SQL NCHARJatatypes and most
Oracle datatypes, such as CHARVARCHAR2NUMBERDATE ROWIDand CLOB Any
implicit conversions for CHARF'VARCHAR2re also supported for SQL NCHAR
datatypes. You can use SQL NCHARlatatypes the same way as SQL CHAR
datatypes.

There are several points to keep in mind with implicit conversions:

« Type conversions between SQL CHARdatatypes and SQL NCHARJatatypes may
involve character set conversion when database and national character sets are
different, or blank padding if the target data is either CHARor NCHAR

« Implicit conversion between CLOBand NCLOBdatatypes is not possible. You
can, however, use Oracle’s explicit conversion functions for them.

Exception Handling for Data Loss

Data loss can occur during type conversion when character set conversion is
necessary. If a character in the first character set is not defined in the target character
set, then a replacement character will be used in its place. For example, if you try to
insert NCHARJata into a regular CHARcolumn, if the character data in NCHAR
(Unicode) form cannot be converted to the database character set, the character will
be replaced by a replacement character question mark. The NLS_NCHAR_CONV _
EXCPinitialization parameter controls the behavior of data loss during character
type conversion. When this parameter is set to TRUE any SQL statements that result
in data loss return an ORA-12713 error and the corresponding operation is aborted.
When this parameter is set to FALSE, data loss is not reported and the
unconvertible characters are replaced with replacement characters. The default
value is TRUE This parameter works for both implicit and explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHARand NCHAR
datatypes, the exception LOSSY_CHARSET_CONVERSI®@Naised. It applies for
both implicit and explicit conversion.

Direction Rules for Implicit Type Conversion

In some cases, conversion is only possible in one direction. In other cases, both
directions are possible. In order to have predictable and unambiguous behavior,
Oracle defines a set of specific rules for conversion direction.

6-6 Oracle9/ Globalization Support Guide

SQL and PL/SQL Programming with Unicode

INSERT/UPDATEstatement

Values are converted to the type of target database column.
SELECT INTOstatement

Data from the database is converted to the type of target variable.
Assignments

Values on the right hand side of (=) are converted to the types of the variable on
left hand side which is the target of assignment.

Parameters to SQL and PL/SQL functions

CHARVARCHARX2NCHARand NVARCHARA®verload in the same way. An
argument of one with a CHARVARCHARZ2NCHARr NVARCHAR®ype will
match a formal parameter of any of the types CHARVARCHAR2NCHARor
NVARCHAR#®or overloading. If the argument and formal parameter types do
not match exactly, then implicit conversions will be introduced when data is
copied into the parameter on function entry and copied out to the argument on
function exit.

Concatenation | | operation or CONCATunction

If one operand is a SQL CHARor NCHARJatatype and the other operand is a
NUMBERT other non-character datatype, the other datatype is converted to
VARCHAR®2r NVARCHARZor concatenation between character datatypes, see
the discussion below.

Arithmetic expressions

— SQL CHARor NCHARdatatypes and NUMBERCharacter value is converted
to NUMBER

— SQL CHARor NCHARldatatypes and DATE Character string value is
converted to DATEtype.

— SQL CHARor NCHARdatatypes and ROWIDCharacter types are converted
to rowid type.

— For arithmetic operations between SQL NCHARJatatypes and SQL CHAR
datatypes, the character data is converted to NUMBER

Comparisons between different datatypes
— SQL CHARor NCHARlatatypes and NUMBER

Character values are converted to NUMBER

Unicode Programming 6-7

SQL and PL/SQL Programming with Unicode

— SQL CHARor NCHARdatatypes and DATE
Character values are converted to DATE

— SQL CHARor NCHARJatatypes and ROWID
Character data is converted to ROWID

— SQL NCHARJatatypes and SQL CHARdatatypes

Comparisons between SQL NCHARJatatypes and SQL CHARdatatypes are
more complex because they can be encoded in different character sets. For
comparisons between CHARand VARCHARZ2or between NCHARand
NVARCHARZhe direction is CHAR>VARCHAR2r NCHAR>NVARCHAR?2
When there is conversion between SQL NCHARJatatypes and SQL CHAR
datatypes, character set conversion occurs if they are encoded in different
character sets. The character set for SQL NCHARdJatatypes is always
Unicode and can be either UTF8 or AL16UTF16 encoding, which have
equal character repertoires but are different encodings of the Unicode
standard. SQL CHARdatatypes use the database character set, which can be
any character set that Oracle supports. Unicode is always a superset of any
character set supported by Oracle, so it is always convertible from SQL
CHARdatatypes to SQL NCHARJatatypes without data loss.

SQL Functions for Unicode Datatypes

SQL NCHARdatatypes can be converted to and from SQL CHARdatatypes and other
datatypes using explicit conversion functions. Following are several examples using
this table.

CREATE TABLE customers
(id NUMBER, name NVARCHAR2(50), addr NVARCHAR2(200), dob DATE);

Example 6-1 Unicode Datatype Example 1

INSERT INTO customers VALUES (1000,
TO_NCHAR(John Smith), N500 Oracle Parkway);

Example 6-2 Unicode Datatype Example 2
SELECT name FROM customers WHERE TO_CHAR(name) LIKE 'Sm9%6;

Example 6-3 Unicode Datatype Example 3

DECLARE
ndstr N\VARCHAR2(20) := N'12-SEP-1975;
BEGIN

6-8 Oracle9/ Globalization Support Guide

SQL and PL/SQL Programming with Unicode

SELECT name FROM customers
WHERE (dob)>TO_DATE(ndstr, DD-MON-YYYY', NNLS_DATE_LANGUAGE = AMERICAN);
END;

As demonstrated in Example 6-3, not only can SQL NCHARdata be passed to
explicit conversion functions, but also SQL CHARand NCHARJata can be mixed
together when using multiple string parameters.

See Also: Oracle9i SQL Reference for more information about
explicit conversion functions for SQL NCHARJatatypes

Other SQL String Functions

Most SQL functions can take arguments of SQL NCHARJatatypes as well as mixed

character datatypes. The return datatype is based on the type of the first argument.
If a non-string datatype like NUMBERr DATEis passed to these functions, it will be
converted to VARCHAR2Several examples using the customers table from above
follow:

Example 6-4 String Function Example 1
SELECT INSTR(name, N'Sn, 1, 2) FROM customers;

Example 6-5 String Function Example 2
SELECT CONCAT(name || id) FROM customer;

id will be converted to NVARCHAR2Nd then concatenated with name.

Example 6-6 String Function Example 3

SELECT RPAD (hame, 100, ') FROM customer;

Space character ' ' is converted to the corresponding character in the NCHAR
character set and then padded to the right of name until the total display length
reaches 100.

See Also: Oracle9i SQL Reference for a list of all SQL functions that
can accept SQL NCHARJatatypes

Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:

Unicode Programming 6-9

SQL and PL/SQL Programming with Unicode

Put a prefix N in front of a single quote marked string literal. This explicitly
indicates that the following string literals is an NCHARtring literal.

Mark a string literal with single quotations. Because Oracle supports implicit
conversions to SQL NCHARJatatypes, a string literal is converted to a SQL
NCHARlatatype wherever necessary.

When a string literal is included in a query and the query is submitted through
a client-side tool such as SQL*Plus, all the queries are encoded in the client’s
character set and then converted to the server’s database character set before
processing. Therefore, data loss can occur if the string literal cannot be
converted to the server database character set.

Use the NCHR(n) SQL function, which returns the character having the binary
equivalent to n in the national character set, which is UTF8 or AL16UTF16. The
result of concatenations of several NCHR(n) is NVARCHARZn this way, you can
bypass the client and server character set conversions and create an NVARCHAR2
string directly. For example, NCHR(32) represents a blank character.

Use the UNISTR(string) SQL function. UNISTR(string) takes a string and
converts it to Unicode. The result is in database national character set (UTF8 or
AL16UTF16). You can embed escape \bbbb inside the string. The escape
represents the value of a UTF-16 code point with hex number Oxbbbb. For
example, UNISTR('G\0061ry") represents ‘Gary".

The last two methods can be used to encode any Unicode string literals.

Using the UTL_FILE Package with NCHAR

The UTL_FILE package has been enhanced in Oracle9i to handle Unicode national
character set data. The following functions and procedures have been added:

FOPEN_NCHAR

This function opens a file in Unicode for input or output, with the maximum
line size specified. With this function, you can read or write a text file in
Unicode instead of in the database character set.

GET_LINE_NCHAR

This procedure reads text from the open file identified by the file handle and
places the text in the output buffer parameter. With this function, you can read a
text file in Unicode instead of in the database character set.

PUT_NCHAR

6-10 Oracle9i Globalization Support Guide

OCI Programming with Unicode

This procedure writes the text string stored in the buffer parameter to the open
file identified by the file handle. With this function, you can write a text file in
Unicode instead of in the database character set.

PUT_LINE_NCHAR

This procedure writes the text string stored in the buffer parameter to the open
file identified by the file handle. With this function, you can write a text file in
Unicode instead of in the database character set.

PUTF_NCHAR

This procedure is a formatted PUT_NCHARrocedure. With this function, you
can write a text file in Unicode instead of in the database character set.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the UTL_FILE package

OCI Programming with Unicode

OCl is the lowest-level API for accessing a database, so it offers the best possible
performance. When using Unicode with OCI, you should consider these topics:

OCI Unicode Code Conversion

When NLS_LANG is Set to UTF8 or AL32UTF8 in OCI
Binding and Defining SQL CHAR Datatypes in OCI

Binding and Defining SQL NCHAR Datatypes in OCI

Binding and Defining CLOB and NCLOB Unicode Data in OCI
Unicode Mode in OCI

OCI Unicode Code Conversion

Unicode character set conversions take place between an OCI client and the
database server if the client and server character sets are different. The conversion
occurs on either the client or the server depending on the circumstances, but usually
on the client side.

Data Integrity

You can lose data during conversion if you call an OCI API inappropriately. If the
server and client character sets are different, you can lose data when the destination
character set is a smaller set than the source character set. You can avoid this

Unicode Programming 6-11

OCI Programming with Unicode

potential problem if both character sets are Unicode character sets (for example,
UTF8 and AL16UTF16).

When you bind or define SQL NCHARdJatatypes, you should set OCI_ATTR_
CHARSET_FORNM SQLCS_NCHARtherwise, you can lose data because the data is
converted to the database character set prior to converting to or from the national
character set, but only if the database character set is not Unicode.

OCI Performance Implications When Using Unicode

Redundant data conversions can cause performance degradation in your OCI
applications. These conversions occur in two cases:

« When you bind or define SQL CHARdatatypes and set the OCI_ATTR_
CHARSET_FORMttribute to SQLCS_NCHARIJata conversions take place from
client character set to the national database character set, and from the national
character set to the database character set. No data loss is expected, but two
conversions happen, even though it requires only one.

« When you bind or define SQL NCHARJatatypes and do not set OCI_ATTR_
CHARSET_FORMata conversions take place from client character set to the
database character set, and from the database character set to the national
database character set. In the worst case, data loss can occur if the database
character set is smaller than the client’s.

To avoid performance problems, you should always specify the correct form of use
based upon the datatype of the target columns. If you do not know the target
datatype, you should set the OCI_ATTR_CHARSET_FORA&ftribute to SQLCS _
NCHAR~hen binding and defining.

6-12 Oracle9i Globalization Support Guide

OCI Programming with Unicode

Table 6-2 OCI Code Conversions in Unicode

OCI_ATTR_ Datatypes of the
Datatypes for CHARSET_ Target Column in
OCI Client Buffer FORM the Database Conversions Comments
utext SQLCS_ CHAR, UTF-16 to/from database No unexpected data loss
IMPLICIT VARCHAR2, character set in OCI
CLOB
utext SQLCS NCHAR, UTF-16 to/from national No unexpected data loss
NCHAR NVARCHAR2, character set in OCI
NCLOB
utext SQLCS CHAR, UTF-16 to/from national No unexpected data loss,
NCHAR VARCHAR2, character set in OCI but may have
CLOB - performance degradation
tl\(l)a/tflr%r:a\lggtzrsgstgr set because the conversi.on
character set in database gﬁ:?;g;orusg? the national
server
utext SQLCS_ NCHAR, UTF-16 to/from database = Data loss may happen
IMPLICIT NVARCHAR2, character set in OCI because the conversion
NCLOB goes through the
Database chgracter set database character set
to/from national character
set in database server
text SQLCS_ CHAR, NLS_LANGCcharacter set No unexpected data loss
IMPLICIT VARCHAR?2, to/from database
CLOB character set in OCI
text SQLCS_ NCHAR, NLS_LANGcharacter set No unexpected data loss
NCHAR NVARCHAR2,NCLOBto/from national character
set in OCI
text SQLCS _ CHAR, NLS_LANGCcharacter set No unexpected data loss,
NCHAR VARCHAR2, to/from national character but performance
CLOB set in OCI degradation may occur
National character set b?)?ailiﬁ? otBe ﬁ ?ﬂ;’ﬁ':‘t'i%?] al
to/from national character 9 Y
. character set
set in database server
text SQLCS _ NCHAR, NLS_LANGcharacter set Data loss may occur
IMPLICIT NVARCHAR2,NCLOBto/from database because the conversion

character set in OCI

Database character set
to/from national character
set in database server

goes through the
database character set

Unicode Programming 6-13

OCI Programming with Unicode

OCI Unicode Data Expansion

Data conversion can result in data expansion, which can cause a buffer to overflow.
For binding operations, you need to set the OCI_ATTR_MAXDATA_SIZEattribute to
a large enough size to hold the expanded data on the server. If this is difficult to do,
you need to consider changing the table schema. For defining operations, client
applications need to allocate enough buffer for the expanded data. The size of
buffer should be the maximum expanded size of data length. You can estimate the
maximum buffer length with the following calculation:

1. Get the column data byte size.

2. Multiply it by the maximum number of bytes per character in the client
character set.

This method is the simplest and quickest way, but may not be accurate and can
waste memory. It is applicable to any character set combination. For example, for
UTF-16 data binding and defining, the following example calculates the client
buffer:

ub2 csid=0C|_UTF16ID;
oratext *selstmt ="SELECT ename FROM emp";
counter=1;

OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strien((char®)selstmt),
OCI_NTV_SYNTAX, OCI_DEFAULT);
OCIStmtExecute (svchp, stmthp, erhp, (ub4)0, (ub4)0,
(CONST OClSnapshoat*)0, (OCISnapshot*)0,
OCI_DESCRIBE_ONLY);
OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &myparam, (ub4)counter);
OClAttrGet((void*)myparam, (ub4)OCl_DTYPE_PARAM, (void*)&col_width,
(ub4%)0, (Ub4)OCI_ATTR_DATA_SIZE, enthp);

maxenamelen = (col_width + 1) * sizeof(utext);
cbuf = (utext’)malloc(maxenamelen);

OCIDefineByPos(stmthp, &dfnp, erhp, (ub4)1, (void *)cbuf,
(sbd)maxenamelen, SQLT_STR, (void *)0, (ub2 *)0,
(Ub2%)0, (Ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfinp, (Ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) 0, (Ub4)OCI_ATTR_CHARSET_ID, erthp);
OCISstmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

6-14 Oracle9i Globalization Support Guide

OCI Programming with Unicode

When NLS _LANG is Set to UTF8 or AL32UTF8 in OCI

You can use UTF8 and AL32UTF8 by setting NLS_LANGfor OCI client applications.
If you do not need surrogate characters, it does not matter whether you choose
UTF8 or AL32UTF8. However, if your OCI applications might handle surrogate
characters, you need to make a decision. Because UTF8 can require up to three bytes
per character, one surrogate character is represented in two codepoints, totalling six
bytes. With AL32UTF8, one surrogate character is represented in one codepoint,
totalling four bytes.

Do not set NLS_LANGto AL16UTF16, because AL16UTF16 is the national character
set for the server. If you need to use UTF-16, you should specify the client character
set to OCI_UTF16ID using OCIAttrSet when binding or defining data.

Binding and Defining SQL CHAR Datatypes in OCI

To specify a Unicode character set for binding and defining data with SQL CHAR
datatypes, you may need to call the OCIAttrSet function to set the appropriate
character set ID after OCIBind or OCIDefine APIs. There are two typical cases:

1. Call OCIBind / OCIDefine followed by OCIAttrSet to specify UTF-16
Unicode character set encoding.

ub2 csid=0OCI_UTF16ID;
utext ename[100]; /* enough buffer for ENAME */

F Inserting Unicode data */

OCIBindByName(stmthpl, &bnd1p, errhp, (oratext*) " ENAME",
(sbd)strien((char *ENAME"), (void *) ename, sizeof(ename),
SQLT_STR, (void ¥)&insname_ind, (ub2 *) O, (ub2*) 0, (ub4) O,

(ub4 %0, OCI_DEFAULT);
OClAttrSet((void *) bnd1p, (ub4) OCl_HTYPE_BIND, (void *) &csid,
(ub4) O, (Ub4)OCI_ATTR_CHARSET_ID, erthp);
OClAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
(ub4) 0, (Ub4)OCI_ATTR_MAXDATA _SIZE, erthp);

* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfnlp, enhp, (ub4)1, (void *ename,
(sbd)sizeofename), SQLT_STR, (void *)0, (ub2 *)0,
(ub240, (Ub4)OCI_DEFAULT);
OCIAtrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) 0, (Ub4)OCI_ATTR_CHARSET_ID, errhp);

Unicode Programming 6-15

OCI Programming with Unicode

If bound buffers are of the utext datatype, you should add a cast (text *)
when OCIBind or OCIDefine is called. The value of the OCI_ATTR _
MAXDATA_SIZEattribute is usually determined by the size of column on the
server character set because this size is only used to allocate temporary buffer
for conversion on the server when you perform binding operations.

2. Call OCIBind or OCIDefine with NLS_LANGset to UTF8 or AL32UTF8.

UTF8 or AL32UTF8 can be set in NLS_LANG You call OCIBind and
OCIDefine in exactly the same manner as when you are not using Unicode.
Set the environment variable NLS _LANGo UTF8 or AL32UTF8 and run the
following OCI program:

oratext ename[100]; # enough buffer size for ENAME */

* Inserting Unicode data */

OCIBindByName(stmthpl, &bnd1p, errhp, (oratext*):ENAME",
(sbd)strien((char *":ENAME"), (void *) ename, sizeof(ename),
SQLT_STR, (void *)&insname_ind, (ub2*) 0, (ub2*) 0,

(ub4) O, (ub4 %0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
(ub4) O, (Ub4)OCI_ATTR_MAXDATA_SIZE, enhp);

F Retrieving Unicode data */

OCIDefineByPos (stmthp2, &dfnlp, erhp, (ub4)1, (void *)ename,
(sbd)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
(ub4)OCI_DEFAULT);

Binding and Defining SQL NCHAR Datatypes in OCI

Oracle recommends you access SQL NCHARdJatatypes using UTF-16 binding or
defining when using OCI. Starting from Oracle9i, SQL NCHARJatatypes have
become pure-Unicode datatypes with an encoding of either UTF8 or AL16UTF16.
To access data in SQL NCHARdatatypes, you need to set the OCI attribute OCI_
ATTR_CHARSET_FORfd SQLCS_NCHARfter binding and defining until execution
so that it performs an appropriate data conversion without data loss. The length of
data in SQL NCHARdatatypes is always in the number of Unicode codepoints.

The following program is a typical example of inserting and fetching data against
an NCHARlata column:

ub2 csid = OCI_UTF16ID;

6-16 Oracle9i Globalization Support Guide

OCI Programming with Unicode

ub2 cform = SQLCS_NCHAR;
utext ename[100]; / enough buffer for ENAME */

* Inserting Unicode data */
OCIBindByName(stmthpl, &bond1p, errhp, (oratext*) " ENAME",
(sbd)strien((char *ENAME"), (void *) ename,
sizeof(ename), SQLT_STR, (void ¥)&insname_ind, (ub2*) 0,
(ub2%) 0, (ub4) O, (Ub4 %0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid, (ub4) O,
(Ubd)OCI_ATTR_CHARSET_ID, erthp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &cform, (ub4) O,
(Ub4)OCI_ATTR_CHARSET_FORM, errhp);
OClAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
(ub4) 0, (Ub4)OCI_ATTR_MAXDATA _SIZE, erhp);

F* Retrieving Unicode data */

OClIDefineByPos (stmthp2, &dfnlp, emhp, (ub4)1, (void *)ename,
(sbd)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
(Ub4)OC|_DEFAULTY;

OCIAttrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid, (ub4) 0,

(Ub4)OCI_ATTR_CHARSET _ID, erhp);
OCIAitrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) O,
(Ub4)OCI_ATTR_CHARSET_FORM, enhp);

Binding and Defining CLOB and NCLOB Unicode Data in OCI

In order to write (bind) and read (define) UTF-16 data for CLOBor NCLOBcolumns,
the UTF-16 character set ID must be specified as OCILobWrite and OCILobRead.
When you write UTF-16 data into a CLOBcolumn, you should call OCILobWrite as
follows:

ub2 csid=0OC|_UTF16ID;

err = OCILobWite (ctx->svchp, cix->errhp, lobp, &amitp, offset, (void *) buf,
(ubd) BUFSIZE, OCl_ONE_PIECE, (void 90,
(sb4 (0) 0, (Ub2) csid, (ubl) SQLCS_IMPLICIT);

Where the parameter amtp is the data length in the number of Unicode codepoints.
The parameter offset indicates the offset of data from the beginning of data
column. The parameter csid must be set for UTF-16 data.

To read UTF-16 data from CLOBcolumns, call OCILobRead as follows:

Unicode Programming 6-17

OCI Programming with Unicode

ub2 csid=0CI_UTF16ID;

err = OClLobRead(ctx->svchp, ctx->erhp, lobp, &amip, offset, (void *) buf,
(Ub4)BUFSIZE , (void *) O, (sh4 (*)() O, (ub2)csid,
(ubl) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode codepoints. Note
one Unicode surrogate character is counted as two codepoints, because the
encoding is UTF-16. After binding or defining LOBcolumn, you can measure the
data length stored in the LOBcolumn using OClLobGetLength . The returning
value is the data length in the number of codepoints if you bind or define as
UTF-16.

err = OCILobGetLength(ctx->svchp, ctx->errhp, lobp, &lenp);

If you are using an NCLOByou must set OCI_ATTR_CHARSET_ FORtd SQLCS _
NCHAR

Unicode Mode in OCI

OCI supports UTF-16 metadata as well as UTF-16 data for binding and defining.
SQL statements, usernames, error messages, and column names can be in UTF-16,
and are thus independent of the NLS_LANGsetting. Oracle provides a Unicode
mode so you can use UTF-16 metadata. At the beginning of your OCI program, all
you have to do is create OCI environment handle (OCIEnv) with the OCI_UTF16
flag. Any inherited handle is automatically set the mode to Unicode where OCI
treats all string parameters as UTF-16 data.

To enable Unicode in OCI applications, Oracle offers an alternative approach using
a Unicode API called OCI_UTF16ID . Before Oracle9i, OCI could only manipulate
UTF-16 character set encoding for binding / defining to insert and fetch data
against database columns, while metadata like SQL statement, username, and
column name were restricted to the character set specified by NLS LANGFor
Oracle9i, the Unicode API is intended to be independent of NLS_LANG In addition,
all data manipulation by OCIl is in the UTF-16 character set encoding. This is
especially important for multilingual applications.

You activate the Unicode API by setting a Unicode mode when creating an OCI
environment handle (OCIEnv). Any inherited handle from the OCI environment
handle will be set to Unicode mode automatically. By changing to Unicode mode,
all metatext data parameters (text *) are assumed to be Unicode text datatypes
(utext *)in UTF-16 encoding. For binding and defining, the data is also assumed to
be Unicode in UTF-16 encoding. For example, the following program shows how

6-18 Oracle9i Globalization Support Guide

OCI Programming with Unicode

you can create an OCI environment handle as a Unicode mode. OCI_UTF16
indicates the default character set is UTF-16:

OCIEnv *envhp;

status = OCIEnvCreate((OCIEnv *)&envhp,
OCl_UTF16,

(void %)0,

(void*(*) () O,

(void*(*) () O,

(void(*) 0) O,

(size 1) 0,

(void *)0);

To prepare the SQL statement, call OCIStmtPrepare with (utext *) string. The
following example runs on Windows platforms only. You may need to change
wchar_t datatypes for other platforms.

constwchar_t sqistf] = L"SELECT * FROM ENAME=:ename";

OCIStmt* stmthp;

sts = OCIHandleAlloc(envh, (void *)&stmthp, OCI_HTYPE_STMT, 0, NULL);

status = OCIStmtPrepare(stmthp, errhp,(const text*)sglstr, weslen(sglstr),
OCI_NTV_SYNTAX, OC|_DEFAULT);

You call OCIStmtPrepare exactly like other character sets, but the parameter is
UTF-16 string data. For binding and defining data, you do not have to set the OCI_
ATTR_CHARSET _IDattribute because you are already in the Unicode mode. Bind
variable names must be UTF-16 strings. You must cast (text*) or

(const(text*)) for metadata parameters.

F Inserting Unicode data */
OCIBindByName(stmthpl, &bnd1p, errhp, (const text*)L":ename”,
(Sb4)weslen(L:ename"),
(void *) ename, sizecf(ename), SQLT_STR, (void *)&insname_ind,
(Ub2%) 0, (ub2*) 0, (Ub4) O, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &name_col_len,
(ub4) O, (Ub4)OCI_ATTR_MAXDATA _SIZE, emhp);

F* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfnlp, emhp, (ub4)1, (void *ename,

(sb4)sizeof(ename), SQLT_STR, (void ¥)0, (ub2 *)0, (ub2*)0,
(Ub4)OCI_DEFAULT);

Then OCIExecute will perform the operation.

Unicode Programming 6-19

Pro*C/C++ Programming with Unicode

Pro*C/C++ Programming with Unicode

Pro*C/C++ provides three ways for you to insert or retrieve Unicode data into or
from the database:

1. Using the VARCHARro*C/C++ datatype or the native C/C++ text datatype, a
program can access Unicode data stored in SQL CHARdatatypes of a UTF8 or
AL32UTF8 database. Alternatively, a program could use the C/C++ native
text type.

2. Using the UVARCHARro*C/C++ datatype or the native C/C++ utext
datatype, a program can access Unicode data stored in NCHARJatatypes of a
database.

3. Using the NVARCHARro*C/C++ datatype, a program can access Unicode data
stored in NCHARdJatatypes. The difference between UVARCHARNd NVARCHAR
in a Pro*C/C++ program is that the data for the UVARCHARatatype is stored in
a utext buffer while the data for the NVARCHARatatype is stored in a text
datatype.

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded
SQL text must be encoded in the character set specified in the NLS_LANG
environment variable.

Pro*C/C++ Data Conversion in Unicode

Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that
instructs OCI which conversion path should be taken based on the datatypes used
in a Pro*C/C++ program. Table 6-3 illustrates the conversion paths:

Table 6-3 Pro*C/C++ Bind and Define Data Conversion

Pro*C/C++ Datatype SQL Datatype Conversion Path

VARCHAR text CHAR NLS_LANG character set to/from the database character
set happens in OCI

VARCHAR text NCHAR NLS_LANGcharacter set to/from database character set
happens in OCI

Database character set to/from national character set
happens in database server

NVARCHAR NCHAR NLS_LAd@racter set to/from national character set
happens in OCI

6-20 Oracle9i Globalization Support Guide

Pro*C/C++ Programming with Unicode

Table 6-3 Pro*C/C++ Bind and Define Data Conversion (Cont.)

Pro*C/C++ Datatype SQL Datatype Conversion Path

NVARCHAR

UVARCHARTr utext

UVARCHARTr utext

CHAR NLS_LAbl@racter set to/from national character set
happens in OCI

National character set to/from database character set in
database server

NCHAR UTF-16 to/from the national character set happens in
OCl
CHAR UTF-16 to/from national character set happens in OCI

National character set to database character set happens
in database server

Using the VARCHAR Datatype

The Pro*C/C++ VARCHARlatatype is preprocessed to a struct with a length field
and text buffer field. An example is shown below using the C/C++ text native
datatype and the VARCHARro*C/C++ datatypes to bind and define table columns.

#include <sglca.h>
main()

{

F Change to STRING datatype: */

EXEC ORACLE OPTION (CHAR_MAP=STRING);
text ename[20] ; F* unsigned short type */
varchar address[50] ; + Pro*C/C++ uvarchar type */

EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
Fename is NULL-terminated */
printf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.ar);

}

When you use the VARCHARIatatype or native text datatype in a Pro*C/C++
program, the preprocessor assumes that the program intends to access columns of
SQL CHARdatatypes instead of SQL NCHAR]Jatatypes in the database. The
preprocessor generates C/C++ code to reflect this fact by doing a bind or define
using the SQLCS_IMPLICIT value for the OCI_ATTR_CHARSET_FORA&ftribute. As
a result, if a bind or define variable is bound to a column of SQL NCHARJatatypes
in the database, implicit conversion happens in the database server to convert the
data from the database character set to the national database character set and vice

Unicode Programming 6-21

Pro*C/C++ Programming with Unicode

versa. During the conversion, data loss occurs when the database character set is a
smaller set than the national character set.

Using the NVARCHAR Datatype

The Pro*C/C++ NVARCHARatatype is similar to the Pro*C/C++ VARCHAR
datatype. It should be used to access SQL NCHARJatatypes in the database. It tells
Pro*C/C++ preprocessor to bind or define a text buffer to the column of SQL NCHAR
datatypes. The preprocessor will specify the SQLCS_NCHARalue for the OCI_
ATTR_CHARSET_FORAftribute of the bind or define variable. As a result, no
implicit conversion occurs in the database.

If the NVARCHARuffer is bound against columns of SQL CHARdatatypes, the data
in the NVARCHARuffer (encoded in the NLS_LANGcharacter set) is converted to or
from the national character set in OCI, and the data is then converted to the
database character set in the database server. Data can be lost when the NLS _LANG
character set is a larger set than the database character set.

Using the UVARCHAR Datatype

The UVARCHARatatype is preprocessed to a struct with a length field and utext
buffer field. The following example code contains two host variables, ename and
address . The ename host variable is declared as a utext buffer containing 20
Unicode characters. The address host variable is declared as a uvarchar buffer
containing 50 Unicode characters, the len and arr fields are accessible as fields of a
struct.

#include <sglca.h>
#include <sglucs2.h>

main()

{

F*Change to STRING datatype: */

EXEC ORACLE OPTION (CHAR_MAP=STRING);

utext ename[20] ; F unsigned short type */
uvarchar address[50] ; F Pro*C/C++ uvarchar type */

EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
f*ename is NULL-terminated */

wprintf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len,
address.an);

6-22 Oracle9i Globalization Support Guide

JDBC and SQLJ Programming with Unicode

When you use the UVARCHARatatype or native utext datatype in Pro*C/C++
programs, the preprocessor assumes that the program intends to access SQL NCHAR
datatypes. The preprocessor generates C/C++ code by binding or defining using

the SQLCS_NCHARalue for OCI_ATTR_CHARSET_FORA&ttribute. As a result, if a
bind or define variable is bound to a column of a SQL NCHARdJatatype, an implicit
conversion of the data from the national character set occurs in the database server.
However, there is no data lost in this scenario because the national character set is
always a larger set than the database character set.

JDBC and SQLJ Programming with Unicode

Oracle provides three JDBC drivers for Java programs to access Unicode data in the
database. They are the JDBC OCI driver, JDBC Thin driver, and JDBC KPRB driver.
Java programs can insert or retrieve Unicode data to and from columns of SQL
CHARand NCHARJatatypes. Specifically, JDBC allows Java programs to bind or
define Java strings to SQL CHARand NCHARJatatypes. Because Java’s string
datatype is UTF-16 encoded, data retrieved from or inserted into the database must
be converted from UTF-16 to the database character set or the national character set
and vice versa. The SQLJ preprocessor allows Java programs to embed SQL
statements to simplify database access code. It translates the embedded SQL
statements of a Java program to the corresponding JDBC calls. Similar to JDBC,
SQLJ allows programs to bind or define Java String to a SQL CHARor NCHAR
column. JDBC and SQLJ also allow you to specify the PL/SQL and SQL statements
in Java strings so that any non-ASCII schema object names can be referenced in Java
programs.

Java String Bind and Define in Unicode

Oracle JDBC drivers allow you to access SQL CHARdatatypes in the database using
Java string bind or define variables. The following code illustrates how to bind or
define a Java string to a CHARcolumn:

intempno =12345;

String ename ="Joe"

PreparedStatement pstmt = conn.prepareStatement('INSERT INTO" +
"emp (ename, empno) VALUES (?, ?)");

pstmt.setString(1, ename);

pstmt.setint(2, empno);
pstmt.execute(); F* execute to insert into first row */
empno+=1; F next employee number */

ename ="\uFF2AUFF4RUFF45"; /* Unicode characters in name */

Unicode Programming 6-23

JDBC and SQLJ Programming with Unicode

pstmt.setSting(1, ename);

pstmt.setint(2, empno);
pstmt.execute(); F execute to insert into second row */

For binding or defining Java string variables to SQL NCHARJatatypes, Oracle
extends the JDBC specification to add the

PreparedStatement .setFormOfUse() method through which you can
explicitly specify the target column of a bind variable to be a SQL NCHARJatatype.
The following code illustrates how to bind a Java string to an NCHARolumn:

intempno =12345;
String ename ="Joe"
oracle jdbc.OraclePreparedStatement pstmt =

(oracle jdbc.OraclePreparedStatement)

conn.prepareStatement(' INSERT INTO emp (ename, empno) VALUES (?, ?)");
pstmt.setFormOfUse(1, oracle.jdbc.OraclePreparedStatement FORM_NCHARY);
pstmt.setSting(1, ename);

pstmt.setint(2, empno);
pstmt.execute(); F* execute to insert into first row */
empno+=1; F next employee number */

ename ="uFF2A\UFF4RUFF45" /* Unicode characters in name */
pstmt.setSting(1, ename);

pstmt.setint(2, empno);

pstmt.execute(); P execute to insert into second row */

You can bind or define a Java string against an NCHARolumn without explicitly
specifying the form of use argument, but you then have the following implications:

1. If you do not specify the argument in the setString() method, JDBC
assumes the bind or define variable to be for the SQL CHARcolumn. As a result,
it tries to convert them to the database character set. When the data gets to the
database, the database implicitly converts the data in the database character set
to the national character set. During this conversion, data can be lost when the
database character set is a subset of the national character set. Because the
national character set is either UTF8 or AL16UTF16, data loss would happen if
the database character set is not UTF8 or AL32UTFS8.

2. Because implicit conversion from SQL CHARo SQL NCHARJatatypes happens
in the database, database performance will be adversely impacted.

In addition, if you bind or define a Java string for a column of SQL CHARdatatypes
but specify the form of use argument, performance of the database will be adversely
affected. However, data should not be lost because the national character set is
always a larger set than the database character.

6-24 Oracle9i Globalization Support Guide

JDBC and SQLJ Programming with Unicode

JDBC Restriction

You must place a setFormOfUse() statement before binding or defining Java
variables to SQL NCHARJatatypes. The following code illustrates a sample setting
of setFormOfUse()

'I'I
/I Calldbms_lob.read(:clob, :read_this_time, :i+1, :string_this_time)
//.
OracleCallableStatement cstmt = (oracle jdbc.OracleCallableStatement)

conn.prepareCall('BEGIN doms_lob.read(:1, :2, :3,:4);, END;");
while (i <length)

{
cstmt.setFormOfUse(1,oracle.jdbc.ConstNCHAR);

cstmt.setFormOfUse(4,oracle jdbc.Const NCHAR);

cstmt.registerOutParameter(2,oracle.jdbc.Oracle Types.BIGINT);
I***the following 2 lines have to be put after setFormOfUse() ***
cstmt.registerOutParameter(4,oracle.jdbc.Oracle Types.CHAR);
cstmt.setCLOB(1,clob);

cstmt.setl ong(2,chunk);

cstmt.setlong(3,i+1);

cstmt.execute();

}

Java Data Conversion in Unicode
Because Java strings are always encoded in UTF-16, JDBC drivers transparently
convert data from the database character set to UTF-16 or the national character set.
The conversion paths taken are different for the three JDBC drivers;

1. For the OCI driver, the SQL statements are always converted to the database
character set by the driver before it is sent to the database for processing. For
Java string bind or define variables, Table 6-4 summarizes the conversion
paths taken for different scenarios:

Table 6-4 OCI Driver Conversion Path

Form of Use SQL Datatype Conversion Path
Const.CHAR CHAR Java String to/from database character set
(Default) happens in the JDBC driver

Unicode Programming 6-25

JDBC and SQLJ Programming with Unicode

Table 6-4 OCI Driver Conversion Path (Cont.)

Form of Use SQL Datatype Conversion Path

Const.CHAR NCHAR
(Default)

Const.NCHAR NCHAR

Const.NCHAR CHAR

Java String to/from database character set
happens in the JDBC driver.

Data in the database character set to/from
national character set happens in the database
server

Java String to/from national character set
happens in the JDBC driver

Java String to/from national character set
happens in the JDBC driver

Data in national character set to/from database
character set happens in the database server

2. For the Thin driver, SQL statements are always converted to either the database
character set or UTF-8 by the driver before they are sent to the database for
processing. The Thin driver also notifies the database that a SQL statement
requires further conversion before being processed. The database, in turn,
converts the SQL statement to the database character set. For Java string bind
and define variables, the conversion paths shown in Table 6-5 are taken for the

Thin driver:

Table 6-5 Thin Driver Conversion Path

Database
Form of Use SQL Datatype Character Set Conversion Path
Const.CHAR CHAR US7ASCII or Java String to/from the database character set
(Default) WES8ISO8859P1 happens in the Thin driver
Const.CHAR NCHAR US7ASCII or Java String to/from the database character set
(Default) WES8ISO8859P1 happens in the Thin driver.
Data in the database character set to/from the
national character set happens in the database
server
Const.CHAR CHAR non-ASCII and Java String to/from UTF-8 happens in the
(Default) non-WEB8ISO8859P1 Thin driver.

6-26 Oracle9i Globalization Support Guide

Data in UTF-8 to/from the database character
set happens in the database server

ODBC and OLEDB Programming with Unicode

Table 6-5 Thin Driver Conversion Path (Cont.)

Database
Form of Use SQL Datatype Character Set Conversion Path
Const.CHAR CHAR non-ASCIl and Java String to/from UTF-8 happens in the
(Default) non-WEB8ISO8859P1 Thin driver.

Const.NCHAR CHAR

Const.NCHAR NCHAR

Data in UTF-8 to/from national character set
happens in the database server

Java String to/from the national character set
happens in the Thin driver.

Data in the national character set to/from the
database character set happens in the database
server

Java String to/from the national character set
happens in the Thin driver

3. The JDBC server-side internal driver is running in the server, all conversion are
done in the database server. SQL statements specified as Java strings are
converted to the database character set. Java string bind or define variables
are converted to the database character sets if the form of use argument is not
specified. Otherwise, they are converted to the national character set.

ODBC and OLEDB Programming with Unicode

You should use Oracle’s ODBC and OLE DB drivers to access Oracle9i when using
a Windows platform. This section describes how these drivers support Unicode.

Unicode-Enabled Drivers in ODBC and OLEDB

Oracle’s ODBC and OLE DB drivers can handle Unicode data properly without
data loss. For example, you can run a Unicode ODBC application containing
Japanese data on English Windows if you install Japanese fonts and an input
method editor for entering Japanese characters.

In Oracle9i, Oracle provides Windows platform-specific ODBC and OLE DB drivers
only. For Unix platforms, contact your vendor.

OCI Dependency in Unicode

OCI Unicode binding and defining features are used by the ODBC and OLE DB
drivers to handle Unicode data. As discussed in "OCI Programming with Unicode"
on page 6-11, OCI Unicode data binding and defining features are independent

Unicode Programming 6-27

ODBC and OLEDB Programming with Unicode

from NLS_LANG This means Unicode data is handled properly, irrespective of the
NLS_LANGsetting on the platform.

ODBC and OLEDB Code Conversion in Unicode

In general, no redundant data conversion occurs unless you specify a different
client datatype from that of the server. If you bind Unicode buffer SQL_C_WCHAR
with a Unicode data column like NCHARfor example, ODBC and OLE DB drivers
bypass it between the application and OCI layer.

If you do not specify datatypes before fetching, and call SQLGetData with the
client datatypes instead, the conversions in Table 6-6 occur:

Table 6-6 ODBC Implicit Binding Code Conversions

Datatype of the Datatypes of the
Datatypes of ODBC Target Column Target Column in

Client Buffer [*1] for ODBC the Database Fetch Conversions Comments
SQL_C_WCHAR N/A CHAR, [*2] Database character No unexpected data
VARCHAR2, set, NLS_LANGto loss, but may cause
CLOB UTF-16 in OCI and performance
ODBC degradation if [*2]

[*3] Database character
set to UTF-16 in OCI

SQL_C_CHAR N/A CHAR, [*2] Database character No unexpected data
VARCHAR2, setto NLS_LANGIn OCI loss, but may cause
CLOB performance
[*3] Database character S
set, UTF-16, to NLS_ gaeferada“on in [*3]

LANGcharacter set in
OCl and ODBC

Note that you must specify the datatype for inserting and updating operations.

[*1] Datatype of ODBC client buffer is given when you call SQLGetData but not
immediately. Hence, SQLFetch does not have the information.

[*2] If database character set is a subset of NLS_LANG
[*3] If database character set is not a subset of NLS_LANG

Because the ODBC driver guarantees data integrity, if you perform implicit
bindings, redundant conversion may result in performance degradation. Your
choice is the trade off between performance with explicit binding or usability with
implicit binding.

6-28 Oracle9i Globalization Support Guide

ODBC and OLEDB Programming with Unicode

OLE DB Code Conversions

Unlike ODBC, OLE DB only allows you to perform implicit bindings for both
inserting/updating and fetching data. The conversion algorithm for determining
the intermediate character set is the same as the implicit binding cases of ODBC.

Table 6-7 OLE DB Implicit Bindings

Datatypes of the
Datatypes of OLE_ Target Columninthe In- and Out-Binding

DB Client Buffer Database Conversions Comments

DBTYPE_WCHAR CHAR, [*1] Database character set No unexpected data loss,
VARCHAR2, to/from NLS_LANGcharacter set but may cause performance
CLOB in OCI. NLS_LANGcharacter setto degradation in [*2] case

UTF-16 in OLE DB

[*2] Database character set
to/from UTF-16 in OCI

DBTYPE_CHAR CHAR, [*1] Database character set No unexpected data loss,
VARCHAR?2, to/from NLS_LANGN OCI but may cause performance
CLOB degradation in [*3] case

[*2] Database character set
to/from UTF-16 in OCI. UTF-16 to
NLS_LANGcharacter set in OLE
DB

[*1] If database character set is a subset of NLS_LANG
[*2] If database character set is not a subset of NLS_LANG

ODBC Unicode Datatypes

In ODBC Unicode applications, use SQLWCHAB store Unicode data. All standard
Windows Unicode functions can be used for SQLWCHARata manipulations. For
example, weslen counts the number of characters of SQLWCHARata:

SQLWCHAR sqlStmt] = L"select ename from emp";
len =weslen(sqiStmt);

Additionally, Microsoft’s ODBC 3.5 specification defines three Unicode datatype
identifiers for the SQL_C_WCHARBQL_C_WVARCHA&d SQL_WLONGVARCHAR
clients; and three Unicode datatype identifiers for servers SQL_WCHARBQL _
WVARCHARNd SQL_WLONGVARCHAR

For binding operations, specify both datatypes for client and server using
SQLBindParameter . The following is an example of Unicode binding, where the

Unicode Programming 6-29

ODBC and OLEDB Programming with Unicode

client buffer Nameindicates that Unicode data (SQL_C_WCHARs bound to the first
bind variable associated with the Unicode column (SQL_WCHAR

SQLBindParameter(StatementHandle, 1, SQL_PARAM INPUT, SQL_C WCHAR,
SQL WCHAR, NameLen, 0, (SQLPOINTER)Name, 0, &Name);

To determine the ODBC Unicode datatypes for server, Table 6-8 represents the
datatype mappings against SQL NCHARJatatypes:

Table 6-8 Server ODBC Unicode Datatype Mapping

ODBC Datatype Oracle Datatype
SQL_WCHAR NCHAR
SQL_WVARCHAR NVARCHAR2
SQL_WLONGVARCHAR NCLOB

According to ODBC specifications, SQL_ WCHARBQL_WVARCHABRd SQL _
WLONGVARCHAR treated as Unicode data, and are therefore measured in the
number of characters instead of bytes to represents the data length when you
retrieve table column information. Because NCHARNVARCHAR2Nnd NCLORBare
migrated into pure Unicode datatypes, the above mappings will fit in the expected
ODBC behavior.

OLEDB Unicode Datatypes

OLE DB offers you the choices of wchar_t * BSTR and OLESTRfor the Unicode
client C datatype. In practice, wchar_t is the most common datatype and the
others are for specific purposes. The following example assigns a static SQL
statement:

wehar_t*sqlStmt = OLESTR('SELECT ename FROM emp");

The OLESTRmacro works exactly like an "L" modifier to indicate the Unicode
string. If you need to allocate Unicode data buffer dynamically using OLESTR use
the IMalloc allocator (for example, CoTaskMemAlloc). However, using OLESTR
is not the normal method for variable length data; use wchar_t * instead for generic
string types. BSTRis similar but a string with a length prefix in the memory location
preceding the string. Some functions and methods can accept only BSTRUnicode
datatypes. Therefore, BSTRUnicode string must be manipulated with special
functions like SysAllocString for allocation and SysFreeString for freeing
memory.

6-30 Oracle9i Globalization Support Guide

ODBC and OLEDB Programming with Unicode

ADO Access

Unlike ODBC, OLE DB does not allow you to specify the server datatype explicitly.
When you set the client datatype, the OLE DB driver automatically performs data
conversion if necessary.

Table 6-9 illustrates OLE DB datatype mapping:

Table 6-9 OLE DB Datatype Mapping

OLE DB Datatype Oracle Datatype
DBTYPE_WCHAR NCHAR or NVARCHAR2

If DBTYPE_BSTRs specified, it is assumed to be DBTYPE_WCHAcause both are
Unicode strings.

ADO is a high-level API to access database via OLE DB and ODBC drivers. Most
database application developers use the ADO interface on Windows because it is
easily accessible from Visual Basic, the primary scripting language for Active Server
Pages (ASP) for the Internet Information Server (11S). To OLE DB and ODBC
drivers, ADO is simply an OLE DB consumer or ODBC application. ADO assumes
that OLE DB and ODBC drivers are Unicode-aware components; hence, it always
attempts to manipulate Unicode data.

To use an ODBC driver with ADO, check the Force SQL_WCHARattribute on the
ODBC Data Source control panel. OLE DB is automatically adjusted to the ADO
environment and requires no such action.

Unicode Programming 6-31

ODBC and OLEDB Programming with Unicode

6-32 Oracle9i Globalization Support Guide

v

SQL Programming

This chapter contains information useful for SQL programming in a globalization
support environment. It includes the following topics:

« Locale-Dependent SQL Functions
« Time/Date/Calendar Formats
« Numeric Formats

« Miscellaneous Topics

SQL Programming 7-1

Locale-Dependent SQL Functions

Locale-Dependent SQL Functions

All SQL functions whose behavior depends on NLS conventions allow NLS
parameters to be specified. These functions are:

. TO_CHAR

. TO_DATE

. TO_NUMBER
. NLS_UPPER
. NLS_LOWER
. NLS_INITCAP
. NLSSORT

Explicitly specifying the optional NLS parameters for these functions allows the
function evaluations to be independent of the NLS parameters in force for the
session. This feature may be important for SQL statements that contain numbers
and dates as string literals.

For example, the following query is evaluated correctly if the language specified for
dates is AMERICAN

SELECT ENAME FROM EMP
WHERE HIREDATE >'1-JAN-91;

Such a query can be made independent of the current date language by using these
statements:

SELECT ENAME FROM EMP
WHERE HIREDATE > TO_DATE(1-JAN-91' DD-MON-YY',
'NLS_DATE_LANGUAGE = AMERICAN));

In this way, language-independent SQL statements can be defined where necessary.
For example, such statements might be necessary when string literals appear in SQL
statements in views, CHECKconstraints, or triggers.

All character functions support both single-byte and multibyte characters. Except
where explicitly stated, character functions operate character by character, rather
than byte by byte.

7-2 Oracle9i Globalization Support Guide

Locale-Dependent SQL Functions

Default Specifications

When evaluating views and triggers, default values for NLS function parameters

are taken from the values currently in force for the session. When evaluating CHECK
constraints, default values are set by the NLS parameters that were specified at
database creation.

Specifying Parameters
The syntax that specifies NLS parameters in SQL functions is:

‘parameter = value'

The following NLS parameters can be specified:

. NLS_DATE_LANGUAGE

« NLS_NUMERIC_CHARACTERS

« NLS_CURRENCY

« NLS_ISO_CURRENCY

« NLS_SORT

Only certain NLS parameters are valid for particular SQL functions, as shown in
Table 7-1:

Table 7-1 SQL Functions and Their Parameters

SQL Function Valid NLS Parameters
TO_DATE NLS_DATE_LANGUAGE
NLS CALENDAR
TO_NUMBER: NLS NUMERIC_CHARACTERS

NLS_CURRENCY
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

SQL Programming 7-3

Locale-Dependent SQL Functions

Table 7-1 SQL Functions and Their Parameters (Cont.)

SQL Function Valid NLS Parameters

TO_NCHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS_UPPER NLS_SORT
NLS_LOWER NLS_SORT
NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

Examples of the use of NLS parameters are:

TO_DATE (1-JAN-89, DD-MON-YY',
'nis_date_language = American)

TO_CHAR (hiredate, DDMON/YYYY’,
'nis_date_language = French)

TO_NUMBER (13.000,00, '99G999D99,
'nis_numeric_characters="..")

TO_CHAR (sal, '9G999D99L, 'nls_numeric_characters =",."
nis_cumrency =" Dfl")

TO_CHAR (sal, '9G999D99C), 'nis_numeric_characters=".,"
nis_iso_currency = Japan

NLS_UPPER (ename, 'nls_sort = Swiss)

NLSSORT (ename, 'nls_sort=German)

7-4 Oracle9i Globalization Support Guide

Locale-Dependent SQL Functions

Note: For some languages, various lowercase characters
correspond to a sequence of uppercase characters, or vice versa. As
a result, the length of the output from the functions NLS_UPPER
NLS_LOWERand NLS_INITCAP can differ from the input.

Unacceptable Parameters

Note that NLS_LANGUAGENnd NLS_TERRITORYare not accepted as parameters in
SQL functions, except for NLSSORTOnNIly NLS parameters that explicitly define the
specific data items required for unambiguous interpretation of a format are
accepted. NLS_DATE_FORMAIE also not accepted as a parameter for the reason
described below.

If an NLS parameter is specified in TO_CHARTO_NUMBERIr TO_DATEthen a
format mask must also be specified as the second parameter. For example, the
following specification is legal:

TO_CHAR (hiredate, DD/IMON/YYYY', 'nis_date _language = French)

The following specifications are illegal:

TO_CHAR (hiredate, 'nis_date_language = French)
TO_CHAR (hiredate, 'nls_date_language = French, DD/IMON/YY')

This restriction requires that a date format always be specified if an NLS parameter
isina TO_CHAPRr TO_DATHEunction. As a result, NLS_DATE_FORMAIE not a
valid NLS parameter for these functions.

CONVERT Function

The CONVERBQL function allows conversion of character data between character
sets.

The CONVERTunction converts the binary representation of a character string in
one character set to another. It uses exactly the same technique described previously
for the conversion between database and client character sets. Hence, it uses
replacement characters and has the same limitations.

The syntax for CONVERTSs:

SQL Programming 7-5

Locale-Dependent SQL Functions

Figure 7-1 CONVERT Syntax

-source_char_set
- = o,

where source_char_set is the source character set and dest_char_set isthe
destination character set. If the source_char_set parameter is not specified, then
it defaults to the database character set.

In client/server environments using different character sets, use the TRANSLATE
(...USING...) statement to perform conversions instead of CONVERTThe conversion
to client character sets will then properly know the server character set of the result
of the TRANSLATEstatement.

See Also:

« Oracle9i SQL Reference for more information about the CONVERT
function

« "Character Set Conversion Support" on page A-18 for character
set encodings that are used only for the CONVERTunction

INSTR, LENGTH, and SUBSTR Functions and Character Sets

When using string manipulation functions, you can get different results depending
upon the database character set. In particular, the INSTR, LENGTHand SUBSTR
functions can return incorrect results because of the difference between single and
multibyte character sets. To guarantee correct results, you should use variants of
these functions designed for multibyte character sets. These functions are variations
of:

=« INSTR Functions and Character Sets
« LENGTH Functions and Character Sets
« SUBSTR Functions and Character Sets

INSTR Functions and Character Sets

The instring functions search strings for the presence of a substring. In addition to
the traditional INSTR, you can use INSTRB, INSTR2, INSTR4, and INSTRC. The
functions allow you to return part of a string based on whether characters are
calculated in bytes, UCS2 codepoints (where a surrogate pair is considered as two

7-6 Oracle9i Globalization Support Guide

Locale-Dependent SQL Functions

codepoints), or UCS4 codepoints (treats a surrogate pair as one codepoint) or
complete Unicode characters (same as INSTR4 with additional support for treating
composed Unicode characters as one code point).

The following examples highlights the differences between INSTR and INSTRB on
a database where the database character set is UTFS8.

This searches the string "Stadte und Lander", beginning with the fifth character, for
the character "d". It returns the character position in "Stadte und Lander" at which
the second occurrence of "d" begins.

SELECT INSTR(Stédte und Lander,d, 5, 2) INSTR
FROM DUAL;
INSTR

15

The following example searches the string "Stadte und Lander", beginning with the
fifth byte, for the character "d". It returns the byte position in "Stadte und Lander" at
which the second occurrence of "d" begins.

SELECT INSTRB(Stédte und Lander,d, 5, 2) INSTRB
FROM DUAL;
INSTRB

11

LENGTH Functions and Character Sets

The length functions return the length of a string. In addition to the traditional
LENGTHyou can use LENGTHBLENGTH2LENGTH4and LENGTHCThe functions
allow you to return part of a string based on whether characters are calculated in
bytes, UCS2 codepoints (where a surrogate pair is considered as two codepoints), or
UCS4 codepoints (treats a surrogate pair as one codepoint) or complete Unicode
characters (same as LENGTH4with additional support for treating composed
Unicode characters as one code point).

The following examples highlight the differences between LENGTHand LENGTHB
on a database where the database character set is UTF8.

SELECT LENGTH (Télévision) LENGTH
FROM DUAL;
LENGTH

10

SQL Programming 7-7

Locale-Dependent SQL Functions

SELECT LENGTHB (Télévision) LENGTHB
FROM DUAL;

LENGTHB

12

SUBSTR Functions and Character Sets

The substring functions return the requested portion of a substring. In addition to
the traditional SUBSTRyou can use SUBSTRBSUBSTR2 SUBSTR4and
SUBSTR he functions allow you to return part of a string based on whether
characters are calculated in bytes, UCS2 codepoints (where a surrogate pair is
considered as two codepoints), or UCS4 codepoints (treats a surrogate pair as one
codepoint) or complete Unicode characters (same as SUBSTR4with additional
support for treating composed Unicode characters as one code point).

The following examples highlight the differences between SUBSTRand SUBSTRB
on a database where the database character set is AL32UTFS8.

SELECT SUBSTR (Fuf3ball, 2, 4) SUBSTR
FROM DUAL;

SUBS

ulba

SELECT SUBSTRB (Fuf3ball, 2, 4) SUBSTRB
FROM DUAL;

SuUB

uikb

LIKE Conditions and Character Sets

The LIKE conditions specify a test involving pattern matching. Whereas the
equality operator (=) exactly matches one character value to another, the LIKE
conditions match a portion of one character value to another by searching the first
value for the pattern specified by the second. LIKE calculates strings using
characters as defined by the input character set. LIKEC uses unicode complete
characters. LIKE2 uses UCS2 codepoints. LIKE4 uses USC4 codepoints.

There is no LIKEB condition.

7-8 Oracle9i Globalization Support Guide

Locale-Dependent SQL Functions

Character Set SQL Functions

Two SQL functions, NLS_CHARSET_NAMihd NLS_CHARSET _IDare provided to
convert between character set ID numbers and character set names. They are used
by programs that need to determine character set ID numbers for binding variables
through OCI.

See Also: Oracle9i SQL Reference

Converting from Character Set Number to Character Set Name

The NLS_CHARSET_NAM® function returns the name of the character set
corresponding to ID number n. The function returns NULL if n is not a recognized
character set ID value.

Converting from Character Set Name to Character Set Number

NLS_CHARSET_IMTEXT) returns the character set ID corresponding to the name
specified by TEXT. TEXTis defined as a run-time VARCHARZuantity, a character set
name. Values for TEXT can be NLSRTLnames that resolve to sets other than the
database character set or the national character set.

If the value CHAR_CSs entered for TEXT, then the function returns the ID of the
server's database character set. If the value NCHAR_CS$s entered for TEXT, then the
function returns the ID of the server's national character set. The function returns
NULLif TEXTis not a recognized name. The value for TEXT must be entered in all
uppercase.

Returning the Length of an NCHAR Column

NLS_CHARSET_DECL_LEBYTECNTCSID) returns the declaration length (in
number of characters) for an NCHARolumn. The BYTECNTargument is the byte
length of the column. The CSID argument is the character set ID of the column.

NLSSORT Function

The NLSSORTfunction replaces a character string with the equivalent sort string
used by the linguistic sort mechanism. For a binary sort, the sort string is the same
as the input string. The linguistic sort technique operates by replacing each
character string with some other binary values, chosen so that sorting the resulting
string produces the desired sorting sequence. When a linguistic sort is being used,
NLSSORTreturns the binary values that replace the original string.

SQL Programming 7-9

Locale-Dependent SQL Functions

The ORDER BY¥lause in a SQL statement is determined by the NLS_SORTsession
parameter, but it can be overridden by explicitly using the NLSSORTunction, as the
following example shows.

ALTER SESSION SETNLS_SORT = GERMAN;
SELECT*

FROM tablel

ORDER BY col1;

The preceding example uses a German sort, but the following example uses a
French one.

ALTER SESSION SET NLS_SORT = GERMAN,;
SELECT*

FROM tablel

ORDER BY NLSSORT(col1, NLS_SORT =FRENCHY);

The WHEREIlause normally uses binary comparison rather than linguistic
comparison. But this can be overridden by the following methods.
« Use of the NLSSORTfunction in the WHERElause.

SELECT*

FROM tablel

WHERE NLSSORT(col1, NLS_SORT = FRENCH)>
NLSSORT(col2, NLS_SORT = FRENCH));

= Setting the session parameter NLS_COMRo ANSI, in which case the NLS_SORT
session parameter is used in the WHEREIlause.

ALTER SESSION SETNLS_COMP =ANS];

NLSSORT Syntax
There are four ways to use NLSSORT

» NLSSORTY(), which relies on the NLS_SORTparameter
» NLSSORT(columnl, 'NLS_SORT=xxxx")

» NLSSORT(columnl, 'NLS_LANG= xxxx')

» NLSSORT(columnl, 'NLS_LANGUAGE=xxxx")

The NLS_LANGparameter of the NLS_SORTfunction is not the same as the NLS_
LANGclient environment setting. In the NLSSORTunction, NLS_LANGspecifies the
abbreviated language name, for example, USfor American or PL for Polish. An
example is:

7-10 Oracle9i Globalization Support Guide

Locale-Dependent SQL Functions

SELECT * FROM emps
ORDER BY NLSSORT(col1, NLS_LANG=PL);

String Comparisons in a WHERE Clause

NLSSORTallows applications to perform string matching that follows alphabetic
conventions. Normally, character strings in a WHERElause are compared using the
characters' binary values. A character is "greater than" another if it has a higher
binary value in the database character set. Because the sequence of characters based
on their binary values might not match the alphabetic sequence for a language, such
comparisons often do not follow alphabetic conventions. For example, if a column
(coll) contains the values ABC, ABZ, BCD, and ABC in the 1SO 88591 8-bit
character set, the following query:

SELECT coll FROM tab1l WHERE coll > 'B;;

returns both BCDand ABCbecause A has a higher numeric value than B. However,
in German, A is sorted alphabetically before B. Such conventions are
language-dependent even when the same character is used. In Swedish, A is sorted
after Z. Linguistic comparisons can be made using NLSSORTin the WHEREIause, as
follows:

WHERE NLSSORT(col) comparison_operator NLSSORT(comparison_string)

Note that NLSSORThas to be on both sides of the comparison operator. For
example:

SELECT coll FROM tabl WHERE NLSSORT(col1) > NLSSORT(B)

If a German linguistic sort is being used, this does not return strings beginning with
A because, in the German alphabet, A comes before B. If a Swedish linguistic sort is
being used, such names are returned because, in the Swedish alphabet, A comes
after Z.

NLS_COMP

Normally, comparison in the WHERI[Elause or PL/SQL blocks is binary. You can use
the NLSSORTfunction for linguistic comparison. Sometimes this can be tedious,
especially when the linguistic sort needed has already been specified in the NLS
SORTsession parameter. You can use NLS _COMHPN such cases to indicate that the
comparisons must be linguistic according to the NLS_SORTsession parameter. This
is done by altering the session;

ALTER SESSION SETNLS_COMP =ANS,

SQL Programming 7-11

Time/Date/Calendar Formats

To specify that comparison in the WHERElause is always binary, issue the following
statement:

ALTER SESSION SET NLS_COMP =BINARY;

When NLS_COMBRs set to ANSI, a linguistic index improves the performance of the
linguistic comparison.To enable a linguistic index, use the syntax:

CREATE INDEX i ON t(NLSSORT(col, NLS_SORT=FRENCH));

Partitioned Tables and Indexes

String comparison for partition VALUES LESS THAMollation for DDL and DML
always follows BINARY order.

Controlling an ORDER BY Clause

If a linguistic sorting sequence is in use, then NLSSORTis used implicitly on each
character item in the ORDER BY¥lause. As a result, the sort mechanism (linguistic or
binary) for an ORDER BYs transparent to the application. However, if the NLSSORT
function is explicitly specified for a character item in an ORDER BYtem, then the
implicit NLSSORTis not done.

In other words, the NLSSORTIinguistic replacement is only applied once, not twice.
The NLSSORTfunction is generally not needed in an ORDER BYlause when the
default sort mechanism is a linguistic sort. However, when the default sort
mechanism is BINARY, then a query such as:

SELECT ename FROM emp
ORDER BY ename

uses a binary sort. A German linguistic sort can be obtained using:

SELECT ename FROM emp
ORDER BY NLSSORT(ename, NLS_SORT = GERMAN)

Time/Date/Calendar Formats

Several format masks are provided with the TO_CHARTO_DATEand TO_NUMBER
functions to format dates and numbers according to the relevant conventions.

Date Formats

A format element RM (Roman Month) returns a month as a Roman numeral. One
can specify either uppercase or lowercase using RM or rm respectively. For

7-12 Oracle9i Globalization Support Guide

Numeric Formats

example, for the date 7 Sep 1998 , DD-rm-YYYY will return 07-ix-1998 and
DD-RM-YYYYwill return 07-1X-1998

Note that the MONand DY format masks explicitly support month and day
abbreviations that may not be three characters in length. For example, the
abbreviations "Lu" and "Ma" can be specified for the French "Lundi" and "Mardi",
respectively.

Week and Day Number Conventions
The week numbers returned by the WW format mask are calculated according to

the algorithm int((day-ijanl1)/7) . This week number algorithm does not follow
the ISO standard (2015, 1992-06-15).

To support the 1SO standard, a format element IW is provided that returns the 1ISO
week number. In addition, format elements |, IY, 1YY, and IYYY, equivalent in
behavior to the format elements Y, YY, YYY, and YYYY return the year relating to the
ISO week number.

In the ISO standard, the year relating to an 1SO week number can be different from
the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A
week always starts on a Monday and ends on a Sunday.

« IfJanuary 1 falls on a Friday, Saturday, or Sunday, then the week including
January 1 is the last week of the previous year, because most of the days in the
week belong to the previous year.

« IfJanuary 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the
week is the first week of the new year, because most of the days in the week
belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to
Sunday, January 6, 1991, is week 1. Thus, the ISO week number and year for
December 31, 1990, is 1, 1991. To get the ISO week number, use the format mask IW
for the week number and one of the IY formats for the year.

Numeric Formats
Several additional format elements are provided for formatting numbers:
« D(decimal) returns the decimal point character.
« G(group) returns the group separator.

« L (local currency) returns the local currency symbol.

SQL Programming 7-13

Miscellaneous Topics

« C(international currency) returns the ISO currency symbol.
« RN(Roman numeral) returns the number as its Roman numeral equivalent.

For Roman numerals, one can specify either uppercase or lowercase, using RNor
rn , respectively. The number being converted must be an integer in the range 1 to
3999.

See Also: Oracle9i SQL Reference for a complete description on
using date and number masks

Miscellaneous Topics
The following topic is also important for SQL programming:

« The Concatenation Operator

The Concatenation Operator

If the database character set replaces the vertical bar | with a national character,
then all SQL statements that use the concatenation operator (ASCII 124) will fail.
For example, creating a procedure will fail because it generates a recursive SQL
statement that uses concatenation. When you use a 7-bit replacement character set
such as D7DEC, F7DEC, or SF7ASCII for the database character set, then the
national character which replaces the vertical bar is not allowed in object names
because the vertical bar is interpreted as the concatenation operator.

On the user side, one can use a 7-bit replacement character set if the database
character set is the same or compatible, that is, if both character sets replace the
vertical bar with the same national character.

7-14 Oracle9i Globalization Support Guide

8

OCI Programming

This chapter contains information useful for OCI programming, including:

Using the OCI NLS Functions

NLS Language Information Retrieval
String Manipulation in OCI
Character Classification in OCI
Character Set Conversion in OCI

Messaging Mechanism in OCI

OCI Programming 8-1

Using the OCI NLS Functions

Using the OCI NLS Functions

Many OCI NLS functions accept either the environment handle or the user session
handle. The OCI environment handle is associated with the client NLS environment
and initialized with the client NLLS settings (environment variables). This
environment does not change when ALTER SESSIONstatements are issued to the
server. The character set associated with the environment handle is the client
character set. The OCI session handle (returned by OCISessionBegin) is
associated with the server session environment. Its NLS settings change when the
session environment is modified with ALTER SESSIONThe character set associated
with the session handle is the database character set.

Note that the OCI session handle does not have any NLS settings associated with it
until the first transaction begins in the session. SELECTstatements do not begin a
transaction.

NLS Language Information Retrieval

An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as native day and month names, as well as date,
time, number, and currency formats. An internationalized application obeys a user's
locale setting and cultural conventions. For example, in a German locale setting,
users expect to see day and month names in German.

Using environment handles, you can retrieve the following information:
« Days of the week (translated)

« Abbreviated days of the week (translated)
« Month names (translated)

« Abbreviated month names (translated)

« Yes/no (translated)

« AM/PM (translated)

« AD/BC (translated)

« Numeric format

« Debit/credit

« Date format

« Currency formats

8-2 Oracle9i Globalization Support Guide

NLS Language Information Retrieval

« Default language

« Default territory

« Default character set
« Default linguistic sort

« Default calendar

OCINIsGetlInfo
Syntax
sword OCINIsGetinfo(dvoid *hndl, OCIEmor *errhp, OraText *buf, size_t buflen,
ub2 item)
Remarks
This function generates language information specified by item from OCI
environment or user session handle hndl into an array pointed to by buf within a
size limitation as buflen . If the Unicode mode is enabled, then text data is returned
in UTF-16.
See Also: Chapter 6, "Unicode Programming", for further details
Returns
OCI_SUCCESSOCI_INVALID_HANDLE, or OCI_ERROPRN wrong items
Table 8-1 OCINIsGetinfo Keywords/Parameters
Keyword/
Parameter Meaning

hndI(IN/SOUT)
errhp(IN/OUT)

buf(OUT)

The OCI environment or user session handle initialized in object mode

The OCI error handle. If there is an error, it is recorded in errhp and this function returns a
NULL pointer. Diagnostic information can be obtained by calling OCIErrorGet()

Pointer to the destination buffer

OCI Programming 8-3

NLS Language Information Retrieval

Table 8-1 OCINIsGetinfo Keywords/Parameters (Cont.)

Keyword/

Parameter Meaning

buflen(IN) The size of the destination buffer. The maximum length for each piece of information is
OCI_NLS_MAXBUFSbytes

item(IN) Specifies which item in OCI environment handle to return. Can be one of the following
values:

OCI_NLS_DAYNAMEINative name for Monday
OCI_NLS_DAYNAMENative name for Tuesday
OCI_NLS_DAYNAMEXNative name for Wednesday
OCI_NLS_DAYNAMEANative name for Thursday
OCI_NLS_DAYNAMESNative name for Friday
OCI_NLS_DAYNAMEG@\ative name for Saturday
OCI_NLS_DAYNAME™Mative name for Sunday
OCI_NLS_ABDAYNAMENative abbreviated name for Monday
OCI_NLS_ABDAYNAMENative abbreviated name for Tuesday
OCI_NLS_ABDAYNAMEMNative abbreviated name for Wednesday
OCI_NLS_ABDAYNAME®Native abbreviated name for Thursday
OCI_NLS_ABDAYNAME®Mative abbreviated name for Friday
OCI_NLS_ABDAYNAME€®ative abbreviated name for Saturday
OCI_NLS_ABDAYNAMENative abbreviated name for Sunday

8-4 Oracle9i Globalization Support Guide

NLS Language Information Retrieval

Table 8-1 OCINIsGetinfo Keywords/Parameters (Cont.)

Keyword/
Parameter Meaning
item (IN) OCI_NLS_MONTHNAMEL1 : Native name for January

OCI_NLS_MONTHNAMERIative name for February

OCI_NLS MONTHNAMERIative name for March
OCI_NLS_MONTHNAMEHIative name for April
OCI_NLS_MONTHNAMEBlative name for May
OCI_NLS_MONTHNAMEBIative name for June
OCI_NLS_MONTHNAMERative name for July
OCI_NLS_MONTHNAMERIative name for August
OCI_NLS_MONTHNAMEBIative name for September
OCI_NLS_MONTHNAME1Blative name for October

OCI_NLS MONTHNAME1Mative name for November
OCI_NLS_MONTHNAME1Rlative name for December
OCI_NLS_ABMONTHNAMHBdative abbreviated name for January
OCI_NLS_ABMONTHNAMHBSative abbreviated name for February
OCI_NLS_ ABMONTHNAMHBSative abbreviated name for March
OCI_NLS_ABMONTHNAMBMative abbreviated name for April
OCI_NLS_ABMONTHNAMHBSative abbreviated name for May
OCI_NLS_ABMONTHNAMHB€Eative abbreviated name for June
OCI_NLS_ABMONTHNAMHBNative abbreviated name for July
OCI_NLS_ABMONTHNAMHBSative abbreviated name for August
OCI_NLS_ABMONTHNAMHYative abbreviated name for September
OCI_NLS_ABMONTHNAMEINative abbreviated name for October
OCI_NLS_ABMONTHNAMEINlative abbreviated name for November
OCI_NLS_ABMONTHNAMEI1Rative abbreviated name for December

OCI Programming 8-5

NLS Language Information Retrieval

Table 8-1 OCINIsGetinfo Keywords/Parameters (Cont.)

Keyword/
Parameter Meaning
item(IN) OCI_NLS_YES : Native string for affirmative response

OCI_NLS_NO Native negative response

OCI_NLS_AM Native equivalent string of AM
OCI_NLS_PM Native equivalent string of PM
OCI_NLS_AD Native equivalent string of AD
OCI_NLS_BC Native equivalent string of BC
OCI_NLS_DECIMAL Decimal character
OCI_NLS_GROURGroup separator

OCI_NLS_DEBIT: Native symbol of debit
OCI_NLS_CREDIT. Native symbol of credit
OCI_NLS_DATEFORMADracle date format
OCI_NLS_INT_CURRENCMnternational currency symbol
OCI_NLS_DUAL_CURRENCBual currency symbol
OCI_NLS_LOC_CURRENCIocale currency symbol
OCI_NLS_LANGUAGH._anguage name
OCI_NLS_ABLANGUAGRbbreviation for language name
OCI_NLS_TERRITORYTerritory name
OCI_NLS_CHARACTER_SETharacter set name
OCI_NLS_LINGUISTIC_NAME: Linguistic name
OCI_NLS_CALENDARCalendar name

8-6 Oracle9/ Globalization Support Guide

NLS Language Information Retrieval

Table 8-1 OCINIsGetinfo Keywords/Parameters (Cont.)

Keyword/
Parameter Meaning
item(IN) OCI_NLS_WRITING_DIR :Language writing direction

OCI_NLS_ABTERRITORYTerritory abbreviation

OCI_NLS DDATEFORMADracle default date format
OCI_NLS_DTIMEFORMAT™racle default time format
OCI_NLS_SFDATEFORMATocal string formatted date format
OCI_NLS_SFTIMEFORMATLocal string formatted time format
OCI_NLS_NUMGROUPINGIumber grouping fields
OCI_NLS_LISTSEP: List separator
OCI_NLS_MONDECIMAIMonetary decimal character
OCI_NLS_MONGROURIonetary group separator
OCI_NLS_MONGROUPIN®Ionetary grouping fields
OCI_NLS_INT_CURRENCYSERnNternational currency separator

OCI_NIs_MaxBufSz

When calling OCINIsGetinfo (), you need to allocate the buffer to store the
returned information for the particular language. The buffer size varies, depending
on which item you are querying and what encoding you are using to store the
information. Developers should not need to know how many bytes it takes to store
"January" in Japanese using JA16SJIS encoding. That is exactly what OCI_NLS _
MAXBUFS4s used for; it guarantees that the OCI_NLS MAXBUFSZs big enough to
hold the largest item returned by OCINIsGetinfo (). This guarantees that the
largest item returned by OCINIsGetinfo () will fit in the buffer.

See Also:
« Oracle Call Interface Programmer’s Guide

« Oracle9i Data Cartridge Developer’s Guide

NLS Language Information Retrieval Sample Code
The following is a simple case of retrieving information and checking for errors.

sword MyPrintLinguisticName(envhp, errhp)
OCIEnv *envhp;
OCIEnor *errhp;

OCI Programming 8-7

String Manipulation in OCI

{

OraText infoBUfOCI_NLS_MAXBUFSZ];

sword ret;

ret = OCINIsGetinfo(envhp, F environment handle */
enhp, Ferror handle */
infoBU, destination buffer */
(size_t{) OCI_NLS_MAXBUFSZ, *buffer size */
(Ub2) OCI_NLS_LINGUISTIC_NAME); Fitem*

if (et I= OC|_SUCCESS)

{
checkerr(erhp, ret, OCI_HTYPE_ERROR);

ret=0OCI_ERROR,;

else

{
printf('NLS linguistic: %es\n", infoBuf);

retum(ret);

}

String Manipulation in OCI

Two types of data structure are supported for string manipulation: multibyte string
and wide character string. Multibyte strings are in native Oracle character set
encoding and functions operated on them take the string as a whole unit. Wide
character string wchar functions provide more flexibility in string manipulation
and support character-based and string-based operations.

The wide character datatype is Oracle-specific and not to be confused with the
wchar_t defined by the ANSI/ISO C standard. The Oracle wide character is
always 4 bytes in all platforms, while wchar_t is depends on the implementation
and the platform. The idea of the Oracle wide character is to normalize multibyte
character to have a fixed-width encoding for easy processing. This way, round-trip
conversion between the Oracle wide character set and the native character set is
guaranteed.

The string manipulation can be classified into the following categories:
« Conversion of string between multibyte and wide character
« Character classifications

« Case conversion

8-8 Oracle9i Globalization Support Guide

String Manipulation in OCI

Display length calculation

« General string manipulation, such as comparison, concatenation, and searching

Table 8-2 OCI String Manipulation Calls

Function Call

Description

OCIMultiByteToWideChar(
)

OCIMultiBytelnSizeTo
WideChar()

OCIWideCharToMultiByte(
)

OCIWideCharInSizeTo
MultiByte()

OCIWideCharToLower()

OCIWideCharToUpper()

OCIWideCharStrcmp()

OCIWideCharStrncmp()

OCIWideCharStrcat()

OCIWideCharStrchr()

OCIWideCharStrcpy()

OCIWideCharStrlen()

OCIWideCharStrncat()

OCIWideCharStrncpy()

Converts an entire null-terminated string into the wchar format
Converts part of a string into the wchar format

Converts an entire null-terminated wide character string into a multibyte
string

Converts part of a wide character string into the multibyte format

If there is a upper-case character mapping in the specified locale, then it will
return the lower-case in wide character. If not, it returns the same wide
character.

If there is an lower-case character mapping in the specified locale, it will
return the upper-case in wide character. If not, it returns the same wide
character.

Compares two wide character strings in binary, linguistic, or case-insensitive
manners

Similar to OCIWideCharStrcmp() , but compares two multibyte strings in
binary, linguistic, or case-insensitive manners, except that at most lenl bytes
form strl and len2 bytes form str2 are compared

Appends a copy of the string pointed to by wsrcstr . Then it returns the
number of characters in the resulting string.

Searches for the first occurrence of wc in the string pointed to by wstr . Then
returns a pointer to the wchar if successful

Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr . Then it returns the number of characters copied.

Computes the number of characters in the wchar string pointed to by wstr ,
and returns this number

Appends a copy of the string pointed to by wsrcstr . Then it returns the
number of characters in the resulting string, except that at most n characters
are appended.

Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr . Then it returns the number of characters copied, except that at most
n characters are copied from the array.

OCI Programming 8-9

String Manipulation in OCI

Table 8-2 OCI String Manipulation Calls (Cont.)

Function Call Description
OCIWideCharStrrchr() Searches for the last occurrence of wc in the string pointed to by wstr
OCIWideCharStrCase Converts the wide character string pointed to by wsrcstr into case specified
Conversion() by a flag and copies the result into the array pointed to by wdststr
hO(g:IWideCharDispIayLengt Determines the number of column positions required for wc in display
(L)CIV;/ri]%eCharMultibyte Determines the number of bytes required for wc in multibyte encoding

eng

OCIMultiByteStrecmp()
OCIMultiByteStrncmp()
OCIMultiByteStrcat()
OCIMultiByteStrcpy()
OCIMultiByteStrlen()
OCIMultiByteStrncat()

OCIMultiByteStrncpy()

OCIMultiByteStrnDisplay
Length()

OCIMultiByteStrCase
Conversion()

Compares two multibyte strings in binary, linguistic, or case-insensitive
manners

Compares two multibyte strings in binary, linguistic, or case-insensitive
manners, except that at most lenl bytes form strl and len2 bytes form
str2 are compared

Appends a copy of the multibyte string pointed to by srcstr

Copies the multibyte string pointed to by srcstr into an array pointed to by
dststr . It returns the number of bytes copied

Computes the number of bytes in the multibyte string pointed to by str and
returns this number

Appends a copy of the multibyte string pointed to by srcstr , except that at
most n bytes from srcstr are appended to dststr

Copies the multibyte string pointed to by srcstr into an array pointed to by
dststr . It returns the number of bytes copied, except that at most n bytes are
copied from the array pointed to by srcstr to the array pointed to by

dststr

Returns the number of display positions occupied by the complete characters
within the range of n bytes

Converts part of a string from one character set to another

OCIMultiByteToWideChar

Syntax

sword OCIMultiByte TowideChar(dvoid *hndl, OCIWchar *dst, CONST OraText *src,

size_t*rsize);

Remarks

This routine converts an entire NULL-terminated string into the wchar format. The
wchar output buffer will be NULL-terminated.

8-10 Oracle9i Globalization Support Guide

String Manipulation in OCI

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-3 OCIMultiByteToWideChar Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Destination buffer for wchar

src(IN) Source string to be converted

rsize(OUT) Number of characters converted including NULL-terminator. If

it is a NULL pointer, nothing to return

OCIMultiBytelnSizeToWideChar

Syntax
sword OCIMultiByteInSize ToWideChar(dvoid *hndl, OCIWchar *dst, size_t dstsz,
CONST OraText*src, size_tsrcsz, size_t*rsize)

Remarks

This routine converts part of a string into the wchar format. It will convert as many
complete characters as it can until it reaches the output buffer size or input buffer
size or it reaches a NULL-terminator in source string. The output buffer will be
NULL-terminated if space permits. If dstsz is zero, then this function will only
return the number of characters not including the ending NULL terminator needed
for converted string.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8—-4 OCIMultiBytelnSize ToWideChar Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Pointer to a destination buffer for wchar . It can be NULL
pointer when dstsz is zero

dstsz(IN) Destination buffer size in character. If it is zero, this function
just returns number of characters will be need for the
conversion

OCI Programming 8-11

String Manipulation in OCI

Table 8-4 OCIMultiBytelnSize ToWideChar Keywords/Parameters (Cont.)

Keyword/Parameter Meaning

src (IN) Source string to be converted

srcsz(IN) Length of source string in bytes

rsize(OUT) Number of characters written into destination buffer, or

number of characters for converted string is dstsz is zero. If it
is a NULL pointer, nothing to return

OCIWideCharToMultiByte

Syntax
sword OCIWideCharToMulttiByte(dvoid *hndl, OraText *dst, CONST OCIWchar *src,
size_t*rsize)

Remarks
This routine converts an entire NULL-terminated wide character string into a
multibyte string. The output buffer will be NULL-terminated.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-5 OCIWideCharToMultiByte Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Destination buffer for multibyte string

src(IN) Source wchar string to be converted

srcsz(IN) Length of source string in bytes

rsize(OUT) Number of characters written into destination buffer. If itis a

NULL pointer, nothing will be returned

OCIWideCharlnSizeToMultiByte

Syntax
sword OCIWideCharinSize ToMultiByte(dvoid *hndl, OraText *dst, size_t dstsz,
CONST OCIWCchar *src, size_t srcsz, size_t*rsize)

8-12 Oracle9i Globalization Support Guide

String Manipulation in OCI

Remarks

This routine converts part of wchar string into the multibyte format. It will convert
as many complete characters as it can until it reaches the output buffer size, the
input buffer size, or it reaches a NULL-terminator in source string. The output buffer
will be NULL-terminated if space permits. If dstsz is zero, the function just returns
the size of byte not including the ending NULL-terminator needed to store the
converted string.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-6 OCIWideCharlnSize ToMultiByte Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Destination buffer for multibyte. It can be a NULL pointer if
dstsz is zero

dstsz(IN) Destination buffer size in bytes. If it is zero, it returns the size
in bytes need for converted string

src(IN) Source wchar string to be converted

srcsz(IN) Length of source string in character

rsize(OUT) Number of bytes written into destination buffer, or number of

bytes need to store the converted string if dstsz is zero. If itis
a NULL pointer, nothing to return

OCIWideCharToLower

Syntax
OCIWchar OCIWideCharToLower(dvoid *hndl, OCIWchar wc)

Remarks
If there is an upper-case character mapping for wc in the specified locale, it will
return the lower-case in wchar , else return wec itself.

Returns
A wchar

OCI Programming 8-13

String Manipulation in OCI

Table 8-7 OCIWideCharToLower Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for upper-case mapping
OCIWideCharToUpper
Syntax

OCIWCchar OCIWideCharToUpper(dvoid *hndl, OCIWchar wc)

Remarks
If there is a uppercase character mapping for wc in the specified locale, then it will
return the uppercase character in wchar .Otherwise, it will return the wc itself.

Returns
A wchar

Table 8-8 OCIWideCharToUpper Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for uppercase mapping
OCIWideCharStrcmp
Syntax
int OCWideCharStremp(dvoid *hndl, CONST OCIMW/char *wstrl, CONST OCIWchar *wstr2,
intflag)
Remarks

It compares two wchar strings in binary (based on wchar encoding value),
linguistic, or case-insensitive.

Returns
« 0, ifwstrl == wstr2

« Positive, if wstrl > wstr2

« Negative, if wstrl < wstr2

8-14 Oracle9i Globalization Support Guide

String Manipulation in OCI

Table 8-9 OCIWideCharStrcmp Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wstr1(IN) Pointer to a NULL-terminated wchar string

wstr2(IN) Pointer to a NULL-terminated wchar string

flag(IN) Is used to decide the comparison method. It can take one of the

following values:

OCI_NLS_BINARY: For the binary comparison, this is the
default value.

OCI_NLS_LINGUISTIC : For the linguistic comparison
specified in the locale.

This flag can be used with ORwith OCI_NLS_CASE_
INSENSITIVE for case-insensitive comparison

OCIWideCharStrncmp

Syntax
int OCIWideCharStmcmp(dvoid *hndl, CONST OCIWchar *wstrl, size_tlenl, CONST
OCIWCchar *wstr2, size_tlen2, int flag)

Remarks

This function is similar to OCIWideCharStrcmp (), except that at most lenl
characters from wstrl and len2 characters from wstrl are compared. The
NULL-terminator will be taken into the comparison.

Returns
« 0, ifwstrl = wstr2

« Positive, if wstrl > wstr2

« Negative, if wstrl < wstr2

Table 8-10 OCIWideCharStrncmp Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wstr1(IN) Pointer to the first wchar string

OCI Programming 8-15

String Manipulation in OCI

Table 8-10 (Cont.) OCIWideCharStrncmp Keywords/Parameters (Cont.)

Keyword/Parameter Meaning

len1(IN) The length for the first string for comparison

wstr2(IN) Pointer to the second wchar string

len2(IN) The length for the second string for comparison

flag(IN) It is used to decide the comparison method. It can take one of

the following values:

OCI_NLS_BINARY: For the binary comparison, this is default
value.

OCI_NLS_LINGUISTIC : For the linguistic comparison
specified in the locale.

This flag can be used with ORwith OCI_NLS_CASE_
INSENSITIVE for case-insensitive comparison.

OCIWideCharStrcat

Syntax
size_t OCIWideCharStrcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Remarks
This function appends a copy of the wchar string pointed to by wsrcstr , including
the NULL-terminator to the end of wchar string pointed to by wdststr

Returns
The number of characters in the result string, not including the ending
NULL-terminator.

Table 8-11 OCIWideCharStrcat Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(IN/OUT) Pointer to the destination wchar string for appending

wsrcstr(IN) Pointer to the source wchar string to append

8-16 Oracle9i Globalization Support Guide

String Manipulation in OCI

OCIWideCharStrchr

Syntax
OCIWchar *OCIWideCharStrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Remarks
This function searches for the first occurrence of wc in the wchar string pointed to
by wstr .

Returns
A wchar pointer if successful, otherwise a NULL pointer

Table 8-12 OCIWideCharStrchr Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wstr(IN) Pointer to the wchar string to search
wc(IN) wchar to search for
OCIWideCharStrcpy
Syntax
size_t OCIWideCharStrepy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)
Remarks

This function copies the wchar string pointed to by wsrcstr , including the
NULL-terminator, into the array pointed to by wdststr

Returns
The number of characters copied not including the ending NULL-terminator.

Table 8-13 OCIWideCharStrcpy Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(OUT) Pointer to the destination wchar buffer

wsrcstr(IN) Pointer to the source wchar string

OCI Programming 8-17

String Manipulation in OCI

OCIWideCharStrlen

Syntax
size_t OCIWideCharStrien(dvoid *hndl, CONST OCIWchar *wstr)

Remarks
This function computes the number of characters in the wchar string pointed to by
wstr , not including the NULL-terminator, and returns this number.

Returns
The number of characters not including ending NULL-terminator.

Table 8-14 OCIWideCharStrlen Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wstr(IN) Pointer to the source wchar string
OCIWideCharStrncat

Syntax

size_t OCIWideCharStmcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar

*wsrcstr, size_tn)

Remarks

This function is similar to OCIWideCharStrcat (), except that at most n characters
from wsrcstr are appended to wdststr . Note that the NULL-terminator in
wsrcstr will stop appending. wdststr will be NULL-terminated.

Returns
The number of characters in the result string, not including the ending
NULL-terminator.

Table 8-15 OCIWideCharStrncat Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(IN/OUT) Pointer to the destination wchar string for appending

wsrcstr(IN) Pointer to the source wchar string to append

8-18 Oracle9i Globalization Support Guide

String Manipulation in OCI

Table 8-15 OCIWideCharStrncat Keywords/Parameters (Cont.)

Keyword/Parameter Meaning

n(IN) Number of characters from wsrcstr to append

OCIWideCharStrncpy

Syntax
size_t OCIWideCharStmcpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*Wwsrcstr, size_tn)

Remarks

This function is similar to OCIWideCharStrcpy (), except that at most n characters
are copied from the array pointed to by wsrcstr to the array pointed to by
wdststr . Note that the NULL-terminator in wdststr ~ will stop coping and result
string will be NULL-terminated.

Returns
The number of characters copied not including the ending NULL-terminator.

Table 8-16 OCIWideCharStrncpy Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(OUT) Pointer to the destination wchar buffer

wsrcstr(IN) Pointer to the source wchar string

n(IN) Number of characters from wsrcstr to copy
OCIWideCharStrrchr

Syntax

OCIWchar *OCIWideCharStrrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Remarks
This function searches for the last occurrence of wc in the wchar string pointed to
by wstr . It returns a pointer to the wchar if successful, or a NULL pointer.

Returns
wchar pointer if successful, otherwise a NULL pointer

OCI Programming 8-19

String Manipulation in OCI

Table 8-17 OCIWideCharStrrchr Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wstr(IN) Pointer to the wchar string to search

wc(IN) wchar to search for

OCIWideCharStrCaseConversion

Syntax
size_t OCIWideCharStrCaseConversion(dvoid *hndl, OCIWchar *wdststr, CONST
OCIWCchar*wsrcstr, ub4 flag)

Remarks

This function converts the wide char string pointed to by wsrcstr into the
uppercase or lowercase specified by the flag and copies the result into the array
pointed to by wdststr . The result string will be NULL-terminated.

Returns
The number of characters for the result string, not including NULL-terminator

Table 8-18 OCIWideCharStrCaseConversion Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle
wdststr(OUT) Pointer to destination array

wsrcstr(IN) Pointer to source string

flag(IN) Specify the case to convert:

OCI_NLS_UPPERCASEConvert to uppercase
OCI_NLS_LOWERCASEonvert to lowercase

This flag can be used with ORwith OCI_NLS_LINGUISTIC to
specify that the linguistic setting in the locale will be used for
case conversion.

8-20 Oracle9i Globalization Support Guide

String Manipulation in OCI

OCIWideCharDisplayLength

Syntax
size_t OCIWideCharDisplayLength(dvoid *hndl, OCIWchar wc)

Remarks
This function determines the number of column positions required for wc in
display. It returns the number of column positions, or 0 if wc is the NULL-terminator.

Returns
The number of display positions.

Table 8-19 OCIWideCharDisplayLength Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar character

OCIWideCharMultiByteLength

Syntax
size_t OCIWideCharMulttiBytelen(dvoid *hndl, OCIWchar wc)

Remarks
This function determines the number of byte required for wc in multibyte encoding.
It returns the number of bytes in multibyte for wc.

Returns
The number of bytes.

Table 8-20 OCIWideCharMultiByteLength Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar character

OCI Programming 8-21

String Manipulation in OCI

OCIMultiByteStrcmp

Syntax
int OCIMultiByteStremp(dvoid *hnall, CONST OraText *str1, CONST OraText *str2,

int fiag)

Remarks
It compares two multibyte strings in binary (based on encoding value), linguistic, or
case-insensitive.

Returns
« 0, ifstrl ==str2

« Positive, if strl > str2

« Negative, if strl < str2

Table 8-21 OCIMultiByteStrcmp Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle

str1(IN) Pointer to a NULL-terminated string

str2(IN) Pointer to a NULL-terminated string

flag(IN) It is used to decide the comparison method. It can take one of

the following values:

OCI_NLS_BINARY: For the binary comparison, this is the
default value.

OCI_NLS_LINGUISTIC : For the linguistic comparison
specified in the locale.

This flag can be used with OR with OCI_NLS_CASE_
INSENSITIVE for case-insensitive comparison.

OCIMultiByteStrncmp

Syntax
int OCIMultiByteStmemp(dvoid *hndl, CONST OraText *strl, size_tlenl, OraText
*str2, size_tlen2, intflag)

8-22 Oracle9i Globalization Support Guide

String Manipulation in OCI

Remarks

This function is similar to OCIMultiByteStrcmp (), except that at most len1l bytes
from strl andlen2 bytes from str2 are compared. The NULL-terminator will be
taken into the comparison.

Returns
« 0, ifstrl =str2

« Positive, if strl > str2

« Negative, ifstrl <str2

Table 8-22 OCIMultiByteStrncmp Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle

str1(IN) Pointer to the first string

len1(IN) The length for the first string for comparison

str2(IN) Pointer to the second string

len2(IN) The length for the second string for comparison

flag(IN) It is used to decide the comparison method. It can take one of

the following values:

OCI_NLS_BINARY: For the binary comparison, this is the
default value.

OCI_NLS_LINGUISTIC : For the linguistic comparison
specified in the locale.

This flag can be used with ORwith OCI_NLS_CASE_
INSENSITIVE for case-insensitive comparison.

OCIMultiByteStrcat

Syntax
size_t OCIMultiByteStrcat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

Remarks

This function appends a copy of the multibyte string pointed to by srcstr
including the NULL-terminator to the end of string pointed to by dststr . It returns
the number of bytes in the result string not including the ending NULL-terminator.

OCI Programming 8-23

String Manipulation in OCI

Returns
The number of bytes in the result string, not including the ending NULL-terminator

Table 8-23 OCIMultiByteStrcat Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
dststr(IN/OUT) Pointer to the destination multibyte string for appending
srestr(IN) Pointer to the source string to append
OCIMultiByteStrcpy
Syntax

size_t OCIMuliByteStrcpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

Remarks

This function copies the multibyte string pointed to by srcstr , including the
NULL-terminator, into the array pointed to by dststr . It returns the number of
bytes copied, not including the ending NULL-terminator.

Returns
The number of bytes copied, not including the ending NULL-terminator

Table 8-24 OCIMultiByteStrcpy Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to the OCI environment or user session handle

dststr(OUT) Pointer to the destination buffer

srcstr(IN) Pointer to the source multibyte string
OCIMultiByteStrlen

Syntax

size_t OCIMuliByteStrien(dvoid *hndl, CONST OraText *str)

Remarks
This function computes the number of bytes in the multibyte string pointed to by
str , not including the NULL-terminator, and returns this number.

8-24 Oracle9i Globalization Support Guide

String Manipulation in OCI

Returns
The number of bytes not including ending NULL-terminator

Table 8-25 OCIMultiByteStrlen Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to the OCI environment or user session handle

str(IN) Pointer to the source multibyte string
OCIMultiByteStrncat

Syntax

size_t OCIMuliByteStmcat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr,

size _tn)

Remarks

This function is similar to OCIMultiByteStrcat (), except that at most n bytes
from srcstr are appended to dststr . Note that the NULL-terminator in srcstr ~ will
stop appending and the function will append as many character as possible within
n bytes. dststr will be NULL-terminated.

Returns
The number of bytes in the result string, not including the ending NULL-terminator.

Table 8-26 OCIMultiByteStrncat Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to OCI environment or user session handle

dststr(IN/OUT) Pointer to the destination multibyte string for appending

srcstr(IN) Pointer to the source multibyte string to append

n(IN) The number of bytes from srcstr to append
OCIMultiByteStrncpy

Syntax

size_t OCIMultiByteStmcpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr,

size_tn)

OCI Programming 8-25

String Manipulation in OCI

Remarks

This function is similar to OCIMultiByteStrcpy (), except that at most n bytes are
copied from the array pointed to by srcstr to the array pointed to by dststr . Note
that the NULL-terminator in srcstr ~ will stop coping and the function will copy as
many character as possible within n bytes. The result string will be
NULL-terminated.

Returns
The number of bytes copied not including the ending NULL-terminator

Table 8-27 OCIMultiByteStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to OCI environment or user session handle
srcstr(OUT) Pointer to the destination buffer

dststr(IN) Pointer to the source multibyte string

n(IN) The number of bytes from srcstr to copy

OCIMultiByteStrnDisplayLength

Syntax
size_t OCIMuliByteStmDisplaylength(dvoid *hndl, CONST OraText *str1, size_tn)

Remarks
This function returns the number of display positions occupied by the complete
characters within the range of n bytes.

Returns
The number of display positions.

Table 8-28 OCIMultiByteStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle
str(IN) Pointer to a multibyte string

n(IN) The number of bytes to examine

8-26 Oracle9i Globalization Support Guide

String Manipulation in OCI

OCIMultiByteStrCaseConversion

Syntax
size_t OCIMuttiByteStrCaseConversion(dvoid *hndl, OraText *dststr, CONST OraText
*srestr, ub4 flag)

Remarks

This function convert the multibyte string pointed to by srcstr into the uppercase
or lowercase specified by flag and copies the result into the array pointed to by
dststr . The result string will be NULL-terminated.

Returns
The number of bytes for result string, not including NULL-terminator

Table 8-29 OCIMultibyteStrCaseConversion Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle
dststr(OUT) Pointer to destination array

srcstr(IN) Pointer to source string

flag(IN) Specify the case to convert:

OCI_NLS_UPPERCASEConvert to uppercase
OCI_NLS_LOWERCASEonvert to lowercase

This flag can be used with ORwith OCI_NLS_LINGUISTIC to
specify that the linguistic setting in the locale will be used for
case conversion

String Manipulation Sample Code
The following is a simple case of handling string manipulation.

size_t MyConvertMultiByte TowWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCMWchar *dstBuf;
size t dstSize;
OraText *srcStr; F null terminated source string
*
{
sword ret;
size tdstLen=0;
size_tsrcLen;

OCI Programming 8-27

Character Classification in OCI

* get length of source string */
srcLen = OCIMultiByteStrien(envhp, srcStr);

ret= OCIMultiBytelnSizeToWideChar(envhp, /* environment handle */

dstBuf, * destination buffer */
dstSize, [* destination buffer size */
SIcStr, + source string */
srcLen, * length of source string */
&dstlen); * pointer to destination length */

if (ret'= OCl_SUCCESS)

{

checkerr(envhp, ret, OCI_HTYPE_ENV);
retum(dstLen);
}
See Also:

« Oracle Call Interface Programmer’s Guide

« Oracle9i Data Cartridge Developer’s Guide

Character Classification in OCI

The Oracle Call Interface offers many function calls for classifying characters.

Table 8-30 OCI Character Classification Calls

Function Call Description

OCIWideCharlsAlnum() Tests whether the wide character is a letter or decimal digit
OCIWideCharlsAlpha() Tests whether the wide character is an alphabetic letter
OCIWideCharlsCntrl() Tests whether the wide character is a control character
OCIWideCharlsDigit() Tests whether the wide character is a decimal digital character
OCIWideCharlsGraph() Tests whether the wide character is a graph character
OCIWideCharlsLower() Tests whether the wide character is a lowercase letter
OCIWideCharlsPrint() Tests whether the wide character is a printable character
OCIWideCharlsPunct() Tests whether the wide character is a punctuation character
OCIWideCharlsSpace() Tests whether the wide character is a space character

8-28 Oracle9i Globalization Support Guide

Character Classification in OCI

Table 8-30 OCI Character Classification Calls (Cont.)

Function Call Description
OCIWideCharlsUpper() Tests whether the wide character is an uppercase character
OCIWideCharlsXdigit() Tests whether the wide character is a hexadecimal digit
OCIWideCharlsSingleByte() Tests whether wc is a single-byte character when converted into multibyte
OCIWideCharlsAlnum

Syntax

boolean OCIWideCharlsAlnum(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a letter or decimal digit.

Returns
TRUEor FALSE

Table 8-31 OCIWideCharlsAlnum Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsAlpha
Syntax

boolean OCIWideCharlsAlpha(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is an alphabetic letter.

Returns
TRUEor FALSE

Table 8-32 OCIWideCharlsAlpha Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

OCI Programming 8-29

Character Classification in OCI

Table 8-32 OCIWideCharlsAlpha Keywords/Parameters (Cont.)

Keyword/Parameter Meaning

wc(IN) wchar for testing
OCIWideCharlsCntrl

Syntax

boolean OCIWideCharlsCntri(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a control character.

Returns
TRUEor FALSE

Table 8-33 OCIWideCharlsCntrl Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsDigit
Syntax

boolean OCIWideCharlsDigit(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a decimal digit character.

Returns
TRUEor FALSE

Table 8-34 OCIWideCharlsDigit Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

8-30 Oracle9i Globalization Support Guide

Character Classification in OCI

OCIWideCharlsGraph

Syntax
boolean OCIWideCharlsGraph(dvoid *hndl, OCIWchar wc)

Remarks

It tests whether wc is a graph character. A graph character is character with a visible
representation and normally includes an alphabetic letter, decimal digit, and
punctuation.

Returns
TRUEor FALSE

Table 8-35 OCIWideCharlsGraph Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsLower
Syntax

boolean OCIWideCharlsLower(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a lowercase letter.

Returns
TRUEor FALSE

Table 8-36 OCIWideCharlsLower Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

OCI Programming 8-31

Character Classification in OCI

OCIWideCharlsPrint

Syntax
boolean OCIWideCharlsPrint(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a printable character.

Returns
TRUEor FALSE

Table 8-37 OCIWideCharlsPrint Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsPunct
Syntax

boolean OCIWideCharlsPunct(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a punctuation character.

Returns
TRUEor FALSE

Table 8-38 OCIWideCharlsPunct Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsSpace
Syntax

boolean OCIWideCharlsSpace(dvoid *hndl, OCIWchar wc)

8-32 Oracle9i Globalization Support Guide

Character Classification in OCI

Remarks

It tests whether wc is a space character. A space character only causes white space in
displayed text (for example, space, tab, carriage return, newline, vertical tab or form
feed).

Returns
TRUEor FALSE

Table 8-39 OCIWideCharlsSpace Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsUpper
Syntax

boolean OCIWideCharlsUpper(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is an uppercase letter.

Returns
TRUEor FALSE

Table 8-40 OCIWideCharlsUpper Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsXdigit
Syntax

boolean OCIWideCharlsXdigit(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a hexadecimal digit (0-9, A-F, a-f).

OCI Programming 8-33

Character Classification in OCI

Returns
TRUEor FALSE

Table 8-41 OCIWideCharlsXdigit Keywords/Parameters

Keyword/Parameter Meaning
hndI(IN/OUT) OCI environment or user session handle to determine the
character set
wc(IN) wchar for testing
OCIWideCharlsSingleByte
Syntax

boolean OCIWideCharlsSingleByte(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a single-byte character when converted into multibyte.

Returns
TRUEor FALSE

Table 8-42 OCIWideCharlsSingleByte Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Example 8-1 Character Classification Sample Code

* Character classification sample code */
boolean MylsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr; Fwide char source string */
{
OCIWchar *pstr = srcStr; * define and init pointer */
boolean status = TRUE; * define and init status variable */
P Check input*/
if (pstr = (OCIWchar*) NULL)
retum(FALSE);

8-34 Oracle9i Globalization Support Guide

Character Set Conversion in OCI

if (pstr = (OCIWchar) NULL)

retum(FALSE);
¥ check each character for digit*/
do
{
if (OCIWideCharlsDigit(envhp, *pstr) '= TRUE)
{
status = FALSE;
break; F* non decimal digit character */
}
}while (*++pstr = (OCIWchar) NULL);
retum(status);
}
See Also:

« Oracle Call Interface Programmer’s Guide

« Oracle9i Data Cartridge Developer’s Guide

Character Set Conversion in OCI

Conversion between Oracle character set and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if there a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to
the original character set is not always possible.

Table 8—43 OCI Character Set Conversion Calls

Function Call Description

OCICharsetToUnicode() Converts a multibyte string pointed to by src to Unicode into the array
pointed to by dst

OClUnicodeToCharset() Converts a Unicode string pointed to by src to multibyte into the array
pointed to by dst

OCICharSetConversionls Indicates whether the replacement character was used for nonconvertible

ReplacementUsed() characters in character set conversion in the last invocation of

OClICharsetConv()

OCI Programming 8-35

Character Set Conversion in OCI

OCICharSetToUnicode

Syntax
sword OCICharSetToUnicode(dvoid *hndl, ub2 *dst, size_tdstien, CONST OraText
*src, size_tsrclen, size_t*rsize)

Remarks

This function converts a multibyte string pointed to by src to Unicode into the
array pointed to by dst . The conversion will stop when it reaches the source
limitation or destination limitation. The function will return the number of
characters converted into Unicode. If dstlen is zero, it will just return the number
of characters into rsize for the result without real conversion.

Returns
OCIl_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-44 OCICharSetToUnicode Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to an OCI environment or user session handle
dst(OUT) Pointer to a destination buffer

dstlen(IN) The size of the destination buffer in characters

src(IN) Pointer to multibyte source string

srclen(IN) The size of source string in bytes

rsize(OUT) The number of characters converted. Ifitisa NULL pointer,

nothing to return

OClUnicodeToCharSet

Syntax
sword OClUnicode ToCharSet(dvoid *hndl, OraText *dst, size_t dstien, CONST ub2
*src, size_tsrclen, size_t*rsize)

Remarks

This function converts a Unicode string pointed to by src to multibyte into the
array pointed to by dst . The conversion will stop when it reach to the source
limitation or destination limitation. The function will return the number of bytes
converted into multibyte. If dstlen is zero, it will just return the number of bytes
into rsize for the result without real conversion.

8-36 Oracle9i Globalization Support Guide

Character Set Conversion in OCI

If a Unicode character is not convertible for the character set specified in OCI
environment or user session handle, a replacement character will be used for it. In
this case, OCICharsetConversionlsReplacementUsed () will return true.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-45 OCIUnicodeToCharSet Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to an OCI environment or user session handle

dst(OUT) Pointer to a destination buffer

dstlen(IN) The size of destination buffer in bytes

src(IN) Pointer to a Unicode string

srclen(IN) The size of the source string in characters

rsize(OUT) The number of bytes converted. If it is a NULL pointer, nothing
to return

OCICharSetConversionlsReplacementUsed

Syntax
boolean OCICharSetConversionlsReplacementUsed(dvoid *hndl)

Remarks

This function indicates whether the replacement character was used for
nonconvertible characters in character set conversion in the last invocation of
OCICharSetToUnicode ().

Returns
TRUEIf the replacement character was used when OCICharsetConv () was last
invoked, else FALSE

Table 8-46 OCICharSetConversionlsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to an OCI environment or user session handle

Conversion between the Oracle character set and Unicode (16-bit, fixed-width
Unicode encoding) is supported. Replacement characters are used if there is no

OCI Programming 8-37

Character Set Conversion in OCI

mapping for a character from Unicode to the Oracle character set. thus, conversion
back to the original character set is not always possible.

Example 8-2 Character Set Conversion Sample Code
The following is a simple conversion into Unicode:

size_t MyConvertMultiByte ToUnicode(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;

ub2 *dstBuf;

size_t dstSize;

OraText *srcStr,

{

sword ret;

size tdstLen=0;

size_tsrcLen;

F get length of source string */
srcLen = OCIMuttiByteStrien(envhp, srcStr);

ret= OCICharSetToUnicode(envhp, F environment handle */
dstBuf, destination buffer */
dstSize, F* size of destination buffer */
SrcStr, F source string */
srcLen, length of source string */
&dstl en); * pointer to destination length */

if (ret = OCl_SUCCESS)

checkerr(envhp, ret, OCI_HTYPE_ENV);

}
retum(dstLen);

}

8-38 Oracle9i Globalization Support Guide

Messaging Mechanism in OCI

See Also:
« Oracle Call Interface Programmer’s Guide

« Oracle9i Data Cartridge Developer’s Guide

Messaging Mechanism in OCI

The user message API provides a simple interface for cartridge developers to
retrieve their own messages as well as Oracle messages.

Table 8-47 OCI Messaging Function Calls

Function Call Description

OCIMessageOpen(Opens a message handle for facility of product in a language
) pointed to by hndl

OCIMessageGet() Retrieves a message with message number identified by msgno. If
the buffer is not zero, then the function will copy the message into
the buffer pointed to by msgbuf .

OCIMessageClose Closes a message handle pointed to by msgh and frees any
0 memory associated with this handle

See Also:
« Oracle Call Interface Programmer’s Guide

« Oracle9i Data Cartridge Developer’s Guide

OCIMessageOpen

Syntax
sword OCIMessageOpen(dvoid *hndl, OCIError *erhp, OCIMsg *msghp, CONST OraText
*product, CONST OraText *facility, OCIDuration dur)

Remarks

This function opens a message-handling facility in a language pointed to by hndl .
It first tries to open the message file corresponding to hndl for the facility. If it
succeeds, it will use that file to initialize a message handle. Otherwise it will use the
default message file, whose language is AMERICANThe function returns a pointer
pointed to a message handle into the msghp parameter. If the Unicode mode is
enabled, then the text parameters must be in UTF-16.

OCI Programming 8-39

Messaging Mechanism in OCI

See Also: Chapter 6, "Unicode Programming"

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-48 OCICharSetConversionlsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to an OCI environment or user session handle for
message language

errhp(IN/OUT) The OCI error handle. If there is an error, it is recorded in
errhp and this function returns a NULL pointer. Diagnostic
information can be obtained by calling OCIErrorGet()

msghp(OUT) A message handle for return

product(IN) A pointer to a product name. Product name is used to locate
the directory for messages depending on the operating system.
For example, in Solaris, the directory of message files for the
rdbms product is ${ORACLE_HOME}/rdbms.

facility(IN) A pointer to a facility name in the product. It is used to
construct a message file name. A message file name follows the
conversion with facility as prefix. For example, the
message file name for the img facility in the American
language will be imgus.msb , where us is the abbreviation for
the American language and msb is the message binary file
extension.

dur(IN) The duration for memory allocation for the return message
handle. It can be the following values:

OCI_DURATION_PROCESS
OC|_DURATION_STATEMENT
OC|_DURATION_SESSION

OClIMessageGet

Syntax
OraText *OCIMessageGet(OCIMsg *msgh, ub4 msgno, OraText *msgbuf, size_t buflen)

Remarks

This function will get a message with the message number identified by msgno. If
buflen is not zero, then the function will copy the message into the buffer pointed
to by msgbuf . If buflen is zero, then the message will be copied into a message

8-40 Oracle9i Globalization Support Guide

Messaging Mechanism in OCI

buffer inside the message handle pointed to by msgh. For both cases. it will return
the pointer to the NULL-terminated message string. If it cannot get the requested
message, then it will return a NULL pointer. If the Unicode mode is enabled, then
the message is returned in UTF-16.

See Also: Chapter 6, "Unicode Programming”, for further details
Returns
If successful, a pointer to a NULL-terminated message string on success. Otherwise a
NULL pointer

Table 8-49 OCIMessageGet Keywords/Parameters

Keyword/Parameter Meaning

msgh(IN/OUT) Pointer to a message handle which was previously opened by
OCIMessageOpen()

msgno(IN) The message number for getting message

msgbuf(OUT) Pointer to a destination buffer to the message retrieved. If
buflen is zero, it can be a NULL pointer

buflen(IN) The size of the above destination buffer

OCIMessageClose
Syntax

sword OCIMessageClose(dvaid *hndl, OCIEmor *erthp, OCIMsg *msgh)

Remarks
This function closes a message handle pointed to by msgh and frees any memory
associated with this handle.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Table 8-50 OCIMessageClose Keywords/Parameters

Keyword/Parameter Meaning

hndI(IN/OUT) Pointer to an OCI environment or user session handle for
message language

OCI Programming 8-41

Messaging Mechanism in OCI

LMSGEN

Table 8-50 OCIMessageClose Keywords/Parameters (Cont.)

Keyword/Parameter Meaning

errhp(IN/OUT) The OCI error handle. If there is an error, it is record in errhp
and this function returns a NULL pointer. Diagnostic
information can be obtained by calling OCIErrorGet()

msgh(IN/OUT) A pointer to a message handle that was previously opened by
OCIMessageOpen()

Remarks
The Imsgen utility converts text-based message files (.msg) into binary format
(.msb).

Syntax

LMSGENext file product facilty [language]
where

text file is a message text file

product is the name of the product

facility is the name of the facility

[language 1] is the optional message language in
<language >_<territory > <character set > format

This is required if the message file is not tagged properly with language.

Text Message File Format

« Lines that start with "/" and "//" are treated as internal comments and are
ignored.

« To tag the message file with a specific language:
CHARACTER_SET_NAME=Japanese Japan.JA16EUC

« Each message is composed of 3 fields:

<message #>, <waming level #>, <message text>

— Message # has to be unique within a message file.

— Warning level # is not currently use. Use 0.

8-42 Oracle9i Globalization Support Guide

Messaging Mechanism in OCI

— Message text cannot be longer than 76 bytes.

Example

/ Copyright (c) 1988 by the Oracle Corporation. All rights reserved.
/ This is atesting us7ascii message file
#CHARACTER_SET_NAME=american_america.us7ascii

/

00000, 00000, "Export terminated unsuccessfulyin”

00003, 00000, "no storage definition found for segment(%olu, %6lu)*

Message Example

Settings

This example retrieves messages from a .msb message file. The following settings
are used:

product = $HOME/myApp

facility =imp

Language = American language

Based on the above setting, the $HOME/myApp/mesg/impus.msb message file will
be used.

Message file
Lmsgen converts the message file (impus.msg) into binary format (impus.msb).

The following is a portion of the text message file called impus.msg :

001282, "Duplicate entry %s found in %6s"

Example 8-3 Messaging Sample Code

F Assume that the OCI environment or user session handle, product, faciity and
cache size are all initialized property. */

OCIMsg msghnd; Fmessage handle */
F initialize a message handle for retrieving messages from impus.msg*/
err = OClMessageOpen(hndl,erhp, &msghnd, prod,fac,OCI_DURATION_SESSION);
if (err '=OCI_SUCCESS)
* error handling */

OCI Programming 8-43

Messaging Mechanism in OCI

F* retrieve the message with message number = 128 */

msgptr = OCIMessageGet(msghnd, 128, msgbuf, sizeof(msgbuf));
* do something with the message, such as display it */

 close the message handle when we has no more message to retrieve */
OCIMessageClose(hndl, erhp, msghnd);

8-44 Oracle9i Globalization Support Guide

9

Java Programming

This chapter examines globalization support for individual Java components. It
includes the following topics:

Overview of Oracle9i Java Support

JDBC

SQLJ

Java Virtual Machine

Java Stored Procedures

Java Servlets and Java Server Pages

CORBA and EJB

Configurations for Multilingual Applications

Multilingual Demo Applications in SQLJ

Java Programming 9-1

Overview of Oracle9i Java Support

Overview of Oracle9 jJava Support

Java support is included in all tiers of a multitier computing environment so that
you can develop and deploy Java programs. You can run Java classes as Java stored
procedures, Java servlets, Java CORBA objects, and Enterprise Java Beans (EJB) on
the Java Virtual Machine (Oracle JVM) of the Oracle9i database. You can develop a
Java class, load it into the database, and package it as a stored procedure that can be
called from SQL. You can develop a Java servlet, load it on the database, and
publish it as a callable servlet from a web browser. You can also develop a standard
Java CORBA object or EJB, load the related classes into the database and publish
them as named objects that are callable from any CORBA or EJB client.

The JDBC driver and SQLJ translator are also provided as programmatic interfaces
that enable Java programs to access the Oracle9i database. You can write a Java
application using JDBC or SQLJ programs with embedded SQL statements to access
the database. Globalization support is provided across all these Java components to
ensure that they function properly across databases of different character sets and
language environments, and that they enable the development and deployment of
multilingual Java applications for Oracle9i.

This chapter examines globalization support for individual Java components.
Typical database and client configurations for multilingual application deployment
are discussed, including an explanation of how the Java components are used in the
configurations. Finally, the design and implementation of a sample application are
explored to demonstrate how Oracle's Java support is used to make the application
run in a multilingual environment.

Java components provide globalization support and use Unicode as the
multilingual character. The following are Oracle9i's Java components:

= JDBC Driver

Oracle provides JDBC as the core programmatic interface for accessing Oracle9i
databases. There are three JDBC drivers provided by Oracle: two for client
access and one for server access.

— The JDBC OCI Driver is used by Java applications.
— The JDBC Thin driver is primarily used by Java applets.

— The Oracle JDBC Server-side Thin driver offers the same functionality as
the client-side JDBC Thin driver and is used primarily by Java classes
running on the Java VM of the database server to access a remote database.

— The JDBC Server-side Internal driver is a server-side driver that is used by
Java classes running on the Java VM of the database server.

9-2 Oracle9i Globalization Support Guide

JDBC

JDBC

« SQLJ translator

SQLJ acts like a preprocessor that translates embedded SQL in the SQLJ
program file into a Java source file with JDBC calls. It gives programmers a
higher level of programmatic interface for accessing databases.

« Javaruntime environment

A Java VM based on that of the JDK is integrated into the database server that
enables the running of Java classes. It comes with a set of supporting services
such as the library manager, which manages Java classes stored in the database.

« Java Servlet support

The Java Servlet API 2.2 has been implemented to support the deployment of
Java servlets in the Oracle JVM. The Servlet API provides important
internationalization support to build a multilingual Java servlet. A JavaServer
Page (JSP) compiler is also provided to compile JSPs into Java servlets.

« CORBA support

In addition to the Java runtime environment, Oracle integrates the CORBA
Object Request Broker (ORB) into the database server, and makes the database a
CORBA server. Any CORBA client can call the Java CORBA objects published
to the ORB of the database server.

« EJB support

The Enterprise Java Bean version 1.1 container is built into the database server
to provide a platform to develop and deploy EJBs.

This section describes the following:

« Accessing SQL CHAR Datatypes Using JDBC

« Accessing SQL NCHAR Datatypes Using JDBC
« Using the oracle.sql. CHAR Class

« NLS Restrictions

Oracle JDBC drivers provide globalization support by allowing you to retrieve data
from or insert data into columns of the SQL CHARdatatypes and the SQL NCHAR
datatypes of an Oracle9i database. Because Java strings are UTF-16 encoded (16-bit
Unicode) for JDBC programs, the target character set on the client is always UTF-16.
For data stored in the CHARVARCHARZ2L.ONGand CLOBdatatypes, JDBC

Java Programming 9-3

JDBC

transparently converts the data from the database character set to UTF-16. For
Unicode data stored in the NCHARNVARCHARZNnd NCLOBdatatypes, JDBC
transparently converts the data from the national character set to UTF-16.

Following are a few examples of commonly used Java methods for JDBC that rely
heavily on NLS character set conversion:

« java.sgl.ResultSet 's method getString() returns values from the
database as Java strings.

« java.sgl.ResultSet 's method getUnicodeStream() returns values as a
stream of Unicode characters.

« oracle.sql.CLOB 's method getSubString() returns the contents of a
CLOBas a Unicode stream.

« oracle.sql.CHAR 's methods getString() , toString() ,and
getStringWithReplacement()

At database connection time, the JDBC Class Library sets the server NLS _
LANGUAGENd NLS_TERRITORYparameters to correspond to the locale of the Java
VM that runs the JDBC driver. This operation is performed on the JDBC OCI and
JDBC Thin drivers only, and ensures that the server and the Java client
communicate in the same language. As a result, Oracle error messages returned
from the server are in the same language as the client locale.

Accessing SQL CHAR Datatypes Using JDBC

To insert a Java string to a database column of a SQL CHARdatatype, you may use
the PreparedStatement.setString () method to specify the bind variable, and
Oracle’s JDBC drivers transparently convert the Java string to the database
character set. An example for binding a Java string ename to a VARCHARZ2o0lumn
ename is shown below.

intempno =12345;
String ename = "\UFF2A\UFF4ARUFF45",
PreparedStatement pstmt =
conn.prepareStatement ('INSERT INTO emp (empno, ename) VALUES(?,?);
pstmt.setint(1. empno);
pstmt.setSting(2, ename);
pstmt.execute();
pstmt.close();

For data stored in the SQL CHARdatatypes, the techniques that Oracle's drivers use
to perform character set conversion for Java applications depend on the character

9-4 Oracle9i Globalization Support Guide

JDBC

set that the database uses. The simplest case is where the database uses a US7ASCII
or WEB8ISO8859P1 character set. In this case, the driver converts the data directly
from the database character set to UTF-16,which is used in Java applications.

If you are working with databases that employ a non-US7ASCII or
non-WEB8ISO8859P1 character set (for example, Japanese or Korean), then the driver
converts the data, first to UTF8, then to UTF-16. The following sections detail the

conversion paths for different JDBC drivers.

Figure 9-1 presents a graphical view of how data is converted in JDBC drivers.

Figure 9—1 JDBC Data Conversion

Client

Java Applications

Java Applets

Java strings

Java strings

JDBC Class Library in Java

UTF8 UTF8
WEBISO8859PI WEBISO8859PI
UST7ASCII US7ASCII

JDBC OCI JDBC Thin

(Calling Oracle (Calling Java

OClinC) Socket in Java)

UTF8
WEB8ISO8859PI
UST7ASCII

Database Charset

Server

Java Stored
Procedures, or
Corba Objects,
or EJBs

Java strings

JDBC Class Library in Java

UTF-16 UTF8
UTF8 WES8ISO8859PI
WEB8ISO8859PI US7ASCII
US7ASCII
JDBC Server-Side JDBC Server-Side
Internal Driver Thin Driver
To Remote
Database
Database Charset ——

— SQL Engine or
]

PL/SQL Engine

Oracle9i

Database
Charset

Database Charset

Java Programming 9-5

JDBC

JDBC Class Library

The JDBC Class Library is a Java layer that implements the JDBC interface. Java
applications, applets, and stored procedures interact with this layer. The library
always accepts US7ASCII, UTF8 or WE8ISO8859P1 encoded string data from the
input stream of the JDBC drivers. It also accepts UTF-16 for the JDBC server-side
driver. The JDBC Class Library converts the input stream to UTF-16 before passing
it to the client applications. If the input stream is in UTF8, the JDBC Class Library
converts the UTF8 encoded string to UTF-16 by using the bit-wise operation defined
in the UTF8-to-UTF-16 conversion algorithm. If the input stream is in US7ASCII or
WEB8ISO8859P1, it converts the input string to UTF-16 by casting the bytes to Java
characters. This is based on the first 128 and 256 characters of UTF-16
corresponding to the US7ASCII and WE8ISO8859P1 character sets, respectively.
Treating WE8ISO8859P1 and US7ASCII separately improves the performance for
commonly used single-byte clients by eliminating the bit-wise conversion to UTF8.

JDBC OCI Driver

In the case of a JDBC OCI driver installation, there is a client-side character set as
well as a database character set. The client character set is determined at client
installation by the value of the NLS_LANGenvironment variable. The database
character set is determined at database creation. The character set used by the client
can be different from the character set used by the database on the server. So, when
performing character set conversion, the JDBC OCI driver has to take three factors
into consideration:

« The database character set and language
« The client character set and language
« TheJava application's character set

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANGenvironment variable,
the driver handles character set conversions in one of two ways:

« If the value of NLS_LANGSs not specified, or if it is set to the US7ASCII or
WES8ISO8859P1 character set, then the JDBC OCI driver uses Java to convert the
character set from US7ASCII or WE8ISO8859P1 directly to UTF-16 in the JDBC
class library.

« Ifthe value of NLS_LANGS set to a non-US7ASCII or non-WE8ISO8859P1
character set, then the driver changes the value of the NLS_LANGparameter on
the client to UTF8. This happens automatically and does not require any
user-intervention. OCI uses the value of NLS_LANGo convert the data from the

9-6 Oracle9/ Globalization Support Guide

JDBC

database character set to UTF8; the OCI JDBC driver then passes the data to the
JDBC class library where the UTF8 data is converted to UTF-16.

JDBC Thin Driver

If your applications or applets use the JDBC Thin driver, then there is no Oracle
client installation. Because of this, the OCI client conversion routines in C are not
available. In this case, the client conversion routines are different from the JDBC
OCl driver.

If the database character set is US7ASCII or WE8ISO8859P1, the data is transferred
to the client without any conversion. The driver then converts the character set to
UTF-16 in Java.

If the database character set is something other than US7ASCII or WE8ISO8859P1,
then the server first translates the data to UTF8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UTF-16 in Java.

JDBC Server-side Internal Driver

For Java classes running in the Java VM of the Oracle9i Server, the JDBC Server-side
Internal driver is used to talk to the SQL engine or the PL/SQL engine for SQL
processing. Because the JDBC Server-side Internal driver is running in the same
address space as the Oracle server process, it makes a local function call to the SQL
engine or the PL/SQL engine. Data sent to or returned from the SQL engine or the
PL/SQL engine will be encoded in the database character set. If the database
character set is US7ASCII, WE8ISO8859P1, or UTF8, no conversion is performed in
the JDBC Server-side Internal driver, and the data is passed to or from the JDBC
Class Library as is. Otherwise, the JDBC Server-side Internal driver converts the
data from the database character set to UTF-16 before passing it to and from the
class library. The class library does not need to do any conversion in this case.

Accessing SQL NCHAR Datatypes Using JDBC

JDBC allows Java programs to access columns of the SQL NCHAR]atatypes in an
Oracle9i database. The data conversion path for the SQL NCHARJatatypes is
different from that of the SQL CHARdatatypes. All Oracle JDBC drivers convert data
in the SQL NCHAR olumn from the national character set, which is either UTF8 or
AL16UTF16, directly to UTF-16 encoded Java strings. In a Java program, you may
bind a Java string ename to a NVARCHARRZolumn ename as follows:

intempno =12345;
String ename = "\UFF2A\UFF4ARUFF45",
oracle.jdbc.OraclePreparedStatement pstmt =

Java Programming 9-7

JDBC

(oracle jdbc.OraclePreparedStatement)

conn.prepareStatement('INSERT INTO emp (empno, ename) VALUES (?, ?)");
pstmt.setFormOfUse(2, oracle jdbc.OraclePreparedStatement FORM_NCHARY);
pstmt.setint(1. empno);
pstmt.setSting(2, ename);
pstmt.execute();
pstmt.close();

See Also: Chapter 6, "Unicode Programming" for more
information about programming against the SQL NCHARJatatypes

Using the oracle.sql.CHAR Class

The oracle.sgl.CHAR class has special functionality for NLS conversion of
character data. A key attribute of the oracle.sql.CHAR class, and a parameter
always passed in when an oracle.sgl.CHAR object is constructed, is the NLS
character set used in presenting the character data. Without a known character set,
the bytes of data in the oracle.sgl. CHAR object are meaningless.

Retrieving Data to oracle.sql.CHAR Class

When you call the OracleResultSet.getCHAR() method to get a bind variable
as an oracle.sql.CHAR object, JIDBC constructs and populates the
oracle.sql.CHAR objects after character data has been read from the database.

The oracle.sql.CHAR class provides the following methods for converting
character data to strings:

« getString()

Converts the sequence of characters represented by the oracle.sql. CHAR
object to a string, returning a Java String object. If the character set is not
recognized (that is, if you entered an invalid OraclelD), then getString()
throws a SQLEXxception

« toString()

Identical to getString() , but if the character set is not recognized (that is, if
you entered an invalid OraclelD), then toString() returns a hexadecimal
representation of the oracle.sgl. CHAR data and does not throw a
SQLEXxception

« getStringWithReplacement()

9-8 Oracle9i Globalization Support Guide

JDBC

Identical to getString() , except a default replacement character replaces
characters that have no Unicode representation in the character set of this
oracle.sql.CHAR object. This default character varies from character set to
character set, but is often a question mark.

The oracle.sgl.CHAR in Oracle Object Types

In Oracle9i, JDBC drivers support Oracle object types. Oracle objects are always
sent from database to client as an object represented in the database character set.
That means the data conversion path in Figure 9-1, "JDBC Data Conversion", does
not apply to Oracle object access. Instead, the oracle.sgl. CHAR class is used for
passing string data from the database to the client. The following is an example of
an object type created using SQL:

CREATE TYPE PERSON_TYPE AS OBJECT (NAME VARCHAR2(30), AGE NUMBER);
CREATE TABLE EMPLOYEES (ID NUMBER, PERSON PERSON_TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person implement SglData

{
oracle.sgl.CHAR name;

oracle.sg.NUMBER age;

I/ SqlData interfaces

getSalType() {..}

writeSal(SqlOutput stream) {...}

readSql(Sqllnput stream, String satype) {...}
}

The oracle.sql.CHAR class is used here to map to the NAMEattributes of the
Oracle object type, which is of VARCHARype. JDBC populates this class with the
byte representation of the VARCHARIata in the database and the character set object
corresponding to the database character set. The following code retrieves a person
object from the people table,

TypeMap map = ((OracleConnection)conn).getTypeMap();
map.put(PERSON_TYPE", Class.forName("person’));
conn.setTypeMap(map);

ResultSet rs = simt.executeQuery("SELECT PERSON FROM EMPLOYEES);
rs.next();

person p = (person) rs.getObject(1);

oracle.sgl.CHAR sgl_name =p.name;

String java_name = sgl_name.getString();

Java Programming 9-9

JDBC

The getString() method of the oracle.sql. CHAR class converts the byte array
from the database character set to UTF-16 by calling Oracle's Java data conversion
classes and return a Java string. For the rs.getObject(1) call to work, the
SglData interface has to be implemented in the class person , and the Typemap
map has to be set up to indicate the mapping of the object type PERSON_TYPEo the
Java class.

NLS Restrictions

CHAR and VARCHAR?2 Data Size Restriction With the Thin Driver

If the database character set is neither ASCII (US7ASCII) nor ISO-LATIN-1
(WEB8ISO8859P1), then the Thin driver must impose size restrictions for CHARand
VARCHARDind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The Thin driver checks CHARor VARCHARDiINd sizes when the setXXX() method
is called. If the data size exceeds the size restriction, then the driver throws a SQL
exception (ORA-17070 "Data size bigger than max size for this type") from the
setXXX() call. This limitation is necessary to avoid the chance of data corruption
whenever an NLS conversion occurs and increases the length of the data. This
limitation is enforced when you are doing all the following:

« Using the Thin driver
« Using binds (not defines)
« Using CHARor VARCHAR2latatypes

« Connecting to a database whose character set is neither ASCII (US7ASCII) nor
ISO-Latin-1 (WE8ISO8859P1)

Role of NLS Ratio When the database character set is neither US7ASCII nor
WES8ISO8859P1, the Thin driver converts Java UTF-16 characters to UTF-8 encoding
bytes for CHARor VARCHARDiINnds. The UTF-8 encoding bytes are then transferred
to the database, and the database converts the UTF-8 encoding bytes to the database
character set encoding.

This conversion to the character set encoding might result in a size increase. The
NLS ratio for a database character set indicates the maximum possible expansion in
converting from UTF-8 to the character set:

NLS ratio = maximum character size in the database character set

9-10 Oracle9i Globalization Support Guide

JDBC

Size Restriction Formulas ~ Table 9-1 shows the database size limitations for CHARand
VARCHAR®2ata, and the Thin driver size restriction formulas for CHARand
VARCHARDiInds. Database limits are in bytes. Formulas determine the maximum
size of the UTF-8 encoding, in bytes.

Table 9—1 Maximum CHAR and VARCHAR?Z Bind Sizes, Thin Driver

Maximum Size

Oracle Allowed by Formula for Thin Driver Maximum
Version Datatype Database (In Bytes) Bind Size (In UTF8 Bytes)
Oracle8, CHAR 2000 2000 /NLS ratio

Oracle8i, and

Oracle9i

Oracle8, VARCHAR?2 4000 4000/NLS_ratio

Oracle8i, and

Oracle9i

The formulas guarantee that after the data is converted from UTF-8 to the database
character set, the size will not exceed the database maximum size.

The number of UTF-16 characters that can be supported is determined by the
number of bytes per character in the data. All ASCII characters are one byte long in
UTF-8 encoding. Other character types can be two or three bytes long.

NLS Ratios and Calculated Size Restrictions for Common Character Sets Table 9-2 lists the
NLS ratios of some common server character sets, then shows the Thin driver
maximum bind sizes for CHARand VARCHARZ2lata for each character set, as
determined by using the NLS ratio in the appropriate formula.

Maximum bind sizes are for UTF-8 encoding, in bytes.

Table 9-2 NLS Ratio and Size Limits for Common Server Character Sets

Thin Driver

Maximum

VARCHAR2 Bind Thin Driver Maximum CHAR
Server Character Set NLS Ratio Size (UTF-8 Bytes) Bind Size (UTF-8 Bytes)

WESDEC 1 4000 2000
JA16SJIS 2 2000 2000
JA16EUC 3 1333 1333

Java Programming 9-11

JDBC

Character Integrity Issues in an NLS Environment

Oracle JDBC drivers perform character set conversions as appropriate when
character data is inserted into or retrieved from the database. In other words, the
drivers convert Unicode characters used by Java clients to Oracle database character
set characters, and vice versa. Character data making a round trip from the Java
Unicode character set to the database character set and back to Java can suffer some
loss of information. This happens when multiple Unicode characters are mapped to
a single character in the database character set. An example would be the Unicode
full-width tilde character (OXFF5E) and its mapping to Oracle's JA16SJIS character
set. The round trip conversion for this Unicode character results in the Unicode
character 0x301C, which is a wave dash (a character commonly used in Japan to
indicate range), not a tilde.

Figure 9-2 Character Integrity

Oracle database
Character Set
Java Unicode (JA16SJIS) Java Unicode

0x301C - <

: < :
/ : 0x8160 L—p _ 0x301C

OXFF5E - - OXFF5E

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the
ambiguity in character mapping specification on different operating systems.
Fortunately, this problem affects only a small number of characters in a small
number of Oracle character sets such as JA16SJIS, JAI6EUC, ZHT16BIG5, and
KO16KS5601. The workaround is to avoid making a full round-trip with these
characters.

9-12 Oracle9i Globalization Support Guide

SQLJ

SQLJ

SQLJ is a SQL-to-Java translator that translates embedded SQL statements in a Java
program into the corresponding JDBC calls regardless of which JDBC driver is used.
It also provides a callable interface that the Oracle9i database server uses to
transparently translate the embedded SQL in server-side Java programs. SQLJ by
itself is a Java application that reads the SQLJ programs (Java programs containing
embedded SQL statements) and generates the corresponding Java program files
with JDBC calls. There is an option to specify a checker to check the embedded SQL
statements against the database at translation time. The javac compiler is then
used to compile the generated Java program files to regular Java class files.

Figure 9-3 presents a graphical view of how the SQLJ translator works.

Figure 9-3 Using the SQLJ Translator

Java program
SQLJ program : Regular Java
- with JDBC calls . gula
(Ltja_lr_llggg)ed in SQLJ tra_nslator (encoded in Java Compiler class file
JDBC driver UTF16)

Oracle9i

Using Unicode characters in SQLJ programs

SQLJ enables multilingual Java application development by allowing SQLJ files
encoded in different encoding schemes (those supported by the JDK). In the
diagram above, a UTF-16 encoded SQLJ program is being passed to the SQLJ
translator and the Java program output is also encoded in UTF-16. SQLJ preserves
the encoding of the source in the target. To specify the encoding of the source, use
the -encoding option as follows:

sqj -encoding Unicode source_file
Unicode notation \uXXXX (which is referred to as a Unicode escape sequence) can
be used in embedded SQL statements for characters that cannot be represented in

the encoding of the SQLJ program file. This enables you to specify multilingual
object names in the SQL statement without using a UTF-16 encoded SQLI file. The

Java Programming 9-13

Java Virtual Machine

following SQLJ code shows the usage of Unicode escape sequences in embedded
SQL as well as in a string literal.

intempno =12345;

String name ename = "\UFF2A\WUFFARUFF45",

doubleraise=0.1;

#sgl {INSERT INTO EW0063\u0064 (ename, empno) VALUES (:ename, :empno)};
#sg]{ update EMP set SAL = :(getNewSal(raise, ename))
WHERE ename = :ename;

See Also: "Multilingual Demo Applications in SQLJ" on page 9-31
for an example of SQLJ usage for a multilingual Java application

Using the oracle.sgl.NString class

In Oracle9i, the oracle.sql.NString class is introduced in SQLJ to support the
NVARCHARNCHARand NCLOBUnNicode datatypes. You may declare a bind an
NCHARoolumn using a Java object of the oracle.sql.NString type, and use it in
the embedded SQL statements in your SQLJ programs.

intempno =12345;

oracle.sql.NString ename = new oracle.sgl.NString (\uFF2A\UFFARUFF45");
doubleraise =0.1;

#

#sql{INSERT INTO EWu0063\u0064 (ENAME, EMPNO) VALUES (:ename, :empno)};
sl { UPDATE emp SET sal = :(getNewSal(raise, ename))

WHERE ename = :ename;

This example binds the ename object of the oracle.sql.NString datatype to the
ename database NVARCHARRZolumn.

See Also: Chapter 6, "Unicode Programming" for more details on
the SQL NCHARJatatypes support in SQLJ

Java Virtual Machine

The Oracle9i Java VM base is integrated into the database server to enable the
running of Java classes stored in the database. Oracle9i allows you to store Java
class files, Java or SQLJ source files and Java resource files into the database, to
publish the Java entry points to SQL so that it can be called from SQL or PL/SQL,
and to run the Java byte code.

9-14 Oracle9i Globalization Support Guide

Java Virtual Machine

In addition to the engine that interprets Java byte code, the Oracle Java VM includes
the core run-time classes of the JDK. The components of the Java VM are depicted in
Figure 9-4.

Figure 9—4 Components of Oracle’s Java Virtual Machine

Byte code interpreter
+

Oracle Net and IIOP run time

Object memories
+

Java compiler Java VM

garbage collector

Class loader

loadjava RDBMS

Library manager memory manager

The Java VM provides an embedded Java class loader that locates, loads, and
initializes locally stored Java classes in the database, and a byte code compiler
which translates standard Java programs into standard Java .class binary
representation. A library manager is also included to manage Java program, class,
and resource files as schema objects known as library units. It not only loads and
manages these Java files in the database, but also maps Java name space to library
units. For example:

public class Greeting

{
public String Hello(String name)
{

retum ("Hello" + name +"1");
}
}

After the preceding Java code is compiled, it is loaded into the database as follows:

loadjava Greeting.class

Java Programming 9-15

Java Stored Procedures

As a result, a library unit called Greeting , is created as a schema object in the
database. Class and method names containing characters that cannot be represented
in the database character set are handled by generating a US7ASCII library unit
name and mapping it to the real class name stored in a RAWolumn. This allows the
class loader to find the library unit corresponding to the real class name when Java
programs run in the server. In other words, the library manager and the class loader
support class names or method names outside the namespace of the database
character set.

Java Stored Procedures

A Java stored procedure or function requires that the library unit of the Java classes
implementing it already be present in the database. Using the Greeting library
unit example in the previous section, the following call specification DDL publishes
the method Greeting.Hello() as a Java stored function:

CREATE FUNCTION MYHELLO(NAME VARCHAR?2) RETURN VARCHAR2
AS LANGUAGE JAVANAME
'Greeting.Hello(java.lang.String) retum java.lang.String’;

The DDL maps the Java methods, parameter types and return types to the SQL
counterparts. To the users, the Java stored function has the same calling syntax as
any other PL/SQL stored functions. Users can call the Java stored procedures the
same way they call any PL/SQL stored procedures. Figure 9-5 depicts the runtime
environment of a stored function.

9-16 Oracle9i Globalization Support Guide

Java Stored Procedures

Client running

Figure 9-5 Running of Java Stored Procedures

SQL>CALL Server response
MYHELLO('Oracle’); PL/SQL engine to the dJava Stl?fed
SQL>SELECT MYHELLO procedure ca
ENAME)FROM EMP; , ,
() MYHELLO(Oracle’) | 4 Invoke Java VM to run the
Greeting.Hello() method
NLS_LANG=
JAPANESE_JAPAN.JA16SJIS Convert the argument from
Database Charset to UTF16
Java VM before passing it to the method.
Oracle Net The Java VM locale is Japanese.
. The Java VM encoding is the
Database Charset Greeting.Hello() +— database character set.
| MYHELLO(VARCHAR?)
| Greeting.class |
The Java entry point, Greeting.Hello() , is called by invoking the proxy

PL/SQL MYHELLO() from the client. The server process serving the client runs as a
normal PL/SQL stored function and uses the same syntax. The PL/SQL engine
takes a call specification for a Java method and calls the Java VM. Next, it passes the
method name of the Java stored function and the argument to the Java VM for
execution. The Java VM takes control, calls the SQL to Java using code to convert
the VARCHAR2rgument from the database character set to UTF-16, loads the class
Greeting , and runs the method Hello() with the converted argument. The string
returned by Hello() is then converted back to the database character set and
returned as a VARCHARZ2tring to the caller.

The globalization support that enables deployment and development of
internationalized Java stored procedures includes:

Java Programming 9-17

Java Servlets and Java Server Pages

1. The strings in the arguments of Java stored procedures are automatically
converted from SQL data types (in the database character set) to
UTF-16-encoded Java strings.

2. The default Java locale of the Java VM follows the language setting (defined by
the NLS_LANGUAGENnd NLS_TERRITORYdatabase parameters) of the current
database session propagated from the NLS_LANGenvironment variable of the
client. A mapping of Oracle language and territory names to Java locale names
is in place for this purpose. In additions, the default encoding of the Java VM
follows the database character set.

3. Theloadjava utility supports loading of Java and SQLJ source files encoded
in any encoding supported by the JDK. The content of the Java or SQLJ
program is not limited by the database character set. Unicode escape sequences
are also supported in the program files.

Note: The entry method name and class name of a Java stored
procedure has to be in the database character set because it has to
be published to SQL as DDL.

Java Servlets and Java Server Pages

You can write a Java servlet or a JavaServer Page (JSP) and deploy it on an Oracle9i
database. Oracle9i provides a servlet engine and JSP compiler for the deployment of
Java servlets and JSPs.

« The Oracle Servlet Engine (OSE) that implements the Servlet 2.2 API which
provides the internationalization support for writing a multilingual Java
servlet.

« The Oracle JSP compiler (OJSP) supports the JSP 1.1 and provides
internationalization support for writing a multilingual JSP.

When a HTTP requests come to invoke a Java servlet in OSE, the Oracle HTTP
Server directs the request to the database, the database invokes OSE in the context
of a database session, OSE locates the requested Java servlet and dispatches to it
with the HTTPServletRequest object and the HTTPServletResponse object.

To deploy a Java servlet or JSP to the database, follow the steps below:
1. Write the Java servlets and JSPs.
2. Compile the JSPs into Java servlets.

3. Load the Java servlets into the database using the loadjava utility

9-18 Oracle9i Globalization Support Guide

Java Servlets and Java Server Pages

4. Publish the Java servlets using the httppublish utility. You publish a Java
servlet with a virtual path for the servlet.

See Also: Oracle9i Servlet Engine Developer’s Guide for information
about managing Java servlets in OSE

A Java servlet or JSP receives HTTP requests from a browser, processes the request,
and generates an HTTP response back to the browser.

The following sections describe the things you should consider when programming
a Java servlet or JSP to support multiple languages.

Determining the Desired Locale of a User

To present the user interface in the user's desired language, applications need to
detect his or her desired locale and construct HTML content in the desired language
and use the correct cultural conventions. Both JSPs and Java servlets can use the
HttpServiletRequest.getLocale() method of the Servlet API to get the Java
locale corresponding to the Accept-Language HTTP header and use it as the desired
locale. Once the desired locale is found, set the Java locale as the default Java locale
to direct all locale-sensitive Java objects functions to behave accordingly.

Locale.setDefault(userlLocale);

The default Java locale is used for all Java threads. To ensure that different locales
are used on different threads, specify the desired locale for each Java object.

Tagging the HTML Output with an Encoding

The encoding of an HTML page is a very important piece of information to the
browser and your applications. The browser needs to know so that it can use correct
font and mapping tables for displaying pages, and applications need to know so
they can safely assume the encoding of form input data and query strings.

You can tag the HTTP header by calling the setContentType() method of the
Servlet API. The following doGet() function shows how this method should be
called to specify UTF-8 as the encoding of the HTML output.

public void doGet(HttpServietRequest req, HttpSenvietResponse res)throws
SenvletException, IOException

{

Il generate the MIME type and character set header
res.setContentType("texthtml; charset=utf-8");

Java Programming 9-19

Java Servlets and Java Server Pages

I generate the HTML page
Printwriter out = res.getWiiter();
outprintn('<HTML>");

outprnt{'<HTML),
}

Note that the setContentType () method should be called before the
getWriter () method because the getWriter () method initializes an output
stream writer using the character set specified in the setContentType () method.

For JSPs, you can tag the encoding of an HTML page using the contentType page
directive. An example is shown below.

<%(@ page contentType="texthtml; charset=utf-8" %>

The character set of the contentType page directive describes the encoding of the
JSP page as well as the encoding of the HTML page sent to the browser.

Decoding Form Input and Encoding Query String

In most JSP and servlets engines including OSE, the Servlet APl implementation
assumes that incoming form input is in 1SO-8859-1 encoding. As a result, when the
HttpServiletRequest.getParameter() APl is called, all data of the input text
is decoded and the decoded input is converted from 1SO-8859-1 to UTF-16 and
returned as a Java string. The Java string returned is incorrect if the encoding of the
HTML form is not in ISO-8859P-1. However, you can solve this. When the JSP or
Java servlet receives form input or query strings, it needs to convert them back to
the original form, and then convert the original form to a Java string based on the
correct encoding.

String orig = request.getParameter(‘name’);
String real = new String(orig.getBytes("1SO8859_1"),"UTF8");

In the above example, the Java string real will be initialized to store correct
characters from a UTF-8 form input.

If a query string is constructed in a JSP or Java servlet, all 8-bit bytes must be
encoded using their hexadecimal values prefixed by a percent sign as described
above. The following code shows you how to encode a Java string into its
hexadecimal representation in UTF-8.

byte[] htmiBytes = queryString.getBytes('UTF8");
for (inti= 0; i < htmIBytes.length; i++)
{

9-20 Oracle9i Globalization Support Guide

CORBA and EJB

if (htmiBytes[i] & Oxif) > 0x7f)
queryString +="%" + Long.toHexString

((long)(htmiBytes(i] &Oxf);
else

queryString += new String(htmiBytes,i, 1,"1ISO8859_1";

CORBA and EJB

CORBA ORB

Visigenic's CORBA Object Request Broker (ORB) is integrated into the database
server to make it a Java CORBA object and EJB server running the I1OP protocol.
CORBA support also includes a set of supporting services that enables the
deployment of CORBA objects to the database.

See Also: Oracle9i CORBA Developer’s Guide and Reference.

The CORBA ORB is written in Java and includes an IIOP interpreter and the object
adapter. The IIOP interpreter processes the IOP message by invoking the object
adapter to look for the CORBA object being activated and load it into the memory;,
and running the object method specified in the message.

A couple of CORBA objects are predefined. The LoginServer object is used for
explicit session log in, and the PublishContext object is to used to resolve a
published CORBA object name to the corresponding PublishedObject

CORBA objects implemented in Java in Oracle9i are required to be loaded and then
published before the client can reference it. Publish is a Java written utility that
publishes a CORBA object to the ORB by creating an instance of

PublishedObject which represents and activates the CORBA object, and binding
the input (CosNaming) name to the published object.

Oracle9i implements the CosNaming standard for specifying CORBA object names.
CosNaming provides a directory-like structure that is a context for binding names
to CORBA objects. A new JNDI URL, sess_iiop: , is created, and indicates a
session-based I1OP connection for a CORBA object. A name for a CORBA object in
the local database can be published as:

sess_iiop:ilocal:2222:0RCL/Demo/MyGreeting
where 2222 is the port number for receiving I1OP requests, ORCLis the database

instance identifier and /Demo/MyGreeting is the name of the published object.
The namespace for CORBA objects in Oracle9i is limited to US7ASCII characters.

Java Programming 9-21

CORBA and EJB

Figure 9-6 presents a graphical view of the components in a CORBA environment:

Figure 9—-6 Components Supporting CORBA

Java CORBA client CORBA ORB | Greetingimpl |

Greeting=
lookup("/Demo/MyGreeting");

; LoginServer
Greeting.Hello('Oracle’); Object adapter |g—,
Browser PublishContext Java VM

lIOP

ORB [IOP interpreter PublishedObject
for Greetinglmpl
JDBC KPRB
Oracle9i
publish A
/Demo/MyGreeting
Greeting jar loadjava | Publishedobject |
| Greetinglmpl |
Java CORBA Object

The CORBA objects for Oracle9i can only be written in Java and they run on the
Java VM of the database. The CORBA client can be written in any language the
standard supports. An interface definition language (IDL) file that identifies the
CORBA objects and their interfaces will be compiled with the idl2java translator to
generate the stub for the client and the skeleton code for the CORBA server objects.
CORBA object programmers are required to program the implementation classes of
the CORBA objects defined in the IDL in Java by extending the skeleton classes
generated and load them to the database together with the skeleton code.

Greeting.idl

Module Demo

{
interface Greeting

9-22 Oracle9i Globalization Support Guide

CORBA and EJB

{
wstring Hello(string str);
3
¥

>idi2java Greeting.IDL
Creating:
Demo/Greeting java
Demo/GreetingHolder java
Demo/GreetingHelper java
Demo/_GreetinglmpBase java

Greetinglmpl.java
public class Greetingimpl
extends _GreetingimplBase
implements ActivatableObject
{
public Greetinglmpl (String name)
{
super(name);
}
public Greetinglmpl()
{
super();
}
public org.omg.CORBA.Object

_intializeAuroraObject()

{ retumn this

Lublic String Hello(String str)
{ retum "Hello" + str;

}
}

In the above code, the CORBA object Greeting has been implemented with a
method called Hello() . The CORBA standard defines the wstring data type to
pass multibyte strings via CORBA/I1IOP, and the Visigenic ORB implements the
wstring data type as a Unicode string. If the string datatype is specified instead,
the parameter passed into the Hello() method is assumed to be a single byte. The
wstring data type enables the development of multilingual CORBA objects. The

Java Programming 9-23

CORBA and EJB

implementation class for Greeting extends the skeleton class
_GreetinglmplBase generated by idI2java

Once the CORBA object has been implemented, the below example shows the steps
involved in loading the Java object implementation classes into the database and
publishing the Java CORBA object using the CosNaming convention.

loadjava -user scottftiger -grant public Greeting jar

publish -user scott -password tiger -service
sess_iiop:ilocal:2222:orc/Demo/MyGreeting
Demo.Greetinglmpl Demo.GreetingHelper

Assume that all Java classes (implementation and helper classes) required to
implement the Greeting object are in the Greeting.jar file. They are loaded to
the database as public, and the implementation class is published to the database.
The name of the published object is /Demo/MyGreeting , and it is used in the
client code to reference this CORBA object.

Java CORBA Client

Clients accessing a CORBA object in the database require an ORB and
authentication from the database where the object is stored. The following is a
excerpt of a client code in Java accessing the Greeting object. The ORB is
initialized when the CORBA object is first activated by means of Oracle's
implementation of the Java Native Directory Interface (JNDI).

import java.util Hashtable;
import javax.naming.*;
import oracle.aurorajndi.sess_iiop.ServiceCtx;

public class Client
{
public static void main(String args(]) throws Exception
{
Hashtable environment = new Hashtable();
environment.put(javax.naming.ContextURL_PKG_PREFIXES,
"oracle.aurorajndi’);
environment.put(Context SECURITY_PRINCIPAL, "scott);
environment.put(Context SECURITY_CREDENTIALS, 'tiger”);
environment.put(Context SECURITY_AUTHENTICATION,
SenviceCxNON_SSL._CREDENTIAL);

Context ic = new IniialContext(environment);
Greeting greet = (Greeting)
ic.lookup(“sess_iiop:/local:2222:0RCL/Demo/MyGreeting”);

9-24 Oracle9i Globalization Support Guide

CORBA and EJB

System.out printin(greet.Hello(arg[Q)));

}
}

The database is a secure environment, so Java clients must be authenticated before
they can access CORBA objects, and the locale of the Java VM running the CORBA
object is initialized when the session running the object is authenticated. To access a
CORBA object, you can use explicit or implicit authentication:

« Implicit authentication

The client can initialize the service context object with its user name and
password as shown in the above code. The default locale of the client Java VM
is implicitly stored in the service context object and passed to the server ORB in
the first I1OP request. The server Java VM locale is initialized with the same
locale as the client.

« Explicit authentication

The client can call the authenticate() method of the Login object to access
the LoginServer CORBA object in the server. The LoginServer object can
be accessed without being authenticated. The authenticate() method
accepts user name, password, role and Java locale as arguments. If the Java
locale argument is not provided, the default locale of the Java VM in the server
will be initialized to the database language defined by the NLS_L ANGUAGEnd
NLS_TERRITORYdatabase parameters.

Enterprise Java Beans
In addition to CORBA objects, Oracle provides tools and an environment for
developing and deploying EJBs in the Oracle9i server. An EJB is called using the
I1IOP protocol provided for CORBA support, and hence shares a lot of similarities
with the CORBA object. An EJB is defined in the EJB descriptor, which specifies the
home interface, remote interface, home name and allowed identities of the EJB
among other things.

See Also: Oracle9i Enterprise JavaBeans Developer’s Guide and
Reference

The following shows the EJB descriptor for GreetingBean , which is functionally
equivalent to the CORBA object Greeting described earlier.

SessionBean GreetingServer.GreetingBean
{

Java Programming 9-25

CORBA and EJB

BeanHomeName ="Demo/MyGreeting',
RemotelnterfaceClassName = hello.Greeting;
HomelnterfaceClassName = hello.GreetingHome;
Allowedidentities ={ PUBLIC};
RunAsMode = CLIENT_IDENTITY;
TransactionAttribute = TX_SUPPORTS;

}

An EJB descriptor can be in any encoding supported by the JDK. However, only the
Allowedldentities field can be non-US7ASCII. There are two ways you can
specify non-US7ASCII Allowedldentities

« Use the encoding of the non-US7ASCII character set for the EJB descriptor file
and specify the -encoding command line argument to tell ejbdeploy the
encoding of the input file.

« Use the corresponding Unicode escape sequence to represent the non-US7ASCII
identities.

The implementation class for the EJB is in GreetingBean.java package
GreetingServer

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.mi.RemoteException;

public class GreetingBean implements SessionBean

{
Il Methods of the Greeting interface

public String Hello (String str) throws RemoteException
{

retum "Hello" + str;

}
/I Methods of the SessionBean
public void ejbCreate () throws RemoteException, CreateException {
public void eppRemove() {}
public void setSessionContext (SessionContext ctx) {}
public void ejpActivate ()
public void ejpPassivate ()
}

Note that all strings passed to the EJB as arguments and returned from the EJB as
function values are UTF-16 encoded Java strings.

9-26 Oracle9i Globalization Support Guide

CORBA and EJB

An EJB resembles a CORBA object in that it is required to be published before being
referenced. The EJB Home name specified in the EJB descriptor will be used to
publish. For example:

deployejb -republish -temp temp -u scott -p tiger -encoding Unicode
-ssess_iiop:/flocal:2222:0RCL -descriptor Greeting.ejb server.jar

Because deployejb uses IIOP to connect to Oracle, the service name for the I1OP
service of the database server has to be specified. Also, server.jar should contain
the class files for the home interface object, remote interface object, and the bean
implementation object of the EJB Greeting . Note that the -encodingargument

is required if the EJB descriptor file Greeting.ejb is in different encoding from
the default encoding of the Java VM. In this example, the Greeting.ejb isa
Unicode text file.

EJB Client

An EJB client is like a CORBA client in that it can be a Java program using Oracle's
JNDI interface to authenticate a session and look for the EJB object in the database
server. To look for the corresponding EJB object, the EJB client looks for the home
interface object whose name is specified in the EJB descriptor and calls the

create() method of this home interface object to create the EJB instance in the
database server. After the instance of the EJB is created, you can call the methods
within it.

The following code shows how the EJB client calls the Hello() method of the EJB
called Demo.Greeting . It is functionally equivalent to the code of the CORBA
Client in the previous section, but uses the explicit authentication mechanism.

import Demo.Greeting; //Remote interface object
import Demo.GreetingHome; //Home interface object
import javax.naming.*;
import java.util. Hashtable;
import oracle.aurorajndi.sess_iiop.ServiceCtx;
import oracle.aurora.client;
public class Client
{
public static void main (String[] args) throws Exception
{
Hashtable environment = new Hashtable ();
environment.put (ContextURL_PKG_PREFIXES, "oracle.aurorajndi");
Context ic = new InitialContext (environment);
/lLogintothe 9 i server
LoginServer Iserver = (LoginServer)
iclookup ("sess_iiop:/ocal:2222:ORCL/etcllogin';

Java Programming 9-27

Configurations for Multilingual Applications

Login i = new Login (lserver)

li.authenticate (usemame, password, null);

Il Activate a Greeting instance inthe 9 i server
/I This creates a first session in the server

GreetingHome greetingHome = (GreetingHome)

iclookup ("sess_iiop:/local:2222:ORCL/Demo/MyGreeting");
Greeting greet = greetingHome.create ();
System.outprintin (greet.Hello (arg[0]);

}

}

Similar to the implicit authentication mechanism, the explicit authentication
protocol, li.authenticate() , will automatically pass the default Java locale of

the client to the LoginServer object in the database server. This Java locale will be
used to initialize the Java locale of the server Java VM on which the EJB runs. In
addition, the NLS_LANGUAGENd NLS_TERRITORYsession parameters will be set
to reflect this Java VM locale. This is to preserve the locale settings from EJB client to
EJB server so that server uses the same language as the client.

Configurations for Multilingual Applications

To develop and deploy multilingual Java applications for Oracle9i, the database
configurations and client environments for the targeted systems have to be
determined.

Configuring a Multilingual Database

In order to store multilingual data into an Oracle9i database, you need to configure
the database appropriately. There are two ways to store Unicode data into the
database:

« AsSQL CHARdatatypes in a Unicode database
« As SQL NCHARJatatypes in a non-Unicode database

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode” for more information about choosing a Unicode solution
and configuring the database for Unicode

9-28 Oracle9i Globalization Support Guide

Configurations for Multilingual Applications

Globalizing the Java Server Objects

For each Oracle9i session, a separate Java VM instance is created in the server for
running the Java object, and Oracle9i Java support ensures that the locale of the Java
VM instance is the same as that of the client Java VM. Hence the Java objects always
run on the same locale in the database as the client locale.

For non-Java clients, the default locale of the Java VM instance will be the best
matched Java locale corresponding to the NLS_LANGUAGENnd NLS_TERRITORY
session parameters propagated from the client NLS_LANGenvironment variable. In
case of JSP and Java servlets, there is no NLS_LANGenvironment, the Java servlet is
responsible to determine the locale of the client and synchronize it with the default
Java locale of the Java VM instance on which the Java servlet runs.

Internationalizing the Java code

Java objects in the database such as Java stored procedures, Java servlets, Java
CORBA, and EJB objects are server objects which are accessible from clients of
different language preferences. They should be internationalized so that they are
sensitive to the Java locale of the Java VM, which is initialized to the locale of the
client.

With JDK internationalization support, you are able to specify a Java locale object to
any locale-sensitive methods or use the default Java locale of the Java VM for those

methods. Here are examples of how you may want to internationalize a Java stored
procedure, Java servlet, Java CORBA object, or EJB:

« Externalize all localizable strings or objects from the Java code to resource
bundles and make the resource bundles as part of the procedure, servlet,
CORBA obiject, or EJB. Any messages returned from the resource bundle will be
in the language of the client locale or whatever locale you specify.

« Use the Java formatting classes such as DateFormat and NumberFormat to
format your date, time, numbers and currencies with the assumption that they
will reflect the locale of the calling client.

« Use Java locale-sensitive string classes such as Character , Collator , and
Breaklterator to check the classification of a character, compare two strings
linguistically, and parse a string character by character.

Passing Multilingual Data Around

All Java server objects access the database with the JDBC Server-side Internal driver
and should use either a Java string or oracle.sgl.CHAR to represent string data
to and from the database. Java strings are always encoded in UTF-16, and the

Java Programming 9-29

Configurations for Multilingual Applications

required conversion from the database character set to UTF-16 is transparently done
as described previously. oracle.sql. CHAR stores the database data in byte array
and tags it with a character set ID. It should be used when no string manipulation is
required on the data. For example, oracle.sql.CHAR is the best choice for
transferring string data from one table to another in the database.

When developing Java CORBA objects, the wstring data type should be used in
the IDL as described in "Java CORBA Object" on page 9-24 to ensure that Unicode
data is being passed from client to server.

Clients of Different Languages

Clients (or middle tiers) can have different language preferences, database access
mechanisms, and Java runtime environments. The following are several commonly
used client configurations.

« Java CORBA clients running an ORB

A CORBA client written in Java can access CORBA objects in the database
server via IIOP. The client can be of different language environments. Upon log
in, the locale of the Java VM running the CORBA client will be automatically
sent to the database ORB, and is used to initialize the Java VM session running
the server objects. The use of the wstring data type of the server objects
ensures the client and server communicate in Unicode.

« Javaapplets running in browsers

Java applets running in browsers can access the Oracle9i database via the JDBC
Thin driver. No client-side Oracle library is required. The applets use the JDBC
Thin driver to invoke SQL, PL/SQL as well as Java stored procedures. The
JDBC Thin driver makes sure that Java stored procedures run in the same locale
as the Java VM running the applets.

« Dynamic HTML on browsers

HTML pages invoke Java servlets via URLs over HTTP. The Java servlets
running in the database construct dynamic HTML pages and deliver back to the
browser. They should determine the locale of a user and construct the page
according to the language and cultural convention preferences of the user.

« Java applications running on client Java VMs

Java applications running on the Java VM of the client machine can access the
database via either JDBC OCI or JDBC Thin drivers. Java applications can also
be a middle tier servlet running on a Web server. The applications use JDBC
drivers to invoke SQL, PL/SQL as well as Java stored procedures. The JDBC

9-30 Oracle9i Globalization Support Guide

Multilingual Demo Applications in SQLJ

Thin and JDBC OCI drivers make sure that Java stored procedures will be
running in the same locale as that of the client Java VM.

« Cclients such as OCI, Pro*C, and ODBC

Non-Java clients can call Java stored procedures the same way they call
PL/SQL stored procedures. The Java VM locale is the best match of Oracle's
language settings NLS LANGUAGEnd NLS_TERRITORYpropagated from the
NLS_LANGenvironment variable of the client. As a result, the client always gets
messages from the server in the language specified by NLS_LANGData in the
client are converted to and from the database character set by OCI.

Multilingual Demo Applications in SQLJ

This section contains a simple bookstore application written in SQLJ to demonstrate
a database storing book information of different languages, and how SQLJ and
JDBC are used to access the book information from the database. It also
demonstrates the use of internationalized Java stored procedures to accomplish
transactional tasks in the database server. The sample program consists of the
following components:

« The SQLJ client Java application that displays a list of books in the store and
allow users to add new books to and remove books from the inventory

« Alava stored procedure to add a new book to the inventory

« Alava stored procedure to remove an existing book from the inventory

The Database Schema

UTF8 is used as the database character set to store book information, such as names
and authors, in languages around the world. The following tables in Figure 9-7 are
defined for storing the book and inventory information of the store.

Java Programming 9-31

Multilingual Demo Applications in SQLJ

Figure 9—7 Sample Tables

Book Inventory
Field Names Data Types Field Names Data Types
ID (PRIMARY KEY) NUMBER(10) ID (PRIMARY KEY) NUMBER(10)
NAME VARCHAR(300) LOCATION (PRIMARY KEY) | VARCHAR(90)
PUBLISH_DATE DATE QUANTITY NUMBER(3)
AUTHOR VARCHAR(120)
PRICES NUMBER(10,2)

In addition, indexes are built with the NAMEand AUTHORolumns of the BOOKable
to speed up searching for books. A BOOKSE®equence will be created to generate a
unique Book ID.

Java Stored Procedures

The Java class called Book is created to implement the methods Book.remove()

and Book.add() that perform the tasks of removing books from and adding books
to the inventory respectively. They are defined according to the following code. In
this class, only the remove() method and the constructor are shown. The resource
bundle BookRes.class is used to store localizable messages. The remove()
method returns a message gotten from the resource bundle according to the current
Java VM locale. There is no JDBC connection required to access the database
because the stored procedure is already running in the context of a database session.

import java.sgl.*;
import java.util.*;
import sgj.runtime.ref.DefaultContext;
P The book class implementation the transaction logics of the
Java stored procedures.*/
public class Book
{
static ResourceBundle rb;
staticint g, id;
static DefaultContext ctx;
public Book()
{
try

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

DefaultContext.setDefaultContext(ctx);

9-32 Oracle9i Globalization Support Guide

Multilingual Demo Applications in SQLJ

rb = java.util. ResourceBundle.getBundie('BookRes');

}
catch (Exception €)

System.out printin(Transaction failed: " + e.getMessage();

}
}
public static String Remove(int id, int quantity, String location) throws

SQLException

{

rb = ResourceBundle.getBundle("BookRes");

try

{
#sq|{SELECT QUANTITY INTO :g FROM INVENTORY WHERE ID = :id AND

LOCATION = :location};

if (id == 1) retum rb.getString ("NotEnough');
}
catch (Exception €)

{
retum rb.getString ("NotEnough');

}
if((@- quantty) == 0)
{
#sql{DELETE FROM INVENTORY WHERE ID = :id AND LOCATION = :location};
try
{
#sol {SELECT SUM(QUANTITY) INTO :q FROM INVENTORY WHERE ID =:idf};
}
catch (Exception €)
{
#s0l{ DELETE FROM BOOKWHERE ID =:id };
retum rb.getString("RemoveBook');

}
retum rb.getString('Removelnventory”);

else
{
if (g-quantity) < O) retum rb.getString ("NotEnough');
#s0l{ UPDATE INVENTORY SET QUANTITY = :(g-quantity) WHERE ID = :id and
LOCATION = :location };
retum rb.getString('Decreaselnventory);
}
}
public static String Add(String bname, String author, String location,
double price, int quantity, String publishdate) throws SQLException

Java Programming 9-33

Multilingual Demo Applications in SQLJ

{
rb = ResourceBundle.getBundle("BookRes");
ry

{
#s0l{ SELECT ID into :id FROM BOOK WHERE NAME = :bname AND AUTHOR =

-author};
}
catch (Exception €)

#sql { SELECT BOOKSEQ.NEXTVAL INTO :id FROM DUAL };
#sql { INSERT INTO BOOK VALUES (id, :bname,
TO_DATE(:publishdate,YYYY-MM-DD), :author, :price) };
#sgl{ INSERT INTO INVENTORY VALUES (:iid, Jlocation, :quantity) };
retum rb.getString("AddBook');

}

try

{
#sql { SELECT QUANTITY INTO :q FROM INVENTORY WHERE ID =:id
AND LOCATION = location };

}

catch (Exception €)

{
#sql{ INSERT INTO INVENTORY VALUES (iid, :location, :quantity) };
retum rb.getString(‘Addinventory’’);

}

#sgl{ UPDATE INVENTORY SET QUANTITY =:(q + quantity) WHERE ID = :id

AND LOCATION = location };

retum rb.getString(*'Increaselnventory’’);

}
}

After the Book.remove() and Book.add() methods are defined, they are in turn
published as Java stored functions in the database called REMOVEBOOK@nd
ADDBOOK()as follows:

CREATE FUNCTION REMOVEBOOK (ID NUMBER, QUANTITY NUMBER,
LOCATION VARCHAR?2)
RETURN VARCHAR2
AS LANGUAGE JAVANAME
‘Book.remove(int, int, javalang.String) retum java.lang.String’;

CREATE FUNCTION ADDBOOK (NAME VARCHAR2, AUTHOR VARCHAR?2,
LOCATION VARCHAR2, PRICE NUMBER, QUANTITY NUMBER, PUBLISH_DATE DATE)
RETURN VARCHAR2
AS LANGUAGE JAVA NAME

9-34 Oracle9i Globalization Support Guide

Multilingual Demo Applications in SQLJ

‘Book.add(java.lang.String, java.lang.String, java.lang.String,
double, int, java.sgl.Date) retum java.lang.String’;

Note that the Java string returned will first be converted to a VARCHARZ2tring,
which is encoded in the database character set, before they are passed back to the
client. If the database character is not UTF8, any Unicode characters in the Java
strings that cannot be represented in the database character set will be replaced by
?. Similarly, the VARCHARZ2trings, which are encoded in the database character set,
are converted to Java strings before being passed to the Java methods.

The SQLJ Client

The SQLJ client is a GUI Java application using either a JDBC Thin or JDBC OCI
driver. It connects the client to a database, displays a list of books given a searching
criterion, removes selected books from the inventory, and adds new books to the
inventory. A class called BookDB is created to accomplish these tasks, and it is
defined in the following code.

A BookDB object is created when the sample program starts up with the user name,
password, and the location of the database. The methods are called from the GUI
portion of the applications. The methods removeBook() and addBook() call the
corresponding Java stored functions in the database and return the status of the
transaction. The methods searchByName() and searchByAuthor() list books
by name and author respectively, and store the results in the iterator books (the
BookRecs class is generated by SQLJ) inside the BookDB object. The GUI code in
turn calls the getNextBook() ~ function to retrieve the list of books from the
iterator object until a NULLIis returned. The getNextBook() function simply
fetches the next row from the iterator.

package sqfj.bookstore;

import java.sgl.;
import sgj.bookstore.BookDescription;
import sqjj.runtime.ref. DefauftContext;
import java.util.Locale;
FThe iterator used for a book description when communicating with the server*/
#sql iterator BooksRecs(int ID, String NAME, String AUTHOR, Date PUBLISH_DATE,
String LOCATION, int QUANTITY, double PRICE);
FThis is the class used for connection to the server.*/
class BookDb
{
static public final String DRIVER = "oracle.jdbc.driver.OracleDriver”;
static public final Sting URL_PREFIX = "jdbc:oracle:thin:@";
private DefauttContext m_ctx = null;

Java Programming 9-35

Multilingual Demo Applications in SQLJ

private String msg;
private BooksRecs books;
FConstructor - regjisters the driver*/
BookDh()
{

try

{

DriverManager.registerDriver
((Driver) (Class.forName(DRIVER).newinstance());

}
catch (Exception €)

System.exit(1);
}

}
F*Connect to the database.*/

DefaultContext connect(String id, String pwd, String userUr) throws
SQLException
{

String url = new String(URL_PREFIX);

url = url.concat(userUr);

Connection conn =null;

if (M_ctx = null) retum m_ctx;

try

{

conn = DriverManager.getConnection(url, id, pwd);

}

catch (SQLException €)

{

throw(e);
}
if (M_ctx = null)
{
{
m_ctx = new DefaultContext(conn);
}
catch (SQLException €)
{
throw(e);
}
}

reumm_ctx;

}
f*Add a new book to the database.*/

9-36 Oracle9i Globalization Support Guide

Multilingual Demo Applications in SQLJ

public String addBook(BookDescription book)
{

Sting name = book.getTitle();

String author = book.getAuthor();

Sting date = book getPublishDateString();

String location = book.getlocation();

int quantity = book.getQuantity();

double price =book.getPrice();

try

#sql [m_ctx] msg ={VALUE (ADDBOOXK (:name, :author, :location,
price, :quantity, :date))};
#s0l [m_ctx] {COMMIT};

}
catch (SQLException €)
{
retum (e.getMessage();

retum msg;
}
Remove a book./
public String removeBook(int id, int quantity, String location)
{
try
{
#sgl [m_ctx] msg ={VALUE (REMOVEBOOX (:id, :quantity,
Jlocation))};
#sql [m_ctx] {COMMITY;

catch (SQLException €)
{
retum (e.getMessage();

retum msg;
}
FSearch books by the given author.*/
public void searchByAuthor(String author)
{

String key ="%" + author +"%";

books =null;

System.gc);

try

{
#sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,

LOCATION, QUANTITY, PRICE

Java Programming 9-37

Multilingual Demo Applications in SQLJ

FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND AUTHOR LIKE
‘key ORDER BY BOOK.ID};

}

catch (SQLException €) {}
}
FSearch books with the given tite.*/
public void searchBy Title(String title)
{

String key ="%" + title +"%0";

books = null;

System.gc();

try

{
#sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,

LOCATION, QUANTITY, PRICE
FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND NAME LIKE
‘key ORDER BY BOOK.ID};
}
catch (SQLException €) {}
}
FRetums the next BookDescription from the last search, null if at the
end of the resullt list*/
public BookDescription getNextBook()
{
BookDescription book = null;
try
{
if (books.next()
{
book = new BookDescription(books.ID(), books AUTHOR(), books.NAME(),
books.PUBLISH_DATE(), books.PRICE(),
books.LOCATION(), books.QUANTITY());

}
}
catch (SQLException €) {}
retum book;
}
}

9-38 Oracle9i Globalization Support Guide

10

Character Set Scanner Utility

This chapter introduces the Character Set Scanner Utility, a National Language
Support utility for checking data before migrating character sets. The topics in this
chapter include:

Overview of Choosing and Migrating Character Sets
Database Character Set Migration

What is the Character Set Scanner Utility?

Scan Modes in the Scanner

Using The Scanner

Scanner Parameters

Sample Scanner Sessions

Storage and Performance Considerations in the Scanner

Scanner Utility Reference Material

Character Set Scanner Utility 10-1

Overview of Choosing and Migrating Character Sets

Overview of Choosing and Migrating Character Sets

Choosing the appropriate database character set for your database is an important
decision and requires taking into account many factors. Some of these factors are:

« The type of data you need to store
« The number of languages the database character set can represent

« The different sizing requirements of each character set and their performance
implications

A related topic is choosing a new character set for an existing database, which is
called migrating character sets. Migrating from one database character set to
another involves additional considerations beyond those of simply choosing a
character set. In particular, it is a complex planning process with the goal of
minimizing the possibility of losing data because of data truncation and character
set conversions during the migration.

See Also: Chapter 3, "Setting Up a Globalization Support
Environment" for more information about choosing character sets

Data Truncation

When the database is created using byte semantics, the sizes of character datatypes
CHARand VARCHAR2re specified in bytes, not characters. Hence, the specification
CHAR(20) in a table definition allows 20 bytes for storing character data. This is
acceptable when the database character set uses a single-byte character encoding
scheme because the number of characters will be equivalent to the number of bytes.
If the database character set uses a multibyte character encoding scheme, however,
there is no such correspondence. That is, the number of bytes no longer equals the
number of characters because a character can consist of one or more bytes. This
situation can cause problems.

During migration to a new character set, it is important to verify the column widths
of existing CHARand VARCHARolumns because they might need to be extended to
support encoding that requires multibyte storage. If the character set width differs
during the import process, truncation of data can occur if conversion causes
expansion of data. Figure 10-1 shows a typical case of data expansion with
single-byte characters becoming multibyte. In it, & (a with an umlaut) is a
single-byte character in WEBMSWIN1252, but it becomes a double-byte character in
UTF8. Also, the Euro symbol goes from one byte to three bytes in this conversion.

10-2 Oracle9i Globalization Support Guide

Overview of Choosing and Migrating Character Sets

Figure 10-1 Single-byte Character Sets Becoming Multibyte

Char WEBMSWIN1252 UTF8

a E4 C3 A4
0 F6 C3 B6
© A9 C2 A9
€ 80 E2 82 AC

The maximum number of bytes for CHARand VARCHARZ2lata types are 2000 and
4000 respectively. If the data columns in the new destination character set require
more than 2000 and 4000 bytes, you need to change your schema.

Restrictions
The following are some known restrictions caused by data truncation;

« Within the database data dictionary, schema object names cannot exceed 30
bytes in length. Schema objects are tables, clusters, views, indexes, synonyms,
tablespaces, and usernames. Renaming schema objects is required if they
exceed 30 bytes in the new database character set. For example, one Thai
character in the Thai national character set requires 1 byte, but, in UTF8, it
requires 3 bytes. So, if you have defined a table with 11 Thai characters, then
this table name must be shortened to 10 or fewer Thai characters when
changing the database character set to UTF8.

« If your existing Oracle usernames or passwords are created based on characters
that will change in size in the target character set, these users will experience
login difficulties due to authentication failures after the migration to a new
character set. This is because the encrypted usernames and passwords stored in
the data dictionary are not updated during migration to a new character set. For
example, assuming the current database character set is WEBMSWIN1252 and
the target database character set is UTF8, the username scott (o with an
umlaut) will change from 5 bytes in WEBMSWIN1252 to 6 bytes. In UTFS8,
scott will no longer be able to log in because of the difference in the length of
the username. Oracle recommends that usernames and passwords be based on
ASCII characters. If they are not, you will need to reset the affected usernames
and passwords after migrating to a new character set.

Character Set Scanner Utility 10-3

Overview of Choosing and Migrating Character Sets

« When CHARdata contains characters that will be expanded after migration to a
new character set, space padding will not be removed during database export
by default. This means that these rows will be rejected upon import into the
database with the new character set. The workaround is to set the BLANK _
TRIMMING:initialization parameter to TRUEprior to the import.

See Also: Oracle9i Database Reference for more information about
BLANK_TRIMMING

Character Set Conversions

When migrating to a new database character set, the Export and Import utilities can
handle character set conversions from the original database character set to the new
database character set. However, character set conversions can sometimes cause
data loss or data corruption. For example, if you are migrating from character set A
to character set B, the destination character set B should be a superset of character
set A. Characters that are not available in character set B will be converted to
replacement characters, which are usually specified as ? or ¢, or other
linguistically-related characters. For example, & (a with an umlaut) can be
converted to a. Replacement characters are defined by the target character set.
Figure 10-2 shows a sample conversion where the copyright and Euro symbols are
converted to ? and & to a.

Figure 10-2 Replacement Characters in Character Set Conversion

Character Set Character Set
A B
a a<
b b
C C
€ P ?
-a
©

To reduce the risk of losing data, choose a destination character set with similar
character repertoires, if possible. Migrating to Unicode can be an attractive option
because UTF8 contains characters from most legacy character sets.

10-4 Oracle9i Globalization Support Guide

Overview of Choosing and Migrating Character Sets

Another scenario that can cause the loss of data is migrating a database containing
data of a different character set from that of the database character set. Users can
insert data into the database from another character set if the client NLS_LANG
character set setting is the same as the database character set. When these settings
are the same, Oracle assumes that the data being sent or received is from the same
character set, so no validations or conversions are performed.

This can lead to two possible data inconsistency problems. One problem occurs
when a database contains data from another character set but the same codepoints
exist in both character sets. For example, if the database character set is
WEB8IS08859P1 and the end user Chinese Windows NT client’s NLS LANGsetting is
SIMPLIFIED CHINESE_CHINA.WE8ISO8859P1 , then all multibyte Chinese data
(from the ZHS16GBK character set) is stored as multiples of single-byte
WE8ISO8859P1 data. This means that Oracle will treat these characters as
single-byte WEB8ISO8859P1 characters. Hence all SQL string manipulation functions
such as SUBSTRor LENGTHwill be based on bytes rather than characters. All bytes
constituting ZHS16GBK data are legal WE8ISO8859P1 codes. If such a database is
migrated to another character set, for example, UTF8, character codes will be
converted as if they were in WE8ISO8859P1. This way, each of the two bytes of a
ZHS16GBK character will be converted separately, yielding meaningless values in
UTF8. Figure 10-3 shows an example of this incorrect character set replacement.

Figure 10-3 Incorrect Character Set Replacement

Database Server

(WEBISO8859P1) Simplified Chinese

Windows NT
(WE8ISO8859P1)

< > E
...... —

E 0xB1 l0xED§ < { OXB1ED :

The second possibility is having data from mixed character sets inside the database.
For example, if the data character set is WESMSWIN1252, and two separate
Windows clients using German and Greek are both using the NLS_LANGcharacter
set setting as WEBMSWIN1252, then the database will contain a mixture of German

Character Set Scanner Utility 10-5

Database Character Set Migration

and Greek characters. Figure 10-4 shows how different clients can use different
character sets in the same database.

Figure 10-4 Mixed Character Sets

Database Server
(WESMSWIN1252)

/ OxE4 | OXFS

German Windows Greek Windows

For database character set migration to be successful, both of these cases require
manual intervention because Oracle cannot determine the character sets of the data
being stored.

Database Character Set Migration
Database character set migration has two distinct stages:
« Data Scanning

« Conversion of Data

10-6 Oracle9i Globalization Support Guide

Database Character Set Migration

Data Scanning

Before you actually migrate your character set, you need to identify areas of
possible database character set conversions and truncation of data. This step is
called data scanning.

Data scanning identifies the amount of effort required to migrate data into the new
character encoding scheme prior to the change of the database character set. Some
examples of what are found during a data scan are the number of schema objects
where the column widths need to be expanded and the extent of the data that does
not exist in the target repertoire. This information will assist in determining the best
approach for the conversion of the database character set.

Conversion of Data

There are generally three approaches in migrating data from one database character
set to another, if the database does not contain any of the inconsistencies described
in "Character Set Conversions" on page 10-4. A description of methods to migrate
databases with such inconsistencies is out of the scope of this document. For more
information, contact Oracle Consulting Services for assistance.

In most cases, a full export or import is recommended to properly convert all data
to a new character set. It is important to be aware of data truncation issues because
character data type columns might need to be extended prior to import to handle
the increase in size required. Existing PL/SQL code should be reviewed to ensure
all byte-based SQL functions such as LENGTHBSUBSTRBand INSTRB, and
PL/SQL CHARand VARCHARZ2eclarations are still valid. However, if, and only if,
the new character set is a strict superset of the current character set, you can use the
ALTER DATABASE CHARACTER Sfdtement to expedite migration to a new
database character set. The target character set is a strict superset if, and only if,
each and every character in the source character set is available in the target
character set with the same corresponding codepoint value. For instance, because
US7ASCII is a strict subset of UTF8, then an ALTER DATABASE CHARACTER SET
statement can be used to upgrade the database character set from US7ASCII to
UTFS8.

See Also: Appendix A, "Locale Data" for a listing of all superset
character sets

ALTER DATABASE CHARACTER SET Statement Restrictions

In Oracle9i, CLOBdata is stored as UCS-2 (2-byte fixed-width Unicode) for
multibyte database character sets. For single-byte database character sets, CLOB

Character Set Scanner Utility 10-7

Database Character Set Migration

data is stored as the database character set. Because the ALTER DATABASE
CHARACTER SEdtatement does not perform any data conversion, if the database
character set is migrated from single-byte to multiple byte using ADCS, then CLOB
columns will remain in the original database character set encoding. This introduces
data inconsistency in the CLOBcolumns. Likewise, if you migrate from one Unicode
national character set to another, the SQL NCHAR]atatype columns will be
corrupted.

The migration procedure for CLOBand the SQL NCHARJatatype columns is:
1. Export the tables containing CLOBand SQL NCHARolumns.
2. Drop the tables containing CLOBand SQL NCHARolumns.

3. Usethe ALTER DATABASE CHARACTER Sl ALTER DATABASE NATIONAL
CHARACTER SEStatements.

4. Import.

The syntax is:

ALTER DATABASE [db_name] CHARACTER SET new character set

ALTER DATABASE [db_name] NATIONAL CHARACTER SET new NCHAR character set

The database name is optional. The character set name should be specified without
quotes. For example:

ALTER DATABASE CHARACTER SET UTFS;

To change the database character set, perform the following steps:

1. Shut down the database, using either a SHUTDOWN IMMEDIATE a SHUTDOWN
NORMALtatement.

2. Do afull backup.
3. Complete the following statements:

STARTUP MOUNT;
ALTER SYSTEM ENABLE RESTRICTED SESSION;

ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;

ALTER SYSTEM SET AQ TM_PROCESSES=0;

ALTER DATABASE OPEN;

ALTER DATABASE CHARACTER SET <new_character_set_name>;
SHUTDOWN IMMEDIATE; — or NORMAL

STARTUP,

10-8 Oracle9i Globalization Support Guide

What is the Character Set Scanner Utility?

To change the national character set, replace the ALTER DATABASE CHARACTER SET
statement with the ALTER DATABASE NATIONAL CHARACTER SEfement. You
can issue both statements together if desired.

See Also: Oracle9i SQL Reference for the syntax of the ALTER
DATABASE [NATIONAL] CHARACTER SEatement

When using Oracle9i Real Application Clusters, ensure that no other Oracle
background processes are running, with the exception of the one session through
which a user is connected, before attempting to issue the ALTER DATABASE
CHARACTER SEStatement. Use the following SQL statement to verify your
environment:

SELECT SID, SERIAL#, PROGRAM FROM V$SESSION,;
Setting the initialization parameter CLUSTER_DATABASH FALSEallows the

character set change to go through. This is required in an Oracle9i Real Application
Cluster environment; an exclusive startup is not sufficient.

Note: Itis essential to do a full backup of the database before
using the ALTER DATABASE [NATIONAL] CHARACTER SET
statement because the command cannot be rolled back.

The last approach is to perform an ALTER DATABASE CHARACTER S#dtement
followed by selective imports. This method is best suited for a known distribution
of convertible data that is stored within a small number of tables. A full export and
import will be too expensive in this scenario. For example, suppose you have a
100GB database with over 300 tables, but only 3 tables requires character set
conversions. The rest of the data is of the same encoding as the destination
character set. The 3 tables can be exported and imported back to the new database
after issuing the ALTER DATABASE CHARACTER SEStatement.

Incorrect data conversion can lead to data corruption, so perform a full backup of
the database before attempting to migrate the data to a new character set.

What is the Character Set Scanner Utility?

The Character Set Scanner provides an assessment of the feasibility and potential
issues in migrating an Oracle database to a new database character set. The Scanner
checks all character data in the database and tests for the effects and problems of
changing the character set encoding. At the end of the scan, it generates a summary

Character Set Scanner Utility 10-9

What is the Character Set Scanner Utility?

report of the database scan. This report provides estimates of the amount of work
required to convert the database to a new character set.

Based on the information in the summary report, you will be able to decide on the
most appropriate method to migrate the database's character set. The methods are:

« Export and Import utilities
« ALTER DATABASE CHARACTER Sfdatement
« ALTER DATABASE CHARACTER Skith selective Export and Import

Note: If there are conversion exceptions reported by the Scanner,
these problems must be fixed first before using any of the above
methods to do the conversions. This may involve modifying the
problem data to eliminate those exceptions. In extreme cases, both
database and application might need to be modified. Oracle
Corporation recommends you contact Oracle Consulting Services
for services on database character set migration.

Conversion Tests on Character Data

The Scanner reads the character data and tests for the following conditions on each
data cell:

« Do character codes of the data cells change when converted to the new
character set?

« Can the data cells be successfully converted to the new character set?
« Will the post-conversion data fit into the current column size?

The Scanner reads and tests for data in CHARVARCHARZ.ONG CLOB NCHAR
NVARCHAR2Nnd NCLOBcolumns only. The Scanner does not perform
post-conversion column size testing for LONGCLOB and NCLOBcolumns.

Access Privileges
To use the Scanner, you must have DBA privileges on the Oracle database.

Restrictions

All the character-based data in CHARVARCHARZL.ONGand CLOBcolumns is stored
in the same character set, which is the database character set specified with the
CREATE DATABAS#&atement when the database was first created. However, in

10-10 Oracle9i Globalization Support Guide

Scan Modes in the Scanner

some configurations, it is possible to store data in a different character set from the
database character set either intentionally or unintentionally. This happens most
often when the NLS_LANGcharacter set is the same as the database character set,
because in such cases Oracle sends and receives data as is, without any conversion
or validation. But it can also happen if one of the two character sets is a superset of
the other, in which case many of the codes appear as if they were not converted. For
example, if NLS_LANGs set to WE8ISO8859P1 and the database character set is
WEBMSWIN1252, all codes except the range 128-159 are preserved through the
client/server conversion.

Although a database that contains data not in its database character set cannot be
converted to another character set by the three methods described in "What is the
Character Set Scanner Utility?" on page 10-9, you can still use the Scanner in the
way described below to test the effect of the conversion that would take place if the
data were in the database character set.

Database Containing Data From Two or More Character Sets

If a database contains data from more than one character set, the Scanner cannot
accurately test the effects of changing the database character set on the database
because it cannot differentiate character sets properly. If the data can be divided into
two separate tables, one for each language, then the Scanner can perform two single
table scans to verify the validity of the data.

For each scan, a different value of the FROMCHAPRarameter can be used to tell the
Scanner to treat all CHARVARCHARZ2.ONGand CLOBcolumns in the table as if
they were in the specified character set.

Database Containing Data Not From the Database Character Set

If a database contains data not in the database character set, but still in only one
character set, the Scanner can perform a full database scan. Use the FROMCHAR
parameter to tell the Scanner what character set the data is in.

Scan Modes in the Scanner
The Character Set Scanner provides three modes of database scan:
» Full Database Scan
» User Tables Scan

« Single Table Scan

Character Set Scanner Utility 10-11

Using The Scanner

Full Database Scan

The Scanner reads and verifies the character data of all tables belonging to all users
in the database including the data dictionary (SYSuser), and it reports on the effects
of the simulated migration to the new database character set. It scans all schema
objects including stored packages, procedures and functions, and object names.

To understand the feasibility of migration to a new database character set, you need
to perform a full database scan.

User Tables Scan

The Scanner reads and verifies character data of all tables belonging to the specified
user and reports on the effects of changing the character set on them.

The Scanner does not test for table definitions such as table names and column
names. To see the effects on the schema definitions, you need to perform a full
database scan.

Single Table Scan

The Scanner reads and verifies the character data of the specified table, and reports
the effects on changing the character set of them.

The Scanner does not test for table definitions such as table name and column
name. To see the effects on the schema definitions, you need to perform a full
database scan.

Using The Scanner

This section describes how to use the Scanner, including the steps you need to
perform before scanning and the procedures on how to invoke the Scanner. The
topics discussed are:

« Before Using the Scanner

« Compatibility

= Invoking the Scanner

« Getting Online Help for the Scanner

=« The Parameter File

10-12 Oracle9i Globalization Support Guide

Using The Scanner

Before Using the Scanner

Compatibility

To use the Scanner, you must run the CSMINST.SQLscript on the database that you
plan to scan. CSMINST.SQL needs to be run only once, so it is not necessary to run
it each time you scan the database. The script performs the following tasks to
prepare the database for scanning:

« Creates a user named CSMIG

« Assigns the necessary privileges to CSMIG

« Assigns the default tablespace to CSMIG

« Connects as CSMIG

« Creates the Scanner system tables under CSMIG

The SYSTEMablespace is assigned to CSMIGby default, so you need to ensure
there is sufficient storage space available in the SYSTEMablespace before scanning
the database. The amount of space required depends on the type of scan and the
nature of the data in the database.

See Also: "Storage and Performance Considerations in the
Scanner” on page 10-35

You can modify the default tablespace for CSMIGby editing the script
CSMINST.SQL Modify the following statement in CSMINST.SQLto assign your
preferred tablespace to CSMIGas follows:

ALTER USER CSMIG default tablespace PREFERRED_TABLESPACE;

Then run CSMINST.SQLusing these commands and SQL statements;

% cd $ORACLE_HOME/rdbms/admin

% sqlplus

SQL>CONNECT systerm/manager as sysdba
SQL> START csminst.sql

The Scanner is certified with Oracle databases on any platforms running under the
same release except you cannot mix ASCII- and EBCDIC-based platforms. For
example, the release 9.0.1 versions of the Scanner on any ASClI-based client
platforms are certified to run with any release 9.0.1 Oracle databases on any
ASCIlI-based platforms, while EBCDIC-based clients are certified to run with any
release 9.0.1 Oracle database on EBCDIC platforms.

Character Set Scanner Utility 10-13

Using The Scanner

Oracle Corporation recommends that you run the Scanner in the same Oracle Home
as the database when possible.

Invoking the Scanner

You can invoke the Scanner by one of these methods:

« Using the parameter file

csscan system/manager PARFILE=flename

PARFILE is a file containing the Scanner parameters you typically use.

« Using the command line

csscan system/manager full=y tochar=utf8 array=10240 process=3

« Using an interactive session

csscan system/manager

In an interactive session, the Scanner prompts you for the following parameters:

USERID
FULL
USER
TABLE
TOCHAR
ARRAY
PROCESS

If you want to specify parameters that are not listed above, you need to invoke
the Scanner using either the parameter file or the command line.

Getting Online Help for the Scanner

The Scanner provides online help. Enter csscan help=y on the command line to
invoke the help screen.

Character Set Scanner: Release 9.0.1.0.0 - Production

() Copyright 2001 Oracle Corporation. All rights reserved.

10-14 Oracle9i Globalization Support Guide

Using The Scanner

You can let Scanner prompt you for parameters by entering the CSSCANommand
followed by your username and password. For example:

CSSCAN SYSTEMMANAGER

Alternatively, you can control how Scanner runs by entering the CSSCANommand
followed by various parameters. To specify parameters, use keywords. For example:

CSSCAN SYSTEM/MANAGER FULL~y TOCHAR=utf8 ARRAY=102400 PROCESS=3

The following is a list of Scanner keywords:

Keyword Default Prompt Description

USERID yes usemame/password

FULL N yes scanentredatabase

USER yes user name of the table to scan
TABLE yes table name to scan

TOCHAR yes new database character set name

FROMCHAR current database character set name
TONCHAR new NCHAR character set name
FROMNCHAR current NCHAR character set name

ARRAY 10240 yes size of array fetch buffer
PROCESS 1 yes number ofscan process

MAXBLOCKS split table if larger than MAXBLOCKS
CAPTURE N capture convertible data

SUPPRESS suppress error log by N per table

FEEDBACK feedback progress every N rows

BOUNDARIES list of column size boundaries for summary report

LASTRPT N generate report of the last database scan
LOG scan base name of log files

PARFILE parameter file name

HELP N show help screen (this screen)

The Parameter File

The parameter file allows you to specify Scanner parameters in a file where they can
be easily modified or reused. Create a parameter file using any flat file text editor.
The command line option PARFILE=filename tells the Scanner to read the
parameters from a specified file rather than from the command line. For example:

csscan parfile= flename

or

Character Set Scanner Utility 10-15

Scanner Parameters

csscan usemamefpassword parfle= flename

The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(valuel, value2, ...)

The following is an example of a parameter file:

USERID=system/manager

USER=SCOTT #scan SCOTTstables
TOCHAR=utf8

ARRAY=40960

PROCESS=2 # use two concurrent scan processes
FEEDBACK=1000

You can add comments to the parameter file by preceding them with the pound (#)

sign. All characters to the right of the pound sign are ignored.

Scanner Parameters

This section describes each of the Scanner parameters.

ARRAY
Default value: 10240
Minimum value: 4096
Maximum value: unlimited
Purpose: Specifies the size in bytes of the array buffer used to fetch

data. The size of the array buffer determines the number of
rows fetched by the Scanner at any one time.

The formula below gives an approximation of number of rows fetched at a time:

(rows in array) =
(ARRAY buffer size) / (sum of the CHAR and VARCHAR?2 column sizes of a given table)

If the summation of CHARand VARCHARZ2olumn sizes exceeds the array buffer
size, then the Scanner fetches only one row at a time. Tables with LONGCLOB or
NCLOBcolumns are fetched only one row at a time.

10-16 Oracle9i Globalization Support Guide

Scanner Parameters

BOUNDARIES

CAPTURE

FEEDBACK

This parameter affects the duration of a database scan. In general, the larger the size
of the array buffer, the shorter the duration time. Each scan process will allocate the
specified size of array buffer.

Default value: none

Purpose: Specifies the list of column boundary sizes that are used for
an application data conversion summary report. This
parameter is used to locate the distribution of the application
data for the datatypes CHARVARCHAR2NCHAR,and
NVARCHAR2

For example, if you specify a BOUNDARIESalue of (10, 100, 1000), the application
data conversion summary report will produce a breakdown of the CHARdata into
the following groups by their column length, CHAR(1..10) , CHAR(11..100) and
CHAR(101..1000) , likewise for the VARCHARZNCHARand NVARCHAR2
datatypes.

Default value: N
Range of values: YorN
Purpose: Indicates whether to capture the information on the

individual convertible rows as well as the default of storing
the exception rows. The convertible rows information is
written to the table CSM$ERRORiSthe parameter CAPTURE
is set to Y. This information can be used to deduce which
records need to be converted to the target character set by
selective export and import.

Default value: none
Minimum value: 100
Maximum value: 100000

Character Set Scanner Utility 10-17

Scanner Parameters

Purpose: Specifies that the Scanner should display a progress meter in
the form of a dot for every N number of rows scanned.

For example, if you specify FEEDBACK=1000the Scanner displays a dot for every
1000 rows scanned. The FEEDBACHK/alue applies to all tables being scanned, so it
cannot be set on a per-table basis.

FROMCHAR
Default value: none
Purpose: Specifies the actual character set name for CHARVARCHAR2
LONGand CLOBdata types in the database. By default, the
Scanner assumes the character set for the above data types to
be the database character set.
Use this parameter to override the default database character set definition for
CHARVARCHARZ.ONGand CLOBdata in the database.
FROMNCHAR
Default value: none
Purpose: Specifies the actual national database character set name for
NCHARNVARCHARZNnd NCLOBdata types in the database.
By default, the Scanner assumes the character set for the
above data types to be the database national character set.
Use this parameter to override the default database character set definition for
NCHARNVARCHAR2Nnd NCLOBdata in the database.
FULL
Default value: N
Range of values: YorN

10-18 Oracle9i Globalization Support Guide

Scanner Parameters

HELP

LASTRPT

LOG

Purpose: Indicates whether to perform the full database scan (that is, to
scan the entire database including the data dictionary).
Specify FULL=Y to scan in full database mode.

For more information on full database scans, refer to "Scan Modes in the Scanner"
on page 10-11.

Default value: N

Range of values: YorN

Purpose: Displays a help message with descriptions of the Scanner
parameters.

For more information, see "Getting Online Help for the Scanner"” on page 10-14.

Default value: N
Range of values: YorN
Purpose: Indicates whether to regenerate the Scanner reports based on

statistics gathered from the last database scan.

If LASTRPT=Yis specified, the Scanner does not scan the database, but creates the
report files using the information left by the previous database scan session instead.

If LASTRPT=Yis specified, only the USERID, BOUNDARIESand LOGparameters
take effect.

Default value: scan

Character Set Scanner Utility 10-19

Scanner Parameters

MAXBLOCKS

PARFILE

Purpose: Specifies a base file name for the following Scanner report
files:

Database Scan Summary Report file whose extension is .txt
Individual Exception Report file whose extension is .err
Screen log file whose extension is .out

By default, the Scanner generates the three text files, scan.txt , scan.err , and
scan.out in the current directory.

Default value: none

Minimum value: 1000

Maximum value: unlimited

Purpose: Specifies the maximum block size per table, so that large
tables can be split into smaller chunks for the Scanner to
process.

For example, if the MAXBLOCK$®arameter is set to 1000, then any tables that are
greater than 1000 blocks in size will be divided into n chunks, where
n=CEIL(table block size/1000)

Dividing large tables into smaller pieces will be beneficial only when the number of
processes set with PROCESS$s greater than 1. If the MAXBLOCK$®arameter is not
set, the Scanner attempts to split up large tables based on the its own optimization
rules.

Default value: none
Purpose: Specifies a filename for a file that contains a list of Scanner
parameters.

See Also: "The Parameter File" on page 10-15

10-20 Oracle9i Globalization Support Guide

Scanner Parameters

PROCESS

SUPPRESS

TABLE

Default value: 1

Minimum value: 1

Maximum value: 32

Purpose: Specifies the number of concurrent scan processes to utilize

for the database scan.

Default value: unlimited

Minimum value: 0

Maximum value: unlimited

Purpose: Specifies the maximum number of data exceptions being

logged per table.

The Scanner inserts individual exceptional record information into the
CSM$ERRORI@ble when an exception is found in a data cell. The table grows
depending on the number of exceptions reported.

This parameter is used to suppress the logging of individual exception information
after a specified number of exceptions are inserted per table. For example, if
SUPPRESSS set to 100, then the Scanner records a maximum of 100 exception
records per table.

See Also: "Storage Considerations" on page 10-35

Default value: none

Purpose: Specifies the name of the table to scan.

When specified, Scanner scans the specified table only. For example, the command
below scans the emptable that belongs to the user scott

Character Set Scanner Utility 10-21

Scanner Parameters

csscan system/manager USER=SCOTT TABLE=EMP ...

TOCHAR
Default value: none
Purpose: Specifies a target database character set name for the CHAR
VARCHARZLONGand CLOBdata.
TONCHAR
Default value: none
Purpose: Specifies a target database character set name for the NCHAR
NVARCHARZNnd NCLOBdata.
If you do not specify a value for TONCHARhen the Scanner does not scan NCHAR
NVARCHAR2Nnd NCLOBdata.
USER
Default value: none
Purpose: Specifies the owner of the tables to be scanned.
If the parameter USERIs specified, then the Scanner scans all tables belonging to the
user. If TABLE s specified, the Scanner scans only the table specified by TABLE that
belongs to the user. For example, the following statement scans all tables belonging
to the user scott
csscan system/manager USER=scott ...
USERID

Default value: none

10-22 Oracle9i Globalization Support Guide

Sample Scanner Sessions

Purpose: Specifies the username and password (and optional connect
string) of the user who scans the database. If you omit the
password, then the Scanner prompts you for it.

The following examples are all valid:

usemame/password
usemame/password@connect_string
usemame
usemame@connect_string

Sample Scanner Sessions

The following examples show you how to use the command line and parameter file
methods to use Full Database, User Tables, and Single Table scan modes.

Sample Session of Full Database Scan

The following example shows how to scan the full database to see the effects on
migrating it to UTF8. This example assumes the current database character set is
WES8ISO8859P1 (or anything other than UTF8).

Parameter File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

full=y
tochar=utf8
array=40960
process=4

Command Line Method
% csscan system/manager full=y tochar=utf8 array=40960 process—4

Scanner Messages
Database Scanner: Release 9.0.1.0.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to:
Oracle9 Enterprise Edition Release 9.0.1.0.0 - Production

Character Set Scanner Utility 10-23

Sample Scanner Sessions

With the Objects option
PL/SQL Release 9.0.1.0.0 - Production

Enumerating tables to scan...

. process 1 scanning SYSTEM.REPCAT$ RESOLUTION
. process 1 scanning SYS.AQ$ MESSAGE_TYPES

. process 1 scanning SYSARGUMENTS$

. process 2 scanning SYS.AUD$

. process 3 scanning SYS ATTRIBUTES

. process 4 scanning SYSATTRCOL$

. process 2 scanning SYS.AUDIT_ACTIONS

. process 2 scanning SYS.BOOTSTRAP$

. process 2 scanning SYS.CCOL$

. process 2 scanning SYS.CDEF$

. process 3 scanning SYSTEM.REPCAT$ REPOBJECT

. process 1 scanning SYSTEM.REPCAT$_REPPROP

. process 2 scanning SYSTEM.REPCAT$ REPSCHEMA
. process 3 scanning MDSYS.MD$DIM

. process 1 scanning MDSYS.MD$DICTVER

. process 2 scanning MDSYS.MD$EXC

. process 3 scanning MDSYS.MD$LER

. process 1 scanning MDSYS.MD$PTAB

. process 2 scanning MDSYS.MD$PTS

. process 3 scanning MDSYS.MD$TAB

Creating Database Scan Summary Report...
Creating Individual Exception Report...

Scanner terminated successfully.

Sample Session of User Tables Scan

The following example shows how to scan the user tables to see the effects on
migrating them to UTF8. This example assumes the current database character set is
US7ASCII, but the actual data stored is in Western European WESMSWIN1252
encoding.

Parameter File Method
% csscan system/manager parfile=param.txt

10-24 Oracle9i Globalization Support Guide

Sample Scanner Sessions

The param.txt file contains the following information;

user=scott
fromchar=we8mswin1252
tochar=utf8

array=40960

process=1

Command Line Method

% csscan system/manager user=scott fromchar=we8mswin1252 tochar=utf8 array=40960
process=1

Scanner Messages

Database Scanner: Release 9.0.1.0.0 - Production

(c) Copyright 2000 Oracle Corporation. All rights reserved.
Connected to:

Oracle8 Enterprise Edition Release 9.0.1.0.0 - Production
With the Objects option

PL/SQL Release 9.0.1.0.0 - Production

Enumerating tables to scan...

. process 1 scanning SCOTT.BONUS

. process 1 scanning SCOTT.DEPT

. process 1 scanning SCOTT.EMP

Creating Database Scan Summary Report...

Creating Individual Exception Report...

Scanner terminated successfully.

Sample Session of Single Table Scan

The following example shows how to scan a single table to see the effects on
migrating it to WEBMSWIN1252. This example assumes the current database
character set is in US7ASCII.

Parameter File Method
% csscan system/manager parfile=param.xt

Character Set Scanner Utility 10-25

Sample Scanner Sessions

The param.txt file contains the following information;

user=scott

table=emp
tochar=we8mswin1252
array=40960
process=1
supress=100

Command Line Method

% csscan system/manager user=scott table=emp tochar=we8mswin1252 array=40960
process=1 supress=100

Scanner Messages
Database Scanner: Release 9.0.1.0.0 - Production

() Copyright 2001 Oracle Corporation. All rights reserved.
Connected to:

Oracle9 Enterprise Edition Release 9.0.1.0.0 - Production
With the Objects option

PL/SQL Release 9.0.1.0.0 - Production

. process 1 scanning SCOTT.EMP

Creating Database Scan Summary Report...

Creating Individual Exception Report...

Scanner terminated successfully.

Scanner Reports
The Scanner generates two reports per scan:

« Database Scan Summary Report

« Individual Exception Report

10-26 Oracle9i Globalization Support Guide

Sample Scanner Sessions

Database Scan Summary Report

A Database Scan Summary Report consists of the following sections. The
information available for each section depends on the type of scans and the
parameters you select.

« Database Scanner Parameters

« Database Size

« Scan Summary

« Data Dictionary Conversion Summary

« Application Data Conversion Summary

« Application Data Conversion Summary per Column Size Boundary
« Distribution of Convertible Data per Table

« Distribution of Convertible Data per Column

« Indexes To Be Rebuilt

Database Scanner Parameters

This section describes the parameters selected and the type of scan you chose. The
following is an example:

Parameter Value

Scantype Full database

Scan CHAR data? YES

Current database character set WESISO83859P1
New database character set UTF8

Scan NCHAR data? NO

Array fetch buffer size 102400

Number of processes 4

Database Size
This section describes the current database size. The following is an example:

TABLESPACE Towl(MB) Used(MB) Free(VB)
APPS_DATA 1340000 1331070 8926
CTX_DATA 30000 3145 26852
INDEX_DATA 140000 132559 7438

Character Set Scanner Utility 10-27

Sample Scanner Sessions

RBS_DATA 310000 300434 9.563
SYSTEM_DATA 150000 144.969 5027
TEMP_DATA 160.000 159.996
TOOLS_DATA 35.000 22.148 12.848
USERS_DATA 220000 142195 77.801
Total 2385000 2073742 311227

Scan Summary

This indicates the feasibility of the database character set migration. There are two
basic criteria that determine the feasibility of the character set migration of the
database. One is the condition of the data dictionary and the other is the condition
of the application data.

The Scan Summary section consists of two status lines. Depending on the scan
mode and the result returned, the following statuses are printed:

« For the data dictionary:

— All character-type data in the data dictionary remains the same in the new
character set

— All character-type data in the data dictionary is convertible to the new
character set

— Some character-type data in the data dictionary is not convertible to the
new character set

« For application data:

— All character-type application data remains the same in the new character
set

— All character-type application data is convertible to the new character set

— Some character-type application data is not convertible to the new character
set

When all data remains the same in the new character set, it means that the data
encoding of the original character set is identical to the target character set. In this
case, the character set can be migrated using the ALTER DATABASE CHARACTER
SET statement.

If all the data is convertible to the new character set, it means that the data can be
safely migrated using the Export and Import utilities. However, the migrated data
may or may not have the same encoding as the original character set.

10-28 Oracle9i Globalization Support Guide

Sample Scanner Sessions

See Also: "Individual Exception Report" on page 10-33 for more
information about non-convertible data

The following is sample output:

All character type data in the data dictionary remains the same in the new
character set
All character type application data remains the same in the new character set

Data Dictionary Conversion Summary

This section contains the statistics on the conversion summary of the data
dictionary. The granularity of this report is per datatype. The following statuses are
available:

Table 10-1 Data Conversion Summary for Data Dictionary

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert anyway, some characters will be lost or data will
be truncated

If the numbers in both the Convertible and Exceptional columns are zero, it
means that all the data in the data dictionary will remain the same in the new
character set.

If the numbers in the Exceptional column are zero and some numbers in the
Convertible columns are non-zero, it means all data in the data dictionary is
convertible to the new character set. During import, the relevant data will be
converted.

If the numbers in the Exceptional ~ column are non-zero, it means there is data in
the data dictionary that is not convertible. Therefore, it is not feasible to migrate the
current database to the new character because the export and import process cannot
convert the data into the new character set. For example, you might have a table
name with invalid characters or a PL/SQL procedure where a comment line
includes data that can not be mapped to the new character set. These changes to
schema objects must be corrected manually prior to migration to a new character
set.

Character Set Scanner Utility 10-29

Sample Scanner Sessions

This information is available only when a full database scan is performed. The
following is an example:

Datatype Changeless Convertble Exceptional Total

VARCHAR2 971,300 1 0 971,301
CHAR 7 0 0 7

LONG 60,325 0 0 60,325
CLOB

Total 1,031,632 1 0 1031633

Application Data Conversion Summary

This section contains the statistics on conversion summary of the application data.
The granularity of this report is per datatype. The following statuses are available:

Table 10-2 Data Conversion Summary for Application Data

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert anyway, some characters will be lost or data will
be truncated

The following is sample output:
Datatype = Changeless Convertible Exceptional Total

VARCHAR2 23213745 1324 0 23215069
CHAR 423,430 0 0 423430

LONG 8,624 33 0 8,657

CLOB 58,839 11114 28 69,981

Total 23,704,638 12471 28 23717137

Application Data Conversion Summary per Column Size Boundary

This section contains the conversion summary of the CHARand VARCHAR?2
application data. The granularity of this report is per column size boundaries

10-30 Oracle9i Globalization Support Guide

Sample Scanner Sessions

specified by the BOUNDARIE$arameter. The following status is available for each
datatype and each boundary:

The granularity of this report is per datatype. The following statuses are available:

Table 10-3 Data Conversion Summary for Columns in Application Data

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert, some characters will be lost or data will be
truncated

This information is available only when the BOUNDARIE $arameter is specified.

The following is sample output:

Datatype Changeless Convertible Exceptional Total
VARCHAR2(1..10) 1,474,825 0 0 1474825
VARCHAR2(11.100) 9,691,520 71 0 9691591
VARCHAR2(101.4000) 12047400 1,253 0 12,048,653
CHAR(1..10) 423413 0 0 423413
CHAR(11..100) 17 0 0 17
CHAR(101..4000)

Total 23637175 1,324 0 23638499

Distribution of Convertible Data per Table

This example show how Convertible ~ and Exceptional data is distributed
within the database. The granularity of this report is per table. If the list contains
only a few rows, it means the Convertible data is localized. If the list contains
many rows, it means the Convertible data is spread out in the database.

The following is sample output:

USER.TABLE Convertible Exceptional
SMG.SOURCE 1 0
SMG.HELP 12 0
SMG.CLOSE_LIST 16 0

Character Set Scanner Utility 10-31

Sample Scanner Sessions

SMG.ATTENDEES 8 0

SGT.DR 010 [1T1 7 0

SGTDR 011 11T1 7 0
SGTMRK_SRV_PROFILE 2 0
SGTMRK_SRV_PROFILE_TEMP 2 0
SGTMRK_SRV_QUESTION 3 0

Distribution of Convertible Data per Column

This example shows how Convertible and Exceptional data is distributed
within the database. The granularity of this report is per column. The following is
an example:

USER.TABLE|COLUMN Convertible Exceptional

SMG.SOURCE|SOURCE 1 0
SMG.HELP|INFO 12 0
SMG.CLOSE._LISTIFNAME 1 0
SMG.CLOSE_LISTILNAME 1 0
SMG.CLOSE_LISTICOMPANY 1 0
SMG.CLOSE _LIST|STREET 8 0
SMG.CLOSE_LISTICITY 4 0
SMG.CLOSE _LIST|STATE 1 0

SMG ATTENDEES|ATTENDEE_NAME 1 0
SMG ATTENDEES|ADDRESS1
SMG.ATTENDEES|ADDRESS?
SMG ATTENDEES|ADDRESS3
SGTDR_010_[1TWORD_TEXT
SGTDR_011_I1T1WORD_TEXT
SGTMRK_SRV_PROFILE[FNAME 1 0
SGTMRK_SRV_PROFILEJLNAME 1 0
SGTMRK_SRV_PROFILE_TEMP|FNAME 1 0
SGTMRK_SRV_PROFILE_TEMP|LNAME 1 0
SGTMRK_SRV_QUESTIONJANSWER 3 0

N NN W
OO OoOo

Indexes To Be Rebuilt

This generates a list of all the indexes that are affected by the database character set
migration. These can be rebuilt upon the import of the data. The following is an
example:

USER.INDEX on USER. TABLE(COLUMN)

CD2000.COMPANY_[X_PID_BID_NNAME on CD2000.COMPANY(CO_NLS NAME)
CD2000._ MASHINE_MAINT_CONT on CD2000.MACHINE(MA MAINT_CONT#)
CD2000.PERSON_NEWS_SABUN_CONT_CONT on
CD2000.PERSON_NEWS_SABUN_CONT(CONT BID)
CD2000.PENEWSABUN3_PEID_CONT on CD2000.PE_NEWS_SABUN_3(CONT_BID)

10-32 Oracle9i Globalization Support Guide

Sample Scanner Sessions

PMS2000.CALLS _[X_STATUS_SUPPMGR on PMS2000.CALLS(SUPPMGR)
PMS2000.MAILQUEUE_CHK_SUB_TOM on PMS2000.MAIL_QUEUE(TO_MAIL)
PMS2000.MAILQUEUE_CHK_SUB_TOM on PMS2000MAIL_QUEUE(SUBJECT)
PMS2000.TMP_[X_COMP on PMS2000.TMP_CHK_COMP(COMP_NAME)

Individual Exception Report
An Individual Exception Report consists of the following summaries:

« Database Scan Parameters

« Application Data Individual Exceptions

Database Scan Parameters
This section describes the parameters and the type of scan chosen. The following is

an example:

Parameter Value
Scantype Full database
Scan CHAR data? YES

Current database character set we8mswin1252
New database character set utf8

Scan NCHAR data’? NO
Array fetch buffer size 102400
Number of rows to heap up forinsert 10
Number of processes 1

Application Data Individual Exceptions

This report identifies the data that has exceptions so that this data can then be
modified if necessary:.

There are two types of exceptions:
« Exceed Column Size

The column size should be extended if the maximum column width has been
surpassed. If not, data truncation occurs.

« Lossy Conversion

The data must be corrected before migrating to the new character set, or else the
invalid characters will be converted to a replacement character. Replacement

Character Set Scanner Utility 10-33

Sample Scanner Sessions

characters are usually specified as ? or ¢, or a similar linguistically-related
character.

The following is an example of an individual exception report that illustrates some
possible problems when changing the database character set from WE8ISO8859P1
to UTF8:

User. SCOTT

Table: PRODUCT

Column: NAME

Type: VARCHAR2(10)

Number of Exceptions: 2

Max Post Conversion Data Size: 11

ROWID Exception Type ~ Size Cell Data(first 30 bytes)

AAAATAAFAABIWQAAG exceed column size 11 Ahrenfelott
AAAAIAAFAABIWQAAU lossy conversion Oraclé8™
AAAAIAAFAABIWQAAU exceed columnsize 11 6racle8™

The values Ahrenfeldt and 6raclé8 ™ exceed the column size (10 bytes) because
each of the characters A, 6, &, and & occupies one byte in WE8ISO8859P1 but two
bytes in UTF8. The value 6raclé8 ™ has lossy conversion to UTF8 because the
trademark sign ™ (code 153) is not a valid WE8ISO8859P1 character. It is a
WE8BMSWIN1252 character, which is a superset of WE8ISO8859P1.

You can view the data that has an exception by issuing a SELECTstatement:

SELECT name FROM scott.product
WHERE ROWID=AAAA2fAAFAABIWQAAU!,

You can modify the data that has the exception by issuing an UPDATEstatement:

UPDATE scottemp SET ename = 'Oracle8 TM'
WHERE ROWID=AAAA2IAAFAABIWQAAU;

10-34 Oracle9i Globalization Support Guide

Storage and Performance Considerations in the Scanner

Storage and Performance Considerations in the Scanner

This section describes storage and performance issues in the Scanner. It contains the
following topics:

« Storage Considerations

« Performance Considerations

Storage Considerations

This section describes the sizing and the growth of the Scanner's system tables, and
explains the approach to maintain them. There are three system tables that can
increase rapidly depending on the nature of the data stored in the database.

= CSMS$TABLES
« CSM$COLUMNS
= CSMS$ERRORS

CSMSTABLES

The Scanner enumerates all tables that need to be scanned into the table
CSM$TABLES

You might want to assign a large tablespace to the user CSMIGby amending the
CSMINST.SQLscript. By default, the SYSTEMablespace is assigned to the user
CSMIG

You can look up the number of tables (to get an estimate of how large CSM$TABLES
can become) in the database by issuing the following SQL statement:

SELECT COUNT(*) FROM DBA_TABLES;

CSM$COLUMNS

The Scanner stores statistical information for each column scanned into the table
CSM$COLUMNS

You might want to assign a large tablespace to the user CSMIGby amending the
CSMINST.SQLscript. By default, the SYSTEMablespace is assigned to CSMIGuser.

You can look up the number of character type columns (to get an estimate of how
large CSM$COLUMNSEN become) in the database by issuing the following SQL
statement:

SELECT COUNT(*) FROM DBA_TAB_COLUMNS

Character Set Scanner Utility 10-35

Storage and Performance Considerations in the Scanner

WHERE DATA _TYPE IN (CHAR', VARCHARZ, 'LONG, 'CLOBY);

CSMS$ERRORS

When exceptions are detected with cell data, the Scanner inserts individual
exception information into the table CSM$ERRORShis information then appears in
the Individual Exception Report and facilitates identifying records to be modified if
necessary.

If your database contains a lot of data that is signaled as Exceptional or
Convertible (when the parameter CAPTURE=YSs set), the table CSM$ERROR&N
grow too large. You can prevent the CSM$ERRORtble from growing unnecessarily
large by using the SUPPRES$arameter.

The SUPPRES$®arameter applies to each table. The Scanner suppresses inserting
individual Exceptional information after the specified number of exceptions is
inserted. Limiting the number of exceptions to be recorded may not be useful if the
exceptions are spread over different tables.

You might want to assign a large tablespace to the user CSMIGby amending the
CSMINST.SQLscript.

Performance Considerations
This section describes ways to increase performance when scanning the database.

Utilizing Multiple Scan Processes

If you plan to scan a relatively large database, for example, over 50GB, you might
want to consider using multiple scan processes. This shortens the duration time of
database scans by utilizing hardware resources such as CPU and memory available
on the machine.

Array Fetch Buffer Size

The Scanner fetches multiple rows at a time when an array fetch is allowed.
Generally, you will improve performance by letting the Scanner use a bigger array
fetch buffer.

Suppressing Exception and Convertible Log

The Scanner inserts individual Exceptional ~ and Convertible (when
CAPTURE=Yinformation into the table CSM$ERROR® general, insertion into the
CSM$ERRORI@ble is more costly than data fetching. If your database has a lot of
data that is signaled as Exceptional ~ or Convertible , the Scanner issues many

10-36 Oracle9i Globalization Support Guide

Scanner Utility Reference Material

insert statements, causing performance degradation. Oracle Corporation
recommends setting a limit on the number of exception rows to be recorded using
the SUPRESS$arameter.

Scanner Utility Reference Material

This section contains the following reference material:
= Scanner Views

= Scanner Messages

Scanner Views
The Scanner uses the following views.

CSMV$COLUMNS
This view contains statistical information of columns that were scanned.

Column Datatype NULL Description
OWNER_ID NUMBER NOT NULL Userid of the table owner
OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner
TABLE_ID NUMBER NOT NULL Object ID of the table
TABLE_NAME VARCHAR2(30) NOT NULL Object name of the table
COLUMN_ID NUMBER NOT NULL Column ID
COLUMNL_INTID NUMBER NOT NULL Internal column id (for ADT)
COLUMN_NAME VARCHAR2(30) NOT NULL Column name
COLUMN_TYPE VARCHAR2(9) NOT NULL Column Datatype
TOTAL_ROWS NUMBER NOT NULL Number of rows in this table
NULL_ROWS NUMBER NOT NULL Number of NULL data cells
CONV_ROWS NUMBER NOT NULL Number of data cells that need to be converted
ERROR_ROWS NUMBER NOT NULL Number of data cells that have exceptions
EXCEED_SIZE_ROWS NUMBER NOT NULL Number of data cells that have exceptions
DATA_LOSS_ROWS NUMBER Number of data cells that undergo lossy conversion
I\S/IAX_POST_CONVERT_ NUMBER Maximum post-conversion data size

IZE

Character Set Scanner Utility 10-37

Scanner Utility Reference Material

CSMV$CONSTRAINTS

This view contains statistical information of columns that were scanned.

Column Datatype NULL Description
OWNER_ID NUMBER NOT NULL Userid of the constraint owner
OWNER_NAME VARCHAR2(30) NOT NULL User name of the constraint owner
CONSTRAINT_ID NUMBER NOT NULL Obiject ID of the constraint
CONSTRAINT_NAME VARCHAR2(30) NOT NULL Object name of the constraint
CONSTRAINT_TYPE# NUMBER NOT NULL Constraint type number
CONSTRAINT_TYPE VARCHAR2(11) NOT NULL Constraint type name
TABLE_ID NUMBER NOT NULL Obiject ID of the table
TABLE_NAME VARCHAR2(30) NOT NULL Object name of the table
CONSTRAINT_RID NUMBER NOT NULL Root constraint id
CONSTRAINT_LEVEL NUMBER NOT NULL Constraint level
CSMVS$ERRORS
This view contains individual exception information of cell data and object
definitions.
Column Datatype NULL Description
OWNER_ID NUMBER NOT NULL Userid of the table owner
OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner
TABLE_ID NUMBER NOT NULL Object ID of the table
TABLE_NAME VARCHARZ2(30) Object name of the table
COLUMN_ID NUMBER Column ID
COLUMN_INTID NUMBER Internal column ID (for ADT)
COLUMN_NAME VARCHAR2(30) Column name
DATA_ROWID VARCHAR2(1000) The rowid of the data
COLUMN_TYPE VARCHAR2(9) Column datatype of object type
ERROR_TYPE VARCHAR2(11) Type of error encountered
CSMV$INDEXES

This view contains individual exception information of cell data and object
definitions.

10-38 Oracle9i Globalization Support Guide

Scanner Utility Reference Material

Column Datatype NULL Description
INDEX_OWNER_ID NUMBER NOT NULL Userid of the index owner
INDEX_OWNER_NAME VARCHAR2(30) NOT NULL User name of the index owner
INDEX_ID NUMBER NOT NULL Object ID of the index
INDEX_NAME VARCHAR2(30) Object name of the index
INDEX_STATUSH# NUMBER Status number of the index
INDEX_STATUS VARCHAR2(8) Status of the index
TABLE_OWNER_ID NUMBER Userid of the table owner
TABLE_OWNER_NAME VARCHAR2(30) User name of the table owner
TABLE_ID NUMBER Object ID of the table
TABLE_NAME VARCHAR2(30) Object name of the table
COLUMN_ID NUMBER Column ID
COLUMNL_INTID NUMBER Internal column ID (for ADT)
COLUMN_NAME VARCHAR2(30) Column name
CSMVS$TABLES

This view contains information about database tables to be scanned. The Scanner
enumerates all tables to be scanned into this view.

Column Datatype NULL Description

OWNER_ID NUMBER NOT NULL Userid of the table owner

OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner

TABLE_ID NUMBER Object ID of the table

TABLE_NAME VARCHAR2(30) Object name of the table

MIN_ROWID VARCHARZ2(18) Minimum rowid of the split range of the table
MAX_ROWID VARCHAR2(18) Maximum rowid of the split range of the table
BLOCKS NUMBER Number of blocks in the split range
SCAN_COLUMNS NUMBER Number of columns to be scanned
SCAN_ROWS NUMBER Number of rows to be scanned
SCAN_START VARCHAR2(8) Time table scan started

SCAN_END VARCHAR2(8) Time table scan completed

Character Set Scanner Utility

10-39

Scanner Utility Reference Material

Scanner Messages
The Scanner has the following error messages:

CSS-00100 failed to allocate memory size of number
An attempt was made to allocate memory with size 0 or bigger than the maximum size.
This is an intemal error. Contact Oracle Customer Support.

CSS-00101 failed to release memory
An attempt was made to release memory with invalid pointer.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00102 failed to release memory, null pointer given
An attempt was made to release memory with null pointer.
Thisis anintemal eror. Contact Oracle Customer Support.

CSS-00105 failed to parse BOUNDARIES parameter
BOUNDARIES parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00106 failed to parse SPLIT parameter
SPLIT parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00107 Character set migration utiity schem not installed
CSMS$VERSION table not found in the database.
Run CSMINST.SQL on the database.

CSS-00108 Character set migration utility schema not compatible
Incompatible CSM$* tables found in the database.
Run CSMINST.SQL on the database.

CSS-00110 failed to parse userid
USERID parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00111 failed to get RDBMS version
Failed to retrieve the value of the Version of the database.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00112 database version not supported
The database version is older than release 8.0.5.0.0.
Upgrade the database to release 8.0.5.0.0 or later, then try again.

CSS-00113 user %s is not allowed to access data dictionary
The specified user cannot access the data dictionary.
Set O7_DICTIONARY_ACCESSIBILITY parameter to TRUE, or use SYS user.

CSS-00114 failed to get database character setname
Failed to refrieve value of NLS CHARACTERSET or NLS NCHAR_CHARACTERSET parameter from NLS

10-40 Oracle9i Globalization Support Guide

Scanner Utility Reference Material

DATABASE_PARAMETERS view.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00115 invalid character set name %s
The specified character setis not a valid Oracle character set.
Referto Appendix A, "Locale Data" for the correct character setname.

CSS-00116falled to reset NLS_LANG/NLS _NCHAR parameter
Failed to force NLS_LANG character set to be same as database character set.
This is an intemal error. Contact Oracle Customer Support.

CSS-00117 failed to clear previous scan log
Failed to delete all rows from CSM$* tables.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00118 failed to save command parameters
Failed to insert rows into CSM$PARAMETERS table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00119 failed to save scan start ime
Failed to insert a row into CSM$PARAMETERS table.
This is an intemal error. Contact Oracle Customer Support.

CSS-00120 failed to enumerate tables to scan
Failed to enumerate tables to scan into CSM$TABLES table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00121 failed to save scan complete time
Failed to insert a row into CSM$PARAMETERS table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00122 failed to create scan report
Failed to create database scan report.
This is an intemal error. Contact Oracle Customer Support.

CSS-00123 failed to check if user %es exist
Select statement that checks if the specified user exists in the database failed.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00124 user %s not found
The specified user does not exist in the database.
Check the user name.

CSS-00125 failed to check if table %s.%6s exist
Select statement that checks if the specified table exists in the database failed.
This is an intemal error. Contact Oracle Customer Support.

CSS-00126 table %s.%6s not found
The specified table does not exist in the database.

Character Set Scanner Utility

10-41

Scanner Utility Reference Material

Check the user name and table name.

CSS-00127 user %s does not have DBA priviege
The specified user does not have DBA privileges, which are required to scan the database.
Choose a user with DBA privileges.

CSS-00128 failed to get server version string
Failed to retrieve the version string of the database.
None.

CSS-00130 failed to initialize semaphore
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00131 failed to spawn scan process %d
Unknown.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00132 failed to destroy semaphore
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00133 failed to wait semaphore
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00134 failed to post semaphore
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00140 failed to scan table (tid=%6d, oid=%od)
Data scan on this particular table failed.
This is an intemal error. Contact Oracle Customer Support.

CSS-00141 failed to save table scan start ime
Failed to update a row in the CSM$STABLES table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00142 failed to get table information
Failed to refrieve various information from user id and object id of the table.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00143 failed to get column attributes
Failed to retrieve column attributes of the table.
This is an intemal error. Contact Oracle Customer Support.

CSS-00144 failed to scan table %6s.%s

Data scan on this particular table was not successful.
Thisis anintemal error. Contact Oracle Customer Support.

10-42 Oracle9i Globalization Support Guide

Scanner Utility Reference Material

CSS-00145 failed to save scan result for columns
Failed to insert rows into CSM$COLUMNS table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00146 failed to save scan resullt for table
Failed to update a row of CSM$TABLES table.
This is an intemal error. Contact Oracle Customer Support.

CSS-00147 unexpected data truncation

Scanner allocates the exactly same size of memory as the column byte size for fetch
buffer, resulting in unexpected data truncation.

Thisis anintemal error. Contact Oracle Customer Support.

CSS-00150 failed to enumerate table
Failed to refrieve the specified table information.
This is an intemal error. Contact Oracle Customer Support.

CSS-00151 failed to enumerate user tables
Failed to enumerate all tables that belong to the specified user.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00152 failed to enumerate all tables
Failed to enumerate all tables in the database.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00153 failed to enumerate character type columns
Failed to enumerate all CHAR, VARCHAR2, LONG, and CLOB columns of tables to scan.
This is an intemal error. Contact Oracle Customer Support.

CSS-00154 failed to create list of tables to scan
Failed to enumerate the tables into CSM$TABLES table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00155 failed to spilit tables for scan
Failed to split the specified tables.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00156 failed to get total number of tables to scan
Select statement that retrieves the number of tables to scan failed.
This is an intemal error. Contact Oracle Customer Support.

CSS-00157 failed to retrieve list of tables to scan
Failed to read all table ids into the scanner memory.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00158 failed to retrieve index defined on column

Select statement that retrieves index defined on the column fails.
Thisis anintemal error. Contact Oracle Customer Support.

Character Set Scanner Utility

10-43

Scanner Utility Reference Material

CSS-00160 failed to open summary report file

File open function retumed error.

Check if you have createiwrite privilege on the disk and check if the file name specified
for the LOG parameter is valid.

CSS-00161 failed to report scan elapsed time
Unknown.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00162 failed to report database size information
Unknown.
This is an intemal emror. Contact Oracle Customer Support.

CSS-00163 failed to report scan parameters
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00164 failed to report Scan summary
Unknown.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00165 failed to report conversion summary
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00166 failed to report convertible data distribution
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00167 failed to open exception report file

File open function retumed error.

Check if you have createArite privilege on the disk and check if the file name specified
for LOG parameter is valid.

CSS-00168 failed to report individual exceptions
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00170 failed to refrieve size of tablespace %
Unknown.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00171 failed to retrieve free size of tablespace %s
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00172 failed to retrieve total size of tablespace %s

Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

10-44 Oracle9i Globalization Support Guide

Scanner Utility Reference Material

CSS-00173 failed to retrieve used size of the database
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00174 failed to retrieve free size of the database
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00175 failed to retrieve total size of the database
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00176 failed to enumerate user tables in bitmapped tablespace
Failed to enumerate tables in bitmapped tablespace.
Thisis anintemal error. Contact Oracle Customer Support.

Character Set Scanner Utility 10-45

Scanner Utility Reference Material

10-46 Oracle9i Globalization Support Guide

11

Oracle Locale Builder Utility

This chapter describes the Oracle Locale Builder Utility. It includes the following
topics:

Overview of the Locale Builder Utility

Setting the Language Definition with the Locale Builder
Setting the Territory Definition with the Locale Builder
Setting the Character Set Definition with the Locale Builder
Sorting with the Locale Builder

Oracle Locale Builder Utility 11-1

Overview of the Locale Builder Utility

Overview of the Locale Builder Utility

The Locale Builder offers an easy and efficient way to access and define NLS locale
data definitions. It provides a graphical user interface through which you can easily
view, modify, and define locale-specific data. It extracts data from the text and
binary definition files and presents them in a readable format, so you can process
the information without worrying about the specific definition formats used in
these files.

The Locale Builder handles four types of locale definitions: language, territory,
character set, and linguistic sort. It also supports user-defined characters and
customized linguistic rules. You can view definitions in existing text and binary
definition files and make changes to them or create your own definitions.

Configuring Unicode Fonts for the Locale Builder

The Locale builder uses Unicode characters in many of its functions. For example, it
shows the mapping of local character codepoints to Unicode codepoints.Therefore,
Oracle Corporation recommends that you use a Unicode font to fully support the
Locale Builder. If a character cannot be rendered with your local fonts, it will
probably be displayed as an empty box.

Font Configuration on Windows

There are many Windows TrueType and OpenType fonts that support Unicode.
Oracle Corporation recommends using the Arial Unicode MS from Microsoft,
because it includes about 51,000 glyphs and covers most of the characters in
Unicode 3.0.

After installing the Unicode font, add the font to the Java Runtime so it can be used
by the Oracle Locale Builder. The Java Runtime uses a font configuration file to map
predefined Java virtual fonts to fonts that are available on Windows. The name of
the configuration file is font.properties and it is located in the
$JAVAHOME/lib directory. For example, to include the installed Arial Unicode
MSfont, add the following entry to the font.properties file:

dialog. n=Avial Unicode MS, DEFAULT _CHARSET
where n is next available sequence number to which you want to assign the Arial

Unicode MS font in the font list. Java Runtime looks through the font mapping list
for each virtual font and use the first font available on your system.

11-2 Oracle9i Globalization Support Guide

Overview of the Locale Builder Utility

Add an entry for the new font to each font mapping list that you want the new font
to be used for. After editing the font.properties file, restart the Locale Builder
so it can use the new fonts.

Note: For a detailed description of the font.properties file
format, visit Sun's internationalization website.

Font Configuration on Other Platforms

In general, there are fewer choices of Unicode fonts for non-wWindows platforms
than for Windows platforms. If you cannot find a Unicode font with satisfactory
character coverage, you can use multiple fonts to cover the different languages. For
each font that you want to add to the Java Runtime, install the font and add the font
entries into the font.properties file using the steps described above for the
Windows platform.

For example, to display Japanese characters on Sun Solaris using the font
ricoh-hg mincho , add an entry to the existing font.properties filein
$JAVAHOME/ib .

serif plain.0=-monotype-times new roman-regular-—*-%d-*-*p-*-iso08859-1
serif. plain.1=-urw-itc
zapfdingbats-medium-r-nomal-*-%d-**-p-*-sun-fontspecific

serif. plain.2=*-symbol-medium-r-normal-**-%d-*-*-p-*-sun-fontspecific
serif.plain.3=ricoh-hg mincho Fmedium-r-nomal—*%d-*-*m-*4isx0201.1976-0

For font availability, refer to your operating system specific documentation.

The Locale Builder Interface

Ensure that the ORACLE_HOMiRitialization parameter is set before starting the
Builder.

Start the Locale Builder at the Unix prompt by issuing the following command:
% Ibuilder

After you start the Locale Builder, the screen illustrated in Figure 11-1 appears.

Oracle Locale Builder Utility 11-3

Overview of the Locale Builder Utility

Figure 11-1 Locale Builder Utility

File Edit Tools Help

ORACLE LOCALE BUILDER

Oracle Locale Builder is a convenient tool
for customizing locale data definitions.
Use Oracle Locale Builder to view or create:

- Languages, including local month and
day names, writing directions, etc.

- Territories, including calendar convention,
date and time formats, number and
monetary systems, etc.

- Character Sets, including character set type,
character mappings and classifications, etc.

- Collations, including linguistic sort order,
special collation rules, etc.

_Filename: None

Locale Builder General Screens

Before beginning with specific tasks, you might want to become familiar with the
general screens that you can use at different times. These screens are:

« Existing Definitions Dialog Box
under the General tab

« Session Log Dialog Box
under the Tools menu

« Previewing the NLT File Dialog Box
as a tab in many tasks

« Open File Dialog Box

under the File menu

11-4 Oracle9i Globalization Support Guide

Overview of the Locale Builder Utility

Restrictions

Note:

Oracle Locale Builder includes online help.

The following restrictions apply when choosing locale object names:

« Names must be all ASCII characters

« Names must start with a letter

« Language, territory, and character set names cannot contain underscores

Note:

Only certain ID ranges are valid values for the user-defined

LANGUAGETERRITORYCHARACTER SEIMONOLINGUAL
COLLATION and MULTILINGUAL COLLATION definitions. They
are listed in the text about relevant screenshots.

Figure 11-2 Existing Definitions Dialog Box

Lanquage &bhbreviation

Territory (D)

B ~ |ALGERIAZT) B

ARABIC(3T) __|BG - |AMERICA{1) ==

ASSAMESE(SS) BM BUSTRALIBES)

BANGLAIST) CA ALUSTRIASH

RFNGCALI(g4) s RAHRAINCZED -
4]] [n L9 B
Territory Abbreviation Character Set{|C) Linguistic Sort|D)

AE ~|aLTEUTF1BI2000) ~ |ARABIC(Z1) =]

aT AL24UTFFSSIE70) BRABIC_ABI_MATCHIEZ)

all AL32UTFB(B73) ARABIC_AB]_SORTIET)

BED ARBADOST10(557) ARABIC_MATCH(ED

BE ARAADOSTIOTISOF T ASCT AR =

R wt| €0 | 3 1] B

Correspending File Name: 00001, nlk

Jpen } Close }

The Existing Definitions dialog box allows you to open locale objects by name. If
you know a specific language, territory, linguistic sort (collation), or character set
that you want to start with, click on the displayed value. For example, you can open
the AMERICANanguage definition file, as shown in Figure 11-2. In this case, you
will open the Ix00001.nlb file.

Abbreviations are for reference only and cannot be opened.

Oracle Locale Builder Utility 11-5

Overview of the Locale Builder Utility

Figure 11-3 Session Log Dialog Box

IC

=====Mew Character Set Definition

-—-Added row [0x30,,W30] into Character Data table

-—-Added row [0x31,,W31] into Character Data table

---Deleted row [1x30, ,W30] from Character Data table

---Muodified row 1 from [0x31, W31] to [0x33, ,W33]in Character Data table
====z=5gved agx22712.nlt

==rr=Qpened 31001000

---Deleted codepoint w0032 frorm Unicode Collation Rules sequence

---Inzerted codepoint w0032 at prirnary level diference aftter codepoint w005a in Unico) |
---Deleted codepoint w0058 frormn Unicode Collation Rules sequence

-—-Inserted codepoint w0058 at tertiary level difference after codepoint w0053 in Lnicog ™
1] | »

Save Log... /l Qk /l

The Session Log dialog box shows what actions have been taken in a given session.
This way, you can keep a record of all changes and, if necessary, undo or modify
past changes. Figure 11-3 illustrates a typical example.

11-6 Oracle9i Globalization Support Guide

Overview of the Locale Builder Utility

Figure 11-4 Previewing the NLT File Dialog Box

File Edit Tools Help
Preview NLT

Copyright () 1996 - 2000 by Oracle Comporation. All Rights Reserved.

*

#

MNAME

100003.nit

DESCRIPTION

Language definition for AMERICAN FREMCH

MOTES

#

WERSION=2.1.0.0.0

IMFO=""

DEFIME LAMGUAGE

General
Marme="AMERICAMN FRENCH"
ID=3
I5CAbbreviation="u0041w0046"
DefaultTerritony D=4
DefaultChar3stiD=31
DefaultlinguisticlD=12
MNurrberSoellingld=0

Month

_Filename: |x .nlb | Locale Category: Language | Status: Editing

Figure 11-4 illustrates viewing an NLT file. It is a text file with the file extension

.ntl which shows the settings for a specific language, territory, character set, or
linguistic sort are kept. The NLT file is not modifiable from this dialog box. Instead,
the purpose is to present an easily readable form of the file for you to see if your
changes look correct. You must use the specific elements of the Locale Builder to
modify the NLT file.

Oracle Locale Builder Utility 11-7

Setting the Language Definition with the Locale Builder

Figure 11-5 Open File Dialog Box

Files: @ @

-

[wooooz.nib — Language;
[k00003l
D [x00004.nlb
D [x00005.nlb
[wO0006.nik
[®00007.nlb =

AMERICAN

File Marne: |I}{DDDD1.nIb

[w* Preyisw

The Open File dialog box opens an NLB file so you can modify it or use it as a
template. The NLB file is a binary file with the file extension .nlb that contains the
binary equivalent of the information in the NLT file. Figure 11-5 illustrates opening
X00001.nlb , which is for the language definition for AMERICANBY highlighting
Preview, you can see what type of NLB file you have selected.

Setting the Language Definition with the Locale Builder

This section will use a sample scenario of creating a new language based on French.
This new language will be called AMERICAN FRENCHFirst, you need to open
FRENCHrom the Existing Definitions dialog box. Figure 11-6 illustrates the first
screen.

11-8 Oracle9i Globalization Support Guide

Setting the Language Definition with the Locale Builder

Figure 11-6 Language General Information

File Edit Toocls Help
General

Language Mame: AMERICAMN FREMCH

Language IO |1EID1

Language Abbreviation: AF

Default definitions for this language:

Default Territory: IFHANCE

Default Character Set: |WEEIISOEIEISQP1

Default Linguistic Definition: FREMCH

Show Existing Definitions...]

Locale Category: Language | Status: Editing

Figure 11-6 illustrates a user-defined setting of AMERICAN FRENCHnNd a
user-defined abbreviation of AR The 1ISO Abbreviation field is not limited to
standard I1SO abbreviations, so you can create your own: AF, in this case. The
Default settings are inherited and optional. You can build upon an inherited setting
and modify it to add additional properties.

The valid range for the language ID field for a user-defined language is 1,000 to
10,000.

Oracle Locale Builder Utility 11-9

Setting the Language Definition with the Locale Builder

Figure 11-7 Language Definition Month Information

File Edit Toocls Help
Manth Mames

F:apitalize initial letter of month names:

® Yeg T N f(or non—applicable)

Full Month Mares Abbreviated Month Mames

Month 01: |january jan
Maonth 02: [fEvrier ferw

Month 03: |mars =1
Maonth 04:
Maonth 05! |rai
Month OB: |juin
Maonth 07 |juillet
Month 08! |aoot
Month 09: septermore

Maonth 108 |lociobre
Manth 11: |noveriare
Month 12! décembre

.__Fi|E name Locale Category: Language Status: Editing
Figure 11-7 illustrates how to set month names using the Month Names tab. All

names are shown as they appear in the NLT file. If you set NLS_LANGto AMERICAN
FRENCHthe rules shown in the figure apply.

11-10 Oracle9i Globalization Support Guide

Setting the Territory Definition with the Locale Builder

Figure 11-8 Language Definition Type Information

File Edit Toocls Help

Day Marmes

(Canitalize initial letter of day names:

® Yeg N (ar non—applicable)

Full Day Names Ahbreviated Day Names

Sunday: sunday sun

Monday: lundi Iu

Tuesdaw rrardi A,

wWednesday: |mercredi me

Thursday: |jeudi je

Friday: vendredi e

Saturday: samedi =3

Locale Category: Language Status: Editing

Figure 11-8 illustrates the Day Names tab, which allows you to choose default day
names. All names are shown as they appear in the NLT file. If you set NLS_LANGto
AMERICAN FRENCIthe rules in the figure apply.

Setting the Territory Definition with the Locale Builder

This section will use a sample scenario of creating a new territory called REDWOOD
SHORESand use RSas an abbreviation for it. In this case, we will create a new
definition that is not based on an existing one.

The basic tasks are to assign a name and choose calendar, number, date/time, and
currency formats. Figure 11-9 illustrates how to begin.

Oracle Locale Builder Utility 11-11

Setting the Territory Definition with the Locale Builder

Figure 11-9 Territory Definition General Information

File Edit

e Untitled ocale Cate Brritory Status: Editing

In Figure 11-9, we have manually inserted REDWOOD SHORd® RSfor a new
territory.

The valid range for the territory ID field for a user-defined territory is 1,000 to
10,000.

11-12 Oracle9i Globalization Support Guide

Setting the Territory Definition with the Locale Builder

See Also: Chapter 3, "Setting Up a Globalization Support
Environment"

Figure 11-10 Territory Definition Calendar

Help ORACLSE

Calendar

Eile Edit T

CrSun 1 Man ® Tue

First day of a calendar week
(O T Thu Fri " Sat |

First week of a calendar vear
(@ 150 Week (first more than half—full week) © MNon—150 week (first full week) |

Calendar sample:

7
14
21
28

Tue

wed

1
o]
15
22
23

Thu

2
3
16
23
30

Fri

10
17
24
N

Sat

18
25

Sun

12
13
26

Mon

13
20
27

Filename: Untitled

Locale Category: Territory

Status: Editing

Figure 11-10 illustrates how to set Calendar characteristics. Clicking on a radio
button causes the Calendar Sample to display sample output. In this case, Tuesday
is the first day of the week.

Oracle Locale Builder Utility 11-13

Setting the Territory Definition with the Locale Builder

Figure 11-11 Territory Definition Date and Time Conventions

Eile Edit Teecls Help
Date&Time

Shert Date Format — [vv/MM/DD

Short Date Sample: [oos10,24

Short Time Format: [HH24:MI:SS

Short Time Sarmple: [18:23:55

Combined short date&time sample

00/10/24 18:23:55

Long Date Format MM DD DAY

Long Date Sample: [2000 10 24 Tuesday]

Long Time Format. [HH12:M1:SS AM =

Long Time Sample: [0E:23:55 PM]

Combined long date&time sample

2000 10 24 Tuesday 06:23:55 PM

_Filename: Untitled Locale Category: Territory | Status: Editing

Figure 11-11 illustrates typical date and time settings. Sample formats are displayed
when you choose a setting from the drop-down menus. In this case, we set the
default date format for REDWOOD SHORESYY/MM/DDinstead of the typical
territory default of DD-MM-YY

You can also create your own formats instead of using the selection from the
drop-down menus.

11-14 Oracle9i Globalization Support Guide

Setting the Territory Definition with the Locale Builder

Figure 11-12 Territory Definition Number Conventions

File Edit Tools Help

Nurmber

Decimal Symbol: | =]

Negative Sign Location: w =100 C 100-—

Numeric Group Seperator: , M

Number Grouping:

Number Samplae

-1,2345.12

List Separatorn L =]

Measurement System:

Reunding Indicator (value greater than which to round up):

Rounding Sample

104 is rounded fo 10 and 10.5 is rounded to 11

_Filename: Untitled | Locale Category: Territory _ Status: Editing

Figure 11-12 illustrates typical number settings. Sample formats are displayed
when you choose a setting from the drop-down menus. The default for number
grouping is 3, but 4 is used in this case.

You can type your own values instead of using the drop-down menus.

Oracle Locale Builder Utility 11-15

Setting the Character Set Definition with the Locale Builder

Figure 11-13 Territory Definition Monetary Conventions

File Edit Tools Help
Monetary

Local Currency symbol;

Alternative Currency Symbhbol:

Currency Presentation:

Cecimal symbol:

Croup Separator:

Manetary Mumber Grouping:

Maonetary Precision:
Credit symbol;

Dehit symbaol;

Credit: + % 1,234.123 Debit: — % 1,234.123

Internatienal Currency Separator: | [=]

Internatienal Currency Symbol: [USD [=]

1,234 USD

_Filename: Untitled Locale Category: Territory | Status: Editing

Figure 11-13 illustrates how to set monetary conventions for territories. Note that
the default International Currency Separator is a blank space, so it is not visible in
the screen. In this case, we chose the Euro as an alternate currency symbol.

You can type your own values instead of using the drop-down menus.

Setting the Character Set Definition with the Locale Builder

In some cases, you may wish to tailor a character set to meet specific user needs. In
Oracle9i, you can extend an existing encoded character set definition to suit your
needs. User-defined characters are often used to encode special characters
representing:

« Proper names

« Historical Han characters that are not defined in an existing character set
standard

11-16 Oracle9i Globalization Support Guide

Setting the Character Set Definition with the Locale Builder

« \endor-specific characters

« New symbols or characters you define

This section describes how Oracle supports user-defined character. It describes:
« Character Sets with User-Defined Characters

« Oracle's Character Set Conversion Architecture

« Unicode 3.1 Private Use Area

« UDC Cross References

Character Sets with User-Defined Characters

User-defined characters are typically supported within East Asian character sets.
These East Asian character sets have at least one range of reserved codepoints for
use as user-defined characters. For example, Japanese Shift JIS preserves 1880
codepoints for user-defined characters as follows:

Table 11-1 Shift JIS Codepoint Example

Japanese Shift JIS UDC Range Number of Codepoints
F040-FO7E, FO80-FOFC 188
F140-F17E, F180-F1FC 188
F240-F27E, F280-F2FC 188
F340-F37E, F380-F3FC 188
F440-F47E, FA80-F4FC 188
F540-F57E, F580-F5FC 188
FF640-F67E, F680-F6FC 188
F740-F77E, F780-F7FC 188
F840-F87E, F880-F8FC 188
F940-F97E, F980-FIFC 188

The Oracle character sets listed in Table 11-2 contain pre-defined ranges that allow
you to support user-defined characters:

Oracle Locale Builder Utility 11-17

Setting the Character Set Definition with the Locale Builder

Table 11-2 Oracle Character Sets with UDC

Character Set Name Number of UDC Codepoints Available
JA16DBCS 4370
JA16EBCDIC930 4370
JA16SJIS 1880
JA16SJISYEN 1880
KO16DBCS 1880
KO16MSWIN949 1880
ZHS16DBCS 1880
ZHS16GBK 2149
ZHT16DBCS 6204
ZHT16MSWIN950 6217

Oracle's Character Set Conversion Architecture
The codepoint value that represents a particular character may vary among
different character sets. For example, the Japanese kanji character:

Figure 11-14 Kanji Example

[

is encoded as follows in different Japanese character sets:

Table 11-3 Kanji Example with Character Conversion

Character Set Unicode JA16SJIS JA16EUC JA16DBCS
Character Value of 4E9C 889F BOA1 4867
i

In Oracle, all character sets are defined in terms of a Unicode 3.0 code point. That is,
each character is defined as a Unicode 3.0 code value. Character conversion takes
place transparently to users by using Unicode as the intermediate form. For

11-18 Oracle9i Globalization Support Guide

Setting the Character Set Definition with the Locale Builder

example, when a JA16SJIS client connects to a JAI6EUC database, the character
shown in Figure 11-14, "Kanji Example" (value 889F) entered from the JA16SJIS
client is internally converted to Unicode (value 4E9C), and then converted to
JA16EUC(value BOAL).

Unicode 3.1 Private Use Area

Unicode 3.0 reserves the range E000-F8FF for the Private Use Area (PUA). The PUA
is intended for private use character definition by end users or vendors.

User-defined characters can be converted between two Oracle character sets by
using Unicode 3.0 PUA as the intermediate form, the same as standard characters.

UDC Cross References

User-defined character cross references between Japanese character sets, Korean
character sets, Simplified Chinese character sets and Traditional Chinese character
sets are contained in the following distribution sets:

HORACLE_HOME}ocommon/nis/demofudc_ja.txt
$HORACLE_HOME}Yocommon/nis/demo/udc_ko.txt
$HORACLE_HOME}Yocommon/nis/demo/udc_zhs.txt
HORACLE_HOME}ocommon/nis/demo/udc_zht.txt

These cross references are useful when registering user-defined characters across
operating systems. For example, when registering a new user-defined character on
both a Japanese Shift-JIS operating system and a Japanese IBM Host operating
system, you may want to pick up F040 on Shift-JIS operating system and 6941 on
IBM Host operating system for the new user-defined character so that Oracle can
convert correctly between JA16SJIS and JA16DBCS. You can find out that both
Shift-JIS UDC value F040 and IBM Host UDC value 6941 are mapped to the same
Unicode PUA value EO0O in the user-defined character cross reference.

See Also: Appendix B, "Unicode Character Code Assignments"
for more information about customizing a character set definition
file

Character Set Definition File Conventions

By default, the Locale Builder generates the next available character set name for
you. You can, however, generate your own character set name. You should follow
certain conventions when creating a character set. In particular, the convention used

Oracle Locale Builder Utility 11-19

Setting the Character Set Definition with the Locale Builder

for naming character set definition NLT files is the format: Ix2 dddd.nlt , where
dddd = 4 digit Character Set ID in hex.

A few things to note when editing a character set definition file:
« You should not remap existing characters.
« All character mappings must be unique.

« New characters should be mapped into the Unicode private use range:
e000-f4ff. (Note that the actual Unicode 3.0 private use range is e000-f8ff.
However, Oracle reserves f500-f8ff for its own private use.)

« No line in the character set definition file can be longer than 80 characters.

If a character set is derived from an existing Oracle character set, Oracle
Corporation recommends using the following character set naming convention:

<Oracle_character set name ><organizaton name >EXT<version >
For example, if a company such as Sun Microsystems were adding user-defined

characters to the JA16EUC character set, the following character set name might be
appropriate:

JA16EUCSUNWEXT1
where:
« JAIBEUC
Is the character set name defined by Oracle
« SUNW

Represents the organization name (company stock trading abbreviation for Sun
Microsystems)

« EXT
Specifies that this is an extension to the JAL6EUC character set
L] 1

Specifies the version

Locale Builder Character Set Scenario

This section show how to create a new character set called MYCHARSEdnd use
10001 for its recommended ID number. The scenario will start with an ASCII

11-20 Oracle9i Globalization Support Guide

Setting the Character Set Definition with the Locale Builder

character set and add 10 Chinese characters. First, open US7ASCII from the Existing
Definitions dialog box. Figure 11-15 illustrates how to begin.

Figure 11-15 Character Set General Information

Eile Edit Teeols Help

General

Character et Name: |MYCHAHSET

Character Set 1D |10001]

IS0 Character Set D |

Base Character Set ID: [

Sheow Existing Definitions..,

_Filename: [x20001.nlh Locale Category: Charactar Set | Status: Editing

In Figure 11-15, the ISO Character Set ID and Base Character Set ID fields are
optional. The Base Character Set ID is used for inheriting values so that the base
character set’s properties are used as a starting template. The Character Set ID is
automatically generated, although you can override it. The valid range for a
user-defined character set ID is 10,000 to 20,000.

Oracle Locale Builder Utility 11-21

Setting the Character Set Definition with the Locale Builder

Figure 11-16 Character Set Type Specifications

File Edit Tools Help
Type Specificati...

~Character Set Category
T EBCDIC_BASED T FIXED _WIDTH

~addtional Flags
[DISPLAY [SHIFT v B%TE_UMICIUE

~Special Characters (when FIXED_WIDTH is sef)
LocalC har Walue Glyph

Pad Character:

Underscore Character:

Percent Character:

~Shift Characters (when SHIFT is set)
LocalChar Value

Shift Qut:
Shift Im:

~7 bit (when DISPLAY iz sef)
CITRUE 8 Ef ISE

Locale Category: Character Set | Status: Editing

Figure 11-16 illustrates how to change certain character set specifications. This
should not normally be necessary.

When you open a character set, all possible settings for this tab should already be
set to appropriate settings. You should keep these settings unless you have a
specific reason for changing them. If you need to change the settings, use the
following guidelines:

« FIXED_WIDTHis to identify character sets whose characters have a uniform
length. AL16UTF16 is one example.

« BYTE_UNIQUEMeans the single byte range of codepoints is distinct from
multibyte range. An example is JA16EUC.

« DISPLAY identifies character sets that have certain character mode
characteristics. Arabic and Devanagari character sets are examples.

11-22 Oracle9i Globalization Support Guide

Setting the Character Set Definition with the Locale Builder

« SHIFT is for certain character sets that require extra shift characters to
distinguish between single-byte characters and multibyte characters.

See Also: Cha
information about SHIFT In SHIFT Out character sets

pter 2, "Choosing a Character Set" for more

Figure 11-17 Character Set User-Defined General Information

File PEit

Tools Help

harvalue

Unicode VYalue

Ao

wia74

Wwiavs
wiave

Wwiavy

wiave

wiavg

wiao7a

wiavh

WIigoyc

wiavd

LocalZharWalue

Unicode Walue

_Dxfe

Mew)

Wwioo7e
Delete) Search...)

_Filename: x20001.nlb

| Locale Category: Character Set Status: Wiewing

Figure 11-17 illustrates how to add user-defined characters. In this case, you can
add characters after Oxfe. You can add one character at a time or use a text file to
import a large number of characters. In this example, we first import a file
containing the following characters:

88a2
88a3
88a4
88a5
88a6

963f
54c0
611b
6328
596

Oracle Locale Builder Utility 11-23

Setting the Character Set Definition with the Locale Builder

88a7 9022
88a8 8475
88a9 83lc
88aa 7a50
88ab 60aa

Figure 11-18 Character Set Characters

File Edit T

LocalChar Yalue Unicode Value
Uxrd wddrd

Oxfe wiao7e

0xB3a3 Wsdco
OxB5ad WweT1h
OxBBah WE32E
OxB8ak WISAE
OxB8a7] Wwagz2
OxBBaB WB47E
OxB5a9 WB31c
OxB8aa Wiasi
OxB5ab B \Welaa

| LocalCharYalue Glyph Linicode Yalue

0%B38a2 W9E3f

Modiyy | Delete)(Search.. j]

01 .nlk Locale Category: Character Set Status: Editing
Figure 11-18 illustrates the new characters added after Oxfe. We imported the

characters in this case from a file having two columns, with the left column being
the local code value and the right column being its Unicode mapping.

11-24 Oracle9i Globalization Support Guide

Sorting with the Locale Builder

Sorting with the Locale Builder

This section shows how to create a new multilingual linguistic sort called MY _
GENERIC_Mand use 10001 for its ID number. The choice of sort name is based on
the convention GENERIC_Mepresenting a multilingual 1SO sort. In this case, we
use GENERIC_Mas a starting point. Figure 11-15 illustrates how to begin.

Figure 11-19 Collation General Information

File Edit Tools Help
Ceneral

Collation Mame: |MIY_GENE RIC_M

Collation ID: |10001

[_Show Existing Definitions..,

Defined Collation Flags
(@ CAMOMICAL_EQUIMALEMCE [| REVERSE_SECOMDARY [SWaAP_WITH_MEXT

.__Filen:a.rrm:) | Locale Cateqory: Multilingual Linguistic Sort | Status: Editing

Typical settings for the flags are automatically derived. SWAP_WITH_NEXIE
relevant for Thai and Lao sorts. REVERSE_SECONDARYfor French sorts.
CANONICAL_EQUIVALENCHetermines whether canonical rules will be used.

Collation ID (sort ID) valid ranges for a user-defined sort are 1,000 to 2,000 for
monolingual collation and 10,000 to 11,000 for multilingual collation.

Oracle Locale Builder Utility 11-25

Sorting with the Locale Builder

See Also:

« Figure 11-23, "Collation-Canonical Rules" for more information
about canonical rules

« Chapter 4, "Linguistic Sorting"

Figure 11-20 Collation Unicode Collation

File Edit Tools Help
Unicode C...

w0039 9
—00bc ¥4
—00bd 15
—00he 34
g-Secondary
é—Ter‘[iarg.r
w0061 a
0041 A
o-Secondary
Tertiary
—w00e6 o
—w00cE £
Tertiary

Modily | Delete | Paste)(Search |

Filenarme: [x31001.nlk Locale Category: Multilingual Linguistic Sort Status: Editing

In this scenario, we will move digits so they sort after letters. To do this, we will
delete their codepoint values and paste them after the codepoint values of the
letters.

Figure 11-20 illustrates selecting a value. Click Delete and paste the value where
you want it. Clicking Paste brings up the Collation Pasting Dialog Box, shown in
Figure 11-21.

11-26 Oracle9i Globalization Support Guide

Sorting with the Locale Builder

Figure 11-21 Collation Pasting Dialog Box

Would you like to paste the node after or before the selected node?

w Afler " Before

Set Collation Level Difference Between Mew Mode And Selected Node

& Primary " Becondary T Teriary
FPaste Codepoint¥alue: x0037¥

oK CAMCEL

In Figure 11-21, choose where to put the deleted node and at what sort level you
want it.

Oracle Locale Builder Utility 11-27

Sorting with the Locale Builder

Figure 11-22 Collation Unicode Collation After Pasting

File Edit Tools Help
Unicode C...

@?—S'ec-ondary
é—Tel‘[iaw
0079y
0059 Y
g-Secondary
é‘—Temaw
—w007az
—w005a 7
00300
—w0031 1
—w0032 2
—w0033 3
0034 4
w0035 5

M adify) Delste) Paste)(Search |

Locale Category: Multilingual Linguistic Sort Status: Editing

In Figure 11-22, we selected the digits 0-7 were moved from their original place
before letters a-z to a place after the letters a-z. For multibyte linguistic sorts, the
Locale Builder cannot display accented characters, but you can change their sort
order.

Changing the Sort Order for Accented Characters

The next scenario is to change the sort order for accented characters. You can do this
by changing the sort for all characters containing a particular accent mark or by
changing one character at a time. In this example, we change the sort of all
characters with a circumflex (for example, 0) to go after all characters containing a
tilde.

First, we verify the current sort order by choosing Canonical Rules under the Tools
menu. This brings up the Canonical Rules dialog box, illustrated in Figure 11-23.

11-28 Oracle9i Globalization Support Guide

Sorting with the Locale Builder

Figure 11-23 Collation-Canonical Rules

FreCampased Farm Glvph Decomposed Farm Glyih
W00fa U w007 50301 u+ =
Ww00fb 0] Wo075wW0202 u+" =
W69 i WO0YSW0303 u+
FreComposed Form Glyph Decomposed Form Glyph
[l By Fdd fuf i [elete Search...
Ok

Figure 11-23 illustrates how characters are decomposed into their canonical
equivalents and their current sorting orders. For example, & is represented as a plus
an umlaut. In this case, we change the sort for all characters with a circumflex so
they follow characters with tildes. This example uses a base character of u.

See Also: Chapter 4, "Linguistic Sorting" for more information
about canonical rules

Click on the Non-Spacing tab. If you use the Non-Spacing tab, changes for accent
marks apply to all characters.

Oracle Locale Builder Utility 11-29

Sorting with the Locale Builder

Figure 11-24 Collation-Changing Several Characters

& Dracle Locale Builder - 1x31001 nilt
File Edit Tools Help

Mon-Spaci...

& Removal Confirmation

Are you sure you want to
" remove the node w0302
—w030c

frormn the collation
—w030a " SEqUEncE?

~b0308 -
0344
—030b
90303
0307 -
00338 /
0327
0328 |
90304 -

Add | Modiy)Cut Paste | Search |

| Locale Category: Multilingual Linguistic Sort | Status: Editing

After selecting the circumflex, click Cut and accept the confirmation. Then all
characters with a circumflex will have their sort order changed.

11-30 Oracle9i Globalization Support Guide

Sorting with the Locale Builder

Figure 11-25 Collation-Changing Several Characters

& Dracle Locale Builder - Ix31001 nlt
File Edit Toaols Help
MNon-Spaci...

0307 -
0338 /
w0327
0328
00304 -

Add Modify | cut | Pasts JISearch

Locale Category: Multilingual Linguistic Saort Status: Editing
Figure 11-25 illustrates the new order.

Changing the Sort Order for One Accented Character

To change the order of a specific accented character, you need to insert the character
directly into the appropriate order position. In this scenario, we will change the sort
order for & so that it sorts after Z. First, we select the Unicode Collation tab. Next,
we highlight the character next to the one we want, Z in this case. Finally, we click
Add, which brings up a Paste dialog box.

Oracle Locale Builder Utility 11-31

Sorting with the Locale Builder

Figure 11-26 Collation-Changing One Character

& Dracle Locale Builder - 1x31001 nilt
File Edit Tools Help
Unicode Caoll...

F-Secondary

é—Ter‘[iary i& Insert New Node
w07 T w ould you like to insert the new node after or before the selected node?
w0057 W o

G-Secondary

Temary Set Callation Lewel Difference Between Mew Mode And Selected Maode
w0078 x
w058 ¥ @ Primary " Secondary " Terdiary
G-Secondary

& Tertiary Codepointvalue [vooes]
w079
w0059

G-Secondary

é—Tertiary

After " Before

0K CANCEL)

(Modiy | | Cut | [Pasle | | Search |

Filename Locale Categaory: Multilingual Linguistic Sort Status: Yiewing

As illustrated in Figure 11-26, we choose After and Primary and manually type in
\x00e4 , which is the code point for &.

We chose Primary for the level because that is the Unicode standard for
differentiating between characters having different base letters. A Secondary or
Tertiary level sort would also have the same practical results.

11-32 Oracle9i Globalization Support Guide

Sorting with the Locale Builder

Figure 11-27 Collation-Changing a Single Character

& Dracle Locale Builder - Ix31001 . nlt
File Edit Toaols Help
Unicode Coll...
TWOUDE
-Secondary
@J—Tertiary
w007 w
—w005T W
G-Secondary
é—Ter‘[iaw
w0078
w0053
G-Secondary
é—Tertiary
—w0079
w0059
G-Secondary
é‘—Tertiary
—w007a

Wodify)]) Search J

Filename: [x31001 nit | Locale Categary: Multilingual Linguistic Sort Status: Wiewing

Figure 11-27 shows the final result, and displays the & correctly.

Generating NLB Files

After you have defined a new language, territory, character set, or linguistic sort,
generate new NLB files from the NLT files:

1. Choose Tools > Generate NLB or click the Generate NLB icon in the left side
bar.

2. Click Browse to find the directory where the NLT file is located. The location
dialog box is shown in Figure 11-28.

Oracle Locale Builder Utility 11-33

Sorting with the Locale Builder

Figure 11-28 Generate NLB File

Please enter the pathname where the nlt files are located:

Directory: |-::‘-rrq,-'nlt Browse..,

oK) CANCEL J

Do not try to specify an NLT file. Oracle Locale Builder generates an NLB file
for each NLT file.

3. Click OK to generate the NLB files.

Using the New NLB Files
The new NLB files do not take effect until you perform the following steps:

1. Copy the NLB files and the Ixlboot.nlb file into the path that is specified by
the ORA_NLS33initialization parameter, typically $ORACLE_
HOME/OCOMMON/nls/admin/data .

2. Restart the database.
Figure 11-29 illustrates the final notification that you have successfully generated
NLB files for all NLT files in the directory.

Figure 11-29 NLB Generation Confirmation

& MLB generation has
completed successiullyl Faor
the changes to take effect,

please copy the newly-
generated nib files and the

updated hoot file ta yaur
ORA&_MLS32 directory.

11-34 Oracle9i Globalization Support Guide

12

Customizing Locale Data

A set of NLS data objects is included with every Oracle distribution set, some of
which is customizable. This chapter illustrates how to customize these data objects.
It contains the following topics:

« Customizing Character Sets
« Customizing Time Zone Data
« Customizing Calendars

« NLS Data Installation Utility

Customizing Locale Data 12-1

Customizing Character Sets

Customizing Character Sets

After a locale definition file is created using the Locale Builder, it must be compiled
into platform-specific binary files that can be dynamically loaded into memory at
runtime. The NLS Data Installation Utility (Ixinst) described in this chapter
allows you to convert and install locale definition text files into binary format, and
merge it into an NLLS data object set.

Character Set Customization Example

This section uses an example to introduce the steps required to create a new
character set. For this example, we will create a new character set based on Oracle's
JA16EUC character set and add a few user-defined characters.

Be aware of the following limitations:

« Input of user-defined characters must still be managed by the system, either
through an input method or a virtual keyboard.

« Display of user-defined characters must still be managed by the system or the
application. In the case of display, a new font specification may be needed.
Many vendors provide support of a font editor. After a new font is created, it
must be installed onto your system and made accessible to application
programs.

See Also: Chapter 11, "Oracle Locale Builder Utility" for more
information about how to customize a character set definition file

Step 1. Back up the NLS binary boot files

Oracle recommends that you backup the NLS installation boot file (IxOboot.nlb)
and the NLS system boot file (Ix1boot.nlb) in the ORA_NLS33directory before
generating and installing NLB files. Enter the following commands:

% cd $ORA_NLS33
% cp xOboot.nlb xObootnlb.orig
% cp Ix1bootnlb Ix1bootnlb.orig

Step 2. Generate and install the NLB files

Now you are ready to generate and install the new NLB files. The NLB files are
platform-dependent, so regenerate them on each platform and also install these files
on both the server and clients.

Use the Ixinst utility or the Locale Builder to create both the binary character
definition files (Ix2 dddd.nlb) and update the NLS boot file (Ix*boot.nlb).

12-2 Oracle9i Globalization Support Guide

Customizing Character Sets

Example 12-1 Ixinst Example

The Ixinst utility uses the existing system boot file. Therefore, copy the existing
binary system boot file into the directory specified by SYSDIR. For this example,
define SYSDIRto be the working directory (/tmp). Enter the following command:

% cp x1bootnlb fmp

The new character set definition file (Ix22710.nlt) and the text boot file
containing the new character set entry (IxOboot.nlt) that was created in Steps 2
and 3 should reside in the directory specified by ORANLSFor this example, specify
it to be /tmp . Also, since we define BASE_CHAR_SETthe base definition file) to be
JA16EUC (Id 830 in hex value 033e), its NLT file (Ix2033e.nlt) or NLB file
(Ix*033e.nlb) should also be in the directory specified by ORANLSso that the
new character set can inherit all definitions from it.Enter one of the following
commands:

% cp Ix2033e.nlt Amp

or
% cp x*033e.nlb Amp

Use the Ixinst utility to generate an NLB file (Ix22710.nlb) for the character set
in the directory specified by the ORANLSand an updated binary boot file
(Ix1boot.nlb) in the directory specified by DESTDIR For this example, define
ORANLSSYSDIR, and DESTDIRall to be /tmp . Enter the following command:

% $ORACLE_HOMEin/ixinst oranis=mp sysdir=tmp destdir=tmp

Install the newly generated binary boot file (Ix1boot.nlb) into the ORA_NLS33
directory:

% cp imp/xibootnlb SORA_NLS33/x1bootnlb

Finally, install the new character set definition file (Ix2*.nlb) into the ORA_NLS33

directory. If there are files with names similar to IxX5*.nlb or Ix6*.nlb , then
install them, too:

% cp mpix22710.nb $ORA_NLS33
% cp mp/Mx52710.nlb $ORA_NLS33
% cp fmp/x62710.nb $ORA_NLS33

Customizing Locale Data 12-3

Customizing Character Sets

Step 3. Repeat for Each Platform

You must repeat Step 2 on each hardware platform because the NLB file is a
platform-specific binary. It must also be repeated for every system that must
recognize the new character set. Therefore, you should compile and install the new
NLB files on both server and client machines.

Step 4. Create the Database Using New Character Set

After installing the NLB files, shut down and restart the database server in order to
initialize NLS data loading.

After bringing the database server back up, create the new database using the
newly created character set.

To use the new character set on the client side, simply exit the client (such as
Enterprise Manager or SQL*Plus) and re-invoke it after installing the NLLB files.

Using User-Defined Character Sets and Java

Creating Character Set Definition Files

If you have any Java products (for example, JDBC or SQLJ) in your applications and
want them to support user-defined characters, you must generate and install a
special Java zip file (gss_custom.zip) into your Oracle Home directory. The
installation steps are as follows:

On UNIX:

$ORACLE_HOME/JREMinjre -classpath SORACLE_HOME/ibigss-1_1.zip-$ORACLE
HOME/jiblgss_charset-1_2.7zip Ginstall <x22710>.nit

On Windows:

%IJREHOMEY6\bin\re.exe classpath %ORACLE._HOME%jiib/gss-1._1.zip%ORACLE.
HOME%jlib/gss_charset-1 2.zip Ginstall <ix22710>.nlt

where %JREHOMEXthe C:\Program Files\Oracle\jre\version_num
directory.

[x22710.nlt is an example of an user-defined character set created using the
Oracle Locale Builder.

The above commands generate a gss_custom.zip file in the current directory. If
you need to add support for more than one user-defined character set, you can

12-4 Oracle9i Globalization Support Guide

Customizing Character Sets

append their definitions to the same gss_custom.zip file by re-issuing the above
command for each of the additional user-defined character sets. For example:

$ORACLE_HOME/JREinjre -classpath SORACLE_HOME/ib/gss-1_1.zip:
$ORACLE _HOME/libigss_charset-1_2.zip Ginstall <x22710>.nit

$ORACLE_HOME/JREinjre -classpath $ORACLE_HOME/lib/gss-1_1.zip:
$ORACLE _HOME/liblgss _charset-1_2.zip Ginstall <x22711>.nit

$ORACLE_HOME/JREMinjre -classpath SORACLE_HOME/jib/gss-1_1.zip:
$ORACLE_HOME/jliblgss_charset-1_2.zip Ginstall <x22712>.nlt

x22710.nlt | Ix22711.nlt and Ix22712.nlt will all be contained in gss_
custom.zip

After gss_custom.zip has been created, store it in the
$ORACLE_HOME/ocommon/nis/admin/data directory. For example:

% cpgss_custom.zip SORACLE_HOME/ocommon/nis/admin/data

Enabling Java and User-Defined Character Sets

There are three Java components where you may want to add the gss_
custom.zip file:

« Java Virtual Machine (for Java in the database)
On UNIX:
Yloadjava -u sys/< passwd> -grant EXECUTE -synonym - -+ v gss_custom.zip

On Windowvs:
loadjava -u sysi< passwd> -grant EXECUTE -synonym - -r v gss_custom.zip
This loads it into the database. Note that <password > needs to be replaced by
the password for SYS
« Apache (for using servlets)
Edit the file jserv.properties as follows:
On UNIX, add the line:
wrapper.classpath = $ORACLE_HOME/ocommon/nis/admin/data/gss_custom.zip

On Windows, add the line:

Customizing Locale Data 12-5

Customizing Time Zone Data

wrapper.classpath = %0ORA_HOMEY\ocommon\nis\admin\data\gss_custom.zip

« Client environment (for JDBC on the client)
On UNIX:
%set CLASSPATH $ORACLE HOME/ocommon/nis/fadmin/data/gss _custom.zip

On Windows:

Add the path %ORACLE_HOME%\ocommon\nis\admin\data\gss_
custom.zip to your existing CLASSPATH

See Also: Chapter 11, "Oracle Locale Builder Utility" for more
information about user-defined character sets

Customizing Time Zone Data

The time zone files contain the valid time zone names. The following information is
included for each zone:

« Offset from UTC (Coordinated Universal Time)
« Transition times for daylight savings
« Abbreviations for standard time and daylight savings time

Abbreviations are only used in conjunction with the zone names. There are 2
timezone files under the Oracle installation directory (ORACLE_HONE

« oracore/zoneinfo/timezone.dat

This is the default. It contains the most commonly used time zones and is
smaller for better database performance.

« oracore/zoneinfo/timezlrg.dat

This file contains the larger set of defined time zones and should be used by
customers who require time zones that are not defined in the default
timezone.dat file. This larger set of time zone information might affect
performance.

To enable the use of the larger time zone data file, you must:
1. Shut down the database.

2. Set the ORA_TZFILE environment variable to the full pathname of the location
for the timezlrg.dat file.

12-6 Oracle9i Globalization Support Guide

Customizing Calendars

3. Restart the database.

After the larger timezirg.da tis used, it must continue to be used unless the user
is sure that none of the non-default zones are used for data that is stored in the
database. Also, all databases that share information must use the same timezone
data file.

To view the timezone names, issue the following query:
SELECT * FROM V$TIMEZONE _NAMES;

Customizing Calendars

A number of calendars besides Gregorian are supported. Although all of them are
defined with data linked directly into NLS, some of them may require the addition
of ruler eras (in the case of imperial calendars) or deviation days (in the case of
lunar calendars) in the future. In order to do this without waiting for a new release,
you can define the additional eras or deviation days in an external file, which is
then automatically loaded when executing the calendar functions.

The calendar data is first defined in a text-format definition file. This file must be
converted into binary format before it can be used. The Calendar Utility described
here allows you to do this.

NLS Calendar Utility

Usage

The Calendar Utility takes as input a text-format definition file. The name of the file
and its location are hard-coded as a platform-dependent value. On UNIX platforms,
the file name is Ixecal.nlb , and its location is SORACLE_HOME/ocommon/nls. A
sample calendar definition file is included in the distribution.

Note: The location of files is platform-dependent. See your
platform-specific Oracle documentation for information about the
location of files on your system.

The Ixegen executable produces as output a binary file containing the calendar
data in the appropriate format. The name of the output file is also hard-coded as a
platform-dependent value. On UNIX, the name is Ixecal.nlb The file will be

Customizing Locale Data 12-7

NLS Data Installation Utility

generated in the same directory as the text-format file, and an already-existing file
will be overwritten.

Once the binary file has been generated, it will automatically be loaded during
system initialization. Do not move or rename the file, as it is expected to be found in
the same hard-coded name and location.

Syntax
The Calendar Utility is invoked directly from the command line:

LXEGEN

There are no parameters.

NLS Data Installation Utility

Syntax

When you order an Oracle distribution set, a default set of NLS data objects is
included. Some NLS data objects are customizable. For example, in Oracle9i, you
can extend Oracle's character set definition files to add user-defined characters.
These NLS definition files must be converted into binary format and merged into
the existing NLLS object set. The NLS Data Installation Utility allows you to do this.

Along with the binary object files, a boot file is generated by the NLS Data
Installation Utility. This boot file is used by the modules to identify and locate all
the NLS objects which it needs to load.

To facilitate boot file distribution and user configuration, three types of boot files are
defined:

Installation Boot File ~ The boot file included as part of the distribution set.

System Boot File The boot file generated by the NLS Data Installation Utility which
loads the NLS objects. If the user already has an installed system
boot file, its contents can be merged with the new system boot file
during object generation.

User Boot File A boot file that contains a subset of the system boot file
information.

The NLS Data Installation Utility is invoked from the command line with the
following syntax:

LXINST [ORANLS=pathname |[SYSDIR= pathname][DESTDIR= pathname | [HELP=[yes | no]

12-8 Oracle9i Globalization Support Guide

NLS Data Installation Utility

Return Codes

Usage

[WARNING=[0|1]2|3]

where

ORANLSpathname

SYSDIR=pathname

DESTDIR=pathname

HELP=[yes | no]

[WARNING=
01112]3]]

Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If not
specified, NLS Installation Utility uses the value in the
environment variable ORA_NLS33 (or the equivalent for your
operating system). If both are specified, the command line
parameter overrides the environment variable. If neither is
specified, the NLS Installation Utility will exit with an error.

Specifies where to find the existing system boot file. If not
specified, the NLS Installation Utility uses the directory specified
in the initialization file parameter ORANLS. If there is no existing
system boot file or the NLS Installation Utility is unable to find
the file, it will create a new file and copy it to the appropriate
directory.

Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory specified
in the initialization file parameter ORANLS. Any system boot file
that exists in this directory will be overwritten, so make a backup
first.

If "yes", a help message describing the syntax for the NLS
Installation Utility will be displayed.

If you specify "0", no warning messages are displayed. If you
specify "1", all messages for level 1 will be displayed. If you
specify "2", all messages for levels 2 and 1 will be displayed. If
you specify "3", all messages for levels 3, 2, and 1 will be
displayed.

You may receive the following return codes upon executing Ixinst:

The generation of the binary boot and object files, and merge of
the installation and system boot files completed successfully.

Installation failed: the NLS Installation Utility will exit with an
error message that describes the problem.

Use Ixinst to install customized character sets by completing the following tasks:

Customizing Locale Data 12-9

NLS Data Installation Utility

« Create a text-format boot file (IxOboot.nlt) containing references to new data
objects.

« Data objects can be generated only if they are referenced in the boot file.
=« You can generate only character set object types.

« Create your new text-format data object files.

See Also: "Data Object File Names" on page 12-11 for naming
conventions

Note: Your distribution set contains a character set definition
demonstration file that you can use as a reference or as a template.
On UNIX-based systems, this file is located in $ORACLE_
HOME/demo/*.nlt

« Invoke Ixinst as described above (using the appropriate parameters) to
generate new binary data object files. These files will be generated in the
directory you specified in ORANLS

— Ixinst also generates both a new installation boot file and system boot
file. If you have a previous NLS installation and want to merge the existing
information with the new in the system boot file, copy the existing system
boot file into the directory you specified in SYSDIR A new system boot file
containing the merged information is generated in the directory specified in
DESTDIR

Note: As always, you should have backups of any existing files
you do not want overwritten.

Object Types
Only character set object types are currently supported for customizing.

Object IDs

NLS data objects are uniquely identified by a numeric object ID. The ID may never
have a zero or negative value.

In general, you can define new objects as long as you specify the object ID within
the range 10000-20000.

12-10 Oracle9i Globalization Support Guide

NLS Data Installation Utility

Object Names
Only a very restricted set of characters can be used in object names:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 - and <space>

Object names must start with an alphabetic character. Language, territory, and
character set names cannot contain an underscore character, but linguistic definition
names can. There is no case distinction in object names, and the maximum size of an
object name is 30 bytes (excluding terminating null).

Data Object File Names

The system-independent object file name is constructed from the generic boot file
entry information:

Ix tdddd

where:

t 1 digit object type (hex)
dddd 4 digit object ID (hex)

The installation boot file name is IXOBOOT; the system boot file name is IX1BOOT;
user boot files are named IxX2BOOT. The file extension for text format files is .nlt
The file extension for binary files is .nlb

Examples:

1x22711.nlt Text-format character set definition, ID=10001
IxOboot.nlt Text-format installation boot file

Ix1boot.nlb Binary system boot file

1x22711.nlb Binary character set definition, ID=10001

Customizing Locale Data 12-11

NLS Data Installation Utility

12-12 Oracle9i Globalization Support Guide

A

Locale Data

This appendix lists the languages, territories, character sets, and other locale data
supported by the Oracle server. It includes these topics:

Languages
Translated Messages
Territories
Character Sets
Linguistic Sorting
Calendar Systems

Obsolete Locale Data

You can also obtain information about supported character sets, languages,
territories, and sorting orders by querying the dynamic data view VSNLS_VALID_
VALUES

See Also: Oracle9i Database Reference for more information about
the data that can be returned by this view

Locale Data A-1

Languages

Languages
Table A-1 lists the languages supported by the Oracle server.

Table A-1 Oracle Supported Languages

Name Abbreviation
AMERICAN us
ARABIC ar
ASSAMESE as
BANGLA bn
BENGALI bn
BRAZILIAN PORTUGUESE ptb
BULGARIAN bg
CANADIAN FRENCH frc
CATALAN ca
CROATIAN hr
CZECH cs
DANISH dk
DUTCH nl
EGYPTIAN eg
ENGLISH gb
ESTONIAN et
FINNISH sf
FRENCH f
GERMAN DIN din
GERMAN d
GREEK el
GUJARATI gu
HEBREW iw
HINDI hi

A-2 Oracle9i Globalization Support Guide

Languages

Table A-1 Oracle Supported Languages (Cont.)

Name Abbreviation
HUNGARIAN hu
ICELANDIC is
INDONESIAN in
ITALIAN i
JAPANESE ja
KANNADA kn
KOREAN ko
LATIN AMERICAN SPANISH esa
LATVIAN v
LITHUANIAN It
MALAY ms
MALAYALAM ml
MARATHI mr
MEXICAN SPANISH esm
NORWEGIAN n
ORIYA or
POLISH pl
PORTUGUESE pt
PUNJABI pa
ROMANIAN ro
RUSSIAN ru
SIMPLIFIED CHINESE zhs
SLOVAK sk

SLOVENIAN
SPANISH
SWEDISH
TAMIL

sl

ta

Locale Data

A-3

Translated Messages

Table A-1 Oracle Supported Languages (Cont.)

Name Abbreviation
TELUGU te

THAI th
TRADITIONAL CHINESE zht
TURKISH tr
UKRAINIAN uk
VIETNAMESE vn

Translated Messages

Oracle error messages have been translated into the languages which are listed in

Table A-2.

Table A-2 Oracle Supported Messages

Name Abbreviation
ARABIC ar
BRAZILIAN PORTUGUESE ptb
CATALAN ca
CZECH cs
DANISH dk
DUTCH nl
FINNISH sf
FRENCH f
GERMAN d
GREEK el
HEBREW iw
HUNGARIAN hu
ITALIAN i
JAPANESE ja
KOREAN ko

A-4 Oracle9i Globalization Support Guide

Territories

Territories

Table A-2 Oracle Supported Messages (Cont.)

Name Abbreviation
LATIN AMERICAN SPANISH esa
NORWEGIAN n
POLISH pl
PORTUGUESE pt
ROMANIAN ro
RUSSIAN ru
SIMPLIFIED CHINESE zhs
SLOVAK sk
SPANISH e
SWEDISH S
TRADITIONAL CHINESE zht

TURKISH

tr

Table A-3 lists the territories supported by the Oracle server.

Table A-3 Oracle Supported Territories

Name

ALGERIA HONG KONG PERU
AMERICA HUNGARY POLAND
AUSTRALIA ICELAND PORTUGAL
AUSTRIA INDIA PUERTO RICO
BAHRAIN INDONESIA QATAR
BANGLADESH IRAQ ROMANIA
BELGIUM IRELAND SAUDI ARABIA
BRAZIL ISRAEL SINGAPORE
BULGARIA ITALY SLOVAKIA
CANADA JAPAN SLOVENIA

Locale Data A-5

Character Sets

Table A-3 Oracle

Supported Territories (Cont.)

Name

CATALONIA JORDAN SOMALIA

CHILE KAZAKHSTAN SOUTH AFRICA

CHINA KOREA SPAIN

CIS KUWAIT SUDAN

COLOMBIA LATVIA SWEDEN

COSTARICA LEBANON SWITZERLAND

CROATIA LIBYA SYRIA

CYPRUS LITHUANIA TAIWAN

CZECH REPUBLIC LUXEMBOURG THAILAND

DENMARK MACEDONIA THE NETHERLANDS

DJIBOUTI MALAYSIA TUNISIA

EGYPT MAURITANIA TURKEY

EL SALVADOR MEXICO UKRAINE

ESTONIA MOROCCO UNITED ARAB EMIRATES

FINLAND NEW ZEALAND UNITED KINGDOM

FRANCE NICARAGUA UZBEKISTAN

GUATEMALA NORWAY VENEZUELA

GERMANY OMAN VIETNAM

GREECE PANAMA YEMEN
YUGOSLAVIA

Character Sets

A-6 Oracle9i Glob

Oracle-supported character sets are listed below, for easy reference, according to
three broad language groups. In addition, common subset/superset combinations
are listed.

« Asian Language Character Sets
« European Language Character Sets

« Middle Eastern Language Character Sets

alization Support Guide

Character Sets

Note that some character sets may be listed under multiple language groups
because they provide multilingual support. For instance, Unicode spans the Asian,
European, and Middle Eastern language groups because it supports most of the
major scripts of the world.

The comment section indicates the type of encoding used:
SB = Single-byte encoding
MB = Multibyte encoding
FIXED = Fixed-width multi-byte encoding

As mentioned in Chapter 3, "Setting Up a Globalization Support Environment”, the
type of encoding affects performance, so use the most efficient encoding that meets
your language needs. Also, some encoding types can only be used with certain data
types. For instance, the AL16UTF16 character set can only be used as an NCHAR
character set, and not as a database character set.

Also documented in the comment section are other unique features of the character
set that may be important to users or your database administrator. For instance,
whether the character set supports the new Euro currency symbol, whether
user-defined characters are supported for character set customization, and whether
the character set is a strict superset of ASCII (which will allow you to make use of
the ALTER DATABASE [NATIONAL] CHARACTER SEfatement in case of
migration.)

EURO = Euro symbol supported
UDC = User-defined characters supported
ASCII = Strict superset of ASCII

Oracle does not document individual code page layouts. For specific details about a
particular character set, its character repertoire, and code point values, you should
refer to the actual national, international, or vendor-specific standards.

Locale Data A-7

Character Sets

Asian Language Character Sets

Table A—4 Asian Language Character Sets

Table A—4 lists the Oracle character sets that can support Asian languages.

Name Description Comments
BN8BSCII Bangladesh National Code 8-bit BSCII SB, ASCII
ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII
ZHT16HKSCS MS Windows Code Page 950 with Hong Kong MB, ASCII, EURO

Supplementary Character Set
ZHS16CGB231280 CGB2312-80 16-bit Simplified Chinese MB, ASCII
ZHS32GB18030 GB18030-2000 MB, ASCII, EURO
JA16EUC EUC 24-bit Japanese MB, ASCII
JA16EUCYEN EUC 24-bit Japanese with "\' mapped to the Japanese yen MB

character
ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII
ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII, UDC
ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII
JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC
JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC
KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC
ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC
ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC
KO16KSC5601 KSC5601 16-bit Korean MB, ASCII
KO16KSCCS KSCCS 16-bit Korean MB, ASCII
JA16VMS JVMS 16-bit Japanese MB, ASCII
ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB
JAL6MACSIIS Mac client Shift-JIS 16-bit Japanese MB
TH8MACTHAI Mac Client 8-bit Latin/Thai SB
TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII
TH8TISEBCDICS Thai Industrial Standard 620-2533-EBCDIC Server 8-bit SB

A-8 Oracle9i Globalization Support Guide

Character Sets

Table A-4 Asian Language Character Sets (Cont.)

Name

Description

Comments

ZHT16MSWIN950
KO16MSWIN949
VN8MSWIN1258
INSBISCII

JA16SJIS
JAL16SIJISYEN

ZHT3250PS
ZHT16DBT
TH8TISASCII
TH8TISEBCDIC
ZHT32TRIS
AL16UTF16
AL32UTF8
UTF8

UTFE

VNB8VN3

MS Windows Code Page 950 Traditional Chinese
MS Windows Code Page 949 Korean
MS Windows Code Page 1258 8-bit Vietnamese

Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

Shift-JIS 16-bit Japanese

Shift-JIS 16-bit Japanese with "\' mapped to the Japanese yen
character

SOPS 32-bit Traditional Chinese

Taiwan Taxation 16-bit Traditional Chinese

Thai Industrial Standard 620-2533 - ASCII 8-bit

Thai Industrial Standard 620-2533 - EBCDIC 8-bit
TRIS 32-bit Traditional Chinese

See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details

VN3 8-bit Vietnamese

MB, ASCII, UDC
MB, ASCII, UDC
SB, ASCII, EURO
SB, ASCII

MB, ASCII, UDC
MB, UDC

MB, ASCII

MB, ASCII

SB, ASCII, EURO
SB

MB, ASCII

MB, EURO, FIXED
MB, ASCII, EURO
MB, ASCII, EURO
MB, EURO

SB, ASCII

European Language Character Sets

Table A-5 European Language Character Sets

Table A-5 lists the Oracle character sets that can support European languages.

Name Description Comments
US7ASCII ASCII 7-bit American SB, ASCII
SF7ASCII ASCII 7-bit Finnish SB
YUGT7ASCII ASCII 7-bit Yugoslavian SB
RUBBESTA BESTA 8-bit Latin/Cyrillic SB, ASCII
EL8GCOS7 Bull EBCDIC GCOS?7 8-bit Greek SB

Locale Data A-9

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
WEBGCOS7 Bull EBCDIC GCOS?7 8-bit West European SB
EL8DEC DEC 8-bit Latin/Greek SB
TR7DEC DEC VT100 7-bit Turkish SB
TR8DEC DEC 8-bit Turkish SB, ASCII
TRBEBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB
TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB
TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII
TR8MACTURKISH MAC Client 8-bit Turkish SB
TR8MACTURKISHS MAC Server 8-bit Turkish SB, ASCII

TR8MSWIN1254
WEB8BS2000L5
WESDEC
D7DEC

F7DEC

S7DEC

E7DEC
NDK7DEC
I7DEC

NL7DEC
CH7DEC
SF7DEC
WES8DG
WESEBCDIC37C
WESEBCDIC37
D8EBCDIC273
DK8EBCDIC277
S8EBCDIC278

MS Windows Code Page 1254 8-bit Turkish

Siemens EBCDIC.DF.L5 8-bit West European/Turkish

DEC 8-bit West European

DEC VT100 7-bit German

DEC VT100 7-bit French

DEC VT100 7-bit Swedish

DEC VT100 7-bit Spanish

DEC VT100 7-bit Norwegian/Danish

DEC VT100 7-bit Italian

DEC VT100 7-bit Dutch

DEC VT100 7-bit Swiss (German/French)
DEC VT100 7-bit Finnish

DG 8-bit West European

EBCDIC Code Page 37 8-bit Oracle/c
EBCDIC Code Page 37 8-bit West European
EBCDIC Code Page 27371 8-bit Austrian German
EBCDIC Code Page 277/1 8-bit Danish
EBCDIC Code Page 278/1 8-bit Swedish

A-10 Oracle9i Globalization Support Guide

SB, ASCII, EURO
SB

SB, ASCII
SB

SB

SB

SB

SB

SB

SB

SB

SB

SB, ASCII
SB

SB

SB

SB

SB

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
IBEBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB
WESEBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB
WESEBCDIC285 EBCDIC Code Page 285 8-bit West European SB
WESEBCDIC924 Latin 9 EBCDIC 924 SB, EBCDIC
WESEBCDIC1047 EBCDIC Code Page 1047 8-bit West European SB

WESEBCDIC1047E
WESEBCDIC1140
WESEBCDIC1140C
WESEBCDIC1145
WESEBCDIC1146
WESEBCDIC1148
WESEBCDIC1148C
FS8EBCDIC297
WESEBCDIC500C
WESEBCDIC500
EES8EBCDICS870
EESEBCDIC870C
EESEBCDIC870S
WESEBCDIC871
EL8EBCDIC875
EL8S8EBCDICS875R
CL8EBCDIC1025
CL8EBCDIC1025C
CL8EBCDIC1025R
CL8EBCDIC1025S
CL8EBCDIC1025X
BLTS8EBCDIC1112

Latin 1/0pen Systems 1047

EBCDIC Code Page 1140 8-bit West European
EBCDIC Code Page 1140 Client 8-bit West European
EBCDIC Code Page 1145 8-bit West European
EBCDIC Code Page 1146 8-bit West European
EBCDIC Code Page 1148 8-bit West European
EBCDIC Code Page 1148 Client 8-bit West European
EBCDIC Code Page 297 8-bit French

EBCDIC Code Page 500 8-bit Oracle/c

EBCDIC Code Page 500 8-bit West European
EBCDIC Code Page 870 8-bit East European
EBCDIC Code Page 870 Client 8-bit East European
EBCDIC Code Page 870 Server 8-bit East European
EBCDIC Code Page 871 8-bit Icelandic

EBCDIC Code Page 875 8-bit Greek

EBCDIC Code Page 875 Server 8-bit Greek
EBCDIC Code Page 1025 8-bit Cyrillic

EBCDIC Code Page 1025 Client 8-bit Cyrillic
EBCDIC Code Page 1025 Server 8-bit Cyrillic
EBCDIC Code Page 1025 Server 8-bit Cyrillic
EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic
EBCDIC Code Page 1112 8-bit Baltic Multilingual

SB, EBCDIC, EURO
SB, EURO
SB, EURO
SB, EURO
SB, EURO
SB, EURO
SB, EURO

SB
SB
SB
SB
SB
SB
SB
SB
SB
SB
SB
SB
SB
SB
SB

Locale Data A-11

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
BLTS8EBCDIC1112S EBCDIC Code Page 1112 8-hit Server Baltic Multilingual SB
D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO
DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO
S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO
ISEBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO
FBEBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO
EEC8EUROASCI EEC Targon 35 ASCI West European/Greek SB
EECBEUROPA3 EEC EUROPAS 8-bit West European/Greek SB
LA8BPASSPORT German Government Printer 8-bit All-European Latin SB, ASCII
WESHP HP LaserJet 8-bit West European SB
WESROMANS HP Roman8 8-bit West European SB, ASCII
HUBCWI2 Hungarian 8-bit CWI-2 SB, ASCII
HUSABMOD Hungarian 8-bit Special AB Mod SB, ASCII
LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII
US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII
BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII
EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII
EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB
LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII
LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII
BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII
WESPC850 IBM-PC Code Page 850 8-bit West European SB, ASCII
EL8PCS851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII
EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII
RUBPCB855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII
WESPC858 IBM-PC Code Page 858 8-bit West European SB, ASCII, EURO
WESPC860 IBM-PC Code Page 860 8-bit West European SB. ASCII

A-12 Oracle9i Globalization Support Guide

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
1IS8PC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII
CDNB8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII
N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB. ASCII
RU8BPC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII
EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII
LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII
US8ICL ICL EBCDIC 8-bit American SB
WESICL ICL EBCDIC 8-bit West European SB
WESISOICLUK ICL special version 1SO8859-1 SB
WES8ISO8859P1 1SO 8859-1 West European SB, ASCII
EE81SO8859P2 1SO 8859-2 East European SB, ASCII
SE81SO8859P3 1SO 8859-3 South European SB, ASCII
NEE8ISO8859P4 1SO 8859-4 North and North-East European SB, ASCII
CL81SO8859P5 I1SO 8859-5 Latin/Cyrillic SB, ASCII
AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII
EL8ISO8859P7 ISO 8859-7 Latin/Greek SB, ASCII, EURO
IW8ISO8859P8 1SO 8859-8 Latin/Hebrew SB, ASCII
NE8ISO8859P10 1SO 8859-10 North European SB, ASCII
BLT81SO8859P13 1SO 8859-13 Baltic SB, ASCII
CEL8I1S08859P14 I1SO 8859-13 Celtic SB, ASCII
WE8ISO8859P15 ISO 8859-15 West European SB, ASCII, EURO
LA8ISO6937 1SO 6937 8-bit Coded Character Set for Text Communication SB, ASCI|
IW71S960 Israeli Standard 960 7-bit Latin/Hebrew SB
ARSARABICMAC Mac Client 8-bit Latin/Arabic SB
EESMACCE Mac Client 8-bit Central European SB
EEBMACCROATIAN Mac Client 8-bit Croatian SB
WESMACROMANS Mac Client 8-bit Extended Roman8 West European SB

Locale Data A-13

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
EL8BMACGREEK Mac Client 8-bit Greek SB

ISSMACICELANDIC Mac Client 8-bit Icelandic SB

CLS8MACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB

ARBARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII
EESBMACCES Mac Server 8-bit Central European SB, ASCII
EESBMACCROATIANS Mac Server 8-bit Croatian SB, ASCII
WESMACROMANSS Mac Server 8-bit Extended Roman8 West European SB, ASCII
CL8BMACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII
ELS8MACGREEKS Mac Server 8-bit Greek SB, ASCII
ISSMACICELANDICS Mac Server 8-bit Icelandic SB

BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII
LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII
ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

EESBMSWIN1250
CL8MSWIN1251
WEBMSWIN1252
EL8MSWIN1253
BLT8MSWIN1257
BLT8CP921
LV8PCS8LR
WESBNCR4970
WESNEXTSTEP
CL8ISOIR111
CL8KOI8R
CL8KOI8U
US8BS2000
DK8BS2000

MS Windows Code Page 1250 8-bit East European

MS Windows Code Page 1251 8-bit Latin/Cyrillic

MS Windows Code Page 1252 8-bit West European

MS Windows Code Page 1253 8-bit Latin/Greek

MS Windows Code Page 1257 8-bit Baltic

Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic
Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic
NCR 4970 8-bit West European

NeXTSTEP PostScript 8-bit West European

ISOIR111 Cyrillic

RELCOM Internet Standard 8-bit Latin/Cyrillic

KOI8 Ukrainian Cyrillic

Siemens 9750-62 EBCDIC 8-bit American

Siemens 9750-62 EBCDIC 8-bit Danish

A-14 Oracle9i Globalization Support Guide

SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII

SB, ASCII

SB, ASCII

SB, ASCII

SB

SB, ASCII

SB

SB

SB

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
F8BS2000 Siemens 9750-62 EBCDIC 8-bit French SB

D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB
DK7SIEMENS9780X Siemens 97801/97808 7-bit Danish SB
F7SIEMENS9780X Siemens 97801/97808 7-bit French SB
D7SIEMENS9780X Siemens 97801797808 7-bit German SB
I7SIEMENS9780X Siemens 97801797808 7-bit Italian SB
N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB
E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB
S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

EE8BS2000 Siemens EBCDIC.DF.04 8-bit East European SB

WES8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

WE8BS2000E Siemens EBCDIC.DF.04 8-bit West European SB, EURO
CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

AL16UTF16 See "Universal Character Sets" on page A-18 for details MB, EURO, FIXED
AL32UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO
UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO
UTFE See "Universal Character Sets" on page A-18 for details MB, EURO

Middle Eastern Language Character Sets

Table A-6 lists the Oracle character sets that can support Middle Eastern languages.

Locale Data A-15

Character Sets

Table A—-6 Middle Eastern Character Sets

Name Description Comments
ARBAPTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII
ARBAPTECT715T APTEC 715 8-bit Latin/Arabic SB
ARBASMO708PLUS ASMO 708 Plus 8-bit Latin/Arabic SB, ASCII
ARBASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII
ARSADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII
ARBADOS710T Arabic MS-DOS 710 8-bit Latin/Arabic SB
ARBADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII
ARBADOS720T Arabic MS-DOS 720 8-bit Latin/Arabic SB
TR7DEC DEC VT100 7-bit Turkish SB
TR8DEC DEC 8-bit Turkish SB
WESEBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB
IWBEBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB
IWBEBCDIC424S EBCDIC Code Page 424 Server 8-bit Latin/Hebrew SB
WESBEBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB
IWBEBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB
AR8EBCDIC420S EBCDIC Code Page 420 Server 8-bit Latin/Arabic SB
ARBEBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB
TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB
TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB
ARBHPARABICST HP 8-bit Latin/Arabic SB
TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII
IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII
ARB8ISO8859P6 I1SO 8859-6 Latin/Arabic SB, ASCII
IW8ISO8859P8 I1SO 8859-8 Latin/Hebrew SB, ASCII
WE8ISO8859P9 1SO 8859-9 West European & Turkish SB, ASCII
LA8ISO6937 1SO 6937 8-bit Coded Character Set for Text Communication SB, ASCI|
IW71S960 Israeli Standard 960 7-bit Latin/Hebrew SB

A-16 Oracle9i Globalization Support Guide

Character Sets

Table A-6 Middle Eastern Character Sets (Cont.)

Name Description Comments
IWBMACHEBREW Mac Client 8-bit Hebrew SB
ARBARABICMAC Mac Client 8-bit Latin/Arabic SB
ARBARABICMACT Mac 8-bit Latin/Arabic SB
TR8MACTURKISH Mac Client 8-bit Turkish SB
IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII
ARBARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII
TRBMACTURKISHS Mac Server 8-bit Turkish SB, ASCII

TR8MSWIN1254
IW8MSWIN1255
AR8BMSWIN1256
INSISCII

AR8BMUSSAD768
ARBMUSSAD768T
ARSNAFITHAT711
ARSNAFITHAT711T
ARBNAFITHAT721
ARSNAFITHAT721T
ARBSAKHR706
ARBSAKHR707
ARBSAKHR707T
ARBXBASIC
WEB8BS2000L5
AL16UTF16
AL32UTF8

UTF8

UTFE

MS Windows Code Page 1254 8-bit Turkish
MS Windows Code Page 1255 8-bit Latin/Hebrew
MS Windows Code Page 1256 8-Bit Latin/Arabic

Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic
Mussa'd Alarabi/2 768 8-bit Latin/Arabic

Nafitha Enhanced 711 Server 8-bit Latin/Arabic
Nafitha Enhanced 711 8-bit Latin/Arabic

Nafitha International 721 Server 8-bit Latin/Arabic
Nafitha International 721 8-bit Latin/Arabic

SAKHR 706 Server 8-bit Latin/Arabic

SAKHR 707 Server 8-bit Latin/Arabic

SAKHR 707 8-bit Latin/Arabic

XBASIC 8-bit Latin/Arabic

Siemens EBCDIC.DF.04.L5 8-bit West European/Turkish
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details

See "Universal Character Sets" on page A-18 for details

SB, ASCII, EURO
SB, ASCII, EURO
SB. ASCII, EURO
SB

SB, ASCII

SB

SB, ASCII

SB

SB, ASCII

SB

SB, ASCII

SB, ASCII

SB

SB

SB

MB, EURO, FIXED
MB, ASCII, EURO
MB, ASCII, EURO
MB, EURO

Locale Data A-17

Character Sets

Universal Character Sets

Table A-7 lists the Oracle character sets that provide universal language support,
that is, they attempt to support all languages of the world, including, but not
limited to, Asian, European, and Middle Eastern languages.

Table A—7 Universal Character Sets

Name Description Comments
AL16UTF16 Unicode 3.0 UTF-16 Universal character set MB, EURO, FIXED
AL32UTF8 Unicode 3.0 UTF-8 Universal character set MB, ASCII, EURO
UTF8 Unicode 3.0 UTF-8 Universal character set MB, ASCII, EURO
UTFE EBCDIC form of Unicode 3.0 UTF-8 Universal character set MB, EURO

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode"

Character Set Conversion Support

The following character set encodings are supported for conversion only, so they
cannot be used as the database or national character set:

« ALI6UTFI16LE
« 1S02022-CN

« 1502022-JP

« 1S02022-KR

« HZ-GB-2312

You can use these character sets as the source_char_set or dest_char_set in
the CONVERTunction.

A-18 Oracle9i Globalization Support Guide

Character Sets

See Also:

« Oracle9i SQL Reference for more information about the CONVERT
function

« "CONVERT Function" on page 7-5

Subsets and Supersets
Table A-8 lists common subset/superset relationships.

Table A-8 Subset-Superset Pairs

Subset Superset
ARSADOS710 ARSADOS710T
ARBSADOS720 ARSADOS720T
ARSADOS720T ARSADOS720
ARSAPTEC715 ARSAPTECT715T

ARSARABICMACT
AR8ISO8859P6
ARB8ISO8859P6
AR8BMUSSAD768
ARBMUSSAD768T
ARSNAFITHA711
ARSNAFITHA721
AR8SAKHR707
AR8SAKHR707T
BLT8CP921
D7DEC
D7SIEMENS9780X
DK7SIEMENS9780X
I7DEC
I7SIEMENS9780X
IWBEBCDIC424
KO16KSC5601

ARSARABICMAC
ARBASMO708PLUS
ARBASMO8X

AR8SMUSSAD768T

ARBMUSSAD768
ARSNAFITHA711T
ARSNAFITHA721T

AR8SAKHR707T
AR8SAKHR707
BLT81SO8859P13
D7SIEMENS9780X
D7DEC
N7SIEMENS9780X
I7SIEMENS9780X
IWBEBCDIC424
IWBEBCDIC1086
KO16MSWIN949

Locale Data A-19

Character Sets

Table A-8 Subset-Superset Pairs (Cont.)

Subset Superset

LV8PCSLR LV8RST104090

N7SIEMENS9780X DK7SIEMENS9780X

US7ASCII See Table 10-5
for a complete
list
WE16DECTST WE16DECTST2
WE16DECTST2 WE16DECTST
WESDEC TR8DEC
WES8DEC WES8SNCR4970

WEBSISO8859P1 WE8SMSWIN1252

WESNCR4970 TR8DEC
WESNCR4970 WESDEC
WES8PC850 WES8PC858

US7ASCII is a special case because so many other character sets are supersets of it.
Table A-9 lists supersets for US7ASCII.

Table A-9 US7ASCII Supersets

Supersets Supersets Supersets
AL24UTFFSS EE8BMACCES NEES8ISO8859P4
AL32UTF8 EESMACCROATIANS RUBBESTA
ARBADOS710 EES8MSWIN1250 RUBPC855
AR8SADOS710T EE8PC852 RUBPC866
ARBADOS720 EL8SDEC SE8ISO8859P3
ARBADOS720T EL8ISO8859P7 TH8MACTHAIS
ARBAPTEC715 EL8BMACGREEKS TH8TISASCII
ARBAPTECT715T EL8MSWIN1253 TR8DEC
ARBARABICMACS EL8PC437S TRBMACTURKISHS
ARBASMO708PLUS EL8PC851 TR8MSWIN1254
ARBASMO8X EL8PC869 TR8PC857
ARBHPARABIC8T ET8MSWIN923 US8PC437

A-20 Oracle9i Globalization Support Guide

Character Sets

Table A-9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
AR8ISO8859P6 HUBABMOD UTF8
ARBMSAWIN HUBCWI2 VNB8MSWIN1258
ARBMUSSAD768 IN8ISCII VN8VN3
AR8B8MUSSAD768T IS8PC861 WES8DEC
ARBNAFITHA711 IW8ISO8859P8 WES8DG
ARSNAFITHA711T IWSMACHEBREWS WES8ISO8859P1
ARSNAFITHA721 IWBMSWIN1255 WEB8ISO8859P15
ARSNAFITHA721T IW8PC1507 WES8ISO8859P9
AR8BSAKHR706 JA16EUC WESMACROMANSS
AR8SAKHR707 JA16SJIS WE8SMSWIN1252
AR8SAKHR707T JA16TSTSET WESBNCR4970
BG8MSWIN JA16TSTSET2 WESNEXTSTEP
BG8PC437S JAL6VMS WES8PC850
BLT8CP921 KO16KSC5601 WE8PC858
BLT8ISO8859P13 KO16KSCCS WES8PC860
BLT8MSWIN1257 KO16MSWIN949 WE8ROMANS
BLT8PC775 KO16TSTSET ZHS16CGB231280
BN8BSCII LA8ISO6937 ZHS16GBK
CDN8PC863 LABPASSPORT ZHT16BIGS
CEL8IS0O8859P14 LT8MSWIN921 ZHT16CCDC
CL8ISO8859P5 LT8PC772 ZHT16DBT
CL8KOI8R LT8PC774 ZHT16HKSCS
CL8KOI8U LV8PC1117 ZHT16MSWIN950
CL8ISOIR111 LV8PCS8LR ZHT32EUC
CL8MACCYRILLICS LVBRST104090 ZHT32SOPS
CL8MSWIN1251 N8PC865 ZHT32TRIS

EE8IS0O8859P2

NE8ISO8859P10

Locale Data A-21

Linguistic Sorting

Linguistic Sorting

Oracle offers two kinds of linguistic sorts, monolingual and multilingual. In
addition, monolingual sorts can be extended to handle special cases. These special
cases (represented with a prefix X) typically mean that the characters will be sorted
differently from their ASCII values. For example, ch and Il are treated as only one
character in XSPANISH. In other words, the SPANISH sort is uses modern collation
rules while XSPANISH uses traditional sorting rules.

Table A-10 lists the monolingual linguistic sorts supported by the Oracle server.

Table A-10 Monolingual Linguistic Sorts

Basic Name Extended Name Special Cases
ARABIC --

ARABIC_MATCH --

ARABIC_ABJ_SORT --

ARABIC_ABJ MATCH -

ASCII7 --

BENGALI --

BIG5

BINARY

BULGARIAN --
CANADIAN FRENCH -

CATALAN XCATALAN @®, AE, R

CROATIAN XCROATIAN D,L,N,d, I,nR

CZECH XCZECH ch, CH, Ch, R

CZECH_PUNCTUTION XCZECH_ ch, CH, Ch, R
PUNCTUATION

DANISH XDANISH ARA A&

DUTCH XDUTCH ij, 1J

EBCDIC

EEC_EURO -

EEC_EUROPA3 --

A-22 Oracle9i Globalization Support Guide

Linguistic Sorting

Table A-10 Monolingual Linguistic Sorts (Cont.)

Basic Name

Extended Name

Special Cases

ESTONIAN
FINNISH
FRENCH
GERMAN
GERMAN_DIN
GBK

GREEK
HEBREW
HKSCS
HUNGARIAN

ICELANDIC
INDONESIAN
ITALIAN
JAPANESE
LATIN
LATVIAN
LITHUANIAN
MALAY
NORWEGIAN
POLISH
PUNCTUATION
ROMANIAN
RUSSIAN
SLOVAK
SLOVENIAN
SPANISH

XFRENCH
XGERMAN
XGERMAN_DIN

XPUNCTUATION

XSLOVAK
XSLOVENIAN
XSPANISH

R
B,&06,uAO0U

cs, gy, ny, sz, ty, zs, B, CS, Cs, GY,
Gy, NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

dz, DZ, Dz, B (caron)
3
ch,Il, CH, Ch, LL, LI

Locale Data A-23

Linguistic Sorting

Table A-10 Monolingual Linguistic Sorts (Cont.)

Basic Name Extended Name Special Cases
SWEDISH -
SWISS XSWISS R

THAI_DICTIONARY -
THAI_TELEPHONE -

TURKISH XTURKISH &, AE,
UKRAINIAN --

UNICODE_BINARY

VIETNAMESE -

WEST_EUROPEAN XWEST_EUROPEAN f3

A-24 Oracle9i Globalization Support Guide

Linguistic Sorting

Table A-11 lists the multilingual linguistic sorts available in Oracle. All of them
include GENERIC_Man ISO standard for sorting Latin-based characters) as a base.
Multilingual linguistic sorts are for the collation of a given primary language
together with Latin-based characters. For example, KOREAN_M will sort Korean
and Latin-based characters, but it will not collate Chinese, Thai, or Japanese

characters.

Table A-11 Multilingual Linguistic Sorts

Basic Name Explanation

CANADIAN_M Canadian French sort supports reverse secondary, special
expanding characters

DANISH_M Danish sort supports sorting lower case characters before
upper case characters

FRENCH_M French sort supports reverse sort for secondary

GENERIC_M Generic sorting order which is based on 1SO14651 and
Unicode canonical equivalence rules but excluding
compatible equivalence rules

JAPANESE_M Japanese sort supports SJIS character set order and EUC
characters which are not included in SJIS

KOREAN_M Korean sort: Hangul characters are based on Unicode binary
order. Hanja characters based on pronunciation order. All
Hangul characters are before Hanja characters

SPANISH_M Traditional Spanish sort supports special contracting
characters

THAIL_M Thai sort supports swap characters for some vowels and

SCHINESE_RADICAL_M

SCHINESE_STROKE_M

SCHINESE_PINYIN_M
TCHINESE_RADICAL_M

TCHINESE_STROKE_M

consonants

Simplified Chinese sort based on radical as primary order
and number of strokes order as secondary order

Simplified Chinese sort uses number of strokes as primary
order and radical as secondary order

Simplified Chinese PinYin sorting order

Traditional Chinese sort based on radical as primary order
and number of strokes order as secondary order

Traditional Chinese sort uses number of strokes as primary
order and radical as secondary order

Locale Data A-25

Calendar Systems

Calendar Systems

By default, most territory definitions use the Gregorian calendar system. Table A-12

lists the other calendar systems supported by the Oracle server.

Table A-12 NLS Supported Calendars

Name

Default Format

Character Set Used
For Default Format

Japanese Imperial
ROC Official

Thai Buddha
Persian

Arabic Hijrah
English Hijrah

EEYYMMDD
EEyymmdd

dd month EE yyyy
DD Month YYYY
DD Month YYYY
DD Month YYYY

JAL16EUC
ZHT32EUC
TH8TISASCII
ARBASMO8X
ARB8ISO8859P6
ARB8ISO8859P6

A-26 Oracle9i Globalization Support Guide

Figure A-1 shows how March 20, 1998 appears in ROC Official:

Calendar Systems

Figure A-1 ROC Official Example

Figure A-2 shows how March 27, 1998 appears in Japanese Imperial:

Locale Data A-27

Obsolete Locale Data

Figure A-2 Japanese Imperial Example

Obsolete Locale Data

Before Oracle server release 7.2, when a character set was renamed, the old name
was usually supported along with the new name for several releases after the
change. Beginning with release 7.2, the old names are no longer supported.

Table A-13 lists the affected character sets. If you reference any of these character
sets in your code, replace them with their new name:

Table A-13 New Names for Obsolete NLS Data Character Sets

Old Name New Name
AL24UTFSS UTF8, AL32UTF8
ARSBMSAWIN ARBMSWIN1256

A-28 Oracle9i Globalization Support Guide

Obsolete Locale Data

Table A-13 New Names for Obsolete NLS Data Character Sets (Cont.)

Old Name

New Name

CL8EBCDIC875S
EL8EBCDIC875S
JVMS

JEUC

SIS

JDBCS

KSC5601

KDBCS
CGB2312-80
CNS 11643-86
JA16EUCFIXED

ZHS32EUCFIXED

ZHS16GBKFIXED

JA16DBCSFIXED

KO16DBCSFIXED

ZHS16DBCSFIXED

ZHS16CGB231280

FIXED

ZHT16DBCSFIXED

KO16KSC5601FIXED

JAL16SJISFIXED

ZHT16BIG5FIXED

CL8EBCDIC875R
EL8EBCDICS875R
JAL6VMS
JA16EUC
JA16SJIS
JA16DBCS
KO16KSC5601
KO16DBCS
ZHS16CGB231280
ZHT32EUC

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

Locale Data A-29

Obsolete Locale Data

Table A-13 New Names for Obsolete NLS Data Character Sets (Cont.)

Old Name New Name
ZHT32TRISFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

Character set CLBMSWINDOWa31 has been desupported. The newer character set
CL8MSWIN1251 is actually a duplicate of CLBMSWINDOWS31 and includes some
characters omitted from the earlier version. Change any usage of
CL8MSWINDOWS31 to CL8MSWIN1251 instead.

AL24UTFFSS Character Set Desupport

The Unicode Character Set AL24UTFFSS has been desupported in Oracle9i.
AL24UTFFSS was introduced with Oracle7 as the Unicode character set supporting
UTF-8 encoding scheme based on the Unicode standard 1.1, which is now obsolete.
In Oracle9i, Oracle now offers the Unicode database character set AL32UTF8 and
UTF8, which includes the Unicode enhancements based on the Unicode standard
3.0.

The migration path for an existing AL24UTFFSS database is to upgrade to UTF8
prior to upgrading to Oracle9i. As with all migrations to a new database character
set, Oracle Corporation recommends that you use the Character Set Scanner for
data analysis before attempting to migrate your existing database character set to
UTF8.

See Also: Chapter 10, "Character Set Scanner Utility"

A-30 Oracle9i Globalization Support Guide

B

Unicode Character Code Assignments

This appendix offers an introduction to how Unicode assigns characters. This
appendix contains:

Unicode Character Code Assignments

Unicode Character Code Assignments B-1

Unicode Character Code Assignments

Unicode Character Code Assignments

Table B-1 contains Unicode details.

Table B-1 Unicode Character Code Assignments

UTF-16 Character

Characters Codes UTF-8 Character Codes
First Second
16-hits 16-hits First Byte $econd Byte Third Byte Fourth Byte
IASCII 000-007F 00-7F
European (except 0080-07FF C2-DF 80-BF
IASCII), Arabic,
Hebrew, etc.
Indic, Thai, certain 0800-0FFF EO AO0-BF 80-BF
symbols (for example,
euro), Chinese, 1000 - E1-EC 80-BF 80-BF
Vapanese, Korean, etc. CFFF
D000 - ED 80-9F 80-0BF
D7FF
F900-FFFF EF A4-BF 80-BF
Private Use Area #1 EQ00 - EE 80-BF 80-BF
EFFF
F0O00 - EF 80-A3 80-BF
F8FF
IAdditional D800 - DCO00 - FO 90-BF 80-BF 80-BF
Chinese/Japanese/Ko D8BF DFFF
rean characters,
historic characters, D8CO - DCO00 - F1-F2 80-BF 80-BF 80-BF
musical and DABF DFFF
mathematical DACO- | DCOO- F3 80-AF 80-BF 80-BF
symbols, etc. DB7F DEEF
Private Use Area #2 DB80 - DCO00 - F3 BO-BF 80-BF 80-BF
DBBF DFFF
DBCO - DCO00 - F4 80-8F 80-BF 80-BF
DBFF DFFF

B-2 Oracle9i Globalization Support Guide

Unicode Character Code Assignments

Note: Blank spaces represent non-applicable code assignments.
Character codes in this table are shown in hexadecimal
representation

UTF-16 Encoding

As shown in Table B-1, UTF-16 character codes for some characters (Additional
Chinese/Japanese/Korean characters and Private Use Area #2) are represented in
two units of 16-bits. These are the surrogate pairs. A surrogate pair consists of two
16-bit values. The first 16-bit value is the high surrogate (the values are from 0xD800
to OXDBFF). The second 16-bit value is the low surrogate (the values are from
0xDCO00 to OxDFFF). With surrogate pairs, UTF-16 character codes can represent
more than one million characters. Without surrogate pairs, only up to 65,536
characters could be represented. Oracle’s AL16UTF16 character set supports
surrogate pairs.

See Also: "Surrogate Characters" on page 4-7 for further
information regarding surrogate pairs

UTF-8 Encoding
The UTF-8 character codes in Table B-1 show that:
« ASCII characters use 1-byte
« European (except ASCII), Arabic, and Hebrew characters require 2-bytes

« Indic, Thai, Chinese, Japanese, and Korean characters as well as certain symbols
such as the one for the euro require 3-bytes

« Characters in the Private Use Area #1 require 3-bytes
« Additional Chinese/Japanese/Korean etc. characters require 4-bytes
« Characters in the Private Use Area #2 require 4-bytes

Oracle’s AL32UTF8 character set supports 1-byte, 2-byte, 3-byte, and 4-byte values.
Oracle’s UTF8 character set supports 1-byte, 2-byte, and 3-byte values, but not
4-byte values.

Unicode Character Code Assignments B-3

Unicode Character Code Assignments

B-4 Oracle9i Globalization Support Guide

Glossary

AL16UTF16
The Unicode UTF-16 national character set.

AL32UTF8
The Unicode 3.0 UTF-8 database character set with 4-byte surrogate pairs support.

ASCII

American Standard Code for Information Interchange. A common encoded 7-bit
character set for English. ASCII includes the letters A-Z and a-z, as well as digits,
punctuation symbols, and control characters. The Oracle character set name for this
is US7ASCII.

binary sorting

Sorting of character strings based on their binary coded value representations.

byte semantics
Byte semantics means treating strings as a sequence of bytes.

case conversion

Case conversion refers to changing a character from its uppercase to lowercase
form, or vice versa.

character

A character is an abstract element of a text. A character is different from a glyph
(font glyph), which is a specific instance of a character. For example, the first
character of the English upper-case Alphabet can be printed (or displayed) as A, A,

Glossary-1

Glossary-2

A, etc. All these different forms are different glyphs but represent the same
character. A character, a character code and a glyph are related as follows.

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English upper-case alphabet is represented in
computer memory as a number (or a character code). The character code is 0x41 if
we are using the ASCII encoding scheme, or the character code is Oxcl if we are
using the EBCDIC encoding scheme, or it can be some other number if we are using
different encoding scheme. When we print or display this character, we use a font.
We have to choose a font for the ASCII encoding scheme (or a font for a superset of
the ASCII encoding scheme) if we are using the ASCII encoding scheme, or we have
to choose a font for the EBCDIC encoding scheme if we are using the EBCDIC
encoding scheme. Now the character is printed (or displayed) as A, A, A, or some
other form. All these different forms are different glyphs, but represent the same
character.

character code

A character code is a number which represents a specific character. In order for
computers to handle a character, we need a specific number which is assigned to
that character. The number (or the character code) depends on what encoding
scheme we are using. For example, the first character of the English uppercase
alphabet has the character code 0x41 for the ASCII encoding scheme, but the same
character has the character code 0xcl for the EBCDIC encoding scheme.

See also character.

character semantics

Character semantics means treating strings as a sequence of characters, as opposed
to bytes semantics, where strings are counted in bytes.

character set

A character set is a set of characters for a specific language or group of languages.
There can be many different character sets just for one language.

A character set does not always imply any specific character encoding scheme.

In this manual, a character set generally implies a specific character encoding
scheme, which is how a character code is assigned to each character of the character
set. Therefore, the meaning of the term character set is generally the same as
encoded character set in this manual.

character string

A character string is a serial string of characters or even no character. In this case,
the character string is called a "null string". "The number of characters" of this
character string is 0 (zero).

coded character set
Same as encoded character set.

An independent unit used to represent data, such as a letter, a letter with a
diacritical mark, a digit, ideograph, punctuation, or symbol.

character classification

Character classification information provides details about the type of character
associated with each legal character code; that is, whether it is an alphabetic,
uppercase, lowercase, punctuation, control, or space character, etc.

character encoding scheme

A character encoding scheme is a rule that assigns numbers (or character codes) to
all characters in a character set. We also use the shortened term encoding scheme (or
encoding method, or just encoding).

client character set

The encoded character set which the client uses. A client character set can differ
from the database server character set, in which case, character set conversion must
occur.

collation

Ordering of character strings in a given alphabet in a linguistic sort order or a
binary sort order.

combining character

A character that graphically combines with a preceding base character. These
characters are not used in isolation. They include such characters as accents,
diacritics, Hebrew points, Arabic vowel signs, and Indic matras.

composite character

A single character which can be represented by a composite character sequence.
This type of character is found in the scripts of Thai, Lao, Vietnamese, and Korean
Hangul, as well as many Latin characters used in European languages.

Glossary-3

Glossary-4

composite character sequence

A character sequence consisting of a base character followed by one or more
combining characters. This is also referred to as a combining character sequence.

database character set

The encoded character set in which text is stored in the database is represented. This
includes CHARVARCHARZ.ONGand fixed-width CLOBcolumn values and all SQL
and PL/SQL text stored in the database.

diacritical mark

A mark added to a letter that usually provides information about pronunciation or
stress. The letter "&" is an example of a diacritical mark added to the letter "a".

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded
character sets used mostly on IBM systems.

encoded character set

An encoded character set is a character set with an associated character encoding
scheme. An encoded character set specifies how a number (or a character code) is
assigned to each character of the character set based on a character encoding
scheme.

encoding
Encoding Method or Encoding scheme. See also character encoding scheme.

font

An ordered collection of character glyphs which provides a graphical representation
of characters within a character set.

globalization

The process of making software flexible enough to be used in many different
linguistic and cultural environments. Globalalization should not be confused with
localization, which is the process of preparing software for use in one specific locale.

glyph

A glyph (font glyph) is a specific instance of a character. A character can have many
different glyphs. For example, the first character of the English upper-case Alphabet
can be printed (or displayed) as A, A, A, etc.

All these different forms are different glyphs, but representing the same character.
See also character.

ideograph

A symbol representing an idea. Chinese is an example of an ideographic writing
system.

internationalization

The process of making software flexible enough to be used in many different
linguistic and cultural environments. Internationalization should not be confused
with localization, which is the process of preparing software for use in one specific
locale.

ISO

International Organization for Standards. A worldwide federation of national
standards bodies from 130 countries. The mission of 1SO is to promote the
development of standardization and related activities in the world with a view to
facilitating the international exchange of goods and services.

ISO 14651
A multilingual sort designed to hanld almost all languages of the world.

ISO/IEC 10646

A universal character set standard defining the characters of most major scripts
used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC
10646-1:1993. ISO/IEC 10646 has two formats: UCS-2 is a 2-byte fixed-width format
and UCS-4 is a 4-byte fixed-width format. There are three levels of implementation,
all relating to support for composite characters. Level 1 requires no composite
character support, level 2 requires support for specific scripts (including most of the
Unicode scripts such as Arabic, Thai, etc.), and level 3 requires unrestricted support
for composite characters in all languages.

ISO currency

The 3-letter abbreviation used to denote a local currency, which is based on the 1SO
4217 standard. For example, "USD" represents the United States Dollar.

ISO 8859

A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also
known as Latin-1), and is used for Western European languages.

Glossary-5

Glossary-6

ISO 14651

An International String Ordering standard sort designed to handle almost all
languages.

Latin-1

Formally known as the ISO 8859-1 character set standard. An 8-bit extension to
ASCII which adds 128 characters covering the most common Latin characters used
in Western Europe. The Oracle character set name for this is WE8ISO8859P1. See
"ISO 8859".

length semantics

Length semantics determines how you treat stringlengths. They can be treated as a
sequence of characters or bytes.

linguistic index
An index built on a linguistic collation order.

linguistic sort

A sort of strings based on requirements from a locale instead of based on the binary
representation of the strings. See also multilingual linguistic sort and monolingual
linguistic sort.

locale

A collection of information regarding the linguistic and cultural preferences from a
particular region. Typically, a locale consists of language, territory, character set,
linguistic, and calendar information defined in NLS data files.

Locale Builder

A GUI utility that offers a way to modify, view or define locale-specific data. You
can also create your own formats for language, territory, character set, and collation.

localization

The process of providing language-specific or culture-specific information for
software systems. Translation of an application’s user interface would be an
example of localization. Localization should not be confused with
internationalization, which is the process of generalizing software so it can handle
many different linguistic and cultural conventions.

monolingual linguistic sort

An Oracle sort that uses two passes when comparing strings. This is fine for most
European languages, but is inadequate for Asian languages. See also multilingual
linguistic sort.

monolingual support
Support for only one language.

multibyte
Multibyte means characters represented by two or more bytes.

When character codes are assigned to all characters in a specific language (or a
group of languages), one byte (8 bits) can represent 256 different characters. Two
bytes (16 bits) can represent up to 65,536 different characters. However, two bytes
are still not enough to represent all the characters for many languages. We use 3
bytes or 4 bytes for those characters.

One example is the UTF8 encoding of Unicode. In UTFS8, there are many 2-byte and
3-byte characters.

Another example is Traditional Chinese language used in Taiwan. It has more than
80,000 different characters. Some character encoding schemes used in Taiwan
encode characters in up to 4 bytes.

multibyte character

A multibyte character is a character whose character code consists of two or more
bytes under a certain character encoding scheme. Note that the same character may
have different character code where the character encoding scheme is different.
Without knowing which character encoding scheme is being used, Oracle cannot
tell which character is a multibyte character. For example, Japanese
Hankaku-Katakana (half width Katakana) characters are one byte in JA16SJIS
encoded character set, two bytes in JAI6EUC, and three bytes in UTF8. See
"single-byte character".

multibyte character string
A multibyte character string is a character string which consists of one of the below.
« Nocharacters

(The character string is called the "null string” in this case.)

« One or more single-byte character(s)

Glossary-7

Glossary-8

« A mixture of one or more single-byte characters and one or more multibyte
characters

« One or more multibyte characters

multilingual linguistic sort
An Oracle sort that uses evaluates strings on three levels when comparing.

National character set

An alternate character set from the database character set that can be specified for
NCHARNVARCHAR2Nnd NCLOBcolumns. National character sets are in Unicode
only.

NLB files

Binary files used by the Locale Builder to define locale-specific data.

NLS

National Language Support. NLS allows users to interact with the database in their
native languages. It also allows applications to run in different linguistic and
cultural environments. The term is somewhat obsolete because Oracle supports
global users at one time.

NLSDATA
A general phrase referring to the contents in many files with .nlb suffixes. These
files contain data that the NLSRTL library uses to provide specific NLS support.

NLSRTL

National Language Support Run-Time Library. This library is responsible for
providing locale-independent algorithms for internationalization. The
locale-specific information (that is, NLSDATA) is read by the NLSRTL library
during run-time.

NLT files

Text files used by the Locale Builder to define locale-specific data. Because they are
in text, you can view the settings.

replacement character

A character used during character conversion when the source character is not
available in the target character set. For example, ? is often used as Oracle's default
replacement character.

restricted multilingual support

Multilingual support which is restricted to a group of related languages. Support
for related languages, but not all languages. Similar language families, such as
Western European languages can be represented with, for example, 1ISO 8859/1. In
this case, however, Thai could not be added.

SQL CHAR datatypes
Includes CHARVARCHARVARCHARZCLOB and LONGdatatypes.

SQL NCHAR datatypes
Includes NCHARNVARCHARNVARCHAR2Nnd NCLOBdatatypes.

script

A collection of related graphic symbols used in a writing system. Some scripts are
used to represent multiple languages, and some languages use multiple scripts.
Example of scripts include Latin, Arabic, and Han.

single-byte

Single-byte (or single byte) means one byte. One byte usually consists of 8 bits.
When we assign character codes to all characters for a specific language, one byte (8
bits) can represent 256 different characters.

single-byte character

A single-byte character is a character whose character code consists of one byte
under a certain character encoding scheme. Note that the same character may have
different character code where the character encoding scheme is different. Without
knowing which character encoding scheme we are using, we cannot tell which
character is a single-byte character. For example, the euro currency symbol is one
byte in WEBMSWIN1252 encoded character set, two bytes in ALL6UTF16, and three
bytes in UTF8. See also multibyte character.

single-byte character string
A single-byte character string is a character string that consists of one of the below.

« No character
(The character string is called "null string" in this case.)

« One or more single-byte characters.

Glossary-9

Glossary-10

surrogate characters

You can extend Unicode to encode more than 1 million characters. These extended
characters are called surrogate pairs. Surrogate pairs are designed to allow
representation of characters in future extensions of the Unicode standard. Surrogate
pairs require 4 bytes in UTF-8 and UTF-16,

UCs-2

UCS stands for "Universal Multiple-Octet Coded Character Set". It is a 1993 ISO and
IEC standard character set. Fixed-width 16-bit Unicode. Each character occupies 16
bits of storage. The Latin-1 characters are the first 256 code points in this standard,
so it can be viewed as a 16-bit extension of Latin-1.

ucs-4

Fixed-width 32-bit Unicode. Each character occupies 32 bits of storage. The UCS-2
characters are the first 65,536 code points in this standard, so it can be viewed as a
32-bit extension of UCS-2. This is also sometimes referred to as 1SO-10646.
ISO-10646 is a standard that specifies up to 2,147,483,648 characters in 32768 planes,
of which the first plane is the UCS-2 set. The ISO standard also specifies
transformations between different encodings.

Unicode

Unicode is a type of universal character set, a collection of 64K characters encoded
in a 16-bit space. It encodes nearly every character in just about every existing
character set standard, covering most written scripts used in the world. It is owned
and defined by Unicode Inc. Unicode is canonical encoding which means its value
can be passed around in different locales. But it does not guarantee a round-trip
conversion between it and every Oracle character set without information loss.

Unicode codepoint

A 16-bit binary value that can represent a unit of encoded text for processing and
interchange. Every point between U+0000 and U+FFFF is a code point. The term
Unicode codepoint is interchangeable with code element, code position, and code
value.

Unicode datatype

A SQL NCHARJatatype (NCHARNVARCHARZNd NCLOB. You can store Unicode
characters into columns of these datatypes irrespective of the database character set.

unrestricted multilingual support

Being able to use as many languages as desired. A universal character set, such as
Unicode, helps to provide unrestricted multilingual support because it supports a
very large character repertoire, encompassing most modern languages of the world.

UTFE
The Unicode 3.1 UTF-8 database character set with 6 byte surrogate pairs support.

UTF-8

A variable-width encoding of UCS-2 that uses sequences of 1, 2, or 3 bytes per
character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with one
byte, characters from 128-2047 require two bytes, and characters from 2048-65535
require three bytes. The Oracle character set name for this is UTF8. The standard
has left room for expansion to support the UCS4 characters with sequences of 4, 5,
and 6 bytes per character.

UTF-16

An extension to UCS-2 that allows for pairs of UCS-2 code points to represent
extended characters from the UCS-4 set. UCS-2 has ranges of code points allocated
for high (leading) and low (trailing) surrogates that support UTF-16 encodings.

wide character

A fixed-width character format that is well-suited for extensive text processing
because it allows for data to be processed in consistent fixed-width chunks. Wide
characters are intended for supporting internal character processing, and are
therefore implementation-dependent.

Glossary-11

Glossary-12

A

abbreviations
AM/PM, 3-17
BC/AD, 3-17

languages, A-2
AL32UTF8 character set, 5-5
ALTER DATABASE CHARACTER SET
statement, 10-7
ALTER DATABASE NATIONAL CHARACTER
SET statement, 10-7
ALTER SESSION statement
SET NLS_CURRENCY clause, 3-27, 3-28
SET NLS_DATE_FORMAT clause, 3-15
SET NLS_LANGUAGE clause, 3-12
SET NLS_NUMERIC_CHARACTERS
clause, 3-26
SET NLS_TERRITORY clause, 3-12
ALTER SYSTEM statement
SET NLS_LANGUAGE clause, 3-12
AM/PM abbreviation
language of, 3-17
array parameter
Character Set Scanner Utility, 10-16
ASCIl encoding, 2-6

B

BC/AD abbreviation

language of, 3-17
BLANK_TRIMMING paramter, 10-4
boundaries parameter

Character Set Scanner Utility, 10-17

Index

C

calendar systems
support, A-26
calendars, A-26
customized, 12-7
formats, 3-21
parameter, 3-21
systems, 3-23
capture parameter
Character Set Scanner Utility, 10-17
CHAR
class, 9-8
character set
conversion, 2-11
encoding, 2-2
setting definition, 11-16
character set migration
data scanning, 10-7
Character Set Scanner
scan modes, 10-11
Character Set Scanner Utility, 10-1, 10-9, 10-18
array parameter, 10-16
boundaries parameter, 10-17
capture parameter, 10-17
compatibility, 10-13
feedback parameter, 10-18
fromnchar parameter, 10-18
full parameter, 10-19
help parameter, 10-19
invoking, 10-14
lastrpt parameter, 10-19, 10-20
maxblocks parameter, 10-20
online help, 10-14

Index-1

parameter file, 10-15

parameters, 10-16

scanner messages, 10-40

scanner parameters, 10-16

scanner tables, 10-37

suppress parameter, 10-21

table parameter, 10-21

tochar parameter, 10-22

user parameter, 10-22

userid parameter, 10-23
character sets

8-bit versus 7-bit, 7-5

Asian, A-8

choosing, 10-2

conversion, 2-16

conversion using OCI, 8-35

converting, 7-5

data loss, 10-4

European, A-9

Middle Eastern, A-15

migrating, 10-2

migration, 10-2

naming, 2-10

parameters, 3-34

restrictions on expressing names and text, 2-13

storage, A-6

supported, 2-15

universal, A-18
choosing character sets, 10-2
collation

using Locale Builder Utility, 11-25
collation parameters, 3-32
concatenation operator, 7-14
conversion

between character set ID number and character

set name, 7-9

CONVERT function, 7-5
converting

character sets, 7-5
CSM$COLUMNS parameter, 10-35
CSMS$ERRORS parameter, 10-36
CSMS$TABLES parameter, 10-35
CSMIG user, 10-13
CSMINST.SQL script, 10-13

running, 10-13

Index-2

currencies
formats, 3-26
monetary
units characters, 3-30
symbols
default, 3-10
local currency symbol, 3-27
customized

calendars, 12-7
character sets, 12-2

D

data
conversion, 7-5
data conversion
database character set, 10-7
data expansion during character set
migration, 10-2
data inconsistencies
causing data loss, 10-5
data loss
caused by data inconsistencies, 10-5
during character set migration, 10-4
from mixed character sets, 10-6
data scanning
character set migration, 10-7
data truncation, 10-2
restrictions, 10-3
database character set
choosing, 2-10
conversion, 10-7
database character set migration, 10-6
Database Scan Summary Report, 10-26, 10-27
date formats, 3-14, 7-12
and partition bound expressions, 3-16
dates
ISO standard, 3-22,7-13
NLS_DATE_LANGUAGE parameter, 3-16
days
format element, 3-17
language of names, 3-17
decimal character
default, 3-10
NLS_NUMERIC_CHARACTERS

parameter, 3-25
when not a period (.), 3-25
drivers
JDBC, 09-2

E

EJB, 9-25

encoding schemes, 2-8
Enterprise Java Beans, 9-25
explicit authentication, 9-25

F

feedback parameter

Character Set Scanner Utility,
format elements, 7-12, 7-13

C, 7-14

D, 3-25,7-13

day, 3-17

G, 3-25,7-13

Iw, 7-13

1y, 7-13

L, 3-27,7-13

month, 3-17

RM, 3-15,7-12

RN, 7-14
formats

calendar, 3-21

currency, 3-26

numeric, 3-24
fromchar parameter, 10-18

Character Set Scanner Utility,
fromnchar parameter

Character Set Scanner Utility,
full parameter

Character Set Scanner Utility,

G

10-18

10-18

10-18

10-19

getString() method, 9-8

getStringWithReplacement() method, 9-8

Globalization
architecture, 1-2
globalization features, 1-5

group separator, 3-25
default, 3-10

NLS_NUMERIC_CHARACTERS

parameter, 3-25

H

help parameter
Character Set Scanner Utility,

10-19

implicit authentication, 9-25
indexes
partitioned, 7-12

Individual Exception Report, 10-26, 10-33

ISO standard

date format, 3-22, 7-13
1ISO week number, 7-13
IW format element, 7-13
Y format element, 7-13

J

Java runtime environment, 9-3
Java stored procedures, 9-16
Java Virtual Machine, 9-14
java.sql.ResultSet, 9-4
JDBC
class library, 9-6
drivers, 9-2
OClI driver
NLS considerations, 9-6
Server driver, 9-7
Thin driver
NLS considerations, 9-7
JDBC drivers
and NLS, 9-4
VM, 9-14

L

L format element, 3-27

language definition
setting, 11-8

language support, 1-6

Index-3

languages
overriding, 3-6
lastrpt parameter

Character Set Scanner Utility, 10-19, 10-20

linguistic definitions, A-22
supported, A-22
linguistic sorts
controlling, 7-12
list separator, 3-34
local currency symbol, 3-27
Locale Builder Utility, 11-3
restrictions, 11-5
LXEGEN executable, 12-8
LXINST executable, 12-8

M

maxblocks parameter

Character Set Scanner Utility, 10-20
messages

error, A-4

translated, A-4
migrating character sets, 10-2
migration

database character set, 10-6
mixed character sets

causing data loss, 10-6
monetary

parameters, 3-26

units characters, 3-30
months

format element, 3-17

language of names, 3-17

N

National Language Support (NLS)
NLS_LANGUAGE parameter, 7-5
NCHAR datatype migration, 5-16
NLB files, 11-2
NLS
and JDBC drivers, 9-4
conversions, 9-4
for JDBC OCI drivers, 9-6
for JDBC Thin drivers, 9-7

Index-4

Java methods that employ, 9-4
NLS Calendar Utility, 12-7
NLS data

error messages, A-4

supported calendar systems, A-26

supported linguistic definitions, A-22

supported territories, A-5
NLS Data Installation Utility, 12-8
NLS locales, 3-4
NLS parameters

setting, 3-2

using in SQL functions, 7-2
NLS runtime library, 1-2
NLS_CALENDAR parameter, 3-23
NLS_CHARSET_DECL_LEN function, 7-9
NLS_CHARSET_ID function, 7-9
NLS_CHARSET_NAME function, 7-9
NLS_COMP parameter, 3-33,7-11
NLS_CREDIT parameter, 3-26, 3-31
NLS_CURRENCY parameter, 3-26
NLS _DATE_FORMAT parameter, 3-14
NLS_DATE_LANGUAGE parameter, 3-16
NLS_DEBIT parameter, 3-31
NLS_DUAL_CURRENCY parameter, 3-29
NLS_ISO_CURRENCY parameter, 3-28
NLS_LANG

choosing a locale with, 3-4

environment variable, 9-6

examples, 3-6

specifying, 3-6
NLS_LANGUAGE parameter, 3-8
NLS_LIST_SEPARATOR parameter, 3-34
NLS_MONETARY_CHARACTERS

parameter, 3-30

NLS_NUMERIC_CHARACTERS parameter,
NLS_SORT parameter, 3-32,3-33
NLS_TERRITORY parameter, 3-10
NLSSORT function, 7-9
NLT files, 11-2
numeric

formats, 3-24,7-13

parameters, 3-24

3-25

O

ORA_NLS33 directory, 1-3
Oracle Real Application Clusters
during database character set migration,
oracle.sql.CHAR, 9-4
oracle.sql.CHAR class, 9-8
getString() method, 9-8
getStringWithReplacement() method, 9-8
toString() method, 9-8
oracle.sql.CLOB, 9-4
ORANLS option, 12-8
ORDER BY clause, 7-12
overriding language and territory
specifications, 3-6

P

parameters
BLANK_TRIMMING, 10-4
calendar, 3-21
collation, 3-32
CSM$COLUMNS, 10-35
CSM$ERRORS, 10-36
CSM$TABLES, 10-35
monetary, 3-26
NLS _CALENDAR, 3-23
NLS_COMP, 3-33
NLS_CREDIT, 3-26, 3-31
NLS_CURRENCY, 3-26
NLS_DATE_FORMAT, 3-14
NLS DATE_LANGUAGE, 3-16
NLS DEBIT, 3-31
NLS _DUAL_CURRENCY, 3-29
NLS_ISO_CURRENCY, 3-28
NLS_LANGUAGE, 3-8
NLS LIST SEPARATOR, 3-34
NLS MONETARY_CHARACTERS, 3-30
NLS NUMERIC_CHARACTERS, 3-25
NLS_SORT, 3-32,3-33
NLS_TERRITORY, 3-10
numeric, 3-24
setting, 3-2
time, 3-14

partitioned
indexes, 7-12

tables, 7-12

R

replacement characters, 7-5
restricted multilingual support, 2-18
restrictions
data truncation, 10-3
passwords, 10-3
space padding during export, 10-4
usernames, 10-3
RM format element, 3-15
Roman numerals
format mask for, 3-15

S

scan modes
Character Set Scanner Utility, 10-11
database character sets
full database scan, 10-12
single table scan, 10-12
user tables scan, 10-12
sorting
specifying non-default, 3-32, 3-33
space padding
during export, 10-4
SQLJ
client, 9-35
SQLJ translators, 9-3
storage character sets, A-6
stored procedures
Java, 9-16
string comparisons
and WHERE clause, 7-11
string manipulation using OCI, 8-8
subsets
and supersets, A-19
supersets
and subsets, A-19
supported character sets, 2-15
supported character string functionality and
character sets, 2-15
suppress parameter
Character Set Scanner Utility, 10-21

T UTF8 character set, 5-5
UTF-8 encoding, B-3

table parameter UTFE. A-18
Character Set Scanner Utility, 10-21 UTFE’character set, 55
tables
partitioned, 7-12
territories, 3-10 W
overriding, 3-6 WHERE clause
supported, A-5 and string comparisons, 7-11

territory definition

setting, 11-11
territory support, 1-6
time parameters, 3-14
TO_CHAR function

default date format, 3-14

format masks, 7-12

group separator, 3-25

language for dates, 3-16

spelling of days and months, 3-16
TO_DATE function

default date format, 3-14

format masks, 7-12

language for dates, 3-16

spelling of days and months, 3-16
TO_NUMBER function

format masks, 7-12

group separator, 3-25
tochar parameter

Character Set Scanner Utility, 10-22
toString() method, 9-8
translated messages, A-4
translators

SQLJ, 9-3

U

Unicode, 5-2
character code assignments, B-2
data migration, 5-14
Unicode encoding, 5-2
user parameter
Character Set Scanner Utility, 10-22
userid parameter
Character Set Scanner Utility, 10-23
UTF-16 encoding, B-3
UTF8, A-18

Index-6

	Send Us Your Comments
	Preface
	1 Globalization Support
	Oracle Server Globalization Support Architecture
	Locale-Independent Operation
	Multitier Architecture
	Unicode

	Globalization Support Features
	Language Support
	Territory Support
	Date and Time Formats
	Monetary and Numeric Formats
	Calendars
	Linguistic Sorting
	Character Set Support
	Customization

	2 Choosing a Character Set
	Character Set Encoding
	What is an Encoded Character Set?
	Which Characters to Encode?
	How Many Languages Does a Character Set Support?
	How are Characters Encoded?
	Oracle's Naming Convention for Character Sets

	Choosing an Oracle Database Character Set
	Interoperability with System Resources and Applications
	Character Set Conversion
	Database Schemas
	Performance Implications
	Restriction
	Choosing an Oracle NCHAR Character Set
	Restrictions on Character Sets Used to Express Names and Text
	Summary of Datatypes and Supported Encoding Schemes
	Changing the Character Set After Database Creation

	Monolingual Database Scenario
	Character Set Conversion

	Multilingual Database Scenarios
	Restricted Multilingual Support
	Unrestricted Multilingual Support

	3 Setting Up a Globalization Support Environment
	Setting NLS Parameters
	Choosing a Locale with the NLS_LANG Initialization Parameter
	Specifying NLS_LANG as an Environment Variable
	NLS_LANG Examples
	Overriding Language and Territory Specifications
	NLS Database Parameters

	Checking NLS Parameters
	NLS Views
	OCI Functions

	Language and Territory Parameters
	Date and Time Parameters
	Date Formats
	Time Formats

	Calendar Parameter
	Calendar Formats
	NLS_CALENDAR

	Numeric Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY
	NLS_ISO_CURRENCY
	NLS_DUAL_CURRENCY
	NLS_MONETARY_CHARACTERS
	NLS_CREDIT
	NLS_DEBIT

	Linguistic Sorting Parameters
	NLS_SORT
	NLS_COMP
	NLS_LIST_SEPARATOR

	Character Set Parameter
	NLS_NCHAR_CONV_EXCP

	4 Linguistic Sorting
	Overview of Oracle’s Sorting Capabilities
	Using Binary Sorts
	Using Linguistic Sorts
	Monolingual Linguistic Sorts
	Multilingual Linguistic Sorts
	General Linguistic Sorting Information

	Using Linguistic Indexes
	Linguistic Indexes for Multiple Languages
	Requirements for Linguistic Indexes
	Case-Insensitive Searching
	Customizing Linguistic Sorts

	5 Supporting Multilingual Databases with Unicode
	Overview of Unicode
	What is Unicode?
	Unicode Encoding

	Implementing a Unicode Solution in the Database
	Enabling Multilingual Support with Unicode Databases
	Enabling Multilingual Support with Unicode Datatypes
	How to Choose Between a Unicode Database and a Unicode Datatype Solution
	Comparison of Unicode Solutions

	Unicode Case Studies
	Migrating Data to Unicode
	Migrating to a Unicode Database
	Migrating to Use the NCHAR Datatypes

	Designing Database Schemas to Support Multiple Languages
	Specifying Column Limits
	Storing Data of Multiple Languages
	Storing Documents in LOBs

	6 Unicode Programming
	Overview of Unicode Programming
	Database Access Product Stack and Unicode

	SQL and PL/SQL Programming with Unicode
	Using the UTL_FILE Package with NCHAR

	OCI Programming with Unicode
	OCI Unicode Code Conversion
	When NLS_LANG is Set to UTF8 or AL32UTF8 in OCI
	Binding and Defining SQL CHAR Datatypes in OCI
	Binding and Defining SQL NCHAR Datatypes in OCI
	Binding and Defining CLOB and NCLOB Unicode Data in OCI
	Unicode Mode in OCI

	Pro*C/C++ Programming with Unicode
	Pro*C/C++ Data Conversion in Unicode
	Using the VARCHAR Datatype
	Using the NVARCHAR Datatype
	Using the UVARCHAR Datatype

	JDBC and SQLJ Programming with Unicode
	Java String Bind and Define in Unicode
	JDBC Restriction
	Java Data Conversion in Unicode

	ODBC and OLEDB Programming with Unicode
	Unicode-Enabled Drivers in ODBC and OLEDB
	OCI Dependency in Unicode
	ODBC and OLEDB Code Conversion in Unicode
	ODBC Unicode Datatypes
	OLEDB Unicode Datatypes
	ADO Access

	7 SQL Programming
	Locale-Dependent SQL Functions
	Default Specifications
	Specifying Parameters
	Unacceptable Parameters
	CONVERT Function
	INSTR, LENGTH, and SUBSTR Functions and Character Sets
	LIKE Conditions and Character Sets
	Character Set SQL Functions
	NLSSORT Function

	Time/Date/Calendar Formats
	Date Formats

	Numeric Formats
	Miscellaneous Topics
	The Concatenation Operator

	8 OCI Programming
	Using the OCI NLS Functions
	NLS Language Information Retrieval
	OCINlsGetInfo
	OCI_Nls_MaxBufSz
	NLS Language Information Retrieval Sample Code

	String Manipulation in OCI
	OCIMultiByteToWideChar
	OCIMultiByteInSizeToWideChar
	OCIWideCharToMultiByte
	OCIWideCharInSizeToMultiByte
	OCIWideCharToLower
	OCIWideCharToUpper
	OCIWideCharStrcmp
	OCIWideCharStrncmp
	OCIWideCharStrcat
	OCIWideCharStrchr
	OCIWideCharStrcpy
	OCIWideCharStrlen
	OCIWideCharStrncat
	OCIWideCharStrncpy
	OCIWideCharStrrchr
	OCIWideCharStrCaseConversion
	OCIWideCharDisplayLength
	OCIWideCharMultiByteLength
	OCIMultiByteStrcmp
	OCIMultiByteStrncmp
	OCIMultiByteStrcat
	OCIMultiByteStrcpy
	OCIMultiByteStrlen
	OCIMultiByteStrncat
	OCIMultiByteStrncpy
	OCIMultiByteStrnDisplayLength
	OCIMultiByteStrCaseConversion
	String Manipulation Sample Code

	Character Classification in OCI
	OCIWideCharIsAlnum
	OCIWideCharIsAlpha
	OCIWideCharIsCntrl
	OCIWideCharIsDigit
	OCIWideCharIsGraph
	OCIWideCharIsLower
	OCIWideCharIsPrint
	OCIWideCharIsPunct
	OCIWideCharIsSpace
	OCIWideCharIsUpper
	OCIWideCharIsXdigit
	OCIWideCharIsSingleByte

	Character Set Conversion in OCI
	OCICharSetToUnicode
	OCIUnicodeToCharSet
	OCICharSetConversionIsReplacementUsed

	Messaging Mechanism in OCI
	OCIMessageOpen
	OCIMessageGet
	OCIMessageClose
	LMSGEN
	Text Message File Format
	Message Example

	9 Java Programming
	Overview of Oracle9i Java Support
	JDBC
	Accessing SQL CHAR Datatypes Using JDBC
	Accessing SQL NCHAR Datatypes Using JDBC
	Using the oracle.sql.CHAR Class
	Retrieving Data to oracle.sql.CHAR Class
	NLS Restrictions

	SQLJ
	Using Unicode characters in SQLJ programs
	Using the oracle.sql.NString class

	Java Virtual Machine
	Java Stored Procedures
	Java Servlets and Java Server Pages
	CORBA and EJB
	CORBA ORB
	Enterprise Java Beans

	Configurations for Multilingual Applications
	Configuring a Multilingual Database
	Globalizing the Java Server Objects
	Clients of Different Languages

	Multilingual Demo Applications in SQLJ
	The Database Schema
	Java Stored Procedures
	The SQLJ Client

	10 Character Set Scanner Utility
	Overview of Choosing and Migrating Character Sets
	Data Truncation
	Character Set Conversions

	Database Character Set Migration
	Data Scanning
	Conversion of Data

	What is the Character Set Scanner Utility?
	Conversion Tests on Character Data
	Access Privileges
	Restrictions
	Database Containing Data From Two or More Character Sets
	Database Containing Data Not From the Database Character Set

	Scan Modes in the Scanner
	Full Database Scan
	User Tables Scan
	Single Table Scan

	Using The Scanner
	Before Using the Scanner
	Compatibility
	Invoking the Scanner
	Getting Online Help for the Scanner
	The Parameter File

	Scanner Parameters
	ARRAY
	BOUNDARIES
	CAPTURE
	FEEDBACK
	FROMCHAR
	FROMNCHAR
	FULL
	HELP
	LASTRPT
	LOG
	MAXBLOCKS
	PARFILE
	PROCESS
	SUPPRESS
	TABLE
	TOCHAR
	TONCHAR
	USER
	USERID

	Sample Scanner Sessions
	Sample Session of Full Database Scan
	Sample Session of User Tables Scan
	Sample Session of Single Table Scan
	Scanner Reports
	Database Scan Summary Report
	Individual Exception Report

	Storage and Performance Considerations in the Scanner
	Storage Considerations
	Performance Considerations

	Scanner Utility Reference Material
	Scanner Views
	Scanner Messages

	11 Oracle Locale Builder Utility
	Overview of the Locale Builder Utility
	Configuring Unicode Fonts for the Locale Builder
	The Locale Builder Interface
	Locale Builder General Screens
	Restrictions

	Setting the Language Definition with the Locale Builder
	Setting the Territory Definition with the Locale Builder
	Setting the Character Set Definition with the Locale Builder
	Character Sets with User-Defined Characters
	Oracle's Character Set Conversion Architecture
	Unicode 3.1 Private Use Area
	UDC Cross References
	Character Set Definition File Conventions
	Locale Builder Character Set Scenario

	Sorting with the Locale Builder
	Changing the Sort Order for Accented Characters
	Changing the Sort Order for One Accented Character
	Generating NLB Files
	Using the New NLB Files

	12 Customizing Locale Data
	Customizing Character Sets
	Character Set Customization Example
	Using User-Defined Character Sets and Java

	Customizing Time Zone Data
	Customizing Calendars
	NLS Calendar Utility

	NLS Data Installation Utility
	Syntax
	Return Codes
	Usage

	A Locale Data
	Languages
	Translated Messages
	Territories
	Character Sets
	Asian Language Character Sets
	European Language Character Sets
	Middle Eastern Language Character Sets
	Universal Character Sets
	Character Set Conversion Support
	Subsets and Supersets

	Linguistic Sorting
	Calendar Systems
	Obsolete Locale Data
	AL24UTFFSS Character Set Desupport

	B Unicode Character Code Assignments
	Unicode Character Code Assignments
	UTF-16 Encoding
	UTF-8 Encoding

	Index

