
Oracle9 i

Data Warehousing Guide

Release 1 (9.0.1)

June 2001

Part No. A90237-01

Oracle9i Data Warehousing Guide, Release 1 (9.0.1)

Part No. A90237-01

Copyright © 2001 Oracle Corporation. All rights reserved.

Primary Author: Paul Lane

Contributing Author: Viv Schupmann (Change Data Capture)

Contributors: Patrick Amor, Hermann Baer, Srikanth Bellamkonda, Randy Bello, Tolga Bozkaya, Benoit
Dageville, John Haydu, Lilian Hobbs, Hakan Jakobsson, George Lumpkin, Jack Raitto, Ray Roccaforte,
Gregory Smith, Ashish Thusoo, Jean-Francois Verrier, Gary Vincent, Andy Witkowski, Zia Ziauddin

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and LogMiner, Oracle9i, Oracle Call Interface, Oracle Database
Configuration Assistant, Oracle Enterprise Manager, Oracle interMedia, Oracle Net, Oracle Spatial, Oracle
Store, Oracle Text, Oracle Trace, PL/SQL, and Real Application Clusters, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments .. xvii

Preface .. xix

Part I Concepts

1 Data Warehousing Concepts

What is a Data Warehouse? ... 1-2
Subject Oriented.. 1-2
Integrated... 1-2
Nonvolatile .. 1-3
Time Variant.. 1-3
Contrasting OLTP and Data Warehousing Environments... 1-3

Data Warehouse Architectures ... 1-5
Data Warehouse Architecture (Basic).. 1-5
Data Warehouse Architecture (with a Staging Area).. 1-6
Data Warehouse Architecture (with a Staging Area and Data Marts) 1-7

Part II Logical Design

2 Logical Design in Data Warehouses

Logical versus Physical Design in Data Warehouses .. 2-2
Creating a Logical Design ... 2-2
Data Warehousing Schemas ... 2-3
iii

Star Schemas .. 2-4
Other Schemas... 2-4

Data Warehousing Objects.. 2-5
Fact Tables.. 2-5
Dimension Tables ... 2-6
Unique Identifiers ... 2-7
Relationships ... 2-8
Typical Example of Data Warehousing Objects and Their Relationships............................ 2-8

Part III Physical Design

3 Physical Design in Data Warehouses

Moving from Logical to Physical Design ... 3-2
Physical Design ... 3-2

Physical Design Structures .. 3-4
Tablespaces .. 3-4
Tables and Partitioned Tables... 3-5
Views .. 3-5
Integrity Constraints .. 3-5
Indexes and Partitioned Indexes .. 3-6
Materialized Views... 3-6
Dimensions .. 3-6

4 Hardware and I/O Considerations in Data Warehouses

Overview of Hardware and I/O Considerations in Data Warehouses 4-2
Why Stripe the Data?.. 4-2
Automatic Striping ... 4-3
Manual Striping .. 4-4
Local and Global Striping.. 4-4
Analyzing Striping ... 4-6

RAID Configurations ... 4-9
RAID 0 (Striping) .. 4-10
RAID 1 (Mirroring)... 4-10
RAID 0+1 (Striping and Mirroring) ... 4-10
iv

Striping, Mirroring, and Media Recovery... 4-10
RAID 5.. 4-11
The Importance of Specific Analysis.. 4-12

5 Parallelism and Partitioning in Data Warehouses

Overview of Parallel Execution.. 5-2
When to Implement Parallel Execution... 5-2

Granules of Parallelism ... 5-3
Block Range Granules .. 5-3
Partition Granules... 5-4

Partitioning Design Considerations ... 5-4
Types of Partitioning.. 5-4
Partition Pruning .. 5-13
Partition-wise Joins... 5-15

6 Indexes

Bitmap Indexes.. 6-2
Bitmap Join Indexes.. 6-6

B-tree Indexes .. 6-10
Local Indexes Versus Global Indexes ... 6-10

7 Integrity Constraints

Why Integrity Constraints are Useful in a Data Warehouse .. 7-2
Overview of Constraint States ... 7-3
Typical Data Warehouse Integrity Constraints ... 7-4

UNIQUE Constraints in a Data Warehouse ... 7-4
FOREIGN KEY Constraints in a Data Warehouse... 7-5
RELY Constraints ... 7-6
Integrity Constraints and Parallelism.. 7-7
Integrity Constraints and Partitioning .. 7-7
View Constraints .. 7-7

8 Materialized Views

Overview of Data Warehousing with Materialized Views... 8-2
v

Materialized Views for Data Warehouses... 8-2
Materialized Views for Distributed Computing .. 8-3
Materialized Views for Mobile Computing.. 8-3
The Need for Materialized Views .. 8-3
Components of Summary Management ... 8-5
Terminology .. 8-7
Schema Design Guidelines for Materialized Views .. 8-8

Types of Materialized Views .. 8-10
Materialized Views with Aggregates... 8-10
Materialized Views Containing Only Joins .. 8-16
Nested Materialized Views ... 8-18

Creating Materialized Views .. 8-22
Naming... 8-23
Storage Characteristics... 8-23
Build Methods ... 8-24
Enabling Query Rewrite .. 8-24
Query Rewrite Restrictions ... 8-25
Refresh Options... 8-26
ORDER BY Clause .. 8-30
Materialized View Logs ... 8-30
Using Oracle Enterprise Manager .. 8-31
Using Materialized Views with NLS Parameters .. 8-31

Registering Existing Materialized Views ... 8-32
Partitioning and Materialized Views .. 8-34

Partition Change Tracking .. 8-34
Partitioning a Materialized View ... 8-38
Partitioning a Prebuilt Table ... 8-39
Rolling Materialized Views... 8-40

Choosing Indexes for Materialized Views... 8-40
Invalidating Materialized Views ... 8-41
Security Issues with Materialized Views ... 8-41
Altering Materialized Views... 8-42
Dropping Materialized Views .. 8-42
Analyzing Materialized View Capabilities ... 8-43

Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure... 8-43
vi

MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details ... 8-46
MV_CAPABILITIES_TABLE Column Details ... 8-48

Overview of Materialized View Management Tasks .. 8-49

9 Dimensions

What are Dimensions? ... 9-2
Creating Dimensions ... 9-4

Multiple Hierarchies .. 9-7
Using Normalized Dimension Tables ... 9-9
Dimension Wizard.. 9-10

Viewing Dimensions.. 9-10
Using The DEMO_DIM Package.. 9-10
Using Oracle Enterprise Manager.. 9-11

Using Dimensions with Constraints... 9-11
Validating Dimensions .. 9-12
Altering Dimensions.. 9-13
Deleting Dimensions ... 9-14

Part IV Managing the Warehouse Environment

10 Overview of Extraction, Transformation, and Loading

Overview of ETL ... 10-2
ETL Tools .. 10-3

Daily Operations... 10-4
Evolution of the Data Warehouse .. 10-4

11 Extraction in Data Warehouses

Overview of Extraction in Data Warehouses... 11-2
Understanding Extraction Methods in Data Warehouses... 11-2

Logical Extraction Methods .. 11-3
Physical Extraction Methods... 11-4
Change Data Capture... 11-5

Data Warehousing Extraction Examples .. 11-8
Extraction Using Data Files... 11-8
vii

Extraction Via Distributed Operations .. 11-11

12 Transportation in Data Warehouses

Overview of Transportation in Data Warehouses .. 12-2
Understanding Transportation Mechanisms in Data Warehouses.. 12-2

Transportation Using Flat Files .. 12-2
Transportation Through Distributed Operations .. 12-2
Transportation Using Transportable Tablespaces ... 12-3

13 Loading and Transformation

Overview of Loading and Transformation in Data Warehouses ... 13-2
Transformation Flow.. 13-2

Loading Mechanisms ... 13-4
SQL*Loader ... 13-5
External Tables .. 13-6
OCI and Direct-path APIs ... 13-8
Export/Import... 13-8

Transformation Mechanisms .. 13-8
Transformation Using SQL ... 13-9
Transformation Using PL/SQL .. 13-16
Transformation Using Table Functions ... 13-16

Loading and Transformation Scenarios.. 13-26
Parallel Load Scenario.. 13-26
Key Lookup Scenario ... 13-34
Exception Handling Scenario.. 13-34
Pivoting Scenarios... 13-35

14 Maintaining the Data Warehouse

Using Partitioning to Improve Data Warehouse Refresh ... 14-2
Optimizing DML Operations During Refresh ... 14-5

Implementing an Efficient Merge... 14-5
Maintaining Referential Integrity... 14-7
Purging Data.. 14-8

Refreshing Materialized Views.. 14-9
viii

Complete Refresh ... 14-10
Fast Refresh ... 14-11
ON COMMIT Refresh.. 14-11
Manual Refresh Using the DBMS_MVIEW Package .. 14-11
Refresh Specific Materialized Views with REFRESH.. 14-12
Refresh All Materialized Views with REFRESH_ALL_MVIEWS 14-13
Refresh Dependent Materialized Views with REFRESH_DEPENDENT......................... 14-13
Using Job Queues for Refresh... 14-15
When Refresh is Possible... 14-15
Recommended Initialization Parameters for Parallelism... 14-15
Monitoring a Refresh ... 14-15
Checking the Status of a Materialized View... 14-16
Tips for Refreshing Materialized Views with Aggregates ... 14-16
Tips for Refreshing Materialized Views Without Aggregates... 14-19
Tips for Refreshing Nested Materialized Views .. 14-20
Tips After Refreshing Materialized Views.. 14-21

Using Materialized Views With Partitioned Tables... 14-22
Fast Refresh with Partition Change Tracking .. 14-22
Fast Refresh with CONSIDER FRESH... 14-26

15 Change Data Capture

About Oracle Change Data Capture ... 15-2
Publish and Subscribe Model ... 15-3
Example of a Change Data Capture System... 15-4
Components and Terminology for Synchronous Change Data Capture 15-5

Installation and Implementation... 15-8
Security ... 15-8
Columns in a Change Table .. 15-8
Views ... 15-10
Synchronous Mode of Data Capture... 15-11
Publishing Change Data ... 15-11
Subscribing to Change Data ... 15-13

Steps Required to Subscribe to Change Data ... 15-13
What Happens to Subscriptions When the Publisher Makes Changes 15-16

Export and Import Considerations .. 15-17
ix

16 Summary Advisor

Overview of the Summary Advisor in the DBMS_OLAP Package .. 16-2
Summary Advisor Wizard .. 16-6

Using the Summary Advisor .. 16-6
Identifier Numbers ... 16-7
Workload Management ... 16-8
Loading a User-Defined Workload.. 16-9
Loading a Trace Workload .. 16-11
Loading a SQL Cache Workload .. 16-15
Validating a Workload... 16-17
Removing a Workload ... 16-18
Using Filters with the Summary Advisor ... 16-18
Removing a Filter.. 16-22
Recommending Materialized Views.. 16-23
SQL Script Generation.. 16-27
Summary Data Report ... 16-29
When Recommendations are no Longer Required.. 16-31
Stopping the Recommendation Process .. 16-32
Sample Sessions .. 16-32

Estimating Materialized View Size ... 16-37
ESTIMATE_MVIEW_SIZE Parameters ... 16-37

Is a Materialized View Being Used?.. 16-38
DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure ... 16-39

Part V Warehouse Performance

17 Schema Modeling Techniques

Schemas in Data Warehouses ... 17-2
Star Schemas .. 17-2

Optimizing Star Queries ... 17-4
Tuning Star Queries.. 17-4
Using Star Transformation .. 17-5
x

18 SQL for Aggregation in Data Warehouses

Overview of SQL for Aggregation in Data Warehouses ... 18-2
Analyzing Across Multiple Dimensions ... 18-3
Optimized Performance .. 18-4
An Aggregate Scenario .. 18-5
Interpreting NULLs in Examples ... 18-6

ROLLUP Extension to GROUP BY.. 18-7
When to Use ROLLUP ... 18-7
ROLLUP Syntax.. 18-7
Partial Rollup .. 18-8

CUBE Extension to GROUP BY ... 18-10
When to Use CUBE .. 18-10
CUBE Syntax ... 18-10
Partial CUBE.. 18-12
Calculating Subtotals without CUBE .. 18-13

GROUPING Functions .. 18-13
GROUPING Function .. 18-13
When to Use GROUPING ... 18-16
GROUPING_ID Function.. 18-17
GROUP_ID Function.. 18-18

GROUPING SETS Expression ... 18-19
Composite Columns ... 18-21
Concatenated Groupings... 18-24

Concatenated Groupings and Hierarchical Data Cubes... 18-26
Considerations when Using Aggregation.. 18-28

Hierarchy Handling in ROLLUP and CUBE.. 18-28
Column Capacity in ROLLUP and CUBE... 18-29
HAVING Clause Used with GROUP BY Extensions .. 18-29
ORDER BY Clause Used with GROUP BY Extensions ... 18-30
Using Other Aggregate Functions with ROLLUP and CUBE ... 18-30

Computation Using the WITH Clause ... 18-30

19 SQL for Analysis in Data Warehouses

Overview of SQL for Analysis in Data Warehouses.. 19-2
Ranking Functions.. 19-5
xi

RANK and DENSE_RANK ... 19-5
Top N Ranking .. 19-12
Bottom N Ranking .. 19-13
CUME_DIST .. 19-13
PERCENT_RANK... 19-14
NTILE ... 19-15
ROW_NUMBER.. 19-16

Windowing Aggregate Functions .. 19-17
Treatment of NULLs as Input to Window Functions.. 19-18
Windowing Functions with Logical Offset ... 19-18
Cumulative Aggregate Function .. 19-18
Moving Aggregate Function ... 19-19
Centered Aggregate Function... 19-20
Windowing Aggregate Functions with Logical Offsets.. 19-21
Variable Sized Window ... 19-22
Windowing Aggregate Functions with Physical Offsets .. 19-23
FIRST_VALUE and LAST_VALUE.. 19-24

Reporting Aggregate Functions ... 19-24
Reporting Aggregate Example.. 19-26
RATIO_TO_REPORT ... 19-27

LAG/LEAD Functions .. 19-28
LAG/LEAD Syntax .. 19-28

FIRST/LAST Functions .. 19-29
FIRST/LAST Syntax ... 19-29
FIRST/LAST As Regular Aggregates .. 19-30
FIRST/LAST As Reporting Aggregates .. 19-31

Linear Regression Functions... 19-32
REGR_COUNT.. 19-32
REGR_AVGY and REGR_AVGX ... 19-33
REGR_SLOPE and REGR_INTERCEPT.. 19-33
REGR_R2.. 19-33
REGR_SXX, REGR_SYY, and REGR_SXY... 19-33
Linear Regression Statistics Examples... 19-33
Sample Linear Regression Calculation .. 19-34

Inverse Percentile Functions... 19-35
xii

Normal Aggregate Syntax... 19-35
Inverse Percentile Restrictions.. 19-38

Hypothetical Rank and Distribution Functions ... 19-39
Hypothetical Rank and Distribution Syntax .. 19-39

WIDTH_BUCKET Function ... 19-40
WIDTH_BUCKET Syntax.. 19-41

User-Defined Aggregate Functions ... 19-43
CASE Expressions... 19-44

Creating Histograms with User-defined Buckets .. 19-45

20 Advanced Analytic Services

OLAP ... 20-2
Benefits of OLAP and RDBMS Integration... 20-2

Data Mining ... 20-4
Enabling Data Mining Applications .. 20-5
Predictions and Insights .. 20-5
Mining Within the Database Architecture.. 20-5
Java API.. 20-7

21 Using Parallel Execution

Introduction to Parallel Execution Tuning... 21-2
When to Implement Parallel Execution... 21-2
Operations That Can Be Parallelized... 21-3
The Parallel Execution Server Pool .. 21-3
How Parallel Execution Servers Communicate ... 21-5
Parallelizing SQL Statements.. 21-6

Types of Parallelism ... 21-11
Parallel Query ... 21-11
Parallel DDL .. 21-13
Parallel DML ... 21-18
Parallel Execution of Functions .. 21-28
Other Types of Parallelism.. 21-29

Initializing and Tuning Parameters for Parallel Execution .. 21-30
Selecting Automated or Manual Tuning of Parallel Execution ... 21-31
Using Automatically Derived Parameter Settings... 21-31
xiii

Setting the Degree of Parallelism ... 21-32
How Oracle Determines the Degree of Parallelism for Operations 21-34
Balancing the Workload... 21-37
Parallelization Rules for SQL Statements.. 21-38
Enabling Parallelism for Tables and Queries.. 21-46
Degree of Parallelism and Adaptive Multiuser: How They Interact 21-46
Forcing Parallel Execution for a Session.. 21-47
Controlling Performance with the Degree of Parallelism... 21-48

Tuning General Parameters for Parallel Execution .. 21-48
Parameters Establishing Resource Limits for Parallel Operations 21-49
Parameters Affecting Resource Consumption ... 21-58
Parameters Related to I/O... 21-65

Monitoring and Diagnosing Parallel Execution Performance ... 21-67
Is There Regression?... 21-68
Is There a Plan Change?... 21-69
Is There a Parallel Plan? ... 21-69
Is There a Serial Plan? .. 21-69
Is There Parallel Execution? .. 21-70
Is The Workload Evenly Distributed? ... 21-70
Monitoring Parallel Execution Performance with Dynamic Performance Views........... 21-71
Monitoring Session Statistics .. 21-74
Monitoring System Statistics... 21-76
Monitoring Operating System Statistics.. 21-77

Affinity and Parallel Operations .. 21-77
Affinity and Parallel Queries .. 21-78
Affinity and Parallel DML... 21-78

Miscellaneous Parallel Execution Tuning Tips ... 21-79
Formula for Memory, Users, and Parallel Execution Server Processes............................ 21-80
Setting Buffer Pool Size for Parallel Operations... 21-82
Balancing the Formula ... 21-82
Parallel Execution Space Management Issues .. 21-83
Overriding the Default Degree of Parallelism.. 21-84
Rewriting SQL Statements... 21-85
Creating and Populating Tables in Parallel .. 21-86
Creating Temporary Tablespaces for Parallel Sort and Hash Join 21-87
xiv

Executing Parallel SQL Statements .. 21-88
Using EXPLAIN PLAN to Show Parallel Operations Plans .. 21-89
Additional Considerations for Parallel DML ... 21-89
Creating Indexes in Parallel .. 21-93
Parallel DML Tips... 21-94
Incremental Data Loading in Parallel.. 21-97
Using Hints with Cost-Based Optimization ... 21-100

22 Query Rewrite

Overview of Query Rewrite.. 22-2
Cost-Based Rewrite .. 22-3
When Does Oracle Rewrite a Query? .. 22-4

Enabling Query Rewrite.. 22-7
Initialization Parameters for Query Rewrite .. 22-8
Controlling Query Rewrite ... 22-8
Privileges for Enabling Query Rewrite ... 22-9
Accuracy of Query Rewrite... 22-10

How Oracle Rewrites Queries.. 22-11
Text Match Rewrite Methods.. 22-12
General Query Rewrite Methods ... 22-13
When are Constraints and Dimensions Needed? .. 22-14

Special Cases for Query Rewrite ... 22-45
Query Rewrite Using Partially Stale Materialized Views .. 22-45
Query Rewrite Using Complex Materialized Views... 22-48
Query Rewrite Using Nested Materialized Views .. 22-48
Query Rewrite with CUBE, ROLLUP, and Grouping Sets... 22-50

Did Query Rewrite Occur?.. 22-55
Explain Plan... 22-55
DBMS_MVIEW.EXPLAIN_REWRITE Procedure ... 22-56

Design Considerations for Improving Query Rewrite Capabilities 22-61
Constraints... 22-61
Dimensions .. 22-61
Outer Joins ... 22-61
Text Match ... 22-62
Aggregates... 22-62
xv

Grouping Conditions ... 22-62
Expression Matching.. 22-63
Date Folding .. 22-63
Statistics.. 22-63

Part VI Miscellaneous

A Glossary

B Sample Data Warehousing Schema
xvi

Send Us Your Comments

Oracle9 i Data Warehousing Guide, Release 9.0.1

Part No. A90237-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xvii

xviii

Preface

This manual provides information about Oracle9i’s data warehousing capabilities.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xix

Audience
Oracle9i Data Warehousing Guide is intended for database administrators, system

administrators, and database application developers who perform the following

tasks:

■ design, maintain, and use data warehouses.

To use this document, you need to be familiar with relational database concepts,

basic Oracle server concepts, and the operating system environment under which

you are running Oracle.

Organization
This document contains:

Chapter 1, Data Warehousing Concepts
This chapter contains an overview of data warehousing concepts.

Chapter 2, Logical Design in Data Warehouses
This chapter discusses the logical design of a data warehouse.

Chapter 3, Physical Design in Data Warehouses
This chapter discusses the physical design of a data warehouse.

Chapter 4, Hardware and I/O Considerations in Data Warehouses
This chapter describes some hardware and input-output issues.

Chapter 5, Parallelism and Partitioning in Data Warehouses
This chapter describes the basics of parallelism and partitioning in data

warehouses.

Chapter 6, Indexes
This chapter describes how to use indexes in data warehouses.

Chapter 7, Integrity Constraints
This chapter describes some issues involving constraints.
xx

Chapter 8, Materialized Views
This chapter describes how to use materialized views in data warehouses.

Chapter 9, Dimensions
This chapter describes how to use dimensions in data warehouses.

Chapter 10, Overview of Extraction, Transformation, and Loading
This chapter is an overview of the ETL process.

Chapter 11, Extraction in Data Warehouses
This chapter describes extraction issues.

Chapter 12, Transportation in Data Warehouses
This chapter describes transporting data in data warehouses.

Chapter 13, Loading and Transformation
This chapter describes transforming data in data warehouses.

Chapter 14, Maintaining the Data Warehouse
This chapter describes how to refresh in a data warehousing environment.

Chapter 16, Summary Advisor
This chapter describes how to use the Summary Advisor utility.

Chapter 17, Schema Modeling Techniques
This chapter describes the schemas useful in data warehousing environments.

Chapter 18, SQL for Aggregation in Data Warehouses
This chapter explains how to use SQL aggregation in data warehouses.

Chapter 19, SQL for Analysis in Data Warehouses
This chapter explains how to use analytic functions in data warehouses.

Chapter 20, Advanced Analytic Services
This chapter describes using analytic services in combination with Oracle9i.
xxi

Chapter 21, Using Parallel Execution
This chapter describes how to tune data warehouses using parallel execution.

Chapter 22, Query Rewrite
This chapter describes how to use Query Rewrite.

Appendix A, "Glossary"
This chapter defines commonly used data warehousing terms.

Appendix B, "Sample Data Warehousing Schema"
This chapter details the schema used throughout much of the book.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database Performance Guide and Reference

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm
xxii

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

For additional information, see:

■ The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

■ Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions
This section describes the conventions used in the text and code examples of the

this documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xxiii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xxiv

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxv

Documentation Accessibility
Oracle's goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

technology vendors to address technical obstacles so that our documentation can be

accessible to all of our customers. For additional information, visit the Oracle

Accessibility Program Web site at

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples

in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a

line of text that consists solely of a bracket or brace.
xxvi

Part I

 Concepts

This section introduces basic data warehousing concepts.

It contains the following chapter:

■ Data Warehousing Concepts

 Data Warehousing Con
1

Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation.

It includes:

■ What is a Data Warehouse?

■ Data Warehouse Architectures

Note that this book is meant as a supplement to standard texts about data

warehousing. This book focuses on Oracle-specific material and does not reproduce

in detail material of a general nature. Two standard texts are:

■ The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

■ Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)
cepts 1-1

What is a Data Warehouse?
What is a Data Warehouse?
A data warehouse is a relational database that is designed for query and analysis

rather than for transaction processing. It usually contains historical data derived

from transaction data, but it can include data from other sources. It separates

analysis workload from transaction workload and enables an organization to

consolidate data from several sources.

In addition to a relational database, a data warehouse environment includes an

extraction, transportation, transformation, and loading (ETL) solution, an online

analytical processing (OLAP) engine, client analysis tools, and other applications

that manage the process of gathering data and delivering it to business users.

A common way of introducing data warehousing is to refer to the characteristics of

a data warehouse as set forth by William Inmon:

■ Subject Oriented

■ Integrated

■ Nonvolatile

■ Time Variant

Subject Oriented
Data warehouses are designed to help you analyze data. For example, to learn more

about your company’s sales data, you can build a warehouse that concentrates on

sales. Using this warehouse, you can answer questions like "Who was our best

customer for this item last year?" This ability to define a data warehouse by subject

matter, sales in this case, makes the data warehouse subject oriented.

Integrated
Integration is closely related to subject orientation. Data warehouses must put data

from disparate sources into a consistent format. They must resolve such problems

as naming conflicts and inconsistencies among units of measure. When they achieve

this, they are said to be integrated.

See Also: Chapter 10, "Overview of Extraction, Transformation,

and Loading"
1-2 Data Warehousing Guide

What is a Data Warehouse?
Nonvolatile
Nonvolatile means that, once entered into the warehouse, data should not change.

This is logical because the purpose of a warehouse is to enable you to analyze what

has occurred.

Time Variant
In order to discover trends in business, analysts need large amounts of data. This is

very much in contrast to online transaction processing (OLTP) systems, where

performance requirements demand that historical data be moved to an archive. A

data warehouse’s focus on change over time is what is meant by the term time
variant.

Contrasting OLTP and Data Warehousing Environments
Figure 1–1 illustrates key differences between an OLTP system and a data

warehouse.

Figure 1–1 Contrasting OLTP and Data Warehousing Environments

One major difference between the types of system is that data warehouses are not

usually in third normal form (3NF), a type of data normalization common in OLTP

environments.

Few

Rare

Normalized
DBMS

Many

Indexes

Derived Data
and Aggregates

Duplicated
Data

Joins

Many

Complex data
structures

(3NF databases)
Multidimensional
data structures

OLTP Data Warehouse

Common

Denormalized
DBMS

Some
 Data Warehousing Concepts 1-3

What is a Data Warehouse?
Data warehouses and OLTP systems have very different requirements. Here are

some examples of differences between typical data warehouses and OLTP systems:

■ Workload

Data warehouses are designed to accommodate ad hoc queries. You might not

know the workload of your data warehouse in advance, so a data warehouse

should be optimized to perform well for a wide variety of possible query

operations.

OLTP systems support only predefined operations. Your applications might be

specifically tuned or designed to support only these operations.

■ Data Modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly

or weekly) using bulk data modification techniques. The end users of a data

warehouse do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification

statements to the database. The OLTP database is always up to date, and reflects

the current state of each business transaction.

■ Schema Design

Data warehouses often use denormalized or partially denormalized schemas

(such as a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize

update/insert/delete performance, and to guarantee data consistency.

■ Typical Operations

A typical data warehouse query scans thousands or millions of rows. For

example, "Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,

"Retrieve the current order for this customer."

■ Historical Data

Data warehouses usually store many months or years of data. This is to support

historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP

system stores only historical data as needed to successfully meet the

requirements of the current transaction.
1-4 Data Warehousing Guide

Data Warehouse Architectures
Data Warehouse Architectures
Data warehouses and their architectures vary depending upon the specifics of an

organization's situation. Three common architectures are:

■ Data Warehouse Architecture (Basic)

■ Data Warehouse Architecture (with a Staging Area)

■ Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)
Figure 1–2 shows a simple architecture for a data warehouse. End users directly

access data derived from several source systems through the data warehouse.

Figure 1–2 Architecture of a Data Warehouse

In Figure 1–2, the metadata and raw data of a traditional OLTP system is present, as

is an additional type of data, summary data. Summaries are very valuable in data

warehouses because they pre-compute long operations in advance. For example, a

typical data warehouse query is to retrieve something like August sales. Summaries

in Oracle are called materialized views.

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining
 Data Warehousing Concepts 1-5

Data Warehouse Architectures
Data Warehouse Architecture (with a Staging Area)
In Figure 1–2, you need to clean and process your operational data before putting it

into the warehouse. You can do this programmatically, although most data

warehouses use a staging area instead. A staging area simplifies building

summaries and general warehouse management. Figure 1–3 illustrates this typical

architecture.

Figure 1–3 Architecture of a Data Warehouse with a Staging Area

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata
1-6 Data Warehousing Guide

Data Warehouse Architectures
Data Warehouse Architecture (with a Staging Area and Data Marts)
Although the architecture in Figure 1–3 is quite common, you may want to

customize your warehouse’s architecture for different groups within your

organization. You can do this by adding data marts, which are systems designed for

a particular line of business. Figure 1–4 illustrates an example where purchasing,

sales, and inventories are separated. In this example, a financial analyst might want

to analyze historical data for purchases and sales.

Figure 1–4 Architecture of a Data Warehouse with a Staging Area and Data Marts

Note: Data marts are an important part of many warehouses, but

they are not the focus of this book.

See Also: Data Mart Suites documentation for further information

regarding data marts

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata
 Data Warehousing Concepts 1-7

Data Warehouse Architectures
1-8 Data Warehousing Guide

Part II

Logical Design

This section deals with the issues in logical design in a data warehouse.

It contains the following chapter:

■ Logical Design in Data Warehouses

 Logical Design in Data Wareho
2

Logical Design in Data Warehouses

This chapter tells you how to design a data warehousing environment and includes

the following topics:

■ Logical versus Physical Design in Data Warehouses

■ Creating a Logical Design

■ Data Warehousing Schemas

■ Data Warehousing Objects
uses 2-1

Logical versus Physical Design in Data Warehouses
Logical versus Physical Design in Data Warehouses
Your organization has decided to build a data warehouse. You have defined the

business requirements and agreed upon the scope of your application, and created a

conceptual design. Now you need to translate your requirements into a system

deliverable. To do so, you create the logical and physical design for the data

warehouse. You then define:

■ The specific data content

■ Relationships within and between groups of data

■ The system environment supporting your data warehouse

■ The data transformations required

■ The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the

logical design, you look at the logical relationships among the objects. In the

physical design, you look at the most effective way of storing and retrieving the

objects as well as handling them from a transportation and backup/recovery

perspective.

Orient your design toward the needs of the end users. End users typically want to

perform analysis and look at aggregated data, rather than at individual

transactions. However, end users might not know what they need until they see it.

In addition, a well-planned design allows for growth and changes as the needs of

users change and evolve.

By beginning with the logical design, you focus on the information requirements

and save the implementation details for later.

Creating a Logical Design
A logical design is conceptual and abstract. You do not deal with the physical

implementation details yet. You deal only with defining the types of information

that you need.

One technique you can use to model your organization's logical information

requirements is entity-relationship modeling. Entity-relationship modeling involves

identifying the things of importance (entities), the properties of these things

(attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical

relationships called entities and attributes. An entity represents a chunk of
2-2 Data Warehousing Guide

Data Warehousing Schemas
information. In relational databases, an entity often maps to a table. An attribute is

a component of an entity that helps define the uniqueness of the entity. In relational

databases, an attribute maps to a column.

To be sure that your data is consistent, you need to use unique identifiers. A

unique identifier is something you add to tables so that you can differentiate

between the same item when it appears in different places. In a physical design, this

is usually a primary key.

While entity-relationship diagramming has traditionally been associated with

highly normalized models such as OLTP applications, the technique is still useful

for data warehouse design in the form of dimensional modeling. In dimensional

modeling, instead of seeking to discover atomic units of information (such as

entities and attributes) and all of the relationships between them, you identify

which information belongs to a central fact table and which information belongs to

its associated dimension tables. You identify business subjects or fields of data,

define relationships between business subjects, and name the attributes for each

subject.

Your logical design should result in (1) a set of entities and attributes corresponding

to fact tables and dimension tables and (2) a model of operational data from your

source into subject-oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design

tool such as Oracle Warehouse Builder (specifically designed to support modeling

the ETL process) or Oracle Designer (a general purpose modeling tool).

Data Warehousing Schemas
A schema is a collection of database objects, including tables, views, indexes, and

synonyms. You can arrange schema objects in the schema models designed for data

warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design

the data warehouse schema. You can sometimes get the source model from your

company's enterprise data model and reverse-engineer the logical data model for

the data warehouse from this. The physical implementation of the logical data

See Also: Chapter 9, "Dimensions" for further information

regarding dimensions

See Also: Oracle Designer and Oracle Warehouse Builder
documentation sets
 Logical Design in Data Warehouses 2-3

Data Warehousing Schemas
warehouse model may require some changes to adapt it to your system

parameters—size of machine, number of users, storage capacity, type of network,

and software.

Star Schemas
The star schema is the simplest data warehouse schema. It is called a star schema

because the diagram resembles a star, with points radiating from a center. The

center of the star consists of one or more fact tables and the points of the star are the

dimension tables, as shown in Figure 2–1.

Figure 2–1 Star Schema

The most natural way to model a data warehouse is as a star schema, only one join

establishes the relationship between the fact table and any one of the dimension

tables.

A star schema optimizes performance by keeping queries simple and providing fast

response time. All the information about each level is stored in one row.

Other Schemas
Some schemas in data warehousing environments use third normal form rather

than star schemas. Another schema that is sometimes useful is the snowflake

schema, which is a star schema with normalized dimensions in a tree structure.

Note: The Oracle Corporation recommends that you choose a star

schema unless you have a clear reason not to.

customers

products

Dimension Table Dimension Table

channels

sales
(amount_sold,
quantity_sold)

times

Fact Table
2-4 Data Warehousing Guide

Data Warehousing Objects
Data Warehousing Objects
The following types of objects are commonly used in dimensional data warehouse

schemas:

Fact tables are the large tables in your warehouse schema that store business

measurements. Fact tables typically contain facts and foreign keys to the dimension

tables. Fact tables represent data, usually numeric and additive, that can be

analyzed and examined. Examples include sales , cost , and profit .

Dimension tables, also known as lookup or reference tables, contain the relatively

static data in the warehouse. Dimension tables store the information you normally

use to contain queries. Dimension tables are usually textual and descriptive and

you can use them as the row headers of the result set. Examples are customers or

products .

Fact Tables
A fact table typically has two types of columns: those that contain numeric facts

(often called measurements), and those that are foreign keys to dimension tables. A

fact table contains either detail-level facts or facts that have been aggregated. Fact

tables that contain aggregated facts are often called summary tables. A fact table

usually contains facts with the same level of aggregation. Though most facts are

additive, they can also be semi-additive or non-additive. Additive facts can be

aggregated by simple arithmetical addition. A common example of this is sales.

Non-additive facts cannot be added at all. An example of this is averages.

Semi-additive facts can be aggregated along some of the dimensions and not along

others. An example of this is inventory levels, where you cannot tell what a level

means simply by looking at it.

Creating a New Fact Table
You must define a fact table for each star schema. From a modeling standpoint, the

primary key of the fact table is usually a composite key that is made up of all of its

foreign keys.

See Also: Chapter 17, "Schema Modeling Techniques", for further

information regarding star and snowflake schemas in data

warehouses and Oracle9i Database Concepts for further conceptual

material
 Logical Design in Data Warehouses 2-5

Data Warehousing Objects
Dimension Tables
A dimension is a structure, often composed of one or more hierarchies, that

categorizes data. Dimensional attributes help to describe the dimensional value.

They are normally descriptive, textual values. Several distinct dimensions,

combined with facts, enable you to answer business questions. Commonly used

dimensions are customers, products, and time.

Dimension data is typically collected at the lowest level of detail and then

aggregated into higher level totals that are more useful for analysis. These natural

rollups or aggregations within a dimension table are called hierarchies.

Hierarchies
Hierarchies are logical structures that use ordered levels as a means of organizing

data. A hierarchy can be used to define data aggregation. For example, in a time
dimension, a hierarchy might aggregate data from the month level to the quarter
level to the year level. A hierarchy can also be used to define a navigational drill

path and to establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it.

Data values at lower levels aggregate into the data values at higher levels. A

dimension can be composed of more than one hierarchy. For example, in the

product dimension, there might be two hierarchies—one for product categories

and one for product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use

hierarchies to enable you to drill down into your data to view different levels of

granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business

structures. For example, a divisional multilevel sales organization.

Hierarchies impose a family structure on dimension values. For a particular level

value, a value at the next higher level is its parent, and values at the next lower level

are its children. These familial relationships enable analysts to access data quickly.

Levels A level represents a position in a hierarchy. For example, a time dimension

might have a hierarchy that represents data at the month , quarter , and year
levels. Levels range from general to specific, with the root level as the highest or

most general level. The levels in a dimension are organized into one or more

hierarchies.
2-6 Data Warehousing Guide

Data Warehousing Objects
Level Relationships Level relationships specify top-to-bottom ordering of levels from

most general (the root) to most specific information. They define the parent-child

relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For

example, the database can aggregate an existing sales revenue on a quarterly base to

a yearly aggregation when the dimensional dependencies between quarter and year

are known.

Typical Dimension Hierarchy
Figure 2–2 illustrates a dimension hierarchy based on customers .

Figure 2–2 Typical Levels in a Dimension Hierarchy

Unique Identifiers
Unique identifiers are specified for one distinct record in a dimension table.

Artificial unique identifiers are often used to avoid the potential problem of unique

identifiers changing. Unique identifiers are represented with the # character. For

example, #customer_id .

See Also: Chapter 9, "Dimensions" and Chapter 22, "Query

Rewrite" for further information regarding hierarchies

region

customer

country_name

subregion
 Logical Design in Data Warehouses 2-7

Data Warehousing Objects
Relationships
Relationships guarantee business integrity. An example is that if a business sells

something, there is obviously a customer and a product. Designing a relationship

between the sales information in the fact table and the dimension tables products

and customers enforces the business rules in databases.

Typical Example of Data Warehousing Objects and Their Relationships
Figure 2–3 illustrates a common example of a sales fact table and dimension tables

customers , products , promotions , times , and channels .

Figure 2–3 Typical Data Warehousing Objects

times

products
#prod_id

Dimension Table Dimension Table

channels

customers
#cust_id
cust_last_name
cust_city
cust_state_province

Fact Table

Hierarchy

Relationship

Dimension Table

promotions

sales
cust_id
prod_id
2-8 Data Warehousing Guide

Part III

 Physical Design

This section deals with the physical design of a data warehouse.

It contains the following chapters:

■ Physical Design in Data Warehouses

■ Hardware and I/O Considerations in Data Warehouses

■ Parallelism and Partitioning in Data Warehouses

■ Indexes

■ Integrity Constraints

■ Materialized Views

■ Dimensions

 Physical Design in Data Wareho
3

Physical Design in Data Warehouses

This chapter describes the physical design of a data warehousing environment, and

includes the following:

■ Moving from Logical to Physical Design

■ Physical Design
uses 3-1

Moving from Logical to Physical Design
Moving from Logical to Physical Design
Logical design is what you draw with a pen and paper or design with Oracle

Warehouse Builder or Designer before building your warehouse. Physical design is

the creation of the database with SQL statements.

During the physical design process, you convert the data gathered during the

logical design phase into a description of the physical database structure. Physical

design decisions are mainly driven by query performance and database

maintenance aspects. For example, choosing a partitioning strategy that meets

common query requirements enables Oracle to take advantage of partition pruning,

a way of narrowing a search before performing it.

Physical Design
During the logical design phase, you defined a model for your data warehouse

consisting of entities, attributes, and relationships. The entities are linked together

using relationships. Attributes are used to describe the entities. The unique

identifier (UID) distinguishes between one instance of an entity and another.

Figure 3–1 offers you a graphical way of looking at the different ways of thinking

about logical and physical designs.

See Also:

■ Chapter 5, "Parallelism and Partitioning in Data Warehouses"

for further information regarding partitioning

■ Oracle9i Database Concepts for further conceptual material

regarding all design matters
3-2 Data Warehousing Guide

Physical Design
Figure 3–1 Logical Design Compared with Physical Design

During the physical design process, you translate the expected schemas into actual

database structures. At this time, you have to map:

■ Entities to Tables

■ Relationships to Foreign Key Constraints

■ Attributes to Columns

■ Primary Unique Identifiers to Primary Key Constraints

■ Unique Identifiers to Unique Key Constraints

Entities

Unique
Identifiers

Attributes

Relationships

Tables

Physical (as Tablespaces)

Columns

Integrity
Constraints

Indexes

Logical

Materialized
Views

Dimensions

- Primary Key
- Foreign Key
- Not Null
 Physical Design in Data Warehouses 3-3

Physical Design
Physical Design Structures
Once you have converted your logical design to a physical one, you will need to

create some or all of the following structures:

■ Tablespaces

■ Tables and Partitioned Tables

■ Views

■ Integrity Constraints

■ Views

■ Dimensions

Some of these structures require disk space. Others exist only in the data dictionary.

Additionally, the following structures may be created for performance

improvement:

■ Indexes and Partitioned Indexes

■ Materialized Views

Tablespaces
A tablespace consists of one or more datafiles, which are physical structures within

the operating system you are using. A datafile is associated with only one

tablespace. From a design perspective, tablespaces are containers for physical

design structures.

Tablespaces need to be separated by differences. For example, tables should be

separated from their indexes and small tables should be separated from large tables.

Tablespaces should also represent logical business units if possible. Because a

tablespace is the coarsest granularity for backup and recovery or the transportable

tablespaces mechanism, the logical business design affects availability and

maintenance operations.

See Also: Chapter 4, "Hardware and I/O Considerations in Data

Warehouses" for further information regarding tablespaces
3-4 Data Warehousing Guide

Physical Design
Tables and Partitioned Tables
Tables are the basic unit of data storage. They are the container for the expected

amount of raw data in your data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem

of supporting very large data volumes by allowing you to decompose them into

smaller and more manageable pieces. The main design criterion for partitioning is

manageability, though you will also see performance benefits in most cases because

of partition pruning or intelligent parallel processing. For example, you might

choose a partitioning strategy based on a sales transaction date and a monthly

granularity. If you have four years’ worth of data, you can delete a month’s data as

it becomes older than four years with a single, quick DDL statement and load new

data while only affecting 1/48th of the complete table. Business questions regarding

the last quarter will only affect three months, which is equivalent to three partitions,

or 3/48ths of the total volume.

Partitioning large tables improves performance because each partitioned piece is

more manageable. Typically, you partition based on transaction dates in a data

warehouse. For example, each month, one month’s worth of data can be assigned its

own partition.

Views
A view is a tailored presentation of the data contained in one or more tables or

other views. A view takes the output of a query and treats it as a table. Views do not

require any space in the database.

Integrity Constraints
Integrity constraints are used to enforce business rules associated with your

database and to prevent having invalid information in the tables. Integrity

constraints in data warehousing differ from constraints in OLTP environments. In

OLTP environments, they primarily prevent the insertion of invalid data into a

record, which is not a big problem in data warehousing environments because

accuracy has already been guaranteed. In data warehousing environments,

constraints are only used for query rewrite. NOT NULL constraints are particularly

common in data warehouses. Under some specific circumstances, constraints need

See Also: Chapter 5, "Parallelism and Partitioning in Data

Warehouses" and Chapter 14, "Maintaining the Data Warehouse"

See Also: Oracle9i Database Concepts
 Physical Design in Data Warehouses 3-5

Physical Design
space in the database. These constraints are in the form of the underlying unique

index.

Indexes and Partitioned Indexes
Indexes are optional structures associated with tables or clusters. In addition to the

classical B-tree indexes, bitmap indexes are very common in data warehousing

environments. Bitmap indexes are optimized index structures for set-oriented

operations. Additionally, they are necessary for some optimized data access

methods such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning

strategy is not dependent upon the table structure. Partitioning indexes makes it

easier to manage the warehouse during refresh and improves query performance.

Materialized Views
Materialized views are query results that have been stored in advance so

long-running calculations are not necessary when you actually execute your SQL

statements. From a physical design point of view, materialized views resemble

tables or partitioned tables.

Dimensions
A dimension is a schema object that defines hierarchical relationships between

columns or column sets. A hierarchical relationship is a functional dependency

from one level of a hierarchy to the next one. A dimension is a container of logical

relationships and does not require any space in the database. A typical dimension is

city, state (or province), region, and country.

See Also: Chapter 7, "Integrity Constraints" and Chapter 22,

"Query Rewrite"

See Also: Chapter 6, "Indexes" and Chapter 14, "Maintaining the

Data Warehouse"

See Also: Chapter 8, "Materialized Views"

See Also: Chapter 9, "Dimensions"
3-6 Data Warehousing Guide

 Hardware and I/O Considerations in Data Wareho
4

Hardware and I/O Considerations in Data

Warehouses

This chapter explains some of the hardware and I/O issues in a data warehousing

environment and includes the following topics:

■ Overview of Hardware and I/O Considerations in Data Warehouses

■ RAID Configurations
uses 4-1

Overview of Hardware and I/O Considerations in Data Warehouses
Overview of Hardware and I/O Considerations in Data Warehouses
Data warehouses are normally very concerned with I/O performance. This is in

contrast to OLTP systems, where the potential bottleneck depends on user

workload and application access patterns. When a system is constrained by I/O

capabilities, it is I/O bound, or has an I/O bottleneck. When a system is constrained

by having limited CPU resources, it is CPU bound, or has a CPU bottleneck.

Database architects frequently use RAID (Redundant Arrays of Inexpensive Disks)

systems to overcome I/O bottlenecks and to provide higher availability. RAID can

be implemented in several levels, ranging from 0 to 7. Many hardware vendors

have enhanced these basic levels to lessen the impact of some of the original

restrictions at a given RAID level. The most common RAID levels are discussed

later in this chapter.

Why Stripe the Data?
To avoid I/O bottlenecks during parallel processing or concurrent query access, all

tablespaces accessed by parallel operations should be striped. Striping divides the

data of a large table into small portions and stores them on separate datafiles on

separate disks. As shown in Figure 4–1, tablespaces should always stripe over at least
as many devices as CPUs. In this example, there are four CPUs, two controllers, and

five devices containing tablespaces.

Figure 4–1 Striping Objects Over at Least as Many Devices as CPUs

See Also: Oracle9i Database Concepts for further details about disk

striping

5555

4

0001

0002

tablespace 1

3

2

1

tablespace 2

tablespace 3

tablespace 44

0001

0002

3

2

1

4

0001

0002

3

2

1

4

tablespace 5

0001

0002

3

2

1

Controller 2Controller 1
4-2 Data Warehousing Guide

Overview of Hardware and I/O Considerations in Data Warehouses
You should stripe tablespaces for tables, indexes, rollback segments, and temporary

tablespaces. You must also spread the devices over controllers, I/O channels, and

internal buses. To make striping effective, you must make sure that enough

controllers and other I/O components are available to support the bandwidth of

parallel data movement into and out of the striped tablespaces.

You can use RAID systems or you can perform striping manually through careful

data file allocation to tablespaces.

The striping of data across physical drives has several consequences besides

balancing I/O. One additional advantage is that logical files can be created that are

larger than the maximum size usually supported by an operating system. There are

disadvantages however. Striping means that it is no longer possible to locate a

single datafile on a specific physical drive. This can cause the loss of some

application tuning capabilities. Also, it can cause database recovery to be more

time-consuming. If a single physical disk in a RAID array needs recovery, all the

disks that are part of that logical RAID device must be involved in the recovery.

Automatic Striping
Automatic striping is usually flexible and easy to manage. It supports many

scenarios such as multiple users running sequentially or as single users running in

parallel. Two main advantages make automatic striping preferable to manual

striping, unless the system is very small or availability is the main concern:

■ For parallel scan operations (such as full table scan or fast full scan), operating

system striping increases the number of disk seeks. Nevertheless, this is largely

offset by the large I/O size (DB_BLOCK_SIZE * MULTIBLOCK_READ_COUNT),

which should enable this operation to reach the maximum I/O throughput for

your platform. This maximum is in general limited by the number of controllers

or I/O buses of the platform, not by the number of disks (unless you have a

small configuration and/or are using large disks).

■ For index probes (for example, within a nested loop join or parallel index range

scan), operating system striping enables you to avoid hot spots by evenly

distributing I/O across the disks.

Oracle Corporation recommends using a large stripe size of at least 64 KB. Stripe

size must be at least as large as the I/O size. If stripe size is larger than I/O size by a

factor of two or four, then trade-offs may arise. The large stripe size can be

advantageous because it lets the system perform more sequential operations on

each disk; it decreases the number of seeks on disk. Another advantage of large

stripe sizes is that more users can work on the system without affecting each other.

The disadvantage is that large stripes reduce the I/O parallelism, so fewer disks are
 Hardware and I/O Considerations in Data Warehouses 4-3

Overview of Hardware and I/O Considerations in Data Warehouses
simultaneously active. If you encounter problems, increase the I/O size of scan

operations (for example, from 64 KB to 128 KB), instead of changing the stripe size.

The maximum I/O size is platform-specific (in a range, for example, of 64 KB to 1

MB).

With automatic striping, from a performance standpoint, the best layout is to stripe

data, indexes, and temporary tablespaces across all the disks of your platform. This

layout is also appropriate when you have little information about system usage. To

increase availability, it may be more practical to stripe over fewer disks to prevent a

single disk value from affecting the entire data warehouse. However, for better

performance, it is crucial to stripe all objects over multiple disks. In this way,

maximum I/O performance (both in terms of throughput and in number of I/Os

per second) can be reached when one object is accessed by a parallel operation. If

multiple objects are accessed at the same time (as in a multiuser configuration),

striping automatically limits the contention.

Manual Striping
You can use manual striping on all platforms. To do this, add multiple files to each

tablespace, with each file on a separate disk. If you use manual striping correctly,

your system’s performance improves significantly. However, you should be aware

of several drawbacks that can adversely affect performance if you do not stripe

correctly.

When using manual striping, the degree of parallelism (DOP) is more a function of

the number of disks than of the number of CPUs. First, it is necessary to have one

server process per datafile to drive all the disks and limit the risk of experiencing

I/O bottlenecks. Second, manual striping is very sensitive to datafile size skew,

which can affect the scalability of parallel scan operations. Third, manual striping

requires more planning and set-up effort than automatic striping.

Local and Global Striping
Local striping, which applies only to partitioned tables and indexes, is a form of

non-overlapping, disk-to-partition striping. Each partition has its own set of disks

and files, as illustrated in Figure 4–2. Disk access does not overlap, nor do files.

Note: The Oracle Corporation recommends that you choose

automatic striping unless you have a clear reason not to.
4-4 Data Warehousing Guide

Overview of Hardware and I/O Considerations in Data Warehouses
An advantage of local striping is that if one disk fails, it does not affect other

partitions. Moreover, you still have some striping even if you have data in only one

partition.

A disadvantage of local striping is that you need many disks to implement it—each

partition requires multiple disks of its own. Another major disadvantage is that

when partitions are reduced to a few or even a single partition, the system retains

limited I/O bandwidth. As a result, local striping is not optimal for parallel

operations. For this reason, consider local striping only if your main concern is

availability, rather than parallel execution.

Figure 4–2 Local Striping

Global striping, illustrated in Figure 4–3, entails overlapping disks and partitions.

Stripe 1

Stripe 2

Partition 1 Partition 2

Stripe 3

Stripe 4���
���
���
���
������
 Hardware and I/O Considerations in Data Warehouses 4-5

Overview of Hardware and I/O Considerations in Data Warehouses
Figure 4–3 Global Striping

Global striping is advantageous if you have partition pruning and need to access

data in only one partition. Spreading the data in that partition across many disks

improves performance for parallel execution operations. A disadvantage of global

striping is that if one disk fails, all partitions are affected if the disks are not

mirrored.

Analyzing Striping
Two considerations arise when analyzing striping issues for your applications. First,

consider the cardinality of the relationships among the objects in a storage system.

Second, consider what you can optimize in your striping effort: full table scans,

general tablespace availability, partition scans, or some combinations of these goals.

Cardinality and optimization are discussed in the following section.

See Also: Oracle9i Database Concepts for information on disk

striping and partitioning. For MPP systems, see your operating

system specific Oracle documentation regarding the advisability of

disabling disk affinity when using operating system striping

Stripe 1

Stripe 2

Partition 1 Partition 2
4-6 Data Warehousing Guide

Overview of Hardware and I/O Considerations in Data Warehouses
Cardinality of Storage Object Relationships
To analyze striping, consider the following relationships:

Figure 4–4 Cardinality of Relationships

Figure 4–4 shows the cardinality of the relationships among objects in a typical

Oracle storage system. For every table there may be:

■ p partitions, shown in Figure 4–4 as a one-to-many relationship

■ s partitions for every tablespace, shown in Figure 4–4 as a many-to-one

relationship

■ f files for every tablespace, shown in Figure 4–4 as a one-to-many relationship

■ m files to n devices, shown in Figure 4–4 as a many-to-many relationship

Goals. You may wish to stripe an object across devices to achieve one of three goals:

■ Goal 1: To optimize full table scans, place a table on many devices.

■ Goal 2: To optimize availability, restrict the tablespace to a few devices.

■ Goal 3: To optimize partition scans, achieve intra-partition parallelism by

placing each partition on many devices.

To attain both Goals 1 and 2 (having the table reside on many devices, with the

highest possible availability), maximize the number of partitions p and minimize

the number of partitions per tablespace s.

To maximize Goal 1 but with minimal intra-partition parallelism, place each

partition in its own tablespace. Do not used striped files, and use one file per

tablespace.

To minimize Goal 2 and thereby minimize availability, set f and n equal to 1. When

you minimize availability, you maximize intra-partition parallelism. Goal 3 conflicts

with Goal 2 because you cannot simultaneously maximize the formula for Goal 3

and minimize the formula for Goal 2. You must compromise to achieve some of the

benefits of both goals.

table partitions tablespace devicesfiles

1 p s 1 1 f m n
 Hardware and I/O Considerations in Data Warehouses 4-7

Overview of Hardware and I/O Considerations in Data Warehouses
Goal 1: To optimize full table scans. Having a table reside on many devices

ensures scalable full table scans.

To calculate the optimal number of devices per table, use this formula:

You can do this by having t partitions, with every partition in its own tablespace, if

every tablespace has one file, and these files are not striped.

If the table is not partitioned, but is in one tablespace in one file, stripe it over n
devices.

There are a maximum of t partitions, every partition in its own tablespace, f files in

each tablespace, each tablespace on a striped device:

Goal 2: To optimize availability. Restricting each tablespace to a small number of

devices and having as many partitions as possible helps you achieve high

availability.

Availability is maximized when f = n = m = 1 and p is much greater than 1.

Number of devices per table = p x f x n
s x m

t x 1 / p x 1 x 1, up to t devices

1 x 1 x n devices

t x f x n devices

Number of devices per tablespace = f x n
m

4-8 Data Warehousing Guide

RAID Configurations
Goal 3: To optimize partition scans. Achieving intra-partition parallelism is

advantageous because partition scans are scalable. To do this, place each partition

on many devices.

Partitions can reside in a tablespace that can have many files. You can have either

■ Many files per tablespace or

■ A striped file

RAID Configurations
RAID systems, also called disk arrays, can be hardware- or software-based systems.

The difference between the two is how CPU processing of I/O requests is handled.

In software-based RAID systems, the operating system or an application level

handles the I/O request, while in hardware-based RAID systems, disk controllers

handle I/O requests. RAID usage is transparent to Oracle. All the features specific

to a given RAID configuration are handled by the operating system and Oracle does

not need to worry about them.

Primary logical database structures have different access patterns during read and

write operations. Therefore, different RAID implementations will be better suited

for these structures. The purpose of this chapter is to discuss some of the basic

decisions you must make when designing the physical layout of your data

warehouse implementation. It is not meant as a replacement for operating system

and storage documentation or a consultant’s analysis of your I/O requirements.

There are advantages and disadvantages to using RAID, and those depend on the

RAID level under consideration and the specific system in question. The most

common configurations in data warehouses are:

■ RAID 0 (Striping)

■ RAID 1 (Mirroring)

■ RAID 0+1 (Striping and Mirroring)

■ RAID 5

See Also: Oracle9i Database Performance Guide and Reference for

more information regarding RAID

Number of devices per partition = f x n
s x m
 Hardware and I/O Considerations in Data Warehouses 4-9

RAID Configurations
RAID 0 (Striping)
RAID 0 is a non-redundant disk array, so there will be data loss with any disk

failure. If something on the disk becomes corrupted, you cannot restore or

recalculate that data. RAID 0 provides the best write throughput performance

because it never updates redundant information. Read throughput is also quite

good, but you can improve it by combining RAID 0 with RAID 1.

Oracle does not recommend using RAID 0 systems without RAID 1 because the loss

of one disk in the array will affect the complete system and make it unavailable.

RAID 0 systems are used mainly in environments where performance and capacity

are the primary concerns rather than availability.

RAID 1 (Mirroring)
RAID 1 provides full data redundancy by complete mirroring of all files. If a disk

failure occurs, the mirrored copy is used to transparently service the request. RAID

1 mirroring requires twice as much disk space as there is data. In general, RAID 1 is

most useful for systems where complete redundancy of data is required and disk

space is not an issue. For large datafiles or systems with less disk space, RAID 1

may not be feasible, because it requires twice as much disk space as there is data.

Writes under RAID 1 are no faster and no slower than usual. Reading data can be

faster than on a single disk because the system can choose to read the data from the

disk that can respond faster.

RAID 0+1 (Striping and Mirroring)
RAID 0+1 offers the best performance of all RAID systems, but costs the most

because you double the number of drives. Basically, it combines the performance of

RAID 0 and the fault tolerance of RAID 1. You should consider RAID 0+1 for

datafiles with high write rates, for example, table datafiles, and online and archived

redo log files.

Striping, Mirroring, and Media Recovery
Striping affects media recovery. Loss of a disk usually means loss of access to all

objects stored on that disk. If all datafiles in a database are striped over all disks,

then loss of any disk stops the entire database. Furthermore, you may need to

restore all these database files from backups, even if each file has only a small

fraction of its total data stored on the failed disk.

Often, the same system that provides striping also provides mirroring. With the

declining price of disks, mirroring can provide an effective supplement to, but not a
4-10 Data Warehousing Guide

RAID Configurations
substitute for, backups and log archives. Mirroring can help your system recover

from disk failures more quickly than using a backup, but mirroring is not as robust.

Mirroring does not protect against software faults and other problems against

which an independent backup would protect your system.

You can effectively use mirroring if you are able to reload read-only data from the

original source tapes. If you have a disk failure, restoring data from backups can

involve lengthy downtime, whereas restoring from a mirrored disk enables your

system to get back online quickly or even stay online while the crashed disk is

replaced and resynchronized.

RAID 5
RAID 5 systems provide redundancy for the original data while storing parity

information as well. The parity information is striped over all disks in the system to

avoid a single disk as a bottleneck during write operations. The I/O throughput of

RAID 5 systems depends upon the implementation and the striping size. For a

typical RAID 5 system, the throughput is normally lower than RAID 0 + 1

configurations. In particular, the performance for high concurrent write operations

such as parallel load can be poor.

Many vendors use memory (as battery-backed cache) in front of the disks to

increase throughput and to become comparable to RAID 0+1. Contact your disk

array vendor for specific details.
 Hardware and I/O Considerations in Data Warehouses 4-11

RAID Configurations
The Importance of Specific Analysis
A data warehouse’s requirements are at many levels, and resolving a problem at

one level can cause problems with another. For example, resolving a problem with

query performance during the ETL process can affect load performance. You cannot

simply maximize query performance at the expense of an unrealistic load time. If

you do, your implementation will fail. In addition, a particular process is dependent

upon the warehouse’s architecture. If you decide to change something in your

system, it can cause performance to become unacceptable in another part of the

warehousing process. An example of this is switching from using database files to

flat files during the loading process. Flat files can have different read performance.

This chapter is not meant as a replacement for operating system and storage

documentation. Your system’s requirements will require detailed analysis prior to

implementation. Only a detailed data warehouse architecture and I/O analysis will

help you when deciding hardware and I/O strategies.

See Also: Oracle9i Database Performance Guide and Reference for

details regarding how to analyze I/O requirements
4-12 Data Warehousing Guide

 Parallelism and Partitioning in Data Wareho
5

Parallelism and Partitioning in Data

Warehouses

Data warehouses often contain large tables and require techniques both for

managing these large tables and for providing good query performance across these

large tables. This chapter discusses two key methodologies for addressing these

needs: parallelism and partitioning.

These topics are discussed:

■ Overview of Parallel Execution

■ Granules of Parallelism

■ Partitioning Design Considerations

Note: Parallel execution is available only with the Oracle9i
Enterprise Edition.
uses 5-1

Overview of Parallel Execution
Overview of Parallel Execution
Parallel execution dramatically reduces response time for data-intensive operations

on large databases typically associated with decision support systems (DSS) and

data warehouses. You can also implement parallel execution on certain types of

online transaction processing (OLTP) and hybrid systems. Parallel execution is

sometimes called parallelism. Simply expressed, parallelism is the idea of breaking

down a task so that, instead of one process doing all of the work in a query, many

processes do part of the work at the same time. An example of this is when four

processes handle four different quarters in a year instead of one process handling

all four quarters by itself. The improvement in performance can be quite high. In

this case, each quarter will be a partition, a smaller and more manageable unit of an

index or table.

When to Implement Parallel Execution
The most common use of parallel execution is in DSS environments. Complex

queries, such as those involving joins of several tables or searches of very large

tables, are often best executed in parallel.

Parallel execution is useful for many types of operations that access significant

amounts of data. Parallel execution improves processing for:

■ Large table scans and joins

■ Creation of large indexes

■ Partitioned index scans

■ Bulk inserts, updates, and deletes

■ Aggregations and copying

You can also use parallel execution to access object types within an Oracle database.

For example, use parallel execution to access LOBs (large objects).

Parallel execution benefits systems that have all of the following characteristics:

■ Symmetric multi-processors (SMP), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Underutilized or intermittently used CPUs (for example, systems where CPU

usage is typically less than 30%)

See Also: Oracle9i Database Concepts for further conceptual

information regarding parallel execution
5-2 Data Warehousing Guide

Granules of Parallelism
■ Sufficient memory to support additional memory-intensive processes such as

sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not

significantly improve performance. In fact, parallel execution can reduce system

performance on overutilized systems or systems with small I/O bandwidth.

Granules of Parallelism
Different parallel operations use different types of parallelism. The optimal physical

database layout depends on the parallel operations that are most prevalent in your

application or even of the necessity of using partitions.

The basic unit of work in parallelism is a called a granule. Oracle divides the

operation being parallelized (for example, a table scan, table update, or index

creation) into granules. Parallel execution processes execute the operation one

granule at a time. The number of granules and their size correlates with the degree

of parallelism (DOP). It also affects how well the work is balanced across query

server processes. There is no way you can enforce a specific granule strategy as

Oracle makes this decision internally.

Block Range Granules
Block range granules are the basic unit of most parallel operations, even on

partitioned tables. Therefore, from an Oracle perspective, the degree of parallelism

is not related to the number of partitions.

Block range granules are ranges of physical blocks from a table. The number and

the size of the granules are computed during runtime by Oracle to optimize and

balance the work distribution for all affected parallel execution servers. The number

and size of granules are dependent upon the size of the object and the DOP. Block

range granules do not depend on static preallocation of tables or indexes. During

the computation of the granules, Oracle takes the DOP into account and tries to

assign granules from different datafiles to each of the parallel execution servers to

avoid contention whenever possible. Additionally, Oracle considers the disk affinity

of the granules on MPP systems to take advantage of the physical proximity

between parallel execution servers and disks.

When block range granules are used predominantly for parallel access to a table or

index, administrative considerations (such as recovery or using partitions for

See Also: Chapter 21, "Using Parallel Execution" for further

information regarding parallel execution requirements
 Parallelism and Partitioning in Data Warehouses 5-3

Partitioning Design Considerations
deleting portions of data) might influence partition layout more than performance

considerations.

Partition Granules
When Oracle uses partition granules, a query server process works on an entire

partition or subpartition of a table or index. Because partition granules are statically

determined by the structure of the table or index when a table or index is created,

partition granules do not give you the flexibility in parallelizing an operation that

block granules do. The maximum allowable DOP is the number of partitions. This

might limit the utilization of the system and the load balancing across parallel

execution servers.

When Oracle uses partition granules for parallel access to a table or index, you

should use a relatively large number of partitions (ideally, three times the DOP), so

that Oracle can effectively balance work across the query server processes.

Partition granules are the basic unit of parallel index range scans and of parallel

operations that modify multiple partitions of a partitioned table or index. These

operations include parallel update, parallel delete, parallel creation of partitioned

indexes, and parallel creation of partitioned tables.

Partitioning Design Considerations
In conjunction with parallel execution, partitioning can improve performance in

data warehouses. The following are the main design considerations for partitioning:

■ Types of Partitioning

■ Partition Pruning

■ Partition-wise Joins

Types of Partitioning
This section describes the partitioning features that significantly enhance data

access and improve overall application performance. This is especially true for

applications that access tables and indexes with millions of rows and many

gigabytes of data.

See Also: Oracle9i Database Concepts for information on disk

striping and partitioning
5-4 Data Warehousing Guide

Partitioning Design Considerations
Partitioned tables and indexes facilitate administrative operations by enabling these

operations to work on subsets of data. For example, you can add a new partition,

organize an existing partition, or drop a partition and cause less than a second of

interruption to a read-only application.

Using the partitioning methods described in this section can help you tune SQL

statements to avoid unnecessary index and table scans (using partition pruning).

You can also improve the performance of massive join operations when large

amounts of data (for example, several million rows) are joined together by using

partition-wise joins. Finally, partitioning data greatly improves manageability of

very large databases and dramatically reduces the time required for administrative

tasks such as backup and restore.

Granularity can be easily added or removed to the partitioning scheme by splitting

partitions. Thus, if a table’s data is skewed to fill some partitions more than others,

the ones that contain more data can be split to achieve a more even distribution.

Partitioning also allows one to swap partitions with a table. By being able to easily

add, remove, or swap a large amount of data quickly, swapping can be used to keep

a large amount of data that is being loaded inaccessible until loading is completed,

or can be used as a way to stage data between different phases of use. Some

examples are current day’s transactions or online archives.

Partitioning Methods
Oracle offers four partitioning methods:

■ Range Partitioning

■ Hash Partitioning

■ List Partitioning

■ Composite Partitioning

Each partitioning method has different advantages and design considerations.

Thus, each method is more appropriate for a particular situation.

See Also: Oracle9i Database Concepts for an introduction to the

ideas behind partitioning
 Parallelism and Partitioning in Data Warehouses 5-5

Partitioning Design Considerations
Range Partitioning Range partitioning maps data to partitions based on ranges of

partition key values that you establish for each partition. It is the most common

type of partitioning and is often used with dates. For example, you might want to

partition sales data into monthly partitions.

Range partitioning maps rows to partitions based on ranges of column values.

Range partitioning is defined by the partitioning specification for a table or index:

PARTITION BY RANGE (column_list)

and by the partitioning specifications for each individual partition:

VALUES LESS THAN (value_list)

where:

column_list

is an ordered list of columns that determines the partition to which a row or an

index entry belongs. These columns are called the partitioning columns. The values

in the partitioning columns of a particular row constitute that row’s partitioning

key.

value_list

is an ordered list of values for the columns in the column list. Each value must be

either a literal or a TO_DATE or RPAD function with constant arguments. Only the

VALUES LESS THAN clause is allowed. This clause specifies a non-inclusive upper

bound for the partitions. All partitions, except the first, have an implicit low value

specified by the VALUES LESS THAN literal on the previous partition. Any binary

values of the partition key equal to or higher than this literal are added to the next

higher partition. Highest partition being where MAXVALUE literal is defined.

Keyword, MAXVALUE, represents a virtual infinite value that sorts higher than any

other value for the data type, including the null value.

Example 5–1 Range Partitioning Example

The statement below creates a table sales_range that is range partitioned on the

sales_date field.

CREATE TABLE sales_range
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY RANGE(sales_date)
5-6 Data Warehousing Guide

Partitioning Design Considerations
(
PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE('02/01/2000','DD/MM/YYYY')),
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE('03/01/2000','DD/MM/YYYY')),
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE('04/01/2000','DD/MM/YYYY')),
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000','DD/MM/YYYY')),
);

Hash Partitioning Hash partitioning maps data to partitions based on a hashing

algorithm that Oracle applies to a partitioning key that you identify. The hashing

algorithm evenly distributes rows among partitions, giving partitions

approximately the same size. Hash partitioning is the ideal method for distributing

data evenly across devices. Hash partitioning is a good and easy-to-use alternative

to range partitioning when data is not historical and there is no obvious column or

column list where logical range partition pruning can be advantageous.

Oracle uses a linear hashing algorithm and to prevent data from clustering within

specific partitions, you should define the number of partitions by a power of two

(for example, 2, 4, 8).

Example 5–2 Hash Partitioning Example

The statement below creates a table sales_hash , which is hash partitioned on the

salesman_id field. data1 , data2 , data3 , and data4 are tablespace names.

CREATE TABLE sales_hash
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
week_no NUMBER(2))
PARTITION BY HASH(salesman_id)
PARTITIONS 4
STORE IN (data1, data2, data3, data4);

List Partitioning List partitioning enables you to explicitly control how rows map to

partitions. You do this by specifying a list of discrete values for the partitioning

See Also: Oracle9i SQL Reference for partitioning syntax

See Also: Oracle9i SQL Reference for partitioning syntax

Note: You cannot define alternate hashing algorithms for

partitions.
 Parallelism and Partitioning in Data Warehouses 5-7

Partitioning Design Considerations
column in the description for each partition. This is different from range

partitioning, where a range of values is associated with a partition and with hash

partitioning, where you have no control of the row-to-partition mapping. The

advantage of list partitioning is that you can group and organize unordered and

unrelated sets of data in a natural way.

Example 5–3 List Partitioning Example

CREATE TABLE sales_list
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_state VARCHAR2(20),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY LIST(sales_state)
(
PARTITION sales_west VALUES IN('California', 'Hawaii'),
PARTITION sales_east VALUES IN ('New York', 'Virginia', 'Florida'),
PARTITION sales_central VALUES IN('Texas', 'Illinois'),
);

Composite Partitioning Composite partitioning combines range and hash partitioning.

Oracle first distributes data into partitions according to boundaries established by

the partition ranges. Then Oracle uses a hashing algorithm to further divide the

data into subpartitions within each range partition.

Index Partitioning
You can choose whether or not to inherit the partitioning strategy of the underlying

tables. You can create both local and global indexes on a table partitioned by range,

hash, or composite methods. Local indexes inherit the partitioning attributes of

their related tables. For example, if you create a local index on a composite table,

Oracle automatically partitions the local index using the composite method.

Oracle supports only range partitioning for global partitioned indexes. You cannot

partition global indexes using the hash or composite partitioning methods.

See Also: Oracle9i SQL Reference for partitioning syntax

See Also: Chapter 6, "Indexes"
5-8 Data Warehousing Guide

Partitioning Design Considerations
Performance Issues for Range, List, Hash, and Composite Partitioning
This section describes performance issues for:

■ When to Use Range Partitioning

■ When to Use Hash Partitioning

■ When to Use List Partitioning

■ When to Use Composite Partitioning

When to Use Range Partitioning Range partitioning is a convenient method for

partitioning historical data. The boundaries of range partitions define the ordering

of the partitions in the tables or indexes.

Range partitioning organizes data by time intervals on a column of type DATE.

Thus, most SQL statements accessing range partitions focus on timeframes. An

example of this is a SQL statement similar to "select data from a particular period in

time." In such a scenario, if each partition represents data for one month, the query

"find data of month 98-DEC" needs to access only the December partition of year 98.

This reduces the amount of data scanned to a fraction of the total data available, an

optimization method called partition pruning.

Range partitioning is also ideal when you periodically load new data and purge old

data. It is easy to add or drop partitions.

It is common to keep a rolling window of data, for example keeping the past 36

months’ worth of data online. Range partitioning simplifies this process. To add

data from a new month, you load it into a separate table, clean it, index it, and then

add it to the range-partitioned table using the EXCHANGE PARTITIONstatement, all

while the original table remains online. Once you add the new partition, you can

drop the trailing month with the DROP PARTITION statement. The alternative to

using the DROP PARTITION statement can be to archive the partition and make it

read only, but this works only when your partitions are in separate tablespaces.

In conclusion, consider using range partitioning when:

■ Very large tables are frequently scanned by a range predicate on a good

partitioning column, such as ORDER_DATE or PURCHASE_DATE. Partitioning

the table on that column enables partition pruning.

■ You want to maintain a rolling window of data

■ You cannot complete administrative operations, such as backup and restore, on

large tables in an allotted time frame, but you can divide them into smaller

logical pieces based on the partition range column
 Parallelism and Partitioning in Data Warehouses 5-9

Partitioning Design Considerations
This SQL example creates the table sales for a period of two years, 1999 and 2000,

and partitions it by range according to the column s_salesdate to separate the

data into eight quarters, each corresponding to a partition. In the example, the

partitioning granularity is not restricted to any logical range.

CREATE TABLE sales
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY RANGE(s_saledate)
 (PARTITION sal99q1 VALUES LESS THAN (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')),
 PARTITION sal00q1 VALUES LESS THAN (TO_DATE('01-APR-2000', 'DD-MON-YYYY')),
 PARTITION sal00q2 VALUES LESS THAN (TO_DATE('01-JUL-2000', 'DD-MON-YYYY')),
 PARTITION sal00q3 VALUES LESS THAN (TO_DATE('01-OCT-2000', 'DD-MON-YYYY')),
 PARTITION sal00q4 VALUES LESS THAN (TO_DATE('01-JAN-2001', 'DD-MON-YYYY')));

When to Use Hash Partitioning The way Oracle distributes data in hash partitions does

not correspond to a business or a logical view of the data, as it does in range

partitioning. Consequently, hash partitioning is not an effective way to manage

historical data. However, hash partitions share some performance characteristics

with range partitions. For example, partition pruning is limited to equality

predicates. You can also use partition-wise joins, parallel index access, and parallel

DML.

As a general rule, use hash partitioning for these purposes:

■ To improve the availability and manageability of large tables or to enable

PDML in tables that do not store historical data.

■ To avoid data skew among partitions. Hash partitioning is an effective means of

distributing data because Oracle hashes the data into a number of partitions,

each of which can reside on a separate device. Thus, data is evenly spread over

a sufficient number of devices to maximize I/O throughput. Similarly, you can

use hash partitioning to distribute evenly data among the nodes of an MPP

platform that uses Oracle Real Application Clusters.

■ If it is important to use partition pruning and partition-wise joins according to a

partitioning key that is mostly constrained by a distinct value or value list.

See Also: "Partition-wise Joins" on page 5-15
5-10 Data Warehousing Guide

Partitioning Design Considerations
If you add or merge a hashed partition, Oracle automatically rearranges the rows to

reflect the change in the number of partitions and subpartitions. The hash function

that Oracle uses is especially designed to limit the cost of this reorganization.

Instead of reshuffling all the rows in the table, Oracles uses an "add partition" logic

that splits one and only one of the existing hashed partitions. Conversely, Oracle

coalesces a partition by merging two existing hashed partitions.

Although the hash function’s use of "add partition" logic dramatically improves the

manageability of hash partitioned tables, it means that the hash function can cause a

skew if the number of partitions of a hash partitioned table, or the number of

subpartitions in each partition of a composite table, is not a power of two. In the

worst case, the largest partition can be twice the size of the smallest. So for optimal

performance, create a number of partitions and subpartitions per partition that is a

power of two. For example, 2, 4, 8, 16, 32, 64, 128, and so on.

This example creates four hashed partitions for the table sales using the column

s_productid as the partition key:

Example 5–4 Hash Partitioning Example

CREATE TABLE sales
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY HASH(s_productid)
PARTITIONS 4;

Specify partition names only if you want some of the partitions to have different

properties from those of the table. Otherwise, Oracle automatically generates

internal names for the partitions. Also, you can use the STORE IN clause to assign

hash partitions to tablespaces in a round-robin manner.

When to Use List Partitioning You should use list partitioning when you want to

specifically map rows to partitions based on discrete values.

Note: In hash partitioning, partition pruning uses only equality or

IN -list predicates.

See Also: Oracle9i SQL Reference for partitioning syntax
 Parallelism and Partitioning in Data Warehouses 5-11

Partitioning Design Considerations
Unlike range and hash partitioning, multi-column partition keys are not supported

for list partitioning. If a table is partitioned by list, the partitioning key can only

consist of a single column of the table.

When to Use Composite Partitioning Composite partitioning offers the benefits of both

range and hash partitioning. With composite partitioning, Oracle first partitions by

range. Then within each range Oracle creates subpartitions and distributes data

within them using the same hashing algorithm it uses for hash partitioned tables.

Data placed in composite partitions is logically ordered only by the boundaries that

define the range level partitions. The partitioning of data within each partition has

no logical organization beyond the identity of the partition to which the

subpartitions belong.

Consequently, tables and local indexes partitioned using the composite method:

■ Support historical data at the partition level

■ Support the use of subpartitions as units of parallelism for parallel operations

such as PDML or space management and backup and recovery

■ Are eligible for partition pruning and partition-wise joins on the range and hash

dimensions

Using Composite Partitioning Use the composite partitioning method for tables and

local indexes if:

■ Partitions must have a logical meaning to efficiently support historical data

■ The contents of a partition can be spread across multiple tablespaces, devices,

or nodes (of an MPP system)

■ You require both partition pruning and partition-wise joins even when the

pruning and join predicates use different columns of the partitioned table

■ You require a degree of parallelism that is greater than the number of partitions

for backup, recovery, and parallel operations

Most large tables in a data warehouse should use range partitioning. Composite

partitioning should be used for very large tables or for data warehouses with a

well-defined need for the conditions listed above. When using the composite

method, Oracle stores each subpartition on a different segment. Thus, the

subpartitions may have properties that differ from the properties of the table or

from the partition to which the subpartitions belong.

The following example partitions the table sales by range on the column s_
saledate to create four partitions that order data by time. Then, within each range
5-12 Data Warehousing Guide

Partitioning Design Considerations
partition, the data is further subdivided into 16 subpartitions by hash on the

column s_productid .

Example 5–5 Composite Partitioning Example

CREATE TABLE sales(
 s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 PARTITION BY RANGE (s_saledate)
 SUBPARTITION BY HASH (s_productid) SUBPARTITIONS 16
 (PARTITION sal99q1 VALUES LESS THAN (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')));

Each hashed subpartition contains sales data for a single quarter ordered by

product code. The total number of subpartitions is 4x16 or 64.

Partition Pruning
Partition pruning is an essential performance feature for data warehouses. In

partition pruning, the cost-based optimizer analyzes FROM and WHERE clauses in

SQL statements to eliminate unneeded partitions when building the partition access

list. This enables Oracle to perform operations only on those partitions that are

relevant to the SQL statement. Oracle prunes partitions when you use range,

equality, and IN -list predicates on the range partitioning columns, and when you

use equality and IN -list predicates on the hash partitioning columns.

Partition pruning dramatically reduces the amount of data retrieved from disk and

shortens the use of processing time, improving query performance and resource

utilization. If you partition the index and table on different columns (with a global,

partitioned index), partition pruning also eliminates index partitions even when the

partitions of the underlying table cannot be eliminated.

On composite partitioned objects, Oracle can prune at both the range partition level

and at the hash subpartition level using the relevant predicates. Refer to the table

sales from the previous example, partitioned by range on the column s_
salesdate and subpartitioned by hash on column s_productid , and consider

the following example:
 Parallelism and Partitioning in Data Warehouses 5-13

Partitioning Design Considerations
Example 5–6 Partition Pruning Example

SELECT * FROM sales
WHERE s_saledate BETWEEN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')) AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')) AND s_productid = 1200;

Oracle uses the predicate on the partitioning columns to perform partition pruning

as follows:

■ When using range partitioning, Oracle accesses only partitions sal99q2 and

sal99q3 .

■ When using hash subpartitioning, Oracle accesses only the one subpartition in

each partition that stores the rows with s_productid=1200 . The mapping

between the subpartition and the predicate is calculated based on Oracle’s

internal hash distribution function.

Pruning Using DATE Columns
In "Partition Pruning Example" on page 5-14, the date value was fully specified as

four digits for the year using the TO_DATE function, just as it was in the underlying

table’s range partitioning description ("Composite Partitioning Example" on

page 5-13). While this is the recommended format for specifying date values, the

optimizer can prune partitions using the predicates on s_salesdate when you

use other formats, as in the following example:

Example 5–7 Partition Pruning with DATE Example

SELECT * FROM sales
WHERE s_saledate BETWEEN TO_DATE('01-JUL-99', 'DD-MON-RR') AND
 TO_DATE('01-OCT-99', 'DD-MON-RR') AND s_productid = 1200;

Although "Partition Pruning with DATE Example" on page 5-14 uses the

DD-MON-RR format, which is not the same as the base partition in "Hash

Partitioning Example" on page 5-11, the optimizer can still prune properly.

If you execute an EXPLAIN PLAN statement on the query, the PARTITION_START
and PARTITION_STOP columns of the output table do not specify which partitions

Oracle is accessing. Instead, you see the keyword KEY for both columns. The

keyword KEY for both columns means that partition pruning occurs at run-time. It

can also affect the execution plan because the information about the pruned

partitions is missing compared to the same statement using the same TO_DATE
function than the partition table definition.
5-14 Data Warehousing Guide

Partitioning Design Considerations
Avoiding I/O Bottlenecks
To avoid I/O bottlenecks, when Oracle is not scanning all partitions because some

have been eliminated by pruning, spread each partition over several devices. On

MPP systems, spread those devices over multiple nodes.

Partition-wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data

exchanged among parallel execution servers when joins execute in parallel. This

significantly reduces response time and improves the use of both CPU and memory

resources. In Oracle Real Application Cluster environments, partition-wise joins

also avoid or at least limit the data traffic over the interconnect, which is the key to

achieving good scalability for massive join operations.

Partition-wise joins can be full or partial. Oracle decides which type of join to use.

Full Partition-wise Joins
A full partition-wise join divides a large join into smaller joins between a pair of

partitions from the two joined tables. To use this feature, you must equipartition

both tables on their join keys. For example, consider a large join between a sales

table and a customer table on the column customerid. The query "find the records of

all customers who bought more than 100 articles in Quarter 3 of 1999" is a typical

example of a SQL statement performing such a join. The following is an example of

this:

SELECT c_customer_name, COUNT(*)
FROM sales, customer
WHERE s_customerid = c_customerid

AND s_saledate BETWEEN TO_DATE('01-JUL-1999', 'DD-MON-YYYY') AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')
 GROUP BY c_customer_name HAVING
 COUNT(*) > 100;

This large join is typical in data warehousing environments. The entire customer

table is joined with one quarter of the sales data. In large data warehouse

applications, this might mean joining millions of rows. The join method to use in

that case is obviously a hash join. You can reduce the processing time for this hash

join even more if both tables are equipartitioned on the customerid column. This

enables a full partition-wise join.

When you execute a full partition-wise join in parallel, the granule of parallelism, as

described under "Granules of Parallelism" on page 5-3, is a partition. As a result, the
 Parallelism and Partitioning in Data Warehouses 5-15

Partitioning Design Considerations
degree of parallelism is limited to the number of partitions. For example, you

require at least 16 partitions to set the degree of parallelism of the query to 16.

You can use various partitioning methods to equipartition both tables on the

column customerid with 16 partitions. These methods are described in these

subsections.

Hash - Hash This is the simplest method: the customer and sales tables are both

partitioned by hash into 16 partitions, on the s_customerid and c_customerid
columns. This partitioning method enables full partition-wise join when the tables

are joined on s_customerid and c_customerid , both representing the same

customer identification number. Because you are using the same hash function to

distribute the same information (customer ID) into the same number of hash

partitions, you can join the equivalent partitions. They are storing the same values.

In serial, this join is performed between pairs of matching hash partitions, one at a

time. When one partition pair has been joined, the join of another partition pair

begins. The join completes when the 16 partition pairs have been processed.

Parallel execution of a full partition-wise join is a straightforward parallelization of

the serial execution. Instead of joining one partition pair at a time, 16 partition pairs

are joined in parallel by the 16 query servers. Figure 5–1 illustrates the parallel

execution of a full partition-wise join.

Note: A pair of matching hash partitions is defined as one

partition with the same partition number from each table. For

example, with full partition-wise joins we join partition 0 of Sales

with partition 0 of customer, partition 1 of sales with partition 1

of customer , and so on.
5-16 Data Warehousing Guide

Partitioning Design Considerations
Figure 5–1 Parallel Execution of a Full Partition-wise Join

In Figure 5–1, assume that the degree of parallelism and the number of partitions

are the same, in other words, 16 for both. Defining more partitions than the degree

of parallelism may improve load balancing and limit possible skew in the

execution. If you have more partitions than query servers, when one query server

completes the join of one pair of partitions, it requests that the query coordinator

give it another pair to join. This process repeats until all pairs have been processed.

This method enables the load to be balanced dynamically when the number of

partition pairs is greater than the degree of parallelism, for example, 64 partitions

with a degree of parallelism of 16.

In Oracle Real Application Cluster environments running on shared-nothing or

MPP platforms, placing partitions on nodes is critical to achieving good scalability.

To avoid remote I/O, both matching partitions should have affinity to the same

node. Partition pairs should be spread over all nodes to avoid bottlenecks and to

use all CPU resources available on the system.

Nodes can host multiple pairs when there are more pairs than nodes. For example,

with an 8-node system and 16 partition pairs, each node receives two pairs.

Note: To guarantee an equal work distribution, the number of

partitions should always be a multiple of the degree of parallelism.

See Also: Oracle9i Real Application Clusters Concepts for more

information on data affinity

Server

H1

H1

Server

H2

H2

Server

H3

H3

Server

H16

H16

. . .
Sales

Customer

Parallel
Execution
Servers
 Parallelism and Partitioning in Data Warehouses 5-17

Partitioning Design Considerations
Composite - Hash This method is a variation of the hash-hash method. The sales
table is a typical example of a table storing historical data. For all the reasons

mentioned under the heading "When to Use Range Partitioning" on page 5-9, range

is the logical initial partitioning method.

For example, assume you want to partition the sales table into eight partitions by

range on the column s_salesdate . Also assume you have two years and that each

partition represents a quarter. Instead of using range partitioning, you can use

composite partitioning to enable a full partition-wise join while preserving the

partitioning on s_salesdate . Partition the sales table by range on s_
salesdate and then subpartition each partition by hash on s_customerid using

16 subpartitions per partition, for a total of 128 subpartitions. The customer table

can still use hash partitioning with 16 partitions.

When you use the method just described, a full partition-wise join works similarly

to the one created by the hash/hash method. The join is still divided into 16 smaller

joins between hash partition pairs from both tables. The difference is that now each

hash partition in the sales table is composed of a set of 8 subpartitions, one from

each range partition.

Figure 5–2 illustrates how the hash partitions are formed in the sales table. Each

cell represents a subpartition. Each row corresponds to one range partition, for a

total of 8 range partitions. Each range partition has 16 subpartitions. Each column

corresponds to one hash partition for a total of 16 hash partitions; each hash

partition has 8 subpartitions. Note that hash partitions can be defined only if all

partitions have the same number of subpartitions, in this case, 16.

Hash partitions are implicit in a composite table. However, Oracle does not record

them in the data dictionary, and you cannot manipulate them with DDL commands

as you can range partitions.
5-18 Data Warehousing Guide

Partitioning Design Considerations
Figure 5–2 Range and Hash Partitions of A Composite Table

Composite-hash partitioning is effective because it lets you combine pruning (on s_
salesdate) with a full partition-wise join (on customerid). In the previous

example query, pruning is achieved by scanning only the subpartitions

corresponding to Q3 of 1999, in other words, row number 3 in Figure 5–2. Oracle

then joins these subpartitions with the customer table, using a full partition-wise

join.

All characteristics of the hash-hash partition-wise join apply to the composite-hash

partition-wise join. In particular, for this example, these two points are common to

both methods:

■ The degree of parallelism for this full partition-wise join cannot exceed 16. Even

though the sales table has 128 subpartitions, it has only 16 hash partitions.

1999 - Q1

1999 - Q2

1999 - Q3

1999 - Q4

2000 - Q1

2000 - Q2

2000 - Q3

2000 - Q4

Hash partition #9

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16
sa

le
sd

at
e

customerid
 Parallelism and Partitioning in Data Warehouses 5-19

Partitioning Design Considerations
■ The rules for data placement on MPP systems apply here. The only difference is

that a hash partition is now a collection of subpartitions. You must ensure that

all these subpartitions are placed on the same node as the matching hash

partition from the other table. For example, in Figure 5–2, store hash partition 9

of the sales table shown by the eight circled subpartitions, on the same node

as hash partition 9 of the customer table.

Composite - Composite (Hash Dimension) If needed, you can also partition the

customer table by the composite method. For example, you partition it by range

on a postal code column to enable pruning based on postal code. You then

subpartition it by hash on customerid using the same number of partitions (16) to

enable a partition-wise join on the hash dimension.

Range - Range You can also join range partitioned tables in a partition-wise manner,

but this is relatively uncommon. This is more complex to implement because you

must know the distribution of the data before performing the join. Furthermore, if

you do not correctly identify the partition bounds so that you have partitions of

equal size, data skew during the execution may result.

The basic principle for using range-range is the same as for using hash-hash: you

must equipartition both tables. This means that the number of partitions must be

the same and the partition bounds must be identical. For example, assume that you

know in advance that you have 10 million customers, and that the values for

customerid vary from 1 to 10,000,000. In other words, you have 10 million

possible different values. To create 16 partitions, you can range partition both tables,

sales on c_customerid and customer on s_customerid . You should define

partition bounds for both tables in order to generate partitions of the same size. In

this example, partition bounds should be defined as 625001, 1250001, 1875001, ...

10000001, so that each partition contains 625000 rows.

Range - Composite, Composite - Composite (Range Dimension) Finally, you can also

subpartition one or both tables on another column. Therefore, the range/composite

and composite/composite methods on the range dimension are also valid for

enabling a full partition-wise join on the range dimension.

Partial Partition-wise Joins
Oracle can perform partial partition-wise joins only in parallel. Unlike full

partition-wise joins, partial partition-wise joins require you to partition only one

table on the join key, not both tables. The partitioned table is referred to as the

reference table. The other table may or may not be partitioned. Partial

partition-wise joins are more common than full partition-wise joins.
5-20 Data Warehousing Guide

Partitioning Design Considerations
To execute a partial partition-wise join, Oracle dynamically repartitions the other

table based on the partitioning of the reference table. Once the other table is

repartitioned, the execution is similar to a full partition-wise join.

The performance advantage that partial partition-wise joins have over joins in

non-partitioned tables is that the reference table is not moved during the join

operation. Parallel joins between non-partitioned tables require both input tables to

be redistributed on the join key. This redistribution operation involves exchanging

rows between parallel execution servers. This is a CPU-intensive operation that can

lead to excessive interconnect traffic in Oracle Real Application Cluster

environments. Partitioning large tables on a join key, either a foreign or primary

key, prevents this redistribution every time the table is joined on that key. Of course,

if you choose a foreign key to partition the table, which is the most common

scenario, select a foreign key that is involved in many queries.

To illustrate partial partition-wise joins, consider the previous sales/customer
example. Assume that s_customer is not partitioned or is partitioned on a column

other than c_customerid . Because sales is often joined with customer on

customerid , and because this join dominates our application workload, partition

sales on s_customerid to enable partial partition-wise join every time

customer and sales are joined. As in full partition-wise join, we have several

alternatives:

Hash The simplest method to enable a partial partition-wise join is to partition

sales by hash on c_customerid . The number of partitions determines the

maximum degree of parallelism, because the partition is the smallest granule of

parallelism for partial partition-wise join operations.

The parallel execution of a partial partition-wise join is illustrated in Figure 5–3,

which assumes that both the degree of parallelism and the number of partitions of

sales are 16. The execution involves two sets of query servers: one set, labeled set 1
on the figure, scans the customer table in parallel. The granule of parallelism for the

scan operation is a range of blocks.

Rows from customer that are selected by the first set, in this case all rows, are

redistributed to the second set of query servers by hashing customerid . For

example, all rows in customer that could have matching rows in partition H1 of

sales are sent to query server 1 in the second set. Rows received by the second set

of query servers are joined with the rows from the corresponding partitions in

sales . Query server number 1 in the second set joins all customer rows that it

receives with partition H1 of sales .
 Parallelism and Partitioning in Data Warehouses 5-21

Partitioning Design Considerations
Figure 5–3 Partial Partition-wise Join

Considerations for full partition-wise joins also apply to partial partition-wise joins:

■ The degree of parallelism does not need to equal the number of partitions. In

Figure 5–3, the query executes with two sets of 16 query servers. In this case,

Oracle assigns 1 partition to each query server of the second set. Again, the

number of partitions should always be a multiple of the degree of parallelism.

■ In Oracle Real Application Cluster environments on shared-nothing platforms

(MPPs), each hash partition of sales should preferably have affinity to only

one node in order to avoid remote I/Os. Also, spread partitions over all nodes

to avoid bottlenecks and use all CPU resources available on the system. A node

can host multiple partitions when there are more partitions than nodes.

See Also: Oracle9i Real Application Clusters Concepts for more

information on data affinity

Server

H1

Server

H2

Server

H16

. . .

. . .

. . .

sales

Parallel
execution
server
set 2

Parallel
execution
server
set 1

customers

re-distribution
hash(c_customerid)

JOIN

SELECT
5-22 Data Warehousing Guide

Partitioning Design Considerations
Composite As with full partition-wise joins, the prime partitioning method for the

sales table is to use the range method on column s_salesdate . This is because

sales is a typical example of a table that stores historical data. To enable a partial

partition-wise join while preserving this range partitioning, subpartition sales by

hash on column s_customerid using 16 subpartitions per partition. Pruning and

partial partition-wise joins can be used together if a query joins customer and

sales and if the query has a selection predicate on s_salesdate .

When sales is composite, the granule of parallelism for a partial partition-wise

join is a hash partition and not a subpartition. Refer to Figure 5–2 for an illustration

of a hash partition in a composite table. Again, the number of hash partitions

should be a multiple of the degree of parallelism. Also, on an MPP system, ensure

that each hash partition has affinity to a single node. In the previous example, the

eight subpartitions composing a hash partition should have affinity to the same

node.

Range Finally, you can use range partitioning on s_customerid to enable a partial

partition-wise join. This works similarly to the hash method, but a side effect of

range partitioning is that the resulting data distribution could be skewed if the size

of the partitions differs. Moreover, this method is more complex to implement

because it requires prior knowledge of the values of the partitioning column that is

also a join key.

Benefits of Partition-wise Joins
Partition-wise joins offer benefits described in this section:

■ Reduction of Communications Overhead

■ Reduction of Memory Requirements

Reduction of Communications Overhead When executed in parallel, partition-wise joins

reduce communications overhead. This is because, in the default case, parallel

execution of a join operation by a set of parallel execution servers requires the

redistribution of each table on the join column into disjoint subsets of rows. These

disjoint subsets of rows are then joined pair-wise by a single parallel execution

server.

Oracle can avoid redistributing the partitions because the two tables are already

partitioned on the join column. This enables each parallel execution server to join a

pair of matching partitions.
 Parallelism and Partitioning in Data Warehouses 5-23

Partitioning Design Considerations
This improved performance from using parallel execution is even more noticeable

in Oracle Real Application Cluster configurations with internode parallel execution.

Partition-wise joins dramatically reduce interconnect traffic. Using this feature is for

large DSS configurations that use Oracle Real Application Clusters.

Currently, most Oracle Real Application Clusters platforms, such as MPP and SMP

clusters, provide limited interconnect bandwidths compared with their processing

powers. Ideally, interconnect bandwidth should be comparable to disk bandwidth,

but this is seldom the case. As a result, most join operations in Oracle Real

Application Clusters experience high interconnect latencies without parallel

execution of partition-wise joins.

Reduction of Memory Requirements Partition-wise joins require less memory than the

equivalent join operation of the complete data set of the tables being joined.

In the case of serial joins, the join is performed at the same time on a pair of

matching partitions. If data is evenly distributed across partitions, the memory

requirement is divided by the number of partitions. There is no skew.

In the parallel case, memory requirements depend on the number of partition pairs

that are joined in parallel. For example, if the degree of parallelism is 20 and the

number of partitions is 100, 5 times less memory is required because only 20 joins of

two partitions are performed at the same time. The fact that partition-wise joins

require less memory has a direct effect on performance. For example, the join

probably does not need to write blocks to disk during the build phase of a hash join.

Performance Considerations for Parallel Partition-wise Joins
The cost-based optimizer weighs the advantages and disadvantages when deciding

whether or not to use partition-wise joins.

■ In range partitioning where partition sizes differ, data skew increases response

time; some parallel execution servers take longer than others to finish their

joins. Oracle recommends the use of hash (sub)partitioning to enable

partition-wise joins because hash partitioning, if the number of partitions is a

power of two, limits the risk of skew.
5-24 Data Warehousing Guide

Partitioning Design Considerations
■ The number of partitions used for partition-wise joins should, if possible, be a

multiple of the number of query servers. With a degree of parallelism of 16, for

example, you can have 16, 32, or even 64 partitions. If there is an even number

of partitions, some parallel execution servers are used less than others. For

example, if there are 17 evenly distributed partition pairs, only one pair will

work on the last join, while the other pairs will have to wait. This is because, in

the beginning of the execution, each parallel execution server works on a

different partition pair. At the end of this first phase, only one pair is left. Thus,

a single parallel execution server joins this remaining pair while all other

parallel execution servers are idle.

■ Sometimes, parallel joins can cause remote I/Os. For example, on Oracle Real

Application Cluster environments running on MPP configurations, if a pair of

matching partitions is not collocated on the same node, a partition-wise join

requires extra internode communication due to remote I/O. This is because

Oracle must transfer at least one partition to the node where the join is

performed. In this case, it is better to explicitly redistribute the data than to use

a partition-wise join.
 Parallelism and Partitioning in Data Warehouses 5-25

Partitioning Design Considerations
5-26 Data Warehousing Guide

 In
6

Indexes

This chapter describes how to use indexes in a data warehousing environment and

discusses the following types of index:

■ Bitmap Indexes

■ B-tree Indexes

■ Local Indexes Versus Global Indexes

See Also: Oracle9i Database Concepts for general information

regarding indexing
dexes 6-1

Bitmap Indexes
Bitmap Indexes
Bitmap indexes are widely used in data warehousing environments. The

environments typically have large amounts of data and ad hoc queries, but a low

level of concurrent DML transactions. For such applications, bitmap indexing

provides:

■ Reduced response time for large classes of ad hoc queries

■ Reduced storage requirements compared to other indexing techniques

■ Dramatic performance gains even on hardware with a relatively small number

of CPUs or a small amount of memory

■ Efficient maintenance during parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively

expensive in terms of space because the indexes can be several times larger than the

data in the table. Bitmap indexes are typically only a fraction of the size of the

indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A

regular index stores a list of rowids for each key corresponding to the rows with

that key value. In a bitmap index, a bitmap for each key value replaces a list of

rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means

that the row with the corresponding rowid contains the key value. A mapping

function converts the bit position to an actual rowid, so that the bitmap index

provides the same functionality as a regular index. If the number of different key

values is small, bitmap indexes save space.

Bitmap indexes are most effective for queries that contain multiple conditions in the

WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before

the table itself is accessed. This improves response time, often dramatically.

Note: Bitmap indexes are available only if you have purchased the

Oracle9i Enterprise Edition. See Oracle9i Database New Features for

more information about the features available in Oracle9i and the

Oracle9i Enterprise Edition.
6-2 Data Warehousing Guide

Bitmap Indexes
Benefits for Data Warehousing Applications
Bitmap indexes are primarily intended for data warehousing applications where

users query the data rather than update it. They are not suitable for OLTP

applications with large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes as they do with

traditional indexes. Bitmap indexing also supports parallel create indexes and

concatenated indexes.

Cardinality
The advantages of using bitmap indexes are greatest for low cardinality columns in

which the number of distinct values is small compared with the number of rows in

the table. A gender column, which has only two distinct values (male and female),

is ideal for a bitmap index. However, data warehouse administrators also build

bitmap indexes on columns with higher cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values

is a candidate for a bitmap index. A bitmap index on this column can out-perform a

B-tree index, particularly when this column is often queried in conjunction with

other indexed columns. In fact, in a typical data warehouse environments, a bitmap

indexes can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with

many possible values, such as customer_name or phone_number . In a data

warehouse, B-tree indexes should be used only for unique columns or other

columns with very high cardinalities (that is, columns that are almost unique). The

majority of indexes in a data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve

query performance. AND and OR conditions in the WHERE clause of a query can be

resolved quickly by performing the corresponding Boolean operations directly on

the bitmaps before converting the resulting bitmap to rowids. If the resulting

number of rows is small, the query can be answered quickly without resorting to a

full table scan.

See Also: Chapter 17, "Schema Modeling Techniques" for further

information about the usage of bitmap indexes in data

warehousing environments
 Indexes 6-3

Bitmap Indexes
Example 6–1 Bitmap Index Example

The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL
---------- - -------------------- ---------------------
...
 70 F D: 70,000 - 89,999
 80 F married H: 150,000 - 169,999
 90 M single H: 150,000 - 169,999
 100 F I: 170,000 - 189,999
 110 F married C: 50,000 - 69,999
 120 M single F: 110,000 - 129,999
 130 M J: 190,000 - 249,999
 140 M married G: 130,000 - 149,999
...

Because cust_gender,cust_marital_status , and cust_income_level are

all low-cardinality columns (there are only three possible values for marital status

and region, two possible values for gender, and 12 for income level), bitmap indexes

are ideal for these columns. Do not create a bitmap index on cust_id because this

is a unique column. Instead, a unique B-tree index on this column provides the

most efficient representation and retrieval.

Table 6–1 illustrates the bitmap index for the cust_gender column in this

example. It consists oftwo separate bitmaps, one for gender.

Table 6–1 Sample Bitmap Index

gender='M' gender='F'

cust_id 70 0 1

cust_id 80 0 1

cust_id 90 1 0

cust_id 100 0 1

cust_id 110 0 1

cust_id 120 1 0

cust_id 130 1 0

cust_id 140 1 0
6-4 Data Warehousing Guide

Bitmap Indexes
Each entry (or bit) in the bitmap corresponds to a single row of the customers
table. The value of each bit depends upon the values of the corresponding row in

the table. For instance, the bitmap cust_gender='F' contains a one as its first bit

because the region is east in the first row of the customers table. The bitmap

cust_gender='F' has a zero for its third bit because the gender of the third row

is not F.

An analyst investigating demographic trends of the company's customers might

ask, "How many of our married customers have an income level of G or H?" This

corresponds to the following SQL query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status = 'married'
AND cust_income_level IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999');

Bitmap indexes can efficiently process this query by merely counting the number of

ones in the bitmap illustrated in Figure 6–1. The result set will be found by using

bitmap or merge operations without the necessity of a conversion to rowids. To

identify additional specific customer attributes that satisfy the criteria, use the

resulting bitmap to access the table after a bitmap to rowid conversion.

Figure 6–1 Executing a Query Using Bitmap Indexes

Bitmap Indexes and Nulls
Unlike most other types of indexes, bitmap indexes include rows that have NULL
values. Indexing of nulls can be useful for some types of SQL statements, such as

queries with the aggregate function COUNT.

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'
 Indexes 6-5

Bitmap Indexes
Example 6–2 Bitmap Index Example

SELECT COUNT(*) FROM customers WHERE cust_marital_status IS NULL;

The above query will use a bitmap index on cust_marital_status . Note that

this query would not be able to use a B-tree index.

SELECT COUNT(*) FROM emp;

Any bitmap index can be used for the above query because all table rows are

indexed, including those that have NULL data. If nulls were not indexed, the

optimizer would be able to use indexes only on columns with NOT NULL
constraints.

Bitmap Indexes on Partitioned Tables
You can create bitmap indexes on partitioned tables but they must be local to the

partitioned table—they cannot be global indexes. (Global bitmap indexes are

supported only on nonpartitioned tables). Bitmap indexes on partitioned tables

must be local indexes.

Bitmap Join Indexes
In addition to a bitmap index on a single table, you can create a bitmap join index,

which is a bitmap index for the join of two or more tables. A bitmap join index is a

space efficient way of reducing the volume of data that must be joined by

performing restrictions in advance. For each value in a column of a table, a bitmap

join index stores the rowids of corresponding rows in one or more other tables. In a

data warehousing environment, the join condition is an equi-inner join between the

primary key column or columns of the dimension tables and the foreign key

column or columns in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views,

an alternative for materializing joins in advance. This is because the materialized

join views do not compress the rowids of the fact tables.

See Also: "Index Partitioning" on page 5-8 for more information
6-6 Data Warehousing Guide

Bitmap Indexes
Example 6–3 Bitmap Join Index: Example 1

Using the example in "Bitmap Index Example" on page 6-4, create a bitmap join

index with the following sales table:

SELECT time_id, cust_id, amount FROM sales;

TIME_ID CUST_ID AMOUNT
--------- ---------- ----------
01-JAN-98 29700 2291
01-JAN-98 3380 114
01-JAN-98 67830 553
01-JAN-98 179330 0
01-JAN-98 127520 195
01-JAN-98 33030 280
...

CREATE BITMAP INDEX sales_cust_gender_bjix
ON sales(customers.cust_gender)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL;

The following query shows how to use the above bitmap join index and illustrates

its bitmap pattern:

SELECT sales.time_id, customers.cust_gender, sales.amount
FROM sales, customers
WHERE sales.cust_id = customers.cust_id

TIME_ID C AMOUNT
--------- - ----------
01-JAN-98 M 2291
01-JAN-98 F 114
01-JAN-98 M 553
01-JAN-98 M 0
01-JAN-98 M 195
01-JAN-98 M 280
01-JAN-98 M 32
...
 Indexes 6-7

Bitmap Indexes
Table 6–2 illustrates the bitmap join index in this example:

You can create other bitmap join indexes using more than one column or more than

one table, as shown in the below examples.

Example 6–4 Bitmap Join Index: Example 2

You can create a bitmap join index on more than one column, as in the following

example, which uses customers(gender, marital status) :

CREATE BITMAP INDEX sales_cust_gender_ms_bjix
ON sales(customers.cust_gender, customers.cust_marital_status)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING;

Example 6–5 Bitmap Join Index: Example 3

You can create a bitmap join index on more than one table, as in the following,

which uses customers(gender) and products(category) :

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING;

Table 6–2 Sample Bitmap Join Index

 cust_gender='M' cust_gender='F'

sales record 1 1 0

sales record 2 0 1

sales record 3 1 0

sales record 4 1 0

sales record 5 1 0

sales record 6 1 0

sales record 7 1 0
6-8 Data Warehousing Guide

Bitmap Indexes
Example 6–6 Bitmap Join Index: Example 4

You can create a bitmap join index on more than one table, in which the indexed

column is joined to the indexed table by using another table. For example, we can

build an index on countries.country_name , even though the countries table

is not joined directly to the sales table. Instead, the countries table is joined to

the customers table, which is joined to the sales table. This type of schema is

commonly called a snowflake schema.

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING;

Bitmap Join Index Restrictions
Join results must be stored, therefore, bitmap join indexes have the following

restrictions:

■ Parallel DML is currently only supported on the fact table. Parallel DML on one

of the participating dimension tables will mark the index as unusable.

■ Only one table can be updated concurrently by different transactions when

using the bitmap join index.

■ No table can appear twice in the join.

■ You cannot create a bitmap join index on an index-organized table or a

temporary table.

■ The columns in the index must all be columns of the dimension tables.

■ The dimension table join columns must be either primary key columns or have

unique constraints.

■ If a dimension table has composite primary key, each column in the primary

key must be part of the join.

See Also: Oracle9i SQL Reference for further details
 Indexes 6-9

B-tree Indexes
B-tree Indexes
A B-tree index is organized like an upside-down tree. The bottom level of the index

holds the actual data values and pointers to the corresponding rows, much as the

index in a book has a page number associated with each index entry.

In general, you use B-tree indexes when you know that your typical query refers to

the indexed column and retrieves a few rows. In these queries, it is faster to find the

rows by looking at the index. However, using the book index analogy, if you plan to

look at every single topic in a book, you might not want to look in the index for the

topic and then look up the page. It might be faster to read through every chapter in

the book. Similarly, if you are retrieving most of the rows in a table, it might not

make sense to look up the index to find the table rows. Instead, you might want to

read or scan the table.

B-tree indexes are most commonly used in a data warehouse to index unique or

near-unique keys. In many cases, it may not be necessary to index these columns in

a data warehouse, because unique constraints can be maintained without an index,

and because typical data warehouse queries may not work better with such indexes.

Bitmap indexes should be more common than B-tree indexes in most data

warehouse environments.

Local Indexes Versus Global Indexes
B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier

releases, Oracle recommended that global indexes not be used in data warehouse

environments because a partition DDL statement (for example, ALTER TABLE ...
DROP PARTITION) would invalidate the entire index, and rebuilding the index is

expensive. In Oracle9i, global indexes can be maintained without Oracle marking

them as unusable after DDL. This enhancement makes global indexes more

effective for data warehouse environments.

However, local indexes will be more common than global indexes. Global indexes

should be used when there is a specific requirement which cannot be met by local

indexes (for example, a unique index on a non-partitioning key, or a performance

requirement).

Bitmap indexes on partitioned tables are always local.

See Also: Oracle9i Database Concepts for an explanation of B-tree

structures

See Also: "Types of Partitioning" on page 5-4 for further details
6-10 Data Warehousing Guide

 Integrity Const
7

Integrity Constraints

This chapter describes integrity constraints, and discusses:

■ Why Integrity Constraints are Useful in a Data Warehouse

■ Overview of Constraint States

■ Typical Data Warehouse Integrity Constraints
raints 7-1

Why Integrity Constraints are Useful in a Data Warehouse
Why Integrity Constraints are Useful in a Data Warehouse
Integrity constraints provide a mechanism for ensuring that data conforms to

guidelines specified by the database administrator. The most common types of

constraints include:

■ UNIQUE constraints

To ensure that a given column is unique

■ NOT NULL constraints

To ensure that no null values are allowed

■ FOREIGN KEY constraints

To ensure that two keys share a primary key to foreign key relationship

Constraints can be used for these purposes in a data warehouse:

■ Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level

of data consistency and correctness, preventing the introduction of dirty data.

■ Query optimization

The Oracle database utilizes constraints when optimizing SQL queries.

Although constraints can be useful in many aspects of query optimization,

constraints are particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is

typically added or modified under controlled circumstances during the extraction,

transformation, and loading (ETL) process. Multiple users normally do not update

the data warehouse directly, as they do in an OLTP system.

Many significant constraint features have been introduced for data warehousing.

Readers familiar with Oracle's constraint functionality in Oracle7 and Oracle8

should take special note of the functionality described in this chapter. In fact, many

Oracle7-based and Oracle8-based data warehouses lacked constraints because of

concerns about constraint performance. Newer constraint functionality addresses

these concerns.

See Also: Chapter 10, "Overview of Extraction, Transformation,

and Loading"
7-2 Data Warehousing Guide

Overview of Constraint States
Overview of Constraint States
To understand how best to use constraints in a data warehouse, you should first

understand the basic purposes of constraints:

■ Enforcement

In order to use a constraint for enforcement, the constraint must be in the

ENABLE state. An enabled constraint ensures that all data modifications upon a

given table (or tables) satisfy the conditions of the constraints. Data

modification operations which produce data that violates the constraint fail

with a constraint violation error.

■ Validation

To use a constraint for validation, the constraint must be in the VALIDATE state.

If the constraint is validated, then all data that currently resides in the table

satisfies the constraint.

Note that validation is independent of enforcement. Although the typical

constraint in an operational system is both enabled and validated, any

constraint could be validated but not enabled or vice versa (enabled but not

validated). These latter two cases are useful for data warehouses.

■ Belief

In some cases, you will know that the conditions for a given constraint are true,

so you do not need to validate or enforce the constraint. However, you may

wish for the constraint to be present anyway to improve query optimization

and performance. When you use a constraint in this way, it is called a belief or

RELY constraint, and the constraint must be in the RELY state. The RELY state

provides you with a mechanism for telling Oracle9i that a given constraint is

believed to be true.

Note that the RELY state only affects constraints that have not been validated.
 Integrity Constraints 7-3

Typical Data Warehouse Integrity Constraints
Typical Data Warehouse Integrity Constraints
This section assumes that you are familiar with the typical use of constraints. That

is, constraints that are both enabled and validated. For data warehousing, many

users have discovered that such constraints may be prohibitively costly to build and

maintain. The topics discussed are:

■ UNIQUE Constraints in a Data Warehouse

■ FOREIGN KEY Constraints in a Data Warehouse

■ RELY Constraints

■ Integrity Constraints and Parallelism

■ Integrity Constraints and Partitioning

■ View Constraints

UNIQUE Constraints in a Data Warehouse
A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a

data warehouse whose tables can be extremely large, creating a unique index can be

costly both in processing time and in disk space.

Suppose that a data warehouse contains a table sales , which includes a column

sales_id . sales_id uniquely identifies a single sales transaction, and the data

warehouse administrator must ensure that this column is unique within the data

warehouse.

One way to create the constraint is:

ALTER TABLE sales ADD CONSTRAINT sales_unique
 UNIQUE(prod_id, cust_id, time_id, channel_id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a

unique index on sales_id to support this constraint. However, this index can be

problematic in a data warehouse for three reasons:

■ The unique index can be very large, because the sales table can easily have

millions or even billions of rows.

■ The unique index is rarely used for query execution. Most data warehousing

queries do not have predicates on unique keys, so creating this index will

probably not improve performance.
7-4 Data Warehousing Guide

Typical Data Warehouse Integrity Constraints
■ If sales is partitioned along a column other than sales_id , the unique index

must be global. This can detrimentally affect all maintenance operations on the

sales table.

A unique index is required for unique constraints to ensure that each individual

row modified in the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is:

ALTER TABLE sales ADD CONSTRAINT sales_unique
 UNIQUE (prod_id, cust_id, time_id, channel_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a

unique index is not required. This approach can be advantageous for many data

warehousing environments because the constraint now ensures uniqueness without

the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with

DISABLE VALIDATE constraints. Because this constraint is disabled, no DML

statements that modify the unique column are permitted against the sales table.

You can use one of two strategies for modifying this table in the presence of a

constraint:

■ Use DDL to add data to this table (such as exchanging partitions). See the

example in Chapter 14, "Maintaining the Data Warehouse".

■ Before modifying this table, drop the constraint. Then, make all necessary data

modifications. Finally, re-create the disabled constraint. Re-creating the

constraint is more efficient than re-creating an enabled constraint. However, this

approach does not guarantee that data added to the sales table while the

constraint has been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse
In a star schema data warehouse, FOREIGN KEY constraints validate the

relationship between the fact table and the dimension tables. A sample constraint

might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
 FOREIGN KEY (time_id) REFERENCES time (time_id)
 ENABLE VALIDATE;
 Integrity Constraints 7-5

Typical Data Warehouse Integrity Constraints
However, in some situations, a data warehouse administrator may choose to use a

different state for the FOREIGN KEY constraints, in particular, the ENABLE
NOVALIDATE state. A data warehouse administrator might use an ENABLE
NOVALIDATE constraint when either:

■ The tables contain data that currently disobeys the constraint, but the data

warehouse administrator wishes to create a constraint for future enforcement.

■ An enforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but

refreshed the dimension tables only on the weekend. During the week, the

dimension tables and fact tables may in fact disobey the FOREIGN KEY constraints.

Nevertheless, the data warehouse administrator might wish to maintain the

enforcement of this constraint to prevent any changes that might affect the

FOREIGN KEY constraint outside of the ETL process. Thus, you can create the

FOREIGN KEY constraints every night, after performing the ETL process, as shown

here:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
 FOREIGN KEY (sales_time_id) REFERENCES time (time_id)
 ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the

constraint is believed to be true. Suppose that the ETL process verifies that a

FOREIGN KEY constraint is true. Rather than have the database re-verify this

FOREIGN KEY constraint, which would require time and database resources, the

data warehouse administrator could instead create a FOREIGN KEYconstraint using

ENABLE NOVALIDATE.

RELY Constraints
The ETL process commonly verifies that certain constraints are true. For example, it

can validate all of the foreign keys in the data coming into the fact table. This means

that you can trust it to provide clean data, instead of implementing constraints in

the data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
 FOREIGN KEY (sales_time_id) REFERENCES time (time_id)
 RELY DISABLE NOVALIDATE;
7-6 Data Warehousing Guide

Typical Data Warehouse Integrity Constraints
RELY constraints, even though they are not used for data validation, can:

■ Enable more sophisticated query rewrites for materialized views. See

Chapter 22, "Query Rewrite", for further details.

■ Enable other data warehousing tools to retrieve information regarding

constraints directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead

during DML or load. Because the constraint is not being validated, no data

processing is necessary to create it.

Integrity Constraints and Parallelism
All constraints can be validated in parallel. When validating constraints on very

large tables, parallelism is often necessary to meet performance goals. The degree of

parallelism for a given constraint operation is determined by the default degree of

parallelism of the underlying table.

Integrity Constraints and Partitioning
You can create and maintain constraints before you partition the data. Later

chapters discuss the significance of partitioning for data warehousing. Partitioning

can improve constraint management just as it does to management of many other

operations. For example, Chapter 14, "Maintaining the Data Warehouse", provides a

scenario creating UNIQUEand FOREIGN KEYconstraints on a separate staging table,

and these constraints are maintained during the EXCHANGE PARTITION statement.

View Constraints
You can create constraints on views. The only type of constraint supported on a

view is a RELY constraint.

This type of constraint is useful when queries typically access views instead of base

tables, and the DBA thus needs to define the data relationships between views

rather than tables. View constraints are particularly useful in OLAP environments,

where they may enable more sophisticated rewrites for materialized views.

See Also: Chapter 8, "Materialized Views" and Chapter 22,

"Query Rewrite"
 Integrity Constraints 7-7

Typical Data Warehouse Integrity Constraints
7-8 Data Warehousing Guide

 Materialized
8

Materialized Views

This chapter introduces you to the use of materialized views and discusses:

■ Overview of Data Warehousing with Materialized Views

■ Types of Materialized Views

■ Creating Materialized Views

■ Registering Existing Materialized Views

■ Partitioning and Materialized Views

■ Choosing Indexes for Materialized Views

■ Invalidating Materialized Views

■ Security Issues with Materialized Views

■ Altering Materialized Views

■ Dropping Materialized Views

■ Analyzing Materialized View Capabilities

■ Overview of Materialized View Management Tasks
Views 8-1

Overview of Data Warehousing with Materialized Views
Overview of Data Warehousing with Materialized Views
Typically, data flows from one or more online transaction processing (OLTP)

databases into a data warehouse on a monthly, weekly, or daily basis. The data is

normally processed in a staging file before being added to the data warehouse.

Data warehouses commonly range in size from tens of gigabytes to a few terabytes.

Usually, the vast majority of the data is stored in a few very large fact tables.

One technique employed in data warehouses to improve performance is the

creation of summaries. Summaries are special kinds of aggregate views that

improve query execution times by precalculating expensive joins and aggregation

operations prior to execution and storing the results in a table in the database. For

example, you can create a table to contain the sums of sales by region and by

product.

The summaries or aggregates that are referred to in this book and in literature on

data warehousing are created in Oracle using a schema object called a materialized
view. Materialized views can perform a number of roles, such as improving query

performance or providing replicated data.

Prior to Oracle8i, organizations using summaries spent a significant amount of time

creating summaries manually, identifying which summaries to create, indexing the

summaries, updating them, and advising their users on which ones to use. The

introduction of summary management in Oracle8i eases the workload of the

database administrator and means the end user no longer has to be aware of the

summaries that have been defined. The database administrator creates one or more

materialized views, which are the equivalent of a summary. The end user queries

the tables and views in the database. The query rewrite mechanism in the Oracle

server automatically rewrites the SQL query to use the summary tables. This

mechanism reduces response time for returning results from the query. Materialized

views within the data warehouse are transparent to the end user or to the database

application.

Although materialized views are usually accessed through the query rewrite

mechanism, an end user or database application can construct queries that directly

access the summaries. However, serious consideration should be given to whether

users should be allowed to do this because any change to the summaries will affect

the queries that reference them.

Materialized Views for Data Warehouses
In data warehouses, you can use materialized views to precompute and store

aggregated data such as the sum of sales. Materialized views in these environments
8-2 Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
are often referred to as summaries, because they store summarized data. They can

also be used to precompute joins with or without aggregations. A materialized view

eliminates the overhead associated with expensive joins and aggregations for a

large or important class of queries.

Materialized Views for Distributed Computing
In distributed environments, you can use materialized views to replicate data at

distributed sites and to synchronize updates done at those sites with conflict

resolution methods. The materialized views as replicas provide local access to data

that otherwise would have to be accessed from remote sites. Materialized views are

also useful in remote data marts.

Materialized Views for Mobile Computing
You can also use materialized views to download a subset of data from central

servers to mobile clients, with periodic refreshes and updates between clients and

the central servers.

This chapter focuses on the use of materialized views in data warehouses.

The Need for Materialized Views
Use materialized views in data warehouses to increase the speed of queries on very

large databases. Queries to large databases often involve joins between tables,

aggregations such as SUM, or both. These operations are expensive in terms of time

and processing power. The type of materialized view you create determines how

the materialized view is refreshed and used by query rewrite.

You can use materialized views in a number of ways, and you can use almost

identical syntax to perform a number of roles. For example, a materialized view can

replicate data, a process formerly achieved by using the CREATE SNAPSHOT
statement. Now CREATE MATERIALIZED VIEW is a synonym for CREATE
SNAPSHOT.

See Also: Oracle9i Replication and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for details on distributed and

mobile computing

See Also: Oracle9i Replication and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for details on distributed and

mobile computing
 Materialized Views 8-3

Overview of Data Warehousing with Materialized Views
Materialized views improve query performance by precalculating expensive join

and aggregation operations on the database prior to execution and storing the

results in the database. The query optimizer automatically recognizes when an

existing materialized view can and should be used to satisfy a request. It then

transparently rewrites the request to use the materialized view. Queries go directly

to the materialized view and not to the underlying detail tables. In general,

rewriting queries to use materialized views rather than detail tables improves

response.

Figure 8–1 Transparent Query Rewrite

When using query rewrite, create materialized views that satisfy the largest number

of queries. For example, if you identify 20 queries that are commonly applied to the

detail or fact tables, then you might be able to satisfy them with five or six

well-written materialized views. A materialized view definition can include any

number of aggregations (SUM, COUNT(x) , COUNT(*) , COUNT(DISTINCT x) , AVG,

VARIANCE, STDDEV, MIN, and MAX). It can also include any number of joins. If you

are unsure of which materialized views to create, Oracle provides a set of advisory

procedures in the DBMS_OLAP package to help in designing and evaluating

materialized views for query rewrite. These functions are also known as the

Summary Advisor or the Advisor.

StrategyGenerate Plan
Strategy

Query is
rewritten

User enters
query

Compare plan cost
and pick the best

StrategyGenerate Plan

StrategyQuery Results

Oracle9i
8-4 Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
If a materialized view is to be used by query rewrite, it must be stored in the same

database as the fact or detail tables on which it relies. A materialized view can be

partitioned, and you can define a materialized view on a partitioned table. You can

also define one or more indexes on the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT
statement.

Components of Summary Management
Summary management consists of:

■ Mechanisms to define materialized views and dimensions

■ A refresh mechanism to ensure that all materialized views contain the latest

data

■ A query rewrite capability to transparently rewrite a query to use a

materialized view

■ A collection of materialized view analysis and advisory functions and

procedures in the DBMS_OLAP package. Collectively, these functions are called

the Summary Advisor, and are also available as part of Oracle Enterprise

Manager.

Many large decision support system (DSS) databases have schemas that do not

closely resemble a conventional data warehouse schema, but that still require joins

and aggregates. The use of summary management features imposes no schema

restrictions, and can enable some existing DSS database applications to improve

performance without the need to redesign the database or the application.

Figure 8–2 illustrates the use of summary management in the warehousing cycle.

After the data has been transformed, staged, and loaded into the detail data in the

warehouse, you can invoke the summary management process. First, use the

Advisor to plan how you will use summaries. Then, create summaries and design

how queries will be rewritten.

Note: The techniques shown in this chapter illustrate how to use

materialized views in data warehouses. Materialized views can also

be used by Oracle Replication. See Oracle9i Replication for further

information.

See Also: Chapter 16, "Summary Advisor"
 Materialized Views 8-5

Overview of Data Warehousing with Materialized Views
Figure 8–2 Overview of Summary Management

Understanding the summary management process during the earliest stages of data

warehouse design can yield large dividends later in the form of higher

performance, lower summary administration costs, and reduced storage

requirements.

Hierarchies describe the business relationships and common access patterns in the

database. An analysis of the dimensions, combined with an understanding of the

typical work load, can be used to create materialized views.

Operational
Databases

Extraction of
Incremental
Detail Data

Incremental
Load and Refresh

Data
Transformations

Staging
file

Detail

Data Warehouse

Summary

Query
Rewrite

Extract
Program

Summary Mgmt
Administration

Summary Mgmt
Analysis & Tuning

Multidimensional
Analysis Tools

Workload
Statistics

MDDB
Data Mart

Summary
Management
8-6 Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
Terminology
Some basic data warehousing terms are defined here:

■ Dimension tables describe the business entities of an enterprise, represented as

hierarchical, categorical information such as time, departments, locations, and

products. Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a

periodic schedule. They are used in long-running decision support queries to

aggregate the data returned from the query into appropriate levels of the

dimension hierarchy.

■ Fact tables describe the business transactions of an enterprise. Fact tables are

sometimes called detail tables.

The vast majority of data in a data warehouse is stored in a few very large fact

tables that are updated periodically with data from one or more operational

online transaction processing (OLTP) databases.

Fact tables include measures such as sales, units, and inventory.

– A simple measure is a numeric or character column of one table such as

fact.sales .

– A computed measure is an expression involving measures of one table, for

example, fact.revenues - fact.expenses .

– A multitable measure is a computed measure defined on multiple tables,

for example, fact_a.revenues - fact_b.expenses .

Fact tables also contain one or more foreign keys that organize the business

transactions by the relevant business entities such as time, product, and market.

In most cases, these foreign keys are non-null, form a unique compound key of

the fact table, and each foreign key joins with exactly one row of a dimension
table.

■ A materialized view is a precomputed table comprising aggregated and joined

data from fact and possibly from dimension tables. Among builders of data

warehouses, a materialized view is also known as a summary or aggregation.

See Also: Chapter 9, "Dimensions"
 Materialized Views 8-7

Overview of Data Warehousing with Materialized Views
Schema Design Guidelines for Materialized Views
Summary management can perform many useful functions, including query rewrite

and materialized view refresh, even if your data warehouse design does not follow

these guidelines. However, you will realize significantly greater query execution

performance and materialized view refresh performance benefits and you will

require fewer materialized views if your schema design complies with these

guidelines.

A materialized view definition includes any number of aggregates, as well as any

number of joins. In several ways, a materialized view behaves like an index:

■ The purpose of a materialized view is to increase query execution performance.

■ The existence of a materialized view is transparent to SQL applications, so that

a DBA can create or drop materialized views at any time without affecting the

validity of SQL applications.

■ A materialized view consumes storage space.

■ The contents of the materialized view must be updated when the underlying

detail tables are modified.

In the case of normalized or partially normalized dimensions (a dimension that is

stored in more than one table), identify how these tables are joined. Note whether

the joins between the dimension tables can guarantee that each child-side row joins

with one and only one parent-side row. In the case of denormalized dimensions,

determine whether the child-side columns uniquely determine the parent-side (or

attribute) columns. These relationships can be enabled with constraints, using the

NOVALIDATE and RELY options if the relationships represented by the constraints

are guaranteed by other means. Note that if the joins between fact and dimension

tables do not support this relationship, you still gain significant performance

advantages from defining the dimension with the CREATE DIMENSION statement.

Another alternative, subject to some restrictions, is to use outer joins in the

materialized view definition (that is, in the CREATE MATERIALIZED VIEW
statement).

You must not create dimensions in any schema that does not satisfy these

relationships. Incorrect results can be returned from queries otherwise.

Before starting to define and use the various components of summary management,

you should review your schema design to abide by the following guidelines

wherever possible:

See Also: Chapter 9, "Dimensions"
8-8 Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
Guideline 1: Dimensions should either be denormalized (each dimension

contained in one table) or the joins between tables in a normalized

or partially normalized dimension should guarantee that each

child-side row joins with exactly one parent-side row. The benefits

of maintaining this condition are described in "Creating

Dimensions" on page 9-4.

You can enforce this condition by adding FOREIGN KEY and NOT
NULL constraints on the child-side join keys and PRIMARY KEY
constraints on the parent-side join keys.

Guideline 2: If dimensions are denormalized or partially denormalized,

hierarchical integrity must be maintained between the key

columns of the dimension table. Each child key value must

uniquely identify its parent key value, even if the dimension table

is denormalized. Hierarchical integrity in a denormalized

dimension can be verified by calling the VALIDATE_DIMENSION
procedure of the DBMS_OLAP package.

Guideline 3: Fact and dimension tables should similarly guarantee that each

fact table row joins with exactly one dimension table row. This

condition must be declared, and optionally enforced, by adding

FOREIGN KEYand NOT NULLconstraints on the fact key column(s)

and PRIMARY KEYconstraints on the dimension key column(s), or

by using outer joins as described in Guideline 1. In a data

warehouse, constraints are typically enabled with the

NOVALIDATE and RELY clauses to avoid constraint enforcement

performance overhead. See Oracle9i SQL Reference for further

details.

Guideline 4: Incremental loads of your detail data should be done using the

SQL*Loader direct-path option, or any bulk loader utility that

uses Oracle's direct-path interface. This includes INSERT ... AS
SELECT with the APPEND or PARALLEL hints, where the hints

cause the direct loader log to be used during the insert. See

Oracle9i SQL Reference and "Types of Materialized Views" on

page 8-10.

Guideline 5: Range/composite partition your tables by a monotonically

increasing the time column if possible (preferably of type DATE).

Guideline 6: After each load and before refreshing your materialized view, use

the VALIDATE_DIMENSION procedure of the DBMS_MVIEW
package to incrementally verify dimensional integrity.
 Materialized Views 8-9

Types of Materialized Views
Guidelines 1 and 2 are more important than guideline 3. If your schema design does

not follow guidelines 1 and 2, it does not then matter whether it follows guideline 3.

Guidelines 1, 2, and 3 affect both query rewrite performance and materialized view

refresh performance.

If you are concerned with the time required to enable constraints and whether any

constraints might be violated, use the ENABLE NOVALIDATE with the RELY clause

to turn on constraint checking without validating any of the existing constraints.

The risk with this approach is that incorrect query results could occur if any

constraints are broken. Therefore, as the designer, you must determine how clean

the data is and whether the risk of wrong results is too great.

Types of Materialized Views
The SELECTclause in the materialized view creation statement defines the data that

the materialized view is to contain. Only a few restrictions limit what can be

specified. Any number of tables can be joined together. However, they cannot be

remote tables if you wish to take advantage of query rewrite. Besides tables, other

elements such as views, inline views (subqueries in the FROM clause of a SELECT
statement), subqueries, and materialized views can all be joined or referenced in the

SELECT clause.

The types of materialized views are:

■ Materialized Views with Aggregates

■ Materialized Views Containing Only Joins

Materialized Views with Aggregates
In data warehouses, materialized views normally contain aggregates as shown in

Example 8–1 below. For fast refresh to be possible, the SELECT list must contain all

of the GROUP BY columns (if present), and there must be a COUNT(*) and a

COUNT(column) on any aggregated columns. Also, materialized view logs must be

present on all tables referenced in the query that defines the materialized view. The

valid aggregate functions are: SUM, COUNT(x) , COUNT(*) , AVG, VARIANCE,
STDDEV, MIN, and MAX, and the expression to be aggregated can be any SQL value

expression.

Guideline 7: If a time dimension appears in the materialized view as a time

column, partition and index the materialized view in the same

manner as you have the fact tables. Include a local concatenated

index on all the materialized view keys.
8-10 Data Warehousing Guide

Types of Materialized Views
Fast refresh for a materialized view containing joins and aggregates is possible after

any type of DML to the base tables (direct load or conventional INSERT, UPDATE, or

DELETE). It can be defined to be refreshed ON COMMIT or ON DEMAND. A REFRESH
ON COMMIT, materialized view will be refreshed automatically when a transaction

that does DML to one of the materialized views commits. The time taken to

complete the commit may be slightly longer than usual when this method is chosen.

This is because the refresh operation is performed as part of the commit process.

Therefore, this method may not be suitable if many users are concurrently changing

the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that

materialized view logs are only created because this materialized view will be fast

refreshed.

Example 8–1 Creating a Materialized View: Example 1

CREATE MATERIALIZED VIEW LOG ON products
WITH SEQUENCE, ROWID
(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_desc, prod_
category, prod_cat_desc, prod_weight_class, prod_unit_of_measure, prod_pack_
size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold,
amount, cost)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (initial 8k next 8k pctincrease 0)
BUILD IMMEDIATE
REFRESH FAST
ENABLE QUERY REWRITE
AS SELECT p.prod_name, SUM(amount) AS dollar_sales,
COUNT(*) AS cnt, COUNT(amount) AS cnt_amt
FROM sales s, products p
WHERE s.prod_id = p.prod_id
 GROUP BY prod_name;

See Also: "Restrictions on Fast Refresh on Materialized Views

with Aggregates" on page 8-28
 Materialized Views 8-11

Types of Materialized Views
The statement above creates a materialized view product_sales_mv that

computes total number and value of sales for a product. It is derived by joining the

tables sales and products on the column prod_id . The materialized view is

populated with data immediately because the build method is immediate and it is

available for use by query rewrite. In this example, the default refresh method is

FAST, which is allowed because the appropriate materialized view logs have been

created on tables product and sales .

Example 8–2 Creating a Materialized View: Example 2

CREATE MATERIALIZED VIEW store_sales_mv
 PCTFREE 0 TABLESPACE mviews
 STORAGE (initial 16k next 16k pctincrease 0)
 BUILD DEFERRED
 REFRESH COMPLETE ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT
 s.store_name,
 SUM(dollar_sales) AS sum_dollar_sales
 FROM store s, fact f
 WHERE f.store_key = s.store_key
 GROUP BY s.store_name;

Example 8–2 creates a materialized view store_sales_mv that computes the sum

of sales by store . It is derived by joining the tables store and fact on the

column store_key . The materialized view does not initially contain any data,

because the build method is DEFERRED. A complete refresh is required for the first

refresh of a build deferred materialized view. When it is refreshed and once

populated, this materialized view can be used by query rewrite.

Example 8–3 Creating a Materialized View: Example 3

CREATE MATERIALIZED VIEW LOG ON fact
 WITH ROWID (store_key, time_key, dollar_sales, unit_sales)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS
 SELECT f.store_key, f.time_key,
 COUNT(*) AS count_grp,
8-12 Data Warehousing Guide

Types of Materialized Views
 SUM(f.dollar_sales) AS sum_dollar_sales,
 COUNT(f.dollar_sales) AS count_dollar_sales,
 SUM(f.unit_sales) AS sum_unit_sales,
 COUNT(f.unit_sales) AS count_unit_sales
 FROM fact f
 GROUP BY f.store_key, f.time_key;

This example creates a materialized view that contains aggregates on a single table.

Because the materialized view log has been created, the materialized view is fast

refreshable. If DML is applied against the fact table, then the changes will be

reflected in the materialized view when the commit is issued.

Table 8–1 illustrates the aggregate requirements for materialized views.

Note that COUNT(*) must always be present. Oracle recommends that you include

the optional aggregates in column Z in the materialized view in order to obtain the

most efficient and accurate fast refresh of the aggregates.

Materialized Views with Multiple Aggregation Groups for OLAP
Oracle9i enables a single materialized view to contain multiple aggregate groups. A

materialized view holding multiple aggregate groups supports On-Line Analytical

Processing (OLAP) needs well. OLAP environments require fast response time for

analytical queries under multiuser workloads. Typically, OLAP queries compare

aggregates at different levels of granularity. For efficient processing of these queries,

it is common to precompute all possible levels of aggregation and store them in

materialized views.

Table 8–1 Single-Table Aggregate Requirements

If aggregate X is present, aggregate Y is required and aggregate Z is optional

X Y Z

COUNT(expr) - -

SUM(expr) COUNT(expr) -

AVG(expr) COUNT(expr) SUM(expr)

STDDEV(expr) COUNT(expr)
SUM(expr)

SUM(expr * expr)

VARIANCE(expr) COUNT(expr)
SUM(expr)

SUM(expr * expr)
 Materialized Views 8-13

Types of Materialized Views
When a single materialized view stores all the levels of aggregation needed in an

OLAP environment, it enables efficient creation and data refresh.

Materialized views for OLAP environments have the following characteristics:

■ They contain joins of all the base tables (fact table and dimension tables in a

typical star schema)

■ They create multiple aggregate groupings using GROUPING SETS, ROLLUP, or

CUBE in the GROUP BY clause of the query definition. These grouping features

are described in Chapter 18, "SQL for Aggregation in Data Warehouses".

■ To enable fast refresh or general query rewrite on such a materialized view, the

SELECT list includes a GROUPING_ID function using all the GROUP BY
expressions as its arguments.

Example 8–4 Materialized Views with Aggregation for OLAP

Below is an example of a materialized view suited to OLAP needs, containing

multiple aggregate groups. The materialized view is created using the GROUPING
SETSextension to the GROUP BYclause. The example presents a retail database with

a sample schema and some materialized views to illustrate how materialized views

with aggregation for OLAP can be created.

/*the following tables and their columns*/
STORE (store_key, store_name, store_city, store_state, store_country)
TIME (time_key, time_day, time_week, time_month)
FACT (store_key, prod_key, time_key, dollar_sales)

CREATE MATERIALIZED VIEW sales_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT store_country, store_state, store_city,
 prod_category, prod_subcategory, prod_name,
 GROUPING_ID(store_country, store_state, store_city,
 prod_category, prod_subcategory, prod_name) gid
 SUM(dollar_sales) s_sales,
 COUNT(dollar_sales) c_sales,
 COUNT(*) c_star
FROM sales s, product p, store st
WHERE s.store_id = st.store_id and s.prod_id = p.prod_id
GROUP BY GROUPING SETS
 ((store_country, store_state, store_city),
 (store_country, prod_category, prod_subcategory, prod_name),
 (prod_category, prod_subcategory, prod_name),(store_country, prod_category));
8-14 Data Warehousing Guide

Types of Materialized Views
This is a materialized view that stores aggregates at four different levels. Queries

can be rewritten to use this materialized view if they require one or more these

groupings.

The creation and fast refresh of such a materialized view is very efficient as all the

joins are factored out (and hence, computed only once) and some groupings can be

derived from other groupings, rather than going to the joined base data. For

example, group (store_country , prod_category) can be computed from

(store_country , prod_category , prod_subcategory , prod_name). In

addition to creation and refresh efficiency, a single database object containing all the

required groupings can be easier to manage than many materialized views each

holding just one aggregate group.

If an OLAP environment’s queries cover the full range of aggregate groupings

possible in its data set, it may be best to materialize the whole hierarchical cube.

This means that each dimension’s aggregation hierarchy is precomputed in

combination with each of the other dimensions. Naturally, precomputing a full

hierarchical cube requires more disk space and higher creation and refresh times

than a small set of aggregate groups. The trade-off in processing time and disk

space versus query performance needs to be factored in before deciding to create it.

Example 8–5 is an example of a hierarchical materialized view:

Example 8–5 Hierarchical Materialized View Example

CREATE MATERIALIZED VIEW sales_hierarchical_cube_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT store_country, store_state, store_city, prod_category, prod_subcategory,
prod_name, time_month, time_week, time_day,
 GROUPING_ID(store_country, store_state, store_city,
 prod_category, prod_subcategory, prod_name, time_month,
 time_week, time_day) gid
 SUM(dollar_sales) s_sales,
 COUNT(dollar_sales) c_sales,
 COUNT(*) c_star
FROM sales s, product p, store st, time t
WHERE s.store_id = st.store_id and s.prod_id = p.prod_id and s.time_id
= t.time_id
GROUP BY
 ROLLUP(store_country, store_state, store_city),
 ROLLUP(prod_category, prod_subcategory, prod_name),
 ROLLUP(time_month, time_week, time_day);
 Materialized Views 8-15

Types of Materialized Views
The materialized view sales_hierarchical_cube_mv above is a superset of the

materialized view sales_mv . sales_hierarchical_cube_mv in Example 8–4

contains the many groupings generated by the concatenated ROLLUPs in its GROUP
BY clause.

Materialized views with multiple aggregate groups will give their best performance

when partitioned appropriately. The most effective partitioning scheme for these

materialized views is to use composite partitioning. For the top level partitioning,

use LIST partitioning with the GROUPING_ID column. For the subpartitioning, use

whichever column best fits the data distribution characteristics.

By partitioning the materialized views this way, you enable partition pruning for

queries rewritten against this materialized view: only relevant aggregate groups

will be accessed, greatly reducing the query processing cost.

Materialized Views Containing Only Joins
Some materialized views contain only joins and no aggregates, such as in

Example 8–6, where a materialized view is created that joins the fact table to the

store table. The advantage of creating this type of materialized view is that

expensive joins will be precalculated.

Fast refresh for a materialized view containing only joins is possible after any type

of DML to the base tables (direct-path or conventional INSERT, UPDATE, or

DELETE).

A materialized view containing only joins can be defined to be refreshed ON
COMMIT or ON DEMAND. If it is ON COMMIT, the refresh is performed at commit time

of the transaction that does DML on the materialized view's detail table. Oracle

does not allow self-joins in materialized join views.

If you specify REFRESH FAST, Oracle performs further verification of the query

definition to ensure that fast refresh can be performed if any of the detail tables

change. These additional checks are:

1. A materialized view log must be present for each detail table.

2. The rowids of all the detail tables must appear in the SELECT list of the

materialized view query definition.

3. If there are no outer joins, you may have arbitrary selections and joins in the

WHERE clause. However, if there are outer joins, the WHERE clause cannot have

any selections. Further, if there are outer joins, all the joins must be connected

by ANDs and must use the equality (=) operator.
8-16 Data Warehousing Guide

Types of Materialized Views
4. If there are outer joins, unique constraints must exist on the join columns of the

inner table. For example, if you are joining the fact and a dimension table and

the join is an outer join with the fact table being the outer table, there must exist

unique constraints on the join columns of the dimension table.

If some of the above restrictions are not met, you can create the materialized view as

REFRESH FORCE to take advantage of fast refresh when it is possible. If the

materialized view is created as ON COMMIT, Oracle performs all of the fast refresh

checks. If one of the tables did not meet all of the criteria, but the other tables did,

the materialized view would still be fast refreshable with respect to the other tables

for which all the criteria are met.

A materialized view log should contain the rowid of the master table. It is not

necessary to add other columns.

To speed up refresh, you should create indexes on the materialized view's columns

that store the rowids of the fact table.

Example 8–6 Materialized View Containing Only Joins Example

CREATE MATERIALIZED VIEW LOG ON fact
 WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON time
 WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON store
 WITH ROWID;

CREATE MATERIALIZED VIEW detail_fact_mv
 PARALLEL BUILD IMMEDIATE
 REFRESH FAST
 AS
 SELECT
 f.rowid "fact_rid", t.rowid "time_rid", s.rowid "store_rid",
 s.store_key, s.store_name, f.dollar_sales,
 f.unit_sales, f.time_key
 FROM fact f, time t, store s
 WHERE f.store_key = s.store_key(+) AND
 f.time_key = t.time_key(+);

In this example, in order to perform a fast refresh, UNIQUE constraints should exist

on s.store_key and t.time_key . You should also create indexes on the columns

fact_rid , time_rid , and store_rid , as illustrated below. This will improve the

refresh performance.
 Materialized Views 8-17

Types of Materialized Views
CREATE INDEX mv_ix_factrid
 ON detail_fact_mv(fact_rid);

Alternatively, if the example shown above did not include the columns time_rid
and store_rid , and if the refresh method was REFRESH FORCE, then this

materialized view would be fast refreshable only if the fact table was updated but

not if the tables time or store were updated.

CREATE MATERIALIZED VIEW detail_fact_mv
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FORCE
 AS
 SELECT
 f.rowid "fact_rid",
 s.store_key, s.store_name, f.dollar_sales,
 f.unit_sales, f.time_key
 FROM fact f, time t, store s
 WHERE f.store_key = s.store_key(+) AND
 f.time_key = t.time_key(+);

Nested Materialized Views
A nested materialized view is a materialized view whose definition is based on

another materialized view. A nested materialized view can reference other relations

in the database in addition to referencing materialized views.

Why Use Nested Materialized Views?
In a data warehouse, you typically create many aggregate views on a single join (for

example, rollups along different dimensions). Incrementally maintaining these

distinct materialized aggregate views can take a long time, because the underlying

join has to be performed many times. By using nested materialized views, the join is

performed just once (while maintaining the materialized view containing joins

only). Incremental maintenance of single-table aggregate materialized views is very

fast due to the self-maintenance refresh operations on this class of views.

Example 8–7 Nested Materialized View Example

You can create a materialized view containing joins only or a single-table aggregate

materialized view on a single table on top of the following:

■ materialized view containing joins only

■ single-table aggregate materialized view
8-18 Data Warehousing Guide

Types of Materialized Views
■ complex materialized view (a materialized view on which Oracle cannot

perform fast refresh)

■ base table

All the underlying objects (materialized views or tables) on which the materialized

view is defined must have a materialized view log. All the underlying objects are

treated as if they were tables. All the existing options for materialized views

containing joins only and single-table aggregate materialized views can be used.

Thus, ON COMMIT REFRESH is supported for these types of nested materialized

views.

Using the tables and their columns from Example 8–4 on page 8-14, the following

materialized views illustrate how nested materialized views can be created.

/* create the materialized view logs */
CREATE MATERIALIZED VIEW LOG ON fact
 WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON store
 WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON time
 WITH ROWID;

/*create materialized join view join_fact_store_time as fast refreshable at
 COMMIT time */
CREATE MATERIALIZED VIEW join_fact_store_time
REFRESH FAST ON COMMIT AS
SELECT s.store_key, s.store_name, f.dollar_sales, t.time_key, t.time_day,
 f.prod_key, f.rowid frid, t.rowid trid, s.rowid srid
FROM fact f, store s, time t
WHERE f.time_key = t.time_key AND
 f.store_key = s.store_key;

To create a nested materialized view on the table join_fact_store_time , you

would have to create a materialized view log on the table. Because this will be a

single-table aggregate materialized view on join_fact_store_time , you need

to log all the necessary columns and use the INCLUDING NEW VALUES clause.

/* create materialized view log on join_fact_store_time */
CREATE MATERIALIZED VIEW LOG ON join_fact_store_time
 WITH rowid (store_name, time_day, dollar_sales)
 INCLUDING new values;
 Materialized Views 8-19

Types of Materialized Views
/* create the single-table aggregate materialized view sum_sales_store_time on
 join_fact_store_time as fast refreshable at COMMIT time. */
CREATE MATERIALIZED VIEW sum_sales_store_time
 REFRESH FAST ON COMMIT
 AS
 SELECT COUNT(*) cnt_all, SUM(dollar_sales) sum_sales, COUNT(dollar_sales)
 cnt_sales, store_name, time_day
 FROM join_fact_store_time
 GROUP BY store_name, time_day;

This schema can be diagrammatically represented as in Figure 8–3.

Figure 8–3 Nested Materialized View Schema

Nesting Materialized Views with Joins and Aggregates
Materialized views with joins and aggregates can be nested if they are refreshed as

COMPLETE REFRESH. Thus, you can arbitrarily nest materialized views having joins

and aggregates. No FAST REFESH is possible for these materialized views.

Note that the ON COMMIT REFRESH clause is not available for complex materialized

views. Because you have to invoke the refresh functions manually, ordering has to

be taken into account. This is because the refresh for a materialized view that is

built on other materialized views will use the current state of the other materialized

views, whether they are fresh or not. You can find the dependent materialized

views for a particular object using the PL/SQL function GET_MV_DEPENDENCIES
in the DBMS_MVIEW package.

Nested Materialized View Usage Guidelines
You should keep a couple of points in mind when deciding whether to use nested

materialized views.

join_fact_store_time

store fact time

sum_sales_store_time
8-20 Data Warehousing Guide

Types of Materialized Views
1. If you do not need the REFRESH FAST clause, then you can define a nested

materialized view.

2. Materialized views with joins only and single-table aggregate materialized

views can be REFRESH FAST and nested if all the materialized views that they

depend on are either materialized join views or single-table aggregate

materialized views.

Here are some guidelines on how to use nested materialized views:

1. If you want to use fast refresh, you should fast refresh all the materialized views

along any chain. It makes little sense to define a fast refreshable materialized

view on top of a materialized view that must be refreshed with a complete

refresh.

2. When using materialized views, you can define them to be ON COMMIT or ON
DEMAND. The choice would depend on the application using the materialized

views. If you expect the materialized views to always remain fresh, then all the

materialized views should have the ON COMMIT refresh option. If the time

window for refresh does not permit refreshing all the materialized views at

commit time, then the appropriate materialized views could be created with (or

altered to have) the ON DEMAND refresh option.

Restrictions when Using Nested Materialized Views
Only nested materialized join views and nested single-table aggregate materialized

views can use fast refresh. If you want complete refresh for all of your materialized

views, then you can still nest these materialized views.

Some restrictions exist on the way you can nest materialized views. Oracle allows

nesting a materialized view only when all the immediate dependencies of the

materialized view do not have any dependencies among themselves. Thus, in the

dependency tree, a materialized view can never be a parent as well as a

grandparent of an object. For example, Figure 8–4 shows an impermissible

materialized view because MV2 is both a parent and grandparent of Table2 .
 Materialized Views 8-21

Creating Materialized Views
Figure 8–4 Nested Materialized View Restriction

Limitations of Nested Materialized Views
Nested materialized views incur the space overhead of materializing the join and

having a materialized view log. In contrast, materialized aggregate views do not

have demanding space requirements for the materialized join view and its log, but

they have relatively long refresh times due to multiple computations of the same

join.

Creating Materialized Views
A materialized view can be created with the CREATE MATERIALIZED VIEW
statement or using Oracle Enterprise Manager. Example 8–8 creates the materialized

view store_sales_mv .

Example 8–8 Creating a Materialized View Example

CREATE MATERIALIZED VIEW store_sales_mv
 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 PARALLEL
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE
 AS
 SELECT s.store_name,
 SUM(dollar_sales) AS sum_dollar_sales
 FROM store s, fact f
 WHERE f.store_key = s.store_key
 GROUP BY s.store_name;

It is not uncommon in a data warehouse to have already created summary or

aggregation tables, and you might not wish to repeat this work by building a new

materialized view. In this case, the table that already exists in the database can be

MV2

MV1

Table2Table1
8-22 Data Warehousing Guide

Creating Materialized Views
registered as a prebuilt materialized view. This technique is described in

"Registering Existing Materialized Views" on page 8-32.

Once you have selected the materialized views you want to create, follow the steps

below for each materialized view.

1. Design the materialized view. Existing user-defined materialized views do not

require this step. If the materialized view contains many rows, then, if

appropriate, the materialized view should be partitioned by a time attribute (if

possible) and should match the partitioning of the largest or most frequently

updated detail or fact table (if possible). Refresh performance benefits from

partitioning, because it can take advantage of parallel DML capabilities.

2. Use the CREATE MATERIALIZED VIEW statement to create and, optionally,

populate the materialized view. If a user-defined materialized view already

exists, then use the ON PREBUILT TABLE clause in the CREATE MATERIALIZED
VIEW statement. Otherwise, use the BUILD IMMEDIATE clause to populate the

materialized view immediately, or the BUILD DEFERRED clause to populate the

materialized view later. A BUILD DEFERRED materialized view is disabled for

use by query rewrite until the first REFRESH, after which it will be

automatically enabled, provided the ENABLE QUERY REWRITE clause has been

specified.

Naming
The name of a materialized view must conform to standard Oracle naming

conventions. However, if the materialized view is based on a user-defined prebuilt

table, then the name of the materialized view must exactly match that table name.

If you already have a naming convention for tables and indexes, you might consider

extending this naming scheme to the materialized views so that they are easily

identifiable. For example, instead of naming the materialized view sum_of_sales ,

it could be called sum_of_sales_mv to denote that this is a materialized view and

not a table or view.

Storage Characteristics
Unless the materialized view is based on a user-defined prebuilt table, it requires

and occupies storage space inside the database. Therefore, the storage needs for the

See Also: Oracle9i SQL Reference for descriptions of the SQL

statements CREATE MATERIALIZED VIEW, ALTER MATERIALIZED
VIEW, and DROP MATERIALIZED VIEW
 Materialized Views 8-23

Creating Materialized Views
materialized view should be specified in terms of the tablespace where it is to reside

and the size of the extents.

If you do not know how much space the materialized view will require, then the

DBMS_OLAP.ESTIMATE_SIZE package, which is described in Chapter 16,

"Summary Advisor", can estimate the number of bytes required to store this

materialized view. This information can then assist the design team in determining

the tablespace in which the materialized view should reside.

Build Methods
Two build methods are available for creating the materialized view, as shown in the

following table. If you select BUILD IMMEDIATE, the materialized view definition is

added to the schema objects in the data dictionary, and then the fact or detail tables

are scanned according to the SELECT expression and the results are stored in the

materialized view. Depending on the size of the tables to be scanned, this build

process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the

materialized view without data, thereby enabling it to be populated at a later date

using the DBMS_MVIEW.REFRESH package described in Chapter 14, "Maintaining

the Data Warehouse".

Enabling Query Rewrite
Before creating a materialized view, you can verify what types of query rewrite are

possible by calling the procedure DBMS_MVIEW.EXPLAIN_MVIEW. Once the

materialized view has been created, you can use DBMS_MVIEW.EXPLAIN_REWRITE
to find out if (or why not) it will rewrite a specific query.

Even though a materialized view is defined, it will not automatically be used by the

query rewrite facility. You must set the QUERY_REWRITE_ENABLED initialization

parameter to TRUE before using query rewrite. You also must specify the ENABLE

See Also: Oracle9i SQL Reference for a complete description of

STORAGE semantics

Build Method Description

BUILD IMMEDIATE Create the materialized view and then populate it with data.

BUILD DEFERRED Create the materialized view definition but do not populate it
with data.
8-24 Data Warehousing Guide

Creating Materialized Views
QUERY REWRITE clause if the materialized view is to be considered available for

rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the

materialized view is created, the materialized view can subsequently be enabled for

query rewrite with the ALTER MATERIALIZED VIEW statement.

If you define a materialized view as BUILD DEFERRED, it is not eligible for query

rewrite until it is populated with data.

Query Rewrite Restrictions
Query rewrite is not possible with all materialized views. If query rewrite is not

occurring when expected, check to see if your materialized view satisfies all of the

following conditions.

Materialized View Restrictions
1. The defining query of the materialized view cannot contain any non-repeatable

expressions (ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

2. The query cannot contain any references to RAW or LONG RAW datatypes or

object REFs.

3. The defining query of the materialized view cannot contain set operators

(UNION, MINUS, and so on). However, a materialized view can have multiple

query blocks (for example, inline views in the FROMclause and subselects in the

WHERE or HAVING clauses).

4. If the materialized view was registered as PREBUILT, the precision of the

columns must agree with the precision of the corresponding SELECT
expressions unless overridden by the WITH REDUCED PRECISION clause.

5. If the materialized view contains the same table more than once, it is now

possible to do a general rewrite, provided the query has the same aliases for the

duplicate tables as the materialized view.

Query Rewrite Restrictions
1. If a query has both local and remote tables, only local tables will be considered

for potential rewrite.

2. Neither the detail tables nor the materialized view can be owned by SYS.

3. SELECT and GROUP BY lists, if present, must be the same in the query of the

materialized view.
 Materialized Views 8-25

Creating Materialized Views
4. Aggregate functions must occur only as the outermost part of the expression.

That is, aggregates such as AVG(AVG(x)) or AVG(x) + AVG(x) are not

allowed.

5. CONNECT BY clauses are not allowed.

Refresh Options
When you define a materialized view, you can specify two refresh options: how to

refresh and what type of refresh. If unspecified, the defaults are assumed as ON
DEMAND and FORCE.

The two refresh execution modes are: ON COMMIT and ON DEMAND. Depending on

the materialized view you create, some of the options may not be available.

When a materialized view is maintained using the ON COMMIT method, the time

required to complete the commit may be slightly longer than usual. This is because

the refresh operation is performed as part of the commit process. Therefore this

method may not be suitable if many users are concurrently changing the tables

upon which the materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced

by a materialized view concurrently with the refresh of that materialized view, and

that materialized view includes joins and aggregation, Oracle recommends you use

ON COMMIT fast refresh rather than ON DEMAND fast refresh.

If you think the materialized view did not refresh, check the alert log or trace file.

If a materialized view fails during refresh at COMMIT time, you must explicitly

invoke the refresh procedure using the DBMS_MVIEW package after addressing the

errors specified in the trace files. Until this is done, the view will no longer be

refreshed automatically at commit time.

Refresh Mode Description

ON COMMIT Refresh occurs automatically when a transaction that modified one of
the materialized view's detail tables commits. This can be specified
as long as the materialized view is fast refreshable (in other words,
not complex). The ON COMMIT privilege is necessary to use this
mode.

ON DEMAND Refresh occurs when a user manually executes one of the available
refresh procedures contained in the DBMS_MVIEW package
(REFRESH, REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT).
8-26 Data Warehousing Guide

Creating Materialized Views
You can specify how you want your materialized views to be refreshed from the

detail tables by selecting one of four options: COMPLETE, FAST, FORCE, and NEVER.

Whether the fast refresh option is available depends upon the type of materialized

view. You can call the procedure DBMS_MVIEW.EXPLAIN_MVIEW to determine

whether fast refresh is possible. Fast refresh is available for both general classes of

materialized views:

■ Materialized views with joins only

■ Materialized views with aggregates

General Restrictions on Fast Refresh
The defining query of the materialized view is restricted as follows:

■ The materialized view must:

Not contain references to non-repeating expressions like SYSDATE and ROWNUM.

Not contain references to RAW or LONG RAW data types.

Restrictions on Fast Refresh on Materialized Views without Aggregates
Defining queries for materialized views with joins only and no aggregates have

these restrictions on fast refresh:

■ All restrictions from "General Restrictions on Fast Refresh" on page 8-27.

■ They cannot have GROUP BY clauses or aggregates.

■ If the WHERE clause of the query contains outer joins, then unique constraints

must exist on the join columns of the inner join table.

Refresh Option Description

COMPLETE Refreshes by recalculating the materialized view's defining query.

FAST Applies incremental changes to refresh the materialized view using
the information logged in the materialized view logs, or from a
SQL*Loader direct-path or a partition maintenance operation.

FORCE Applies FAST refresh if possible; otherwise, it applies COMPLETE
refresh.

NEVER Indicates that the materialized view will not be refreshed with the
Oracle refresh mechanisms.
 Materialized Views 8-27

Creating Materialized Views
■ If there are no outer joins, you can have arbitrary selections and joins in the

WHERE clause. However, if there are outer joins, the WHERE clause cannot have

any selections. Furthermore, if there are outer joins, all the joins must be

connected by ANDs and must use the equality (=) operator.

■ Rowids of all the tables in the FROM list must appear in the SELECT list of the

query.

■ Materialized view logs must exist with rowids for all the base tables in the

FROM list of the query.

Restrictions on Fast Refresh on Materialized Views with Aggregates
Defining queries for materialized views with joins and aggregates have these

restrictions on fast refresh:

■ All restrictions from "General Restrictions on Fast Refresh" on page 8-27.

Fast refresh is supported for both ON COMMIT and ON DEMAND materialized views,

however the following restrictions apply:

1. All tables in the materialized view must have materialized view logs, and the

materialized view logs must:

■ contain all columns from the table referenced in the materialized view.

■ specify with ROWID and INCLUDING NEW VALUES.

■ The SEQUENCEclause is required when the materialized view log is defined

in order to support fast refresh after UPDATE.

2. Only SUM, COUNT, AVG, STDDEV, VARIANCE, MIN and MAXare supported for fast

refresh.

3. COUNT(*) must be specified.

4. For each aggregate AGG(expr) , the corresponding COUNT(expr) must be

present.

5. If VARIANCE(expr) or STDDEV(expr) is specified, COUNT(expr) and

SUM(expr) must be specified. Oracle recommends that SUM(expr *expr) be

specified. See Table 8–1 on page 8-13 for further details.

6. The SELECT list must contain all GROUP BY columns.

7. If the materialized view has one of the following, then fast refresh is supported

on conventional DML inserts or direct loads or a combination of both but not

not on deletes or updates.
8-28 Data Warehousing Guide

Creating Materialized Views
■ Materialized views with MIN or MAX aggregates

■ Materialized views which have SUM(expr) but no COUNT(expr)

■ Materialized views without COUNT(*)

8. The COMPATIBILITY parameter must be set to 9.0 if the materialized aggregate

view has inline views, outer joins, self joins or grouping sets and FAST
REFRESH is specified during creation. Note that all other requirements for fast

refresh specified above must also be satisfied.

9. Materialized views with named views or subqueries in the FROM clause can be

fast refreshed provided the views can be completely merged. For information

on which views will merge, refer to the Oracle9i Database Performance Guide and
Reference.

10. Materialized aggregate views with self joins (that is, multiple instances of the

same table in the defining query) are fast refreshable after conventional DML

and direct loads. The two tables will be treated as if they were separate tables.

11. If there are no outer joins, you may have arbitrary selections and joins in the

WHERE clause.

12. Materialized aggregate views with outer joins are fast refreshable after

conventional DML and direct loads, provided only the outer table has been

modified. Also, unique constraints must exist on the join columns of the inner

join table. If there are outer joins, all the joins must be connected by ANDs and

must use the equality (=) operator.

13. For materialized views with CUBE, ROLLUP, Grouping Sets, or concatenation of

them, the following restrictions apply:

1. The SELECT list should contain grouping distinguisher that can either be a

GROUPING_ID function on all GROUP BY expressions or GROUPING
functions one for each GROUP BY expression. For example, if the GROUP BY
clause of the materialized view is "GROUP BY CUBE(a, b)", then the

SELECT list should contain either "GROUPING_ID(a, b) " or

"GROUPING(a) AND GROUPING(b)" for the materialized view to be fast

refreshable.

2. GROUP BY should not result in any duplicate groupings. For example,

"GROUP BY a, ROLLUP(b, a) " is not fast refreshable because it results

in duplicate groupings "(a, b), (a, b), AND (a) ".
 Materialized Views 8-29

Creating Materialized Views
ORDER BY Clause
An ORDER BY clause is allowed in the CREATE MATERIALIZED VIEW statement. It

is used only during the initial creation of the materialized view. It is not used

during a full refresh or a fast refresh.

To improve the performance of queries against large materialized views, store the

rows in the materialized view in the order specified in the ORDER BY clause. This

initial ordering provides physical clustering of the data. If indexes are built on the

columns by which the materialized view is ordered, accessing the rows of the

materialized view using the index often reduces the time for disk I/O due to the

physical clustering.

The ORDER BYclause is not considered part of the materialized view definition. As a

result, there is no difference in the manner in which Oracle detects the various types

of materialized views (for example, materialized join views with no aggregates). For

the same reason, query rewrite is not affected by the ORDER BY clause. This feature

is similar to the CREATE TABLE ... ORDER BY capability that exists in Oracle.

Materialized View Logs
Materialized view logs are required if you want to use fast refresh. They are defined

using a CREATE MATERIALIZED VIEW LOG statement on the base table that is to be

changed. They are not created on the materialized view. For fast refresh of

materialized views, the definition of the materialized view logs must specify the

ROWID clause. In addition, for aggregate materialized views, it must also contain

every column in the table referenced in the materialized view, the INCLUDING NEW
VALUES clause and the SEQUENCE clause.

An example of a materialized view log is shown below where one is created on the

table sales .

CREATE MATERIALIZED VIEW LOG ON sales
WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount, cost)
INCLUDING NEW VALUES;

The keyword SEQUENCE is new for Oracle9i and Oracle recommends that this

clause be included in your materialized view log statement unless you are sure that

you will never perform a mixed DML operation (a combination of INSERT,

UPDATE, or DELETE operations on multiple tables).

The boundary of a mixed DML operation is determined by whether the

materialized view is ON COMMIT or ON DEMAND.
8-30 Data Warehousing Guide

Creating Materialized Views
■ For ON COMMIT, the mixed DML statements occur within the same transaction

because the refresh of the materialized view will occur upon commit of this

transaction.

■ For ON DEMAND, the mixed DML statements occur between refreshes. An

example of a materialized view log is shown below where one is created on the

table sales that includes the SEQUENCE keyword.

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount, cost)
INCLUDING NEW VALUES;

Using Oracle Enterprise Manager
A materialized view can also be created using Oracle Enterprise Manager by

selecting the materialized view object type. There is no difference in the information

required if this approach is used. However, you must complete three property

sheets and you must ensure that the option Enable Query Rewrite on the

General sheet is selected.

Using Materialized Views with NLS Parameters
When using certain materialized views, you must ensure that your NLS parameters

are the same as when you created the materialized view. Materialized views with

this restriction are:

■ Expressions that may return different values, depending on NLS parameter

settings. For example, (date > "01/02/03") or (rate <= "2.150") are NLS

parameter dependent expressions.

■ Equijoins where one side of the join is character data. The result of this equijoin

depends on collation and this can change on a session basis, giving an incorrect

result in the case of query rewrite or an inconsistent materialized view after a

refresh operation.

■ Expressions that generate internal conversion to character data in the SELECT
list of a materialized view, or inside an aggregate of a materialized aggregate

view. This restriction does not apply to expressions that involve only numeric

data, for example, a+b where a and b are numeric fields.
 Materialized Views 8-31

Registering Existing Materialized Views
Registering Existing Materialized Views
Some data warehouses have implemented materialized views in ordinary user

tables. Although this solution provides the performance benefits of materialized

views, it does not:

■ Provide query rewrite to all SQL applications

■ Enable materialized views defined in one application to be transparently

accessed in another application

■ Generally support fast parallel or fast materialized view refresh

Because of these limitations, and because existing materialized views can be

extremely large and expensive to rebuild, you should register your existing

materialized view tables with Oracle whenever possible. You can register a

user-defined materialized view with the CREATE MATERIALIZED VIEW ... ON
PREBUILT TABLEstatement. Once registered, the materialized view can be used for

query rewrites or maintained by one of the refresh methods, or both.

The contents of the table must reflect the materialization of the defining query at the

time you register it as a materialized view, and each column in the defining query

must correspond to a column in the table that has a matching datatype. However,

you can specify WITH REDUCED PRECISION to allow the precision of columns in

the defining query to be different from that of the table columns.

The table and the materialized view must have the same name, but the table retains

its identity as a table and can contain columns that are not referenced in the

defining query of the materialized view. These extra columns are known as

unmanaged columns. If rows are inserted during a refresh operation, each

unmanaged column of the row is set to its default value. Therefore, the unmanaged

columns cannot have NOT NULL constraints unless they also have default values.

Unmanaged columns are not supported by single-table aggregate materialized

views or materialized views containing joins only.

Materialized views based on prebuilt tables are eligible for selection by query

rewrite provided the parameter QUERY_REWRITE_INTEGRITY is set to at least the

level of STALE_TOLERATED or TRUSTED.

When you drop a materialized view that was created on a prebuilt table, the table

still exists—only the materialized view is dropped.

See Also: Chapter 22, "Query Rewrite", for details about integrity

levels
8-32 Data Warehousing Guide

Registering Existing Materialized Views
When a prebuilt table is registered as a materialized view and query rewrite is

desired, the parameter QUERY_REWRITE_INTEGRITY must be set to at least

STALE_TOLERATED because, when it is created, the materialized view is marked as

unknown. Therefore, only stale integrity modes can be used.

The following example illustrates the two steps required to register a user-defined

table. First, the table is created, then the materialized view is defined using exactly

the same name as the table. This materialized view sum_sales_tab is eligible for

use in query rewrite.

CREATE TABLE sum_sales_tab
 PCTFREE 0 TABLESPACE mviews
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 AS
 SELECT f.store_key
 SUM(dollar_sales) AS dollar_sales,
 SUM(unit_sales) AS unit_sales,
 SUM(dollar_cost) AS dollar_cost
 FROM fact f GROUP BY f.store_key;

CREATE MATERIALIZED VIEW sum_sales_tab
ON PREBUILT TABLE WITHOUT REDUCED PRECISION
ENABLE QUERY REWRITE
AS
SELECT f.store_key,
 SUM(dollar_sales) AS dollar_sales,
 SUM(unit_sales) AS unit_sales,
 SUM(dollar_cost) AS dollar_cost
 FROM fact f GROUP BY f.store_key;

In some cases, user-defined materialized views are refreshed on a schedule that is

longer than the update cycle. For example, a monthly materialized view might be

updated only at the end of each month, and the materialized view values always

refer to complete time periods. Reports written directly against these materialized

views implicitly select only data that is not in the current (incomplete) time period.

If a user-defined materialized view already contains a time dimension:

■ It should be registered and then fast refreshed each update cycle.

■ You can create a view that selects the complete time period of interest.

■ The reports should be modified to refer to the view instead of referring directly

to the user-defined materialized view.
 Materialized Views 8-33

Partitioning and Materialized Views
If the user-defined materialized view does not contain a time dimension, then:

■ Create a new materialized view that does include the time dimension (if

possible).

■ The view should aggregate over the time column in the new materialized view.

Partitioning and Materialized Views
Because of the large volume of data held in a data warehouse, partitioning is an

extremely useful option when designing a database.

Partitioning the fact tables improves scalability, simplifies system administration,

and makes it possible to define local indexes that can be efficiently rebuilt.

Partitioning the fact tables provides greater opportunities for fast refresh of the

materialized view, when the partition maintenance operation occurs. Partitioning

the fact tables also improves the opportunity of fast refreshing the materialized

view when the partition maintenance operation occurs.

Partitioning a materialized view also has benefits for refresh, because the refresh

procedure can use parallel DML to maintain the materialized view.

Partition Change Tracking
It is possible and advantageous to track freshness to a finer grain than the entire

materialized view. The ability to identify which rows in a materialized view are

affected by a certain detail table partition, is known as Partition Change Tracking

(PCT). When one or more of the detail tables are partitioned, it may be possible to

identify the specific rows in the materialized view that correspond to a modified

detail partition(s); those rows become stale when a partition is modified while all

other rows remain fresh.

Partition Change Tracking can be used to identify which materialized view rows

correspond to a particular detail table partition is used to support fast refresh after

partition maintenance operations on detail tables. For instance, if a detail table

partition is truncated or dropped, the affected rows in the materialized view are

identified and deleted. Identifying which materialized view rows are fresh or stale,

rather than considering the entire materialized view as stale, allows query rewrite

to use those rows that are fresh while in QUERY_REWRITE_INTEGRITY=ENFORCED
or TRUSTED modes.

See Also: Chapter 5, "Parallelism and Partitioning in Data

Warehouses" for further details about partitioning
8-34 Data Warehousing Guide

Partitioning and Materialized Views
To support PCT, a materialized view must satisfy the following requirements:

■ At least one of the detail tables referenced by the materialized view must be

partitioned.

■ Partitioned tables must use either range or composite partitioning.

■ The partition key must consist of only a single column.

■ The materialized view must contain either the partition key column or a

partition marker of the detail table. See Oracle9i Supplied PL/SQL Packages and
Types Reference for details regarding the DBMS_MVIEW.PMARKER function.

■ If a GROUP BY clause is used, the partition key column or the partition marker

must be present in the GROUP BY clause.

■ Data modifications can only occur on the partitioned table.

■ The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

■ Partition change tracking is not supported for a materialized view that refers to

views, remote tables, or outer joins.

Partition change tracking requires sufficient information in the materialized view to

be able to correlate each materialized view row back to its corresponding detail row

in the source partitioned detail table. This can be accomplished by including the

detail table partition key columns in the select list and, if GROUP BY is used, in the

GROUP BY list. Depending on the desired level of aggregation and the distinct

cardinalities of the partition key columns, this has the unfortunate effect of

significantly increasing the cardinality of the materialized view. For example, say a

popular metric is the revenue generated by a product during a given year. If the

sales table were partitioned by time_id , it would be a required field in the

SELECTclause and the GROUP BYclause of the materialized view. If there were 1000

different products sold each day, it would substantially increase the number of rows

in the materialized view.

Partition Marker
In many cases, the advantages of PCT will be offset by this restriction for highly

aggregated materialized views. The DBMS_MVIEW.PMARKERfunction is designed to

significantly reduce the cardinality of the materialized view (see Example 8–9 on

page 8-36 for an example). The function returns a partition identifier that uniquely

identifies the partition for a specified row within a specified partition table. The

DBMS_MVIEW.PMARKER function is used instead of the partition key column in the

SELECT and GROUP BY clauses.
 Materialized Views 8-35

Partitioning and Materialized Views
Unlike the general case of a PL/SQL function in a materialized view, use of the

DBMS_MVIEW.PMARKER does not prevent rewrite with that materialized view even

when the rewrite mode is QUERY_REWRITE_INTEGRITY=ENFORCED.

Example 8–9 Partition Change Tracking Example

The following example uses the Sales History Schema and the three detail tables

sales , products , and times to create two materialized views. For this example,

sales is a partitioned table using the time_id column and products is

partitioned by the prod_category column. times is not a partitioned table.

The first materialized view is for the yearly sales revenue per product.

The second materialized view is for monthly customer sales. As customers tend to

purchase in bulk, sales average just two orders per customer per month. Therefore,

the impact of including the time_id in the materialized view will not unacceptably

increase the number of rows stored. However, most orders are large and contain

many different products. With approximately 1000 different products sold each day,

including the time_id in the materialized view would substantially increase the

cardinality. This materialized view uses the DBMS_MVIEW.PMARKER function.

The detail tables must have materialized view logs for FAST REFRESH.

CREATE MATERIALIZED VIEW LOG ON SALES WITH ROWID
 (prod_id, time_id, quantity_sold, amount)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON PRODUCTS WITH ROWID
 (prod_id, prod_name, prod_desc)
 INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON TIMES WITH ROWID
 (time_id, calendar_month_name, calendar_year)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
 SELECT s.time_id, p.prod_id, SUM(s.quantity_sold), SUM(s.amount),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
 GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;
8-36 Data Warehousing Guide

Partitioning and Materialized Views
cust_mth_sales_mv includes the partition key column from table sales (time_
id) in both its select and group by lists. This enables PCT on table sales for

materialized view cust_mth_sales_mv . However, the GROUP BY and SELECT
lists include PRODUCTS.PROD_ID rather the partition key column (PROD_
CATEGORY) of the products table. Therefore, PCT is not enabled on table

products for this materialized view. In other words, any partition maintenance

operation to the sales table will allow a PCT fast refresh of cust_mth_sales_mv .

However, PCT fast refresh is not possible after any kind of modification to the

products table. To correct this, the GROUP BY and SELECT lists must include

column PRODUCTS.PROD_CATEGORY. Following a partition maintenance

operation, such as a drop partition, it is recommended a PCT fast refresh be

performed on any materialized view that is referencing the table upon which the

partition operations are undertaken.

Example 8–10 Creating a Materialized View Example

CREATE MATERIALIZED VIEW prod_yr_sales_mv
BUILD DEFERRED
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
 SELECT DBMS_MVIEW.PMARKER(s.rowid),
 DBMS_MVIEW.PMARKER(p.rowid),
 s.prod_id, SUM(s.amount), SUM(s.quantity_sold),
 p.prod_name, t.calendar_year, COUNT(*),
 COUNT(s.amount), COUNT(s.quantity_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND
 s.prod_id = p.prod_id
 GROUP BY DBMS_MVIEW.PMARKER (s.rowid),
 DBMS_MVIEW.PMARKER (p.rowid),
 t.calendar_year, s.prod_id, p.prod_name;

prod_yr_sales_mv includes the DBMS_MVIEW.PMARKER function on the sales
and products tables in both its SELECT and GROUP BY lists. This enables partition

change tracking on both the sales table and the products table with significantly

less cardinality impact than grouping by the respective partition key columns. In

this example, the desired level of aggregation for the prod_yr_sales_mv is to

group by times.calendar_year . Using the DBMS_MVIEW.PMARKER function,

the materialized view cardinality is increased only by a factor of the number of

partitions in the sales table times, the number of partitions in the products table.

This would generally be significantly less than the cardinality impact of including

the respective partition key columns.
 Materialized Views 8-37

Partitioning and Materialized Views
A subsequent INSERT statement adds a new row to the sales_part3 partition of

table SALES. At this point, because cust_mth_sales_mv and prod_yr_sales_
mv have partition change tracking available on table sales , Oracle can determine

that those rows in these materialized views corresponding to sales_part3 are

stale, while all other rows in these materialized views are unchanged in their

freshness state. An INSERT INTO products statement is not tracked for

materialized view cust_mth_sales_mv . Therefore, cust_mth_sales_mv
becomes completely stale when the products table is modified in this way.

Partitioning a Materialized View
Partitioning a materialized view involves defining the materialized view with the

standard Oracle partitioning clauses, as illustrated in the example below. This

example creates a materialized view called part_sales_mv , which uses three

partitions, may be fast refreshed, and is eligible for query rewrite.

Example 8–11 Materialized View Partitioning Example

CREATE MATERIALIZED VIEW part_sales_mv
PARALLEL
 PARTITION by RANGE (time_key)
 (PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1997', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-01-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('28-02-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE
AS
SELECT f.store_key, f.time_key,
 SUM(f.dollar_sales) AS sum_dol_sales,
 SUM(f.unit_sales) AS sum_unit_sales
 FROM fact f GROUP BY f.time_key, f.store_key;
8-38 Data Warehousing Guide

Partitioning and Materialized Views
Partitioning a Prebuilt Table
Alternatively, a materialized view can be registered to a partitioned prebuilt table as

illustrated in the following example:

CREATE TABLE part_fact_tab(time_key, store_key, sum_dollar_sales, sum_unit_sale)
 PARALLEL
 PARTITION by RANGE (time_key)
 (
 PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1997', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITITAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITIION month2
 VALUES LESS THAN (TO_DATE('31-01-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('28-02-1998', DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
AS
SELECT f.time_key, f.store_key,
 SUM(f.dollar_sales) AS sum_dollar_sales,
 SUM(f.unit_sales) AS sum_unit_sales
 FROM fact f GROUP BY f.time_key, f.store_key;

CREATE MATERIALIZED VIEW part_fact_tab
ON PREBUILT TABLE
ENABLE QUERY REWRITE
AS
SELECT f.time_key, f.store_key,
 SUM(f.dollar_sales) AS sum_dollar_sales,
 SUM(f.unit_sales) AS sum_unit_sales
 FROM fact f GROUP BY f.time_key , f.store_key;

In this example, the table part_fact_tab has been partitioned over three months

and then the materialized view was registered to use the prebuilt table. This

materialized view is eligible for query rewrite because the ENABLE QUERY
REWRITE clause has been included.
 Materialized Views 8-39

Choosing Indexes for Materialized Views
Rolling Materialized Views
When the data warehouse or data mart contains a time dimension, it is often

desirable to archive the oldest information and then reuse the storage for new

information. This is called the rolling window scenario. If the fact tables or

materialized views include a time dimension and are horizontally partitioned by

the time attribute, then management of rolling materialized views can be reduced to

a few fast partition maintenance operations provided the unit of data that is rolled

out equals, or is at least aligned with, the range partitions.

If you plan to have rolling materialized views in your warehouse, you should

determine how frequently you plan to perform partition maintenance operations,

and you should plan to partition fact tables and materialized views to reduce the

amount of system administration overhead required when old data is aged out.

You are not restricted to using range partitions. For example, a composite partition

using both a time value and a key value could result in a good partition solution for

your data.

Choosing Indexes for Materialized Views
The two most common operations on a materialized view are query execution and

fast refresh, and each operation has different performance requirements. Query

execution might need to access any subset of the materialized view key columns,

and might need to join and aggregate over a subset of those columns. Consequently,

query execution usually performs best if a single-column bitmap index is defined

on each materialized view key column.

In the case of materialized views containing only joins using fast refresh, Oracle

recommends that indexes be created on the columns that contain the rowids to

improve the performance of the refresh operation.

If a materialized view using joins and aggregates is fast refreshable, then an index is

automatically created unless USING NO INDEX is specified in the CREATE
MATERIALIZED VIEW statement.

See Also: Chapter 14, "Maintaining the Data Warehouse", for

further details regarding CONSIDER FRESH

See Also: Chapter 21, "Using Parallel Execution", for further

details
8-40 Data Warehousing Guide

Security Issues with Materialized Views
Invalidating Materialized Views
Dependencies related to materialized views are automatically maintained to ensure

correct operation. When a materialized view is created, the materialized view

depends on the detail tables referenced in its definition. Any DML operation, such

as a INSERT, or DELETE, UPDATE, or DDL operation on any dependency in the

materialized view will cause it to become invalid. To revalidate a materialized view,

use the ALTER MATERIALIZED VIEW COMPILE statement.

A materialized view is automatically revalidated when it is referenced. In many

cases, the materialized view will be successfully and transparently revalidated.

However, if a column has been dropped in a table referenced by a materialized view

or the owner of the materialized view did not have one of the query rewrite

privileges and that privilege has now been granted to the owner, the statement:

ALTER MATERIALIZED VIEW mview_name ENABLE QUERY REWRITE

should be used to revalidate the materialized view.

The state of a materialized view can be checked by querying the data dictionary

views USER_MVIEWS or ALL_MVIEWS. The column STALENESS will show one of

the values FRESH, STALE, UNUSABLE, UNKNOWN, or UNDEFINEDto indicate whether

the materialized view can be used. The state is maintained automatically, but it can

be manually updated by issuing an ALTER MATERIALIZED VIEW <name>
COMPILE statement.

Security Issues with Materialized Views
To create a materialized view in your own schema, you must have the CREATE
MATERIALIZED VIEW privilege and the SELECT privilege to any tables referenced

that are in another schema. To create a materialized view in another schema, you

must have the CREATE ANY MATERIALIZED VIEW privilege and the owner of the

materialized view needs SELECT privileges to the tables referenced if they are from

another schema.

Moreover, if you enable query rewrite on a materialized view that references tables

outside your schema, you must have the GLOBAL QUERY REWRITE privilege or the

QUERY REWRITE object privilege on each table outside your schema.

If the materialized view is on a prebuilt container, the creator, if different from the

owner, must have SELECT WITH GRANT privilege on the container table.

If you continue to get a privilege error while trying to create a materialized view

and you believe that all the required privileges have been granted, then the problem
 Materialized Views 8-41

Altering Materialized Views
is most likely due to a privilege not being granted explicitly and trying to inherit the

privilege from a role instead. The owner of the materialized view must have

explicitly been granted SELECT access to the referenced tables if the tables are in a

different schema.

If the materialized view is being created with ON COMMIT REFRESH specified, then

the owner of the materialized view requires an additional privilege if any of the

tables in the defining query are outside the owner's schema. In that case, the owner

requires the ON COMMIT REFRESH system privilege or the ON COMMIT REFRESH
object privilege on each table outside the owner's schema.

Altering Materialized Views
Five modifications can be made to a materialized view. You can:

■ Change its refresh option (FAST/FORCE/COMPLETE/NEVER)

■ Change its refresh mode (ON COMMIT/ON DEMAND)

■ Recompile it

■ Enable or disable its use for query rewrite

■ Consider it fresh

All other changes are achieved by dropping and then re-creating the materialized

view.

The COMPILE clause of the ALTER MATERIALIZED VIEW statement can be used

when the materialized view has been invalidated. This compile process is quick,

and allows the materialized view to be used by query rewrite again.

Dropping Materialized Views
Use the DROP MATERIALIZED VIEW statement to drop a materialized view. For

example:

DROP MATERIALIZED VIEW sales_sum_mv;

This statement drops the materialized view sales_sum_mv . If the materialized

view was prebuilt on a table, then the table is not dropped, but it can no longer be

See Also: Oracle9i SQL Reference for further information about the

ALTER MATERIALIZED VIEW statement and "Invalidating

Materialized Views" on page 8-41
8-42 Data Warehousing Guide

Analyzing Materialized View Capabilities
maintained with the refresh mechanism or used by query rewrite. Alternatively,

you can drop a materialized view using Oracle Enterprise Manager.

Analyzing Materialized View Capabilities
You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to learn what is possible

with a materialized view or potential materialized view. In particular, this

procedure enables you to determine:

■ If a materialized view is fast refreshable

■ What types of query rewrite you can perform with this materialized view

■ Whether PCT refresh is possible

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_
MVIEW, passing in as a single parameter the schema and materialized view name for

an existing materialized view. Alternatively, you can specify the SELECTstring for a

potential materialized view. The materialized view or potential materialized view is

then analyzed and the results are written into either a table called MV_
CAPABILITIES_TABLE , which is the default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW
except when you are only concerned with VARRAYs. The script is found in the

admin directory. In addition, you must create MV_CAPABILITIES_TABLE in the

current schema. An explanation of the various capabilities is in Table 8–2 on

page 8-46, and all the possible messages are listed in Table 8–3 on page 8-48.

Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
The DBMS_MVIEW.EXPLAIN_MVIEW procedure has the following parameters:

■ STMT_ID

An optional parameter. A client-supplied unique identifier to associate output

rows with specific invocations of EXPLAIN_MVIEW.

■ MV

The name of an existing materialized view or the query definition of a potential

materialized view you want to analyze.

■ MSG_ARRAY

The PL/SQL varray that receives the output.
 Materialized Views 8-43

Analyzing Materialized View Capabilities
DBMS_MVIEW.EXPLAIN_MVIEW analyzes the specified materialized view in terms

of its refresh and rewrite capabilities and inserts its results (in the form of multiple

rows) into MV_CAPABILITIES_TABLE or MSG_ARRAY.

DBMS_MVIEW.EXPLAIN_MVIEW Declarations
The following PL/SQL declarations that are made for you in the DBMS_MVIEW
package show the order and datatypes of these parameters for explaining an

existing materialized view and a potential materialized view with output to a table

and to a VARRAY.

Explain an existing or potential materialized view with output to MV_
CAPABILITIES_TABLE

DBMS_MVIEW.EXPLAIN_MVIEW
(mv IN VARCHAR2,
 stmt_id IN VARCHAR2:= NULL);

Explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW
(mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

Using MV_CAPABILITIES_TABLE
One of the simplest ways to use DBMS_MVIEW.EXPLAIN_MVIEW is with the MV_
CAPABILITIES_TABLE , which has the following structure:

CREATE TABLE MV_CAPABILITIES_TABLE
 (
 STMT_ID VARCHAR(30), -- client-supplied unique statement identifier
 MV VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of particular
 -- capabilities, such as REWRITE.
 -- See Table 8–2
 POSSIBLE CHARACTER(1), -- Y = capability is possible
 -- N = capability is not possible
 RELATED_TEXT VARCHAR(2000), -- owner.table.column, and so on related to
 -- this message
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 MSGNO INTEGER, -- When available, message # explaining

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

further information about the DBMS_MVIEW package
8-44 Data Warehousing Guide

Analyzing Materialized View Capabilities
 -- why disabled or more details when
 -- enabled.
 MSGTXT VARCHAR(2000), -- Text associated with MSGNO
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

You can use the utlxmv.sql script found in the admin directory to create MV_
CAPABILITIES_TABLE .

Example 8–12 DBMS_MVIEW.EXPLAIN_MVIEW Example

First, create the materialized view. Alternatively, you can use EXPLAIN_MVIEWon a

potential materialized view using its SELECT statement.

CREATE MATERIALIZED VIEW cal_month_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT t.calendar_month_desc, SUM(s.amount) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Then, you invoke EXPLAIN_MVIEW with the materialized view to explain.

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('SH.CAL_MONTH_SALES_MV');

SELECTcapability_name, possible,SUBSTR(related_text,1,8)ASrel_text,
SUBSTR(msgtxt,1,60) AS msgtxt
FROM MV_CAPABILITIES_TABLE
ORDER BY seq;

You need to use the SEQcolumn in an ORDER BYclause so the rows will display in a

logical order. If a capability is not possible, N will appear in the P column and an

explanation in the MSGTXT column. If a capability is not possible for more than one

reason, a row is displayed for each reason.

CAPABILITY_NAME P REL_TEXT MSGTXT
--------------- - -------- ------
PCT N
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE Y
PCT_TABLE N SALES no partition key or PMARKER in select list
PCT_TABLE N TIMES relation is not a partitioned table
 Materialized Views 8-45

Analyzing Materialized View Capabilities
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log does not have all necessary columns
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log does not have all necessary columns
REFRESH_FAST_AFTER_ONETAB_DML N DOLLARS SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ONETAB_DML N see the reason why
 REFRESH_FAST_AFTER_INSERT is disabled
REFRESH_FAST_AFTER_ONETAB_DML N COUNT(*) is not present in the select list
REFRESH_FAST_AFTER_ONETAB_DML N SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ANY_DML N see the reason why
 REFRESH_FAST_AFTER_ONETAB_DML is disabled
REFRESH_FAST_AFTER_ANY_DML N SH.TIMES mv log must have sequence
REFRESH_FAST_AFTER_ANY_DML N SH.SALES mv log must have sequence
REFRESH_PCT N PCT is not possible on any of the detail
 tables in the materialized view
REWRITE_FULL_TEXT_MATCH Y
REWRITE_PARTIAL_TEXT_MATCH Y
REWRITE_GENERAL Y
REWRITE_PCT N PCT is not possible on any detail tables

MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
Table 8–2 lists explanations for values in the CAPABILITY_NAME column.

See Also: Chapter 14, "Maintaining the Data Warehouse" and

Chapter 22, "Query Rewrite" for further details about PCT

Table 8–2 CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

PCT If this capability is possible, Partition Change Tracking is possible on at least one
detail relation. If this capability is not possible, PCT is not possible with any detail
relation referenced by the materialized view.

REFRESH_COMPLETE If this capability is possible, complete refresh of the materialized view is possible.

REFRESH_FAST If this capability is possible, fast refresh is possible at least under certain
circumstances.

REWRITE If this capability is possible, at least full text match query rewrite is possible. If this
capability is not possible, no form of query rewrite is possible.
8-46 Data Warehousing Guide

Analyzing Materialized View Capabilities
PCT_TABLE If this capability is possible, it is possible with respect to a particular partitioned
table in the top level FROM list. When possible, PCT applies to the partitioned table
named in the RELATED_TEXT column.

PCT is needed to support fast fresh after partition maintenance operations on the
table named in the RELATED_TEXT column.

PCT may also support fast refresh with regard to updates to the table named in the
RELATED_TEXT column when fast refresh from a materialized view log is not
possible. (PCT-based fast refresh generally does not perform as well as fast refresh
from a materialized view log.)

PCT is also needed to support query rewrite in the presence of partial staleness of
the materialized view with regard to the table named in the RELATED_TEXT
column.

When disabled, PCT does not apply to the table named in the RELATED_TEXT
column. In this case, fast refresh is not possible after partition maintenance
operations on the table named in the RELATED_TEXT column. In addition,
PCT-based refresh of updates to the table named in the RELATED_TEXT column is
not possible. Finally, query rewrite cannot be supported in the presence of partial
staleness of the materialized view with regard to the table named in the RELATED_
TEXT column.

REFRESH_FAST_
AFTER_INSERT

If this capability is possible, fast refresh from a materialized view log or change
capture table is possible at least in the case where the updates are restricted to
INSERT operations; complete refresh is also possible. If this capability is not
possible, no form of fast refresh from a materialized view log or change capture
table is possible.

REFRESH_FAST_
AFTER_ONETAB_DML

If this capability is possible, fast refresh from a materialized view log is possible
regardless of the type of update operation, provided all update operations are
performed on a single table. If this capability is not possible, fast refresh from a
materialized view log may not be possible when the update operations are
performed on multiple tables.

REFRESH_FAST_
AFTER_ANY_DML

If this capability is possible, fast refresh from a materialized view log is possible
regardless of the type of update operation or the number of tables updated. If this
capability is not possible, fast refresh from a materialized view log may not be
possible when the update operations (other than INSERT) affect multiple tables.

REFRESH_FAST_PCT If this capability is possible, fast refresh using PCT is possible. Generally, this means
that refresh is possible after partition maintenance operations on those detail tables
where PCT is indicated as possible.

REWRITE_FULL_TEXT_
MATCH

If this capability is possible, full text match query rewrite is possible. If this
capability is not possible, full text match query rewrite is not possible.

Table 8–2 CAPABILITY_NAME Column Details

CAPABILITY_NAME Description
 Materialized Views 8-47

Analyzing Materialized View Capabilities
MV_CAPABILITIES_TABLE Column Details
Table 8–3 lists the semantics for RELATED_TEXT and RELATED_NUM columns.

REWRITE_PARTIAL_
TEXT_MATCH

If this capability is possible, at least full and partial text match query rewrite are
possible. If this capability is not possible, at least partial text match query rewrite
and general query rewrite are not possible.

REWRITE_GENERAL If this capability is possible, all query rewrite capabilities are possible, including
general query rewrite and full and partial text match query rewrite. If this capability
is not possible, at least general query rewrite is not possible.

REWRITE_PCT If this capability is possible, query rewrite can use a partially stale materialized view
even in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. When this
capability is not possible, query rewrite can use a partially stale materialized view
only in QUERY_REWRITE_INTEGRITY = STALE_TOLERATED mode.

Table 8–3 MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT

NULL NULL For PCT capability only:
[<owner>.]<name> of the table
upon which PCT is enabled

2066 This statement resulted in an
Oracle error

Oracle error number that
occurred

2067 No partition key or PMARKER
in select list

[<owner>.]<name> of relation for
which PCT is not supported

2068 Relation is not partitioned [<owner>.]<name> of relation for
which PCT is not supported

2069 PCT not supported with
multicolumn partition key

[<owner>.]<name> of relation for
which PCT is not supported

2070 PCT not supported with this
type of partitioning

[<owner>.]<name> of relation for
which PCT is not supported

2071 Internal error: undefined PCT
failure code

The unrecognized
numeric PCT failure code

[<owner>.]<name> of relation for
which PCT is not supported

2077 Mv log is newer than last full
refresh

[<owner>.]<table_name> of table
upon which the mv log is needed

2078 Mv log must have new values [<owner>.]<table_name> of table
upon which the mv log is needed

Table 8–2 CAPABILITY_NAME Column Details

CAPABILITY_NAME Description
8-48 Data Warehousing Guide

Overview of Materialized View Management Tasks
Overview of Materialized View Management Tasks
The motivation for using materialized views is to improve performance, but the

overhead associated with materialized view management can become a significant

system management problem. Materialized view management activities include:

■ Identifying what materialized views to create initially

■ Indexing the materialized views

■ Ensuring that all materialized views and materialized view indexes are

refreshed properly each time the database is updated

■ Checking which materialized views have been used

2079 Mv log must have ROWID [<owner>.]<table_name> of table
upon which the mv log is needed

2080 Mv log must have primary
key

[<owner>.]<table_name> of table
upon which the mv log is needed

2081 Mv log does not have all
necessary columns

[<owner>.]<table_name> of table
upon which the mv log is needed

2082 Problem with mv log [<owner>.]<table_name> of table
upon which the mv log is needed

2099 Mv references a remote table
or view in the FROM list

Offset from the SELECT
keyword to the table or
view in question

[<owner>.]<name> of the table or
view in question

2126 Multiple master sites Name of the first different node, or
NULL if the first different node is local

2129 Join or filter condition(s) are
complex

[owner.]<name> of the table
involved with the join or filter
condition (or NULL when not
available)

2130 Expression not supported for
fast refresh

Offset from the SELECT
keyword to the
expression in question

The alias name in the select list of the
expression in question

2150 Select lists must be identical
across the UNION operator

Offset from the SELECT
keyword to the first
different select item in
the select list

The alias name of the first different
select item in the SELECT list

Table 8–3 MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT
 Materialized Views 8-49

Overview of Materialized View Management Tasks
■ Determining how effective each materialized view has been on workload

performance

■ Measuring the space being used by materialized views

■ Determining which new materialized views should be created

■ Determining which existing materialized views should be dropped

■ Archiving old detail and materialized view data that is no longer useful

After the initial effort of creating and populating the data warehouse or data mart,

the major administration overhead is the update process, which involves:

■ Periodic extraction of incremental changes from the operational systems

■ Transforming the data

■ Verifying that the incremental changes are correct, consistent, and complete

■ Bulk-loading the data into the warehouse

■ Refreshing indexes and materialized views so that they are consistent with the

detail data

The update process must generally be performed within a limited period of time

known as the update window. The update window depends on the update
frequency (such as daily or weekly) and the nature of the business. For a daily

update frequency, an update window of two to six hours might be typical.

You need to know your update window for the following activities:

1. Loading the detail data.

2. Updating or rebuilding the indexes on the detail data.

3. Performing quality assurance tests on the data.

4. Refreshing the materialized views.

5. Updating the indexes on the materialized views.

A popular and efficient way to load data into a warehouse or data mart is to use

SQL*Loader with the DIRECT or PARALLEL option or to use another loader tool

that uses the Oracle direct-path API.
8-50 Data Warehousing Guide

Overview of Materialized View Management Tasks
Loading strategies can be classified as one-phase or two-phase. In one-phase

loading, data is loaded directly into the target table, quality assurance tests are

performed, and errors are resolved by performing DML operations prior to

refreshing materialized views. If a large number of deletions are possible, then

storage utilization can be adversely affected, but temporary space requirements and

load time are minimized. The DML that may be required after one-phase loading

causes multitable aggregate materialized views to become unusable in the safest

rewrite integrity level.

In a two-phase loading process:

■ Data is first loaded into a temporary table in the warehouse.

■ Quality assurance procedures are applied to the data.

■ Referential integrity constraints on the target table are disabled, and the local

index in the target partition is marked unusable.

■ The data is copied from the temporary area into the appropriate partition of the

target table using INSERT AS SELECT with the PARALLEL or APPEND hint.

■ The temporary table is dropped.

■ The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail

data, the database can be opened for operation, if desired. You can disable query

rewrite at the system level with ALTER SYSTEM SET QUERY_REWRITE_ENABLED=

FALSE until all the materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY=STALE_TOLERATED, access to the materialized

view can be allowed at the session level to any users who do not require the

materialized views to reflect the data from the latest load by using ALTER SESSION
SET QUERY_REWRITE_INTEGRITY=TRUE. This scenario does not apply when

QUERY_REWRITE_INTEGRITYis either ENFORCEDor TRUSTEDbecause the system

ensures in these modes that only materialized views with updated data participate

in a query rewrite.

See Also: Oracle9i Database Utilities for the restrictions and

considerations when using SQL*Loader with the DIRECT or

PARALLEL keywords
 Materialized Views 8-51

Overview of Materialized View Management Tasks
8-52 Data Warehousing Guide

 Dimen
9

Dimensions

The following sections will help you create and manage a data warehouse:

■ What are Dimensions?

■ Creating Dimensions

■ Viewing Dimensions

■ Using Dimensions with Constraints

■ Validating Dimensions

■ Altering Dimensions

■ Deleting Dimensions
sions 9-1

What are Dimensions?
What are Dimensions?
A dimension is a structure that categorizes data in order to enable users to answer

business questions. Commonly used dimensions are customers , products , and

time . For example, each sales channel of a clothing retailer might gather and store

data regarding sales and reclamations of their Cloth assortment. The retail chain

management can build a data warehouse to analyze the sales of its products across

all stores over time and help answer questions such as:

■ What is the effect of promoting one product on the sale of a related product that

is not promoted?

■ What are the sales of a product before and after a promotion?

■ How does a promotion affect the various distribution channels?

The data in the retailer's data warehouse system has two important components:

dimensions and facts. The dimensions are products, customers, promotions,

channels, and time. One approach for identifying your dimensions is to review your

reference tables, such as a product table that contains everything about a product,

or a promotion table containing all information about promotions. The facts are

sales (units sold) and profits. A data warehouse contains facts about the sales of

each product at on a daily basis.

A typical relational implementation for such a data warehouse is a Star Schema. The

fact information is stored in the so-called fact table, whereas the dimensional

information is stored in the so-called dimension tables. In our example, each sales

transaction record is uniquely defined as per customer, per product, per sales

channel, per promotion, and per day (time).

In Oracle9i, the dimensional information itself is stored in a dimension table. In

addition, the database object dimension helps to organize and group dimensional

information into hierarchies. This represents natural 1:n relationships between

columns or column groups (the levels of a hierarchy) that cannot be represented

with constraint conditions. Going up a level in the hierarchy is called rolling up the

data and going down a level in the hierarchy is called drilling down the data. In the

retailer example:

See Also: Chapter 17, "Schema Modeling Techniques" for further

details
9-2 Data Warehousing Guide

What are Dimensions?
■ Within the time dimension, months roll up to quarters, quarters roll up to

years, and years roll up to all years.

■ Within the product dimension, products roll up to subcategories,

subcategories roll up to categories, and categories roll up to all products.

■ Within the customer dimension, customers roll up to city . Then cities rolls

up to state . Then states roll up to country . Then countries roll up to

subregion . Finally, subregions roll up to region , as shown in Figure 9–1.

Figure 9–1 Sample Rollup for a Customer Dimension

Data analysis typically starts at higher levels in the dimensional hierarchy and

gradually drills down if the situation warrants such analysis.

Dimensions do not have to be defined, but spending time creating them can yield

significant benefits, because they help query rewrite perform more complex types of

rewrite. They are mandatory if you use the Summary Advisor (a GUI tool for

materialized view management) to recommend which materialized views to create,

drop, or retain.

country

subregion

state

city

customer

region
 Dimensions 9-3

Creating Dimensions
You must not create dimensions in any schema that does not satisfy these

relationships. Incorrect results can be returned from queries otherwise.

Creating Dimensions
Before you can create a dimension object, the dimension tables must exist in the

database, containing the dimension data. For example, if you create a customer

dimension, one or more tables must exist that contain the city, state, and country

information. In a star schema data warehouse, these dimension tables already exist.

It is therefore a simple task to identify which ones will be used.

Now you can draw the hierarchies of a dimension as shown in Figure 9–1. For

example, city is a child of state (because you can aggregate city-level data up to

state), and country . This hierarchical information will be stored in the database

object dimension.

In the case of normalized or partially normalized dimension representation (a

dimension that is stored in more than one table), identify how these tables are

joined. Note whether the joins between the dimension tables can guarantee that

each child-side row joins with one and only one parent-side row. In the case of

denormalized dimensions, determine whether the child-side columns uniquely

determine the parent-side (or attribute) columns. These constraints can be enabled

with the NOVALIDATE and RELY clauses if the relationships represented by the

constraints are guaranteed by other means.

You create a dimension using either the CREATE DIMENSION statement or the

Dimension Wizard in Oracle Enterprise Manager. Within the CREATE DIMENSION
statement, use the LEVEL clause to identify the names of the dimension levels.

This customer dimension contains a single hierarchy with a geograph rollup, with

arrows drawn from the child level to the parent level, as shown in Figure 9–1 on

page 9-3.

Each arrow in this graph indicates that for any child there is one and only one

parent. For example, each city must be contained in exactly one state and each state

must be contained in exactly one country. States that belong to more than one

See Also: Chapter 22, "Query Rewrite" for further details

regarding query rewrite and Chapter 16, "Summary Advisor" for

further details regarding the Summary Advisor

See Also: Oracle9i SQL Reference for a complete description of the

CREATE DIMENSION statement
9-4 Data Warehousing Guide

Creating Dimensions
country, or that belong to no country, violate hierarchical integrity. Hierarchical

integrity is necessary for the correct operation of management functions for

materialized views that include aggregates.

For example, you can declare a dimension products_dim , which contains levels

product , subcategory , and category :

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category) ...

Each level in the dimension must correspond to one or more columns in a table in

the database. Thus, level product is identified by the column prod_id in the

products table and level subcategory is identified by a column called prod_
subcategory in the same table.

In this example, the database tables are denormalized and all the columns exist in

the same table. However, this is not a prerequisite for creating dimensions. "Using

Normalized Dimension Tables" on page 9-9 shows how to create a dimension

customers_dim that has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY
statement and give that hierarchy a name. A hierarchical relationship is a

functional dependency from one level of a hierarchy to the next level in the

hierarchy. Using the level names defined previously, the CHILD OF relationship

denotes that each child's level value is associated with one and only one parent

level value. The following statements declare a hierarchy prod_rollup and define

the relationship between products , subcategory, and category .

 HIERARCHY prod_rollup
(product CHILD OF
 subcategory CHILD OF
 category)

In addition to the 1:n hierarchical relationships, dimensions also include 1:1
attribute relationships between the hierarchy levels and their dependent,

determined dimension attributes. For example the dimension times_dim , as

defined in Appendix B, has columns fiscal_month_desc , fiscal_month_
name, and days_in_fiscal_month . Their relationship is defined as follows:
 Dimensions 9-5

Creating Dimensions
LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
...
ATTRIBUTE fis_month DETERMINES
 (fiscal_month_desc, fiscal_month_number, fiscal_month_name,
 days_in_fis_month, end_of_fis_month)

The ATTRIBUTE... DETERMINESclause relates fis_month to fiscal_month_name
and days_in_fiscal_month . Note that this is a unidirectional determination. It

is only guaranteed, that for a specific fiscal_month , for example, 1999-11 , you

will find exactly one matching values for fiscal_month_name , for example,

November and days_in_fiscal_month , for example, 28. You cannot determine

a specific fiscal_month_desc based on the fiscal_month_name , which is

November for every fiscal year.

In this example, suppose a query were issued that queried by fiscal_month_
name instead of fiscal_month_desc . Because this 1:1 relationship exists

between the attribute and the level, an already aggregated materialized view

containing fiscal_month_desc can be joined back to the dimension information

and used to identify the data.

An exemplary dimension definition follows:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size,prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcat_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_cat_desc);

See Also: Chapter 22, "Query Rewrite" for further details of using

dimensional information
9-6 Data Warehousing Guide

Creating Dimensions
The design, creation, and maintenance of dimensions is part of the design, creation,

and maintenance of your data warehouse schema. Once the dimension has been

created, check that it meets these requirements:

■ There must be a 1:n relationship between a parent and children. A parent can

have one or more children, but a child can have only one parent.

■ There must be a 1:1 attribute relationship between hierarchy levels and their
dependent dimension attributes. For example, if there is a column fiscal_
month_desc , then a possible attribute relationship would be fiscal_month_
desc to fiscal_month_name .

■ If the columns of a parent level and child level are in different relations, then
the connection between them also requires a 1:n join relationship. Each row

of the child table must join with one and only one row of the parent table. This

relationship is stronger than referential integrity alone, because it requires that

the child join key must be non-null, that referential integrity must be

maintained from the child join key to the parent join key, and that the parent

join key must be unique.

■ Ensure (using database constraints if necessary) that the columns of each
hierarchy level are non-null and that hierarchical integrity is maintained.

■ The hierarchies of a dimension can overlap or be disconnected from each
other. However, the columns of a hierarchy level cannot be associated with

more than one dimension.

■ Join relationships that form cycles in the dimension graph are not supported.
For example, a hierarchy level cannot be joined to itself either directly or

indirectly.

Note: The information stored with a dimension objects is only declarative. The

above discussed relationships are not enforced with the creation of a dimension

object. It is highly recommended to validate any dimension definition with the

DBMS_MVIEW.VALIDATE_DIMENSION procedure, as discussed on "Validating

Dimensions" on page 9-12.

Multiple Hierarchies
A single dimension definition can contain multiple hierarchies as illustrated below.

Suppose our retailer wants to track the sales of certain items over time. The first

step is to define the time dimension over which sales will be tracked. Figure 9–2

illustrates a dimension times_dim with two time hierarchies.
 Dimensions 9-7

Creating Dimensions
Figure 9–2 times_dim Dimension with Two Time Hierarchies

From the illustration, you can construct the hierarchy of the denormalized time_
dim dimension's CREATE DIMENSION statement as follows. The complete CREATE
DIMENSION statement as well as the CREATE TABLE statement are shown in

Appendix B, "Sample Data Warehousing Schema".

CREATE DIMENSION times_dim
 LEVEL day IS TIMES.TIME_ID
 LEVEL month IS TIMES.CALENDAR_MONTH_DESC
 LEVEL quarter IS TIMES.CALENDAR_QUARTER_DESC
 LEVEL year IS TIMES.CALENDAR_YEAR
 LEVEL fis_week IS TIMES.WEEK_ENDING_DAY
 LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
 LEVEL fis_quarter IS TIMES.FISCAL_QUARTER_DESC
 LEVEL fis_year IS TIMES.FISCAL_YEAR
 HIERARCHY cal_rollup (
 day CHILD OF
 month CHILD OF
 quarter CHILD OF
 year
)

quarter

year

fis_quarter

fis_year

fis_month

fis_week

day

month
9-8 Data Warehousing Guide

Creating Dimensions
 HIERARCHY fis_rollup (
 day CHILD OF
 fis_week CHILD OF
 fis_month CHILD OF
 fis_quarter CHILD OF
 fis_year
) <attribute determination clauses>...

Using Normalized Dimension Tables
The tables used to define a dimension may be normalized or denormalized and the

individual hierarchies can be normalized or denormalized. If the levels of a

hierarchy come from the same table, it is called a fully denormalized hierarchy. For

example, cal_rollup in the times_dim dimension is a denormalized hierarchy.

If levels of a hierarchy come from different tables, such a hierarchy is either a fully

or partially normalized hierarchy. This section shows how to define a normalized

hierarchy.

Suppose the tracking of a customer's location is done by city, state, and country.

This data is stored in the tables customers and countries . The customer
dimension customers_dim is partially normalized because the data entities

cust_id and country_id are taken from different tables. The clause JOIN KEY
within the dimension definition specifies how to join together the levels in the

hierarchy. The dimension statement is partially shown below. The complete CREATE
DIMENSION statement as well as the CREATE TABLE statement are shown in

Appendix B, "Sample Data Warehousing Schema".

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
) ...<attribute determination clause>;
 Dimensions 9-9

Viewing Dimensions
Dimension Wizard
The Dimension Wizard is automatically invoked whenever a request is made to

create a dimension object in Oracle Enterprise Manager. You are then guided step

by step through the information required for a dimension.

A dimension created using the Wizard can contain any of the attributes described in

"Creating Dimensions" on page 9-4, such as join keys, multiple hierarchies, and

attributes. You might prefer to use the Wizard because it graphically displays the

hierarchical relationships as they are being constructed. When it is time to describe

the hierarchy, the Wizard automatically displays a default hierarchy based on the

column values, which you can subsequently amend.

Viewing Dimensions
Dimensions can be viewed through one of two methods:

■ Using The DEMO_DIM Package

■ Using Oracle Enterprise Manager

Using The DEMO_DIM Package
Two procedures allow you to display the dimensions that have been defined. First,

the file smdim.sql , located under $ORACLE_HOME/rdbms/demo, must be

executed to provide the DEMO_DIM package, which includes:

■ DEMO_DIM.PRINT_DIM to print a specific dimension

■ DEMO_DIM.PRINT_ALLDIMS to print all dimensions

The DEMO_DIM.PRINT_DIM procedure has only one parameter: the name of the

dimension to display. The example below shows how to display the dimension

TIMES_DIM.

SET SERVEROUTPUT ON;
EXECUTE DEMO_DIM.PRINT_DIM ('TIMES_DIM');

To display all of the dimensions that have been defined, call the procedure DEMO_
DIM.PRINT_ALLDIMS without any parameters as shown below.

EXECUTE DBMS_OUTPUT.ENABLE(10000);
EXECUTE DEMO_DIM.PRINT_ALLDIMS;

See Also: Oracle Enterprise Manager Administrator’s Guide
9-10 Data Warehousing Guide

Using Dimensions with Constraints
Regardless of which procedure is called, the output format is identical. A sample

display is shown here.

DIMENSION SH.PROMO_DIM
LEVEL CATEGORY IS SH.PROMOTIONS.PROMO_CATEGORY
LEVEL PROMO IS SH.PROMOTIONS.PROMO_ID
LEVEL SUBCATEGORY IS SH.PROMOTIONS.PROMO_SUBCATEGORY
HIERARCHY PROMO_ROLLUP (
PROMO
CHILD OF SUBCATEGORY
CHILD OF CATEGORY
)
ATTRIBUTE CATEGORY DETERMINES SH.PROMOTIONS.PROMO_CATEGORY
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_BEGIN_DATE
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_COST
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_END_DATE
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_NAME
ATTRIBUTE SUBCATEGORY DETERMINES SH.PROMOTIONS.PROMO_SUBCATEGORY

Using Oracle Enterprise Manager
All of the dimensions that exist in the data warehouse can be viewed using Oracle

Enterprise Manager. Select the Dimension object from within the Schema icon to

display all of the dimensions. Select a specific dimension to graphically display its

hierarchy, levels, and any attributes that have been defined.

Using Dimensions with Constraints
Constraints play an important role with dimensions. Full referential integrity is

sometimes enabled in data warehouses, but not always. This is because operational

databases normally have full referential integrity and you can ensure that the data

flowing into your warehouse never violates the already established integrity rules.

Oracle recommends that constraints be enabled and, if validation time is a concern,

then the NOVALIDATE clause should be used as follows:

ENABLE NOVALIDATE CONSTRAINT pk_time;

Primary and foreign keys should be implemented also. Referential integrity

constraints and NOT NULL constraints on the fact tables provide information that

query rewrite can use to extend the usefulness of materialized views.

See Also: Oracle Enterprise Manager Administrator’s Guide
 Dimensions 9-11

Validating Dimensions
In addition, you should use the RELY clause to inform query rewrite that it can rely

upon the constraints being correct as follows:

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

This information is also used for query rewrite.

Validating Dimensions
The information of a dimension object is declarative only and not enforced by the

database. If the relationships described by the dimensions are incorrect, incorrect

results could occur. Therefore, you should verify the relationships specified by

CREATE DIMENSION using the DBMS_OLAP.VALIDATE_DIMENSION procedure

periodically.

This procedure is easy to use and has only five parameters:

■ Dimension name

■ Owner name

■ Set to TRUE to check only the new rows for tables of this dimension

■ Set to TRUE to verify that all columns are not null

■ Unique run ID obtained by calling the DBMS_OLAP.CREATE_ID procedure.

The ID is used to identify the result of each run

The following example validates the dimension TIME_FN in the grocery schema

VARIABLE RID NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:RID);
EXECUTE DBMS_OLAP.VALIDATE_DIMENSION ('TIME_FN', 'GROCERY', \
FALSE, TRUE, :RID);

If the VALIDATE_DIMENSIONprocedure encounters any errors, they are placed in a

system table. The table can be accessed from the view SYSTEM.MVIEW_
EXCEPTIONS. Querying this view will identify the exceptions that were found. For

example:

See Also: Chapter 22, "Query Rewrite" for further details
9-12 Data Warehousing Guide

Altering Dimensions
SELECT * FROM SYSTEM.MVIEW_EXCEPTIONS
WHERE RUNID = :RID;
RUNID OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID
----- -------- ----------- -------------- ------------ ---------
678 GROCERY MONTH TIME_FN FOREIGN KEY AAAAuwAAJAAAARwAAA

However, rather than query this view, it may be better to query the rowid of the

invalid row to retrieve the actual row that has violated the constraint. In this

example, the dimension TIME_FN is checking a table called month . It has found a

row that violates the constraints. Using the rowid, you can see exactly which row in

the month table is causing the problem.

SELECT * FROM month
WHERE rowid IN (SELECT bad_rowid
 FROM SYSTEM.MVIEW_EXCEPTIONS
 WHERE RUNID = :RID);

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB
-------- ------- ---------- ---- --------------- ----------
 199903 19981 19981 1998 March 3

Finally, to remove results from the system table for the current run:

EXECUTE DBMS_OLAP.PURGE_RESULTS(:RID);

Altering Dimensions
You can modify the dimension using the ALTER DIMENSION statement. You can

add or drop a level, hierarchy, or attribute from the dimension using this command.

Referring to the time dimension in Figure 9–2, you can remove the attribute fis_
year , drop the hierarchy fis_rollup , or remove the level fiscal_year . In

addition, you can add a new level called f_year as shown below.

ALTER DIMENSION times_dim DROP ATTRIBUTE fis_year;
ALTER DIMENSION times_dim DROP HIERARCHY fis_rollup;
ALTER DIMENSION times_dim DROP LEVEL fis_year;
ALTER DIMENSION times_dim ADD LEVEL f_year IS times.fiscal_year;
 Dimensions 9-13

Deleting Dimensions
If you try to remove anything with further dependencies inside the dimension,

Oracle rejects the altering of the dimension. A dimension becomes invalid if you

change any schema object that the dimension is referencing. For example, if the

table on which the dimension is defined is altered, the dimension becomes invalid.

To check the status of a dimension, view the contents of the column invalid in the

ALL_DIMENSIONS data dictionary view.

To revalidate the dimension, use the COMPILE option as follows:

ALTER DIMENSION times_dim COMPILE;

Dimensions can also be modified using Oracle Enterprise Manager.

Deleting Dimensions
A dimension is removed using the DROP DIMENSION statement. For example:

DROP DIMENSION times_dim;

Dimensions can also be deleted using Oracle Enterprise Manager.

See Also: Oracle Enterprise Manager Administrator’s Guide

See Also: Oracle Enterprise Manager Administrator’s Guide
9-14 Data Warehousing Guide

PartIV

 Managing the Warehouse Environment

This section deals with the tasks for managing a data warehouse.

It contains the following chapters:

■ Overview of Extraction, Transformation, and Loading

■ Extraction in Data Warehouses

■ Transportation in Data Warehouses

■ Loading and Transformation

■ Maintaining the Data Warehouse

■ Change Data Capture

■ Summary Advisor

 Overview of Extraction, Transformation, and L
10

Overview of Extraction, Transformation, and

Loading

This chapter discusses the process of extracting, transporting, transforming, and

loading data in a data warehousing environment:

■ Overview of ETL

■ ETL Tools
oading 10-1

Overview of ETL
Overview of ETL
You need to load your data warehouse regularly so that it can serve its purpose of

facilitating business analysis. To do this, data from one or more operational systems

needs to be extracted and copied into the warehouse. The process of extracting data

from source systems and bringing it into the data warehouse is commonly called

ETL, which stands for extraction, transformation, and loading. The acronym ETL is

perhaps too simplistic, because it omits the trasportation phase and implies that

each of the other phases of the process is distinct. We refer to the entire process,

including data loading, as ETL. You should understand that ETL refers to a broad

process, and not three well-defined steps.

The methodology and tasks of ETL have been well known for many years, and are

not necessarily unique to data warehouse environments: a wide variety of

proprietary applications and database systems are the IT backbone of any

enterprise. Data has to be shared between applications or systems, trying to

integrate them, giving at least two applications the same picture of the world. This

data sharing was mostly addressed by mechanisms similar to what we now call

ETL.

Data warehouse environments face the same challenge with the additional burden

that they not only have to exchange but to integrate, rearrange and consolidate data

over many systems, thereby providing a new unified information base for business

intelligence. Additionally, the data volume in data warehouse environments tends

to be very large.

What happens during the ETL process? During extraction, the desired data is

identified and extracted from many different sources, including database systems

and applications. Very often, it is not possible to identify the specific subset of

interest, therefore more data than necessary has to be extracted, so the identification

of the relevant data will be done at a later point in time. Depending on the source

system's capabilities (for example, operating system resources), some

transformations may take place during this extraction process. The size of the

extracted data varies from hundreds of kilobytes up to gigabytes, depending on the

source system and the business situation. The same is true for the time delta

between two (logically) identical extractions: the time span may vary between

days/hours and minutes to near real-time. Web server log files for example can

easily become hundreds of megabytes in a very short period of time.
10-2 Data Warehousing Guide

ETL Tools
After extracting data, it has to be physically transported to the target system or an

intermediate system for further processing. Depending on the chosen way of

transportation, some transformations can be done during this process, too. For

example, a SQL statement which directly accesses a remote target through a

gateway can concatenate two columns as part of the SELECT statement.

The emphasis in many of the examples in this section is scalability. Many long-time

users of Oracle are experts in programming complex data transformation logic

using PL/SQL. These chapters suggest alternatives for many such data

manipulation operations, with a particular emphasis on implementations that take

advantage of Oracle's new SQL functionality, especially for ETL and the parallel

query infrastructure.

ETL Tools
Designing and maintaining the ETL process is often considered one of the most

difficult and resource-intensive portions of a data warehouse project. Many data

warehousing projects use ETL tools to manage this process. Oracle Warehouse

Builder (OWB), for example, provides ETL capabilities and takes advantage of

inherent database abilities. Other data warehouse builders create their own ETL

tools and processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other

tasks that are important for a successful ETL implementation as part of the daily

operations of the data warehouse and its support for further enhancements. Besides

the support for designing a data warehouse and the data flow, these tasks are

typically addressed by ETL tools such as OWB.

Oracle9i is not an ETL tool and does not provide a complete solution for ETL.

However, Oracle9i does provide a rich set of capabilities that can be used by both

ETL tools and customized ETL solutions. Oracle9i offers techniques for transporting

data between Oracle databases, for transforming large volumes of data, and for

quickly loading new data into a data warehouse.
 Overview of Extraction, Transformation, and Loading 10-3

ETL Tools
Daily Operations
The successive loads and transformations must be scheduled and processed in a

specific order. Depending on the success or failure of the operation or parts of it, the

result must be tracked and subsequent, alternative processes might be started. The

control of the progress as well as the definition of a business worklow of the

operations are typically addressed by ETL tools such as OWB.

Evolution of the Data Warehouse
As the data warehouse is a living IT system, sources and targets might change.

Those changes must be maintained and tracked through the lifespan of the system

without overwriting or deleting the old ETL process flow information. To build and

keep a level of trust about the information in the warehouse, the process flow of

each individual record in the warehouse can be reconstructed at any point in time in

the future in an ideal case.
10-4 Data Warehousing Guide

 Extraction in Data War
11

Extraction in Data Warehouses

This chapter discusses extraction, which is the process of taking data from an

operational system and moving it to your warehouse or staging system. The chapter

discusses:

■ Overview of Extraction in Data Warehouses

■ Understanding Extraction Methods in Data Warehouses

■ Data Warehousing Extraction Examples
ehouses 11-1

Overview of Extraction in Data Warehouses
Overview of Extraction in Data Warehouses
Extraction is the operation of extracting data from a source system for further use in

a data warehouse environment. This is the first step of the ETL process. After the

extraction, this data can be transformed and loaded into the data warehouse.

The source systems for a data warehouse are typically transaction processing

applications. For example, one of the source systems for a sales analysis data

warehouse might be an order entry system that records all of the current order

activities.

Designing and creating the extraction process is often one of the most

time-consuming tasks in the ETL process and, indeed, in the entire data

warehousing process. The source systems might be very complex and poorly

documented, and thus determining which data needs to be extracted can be

difficult. The data has to be extracted normally not only once, but several times in a

periodic manner to supply all changed data to the warehouse and keep it

up-to-date. Moreover, the source system typically cannot be modified, nor can its

performance or availability be adjusted, to accommodate the needs of the data

warehouse extraction process.

These are important considerations for extraction and ETL in general. This chapter,

however, focuses on the technical considerations of having different kinds of

sources and extraction methods. It assumes that the data warehouse team has

already identified the data that will be extracted, and discusses common techniques

used for extracting data from source databases.

Designing this process means making decisions about the following two main

aspects:

■ Which extraction method do I choose?

This influences the source system, the transportation process, and the time

needed for refreshing the warehouse.

■ How do I provide the extracted data for further processing?

This influences the transportation method, and the need for cleaning and

transforming the data.

Understanding Extraction Methods in Data Warehouses
The extraction method you should choose is highly dependent on the source system

and also from the business needs in the target data warehouse environment. Very

often, there’s no possibility to add additional logic to the source systems to enhance
11-2 Data Warehousing Guide

Understanding Extraction Methods in Data Warehouses
an incremental extraction of data due to the performance or the increased workload

of these systems. Sometimes even the customer is not allowed to add anything to an

out-of-the-box application system.

The estimated amount of the data to be extracted and the stage in the ETL process

(initial load or maintenance of data) may also impact the decision of how to extract,

from a logical and a physical perspective. Basically, you have to decide how to

extract data logically and physically.

Logical Extraction Methods
There are two kinds of logical extraction:

■ Full Extraction

■ Incremental Extraction

Full Extraction
The data is extracted completely from the source system. Since this extraction

reflects all the data currently available on the source system, there’s no need to keep

track of changes to the data source since the last successful extraction. The source

data will be provided as-is and no additional logical information (for example,

timestamps) is necessary on the source site. An example for a full extraction may be

an export file of a distinct table or a remote SQL statement scanning the complete

source table.

Incremental Extraction
At a specific point in time, only the data that has changed since a well-defined event

back in history will be extracted. This event may be the last time of extraction or a

more complex business event like the last booking day of a fiscal period. To identify

this delta change there must be a possibility to identify all the changed information

since this specific time event. This information can be either provided by the source

data itself like an application column, reflecting the last-changed timestamp or a

change table where an appropriate additional mechanism keeps track of the

changes besides the originating transactions. In most cases, using the latter method

means adding extraction logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the

extraction process. Instead, entire tables from the source systems are extracted to the

data warehouse or staging area, and these tables are compared with a previous

extract from the source system to identify the changed data. This approach may not
 Extraction in Data Warehouses 11-3

Understanding Extraction Methods in Data Warehouses
have significant impact on the source systems, but it clearly can place a considerable

burden on the data warehouse processes, particularly if the data volumes are large.

Oracle’s Change Data Capture mechanism can extract and maintain such delta

information.

Physical Extraction Methods
Depending on the chosen logical extraction method and the capabilities and

restrictions on the source side, the extracted data can be physically extracted by two

mechanisms. The data can either be extracted online from the source system or from

an offline structure. Such an offline structure might already exist or it might be

generated by an extraction routine.

 There are the following methods of physical extraction:

■ Online Extraction

■ Offline Extraction

Online Extraction
The data is extracted directly from the source system itself. The extraction process

can connect directly to the source system to access the source tables themselves or to

an intermediate system that stores the data in a preconfigured manner (for example,

snapshot logs or change tables). Note that the intermediate system is not necessarily

physically different from the source system.

With online extractions, you need to consider whether the distributed transactions

are using original source objects or prepared source objects.

Offline Extraction
The data is not extracted directly from the source system but is staged explicitly

outside the original source system. The data already has an existing structure (for

example, redo logs, archive logs or transportable tablespaces) or was created by an

extraction routine.

See Also: Chapter 15, "Change Data Capture" for further details

about the Change Data Capture framework
11-4 Data Warehousing Guide

Understanding Extraction Methods in Data Warehouses
You should consider the following structures:

■ Flat Files

Data in a defined, generic format. Additional information about the source

object is necessary for further processing.

■ Dump Files

Oracle-specific format. Information about the containing objects is included.

■ Redo and Archive Logs

Information is in a special, additional dump file.

■ Transportable Tablespaces

A powerful way to extract and move large volumes of data between Oracle

databases. A more detailed example of using this feature to extract and

transport data is provided in Chapter 12, "Transportation in Data Warehouses".

Oracle Corporation recommends that you use transportable tablespaces

whenever possible, because they can provide considerable advantages in

performance and manageability over other extraction techniques.

Change Data Capture
An important consideration for extraction is incremental extraction, also called

change data capture. If a data warehouse extracts data from an operational system

on a nightly basis, then the data warehouse requires only the data that has changed

since the last extraction (that is, the data that has been modified in the past 24

hours).

When it is possible to efficiently identify and extract only the most recently changed

data, the extraction process (as well as all downstream operations in the ETL

process) can be much more efficient, because it must extract a much smaller volume

of data. Unfortunately, for many source systems, identifying the recently modified

data may be difficult or intrusive to the operation of the system. Change data

capture is typically the most challenging technical issue in data extraction.

See Also: Oracle9i Database Utilities for more information on using

dump and flat files and Oracle9i Supplied PL/SQL Packages and Types
Reference for details regarding LogMiner
 Extraction in Data Warehouses 11-5

Understanding Extraction Methods in Data Warehouses
Because change data capture is often desirable as part of the extraction process and

it might not be possible to use Oracle’s change data capture mechanism, this section

describes several techniques for implementing a self-developed change capture on

Oracle source systems:

■ Timestamps

■ Partitioning

■ Triggers

These techniques are based upon the characteristics of the source systems, or may

require modifications to the source systems. Thus, each of these techniques must be

carefully evaluated by the owners of the source system prior to implementation.

Each of these techniques can work in conjunction with the data extraction technique

discussed above. For example, timestamps can be used whether the data is being

unloaded to a file or accessed through a distributed query.

Timestamps
The tables in some operational systems have timestamp columns. The timestamp

specifies the time and date that a given row was last modified. If the tables in an

operational system have columns containing timestamps, then the latest data can

easily be identified using the timestamp columns. For example, the following query

might be useful for extracting today's data from an orders table:

SELECT * FROM orders WHERE TRUNC(CAST(order_date AS date),'dd') = TO_
DATE(SYSDATE,'dd-mon-yyyy');

If the timestamp information is not available in an operational source system, you

will not always be able to modify the system to include timestamps. Such

modification would require, first, modifying the operational system's tables to

include a new timestamp column and then creating a trigger to update the

timestamp column following every operation that modifies a given row.

See Also: Chapter 15, "Change Data Capture" for further details

about the Change Data Capture framework

See Also: "Triggers" on page 11-7
11-6 Data Warehousing Guide

Understanding Extraction Methods in Data Warehouses
Partitioning
Some source systems might use Oracle range partitioning, such that the source

tables are partitioned along a date key, which allows for easy identification of new

data. For example, if you are extracting from an orders table, and the orders
table is partitioned by week, then it is easy to identify the current week's data.

Triggers
Triggers can be created in operational systems to keep track of recently updated

records. They can then be used in conjunction with timestamp columns to identify

the exact time and date when a given row was last modified. You do this by creating

a trigger on each source table that requires change data capture. Following each

DML statement that is executed on the source table, this trigger updates the

timestamp column with the current time. Thus, the timestamp column provides the

exact time and date when a given row was last modified.

A similar internalized trigger-based technique is used for Oracle materialized view

logs. These logs are used by materialized views to identify changed data, and these

logs are accessible to end users. A materialized view log can be created on each

source table requiring change data capture. Then, whenever any modifications are

made to the source table, a record is inserted into the materialized view log

indicating which rows were modified. If you want to use a trigger-based

mechanism, use change data capture.

Materialized view logs rely on triggers, but they provide an advantage in that the

creation and maintenance of this change-data system is largely managed by Oracle.

However, Oracle recommends the usage of synchronous Oracle Change Data

Capture for trigger based change capture, since CDC provides an externalized

interface for accessing the change information and provides a framework for

maintaining the distribution of this information to various clients

Trigger-based techniques affect performance on the source systems, and this impact

should be carefully considered prior to implementation on a production source

system.
 Extraction in Data Warehouses 11-7

Data Warehousing Extraction Examples
Data Warehousing Extraction Examples
You can extract data in two ways:

■ Extraction Using Data Files

■ Extraction Via Distributed Operations

Extraction Using Data Files
Most database systems provide mechanisms for exporting or unloading data from

the internal database format into flat files. Extracts from mainframe systems often

use COBOL programs, but many databases, as well as third-party software vendors,

provide export or unload utilities.

Data extraction does not necessarily mean that entire database structures are

unloaded in flat files. In many cases, it may be appropriate to unload entire

database tables or objects. In other cases, it may be more appropriate to unload only

a subset of a given table such as the changes on the source system since the last

extraction or the results of joining multiple tables together. Different extraction

techniques vary in their capabilities to support these two scenarios.

When the source system is an Oracle database, several alternatives are available for

extracting data into files:

■ Extracting into Flat Files Using SQL*Plus

■ Extracting into Flat Files Using OCI or Pro*C Programs

■ Exporting into Oracle Export Files Using Oracle's Export Utility

Extracting into Flat Files Using SQL*Plus
The most basic technique for extracting data is to execute a SQL query in SQL*Plus

and direct the output of the query to a file. For example, to extract a flat file,

country_city.log , with the pipe sign as delimiter between column values,

containing a list of the cities in the US in the tables countries and customers, the

following SQL script could be run:

SET echo off
SET pagesize 0
SPOOL country_city.log
SELECT distinct t1.country_name ||’|’|| t2.cust_city
FROM countries t1, customers t2
WHERE t1.country_id = t2.country_id
AND t1.country_name= 'United States of America';
SPOOL off
11-8 Data Warehousing Guide

Data Warehousing Extraction Examples
The exact format of the output file can be specified using SQL*Plus system

variables.

This extraction technique offers the advantage of being able to extract the output of

any SQL statement. The example above extracts the results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent

SQL*Plus sessions, each session running a separate query representing a different

portion of the data to be extracted. For example, suppose that you wish to extract

data from an orders table, and that the orders table has been range partitioned

by month, with partitions orders_jan1998 , orders_feb1998 , and so on. To

extract a single year of data from the orders table, you could initiate 12 concurrent

SQL*Plus sessions, each extracting a single partition. The SQL script for one such

session could be:

SPOOL order_jan.dat
SELECT * FROM orders PARTITION (orders_jan1998);
SPOOL OFF

These 12 SQL*Plus processes would concurrently spool data to 12 separate files.

You can then concatenate them if necessary (using operating system utilities)

following the extraction. If you are planning to use SQL*Loader for loading into the

target, these 12 files can be used as is for a parallel load with 12 SQL*Loader

sessions. See Chapter 12, "Transportation in Data Warehouses" for an example.

Even if the orders table is not partitioned, it is still possible to parallelize the

extraction either based on logical or physical criteria. The logical method is based

on logical ranges of column values, for example:

SELECT ... WHERE order_date
BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary,

it is possible to identify the Oracle data blocks that make up the orders table.

Using this information, you could then derive a set of rowid-range queries for

extracting data from the orders table:

SELECT * FROM orders WHERE rowid BETWEEN <value1> and <value2>;

Parallelizing the extraction of complex SQL queries is sometimes possible, although

the process of breaking a single complex query into multiple components can be

challenging. In particular, the coordination of independent processes to guarantee a

globally consistent view can be difficult.
 Extraction in Data Warehouses 11-9

Data Warehousing Extraction Examples
Extracting into Flat Files Using OCI or Pro*C Programs
OCI programs (or other programs using Oracle call interfaces, such as Pro*C

programs), can also be used to extract data. These techniques typically provide

improved performance over the SQL*Plus approach, although they also require

additional programming. Like the SQL*Plus approach, an OCI program can extract

the results of any SQL query. Furthermore, the parallelization techniques described

for the SQL*Plus approach can be readily applied to OCI programs as well.

When using OCI or SQL*Plus for extraction, you need additional information

besides the data itself. At minimum, you need information about the extracted

columns. It is also helpful to know the extraction format, which might be the

separator between distinct columns.

Exporting into Oracle Export Files Using Oracle's Export Utility
Oracle's Export utility allows tables (including data) to be exported into Oracle

export files. Unlike the SQL*Plus and OCI approaches, which describe the

extraction of the results of a SQL statement, Export provides a mechanism for

extracting database objects. Thus, Export differs from the previous approaches in

several important ways:

■ The export files contain metadata as well as data. An export file contains not

only the raw data of a table, but also information on how to re-create the table,

potentially including any indexes, constraints, grants, and other attributes

associated with that table.

■ A single export file may contain a subset of a single object, many database

objects, or even an entire schema.

■ Export cannot be directly used to export the results of a complex SQL query.

Export can be used only to extract subsets of distinct database objects.

■ The output of the Export utility must be processed using the Oracle Import

utility.

Note: All parallel techniques can use considerably more CPU and

I/O resources on the source system, and the impact on the source

system should be evaluated before parallelizing any extraction

technique.
11-10 Data Warehousing Guide

Data Warehousing Extraction Examples
Oracle provides a direct-path export, which is quite efficient for extracting data.

However, in Oracle8i, there is no direct-path import, which should be considered

when evaluating the overall performance of an export-based extraction strategy.

Extraction Via Distributed Operations
Using distributed-query technology, one Oracle database can directly query tables

located in various different source systems, such as another Oracle database or a

legacy system connected with the Oracle gateway technology. Specifically, a data

warehouse or staging database can directly access tables and data located in a

connected source system. Gateways are another form of distributed-query

technology. Gateways allow an Oracle database (such as a data warehouse) to

access database tables stored in remote, non-Oracle databases. This is the simplest

method for moving data between two Oracle databases because it combines the

extraction and transformation into a single step, and requires minimal

programming. However, this is not always feasible.

Continuing our example from above, suppose that you wanted to extract a list of

employee names with department names from a source database and store this data

into the data warehouse. Using an Oracle Net connection and distributed-query

technology, this can be achieved using a single SQL statement:

CREATE TABLE country_city
AS
SELECT distinct t1.country_name, t2.cust_city
FROM countries@source_db t1, customers@source_db t2
WHERE t1.country_id = t2.country_id
AND t1.country_name='United States of America';

This statement creates a local table in a data mart, country_city , and populates it

with data from the countries and customers tables on the source system.

This technique is ideal for moving small volumes of data. However, the data is

transported from the source system to the data warehouse through a single Oracle

Net connection. Thus, the scalability of this technique is limited. For larger data

volumes, file-based data extraction and transportation techniques are often more

scalable and thus more appropriate.

See Also: Oracle9i Database Utilities for more information on using

export

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
and Oracle9i Database Concepts for more information on distributed

queries
 Extraction in Data Warehouses 11-11

Data Warehousing Extraction Examples
11-12 Data Warehousing Guide

 Transportation in Data War
12

Transportation in Data Warehouses

The following topics provide information about transporting data into a data

warehouse:

■ Overview of Transportation in Data Warehouses

■ Understanding Transportation Mechanisms in Data Warehouses
ehouses 12-1

Overview of Transportation in Data Warehouses
Overview of Transportation in Data Warehouses
Transportation is the operation of moving data from one system to another system.

In a data warehouse environment, the most common requirements for

transportation are in moving data from:

■ A source system to a staging database or a data warehouse database

■ A staging database to a data warehouse

■ A data warehouse to a data mart

Transportation is often one of the simpler portions of the ETL process, and can be

integrated with other portions of the process. For example, as shown in Chapter 11,

"Extraction in Data Warehouses", distributed query technology provides a

mechanism for both extracting and transporting data.

Understanding Transportation Mechanisms in Data Warehouses
You have three basic choices for transporting data in warehouses:

■ Transportation Using Flat Files

■ Transportation Through Distributed Operations

■ Transportation Using Transportable Tablespaces

Transportation Using Flat Files
The most common method for transporting data is by the transfer of flat files, using

mechanisms such as FTP or other remote file system access protocols. Data is

unloaded or exported from the source system into flat files using techniques

discussed in Chapter 11, "Extraction in Data Warehouses", and is then transported

to the target platform using FTP or similar mechanisms.

Because source systems and data warehouses often use different operating systems

and database systems, using flat files is often the simplest way to exchange data

between heterogeneous systems with minimal transformations. However, even

when transporting data between homogeneous systems, flat files are often the most

efficient and most easy-to-manage mechanism for data transfer.

Transportation Through Distributed Operations
Distributed queries, either with or without gateways, can be an effective mechanism

for extracting data. These mechanisms also transport the data directly to the target
12-2 Data Warehousing Guide

Understanding Transportation Mechanisms in Data Warehouses
systems, thus providing both extraction and transformation in a single step.

Depending on the tolerable impact on time and system resources, these

mechanisms can be well suited for both extraction and transformation.

As opposed to flat file transportation, the success or failure of the transportation is

recognized immediately with the result of the distributed query or transaction.

Transportation Using Transportable Tablespaces
Oracle8i introduced an important mechanism for transporting data: transportable

tablespaces. This feature is the fastest way for moving large volumes of data

between two Oracle databases.

Previous to Oracle8i, the most scalable data transportation mechanisms relied on

moving flat files containing raw data. These mechanisms required that data be

unloaded or exported into files from the source database, Then, after transportation,

these files were loaded or imported into the target database. Transportable

tablespaces entirely bypass the unload and reload steps.

Using transportable tablespaces, Oracle data files (containing table data, indexes,

and almost every other Oracle database object) can be directly transported from one

database to another. Furthermore, like import and export, transportable tablespaces

provide a mechanism for transporting metadata in addition to transporting data.

Transportable tablespaces have some notable limitations: source and target systems

must be running Oracle8i (or higher), must be running the same operating system,

must use the same character set, and, prior to Oracle9i, must use the same block

size. Despite these limitations, transportable tablespaces can be an invaluable data

transportation technique in many warehouse environments.

The most common applications of transportable tablespaces in data warehouses are

in moving data from a staging database to a data warehouse, or in moving data

from a data warehouse to a data mart.

Transportable Tablespaces Example
Suppose that you have a data warehouse containing sales data, and several data

marts that are refreshed monthly. Also suppose that you are going to move one

month of sales data from the data warehouse to the data mart.

See Also: Chapter 11, "Extraction in Data Warehouses", for

further details

See Also: Oracle9i Database Concepts for more information on

transportable tablespaces
 Transportation in Data Warehouses 12-3

Understanding Transportation Mechanisms in Data Warehouses
Step 1: Place the Data to be Transported into its own Tablespace The current month's data

must be placed into a separate tablespace in order to be transported. In this

example, you have a tablespace ts_temp_sales , which will hold a copy of the

current month's data. Using the CREATE TABLE ... AS SELECT statement, the

current month's data can be efficiently copied to this tablespace:

CREATE TABLE temp_jan_sales
NOLOGGING
TABLESPACE ts_temp_sales
AS
SELECT * FROM sales
WHERE time_id BETWEEN '31-DEC-1999' AND '01-FEB-2000';

Following this operation, the tablespace ts_temp_sales is set to read-only:

ALTER TABLESPACE ts_temp_sales READ ONLY;

A tablespace cannot be transported unless there are no active transactions

modifying the tablespace. Setting the tablespace to read-only enforces this.

The tablespace ts_temp_sales may be a tablespace that has been especially

created to temporarily store data for use by the transportable tablespace features.

Following "Step 3: Copy the Datafiles and Export File to the Target System", this

tablespace can be set to read/write, and, if desired, the table temp_jan_sales can

be dropped, or the tablespace can be re-used for other transportations or for other

purposes.

In a given transportable tablespace operation, all of the objects in a given tablespace

are transported. Although only one table is being transported in this example, the

tablespace ts_temp_sales could contain multiple tables. For example, perhaps

the data mart is refreshed not only with the new month's worth of sales

transactions, but also with a new copy of the customer table. Both of these tables

could be transported in the same tablespace. Moreover, this tablespace could also

contain other database objects such as indexes, which would also be transported.

Additionally, in a given transportable-tablespace operation, multiple tablespaces

can be transported at the same time. This makes it easier to move very large

volumes of data between databases. Note, however, that the transportable

tablespace feature can only transport a set of tablespaces which contain a complete

set of database objects without dependencies on other tablespaces. For example, an

index cannot be transported without its table, nor can a partition be transported

without the rest of the table. You can use the DBMS_TTS package to check that a

tablespace is transportable.
12-4 Data Warehousing Guide

Understanding Transportation Mechanisms in Data Warehouses
In this step, we have copied the January sales data into a separate tablespace;

however, in some cases, it may be possible to leverage the transportable tablespace

feature without even moving data to a separate tablespace. If the sales table has

been partitioned by month in the data warehouse and if each partition is in its own

tablespace, then it may be possible to directly transport the tablespace containing

the January data. Suppose the January partition, sales_jan2000 , is located in the

tablespace ts_sales_jan2000 . Then the tablespace ts_sales_jan2000 could

potentially be transported, rather than creating a temporary copy of the January

sales data in the ts_temp_sales .

However, the same conditions must be satisfied in order to transport the tablespace

ts_sales_jan2000 as are required for the specially created tablespace. First, this

tablespace must be set to READ ONLY. Second, because a single partition of a

partitioned table cannot be transported without the remainder of the partitioned

table also being transported, it is necessary to exchange the January partition into a

separate table (using the ALTER TABLE statement) to transport the January data.

The EXCHANGE operation is very quick, but the January data will no longer be a

part of the underlying sales table, and thus may be unavailable to users until this

data is exchanged back into the sales table after the export of the metadata. The

January data can be exchanged back into the sales table after you complete step 3.

Step 2: Export the Metadata The Export utility is used to export the metadata

describing the objects contained in the transported tablespace. For our example

scenario, the Export command could be:

EXP TRANSPORT_TABLESPACE=y
 TABLESPACES=ts_temp_sales
 FILE=jan_sales.dmp

This operation will generate an export file, jan_sales.dmp . The export file will be

small, because it contains only metadata. In this case, the export file will contain

information describing the table temp_jan_sales , such as the column names,

column datatype, and all other information that the target Oracle database will

need in order to access the objects in ts_temp_sales .

Step 3: Copy the Datafiles and Export File to the Target System Copy the data files that

make up ts_temp_sales , as well as the export file jan_sales.dmp to the data

mart platform, using any transportation mechanism for flat files.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information about the DBMS_TTS package
 Transportation in Data Warehouses 12-5

Understanding Transportation Mechanisms in Data Warehouses
Once the datafiles have been copied, the tablespace ts_temp_sales can be set to

READ WRITE mode if desired.

Step 4: Import the Metadata Once the files have been copied to the data mart, the

metadata should be imported into the data mart:

IMP TRANSPORT_TABLESPACE=y DATAFILES='/db/tempjan.f'
 TABLESPACES=ts_temp_sales
 FILE=jan_sales.dmp

At this point, the tablespace ts_temp_sales and the table temp_sales_jan are

accessible in the data mart. You can incorporate this new data into the data mart's

tables.

You can insert the data from the temp_sales_jan table into the data mart's sales

table in one of two ways:

INSERT /*+ APPEND */ INTO sales SELECT * FROM temp_sales_jan;

Following this operation, you can delete the temp_sales_jan table (and even the

entire ts_temp_sales tablespace).

Alternatively, if the data mart's sales table is partitioned by month, then the new

transported tablespace and the temp_sales_jan table can become a permanent

part of the data mart. The temp_sales_jan table can become a partition of the

data mart's sales table:

ALTER TABLE sales ADD PARTITION sales_00jan VALUES
 LESS THAN (TO_DATE('01-feb-2000','dd-mon-yyyy'));
ALTER TABLE sales EXCHANGE PARTITION sales_00jan
 WITH TABLE temp_sales_jan
INCLUDING INDEXES WITH VALIDATION;

Other Uses of Transportable Tablespaces
The above example illustrates a typical scenario for transporting data in a data

warehouse. However, transportable tablespaces can be used for many other

purposes. In a data warehousing environment, transportable tablespaces should be

viewed as a utility (much like Import/Export or SQL*Loader), whose purpose is to

move large volumes of data between Oracle databases. When used in conjunction

with parallel data movement operations such as the CREATE TABLE ... AS SELECT
and INSERT ... AS SELECT statements, transportable tablespaces provide an

important mechanism for quickly transporting data for many purposes.
12-6 Data Warehousing Guide

 Loading and Transf
13

Loading and Transformation

This chapter helps you create and manage a data warehouse, and discusses:

■ Overview of Loading and Transformation in Data Warehouses

■ Loading Mechanisms

■ Transformation Mechanisms

■ Loading and Transformation Scenarios
ormation 13-1

Overview of Loading and Transformation in Data Warehouses
Overview of Loading and Transformation in Data Warehouses
Data transformations are often the most complex and, in terms of processing time,

the most costly part of the ETL process. They can ranget from simple data

conversions to extremely complex data scrubbing techniques. Many, if not all, data

transformations can occur within an Oracle9i database, although transformations

are often implemented outside of the database (for example, on flat files) as well.

This chapter introduces techniques for implementing scalable and efficient data

transformations within Oracle9i. The examples in this chapter are relatively simple.

Real-world data transformations are often considerably more complex. However,

the transformation techniques introduced in this chapter meet the majority of

real-world data transformation requirements, often with more scalability and less

programming than alternative approaches.

This chapter does not seek to illustrate all of the typical transformations that would

be encountered in a data warehouse, but to demonstrate the types of fundamental

technology that can be applied to implement these transformations and to provide

guidance in how to choose the best techniques.

Transformation Flow
From an architectural perspective, you can transform your data in two ways:

■ Multistage Data Transformation

■ Pipelined Data Transformation

Multistage Data Transformation
The data transformation logic for most data warehouses consists of multiple steps.

For example, in transforming new records to be inserted into a sales table, there

may be separate logical transformation steps to validate each dimension key.

A graphical way of looking at the transformation logic is presented in Figure 13–1:
13-2 Data Warehousing Guide

Overview of Loading and Transformation in Data Warehouses
Figure 13–1 Multi-Stage Data Transformation

When using Oracle9i as a transformation engine, a common strategy is to

implement each different transformation as a separate SQL operation and to create

a separate, temporary staging table (such as the tables new_sales_step1 and

new_sales_step2 in Figure 13–1) to store the incremental results for each step.

This load-then-transform strategy also provides a natural checkpointing scheme to

the entire transformation process, which enables to the process to be more easily

monitored and restarted. However, a disadvantage to multistaging is that the space

and time requirements increase.

It may also be possible to combine many simple logical transformations into a

single SQL statement or single PL/SQL procedure. Doing so may provide better

performance than performing each step independently, but it may also introduce

difficulties in modifying, adding, or dropping individual transformations, as well as

recovering from failed transformations.

Pipelined Data Transformation
With the introduction of Oracle9i, Oracle’s database capabilities have been

significantly enhanced to address specifically some of the tasks in ETL

Insert into sales
warehouse table

Convert source
product keys
to warehouse
product keys

Flat Files Table

new_sales_step1

new_sales_step2 new_sales_step3

sales

TableTable

Table

Load into staging
table

Validate customer
keys (lookup in
customer
dimension table)
 Loading and Transformation 13-3

Loading Mechanisms
environments. The ETL process flow can be changed dramatically and the database

becomes an integral part of the ETL solution.

The new functionality renders some of the former necessary process steps obsolete

whilst some others can be remodeled to enhance the data flow and the data

transformation to become more scalable and non-interruptive. The task shifts from

serial transform-then-load process (with most of the tasks done outside the

database) or load-then-transform process, to an enhanced transform-while-loading.

Oracle9i offers a wide variety of new capabilities to address all the issues and tasks

relevant in an ETL scenario. It is important to understand that the database offers

toolkit functionality rather than trying to address a one-size-fits-all solution. The

underlying database has to enable the most appropriate ETL process flow for a

specific customer need, and not dictate or constrain it from a technical perspective.

Figure 13–2 illustrates the new functionality, which is discussed throughout later

sections.

Figure 13–2 Pipelined Data Transformation

Loading Mechanisms
You can use the following mechanisms for loading a warehouse:

■ SQL*Loader

■ External Tables

■ OCI and Direct-path APIs

■ Export/Import

Insert into sales
warehouse table

Flat Files

External table

sales

Table

Validate customer
keys (lookup in
customer
dimension table)

Convert source
product keys
to warehouse
product keys
13-4 Data Warehousing Guide

Loading Mechanisms
SQL*Loader
Before any data transformations can occur within the database, the raw data must

become accessible for the database. One approach is to load it into the database.

Chapter 12, "Transportation in Data Warehouses", discusses several techniques for

transporting data to an Oracle data warehouse. Perhaps the most common

technique for transporting data is by way of flat files.

SQL*Loader is used to move data from flat files into an Oracle data warehouse.

During this data load, SQL*Loader can also be used to implement basic data

transformations. When using direct-path SQL*Loader, basic data manipulation,

such as datatype conversion and simple NULL handling, can be automatically

resolved during the data load. Most data warehouses use direct-path loading for

performance reasons.

Oracle's conventional-path loader provides broader capabilities for data

transformation than a direct-path loader: SQL functions can be applied to any

column as those values are being loaded. This provides a rich capability for

transformations during the data load. However, the conventional-path loader is

slower than direct-path loader. For these reasons, the conventional-path loader

should be considered primarily for loading and transforming smaller amounts of

data.

The following is a simple example of a SQL*Loader controlfile to load data into the

sales fact table of the Sales History schema from an external file sh_
sales.dat . The external flat file sh_sales.dat consists of sales transaction data,

aggregated on a daily level. Not all columns of this external file are loaded into the

sales table. This external file will also be used as source for loading the second fact

table cost of the Sales History schema, which is done using an external table:

The following shows the controlfile (sh_sales.ctl) to load the sales table:

LOAD DATA
INFILE sh_sales.dat
APPEND INTO TABLE sales
FIELDS TERMINATED BY "|"
(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID,
 QUANTITY_SOLD, AMOUNT_SOLD)

It can be loaded with the following command:

$ sqlldr sh/sh control=sh_sales.ctl direct=true

See Also: Oracle9i Database Utilities for more information on

SQL*Loader
 Loading and Transformation 13-5

Loading Mechanisms
External Tables
Another approach for handling external data sources is using external tables.

Oracle9i‘s external table feature enables you to use external data as a virtual table

that can be queried and joined directly and in parallel without requiring the

external data to be first loaded in the database. You can then use SQL, PL/SQL, and

Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation

phase. The transformation process can be merged with the loading process without

any interruption of the data streaming. It is no longer necessary to stage the data

inside the database for further processing inside the database, such as comparison

or transformation. For example, the conversion functionality of a conventional load

can be used for a direct-path INSERT AS SELECT statement in conjunction with the

SELECT from an external table.

The main difference between external tables and regular tables is that externally

organized tables are read-only. No DML operations (UPDATE/INSERT/DELETE)
are possible and no indexes can be created on them.

Oracle9i’s external tables are a complement to the existing SQL*Loader

functionality, and are especially useful for environments where the complete

external source has to be joined with existing database objects and transformed in a

complex manner, or where the external data volume is large and used only once.

SQL*Loader, on the other hand, might still be the better choice for loading of data

where additional indexing of the staging table is necessary. This is true for

operations where the data is used in independent complex transformations or the

data is only partially used in further processing.

You can create an external table named sales_transactions_ext , representing

the structure of the complete sales transaction data, represented in the external file

sh_sales.dat . The product department is especially interested in a cost analysis

on product and time. We thus create a fact table named cost in the sales
history schema. The operational source data is the same as for the sales fact

table. However, because we are not investigating every dimensional information

that is provided, the data in the cost fact table has a coarser granularity than in the

sales fact table, for example, all different distribution channels are aggregated.

See Also: Oracle9i SQL Reference for a complete description of

external table syntax and restrictions and Oracle9i Database Utilities
for usage examples
13-6 Data Warehousing Guide

Loading Mechanisms
We cannot load the data into the cost fact table without applying the above

mentioned aggregation of the detailed information, due to the suppression of some

of the dimensions.

Oracle’s external table framework offers a solution to solve this. Unlike

SQL*Loader, where we would have to load the data before applying the

aggregation, we can combine the loading and transformation within a single SQL

DML statement, as shown below. We do not have to stage the data temporarily

before inserting into the target table.

The Oracle object directories must already exist, and point to the directory

containing the sh_sales.dat file as well as the directory containing the bad and

log files.

CREATE TABLE sales_transactions_ext
(
 PROD_ID NUMBER(6),
 CUST_ID NUMBER,
 TIME_ID DATE,
 CHANNEL_ID CHAR(1),
 PROMO_ID NUMBER(6),
 QUANTITY_SOLD NUMBER(3),
 AMOUNT_SOLD NUMBER(10,2),
 UNIT_COST NUMBER(10,2),
 UNIT_PRICE NUMBER(10,2)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY data_file_dir
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE log_file_dir:'sh_sales.bad_xt'
 LOGFILE log_file_dir:'sh_sales.log_xt'
 FIELDS TERMINATED BY "|" LDRTRIM
)
 location
 (
 'sh_sales.dat'
)
)REJECT LIMIT UNLIMITED;
 Loading and Transformation 13-7

Transformation Mechanisms
The external table can now be used from within the database, accessing some

columns of the external data only, grouping the data, and inserting it into the

costs fact table:

INSERT /*+ APPEND */ INTO COSTS
(
 TIME_ID,
 PROD_ID,
 UNIT_COST,
 UNIT_PRICE
)
SELECT
 TIME_ID,
 PROD_ID,
 SUM(UNIT_COST),
 SUM(UNIT_PRICE)
FROM sales_transactions_ext
GROUP BY time_id, prod_id;

OCI and Direct-path APIs
OCI and direct-path APIs are frequently used when the transformation and

computation are done outside the database and there is no need for flat file staging.

Export/Import
Export and import are used when the data is inserted as is into the target system.

No large volumes of data should be handled and no complex extractions are

possible.

Transformation Mechanisms
You have the following choices for transforming data inside the database:

■ Transformation Using SQL

■ Transformation Using PL/SQL

■ Transformation Using Table Functions

See Also: Chapter 11, "Extraction in Data Warehouses" for

further information
13-8 Data Warehousing Guide

Transformation Mechanisms
Transformation Using SQL
Once data is loaded into an Oracle9i database, data transformations can be executed

using SQL operations. There are four basic techniques for implementing SQL data

transformations within Oracle9i:

■ The CREATE TABLE ... AS SELECT and INSERT /*+APPEND*/ AS SELECT
Statements

■ The UPDATE Statement

■ The MERGE Statement

■ The Multitable INSERT Statement

1. The CREATE TABLE ... AS SELECT Statement

The CREATE TABLE ... AS SELECT statement (CTAS) is a very powerful tool for

manipulating large sets of data. As shown in the example below, many data

transformations can be expressed in standard SQL, and CTAS provides a

mechanism for efficiently executing a SQL query and storing the results of that

query in a new database table. The INSERT /*+APPEND*/ ... AS SELECT statement

offers the same capabilities with existing database tables.

In a data warehouse environment, CTAS is typically run in parallel using

NOLOGGING mode for best performance.

A simple and common type of data transformation is data substitution. In a data

substitution transformation, some or all of the values of a single column are

modified. For example, our sales table has a channel_id column. This column

indicates whether a given sales transaction was made by a company’s own sales

force (a direct sale) or by a distributor (an indirect sale).

You may receive data from multiple source systems foryour data warehouse.

Suppose that one of those source systems processes only direct sales, and thus the

source system does not know indirect sales channels. When the data warehouse

initially receives sales data from this system, all sales records have a NULL value for

the sales.channel_id field. These NULL values must be set to the proper key

value. For example, You can do this efficiently using a SQL function as part of the

insertion into the target sales table statement:
 Loading and Transformation 13-9

Transformation Mechanisms
The structure of source table sales_activity_direct is as follows:

SQL> DESC sales_activity_direct
Name Null? Type
------------ ----- ----------------
SALES_DATE DATE
PRODUCT_ID NUMBER
CUSTOMER_ID NUMBER
PROMOTION_ID NUMBER
AMOUNT NUMBER
QUANTITY NUMBER

INSERT /*+ APPEND NOLOGGING PARALLEL */
INTO sales
SELECT product_id, customer_id, TRUNC(sales_date), 'S',
 promotion_id, quantity, amount
FROM sales_activity_direct;

2. The UPDATE Statement

Another technique for implementing a data substitution is to use an UPDATE
statement to modify the sales.channel_id column. An UPDATEwill provide the

correct result. However, if the data substitution transformations require that a very

large percentage of the rows (or all of the rows) be modified, then, it may be more

efficient to use a CTAS statement than an UPDATE.

3. The MERGE Statement

Oracle’s merge functionality extends SQL, by introducing the SQL keyword MERGE,
in order to provide the ability to update or insert a row conditionally into a table or

out of line single table views. Conditions are specified in the ON clause. This is,

besides pure bulk loading, one of the most common operations in data warehouse

synchronization.

Prior to Oracle9i, merges were expressed either as a sequence of DML statements or

as PL/SQL loops operating on each row. Both of these approaches suffer from

deficiencies in performance and usability. The new merge functionality overcomes

these deficiencies with a new SQL statement. This syntax has been proposed as part

of the upcoming SQL standard.
13-10 Data Warehousing Guide

Transformation Mechanisms
When to Use Merge
There are several benefits of the new MERGE statement as compared with the two

other existing approaches.

■ The entire operation can be expressed much more simply as a single SQL

statement.

■ You can parallelize statements transparently.

■ You can use bulk DML.

■ Performance will improve becasue your statements will require fewer scans of

the source table.

Merge Examples
The following discusses various implementations of a merge. The examples assume

that new data for the dimension table products is propagated to the data warehouse

and has to be either inserted or updated. The table products_delta has the same

structure as products .

Example 13–1 Merge Operation Using SQL in Oracle9i

MERGE INTO products t
USING products_delta s
ON (t.prod_id=s.prod_id)
WHEN MATCHED THEN
UPDATE SET
t.prod_list_price=s.prod_list_price,
t.prod_min_price=s.prod_min_price
WHEN NOT MATCHED THEN
INSERT
(prod_id, prod_name, prod_desc,
prod_subcategory, prod_subcat_desc, prod_category,
prod_cat_desc, prod_status, prod_list_price, prod_min_price)
VALUES
(s.prod_id, s.prod_name, s.prod_desc,
s.prod_subcategory, s.prod_subcat_desc,
s.prod_category, s.prod_cat_desc,
s.prod_status, s.prod_list_price, s.prod_min_price);
 Loading and Transformation 13-11

Transformation Mechanisms
Example 13–2 Merge Operation Using SQL Prior to Oracle9i

A regular join between source products_delta and target products .

UPDATE products t
SET
(prod_name, prod_desc, prod_subcategory, prod_subcat_desc, prod_category,
prod_cat_desc, prod_status, prod_list_price,
prod_min_price) =
(SELECT prod_name, prod_desc, prod_subcategory, prod_subcat_desc,
prod_category, prod_cat_desc, prod_status, prod_list_price,
prod_min_price from products_delta s WHERE s.prod_id=t.prod_id);

An antijoin between source products_delta and target products .

INSERT INTO products t
SELECT * FROM products_delta s
WHERE s.prod_id NOT IN
(SELECT prod_id FROM products);

The advantage of this approach is its simplicity and lack of new language

extensions. The disadvantage is its performance. It requires an extra scan and a join

of both the products_delta and the products tables.

Example 13–3 Pre-9i Merge Using PL/SQL

CREATE OR REPLACE PROCEDURE merge_proc
IS
CURSOR cur IS
SELECT prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_desc,
 prod_category, prod_cat_desc, prod_status, prod_list_price,
 prod_min_price
FROM products_delta;
crec cur%rowtype;
BEGIN
 OPEN cur;
 LOOP
 FETCH cur INTO crec;
 EXIT WHEN cur%notfound;
 UPDATE products SET
 prod_name = crec.prod_name, prod_desc = crec.prod_desc,
 prod_subcategory = crec.prod_subcategory,
 prod_subcat_desc = crec.prod_subcat_desc,
 prod_category = crec.prod_category,
 prod_cat_desc = crec.prod_cat_desc,
 prod_status = crec.prod_status,
13-12 Data Warehousing Guide

Transformation Mechanisms
 prod_list_price = crec.prod_list_price,
 prod_min_price = crec.prod_min_price
 WHERE crec.prod_id = prod_id;

 IF SQL%notfound THEN
 INSERT INTO products
 (prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcat_desc, prod_category,
 prod_cat_desc, prod_status, prod_list_price, prod_min_price)
 VALUES
 (crec.prod_id, crec.prod_name, crec.prod_desc, crec.prod_subcategory,
 crec.prod_subcat_desc, crec.prod_category,
 crec.prod_cat_desc, crec.prod_status, crec.prod_list_price, crec.prod_min_
price);
 END IF;
 END LOOP;
 CLOSE cur;
END merge_proc;
/

4. A Multitable INSERT Statement

Many times, external data sources have to be segregated based on logical attributes

for insertion into different target objects. It’s also frequent in data warehouse

environments to fan out the same source data into several target objects. Multitable

inserts provide a new SQL statement for these kinds of transformations, where data

can either end up in several or exactly one target, depending on the business

transformation rules. This insertion can be done conditionally based on business

rules or unconditionally.

It offers the benefits of the INSERT ... SELECT statement when multiple tables are

involved as targets. In doing so, it avoids the drawbacks of the alternatives

available to you using functionality prior to Oracle9i. You either had to deal with n
independent INSERT … SELECT statements, thus processing the same source data

n times and increasing the transformation workload n times. Alternatively, you had

to choose a procedural approach with a per-row determination how to handle the

insertion. This solution lacked direct access to high-speed access paths available in

SQL.

As with the existing INSERT ... SELECT statement, the new statement can be

parallelized and used with the direct-load mechanism for faster performance.
 Loading and Transformation 13-13

Transformation Mechanisms
Example 13–4 Unconditional Insert

The following statement aggregates the transactional sales information, stored in

sales_activity_direct , on a per daily base and inserts into both the sales and

the cost fact table for the current day.

INSERT ALL
 INTO sales VALUES (product_id, customer_id, today, 'S', promotion_id,
 quantity_per_day, amount_per_day)
 INTO cost VALUES (product_id, today, product_cost, product_price)
SELECT TRUNC(s.sales_date) as today,
 s.product_id, s.customer_id, s.promotion_id,
 SUM(s.amount) as amount_per_day, SUM(s.quantity) quantity_per_day,
 p.product_cost, p.product_price
 FROM sales_activity_direct s, product_information p
 WHERE s.product_id = p.product_id
 AND trunc(sales_date)=trunc(sysdate)
 GROUP BY trunc(sales_date), s.product_id,
 s.customer_id, s.promotion_id, p.product_cost, p.product_price;

Example 13–5 Conditional ALL Insert

The following statement inserts a row into the sales and cost tables for all sales

transactions with a valid promotion and stores the information about multiple

identical orders of a customer in a separate table cum_sales_activity . It is

possible two rows will be inserted for some sales transactions, and none for others.

INSERT ALL
WHEN promotion_id IN (SELECT promo_id FROM promotions) THEN
 INTO sales VALUES (product_id, customer_id, today, 'S', promotion_id,
 quantity_per_day, amount_per_day)
 INTO cost VALUES (product_id, today, product_cost, product_price)
WHEN num_of_orders > 1 THEN
 INTO cum_sales_activity VALUES (today, product_id, customer_id,
 promotion_id, quantity_per_day, amount_per_day,
 num_of_orders)
SELECT TRUNC(s.sales_date) AS today, s.product_id, s.customer_id,
 s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
 quantity_per_day, COUNT(*) num_of_orders,
 p.product_cost, p.product_price
FROM sales_activity_direct s, product_information p
WHERE s.product_id = p.product_id
AND TRUNC(sales_date) = TRUNC(sysdate)
GROUP BY TRUNC(sales_date), s.product_id, s.customer_id,
 s.promotion_id, p.product_cost, p.product_price;
13-14 Data Warehousing Guide

Transformation Mechanisms
Example 13–6 Conditional FIRST Insert

The following statement inserts into an appropriate shipping manifest according to

the total quantity and the weight of a product order. An exception is made for high

value orders, which are also sent by express, unless their weight classification is not

too high. It assumes the existence of appropriate tables large_freight_
shipping , express_shipping , and default_shipping .

INSERT FIRST
 WHEN (sum_quantity_sold > 10 AND prod_weight_class < 5) OR
 (sum_quantity_sold > 5 AND prod_weight_class > 5) THEN
 INTO large_freight_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class, sum_quantity_sold)
 WHEN sum_amount_sold > 1000 THEN
 INTO express_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class,
 sum_amount_sold, sum_quantity_sold)
 ELSE
 INTO default_shipping VALUES
 (time_id, cust_id, prod_id, sum_quantity_sold)
SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
 SUM(amount_sold) AS sum_amount_sold,
 SUM(quantity_sold) AS sum_quantity_sold
FROM sales s, products p
WHERE s.prod_id = p.prod_id
AND s.time_id = TRUNC(sysdate)
GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Example 13–7 Mixed Conditional and Unconditional Insert

The following example inserts new customers into the customers table and stores all

new customers with cust_credit_limit higher then 4500 in an additional,

separate table for further promotions.

INSERT FIRST
 WHEN cust_credit_limit >= 4500 THEN
 INTO customers
 INTO customers_special VALUES (cust_id, cust_credit_limit)
 ELSE
 INTO customers
SELECT * FROM customers_new;
 Loading and Transformation 13-15

Transformation Mechanisms
Transformation Using PL/SQL
In a data warehouse environment, you can use procedural languages such as

PL/SQL to implement complex transformations in the Oracle9i database. Whereas

CTAS operates on entire tables and emphasizes parallelism, PL/SQL provides a

row-based approached and can accommodate very sophisticated transformation

rules. For example, a PL/SQL procedure could open multiple cursors and read data

from multiple source tables, combine this data using complex business rules, and

finally insert the transformed data into one or more target table. It would be

difficult or impossible to express the same sequence of operations using standard

SQL statements.

Using a procedural language, a specific transformation (or number of

transformation steps) within a complex ETL processing can be encapsulated,

reading data from an intermediate staging area and generating a new table object as

output. A previously generated transformation input table and a subsequent

transformation will consume the table generated by this specific transformation.

Alternatively, these encapsulated transformation steps within the complete ETL

process can be integrated seamlessly, thus streaming sets of rows between each

other without the necessity of intermediate staging. You can use Oracle9i’s table

functions to implement such behavior.

Transformation Using Table Functions
Oracle9i’s table functions provide the support for pipelined and parallel execution

of transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned

above can be done without requiring the use of intermediate staging tables, which

interrupt the data flow through various transformations steps.

What is a Table Function?
A table function is defined as a function that can produce a set of rows as output.

Additionally, table functions can take a set of rows as input. Prior to Oracle9i,
PL/SQL functions:

■ Could not take cursors as input

■ Could not be parallelized or pipelined

Starting with Oracle9i, functions are not limited in these ways. Table functions

extend database functionality by allowing:

■ Multiple rows to be returned from a function
13-16 Data Warehousing Guide

Transformation Mechanisms
■ Results of SQL subqueries (that select multiple rows) to be passed directly to

functions

■ Functions take cursors as input

■ Functions can be parallelized

■ Returning result sets incrementally for further processing as soon as they are

created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in

Java or C using the Oracle Data Cartridge Interface (ODCI).

Figure 13–3 illustrates a typical aggregation where you input a set of rows and

output a set of rows, in that case, after performing a SUM operation:

Figure 13–3 Table Function Example

The pseudocode for the above operation would be similar to:

INSERT INTO out
SELECT * FROM ("Table Function"(SELECT * FROM in));

The table function takes the result of the SELECT on In as input and delivers a set

of records in a different format as output for a direct insertion into Out .

Additionally, a table function can fan out data within the scope of an atomic

transaction. This can be used for many occasions like an efficient logging

mechanism or a fan out for other independent transformations. In such a scenario, a

single staging table will be needed.

See Also: PL/SQL User’s Guide and Reference for further

information and Oracle9i Data Cartridge Developer’s Guide

In
Region Sales

10
20
25

5
10
10

. . .

North
South
North
East
West
South
. . .

Out
Region Sum of Sales

35
30
10

5

North
South
West
East

Table
Function
 Loading and Transformation 13-17

Transformation Mechanisms
Figure 13–4 Pipelined Parallel Transformation with Fanout

The pseudocode for the above would be similar to:

INSERT INTO target SELECT * FROM (tf2(SELECT *
FROM (tf1(SELECT * FROM source))));

This will insert into target and, as part of tf1 , into Stage Table 1 within the

scope of an atomic transaction.

INSERT INTO target SELECT * FROM tf3(SELT * FROM stage_table1);

Example 13–8 Table Functions Fundamentals-Examples

The following examples demonstrate the fundamentals of table functions, without

the usage of complex business rules implemented inside those functions. They are

chosen for demonstration purposes only, and are all implemented in PL/SQL.

Table functions return sets of records and can take cursors as input. Besides the

Sales History schema, you have to set up the following database objects before

using the examples:

REM object types
CREATE TYPE product_t AS OBJECT (
 prod_id NUMBER(6),
 prod_name VARCHAR2(50),
 prod_desc VARCHAR2(4000),
 prod_subcategory VARCHAR2(50),
 prod_subcat_desc VARCHAR2(2000).
 prod_category VARCHAR2(50),
 prod_cat_desc VARCHAR2(2000),
 prod_weight_class NUMBER(2),
 prod_unit_of_measure VARCHAR2(20),
 prod_pack_size VARCHAR2(30),
 supplier_id NUMBER(6),
 prod_status VARCHAR2(20),

Source

tf1 tf2

tf3

Target
Stage Table 1
13-18 Data Warehousing Guide

Transformation Mechanisms
 prod_list_price NUMBER(8,2),
 prod_min_price NUMBER(8,2)
);
/
CREATE TYPE product_t_table AS TABLE OF product_t;
/
COMMIT;

REM package of all cursor types
REM we have to handle the input cursor type and the output cursor collection
REM type
CREATE OR REPLACE PACKAGE cursor_PKG as
 TYPE product_t_rec IS RECORD (
 prod_id NUMBER(6),
 prod_name VARCHAR2(50),
 prod_desc VARCHAR2(4000),
 prod_subcategory VARCHAR2(50),
 prod_subcat_desc VARCHAR2(2000),
 prod_category VARCHAR2(50),
 prod_cat_desc VARCHAR2(2000),
 prod_weight_class NUMBER(2),
 prod_unit_of_measure VARCHAR2(20),
 prod_pack_size VARCHAR2(30),
 supplier_id NUMBER(6),
 prod_status VARCHAR2(20),
 prod_list_price NUMBER(8,2),
 prod_min_price NUMBER(8,2));
 TYPE product_t_rectab IS TABLE OF product_t_rec;
 TYPE strong_refcur_t IS REF CURSOR RETURN product_t_rec;
 TYPE refcur_t IS REF CURSOR;
END;
/

REM artificial help table, used to demonstrate figure 13-4
CREATE TABLE obsolete_products_errors (prod_id NUMBER, msg VARCHAR2(2000));

The following example demonstrates a simple filtering; it shows all obsolete

products except the prod_category Boys . The table function returns the result set

as a set of records and uses a weakly typed ref cursor as input.

CREATE OR REPLACE FUNCTION obsolete_products(cur cursor_pkg.refcur_t)
 RETURN product_t_table
IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 Loading and Transformation 13-19

Transformation Mechanisms
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcat_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_cat_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
 objset product_t_table := product_t_table();
 i NUMBER := 0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcat_desc, prod_category, prod_cat_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' AND prod_category != 'Boys' THEN
 -- append to collection
 i:=i+1;
 objset.extend;
 objset(i):=product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_
of_measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_
min_price);
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN objset;
END;
/

13-20 Data Warehousing Guide

Transformation Mechanisms
You can use the table function in a SQL statement to show the results. Here we use

additional SQL functionality for the output.

SELECT DISTINCT UPPER(prod_category), prod_status
FROM TABLE(obsolete_products(CURSOR(SELECT * FROM products)));

UPPER(PROD_CATEGORY) PROD_STATUS
-------------------- -----------
GIRLS obsolete
MEN obsolete

2 rows selected.

The following example implements the same filtering than the first one. The main

differences between those two are:

■ This example uses a strong typed REF cursor as input and can be parallelized

based on the objects of the strong typed cursor, as shown in one of the following

examples.

■ The table function returns the result set incrementally as soon as records are

created.

REM Same example, pipelined implementation
REM strong ref cursor (input type is defined)
REM a table without a strong typed input ref cursor cannot be parallelized
REM
CREATE OR
REPLACE FUNCTION obsolete_products_pipe(cur cursor_pkg.strong_refcur_t)
RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcat_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_cat_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 Loading and Transformation 13-21

Transformation Mechanisms
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory, prod_
subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_
measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_
price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' AND prod_category !='Boys' THEN
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_
measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_
price));
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN;
END;
/

You can use the table function as follows:

SELECT DISTINCT prod_category, DECODE(prod_status, 'obsolete', 'NO LONGER
AVAILABLE', 'N/A')
FROM TABLE(obsolete_products_pipe(CURSOR(SELECT * FROM products)));

PROD_CATEGORY DECODE(PROD_STATUS,
------------- -------------------
Girls NO LONGER AVAILABLE
Men NO LONGER AVAILABLE

2 rows selected.

We now change the degree of parallelism for the input table products and issue the

same statement again

ALTER TABLE products PARALLEL 4;
13-22 Data Warehousing Guide

Transformation Mechanisms
The session statistics show that the statement has been parallelized

SELECT * FROM V$PQ_SESSTAT WHERE statistic='Queries Parallelized';

STATISTIC LAST_QUERY SESSION_TOTAL
-------------------- ---------- -------------
Queries Parallelized 1 3

1 row selected.

Table functions are also capable to fan-out results into persistent table structures.

This is demonstrated in the next example. The function filters returns all obsolete

products except a those of a specific prod_category (default Men), which was set

to status obsolete by error. The detected wrong prod_id ’s are stored in a separate

table structure. Its result set consists of all other obsolete product categories. It

furthermore demonstrates how normal variables can be used in conjunction with

table functions:

CREATE OR REPLACE FUNCTION obsolete_products_dml(cur cursor_pkg.strong_refcur_t,
prod_cat VARCHAR2 DEFAULT 'Men') RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcat_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_cat_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory, prod_
subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_
measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_
price;
 Loading and Transformation 13-23

Transformation Mechanisms
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' THEN
 IF prod_category=prod_cat THEN
 INSERT INTO obsolete_products_errors VALUES
 (prod_id, ’correction: category '||UPPER(prod_cat)||' still
available');
 ELSE
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_
measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_
price));
 END IF;
 END IF;
 END LOOP;
 COMMIT;
 CLOSE cur;
 RETURN;
END;
/

The following query shows all obsolete product groups except the prod_
category Men , which was wrongly set to status obsolete .

SELECT DISTINCT prod_category, prod_status FROM TABLE(obsolete_products_
dml(CURSOR(SELECT * FROM products)));
PROD_CATEGORY PROD_STATUS
------------- -----------
Boys obsolete
Girls obsolete

2 rows selected.

As you can see, there are some products of the prod_category Men that were

obsoleted by accident:

SELECT DISTINCT msg FROM obsolete_products_errors;

MSG
--
correction: category MEN still available

1 row selected.
13-24 Data Warehousing Guide

Transformation Mechanisms
Taking advantage of the second input variable changes the result set as follows:

SELECT DISTINCT prod_category, prod_status FROM TABLE(obsolete_products_
dml(CURSOR(SELECT * FROM products), 'Boys'));

PROD_CATEGORY PROD_STATUS
------------- -----------
Girls obsolete
Men obsolete

2 rows selected.

SELECT DISTINCT msg FROM obsolete_products_errors;

MSG

correction: category BOYS still available

1 row selected.

Since table functions can be used like a normal table, they can be nested, as shown

in the next example:

SELECT DISTINCT prod_category, prod_status
FROM TABLE(obsolete_products_dml(CURSOR(SELECT *
 FROM TABLE(obsolete_products_pipe(CURSOR(SELECT * FROM products))))));

PROD_CATEGORY PROD_STATUS
------------- -----------
Girls obsolete

1 row selected.

Because the table function obsolete_products_pipe filters out all products of

the prod_category Boys , our result does no longer include products of the

prod_category Boys . The prod_category Men is still set to be obsolete by

accident.

SELECT COUNT(*) FROM obsolete_products_errors;
MSG
--
correction: category MEN still available
 Loading and Transformation 13-25

Loading and Transformation Scenarios
The biggest advantage of Oracle9i ETL is its toolkit functionality, where you can

combine any of the latter discussed functionality to improve and speed up your

ETL processing. For example, you can take an external table as input, join it with an

existing table and use it as input for a parallelized table function to process complex

business logic. This table function can be used as input source for a MERGE
operation, thus streaming the new information for the data warehouse, provided in

a flat file within one single statement through the complete ETL process.

Loading and Transformation Scenarios
The following sections offer examples of typical loading and transformation tasks:

■ Parallel Load Scenario

■ Key Lookup Scenario

■ Exception Handling Scenario

■ Pivoting Scenarios

Parallel Load Scenario
This section presents a case study illustrating how to create, load, index, and

analyze a large data warehouse fact table with partitions in a typical star schema.

This example uses SQL*Loader to explicitly stripe data over 30 disks.

■ The example 120 GB table is named facts .

■ The system is a 10-CPU shared memory computer with more than 100 disk

drives.

■ Thirty disks (4 GB each) are used for base table data, 10 disks for indexes, and

30 disks for temporary space. Additional disks are needed for rollback

segments, control files, log files, possible staging area for loader flat files, and so

on.

■ The facts table is partitioned by month into 12 partitions. To facilitate backup

and recovery, each partition is stored in its own tablespace.

■ Each partition is spread evenly over 10 disks, so a scan accessing few partitions

or a single partition can proceed with full parallelism. Thus there can be

intra-partition parallelism when queries restrict data access by partition

pruning.
13-26 Data Warehousing Guide

Loading and Transformation Scenarios
■ Each disk has been further subdivided using an operating system utility into 4

operating system files with names like /dev/D1.1, /dev/D1.2, ... ,
/dev/D30.4 .

■ Four tablespaces are allocated on each group of 10 disks. To better balance I/O

and parallelize table space creation (because Oracle writes each block in a

datafile when it is added to a tablespace), it is best if each of the four tablespaces

on each group of 10 disks has its first datafile on a different disk. Thus the first

tablespace has /dev/D1.1 as its first datafile, the second tablespace has

/dev/D4.2 as its first datafile, and so on, as illustrated in Figure 13–5.

Figure 13–5 Datafile Layout for Parallel Load Example

Step 1: Create the Tablespaces and Add Datafiles in Parallel
Below is the command to create a tablespace named Tsfacts1 . Other tablespaces

are created with analogous commands. On a 10-CPU machine, it should be possible

to run all 12 CREATE TABLESPACE statements together. Alternatively, it might be

better to run them in two batches of 6 (two from each of the three groups of disks).

����TSfacts1

����
TSfacts2

��TSfacts3

��
TSfacts4

����TSfacts5��TSfacts6��
��

TSfacts7

��
TSfacts8

��TSfacts9��
��

TSfacts10

��
TSfacts11

��
TSfacts12

/dev/D1.1

/dev/D1.2

/dev/D1.3

/dev/D1.4

/dev/D11.1

/dev/D11.2

/dev/D11.3

/dev/D11.4

/dev/D21.1

/dev/D21.2

/dev/D21.3

/dev/D21.4

����������
����������
��������
������

/dev/D2.1

/dev/D2.2

/dev/D2.3

/dev/D2.4

/dev/D12.1

/dev/D12.2

/dev/D12.3

/dev/D12.4

/dev/D22.1

/dev/D22.2

/dev/D22.3

/dev/D22.4

����������
����������
��������
������

/dev/D10.1

/dev/D10.2

/dev/D10.3

/dev/D10.4

/dev/D20.1

/dev/D20.2

/dev/D20.3

/dev/D20.4

/dev/D30.1

/dev/D30.2

/dev/D30.3

/dev/D30.4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
 Loading and Transformation 13-27

Loading and Transformation Scenarios
CREATE TABLESPACE TSfacts1
DATAFILE /dev/D1.1' SIZE 1024MB REUSE,
DATAFILE /dev/D2.1' SIZE 1024MB REUSE,
DATAFILE /dev/D3.1' SIZE 1024MB REUSE,
DATAFILE /dev/D4.1' SIZE 1024MB REUSE,
DATAFILE /dev/D5.1' SIZE 1024MB REUSE,
DATAFILE /dev/D6.1' SIZE 1024MB REUSE,
DATAFILE /dev/D7.1' SIZE 1024MB REUSE,
DATAFILE /dev/D8.1' SIZE 1024MB REUSE,
DATAFILE /dev/D9.1' SIZE 1024MB REUSE,
DATAFILE /dev/D10.1 SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);
...

CREATE TABLESPACE TSfacts2
DATAFILE /dev/D4.2' SIZE 1024MB REUSE,
DATAFILE /dev/D5.2' SIZE 1024MB REUSE,
DATAFILE /dev/D6.2' SIZE 1024MB REUSE,
DATAFILE /dev/D7.2' SIZE 1024MB REUSE,
DATAFILE /dev/D8.2' SIZE 1024MB REUSE,
DATAFILE /dev/D9.2' SIZE 1024MB REUSE,
DATAFILE /dev/D10.2 SIZE 1024MB REUSE,
DATAFILE /dev/D1.2' SIZE 1024MB REUSE,
DATAFILE /dev/D2.2' SIZE 1024MB REUSE,
DATAFILE /dev/D3.2' SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);
...
CREATE TABLESPACE TSfacts4
DATAFILE /dev/D10.4' SIZE 1024MB REUSE,
DATAFILE /dev/D1.4' SIZE 1024MB REUSE,
DATAFILE /dev/D2.4' SIZE 1024MB REUSE,
DATAFILE /dev/D3.4 SIZE 1024MB REUSE,
DATAFILE /dev/D4.4' SIZE 1024MB REUSE,
DATAFILE /dev/D5.4' SIZE 1024MB REUSE,
DATAFILE /dev/D6.4' SIZE 1024MB REUSE,
DATAFILE /dev/D7.4' SIZE 1024MB REUSE,
DATAFILE /dev/D8.4' SIZE 1024MB REUSE,
DATAFILE /dev/D9.4' SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);
...
CREATE TABLESPACE TSfacts12
DATAFILE /dev/D30.4' SIZE 1024MB REUSE,
DATAFILE /dev/D21.4' SIZE 1024MB REUSE,
DATAFILE /dev/D22.4' SIZE 1024MB REUSE,
DATAFILE /dev/D23.4 SIZE 1024MB REUSE,
13-28 Data Warehousing Guide

Loading and Transformation Scenarios
DATAFILE /dev/D24.4' SIZE 1024MB REUSE,
DATAFILE /dev/D25.4' SIZE 1024MB REUSE,
DATAFILE /dev/D26.4' SIZE 1024MB REUSE,
DATAFILE /dev/D27.4' SIZE 1024MB REUSE,
DATAFILE /dev/D28.4' SIZE 1024MB REUSE,
DATAFILE /dev/D29.4' SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);

Extent sizes in the STORAGE clause should be multiples of the multiblock read size,

where blocksize * MULTIBLOCK_READ_COUNT = multiblock read size.

INITIAL and NEXTshould normally be set to the same value. In the case of parallel

load, make the extent size large enough to keep the number of extents reasonable,

and to avoid excessive overhead and serialization due to bottlenecks in the data

dictionary. When PARALLEL=TRUE is used for parallel loader, the INITIAL extent

is not used. In this case you can override the INITIAL extent size specified in the

tablespace default storage clause with the value specified in the loader control file,

for example, 64KB.

Tables or indexes can have an unlimited number of extents, provided you have set

the COMPATIBLE initialization parameter to match the current release number, and

use the MAXEXTENTS keyword on the CREATE or ALTER statement for the

tablespace or object. In practice, however, a limit of 10,000 extents per object is

reasonable. A table or index has an unlimited number of extents, so set the

PERCENT_INCREASE parameter to zero to have extents of equal size.

Step 2: Create the Partitioned Table
We create a partitioned table with 12 partitions, each in its own tablespace. The

table contains multiple dimensions and multiple measures. The partitioning column

is named dim_2 and is a date. There are other columns as well.

Note: If possible, do not allocate extents faster than about 2 or 3

per minute. Thus, each process should get an extent that lasts for 3

to 5 minutes. Normally, such an extent is at least 50 MB for a large

object. Too small an extent size incurs significant overhead, which

affects performance and scalability of parallel operations. The

largest possible extent size for a 4 GB disk evenly divided into 4

partitions is 1 GB. 100 MB extents should perform well. Each

partition will have 100 extents. You can then customize the default

storage parameters for each object created in the tablespace, if

needed.
 Loading and Transformation 13-29

Loading and Transformation Scenarios
CREATE TABLE facts (dim_1 NUMBER, dim_2 DATE, ...
 meas_1 NUMBER, meas_2 NUMBER, ...)
PARALLEL
PARTITION BY RANGE (dim_2)
(PARTITION jan95 VALUES LESS THAN ('02-01-1995') TABLESPACE
TSfacts1,
PARTITION feb95 VALUES LESS THAN ('03-01-1995') TABLESPACE
TSfacts2,
...
PARTITION dec95 VALUES LESS THAN ('01-01-1996') TABLESPACE
TSfacts12);

Step 3: Load the Partitions in Parallel
This section describes four alternative approaches to loading partitions in parallel.

The different approaches to loading help you manage the ramifications of the

PARALLEL=TRUE keyword of SQL*Loader that controls whether individual

partitions are loaded in parallel. The PARALLEL keyword entails the following

restrictions:

■ Indexes cannot be defined.

■ You must set a small initial extent, because each loader session gets a new

extent when it begins, and it does not use any existing space associated with the

object.

■ Space fragmentation issues arise.

However, regardless of the setting of this keyword, if you have one loader process

per partition, you are still effectively loading into the table in parallel.

Example 13–9 Loading Partitions in Parallel Case 1

In this approach, assume 12 input files are partitioned in the same way as your

table. The DBA has one input file per partition of the table to be loaded. The DBA

starts 12 SQL*Loader sessions concurrently in parallel, entering statements like

these:

SQLLDR DATA=jan95.dat DIRECT=TRUE CONTROL=jan95.ctl
SQLLDR DATA=feb95.dat DIRECT=TRUE CONTROL=feb95.ctl
 . . .
SQLLDR DATA=dec95.dat DIRECT=TRUE CONTROL=dec95.ctl
13-30 Data Warehousing Guide

Loading and Transformation Scenarios
In the example, the keyword PARALLEL=TRUE is not set. A separate control file per

partition is necessary because the control file must specify the partition into which

the loading should be done. It contains a statement such as:

LOAD INTO facts partition(jan95)

The advantage of this approach is that local indexes are maintained by SQL*Loader.

You still get parallel loading, but on a partition level—without the restrictions of the

PARALLEL keyword.

A disadvantage is that you must partition the input prior to loading manually.

Example 13–10 Loading Partitions in Parallel Case 2

In another common approach, assume an arbitrary number of input files that are

not partitioned in the same way as the table. You can adopt a strategy of performing

parallel load for each input file individually. Thus if there are seven input files, you

can start seven SQL*Loader sessions, using statements like the following:

SQLLDR DATA=file1.dat DIRECT=TRUE PARALLEL=TRUE

Oracle partitions the input data so that it goes into the correct partitions. In this case

all the loader sessions can share the same control file, so there is no need to mention

it in the statement.

The keyword PARALLEL=TRUE must be used, because each of the seven loader

sessions can write into every partition. In Case 1, every loader session would write

into only one partition, because the data was partitioned prior to loading. Hence all

the PARALLEL keyword restrictions are in effect.

In this case, Oracle attempts to spread the data evenly across all the files in each of

the 12 tablespaces—however an even spread of data is not guaranteed. Moreover,

there could be I/O contention during the load when the loader processes are

attempting to write to the same device simultaneously.

Example 13–11 Loading Partitions in Parallel Case 3

In this example, you want precise control over the load. To achieve this, you must

partition the input data in the same way as the datafiles are partitioned in Oracle.

This example uses 10 processes loading into 30 disks. To accomplish this, you must

split the input into 120 files beforehand. The 10 processes will load the first partition

in parallel on the first 10 disks, then the second partition in parallel on the second 10

disks, and so on through the 12th partition. You then run the following commands

concurrently as background processes:
 Loading and Transformation 13-31

Loading and Transformation Scenarios
SQLLDR DATA=jan95.file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1.1
...
SQLLDR DATA=jan95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D10.1
WAIT;
...
SQLLDR DATA=dec95.file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30.4
...
SQLLDR DATA=dec95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D29.4

For Oracle Real Application Clusters, divide the loader session evenly among the

nodes. The datafile being read should always reside on the same node as the loader

session.

The keyword PARALLEL=TRUE must be used, because multiple loader sessions can

write into the same partition. Hence all the restrictions entailed by the PARALLEL
keyword are in effect. An advantage of this approach, however, is that it guarantees

that all of the data is precisely balanced, exactly reflecting your partitioning.

Example 13–12 Loading Partitions in Parallel Case 4

For this approach, all partitions must be in the same tablespace. You need to have

the same number of input files as datafiles in the tablespace, but you do not need to

partition the input the same way in which the table is partitioned.

For example, if all 30 devices were in the same tablespace, then you would

arbitrarily partition your input data into 30 files, then start 30 SQL*Loader sessions

in parallel. The statement starting up the first session would be similar to the

following:

SQLLDR DATA=file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1
. . .
SQLLDR DATA=file30.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30

The advantage of this approach is that as in Case 3, you have control over the exact

placement of datafiles because you use the FILE keyword. However, you are not

required to partition the input data by value because Oracle does that for you.

A disadvantage is that this approach requires all the partitions to be in the same

tablespace. This minimizes availability.

Note: Although this example shows parallel load used with

partitioned tables, the two features can be used independent of one

another.
13-32 Data Warehousing Guide

Loading and Transformation Scenarios
Example 13–13 Loading External Data Example

This is probably the most basic use of external tables where the data volume is large

and no transformations are applied to the external data. The load process is

performed as follows:

1. You create the external table. Most likely, the table will be declared as parallel to

perform the load in parallel. Oracle will dynamically perform load balancing

between the parallel execution servers involved in the query.

2. Once the external table is created (remember that this only creates the metadata

in the dictionary), data can be converted, moved and loaded into the database

using either a PARALLEL CREATE TABLE AS SELECT or a PARALLEL INSERT
statement.

CREATE TABLE products_ext
(prod_id NUMBER, prod_name VARCHAR2(50), ...,
 price NUMBER(6.2), discount NUMBER(6.2))
ORGANIZATION EXTERNAL
(
DEFAULT DIRECTORY (stage_dir)
ACCESS PARAMETERS
(RECORDS FIXED 30
BADFILE 'bad/bad_products_ext'
LOGFILE 'log/log_products_ext'
(prod_id POSITION (1:8) CHAR,
 prod_name POSITION (*,+50) CHAR,
 prod_desc POSITION (*,+200) CHAR,
 . . .)
LOCATION ('new/new_prod1.txt','new/new_prod2.txt'))
PARALLEL 5
REJECT LIMIT 200;

load it in the database using a parallel insert
ALTER SESSION ENABLE PARALLEL DML;
INSERT INTO TABLE products SELECT * FROM products_ext;

In the above example, stage_dir is a directory where the external flat files reside.

Note that loading data in parallel can be performed in Oracle9i by using

SQL*Loader. But external tables are probably easier to use and the parallel load is

automatically coordinated. Unlike SQL*Loader, dynamic load balancing between

parallel execution servers will be performed as well because there will be intra-file

parallelism. The latter implies that the user will not have to manually split input

files before starting the parallel load. This will be accomplished dynamically.
 Loading and Transformation 13-33

Loading and Transformation Scenarios
Key Lookup Scenario
Another simple transformation is a key lookup. For example, suppose that sales

transaction data has been loaded into a retail data warehouse. Although the data

warehouse’s sales table contains a product_id column, the sales transaction

data extracted from the source system contains Uniform Price Codes (UPC) instead

of product IDs. Therefore, it is necessary to transform the UPC codes into product

IDs before the new sales transaction data can be inserted into the sales table.

In order to execute this transformation, a lookup table must relate the product_id
values to the UPC codes. This table might be the product dimension table, or

perhaps another table in the data warehouse that has been created specifically to

support this transformation. For this example, we assume that there is a table

named product , which has a product_id and an upc_code column.

This data substitution transformation can be implemented using the following

CTAS statement:

CREATE TABLE temp_sales_step2
 NOLOGGING PARALLEL AS
 SELECT
 sales_transaction_id,
 product.product_id sales_product_id,
 sales_customer_id,
 sales_time_id,
 sales_channel_id,
 sales_quantity_sold,
 sales_dollar_amount
 FROM temp_sales_step1, product
 WHERE temp_sales_step1.upc_code = product.upc_code;

This CTAS statement will convert each valid UPC code to a valid product_id
value. If the ETL process has guaranteed that each UPC code is valid, then this

statement alone may be sufficient to implement the entire transformation.

Exception Handling Scenario
In the preceding example, if you must also handle new sales data that does not have

valid UPC codes, you can use an additional CTAS statement to identify the invalid

rows:

CREATE TABLE temp_sales_step1_invalid NOLOGGING PARALLEL AS
 SELECT * FROM temp_sales_step1
 WHERE temp_sales_step1.upc_code NOT IN (SELECT upc_code FROM product);
13-34 Data Warehousing Guide

Loading and Transformation Scenarios
This invalid data is now stored in a separate table, temp_sales_step1_invalid ,

and can be handled separately by the ETL process.

Another way to handle invalid data is to modify the original CTAS to use an outer

join:

CREATE TABLE temp_sales_step2
 NOLOGGING PARALLEL AS
 SELECT
 sales_transaction_id,
 product.product_id sales_product_id,
 sales_customer_id,
 sales_time_id,
 sales_channel_id,
 sales_quantity_sold,
 sales_dollar_amount
 FROM temp_sales_step1, product
 WHERE temp_sales_step1.upc_code = product.upc_code (+);

Using this outer join, the sales transactions that originally contained invalidated

UPC codes will be assigned a product_id of NULL. These transactions can be

handled later.

Additional approaches to handling invalid UPC codes exist. Some data warehouses

may choose to insert null-valued product_id values into their sales table, while

other data warehouses may not allow any new data from the entire batch to be

inserted into the sales table until all invalid UPC codes have been addressed. The

correct approach is determined by the business requirements of the data warehouse.

Regardless of the specific requirements, exception handling can be addressed by the

same basic SQL techniques as transformations.

Pivoting Scenarios
A data warehouse can receive data from many different sources. Some of these

source systems may not be relational databases and may store data in very different

formats from the data warehouse. For example, suppose that you receive a set of

sales records from a nonrelational database having the form:

product_id, customer_id, weekly_start_date, sales_sun, sales_mon, sales_tue,
 sales_wed, sales_thu, sales_fri, sales_sat
 Loading and Transformation 13-35

Loading and Transformation Scenarios
The input table looks like this:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

In your data warehouse, you would want to store the records in a more typical

relational form in a fact table sales of the Sales History schema:

prod_id, cust_id, time_id, amount_sold

Thus, you need to build a transformation such that each record in the input stream

must be converted into seven records for the data warehouse's sales table. This

operation is commonly referred to as pivoting, and Oracle offers several ways to do

this.

The result of the above will resemble the following:

SELECT prod_id, cust_id, time_id, amount_sold FROM sales;

 PROD_ID CUST_ID TIME_ID AMOUNT_SOLD
---------- ---------- --------- -----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200
 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600
 222 333 13-OCT-00 700
 222 333 14-OCT-00 800

Note: A number of constraints on the sales table have been

disabled for purposes of this example, because the example ignores

a number of table columns for the sake of brevity.
13-36 Data Warehousing Guide

Loading and Transformation Scenarios
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400
 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

Pre-Oracle9i Pivoting
The pre-Oracle9i way of doing this involved using CTAS (or parallel INSERT AS
SELECT) or PL/SQL, as shown in Example 13–14 and Example 13–15.

Example 13–14 Pre-Oracle9i Pivoting Example Using a CTAS Statement

CREATE table temp_sales_step2 NOLOGGING PARALLEL AS
 SELECT product_id, customer_id, time_id, amount_sold
 FROM
 (SELECT product_id, customer_id, weekly_start_date, time_id,
 sales_sun amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+1, time_id,
 sales_mon amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, cust_id, weekly_start_date+2, time_id,
 sales_tue amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+3, time_id,
 sales_web amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+4, time_id,
 sales_thu amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+5, time_id,
 sales_fri amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+6, time_id,
 sales_sat amount_sold FROM sales_input_table);

Like all CTAS operations, this operation can be fully parallelized. However, the

CTAS approach also requires seven separate scans of the data, one for each day of

the week. Even with parallelism, the CTAS approach can be time-consuming.
 Loading and Transformation 13-37

Loading and Transformation Scenarios
Example 13–15 Pre-Oracle9i Pivoting Example Using PL/SQL

PL/SQL offers an alternative implementation. A basic PL/SQL function to

implement a pivoting operation is:

DECLARE
 CURSOR c1 is
 SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
 FROM sales_input_table;
BEGIN
 FOR crec IN c1 LOOP
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date,
 crec.sales_sun);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+1,
 crec.sales_mon);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+2,
 crec.sales_tue);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+3,
 crec.sales_wed);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+4,
 crec.sales_thu);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+5,
 crec.sales_fri);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+6,
 crec.sales_sat);
 END LOOP;
 COMMIT;
END;

This PL/SQL procedure can be modified to provide even better performance. Array

inserts can accelerate the insertion phase of the procedure. Further performance can

be gained by parallelizing this transformation operation, particularly if the temp_
sales_step1 table is partitioned, using techniques similar to the parallelization of

data unloading described in Chapter 11, "Extraction in Data Warehouses". The

primary advantage of this PL/SQL procedure over a CTAS approach is that it

requires only a single scan of the data.
13-38 Data Warehousing Guide

Loading and Transformation Scenarios
Oracle9i Pivoting
Oracle9i offers a faster way of pivoting your data by using a multitable insert, as in

Example 13–16.

Example 13–16 Oracle9i Pivoting Example

The following example uses the multitable insert syntax to insert into the demo

table sh.sales some data from an input table with a different structure.

The multitable insert statement looks like this:

INSERT ALL
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
FROM sales_input_table;

The above statement only scans the source table once and then inserts the

appropriate data for each day.
 Loading and Transformation 13-39

Loading and Transformation Scenarios
13-40 Data Warehousing Guide

 Maintaining the Data War
14

Maintaining the Data Warehouse

This chapter discusses how to load and refresh a data warehouse, and discusses:

■ Using Partitioning to Improve Data Warehouse Refresh

■ Optimizing DML Operations During Refresh

■ Refreshing Materialized Views

■ Using Materialized Views With Partitioned Tables
ehouse 14-1

Using Partitioning to Improve Data Warehouse Refresh
Using Partitioning to Improve Data Warehouse Refresh
ETL (Extraction, Transformation and Loading) is done on a scheduled basis to

reflect changes made to the original source system. During this step, you physically

insert the new, clean data into the production data warehouse schema, and take all

of the other steps necessary (such as building indexes, validating constraints, taking

backups) to make this new data available to the end users. Once all of this data has

been loaded into the data warehouse, the materialized views have to be updated to

reflect the latest data.

The partitioning scheme of the data warehouse is often crucial in determining the

efficiency of refresh operations in the data warehouse load process. In fact, the load

process is often the primary consideration in choosing the partitioning scheme of

data warehouse tables and indexes.

The partitioning scheme of the largest data warehouse tables (for example, the fact

table in a star schema) should be based upon the loading paradigm of the data

warehouse.

Most data warehouses are loaded with new data on a regular schedule. For

example, every night, week, or month, new data is brought into the data

warehouse. The data being loaded at the end of the week or month typically

corresponds to the transactions for the week or month. In this very common

scenario, the data warehouse is being loaded by time. This suggests that the data

warehouse tables should be partitioned on a date column. In our data warehouse

example, suppose the new data is loaded into the sales table every month.

Furthermore, the sales table has been partitioned by month. These steps show

how the load process will proceed to add the data for a new month (January 2001)

to the table sales :

1. Place the new data into a separate table, sales_01_2001 . This data can be

directly loaded into sales_01_2001 from outside the data warehouse, or this

data can be the result of previous data transformation operations that have

already occurred in the data warehouse. sales_01_2001 has the exact same

columns, datatypes, and so forth, as the sales table. Gather statistics on the

sales_01_2001 table.

2. Create indexes and add constraints on sales_01_2001 . Again, the indexes

and constraints on sales_01_2001 should be identical to the indexes and

constraints on sales . Indexes can be built in parallel and should use the

NOLOGGING and the COMPUTE STATISTICS options. For example:

CREATE BITMAP INDEX sales_01_2001_customer_id_bix
 ON sales_01_2001(customer_id)
 TABLESPACE sales_idx NOLOGGING PARALLEL 8 COMPUTE STATISTICS;
14-2 Data Warehousing Guide

Using Partitioning to Improve Data Warehouse Refresh
Apply all constraints to the sales_01_2001 table that are present on the

sales table. This includes referential integrity constraints. A typical constraint

would be:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_customer_id
 REFERENCES customer(customer_id) ENABLE NOVALIDATE;

If the partitioned table sales has a primary or unique key that is enforced with

a global index structure, please ensure that the constraint on sales_jan01 is

validated without the creation of an index structure, like:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_pk_jan01
PRIMARY KEY (sales_transaction_id) DISABLE VALIDATE;

The creation of the constraint with ENABLEclause would cause the creation of a

unique index, which does not match a local index structure of the partitioned

table. The exchange command would fail.

3. Add the sales_01_2001 table to the sales table.

In order to add this new data to the sales table, we need to do two things.

First, we need to add a new partition to the sales table. We will use the ALTER
TABLE ... ADD PARTITION statement. This will add an empty partition to the

sales table:

ALTER TABLE sales ADD PARTITION sales_01_2001
VALUES LESS THAN (TO_DATE('01-FEB-2001', 'DD-MON-YYYY'));

Then, we can add our newly created table to this partition using the EXCHANGE
PARTITION operation. This will exchange the new, empty partition with the

newly loaded table.

ALTER TABLE sales EXCHANGE PARTITION sales_01_2001 WITH TABLE sales_01_2001
INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

The EXCHANGE operation will preserve the indexes and constraints that were

already present on the sales_01_2001 table. For unique constraints (such as

the unique constraint on sales_transaction_id), you can use the UPDATE
GLOBAL INDEXES clause, as shown above. This will automatically maintain

your global index structures as part of the partition maintenance operation and

keep them accessible throughout the whole process. If there were only

foreign-key constraints, the exchange operation would be instantaneous.

The benefits of this partitioning technique are significant. First, the new data is

loaded with minimal resource utilization. The new data is loaded into an entirely

separate table, and the index processing and constraint processing are applied only
 Maintaining the Data Warehouse 14-3

Using Partitioning to Improve Data Warehouse Refresh
to the new partition. If the sales table was 50 GB and had 12 partitions, then a new

month's worth of data contains approximately 4 GB. Only the new month's worth of

data needs to be indexed. None of the indexes on the remaining 46 GB of data needs

to be modified at all. This partitioning scheme additionally ensures that the load

processing time is directly proportional to the amount of new data being loaded,

not to the total size of the sales table.

Second, the new data is loaded with minimal impact on concurrent queries. All of

the operations associated with data loading are occurring on a separate sales_01_
2001 table. Therefore, none of the existing data or indexes of the sales table is

affected during this data refresh process. The sales table and its indexes remain

entirely untouched throughout this refresh process.

Third, in case of the existence of any global indexes, those are incrementally

maintained as part of the exchange command. This maintenance does not affect the

availability of the existing global index structures.

The exchange operation can be viewed as a publishing mechanism. Until the data

warehouse administrator exchanges the sales_01_2001 table into the sales
table, end users cannot see the new data. Once the exchange has occurred, then any

end user query accessing the sales table will immediately be able to see the

sales_01_2001 data.

Partitioning is useful not only for adding new data but also for removing data.

Many data warehouses maintain a rolling window of data. For example, the data

warehouse stores the most recent 36 months of sales data. Just as a new partition

can be added to the sales table (as described above), an old partition can be

quickly (and independently) removed from the sales table. The above two

benefits (reduced resources utilization and minimal end-user impact) are just as

pertinent to removing a partition as they are to adding a partition.

This example is a simplification of the data warehouse load scenario. Real-world

data warehouse refresh characteristics are always more complex. However, the

advantages of this rolling window approach are not diminished in more complex

scenarios.

Consider two typical scenarios:

1. Data is loaded daily. However, the data warehouse contains two years of data,

so that partitioning by day might not be desired.

Solution: Partition by week or month (as appropriate). Use INSERT to add the

new data to an existing partition. The INSERT operation only affects a single

partition, so the benefits described above remain intact. The INSERT operation
14-4 Data Warehousing Guide

Optimizing DML Operations During Refresh
could occur while the partition remains a part of the table. Inserts into a single

partition can be parallelized:

INSERT INTO sales PARTITION (sales_01_2001) SELECT * FROM new_sales;

The indexes of this sales partition will be maintained in parallel as well. An

alternative is to use the EXCHANGEoperation. You can do this by exchanging the

sales_01_2001 partition of the sales table and then using an INSERT
operation. You might prefer this technique when dropping and rebuilding

indexes is more efficient than maintaining them.

2. New data feeds, although consisting primarily of data for the most recent day,

week, and month, also contain some data from previous time periods.

Solution 1: Use parallel SQL operations (such as CREATE TABLE ... AS SELECT)
to separate the new data from the data in previous time periods. Process the old

data separately using other techniques.

New data feeds are not solely time based. You can also feed new data into a

data warehouse with data from multiple operational systems on a business

need basis. For example, the sales data from direct channels may come into the

data warehouse separately from the data from indirect channels. For business

reasons, it may furthermore make sense to keep the direct and indirect data in

separate partitions.

Solution 2: Oracle supports concatenated partitioning keys. The sales table

could be partitioned by month and channel. Care must be taken with this

approach to ensure that the partition pruning techniques (when querying the

sales table) are understood prior to implementation.

Another possibility is composite (range/hash) partitioning. This approach is

feasible only if the second key has a high cardinality. In this example, channel
has only two possible values, so that it would not be a good candidate for a

hash-partitioning key.

Optimizing DML Operations During Refresh
You can optimize DML performance through the techniques listed in this section.

Implementing an Efficient Merge
Commonly, the data that is extracted from a source system is not simply a list of

new records that needs to be inserted into the data warehouse. Instead, this new

data set is a combination of new records as well as modified records. For example,
 Maintaining the Data Warehouse 14-5

Optimizing DML Operations During Refresh
suppose that most of data extracted from the OLTP systems will be new sales

transactions. These records will be inserted into the warehouse's sales table, but

some records may reflect modifications of previous transactions, such as returned

merchandise or transactions that were incomplete or incorrect when initially loaded

into the data warehouse. These records require updates to the sales table.

As a typical scenario, suppose that there is a table called new_sales that contains

both inserts and updates that will be applied to the sales table. When designing

the entire data warehouse load process, it was determined that the new_sales
table would contain records with the following semantics:

■ If a given sales_transaction_id of a record in new_sales already exists

in sales , then update the sales table by adding the sales_dollar_amount
and sales_quantity_sold values from the new_sales table to the existing

row in the sales table.

■ Otherwise, insert the entire new record from the new_sales table into the

sales table.

This UPDATE-ELSE-INSERT operation is often called an upsert or merge. A merge

can be executed using one SQL statement in Oracle9i, though it required two earlier.

Example 14–1 Merge Operation Example Prior to Oracle9i

The first SQL statement updates the appropriate rows in the sales tables, while the

second SQL statement inserts the rows:

UPDATE
 (SELECT
 s.sales_quantity_sold AS s_quantity,
 s.sales_dollar_amount AS s_dollar,
 n.sales_quantity_sold AS n_quantity,
 n.sales_dollar_amount AS n_dollar
 FROM sales s, new_sales n
 WHERE s.sales_transaction_id = n.sales_transaction_id) sales_view
 SET s_quantity = s_quantity + n_quantity, s_dollar = s_dollar + n_dollar;

INSERT INTO sales
SELECT * FROM new_sales s
WHERE NOT EXISTS
(SELECT 'x' FROM FROM sales t
 WHERE s.sales_transaction_id = t.sales_transaction_id);

The new, faster way of upserting data is shown below.
14-6 Data Warehousing Guide

Optimizing DML Operations During Refresh
Example 14–2 Merge Operation Example in Oracle9i

MERGE INTO sales s
USING new_sales n
ON (s.sales_transaction_id = n.sales_transaction_id)
WHEN MATCHED THEN
UPDATE s_quantity = s_quantity + n_quantity, s_dollar = s_dollar + n_dollar
WHEN NOT MATCHED THEN
INSERT (sales_quantity_sold, sales_dollar_amount)
VALUES (n.sales_quantity_sold, n.sales_dollar_amount);

An alternative implementation of upserts is to utilize a PL/SQL package, which

successively reads each row of the new_sales table and applies if-then logic to

either update or insert the new row into the sales table. A PL/SQL-based

implementation is effective when the new_sales table is small, although the SQL

approach will often be more efficient for larger data volumes.

Maintaining Referential Integrity
In some data warehousing environments, you might want to insert new data into

tables in order to guarantee referential integrity. For example, a data warehouse

may derive sales from an operational system that retrieves data directly from cash

registers. sales is refreshed nightly. However, the data for the product dimension

table may be derived from a separate operational system. The product dimension

table may only be refreshed once per week, because the product table changes

relatively slowly. If a new product was introduced on Monday, then it is possible for

that product's product_id to appear in the sales data of the data warehouse

before that product_id has been inserted into the data warehouses product
table.

Although the sales transactions of the new product may be valid, this sales data will

not satisfy the referential integrity constraint between the product dimension table

and the sales fact table. Rather than disallow the new sales transactions, you

might choose to insert the sales transactions into the sales table.

However, you might also wish to maintain the referential integrity relationship

between the sales and product tables. This can be accomplished by inserting

new rows into the product table as placeholders for the unknown products.

As in previous examples, we assume that the new data for the sales table will be

staged in a separate table, new_sales . Using a single INSERT statement (which

can be parallelized), the product table can be altered to reflect the new products:
 Maintaining the Data Warehouse 14-7

Optimizing DML Operations During Refresh
INSERT INTO PRODUCT_ID
 (SELECT sales_product_id, 'Unknown Product Name', NULL, NULL ...
 FROM new_sales WHERE sales_product_id NOT IN
 (SELECT product_id FROM product));

Purging Data
Occasionally, it is necessary to remove large amounts of data from a data

warehouse. A very common scenario is the rolling window discussed previously, in

which older data is rolled out of the data warehouse to make room for new data.

However, sometimes other data might need to be removed from a data warehouse.

Suppose that a retail company has previously sold products from MS Software ,

and that MS Software has subsequently gone out of business. The business users

of the warehouse may decide that they are no longer interested in seeing any data

related to MS Software , so this data should be deleted.

One approach to removing a large volume of data is to use parallel delete:

DELETE FROM sales WHERE sales_product_id IN
 (SELECT product_id
 FROM product WHERE product_category = 'MS Software');

This SQL statement will spawn one parallel process per partition. This approach

will be much more efficient than a serial DELETE statement, and none of the data in

the sales table will need to be moved.

However, this approach also has some disadvantages. When removing a large

percentage of rows, the DELETE statement will leave many empty row-slots in the

existing partitions. If new data is being loaded using a rolling window technique (or

is being loaded using direct-path INSERT or load), then this storage space will not

be reclaimed. Moreover, even though the DELETE statement is parallelized, there

might be more efficient methods. An alternative method is to re-create the entire

sales table, keeping the data for all product categories except MS Software .

CREATE TABLE sales2 AS
SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'MS Software'
NOLOGGING PARALLEL (DEGREE 8)
#PARTITION ... ;
#create indexes, constraints, and so on
DROP TABLE SALES;
RENAME SALES2 TO SALES;
14-8 Data Warehousing Guide

Refreshing Materialized Views
This approach may be more efficient than a parallel delete. However, it is also costly

in terms of the amount of disk space, because the sales table must effectively be

instantiated twice.

An alternative method to utilize less space is to re-create the sales table one

partition at a time:

CREATE TABLE sales_temp AS SELECT * FROM sales WHERE 1=0;
INSERT INTO sales_temp PARTITION (sales_99jan)
SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'MS Software';
<create appropriate indexes and constraints on sales_temp>
ALTER TABLE sales EXCHANGE PARTITION sales_99jan WITH TABLE sales_temp;

Continue this process for each partition in the sales table.

Refreshing Materialized Views
When creating a materialized view, you have the option of specifying whether the

refresh occurs ON DEMANDor ON COMMIT. In the case of ON COMMIT, the materialized

view is changed every time a transaction commits, which changes data used by the

materialized view, thus ensuring that the materialized view always contains the

latest data. Alternatively, you can control the time when refresh of the materialized

views occurs by specifying ON DEMAND. In this case, the materialized view can only

be refreshed by calling one of the procedures in the DBMS_MVIEW package.

DBMS_MVIEW provides three different types of refresh operations.

■ DBMS_MVIEW.REFRESH

Refresh one or more materialized views.

■ DBMS_MVIEW.REFRESH_ALL_MVIEWS

Refresh all materialized views.

■ DBMS_MVIEW.REFRESH_DEPENDENT

Refresh all table-based materialized views that depend on a specified detail

table or list of detail tables.

See Also: "Manual Refresh Using the DBMS_MVIEW Package"

on page 14-11 for more information about this package
 Maintaining the Data Warehouse 14-9

Refreshing Materialized Views
Performing a refresh operation requires temporary space to rebuild the indexes and

can require additional space for performing the refresh operation itself. Some sites

might prefer not to refresh all of their materialized views at the same time: as soon

as some underlying detail data has been updated, all materialized views using this

data will become stale. Therefore, if you defer refreshing your materialized views,

you can either rely on your chosen rewrite integrity level whether or not a stale

materialized view can be used for query rewrite, or you can temporarily disable

query rewrite with an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE
statement. After refreshing the materialized views, you can reenable query rewrite

as the default for all sessions in the current database instance by specifying ALTER
SYSTEM SET QUERY_REWRITE_ENABLED as TRUE. Refreshing a materialized view

automatically updates all of its indexes. In the case of full refresh, this requires

temporary sort space to rebuild all indexes during refresh. This is because the full

refresh truncates or deletes the table before inserting the new full data volume. If

insufficient temporary space is available to rebuild the indexes, then you must

explicitly drop each index or mark it UNUSABLE prior to performing the refresh

operation.

If you anticipate performing insert, update or delete operations on tables referenced

by a materialized view concurrently with the refresh of that materialized view, and

that materialized view includes joins and aggregation, Oracle recommends you use

ON COMMIT fast refresh rather than ON DEMAND fast refresh.

Complete Refresh
A complete refresh occurs when the materialized view is initially defined as BUILD
IMMEDIATE, unless the materialized view references a prebuilt table. For

materialized views using BUILD DEFERRED, a complete refresh must be requested

before it can be used for the first time. A complete refresh may be requested at any

time during the life of any materialized view. The refresh involves reading the detail

tables to compute the results for the materialized view. This can be a very

time-consuming process, especially if there are huge amounts of data to be read and

processed. Therefore, you should always consider the time required to process a

complete refresh before requesting it.

However, there are cases when the only refresh method available for an already

built materialized view is complete refresh because the materialized view does not

satisfy the conditions specified in the following section for a fast refresh.
14-10 Data Warehousing Guide

Refreshing Materialized Views
Fast Refresh
Most data warehouses have periodic incremental updates to their detail data. As

described in "Schema Design Guidelines for Materialized Views" on page 8-8, you

can use the SQL*Loader or any bulk load utility to perform incremental loads of

detail data. Fast refresh of your materialized views is usually efficient, because

instead of having to recompute the entire materialized view, the changes are

applied to the existing data. Thus, processing only the changes can result in a very

fast refresh time.

ON COMMIT Refresh
A materialized view can be refreshed automatically using the ON COMMIT method.

Therefore, whenever a transaction commits which has updated the tables on which

a materialized view is defined, those changes will be automatically reflected in the

materialized view. The advantage of using this approach is you never have to

remember to refresh the materialized view. The only disadvantage is the time

required to complete the commit will be slightly longer because of the extra

processing involved. However, in a data warehouse, this should not be an issue

because there is unlikely to be concurrent processes trying to update the same table.

Manual Refresh Using the DBMS_MVIEW Package
When a materialized view is refreshed ON DEMAND, one of three refresh methods can

be specified as shown in the following table. You can define a default option during

the creation of the materialized view.

Three refresh procedures are available in the DBMS_MVIEW package for performing

ON DEMAND refresh. Each has its own unique set of parameters.

Refresh Option Parameter Description

COMPLETE C Refreshes by recalculating the defining query of the
materialized view

FAST F Refreshes by incrementally applying changes to the
materialized view

FORCE ? Attempts a fast refresh. If that is not possible, it does a
complete refresh
 Maintaining the Data Warehouse 14-11

Refreshing Materialized Views
Refresh Specific Materialized Views with REFRESH
Use the DBMS_MVIEW.REFRESH procedure to refresh one or more materialized

views. Some parameters are used only for replication, so they are not mentioned

here. The required parameters to use this procedure are:

■ The comma-delimited list of materialized views to refresh

■ The refresh method: F-Fast, ?-Force, C-Complete

■ The rollback segment to use

■ Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output

parameter will be set to the number of refreshes that failed, and a generic error

message will indicate that failures occurred. The alert log for the instance will

give details of refresh errors. If set to FALSE, the default, then refresh will stop

after it encounters the first error, and any remaining materialized views in the

list will not be refreshed.

■ The following four parameters are used by the replication process. For

warehouse refresh, set them to FALSE, 0,0,0 .

■ Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE,

then the refresh of each specified materialized view is done in a separate

transaction.

For example, to perform a fast refresh on the materialized view cal_month_
sales_mv , the DBMS_MVIEW package would be called as follows:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', 'F', '', TRUE, FALSE, 0,0,0, FALSE);

Multiple materialized views can be refreshed at the same time, and they do not all

have to use the same refresh method. To give them different refresh methods,

specify multiple method codes in the same order as the list of materialized views

(without commas). For example, the following specifies that cal_month_sales_
mv be completely refreshed and fweek_pscat_sales_mv receive a fast refresh.

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV, FWEEK_PSCAT_SALES_MV', 'CF', '',
 TRUE, FALSE, 0,0,0, FALSE);

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information about the DBMS_MVIEW package and Oracle9i
Replication explains how to use it in a replication environment
14-12 Data Warehousing Guide

Refreshing Materialized Views
If the refresh method is not specified, the default refresh method as specified in the

materialized view definition will be used.

Refresh All Materialized Views with REFRESH_ALL_MVIEWS
An alternative to specifying the materialized views to refresh is to use the

procedure DBMS_MVIEW.REFRESH_ALL_MVIEWS. This procedure refreshes all

materialized views. If any of the materialized views fails to refresh, then the

number of failures is reported.

The parameters for this procedure are:

■ The number of failures (this is an OUT variable)

■ The refresh method: F-Fast, ?-Force, C-Complete

■ Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output

parameter will be set to the number of refreshes that failed, and a generic error

message will indicate that failures occurred. The alert log for the instance will

give details of refresh errors. If set to FALSE, the default, then refresh will stop

after it encounters the first error, and any remaining materialized views in the

list will not be refreshed.

■ Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE,

then the refresh of each specified materialized view is done in a separate

transaction.

An example of refreshing all materialized views is:

DBMS_MVIEW.REFRESH_ALL_MVIEWS(failures,'C','',FALSE,FALSE);

Refresh Dependent Materialized Views with REFRESH_DEPENDENT
The third procedure, DBMS_MVIEW.REFRESH_DEPENDENT, refreshes only those

materialized views that depend on a specific table or list of tables. For example,

suppose the changes have been received for the orders table but not for

customer payments. The refresh dependent procedure can be called to refresh

only those materialized views that reference the orders table.
 Maintaining the Data Warehouse 14-13

Refreshing Materialized Views
The parameters for this procedure are:

■ The number of failures (this is an OUT variable)

■ The dependent table

■ The refresh method: F-Fast, ?-Force, C-Complete

■ The rollback segment to use

■ Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output

parameter will be set to the number of refreshes that failed, and a generic error

message will indicate that failures occurred. The alert log for the instance will

give details of refresh errors. If set to FALSE, the default, then refresh will stop

after it encounters the first error, and any remaining materialized views in the

list will not be refreshed.

■ Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE,

then the refresh of each specified materialized view is done in a separate

transaction.

In order to perform a full refresh on all materialized views that reference the

customers table, specify:

DBMS_MVIEW.REFRESH_DEPENDENT(failures, 'CUSTOMERS', 'C', '', FALSE, FALSE);

To obtain the list of materialized views that are directly dependent on a given object

(table or materialized view), use the procedure DBMS_MVIEW.GET_MV_
DEPENDENCIES to determine the dependent materialized views for a given table,

or for deciding the order to refresh nested materialized views.

DBMS_MVIEW.GET_MV_DEPENDENCIES(mvlist IN VARCHAR2, deplist OUT VARCHAR2)

The input to the above function is the name or names of the materialized view. The

output is a comma separated list of the materialized views that are defined on it.

For example:

GET_MV_DEPENDENCIES("JOHN.SALES_REG, SCOTT.PROD_TIME", deplist)

populates deplist with the list of materialized views defined on the input

arguments. For example:

deplist <= "JOHN.SUM_SALES_WEST, JOHN.SUM_SALES_EAST, SCOTT.SUM_PROD_MONTH".
14-14 Data Warehousing Guide

Refreshing Materialized Views
Using Job Queues for Refresh
Job queues can be used to refresh multiple materialized views in parallel. If queues

are not available, fast refresh will sequentially refresh each view in the foreground

process. The order in which the materialized views are refreshed cannot be

guaranteed. To make queues available, you must set the JOB_QUEUE_PROCESSES
parameter. This parameter defines the number of background job queue processes

and determines how many materialized views can be refreshed concurrently. This

parameter is only effective when atomic_refresh is set to FALSE.

If the process that is executing DBMS_MVIEW.REFRESH is interrupted or the

instance is shut down, any refresh jobs that were executing in job queue processes

will be requeued and will continue running. To remove these jobs, use the DBMS_
JOB.REMOVE procedure.

When Refresh is Possible
Not all materialized views may be fast refreshable. Therefore, use the package

DBMS_MVIEW.EXPLAIN_MVIEW to determine what refresh methods are available

for a materialized view.

Recommended Initialization Parameters for Parallelism
Set the following parameters:

■ PARALLEL_MAX_SERVERS should be set high enough to take care of

parallelism. You need to consider the number of slaves needed for the refresh

statement. For example, with a DOP of eight, you need 16 slave processes.

■ PGA_AGGREGATE_TARGET should be set for the instance to manage the

memory usage for sorts and joins automatically. If the memory parameters are

set manually, SORT_AREA_SIZE should be less than HASH_AREA_SIZE.

■ OPTIMIZER_MODE should equal ALL_ROWS (cost-based optimization).

Remember to analyze all tables and indexes for better cost-based optimization.

Monitoring a Refresh
While a job is running, you can query the V$SESSION_LONGOPS view to tell you

the progress of each materialized view being refreshed.

SELECT * FROM V$SESSION_LONGOPS;
 Maintaining the Data Warehouse 14-15

Refreshing Materialized Views
To look at the progress of which jobs are on which queue, use:

SELECT * FROM DBA_JOBS_RUNNING;

Checking the Status of a Materialized View
Three views are provided for checking the status of a materialized view:

■ USER_MVIEWS

■ DBA_MVIEWS

■ ALL_MVIEWS

To check if a materialized view is fresh or stale, issue the following statement:

SELECT MVIEW_NAME, STALENESS, LAST_REFRESH_TYPE, COMPILE_STATE
FROM USER_MVIEWS ORDER BY MVIEW_NAME;

MVIEW_NAME STALENESS LAST_REF COMPILE_STATE
---------- --------- -------- -------------
CUST_MTH_SALES_MV FRESH FAST NEEDS_COMPILE
PROD_YR_SALES_MV FRESH FAST VALID

If the compile_state column shows NEEDS COMPILE, the other displayed

column values cannot be trusted as reflecting the true status. Use

ALTER MATERIALIZED VIEW [materialized_view_name] COMPILE;

to revalidate the materialized view and then reissue the SELECT statement.

Tips for Refreshing Materialized Views with Aggregates
Following are some guidelines for using the refresh mechanism for materialized

views with aggregates.

1. For fast refresh, create materialized view logs on all detail tables involved in a

materialized view with the ROWID, SEQUENCE and INCLUDING NEW VALUES
clauses.

Include all columns from the table likely to be used in materialized views in the

materialized view logs.

Fast refresh may be possible even if the SEQUENCE option is omitted from the

materialized view log. If it can be determined that only inserts or deletes will

occur on all the detail tables, then the materialized view log does not require the

SEQUENCE clause. However, if updates to multiple tables are likely or required
14-16 Data Warehousing Guide

Refreshing Materialized Views
or if the specific update scenarios are unknown, make sure the SEQUENCE
clause is included.

2. Use Oracle's bulk loader utility or direct-path INSERT (INSERT with the

APPEND hint for loads).

This is a lot more efficient than conventional insert. During loading, disable all

constraints and re-enable when finished loading. Note that materialized view

logs are required regardless of whether you use direct load or conventional

DML.

Try to optimize the sequence of conventional mixed DML operations,

direct-path INSERT and the fast refresh of materialized views. You can use fast

refresh with a mixture of conventional DML and direct loads. Fast refresh can

perform significant optimizations if it finds that only direct loads have

occurred, as shown below:

1. Direct-path INSERT (SQL*Loader or INSERT /*+ APPEND */) into the

detail table

2. Refresh materialized view

3. Conventional mixed DML

4. Refresh materialized view

You can use fast refresh with conventional mixed DML (INSERT, UPDATE, and

DELETE) to the detail tables. However, fast refresh will be able to perform

significant optimizations in its processing if it detects that only inserts or deletes

have been done to the tables, such as:

■ DML INSERT or DELETE to the detail table

■ Refresh materialized views

■ DML Update to the detail table

■ Refresh materialized view

Even more optimal is the separation of INSERT and DELETE.

If possible, refresh should be performed after each type of data change (as

shown above) rather than issuing only one refresh at the end. If that is not

possible, restrict the conventional DML to the table to inserts only, to get much

better refresh performance. Avoid mixing deletes and direct loads.

Furthermore, for refresh ON COMMIT, Oracle keeps track of the type of DML

done in the committed transaction. Therefore, do not perform direct-path
 Maintaining the Data Warehouse 14-17

Refreshing Materialized Views
INSERT and DML to other tables in the same transaction, as Oracle may not be

able to optimize the refresh phase.

For ON COMMIT materialized views, where refreshes automatically occur at the

end of each transaction, it may not be possible to isolate the DML statements, in

which case keeping the transactions short will help. However, if you plan to

make numerous modifications to the detail table, it may be better to perform

them in one transaction, so that refresh of the materialized view will be

performed just once at commit time rather than after each update.

3. Oracle recommends partitioning the tables because it enables you to use:

■ Parallel DML

For large loads or refresh, enabling parallel DML will help shorten the

length of time for the operation.

■ Partition Change Tracking (PCT) fast refresh

You can refresh your materialized views fast after partition maintenance

operations on the detail tables. "Partition Change Tracking" on page 8-34 for

details on enabling PCT for materialized views.

Partitioning the materialized view will also help refresh performance as refresh

can update the materialized view using parallel DML. For example, assume

that the detail tables and materialized view are partitioned and have a parallel

clause. The following sequence would enable Oracle to parallelize the refresh of

the materialized view.

1. Bulk load into the detail table

2. Enable parallel DML with an ALTER SESSION ENABLE PARALLEL DML
statement

3. Refresh the materialized view

4. For a complete refresh using DBMS_MVIEW.REFRESH, set the parameter

atomic to FALSE. This will use TRUNCATE to delete existing rows in the

materialized view, which is faster than a delete.

5. When using DBMS_MVIEW.REFRESH with JOB_QUEUES, remember to set

atomic to FALSE. Otherwise, JOB_QUEUES will not get used. Set the number

of job queue processes greater than the number of processors.

See Also: Chapter 5, "Parallelism and Partitioning in Data

Warehouses"
14-18 Data Warehousing Guide

Refreshing Materialized Views
If job queues are enabled and there are many materialized views to refresh, it is

faster to refresh all of them in a single command than to call them individually.

6. Use REFRESH FORCE to ensure getting a refreshed materialized view that can

definitely be used for query rewrite. If a fast refresh cannot be done, a complete

refresh will be performed.

Tips for Refreshing Materialized Views Without Aggregates
If a materialized view contains joins but no aggregates, then having an index on

each of the join column rowids in the detail table will enhance refresh performance

greatly, because this type of materialized view tends to be much larger than

materialized views containing aggregates. For example, consider the following

materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv
BUILD IMMEDIATE
 AS
 SELECT
 s.rowid "sales_rid", t.rowid "times_rid", c.rowid "cust_rid",
 c.cust_state_province, t.week_ending_day, s.amount_sold
 FROM sales s, times t, customers c
 WHERE s.time_id = t.time_id AND
 s.cust_id = c.cust_id;

Indexes should be created on columns sales_rid , times_rid and cust_rid .

Partitioning is highly recommended, as is enabling parallel DML in the session

before invoking refresh, because it will greatly enhance refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the

detail table. It is recommended that the same procedure be applied to this type of

materialized view as for a single table aggregate. That is, perform one type of

change (direct-path INSERT or DML) and then refresh the materialized view. This is

because Oracle can perform significant optimizations if it detects that only one type

of change has been done.

Also, Oracle recommends that the refresh be invoked after each table is loaded,

rather than load all the tables and then perform the refresh.

For refresh ON COMMIT, Oracle keeps track of the type of DML done in the

committed transaction. Oracle therefore recommends that you do not perform

direct-path and conventional DML to other tables in the same transaction because

Oracle may not be able to optimize the refresh phase. For example, the following is

not recommended:
 Maintaining the Data Warehouse 14-19

Refreshing Materialized Views
1. Direct load new data into the fact table

2. DML into the store table

3. Commit

Also, try not to mix different types of conventional DML statements if possible. This

would again prevent using various optimizations during fast refresh. For example,

try to avoid the following:

1. Insert into the fact table

2. Delete from the fact table

3. Commit

If many updates are needed, try to group them all into one transaction because

refresh will be performed just once at commit time, rather than after each update.

When you use the DBMS_MVIEW package to refresh a number of materialized views

containing only joins with the ATOMICparameter set to TRUE, if you disable parallel

DML, refresh performance may degrade.

In a data warehousing environment, assuming that the materialized view has a

parallel clause, the following sequence of steps is recommended:

1. Bulk load into the fact table

2. Enable parallel DML

3. An ALTER SESSION ENABLE PARALLEL DML statement

4. Refresh the materialized view

Tips for Refreshing Nested Materialized Views
Refreshing materialized views containing joins only and single-table aggregate

materialized views uses the same algorithms irrespective of whether or not the

views are nested. All underlying objects are treated as ordinary tables. If the ON
COMMIT refresh option is specified, then all the materialized views are refreshed in

the appropriate order at commit time.

Consider the schema in Figure 8–3. Assume all the materialized views are defined

for ON COMMIT refresh. If table fact changes, then at commit time you could

refresh join_fact_store_time first, and then sum_sales_store_time and

join_fact_store_time_prod . No specific order for sum_sales_store_time
and join_fact_store_time_prod , because they do not have any dependencies

between them.
14-20 Data Warehousing Guide

Refreshing Materialized Views
In other words, Oracle builds a partially ordered set of materialized views and

refreshes them such that, after the successful completion of the refresh, all the

materialized views are fresh. The status of the materialized views can be checked by

querying the appropriate USER_, DBA_, or ALL_MVIEWS view.

If any of the materialized views are defined as ON DEMAND refresh (irrespective of

whether the refresh method is FAST, FORCE, or COMPLETE), you will need to refresh

them in the correct order (taking into account the dependencies between the

materialized views) because the nested materialized view will be refreshed with

respect to the current state of the other materialized views (whether fresh or not).

If a refresh fails during commit time, the list of materialized views that has not been

refreshed is written to the alert log, and you must manually refresh them along with

all their dependent materialized views.

Use the same DBMS_MVIEW procedures on nested materialized views that you use

on regular materialized views.

These procedures have the following behavior when used with nested materialized

views:

■ If REFRESH is applied to a materialized view my_mv that is built on other

materialized views, then my_mv will be refreshed with respect to the current

state of the other materialized views (that is, they will not be made fresh first).

■ If REFRESH_DEPENDENT is applied to materialized view my_mv, then only

materialized views that directly depend on my_mv will be refreshed (that is, a

materialized view that depends on a materialized view that depends on my_mv
will not be refreshed).

■ If REFRESH_ALL_MVIEWS is used, the order in which the materialized views

will be refreshed is not guaranteed.

■ GET_MV_DEPENDENCIES provides a list of the immediate (or direct)

materialized view dependencies for an object.

Tips After Refreshing Materialized Views
After you have performed a load or incremental load and rebuilt the detail table

indexes, you need to re-enable integrity constraints (if any) and refresh the

materialized views and materialized view indexes that are derived from that detail

data. In a data warehouse environment, referential integrity constraints are

normally enabled with the NOVALIDATEor RELYoptions. An important decision to

make before performing a refresh operation is whether the refresh needs to be

recoverable. Because materialized view data is redundant and can always be
 Maintaining the Data Warehouse 14-21

Using Materialized Views With Partitioned Tables
reconstructed from the detail tables, it might be preferable to disable logging on the

materialized view. To disable logging and run incremental refresh non-recoverably,

use the ALTER MATERIALIZED VIEW ... NOLOGGING statement prior to refreshing.

If the materialized view is being refreshed using the ON COMMIT method, then,

following refresh operations, consult the alert log alert_<SID>.log and the trace

file ora_<SID>_number.trc to check that no errors have occurred.

Using Materialized Views With Partitioned Tables
A major maintenance component of a data warehouse is synchronizing (refreshing)

the materialized views when the detail data changes. Partitioning the underlying

detail tables can reduce the amount of time taken to perform the refresh task. This is

possible because partitioning enables refresh to use parallel DML to update the

materialized view. Also, it enables the use of Partition Change Tracking (PCT).

Fast Refresh with Partition Change Tracking
In a data warehouse, changes to the detail tables can often entail partition

maintenance operations, such as DROP, EXCHANGE, MERGE, and ADD PARTITION. To

maintain the materialized view after such operations in Oracle8i required the use of

manual maintenance (see also CONSIDER FRESH) or complete refresh. Oracle9i
introduces an addition to fast refresh known as Partition Change Tracking (PCT)

refresh.

For PCT to be available, the detail tables must be partitioned. The partitioning of the

materialized view itself has no bearing on this feature. If PCT refresh is possible, it

will occur automatically and no user intervention is required in order for it to occur.

The following examples will illustrate the use of this feature. In "PCT Fast Refresh

Scenario 1", assume sales is a partitioned table using the time_id column and

products is partitioned by the prod_category column. The table times is not a

partitioned table.

See Also: "Partition Change Tracking" on page 8-34 for the

requirements for PCT
14-22 Data Warehousing Guide

Using Materialized Views With Partitioned Tables
PCT Fast Refresh Scenario 1
1. All detail tables must have materialized view logs. To avoid redundancy, only

the materialized view log for the sales table is provided below.

CREATE materialized view LOG on SALES
WITH ROWID, SEQUENCE
 (prod_id, time_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

2. The following materialized view satisfies requirements for PCT.

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND
 s.prod_id = p.prod_id
 GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;

3. You can use the DBMS_MVIEW.EXPLAIN_MVIEWprocedure to determine which

tables will allow PCT refresh.

MVNAME CAPABILITY_NAME POSSIBLE RELATED_TEXT MSGTXT
----------------- --------------- -------- ------------ ----------------
CUST_MTH_SALES_MV PCT Y SALES
CUST_MTH_SALES_MV PCT_TABLE Y SALES
CUST_MTH_SALES_MV PCT_TABLE N PRODUCTS no partition key or PMARKER
 in SELECT list
CUST_MTH_SALES_MV PCT_TABLE N TIMES relation is not a
 partitioned table

As can be seen from the partial sample output from EXPLAIN_MVIEW, any

partition maintenance operation performed on the sales table will allow PCT

fast refresh. However, PCT is not possible after partition maintenance

operations or updates to the products table as there is insufficient information

contained in cust_mth_sales_mv for PCT refresh to be possible. Note that

See Also: "Analyzing Materialized View Capabilities" on

page 8-43 for how to use this procedure
 Maintaining the Data Warehouse 14-23

Using Materialized Views With Partitioned Tables
the times table is not partitioned and hence can never allow for PCT refresh.

Oracle will apply PCT refresh if it can determine that the materialized view has

sufficient information to support PCT for all the updated tables.

4. Suppose at some later point, a SPLIT operation of one partition in the sales

table becomes necessary.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
 INTO (
 PARTITION month3_1
 TABLESPACE summ,
 PARTITION month3
 TABLESPACE summ
);

5. Insert some data into the sales table.

6. Fast refresh cust_mth_sales_mv using the DBMS_MVIEW.REFRESH
procedure.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '',TRUE,FALSE,0,0,0,FALSE);

Fast refresh will automatically do a PCT refresh as it is the only fast refresh

possible in this scenario. However, fast refresh will not occur if a partition

maintenance operation occurs when any update has taken place to a table on

which PCT is not enabled. This is shown in "PCT Fast Refresh Scenario 2".

"PCT Fast Refresh Scenario 1" would also be appropriate if the materialized view

was created using the PMARKER clause as illustrated below.

CREATE MATERIALIZED VIEW cust_sales_marker_mv
 BUILD IMMEDIATE
 REFRESH FAST ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT DBMS_MVIEW.PMARKER(s.rowid) s_marker,
 SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND
 s.prod_id = p.prod_id
 GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 p.prod_name, t.calendar_month_name;
14-24 Data Warehousing Guide

Using Materialized Views With Partitioned Tables
PCT Fast Refresh Scenario 2
In "PCT Fast Refresh Scenario 2", the first three steps are the same as in "PCT Fast

Refresh Scenario 1" on page 14-23. Then, the SPLIT partition operation to the

sales table is performed, but before the materialized view refresh occurs, records

are inserted into the times table.

1. The same as in "PCT Fast Refresh Scenario 1".

2. The same as in "PCT Fast Refresh Scenario 1".

3. The same as in "PCT Fast Refresh Scenario 1".

4. The same as in "PCT Fast Refresh Scenario 1".

5. After issuing the same SPLIT operation, as shown in "PCT Fast Refresh

Scenario 1", some data will be inserted into the times table.

ALTER TABLE SALES
 SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
 INTO (
 PARTIITION month3_1
 TABLESPACE summ,
 PARTITION month3
 TABLESPACE summ);

6. Refresh cust_mth_sales_mv .

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '',TRUE,FALSE,0,0,0,FALSE);
ORA-12052: cannot fast refresh materialized view SH.CUST_MTH_SALES_MV

The materialized view is not fast refreshable because DML has occurred to a table

on which PCT fast refresh is not possible. To avoid this occurring, Oracle

recommends performing a fast refresh immediately after any partition maintenance

operation on detail tables for which partition tracking fast refresh is available.

If the situation in "PCT Fast Refresh Scenario 2" occurs, there are two possibilities;

perform a complete refresh or switch to the CONSIDER FRESH option outlined

below, if suitable. However, it should be noted that CONSIDER FRESH and partition

change tracking fast refresh are not compatible. Once the ALTER MATERIALIZED
VIEW cust_mth_sales_mv CONSIDER FRESH statement has been issued, PCT

refresh will not longer be applied to this materialized view, until a complete refresh

is done.

A common situation in a warehouse is the use of rolling windows of data. In this

case, the detail table and the materialized view may contain say the last 12 months
 Maintaining the Data Warehouse 14-25

Using Materialized Views With Partitioned Tables
of data. Every month, new data for a month is added to the table and the oldest

month is deleted (or maybe archived). PCT refresh provides a very efficient

mechanism to maintain the materialized view in this case.

PCT Fast Refresh Scenario 3
1. The new data is usually added to the detail table by adding a new partition and

exchanging it with a table containing the new data.

ALTER TABLE sales ADD PARTITION month_new ...
ALTER TABLE sales EXCHANGE PARTITION month_new month_new_table

2. Next, the oldest partition is dropped or truncated.

ALTER TABLE sales DROP PARTITION month_oldest;

3. Now, if the materialized view satisfies all conditions for PCT refresh.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F', '',
 TRUE, FALSE,0,0,0,FALSE);

Fast refresh will automatically detect that PCT is available and perform a PCT

refresh.

Fast Refresh with CONSIDER FRESH
If the materialized view and a detail table have the same partitioning criteria, then

you could use CONSIDER FRESH to maintain the materialized view after partition

maintenance operations.

The following example demonstrates how you can manually maintain an

unsynchronized detail table and materialized view. Assume the sales table and the

cust_mth_sales_mv are partitioned identically, and contain say 12 months of

data, one month in each partition.

1. Suppose the oldest month is to be removed from the table.

ALTER TABLE sales DROP PARTITION month_oldest;

2. You could manually resynchronize the materialized view by doing a

corresponding partition operation on the materialized view.

ALTER MATERIALIZED VIEW cust_mth_sales_mv DROP PARTITION month_oldest;

3. Use CONSIDER FRESH to declare that the materialized view has been refreshed.

ALTER MATERIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH;
14-26 Data Warehousing Guide

Using Materialized Views With Partitioned Tables
In a data warehouse, you may often wish to accumulate historical information in

the materialized view even though this information is no longer in the detailed

tables. In this case, you could maintain the materialized view using the ALTER
MATERIALIZED VIEW <materialized view name> CONSIDER FRESH
statement.

Note that CONSIDER FRESH declares that the contents of the materialized view are

FRESH(in sync with the detail tables). Care must be taken when using this option in

this scenario in conjunction with query rewrite because you may see unexpected

results.

After using CONSIDER FRESH in an historical scenario, you will be able to apply

traditional fast refresh after DML and direct loads to the materialized view, but not

PCT fast refresh. This is because if the detail table partition at one time contained

data that is currently kept in aggregated form in the materialized view, PCT refresh

in attempting to resynchronize the materialized view with that partition could

delete historical data which cannot be recomputed.

Assume the sales table stores the prior year's data and the cust_mth_sales_mv
keeps the prior 10 years of data in aggregated form.

1. Remove old data from a partition in the sales table:

ALTER TABLE sales TRUNCATE PARTITION month1;

The materialized view is now considered stale and requires a refresh because

of the partition operation. However, as the detail table no longer contains all

the data associated with the partition fast refresh cannot be attempted.

2. Therefore, alter the materialized view to tell Oracle to consider it fresh.

ALTER MATERIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH;

This statement informs Oracle that cust_mth_sales_mv is fresh for your

purposes. However, the materialized view now has a status that is neither

known fresh nor known stale. Instead, it is UNKNOWN. If the materialized view

has query rewrite enabled in QUERY_REWRITE_INTEGRITY=STALE_
TOLERATED mode it will be used for rewrite.

3. Insert data into sales .
 Maintaining the Data Warehouse 14-27

Using Materialized Views With Partitioned Tables
4. Refresh the materialized view.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '', TRUE, FALSE,0,0,0,FALSE);

Because the fast refresh detects that only INSERT statements occurred against

the sales table it will update the materialized view with the new data.

However, the status of the materialized view will remain UNKNOWN. The only

way to return the materialized view to FRESH status is with a complete refresh

which, also will remove the historical data from the materialized view.
14-28 Data Warehousing Guide

Change Data C
15

Change Data Capture

Oracle Change Data Capture efficiently identifies and captures data that has been

added to, updated, or removed from, Oracle relational tables, and makes the change
data available for use by applications. Change Data Capture is provided as an

Oracle database server component with Oracle9i.

This chapter introduces Change Data Capture in the following sections:

■ About Oracle Change Data Capture

■ Installation and Implementation

■ Security

■ Columns in a Change Table

■ Views

■ Synchronous Mode of Data Capture

■ Publishing Change Data

■ Subscribing to Change Data

■ Export and Import Considerations

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the Change Data Capture publish and

subscribe PL/SQL packages.
apture 15-1

About Oracle Change Data Capture
About Oracle Change Data Capture
Oftentimes, data warehousing involves the extraction and transportation of

relational data from one or more source databases into the data warehouse for

analysis. Oracle Change Data Capture quickly identifies and processes only the data

that has changed, not entire tables, and makes the change data available for further

use.

Without Change Data Capture, database extraction is a cumbersome process in

which you move the entire contents of tables into flat files, and then load the files

into the data warehouse. This ad hoc approach is expensive in a number of ways.

Change Data Capture does not depend on intermediate flat files to stage the data

outside of the relational database. It captures the change data resulting from

INSERT, UPDATE, and DELETE operations made to user tables. The change data is

then stored in a database object called a change table, and the change data is made

available to applications in a controlled way.

Table 15–1 describes the advantages of performing database extraction with Change

Data Capture.

A Change Data Capture system is based on the interaction of a publisher and

subscribers to capture and distribute change data, as described in the next section.

Table 15–1 Database Extraction With and Without Change Data Capture

Database Extraction

With Change Data Capture Without Change Data Capture

Extraction Database extraction from INSERT,
UPDATE, and DELETE operations
occurs immediately, at the same time
the changes occur to the source tables.

Database extraction is marginal at
best for INSERT operations, and
problematic for UPDATE and
DELETE operations, because the
data is no longer in the table.

Staging Stages data directly to relational
tables; there is no need to use flat files.

The entire contents of tables are
moved into flat files.

Interface Provides an easy-to-use publish and
subscribe interface using DBMS_
LOGMNR_CDC_PUBLISH and DBMS_
LOGMNR_CDC_SUBSCRIBE packages.

Error prone and manpower
intensive to administer.

Cost Supplied with the Oracle9i (and later)
database server. Reduces overhead
cost by simplifying the extraction of
change data.

Expensive because you must write
and maintain the capture software
yourself, or purchase it from a
third-party vendors.
15-2 Data Warehousing Guide

About Oracle Change Data Capture
Publish and Subscribe Model
Most Change Data Capture systems have one publisher that captures and publishes

change data for any number of Oracle source tables. There can be multiple

subscribers accessing the change data. Change Data Capture provides PL/SQL

packages to accomplish the publish and subscribe tasks.

Publisher
The publisher is usually a database administrator (DBA) who is in charge of

creating and maintaining schema objects that make up the Change Data Capture

system. The publisher performs these tasks:

■ Determines the relational tables (called source tables) from which the data

warehouse application is interested in capturing change data.

■ Uses the Oracle supplied package, DBMS_LOGMNR_CDC_PUBLISH, to set up the

system to capture data from one or more source tables.

■ Publishes the change data in the form of change tables.

■ Allows controlled access to subscribers by using the SQL GRANT and REVOKE
statements to grant and revoke the SELECT privilege on change tables for users

and roles.

Subscribers
The subscribers, usually applications, are consumers of the published change data.

Subscribers subscribe to one or more sets of columns in source tables. Subscribers

perform the following tasks:

■ Use the Oracle supplied package, DBMS_LOGMNR_CDC_SUBSCRIBE, to

subscribe to source tables for controlled access to the published change data for

analysis.

■ Extend the subscription window and create a new subscriber view when the

subscriber is ready to receive a set of change data.

■ Use SELECT statements to retrieve change data from the subscriber views.

■ Drop the subscriber view and purge the subscription window when finished

processing a block of changes.

■ Drop the subscription when the subscriber no longer needs its change data.
Change Data Capture 15-3

About Oracle Change Data Capture
Example of a Change Data Capture System
The Change Data Capture system captures the effects of DML statements, including

INSERT, DELETE, and UPDATE, when they are performed on the source table. As

these operations are performed, the change data is captured and published to

corresponding change tables.

To capture change data, the publisher creates and administers change tables, which

are special database tables that capture change data from a source table.

For example, for each source table for which you want to capture data, the

publisher creates a corresponding change table. Change Data Capture ensures that

none of the updates are missed or duplicated.

Each subscriber has its own view of the change data. This makes it possible for

multiple subscribers to simultaneously subscribe to the same change table without

interfering with one another.

Figure 15–1 shows the publish and subscribe model in a Change Data Capture

system.

Figure 15–1 Publish and Subscribe Model in a Change Data Capture System

For example, assume that the change tables in Figure 15–1 contains all of the

changes that occurred between Monday and Friday, and also assume that:

■ Subscriber 1 is viewing and processing data from Tuesday.

■ Subscriber 2 is viewing and processing data from Wednesday to Thursday.

Subscribers 1 and 2 each have a unique subscription window that contains a block

of transactions. Oracle Change Data Capture manages the subscription window for

each subscriber by creating a subscriber view that returns a range of transactions of
15-4 Data Warehousing Guide

About Oracle Change Data Capture
interest to that subscriber. The subscriber accesses the change data by performing

SELECT statements on the subscriber view that was generated by Change Data

Capture.

When a subscriber needs to read additional change data, the subscriber makes

procedure calls to extend the window and to create a new subscriber view. Each

subscriber can walk through the data at its own pace, while Oracle Change Data

Capture manages the data storage. As each subscriber finishes processing the data

in its subscription window, it calls procedures to drop the subscriber view and purge
the contents of the subscription window. Extending and purging windows is

necessary to prevent the change table from growing indefinitely, and to prevent the

subscriber from seeing the same data again.

Thus, Oracle Change Data Capture provides the following benefits for subscribers:

■ Guarantees that each subscriber sees all of the changes, does not miss any

changes, and does not see the same change data more than once.

■ Keeps track of multiple subscribers and gives each subscriber shared access to

change data.

■ Handles all of the storage management, automatically removing data from

change tables when it is no longer required by any of the subscribers.

Components and Terminology for Synchronous Change Data Capture
This section describes the Change Data Capture components shown in Figure 15–2.

The publisher is responsible for all of the components shown in Figure 15–2, except

for the subscriber views. The publisher creates and maintains all of the schema

objects that make up the Change Data Capture system, and publishes change data

so that subscribers can use it.

Subscribers are the consumers of change data and are granted controlled access to

the change data by the publisher. Subscribers subscribe to one or more columns in

source tables.

With synchronous data capture, the change data is generated as data manipulation

language (DML) operations are made to the source table. Every time a DML

operation occurs on a source table, a record of that operation is written to the

change table.
Change Data Capture 15-5

About Oracle Change Data Capture
Figure 15–2 Components in a Synchronous Change Data Capture System

The following subsections describe Change Data Capture components in more

detail.

Source System
A source system is a production database that contains source tables for which

Change Data Capture will capture changes.

Source Table
A source table is a database table that resides on the source system that contains the

data you want to capture. Changes made to the source table are immediately

reflected in the change table.

Change Source
A change source represents a source system. There is a system-generated change

source named SYNC_SOURCE.

Change Source Table 2 Change Source Table 3Change Source Table 2Change Source Table 1

Change Table 3
contains columns:

 C5 C6 C7 C8

Change Table 2
contains columns:

 C1 C2 C3 C4

Change Table 4
contains columns:

 C1 C4 C6 C8

Change Table 1
contains columns:

 C1 C2 C3 C4

Operational
Databases

Subscriber
View 2

Source
Tables

.. . .

Subscriber
View 1

Change Data Capture

Change Data Capture System

SYNC_
SOURCE

SYNC_SET
15-6 Data Warehousing Guide

About Oracle Change Data Capture
Change Set
A change set represents the collection of change tables. There is a system-generated

change set named SYNC_SET.

Change Table
A change table contains the change data resulting from DML statements made to a

single source table. A change table consists of two things: the change data itself,

which is stored in a database table, and the system metadata necessary to maintain

the change table. A given change table can capture changes from only one source

table. In addition to published columns, the change table contains control columns

that are managed by Change Data Capture. See the "Columns in a Change Table"

section for more information.

Publication
A publication provides a way for publishers to publish multiple change tables on

the same source table, and control subscriber access to the published change data.

For example, Publication A consists of a change table that contains all the columns

from the EMPLOYEE source table, while Publication B contains all the columns

except the salary column from the EMPLOYEE source table. Because each change

table is a separate publication, the publisher can implement security on the salary

column by allowing only selected subscribers to access Publication A.

Subscriber View
A subscriber view is a view created by Change Data Capture that returns all of the

rows in the subscription window. In Figure 15–2, the subscribers have created two

views: one on columns 7 and 8 of Source Table 3 and one on columns 4, 6, and 8 of

Source Table 4 The columns included in the view are based on the actual columns

that the subscribers subscribed to in the source table.

Subscription Window
A subscription window defines the time range of change rows that the subscriber

can currently see. The oldest row in the window is the low watermark; the newest

row in the window is the high watermark. Each subscriber has a subscription

window.
Change Data Capture 15-7

Installation and Implementation
Installation and Implementation
Oracle Change Data Capture comes pre-packaged with the appropriate Oracle9i
drivers already installed with which you can implement synchronous data capture.

In addition, note that Oracle Change Data Capture uses Java. Therefore, when you

install the Oracle9i database server, ensure that Java is enabled.

Security
You grant privileges for a change table separately from the privileges you grant for

a source table. For example, a subscriber that has privileges to perform a SELECT
operation on a source table might not have privileges to perform a SELECT
operation on a change table.

The publisher controls subscribers' access to change data by using the SQL GRANT
and REVOKE statements to grant and revoke the SELECT privilege on change tables

for users and roles. The publisher must grant the SELECT privilege before a user or

application can subscribe to the change table.

The publisher must not grant any DML access (using either the INSERT, UPDATE, or

DELETE statements) to the subscribers on the change tables because of the risk that

a subscriber might inadvertently change the data in the change table, making it

inconsistent with its source. Furthermore, the publisher should avoid creating

change tables in schemas to which users have DML access.

Columns in a Change Table
A change table contains the change data resulting from DML statements. A change

table consists of two things: the change data itself, which is stored in a database

table and the system metadata necessary to maintain the change table.

The change table contains control columns that are managed by Change Data

Capture. Table 15–2 describes the contents of a change table.

Table 15–2 Control Columns for a Change Table

Column Datatype
Null-
able? Description

RSID$ NUMBER N Unique row sequence ID.
15-8 Data Warehousing Guide

Columns in a Change Table
OPERATION$ CHAR(2) N Value

I

UO or
UU

UN

UL

D

Description

Insert

Update old value

Update new value

Update LOB

Delete

CSCN$ NUMBER N Commit SCN.

COMMIT_
TIMESTAMP$

DATE Y Commit time of this transaction.

SOURCE_
COLMAP$

NUMBER N Bit mask of updated columns; source table
relative (optional column).

TARGET_
COLMAP$

NUMBER N Bit mask of updated columns; change table
relative (optional column).

USERNAME$ VARCHAR2(30)N Name of the user who caused the operation
(optional column).

TIMESTAMP$ DATE N Time when the operation occurred in the source
table (optional column).

ROW_ID$ ROW_ID N Row ID of affected row in source table (optional
column).

SYS_NC_OID$ RAW(16) Y Object ID (optional column).

Table 15–2 (Cont.) Control Columns for a Change Table

Column Datatype
Null-
able? Description
Change Data Capture 15-9

Views
Views
Information about the Change Data Capture environment is provided in the views

described in Table 15–3.

Note: See also the Oracle9i Database Reference for complete

information about views.

Table 15–3 View Names for Oracle Change Data Capture

View Name Description

CHANGE_SOURCES Allows a publisher to see existing change sources.

CHANGE_SETS Allows a publisher to see existing change sets.

CHANGE_TABLES Allows a publisher to see existing change tables.

DBA_SOURCE_TABLES Allows a publisher to see all of the existing (published) source tables.

ALL_SOURCE_TABLES Allows subscribers to see all of the published source tables for which the
subscribers have privileges to subscribe.

USER_SOURCE_TABLES Allows the user to see all of the published source tables for which this user
has privileges to subscribe.

DBA_PUBLISHED_COLUMNS Allows a publisher to see all of the existing (published) source table
columns.

ALL_PUBLISHED_COLUMNS Allows a subscriber to see all of the published source table columns for
which the subscriber has privileges.

USER_PUBLISHED_COLUMNS Allows a user to see all of the published source table columns for which the
user has privileges.

DBA_SUBSCRIPTIONS Allows a publisher to see all of the subscriptions.

USER_SUBSCRIPTIONS Allows a subscriber to see all of their current subscriptions.

DBA_SUBSCRIBED_TABLES Allows a publisher to see all of the published tables to which subscribers
have subscribed.

USER_SUBSCRIBED_TABLES Allows a subscriber to see all of the published tables to which the
subscriber has subscribed.

DBA_SUBSCRIBED_COLUMNS Allows a publisher to see all of the columns of published tables to which
subscribers have subscribed.

USER_SUBSCRIBED_COLUMNS Allows a publisher to see all of the columns of published tables to which
the subscriber has subscribed.
15-10 Data Warehousing Guide

Publishing Change Data
Synchronous Mode of Data Capture
Synchronous data capture provides up-to-the-second accuracy because the changes

are being captured continuously and in real time on the production system. The

change tables are populated after DML operations occur on the source table.

While synchronous mode data capture adds overhead to the system at capture time,

it can reduce cost by simplifying the extraction of change data.

Publishing Change Data
This section provides step-by-step instructions for setting up an Oracle Change

Data Capture system to capture and publish data from one or more Oracle

relational source tables. Change Data Capture captures and publishes only

committed data.

Step 1 Decide which Oracle instance will be the source system that will
provide the change data.
The publisher needs to gather requirements from the subscribers and determine

which source system contains the relevant source tables.

Step 2 Create the change tables that will contain the changes to individual
source tables.
Use the DBMS_LOGMNR_CDC_PUBLISH.CREATE_CHANGE_TABLE procedure to

create change tables.

Note: To use the DBMS_LOGMNR_CDC_PUBLISH package, you

must have the EXECUTE_CATALOG_ROLE privilege, and you must

have the SELECT_CATALOG_ROLE privilege to look at all of the

views. Also, you must be able to GRANT SELECT in the change

tables to subscribers.
Change Data Capture 15-11

Publishing Change Data
Create a change table for each source table to be published, and decide which

columns should be included. For update operations, decide whether to capture old

values, new values, or both.

The publisher can set the options_string field of the DBMS_LOGMNR_CDC_
PUBLISH.CREATE_CHANGE_TABLE procedure to have more control over the

physical properties and tablespace properties of the change tables. The options_
string field can contain any option available on the CREATE TABLE DDL
statement.

Example 1 Creating a Change Table
The following example creates a change table that captures changes that happen to

a source table. The example uses the sample table SCOTT.EMP.

EXECUTE DBMS_LOGMNR_CDC_PUBLISH.CREATE_CHANGE_TABLE (OWNER => 'cdc',\
CHANGE_TABLE_NAME => 'emp_ct', \
CHANGE_SET_NAME => 'SYNC_SET', \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp',\
COLUMN_TYPE_LIST =. 'empno number, ename varchar2(10), job varchar2(9), mgr
number, hiredate date, deptno number', \
CAPTURE_VALUES => 'both', \
RS_ID => 'y' \
ROW_ID => 'n', \
USER_ID => 'n', \
TIMESTAMP => 'n', \
OBJECT_ID => 'n', \
SOURCE_COLMAP => 'y', \
TARGET_COLMAP => 'y', \
OPTIONS_STRING => null);

This statement creates a change table named emp_ct within the change set SYNC_
SET. The column_type_list parameter identifies the columns captured by the

change table. The source_schema and source_table parameters identify the

schema and source table that reside on the production system.

Note: For synchronous data capture, Change Data Capture

automatically generates a change source, called SYNC_SOURCE, and

a change set called SYNC_SET. Change tables are contained in the

predefined SYNC_SET change set.
15-12 Data Warehousing Guide

Subscribing to Change Data
The capture_values setting in the example indicates that for UPDATEoperations,

the change data will contain two separate rows for each row that changed: one row

will contain the row values before the update occurred, and the other row will

contain the row values after the update occurred.

Subscribing to Change Data
The subscribers, typically applications, register their interest in one or more source

tables, and obtain subscriptions to these tables. Assuming sufficient access

privileges, the subscribers may subscribe to any source tables that the publisher has

published.

Steps Required to Subscribe to Change Data
The primary role of the subscriber is to access and use the change data. To do this, the

subscriber must first determine which source tables are of interest, and then call the

procedures in the DBMS_LOGMNR_CDC_SUBSCRIBE package to access them.

Step 1 Find the source tables for which the subscriber has access privileges.
Query the ALL_SOURCE_TABLES view to see all of the published source tables for

which the subscriber has access privileges.

Step 2 Obtain a subscription handle.
Call the DBMS_LOGMNR_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE
procedure to create a subscription.

The following example shows how the subscriber first names the change set of

interest (SYNC_SET), and then returns a unique subscription handle that will be

used throughout the session.

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE (\
CHANGE_SET => 'SYNC_SET',\
DESCRIPTION => 'Change data for emp',\
SUBSCRIPTION_HANDLE => :subhandle);

Step 3 Subscribe to a source table and columns in the source table.
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE procedure to specify which

columns of the source tables are of interest to the subscriber and are to be captured.

The subscriber identifies the columns of the source table that are of interest. A

subscription can contain one source table or multiple tables from the same change
Change Data Capture 15-13

Subscribing to Change Data
set. To see all of the published source table columns for which the subscriber has

privileges, query the ALL_PUBLISHED_COLUMNS view.

In the following example, the subscriber wants to see only one source table.

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE (\
SUBSCRIPTION_HANDLE => :subhandle, \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp', \
COLUMN_LIST => 'empno, ename, hiredate');

Step 4 Activate the subscription.
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION procedure

to activate the subscription.

Subscribers call this procedure when they are finished subscribing to source tables,

and are ready to receive change data. Whether subscribing to one or multiple source

tables, the subscriber needs to call the ACTIVATE_SUBSCRIPTION procedure only

once.

In the following example, the ACTIVATE_SUBSCRIPTION procedure sets the

subscription window to empty. At this point, no additional source tables can be

added to the subscription.

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION (\
SUBSCRIPTION_HANDLE => :subhandle);

Step 5 Set the boundaries to see new data.
Call the DBMS_LOGMNR_CDC_SUBSCRIBE.EXTEND_WINDOW procedure to set the

upper boundary (called a high-water mark) for a subscription window.

For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.EXTEND_WINDOW (\
SUBSCRIPTION_HANDLE => :subhandle);

At this point, the subscriber has created a new window that begins where the

previous window ends. The new window contains any data that was added to the

change table. If no new data has been added, the EXTEND_WINDOW procedure has

no effect. To access the new change data, the subscriber must call the CREATE_
SUBSCRIBER_VIEW procedure, and select from the new subscriber view that is

generated by Change Data Capture.
15-14 Data Warehousing Guide

Subscribing to Change Data
Step 6 Prepare a subscriber view.
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW
procedure to create and prepare a subscriber view. (You must do this for each

change table in the subscription.)

Subscribers do not access data directly from a change table; subscribers see the

change data through subscriber views and perform SELECT operations against

them. The reason for this is because Change Data Capture generates a view that

restricts the data to only the columns to which the application has subscribed, and

returns only the rows that the application has not viewed previously. The contents

of the subscriber view will not change.

The following example shows how to prepare a subscriber view:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW (\
SUBSCRIPTION_HANDLE => :subhandle, \
SOURCE_SCHEMA => 'scott',\
SOURCE_TABLE => 'emp', \
VIEW_NAME => :viewname);

Step 7 Read and query the contents of the change tables.
Use the SQL SELECT statement on the subscriber view to read and query the

contents of change tables (within the boundaries of the subscription window). You

must do this for each change table in the subscription. For example:

SELECT * FROM CDC#CV$119490;

The subscriber view name, CDC#CV$119490, is a generated name.

Step 8 Drop the subscriber view.
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW procedure to

drop the subscriber views.

Change Data Capture guarantees not to change the subscriber view, even if new

data has been added. Subscribers continue to have access to a subscriber view until

calling the DROP_SUBSCRIBER_VIEW procedure, which indicates the subscriber is

finished using the view. For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW (\
SUBSCRIPTION_HANDLE => :subhandle, \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp');
Change Data Capture 15-15

Subscribing to Change Data
Step 9 Empty the old data from the subscription window.
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.PURGE_WINDOW procedure to let the

Change Data Capture software know that the subscriber no longer needs the data in

the current subscription window.

For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.PURGE_WINDOW (\
SUBSCRIPTION_HANDLE => :subhandle);

Step 10 Repeat steps 5 through 9.
Repeat steps 5 though 9 as long as you are interested in additional change data.

Step 11 End the subscription.
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure to end

the subscription. This is necessary to prevent the change tables from growing

without bound. For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (\
SUBSCRIPTION_HANDLE => :subhandle);

What Happens to Subscriptions When the Publisher Makes Changes
The Change Data Capture environment is dynamic in nature. The publisher can add

and drop change tables at any time. The publisher can also add to and drop

columns from existing change tables at any time. The following list describes how

changes to the Change Data Capture environment affect subscriptions:

■ Subscribers do not get explicit notification if the publisher adds a new change

table. The views can be checked to see if new change tables have been added,

and whether or not you have access to them.

■ If a publisher drops a change table that is currently being subscribed to, the

publisher must use the force flag to get a successful drop. It is expected that the

publisher will warn subscribers before the force flag is actually used. If the

subscribers are unaware of the dropped table, then when the subscriber calls

PREPARE_SUBSCRIBER_VIEW procedure, an appropriate exception is

generated. This becomes the notification mechanism.

■ If the publisher adds a user column to a change table and a new subscription

includes this column, then the subscription window starts at the point the

column was added.
15-16 Data Warehousing Guide

Export and Import Considerations
■ If the publisher adds a user column to a change table and a new subscription

does not include this newly added column, then the subscription window starts

at the low-water mark for the change table thus enabling the subscriber to see

the entire table.

■ If the publisher adds a user column to a change table, and old subscriptions

exist, then the subscription windows remain unchanged.

■ Subscribers subscribe to source columns and never to control columns. They

can see the control columns that were present at the time of the subscription.

■ If the publisher adds a control column to a change table and there is a new

subscription, then the subscription window starts at the low-water mark for the

change table. The subscription can see the control column immediately. All

rows that existed in the change table prior to adding the control column will

have the value NULL for the newly added control column field.

■ If the publisher adds a control column to a change table, then any existing

subscriptions can see the new control column when the window is extended

(DBMS_LOGMNR_CDC_PUBLISH.EXTEND_WINDOW procedure) such that the

low watermark for the window crosses over the point when the control column

was added.

Export and Import Considerations
When exporting or importing change tables for Change Data Capture, consider the

following information:

■ When change tables are imported, the job queue is checked for a Change Data

Capture purge job. If no purge job is found, then one is submitted automatically

(using the DBMS_CDC_PUBLISH.PURGE procedure). If a change table is

imported, but no subscriptions are taken out before the purge job runs (24

hours later, by default), then all rows in the table will be purged.

Choose one of the following methods to prevent the purging of data from a

change table:

– Suspend the purge job using the DBMS_JOB package to either disable the

job (using the BROKEN procedure) or execute the job sometime in the future

when there are subscriptions (using the NEXT_DATE procedure).
Change Data Capture 15-17

Export and Import Considerations
– Take out a dummy subscription to preserve the change table data until real

subscriptions appear. Then, you can drop the dummy subscription.

■ When importing data into a source table for which a change table already exists,

the imported data is also recorded in any associated change tables.

Assume that you have a source table Employees that has an associated change

table "CT_Employees." When you import data into Employees, that data is also

recorded in CT_Employees.

■ When importing a source table and its change table to a database where the

tables did not previously exist, Change Data Capture for that source table will

not be established until the import process completes. This protects you from

duplicating activity in the change table.

■ When exporting a source table and its associated change table, and then

importing them into a new instance, the imported source table data is not

recorded in the change table because it is already in the change table.

■ When importing a change table having the optional control ROW_ID column,

the ROW_ID columns stored in the change table have meaning only if the

associated source table has not been imported. If a source table is re-created or

imported, each row will have a new ROW_ID that is unrelated to the ROW_ID
that was previously recorded in a change table.

■ Any time a table is exported from one database and imported to another, there

is a risk that the import target already has tables or objects with the same name.

Moving a change table to a different database where a table exists that has the

same name as the source table may result in import errors.

■ If you need to move a synchronous change table or its source table, then move

both tables together and check the import log for error messages.

Note: If you disable the purge job by marking it as broken, you

need to remember to reset it once subscriptions have been

activated. This prevents the change table from growing without

bound.
15-18 Data Warehousing Guide

 Summary A
16

Summary Advisor

This chapter illustrates how to use the Summary Advisor, a tool for choosing and

understanding materialized views. The chapter contains:

■ Overview of the Summary Advisor in the DBMS_OLAP Package

■ Using the Summary Advisor

■ Estimating Materialized View Size

■ Is a Materialized View Being Used?
dvisor 16-1

Overview of the Summary Advisor in the DBMS_OLAP Package
Overview of the Summary Advisor in the DBMS_OLAP Package
Materialized views provide high performance for complex, data-intensive queries.

The Summary Advisor helps you achieve this performance benefit by choosing the

proper set of materialized views for a given workload. In general, as the number of

materialized views and space allocated to materialized views is increased, query

performance improves. But the additional materialized views have some cost: they

consume additional storage space and must be refreshed, which increases

maintenance time. The Summary Advisor considers these costs and makes the most

cost-effective trade-offs when recommending the creation of new materialized

views and evaluating the performance of existing materialized views.

To help you select from among the many possible materialized views in your

schema, Oracle provides a collection of materialized view analysis and advisory

functions and procedures in the DBMS_OLAP package. Collectively, these functions

are called the Summary Advisor, and they are callable from any PL/SQL program.

Figure 16–1 shows how the Summary Advisor recommends materialized views

from a hypothetical or user-defined workload or one obtained from the SQL cache,

or Oracle Trace. You can run the Summary Advisor from Oracle Enterprise Manager

or by invoking the DBMS_OLAP package. You must have Java enabled to use the

Summary Advisor.

All data and results generated by the Summary Advisor is stored in a set of tables

referred to as the Summary Advisor repository. These tables are owned by SYSTEM
and start with MVIEW$_ADV_*. Only DBAs can access these tables directly, but

other users can access the data relevant to them using a set of read-only views.

These views start with MVIEW_. Thus, the table MVIEW$_ADV_WORKLOAD stores the

workload of all users, but a user accesses his workload through the MVIEW_
WORKLOAD view.
16-2 Data Warehousing Guide

Overview of the Summary Advisor in the DBMS_OLAP Package
Figure 16–1 Materialized Views and the Summary Advisor

Using the Summary Advisor or the DBMS_OLAP package, you can:

■ Estimate the size of a materialized view

■ Recommend a materialized view

■ Recommend materialized views based on collected workload information

■ Report actual utilization of materialized views based on collected workload

■ Define a filter to use against a workload

■ Load and validate a workload

■ Purge filters, workloads, and results

■ Generate a unique identifier (for example, run ID, filter ID, or workload ID)

All of these tasks can be performed independently of one another. However,

sometimes you need to use several procedures from the DBMS_OLAP package to

complete a task. For example, to recommend a set of materialized views based on a

Trace
Log

Warehouse

Oracle9i

Materialized
View and

Dimensions

Workload

Format

User-Defined
Workload

Summary Advisor
DBMS_OLAP

Package

Discoverer or
Third Party Tool

Oracle Trace
Manager

SQL
Cache

Workload Collection
(optional)
 Summary Advisor 16-3

Overview of the Summary Advisor in the DBMS_OLAP Package
workload, you have to first load the workload and then generate the set of

recommendations.

Before you can use any of these procedures, you must create a unique identifier for

the data they are about to create. This number is obtained by calling the procedure

CREATE_ID and the unique number is known subsequently as a run ID, workload

ID or filter ID depending on the procedure it is given.

The identifier is used to store the Advisor artifacts in the repository. Each activity in

the Advisor requires a unique identifier to distinguish it from other objects. For

example, when you add a filter item, you associate the item with a filter ID. When

you load a workload, the data gets stored using the unique workload ID. In

addition, when you run RECOMMEND_MVIEW_STRATEGY or EVALUATE_MVIEW_
STRATEGY, a unique ID is associated with the run.

Because the ID is just a unique number, Oracle uses the same CREATE_ID function

to acquire the value. It is only when a specific operation is performed (such as a

load workload) that the ID is identified as a workload ID.

You can use the Summary Advisor with or without a workload, but better results

are achieved if a workload is provided. This can be supplied by:

■ The user

■ Oracle Trace

■ The current SQL cache contents

Once the workload is loaded into the Advisor workload repository or at the time

the materialized view recommendations are generated, a filter can be applied to the

workload to restrict what is analyzed. This provides the ability to generate different

sets of recommendations based on different workload scenarios.

These filters are created using the procedure ADD_FILTER_ITEM. You can create

any number of filters, and use more than one at a time to filter a workload. See

"Using Filters with the Summary Advisor" on page 16-18 for further details.

The Summary Advisor uses four types of schema objects, some of which are defined

in the user's schema and some are in the system schema:

■ User Schema

For both V-table and workload tables, before the workload is available to the

recommendation process. It must be loaded into the advisor workload

repository.

■ V-tables
16-4 Data Warehousing Guide

Overview of the Summary Advisor in the DBMS_OLAP Package
V-tables are generated by Oracle Trace for storing results of formatting

server-collected trace. Please note that these V-tables are different from the

V$ tables.

■ Workload Tables

Workload tables are user tables that store workload information, and can

reside in any schema.

■ System Schema

■ Result Tables

Result tables are internal tables that store both intermediate and final

results from all Summary Advisor components.

■ Read-only Views

Read-only views allow you to access recommendations, filters and

workloads.These views are MVIEW_RECOMMENDATIONS, MVIEW_
EVALUATIONS, MVIEW_FILTER, and MVIEW_WORKLOAD.

Whenever the Summary Advisor is run, the results, with the exception of

estimated size, are placed in internal tables, which can be accessed from

read-only views in the database. These results can be queried, so you do not

have to keep running the Advisor process.

If you want to view the results of the last materialized view recommendation, you

can issue the following statement:

SELECT MVIEW_OWNER, MVIEW_NAME, RECOMMENDED_ACTION, PCT_PERFORMANCE_GAIN,
 BENEFIT_TO_COST_RATIO
FROM SYSTEM.MVIEW_RECOMMENDATIONS
WHERE RUNID= (SELECT MAX(RUNID) FROM MVIEW_RECOMMENDATIONS)
 ORDER BY RECOMMENDATION_NUMBER ASC

The advisory functions and procedures of the DBMS_OLAP package require you to

gather structural statistics about fact and dimension table cardinalities, and the

distinct cardinalities of every dimension level column, JOIN KEY column, and fact

table key column. You do this by loading your data warehouse, then gathering

either exact or estimated statistics with the DBMS_STATS package or the ANALYZE
TABLE statement. Because gathering statistics is time-consuming and extreme

statistical accuracy is not required, it is generally preferable to estimate statistics.

Using information from the system workload table, schema metadata and statistical

information generated by the DBMS_STATS package, the Advisor engine generates
 Summary Advisor 16-5

Using the Summary Advisor
summary recommendations and summary usage evaluations and stores the results

in result tables.

To use the Summary Advisor with a workload, some or all of the following steps

must be followed:

1. Optionally obtain an identifier number as a filter ID and define one or more

filter items.

2. Obtain an identifier number as a workload ID and load a workload. If a filter

was defined in step 1, then it can be used during the operation to refine the SQL

statements as they are collected from the workload source. Load the workload.

3. Call the procedure RECOMMEND_MVIEW_STRATEGY to generate the

recommendations.

These steps can be repeated several times with different workloads to see the effect

on the materialized views.

Summary Advisor Wizard
The Summary Advisor Wizard in Oracle Enterprise Manager provides an

interactive environment to recommend and build materialized views. Using the

Wizard, you will be asked where the materialized views are to be placed, which fact

tables to use, and which of the existing materialized views are to be retained. If a

workload exists, it may be automatically selected. Otherwise, the Wizard will

display the recommendations that are generated from the RECOMMEND_MVIEW_
STRATEGY procedure.

All of the steps required to maintain your materialized views can be completed by

answering the Wizard's questions. No subsequent DML operations are required.

Using the Summary Advisor
The following sections will help you use the Advisor:

■ Identifier Numbers

■ Workload Management

■ Loading a User-Defined Workload

■ Loading a Trace Workload

See Also: Oracle Enterprise Manager Configuration Guide for further

information regarding the Summary Advisor
16-6 Data Warehousing Guide

Using the Summary Advisor
■ Loading a SQL Cache Workload

■ Validating a Workload

■ Removing a Workload

■ Using Filters with the Summary Advisor

■ Removing a Filter

■ Recommending Materialized Views

■ Summary Data Report

■ When Recommendations are no Longer Required

■ Stopping the Recommendation Process

■ ESTIMATE_MVIEW_SIZE Parameters

■ DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure

Identifier Numbers
Most of the DBMS_OLAP procedures require a unique identifier as one of their

parameters. You obtain this by calling the procedure CREATE_ID, which is shown

below.

DBMS_OLAP.CREATE_ID Procedure

With a SQL utility such as SQL*Plus:

1. Declare an output variable to receive the new identifier:

VARIABLE MY_ID NUMBER;

2. Call the CREATE_ID function to generate a new identifier:

CALL DBMS_OLAP.CREATE_ID(:MY_ID);

Table 16–1 DBMS_OLAP.CREATE_ID Procedure Parameters

Parameter Datatype Description

id NUMBER The unique identifier that can be used to create a filter,
load a workload, or create an analysis
 Summary Advisor 16-7

Using the Summary Advisor
Workload Management
The Advisor performs best when a workload based on usage is available. The

Advisor Workload Repository is capable of storing multiple workloads, so that the

different uses of a real-world data warehousing environment can be viewed over a

long period of time and across the life cycle of database instance startup and

shutdown.

To facilitate wider use of the Summary Advisor, three types of workload are

supported:

■ Current contents of the SQL cache

■ Oracle Trace collection

■ User-specified Workload

When the workload is loaded using the appropriate load_workload procedure, it

is stored in a new workload repository in the SYSTEM schema called MVIEW_
WORKLOAD whose format is shown in Table 16–2. A specific workload can be

removed by calling the PURGE_WORKLOAD routine and passing it a valid workload

ID. To remove all workloads for the current user, call PURGE_WORKLOAD and pass

the constant value DBMS_OLAP.WORKLOAD_ALL.

Table 16–2 MVIEW_WORKLOAD

Column Datatype Description

APPLICATION VARCHAR2(30) Optional application name for
the query

CARDINALITY NUMBER Total cardinality of all of tables
in query

WORKLOADID NUMBER Workload id identifying a
unique sampling

FREQUENCY NUMBER Number of times query executed

IMPORT_TIME DATE Date at which item was collected

LASTUSE DATE Last date of execution

OWNER VARCHAR2(30) User who last executed query

PRIORITY NUMBER User-supplied ranking of query

QUERY LONG Query text

QUERYID NUMBER Id number identifying a unique
query
16-8 Data Warehousing Guide

Using the Summary Advisor
Once the workload has been collected using the appropriate LOAD_WORKLOAD
routine, there is also a filter mechanism that may be applied, this lets you specify

the portion of workload that is to be loaded into the repository. You can also use the

same filter mechanism to restrict workload-based summary recommendation and

evaluation to a subset of the queries contained in the workload repository. Once the

workload has been loaded, the Summary Advisor is run by calling the procedure

RECOMMEND_MVIEW_STRATEGY. A major benefit of this approach is that it is easy to

model different workloads by simply modifying the frequency column, removing

some SQL queries, or adding new queries.

Summary Advisor can retrieve workload information from the SQL cache as well as

Oracle Trace. If the collected data was retrieved from a server with the instance

parameter cursor_sharing set to SIMILAR or FORCE, then user queries with

embedded literal values will be converted to a statement that contains

system-generated bind variables.

In Oracle9i, it is not possible to retrieve the bind-variable data in order to

reconstruct the statement in the form originally submitted by the user. This will, in

turn, cause Summary Advisor to not consider the query for rewrite and potentially

miss a critical statement in the user's workload. As a work-around, if the Advisor

will be used to recommend materialized views, then the server should set the

instance parameter CURSOR_SHARING to EXACT.

Loading a User-Defined Workload
A user-defined workload is loaded using the procedure LOAD_WORKLOAD_USER.

The workload_id is obtained by calling the procedure CREATE_ID. The value of

the flags parameter determines whether the workload is considered to be new,

should be used to overwrite an existing workload, or should be appended to an

existing workload. The optional filter_id can be supplied to specify the filter

that is to be used against this workload. Where the filter would have been defined

using the ADD_FILTER_ITEM procedure.

RESPONSETIME NUMBER Execution time in seconds

RESULTSIZE NUMBER Total bytes selected by the query

Table 16–2 MVIEW_WORKLOAD

Column Datatype Description
 Summary Advisor 16-9

Using the Summary Advisor
DBMS_OLAP.LOAD_WORKLOAD_USER Procedure

The actual workload is defined in a separate table and the two parameters owner_
name and table_name describe where it is stored. There is no restriction on which

schema the workload resides in, the name for the table, or how many of these

user-defined tables exist. The only restriction is that the format of the user table

must correspond to the USER_WORKLOAD table, as described in Table 16–4 below:

Table 16–3 DBMS_OLAP.LOAD_WORKLOAD_USER Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required workload id that was returned by the
create_id call

flags NUMBER Can take one of the following values:

DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded

owner_name VARCHAR2 The schema that contains the user supplied table or
view

table_name VARCHAR2 The table or view name containing valid workload data
16-10 Data Warehousing Guide

Using the Summary Advisor
The following is an example of loading a user workload:

1. Declare an output variable to receive the new identifier:

VARIABLE MY_ID NUMBER;

2. Call the CREATE_ID function to generate a new identifier:

CALL DBMS_OLAP.CREATE_ID(:MY_ID);

3. Load the workload from a target table or view:

CALL DBMS_OLAP.LOAD_WORKLOAD_USER(:MY_ID, DBMS_OLAP.WORKLOAD_NEW,
 DBMS_OLAP.FILTER_NONE, 'SH', 'MY_WORKLOAD');

Loading a Trace Workload
Alternatively, you can collect a Trace workload from Oracle Enterprise Manager to

gather dynamic information about your query workload, which can be used by an

advisory function. If Oracle Trace is available, consider using it to collect

Table 16–4 USER_WORKLOAD

Column Datatype
Optional/
Required Description

QUERY Can be any
VARCHAR or LONG
type. All character
types are supported

Required SQL statement

OWNER VARCHAR2(30) Required User who last executed query

APPLICATION VARCHAR2(30) Optional Application name for the query

FREQUENCY NUMBER Optional Number of times query
executed

LASTUSE DATE Optional Last date of execution

PRIORITY NUMBER Optional User-supplied ranking of query

RESPONSETIME NUMBER Optional Execution time in seconds

RESULTSIZE NUMBER Optional Total bytes selected by the
query

SQL_ADDR NUMBER Optional Cache address

SQL_HASH NUMBER Optional Cache hash value
 Summary Advisor 16-11

Using the Summary Advisor
materialized view usage. Doing so enables you to see which materialized views are

in use. It also lets the Advisor detect any unusual query requests from users that

would result in recommending some different materialized views.

A workload collected by Oracle Trace is loaded using the procedure LOAD_
WORKLOAD_TRACE described below. You obtain workload_id by calling the

procedure CREATE_ID. The value of the flags parameter will determine whether

the workload is considered new, should be used to overwrite an existing workload

or should be appended to an existing workload. The optional filter ID can be

supplied to specify the filter that is to be used against this workload. In addition,

you can specify an application name to describe this workload and give every

query a default priority. The application name is simply a tag that enables you to

classify the workload query. The name can later be used to filter the workload

during a RECOMMEND_MVIEW_STRATEGY or EVALUATE_MVIEW_STRATEGY
operation.

The priority is an important piece of information. It tells the Advisor how important

the query is to the business. When recommendations are formed, the priority will

determine its value and will cause the Advisor to make decisions that favor higher

ranking queries.

If the owner_name parameter is not defined, then the procedure will expect to find

the formatted trace tables in the schema for the current user.

DBMS_OLAP.LOAD_WORKLOAD_TRACE Procedure

Table 16–5 DBMS_OLAP.LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required id that was returned by the CREATE_ID
call
16-12 Data Warehousing Guide

Using the Summary Advisor
Oracle Trace collects two types of data. One is a duration event which causes a data

item to be collected twice: once at the start of the operation and once at the end of

the operation. The duration of the data item is the difference between the start and

end of the operation. For example, execution time is collected as a duration event. It

first collects the clock time when the operation starts. Then it collects the clock time

when the operation ends. Execution time is calculated by subtracting the start time

from the end time.

A point event is a static data item that doesn't change over time. For example, an

owner name is a static data item that would be the same at the start and the end of

an operation.

To collect, analyze and load the summary event set, you must do the following:

flags NUMBER Can take one of the following values:

DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND;

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW:

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded

application VARCHAR2 The default business application name. This value will
be used for a query if one is not found in the target
workload

priority NUMBER The default business priority to be assigned to every
query in the target workload

owner_name VARCHAR2 The schema that contains the Oracle Trace data. If
omitted, the current user will be used

Table 16–5 DBMS_OLAP.LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Datatype Description
 Summary Advisor 16-13

Using the Summary Advisor
1. Set six initialization parameters to collect data using Oracle Trace. Enabling

these parameters incurs some additional overhead at database connection, but

is otherwise transparent.

■ ORACLE_TRACE_COLLECTION_NAME = oraclesm or oraclee

ORACLEE is the Oracle Expert collection which contains Summary Advisor

data and additional data that is only used by Oracle Expert.

ORACLESM is the Summary Advisor collection that contains only Summary

Advisor data and is the preferred collection type.

■ ORACLE_TRACE_COLLECTION_PATH = <location of collection files>

■ ORACLE_TRACE_COLLECTION_SIZE = 0

■ ORACLE_TRACE_ENABLE = TRUE

■ ORACLE_TRACE_FACILITY_NAME = oraclesm or oralcee

■ ORACLE_TRACE_FACILITY_PATH = <location of trace facility files>

2. Run the Oracle Trace Manager, specify a collection name, and select the

SUMMARY_EVENT set. Oracle Trace Manager reads information from the

associated configuration file and registers events to be logged with Oracle.

While collection is enabled, the workload information defined in the event set

gets written to a flat log file.

3. When collection is complete, Oracle Trace automatically formats the Oracle

Trace log file into a set of relations, which have the predefined synonyms

beginning with V_192216243_ . Alternatively, the collection file, which usually

has an extension of .CDF, can be formatted manually using the otrcfmt utility,

as shown in this example:

otrcfmt collection_name.cdf user/password@database

The trace data can be formatted in any schema. The LOAD_WORKLOAD_TRACE
call lets you specify the location of the data.

4. Run the GATHER_TABLE_STATS procedure of the DBMS_STATS package or

ANALYZE...ESTIMATE STATISTICS to collect cardinality statistics on all fact

tables, dimension tables, and key columns (any column that appears in a

dimension LEVEL clause or JOIN clause of a CREATE DIMENSION statement).

See Also: Oracle Enterprise Manager Oracle Trace User’s Guide for

further information regarding these parameters
16-14 Data Warehousing Guide

Using the Summary Advisor
5. Run the CREATE_ID procedure of the DBMS_OLAP package to get a unique

workload_id for this workload.

6. Run the LOAD_WORKLOAD_TRACE procedure of the DBMS_OLAP package to

load this workload into the repository.

Once these six steps have been completed, you will be ready to make

recommendations about your materialized views. An example of how to load a

trace workload is shown below.

1. Declare an output variable to receive the new identifier:

VARIABLE MY_ID NUMBER:

2. Call the CREATE_ID function to generate a new identifier:

CALL DBMS_OLAP.CREATE_ID(:MY_ID);

3. Load the workload from the formatted trace collection:

CALL DBMS_OLAP.LOAD_WORKLOAD_TRACE(:MY_ID, DBMS_OLAP.WORKLOAD_NEW, DBMS_
OLAP.FILTER_NONE, 'myapp', 7, 'SH');

Loading a SQL Cache Workload
You obtain a SQL cache workload using the procedure LOAD_WORKLOAD_CACHE
described below. At the time this procedure is called, the current contents of the

SQL cache are analyzed and placed into the read-only view SYSTEM.MVIEW_
WORKLOAD.

You obtain the workload_id by calling the procedure CREATE_ID. The value of

the flags parameter determines whether the workload is treated as new, should be

used to overwrite an existing workload, or should be appended to an existing

workload. The optional filter ID can be supplied to specify the filter that is to be

used against this workload. Where the filter would have been defined using the

ADD_FILTER_ITEM procedure. In addition, you can specify an application name to

describe this workload and give every query a default priority.

DBMS_OLAP.LOAD_WORKLOAD_CACHE Procedure

Table 16–6 DBMS_OLAP.LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required ID that was returned by the CREATE_ID
call
 Summary Advisor 16-15

Using the Summary Advisor
An example of how to load a SQL Cache workload is shown below.

1. Declare an output variable to receive the new identifier:

VARIABLE MY_ID NUMBER:

2. Call the CREATE_ID function to generate a new identifier:

CALL DBMS_OLAP.CREATE_ID(:MY_ID);

flags NUMBER Can take one of the following values:

DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND:

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW:

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded. The value
DBMS_OLAP.FILTER_NONE indicates no filtering

application VARCHAR2 String workload's application column. Not used by
SQL Cache workload

priority NUMBER The default business priority to be assigned to every
query in the target workload

Table 16–6 DBMS_OLAP.LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Datatype Description
16-16 Data Warehousing Guide

Using the Summary Advisor
3. Load the workload from the SQL cache:

CALL DBMS_OLAP.LOAD_WORKLOAD_CACHE(:MY_ID, DBMS_OLAP.WORKLOAD_NEW, DBMS_
OLAP.FILTER_NONE, 'Payroll ', 7);

Validating a Workload
Prior to loading a workload, one of the three VALIDATE_WORKLOAD procedures:

■ VALIDATE_WORKLOAD_USER

■ VALIDATE_WORKLOAD_CACHE

■ VALIDATE_WORKLOAD_TRACE

may be called to check that the workload exists. This procedure does not check that

the contents of the workload are valid, it merely checks that the workload exists.

The following are examples of validating the three types of workload:

DECLARE
 isitgood NUMBER;
 err_text VARCHAR2(200);
BEGIN
 DBMS_OLAP.VALIDATE_WORKLOAD_CACHE (isitgood, err_text);
END;

DECLARE
 isitgood NUMBER;
 err_text VARCHAR2(200);
BEGIN
 DBMS_OLAP.VALIDATE_WORKLOAD_TRACE ('SH', isitgood, err_text);
END;
DECLARE
 isitgood NUMBER;
 err_text VARCHAR2(200);
BEGIN
 DBMS_OLAP.VALIDATE_WORKLOAD_USER ('SH', 'USER_WORKLOAD', isitgood, err_text);
END;
 Summary Advisor 16-17

Using the Summary Advisor
Removing a Workload
When workloads are no longer needed, they can be removed using the procedure

PURGE_WORKLOAD. You can delete all workloads or a specific collection.

DBMS_OLAP.PURGE_WORKLOAD Procedure

The following is an example of removing a specific workload

VARIABLE workload_id NUMBER;
DBMS_OLAP.PURGE_WORKLOAD(:workload_id);

This example removes all workloads.

EXECUTE DBMS_OLAP.PURGE_WORKLOAD(DBMS_OLAP.WORKLOAD_ALL);

Using Filters with the Summary Advisor
The entire contents of a workload do not have to be used during the

recommendation process. Any workload can be filtered by creating a filter item

using the procedure ADD_FILTER_ITEM, which is described is Table 16–8.

DBMS_OLAP.ADD_FILTER_ITEM Procedure

Table 16–7 DBMS_OLAP.PURGE_WORKLOAD Procedure Parameters

Parameter Datatype Description

workload_id NUMBER An ID number originally assigned by the create_id
call. If the value of workload_id is set to DBMS_
OLAP.WORKLOAD_ALL, then all workload collections
for the current user will be deleted

Table 16–8 DBMS_OLAP.ADD_FILTER_ITEM Procedure Parameters

Parameter Datatype Description

filter_id NUMBER An ID that uniquely describes the filter. It is generated by
the create_id call
16-18 Data Warehousing Guide

Using the Summary Advisor
filter_name VARCHAR2 APPLICATION
String-workload's application column. An example of how
to load a SQL Cache workload is shown below.

BASETABLE
String-base tables referenced by workload queries. Name
must be fully qualified including owner and table name
(SH.SALES)

CARDINALITY
Numerical-sum of cardinality of the referenced base tables

FREQUENCY
Numerical-workload's frequency column

LASTUSE
Date-workload's lastuse column. Not used by SQL Cache
workload.

OWNER
String-workload's owner column. Expected in uppercase
unless owner defined explicitly to be not all in uppercase.

PRIORITY
Numerical-workload's priority column. Not used by SQL
Cache workload.

RESPONSETIME
Numerical-workload's responsetime column. Not used by
SQL Cache workload.

TRACENAME
String-list of oracle trace collection names. Only used by a
Trace Workload

string_list VARCHAR2 A comma-separated list of strings

number_min NUMBER The lower bound of a numerical range. NULL represents
the lowest possible value

number_max NUMBER The upper bound of a numerical range, NULLfor no upper
bound. NULL represents the highest possible value

date_min VARCHAR2 The lower bound of a date range. NULL represents the
lowest possible date value

date_max VARCHAR2 The upper bound of a date range. NULL represents the
highest possible date value

Table 16–8 DBMS_OLAP.ADD_FILTER_ITEM Procedure Parameters

Parameter Datatype Description
 Summary Advisor 16-19

Using the Summary Advisor
The Advisor supports nine different filter item types. For each filter item, Oracle

stores an attribute that tells Advisor how to apply the selection rule. For example,

an APPLICATION item requires a string attribute that can be either a single name as

in GREG, or it can be a comma-separated list of names like GREG, ROSE, KALLIE ,

HANNAH. For a single name, the Advisor takes the value and only accept the

workload query if the application name exactly matches the supplied name. For a

list of names, the queries application name must appear in the list. Referring to my

example, a query whose application name is GREG would match either a single

application filter item containing GREG or the list GREG, ROSE, KALLIE , HANNAH.
Conversely, a query whose application is KALLIE will only match the filter item list

GREG, ROSE, KALLIE , HANNAH.

For numeric filter items such as CARDINALITY, the attribute represents a possible

range of values. Advisor will determine if the filter item represents a bounded

range such as 500 to 1000000, or it could be an exact match like 1000 to 1000. When

the range value is specified as NULL, then the value is infinitely small or large,

depending upon which attribute is set.

Data filters, such as LASTUSE behave similar to numeric filter except Advisor treats

the range test as two dates. A NULL value indicates infinity.

You can define a number of different types of filter as shown in Table 16–9:

Table 16–9 Workload Filters and Attribute Types

Filter Item
Name string_list

number_
min

number_
max date_min date_max Description

APPLICATION Required N/A N/A N/A N/A Query should be from the list
applications defined in
string_list. Multiple
application names must
separated by commas

CARDINALITY N/A Required Required N/A N/A Sum of cardinalities of base
tables found in a query

LASTUSE N/A N/A N/A Required Required Last execution date of the
query

FREQUENCY N/A Required Required N/A N/A Number of executions for the
query

OWNER Required N/A N/A N/A N/A List of database users who
executed queries. Multiple
owners must be separated by
commas
16-20 Data Warehousing Guide

Using the Summary Advisor
When dealing with a workload, the client can optionally attach a filter to reduce or

refine the set of target SQL statements. If no filter is attached, then all target SQL

statements will be collected or used.

A new filter can be created with the CREATE_ID call. Filter items can be added to

the filter by using the ADD_FILTER_ITEM call. When a filter is created, an entry is

stored in the read-only view SYSTEM.MVIEW_FILTER.

Below is an example illustrating how to add three different types of filter

1. Declare an output variable to receive the new identifier:

VARIABLE MY_ID NUMBER:

2. Call the CREATE_ID function to generate a new identifier:

CALL DBMS_OLAP.CREATE_ID(:MY_ID);

PRIORITY N/A Required Required N/A N/A User-supplied priority value

BASETABLE Required N/A N/A N/A N/A List of fully qualified tables
that appear in a candidate
query. Multiple tables must
be separated by commas

RESPONSETIME N/A Required Required N/A N/A Query response time in
seconds

TRACENAME Required N/A N/A N/A N/A List of Oracle Trace collection
names. If this filter is not
used, then the collection
operation will choose the
entire Oracle Trace collection,
regardless of it collection
name. Multiple names must
be separated by commas

Table 16–9 Workload Filters and Attribute Types

Filter Item
Name string_list

number_
min

number_
max date_min date_max Description
 Summary Advisor 16-21

Using the Summary Advisor
3. Add filter items:

CALL DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'BASETABLE', 'SCOTT.EMP',
 NULL, NULL, NULL, NULL);
CALL DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'OWNER', 'SCOTT,PAYROLL,PERSONNEL',
 NULL, NULL, NULL, NULL);
CALL DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'FREQUENCY', NULL,
 500, NULL, NULL, NULL);

The above example defines a filter with three filter items. The first filter will only

allow queries that reference the table SCOTT.EMP. The second item will accept

queries that were executed by one of the users SCOTT, PAYROLL or PERSONNEL.
Finally, the third filter item accepts queries that execute at least 500 times.

Note, all filter items must match for a single query to be accepted. If any of the

items fail to match, then the query will not be accepted.

In the previous example, three filters will be applied against the data. However,

each filter item could have created with its only unique filter id, thus creating three

different filters as shown below:

VARIABLE MY_ID NUMBER:
CALL DBMS_OLAP.CREATE_ID(:MY_ID);
CALL DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'BASETABLE',
 'SCOTT.EMP', NULL, NULL, NULL, NULL);
CALL DBMS_OLAP.CREATE_ID(:MY_ID);
CALL DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'OWNER',
 'SCOTT, PAYROLL,PERSONNEL', NULL, NULL, NULL, ULL);
CALL DBMS_OLAP.CREATE_ID(:MY_ID);
CALL DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'FREQUENCY', NULL, 500,NULL, NULL,NULL);

Removing a Filter
A filter can be removed at anytime by calling the procedure PURGE_FILTER which

is described below. You can delete a specific filter or all filters. You can remove all

filters using the purge_filter call by specifying DBMS_OLAP.FILTER_ALL as

the filter ID.
16-22 Data Warehousing Guide

Using the Summary Advisor
DBMS_OLAP.PURGE_FILTER Procedure

DBMS_OLAP.PURGE_FILTER Example
VARIABLE MY_FILTER_ID NUMBER:
CALL DBMS_OLAP.PURGE_FILTER(:MY_FILTER_ID);
CALL DBMS_OLAP.PURGE_FILTER(DBMS_OLAP.FILTER_ALL);

Recommending Materialized Views
The analysis and advisory procedure for materialized views is RECOMMEND_
MVIEW_STRATEGY in the DBMS_OLAP package. This procedure automatically

recommends which materialized view to create, retain, or drop. RECOMMEND_
MVIEW_STRATEGY uses structural statistics and optionally workload statistics.

You can call this procedure to obtain a list of materialized view recommendations

that you can select, modify, or reject. Alternatively, you can use the DBMS_OLAP
package directly in your PL/SQL programs for the same purpose.

In order to use the Summary advisor, you must have the SELECT ANY TABLE
privilege.

This procedure has the following parameters:

RECOMMEND_MVIEW_STRATEGY Procedure Parameters

Table 16–10 DBMS_OLAP.PURGE_FILTER Procedure Parameters

Parameter Datatype Description

filterid NUMBER A filter ID number used to identify the filter to be
deleted

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information about the DBMS_OLAP package

Table 16–11 RECOMMEND_MVIEW_STRATEGY Parameters

Parameter I/O Datatype Description

run_id IN NUMBER A return value that uniquely identifies the
current operation

workoad_id IN NUMBER An optional workload ID that maps to a
workload in the current repository
 Summary Advisor 16-23

Using the Summary Advisor
The results from calling this package are put in the table SYSTEM.MVIEW_
RECOMMENDATIONSshown in Table 16–12. The output can be queried directly using

the MVIEW_RECOMMENDATION table or a structured report can be generated using

the DBMS_OLAP.GENERATE_MVIEW_REPORT procedure.

filter_id IN NUMBER An optional filter ID that maps to a set of
user-supplied filter items

storage_in_
bytes

IN NUMBER Maximum storage, in bytes, that can be used for
storing materialized views. This number must
be non-negative

retention_pct IN NUMBER Number between 0 and 100 that specifies the
percent of existing materialized view storage
that must be retained, based on utilization on
the actual or hypothetical workload.

A materialized view is retained if the
cumulative space, ranked by utilization, is
within the retention threshold specified (or if it
is explicitly listed in retention_list).
Materialized views that have a NULL utilization
(for example, non-dimensional materialized
views) are always retained.

retention_list IN VARCHAR2 Comma-separated list of materialized view
table names

A drop recommendation is not made for any
materialized view that appears in this list

fact_table_
filter

IN VARCHAR2 Comma-separated list of fact table names to
analyze, or NULL to analyze all fact tables

Table 16–12 MVIEW_RECOMMENDATIONS

Column Datatype Description

RUNID NUMBER Run ID identifying a unique advisor call

FACT_TABLES VARCHAR2(1000) A comma-separated list of fully
qualified table names for structured
recommendations

GROUPING_LEVELS VARCHAR2(2000) A comma-separated list of grouping
levels, if any, for structured
recommendations

Table 16–11 RECOMMEND_MVIEW_STRATEGY Parameters

Parameter I/O Datatype Description
16-24 Data Warehousing Guide

Using the Summary Advisor
Below are several examples of how you can use the Advisor recommendation

process:

In this example, a workload is loaded from the table USER_WORKLOAD and no

filtering is applied to the workload. The fact table is called sales .

DECLARE
 workload_id NUMBER;
 run_id NUMBER;

BEGIN
-- load the workload
 DBMS_OLAP.CREATE_ID (workload_id);

QUERY_TEXT LONG Query text of materialized view if
RECOMMENDED_ACTION is CREATE;
NULL otherwise

RECOMMENDATION_
NUMBER

NUMBER Unique identifier for this
recommendation

RECOMMENDED_ACTION VARCHAR(6) CREATE, RETAIN, or DROP

MVIEW_OWNER VARCHAR2(30) Owner of the materialized view
summary if RECOMMENDED_ACTION is
RETAIN or DROP; NULL otherwise

MVIEW_NAME VARCHAR2(30) Name of the materialized view if
RECOMMENDED_ACTION is RETAIN or
DROP; NULL otherwise

STORAGE_IN_BYTES NUMBER Actual or estimated storage in bytes
Storage

PCT_PERFORMANCE_GAIN NUMBER The expected incremental improvement
in performance obtained by accepting
this recommendation relative to the
initial condition, assuming that all
previous recommendations have been
accepted, or NULL if unknown.
Performance gain

BENEFIT_TO_COST_
RATIO

NUMBER Ratio of the incremental improvement in
performance to the size of the
materialized view in bytes, or NULL if
unknown. Benefit / Cost

Table 16–12 MVIEW_RECOMMENDATIONS

Column Datatype Description
 Summary Advisor 16-25

Using the Summary Advisor
 DBMS_OLAP.LOAD_WORKLOAD_USER(workload_id, DBMS_OLAP.WORKLOAD_NEW,
 DBMS_OLAP.FILTER_NONE, 'SH', 'USER_WORKLOAD');
-- run recommend_mv
 DBMS_OLAP.CREATE_ID (run_id);
 DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(run_id, workload_id, NULL, 1000000, 100,
NULL, 'sales');
END;

In this example, the workload is derived from the current contents of the SQL cache

and then filtered for only the application called sales_hist :

DECLARE
 workload_id NUMBER;
 filter_id NUMBER;
 run_id NUMBER;
BEGIN
-- add a filter for application sales_hist
 DBMS_OLAP.CREATE_ID(filter_id);
 DBMS_OLAP.ADD_FILTER_ITEM(filter_id, 'APPLICATION', 'sales_hist ', NULL, NULL,
NULL, NULL);
-- load the workload
 DBMS_OLAP.CREATE_ID(workload_id);
 DBMS_OLAP.LOAD_WORKLOAD_CACHE (workload_id, DBMS_OLAP.WORKLOAD_NEW, DBMS_
OLAP.FILTER_NONE, NULL
,NULL);
-- run recommend_mv
 DBMS_OLAP.CREATE_ID (run_id);
 DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(run_id, workload_id, NULL, 1000000, 100,
NULL, 'sales ');
END;

In this example, the workload is from Oracle Trace without filtering.

DECLARE
 workload_id NUMBER;
 run_id NUMBER;
BEGIN
 DBMS_OLAP.CREATE_ID (workload_id);
 DBMS_OLAP.LOAD_WORKLOAD_TRACE (workload_id, DBMS_OLAP.WORKLOAD_NEW, DBMS_
OLAP.FILTER_NONE, NULL,NULL,NULL);
-- run recommend_mv
 DBMS_OLAP.CREATE_ID(run_id);
 DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(run_id, workload_id, NULL,10000000, 100,
NULL, 'sales');
END;
16-26 Data Warehousing Guide

Using the Summary Advisor
SQL Script Generation
When the Summary Advisor is run using Oracle Enterprise Manager the facility is

provided to implement the advisors recommendations. But when the procedure

RECOMMEND_MVIEW_STRATEGY is called directly the procedure GENERATE_
MVIEW_SCRIPT must be used to create a script which will implement the advisors

recommendations. The parameters are as follows:

GENERATE_MVIEW_SCRIPT (filename VARCHAR2, id NUMBER, tablespace_name VARCHAR2)

■ filename

Contains the fully-specified output file name

■ id

Contains the Advisor run ID for which the script will be created

■ tablespace_name

Contains an optional tablespace in which new materialized views will be

placed.

The resulting script is a executable SQL file that can contain DROP and CREATE
statements for materialized views. For new materialized views, the name of the

materialized views is auto-generated by combining the user-specified ID and the

Rank value of the materialized views. It is recommended that the user review the

generated SQL script before attempting to execute it.

The filename specification requires the same security model as described in the

GENERATE_MVIEW_REPORT routine.

Example 16–1 Summary Advisor Sample Output

/***
** Oracle Summary Advisor 9i - Production
**
** Summary Advisor Recommendation Script
***/
/***
** Recommendations for run ID #9999
***/
/***
** Rank 1
** Storage 0 bytes
** Gain 0.00%
** Benefit Ratio 0.00
 Summary Advisor 16-27

Using the Summary Advisor
** SELECT COUNT(*), AVG(dollar_cost)
** FROM sales
** GROUP BY store_key
***/

CREATE MATERIALIZED VIEW mv_id_9999_rank_1
 TABLESPACE user
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE AS
 SELECT COUNT(*),AVG(dollar_cost) FROM sales GROUP BY store_key;

/***

** Rank 2
** Storage 6,000 bytes
** Gain 13.00%
** Benefit Ratio 874.00
***/

DROP MATERIALIZED VIEW sh.mview_fact_01;

/***

** Rank 3
** Storage 6,000 bytes
** Gain 76.00%
** Benefit Ratio 8,744.00
**
** SELECT COUNT(*), MAX(dollar_cost), MIN(dollar_cost)
** FROM sh.sales
** WHERE store_key IN (10, 23)
** AND unit_sales > 5000
** GROUP BY store_key, promotion_key
***/

CREATE MATERIALIZED VIEW mv_id_9999_rank_3
 TABLESPACE user
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE AS
 SELECT COUNT(*), MAX(dollar_cost), MIN(dollar_cost) FROM sh.sales
 WHERE store_key IN (10,23) AND unit_sales > 5000 GROUP BY
 store_key, promotion_key;
16-28 Data Warehousing Guide

Using the Summary Advisor
Summary Data Report
A Summary Data Report offers you data about workloads and filters, and then

generates recommendations. The report format is HTML and the contents are

■ Activity Journal Details

This section describes the recorded data. A journal is simply a mechanism to

permit the Advisor to record any interesting event that may occur during

processing. During processing, many decisions can made by the Advisor that

are not necessarily visible to you. The journal enables you to see the internal

processes and steps taken by the Summary Advisor. It contains

work-in-progress messages, debugging messages and error messages for a

particular Advisor element

■ Activity Log Details

This section describes the various Advisor activities that have been executed by

the current user. Activities include workload filter maintenance, workload

collections and analysis operations

■ Materialized View Recommendations

This section contains detail information regarding Advisor analysis sessions. It

presents various recommendations on the creation of new materialized views as

well as the removal of inappropriate or expensive materialized views

■ Materialized View Usage

This section describes the Advisor's results from an evaluation of existing

materialized views

■ Workload Collection Details

The workload report lists the details of each SQL query for the current user's

workload collections. The report is arranged by table references

■ Workload Filter Details

The workload filter report lists details of workload filters for the current user

■ Workload Query Details

This report contains the actual SQL queries for the current user's workload

collections. Each query can be linked back to an entry in the Workload report
 Summary Advisor 16-29

Using the Summary Advisor
PL/SQL Interface Syntax
PROCEDURE GENERATE_MVIEW_REPORT
 (file_name IN VARCHAR2,
 id IN NUMBER,
 flags IN NUMBER)

Parameters
■ file_name

A valid output file specification. Note, the Oracle9i restricts file access within

Oracle Stored Procedures. This means that file locations and names must adhere

to the known file permissions in the Policy Table. See the Security and

Performance section of the Oracle9i Java Developer’s Guide for more information

on file permissions.

■ id

The Advisor ID number used to collect or analyze data. NULL indicates all data

for the requested section.

■ flags

Report flags to indicate required detail sections. Multiple sections can be

selected by referencing the following constants.

RPT_ALL

RPT_ACTIVITY

RPT_JOURNAL

RPT_RECOMMENDATION

RPT_USAGE

RPT_WORKLOAD_DETAIL

RPT_WORKLOAD_FILTER

RPT_WORKLOAD_QUERY

Because of the Oracle security model, report output file directories must be granted

read and write permission prior to executing this call. The call is described in the

the Oracle9i Java Developer’s Guide and is as follows:

CALL DBMS_JAVA.GRANT_PERMISSION('Oracle-user-goes-here ',
 'java.io.FilePermission ', 'directory-spec-goes-here/* ', 'read, write ');
16-30 Data Warehousing Guide

Using the Summary Advisor
Below is a example of how to call this report

CALL DBMS_OLAP.GENERATE_MVIEW_REPORT(
'/usr/mydev/myname/report.html ', 0, DBMS_OLAP.RPT_ALL);

This produces the HTML file /usr/mydev/myname/report.html . In this

example, report.html is the Table of Contents for the report. It will contain links

to each section of the report, which are found in external files with names derived

from the original filename. Because no ID was specified for the second parameter,

all data for the current user will be reported. If, for example, you want only a report

on a particular recommendation run, then that run ID should be passed into the

call. The report can generate the following HTML files:

■ xxxx.html

Table of Contents

■ xxxx_log.html

Activity Section

■ xxxx_jou.html

Journal Section

■ xxxx_fil.html

Workload Filter Section

■ xxxx_wrk.html

Workload Section

■ xxxx_rec.html

Materialized View Recommendation Section

■ xxxx_usa.html

Materialized View Usage Section

xxxx is the filename portion of the user-supplied file specification.

All files appear in the same directory, which is the one you specify.

When Recommendations are no Longer Required
Every time the Summary Advisor is run, a new set of recommendations is created.

When they are no longer required, they should be removed using the procedure

PURGE_RESULTS. You can remove all results or those for a specific run.
 Summary Advisor 16-31

Using the Summary Advisor
DBMS_OLAP.PURGE_RESULTS Procedure

CALL DBMS_OLAP.PURGE_RESULTS (DBMS_OLAP.RUNID_ALL);

Stopping the Recommendation Process
If the Summary Advisor takes too long to make its recommendations using the

procedure RECOMMEND_MVIEW_STRATEGY, you can stop it by calling the procedure

SET_CANCELLED and passing in the run_id for this recommendation process.

DBMS_OLAP.SET_CANCELLED Procedure

Sample Sessions
Here are some complete examples of how to use the Summary Advisor.

REM===
REM Setup for demos
REM===
CONNECT system/manager
GRANT SELECT ON mview_recommendations to sh;
GRANT SELECT ON mview_workload to sh;
GRANT SELECT ON mview_filter to sh;
DISCONNECT

Table 16–13 DBMS_OLAP.PURGE_RESULTS Procedure Parameters

Parameter Datatype Description

run_id NUMBER An ID used to identify the results to delete

Table 16–14 DBMS_OLAP.SET_CANCELLED Procedure Parameters

Parameter Datatype Description

run_id NUMBER Id that uniquely identifies an advisor analysis
operation. This call can be used to cancel a long
running workload collection as well as an Advisor
analysis session
16-32 Data Warehousing Guide

Using the Summary Advisor
REM***
REM * Demo 1: Materialized View Recommendation With User Workload*
REM***
REM===
REM Step 1. Define user workload table and add artificial workload queries.
REM===
CONNECT sh/sh
CREATE TABLE user_workload(
 query VARCHAR2(40),
 owner VARCHAR2(40),
 application VARCHAR2(30),
 frequency NUMBER,
 lastuse DATE,
 priority NUMBER,
 responsetime NUMBER,
 resultsize NUMBER
)
/
INSERT INTO user_workload values
(

'SELECT SUM(s.quantity_sold)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id and p.prod_category = ''Boys ''
 GROUP BY p.prod_category ', 'SH', 'app1 ', 10, NULL, 5, NULL, NULL
)
/
INSERT INTO user_workload values
(

'SELECT SUM(s.amount)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id AND
 p.prod_category = ''Girls ''
 GROUP BY p.prod_category ',

'SH', 'app1 ', 10, NULL, 6, NULL, NULL
)
/
INSERT INTO user_workload values
(

'SELECT SUM(quantity_sold)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id and
 p.prod_category = ''Men''
 GROUP BY p.prod_category

',
'SH', 'app1 ', 11, NULL, 3, NULL, NULL
 Summary Advisor 16-33

Using the Summary Advisor
)
/
INSERT INTO user_workload VALUES
(

'SELECT SUM(quantity_sold)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id and
 p.prod_category in (''Women'', ''Men'')
 GROUP BY p.prod_category ', 'SH', 'app1 ', 1, NULL, 8, NULL, NULL
)
/

REM===
REM Step 2. Create a new identifier to identify a new collection in the
REM internal repository and load the user-defined workload into the
REM workload collection without filtering the workload.
REM
===
VARIABLE WORKLOAD_ID NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:workload_id);
EXECUTE DBMS_OLAP.LOAD_WORKLOAD_USER(:workload_id,\
 DBMS_OLAP.WORKLOAD_NEW,\
 DBMS_OLAP.FILTER_NONE, 'SH', 'USER_WORKLOAD');
SELECT COUNT(*) FROM SYSTEM.MVIEW_WORKLOAD
 WHERE workloadid = :workload_id;

REM==
REM Step 3. Create a new identifier to identify a new filter object. Add
REM two filter items such that the filter can filter out workload
REM queries with priority >= 5 and frequency <= 10.
REM===
VARIABLE filter_id NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:filter_id);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:filter_id, 'PRIORITY',
 NULL, 5, NULL, NULL, NULL);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:filter_id, 'FREQUENCY', NULL,
 NULL, 10, NULL, NULL);
SELECT COUNT(*) FROM SYSTEM.MVIEW_FILTER
WHERE filterid = :filter_id;

REM===
REM Step 4. Recommend materialized views with part of the previous workload
REM collection that satisfy the filter conditions. Create a new
REM identifier to identify the recommendation output.
REM===
16-34 Data Warehousing Guide

Using the Summary Advisor
VARIABLE RUN_ID NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:run_id);
EXECUTE DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(:run_id, :workload_id, :filter_id,
100000, 100, NULL, NULL);
SELECT COUNT(*) FROM SYSTEM.MVIEW_RECOMMENDATIONS;

REM===
REM Step 5. Generate HTML reports on the output.
REM===
EXECUTE DBMS_OLAP.GENERATE_MVIEW_REPORT('/tmp/output1.html ', :run_id, DBMS_
OLAP.RPT_RECOMMENDATION);

REM==
REM Step 6. Cleanup current output, filter and workload collection
REM FROM the internal repository, truncate the user workload table
REM for new user workloads.
REM==
EXECUTE DBMS_OLAP.PURGE_RESULTS(:run_id);
EXECUTE DBMS_OLAP.PURGE_FILTER(:filter_id);
EXECUTE DBMS_OLAP.PURGE_WORKLOAD(:workload_id);
SELECT COUNT(*) FROM SYSTEM.MVIEW_WORKLOAD
 WHERE workloadid = :WORKLOAD_ID;
TRUNCATE TABLE user_workload;

DROP TABLE user_workload;
DISCONNECT

REM***
REM * Demo 2: Materialized View Recommendation With SQL Cache. *
REM***
CONNECT sh/sh

REM===
REM Step 1. Run some applications or some SQL queries, so that the
REM Oracle SQL Cache is populated with target queries.
REM===
REM Clear Pool of SQL queries

ALTER SYSTEM FLUSH SHARED_POOL;

SELECT SUM(s.quantity_sold)
FROM sales s, products p
WHERE s.prod_id = p.prod_id
 GROUP BY p.prod_category;
 Summary Advisor 16-35

Using the Summary Advisor
SELECT SUM(s.amount)
FROM sales s, products p
WHERE s.prod_id = p.prod_id
GROUP BY p.prod_category;

SELECT t.calendar_month_desc, SUM(s.amount) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

SELECT t.calendar_month_desc, SUM(s.amount) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

REM==
REM Step 2. Create a new identifier to identify a new collection in the
REM internal repository and grab a snapshot of the Oracle SQL cache
REM into the new collection.
REM==
EXECUTE DBMS_OLAP.CREATE_ID(:WORKLOAD_ID);
EXECUTE DBMS_OLAP.LOAD_WORKLOAD_CACHE(:WORKLOAD_ID,
 DBMS_OLAP.WORKLOAD_NEW, DBMS_OLAP.FILTER_NONE, NULL, 1);
SELECT COUNT(*) FROM SYSTEM.MVIEW_WORKLOAD
 WHERE workloadid = :WORKLOAD_ID;

REM==
REM Step 3. Recommend materialized views with all of the workload workload
REM and no filtering.
REM===
EXECUTE DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(:run_id, :workload_id, DBMS_
OLAP.FILTER_NONE, 10000000, 100, NULL, NULL);
SELECT COUNT(*) FROM SYSTEM.MVIEW_RECOMMENDATIONS;

REM===
REM Step 4. Generate HTML reports on the output.
REM==
EXECUTE DBMS_OLAP.GENERATE_MVIEW_REPORT('/tmp/output2.html ', :run_id,
 DBMS_OLAP.RPT_RECOMMENDATION);

REM==
REM Step 5. Evaluate materialized views.
REM==
EXECUTE DBMS_OLAP.CREATE_ID(:run_id);
EXECUTE DBMS_OLAP.EVALUATE_MVIEW_STRATEGY(:run_id, workload_id, DBMS_
16-36 Data Warehousing Guide

Estimating Materialized View Size
OLAP.FILTER_NONE);
REM==
REM Step 5. Cleanup current output, and workload collection
REM FROM the internal repository.
REM===
EXECUTE DBMS_OLAP.PURGE_RESULTS(:run_id);
EXECUTE DBMS_OLAP.PURGE_WORKLOAD(:workload_id);
DISCONNECT

REM===
REM Cleanup for demos.
REM===
CONNECT system/manager
REVOKE SELECT ON MVIEW_RECOMMENDATIONS FROM sh;
REVOKE SELECT ON MVIEW_WORKLOAD FROM sh;
REVOKE SELECT ON MVIEW_FILTER FROM sh;
DISCONNECT

Estimating Materialized View Size
A materialized view occupies storage space in the database, so it is helpful to know

how much space will be required before it is created. Rather than guess or wait until

it has been created and then discover that insufficient space is available in the

tablespace, use the procedure ESTIMATE_MVIEW_SIZE. Calling this procedure

instantly returns an estimate of the size in bytes for the materialized view.

Table 16–15 lists the parameters to this procedure.

ESTIMATE_MVIEW_SIZE Parameters

Table 16–15 ESTIMATE_MVIEW_SIZE Procedure Parameters

Parameter Description

stmt_id Arbitrary string used to identify the statement in an EXPLAIN
PLAN.

select_clause The SELECT statement to be analyzed.

num_rows Estimated cardinality.

num_bytes Estimated number of bytes.
 Summary Advisor 16-37

Is a Materialized View Being Used?
ESTIMATE_SUMMARY_SIZE returns:

■ The number of rows it expects in the materialized view

■ The size of the materialized view in bytes

In the example shown below, the query specified in the materialized view is passed

into the ESTIMATE_SUMMARY_SIZE procedure. Note that the SQL statement is

passed in without a semicolon at the end.

DBMS_OLAP.ESTIMATE_SUMMARY_SIZE ('simple_store',
 'SELECT product_key1, product_key2,
 SUM(dollar_sales) AS sum_dollar_sales,
 SUM(unit_sales) AS sum_unit_sales,
 SUM(dollar_cost) AS sum_dollar_cost,
 SUM(customer_count) AS no_of_customers
 FROM fact GROUP BY product_key1, product_key2', no_of_rows, mv_size);

The procedure returns two values: an estimate for the number of rows, and the size

of the materialized view in bytes, as shown below.

No of Rows: 17284
Size of Materialized view (bytes): 2281488

Is a Materialized View Being Used?
One of the major administrative problems with materialized views is knowing

whether they are being used. Some materialized views might be in regular use.

Others could have been created for a one-time problem that has now been resolved.

However, the users who requested this level of analysis might never have told you

that it was no longer required, so the materialized views remain in the database

occupying storage space and possibly being regularly refreshed.

If a workload is available, then it can advise you which materialized views are in

use. The workload will report only on materialized views that were used while it

was collecting statistics. Therefore, if too small a window is chosen, not all the

materialized views that are in use will be reported. To obtain the information, the

procedure EVALUATE_MVIEW_STRATEGY is called. It analyzes the data and then

the results can be viewed through the SYSTEM_MVIEW_EVALUATIONS view.
16-38 Data Warehousing Guide

Is a Materialized View Being Used?
DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure

In the example below, the utilization of materialized views is analyzed and the

results are displayed.

DBMS_OLAP.EVALUATE_MVIEW_STRATEGY(:run_id, NULL, DBMS_OLAP.FILTER_NONE);

Shown below is a sample output obtained by querying the view SYSTEM.MVIEW_
EVALUATIONS, which provides the following information:

■ Materialized view owner and name

■ Rank of this materialized view in descending benefit-to-cost ratio

■ Size of the materialized view in bytes

■ The number of times the materialized view appears in the workload

■ The cumulative benefit (calculated each time the materialized view is used)

■ The benefit-to-cost ratio (calculated as the incremental improvement in

performance to the size of the materialized view)

MVIEW_OWNER MVIEW_NAME RANK SIZE FREQ CUMULATIVE BENEFIT
----------- ------------------- ----- ------ ---- ---------- ----------
GROCERY STORE_MIN_SUM 1 340 1 9001 26.4735294
GROCERY STORE_MAX_SUM 2 380 1 9001 23.6868421
GROCERY STORE_STDCNT_SUM 3 3120 1 3000.38333 .961661325
GROCERY QTR_STORE_PROMO_SUM 4 196020 2 0 0
GROCERY STORE_SALES_SUM 5 340 1 0 0
GROCERY STORE_SUM 6 21 10 0 0

Table 16–16 DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure Parameters

Parameter Datatype Description

run_id NUMBER The Advisor-assigned id for the current session

workload_id NUMBER An optional workload id that maps to a user-supplied
workload

filter_id NUMBER The optional filter id is used to identify a filter against
the target workload
 Summary Advisor 16-39

Is a Materialized View Being Used?
16-40 Data Warehousing Guide

Part V

 Warehouse Performance

This section deals with ways to improve your data warehouse’s performance, and

contains the following chapters:

■ Schema Modeling Techniques

■ SQL for Aggregation in Data Warehouses

■ SQL for Analysis in Data Warehouses

■ Advanced Analytic Services

■ Using Parallel Execution

■ Query Rewrite

 Schema Modeling Tech
17

Schema Modeling Techniques

The following topics provide information about schemas in a data warehouse:

■ Schemas in Data Warehouses

■ Optimizing Star Queries
niques 17-1

Schemas in Data Warehouses
Schemas in Data Warehouses
A schema is a collection of database objects, including tables, views, indexes, and

synonyms.

There is a variety of ways of arranging schema objects in the schema models

designed for data warehousing. The most common data-warehouse schema model

is a star schema. For this reason, the Sales History schema (the basis for most of

the examples in this book) uses a star schema. However, a significant but smaller

number of data warehouses use third normal form (3NF) schemas, or other schemas

that are more highly normalized than star schemas. These 3NF data warehouses are

typically very large data warehouses, which are used primarily for loading data,

feeding data marts, and executing longer-running queries.

Some features of the Oracle9i database, such as the star transformation feature

described in this chapter, are specific to star schemas. However, the vast majority of

Oracle's data warehousing features are equally applicable to both star schemas and

other schemas.

Star Schemas
The star schema is the simplest data warehouse schema. It is called a star schema

because the entity-relationship diagram of this schema resembles a star, with points

radiating from a central table. The center of the star consists of one or more fact

tables and the points of the star are the dimension tables.

A star schema is characterized by one or more very large fact tables that contain the

primary information in the data warehouse and a number of much smaller

dimension tables (or lookup tables), each of which contains information about the

entries for a particular attribute in the fact table.

A star query is a join between a fact table and a number of dimension tables. Each

dimension table is joined to the fact table using a primary key to foreign key join,

but the dimension tables are not joined to each other.

The cost-based optimizer recognizes star queries and generates efficient execution

plans for them. Star queries are not recognized by the rule-based optimizer.

A typical fact table contains keys and measures. For example, in the Sales
History schema, the fact table, sales , contain the measures quantity_sold,
amount , and cost , and the keys cust_id , time_id , prod_id , channel_id , and

promo_id . The dimension tables are customers , times , products , channels,
and promotions . The product dimension table, for example, contains

information about each product number that appears in the fact table.
17-2 Data Warehousing Guide

Schemas in Data Warehouses
A star join is a primary key to foreign key join of the dimension tables to a fact

table.

The main advantages of star schemas are that they:

■ Provide a direct and intuitive mapping between the business entities being

analyzed by end users and the schema design.

■ Provide highly optimized performance for typical data warehouse queries.

Figure 17–1 presents a graphical representation of a star schema.

Figure 17–1 Star Schema

Snowflake Schemas
The snowflake schema is a more complex data warehouse model than a star

schema, and is a type of star schema. It is called a snowflake schema because the

diagram of the schema resembles a snowflake.

Snowflake schemas normalize dimensions to eliminate redundancy. That is, the

dimension data has been grouped into multiple tables instead of one large table. For

example, a product dimension table in a star schema might be normalized into a

products table, a product_category table, and a product_manufacturer
table in a snowflake schema. While this saves space, it increases the number of

dimension tables and requires more foreign key joins. The result is more complex

queries and reduced query performance. Figure 17–2 presents a graphical

representation of a snowflake schema.

customers

products

Dimension Table Dimension Table

channels

sales
(amount_sold,
quantity_sold)

times

Fact Table
 Schema Modeling Techniques 17-3

Optimizing Star Queries
Figure 17–2 Snowflake Schema

Optimizing Star Queries
You should consider the following when using star queries:

■ Tuning Star Queries

■ Using Star Transformation

Tuning Star Queries
To get the best possible performance for star queries, it is important to follow some

basic guidelines:

■ A bitmap index should be built on each of the foreign key columns of the fact

table or tables.

■ The initialization parameter STAR_TRANSFORMATION_ENABLED should be set

to TRUE. This enables an important optimizer feature for star-queries. It is set to

FALSE by default for backwards-compatibility.

■ The cost-based optimizer should be used. This does not apply solely to star

schemas: all data warehouses should always use the cost-based optimizer.

Note: Oracle Corporation recommends you choose a star schema

over a snowflake schema unless you have a clear reason not to.

customers

products

channels

sales
(amount_sold,
quantity_sold)

times

suppliers

countries
17-4 Data Warehousing Guide

Optimizing Star Queries
When a data warehouse satisfies these conditions, the majority of the star queries

running in the data warehouse will use a query execution strategy known as the

star transformation. The star transformation provides very efficient query

performance for star queries.

Using Star Transformation
The star transformation is a powerful optimization technique that relies upon

implicitly rewriting (or transforming) the SQL of the original star query. The end

user never needs to know any of the details about the star transformation. Oracle's

cost-based optimizer automatically chooses the star transformation where

appropriate.

The star transformation is a cost-based query transformation aimed at executing

star queries efficiently. Oracle processes a star query using two basic phases. The

first phase retrieves exactly the necessary rows from the fact table (the result set).
Because this retrieval utilizes bitmap indexes, it is very efficient. The second phase

joins this result set to the dimension tables. An example of an end user query is:

"What were the sales and profits for the grocery department of stores in the west

and southwest sales districts over the last three quarters?" This is a simple star

query.

Star Transformation with a Bitmap Index
A prerequisite of the star transformation is that there be a single-column bitmap

index on every join column of the fact table. These join columns include all foreign

key columns.

For example, the sales table of the Sales History schema has bitmap indexes on

the time_id , channel_id , cust_id , prod_id , and promo_id columns.

Consider the following star query:

SELECT ch.channel_class, c.cust_city, t.calendar_quarter_desc,
 SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c, channels ch
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id

Note: Bitmap indexes are available only if you have purchased the

Oracle9i Enterprise Edition. In Oracle9i Standard Edition, bitmap

indexes and star transformation are not available.
 Schema Modeling Techniques 17-5

Optimizing Star Queries
AND c.cust_state_province = 'CA'
AND ch.channel_desc in ('Internet','Catalog')
AND t.calendar_quarter_desc IN ('1999-Q1','1999-Q2')
GROUP BY ch.channel_class, c.cust_city, t.calendar_quarter_desc;

Oracle processes this query in two phases. In the first phase, Oracle uses the bitmap

indexes on the foreign key columns of the fact table to identify and retrieve only the

necessary rows from the fact table. That is, Oracle will retrieve the result set from

the fact table using essentially the following query:

SELECT ... FROM sales
WHERE time_id IN
 (SELECT time_id FROM times
 WHERE calendar_quarter_desc IN('1999-Q1','1999-Q2'))
 AND cust_id IN
 (SELECT cust_id FROM customers WHERE cust_state_province='CA')
 AND channel_id IN
 (SELECT channel_id FROM channels WHERE channel_desc IN('Internet','Catalog'));

This is the transformation step of the algorithm, because the original star query has

been transformed into this subquery representation. This method of accessing the

fact table leverages the strengths of Oracle's bitmap indexes. Intuitively, bitmap

indexes provide a set-based processing scheme within a relational database. Oracle

has implemented very fast methods for doing set operations such as AND (an

intersection in standard set-based terminology), OR (a set-based union), MINUS, and

COUNT.

In this star query, a bitmap index on time_id is used to identify the set of all rows

in the fact table corresponding to sales in 1999-Q 1. This set is represented as a

bitmap (a string of 1's and 0's that indicates which rows of the fact table are

members of the set).

A similar bitmap is retrieved for the fact table rows corresponding to the sale from

1999-Q2 . The bitmap OR operation is used to combine this set of Q1 sales with the

set of Q2 sales.

Additional set operations will be done for the customer dimension and the

product dimension. At this point in the star query processing, there are three

bitmaps. Each bitmap corresponds to a separate dimension table, and each bitmap

represents the set of rows of the fact table that satisfy that individual dimension's

constraints.

These three bitmaps are combined into a single bitmap using the bitmap AND
operation. This final bitmap represents the set of rows in the fact table that satisfy
17-6 Data Warehousing Guide

Optimizing Star Queries
all of the constraints on the dimension table. This is the result set, the exact set of

rows from the fact table needed to evaluate the query. Note that none of the actual

data in the fact table has been accessed. All of these operations rely solely on the

bitmap indexes and the dimension tables. Because of the bitmap indexes'

compressed data representations, the bitmap set-based operations are extremely

efficient.

Once the result set is identified, the bitmap is used to access the actual data from the

sales table. Only those rows that are required for the end user's query are retrieved

from the fact table. At this point, Oracle has effectively joined all of the dimension

tables to the fact table using bitmap indexes. This technique provides excellent

performance because Oracle is joining all of the dimension tables to the fact table

with one logical join operation, rather than joining each dimension table to the fact

table independently.

The second phase of this query is to join these rows from the fact table (the result

set) to the dimension tables. Oracle will use the most efficient method for accessing

and joining the dimension tables. Many dimension are very small, and table scans

are typically the most efficient access method for these dimension tables. For large

dimension tables, table scans may not be the most efficient access method. In the

example above, a bitmap index on product.department can be used to quickly

identify all of those products in the grocery department. Oracle's cost-based

optimizer automatically determines which access method is most appropriate for a

given dimension table, based upon the cost-based optimizer's knowledge about the

sizes and data distributions of each dimension table.

The specific join method (as well as indexing method) for each dimension table will

likewise be intelligently determined by the cost-based optimizer. A hash join is

often the most efficient algorithm for joining the dimension tables. The final answer

is returned to the user once all of the dimension tables have been joined. The query

technique of retrieving only the matching rows from one table and then joining to

another table is commonly known as a semi-join.

Execution Plan for a Star Transformation with a Bitmap Index
The following typical execution plan might result from "Star Transformation with a

Bitmap Index" on page 17-5:

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 Schema Modeling Techniques 17-7

Optimizing Star Queries
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ITERATOR
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CUSTOMERS
 BITMAP INDEX RANGE SCAN SALES_CUST_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

In this plan, the fact table is accessed through a bitmap access path based on a

bitmap AND, of three merged bitmaps. The three bitmaps are generated by the

BITMAP MERGE row source being fed bitmaps from row source trees underneath it.

Each such row source tree consists of a BITMAP KEY ITERATION row source which

fetches values from the subquery row source tree, which in this example is a full

table access. For each such value, the BITMAP KEY ITERATIONrow source retrieves

the bitmap from the bitmap index. After the relevant fact table rows have been

retrieved using this access path, they are joined with the dimension tables and

temporary tables to produce the answer to the query.

Star Transformation with a Bitmap Join Index
In addition to bitmap indexes, you can use a bitmap join index during star

transformations. Assume you have the following additional index structure:

CREATE BITMAP INDEX sales_c_state_bjix
ON sales(customers.cust_state_province)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id;

The processing of the same star query using the bitmap join index is similiar to the

previous example. The only difference is that Oracle will utilize the join index,
17-8 Data Warehousing Guide

Optimizing Star Queries
instead of a single-table bitmap index, to access the customer data in the first phase

of the star query.

Execution Plan for a Star Transformation with a Bitmap Join Index
The following typical execution plan might result from "Execution Plan for a Star

Transformation with a Bitmap Join Index" on page 17-9:

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ALL
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX SINGLE VALUE SALES_C_STATE_BJIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

The difference between this plan as compared to the previous one is that the inner

part of the bitmap index scan for the customer dimension has no subselect. This is

because the join predicate information on customer.cust_state_province
can be satisfied with the bitmap join index sales_c_state_bjix .

How Oracle Chooses to Use Star Transformation
The star transformation is a cost-based transformation in the following sense. The

optimizer generates and saves the best plan it can produce without the

transformation. If the transformation is enabled, the optimizer then tries to apply it

to the query and, if applicable, generates the best plan using the transformed query.

Based on a comparison of the cost estimates between the best plans for the two
 Schema Modeling Techniques 17-9

Optimizing Star Queries
versions of the query, the optimizer will then decide whether to use the best plan

for the transformed or untransformed version.

If the query requires accessing a large percentage of the rows in the fact table, it

might be better to use a full table scan and not use the transformations. However, if

the constraining predicates on the dimension tables are sufficiently selective that

only a small portion of the fact table needs to be retrieved, the plan based on the

transformation will probably be superior.

Note that the optimizer generates a subquery for a dimension table only if it decides

that it is reasonable to do so based on a number of criteria. There is no guarantee

that subqueries will be generated for all dimension tables. The optimizer may also

decide, based on the properties of the tables and the query, that the transformation

does not merit being applied to a particular query. In this case the best regular plan

will be used.

Star Transformation Restrictions
Star transformation is not supported for tables with any of the following

characteristics:

■ Queries with a table hint that is incompatible with a bitmap access path

■ Queries that contain bind variables

■ Tables with too few bitmap indexes. There must be a bitmap index on a fact

table column for the optimizer to generate a subquery for it.

■ Remote fact tables. However, remote dimension tables are allowed in the

subqueries that are generated.

■ Anti-joined tables

■ Tables that are already used as a dimension table in a subquery

■ Tables that are really unmerged views, which are not view partitions

The star transformation may not be chosen by the optimizer for the following cases:

■ Tables that have a good single-table access path

■ Tables that are too small for the transformation to be worthwhile

In addition, temporary tables will not be used by star transformation under the

following conditions:

■ The database is in read-only mode

■ The star query is part of a transaction that is in serializable mode
17-10 Data Warehousing Guide

 SQL for Aggregation in Data War
18

SQL for Aggregation in Data Warehouses

This chapter discusses aggregation of SQL, a basic aspect of data warehousing. It

contains these topics:

■ Overview of SQL for Aggregation in Data Warehouses

■ ROLLUP Extension to GROUP BY

■ CUBE Extension to GROUP BY

■ GROUPING Functions

■ GROUPING SETS Expression

■ Composite Columns

■ Concatenated Groupings

■ Considerations when Using Aggregation

■ Computation Using the WITH Clause
ehouses 18-1

Overview of SQL for Aggregation in Data Warehouses
Overview of SQL for Aggregation in Data Warehouses
Aggregation is a fundamental part of data warehousing. To improve aggregation

performance in your warehouse, Oracle provides the following extensions to the

GROUP BY clause:

■ CUBE and ROLLUP Extensions to the GROUP BY Clause

■ The Three GROUPING Functions

■ GROUPING SETS Expression

The CUBE, ROLLUP, and GROUPING SETS extensions to SQL make querying and

reporting easier and faster. ROLLUP calculates aggregations such as SUM, COUNT,
MAX, MIN, and AVG at increasing levels of aggregation, from the most detailed up to

a grand total. CUBEis an extension similar to ROLLUP, enabling a single statement to

calculate all possible combinations of aggregations. CUBE can generate the

information needed in cross-tabulation reports with a single query.

CUBE, ROLLUP, and the GROUPING SETS extension let you specify exactly the

groupings of interest in the GROUP BY clause. This allows efficient analysis across

multiple dimensions without performing a CUBE operation. Computing a full cube

creates a heavy processing load, so replacing cubes with grouping sets can

significantly increase performance. CUBE, ROLLUP, and grouping sets produce a

single result set that is equivalent to a UNION ALL of differently grouped rows.

To enhance performance, CUBE, ROLLUP, and GROUPING SETS can be parallelized:

multiple processes can simultaneously execute all of these statements. These

capabilities make aggregate calculations more efficient, thereby enhancing database

performance, and scalability.

The three GROUPINGfunctions help you identify the group each row belongs to and

enable sorting subtotal rows and filtering results.

See Also: Oracle9i SQL Reference for further details
18-2 Data Warehousing Guide

Overview of SQL for Aggregation in Data Warehouses
Analyzing Across Multiple Dimensions
One of the key concepts in decision support systems is multidimensional analysis:

examining the enterprise from all necessary combinations of dimensions. We use

the term dimension to mean any category used in specifying questions. Among the

most commonly specified dimensions are time, geography, product, department,

and distribution channel, but the potential dimensions are as endless as the varieties

of enterprise activity. The events or entities associated with a particular set of

dimension values are usually referred to as facts. The facts might be sales in units or

local currency, profits, customer counts, production volumes, or anything else

worth tracking.

Here are some examples of multidimensional requests:

■ Show total sales across all products at increasing aggregation levels for a

geography dimension, from state to country to region, for 1999 and 2000.

■ Create a cross-tabular analysis of our operations showing expenses by territory

in South America for 1999 and 2000. Include all possible subtotals.

■ List the top 10 sales representatives in Asia according to 2000 sales revenue for

automotive products, and rank their commissions.

All the requests above involve multiple dimensions. Many multidimensional

questions require aggregated data and comparisons of data sets, often across time,

geography or budgets.

To visualize data that has many dimensions, analysts commonly use the analogy of

a data cube, that is, a space where facts are stored at the intersection of n
dimensions. Figure 18–1 shows a data cube and how it can be used differently by

various groups. The cube stores sales data organized by the dimensions of

product , market , and time . Note that this is only a metaphor: the actual data is

physically stored in normal tables. The cube data consists of both detail and

aggregated data.
 SQL for Aggregation in Data Warehouses 18-3

Overview of SQL for Aggregation in Data Warehouses
Figure 18–1 Logical Cubes and Views by Different Users

You can retrieve slices of data from the cube. These correspond to cross-tabular

reports such as the one shown in Table 18–1. Regional managers might study the

data by comparing slices of the cube applicable to different markets. In contrast,

product managers might compare slices that apply to different products. An ad hoc

user might work with a wide variety of constraints, working in a subset cube.

Answering multidimensional questions often involves accessing and querying huge

quantities of data, sometimes in millions of rows. Because the flood of detailed data

generated by large organizations cannot be interpreted at the lowest level,

aggregated views of the information are essential. Aggregations, such as sums and

counts, across many dimensions are vital to multidimensional analyses. Therefore,

analytical tasks require convenient and efficient data aggregation.

Optimized Performance
Not only multidimensional issues, but all types of processing can benefit from

enhanced aggregation facilities. Transaction processing, financial and

manufacturing systems—all of these generate large numbers of production reports

Regional Mgr. View

Financial Mgr. View Ad Hoc View

PROD

Time

M
ar

ke
t

SALES
Product Mgr. View
18-4 Data Warehousing Guide

Overview of SQL for Aggregation in Data Warehouses
needing substantial system resources. Improved efficiency when creating these

reports will reduce system load. In fact, any computer process that aggregates data

from details to higher levels will benefit from optimized aggregation performance.

Oracle9i extensions provide aggregation features and bring many benefits,

including:

■ Simplified programming requiring less SQL code for many tasks

■ Quicker and more efficient query processing

■ Reduced client processing loads and network traffic because aggregation work

is shifted to servers

■ Opportunities for caching aggregations because similar queries can leverage

existing work

An Aggregate Scenario
To illustrate the use of the GROUP BY extension, this chapter uses the Sales
History data of the common schema. All the examples refer to data from this

scenario. The hypothetical company has sales across the world and tracks sales by

both dollars and quantities information. Because there are many rows of data, the

queries shown here typically have tight constraints on their WHERE clauses to limit

the results to a small number of rows.

Example 18–1 Simple Cross-Tabular Report, with Subtotals

Example 18–1 is a sample cross-tabular report showing the total sales by country_
id and channel_desc for the US and UK through the Internet and Direct Sales in

September 2000:

Table 18–1 Simple Cross-Tabular Report, with Subtotals Shaded

Country

Channel

UK US Total

Direct Sales 1,378,126 2,835,557 4,213,683

Internet 911,739 1,732,240 2,643,979

Total 2,289,865 4,567,797 6,857,662
 SQL for Aggregation in Data Warehouses 18-5

Overview of SQL for Aggregation in Data Warehouses
Consider that even a simple report like Example 18–1, with just nine values in its

grid, generates four subtotals and a grand total. The subtotals are the shaded

numbers. Half of the values needed for this report would not be calculated with a

query that requested SUM(amount_sold) and did a GROUP BY(channel_desc,
country_id). To get the higher-level aggregates would require additional queries.

Database commands that offer improved calculation of subtotals bring major

benefits to querying, reporting, and analytical operations.

SELECT channel_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc='2000-09'
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, country_id);

CHANNEL_DESC CO SALES$
-------------------- -- --------------
Direct Sales UK 1,378,126
Direct Sales US 2,835,557
Direct Sales 4,213,683
Internet UK 911,739
Internet US 1,732,240
Internet 2,643,979
 UK 2,289,865
 US 4,567,797
 6,857,662

Interpreting NULLs in Examples
NULLs returned by the GROUP BY extensions are not always the traditional null

meaning value unknown. Instead, a NULL may indicate that its row is a subtotal.

For instance, the first NULL value shown in Example 18–1 is in the Calendar_
month_desc column. This NULL means that the row is a subtotal for "All Months"

returned by this query for the Direct Sales channel, which is a subtotal for

September and October 2000. To avoid introducing another non-value in the

database system, these subtotal values are not given a special tag.

See "GROUPING Functions" on page 18-13 for details on how the NULLs
representing subtotals are distinguished from NULLs stored in the data.
18-6 Data Warehousing Guide

ROLLUP Extension to GROUP BY
ROLLUP Extension to GROUP BY
ROLLUP enables a SELECT statement to calculate multiple levels of subtotals across

a specified group of dimensions. It also calculates a grand total. ROLLUP is a simple

extension to the GROUP BY clause, so its syntax is extremely easy to use. The

ROLLUP extension is highly efficient, adding minimal overhead to a query.

The action of ROLLUP is straightforward: it creates subtotals that roll up from the

most detailed level to a grand total, following a grouping list specified in the

ROLLUP clause. ROLLUP takes as its argument an ordered list of grouping columns.

First, it calculates the standard aggregate values specified in the GROUP BY clause.

Then, it creates progressively higher-level subtotals, moving from right to left

through the list of grouping columns. Finally, it creates a grand total.

ROLLUPcreates subtotals at n+1 levels, where n is the number of grouping columns.

For instance, if a query specifies ROLLUP on grouping columns of time , region ,

and department (n=3), the result set will include rows at four aggregation levels.

When to Use ROLLUP
Use the ROLLUP extension in tasks involving subtotals.

■ It is very helpful for subtotaling along a hierarchical dimension such as time or

geography. For instance, a query could specify a ROLLUP(y, m, day) or

ROLLUP(country, state, city) .

■ For data warehouse administrators using summary tables, ROLLUPcan simplify

and speed up the maintenance of summary tables.

ROLLUP Syntax
ROLLUP appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY ROLLUP(grouping_column_reference_list)

Example 18–2 ROLLUP Example

This example uses the data in the sales history store data, the same data as was used

in Example 18–1. The ROLLUP is across three dimensions.

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 SQL for Aggregation in Data Warehouses 18-7

ROLLUP Extension to GROUP BY
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet 5,414,303
 13,924,743

Note that results do not always add due to rounding.

This query returns the following sets of rows:

■ Regular aggregation rows that would be produced by GROUP BY without using

ROLLUP

■ First-level subtotals aggregating across country_id for each combination of

channel_desc and calendar_month

■ Second-level subtotals aggregating across calendar_month_desc and

country_id for each channel_desc value

■ A grand total row

Partial Rollup
You can also roll up so that only some of the sub-totals will be included. This partial
rollup uses the following syntax:

GROUP BY expr1, ROLLUP(expr2, expr3);
18-8 Data Warehousing Guide

ROLLUP Extension to GROUP BY
In this case, the GROUP BY clause creates subtotals at (2+1=3) aggregation levels.

That is, at level (expr1 , expr2 , expr3), (expr1 , expr2), and (expr1).

Example 18–3 Partial ROLLUP Example

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY channel_desc, ROLLUP(calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet 5,414,303

This query returns the following sets of rows:

■ Regular aggregation rows that would be produced by GROUP BY without using

ROLLUP

■ First-level subtotals aggregating across country_id for each combination of

channel_desc and calendar_month_desc

■ Second-level subtotals aggregating across calendar_month_desc and

country_id for each channel_desc value

■ It does not produce a grand total row
 SQL for Aggregation in Data Warehouses 18-9

CUBE Extension to GROUP BY
CUBE Extension to GROUP BY
CUBE takes a specified set of grouping columns and creates subtotals for all of their

possible combinations. In terms of multidimensional analysis, CUBE generates all

the subtotals that could be calculated for a data cube with the specified dimensions.

If you have specified CUBE(time , region , department) , the result set will

include all the values that would be included in an equivalent ROLLUP statement

plus additional combinations. For instance, in Example 18–1, the departmental

totals across regions (279,000 and 319,000) would not be calculated by a

ROLLUP(time , region , department) clause, but they would be calculated by a

CUBE(time , region , department) clause. If n columns are specified for a CUBE,
there will be 2 to the n combinations of subtotals returned. Example 18–3 on

page 18-9 gives an example of a three-dimension cube.

When to Use CUBE
Consider Using CUBE in any situation requiring cross-tabular reports. The data

needed for cross-tabular reports can be generated with a single SELECT using

CUBE. Like ROLLUP, CUBE can be helpful in generating summary tables. Note that

population of summary tables is even faster if the CUBE query executes in parallel.

CUBE is typically most suitable in queries that use columns from multiple

dimensions rather than columns representing different levels of a single dimension.

For instance, a commonly requested cross-tabulation might need subtotals for all

the combinations of month , state , and product . These are three independent

dimensions, and analysis of all possible subtotal combinations is commonplace. In

contrast, a cross-tabulation showing all possible combinations of year , month , and

day would have several values of limited interest, because there is a natural

hierarchy in the time dimension. Subtotals such as profit by day of month summed

across year would be unnecessary in most analyses. Relatively few users need to

ask "What were the total sales for the 16th of each month across the year?" See

"Hierarchy Handling in ROLLUP and CUBE" on page 18-28 for an example of

handling rollup calculations efficiently.

CUBE Syntax
CUBE appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY CUBE (grouping_column_reference_list)

See Also: Chapter 21, "Using Parallel Execution" for information

on parallel execution
18-10 Data Warehousing Guide

CUBE Extension to GROUP BY
Example 18–4 CUBE Example

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet UK 1,788,310
Internet US 3,625,993
Internet 5,414,303
 2000-09 UK 2,289,865
 2000-09 US 4,567,797
 2000-09 6,857,662
 2000-10 UK 2,264,622
 2000-10 US 4,802,459
 2000-10 7,067,081
 UK 4,554,487
 US 9,370,256
 13,924,743

This query illustrates CUBE aggregation across three dimensions
 SQL for Aggregation in Data Warehouses 18-11

CUBE Extension to GROUP BY
Partial CUBE
Partial CUBEresembles partial ROLLUPin that you can limit it to certain dimensions

and precede it with columns outside the CUBE operator. In this case, subtotals of all

possible combinations are limited to the dimensions within the cube list (in

parentheses), and they are combined with the preceding items in the GROUP BY list.

Partial CUBE Syntax
GROUP BY expr1, CUBE(expr2, expr3)

The above syntax example calculates 2*2, or 4, subtotals. That is:

■ (expr1 , expr2 , expr3)

■ (expr1 , expr2)

■ (expr1 , expr3)

■ (expr1)

Example 18–5 Partial CUBE Example

Using the sales database, you can issue the following statement:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY channel_desc, CUBE(calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Direct Sales 8,510,440
18-12 Data Warehousing Guide

GROUPING Functions
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet UK 1,788,310
Internet US 3,625,993
Internet 5,414,303

Calculating Subtotals without CUBE
Just as for ROLLUP, multiple SELECT statements combined with UNION ALL
statements could provide the same information gathered through CUBE. However,

this might require many SELECT statements. For an n-dimensional cube, 2 to the n
SELECT statements are needed. In the three-dimension example, this would mean

issuing SELECT statements linked with UNION ALL. So many SELECT statements

yield inefficient processing and very lengthy SQL.

Consider the impact of adding just one more dimension when calculating all

possible combinations: the number of SELECT statements would double to 16. The

more columns used in a CUBE clause, the greater the savings compared to the

UNION ALL approach.

GROUPING Functions
Two challenges arise with the use of ROLLUP and CUBE. First, how can you

programmatically determine which result set rows are subtotals, and how do you

find the exact level of aggregation for a given subtotal? You often need to use

subtotals in calculations such as percent-of-totals, so you need an easy way to

determine which rows are the subtotals. Second, what happens if query results

contain both stored NULL values and "NULL" values created by a ROLLUP or CUBE?
How can you differentiate between the two?

GROUPING Function
GROUPING handles these problems. Using a single column as its argument,

GROUPINGreturns 1 when it encounters a NULLvalue created by a ROLLUPor CUBE
operation. That is, if the NULL indicates the row is a subtotal, GROUPINGreturns a 1.

Any other type of value, including a stored NULL, returns a 0.
 SQL for Aggregation in Data Warehouses 18-13

GROUPING Functions
GROUPING Syntax
GROUPING appears in the selection list portion of a SELECT statement. Its form is:

SELECT … [GROUPING(dimension_column)…] …
 GROUP BY … {CUBE | ROLLUP} (dimension_column)

Example 18–6 GROUPING Example

This example uses GROUPING to create a set of mask columns for the result set

shown in Example 18–3. The mask columns are easy to analyze programmatically.

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), ’9,999,999,999’) SALES$,
 GROUPING(channel_desc) as Ch,
 GROUPING(calendar_month_desc) AS Mo,
 GROUPING(country_id) AS Co
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$ CH MO CO
-------------------- -------- -- -------------- --------- --------- ---------
Direct Sales 2000-09 UK 1,378,126 0 0 0
Direct Sales 2000-09 US 2,835,557 0 0 0
Direct Sales 2000-09 4,213,683 0 0 1
Direct Sales 2000-10 UK 1,388,051 0 0 0
Direct Sales 2000-10 US 2,908,706 0 0 0
Direct Sales 2000-10 4,296,757 0 0 1
Direct Sales 8,510,440 0 1 1
Internet 2000-09 UK 911,739 0 0 0
Internet 2000-09 US 1,732,240 0 0 0
Internet 2000-09 2,643,979 0 0 1
Internet 2000-10 UK 876,571 0 0 0
Internet 2000-10 US 1,893,753 0 0 0
Internet 2000-10 2,770,324 0 0 1
Internet 5,414,303 0 1 1
 13,924,743 1 1 1
18-14 Data Warehousing Guide

GROUPING Functions
A program can easily identify the detail rows above by a mask of "0 0 0" on the T, R,

and D columns. The first level subtotal rows have a mask of "0 0 1", the second level

subtotal rows have a mask of "0 1 1", and the overall total row has a mask of "1 1 1".

You can resolve ambiguity in result sets by using the GROUPINGand other functions

as shown in the code below.

Example 18–7 GROUPING Example

SELECT DECODE(GROUPING(channel_desc), 1, 'All Channels', channel_desc) AS
Channel,
 DECODE(GROUPING(country_id), 1, 'All Countries', country_id) AS Country,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc= '2000-09'
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, country_id);

CHANNEL COUNTRY SALES$
-------------------- ------------- --------------
Direct Sales UK 1,378,126
Direct Sales US 2,835,557
Direct Sales All Countries 4,213,683
Internet UK 911,739
Internet US 1,732,240
Internet All Countries 2,643,979
All Channels UK 2,289,865
All Channels US 4,567,797
All Channels All Countries 6,857,662

These results include text values clarifying which rows have aggregations.

Grouping function used to differentiate aggregate-based "NULL" from stored NULL
values.

To understand the SQL statement above, note its first column specification, which

handles the channel_desc column. In the first line of the SQL code above:

SELECT DECODE(GROUPING(channel_desc), 1, ’All Channels’, channel_desc)
 AS Channel,
 SQL for Aggregation in Data Warehouses 18-15

GROUPING Functions
The channel_desc value is determined with a DECODE function that contains a

GROUPING function. The GROUPING function returns a 1 if a row value is an

aggregate created by ROLLUP or CUBE, otherwise it returns a 0. The DECODE
function then operates on the GROUPING function's results. It returns the text "All

Channels" if it receives a 1 and the channel_desc value from the database if it

receives a 0. Values from the database will be either a real value such as "Internet" or

a stored NULL. The second column specification, displaying country_id , works

the same way.

When to Use GROUPING
The GROUPING function is not only useful for identifying NULLs, it also enables

sorting subtotal rows and filtering results. In Example 18–8, you retrieve a subset of

the subtotals created by a CUBE and none of the base-level aggregations. The

HAVING clause constrains columns that use GROUPING functions.

Example 18–8 GROUPING Example

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 GROUPING(channel_desc) CH, GROUPING(calendar_month_desc) MO,
GROUPING(country_id) CO
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_id)
HAVING
 (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1 AND
 GROUPING(country_id)=1) OR
 (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1) OR
 (GROUPING(country_id)=1 AND GROUPING(calendar_month_desc)= 1);

CHANNEL_DESC C CO SALES$ CH MO CO
-------------------- - -- -------------- --------- --------- ---------
 UK 4,554,487 1 1 0
 US 9,370,256 1 1 0
Direct Sales 8,510,440 0 1 1
Internet 5,414,303 0 1 1
 13,924,743 1 1 1
18-16 Data Warehousing Guide

GROUPING Functions
Compare the result set of Example 18–8 with that in Example 18–3 on page 18-9 to

see how Example 18–8 is a precisely specified group: it contains only the yearly

totals, regional totals aggregated over time and department , and the grand total.

GROUPING_ID Function
To find the GROUP BY level of a particular row, a query must return GROUPING
function information for each of the GROUP BY columns. If we do this using the

GROUPING function, every GROUP BY column requires another column using the

GROUPING function. For instance, a four-column GROUP BY clause needs to be

analyzed with four GROUPING functions. This is inconvenient to write in SQL and

increases the number of columns required in the query. When you want to store the

query result sets in tables, as with materialized views, the extra columns waste

storage space.

To address these problems, Oracle9i introduces the GROUPING_ID function.

GROUPING_ID returns a single number that enables you to determine the exact

GROUP BY level. For each row, GROUPING_ID takes the set of 1’s and 0’s that would

be generated if you used the appropriate GROUPING functions and concatenates

them, forming a bit vector. The bit vector is treated as a binary number, and the

number’s base-10 value is returned by the GROUPING_ID function. For instance, if

you group with the expression CUBE(a, b) the possible values are as shown in

Table 18–2:

GROUPING_ID clearly distinguishes groupings created by grouping set

specification, and it is very useful during refresh and rewrite of materialized views.

Table 18–2 GROUPING_ID Example for CUBE(a, b)

Aggregation Level Bit Vector GROUPING_ID

a, b 0 0 0

a 0 1 1

b 1 0 2

Grand Total 1 1 3
 SQL for Aggregation in Data Warehouses 18-17

GROUPING Functions
GROUP_ID Function
While the extensions to GROUP BY offer power and flexibility, they also allow

complex result sets that can include duplicate groupings. The GROUP_ID function

lets you distinguish among duplicate groupings. If there are multiple sets of rows

calculated for a given level, GROUP_ID assigns the value of 0 to all the rows in the

first set. All other sets of duplicate rows for a particular grouping are assigned

higher values, starting with 1. For example, consider the following query, which

generates a duplicate grouping:

Example 18–9 GROUP_ID Example

SELECT country_id, cust_state_province, SUM(amount_sold),
 GROUPING_ID(country_id, cust_state_province) GROUPING_ID, GROUP_ID()
FROM sales, customers, times
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 times.time_id= '30-OCT-00'
 AND country_id IN ('FR', 'ES')
GROUP BY GROUPING SETS (country_id, ROLLUP(country_id, cust_state_province));

CO CUST_STATE_PROVINCE SUM(AMOUNT_SOLD) GROUPING_ID GROUP_ID()
-- -- ---------------- ----------
ES Alicante 8939 0 0
ES Almeria 1053 0 0
ES Barcelona 6312 0 0
ES Girona 220 0 0
ES Malaga 8137 0 0
ES Salamanca 324 0 0
ES Valencia 7588 0 0
FR Alsace 5099 0 0
FR Aquitaine 13183 0 0
FR Brittany 3938 0 0
FR Centre 2968 0 0
FR Ile-de-France 16449 0 0
FR Languedoc-Roussillon 20228 0 0
FR Midi-Pyrenees 2322 0 0
FR Pays de la Loire 1096 0 0
FR Provence-Alpes-Cote d’Azur 1208 0 0
FR Rhtne-Alpes 7637 0 0
 106701 3 0
ES 32573 1 0
FR 74128 1 0
ES 32573 1 1
FR 74128 1 1
18-18 Data Warehousing Guide

GROUPING SETS Expression
The query above generates the following groupings: (country_id , cust_state_
province), (country_id), (country_id), and (). Note that the grouping

(country_id) is repeated twice. The syntax for GROUPING SETS is explained in

"GROUPING SETS Expression" on page 18-19.

This function helps you filter out duplicate groupings from the result. For example,

you can filter out duplicate (region) groupings from the above example by adding

a HAVING clause condition GROUP_ID()=0 to the query.

GROUPING SETS Expression
You can selectively specify the set of groups that you want to create using a

GROUPING SETS expression within a GROUP BY clause. This allows precise

specification across multiple dimensions without computing the whole CUBE. For

example, you can say:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY GROUPING SETS((channel_desc, calendar_month_desc, country_id),
 (channel_desc, country_id), (calendar_month_desc, country_id));

Note that this statement uses composite columns, described in "Composite

Columns" on page 18-21. This statement calculates aggregates over three groupings:

■ (channel_desc, calendar_month_desc, country_id)

■ (channel_desc, country_id)

■ (calendar_month_desc, country_id)

Compare the above statement with the alternative below, which uses the CUBE
operation and the GROUPING_ID function to return the desired rows:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 GROUPING_ID(channel_desc, calendar_month_desc, country_id) gid
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 SQL for Aggregation in Data Warehouses 18-19

GROUPING SETS Expression
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_id)
HAVING GROUPING_ID(channel_desc, calendar_month_desc, country_id)=0
 OR GROUPING_ID(channel_desc, calendar_month_desc, country_id)=2
 OR GROUPING_ID(channel_desc, calendar_month_desc, country_id)=4;;

The above statement computes all the 8 (2 *2 *2) groupings, though only the above 3

groups are of interest to you.

Another alternative is the following statement, which is lengthy due to several

unions. This statement requires three scans of the base table, making it inefficient.

CUBE and ROLLUP can be thought of as grouping sets with very specific semantics.

The following equivalences show this fact:

CUBE(a, b, c)

is equivalent to

GROUPING SETS ((a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ())

ROLLUP(a, b, c)

is equivalent to

GROUPING SETS ((a, b, c), (a, b), ())

GROUPING SETS Syntax
GROUPING SETS syntax lets you define multiple groupings in the same query.

GROUP BY computes all the groupings specified and combines them with UNION
ALL. For example,

GROUP BY GROUPING sets (channel_desc, calendar_month_desc, country_id)

is equivalent to:

GROUP BY channel_desc
UNION ALL
GROUP BY calendar_month_desc
UNION ALL country_id

Table 18–3 shows grouping sets specification and equivalent GROUP BY
specification. Note that some examples use composite columns.
18-20 Data Warehousing Guide

Composite Columns
In the absence of an optimizer that looks across query blocks to generate the

execution plan, a query based on UNION would need multiple scans of the base

table, sales. This could be very inefficient as fact tables will normally be huge. Using

GROUPING SETS statements, all the groupings of interest are available in the same

query block.

Composite Columns
A composite column is a collection of columns that are treated as a unit during the

computation of groupings. You specify the columns in parentheses as in the

following statement:

ROLLUP (year, (quarter, month), day)

Table 18–3 GROUPING SETS Statements and Equivalent GROUP BY Statements

GROUPING SETS Statements Equivalent GROUP BY Statements

GROUP BY
GROUPING SETS(a, b, c)

GROUP BY a UNION ALL

GROUP BY b UNION ALL

GROUP BY c

GROUP BY
GROUPING SETS(a, b, (b, c))

GROUP BY a UNION ALL

GROUP BY b UNION ALL

GROUP BY b, c

GROUP BY
GROUPING SETS((a, b, c))

GROUP BY a, b, c

GROUP BY
GROUPING SETS(a, (b), ())

GROUP BY a UNION ALL

GROUP BY b UNION ALL

GROUP BY ()

GROUP BY
GROUPING SETS(a, ROLLUP(b, c))

GROUP BY a UNION ALL

GROUP BY ROLLUP(b, c)
 SQL for Aggregation in Data Warehouses 18-21

Composite Columns
In this statement, the data is not rolled up across year and quarter, but is instead

equivalent to the following groupings of a UNION ALL:

■ (year , quarter , month , day),

■ (year , quarter , month),

■ (year)

■ ()

Here, (quarter , month) form a composite column and are treated as a unit. In

general, composite columns are useful in ROLLUP, CUBE, GROUPING SETS, and

concatenated groupings. For example, in CUBE or ROLLUP, composite columns

would mean skipping aggregation across certain levels. That is,

GROUP BY ROLLUP(a, (b, c))

is equivalent to

GROUP BY a, b, c UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Here, (b , c) are treated as a unit and rollup will not be applied across (b , c) . It is

as if you have an alias, for example z, for (b , c) and the GROUP BY expression

reduces to GROUP BY ROLLUP(a, z) . Compare this with the normal rollup as in:

GROUP BY ROLLUP(a, b, c)

which would be

GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNION ALL
GROUP BY ().

Similarly,

GROUP BY CUBE((a, b), c)
would be equivalent to
GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY c UNION ALL
GROUP By ()

In GROUPING SETS, a composite column is used to denote a particular level of

GROUP BY. See Table 18–3 for more examples of composite columns.
18-22 Data Warehousing Guide

Composite Columns
Example 18–10 Composite Columns Example

You do not have full control over what aggregation levels you want with CUBE and

ROLLUP. For example, the following statement:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);

results in Oracle computing the following groupings:

■ (channel_desc, calendar_month_desc, country_id)

■ (channel_desc, calendar_month_desc)

■ (channel_desc)

■ ()

If you are just interested in grouping of lines (1), (3) and (4) in the above, you cannot

limit the calculation to those groupings without using composite columns. With

composite columns, this is possible by treating month and country as a single unit

while rolling up. Columns enclosed in parentheses are treated as a unit while

computing CUBE and ROLLUP. Thus, you would say:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, (calendar_month_desc, country_id));
 SQL for Aggregation in Data Warehouses 18-23

Concatenated Groupings
Concatenated Groupings
Concatenated groupings offer a concise way to generate useful combinations of

groupings. Groupings specified with concatenated groupings yield the

cross-product of groupings from each grouping set. The cross-product operation

enables even a small number of concatenated groupings to generate a large number

of final groups. The concatenated groupings are specified simply by listing multiple

grouping sets, cubes, and rollups, and separating them with commas. Here is an

example of concatenated grouping sets:

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

The SQL above defines the following groupings:

(a, c), (a, d), (b, c), (b, d)

Concatenation of grouping sets is very helpful for these reasons:

■ Ease of query development - you need not enumerate all groupings manually

■ Use by applications - SQL generated by OLAP applications often involves

concatenation of grouping sets, with each grouping set defining groupings

needed for a dimension

Example 18–11 Concatenated Groupings Example 1

You can also specify more than one grouping in the GROUP BY clause. For example,

if you want aggregated sales values for each product rolled up across all levels in

the time dimension (year , month and day), and across all levels in the

geography dimension (region), you can issue the following statement:

SELECT channel_desc, calendar_year, calendar_quarter_desc, country_id,
 cust_state_province,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY
 channel_desc,
 GROUPING SETS (ROLLUP(calendar_year, calendar_quarter_desc),
 ROLLUP(country_id, cust_state_province)) ;
18-24 Data Warehousing Guide

Concatenated Groupings
This results in the following groupings:

■ (channel_desc , calendar_year , calendar_quarter_desc)

■ (channel_desc , calendar_year)

■ (channel_desc)

■ (channel_desc , country_id , cust_state_province)

■ (channel_desc , country_id)

■ (channel_desc)

This is the cross-product of the following:

1. The expression, channel_desc

2. ROLLUP(calendar_year , calendar_quarter_desc), which is equivalent to

((calendar_year , calendar_quarter_desc), (calendar_year), ())

3. ROLLUP(country_id, cust_state_province) , which is equivalent to

((country_id , cust_state_province), (country_id), ())

Note that the output above contains two occurrences of (channel_desc) group. To

filter out the extra (channel_desc) group, the query could use a GROUP_ID
function.

Another concatenated join example is given below, showing the cross product of

two grouping sets:

Example 18–12 Concatenated Groupings Example 2

SELECT country_id, cust_state_province,
 calendar_year, calendar_quarter_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY
 GROUPING SETS (country_id, cust_state_province),
 GROUPING SETS (calendar_year, calendar_quarter_desc);
 SQL for Aggregation in Data Warehouses 18-25

Concatenated Groupings
This statement results in the computation of groupings:

■ (country_id , year), (country_id , calendar_quarter_desc), (cust_
state_province , year) and (cust_state_province , calendar_
quarter_desc)

Concatenated Groupings and Hierarchical Data Cubes
One of the most important uses for concatenated groupings is to generate the

aggregates needed for a hierarchical cube of data. A hierarchical cube is a data set

where the data is aggregated along the rollup hierarchy of each of its dimensions

and these aggregations are combined across dimensions. It includes the typical set

of aggregations needed for business intelligence queries. By using concatenated

groupings, you can generate all the aggregations needed by a hierarchical cube with

just n ROLLUPs (where n is the number of dimensions), and avoid generating

unwanted aggregations.

Consider just three of the dimensions in the Sales History data set, each of

which has a multilevel hierarchy:

■ time: year , quarter , month , day (week is in a separate hierarchy)

■ product: category , subcategory , prod_name

■ geography: region , subregion , country , state , city

This data is represented using a column for each level of the hierarchies, creating a

total of twelve columns for dimensions, plus the columns holding sales figures.

For our business intelligence needs, we would like to calculate and store certain

aggregates of the various combinations of dimensions. In Example 18–13 on

page 18-27, we create the aggregates for all levels, except for "day", which would

create too many rows. In particular, we want to use ROLLUP within each dimension

to generate useful aggregates. Once we have the ROLLUP-based aggregates within

each dimension, we want to combine them with the other dimensions. This will

generate our hierarchical cube. Note that this is not at all the same as a CUBE using

all twelve of the dimension columns: that would create 2 to the 12th power (4,096)

aggregation groups, of which we need only a small fraction. Concatenated grouping

sets make it easy to generate exactly the aggregations we need. Below we show

GROUP BY clause needed:
18-26 Data Warehousing Guide

Concatenated Groupings
Example 18–13 Concatenated Groupings and Hierarchical Cubes Example

SELECT
 calendar_year, calendar_quarter_desc,
 calendar_month_desc, country_region, country_subregion, countries.country_id,
 cust_state_province, cust_city,
 prod_cat_desc, prod_subcat_desc, prod_name,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels, countries, products
WHERE
 sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 sales.prod_id=products.prod_id AND
 customers.country_id=countries.country_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10') AND
 prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot') AND
 countries.country_id IN ('UK', 'US')
GROUP BY
 ROLLUP(calendar_year, calendar_quarter_desc,
 calendar_month_desc),
 ROLLUP(country_region, country_subregion, countries.country_id,
 cust_state_province, cust_city),
 ROLLUP(prod_cat_desc, prod_subcat_desc, prod_name);

The ROLLUPs in the GROUP BY specification above generate the following groups,

four for each dimension:

Table 18–4 Hierarchical CUBE Example

ROLLUP by time ROLLUP by product ROLLUP by geography

year, quarter,
month

category,
subcategory, name

region, subregion, country,
state, city

region, subregion, country,
state

region, subregion, country

year, quarter category,
subcategory

region, subregion

year category region

all times all products all geographies
 SQL for Aggregation in Data Warehouses 18-27

Considerations when Using Aggregation
The concatenated grouping sets specified in the SQL above will take the ROLLUP
aggregations listed in the table and perform a cross-product on them. The

cross-product will create the 96 (4x4x6) aggregate groups needed for a hierarchical

cube of the data. There are major advantages in using three ROLLUP expressions to

replace what would otherwise require 96 grouping set expressions: the concise SQL

is far less error-prone to develop and far easier to maintain, and it enables much

better query optimization. You can picture how a cube with more dimensions and

more levels would make the use of concatenated groupings even more

advantageous.

Considerations when Using Aggregation
This section discusses the following topics.

■ Hierarchy Handling in ROLLUP and CUBE

■ Column Capacity in ROLLUP and CUBE

■ HAVING Clause Used with GROUP BY Extensions

■ ORDER BY Clause Used with GROUP BY Extensions

■ Using Other Aggregate Functions with ROLLUP and CUBE

Hierarchy Handling in ROLLUP and CUBE
The ROLLUP and CUBE extensions work independently of any hierarchy metadata

in your system. Their calculations are based entirely on the columns specified in the

SELECT statement in which they appear. This approach enables CUBE and ROLLUP
to be used whether or not hierarchy metadata is available. The simplest way to

handle levels in hierarchical dimensions is by using the ROLLUP extension and

indicating levels explicitly through separate columns. The code below shows a

simple example of this with months rolled up to quarters and quarters rolled up to

years.

Example 18–14 ROLLUP and CUBE Hierarchy Handling Example

SELECT calendar_year, calendar_quarter_number,
 calendar_month_number, SUM(amount_sold)
FROM sales, times, products, customers
WHERE sales.time_id=times.time_id AND
 sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot')
18-28 Data Warehousing Guide

Considerations when Using Aggregation

LD)
 AND country_id = 'US'
 AND calendar_year=1999
GROUP BY ROLLUP(calendar_year, calendar_quarter_number, calendar_month_number);

CALENDAR_YEAR CALENDAR_QUARTER_NUMBER CALENDAR_MONTH_NUMBER SUM(AMOUNT_SO
------------- ----------------------- --------------------- ----------------
 1999 1 2 79652
 1999 1 3 156738
 1999 1 236390
 1999 2 4 97802
 1999 2 5 116282
 1999 2 6 85914
 1999 2 299998
 1999 3 7 113256
 1999 3 8 79270
 1999 3 9 103200
 1999 3 295726
 1999 832114
 832114

Column Capacity in ROLLUP and CUBE
CUBE, ROLLUP, and GROUPING SETS do not restrict the GROUP BY clause column

capacity. The GROUP BY clause, with or without the extensions, can work with up to

255 columns. However, the combinatorial explosion of CUBE makes it unwise to

specify a large number of columns with the CUBE extension. Consider that a

20-column list for CUBE would create 2 to the 20 combinations in the result set. A

very large CUBE list could strain system resources, so any such query needs to be

tested carefully for performance and the load it places on the system.

HAVING Clause Used with GROUP BY Extensions
The HAVING clause of SELECT statements is unaffected by the use of GROUP BY.
Note that the conditions specified in the HAVING clause apply to both the subtotal

and non-subtotal rows of the result set. In some cases a query may need to exclude

the subtotal rows or the non-subtotal rows from the HAVING clause. This can be

achieved by using a GROUPING or GROUPING_ID function together with the

HAVING clause. See Example 18–8 on page 18-16 and its associated SQL statement

for an example.
 SQL for Aggregation in Data Warehouses 18-29

Computation Using the WITH Clause
ORDER BY Clause Used with GROUP BY Extensions
In many cases, a query needs to order the rows in a certain way, and this is done

with the ORDER BY clause. The ORDER BY clause of a SELECT statement is

unaffected by the use of GROUP BY, since the ORDER BY clause is applied after the

GROUP BY calculations are complete.

Note that the ORDER BY specification makes no distinction between aggregate and

non-aggregate rows of the result set. For instance, you might wish to list sales

figures in declining order, but still have the subtotals at the end of each group.

Simply ordering sales figures in descending sequence will not be sufficient, since

that will place the subtotals (the largest values) at the start of each group. Therefore,

it is essential that the columns in the ORDER BY clause include columns that

differentiate aggregate from non-aggregate columns. This requirement means that

queries using ORDER BY along with aggregation extensions to GROUP BY will

generally need to use one or more of the GROUPING functions.

Using Other Aggregate Functions with ROLLUP and CUBE
The examples in this chapter show ROLLUP and CUBE used with the SUM function.

While this is the most common type of aggregation, these extensions can also be

used with all other functions available to the GROUP BY clause, for example, COUNT,
AVG, MIN, MAX, STDDEV, and VARIANCE. COUNT, which is often needed in

cross-tabular analyses, is likely to be the second most commonly used function.

Computation Using the WITH Clause
The WITH clause (formally known as subquery_factoring_clause) enables

you to reuse the same query block in a SELECT statement when it occurs more than

once within a complex query. WITH is a part of the SQL-99 standard. This is

particularly useful when a query has multiple references to the same query block

and there are joins and aggregations. Using the WITH clause, Oracle retrieves the

results of a query block and stores them in the user’s temporary tablespace. Note

that Oracle9i does not support recursive use of the WITH clause.

The following query is an example of where you can improve performance and

write SQL more simply by using the WITH clause. The query calculates the sum of

sales for each channel and holds it under the name channel_summary . Then it

checks each channel’s sales total to see if any channel’s sales are greater than one

third of the total sales. By using the WITH clause, the channel_summary data is

calculated just once, avoiding an extra scan through the large sales table.
18-30 Data Warehousing Guide

Computation Using the WITH Clause
Example 18–15 WITH Clause Example

WITH channel_summary AS (
SELECT channels.channel_desc, SUM(amount_sold) AS channel_total
FROM sales, channels
WHERE sales.channel_id = channels.channel_id
GROUP BY channels.channel_desc
)
SELECT channel_desc, channel_total
FROM channel_summary
WHERE channel_total > (
SELECT SUM(channel_total) * 1/3
FROM channel_summary);

CHANNEL_DESC CHANNEL_TOTAL
-------------------- -------------
Direct Sales 312829530

Note that the example above could also be performed efficiently using the reporting

aggregate functions described in Chapter 19, "SQL for Analysis in Data

Warehouses".

See Also: Oracle9i SQL Reference for further details
 SQL for Aggregation in Data Warehouses 18-31

Computation Using the WITH Clause
18-32 Data Warehousing Guide

 SQL for Analysis in Data Ware
19

SQL for Analysis in Data Warehouses

The following topics provide information about how to improve analytical SQL

queries in a data warehouse:

■ Overview of SQL for Analysis in Data Warehouses

■ Ranking Functions

■ Windowing Aggregate Functions

■ Reporting Aggregate Functions

■ LAG/LEAD Functions

■ FIRST/LAST Functions

■ Linear Regression Functions

■ Inverse Percentile Functions

■ Hypothetical Rank and Distribution Functions

■ WIDTH_BUCKET Function

■ User-Defined Aggregate Functions

■ CASE Expressions
houses 19-1

Overview of SQL for Analysis in Data Warehouses
Overview of SQL for Analysis in Data Warehouses
Oracle has enhanced SQL's analytical processing capabilities by introducing a new

family of analytic SQL functions. These analytic functions enable you to calculate:

■ Rankings and percentiles

■ Moving window calculations

■ Lag/Lead analysis

■ First/last analysis

■ Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles.

Moving window calculations allow you to find moving and cumulative

aggregations, such as sums and averages. Lag/lead analysis enables direct

inter-row references so you can calculate period-to-period changes. First/last

analysis enables you to find the first or last value in an ordered group.

Other enhancements to SQL include the CASE expression. CASE expressions

provide if-then logic useful in many situations.

To enhance performance, analytic functions can be parallelized: multiple processes

can simultaneously execute all of these statements. These capabilities make

calculations easier and more efficient, thereby enhancing database performance,

scalability, and simplicity.

Analytic functions are classified in the following categories:

See Also: Oracle9i SQL Reference for further details

Table 19–1 Analytic Functions and Their Uses

Type Used for

Ranking Calculating ranks, percentiles, and n-tiles of the values
in a result set.

Windowing Calculating cumulative and moving aggregates. Works
with these functions:

SUM, AVG, MIN, MAX, COUNT, VARIANCE, STDDEV,
FIRST_VALUE, LAST_VALUE, and new statistical
functions
19-2 Data Warehousing Guide

Overview of SQL for Analysis in Data Warehouses
To perform these operations, the analytic functions add several new elements to

SQL processing. These elements build on existing SQL to allow flexible and

powerful calculation expressions. With just a few exceptions, the analytic functions

have these new elements. The processing flow is represented in Figure 19–1.

Figure 19–1 Processing Order

The essential concepts used in analytic functions are:

■ Processing Order - Query processing using analytic functions takes place in

three stages. First, all joins, WHERE, GROUP BY and HAVING clauses are

performed. Second, the result set is made available to the analytic functions,

and all their calculations take place. Third, if the query has an ORDER BY clause

at its end, the ORDER BY is processed to allow for precise output ordering. The

processing order is shown in Figure 19–1.

Reporting Calculating shares, for example, market share. Works
with these functions:

SUM, AVG, MIN, MAX, COUNT (with/without DISTINCT),
VARIANCE, STDDEV, RATIO_TO_REPORT, and new
statistical functions

LAG/LEAD Finding a value in a row a specified number of rows
from a current row.

FIRST/LAST First or last value in an ordered group.

Linear Regression Calculating linear regression and other statistics (slope,
intercept, and so on).

Inverse Percentile The value in a data set that corresponds to a specified
percentile.

Hypothetical Rank and
Distribution

The rank or percentile that a row would have if inserted
into a specified data set.

Table 19–1 Analytic Functions and Their Uses

Type Used for

Joins,
WHERE, GROUP BY,
and HAVING clauses

Partitions created;
Analytic functions
applied to each row in
each partition

Final
ORDER BY
 SQL for Analysis in Data Warehouses 19-3

Overview of SQL for Analysis in Data Warehouses
■ Result Set Partitions - The analytic functions allow users to divide query result

sets into groups of rows called partitions. Note that the term partitions used

with analytic functions is unrelated to Oracle's table partitions feature.

Throughout this chapter, the term partitions refers to only the meaning related

to analytic functions. Partitions are created after the groups defined with GROUP
BY clauses, so they are available to any aggregate results such as sums and

averages. Partition divisions may be based upon any desired columns or

expressions. A query result set may be partitioned into just one partition

holding all the rows, a few large partitions, or many small partitions holding

just a few rows each.

■ Window - For each row in a partition, you can define a sliding window of data.

This window determines the range of rows used to perform the calculations for

the current row. Window sizes can be based on either a physical number of

rows or a logical interval such as time. The window has a starting row and an

ending row. Depending on its definition, the window may move at one or both

ends. For instance, a window defined for a cumulative sum function would

have its starting row fixed at the first row of its partition, and its ending row

would slide from the starting point all the way to the last row of the partition.

In contrast, a window defined for a moving average would have both its

starting and end points slide so that they maintain a constant physical or logical

range.

A window can be set as large as all the rows in a partition or just a sliding

window of one row within a partition. When a window is near a border, the

function returns results for only the available rows, rather than warning you

that the results are not what you want.

When using window functions, the current row is included during calculations,

so you should only specify (n-1) when you are dealing with n items.

■ Current Row - Each calculation performed with an analytic function is based on

a current row within a partition. The current row serves as the reference point

determining the start and end of the window. For instance, a centered moving

average calculation could be defined with a window that holds the current row,

the six preceding rows, and the following six rows. This would create a sliding

window of 13 rows, as shown in Figure 19–2.
19-4 Data Warehousing Guide

Ranking Functions
Figure 19–2 Sliding Window Example

Ranking Functions
A ranking function computes the rank of a record compared to other records in the

dataset based on the values of a set of measures. The types of ranking function are:

■ RANK and DENSE_RANK

■ CUME_DIST and PERCENT_RANK

■ NTILE

■ ROW_NUMBER

RANK and DENSE_RANK
The RANK and DENSE_RANK functions allow you to rank items in a group, for

example, finding the top three products sold in California last year. There are two

functions that perform ranking, as shown by the following syntax:

RANK() OVER (
 [PARTITION BY <value expression1> [, ...]]
 ORDER BY <value expression2> [collate clause] [ASC|DESC]
 [NULLS FIRST|NULLS LAST] [, ...]
)

D
ir

ec
ti

o
n

 o
f

w
in

d
o

w
 m

o
ve

m
en

t

Window Start

Current Row: calculations based on window contents

Window Finish
 SQL for Analysis in Data Warehouses 19-5

Ranking Functions
DENSE_RANK() OVER (
 [PARTITION BY <value expression1> [, ...]]
 ORDER BY <value expression2> [collate clause] [ASC|DESC]
 [NULLS FIRST|NULLS LAST] [, ...]
)

The difference between RANKand DENSE_RANKis that DENSE_RANKleaves no gaps

in ranking sequence when there are ties. That is, if you were ranking a competition

using DENSE_RANK and had three people tie for second place, you would say that

all three were in second place and that the next person came in third. The RANK
function would also give three people in second place, but the next person would

be in fifth place.

The following are some relevant points about RANK:

■ Ascending is the default sort order, which you canThe expressions in the

optional PARTITION BY clause divide the query result set into groups within

which the RANK function operates. That is, RANK gets reset whenever the group

changes. In effect, the value expressions of the PARTITION BY clause define the

reset boundaries.

■ If the PARTITION BY clause is missing, then ranks are computed over the entire

query result set.

■ value_expression1 can be any valid expression involving column references,

constants, aggregates, or expressions invoking these items.

■ The ORDER BY clause specifies the measures (<value expression>s) on which

ranking is done and defines the order in which rows are sorted in each group

(or partition). Once the data is sorted within each partition, ranks are given to

each row starting from 1.

■ value_expression2 can be any valid expression involving column references,

aggregates, or expressions invoking these items.

■ The NULLS FIRST | NULLS LAST clause indicates the position of NULLs in the

ordered sequence, either first or last in the sequence. The order of the sequence

would make NULLs compare either high or low with respect to non-NULL
values. If the sequence were in ascending order, then NULLS FIRST implies that

NULLs are smaller than all other non-NULL values and NULLS LAST implies

they are larger than non-NULL values. It is the opposite for descending order.

See the example in "Treatment of NULLs" on page 19-11.

■ If the NULLS FIRST | NULLS LAST clause is omitted, then the ordering of the

null values depends on the ASC or DESC arguments. Null values are considered

larger than any other values. If the ordering sequence is ASC, then nulls will
19-6 Data Warehousing Guide

Ranking Functions
appear last; nulls will appear first otherwise. Nulls are considered equal to

other nulls and, therefore, the order in which nulls are presented is

non-deterministic.

Ranking Order
The following example shows how the [ASC | DESC] option changes the ranking

order.

Example 19–1 Ranking Order Example

SELECT channel_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY SUM(amount_sold)) AS default_rank,
 RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS custom_rank
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id='US'
GROUP BY channel_desc;

CHANNEL_DESC SALES$ DEFAULT_RANK CUSTOM_RANK
-------------------- -------------- ------------ -----------
Direct Sales 5,744,263 5 1
Internet 3,625,993 4 2
Catalog 1,858,386 3 3
Partners 1,500,213 2 4
Tele Sales 604,656 1 5

While the data in this result is ordered on the measure SALES$, in general, it is not

guaranteed by the RANK function that the data will be sorted on the measures. If

you want the data to be sorted on SALES$ in your result, you must specify it

explicitly with an ORDER BY clause, at the end of the SELECT statement.

Ranking on Multiple Expressions
Ranking functions need to resolve ties between values in the set. If the first

expression cannot resolve ties, the second expression is used to resolve ties and so

on. For example, here is a query ranking four of the sales channels over two months

based on their dollar sales, breaking ties with the unit sales. (Note that the TRUNC
function is used here only to create tie values for this query.)
 SQL for Analysis in Data Warehouses 19-7

Ranking Functions
Example 19–2 Ranking On Multiple Expressions Example

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold),-6), '9,999,999,999') SALES$,
 TO_CHAR(SUM(quantity_sold), '9,999,999,999') SALES_Count,
 RANK() OVER (ORDER BY trunc(SUM(amount_sold), -6) DESC, SUM(quantity_sold)
DESC) AS col_rank
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-10') AND
 channels.channel_desc<>'Tele Sales'
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ SALES_COUNT COL_RANK
-------------------- -------- -------------- -------------- ---------
Direct Sales 2000-10 10,000,000 192,551 1
Direct Sales 2000-09 9,000,000 176,950 2
Internet 2000-10 6,000,000 123,153 3
Internet 2000-09 6,000,000 113,006 4
Catalog 2000-10 3,000,000 59,782 5
Catalog 2000-09 3,000,000 54,857 6
Partners 2000-10 2,000,000 50,773 7
Partners 2000-09 2,000,000 46,220 8

The sales_count column breaks the ties for three pairs of values.

RANK and DENSE_RANK Difference
The difference between RANK and DENSE_RANK functions is illustrated below:

Example 19–3 RANK and DENSE_RANK Example

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold),-6), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY trunc(SUM(amount_sold),-6) DESC)
 AS RANK,
DENSE_RANK() OVER (ORDER BY TRUNC(SUM(amount_sold),-6) DESC)
 AS DENSE_RANK
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
19-8 Data Warehousing Guide

Ranking Functions
 times.calendar_month_desc IN ('2000-09', '2000-10') AND
 channels.channel_desc<>'Tele Sales'
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK DENSE_RANK
-------------------- -------- -------------- --------- ----------
Direct Sales 2000-10 10,000,000 1 1
Direct Sales 2000-09 9,000,000 2 2
Internet 2000-09 6,000,000 3 3
Internet 2000-10 6,000,000 3 3
Catalog 2000-09 3,000,000 5 4
Catalog 2000-10 3,000,000 5 4
Partners 2000-09 2,000,000 7 5
Partners 2000-10 2,000,000 7 5

Note that, in the case of DENSE_RANK, the largest rank value gives the number of

distinct values in the dataset.

Per Group Ranking
The RANKfunction can be made to operate within groups, that is, the rank gets reset

whenever the group changes. This is accomplished with the PARTITION BY clause.

The group expressions in the PARTITION BY subclause divide the dataset into

groups within which RANK operates. For example, to rank products within each

channel by their dollar sales, you say:

Example 19–4 Per Group Ranking Example 1

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_BY_CHANNEL
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-08', '2000-09', '2000-10', '2000-11') AND
 channels.channel_desc IN ('Direct Sales', 'Internet')
GROUP BY channel_desc, calendar_month_desc;

A single query block can contain more than one ranking function, each partitioning

the data into different groups (that is, reset on different boundaries). The groups can

be mutually exclusive. The following query ranks products based on their dollar
 SQL for Analysis in Data Warehouses 19-9

Ranking Functions
sales within each month (rank_of_product_per_region) and within each

channel (rank_of_product_total).

Example 19–5 Per Group Ranking Example 2

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
RANK() OVER (PARTITION BY calendar_month_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_WITHIN_MONTH,
 RANK() OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_WITHIN_CHANNEL
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-08', '2000-09', '2000-10', '2000-11')
 AND
 channels.channel_desc IN ('Direct Sales', 'Internet')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK_WITHIN_MONTH RANK_WITHIN_CHANNEL
-------------------- -------- -------------- ----------------- -------------------
Direct Sales 2000-08 9,588,122 1 4
Internet 2000-08 6,084,390 2 4
Direct Sales 2000-09 9,652,037 1 3
Internet 2000-09 6,147,023 2 3
Direct Sales 2000-10 10,035,478 1 2
Internet 2000-10 6,417,697 2 2
Direct Sales 2000-11 12,217,068 1 1
Internet 2000-11 7,821,208 2 1

Per Cube- and Rollup-group Ranking
Analytic functions, RANKfor example, can be reset based on the groupings provided

by a CUBE, ROLLUP, or GROUPING SETS operator. It is useful to assign ranks to the

groups created by CUBE, ROLLUP, and GROUPING SETS queries.

A sample CUBE and ROLLUP query is:

See Also: Chapter 18, "SQL for Aggregation in Data Warehouses"

for further information about the GROUPING function
19-10 Data Warehousing Guide

Ranking Functions
Example 19–6 Per Cube and Rollup Group Example

SELECT channel_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (PARTITION BY GROUPING_ID(channel_desc, country_id)
 ORDER BY SUM(amount_sold) DESC) AS RANK_PER_GROUP
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc='2000-09'
 AND country_id IN ('UK', 'US', 'JP')
GROUP BY CUBE(channel_desc, country_id);

CHANNEL_DESC CO SALES$ RANK_PER_GROUP
-------------------- -- -------------- --------------
Direct Sales US 2,835,557 1
Internet US 1,732,240 2
Direct Sales UK 1,378,126 3
Internet UK 911,739 4
Direct Sales JP 91,124 5
Internet JP 57,232 6
Direct Sales 4,304,807 1
Internet 2,701,211 2
 US 4,567,797 1
 UK 2,289,865 2
 JP 148,355 3
 7,006,017 1

Treatment of NULLs
NULLs are treated like normal values. Also, for rank computation, a NULL value is

assumed to be equal to another NULL value. Depending on the ASC | DESC options

provided for measures and the NULLS FIRST | NULLS LAST clause, NULLs will

either sort low or high and hence, are given ranks appropriately. The following

example shows how NULLs are ranked in different cases:

Example 19–7 Treatment of NULLs Example

SELECT calendar_year AS YEAR, calendar_quarter_number AS QTR,
 calendar_month_number AS MO, SUM(amount_sold),
RANK() OVER (ORDER BY SUM(amount_sold) ASC NULLS FIRST) AS NFIRST,
RANK() OVER (ORDER BY SUM(amount_sold) ASC NULLS LAST) AS NLASST,
RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS FIRST) AS NFIRST_DESC,
 SQL for Analysis in Data Warehouses 19-11

Ranking Functions
RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS NLAST_DESC
FROM (
 SELECT sales.time_id, sales.amount_sold, products.*, customers.*
 FROM sales, products, customers
 WHERE
 sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot')
 AND country_id ='UK') v, times
 WHERE v.time_id (+) =times.time_id AND
 calendar_year=1999
 GROUP BY calendar_year, calendar_quarter_number, calendar_month_number;

YEAR QTR MO SUM(AMOUNT_SOLD) NFIRST NLASST NFIRST_DESC NLAST_DESC
------------- --------- --------- ---------------- --------- --------- ----------- ----------
 1999 1 3 51820 12 8 5 1
 1999 2 6 45360 11 7 6 2
 1999 3 9 43950 10 6 7 3
 1999 3 8 41180 8 4 9 5
 1999 2 5 27431 7 3 10 6
 1999 2 4 20602 6 2 11 7
 1999 3 7 15296 5 1 12 8
 1999 1 1 1 9 1 9
 1999 4 10 1 9 1 9
 1999 4 11 1 9 1 9
 1999 4 12 1 9 1 9

If the value for two rows is NULL, the next group expression is used to resolve the

tie. If they cannot be resolved even then, the next expression is used and so on till

the tie is resolved or else the two rows are given the same rank. For example:

Top N Ranking
You can easily obtain top N ranks by enclosing the RANKfunction in a subquery and

then applying a filter condition outside the subquery. For example, to obtain the top

five countries in sales for a specific month, you can issue:

Example 19–8 Top N Ranking Example

SELECT * FROM
 (SELECT country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY SUM(amount_sold) DESC) AS COUNTRY_RANK
 FROM sales, products, customers, times, channels
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
19-12 Data Warehousing Guide

Ranking Functions
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc='2000-09'
 GROUP BY country_id)
WHERE COUNTRY_RANK <= 5;

CO SALES$ COUNTRY_RANK
-- -------------- ------------
US 6,517,786 1
NL 3,447,121 2
UK 3,207,243 3
DE 3,194,765 4
FR 2,125,572 5

Bottom N Ranking
Bottom N is similar to top N except for the ordering sequence within the rank

expression. Using the previous example, you can order SUM(s_amount) ascending

instead of descending.

CUME_DIST
The CUME_DIST function (defined as the inverse of percentile in some statistical

books) computes the position of a specified value relative to a set of values. The

order can be ascending or descending. Ascending is the default. The range of values

for CUME_DIST is from greater than 0 to 1. To compute the CUME_DIST of a value x

in a set S of size N, you use the formula:

CUME_DIST(x) = number of values in S coming before and including x
in the specified order/ N

Its syntax is:

CUME_DIST() OVER
 ([PARTITION BY <value expression1> [, ...]]
 ORDER BY <value expression2> [collate clause] [ASC|DESC]
 [NULLS FIRST | NULLS LAST] [, ...])

The semantics of various options in the CUME_DIST function are similar to those in

the RANK function. The default order is ascending, implying that the lowest value

gets the lowest CUME_DIST (as all other values come later than this value in the

order). NULLs are treated the same as they are in the RANK function. They are

counted towards both the numerator and the denominator as they are treated like

non-NULL values. The example below finds cumulative distribution of sales by

channel within each month:
 SQL for Analysis in Data Warehouses 19-13

Ranking Functions
Example 19–9 CUME_DIST Example

SELECT calendar_month_desc AS MONTH, channel_desc,
 TO_CHAR(SUM(amount_sold) , '9,999,999,999') SALES$,
 CUME_DIST() OVER (PARTITION BY calendar_month_desc ORDER BY
 SUM(amount_sold)) AS
 CUME_DIST_BY_CHANNEL
 FROM sales, products, customers, times, channels
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-07','2000-08')
 GROUP BY calendar_month_desc, channel_desc;

MONTH CHANNEL_DESC SALES$ CUME_DIST_BY_CHANNEL
-------- -------------------- -------------- --------------------
2000-07 Tele Sales 1,012,954 .2
2000-07 Partners 2,495,662 .4
2000-07 Catalog 2,946,709 .6
2000-07 Internet 6,045,609 .8
2000-07 Direct Sales 9,563,664 1
2000-08 Tele Sales 1,008,703 .2
2000-08 Partners 2,552,945 .4
2000-08 Catalog 3,061,381 .6
2000-08 Internet 6,084,390 .8
2000-08 Direct Sales 9,588,122 1
2000-09 Tele Sales 1,017,149 .2
2000-09 Partners 2,570,666 .4
2000-09 Catalog 3,025,309 .6
2000-09 Internet 6,147,023 .8
2000-09 Direct Sales 9,652,037 1

PERCENT_RANK
PERCENT_RANK is similar to CUME_DIST, but it uses rank values rather than row

counts in its numerator. Therefore, it returns the percent rank of a value relative to a

group of values. The function is available in many popular spreadsheets. PERCENT_
RANK of a row is calculated as:

(rank of row in its partition - 1) / (number of rows in the partition - 1)

PERCENT_RANK returns values in the range zero to one. The row(s) with a rank of 1

will have a PERCENT_RANK of zero.
19-14 Data Warehousing Guide

Ranking Functions
Its syntax is:

PERCENT_RANK() OVER
 ([PARTITION BY <value expression1> [, ...]]
 ORDER BY <value expression2> [collate clause] [ASC|DESC]
 [NULLS FIRST | NULLS LAST] [, ...])

NTILE
NTILE allows easy calculation of tertiles, quartiles, deciles and other common

summary statistics. This function divides an ordered partition into a specified

number of groups called buckets and assigns a bucket number to each row in the

partition. NTILE is a very useful calculation because it lets users divide a data set

into fourths, thirds, and other groupings.

The buckets are calculated so that each bucket has exactly the same number of rows

assigned to it or at most 1 row more than the others. For instance, if you have 100

rows in a partition and ask for an NTILE function with four buckets, 25 rows will be

assigned a value of 1, 25 rows will have value 2, and so on. These buckets are

referred to as equiheight buckets.

If the number of rows in the partition does not divide evenly (without a remainder)

into the number of buckets, then the number of rows assigned per bucket will differ

by one at most. The extra rows will be distributed one per bucket starting from the

lowest bucket number. For instance, if there are 103 rows in a partition which has an

NTILE(5) function, the first 21 rows will be in the first bucket, the next 21 in the

second bucket, the next 21 in the third bucket, the next 20 in the fourth bucket and

the final 20 in the fifth bucket.

The NTILE function has the following syntax:

NTILE(N) OVER
 ([PARTITION BY <value expression1> [, ...]]
 ORDER BY <value expression2> [collate clause] [ASC|DESC]
 [NULLS FIRST | NULLS LAST] [, ...])

where the N in NTILE(N) can be a constant (for example, 5) or an expression.

This function, like RANK and CUME_DIST, has a PARTITION BY clause for per group
computation, an ORDER BY clause for specifying the measures and their sort order,

and NULLS FIRST | NULLS LAST clause for the specific treatment of NULLs. For

example,
 SQL for Analysis in Data Warehouses 19-15

Ranking Functions
Here is an example assigning each month's sales total into one of 4 buckets:

Example 19–10 NTILE Example

SELECT calendar_month_desc AS MONTH ,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 NTILE(4) OVER (ORDER BY SUM(amount_sold)) AS TILE4
 FROM sales, products, customers, times, channels
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_year=1999 AND
 prod_category= 'Men'
 GROUP BY calendar_month_desc;

MONTH SALES$ TILE4
-------- -------------- ---------
1999-10 4,373,102 1
1999-01 4,754,622 1
1999-11 5,367,943 1
1999-12 6,082,226 2
1999-07 6,161,638 2
1999-02 6,518,877 2
1999-06 6,634,401 3
1999-04 6,772,673 3
1999-08 6,954,221 3
1999-03 6,968,928 4
1999-09 7,030,524 4
1999-05 8,018,174 4

NTILE ORDER BY statements must be fully specified to yield reproducible results.

Equal values can get distributed across adjacent buckets (75 is assigned to buckets 2
and 3 in the example above) and buckets 1, 2, and 3 in the example above have 3

elements - one more than the size of bucket 4. In the above table, JEANS could as

well be assigned to bucket 2 (instead of 3) and SWEATERSto bucket 3 (instead of 2),

because there is no ordering on the p_product_key column. To ensure

deterministic results, you must order on a unique key.

ROW_NUMBER
The ROW_NUMBER function assigns a unique number (sequentially, starting from 1,

as defined by ORDER BY) to each row within the partition. It has the following

syntax:
19-16 Data Warehousing Guide

Windowing Aggregate Functions
ROW_NUMBER() OVER
 ([PARTITION BY <value expression1> [, ...]]
 ORDER BY <value expression2> [collate clause] [ASC|DESC]
 [NULLS FIRST | NULLS LAST] [, ...])

Example 19–11 ROW_NUMBER Example

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold), -6), '9,999,999,999') SALES$,
 ROW_NUMBER() OVER (ORDER BY TRUNC(SUM(amount_sold), -6) DESC)
 AS ROW_NUMBER
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ ROW_NUMBER
-------------------- -------- -------------- ----------
Direct Sales 2000-10 10,000,000 1
Direct Sales 2000-09 9,000,000 2
Internet 2000-09 6,000,000 3
Internet 2000-10 6,000,000 4
Catalog 2000-09 3,000,000 5
Catalog 2000-10 3,000,000 6
Partners 2000-09 2,000,000 7
Partners 2000-10 2,000,000 8
Tele Sales 2000-09 1,000,000 9
Tele Sales 2000-10 1,000,000 10

Note that there are three pairs of tie values in these results. Like NTILE , ROW_
NUMBER is a non-deterministic function, so each tied value could have its row

number switched. To ensure deterministic results, you must order on a unique key.

Inmost cases, that will require adding a new tie breaker column to the query and

using it in the ORDER BY specification.

Windowing Aggregate Functions
Windowing functions can be used to compute cumulative, moving, and centered

aggregates. They return a value for each row in the table, which depends on other

rows in the corresponding window. These functions include moving sum, moving

average, moving min/max, cumulative sum, as well as statistical functions. They
 SQL for Analysis in Data Warehouses 19-17

Windowing Aggregate Functions
can be used only in the SELECT and ORDER BY clauses of the query. Two other

functions are available: FIRST_VALUE, which returns the first value in the window;

and LAST_VALUE, which returns the last value in the window. These functions

provide access to more than one row of a table without a self-join. The syntax of the

windowing functions is:

{SUM|AVG|MAX|MIN|COUNT|STDDEV|VARIANCE|FIRST_VALUE|LAST_VALUE}
 ({<value expression1> | *}) OVER
 ([PARTITION BY <value expression2>[,...]]
 ORDER BY <value expression3> [collate clause>]
 [ASC| DESC] [NULLS FIRST | NULLS LAST] [,...]
 ROWS | RANGE
 {{UNBOUNDED PRECEDING | <value expression4> PRECEDING}
 | BETWEEN
 {UNBOUNDED PRECEDING | <value expression4> PRECEDING}
 AND{CURRENT ROW | <value expression4> FOLLOWING}}

Treatment of NULLs as Input to Window Functions
Window functions' NULL semantics match the NULL semantics for SQL aggregate

functions. Other semantics can be obtained by user-defined functions, or by using

the DECODE or a CASE expression within the window function.

Windowing Functions with Logical Offset
A logical offset can be specified with constants such as RANGE 10 PRECEDING, or

an expression that evaluates to a constant, or by an interval specification like RANGE
INTERVAL N DAY/MONTH/YEAR PRECEDING or an expression that evaluates to an

interval. With logical offset, there can only be one expression in the ORDER BY
expression list in the function, with type compatible to NUMERICif offset is numeric,

or DATE if an interval is specified.

Cumulative Aggregate Function
The following is an example of cumulative amount_sold by customer ID by

quarter in 1999.

See Also: Oracle9i SQL Reference for further information regarding

syntax and restrictions
19-18 Data Warehousing Guide

Windowing Aggregate Functions
Example 19–12 Cumulative Aggregate Example

SELECT c.cust_id, t.calendar_quarter_desc,
TO_CHAR (SUM(amount_sold), '9,999,999,999') AS Q_SALES,
TO_CHAR(SUM(SUM(amount_sold)) OVER (PARTITION BY
c.cust_id ORDER BY c.cust_id, t.calendar_quarter_desc ROWS UNBOUNDED
PRECEDING), '9,999,999,999') AS CUM_SALES
FROM sales s, times t, customers c
WHERE
s.time_id=t.time_id AND
s.cust_id=c.cust_id AND
t.calendar_year=1999 AND
c.cust_id IN (6380, 6510)
GROUP BY c.cust_id, t.calendar_quarter_desc
ORDER BY c.cust_id, t.calendar_quarter_desc;

 CUST_ID CALENDA Q_SALES CUM_SALES
--------- ------- -------------- --------------
 6380 1999-Q1 60,621 60,621
 6380 1999-Q2 68,213 128,834
 6380 1999-Q3 75,238 204,072
 6380 1999-Q4 57,412 261,484
 6510 1999-Q1 63,030 63,030
 6510 1999-Q2 74,622 137,652
 6510 1999-Q3 69,966 207,617
 6510 1999-Q4 63,366 270,983

In this example, the analytic function SUM defines, for each row, a window that

starts at the beginning of the partition (UNBOUNDED PRECEDING) and ends, by

default, at the current row.

Nested SUMs are needed in this example since we are performing a SUMover a value

that is itself a SUM. Nested aggregations are used very often in analytic aggregate

functions.

Moving Aggregate Function
This example of a time-based window shows, for one customer, the moving average

of sales for the current month and preceding two months:

Example 19–13 Moving Aggregate Example

SELECT c.cust_id, t.calendar_month_desc,
TO_CHAR (SUM(amount_sold), '9,999,999,999') as SALES ,
TO_CHAR(AVG(SUM(amount_sold)) OVER (ORDER BY c.cust_id,
 SQL for Analysis in Data Warehouses 19-19

Windowing Aggregate Functions
t.calendar_month_desc
ROWS 2 PRECEDING), '9,999,999,999') as MOVING_3_MONTH_AVG
FROM sales s, times t, customers c
WHERE
s.time_id=t.time_id AND
s.cust_id=c.cust_id AND
t.calendar_year=1999 AND
c.cust_id IN (6380)
GROUP BY c.cust_id, t.calendar_month_desc
ORDER BY c.cust_id, t.calendar_month_desc;

 CUST_ID CALENDAR SALES MOVING_3_MONTH
--------- -------- -------------- --------------
 6380 1999-01 19,642 19,642
 6380 1999-02 19,324 19,483
 6380 1999-03 21,655 20,207
 6380 1999-04 27,091 22,690
 6380 1999-05 16,367 21,704
 6380 1999-06 24,755 22,738
 6380 1999-07 31,332 24,152
 6380 1999-08 22,835 26,307
 6380 1999-09 21,071 25,079
 6380 1999-10 19,279 21,062
 6380 1999-11 18,206 19,519
 6380 1999-12 19,927 19,137

Note that the first two rows for the three month moving average calculation in the

data above are based on a smaller interval size than specified because the window

calculation cannot reach past the data retrieved by the query. You need to consider

the different window sizes found at the borders of result sets. In other words, you

may need to modify the query to include exactly what you want.

Centered Aggregate Function
Calculating windowing aggregate functions centered around the current row is

straightforward. This example computes for a customer a centered moving average

of the sales total for the one day preceding the current row and one day following

the current row including the current row as well.

Example 19–14 Centered Aggregate Example

SELECT cust_id, t.time_id,
TO_CHAR (SUM(amount_sold), '9,999,999,999') AS SALES,
TO_CHAR(AVG(SUM(amount_sold)) OVER
19-20 Data Warehousing Guide

Windowing Aggregate Functions
(PARTITION BY s.cust_id ORDER BY t.time_id
RANGE BETWEEN INTERVAL '1' DAY PRECEDING AND INTERVAL '1' DAY FOLLOWING),
'9,999,999,999') AS CENTERED_3_DAY_AVG
FROM sales s, times t
WHERE
s.time_id=t.time_id AND
t.calendar_week_number IN (51) AND
calendar_year=1999 AND
cust_id IN (6380, 6510)
GROUP BY cust_id, t.time_id
ORDER BY cust_id, t.time_id;

 CUST_ID TIME_ID SALES CENTERED_3_DAY
--------- --------- -------------- --------------
 6380 20-DEC-99 2,240 1,136
 6380 21-DEC-99 32 873
 6380 22-DEC-99 348 148
 6380 23-DEC-99 64 302
 6380 24-DEC-99 493 212
 6380 25-DEC-99 80 423
 6380 26-DEC-99 696 388
 6510 20-DEC-99 196 106
 6510 21-DEC-99 16 155
 6510 22-DEC-99 252 143
 6510 23-DEC-99 160 305
 6510 24-DEC-99 504 240
 6510 25-DEC-99 56 415
 6510 26-DEC-99 684 370

The starting and ending rows for each product's centered moving average

calculation in the data above are based on just two days, since the window

calculation cannot reach past the data retrieved by the query. Users need to consider

the different window sizes found at the borders of result sets: the query may need

to be adjusted.

Windowing Aggregate Functions with Logical Offsets
The following example illustrates how window aggregate functions compute values

in the presence of duplicates. Note that the data is hypothetical.
 SQL for Analysis in Data Warehouses 19-21

Windowing Aggregate Functions
Example 19–15 Windowing Aggregate Functions with Logical Offsets Example

SELECT r_rkey, p_pkey, s_amt
 SUM(s_amt) OVER
 (ORDER BY p_pkey RANGE BETWEEN 1 PRECEDING AND CURRENT ROW) AS current_group_sum
FROM product, region, sales
WHERE r_rkey = s_rkey AND p_pkey = s_pkey AND r_rkey = 'east'
ORDER BY r_rkey, p_pkey;

R_RKEY P_PKEY S_AMT CURRENT_GROUP_SUM /*Source numbers for the current_group_sum column*/
------ ------ ----- ----------------- /*------- */
EAST 1 130 130 /* 130 */
EAST 2 50 180 /*130+50 */
EAST 3 80 265 /*50+(80+75+60) */
EAST 3 75 265 /*50+(80+75+60) */
EAST 3 60 265 /*50+(80+75+60) */
EAST 4 20 235 /*80+75+60+20 */

Values within parentheses indicate ties.

Let us consider the row with the output of "EAST, 3, 75" from the above table. In

this case, all the other rows with p_pkey of 3 (ties) are considered to belong to one

group. So, it should include itself (that is, 75) to the window and its ties (that is, 80,

60). Hence the result 50 + (80 + 75 + 60). This is only true because you used RANGE
rather than ROWS. It is important to note that the value returned by the window

aggregate function with logical offsets is deterministic in all the cases. In fact, all the

windowing functions (except FIRST_VALUE and LAST_VALUE) with logical offsets

are deterministic.

Variable Sized Window
Assume that you want to calculate the moving average of stock price over 3

working days. If you have an equal number of rows for each day for all working

days and no non-working days are stored, then you can use a physical window

function. However, if the conditions noted are not met, you can still calculate a

moving average by using an expression in the window size parameters.

Expressions in a window size specification can be made in several different sources.

the expression could be a reference to a column in a table, such as a time table. It

could also be a function that returns the appropriate boundary for the window

based on values in the current row. The following statement for a hypothetical stock

price database uses a user-defined function in its RANGE clause to set window size:

SELECT t_timekey,
 AVG(stock_price)
 OVER (ORDER BY t_timekey RANGE fn(t_timekey) PRECEDING) av_price
19-22 Data Warehousing Guide

Windowing Aggregate Functions
FROM stock, time
WHERE st_timekey = t_timekey
ORDER BY t_timekey;

In the statement above, t_timekey is a date field. Here, fn could be a PL/SQL

function with the following specification:

fn(t_timekey) returns

■ 4 if t_timekey is Monday, Tuesday

■ 2 otherwise

■ If any of the previous days are holidays, it adjusts the count appropriately.

Note that, when window is specified using a number in a window function with

ORDER BY on a date column, then it is converted to mean the number of days. You

could have also used the interval literal conversion function, as:

NUMTODSINTERVAL(fn(t_timekey), 'DAY')

instead of just

fn(t_timekey)

to mean the same thing. You can also write a PL/SQL function that returns an

INTERVAL datatype value.

Windowing Aggregate Functions with Physical Offsets
For windows expressed in rows, the ordering expressions should be unique to

produce deterministic results. For example, the query below is not deterministic

because time_id is not unique in this result set.

Example 19–16 Windowing Aggregate Functions with Physical Offsets Example

SELECT t.time_id,
TO_CHAR(amount_sold, '9,999,999,999') AS INDIV_SALE ,
TO_CHAR(SUM(amount_sold) OVER
(PARTITION BY t.time_id ORDER BY t.time_id
ROWS UNBOUNDED PRECEDING), '9,999,999,999') AS CUM_SALES
FROM sales s, times t, customers c
WHERE
s.time_id=t.time_id AND
s.cust_id=c.cust_id AND
t.time_id IN (TO_DATE('11-DEC-1999'), TO_DATE('12-DEC-1999'))
 AND
 SQL for Analysis in Data Warehouses 19-23

Reporting Aggregate Functions
c.cust_id BETWEEN 6500 AND 6600
ORDER BY t.time_id;

TIME_ID INDIV_SALE CUM_SALES
--------- -------------- --------------
11-DEC-99 1,036 1,036
11-DEC-99 1,932 2,968
11-DEC-99 588 3,556
12-DEC-99 504 504
12-DEC-99 429 933
12-DEC-99 1,160 2,093

Or it could yield:

TIME_ID INDIV_SALE CUM_SALES
--------- -------------- --------------
11-DEC-99 1,932 2,968
11-DEC-99 588 3,556
11-DEC-99 1,036 1,036
12-DEC-99 504 504
12-DEC-99 1,160 2,093
12-DEC-99 429 933

One way to handle this problem would be to add the prod_id column to the result

set and order on both time_id and prod_id .

FIRST_VALUE and LAST_VALUE
The FIRST_VALUEand LAST_VALUEfunctions allow you to select the first and last

rows from a window. These rows are especially valuable because they are often

used as the baselines in calculations. For instance, with a partition holding sales

data ordered by day, you might ask "How much was each day's sales compared to

the first sales day (FIRST_VALUE) of the period?" Or you might wish to know, for a

set of rows in increasing sales order, "What was the percentage size of each sale in

the region compared to the largest sale (LAST_VALUE) in the region?"

Reporting Aggregate Functions
After a query has been processed, aggregate values like the number of resulting

rows or an average value in a column can be easily computed within a partition and

made available to other reporting functions. Reporting aggregate functions return

the same aggregate value for every row in a partition. Their behavior with respect

to NULLs is the same as the SQL aggregate functions. The syntax is:
19-24 Data Warehousing Guide

Reporting Aggregate Functions
{SUM | AVG | MAX | MIN | COUNT | STDDEV | VARIANCE}
 ([ALL | DISTINCT] {<value expression1> | *})
 OVER ([PARTITION BY <value expression2>[,...]])

where

■ An asterisk (*) is only allowed in COUNT(*)

■ DISTINCT is supported only if corresponding aggregate functions allow it

■ <value expression1> and <value expression2> can be any valid

expression involving column references or aggregates.

■ The PARTITION BY clause defines the groups on which the windowing

functions would be computed. If the PARTITION BY clause is absent, then the

function is computed over the whole query result set.

Reporting functions can appear only in the SELECT clause or the ORDER BY clause.

The major benefit of reporting functions is their ability to do multiple passes of data

in a single query block and speed up query performance. Queries such as "Count

the number of salesmen with sales more than 10% of city sales" do not require joins

between separate query blocks.

For example, consider the question "For each product category, find the region in

which it had maximum sales". The equivalent SQL query using the MAX reporting

aggregate function would be:

Example 19–17 Reporting Aggregate Example 1

SELECT prod_category, country_region, sales FROM
(SELECT substr(p.prod_category,1,8), co.country_region, SUM(amount_sold)
 AS sales,
MAX(SUM(amount_sold)) OVER (partition BY prod_category) AS MAX_REG_SALES
FROM sales s, customers c, countries co, products p
WHERE s.cust_id=c.cust_id AND
c.country_id=co.country_id AND
s.prod_id=p.prod_id AND
s.time_id=to_DATE('11-OCT-2000')
GROUP BY prod_category, country_region)
WHERE sales=MAX_REG_SALES;
 SQL for Analysis in Data Warehouses 19-25

Reporting Aggregate Functions
The inner query with the reporting aggregate function MAX(SUM(amount_sold))
returns:

SUBSTR(P COUNTRY_REGION SALES MAX_REG_SALES
-------- -------------------- --------- -------------
Boys Africa 594 41974
Boys Americas 20353 41974
Boys Asia 2258 41974
Boys Europe 41974 41974
Boys Oceania 1402 41974
Girls Americas 13869 52963
Girls Asia 1657 52963
Girls Europe 52963 52963
Girls Middle East 303 52963
Girls Oceania 380 52963
Men Africa 1705 123253
Men Americas 69304 123253
Men Asia 6153 123253
Men Europe 123253 123253
Men Oceania 2646 123253
Women Africa 4037 255109
Women Americas 145501 255109
Women Asia 20394 255109
Women Europe 255109 255109
Women Middle East 350 255109
Women Oceania 17408 255109

Full query results:

PROD_CATEGORY COUNTRY_REGION SALES
------------- -------------- ------
Boys Europe 41974
Girls Europe 52963
Men Europe 123253
Women Europe 255109

Reporting Aggregate Example
Reporting aggregates combined with nested queries enable you to answer complex

queries efficiently. For instance, what if we want to know the best selling products

in our most significant product subcategories? We have 4 product categories which

contain a total of 37 product subcategories, and there are 10,000 unique products.

Here is a query which finds the 5 top-selling products for each product subcategory

that contributes more than 20% of the sales within its product category.
19-26 Data Warehousing Guide

Reporting Aggregate Functions
Example 19–18 Reporting Aggregate Example 2

SELECT SUBSTR(prod_category,1,8) AS CATEG, prod_subcategory, prod_id, SALES FROM
 (SELECT p.prod_category, p.prod_subcategory, p.prod_id,
 SUM(amount_sold) as SALES,
 SUM(SUM(amount_sold)) OVER (partition by p.prod_category) AS CAT_SALES,
 AUM(SUM(amount_sold)) OVER
 (partition by p.prod_subcategory) AS SUBCAT_SALES,
 RANK() OVER (partition by p.prod_subcategory
 ORDER BY SUM(amount_sold)) AS RANK_IN_LINE
 FROM sales s, customers c, countries co, products p
 WHERE s.cust_id=c.cust_id AND
 c.country_id=co.country_id AND s.prod_id=p.prod_id AND
 s.time_id=to_DATE('11-OCT-2000')
 GROUP BY p.prod_category, p.prod_subcategory, p.prod_id
 ORDER BY prod_category, prod_subcategory)
 WHERE SUBCAT_SALES>0.2*CAT_SALES AND RANK_IN_LINE<=5;

RATIO_TO_REPORT
The RATIO_TO_REPORT function computes the ratio of a value to the sum of a set

of values. If the expression value expression evaluates to NULL, RATIO_TO_
REPORT also evaluates to NULL, but it is treated as zero for computing the sum of

values for the denominator. Its syntax is:

RATIO_TO_REPORT
(<value expression1>) OVER
 ([PARTITION BY <value expression2>[,...]])

where

■ <value expression1 > and <value expression2 > can be any valid

expression involving column references or aggregates.

■ The PARTITION BY clause defines the groups on which the RATIO_TO_
REPORT function is to be computed. If the PARTITION BY clause is absent, then

the function is computed over the whole query result set.

Example 19–19 RATIO_TO_REPORT Example

To calculate RATIO_TO_REPORT of sales per channel, you might use the following

syntax:

SELECT ch.channel_desc,
 TO_CHAR(SUM(amount_sold),'9,999,999') as SALES,
 TO_CHAR(SUM(SUM(amount_sold)) OVER (), '9,999,999')
 SQL for Analysis in Data Warehouses 19-27

LAG/LEAD Functions
 AS TOTAL_SALES,
 TO_CHAR(RATIO_TO_REPORT(SUM(amount_sold)) OVER (), '9.999')
 AS RATIO_TO_REPORT
 FROM sales s, channels ch
 WHERE s.channel_id=ch.channel_id AND
 s.time_id=to_DATE('11-OCT-2000')
 GROUP BY ch.channel_desc ;

CHANNEL_DESC SALES TOTAL_SALE RATIO_
-------------------- ---------- ---------- ------
Catalog 111,103 781,613 .142
Direct Sales 335,409 781,613 .429
Internet 212,314 781,613 .272
Partners 91,352 781,613 .117
Tele Sales 31,435 781,613 .040

LAG/LEAD Functions
The LAG and LEAD functions are useful for comparing values when the relative

positions of rows can be known reliably. They work by specifying the count of rows

which separate the target row from the current row. Since the functions provide

access to more than one row of a table at the same time without a self-join, they can

enhance processing speed. The LAG function provides access to a row at a given

offset prior to the current position, and the LEAD function provides access to a row

at a given offset after the current position.

LAG/LEAD Syntax
The functions have the following syntax:

{LAG | LEAD}
 (<value expression1>, [<offset> [, <default>]]) OVER
 ([PARTITION BY <value expression2>[,...]]
 ORDER BY <value expression3> [collate clause>]
 [ASC | DESC] [NULLS FIRST | NULLS LAST] [,...])

<offset> is an optional parameter and defaults to 1. <default> is an optional

parameter and is the value returned if the <offset> falls outside the bounds of the

table or partition.

Example 19–20 LAG/LEAD Example

SELECT time_id, TO_CHAR(SUM(amount_sold),'9,999,999') AS SALES,
TO_CHAR(LAG(SUM(amount_sold),1) OVER (ORDER BY time_id),'9,999,999') AS LAG1,
19-28 Data Warehousing Guide

FIRST/LAST Functions
TO_CHAR(LEAD(SUM(amount_sold),1) OVER (ORDER BY time_id),'9,999,999') AS LEAD1
FROM sales
WHERE
time_id>=TO_DATE('10-OCT-2000') AND
time_id<=TO_DATE('14-OCT-2000')
GROUP BY time_id;

TIME_ID SALES LAG1 LEAD1
--------- ---------- ---------- ----------
10-OCT-00 773,921 781,613
11-OCT-00 781,613 773,921 744,351
12-OCT-00 744,351 781,613 757,356
13-OCT-00 757,356 744,351 791,960
14-OCT-00 791,960 757,356

FIRST/LAST Functions
The FIRST/LAST aggregate functions allow you to return the result of an aggregate

applied over a set of rows that rank as the first or last with respect to a given order

specification. FIRST/LAST lets you order on column A but return an result of an

aggregate applied on column B. This is valuable because it avoids the need for a

self-join or subquery, thus improving performance. These functions begin with a

tiebreaker function, which is a regular aggregate function (MIN, MAX, SUM, AVG,

COUNT, VARIANCE, STDDEV) that produces the return value. The tiebreraker

function is performed on the set rows (1 or more rows) that rank as first or last

respect to the order specification to return a single value.

To specify the ordering used within each group, the FIRST/LAST functions add a

new clause starting with the word KEEP.

FIRST/LAST Syntax
[MIN | MAX | COUNT | SUM | AVG | STDDEV | VARIANCE] (<expression>)
KEEP (DENSE_RANK [FIRST | LAST] ORDER BY <order by expression> [, ...]
[ASC|DESC] [NULLS FIRST| NULLS LAST])

Note that the ORDER BY clause can take multiple expressions.
 SQL for Analysis in Data Warehouses 19-29

FIRST/LAST Functions
FIRST/LAST As Regular Aggregates
You can use the FIRST/LAST family of aggregates as regular aggregate functions.

Example 19–21 FIRST/LAST Example 1

The following query lets us compare minimum price and list price of our products.

For each product subcategory within the Men’s clothing category, it returns the

following:

■ list price of the product with the lowest minimum price

■ lowest minimum price

■ list price of the product with the highest minimum price

■ highest minimum price

SELECT prod_subcategory, MIN(prod_list_price)
 KEEP (DENSE_RANK FIRST ORDER BY (prod_min_price))
AS LP_OF_LO_MINP,
MIN(prod_min_price) AS LO_MINP,
MAX(prod_list_price) KEEP (DENSE_RANK LAST ORDER BY (prod_min_price))
 AS LP_OF_HI_MINP,
MAX(prod_min_price) AS HI_MINP
FROM products
WHERE prod_category='Men'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY LP_OF_LO_MINP LO_MINP LP_OF_HI_MINP HI_MINP
---------------- ------------- ------- ------------- -------
Casual Shirts - Men 39.9 16.92 88 59.4
Dress Shirts - Men 42.5 17.34 59.9 41.51
Jeans - Men 38 17.33 69.9 62.28
Outerwear - Men 44.9 19.76 495 334.12
Shorts - Men 34.9 15.36 195 103.54
Sportcoats - Men 195 96.53 595 390.92
Sweaters - Men 29.9 14.59 140 97.02
Trousers - Men 38 15.5 135 120.29
Underwear And Socks - Men 10.9 4.45 39.5 27.02

A query like this can be useful for understanding the sales patterns of your different

channels. For instance, the result set here highlights that Telesales sell relatively

small volumes.
19-30 Data Warehousing Guide

FIRST/LAST Functions
FIRST/LAST As Reporting Aggregates
You can also use the FIRST/LAST family of aggregates as reporting aggregate

functions. An example is calculating which months had the greatest and least

increase in head count throughout the year. The syntax for these functions is similar

to the syntax for any other reporting aggregate.

Consider the example in Example 19–21 for FIRST/LAST . What if we wanted to

find the list prices of individual products and compare them to the list prices of the

products in their subcategory that had the highest and lowest minimum prices?

The query below lets us find that information for the Sportcoats - Men subcategory

by using FIRST/LAST as reporting aggregates. Because there are over 100 products

in this subcategory, we show only the first few rows of results.

Example 19–22 FIRST/LAST Example 2

SELECT prod_id, prod_list_price,
MIN(prod_list_price) KEEP (DENSE_RANK FIRST ORDER BY (prod_min_price))
 OVER(PARTITION BY (prod_subcategory)) AS LP_OF_LO_MINP,
MAX(prod_list_price) KEEP (DENSE_RANK LAST ORDER BY (prod_min_price))
 OVER(PARTITION BY (prod_subcategory)) AS LP_OF_HI_MINP
FROM products
WHERE prod_subcategory='Sportcoats - Men';

PROD_ID PROD_LIST_PRICE LP_OF_LO_MINP LP_OF_HI_MINP
------- --------------- ------------- -------------
 730 365 195 595
 1165 365 195 595
 1560 595 195 595
 2655 195 195 595
 2660 195 195 595
 3840 275 195 595
 3865 275 195 595
 4035 319.9 195 595
 4075 395 195 595
 4245 195 195 595
 4790 365 195 595
 4800 365 195 595
 5560 425 195 595
 5575 425 195 595
 5625 595 195 595
 7915 275 195 595
 and so on
 SQL for Analysis in Data Warehouses 19-31

Linear Regression Functions
Using the FIRST and LAST functions as reporting aggregates makes it easy to

include the results in calculations such "Salary as a percent of the highest salary."

Linear Regression Functions
The regression functions support the fitting of an ordinary-least-squares regression

line to a set of number pairs. You can use them as both aggregate functions or

windowing or reporting functions.

The functions are:

■ REGR_COUNT

■ REGR_AVGX

■ REGR_AVGY

■ REGR_SLOPE

■ REGR_INTERCEPT

■ REGR_R2

■ REGR_SXX

■ REGR_SYY

■ REGR_SXY

Oracle applies the function to the set of (e1 , e2) pairs after eliminating all pairs for

which either of e1 or e2 is null. e1 is interpreted as a value of the dependent

variable (a "y value"), and e2 is interpreted as a value of the independent variable

(an "x value"). Both expressions must be numbers.

The regression functions are all computed simultaneously during a single pass

through the data. They are frequently combined with the COVAR_POP, COVAR_
SAMP, and CORR functions.

REGR_COUNT
REGR_COUNT returns the number of non-null number pairs used to fit the

regression line. If applied to an empty set (or if there are no (e1, e2) pairs where

neither of e1 or e2 is null), the function returns 0.

See Also: Oracle9i SQL Reference for further information regarding

syntax and semantics
19-32 Data Warehousing Guide

Linear Regression Functions
REGR_AVGY and REGR_AVGX
REGR_AVGY and REGR_AVGX compute the averages of the dependent variable and

the independent variable of the regression line, respectively. REGR_AVGY computes

the average of its first argument (e1) after eliminating (e1 , e2) pairs where either of

e1 or e2 is null. Similarly, REGR_AVGX computes the average of its second

argument (e2) after null elimination. Both functions return NULL if applied to an

empty set.

REGR_SLOPE and REGR_INTERCEPT
The REGR_SLOPE function computes the slope of the regression line fitted to

non-null (e1 , e2) pairs.

The REGR_INTERCEPT function computes the y-intercept of the regression line.

REGR_INTERCEPT returns NULL whenever slope or the regression averages are

NULL.

REGR_R2
The REGR_R2 function computes the coefficient of determination (usually called

"R-squared" or "goodness of fit") for the regression line.

REGR_R2 returns values between 0 and 1 when the regression line is defined (slope

of the line is not null), and it returns NULL otherwise. The closer the value is to 1,

the better the regression line fits the data.

REGR_SXX, REGR_SYY, and REGR_SXY
REGR_SXX, REGR_SYY and REGR_SXY functions are used in computing various

diagnostic statistics for regression analysis. After eliminating (e1 , e2) pairs where

either of e1 or e2 is null, these functions make the following computations:

REGR_SXX: REGR_COUNT(e1,e2) * VAR_POP(e2)

REGR_SYY: REGR_COUNT(e1,e2) * VAR_POP(e1)

REGR_SXY: REGR_COUNT(e1,e2) * COVAR_POP(e1, e2)

Linear Regression Statistics Examples
Some common diagnostic statistics that accompany linear regression analysis are

given in Table 19–2, "Common Diagnostic Statistics and Their Expressions". Note

that Oracle's new functions allow you to calculate all of these.
 SQL for Analysis in Data Warehouses 19-33

Linear Regression Functions
Sample Linear Regression Calculation
In this example, we compute an ordinary-least-squares regression line that

expresses the quantity sold of a product as a linear function of the product's list

price. The calculations are grouped by sales channel. The values SLOPE, INTCPT,

RSQR are slope, intercept, and coefficient of determination of the regression line,

respectively. The (integer) value COUNT is the number of products in each channel

for whom both quantity sold and list price data are available.

Example 19–23 Linear Regression Example

SELECT s.channel_id,
REGR_SLOPE(s.quantity_sold, p.prod_list_price) SLOPE,
REGR_INTERCEPT(s.quantity_sold, p.prod_list_price) INTCPT,
REGR_R2(s.quantity_sold, p.prod_list_price) RSQR,
REGR_COUNT(s.quantity_sold, p.prod_list_price) COUNT,
REGR_AVGX(s.quantity_sold, p.prod_list_price) AVGLISTP,
REGR_AVGY(s.quantity_sold, p.prod_list_price) AVGQSOLD
FROM sales s, products p
WHERE s.prod_id=p.prod_id
 AND p.prod_category='Men' AND s.time_id=to_DATE('10-OCT-2000')
GROUP BY s.channel_id;

Table 19–2 Common Diagnostic Statistics and Their Expressions

Type of Statistic Expression

Adjusted R2 1-((1 - REGR_R2)*((REGR_COUNT-1)/(REGR_
COUNT-2)))

Standard error SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_
SXX))/(REGR_COUNT-2))

Total sum of squares REGR_SYY

Regression sum of squares POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares REGR_SYY - (POWER(REGR_SXY,2)/REGR_SXX)

t statistic for slope REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept REGR_INTERCEPT / ((Standard error)
*
SQRT((1/REGR_COUNT)+(POWER(REGR_
AVGX,2)/REGR_SXX))
19-34 Data Warehousing Guide

Inverse Percentile Functions
C SLOPE INTCPT RSQR COUNT AVGLISTP AVGQSOLD
- --------- --------- --------- --------- --------- ---------
C -.0683687 16.627808 .05134258 20 65.495 12.15
I .0197103 14.811392 .00163149 46 51.480435 15.826087
P -.0124736 12.854546 .01703979 30 81.87 11.833333
S .00615589 13.991924 .00089844 83 69.813253 14.421687
T -.0041131 5.2271721 .00813224 27 82.244444 4.8888889

Inverse Percentile Functions
Using the CUME_DIST function, you can find the cumulative distribution

(percentile) of a set of values. However, the inverse operation (finding what value

computes to a certain percentile) is neither easy to do nor efficiently computed. To

overcome this difficulty, Oracle introduced the PERCENTILE_CONT and

PERCENTILE_DISC functions. These can be used both as window reporting

functions as well as normal aggregate functions.

These functions need a sort specification and a parameter that takes a percentile

value between 0 and 1. The sort specification is handled by using an ORDER BY
clause with one expression. When used as a normal aggregate function, it returns a

single value per ordered set.

PERCENTILE_CONT, which is a continuous function computed by interpolation,

and PERCENTILE_DISC, which is a step function that assumes discrete values. Like

other aggregates, PERCENTILE_CONT and PERCENTILE_DISC operate on a group

of rows in a grouped query, but with the following differences:

■ They require a parameter between 0 and 1 (inclusive). A parameter specified

out of this range will result in error. This parameter should be specified as an

expression that evaluates to a constant.

■ They require a sort specification. This sort specification is an ORDER BY clause

with a single expression. Multiple expressions are not allowed.

Normal Aggregate Syntax
[PERCENTILE_CONT | PERCENTILE_DISC](<constant expression>)
 WITHIN GROUP (ORDER BY <single order by expression>
[ASC|DESC] [NULLS FIRST| NULLS LAST])

Example 19–24 Inverse Percentile Example

We use the following query to return the 17 rows of data used in the examples of

this section:
 SQL for Analysis in Data Warehouses 19-35

Inverse Percentile Functions
SELECT cust_id, cust_credit_limit, cume_dist()
 OVER (ORDER BY cust_credit_limit) AS cume_dist
FROM customers WHERE cust_city='Marshal';

CUST_ID CUST_CREDIT_LIMIT CUME_DIST
--------- ----------------- ---------
 171630 1500 .23529412
 346070 1500 .23529412
 420830 1500 .23529412
 383450 1500 .23529412
 165400 3000 .35294118
 227700 3000 .35294118
 28340 5000 .52941176
 215240 5000 .52941176
 364760 5000 .52941176
 184090 7000 .70588235
 370990 7000 .70588235
 408370 7000 .70588235
 121790 9000 .76470588
 22110 11000 .94117647
 246390 11000 .94117647
 40800 11000 .94117647
 464440 15000 1

PERCENTILE_DISC(x) is computed by scanning up the CUME_DIST values in each

group till you find the first one greater than or equal to x , where x is the specified

percentile value. For the example query where PERCENTILE_DISC(0.5), the result

is 5,000 as shown below.

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_disc,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_cont
 FROM customers WHERE cust_city='Marshal';

PERC_DISC PERC_CONT
--------- ---------
 5000 5000

The result of PERCENTILE_CONTis computed by linear interpolation between rows

after ordering them. To compute PERCENTILE_CONT(x), we first compute the row

number = RN= (1+x*(n-1)), where n is the number of rows in the group and x is the

specified percentile value. The final result of the aggregate function is computed by

linear interpolation between the values from rows at row numbers CRN =
CEILING(RN) and FRN = FLOOR(RN) .
19-36 Data Warehousing Guide

Inverse Percentile Functions
The final result will be: PERCENTILE_CONT(X) = if (CRN = FRN = RN), then

(value of expression from row at RN) else (CRN - RN) * (value of expression for row

at FRN) + (RN -FRN) * (value of expression for row at CRN).

Consider the example query above where we compute PERCENTILE_CONT(0.5) .

Here n is 17. The row number RN = (1 + 0.5*(n-1))= 9 for both groups. Putting this

into the formula, (FRN=CRN=9), we return the value from row 9 as the result.

Another example is, if you want to compute PERCENTILE_CONT(0.66). The

computed row number RN=(1 + 0.66*(n-1))= (1 + 0.66*16)= 11.67. PERCENTILE_
CONT(0.66) = (12-11.67)*(value of row 11)+(11.67-11)*(value of row 12). These results

are:

SELECT PERCENTILE_DISC(0.66) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_disc,
 PERCENTILE_CONT(0.66) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_cont
 FROM customers WHERE cust_city='Marshal';

PERC_DISC PERC_CONT
--------- ---------
 7000 7000

Inverse distribution aggregate functions can appear in the HAVINGclause of a query

like other existing aggregate functions.

As Reporting Aggregates
You can also use the aggregate functions PERCENTILE_CONT, PERCENTILE_DISC
as reporting aggregate functions. When used as reporting aggregate functions, the

syntax is similar to those of other reporting aggregates.

[PERCENTILE_CONT | PERCENTILE_DISC](<constant expression>)
WITHIN GROUP (ORDER BY <single order by expression>
[ASC|DESC] [NULLS FIRST| NULLS LAST])
OVER ([PARTITION BY <value expression> [,...]])

This query computes the same thing (median credit limit for customers in this result

set, but reports the result for every row in the result set, as shown in the output

below.

Example 19–25 Reporting Aggregates Example

SELECT cust_id, cust_credit_limit,
 PERCENTILE_DISC(0.5) WITHIN GROUP
 SQL for Analysis in Data Warehouses 19-37

Inverse Percentile Functions
 (ORDER BY cust_credit_limit) OVER () AS perc_disc,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) OVER () AS perc_cont
 FROM customers WHERE cust_city='Marshal';

CUST_ID CUST_CREDIT_LIMIT PERC_DISC PERC_CONT
--------- ----------------- --------- ---------
 171630 1500 5000 5000
 346070 1500 5000 5000
 420830 1500 5000 5000
 383450 1500 5000 5000
 165400 3000 5000 5000
 227700 3000 5000 5000
 28340 5000 5000 5000
 215240 5000 5000 5000
 364760 5000 5000 5000
 184090 7000 5000 5000
 370990 7000 5000 5000
 408370 7000 5000 5000
 121790 9000 5000 5000
 22110 11000 5000 5000
 246390 11000 5000 5000
 40800 11000 5000 5000
 464440 15000 5000 5000

Inverse Percentile Restrictions
For PERCENTILE_DISC, the expression in the ORDER BY clause can be of any data

type that you can sort (numeric, string, date, and so on). However, the expression in

the ORDER BY clause must be a numeric or datetime type (including intervals)

because linear interpolation is used to evaluate PERCENTILE_CONT. If the

expression is of type DATE, the interpolated result is rounded to the smallest unit

for the type. For a DATE type, the interpolated value will be rounded to the nearest

second, for interval types to the nearest second (INTERVAL DAY TO SECOND) or to

the month(INTERVAL YEAR TO MONTH).

Like other aggregates, the inverse distribution functions ignore NULLs in evaluating

the result. For example, when you want to find the median value in a set, Oracle

ignores the NULLs and finds the median among the non-null values. You can use

the NULLS FIRST/NULLS LAST option in the ORDER BY clause, but they will be

ignored as NULLs are ignored.
19-38 Data Warehousing Guide

Hypothetical Rank and Distribution Functions
Hypothetical Rank and Distribution Functions
These functions provide functionality useful for what-if analysis. As an example,

what would be the rank of a row, if the row was hypothetically inserted into a set of

other rows?

This family of aggregates takes one or more arguments of a hypothetical row and an

ordered group of rows, returning the RANK, DENSE_RANK, PERCENT_RANK or

CUME_DIST of the row as if it was hypothetically inserted into the group.

Hypothetical Rank and Distribution Syntax
[RANK | DENSE_RANK | PERCENT_RANK | CUME_DIST](<constant expression> [, ...])
WITHIN GROUP (ORDER BY <order by expression> [ASC|DESC] [NULLS FIRST|NULLS
LAST][, ...])

Here, <constant expression > refers to an expression that evaluates to a

constant, and there may be more than one such expressions that are passed as

arguments to the function. The ORDER BY clause can contain one or more

expressions that define the sorting order on which the ranking will be based. ASC,

DESC, NULLS FIRST, NULLS LAST options will be available for each expression in

the ORDER BY.

Example 19–26 Hypothetical Rank and Distribution Example 1

Using the list price data from the products table used throughout this section, you

can calculate the RANK, PERCENT_RANKand CUME_DISTfor a hypothetical sweater

with a price of $50 for how it fits within each of the sweater subcategories. The

query and results are:

SELECT prod_subcategory,
 RANK(50) WITHIN GROUP (ORDER BY prod_list_price DESC) as HRANK,
 TO_CHAR(PERCENT_RANK(50) WITHIN GROUP
 (ORDER BY prod_list_price),'9.999') AS HPERC_RANK,
 TO_CHAR(CUME_DIST (50) WITHIN GROUP
 (ORDER BY prod_list_price),'9.999') AS HCUME_DIST
FROM products
WHERE prod_subcategory LIKE 'Sweater%'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY HRANK HPERC_RANK HCUME_DIST
---------------- ----- ---------- ----------
Sweaters - Boys 16 .911 .912
Sweaters - Girls 1 1.000 1.000
 SQL for Analysis in Data Warehouses 19-39

WIDTH_BUCKET Function
Sweaters - Men 240 .351 .352
Sweaters - Women 21 .783 .785

Unlike the inverse percentile aggregates, the ORDER BY clause in the sort

specification for hypothetical rank and distribution functions may take multiple

expressions. The number of arguments and the expressions in the ORDER BY clause

should be the same and the arguments must be constant expressions of the same or

compatible type to the corresponding ORDER BY expression. Below is an example

using 2 arguments in several hypothetical ranking functions.

Example 19–27 Hypothetical Rank and Distribution Example 1

SELECT prod_subcategory,
 RANK(45,30) WITHIN GROUP (ORDER BY prod_list_price DESC,prod_min_price) as
HRANK,
 TO_CHAR(PERCENT_RANK(45,30) WITHIN GROUP
 (ORDER BY prod_list_price, prod_min_price),'9.999') as HPERC_RANK,
 TO_CHAR(CUME_DIST (45,30) WITHIN GROUP
 (ORDER BY prod_list_price, prod_min_price),'9.999') as HCUME_DIST
FROM products
WHERE prod_subcategory LIKE 'Sweater%'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY HRANK HPERC_RANK HCUME_DIST
---------------- ----- ---------- ----------
Sweaters - Boys 21 .858 .859
Sweaters - Girls 1 1.000 1.000
Sweaters - Men 340 .079 .081
Sweaters - Women 72 .228 .237

These functions can appear in the HAVING clause of a query just like other

aggregate functions. They cannot be used as either reporting aggregate functions or

windowing aggregate functions.

WIDTH_BUCKET Function
For a given expression, the WIDTH_BUCKET function returns the bucket number

that the result of this expression will be assigned after it is evaluated. You can

generate equiwidth histograms with this function. Equiwidth histograms divide

data sets into buckets whose interval size (highest value to lowest value) is equal.

The number of rows held by each bucket will vary. A related function, NTILE ,

creates equiheight buckets.
19-40 Data Warehousing Guide

WIDTH_BUCKET Function
Equiwidth histograms can be generated only for numeric, date or datetime types.

So the first three parameters should be all numeric expressions or all date

expressions. Other types of expressions are not allowed. If the first parameter is

NULL, the result is NULL. If the second or the third parameter is NULL, an error

message is returned, as a NULLvalue cannot denote any end point (or any point) for

a range in a date or numeric value dimension. The last parameter (number of

buckets) should be a numeric expression that evaluates to a positive integer value;

0, NULL, or a negative value will result in an error.

Buckets are numbered from 0 to (n+1). Bucket 0 holds the count of values less than

the minimum. Bucket(n+1) holds the count of values greater than or equal to the

maximum specified value.

WIDTH_BUCKET Syntax
The WIDTH_BUCKETtakes four expressions as parameters. The first parameter is the

expression that the equiwidth histogram is for. The second and third parameters are

expressions that denote the end points of the acceptable range for the first

parameter. The fourth parameter denotes the number of buckets.

WIDTH_BUCKET(<expression>, <minval expression>, <maxval expression>,
 <num buckets>)

Consider the following data from table customers , that shows the credit limits of

17 customers. This data is gathered in the query shown in Example 19–28 on

page 19-43.

CUST_ID CUST_CREDIT_LIMIT
-------- -----------------
 22110 11000
 28340 5000
 40800 11000
 121790 9000
 165400 3000
 171630 1500
 184090 7000
 215240 5000
 227700 3000
 246390 11000
 346070 1500
 364760 5000
 370990 7000
 383450 1500
 408370 7000
 SQL for Analysis in Data Warehouses 19-41

WIDTH_BUCKET Function
 420830 1500
 464440 15000

In the table customers, the column cust_credit_limit contains values between

1500 and 15000, and we can assign the values to four equiwidth buckets, numbered

from 1 to 4, by using WIDTH_BUCKET (cust_credit_limit, 0, 20000, 4) .

Ideally each bucket is a closed-open interval of the real number line, for example,

bucket number 2 is assigned to scores between 5000.0000 and 9999.9999...,

sometimes denoted [5000, 10000) to indicate that 5,000 is included in the interval

and 10,000 is excluded. To accommodate values outside the range [0, 20,000), values

less than 0 are assigned to a designated underflow bucket which is numbered 0, and

values greater than or equal to 20,000 are assigned to a designated overflow bucket

which is numbered 5 (num buckets + 1 in general). See Figure 19–3 for a graphical

illustration of how the buckets are assigned.

Figure 19–3 Bucket Assignments

You can specify the bounds in the reverse order, for example, WIDTH_BUCKET
(cust_credit_limit , 20000 , 0, 4). When the bounds are reversed, the buckets

will be open-closed intervals. In this example, bucket number 1 is (15000,20000],

bucket number 2 is (10000,15000], and bucket number 4, is (0,5000]. The

overflow bucket will be numbered 0 (20000 , +infinity), and the underflow

bucket will be numbered 5 (-infinity , 0].

It is an error if the bucket count parameter is 0 or negative.

0 5000 10000 15000 20000

0 1 2 3 4 5

Bucket #

Credit Limits
19-42 Data Warehousing Guide

User-Defined Aggregate Functions
Example 19–28 WIDTH_BUCKET Example

The following query shows the bucket numbers for the credit limits in the

customers table for both cases where the boundaries are specified in regular or

reverse order. We use a range of 0 to 20,000.

SELECT cust_id, cust_credit_limit,
 WIDTH_BUCKET(cust_credit_limit,0,20000,4) AS WIDTH_BUCKET_UP,
 WIDTH_BUCKET(cust_credit_limit,20000, 0, 4) AS WIDTH_BUCKET_DOWN
FROM customers WHERE cust_city = 'Marshal';

 CUST_ID CUST_CREDIT_LIMIT WIDTH_BUCKET_UP WIDTH_BUCKET_DOWN
 ------- ----------------- --------------- -----------------
 22110 11000 3 2
 28340 5000 2 4
 40800 11000 3 2
 121790 9000 2 3
 165400 3000 1 4
 171630 1500 1 4
 184090 7000 2 3
 215240 5000 2 4
 227700 3000 1 4
 246390 11000 3 2
 346070 1500 1 4
 364760 5000 2 4
 370990 7000 2 3
 383450 1500 1 4
 408370 7000 2 3
 420830 1500 1 4
 464440 15000 4 2

User-Defined Aggregate Functions
Oracle offers a facility for creating your own functions, called user-defined
aggregate functions. These functions are written in programming languages such

as PL/SQL, Java, and C, and can be used as analytic functions or aggregates in

materialized views.

See Also: Oracle9i Data Cartridge Developer’s Guide for further

information regarding syntax and restrictions
 SQL for Analysis in Data Warehouses 19-43

CASE Expressions
The advantages of these functions are:

■ Highly complex functions can be programmed using a fully procedural

language.

■ Higher scalability than other techniques when user-defined functions are

programmed for parallel processing.

■ Object datatypes can be processed.

As a simple example of a user-defined aggregate function, consider the skew

statistic. This calculation measures if a data set has a lopsided distribution about its

mean. It will tell you if one tail of the distribution is significantly larger than the

other. If you created a user-defined aggregate called udskew and applied it to the

credit limit data in the prior example, the SQL statement and results might look like

this:

SELECT USERDEF_SKEW(cust_credit_limit)
FROM customers WHERE cust_city='Marshal';

USERDEF_SKEW
============
0.583891

Before building user-defined aggregate functions, you should consider if your

needs can be met in regular SQL. Many complex calculations are possible directly in

SQL, particularly by using the CASE expression.

Staying with regular SQL will enable simpler development, and many query

operations are already well-parallelized in SQL. Even the example above, the skew

statistic, can be created using standard, albeit lengthy, SQL.

CASE Expressions
Oracle now supports simple and searched CASE statements. CASE statements are

similar in purpose to the Oracle DECODE statement, but they offer more flexibility

and logical power. They are also easier to read than traditional DECODE statements,

and offer better performance as well. They are commonly used when breaking

categories into buckets like age (for example, 20-29, 30-39, and so on). The syntax

for simple statements is:

CASE value expression t
 WHEN <value expression 1> THEN <result 1>
 WHEN <value expression 2> THEN <result 2>
 ...
19-44 Data Warehousing Guide

CASE Expressions
 ELSE result n + 1
END

The syntax for searched statements is:

CASE
 WHEN <search condition 1> THEN <result 1>
 WHEN <search condition 2> THEN <result 2>
 ...
 ELSE result n + 1
END

You can specify only 255 arguments and each WHEN ... THEN pair counts as two

arguments. For a workaround to this limit, see Oracle9i SQL Reference.

Example 19–29 CASE Example

Suppose you wanted to find the average salary of all employees in the company. If

an employee's salary is less than $2000, you want the query to use $2000 instead.

With a CASE statement, you would have to write this query as follows,

SELECT AVG(foo(e.sal)) FROM emps e;

where foo is a function that returns its input if the input is greater than 2000, and

returns 2000 otherwise. The query has performance implications because it needs to

invoke a function for each row. Writing custom functions can also add to the

development load.

Using CASE expressions in the database without PL/SQL, the above query can be

rewritten as:

SELECT AVG(CASE when e.sal > 2000 THEN e.sal ELSE 2000 end) FROM emps e;

Using a CASE expression lets you avoid developing custom functions and can also

perform faster.

Creating Histograms with User-defined Buckets
You can use the CASE statement when you want to obtain histograms with

user-defined buckets (both in number of buckets and width of each bucket). Below

are two examples of histograms created with CASE statements. In the first example,

the histogram totals are shown in multiple columns and a single row is returned. In

the second example, the histogram is shown with a label column and a single

column for totals, and multiple rows are returned.
 SQL for Analysis in Data Warehouses 19-45

CASE Expressions
Example 19–30 Histogram Example 1

SELECT
SUM(CASE WHEN cust_credit_limit BETWEEN 0 AND 3999 THEN 1 ELSE 0 END)
 AS "0-3999",
SUM(CASE WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN 1 ELSE 0 END)
 AS "4000-7999",
SUM(CASE WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN 1 ELSE 0 END)
 AS "8000-11999",
SUM(CASE WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN 1 ELSE 0 END)
 AS "12000-16000"
FROM customers WHERE cust_city='Marshal';

 0-3999 4000-7999 8000-11999 12000-16000
--------- --------- ---------- -----------
 6 6 4 1

Example 19–31 Histogram Example 2

SELECT
 (CASE WHEN cust_credit_limit BETWEEN 0 AND 3999
 THEN ' 0 - 3999'
 WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN ' 4000 - 7999'
 WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN ' 8000 - 11999'
 WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN '12000 - 16000' END)
 AS BUCKET,
 COUNT(*) AS Count_in_Group
FROM customers
WHERE cust_city = 'Marshal'
GROUP BY
 (CASE WHEN cust_credit_limit BETWEEN 0 AND 3999
 THEN ' 0 - 3999'
 WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN ' 4000 - 7999'
 WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN ' 8000 - 11999'
 WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN '12000 - 16000'
 END)
;

BUCKET COUNT_IN_GROUP
------------- --------------
 0 - 3999 6
 4000 - 7999 6
 8000 - 11999 4
12000 - 16000 1
19-46 Data Warehousing Guide

 Advanced Analytic S
20

Advanced Analytic Services

The following topics provide an introduction to Oracle’s Advanced Analytic

Services:

■ OLAP

■ Data Mining
ervices 20-1

OLAP
OLAP
Oracle9i OLAP adds the query performance and calculation capability previously

found only in multidimensional databases to Oracle’s relational platform. In

addition, it provides a Java OLAP API that is appropriate for the development of

internet-ready analytical applications. Unlike other combinations of OLAP and

RDBMS technology, Oracle9i OLAP is not a multidimensional database using

bridges to move data from the relational data store to a multidimensional data

store. Instead, it is truly an OLAP-enabled relational database. As a result, Oracle9i
provides the benefits of a multidimensional database along with the scalability,

accessibility, security, manageability, and high availability of the Oracle9i database.

The Java OLAP API, which is specifically designed for internet-based analytical

applications, offers productive data access.

Benefits of OLAP and RDBMS Integration
Basing an OLAP system directly on the Oracle server offers the following benefits:

■ Scalability

■ Availability

■ Manageability

■ Backup and Recovery

■ Security

Scalability
Oracle9i OLAP is highly scalable. In today’s environment, there is tremendous

growth along three dimensions of analytic applications: number of users, size of

data, complexity of analyses. There are more users of analytical applications, and

they need access to more data to perform more sophisticated analysis and target

marketing. For example, a telephone company might want a customer dimension to

include detail such as all telephone numbers as part of an application that is used to

analyze customer turnover. This would require support for multi-million row

dimension tables and very large volumes of fact data. Oracle9i can handle very

large data sets using parallel execution and partitioning, as well as offering support

for advanced hardware and clustering.

See Also: Oracle OLAP documentation for further information
20-2 Data Warehousing Guide

OLAP
Availability
Oracle9i includes many features that support high availability. One of the most

significant is partitioning, which allows management of precise subsets of tables

and indexes, so that management operations affect only small pieces of these data

structures. By partitioning tables and indexes, data management processing time is

reduced, thus minimizing the time data is unavailable. Another feature supporting

high availability is transportable tablespaces. With transportable tablespaces, large

data sets, including tables and indexes, can be added with almost no processing to

other databases. This enables extremely rapid data loading and updates.

Manageability
Oracle enables you to precisely control resource utilization. The Database Resource

Manager, for example, provides a mechanism for allocating the resources of a data

warehouse among different sets of end-users. Consider an environment where the

marketing department and the sales department share an OLAP system. Using the

Database Resource Manager, you could specify that the marketing department

receive at least 60 percent of the CPU resources of the machines, while the sales

department receive 40 percent of the CPU resources. You can also further specify

limits on the total number of active sessions, and the degree of parallelism of

individual queries for each department.

Another resource management facility is the progress monitor, which gives endusers

and administrators the status of long-running operations. Oracle9i maintains

statistics describing the percent-complete of these operations. Oracle Enterprise

Manager enables you to view a bar-graph display of these operations showing what

percent complete they are. Moreover, any other tool or any database administrator

can also retrieve progress information directly from the Oracle data server, using

system views.

Backup and Recovery
Oracle provides a server-managed infrastructure for backup, restore, and recovery

tasks that enables simpler, safer operations at terabyte scale. Some of the highlights

are:

■ Details related to backup, restore, and recovery operations are maintained by

the server in a recovery catalog and automatically used as part of these

operations. This reduces administrative burden and minimizes the possibility of

human errors.
 Advanced Analytic Services 20-3

Data Mining
■ Backup and recovery operations are fully integrated with partitioning.

Individual partitions, when placed in their own tablespaces, can be backed up

and restored independently of the other partitions of a table.

■ Oracle includes support for incremental backup and recovery, enabling

operations to be completed efficiently within times proportional to the amount

of changes, rather than the overall size of the database.

■ The backup and recovery technology is highly scalable, and provides tight

interfaces to industry-leading media management subsystems. This provides

for efficient operations that can scale up to handle very large volumes of data.

Open Platforms for more hardware options & enterprise-level platforms

Security
Just as the demands of real-world transaction processing required Oracle to develop

robust features for scalability, manageability and backup and recovery, they lead

Oracle to create industry-leading security features. The security features in Oracle

have reached the highest levels of U.S. government certification for database

trustworthiness. Oracle’s fine grained access control feature, enables cell-level

security for OLAP users. Fine grained access control works with minimal burden on

query processing, and it enables efficient centralized security management.

Data Mining
Oracle enables data mining inside the database for performance and scalability.

Some of the capabilities are:

■ An API that provides programmatic control and application integration

■ Analytical capabilities with OLAP and statistical functions in the database

■ Multiple Algorithms: Naïve Bayes and Association Rules

■ Real-time and Batch Scoring modes

■ Multiple Prediction types

■ Association insights

See Also: Oracle Data Mining documentation for further

information
20-4 Data Warehousing Guide

Data Mining
Enabling Data Mining Applications
Oracle9i Data Mining provides a Java API to exploit the data mining functionality

that is embedded within the Oracle9i database.

By delivering complete programmatic control of the database in data mining,

Oracle Data Mining (ODM) delivers powerful, scalable modeling and real-time

scoring. This enables e-businesses to incorporate predictions and classifications in

all processes and decision points throughout the business cycle.

ODM is designed to meet the challenges of vast amounts of data, delivering

accurate insights completely integrated into e-business applications. This integrated

intelligence enables the automation and decision speed that e-businesses require in

order to compete today.

Predictions and Insights
ODM uses data mining algorithms to sift through the large volumes of data

generated by e-businesses to produce, evaluate, and deploy predictive models. It

alos enriches mission critical applications in CRM, manufacturing control,

inventory management, customer service and support, Web portals, wireless

devices and other fields with context-specific recommendations and predictive

monitoring of critical processes. ODM delivers real-time answers to questions such

as:

■ Which N items is person A most likely to buy or like?

■ What is the likelihood that this product will be returned for repair?

Mining Within the Database Architecture
ODM performs all the phases of data mining within the database. In each data

mining phase, this architecture results in significant improvements including

performance, automation, and integration.

Data Preparation
Data preparation can create new tables or views of existing data. Both options

perform faster than moving data to an external data mining utility and offer the

programmer the option of snap-shots or real-time updates.
 Advanced Analytic Services 20-5

Data Mining
ODM provides utilities for complex, data mining-specific tasks. Binning improves

model build time and model performance, so ODM provides a utility for

user-defined binning. ODM accepts data in either single record format or in

transactional format and performs mining on transactional formats. Single record

format is most common in applications, so ODM provides a utility for transforming

single record format.

Associated analysis for preparatory data exploration and model evaluation is

extended by Oracle’s statistical functions and OLAP capabilities. Because these also

operate within the database, they can all be incorporated into a seamless application

that shares database objects. This allows for more functional and faster applications.

Model Building
ODM provides Naïve Bayes for prediction and rating. This algorithm can predict

binary outcomes in which the prediction might be either yes or no. It can also

predict multi-class outcomes in which the prediction might be one or more of a set

of possible outcomes. ODM also provides Association Rules for market basket

analysis and other association problems. For example, the possible outcomes of a

loyalty prediction might include: increase use, remain stable, decrease use, and

defect. All model building takes place inside the database. Once again, the data

does not need to move and the process is accelerated.

Model Evaluation
Models are stored in the database and directly accessible for evaluation, reporting,

and further analysis by a wide variety of tools and application functions. ODM

provides APIs for calculating traditional confusion matrixes and lift charts. It stores

the models, the underlying data, and these analysis results together in the database

to allow further analysis, reporting and application specific model management.

Scoring
ODM provides both batch and real-time scoring. In batch mode, ODM takes a table

as input. It scores every record, and returns a scored table as a result. In real-time

mode, parameters for a single record are passed in and the scores are returned in a

Java object.
20-6 Data Warehousing Guide

Data Mining
In both modes, ODM can deliver a variety of scores. It can return a rating or

probability of a specific outcome. Alternatively it can return a predicted outcome

and the probability of that outcome occurring. Some examples follow.

■ How likely is this event to end in outcome A?

■ Which outcome is most likely to result from this event?

■ What is the probability of each possible outcome for this event?

Java API
The Oracle Data Mining API lets you build analytical models and deliver real-time

predictions in any application that supports Java. The API is based on the emerging

JSR-073 standard.
 Advanced Analytic Services 20-7

Data Mining
20-8 Data Warehousing Guide

 Using Parallel E
21

Using Parallel Execution

This chapter covers tuning in a parallel execution environment and discusses:

■ Introduction to Parallel Execution Tuning

■ Types of Parallelism

■ Initializing and Tuning Parameters for Parallel Execution

■ Tuning General Parameters for Parallel Execution

■ Monitoring and Diagnosing Parallel Execution Performance

■ Affinity and Parallel Operations

■ Miscellaneous Parallel Execution Tuning Tips
xecution 21-1

Introduction to Parallel Execution Tuning
Introduction to Parallel Execution Tuning
Parallel execution dramatically reduces response time for data-intensive operations

on large databases typically associated with decision support systems (DSS) and

data warehouses. You can also implement parallel execution on certain types of

online transaction processing (OLTP) and hybrid systems. Parallel execution

improves processing for:

■ Queries requiring large table scans, joins, or partitioned index scans

■ Creation of large indexes

■ Creation of large tables (including materialized views)

■ Bulk inserts, updates, merges, and deletes

You can also use parallel execution to access object types within an Oracle database.

For example, you can use parallel execution to access large objects (LOBs).

Parallel execution benefits systems with all of the following characteristics:

■ Symmetric multiprocessors (SMPs), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Underutilized or intermittently used CPUs (for example, systems where CPU

usage is typically less than 30%)

■ Sufficient memory to support additional memory-intensive processes, such as

sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not

significantly improve performance. In fact, parallel execution may reduce system

performance on overutilized systems or systems with small I/O bandwidth.

When to Implement Parallel Execution
Parallel execution provides the greatest performance improvements in DSS and

data warehousing environments. OLTP systems also benefit from parallel execution,

but usually only during batch processing.

During the day, most OLTP systems should probably not use parallel execution.

During off-hours, however, parallel execution can effectively process high-volume

batch operations. For example, a bank might use parallelized batch programs to

perform millions of updates to apply interest to accounts.
21-2 Data Warehousing Guide

Introduction to Parallel Execution Tuning
Operations That Can Be Parallelized
The Oracle server can use parallel execution for any of the following:

1. Access Methods

Table Scans, Index Full Scans, and Partitioned Index Range Scans

2. Join Methods

Nested Loop, Sort Merge, Hash, and Star Transformation

3. DDL Statements

CREATE TABLE AS SELECT, CREATE INDEX, REBUILD INDEX, REBUILD INDEX
PARTITION, and MOVE SPLIT COALESCE PARTITION

4. DML Statements

Inserts as Select, Updates, Deletes, and Merges

5. Miscellaneous SQL Operations

GROUP BY, NOT IN, SELECT DISTINCT, UNION, UNION ALL, CUBE, and ROLLUP,
as well as Aggregate and Table Functions

The Parallel Execution Server Pool
When an instance starts up, Oracle creates a pool of parallel execution servers

which are available for any parallel operation. The initialization parameter

PARALLEL_MIN_SERVERS specifies the number of parallel execution servers that

Oracle creates at instance startup.

When executing a parallel operation, the parallel execution coordinator obtains

parallel execution servers from the pool and assigns them to the operation. If

necessary, Oracle can create additional parallel execution servers for the operation.

These parallel execution servers remain with the operation throughout job

execution, then become available for other operations. After the statement has been

processed completely, the parallel execution servers return to the pool.

Note: The parallel execution coordinator and the parallel

execution servers can only service one statement at a time. A

parallel execution coordinator cannot coordinate, for example, a

parallel query and a parallel DML statement at the same time.
 Using Parallel Execution 21-3

Introduction to Parallel Execution Tuning
When a user issues a SQL statement, the optimizer decides whether to execute the

operations in parallel and determines the degree of parallelism (DOP) for each

operation. You can specify the number of parallel execution servers required for an

operation in various ways.

If the optimizer targets the statement for parallel processing, the following sequence

of events takes place:

1. The SQL statement's foreground process becomes a parallel execution

coordinator.

2. The parallel execution coordinator obtains as many parallel execution servers as

needed (determined by the DOP) from the server pool or creates new parallel

execution servers as needed.

3. Oracle executes the statement as a sequence of operations. Each operation is

performed in parallel, if possible.

4. When statement processing is completed, the coordinator returns any resulting

data to the user process that issued the statement and returns the parallel

execution servers to the server pool.

The parallel execution coordinator calls upon the parallel execution servers during

the execution of the SQL statement, not during the parsing of the statement.

Therefore, when parallel execution is used with the shared server, the server process

that processes the EXECUTEcall of a user's statement becomes the parallel execution

coordinator for the statement.

Variations in the Number of Parallel Execution Servers
If the number of parallel operations processed concurrently by an instance changes

significantly, Oracle automatically changes the number of parallel execution servers

in the pool.

If the number of parallel operations increases, Oracle creates additional parallel

execution servers to handle incoming requests. However, Oracle never creates more

parallel execution servers for an instance than the value specified by the

initialization parameter PARALLEL_MAX_SERVERS.

If the number of parallel operations decreases, Oracle terminates any parallel

execution servers that have been idle for a threshold period of time. Oracle does not

reduce the size of the pool below the value of PARALLEL_MIN_SERVERS, no matter

how long the parallel execution servers have been idle.

See Also: "Setting the Degree of Parallelism" on page 21-32
21-4 Data Warehousing Guide

Introduction to Parallel Execution Tuning
Processing Without Enough Parallel Execution Servers
Oracle can process a parallel operation with fewer than the requested number of

processes.

If all parallel execution servers in the pool are occupied and the maximum number

of parallel execution servers has been started, the parallel execution coordinator

switches to serial processing.

How Parallel Execution Servers Communicate
To execute a query in parallel, Oracle generally creates a producer queue server and

a consumer server. The producer queue server retrieves rows from tables and the

consumer server performs operations such as join, sort, DML, and DDL on these

rows. Each server in the producer execution process set has a connection to each

server in the consumer set. This means that the number of virtual connections

between parallel execution servers increases as the square of the DOP.

Each communication channel has at least one, and sometimes up to four memory

buffers. Multiple memory buffers facilitate asynchronous communication among

the parallel execution servers.

A single-instance environment uses at most three buffers per communication

channel. An Oracle Real Application Cluster environment uses at most four buffers

per channel. Figure 21–1 illustrates message buffers and how producer parallel

execution servers connect to consumer parallel execution servers.

See Also:

■ "Minimum Number of Parallel Execution Servers" on

page 21-36 for information about using the initialization

parameter PARALLEL_MIN_PERCENT

■ Oracle9i Database Performance Guide and Reference for

information about monitoring an instance's pool of parallel

execution servers and determining the appropriate values for

the initialization parameters
 Using Parallel Execution 21-5

Introduction to Parallel Execution Tuning
Figure 21–1 Parallel Execution Server Connections and Buffers

When a connection is between two processes on the same instance, the servers

communicate by passing the buffers back and forth. When the connection is

between processes in different instances, the messages are sent using external

high-speed network protocols. In Figure 21–1, the DOP is equal to the number of

parallel execution servers, which in this case is n. Figure 21–1 does not show the

parallel execution coordinator. Each parallel execution server actually has an

additional connection to the parallel execution coordinator.

Parallelizing SQL Statements
Each SQL statement undergoes an optimization and parallelization process when it

is parsed. When the data changes, if a more optimal execution or parallelization

plan becomes available, Oracle can automatically adapt to the new situation.

After the optimizer determines the execution plan of a statement, the parallel

execution coordinator determines the parallelization method for each operation in

the plan. For example, the parallelization method might be to parallelize a full table

scan by block range or parallelize an index range scan by partition. The coordinator

must decide whether an operation can be performed in parallel and, if so, how

many parallel execution servers to enlist. The number of parallel execution servers

is the DOP.

connections

message
buffer

DOP = 1 DOP = 2

. . .

. . .

DOP = n

Parallel
execution
server set 1

Parallel
execution
server set 2
21-6 Data Warehousing Guide

Introduction to Parallel Execution Tuning
Dividing Work Among Parallel Execution Servers
The parallel execution coordinator examines the redistribution requirements of each

operation. An operation's redistribution requirement is the way in which the rows

operated on by the operation must be divided or redistributed among the parallel

execution servers.

After determining the redistribution requirement for each operation in the

execution plan, the optimizer determines the order in which the operations must be

performed. With this information, the optimizer determines the data flow of the

statement.

Figure 21–2 illustrates the data flow for a query to join the emp and dept tables:

SELECT dname, MAX(sal), AVG(sal)
FROM emp, dept
WHERE emp.deptno = dept.deptno
GROUP BY dname;

See Also:

■ "Setting the Degree of Parallelism" on page 21-32

■ "Parallelization Rules for SQL Statements" on page 21-38
 Using Parallel Execution 21-7

Introduction to Parallel Execution Tuning
Figure 21–2 Data Flow Diagram for a Join of the EMP and DEPT Tables

Parallelism Between Operations
Operations that require the output of other operations are known as parent

operations. In Figure 21–2 the GROUP BY SORT operation is the parent of the HASH
JOIN operation because GROUP BY SORT requires the HASH JOIN output.

Parallel
Execution

Coordinator

FULL SCAN
emp

FULL SCAN
dept

GROUP
BY

SORT

HASH
JOIN
21-8 Data Warehousing Guide

Introduction to Parallel Execution Tuning
Parent operations can begin consuming rows as soon as the child operations have

produced rows. In the previous example, while the parallel execution servers are

producing rows in the FULL SCAN dept operation, another set of parallel execution

servers can begin to perform the HASH JOIN operation to consume the rows.

Each of the two operations performed concurrently is given its own set of parallel

execution servers. Therefore, both query operations and the data flow tree itself

have parallelism. The parallelism of an individual operation is called intraoperation

parallelism and the parallelism between operations in a data flow tree is called

interoperation parallelism.

Due to the producer-consumer nature of the Oracle server's operations, only two

operations in a given tree need to be performed simultaneously to minimize

execution time.

To illustrate intraoperation and interoperation parallelism, consider the following

statement:

SELECT * FROM emp ORDER BY ename;

The execution plan implements a full scan of the emp table. This operation is

followed by a sorting of the retrieved rows, based on the value of the ename
column. For the sake of this example, assume the ename column is not indexed.

Also assume that the DOP for the query is set to 4, which means that four parallel

execution servers can be active for any given operation.

Figure 21–3 illustrates the parallel execution of the example query.
 Using Parallel Execution 21-9

Introduction to Parallel Execution Tuning
Figure 21–3 Interoperation Parallelism and Dynamic Partitioning

As you can see from Figure 21–3, there are actually eight parallel execution servers

involved in the query even though the DOP is 4. This is because a parent and child

operator can be performed at the same time (interoperation parallelism).

Also note that all of the parallel execution servers involved in the scan operation

send rows to the appropriate parallel execution server performing the SORT
operation. If a row scanned by a parallel execution server contains a value for the

ename column between A and G, that row gets sent to the first ORDER BY parallel

execution server. When the scan operation is complete, the sorting processes can

return the sorted results to the coordinator, which, in turn, returns the complete

query results to the user.

Note: When a set of parallel execution servers completes its

operation, it moves on to operations higher in the data flow. For

example, in Figure 21–3 on page 21-10, if there was another ORDER
BY operation after the ORDER BY, the parallel execution servers

performing the table scan would perform the second ORDER BY
operation after completing the table scan.

SELECT *
 FROM emp
 ORDER BY ename;

EMP Table

Parallel
Execution

Coordinator

T - Z

H - M

N - S

A - G

User
Process

Parallel execution
servers for
ORDER BY
operation

Parallel execution
servers for full
table scan

Intra-
Operation
parallelism

Inter-
Operation
parallelism

Intra-
Operation
parallelism
21-10 Data Warehousing Guide

Types of Parallelism
Types of Parallelism
The following types of parallelism are discussed in this section:

■ Parallel Query

■ Parallel DDL

■ Parallel DML

■ Parallel Execution of Functions

■ Other Types of Parallelism

Parallel Query
You can parallelize queries and subqueries in SELECT statements. You can also

parallelize the query portions of DDL statements and DML statements (INSERT,

UPDATE, and DELETE).

However, you cannot parallelize the query portion of a DDL or DML statement if it

references a remote object. When you issue a parallel DML or DDL statement in

which the query portion references a remote object, the operation is automatically

executed serially.

Parallel Queries on Index-Organized Tables
The following parallel scan methods are supported on index-organized tables:

■ Parallel fast full scan of a nonpartitioned index-organized table

■ Parallel fast full scan of a partitioned index-organized table

■ Parallel index range scan of a partitioned index-organized table

See Also:

■ "Operations That Can Be Parallelized" on page 21-3 for

information on the query operations that Oracle can parallelize

■ "Parallelizing SQL Statements" on page 21-6 for an explanation

of how the processes perform parallel queries

■ "Distributed Transaction Restrictions" on page 21-27 for

examples of queries that reference a remote object

■ "Rules for Parallelizing Queries" on page 21-38 for information

on the conditions for parallelizing a query and the factors that

determine the DOP
 Using Parallel Execution 21-11

Types of Parallelism
These scan methods can be used for index-organized tables with overflow areas and

for index-organized tables that contain LOBs.

Nonpartitioned Index-Organized Tables
Parallel query on a nonpartitioned index-organized table uses parallel fast full scan.

The DOP is determined, in decreasing order of priority, by:

1. A PARALLEL hint (if present)

2. An ALTER SESSION FORCE PARALLEL QUERY statement

3. The parallel degree associated with the table, if the parallel degree is specified

in the CREATE TABLE or ALTER TABLE statement

The allocation of work is done by dividing the index segment into a sufficiently

large number of block ranges and then assigning the block ranges to parallel

execution servers in a demand-driven manner. The overflow blocks corresponding

to any row are accessed in a demand-driven manner only by the process which

owns that row.

Partitioned Index-Organized Tables
Both index range scan and fast full scan can be performed in parallel. For parallel

fast full scan, parallelization is exactly the same as for nonpartitioned

index-organized tables. For parallel index range scan on partitioned

index-organized tables, the DOP is the minimum of the degree picked up from the

above priority list (like in parallel fast full scan) and the number of partitions in the

index-organized table. Depending on the DOP, each parallel execution server gets

one or more partitions (assigned in a demand-driven manner), each of which

contains the primary key index segment and the associated overflow segment, if

any.

Parallel Queries on Object Types
Parallel queries can be performed on object type tables and tables containing object

type columns. Parallel query for object types supports all of the features that are

available for sequential queries on object types, including:

■ Methods on object types

■ Attribute access of object types

■ Constructors to create object type instances

■ Object views
21-12 Data Warehousing Guide

Types of Parallelism
■ PL/SQL and OCI queries for object types

There are no limitations on the size of the object types for parallel queries.

The following restrictions apply to using parallel query for object types.

■ A MAP function is needed to parallelize queries involving joins and sorts

(through ORDER BY, GROUP BY, or set operations). In the absence of a MAP
function, the query will automatically be executed serially.

■ Parallel queries on nested tables are not supported. Even if the table has a

parallel attribute or parallel hints, the query will execute serially.

■ Parallel DML and parallel DDL are not supported with object types. DML and

DDL statements are always performed serially.

In all cases where the query cannot execute in parallel because of any of the above

restrictions, the whole query executes serially without giving an error message.

Parallel DDL
This section includes the following topics on parallelism for DDL statements:

■ DDL Statements That Can Be Parallelized

■ CREATE TABLE ... AS SELECT in Parallel

■ Recoverability and Parallel DDL

■ Space Management for Parallel DDL

DDL Statements That Can Be Parallelized
You can parallelize DDL statements for tables and indexes that are nonpartitioned

or partitioned. Table 21–3 on page 21-45 summarizes the operations that can be

parallelized in DDL statements.

The parallel DDL statements for nonpartitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT

■ ALTER INDEX ... REBUILD

The parallel DDL statements for partitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT
 Using Parallel Execution 21-13

Types of Parallelism
■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER TABLE ... COALESCE PARTITION

■ ALTER INDEX ... REBUILD PARTITION

■ ALTER INDEX ... SPLIT PARTITION

■ This statement can be executed in parallel only if the (global) index

partition being split is usable.

All of these DDL operations can be performed in no-logging mode for either

parallel or serial execution.

CREATE TABLE for an index-organized table can be parallelized either with or

without an AS SELECT clause.

Different parallelism is used for different operations (see Table 21–3 on page 21-45).

Parallel CREATE TABLE ... AS SELECT statements on partitioned tables and parallel

CREATE INDEX statements on partitioned indexes execute with a DOP equal to the

number of partitions.

Partition parallel analyze table is made less necessary by the ANALYZE {TABLE,
INDEX} PARTITION statements, since parallel analyze of an entire partitioned table

can be constructed with multiple user sessions.

Parallel DDL cannot occur on tables with object columns or LOB columns.

CREATE TABLE ... AS SELECT in Parallel
For performance reasons, decision support applications often require large amounts

of data to be summarized or rolled up into smaller tables for use with ad hoc,

decision support queries. Rollup occurs regularly (such as nightly or weekly)

during a short period of system inactivity.

Parallel execution lets you parallelize the query and create operations of creating a

table as a subquery from another table or set of tables.

Figure 21–4 illustrates creating a table from a subquery in parallel.

See Also:

■ Oracle9i SQL Reference for information about the syntax and use

of parallel DDL statements

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

information about LOB restrictions
21-14 Data Warehousing Guide

Types of Parallelism
Figure 21–4 Creating a Summary Table in Parallel

Recoverability and Parallel DDL
When summary table data is derived from other tables' data, recoverability from

media failure for the smaller summary table may not be important and can be

turned off during creation of the summary table.

If you disable logging during parallel table creation (or any other parallel DDL

operation), you should back up the tablespace containing the table once the table is

created to avoid loss of the table due to media failure.

Use the NOLOGGING clause of the CREATE TABLE, CREATE INDEX, ALTER TABLE,
and ALTER INDEX statements to disable undo and redo log generation.

Note: Clustered tables cannot be created and populated in

parallel.

CREATE TABLE summary
 (C1, AVGC2, SUMC3)
PARALLEL (5)
AS
SELECT
C1, AVG(C2), SUM(C3)
FROM DAILY_SALES
GROUP BY (C1);

DAILY_SALES
Table

SUMMARY
Table

Parallel Execution
Coordinator

Parallel Execution
Servers

Parallel Execution
Servers
 Using Parallel Execution 21-15

Types of Parallelism
Space Management for Parallel DDL
Creating a table or index in parallel has space management implications that affect

both the storage space required during a parallel operation and the free space

available after a table or index has been created.

Storage Space When Using Dictionary-Managed Tablespaces
When creating a table or index in parallel, each parallel execution server uses the

values in the STORAGE clause of the CREATE statement to create temporary

segments to store the rows. Therefore, a table created with a NEXT setting of 5 MB

and a PARALLEL DEGREE of 12 consumes at least 60 megabytes (MB) of storage

during table creation because each process starts with an extent of 5 MB. When the

parallel execution coordinator combines the segments, some of the segments may

be trimmed, and the resulting table may be smaller than the requested 60 MB.

Free Space and Parallel DDL
When you create indexes and tables in parallel, each parallel execution server

allocates a new extent and fills the extent with the table or index data. Thus, if you

create an index with a DOP of 3, the index will have at least three extents initially.

Allocation of extents is the same for rebuilding indexes in parallel and for moving,

splitting, or rebuilding partitions in parallel.

Serial operations require the schema object to have at least one extent. Parallel

creations require that tables or indexes have at least as many extents as there are

parallel execution servers creating the schema object.

When you create a table or index in parallel, it is possible to create pockets of free

space—either external or internal fragmentation. This occurs when the temporary

segments used by the parallel execution servers are larger than what is needed to

store the rows.

See Also: Oracle9i Database Administrator’s Guide for information

about recoverability of tables created in parallel

See Also:

■ Oracle9i SQL Reference for a discussion of the syntax of the

CREATE TABLE statement

■ Oracle9i Database Administrator’s Guide for information about

dictionary-managed tablespaces
21-16 Data Warehousing Guide

Types of Parallelism
■ If the unused space in each temporary segment is larger than the value of the

MINIMUM EXTENT parameter set at the tablespace level, then Oracle trims the

unused space when merging rows from all of the temporary segments into the

table or index. The unused space is returned to the system free space and can be

allocated for new extents, but it cannot be coalesced into a larger segment

because it is not contiguous space (external fragmentation).

■ If the unused space in each temporary segment is smaller than the value of the

MINIMUM EXTENT parameter, then unused space cannot be trimmed when the

rows in the temporary segments are merged. This unused space is not returned

to the system free space; it becomes part of the table or index (internal

fragmentation) and is available only for subsequent inserts or for updates that

require additional space.

For example, if you specify a DOP of 3 for a CREATE TABLE ... AS SELECT
statement, but there is only one datafile in the tablespace, then internal

fragmentation may occur, as shown in Figure 21–5 on page 21-18. The pockets of

free space within the internal table extents of a datafile cannot be coalesced with

other free space and cannot be allocated as extents.

See Also: Oracle9i Database Performance Guide and Reference for

more information about creating tables and indexes in parallel
 Using Parallel Execution 21-17

Types of Parallelism
Figure 21–5 Unusable Free Space (Internal Fragmentation)

Parallel DML
Parallel DML (PARALLEL, INSERT, UPDATE, and DELETE) uses parallel execution

mechanisms to speed up or scale up large DML operations against large database

tables and indexes.

Note: Although DML generally includes queries, in this chapter

the term DML refers only to inserts, updates, and deletes.

Also note that the partitioning option must be installed to enable

parallel DML.

DATA1.ORA

CREATE TABLE emp
 AS SELECT ...

USERS Tablespace

EXTENT 1

Free space
for INSERTs

Free space
for INSERTs

Free space

EXTENT 2

EXTENT 3

for INSERTs

Parallel
Execution

Server

Parallel
Execution

Server

Parallel
Execution

Server
21-18 Data Warehousing Guide

Types of Parallelism
This section discusses the following parallel DML topics:

■ Advantages of Parallel DML over Manual Parallelism

■ When to Use Parallel DML

■ Enabling Parallel DML

■ Transaction Restrictions for Parallel DML

■ Rollback Segments

■ Recovery for Parallel DML

■ Space Considerations for Parallel DML

■ Lock and Enqueue Resources for Parallel DML

■ Restrictions on Parallel DML

Advantages of Parallel DML over Manual Parallelism
You can parallelize DML operations manually by issuing multiple DML statements

simultaneously against different sets of data. For example, you can parallelize

manually by:

■ Issuing multiple INSERT statements to multiple instances of an Oracle Real

Application Cluster to make use of free space from multiple free list blocks.

■ Issuing multiple UPDATE and DELETE statements with different key value

ranges or rowid ranges.

However, manual parallelism has the following disadvantages:

■ Difficult to use. You have to open multiple sessions (possibly on different

instances) and issue multiple statements.

■ Lack of transactional properties. The DML statements are issued at different

times; and, as a result, the changes are done with inconsistent snapshots of the

database. To get atomicity, the commit or rollback of the various statements

must be coordinated manually (maybe across instances).

■ Work division complexity. You may have to query the table in order to find out

the rowid or key value ranges to correctly divide the work.

■ Calculation complexity. The calculation of the degree of parallelism can be

complex.

■ Lack of affinity and resource information. You need to know affinity

information to issue the right DML statement at the right instance when
 Using Parallel Execution 21-19

Types of Parallelism
running an Oracle Real Application Cluster. You also have to find out about

current resource usage to balance workload across instances.

Parallel DML removes these disadvantages by performing inserts, updates, and

deletes in parallel automatically.

When to Use Parallel DML
Parallel DML operations are mainly used to speed up large DML operations against

large database objects. Parallel DML is useful in a DSS environment where the

performance and scalability of accessing large objects are important. Parallel DML

complements parallel query in providing you with both querying and updating

capabilities for your DSS databases.

The overhead of setting up parallelism makes parallel DML operations infeasible

for short OLTP transactions. However, parallel DML operations can speed up batch

jobs running in an OLTP database.

Some of the scenarios where parallel DML is used include:

■ Refreshing Tables in a Data Warehouse System

■ Creating Intermediate Summary Tables

■ Using Scoring Tables

■ Updating Historical Tables

■ Running Batch Jobs

Refreshing Tables in a Data Warehouse System In a data warehouse system, large tables

need to be refreshed (updated) periodically with new or modified data from the

production system. You can do this efficiently by using parallel DML combined

with updatable join views. You can also use the MERGE statement.

The data that needs to be refreshed is generally loaded into a temporary table before

starting the refresh process. This table contains either new rows or rows that have

been updated since the last refresh of the data warehouse. You can use an updatable

join view with parallel UPDATE to refresh the updated rows, and you can use an

anti-hash join with parallel INSERT to refresh the new rows.

Creating Intermediate Summary Tables In a DSS environment, many applications

require complex computations that involve constructing and manipulating many

See Also: Chapter 14, "Maintaining the Data Warehouse" for

further information
21-20 Data Warehousing Guide

Types of Parallelism
large intermediate summary tables. These summary tables are often temporary and

frequently do not need to be logged. Parallel DML can speed up the operations

against these large intermediate tables. One benefit is that you can put incremental

results in the intermediate tables and perform parallel update.

In addition, the summary tables may contain cumulative or comparison

information which has to persist beyond application sessions; thus, temporary

tables are not feasible. Parallel DML operations can speed up the changes to these

large summary tables.

Using Scoring Tables Many DSS applications score customers periodically based on a

set of criteria. The scores are usually stored in large DSS tables. The score

information is then used in making a decision, for example, inclusion in a mailing

list.

This scoring activity queries and updates a large number of rows in the large table.

Parallel DML can speed up the operations against these large tables.

Updating Historical Tables Historical tables describe the business transactions of an

enterprise over a recent time interval. Periodically, the DBA deletes the set of oldest

rows and inserts a set of new rows into the table. Parallel INSERT ... SELECT and

parallel DELETE operations can speed up this rollover task.

Although you can also use parallel direct loader (SQL*Loader) to insert bulk data

from an external source, parallel INSERT ... SELECT is faster for inserting data that

already exists in another table in the database.

Dropping a partition can also be used to delete old rows. However, to do this, the

table has to be partitioned by date and with the appropriate time interval.

Running Batch Jobs Batch jobs executed in an OLTP database during off hours have a

fixed time window in which the jobs must complete. A good way to ensure timely

job completion is to parallelize their operations. As the work load increases, more

machine resources can be added; the scaleup property of parallel operations ensures

that the time constraint can be met.

Enabling Parallel DML
A DML statement can be parallelized only if you have explicitly enabled parallel

DML in the session with the ENABLE PARALLEL DML clause of the ALTER
SESSIONstatement. This mode is required because parallel DML and serial DML

have different locking, transaction, and disk space requirements.
 Using Parallel Execution 21-21

Types of Parallelism
The default mode of a session is DISABLE PARALLEL DML. When parallel DML is

disabled, no DML will be executed in parallel even if the PARALLEL hint is used.

When parallel DML is enabled in a session, all DML statements in this session will

be considered for parallel execution. However, even if parallel DML is enabled, the

DML operation may still execute serially if there are no parallel hints or no tables

with a parallel attribute or if restrictions on parallel operations are violated.

The session's PARALLEL DML mode does not influence the parallelism of SELECT
statements, DDL statements, and the query portions of DML statements. Thus, if

this mode is not set, the DML operation is not parallelized, but scans or join

operations within the DML statement may still be parallelized.

Transaction Restrictions for Parallel DML
To execute a DML operation in parallel, the parallel execution coordinator acquires

or spawns parallel execution servers, and each parallel execution server executes a

portion of the work under its own parallel process transaction.

■ Each parallel execution server creates a different parallel process transaction.

■ To reduce contention on the rollback segments, only a few parallel process

transactions should reside in the same rollback segment. See "Rollback

Segments" on page 21-23.

The coordinator also has its own coordinator transaction, which can have its own

rollback segment. In order to ensure user-level transactional atomicity, the

coordinator uses a two-phase commit protocol to commit the changes performed by

the parallel process transactions.

A session that is enabled for parallel DML may put transactions in the session in a

special mode: If any DML statement in a transaction modifies a table in parallel, no

subsequent serial or parallel query or DML statement can access the same table

again in that transaction. This means that the results of parallel modifications

cannot be seen during the transaction.

Serial or parallel statements that attempt to access a table that has already been

modified in parallel within the same transaction are rejected with an error message.

See Also:

■ "Space Considerations for Parallel DML" on page 21-24

■ "Lock and Enqueue Resources for Parallel DML" on page 21-24

■ "Restrictions on Parallel DML" on page 21-24
21-22 Data Warehousing Guide

Types of Parallelism
If a PL/SQL procedure or block is executed in a parallel DML enabled session, then

this rule applies to statements in the procedure or block.

Rollback Segments
Oracle assigns transactions to rollback segments that have the fewest active

transactions. To speed up both forward and undo operations, you should create and

bring online enough rollback segments so that at most two parallel process

transactions are assigned to one rollback segment.

The SET TRANSACTION USE ROLLBACK SEGMENT statement is ignored when

parallel DML is used because parallel DML requires more than one rollback

segment for performance.

You should create the rollback segments in tablespaces that have enough space for

them to extend when necessary. You can then set the MAXEXTENTS storage

parameters for the rollback segments to UNLIMITED. Also, set the OPTIMAL value

for the rollback segments so that after the parallel DML transactions commit, the

rollback segments are shrunk to the OPTIMAL size.

Recovery for Parallel DML
The time required to roll back a parallel DML operation is roughly equal to the time

it takes to perform the forward operation.

Oracle supports parallel rollback after transaction and process failures, and after

instance and system failures. Oracle can parallelize both the rolling forward stage

and the rolling back stage of transaction recovery.

Transaction Recovery for User-Issued Rollback A user-issued rollback in a transaction

failure due to statement error is performed in parallel by the parallel execution

coordinator and the parallel execution servers. The rollback takes approximately the

same amount of time as the forward transaction.

Process Recovery Recovery from the failure of a parallel execution coordinator or

parallel execution server is performed by the PMON process. If a parallel execution

server or a parallel execution coordinator fails, PMON rolls back the work from that

process and all other processes in the transaction roll back their changes.

See Also: Oracle9i Backup and Recovery Concepts for details about

parallel rollback
 Using Parallel Execution 21-23

Types of Parallelism
System Recovery Recovery from a system failure requuires a new startup. Recovery

is performed by the SMON process and any recovery server processes spawned by

SMON. Parallel DML statements may be recovered using parallel rollback. If the

initialization parameter COMPATIBLE is set to 8.1.3 or greater, Fast-Start

On-Demand Rollback enables dead transactions to be recovered, on demand one

block at a time.

Instance Recovery (Oracle Real Application Clusters) Recovery from an instance failure

in an Oracle Real Application Cluster is performed by the recovery processes (that

is, the SMON processes and any recovery server processes they spawn) of other live

instances. Each recovery process of the live instances can recover the parallel

execution coordinator or parallel execution server transactions of the failed instance

independently.

Space Considerations for Parallel DML
Parallel UPDATEuses the space in the existing object, while direct-path INSERT gets

new segments for the data.

Space usage characteristics may be different in parallel than sequential execution

because multiple concurrent child transactions modify the object.

Lock and Enqueue Resources for Parallel DML
A parallel DML operation's lock and enqueue resource requirements are very

different from the serial DML requirements. Parallel DML holds many more locks,

so you should increase the starting value of the ENQUEUE_RESOURCES and DML_
LOCKS parameters.

Restrictions on Parallel DML
The following restrictions apply to parallel DML (including direct-path INSERT):

■ UPDATE, MERGE, and DELETEoperations are not parallelized on nonpartitioned

tables.

■ A transaction can contain multiple parallel DML statements that modify

different tables, but after a parallel DML statement modifies a table, no

subsequent serial or parallel statement (DML or query) can access the same

table again in that transaction.

See Also: "DML_LOCKS" on page 21-63
21-24 Data Warehousing Guide

Types of Parallelism
– This restriction also exists after a serial direct-path INSERT statement: no

subsequent SQL statement (DML or query) can access the modified table

during that transaction.

– Queries that access the same table are allowed before a parallel DML or

direct-path INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has

already been modified by a parallel UPDATE, DELETE, or MERGE, or a

direct-path INSERT during the same transaction are rejected with an error

message.

■ If the initialization parameter ROW_LOCKING is set to INTENT, then inserts,

updates, merges, and deletes are not parallelized (regardless of the serializable

mode).

■ Parallel DML operations cannot be done on tables with triggers.

■ Replication functionality is not supported for parallel DML.

■ Parallel DML cannot occur in the presence of certain constraints: self-referential

integrity, delete cascade, and deferred integrity. In addition, for direct-path

INSERT, there is no support for any referential integrity.

■ Parallel DML can be done on tables with object or LOB columns as long as you

are not touching the objects or LOBs.

■ A transaction involved in a parallel DML operation cannot be or become a

distributed transaction.

■ Clustered tables are not supported.

Violations of these restrictions cause the statement to execute serially without

warnings or error messages (except for the restriction on statements accessing the

same table in a transaction, which can cause error messages). For example, an

update is serialized if it is on a nonpartitioned table.

Partitioning Key Restriction You can only update the partitioning key of a partitioned

table to a new value if the update does not cause the row to move to a new

partition. The update is possible if the table is defined with the row movement

clause enabled.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about LOB restrictions
 Using Parallel Execution 21-25

Types of Parallelism
Function Restrictions The function restrictions for parallel DML are the same as those

for parallel DDL and parallel query.

Data Integrity Restrictions
This section describes the interactions of integrity constraints and parallel DML

statements.

NOT NULL and CHECK These types of integrity constraints are allowed. They are not a

problem for parallel DML because they are enforced on the column and row level,

respectively.

UNIQUE and PRIMARY KEY These types of integrity constraints are allowed.

FOREIGN KEY (Referential Integrity) Restrictions for referential integrity occur

whenever a DML operation on one table could cause a recursive DML operation on

another table. These restrictions also apply when, in order to perform an integrity

check, it is necessary to see simultaneously all changes made to the object being

modified.

Table 21–1 lists all of the operations that are possible on tables that are involved in

referential integrity constraints.

Delete Cascade Delete on tables having a foreign key with delete cascade is not

parallelized because parallel execution servers will try to delete rows from multiple

partitions (parent and child tables).

Self-Referential Integrity DML on tables with self-referential integrity constraints is not

parallelized if the referenced keys (primary keys) are involved. For DML on all

other columns, parallelism is possible.

See Also: "Parallel Execution of Functions" on page 21-28

Table 21–1 Referential Integrity Restrictions

DML Statement Issued on Parent Issued on Child Self-Referential

INSERT (Not applicable) Not parallelized Not parallelized

MERGE (Not applicable) Not parallelized Not parallelized

UPDATE No Action Supported Supported Not parallelized

DELETE No Action Supported Supported Not parallelized

DELETE Cascade Not parallelized (Not applicable) Not parallelized
21-26 Data Warehousing Guide

Types of Parallelism
Deferrable Integrity Constraints If any deferrable constraints apply to the table being

operated on, the DML operation will not be parallelized.

Trigger Restrictions
A DML operation will not be parallelized if the affected tables contain enabled

triggers that may get fired as a result of the statement. This implies that DML

statements on tables that are being replicated will not be parallelized.

Relevant triggers must be disabled in order to parallelize DML on the table. Note

that, if you enable or disable triggers, the dependent shared cursors are invalidated.

Distributed Transaction Restrictions
A DML operation cannot be parallelized if it is in a distributed transaction or if the

DML or the query operation is against a remote object.

Example 21–1 Distributed Transaction Parallelization: Example 1

In this example, the DML statement queries a remote object:

INSERT /* APPEND PARALLEL (t3,2) */ INTO t3 SELECT * FROM t4@dblink;

The query operation is executed serially without notification because it references a

remote object.

Example 21–2 Distributed Transaction Parallelization: Example 2

In this example, the DML operation is applied to a remote object:

DELETE /*+ PARALLEL (t1, 2) */ FROM t1@dblink;

The DELETE operation is not parallelized because it references a remote object.

Example 21–3 Distributed Transaction Parallelization: Example 3

In this example, the DML operation is in a distributed transaction:

SELECT * FROM t1@dblink;
DELETE /*+ PARALLEL (t2,2) */ FROM t2;
COMMIT;

The DELETE operation is not parallelized because it occurs in a distributed

transaction (which is started by the SELECT statement).
 Using Parallel Execution 21-27

Types of Parallelism
Parallel Execution of Functions
SQL statements can contain user-defined functions written in PL/SQL, in Java, or as

external procedures in C that can appear as part of the SELECT list, SET clause, or

WHERE clause. When the SQL statement is parallelized, these functions are executed

on a per-row basis by the parallel execution server. Any PL/SQL package variables

or Java static attributes used by the function are entirely private to each individual

parallel execution process and are newly initialized when each row is processed,

rather than being copied from the original session. Because of this, not all functions

will generate correct results if executed in parallel.

User-written table functions can appear in the statement's FROMlist. These functions

act like source tables in that they output rows. Table functions are initialized once

during the statement at the start of each parallel execution process. As above, any

variables are entirely private to the parallel execution process.

Functions in Parallel Queries
In a SELECT statement or a subquery in a DML or DDL statement, a user-written

function may be executed in parallel if it has been declared with the PARALLEL_
ENABLE keyword, if it is declared in a package or type and has a PRAGMA
RESTRICT_REFERENCES that indicates all of WNDS, RNPS, and WNPS, or if it is

declared with CREATE FUNCTION and the system can analyze the body of the

PL/SQL code and determine that the code neither writes to the database nor reads

or modifies package variables.

Other parts of a query or subquery can sometimes execute in parallel even if a given

function execution must remain serial.

Functions in Parallel DML and DDL Statements
In a parallel DML or DDL statement, as in a parallel query, a user-written function

may be executed in parallel if it has been declared with the PARALLEL_ENABLE
keyword, if it is declared in a package or type and has a PRAGMA RESTRICT_
REFERENCES that indicates all of RNDS, WNDS, RNPS, and WNPS, or if it is declared

with CREATE FUNCTION and the system can analyze the body of the PL/SQL code

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about the PRAGMA RESTRICT_REFERENCES

■ Oracle9i SQL Reference for information about CREATE
FUNCTION
21-28 Data Warehousing Guide

Types of Parallelism
and determine that the code neither reads nor writes to the database or reads nor

modifies package variables.

For a parallel DML statement, any function call that cannot be executed in parallel

causes the entire DML statement to be executed serially.

For an INSERT ... SELECTor CREATE TABLE... AS SELECTstatement, function calls

in the query portion are parallelized according to the parallel query rules in the

prior paragraph. The query may be parallelized even if the remainder of the

statement must execute serially, or vice versa.

Other Types of Parallelism
In addition to parallel SQL execution, Oracle can use parallelism for the following

types of operations:

■ Parallel recovery

■ Parallel propagation (replication)

■ Parallel load (the SQL*Loader utility)

Like parallel SQL, parallel recovery and propagation are performed by a parallel

execution coordinator and multiple parallel execution servers. Parallel load,

however, uses a different mechanism.

The behavior of the parallel execution coordinator and parallel execution servers

may differ, depending on what kind of operation they perform (SQL, recovery, or

propagation). For example, if all parallel execution servers in the pool are occupied

and the maximum number of parallel execution servers has been started:

■ In parallel SQL, the parallel execution coordinator switches to serial processing.

■ In parallel propagation, the parallel execution coordinator returns an error.

For a given session, the parallel execution coordinator coordinates only one kind of

operation. A parallel execution coordinator cannot coordinate, for example, parallel

SQL and parallel recovery or propagation at the same time.
 Using Parallel Execution 21-29

Initializing and Tuning Parameters for Parallel Execution
Initializing and Tuning Parameters for Parallel Execution
You can initialize and automatically tune parallel execution by setting the

initialization parameter PARALLEL_AUTOMATIC_TUNING to TRUE. Once enabled,

automated parallel execution controls values for all parameters related to parallel

execution. These parameters affect several aspects of server processing, namely, the

DOP, the adaptive multiuser feature, and memory sizing.

With parallel automatic tuning enabled, Oracle determines parameter settings for

each environment based on the number of CPUs on your system at database startup

and the value set for PARALLEL_THREADS_PER_CPU. The default values Oracle

sets for parallel execution processing when PARALLEL_AUTOMATIC_TUNING is
TRUE are usually optimal for most environments. In most cases, Oracle's

automatically derived settings are at least as effective as manually derived settings.

You can also manually tune parallel execution parameters; however, Oracle

recommends using automated parallel execution. Manual tuning of parallel

execution is more complex than using automated tuning for two reasons: manual

parallel execution tuning requires more attentive administration than automated

tuning, and manual tuning is prone to user-load and system-resource

miscalculations.

Initializing and tuning parallel execution involves the following steps:

■ Selecting Automated or Manual Tuning of Parallel Execution

■ Using Automatically Derived Parameter Settings

■ Setting the Degree of Parallelism

■ How Oracle Determines the Degree of Parallelism for Operations

■ Balancing the Workload

See Also:

■ Oracle9i Database Utilities for information about parallel load

and SQL*Loader

■ Oracle9i User-Managed Backup and Recovery Guide for

information about parallel media recovery

■ Oracle9i Database Performance Guide and Reference for

information about parallel instance recovery

■ Oracle9i Replication for information about parallel propagation
21-30 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
■ Parallelization Rules for SQL Statements

■ Enabling Parallelism for Tables and Queries

■ Degree of Parallelism and Adaptive Multiuser: How They Interact

■ Forcing Parallel Execution for a Session

■ Controlling Performance with the Degree of Parallelism

Selecting Automated or Manual Tuning of Parallel Execution
There are several ways to initialize and tune parallel execution. You can make your

environment fully automated for parallel execution. As mentioned, by setting

PARALLEL_AUTOMATIC_TUNING to TRUE. You can further customize this type of

environment by overriding some of the automatically derived values.

You can also leave PARALLEL_AUTOMATIC_TUNING at its default value of FALSE
and manually set the parameters that affect parallel execution. For most OLTP

environments and other types of systems that would not benefit from parallel

execution, do not enable parallel execution.

Using Automatically Derived Parameter Settings
When PARALLEL_AUTOMATIC_TUNING is TRUE, Oracle automatically sets other

parameters, as shown in Table 21–2. For most systems, you do not need to make

further adjustments to have an adequately tuned, fully automated parallel

execution environment.

Note: Well-established, manually tuned systems that achieve

desired resource-use patterns might not benefit from automated

parallel execution.
 Using Parallel Execution 21-31

Initializing and Tuning Parameters for Parallel Execution
As mentioned, you can manually adjust the parameters shown in Table 21–2, even if

you set PARALLEL_AUTOMATIC_TUNING to TRUE. You might need to do this if you

have a highly customized environment or if your system does not perform

optimally using the completely automated settings.

Setting the Degree of Parallelism
The parallel execution coordinator may enlist two or more of the instance's parallel

execution servers to process a SQL statement. The number of parallel execution

servers associated with a single operation is known as the degree of parallelism.

The DOP is specified in the following ways:

Table 21–2 Parameters Affected by PARALLEL_AUTOMATIC_TUNING

Parameter Default

Default if
PARALLEL_AUTOMATIC_
TUNING = TRUE Comments

PARALLEL_
ADAPTIVE_
MULTI_USER

FALSE TRUE

PROCESSES 6 The greater of: 1.2 x
PARALLEL_MAX_SERVERS or
PARALLEL_MAX_SERVERS
+ 6 + 5 + (CPUs x 4)

Value is forced up to minimum if
PARALLEL_AUTOMATIC_TUNING
is TRUE.

SESSIONS (PROCESSESx
1.1) + 5

(PROCESSES x 1.1) + 5 Automatic parallel tuning
indirectly affects SESSIONS. If you
do not set SESSIONS, Oracle sets it
based on the value for PROCESSES.

PARALLEL_MAX_
SERVERS

5 CPU x 10 Use this limit to maximize the
number of processes that parallel
execution uses. The value for this
parameter is port-specific so
processing can vary from system to
system.

LARGE_POOL_SIZE None PARALLEL_EXECUTION_POOL
+ Shared Server heap
requirements +
Backup buffer requests +
600 KB

Oracle does not allocate parallel
execution buffers from the
SHARED_POOL when PARALLEL_
AUTOMATIC_TUNING is set to
TRUE.

PARALLEL_
EXECUTION_
MESSAGE_SIZE

2 KB
(port specific)

4 KB (port specific) Default increases because Oracle
allocates memory from the LARGE_
POOL.
21-32 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
■ At the statement level:

– With hints

– With the PARALLEL clause

■ At the session level by issuing the ALTER SESSION FORCE PARALLEL
statement

■ At the table level in the table's definition

■ At the index level in the index's definition

The following example shows a statement that sets the DOP to 4 on a table:

ALTER TABLE emp PARALLEL 4;

This next example sets the DOP on an index to 4:

ALTER INDEX iemp PARALLEL 4;

This last example sets a hint to 4 on a query:

SELECT /*+ PARALLEL(emp, 4) */ COUNT(*) FROM emp;

Note that the DOP applies directly only to intraoperation parallelism. If

interoperation parallelism is possible, the total number of parallel execution servers

for a statement can be twice the specified DOP. No more than two operations can be

performed simultaneously.

Parallel execution is designed to effectively use multiple CPUs and disks to answer

queries quickly. When multiple users employ parallel execution at the same time,

available CPU, memory, and disk resources may be quickly exhausted. Oracle

provides several ways to deal with resource utilization in conjunction with parallel

execution, including:

■ The adaptive multiuser algorithm, which reduces the DOP as the load on the

system increases. You can turn this option on with the PARALLEL_ADAPTIVE_
MULTI_USER parameter of the ALTER SYSTEM statement or in your

initialization file.

■ User resource limits and profiles, which allow you to set limits on the amount

of various system resources available to each user as part of a user's security

domain.

■ The Database Resource Manager, which enables you to allocate resources to

different groups of users.
 Using Parallel Execution 21-33

Initializing and Tuning Parameters for Parallel Execution
How Oracle Determines the Degree of Parallelism for Operations
The parallel execution coordinator determines the DOP by considering several

specifications. The coordinator:

1. Checks for hints or a PARALLEL clause specified in the SQL statement itself

2. Checks for a session value set by the ALTER SESSION FORCE PARALLEL
statement

3. Looks at the table's or index's definition

After a DOP is found in one of these specifications, it becomes the DOP for the

operation.

Hints, PARALLEL clauses, table or index definitions, and default values only

determine the number of parallel execution servers that the coordinator requests for

a given operation. The actual number of parallel execution servers used depends

upon how many processes are available in the parallel execution server pool and

whether interoperation parallelism is possible.

Hints
You can specify hints in a SQL statement to set the DOP for a table or index and for

the caching behavior of the operation.

See Also:

■ Oracle9i Database Reference and Oracle9i Database Performance
Guide and Reference for information about the syntax of the

SELECT and ALTER statements

■ Oracle9i SQL Reference for the syntax of the ALTER SYSTEM
statement

■ "Forcing Parallel Execution for a Session" on page 21-47

See Also:

■ "The Parallel Execution Server Pool" on page 21-3

■ "Parallelism Between Operations" on page 21-8

■ "Default Degree of Parallelism" on page 21-35

■ "Parallelization Rules for SQL Statements" on page 21-38
21-34 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
■ The PARALLEL hint is used only for operations on tables. You can use it to

parallelize queries and DML statements (INSERT, UPDATE, and DELETE).

■ The PARALLEL_INDEX hint parallelizes an index range scan of a partitioned

index. (In an index operation, the PARALLEL hint is not valid and is ignored.)

Table and Index Definitions
You can specify the DOP within a table or index definition by using one of the

following statements: CREATE TABLE, ALTER TABLE, CREATE INDEX, or ALTER
INDEX.

Default Degree of Parallelism
The default DOP is used when you ask to parallelize an operation but you do not

specify a DOP in a hint or within the definition of a table or index. The default DOP

is appropriate for most applications.

The default DOP for a SQL statement is determined by the following factors:

■ The number of CPUs for all Oracle Real Application Cluster instances in the

system, and the value of the parameter PARALLEL_THREADS_PER_CPU.

■ For parallelizing by partition, the number of partitions that will be accessed,

based on partition pruning.

■ For parallel DML operations with global index maintenance, the minimum

number of transaction free lists among all the global indexes to be updated. The

minimum number of transaction free lists for a partitioned global index is the

minimum number across all index partitions. This is a requirement to prevent

self-deadlock.

See Also: Oracle9i Database Performance Guide and Reference for

information about using hints in SQL statements and the specific

syntax for the PARALLEL, NOPARALLEL, PARALLEL_INDEX,

CACHE, and NOCACHE hints

See Also: Oracle9i SQL Reference for information about the

complete syntax of SQL statements

Note: Oracle obtains the information about CPUs from the

operating system.
 Using Parallel Execution 21-35

Initializing and Tuning Parameters for Parallel Execution
The above factors determine the default number of parallel execution servers to use.

However, the actual number of processes used is limited by their availability on the

requested instances during run time. The initialization parameter PARALLEL_MAX_
SERVERS sets an upper limit on the total number of parallel execution servers that

an instance can have.

If a minimum fraction of the desired parallel execution servers is not available

(specified by the initialization parameter PARALLEL_MIN_PERCENT), a user error is

produced. The user can then retry the query with less parallelism.

Adaptive Multiuser Algorithm
When the adaptive multiuser algorithm is enabled, the parallel execution

coordinator varies the DOP according to the system load. The Database Resource

Manager determines the load by calculating the number of allocated threads. If the

number of threads currently allocated is larger than the optimal number of threads,

given the number of available CPUs, the algorithm reduces the DOP. This reduction

improves throughput by avoiding overallocation of resources.

Minimum Number of Parallel Execution Servers
Oracle can perform an operation in parallel as long as at least two parallel execution

servers are available. If too few parallel execution servers are available, your SQL

statement may execute slower than expected. You can specify the minimum

percentage of requested parallel execution servers that must be available in order

for the operation to execute. This strategy ensures that your SQL statement executes

with a minimum acceptable parallel performance. If the minimum percentage of

requested parallel execution servers is not available, the SQL statement does not

execute and returns an error.

The initialization parameter PARALLEL_MIN_PERCENT specifies the desired

minimum percentage of requested parallel execution servers. This parameter affects

DML and DDL operations as well as queries.

For example, if you specify 50 for this parameter, then at least 50 percent of the

parallel execution servers requested for any parallel operation must be available in

order for the operation to succeed. If 20 parallel execution servers are requested,

then at least 10 must be available or an error is returned to the user. If PARALLEL_
MIN_PERCENT is set to null, then all parallel operations will proceed as long as at

least two parallel execution servers are available for processing.

See Also: Oracle9i Database Performance Guide and Reference for

information about adjusting the DOP
21-36 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Limiting the Number of Available Instances
In an Oracle Real Application Cluster, instance groups can be used to limit the

number of instances that participate in a parallel operation. You can create any

number of instance groups, each consisting of one or more instances. You can then

specify which instance group is to be used for any or all parallel operations. Parallel

execution servers will only be used on instances which are members of the specified

instance group.

Balancing the Workload
To optimize performance, all parallel execution servers should have equal work

loads. For SQL statements parallelized by block range or by parallel execution

servers, the workload is dynamically divided among the parallel execution servers.

This minimizes workload skewing, which occurs when some parallel execution

servers perform significantly more work than the other processes.

For SQL statements parallelized by partitions, if the workload is evenly distributed

among the partitions, you can optimize performance by matching the number of

parallel execution servers to the number of partitions or by choosing a DOP in

which the number of partitions is a multiple of the number of processes.

For example, suppose a table has 10 partition, and a parallel operation divides the

work evenly among them. You can use 10 parallel execution servers (DOP equals

10) to do the work in approximately one-tenth the time that one process would take.

You might also use five processes to do the work in one-fifth the time, or two

processes to do the work in one-half the time.

If, however, you use nine processes to work on 10 partitions, the first process to

finish its work on one partition then begins work on the 10th partition; and as the

other processes finish their work, they become idle. This configuration does not

provide good performance when the work is evenly divided among partitions.

When the work is unevenly divided, the performance varies depending on whether

the partition that is left for last has more or less work than the other partitions.

Similarly, suppose you use four processes to work on 10 partitions and the work is

evenly divided. In this case, each process works on a second partition after finishing

its first partition, but only two of the processes work on a third partition while the

other two remain idle.

See Also: Oracle9i Real Application Clusters Administration and

Oracle9i Real Application Clusters Deployment and Performance for

more information about instance groups
 Using Parallel Execution 21-37

Initializing and Tuning Parameters for Parallel Execution
In general, you cannot assume that the time taken to perform a parallel operation

on a given number of partitions (N) with a given number of parallel execution

servers (P) will be N/P. This formula does not take into account the possibility that

some processes might have to wait while others finish working on the last

partitions. By choosing an appropriate DOP, however, you can minimize the

workload skew and optimize performance.

Parallelization Rules for SQL Statements
A SQL statement can be parallelized if it includes a parallel hint or if the table or

index being operated on has been declared PARALLEL with a CREATE or ALTER
statement. In addition, a DDL statement can be parallelized by using the PARALLEL
clause. However, not all of these methods apply to all types of SQL statements.

Parallelization has two components: the decision to parallelize and the DOP. These

components are determined differently for queries, DDL operations, and DML

operations.

To determine the DOP, Oracle looks at the reference objects:

■ Parallel query looks at each table and index, in the portion of the query being

parallelized, to determine which is the reference table. The basic rule is to pick

the table or index with the largest DOP.

■ For parallel DML (INSERT, UPDATE, MERGE, and DELETE), the reference object

that determines the DOP is the table being modified by an insert, update, or

delete operation. Parallel DML also adds some limits to the DOP to prevent

deadlock. If the parallel DML statement includes a subquery, the subquery's

DOP is the same as the DML operation.

■ For parallel DDL, the reference object that determines the DOP is the table,

index, or partition being created, rebuilt, split, or moved. If the parallel DDL

statement includes a subquery, the subquery's DOP is the same as the DDL

operation.

Rules for Parallelizing Queries

Decision to Parallelize A SELECT statement can be parallelized only if the following

conditions are satisfied:

See Also: "Affinity and Parallel DML" on page 21-78 for

information about balancing the workload with disk affinity
21-38 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
1. The query includes a parallel hint specification (PARALLEL or PARALLEL_
INDEX) or the schema objects referred to in the query have a

PARALLELdeclaration associated with them.

2. At least one of the tables specified in the query requires one of the following:

■ A full table scan

■ An index range scan spanning multiple partitions

Degree of Parallelism The DOP for a query is determined by the following rules:

1. The query uses the maximum DOP taken from all of the table declarations

involved in the query and all of the potential indexes that are candidates to

satisfy the query (the reference objects). That is, the table or index that has the

greatest DOP determines the query's DOP (maximum query directive).

2. If a table has both a parallel hint specification in the query and a parallel

declaration in its table specification, the hint specification takes precedence over

parallel declaration specification. See Table 21–3 on page 21-45 for precedence

rules.

Rules for Parallelizing UPDATE, MERGE, and DELETE
UPDATE, MERGE, and DELETE operations are parallelized by partition or

subpartition. Updates, merges, and deletes can only be parallelized on partitioned

tables. Update, merge, and delete parallelism are not possible within a partition, nor

on a nonpartitioned table.

You have two ways to specify parallel directives for UPDATE, MERGE, and DELETE
operations (assuming that PARALLEL DML mode is enabled):

1. Use a parallel clause in the definition of the table being updated or deleted (the

reference object).

2. Use an update, merge, or delete parallel hint in the statement.

Parallel hints are placed immediately after the UPDATE, MERGE, or DELETE
keywords in UPDATE, MERGE, and DELETE statements. The hint also applies to the

underlying scan of the table being changed.

You can use the ALTER SESSION FORCE PARALLEL DML statement to override

parallel clauses for subsequent UPDATE, MERGE, and DELETE statements in a

session. Parallel hints in UPDATE, MERGE, and DELETE statements override the

ALTER SESSION FORCE PARALLEL DML statement.
 Using Parallel Execution 21-39

Initializing and Tuning Parameters for Parallel Execution
Decision to Parallelize The following rule determines whether the UPDATE, MERGE, or

DELETE operation should be parallelized:

The UPDATE or DELETE operation will be parallelized if and only if at least one

of the following is true:

■ The table being updated or deleted has a PARALLEL specification.

■ The PARALLEL hint is specified in the DML statement.

■ An ALTER SESSION FORCE PARALLEL DML statement has been issued

previously during the session.

If the statement contains subqueries or updatable views, then they may have their

own separate parallel hints or clauses. However, these parallel directives do not

affect the decision to parallelize the UPDATE, MERGE, or DELETE.

The parallel hint or clause on the tables is used by both the query and the UPDATE,
MERGE, DELETE portions to determine parallelism, the decision to parallelize the

UPDATE, MERGE, or DELETE portion is made independently of the query portion,

and vice versa.

Degree of Parallelism The DOP is determined by the same rules as for the queries.

Note that in the case of UPDATE and DELETE operations, only the target table to be

modified (the only reference object) is involved. Thus, the UPDATE or DELETE
parallel hint specification takes precedence over the parallel declaration

specification of the target table. In other words, the precedence order is: MERGE,
UPDATE, DELETE hint > Session > Parallel declaration specification of target table

See Table 21–3 on page 21-45 for precedence rules.

The maximum DOP you can achieve is equal to the number of partitions (or

subpartitions in the case of composite subpartitions) in the table. A parallel

execution server can update or merge into, or delete from multiple partitions, but

each partition can only be updated or deleted by one parallel execution server.

If the DOP is less than the number of partitions, then the first process to finish work

on one partition continues working on another partition, and so on until the work is

finished on all partitions. If the DOP is greater than the number of partitions

involved in the operation, then the excess parallel execution servers will have no

work to do.
21-40 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Example 21–4 Parallelization: Example 1

UPDATE tbl_1 SET c1=c1+1 WHERE c1>100;

If tbl_1 is a partitioned table and its table definition has a parallel clause, then the

update operation is parallelized even if the scan on the table is serial (such as an

index scan), assuming that the table has more than one partition with c1 greater

than 100.

Example 21–5 Parallelization: Example 2

UPDATE /*+ PARALLEL(tbl_2,4) */ tbl_2 SET c1=c1+1;

Both the scan and update operations on tbl_2 will be parallelized with degree

four.

Rules for Parallelizing INSERT ... SELECT
An INSERT ... SELECT statement parallelizes its INSERT and SELECT operations

independently, except for the DOP.

You can specify a parallel hint after the INSERT keyword in an INSERT ... SELECT
statement. Because the tables being queried are usually not the same as the table

being inserted into, the hint enables you to specify parallel directives specifically for

the insert operation.

You have the following ways to specify parallel directives for an INSERT ... SELECT
statement (assuming that PARALLEL DML mode is enabled):

■ SELECT parallel hints specified at the statement

■ Parallel clauses specified in the definition of tables being selected

■ INSERT parallel hint specified at the statement

■ Parallel clause specified in the definition of tables being inserted into

You can use the ALTER SESSION FORCE PARALLEL DML statement to override

parallel clauses for subsequent INSERT operations in a session. Parallel hints in

insert operations override the ALTER SESSION FORCE PARALLEL DML statement.

Decision to Parallelize The following rule determines whether the INSERT operation

should be parallelized in an INSERT ... SELECT statement:

The INSERT operation will be parallelized if and only if at least one of the

following is true:
 Using Parallel Execution 21-41

Initializing and Tuning Parameters for Parallel Execution
■ The PARALLEL hint is specified after the INSERT in the DML statement.

■ The table being inserted into (the reference object) has a PARALLEL
declaration specification.

■ An ALTER SESSION FORCE PARALLEL DML statement has been issued

previously during the session.

The decision to parallelize the INSERT operation is made independently of the

SELECT operation, and vice versa.

Degree of Parallelism Once the decision to parallelize the SELECT or INSERT
operation is made, one parallel directive is picked for deciding the DOP of the

whole statement, using the following precedence rule Insert hint directive >

Session> Parallel declaration specification of the inserting table > Maximum query

directive.

In this context, maximum query directive means that among multiple tables and

indexes, the table or index that has the maximum DOP determines the parallelism

for the query operation.

The chosen parallel directive is applied to both the SELECT and INSERT operations.

Example 21–6 Parallelization: Example 3

The DOP used is 2, as specified in the INSERT hint:

INSERT /*+ PARALLEL(tbl_ins,2) */ INTO tbl_ins
SELECT /*+ PARALLEL(tbl_sel,4) */ * FROM tbl_sel;

Rules for Parallelizing DDL Statements

Decision to Parallelize DDL operations can be parallelized if a PARALLEL clause

(declaration) is specified in the syntax. In the case of CREATE INDEX and ALTER
INDEX ... REBUILD or ALTER INDEX ... REBUILD PARTITION, the parallel

declaration is stored in the data dictionary.

You can use the ALTER SESSION FORCE PARALLEL DDL statement to override the

parallel clauses of subsequent DDL statements in a session.

Degree of Parallelism The DOP is determined by the specification in the PARALLEL
clause, unless it is overridden by an ALTER SESSION FORCE PARALLEL DDL
statement. A rebuild of a partitioned index is never parallelized.
21-42 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Parallel clauses in CREATE TABLE and ALTER TABLE statements specify table

parallelism. If a parallel clause exists in a table definition, it determines the

parallelism of DDL statements as well as queries. If the DDL statement contains

explicit parallel hints for a table, however, those hints override the effect of parallel

clauses for that table. You can use the ALTER SESSION FORCE PARALLEL DDL
statement to override parallel clauses.

Rules for Parallelizing CREATE INDEX, REBUILD INDEX, MOVE or SPLIT
PARTITION

Parallel CREATE INDEX or ALTER INDEX ... REBUILD The CREATE INDEX and ALTER
INDEX ... REBUILD statements can be parallelized only by a PARALLEL clause or an

ALTER SESSION FORCE PARALLEL DDL statement.

ALTER INDEX ... REBUILD can be parallelized only for a nonpartitioned index, but

ALTER INDEX ... REBUILD PARTITION can be parallelized by a PARALLEL clause

or an ALTER SESSION FORCE PARALLEL DDL statement.

The scan operation for ALTER INDEX... REBUILD(nonpartitioned), ALTER INDEX...

REBUILD PARTITION, and CREATE INDEX has the same parallelism as the

REBUILD or CREATE operation and uses the same DOP. If the DOP is not specified

for REBUILD or CREATE, the default is the number of CPUs.

Parallel MOVE PARTITION or SPLIT PARTITION The ALTER INDEX ... MOVE PARTITION
and ALTER INDEX ... SPLIT PARTITION statements can be parallelized only by a

PARALLEL clause or an ALTER SESSION FORCE PARALLEL DDL statement. Their

scan operations have the same parallelism as the corresponding MOVE or SPLIT
operations. If the DOP is not specified, the default is the number of CPUs.

Rules for Parallelizing CREATE TABLE AS SELECT
The CREATE TABLE ... AS SELECT statement contains two parts: a CREATE part

(DDL) and a SELECT part (query). Oracle can parallelize both parts of the

statement. The CREATE part follows the same rules as other DDL operations.

Decision to Parallelize (Query Part) The query part of a CREATE TABLE ... AS SELECT
statement can be parallelized only if the following conditions are satisfied:

1. The query includes a parallel hint specification (PARALLEL or PARALLEL_
INDEX) or the CREATE part of the statement has a PARALLEL clause

specification or the schema objects referred to in the query have a

PARALLELdeclaration associated with them.
 Using Parallel Execution 21-43

Initializing and Tuning Parameters for Parallel Execution
2. At least one of the tables specified in the query requires one of the following:

■ A full table scan

■ An index range scan spanning multiple partitions

Degree of Parallelism (Query Part) The DOP for the query part of a CREATE TABLE...

AS SELECT statement is determined by one of the following rules:

■ The query part uses the values specified in the PARALLEL clause of the CREATE
part.

■ If the PARALLEL clause is not specified, the default DOP is the number of CPUs.

■ If the CREATE is serial, then the DOP is determined by the query.

Note that any values specified in a hint for parallelism are ignored.

Decision to Parallelize (CREATE Part) The CREATE operation of CREATE TABLE ... AS
SELECT can be parallelized only by a PARALLEL clause or an ALTER SESSION
FORCE PARALLEL DDL statement.

When the CREATEoperation of CREATE TABLE... AS SELECTis parallelized, Oracle

also parallelizes the scan operation if possible. The scan operation cannot be

parallelized if, for example:

■ The SELECT clause has a NOPARALLEL hint

■ The operation scans an index of a nonpartitioned table

When the CREATE operation is not parallelized, the SELECT can be parallelized if it

has a PARALLEL hint or if the selected table (or partitioned index) has a parallel

declaration.

Degree of Parallelism (CREATE Part) The DOP for the CREATE operation, and for the

SELECT operation if it is parallelized, is specified by the PARALLEL clause of the

CREATE statement, unless it is overridden by an ALTER SESSION FORCE
PARALLEL DDL statement. If the PARALLEL clause does not specify the DOP, the

default is the number of CPUs.

Summary of Parallelization Rules
Table 21–3 shows how various types of SQL statements can be parallelized and

indicates which methods of specifying parallelism take precedence.

See Also: "Rules for Parallelizing Queries" on page 21-38
21-44 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
■ The priority (1) specification overrides priority (2) and priority (3).

■ The priority (2) specification overrides priority (3).

See Also: Oracle9i SQL Reference for information about parallel

clauses and hints in SQL statements

Table 21–3 Parallelization Rules

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Declaration
(priority order: 1, 2, 3)

PARALLEL
Hint

PARALLEL
Clause ALTER SESSION

Parallel
Declaration

Parallel query table scan
(partitioned or nonpartitioned
table)

(1) PARALLEL (2) FORCE
PARALLEL
QUERY

(3) of table

Parallel query index range scan
(partitioned index)

(1) PARALLEL_
INDEX

(2) FORCE
PARALLEL
QUERY

(2) of index

Parallel UPDATE or DELETE
(partitioned table only)

(1) PARALLEL (2) FORCE
PARALLEL DML

(3) of table being
updated or deleted
from

INSERT operation of parallel
INSERT... SELECT (partitioned or
nonpartitioned table)

(1) PARALLEL
of insert

(2) FORCE
PARALLEL DML

(3) of table being
inserted into

SELECToperation of INSERT ...
SELECT when INSERT is parallel

takes degree from INSERT statement

SELECToperation of INSERT ...
SELECT when INSERT is serial

(1) PARALLEL (2) of table being
selected from

CREATEoperation of parallel
CREATE TABLE ... AS SELECT
(partitioned or nonpartitioned
table)

(Note: Hint in
select clause
does not affect
the create
operation.)

(2) (1) FORCE
PARALLEL DDL

SELECToperation of CREATE
TABLE ... AS SELECT when
CREATE is parallel

takes degree from CREATE statement

SELECToperation of CREATE
TABLE ... AS SELECT when
CREATE is serial

(1) PARALLEL
or PARALLEL_
INDEX

(2) of querying
tables or
partitioned indexes
 Using Parallel Execution 21-45

Initializing and Tuning Parameters for Parallel Execution
Enabling Parallelism for Tables and Queries
The DOP of tables involved in parallel operations affect the DOP for operations on

those tables. Therefore, after setting parallel tuning parameters, you must also

enable parallel execution for each table you want parallelized, using the PARALLEL
clause of the CREATE TABLE or ALTER TABLE statements. You can also use the

PARALLEL hint with SQL statements to enable parallelism for that operation only,

or use the FORCE option of the ALTER SESSION statement to enable parallelism for

all subsequent operations in the session.

When you parallelize tables, you can also specify the DOP or allow Oracle to use a

default DOP. The value of the default DOP is derived automatically, based on the

value of PARALLEL_THREADS_PER_CPU and the number of CPUs available to

Oracle.

ALTER TABLE emp PARALLEL; -- uses default DOP
ALTER TABLE emp PARALLEL 4; -- users DOP of 4

Degree of Parallelism and Adaptive Multiuser: How They Interact
The DOP specifies the number of available processes, or threads, used in parallel

operations. Each parallel thread can use one or two query processes, depending on

the query's complexity.

Parallel CREATE INDEX
(partitioned or nonpartitioned
index)

(2) (1) FORCE
PARALLEL DDL

Parallel REBUILD INDEX
(nonpartitioned index)

(2) (1) FORCE
PARALLEL DDL

REBUILD INDEX (partitioned
index)—never parallelized

— —

Parallel REBUILD INDEX partition (2) (1) FORCE
PARALLEL DDL

Parallel MOVE or SPLIT partition (2) (1) FORCE
PARALLEL DDL

Table 21–3 Parallelization Rules(Cont.)

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Declaration
(priority order: 1, 2, 3)

PARALLEL
Hint

PARALLEL
Clause ALTER SESSION

Parallel
Declaration
21-46 Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
The adaptive multiuser feature adjusts the DOP based on user load. For example,

you might have a table with a DOP of 5. This DOP might be acceptable with 10

users. However, if 10 more users enter the system and you enable the PARALLEL_
ADAPTIVE_MULTI_USERfeature, Oracle reduces the DOP to spread resources more

evenly according to the perceived system load.

It is best to use the parallel adaptive multiuser feature when users process

simultaneous parallel execution operations. If you enable PARALLEL_AUTOMATIC_
TUNING, Oracle automatically sets PARALLEL_ADAPTIVE_MULTI_USER to TRUE.

How the Adaptive Multiuser Algorithm Works
The adaptive multiuser algorithm has several inputs. The algorithm first considers

the number of allocated threads as calculated by the Database Resource Manager.

The algorithm then considers the default settings for parallelism as set in the

initialization parameter file, as well as parallelism options used in CREATE TABLE
and ALTER TABLE statements and SQL hints.

When a system is overloaded and the input DOP is larger than the default DOP, the

algorithm uses the default degree as input. The system then calculates a reduction

factor that it applies to the input DOP. For example, using a 16-CPU system, when

the first user enters the system and it is idle, it will be granted a DOP of 32. The next

user will be give a DOP of eight, the next four, and so on. If the system settles into a

steady state of eight users issuing queries, all the users will eventually be given a

DOP of 4, thus dividing the system evenly among all the parallel users.

Forcing Parallel Execution for a Session
If you are sure you want to execute in parallel and want to avoid setting the DOP

for a table or modifying the queries involved, you can force parallelism with the

following statement:

ALTER SESSION FORCE PARALLEL QUERY;

Note: Once Oracle determines the DOP for a query, the DOP does

not change for the duration of the query.

Note: Disable adaptive multiuser for single-user, batch processing

systems or if your system already provides optimal performance.
 Using Parallel Execution 21-47

Tuning General Parameters for Parallel Execution
All subsequent queries will be executed in parallel provided no restrictions are

violated. You can also force DML and DDL statements. This clause overrides any

parallel clause specified in subsequent statements in the session, but is overridden

by a parallel hint.

In typical OLTP environments, for example, the tables are not set parallel, but

nightly batch scripts may want to collect data from these tables in parallel. By

setting the DOP in the session, the user avoids altering each table in parallel and

then altering it back to serial when finished.

Controlling Performance with the Degree of Parallelism
The initialization parameter PARALLEL_THREADS_PER_CPU affects algorithms

controlling both the DOP and the adaptive multiuser feature. Oracle multiplies the

value of PARALLEL_THREADS_PER_CPU by the number of CPUs per instance to

derive the number of threads to use in parallel operations.

The adaptive multiuser feature also uses the default DOP to compute the target

number of query server processes that should exist in a system. When a system is

running more processes than the target number, the adaptive algorithm reduces the

DOP of new queries as required. Therefore, you can also use PARALLEL_THREADS_
PER_CPU to control the adaptive algorithm.

PARALLEL_THREADS_PER_CPU enables you to adjust for hardware configurations

with I/O subsystems that are slow relative to the CPU speed and for application

workloads that perform few computations relative to the amount of data involved.

If the system is neither CPU-bound nor I/O-bound, then the PARALLEL_THREADS_
PER_CPU value should be increased. This increases the default DOP and allow

better utilization of hardware resources. The default for PARALLEL_THREADS_
PER_CPU on most platforms is 2. However, the default for machines with relatively

slow I/O subsystems can be as high as eight.

Tuning General Parameters for Parallel Execution
This section discusses the following topics:

■ Parameters Establishing Resource Limits for Parallel Operations

■ Parameters Affecting Resource Consumption

■ Parameters Related to I/O

See Also: Oracle9i Database Administrator’s Guide for additional

information on forcing parallel execution
21-48 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Parameters Establishing Resource Limits for Parallel Operations
The parameters that establish resource limits are:

■ PARALLEL_MAX_SERVERS

■ PARALLEL_MIN_SERVERS

■ LARGE_POOL_SIZE or SHARED_POOL_SIZE

■ SHARED_POOL_SIZE

■ PARALLEL_MIN_PERCENT

■ CLUSTER_DATABASE_INSTANCES

PARALLEL_MAX_SERVERS
The recommended value for the PARALLEL_MAX_SEVERS parameter is:

2 x DOP x NUMBER_OF_CONCURRENT_USERS

The PARALLEL_MAX_SEVERS parameter sets a resource limit on the maximum

number of processes available for parallel execution. If you set PARALLEL_
AUTOMATIC_TUNING to FALSE, you need to manually specify a value for

PARALLEL_MAX_SERVERS.

Most parallel operations need at most twice the number of query server processes

as the maximum DOP attributed to any table in the operation.

If PARALLEL_AUTOMATIC_TUNING is FALSE, the default value for PARALLEL_
MAX_SERVERS is 5. This is sufficient for some minimal operations, but not enough

for effective use of parallel execution. If you manually set the PARALLEL_MAX_
SERVERS parameter, set it to 16 times the number of CPUs. This is a reasonable

starting value that will allow you to run four parallel queries simultaneously,

assuming that each query is using a DOP of eight.

If the hardware system is neither CPU bound nor I/O bound, then you can increase

the number of concurrent parallel execution users on the system by adding more

query server processes. When the system becomes CPU- or I/O-bound, however,

adding more concurrent users becomes detrimental to the overall performance.

Careful setting of PARALLEL_MAX_SERVERS is an effective method of restricting

the number of concurrent parallel operations.

If users initiate too many concurrent operations, Oracle might not have enough

query server processes. In this case, Oracle executes the operations sequentially or

displays an error if PARALLEL_MIN_PERCENT is set to a value other than the

default value of 0 (zero).
 Using Parallel Execution 21-49

Tuning General Parameters for Parallel Execution
This condition can be verified through the GV$SYSSTAT view by comparing the

statistics for parallel operations not downgraded and parallel operations

downgraded to serial. For example:

SELECT * FROM GV$SYSSTAT WHERE name LIKE 'Parallel operation%';

When Users Have Too Many Processes When concurrent users have too many query

server processes, memory contention (paging), I/O contention, or excessive context

switching can occur. This contention can reduce system throughput to a level lower

than if parallel execution were not used. Increase the PARALLEL_MAX_SERVERS
value only if the system has sufficient memory and I/O bandwidth for the resulting

load.

You can use operating system performance monitoring tools to determine how

much memory, swap space and I/O bandwidth are free. Look at the runq lengths

for both your CPUs and disks, as well as the service time for I/Os on the system.

Verify that the machine has sufficient swap space exists on the machine to add more

processes. Limiting the total number of query server processes might restrict the

number of concurrent users who can execute parallel operations, but system

throughput tends to remain stable.

Increasing the Number of Concurrent Users
To increase the number of concurrent users, you can restrict the number of

concurrent sessions that resource consumer groups can have. For example:

■ You can enable PARALLEL_ADAPTIVE_MULTI_USER.

■ You can set a large limit for users running batch jobs.

■ You can set a medium limit for users performing analyses.

■ You can prohibit a particular class of user from using parallelism.

Limiting the Number of Resources for a User
You can limit the amount of parallelism available to a given user by establishing a

resource consumer group for the user. Do this to limit the number of sessions,

concurrent logons, and the number of parallel processes that any one user or group

of users can have.

See Also: Oracle9i Database Administrator’s Guide and Oracle9i
Database Concepts for more information about resource consumer

groups and the Database Resource Manager
21-50 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Each query server process working on a parallel execution statement is logged on

with a session ID. Each process counts against the user's limit of concurrent

sessions. For example, to limit a user to 10 parallel execution processes, set the

user's limit to 11. One process is for the parallel coordinator and the other 10 consist

of two sets of query server servers. This would allow one session for the parallel

coordinator and 10 sessions for the parallel execution processes.

PARALLEL_MIN_SERVERS
The recommended value for the PARALLEL_MIN_SERVERS parameter is 0 (zero),

which is the default.

This parameter is used at startup and lets you specify in a single instance the

number of processes to be started and reserved for parallel operations. The syntax

is:

PARALLEL_MIN_SERVERS=n

The n variable is the number of processes you want to start and reserve for parallel

operations.

Setting PARALLEL_MIN_SERVERS balances the startup cost against memory usage.

Processes started using PARALLEL_MIN_SERVERS do not exit until the database is

shut down. This way, when a query is issued the processes are likely to be available.

It is desirable, however, to recycle query server processes periodically since the

memory these processes use can become fragmented and cause the high water mark

to slowly increase. When you do not set PARALLEL_MIN_SERVERS, processes exit

after they are idle for five minutes.

LARGE_POOL_SIZE or SHARED_POOL_SIZE
The following discussion of how to tune the large pool also applies to tuning the

shared pool, except as noted in "SHARED_POOL_SIZE" on page 21-56. You must

also increase the value for this memory setting by the amount you determine.

See Also:

■ Oracle9i Database Administrator’s Guide for more information

about managing resources with user profiles

■ Oracle9i Real Application Clusters Administration for more

information on querying GV$ views
 Using Parallel Execution 21-51

Tuning General Parameters for Parallel Execution
Parallel execution requires additional memory resources in addition to those

required by serial SQL execution. Additional memory is used for communication

and passing data between query server processes and the query coordinator.

There is no recommended value for LARGE_POOL_SIZE. Instead, Oracle

recommends leaving this parameter unset and having Oracle set it for you by

setting the PARALLEL_AUTOMATIC_TUNING parameter to TRUE. The exception to

this is when the system-assigned value is inadequate for your processing

requirements.

Oracle automatically computes LARGE_POOL_SIZE if PARALLEL_AUTOMATIC_
TUNING is TRUE. To manually set a value for LARGE_POOL_SIZE, query the

V$SGASTAT view and increase or decrease the value for LARGE_POOL_SIZE
depending on your needs. For example, suppose Oracle displays the following

error on startup:

ORA-27102: out of memory
SVR4 Error: 12: Not enough space

You should reduce the value for LARGE_POOL_SIZE low enough so your database

starts. After reducing the value of LARGE_POOL_SIZE, you might see the error:

ORA-04031: unable to allocate 16084 bytes of shared memory ("large
pool","unknown object","large pool heap","PX msg pool")

If so, execute the following query to determine why Oracle could not allocate the

16,084 bytes:

SELECT NAME, SUM(BYTES)
FROM V$SGASTAT
WHERE POOL='LARGE POOL'
 GROUP BY ROLLUP (NAME);

Note: When PARALLEL_AUTOMATIC_TUNING is set to TRUE,
Oracle allocates parallel execution buffers from the large pool.

When this parameter is FALSE, Oracle allocates parallel execution

buffers from the shared pool.
21-52 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Your output should resemble the following:

NAME SUM(BYTES)
-------------------------- ----------
PX msg pool 1474572
free memory 562132
 2036704
3 rows selected.

If you specify LARGE_POOL_SIZE and the amount of memory you need to reserve

is bigger than the pool, Oracle does not allocate all the memory it can get. Instead, it

leaves some space. When the query runs, Oracle tries to get what it needs. Oracle

uses the 560 KB and needs another 16KB when it fails. The error does not report the

cumulative amount that is needed. The best way of determining how much more

memory is needed is to use the formulas in "Adding Memory for Message Buffers"

on page 21-53.

To resolve the problem in the current example, increase the value for LARGE_POOL_
SIZE . As shown in the sample output, the LARGE_POOL_SIZE is about 2 MB.

Depending on the amount of memory available, you could increase the value of

LARGE_POOL_SIZEto 4 MB and attempt to start your database. If Oracle continues

to display an ORA-4031 message, gradually increase the value for LARGE_POOL_
SIZE until startup is successful.

Computing Additional Memory Requirements for Message Buffers
After you determine the initial setting for the large or shared pool, you must

calculate additional memory requirements for message buffers and determine how

much additional space you need for cursors.

Adding Memory for Message Buffers You must increase the value for the LARGE_POOL_
SIZE or the SHARED_POOL_SIZE parameters to accommodate message buffers.

The message buffers allow query server processes to communicate with each other.

If you enable automatic parallel tuning, Oracle allocates space for the message

buffer from the large pool. Otherwise, Oracle allocates space from the shared pool.

Oracle uses a fixed number of buffers per virtual connection between producer

query servers and consumer query servers. Connections increase as the square of

the DOP increases. For this reason, the maximum amount of memory used by

parallel execution is bound by the highest DOP allowed on your system. You can

control this value by using either the PARALLEL_MAX_SERVERS parameter or by

using policies and profiles.

To calculate the amount of memory required, use one of the following formulas:
 Using Parallel Execution 21-53

Tuning General Parameters for Parallel Execution
■ For SMP systems:

mem in bytes = (3 x size x users x groups x connections)

■ For SMP Real Application Clusters and MPP systems:

mem in bytes = ((3 x local) + (2 x remote) x (size x users x groups))

Each instance uses the memory computed by the formula.

The terms are:

■ SIZE = PARALLEL_EXECUTION_MESSAGE_SIZE

■ USERS = the number of concurrent parallel execution users that you expect to

have running with the optimal DOP

■ GROUPS = the number of query server process groups used per query

A simple SQL statement requires only one group. However, if your queries

involve subqueries which will be processed in parallel, then Oracle uses an

additional group of query server processes.

■ CONNECTIONS = (DOP2 + 2 x DOP)

If your system is a cluster or MPP, then you should account for the number of

instances because this will increase the DOP. In other words, using a DOP of 4

on a two instance cluster results in a DOP of 8. A value of PARALLEL_MAX_
SERVERS times the number of instances divided by four is a conservative

estimate to use as a starting point.

■ LOCAL = CONNECTIONS/INSTANCES

■ REMOTE = CONNECTIONS - LOCAL

Add this amount to your original setting for the large or shared pool. However,

before setting a value for either of these memory structures, you must also consider

additional memory for cursors, as explained in the following section.

Calculating Additional Memory for Cursors Parallel execution plans consume more space

in the SQL area than serial execution plans. You should regularly monitor shared

pool resource use to ensure that the memory used by both messages and cursors

can accommodate your system's processing requirements.

Adjusting Memory After Processing Begins
The formulas in this section are just starting points. Whether you are using

automated or manual tuning, you should monitor usage on an on-going basis to
21-54 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
make sure the size of memory is not too large or too small. To do this, tune the large

and shared pools after examining the size of structures in the large pool, using the

following query:

SELECT POOL, NAME, SUM(BYTES)
FROM V$SGASTAT
WHERE POOL LIKE '%pool%'
 GROUP BY ROLLUP (POOL, NAME);

Your output should resemble the following:

POOL NAME SUM(BYTES)
----------- -------------------------- ----------
large pool PX msg pool 38092812
large pool free memory 299988
large pool 38392800
shared pool Checkpoint queue 38496
shared pool KGFF heap 1964
shared pool KGK heap 4372
shared pool KQLS heap 1134432
shared pool LRMPD SGA Table 23856
shared pool PLS non-lib hp 2096
shared pool PX subheap 186828
shared pool SYSTEM PARAMETERS 55756
shared pool State objects 3907808
shared pool character set memory 30260
shared pool db_block_buffers 200000
shared pool db_block_hash_buckets 33132
shared pool db_files 122984
shared pool db_handles 52416
shared pool dictionary cache 198216
shared pool dlm shared memory 5387924
shared pool enqueue_resources 29016
shared pool event statistics per sess 264768
shared pool fixed allocation callback 1376
shared pool free memory 26329104
shared pool gc_* 64000
shared pool latch nowait fails or sle 34944
shared pool library cache 2176808
shared pool log_buffer 24576
shared pool log_checkpoint_timeout 24700
shared pool long op statistics array 30240
shared pool message pool freequeue 116232
shared pool miscellaneous 267624
shared pool processes 76896
 Using Parallel Execution 21-55

Tuning General Parameters for Parallel Execution
shared pool session param values 41424
shared pool sessions 170016
shared pool sql area 9549116
shared pool table columns 148104
shared pool trace_buffers_per_process 1476320
shared pool transactions 18480
shared pool trigger inform 24684
shared pool 52248968
 90641768
41 rows selected.

Evaluate the memory used as shown in your output, and alter the setting for

LARGE_POOL_SIZE based on your processing needs.

To obtain more memory usage statistics, execute the following query:

SELECT * FROM V$PX_PROCESS_SYSSTAT WHERE STATISTIC LIKE 'Buffers%';

Your output should resemble the following:

STATISTIC VALUE
------------------- -----
Buffers Allocated 23225
Buffers Freed 23225
Buffers Current 0
Buffers HWM 3620
4 Rows selected.

The amount of memory used appears in the Buffers Current and Buffers HWM
statistics. Calculate a value in bytes by multiplying the number of buffers by the

value for PARALLEL_EXECUTION_MESSAGE_SIZE. Compare the high water mark

to the parallel execution message pool size to determine if you allocated too much

memory. For example, in the first output, the value for large pool as shown in px
msg pool is 38,092,812 or 38 MB. The Buffers HWM from the second output is

3,620, which when multiplied by a parallel execution message size of 4,096 is

14,827,520, or approximately 15 MB. In this case, the high water mark has reached

approximately 40 percent of its capacity.

SHARED_POOL_SIZE
As mentioned earlier, if PARALLEL_AUTOMATIC_TUNING is FALSE, Oracle

allocates query server processes from the shared pool. In this case, tune the shared

pool as described under the previous heading for large pool, with the following

exceptions:
21-56 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
■ Allow for other clients of the shared pool, such as shared cursors and stored

procedures

■ Remember that larger values improve performance in multiuser systems, but

smaller values use less memory

You must also take into account that using parallel execution generates more

cursors. Look at statistics in the V$SQLAREA view to determine how often Oracle

recompiles cursors. If the cursor hit ratio is poor, increase the size of the pool. This

happens only when you have a large number of distinct queries.

You can then monitor the number of buffers used by parallel execution in the same

way as explained previously, and compare the shared pool PX msg pool to the

current high water mark reported in output from the view V$PX_PROCESS_
SYSSTAT.

PARALLEL_MIN_PERCENT
The recommended value for the PARALLEL_MIN_PERCENT parameter is 0 (zero).

This parameter allows users to wait for an acceptable DOP, depending on the

application in use. Setting this parameter to values other than 0 (zero) causes Oracle

to return an error when the requested DOP cannot be satisfied by the system at a

given time.

For example, if you set PARALLEL_MIN_PERCENT to 50, which translates to 50

percent, and the DOP is reduced by 50 percent or greater because of the adaptive

algorithm or because of a resource limitation, then Oracle returns ORA-12827 . For

example:

SELECT /*+ PARALLEL(e, 8, 1) */ d.deptno, SUM(SAL)
FROM emp e, dept d WHERE e.deptno = d.deptno
GROUP BY d.deptno ORDER BY d.deptno;

Oracle responds with this message:

ORA-12827: insufficient parallel query slaves available

CLUSTER_DATABASE_INSTANCES
The CLUSTER_DATABASE_INSTANCES parameter should be set to a value that is

equal to the number of instances in your Real Application Cluster environment.

The CLUSTER_DATABASE_INSTANCESparameter specifies the number of instances

configured in an Oracle Real Application Cluster environment. Oracle uses the
 Using Parallel Execution 21-57

Tuning General Parameters for Parallel Execution
value of this parameter to compute values for LARGE_POOL_SIZE when

PARALLEL_AUTOMATIC_TUNING is set to TRUE.

Parameters Affecting Resource Consumption
The first group of parameters discussed in this section affects memory and resource

consumption for all parallel operations, in particular, for parallel execution. These

parameters are:

■ HASH_AREA_SIZE

■ SORT_AREA_SIZE

■ PARALLEL_EXECUTION_MESSAGE_SIZE

■ PARALLEL_BROADCAST_ENABLE

A second subset of parameters discussed in this section explains parameters

affecting parallel DML and DDL.

To control resource consumption, you should configure memory at two levels:

■ At the Oracle level, so the system uses an appropriate amount of memory from

the operating system.

■ At the operating system level for consistency. On some platforms, you might

need to set operating system parameters that control the total amount of virtual

memory available, summed across all processes.

The SGA is typically part of real physical memory. The SGA is static and of fixed

size; if you want to change its size, shut down the database, make the change, and

restart the database. Oracle allocates the large and shared pools out of the SGA.

A large percentage of the memory used in data warehousing operations is more

dynamic. This memory comes from process memory, and both the size of process

memory and the number of processes can vary greatly. This memory is controlled

by the HASH_AREA_SIZE and SORT_AREA_SIZE parameters. Together, these

parameters affect the amount of virtual memory used by Oracle.

Process memory comes from virtual memory. Total virtual memory should be

somewhat larger than available real memory, which is the physical memory minus

the size of the SGA. Virtual memory generally should not exceed twice the size of

the physical memory minus the SGA size. If you set virtual memory to a value

See Also: Oracle9i Database Concepts for further details regarding

the SGA
21-58 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
several times greater than real memory, the paging rate might increase when the

machine is overloaded.

As a general rule for memory sizing, each process requires adequate address space

for hash joins. A dominant factor in high volume data warehousing operations is

the relationship between memory, the number of processes, and the number of hash

join operations. Hash joins and large sorts are memory-intensive operations, so you

might want to configure fewer processes, each with a greater limit on the amount of

memory it can use.

HASH_AREA_SIZE
You can improve hash join performance with a relatively high value for the HASH_
AREA_SIZE parameter. If you use a relatively high value, you will increase your

memory requirements.

Set HASH_AREA_SIZE using one of two approaches. The first approach examines

how much memory is available after configuring the SGA and calculating the

amount of memory processes the system uses during normal loads.

The total amount of memory that Oracle processes are allowed to use should be

divided by the number of processes during the normal load. These processes

include parallel execution servers. This number determines the total amount of

working memory per process. This amount then needs to be shared among different

operations in a given query. For example, setting HASH_AREA_SIZE or SORT_
AREA_SIZE to one-half or one-third of this number is reasonable.

Set these parameters to the highest number that does not cause swapping. After

setting these parameters as described, you should watch for swapping and free

memory. If swapping occurs, decrease the values for these parameters. If a

significant amount of free memory remains, you can increase the values for these

parameters.

The second approach to setting HASH_AREA_SIZE requires a thorough

understanding of the types of hash joins you execute and an understanding of the

amount of data you will be querying against. If the queries and query plans you

execute are well understood, this approach is reasonable.

The value for HASH_AREA_SIZE should be approximately half of the square root of

S, where S is the size in megabytes of the smaller of the inputs to the join operation.

In any case, the value for HASH_AREA_SIZE should not be less than 1 MB.
 Using Parallel Execution 21-59

Tuning General Parameters for Parallel Execution
This relationship can be expressed as follows:

For example, if S equals 16 MB, a minimum appropriate value for HASH_AREA_
SIZE might be 2 MB, summed over all parallel processes. Thus, if you have two

parallel processes, a minimum value for HASH_AREA_SIZE might be 1 MB. A

smaller hash area is not advisable.

For a large data warehouse, HASH_AREA_SIZE can range from 8 MB to 32 MB or

more. This parameter provides for adequate memory for hash joins. Each process

performing a parallel hash join uses an amount of memory equal to HASH_AREA_
SIZE .

Hash join performance is more sensitive to HASH_AREA_SIZE than sort

performance is to SORT_AREA_SIZE. As with SORT_AREA_SIZE, too large a hash

area can cause the system to run out of memory.

The hash area does not cache blocks in the buffer cache; even low values of HASH_
AREA_SIZE will not cause this to occur. Too small a setting, however, could

adversely affect performance.

HASH_AREA_SIZE is relevant to parallel execution operations and to the query

portion of DML or DDL statements.

SORT_AREA_SIZE
The recommended values for this parameter range from 256 KB to 4 MB.

This parameter specifies the amount of memory to allocate per query server process

for sort operations. If you have a lot of system memory, you can benefit from setting

SORT_AREA_SIZE to a large value. This can dramatically increase the performance

of sort operations because the entire process is more likely to be performed in

memory. However, if memory is a concern for your system, you might want to limit

the amount of memory allocated for sort and hash operations.

If the sort area is too small, an excessive amount of I/O is required to merge a large

number of sort runs. If the sort area size is smaller than the amount of data to sort,

the sort will move to disk, creating sort runs. These must then be merged again

using the sort area. If the sort area size is very small, there will be many runs to

merge, and multiple passes might be necessary. The amount of I/O increases as

SORT_AREA_SIZE decreases.

HASH_AREA_SIZE >=
S
2

21-60 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
If the sort area is too large, the operating system paging rate will be excessive. The

cumulative sort area adds up quickly because each query server process can allocate

this amount of memory for each sort. For such situations, monitor the operating

system paging rate to see if too much memory is being requested.

SORT_AREA_SIZE is relevant to parallel execution operations and to the query

portion of DML or DDL statements. All CREATE INDEX statements must do some

sorting to generate the index. Commands that require sorting include:

■ CREATE INDEX

■ Direct-path INSERT (if an index is involved)

■ ALTER INDEX ... REBUILD

PARALLEL_EXECUTION_MESSAGE_SIZE
The recommended value for PARALLEL_EXECUTION_MESSAGE_SIZE is 4 KB. If

PARALLEL_AUTOMATIC_TUNING is TRUE, the default is 4 KB. If PARALLEL_
AUTOMATIC_TUNING is FALSE, the default is slightly greater than 2 KB.

The PARALLEL_EXECUTION_MESSAGE_SIZE parameter specifies the upper limit

for the size of parallel execution messages. The default value is operating system

specific and this value should be adequate for most applications. Larger values for

PARALLEL_EXECUTION_MESSAGE_SIZE require larger values for LARGE_POOL_
SIZE or SHARED_POOL_SIZE, depending on whether you have enabled parallel

automatic tuning.

While you might experience significantly improved response time by increasing the

value for PARALLEL_EXECUTION_MESSAGE_SIZE, memory use also drastically

increases. For example, if you double the value for PARALLEL_EXECUTION_
MESSAGE_SIZE, parallel execution requires a message source pool that is twice as

large.

Therefore, if you set PARALLEL_AUTOMATIC_TUNING to FALSE, you must adjust

the SHARED_POOL_SIZE to accommodate parallel execution messages. If you have

set PARALLEL_AUTOMATIC_TUNING to TRUE, but have set LARGE_POOL_SIZE
manually, then you must adjust the LARGE_POOL_SIZE to accommodate parallel

execution messages.

See Also: "HASH_AREA_SIZE" on page 21-59
 Using Parallel Execution 21-61

Tuning General Parameters for Parallel Execution
PARALLEL_BROADCAST_ENABLE
The default value for the PARALLEL_BROADCAST_ENABLE parameter is FALSE.

Set PARALLEL_BROADCAST_ENABLE to TRUE if you are joining a very large join

result set with a very small result set (size being measured in bytes, rather than

number of rows). In this case, the optimizer has the option of broadcasting the small

set's rows to each of the query server processes that are processing the rows of the

larger set. The result is enhanced performance. If the result set is large, the

optimizer will not broadcast, which avoids excessive communication overhead.

Parameters Affecting Resource Consumption for Parallel DML and Parallel DDL
The parameters that affect parallel DML and parallel DDL resource consumption

are:

■ TRANSACTIONS

■ ROLLBACK_SEGMENTS

■ FAST_START_PARALLEL_ROLLBACK

■ LOG_BUFFER

■ DML_LOCKS

■ ENQUEUE_RESOURCES

Parallel inserts, updates, and deletes require more resources than serial DML

operations. Similarly, PARALLEL CREATE TABLE ... AS SELECT and PARALLEL
CREATE INDEX can require more resources. For this reason, you may need to

increase the value of several additional initialization parameters. These parameters

do not affect resources for queries.

TRANSACTIONS For parallel DML and DDL, each query server process starts a

transaction. The parallel coordinator uses the two-phase commit protocol to commit

transactions; therefore, the number of transactions being processed increases by the

DOP. As a result, you might need to increase the value of the TRANSACTIONS
initialization parameter.

The TRANSACTIONS parameter specifies the maximum number of concurrent

transactions. The default assumes no parallelism. For example, if you have a DOP

of 20, you will have 20 more new server transactions (or 40, if you have two server

sets) and 1 coordinator transaction. In this case, you should increase

TRANSACTIONS by 21 (or 41) if the transactions are running in the same instance. If

you do not set this parameter, Oracle sets it to a value equal to 1.1 x SESSIONS.
21-62 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
ROLLBACK_SEGMENTS The increased number of transactions for parallel DML and

DDL requires more rollback segments. For example, one command with a DOP of

five uses 5 server transactions distributed among different rollback segments. The

rollback segments should belong to tablespaces that have free space. The rollback

segments should also be unlimited, or you should specify a high value for the

MAXEXTENTS parameter of the STORAGE clause. In this way, the rollback segments

can extend and not run out of space.

FAST_START_PARALLEL_ROLLBACK If a system crashes when there are uncommitted

parallel DML or DDL transactions, you can speed up transaction recovery during

startup by using the FAST_START_PARALLEL_ROLLBACK parameter.

This parameter controls the DOP used when recovering dead transactions. Dead

transactions are transactions that are active before a system crash. By default, the

DOP is chosen to be at most two times the value of the CPU_COUNT parameter.

If the default DOP is insufficient, set the parameter to the HIGH. This gives a

maximum DOP of at most four times the value of the CPU_COUNT parameter. This

feature is available by default.

LOG_BUFFER Check the statistic redo buffer allocation retries in the

V$SYSSTAT view. If this value is high relative to redo blocks written , try to

increase the LOG_BUFFER size. A common LOG_BUFFER size for a system

generating numerous logs is 3 MB to 5 MB. If the number of retries is still high after

increasing LOG_BUFFER size, a problem might exist with the disk on which the log

files reside. In that case, tune the I/O subsystem to increase the I/O rates for redo.

One way of doing this is to use fine-grained striping across multiple disks. For

example, use a stripe size of 16 KB. A simpler approach is to isolate redo logs on

their own disk.

DML_LOCKS This parameter specifies the maximum number of DML locks. Its value

should equal the total number of locks on all tables referenced by all users. A

parallel DML operation's lock and enqueue resource requirement is very different

from serial DML. Parallel DML holds many more locks, so you should increase the

value of the ENQUEUE_RESOURCES and DML_LOCKS parameters by equal amounts.

Table 21–4 shows the types of locks acquired by coordinator and parallel execution

server processes for different types of parallel DML statements. Using this

information, you can determine the value required for these parameters.
 Using Parallel Execution 21-63

Tuning General Parameters for Parallel Execution
Table 21–4 Locks Acquired by Parallel DML Statements

Type of statement
Coordinator process
acquires:

Each parallel execution
server acquires:

Parallel UPDATE or DELETE
into partitioned table; WHERE
clause pruned to a subset of
partitions or subpartitions

1 table lock SX

1 partition lock X per
pruned (sub)partition

1 table lock SX

1 partition lock NULL per
pruned (sub)partition owned
by the query server process

1 partition-wait lock S per
pruned (sub)partition owned
by the query server process

Parallel row-migrating UPDATE
into partitioned table; WHERE
clause pruned to a subset of
(sub)partitions

1 table lock SX 1 table lock SX

1 partition X lock per
pruned (sub)partition

1 partition lock NULL per
pruned (sub)partition owned
by the query server process

1 partition-wait lock S per
pruned partition owned by the
query server process

1 partition lock SX for all
other (sub)partitions

1 partition lock SX for all other
(sub)partitions

Parallel UPDATE, MERGE,
DELETE, or INSERT into
partitioned table

1 table lock SX

Partition locks X for all
(sub)partitions

1 table lock SX

1 partition lock NULL per
(sub)partition owned by the
query server process

1 partition-wait lock S per
(sub)partition owned by the
query server process

Parallel INSERT into
partitioned table; destination
table with partition or
subpartition clause

1 table lock SX

1 partition lock X per
specified (sub)partition

1 table lock SX

1 partition lock NULL per
specified (sub)partition owned
by the query server process

1 partition-wait lock S per
specified (sub)partition owned
by the query server process

Parallel INSERT into
nonpartitioned table

1 table lock X None
21-64 Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Consider a table with 600 partitions running with a DOP of 100. Assume all

partitions are involved in a parallel UPDATE or DELETE statement with no

row-migrations.

ENQUEUE_RESOURCES This parameter sets the number of resources that can be

locked by the lock manager. Parallel DML operations require many more resources

than serial DML. Oracle allocates more enqueue resources as needed.

Parameters Related to I/O
The parameters that affect I/O are:

■ DB_BLOCK_BUFFERS

■ DB_BLOCK_SIZE

■ DB_FILE_MULTIBLOCK_READ_COUNT

■ DISK_ASYNCH_IO and TAPE_ASYNCH_IO

These parameters also affect the optimizer which ensures optimal performance for

parallel execution I/O operations.

DB_BLOCK_BUFFERS
When you perform parallel updates, merges, and deletes, the buffer cache behavior

is very similar to any OLTP system running a high volume of updates.

Note: Table, partition, and partition-wait DML locks all appear as

TM locks in the V$LOCK view.

The coordinator acquires: 1 table lock SX

600 partition locks X

Total server processes acquire: 100 table locks SX

600 partition locks NULL

600 partition-wait locks S

See Also: "DML_LOCKS" on page 21-63
 Using Parallel Execution 21-65

Tuning General Parameters for Parallel Execution
DB_BLOCK_SIZE
The recommended value for this parameter is 8 KB or 16 KB.

Set the database block size when you create the database. If you are creating a new

database, use a large block size such as 8 KB or 16 KB.

DB_FILE_MULTIBLOCK_READ_COUNT
The recommended value for this parameter is eight for 8 KB block size, or four for

16 KB block size. The default is 8.

This parameter determines how many database blocks are read with a single

operating system READ call. The upper limit for this parameter is

platform-dependent. If you set DB_FILE_MULTIBLOCK_READ_COUNT to an

excessively high value, your operating system will lower the value to the highest

allowable level when you start your database. In this case, each platform uses the

highest value possible. Maximum values generally range from 64 KB to 1 MB.

DISK_ASYNCH_IO and TAPE_ASYNCH_IO
The recommended value for both of these parameters is TRUE.

These parameters enable or disable the operating system's asynchronous I/O

facility. They allow query server processes to overlap I/O requests with processing

when performing table scans. If the operating system supports asynchronous I/O,

leave these parameters at the default value of TRUE.
21-66 Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
Figure 21–6 Asynchronous Read

Asynchronous operations are currently supported for parallel table scans, hash

joins, sorts, and serial table scans. However, this feature can require operating

system specific configuration and may not be supported on all platforms. Check

your Oracle operating system-specific documentation.

Monitoring and Diagnosing Parallel Execution Performance
You should do the following tasks when diagnosing parallel execution performance

problems:

■ Quantify your performance expectations to determine whether there is a

problem.

■ Determine whether a problem pertains to optimization, such as inefficient plans

that might require reanalyzing tables or adding hints, or whether the problem

pertains to execution, such as simple operations like scanning, loading,

grouping, or indexing running much slower than published guidelines.

■ Determine whether the problem occurs when running in parallel, such as load

imbalance or resource bottlenecks, or whether the problem is also present for

serial operations.

Performance expectations are based on either prior performance metrics (for

example, the length of time a given query took last week or on the previous version

of Oracle) or scaling and extrapolating from serial execution times (for example,

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Synchronous read

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Asynchronous read
 Using Parallel Execution 21-67

Monitoring and Diagnosing Parallel Execution Performance
serial execution took 10 minutes while parallel execution took 5 minutes). If the

performance does not meet your expectations, consider the following questions:

■ Did the execution plan change?

If so, you should gather statistics and decide whether to use index-only access

and a CREATE TABLE AS SELECT statement. You should use index hints if your

system is CPU-bound.

You should also study the EXPLAIN PLAN output.

■ Did the data set change?

If so, you should gather statistics to evaluate any differences.

■ Is the hardware overtaxed?

If so, you should check CPU, I/O, and swap memory.

After setting your basic goals and answering these questions, you need to consider

the following topics:

■ Is There Regression?

■ Is There a Plan Change?

■ Is There a Parallel Plan?

■ Is There a Serial Plan?

■ Is There Parallel Execution?

■ Is The Workload Evenly Distributed?

Is There Regression?
Does parallel execution's actual performance deviate from what you expected? If

performance is as you expected, could there be an underlying performance

problem? Perhaps you have a desired outcome in mind to which you are comparing

the current outcome. Perhaps you have justifiable performance expectations that the

system does not achieve. You might have achieved this level of performance or a

particular execution plan in the past, but now, with a similar environment and

operation, the system is not meeting this goal.

If performance is not as you expected, can you quantify the deviation? For data

warehousing operations, the execution plan is key. For critical data warehousing

operations, save the EXPLAIN PLANresults. Then, as you analyze and reanalyze the

data, upgrade Oracle, and load new data, over time you can compare new

execution plans with old plans. Take this approach either proactively or reactively.
21-68 Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
Alternatively, you might find that plan performance improves if you use hints. You

might want to understand why hints are necessary and determine how to get the

optimizer to generate the desired plan without hints. Try increasing the statistical

sample size: better statistics can give you a better plan.

Is There a Plan Change?
If there has been a change in the execution plan, determine whether the plan is or

should be parallel or serial.

Is There a Parallel Plan?
If the execution plan is or should be parallel, study the EXPLAIN PLAN output. Did

you analyze all the tables? Perhaps you need to use hints in a few cases. Verify that

the hint provides better performance.

Is There a Serial Plan?
If the execution plan is or should be serial, consider the following strategies:

■ Use an index. Sometimes adding an index can greatly improve performance.

Consider adding an extra column to the index. Perhaps your operation could

obtain all its data from the index, and not require a table scan. Perhaps you

need to use hints in a few cases. Verify that the hint provides better results.

■ Compute statistics. If you do not analyze often and you can spare the time, it is

a good practice to compute statistics. This is particularly important if you are

performing many joins, and it will result in better plans. Alternatively, you can

estimate statistics.

■ Use histograms for nonuniform distributions.

■ Check initialization parameters to be sure the values are reasonable.

See Also: Oracle9i Database Performance Guide and Reference for

information on preserving plans throughout changes to your

system, using plan stability and outlines

Note: Using different sample sizes can cause the plan to change.

Generally, the higher the sample size, the better the plan.
 Using Parallel Execution 21-69

Monitoring and Diagnosing Parallel Execution Performance
■ Replace bind variables with literals unless CURSOR_SHARINGis set to FORCEor

SIMILAR .

■ Determine whether execution is I/O- or CPU-bound. Then check the optimizer

cost model.

■ Convert subqueries to joins.

■ Use the CREATE TABLE ... AS SELECT statement to break a complex operation

into smaller pieces. With a large query referencing five or six tables, it may be

difficult to determine which part of the query is taking the most time. You can

isolate bottlenecks in the query by breaking it into steps and analyzing each

step.

Is There Parallel Execution?
If the cause of regression cannot be traced to problems in the plan, the problem

must be an execution issue. For data warehousing operations, both serial and

parallel, consider how the plan uses memory. Check the paging rate and make sure

the system is using memory as effectively as possible. Check buffer, sort, and hash

area sizing. After you run a query or DML operation, look at the V$SESSTAT,
V$PX_SESSTAT, and V$PQ_SYSSTAT views to see the number of server processes

used and other information for the session and system.

Is The Workload Evenly Distributed?
If you are using parallel execution, is there unevenness in workload distribution?

For example, if there are 10 CPUs and a single user, you can see whether the

workload is evenly distributed across CPUs. This can vary over time, with periods

that are more or less I/O intensive, but in general each CPU should have roughly

the same amount of activity.

The statistics in V$PQ_TQSTAT show rows produced and consumed per parallel

execution server. This is a good indication of skew and does not require single user

operation.

Operating system statistics show you the per-processor CPU utilization and

per-disk I/O activity. Concurrently running tasks make it harder to see what is

going on, however. It may be useful to run in single-user mode and check operating

system monitors that show system level CPU and I/O activity.

If I/O problems occur, you might need to reorganize your data by spreading it over

more devices. If parallel execution problems occur, check to be sure you have

followed the recommendation to spread data over at least as many devices as CPUs.
21-70 Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
If there is no skew in workload distribution, check for the following conditions:

■ Is there device contention?

■ Is there controller contention?

■ Is the system I/O-bound with too little parallelism? If so, consider increasing

parallelism up to the number of devices.

■ Is the system CPU-bound with too much parallelism? Check the operating

system CPU monitor to see whether a lot of time is being spent in system calls.

The resource might be overcommitted, and too much parallelism might cause

processes to compete with themselves.

■ Are there more concurrent users than the system can support?

Monitoring Parallel Execution Performance with Dynamic Performance Views
After your system has run for a few days, monitor parallel execution performance

statistics to determine whether your parallel processing is optimal. Do this using

any of the views discussed in this section.

In Oracle Real Application Cluster, global versions of the views described in this

section aggregate statistics from multiple instances. The global views have names

beginning with G, such as GV$FILESTAT for V$FILESTAT, and so on.

V$PX_SESSION
The V$PX_SESSIONview shows data about query server sessions, groups, sets, and

server numbers. It also displays real-time data about the processes working on

behalf of parallel execution. This table includes information about the requested

DOP and the actual DOP granted to the operation.

V$PX_SESSTAT
The V$PX_SESSTAT view provides a join of the session information from V$PX_
SESSIONand the V$SESSTATtable. Thus, all session statistics available to a normal

session are available for all sessions performed using parallel execution.

V$PX_PROCESS
The V$PX_PROCESS view contains information about the parallel processes,

including status, session ID, process ID, and other information.
 Using Parallel Execution 21-71

Monitoring and Diagnosing Parallel Execution Performance
V$PX_PROCESS_SYSSTAT
The V$PX_PROCESS_SYSSTAT view shows the status of query servers and

provides buffer allocation statistics.

V$PQ_SESSTAT
The V$PQ_SESSTAT view shows the status of all current server groups in the

system such as data about how queries allocate processes and how the multiuser

and load balancing algorithms are affecting the default and hinted values. V$PQ_
SESSTAT will be obsolete in a future release.

You might need to adjust some parameter settings to improve performance after

reviewing data from these views. In this case, refer to the discussion of "Tuning

General Parameters for Parallel Execution" on page 21-48. Query these views

periodically to monitor the progress of long-running parallel operations.

V$FILESTAT
The V$FILESTAT view sums read and write requests, the number of blocks, and

service times for every datafile in every tablespace. Use V$FILESTAT to diagnose

I/O and workload distribution problems.

You can join statistics from V$FILESTAT with statistics in the DBA_DATA_FILES
view to group I/O by tablespace or to find the filename for a given file number.

Using a ratio analysis, you can determine the percentage of the total tablespace

activity used by each file in the tablespace. If you make a practice of putting just one

large, heavily accessed object in a tablespace, you can use this technique to identify

objects that have a poor physical layout.

You can further diagnose disk space allocation problems using the DBA_EXTENTS
view. Ensure that space is allocated evenly from all files in the tablespace.

Monitoring V$FILESTAT during a long-running operation and then correlating I/O

activity to the EXPLAIN PLAN output is a good way to follow progress.

Note: For many dynamic performance views, you must set the

parameter TIMED_STATISTICS to TRUE in order for Oracle to

collect statistics for each view. You can use the ALTER SYSTEM or

ALTER SESSION statements to turn TIMED_STATISTICS on and

off.
21-72 Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
V$PARAMETER
The V$PARAMETER view lists the name, current value, and default value of all

system parameters. In addition, the view shows whether a parameter is a session

parameter that you can modify online with an ALTER SYSTEM or ALTER SESSION
statement.

V$PQ_TQSTAT
As a simple example, consider a hash join between two tables, with a join on a

column with only 2 distinct values. At best, this hash function will have one value

hash to parallel execution server A and the other to parallel execution server B. A

DOP of two is fine, but, if it is 4, then at least 2 parallel execution servers have no

work. To discover this type of skew, use a query similar to the following example:

SELECT dfo_number, tq_id, server_type, process, num_rows
FROM V$PQ_TQSTAT
ORDER BY dfo_number DESC, tq_id, server_type, process;

The best way to resolve thie problem might be to choose a different join method; a

nested loop join might be the best option. Alternatively, if one of the join tables is

small relative to the other, it can be broadcast if PARALLEL_BROADCAST_
ENABLED=TRUE or a PQ_DISTRIBUTE hint is used.

Now, assume that you have a join key with high cardinality, but one of the values

contains most of the data, for example, lava lamp sales by year. The only year that

had big sales was 1968, and thus, the parallel execution server for the 1968 records

will be overwhelmed. You should use the same corrective actions as described

above.

The V$PQ_TQSTAT view provides a detailed report of message traffic at the table

queue level. V$PQ_TQSTAT data is valid only when queried from a session that is

executing parallel SQL statements. A table queue is the pipeline between query

server groups, between the parallel coordinator and a query server group, or

between a query server group and the coordinator. Table queues are represented in

EXPLAIN PLAN output by the row labels of PARALLEL_TO_PARALLEL, SERIAL_
TO_PARALLEL, or PARALLEL_TO_SERIAL, respectively.

V$PQ_TQSTAT has a row for each query server process that reads from or writes to

in each table queue. A table queue connecting 10 consumer processes to 10

producer processes has 20 rows in the view. Sum the bytes column and group by

TQ_ID, the table queue identifier, to obtain the total number of bytes sent through

each table queue. Compare this with the optimizer estimates; large variations might

indicate a need to analyze the data using a larger sample.
 Using Parallel Execution 21-73

Monitoring and Diagnosing Parallel Execution Performance
Compute the variance of bytes grouped by TQ_ID. Large variances indicate

workload imbalances. You should investigate large variances to determine whether

the producers start out with unequal distributions of data, or whether the

distribution itself is skewed. If the data itself is skewed, this might indicate a low

cardinality, or low number of distinct values.

V$SESSTAT and V$SYSSTAT
The V$SESSTAT view provides parallel execution statistics for each session. The

statistics include total number of queries, DML and DDL statements executed in a

session and the total number of intrainstance and interinstance messages exchanged

during parallel execution during the session.

V$SYSSTAT provides the same statistics as V$SESSTAT, but for the entire system.

Monitoring Session Statistics
These examples use the dynamic performance views described in "Monitoring

Parallel Execution Performance with Dynamic Performance Views" on page 21-71.

Use GV$PX_SESSION to determine the configuration of the server group executing

in parallel. In this example, sessions 9 is the query coordinator, while sessions 7 and

21 are in the first group, first set. Sessions 18 and 20 are in the first group, second

set. The requested and granted DOP for this query is 2, as shown by Oracle's

response to the following query:

SELECT QCSID, SID, INST_ID "Inst",
 SERVER_GROUP "Group", SERVER_SET "Set",
 DEGREE "Degree", REQ_DEGREE "Req Degree"
FROM GV$PX_SESSION ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Your output should resemble the following:

QCSID SID Inst Group Set Degree Req Degree
---------- ---------- ---------- ---------- ---------- ---------- ----------
 9 9 1
 9 7 1 1 1 2 2
 9 21 1 1 1 2 2
 9 18 1 1 2 2 2
 9 20 1 1 2 2 2
5 rows selected.

Note: The V$PQ_TQSTATview will be renamed in a future release

to V$PX_TQSTSAT.
21-74 Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
The processes shown in the output from the previous example using

GV$PX_SESSION collaborate to complete the same task. The next example shows

the execution of a join query to determine the progress of these processes in terms

of physical reads. Use this query to track any specific statistic:

SELECT QCSID, SID, INST_ID "Inst",
 SERVER_GROUP "Group", SERVER_SET "Set",
 NAME "Stat Name", VALUE
FROM GV$PX_SESSTAT A, V$STATNAME B
WHERE A.STATISTIC# = B.STATISTIC#
 AND NAME LIKE 'PHYSICAL READS'
 AND VALUE > 0
ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Your output should resemble the following:

QCSID SID Inst Group Set Stat Name VALUE
------ ----- ------ ------ ------ ------------------ ----------
 9 9 1 physical reads 3863
 9 7 1 1 1 physical reads 2
 9 21 1 1 1 physical reads 2
 9 18 1 1 2 physical reads 2
 9 20 1 1 2 physical reads 2
5 rows selected.

Use the previous type of query to track statistics in V$STATNAME. Repeat this query

as often as required to observe the progress of the query server processes.

The next query uses V$PX_PROCESS to check the status of the query servers.

SELECT * FROM V$PX_PROCESS;

Your output should resemble the following:

SERV STATUS PID SPID SID SERIAL
---- --------- ------ --------- ------ ------
P002 IN USE 16 16955 21 7729
P003 IN USE 17 16957 20 2921
P004 AVAILABLE 18 16959
P005 AVAILABLE 19 16962
P000 IN USE 12 6999 18 4720

Note: For a single instance, use SELECT FROM V$PX_SESSION
and do not include the column name Instance ID .
 Using Parallel Execution 21-75

Monitoring and Diagnosing Parallel Execution Performance
P001 IN USE 13 7004 7 234
6 rows selected.

Monitoring System Statistics
The V$SYSSTAT and V$SESSTAT views contain several statistics for monitoring

parallel execution. Use these statistics to track the number of parallel queries,

DMLs, DDLs, data flow operators (DFOs), and operations. Each query, DML, or

DDL can have multiple parallel operations and multiple DFOs.

In addition, statistics also count the number of query operations for which the DOP

was reduced, or downgraded, due to either the adaptive multiuser algorithm or the

depletion of available parallel execution servers.

Finally, statistics in these views also count the number of messages sent on behalf of

parallel execution. The following syntax is an example of how to display these

statistics:

SELECT NAME, VALUE FROM GV$SYSSTAT
WHERE UPPER (NAME) LIKE '%PARALLEL OPERATIONS%'
OR UPPER (NAME) LIKE '%PARALLELIZED%'
OR UPPER (NAME) LIKE '%PX%';

Your output should resemble the following:

NAME VALUE
-- ----------
queries parallelized 347
DML statements parallelized 0
DDL statements parallelized 0
DFO trees parallelized 463
Parallel operations not downgraded 28
Parallel operations downgraded to serial 31
Parallel operations downgraded 75 to 99 pct 252
Parallel operations downgraded 50 to 75 pct 128
Parallel operations downgraded 25 to 50 pct 43
Parallel operations downgraded 1 to 25 pct 12
PX local messages sent 74548
PX local messages recv'd 74128
PX remote messages sent 0
PX remote messages recv'd 0

14 rows selected.

See Also: Oracle9i Database Reference for more information about

these views
21-76 Data Warehousing Guide

Affinity and Parallel Operations
Monitoring Operating System Statistics
There is considerable overlap between information available in Oracle and

information available though operating system utilities (such as sar and vmstat
on UNIX-based systems). Operating systems provide performance statistics on I/O,

communication, CPU, memory and paging, scheduling, and synchronization

primitives. The V$SESSTATview provides the major categories of operating system

statistics as well.

Typically, operating system information about I/O devices and semaphore

operations is harder to map back to database objects and operations than is Oracle

information. However, some operating systems have good visualization tools and

efficient means of collecting the data.

Operating system information about CPU and memory usage is very important for

assessing performance. Probably the most important statistic is CPU usage. The

goal of low-level performance tuning is to become CPU bound on all CPUs. Once

this is achieved, you can work at the SQL level to find an alternate plan that might

be more I/O intensive but use less CPU.

Operating system memory and paging information is valuable for fine tuning the

many system parameters that control how memory is divided among

memory-intensive warehouse subsystems like parallel communication, sort, and

hash join.

Affinity and Parallel Operations

In a shared-disk cluster or MPP configuration, an instance of the Oracle Real

Application Cluster is said to have affinity for a device if the device is directly

accessed from the processors on which the instance is running. Similarly, an

instance has affinity for a file if it has affinity for the devices on which the file is

stored.

Determination of affinity may involve arbitrary determinations for files that are

striped across multiple devices. Somewhat arbitrarily, an instance is said to have

Note: The features described in this section are available only if

you have purchased Oracle9i Enterprise Edition with the Real

Application Cluster Option. See Oracle9i Database New Features for

information about the features and options available with Oracle9i
Enterprise Edition.
 Using Parallel Execution 21-77

Affinity and Parallel Operations
affinity for a tablespace (or a partition of a table or index within a tablespace) if the

instance has affinity for the first file in the tablespace.

Oracle considers affinity when allocating work to parallel execution servers. The

use of affinity for parallel execution of SQL statements is transparent to users.

Affinity and Parallel Queries
Affinity in parallel queries increases the speed of scanning data from disk by doing

the scans on a processor that is near the data. This can provide a substantial

performance increase for machines that do not naturally support shared disks.

The most common use of affinity is for a table or index partition to be stored in one

file on one device. This configuration provides the highest availability by limiting

the damage done by a device failure and makes the best use of partition-parallel

index scans.

DSS customers might prefer to stripe table partitions over multiple devices

(probably a subset of the total number of devices). This configuration allows some

queries to prune the total amount of data being accessed using partitioning criteria

and still obtain parallelism through rowid-range parallel table (partition) scans. If

the devices are configured as a RAID, availability can still be very good. Even when

used for DSS, indexes should probably be partitioned on individual devices.

Other configurations (for example, multiple partitions in one file striped over

multiple devices) will yield correct query results, but you may need to use hints or

explicitly set object attributes to select the correct DOP.

Affinity and Parallel DML
For parallel DML (inserts, updates, and deletes), affinity enhancements improve

cache performance by routing the DML operation to the node that has affinity for

the partition.

Affinity determines how to distribute the work among the set of instances or

parallel execution servers to perform the DML operation in parallel. Affinity can

improve performance of queries in several ways:

■ For certain MPP architectures, Oracle uses device-to-node affinity information

to determine on which nodes to spawn parallel execution servers (parallel

process allocation) and which work granules (rowid ranges or partitions) to

send to particular nodes (work assignment). Better performance is achieved by

having nodes mainly access local devices, giving a better buffer cache hit ratio

for every node and reducing the network overhead and I/O latency.
21-78 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
■ For SMP, cluster, and MPP architectures, process-to-device affinity is used to

achieve device isolation. This reduces the chances of having multiple parallel

execution servers accessing the same device simultaneously. This

process-to-device affinity information is also used in implementing stealing

between processes.

For partitioned tables and indexes, partition-to-node affinity information

determines process allocation and work assignment. For shared-nothing MPP

systems, the Oracle Real Application Cluster tries to assign partitions to instances,

taking the disk affinity of the partitions into account. For shared-disk MPP and

cluster systems, partitions are assigned to instances in a round-robin manner.

Affinity is only available for parallel DML when running in an Oracle Real

Application Cluster configuration. Affinity information which persists across

statements improves buffer cache hit ratios and reduces block pings between

instances.

Miscellaneous Parallel Execution Tuning Tips
This section contains some ideas for improving performance in a parallel execution

environment and includes the following topics:

■ Formula for Memory, Users, and Parallel Execution Server Processes

■ Setting Buffer Pool Size for Parallel Operations

■ Balancing the Formula

■ Parallel Execution Space Management Issues

■ Overriding the Default Degree of Parallelism

■ Rewriting SQL Statements

See Also: Oracle9i Real Application Clusters Concepts
 Using Parallel Execution 21-79

Miscellaneous Parallel Execution Tuning Tips
■ Creating and Populating Tables in Parallel

■ Creating Temporary Tablespaces for Parallel Sort and Hash Join

■ Executing Parallel SQL Statements

■ Using EXPLAIN PLAN to Show Parallel Operations Plans

■ Additional Considerations for Parallel DML

■ Creating Indexes in Parallel

■ Parallel DML Tips

■ Incremental Data Loading in Parallel

■ Using Hints with Cost-Based Optimization

Formula for Memory, Users, and Parallel Execution Server Processes
A key to the tuning of parallel operations is an understanding of the relationship

between memory requirements, the number of users (processes) a system can

support, and the maximum number of parallel execution servers. The goal is to

obtain the dramatic performance enhancements made possible by parallelizing

certain operations and by using hash joins rather than sort merge joins. You must

balance this performance goal with the need to support multiple users.

In considering the maximum number of processes a system can support, it is useful

to divide the processes into three classes, based on their memory requirements.

Table 21–5 on page 21-81 defines high, medium, and low memory processes.

Analyze the maximum number of processes that can fit in memory by using the

following formula:

Figure 21–7 Formula for Memory/Users/Server Relationship

sga_size
+ (# low_memory_processes * low_memory_required)
+ (# medium_memory_processes * medium_memory_required)
+ (# high_memory_processes * high_memory_required)

total memory required
21-80 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
The formula to calculate the maximum number of processes your system can

support (referred to here as MAX_PROCESSES) is:

Table 21–5 Memory Requirements for Three Classes of Process

Class Description

Low Memory
Processes:

100 KB to 1 MB

Low memory processes include table scans, index lookups, index nested loop joins;
single-row aggregates (such as sum or average with no GROUP BY clauses, or very few
groups), and sorts that return only a few rows; and direct loading.

This class of data warehousing process is similar to OLTP processes in the amount of
memory required. Process memory may be as low as a few hundred kilobytes of fixed
overhead. You could potentially support thousands of users performing this kind of
operation. You can take this requirement even lower and support even more users by
using the shared server.

Medium Memory
Processes:

1 MB to 10 MB

Medium Memory Processes include large sorts, sort merge join, GROUP BYor ORDER BY
operations returning a large number of rows, parallel insert operations that involve
index maintenance, and index creation.

These processes require the fixed overhead needed by a low memory process, plus one
or more sort areas, depending on the operation. For example, a typical sort merge join
would sort both its inputs—resulting in two sort areas. GROUP BY or ORDER BY
operations with many groups or rows also require sort areas.

Look at the EXPLAIN PLANoutput for the operation to identify the number and type of
joins, and the number and type of sorts. Optimizer statistics in the plan show the size
of the operations. When planning joins, remember that you have several choices. The
EXPLAIN PLAN statement is described in Oracle9i Database Performance Guide and
Reference.

High Memory
Processes:

10 MB to 100 MB

High memory processes include one or more hash joins, or a combination of one or
more hash joins with large sorts.

These processes require the fixed overhead needed by a low memory process, plus
hash area. The hash area size required might range from 8 MB to 32 MB, and you might
need two of them. If you are performing two or more serial hash joins, each process
uses 2 hash areas. In a parallel operation, each parallel execution server does at most 1
hash join at a time; therefore, you would need one hash area size per server.

In summary, the amount of hash join memory for an operation equals the DOP
multiplied by hash area size, multiplied by the lesser of either 2 or the number of hash
joins in the operation.

Note: The process memory requirements of parallel DML and

parallel DDL operations also depend upon the query portion of the

statement.
 Using Parallel Execution 21-81

Miscellaneous Parallel Execution Tuning Tips
Figure 21–8 Formula for Calculating the Maximum Number of Processes

In general, if the value for MAX_PROCESSES is much larger than the number of

users, consider using parallel operations. If MAX_PROCESSES is considerably less

than the number of users, consider other alternatives, such as those described in the

following section on "Balancing the Formula".

Setting Buffer Pool Size for Parallel Operations
With the exception of parallel update and delete, parallel operations do not

generally benefit from larger buffer pool sizes. Parallel update and delete benefit

from a larger buffer pool when they update indexes. This is because index updates

have a random access pattern, and I/O activity can be reduced if an entire index or

its interior nodes can be kept in the buffer pool. Other parallel operations can

benefit only if you increase the size of the buffer pool and thereby accommodate the

inner table or index for a nested loop join.

Balancing the Formula
Use the following technique to balance the formula provided in Figure 21–7.

You can permit the potential workload to exceed the limits recommended in the

formula. Total memory required, minus the SGA size, can be multiplied by a factor

of 1.2, to allow for 20 percent oversubscription. Thus, if you have 1 GB of memory,

you may be able to support 1.2 GB of demand: the other 20 percent could be

handled by the paging system.

You must, however, verify that a particular degree of oversubscription is viable on

your system. Do this by monitoring the paging rate and making sure you are not

spending more than a very small percent of the time waiting for the paging

subsystem. Your system might perform acceptably even if oversubscribed by 60

percent, if, on average, not all of the processes are performing hash joins

concurrently. Users might then try to access more than the available memory, so you

must continually monitor paging activity in such a situation. If paging dramatically

increases, consider other alternatives.

low_memory_processes
+ # medium_memory_processes
+ # high_memory_processes

max_processes
21-82 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
On average, no more than 5 percent of the time should be spent simply waiting in

the operating system on page faults. A wait time of more than 5 percent indicates

your paging subsystem is I/O-bound. Use your operating system monitor to check

wait time.

If wait time for paging devices exceeds 5 percent, you can reduce memory

requirements in one of the following ways:

■ Reduce the memory required for each class of process.

■ Reduce the number of processes in memory-intensive classes.

■ Add memory.

If the wait time indicates an I/O bottleneck in the paging subsystem, you could

resolve this by striping.

Parallel Execution Space Management Issues
This section describes space management issues that occur when using parallel

execution. These issues are:

■ ST Enqueue for Sorts and Temporary Data

■ External Fragmentation

■ Free Space

These problems become particularly important for parallel operations in an Oracle

Real Application Cluster environment. The more nodes that are involved, the more

critical tuning becomes.

If you can implement locally managed tablespaces, you can avoid these issues

altogether.

ST Enqueue for Sorts and Temporary Data
Every space management transaction in the database (such as creation of temporary

segments in PARALLEL CREATE TABLE, or parallel direct-path INSERTs of

non-partitioned tables) is controlled by a single space transaction enqueue. A high

transaction rate, for example, more than two or three transactions per minute, on ST

enqueues can result in poor scalability on Oracle Real Application Clusters with

many nodes, or a timeout waiting for space management resources. Use the

V$ROWCACHE and V$LIBRARYCACHE views to locate this type of contention.

See Also: Oracle9i Database Administrator’s Guide for more

information about locally managed tablespaces
 Using Parallel Execution 21-83

Miscellaneous Parallel Execution Tuning Tips
Try to minimize the number of space management transactions, in particular:

■ The number of sort space management transactions

■ The creation and removal of objects

■ Transactions caused by fragmentation in a tablespace

To optimize space management for sorts, use locally managed tablespaces for

temporary data. This is particularly beneficial on Oracle Real Application Clusters.

You can monitor this using V$SORT_SEGMENT.

External Fragmentation
External fragmentation is a concern for parallel load, direct-path INSERT, and

PARALLEL CREATE TABLE ... AS SELECT. Memory tends to become fragmented as

extents are allocated and data is inserted and deleted. This can result in a fair

amount of free space that is unusable because it consists of small, noncontiguous

chunks of memory.

To reduce external fragmentation on partitioned tables, set all extents to the same

size. Set the value for NEXT equal to the value for INITIAL , and set PERCENT_
INCREASE to 0. The system can handle this well with a few thousand extents per

object. Therefore, set MAXEXTENTS to, for example, 1,000 to 3,000. Never attempt to

use a value for MAXEXTENTS in excess of 10,000. For tables that are not partitioned,

the initial extent should be small. In general, the smaller the extent, the better

utilization of space. The trade-off is that your system will spend more time getting

new extents.

Free Space
Schema objects from an OLTP database are often duplicated in the data warehouse.

However, these objects will probably not be subject to the same mix of insert versus

update activity in the data warehouse as in the OLTP environment. The PCTFREE
storage clause can be reduced in the data warehouse environment if the data is

loaded and then very seldomly updated. The default value is 10, which reserves 10

percent of each block that is loaded for future updates. An OLTP environment may

use higher values, so care should be taken when importing schema DDL from OLTP

systems.

Overriding the Default Degree of Parallelism
The default DOP is appropriate for reducing response time while guaranteeing use

of CPU and I/O resources for any parallel operations.
21-84 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
If it is memory-bound, or if several concurrent parallel operations are running, you

might want to decrease the default DOP.

Oracle uses the default DOP for tables that have PARALLEL attributed to them in

the data dictionary or that have the PARALLEL hint specified. If a table does not

have parallelism attributed to it, or has NOPARALLEL (the default) attributed to it,

and parallelism is not being forced through ALTER SESSION FORCE PARALLEL,

then that table is never scanned in parallel. This override occurs regardless of the

default DOP indicated by the number of CPUs, instances, and devices storing that

table.

You can adjust the DOP by using the following guidelines:

■ Modify the default DOP by changing the value for the PARALLEL_THREADS_
PER_CPU parameter.

■ Adjust the DOP either by using ALTER TABLE, ALTER SESSION, or by using

hints.

■ To increase the number of concurrent parallel operations, reduce the DOP, or set

the parameter PARALLEL_ADAPTIVE_MULTI_USER to TRUE.

Rewriting SQL Statements
The most important issue for parallel execution is ensuring that all parts of the

query plan that process a substantial amount of data execute in parallel. Use

EXPLAIN PLAN to verify that all plan steps have an OTHER_TAG of PARALLEL_TO_
PARALLEL, PARALLEL_TO_SERIAL, PARALLEL_COMBINED_WITH_PARENT, or

PARALLEL_COMBINED_WITH_CHILD. Any other keyword (or null) indicates serial

execution and a possible bottleneck.

You can also use the utlxplp.sql script to present the EXPLAIN PLAN output

with all relevant parallel information.

You can increase the optimizer's ability to generate parallel plans converting

subqueries, especially correlated subqueries, into joins. Oracle can parallelize joins

more efficiently than subqueries. This also applies to updates.

See Also: Oracle9i Database Performance Guide and Reference for

more information on using EXPLAIN PLAN

See Also: "Updating the Table in Parallel" on page 21-98
 Using Parallel Execution 21-85

Miscellaneous Parallel Execution Tuning Tips
Creating and Populating Tables in Parallel
Oracle cannot return results to a user process in parallel. If a query returns a large

number of rows, execution of the query might indeed be faster. However, the user

process can only receive the rows serially. To optimize parallel execution

performance for queries that retrieve large result sets, use PARALLEL CREATE
TABLE ... AS SELECT or direct-path INSERT to store the result set in the database.

At a later time, users can view the result set serially.

When combined with the NOLOGGING option, the parallel version of CREATE
TABLE ... AS SELECT provides a very efficient intermediate table facility, for

example:

CREATE TABLE summary PARALLEL NOLOGGING
 AS SELECT dim_1, dim_2 ..., SUM (meas_1)
 FROM facts
 GROUP BY dim_1, dim_2;

These tables can also be incrementally loaded with parallel INSERT. You can take

advantage of intermediate tables using the following techniques:

■ Common subqueries can be computed once and referenced many times. This

can allow some queries against star schemas (in particular, queries without

selective WHERE-clause predicates) to be better parallelized. Note that star

queries with selective WHERE-clause predicates using the star-transformation

technique can be effectively parallelized automatically without any

modification to the SQL.

■ Decompose complex queries into simpler steps in order to provide

application-level checkpoint or restart. For example, a complex multitable join

on a database 1 terabyte in size could run for dozens of hours. A crash during

this query would mean starting over from the beginning. Using CREATE TABLE
... AS SELECTor PARALLEL INSERT AS SELECT, you can rewrite the query as a

sequence of simpler queries that run for a few hours each. If a system failure

occurs, the query can be restarted from the last completed step.

■ Implement manual parallel deletes efficiently by creating a new table that omits

the unwanted rows from the original table, and then dropping the original

Note: Performing the SELECT in parallel does not influence the

CREATE statement. If the CREATE is parallel, however, the

optimizer tries to make the SELECT run in parallel also.
21-86 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
table. Alternatively, you can use the convenient parallel delete feature, which

directly deletes rows from the original table.

■ Create summary tables for efficient multidimensional drill-down analysis. For

example, a summary table might store the sum of revenue grouped by month,

brand, region, and salesman.

■ Reorganize tables, eliminating chained rows, compressing free space, and so on,

by copying the old table to a new table. This is much faster than export/import

and easier than reloading.

Creating Temporary Tablespaces for Parallel Sort and Hash Join
For optimal space management performance, use dedicated temporary tablespaces.

As with the TStemp tablespace, first add a single datafile and later add the

remainder in parallel, as in this example:

CREATE TABLESPACE TStemp TEMPORARY DATAFILE '/dev/D31'
SIZE 4096MB REUSE
DEFAULT STORAGE (INITIAL 10MB NEXT 10MB PCTINCREASE 0);

Size of Temporary Extents
Temporary extents are all the same size because the server ignores the

PCTINCREASEand INITIAL settings and only uses the NEXTsetting for temporary

extents. This helps avoid fragmentation.

As a general rule, temporary extents should be smaller than permanent extents

because there are more demands for temporary space, and parallel processes or

other operations running concurrently must share the temporary tablespace.

Normally, temporary extents should be in the range of 1 MB to 10 MB. Once you

allocate an extent, it is available for the duration of an operation. If you allocate a

large extent but only need to use a small amount of space, the unused space in the

extent is tied up.

Note: Be sure to use the DBMS_STATS package on newly created

tables. Also consider creating indexes. To avoid I/O bottlenecks,

specify a tablespace with at least as many devices as CPUs. To

avoid fragmentation in allocating space, the number of files in a

tablespace should be a multiple of the number of CPUs. See

Chapter 4, "Hardware and I/O Considerations in Data

Warehouses", for more information about bottlenecks.
 Using Parallel Execution 21-87

Miscellaneous Parallel Execution Tuning Tips
At the same time, temporary extents should be large enough that processes do not

have to wait for space. Temporary tablespaces use less overhead than permanent

tablespaces when allocating and freeing a new extent. However, obtaining a new

temporary extent still requires the overhead of acquiring a latch and searching

through the SGA structures, as well as SGA space consumption for the sort extent

pool. Also, if extents are too small, SMON might take a long time dropping old sort

segments when new instances start up.

Operating System Striping of Temporary Tablespaces
Operating system striping is an alternative technique you can use with temporary

tablespaces. Media recovery, however, offers subtle challenges for large temporary

tablespaces. It does not make sense to mirror, use RAID, or back up a temporary

tablespace. If you lose a disk in an operating system striped temporary space, you

will probably have to drop and re-create the tablespace. This could take several

hours for the 120 GB example. With Oracle striping, simply remove the defective

disk from the tablespace. For example, if /dev/D50 fails, enter:

ALTER DATABASE DATAFILE '/dev/D50' RESIZE 1K;
ALTER DATABASE DATAFILE '/dev/D50' OFFLINE;

Because the dictionary sees the size as 1 KB, which is less than the extent size, the

corrupt file is not accessed. Eventually, you might wish to re-create the tablespace.

To make your temporary tablespace available for use, enter:

ALTER USER scott TEMPORARY TABLESPACE TStemp;

Executing Parallel SQL Statements
After analyzing your tables and indexes, you should see performance

improvements based on the DOP used.

As a general process, you should start with simple parallel operations and evaluate

their total I/O throughput with a SELECT COUNT(*) FROM fact s statement. Then,

evaluate total CPU power by adding a complex WHERE clause to the statement. An

I/O imbalance might suggest a better physical database layout. After you

understand how simple scans work, add aggregation, joins, and other operations

that reflect individual aspects of the overall workload. In particular, you should

look for bottlenecks.

See Also: For MPP systems, see your platform-specific

documentation regarding the advisability of disabling disk affinity

when using operating system striping
21-88 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
Besides query performance, you should also monitor parallel load, parallel index

creation, and parallel DML, and look for good utilization of I/O and CPU resources.

Using EXPLAIN PLAN to Show Parallel Operations Plans
Use the EXPLAIN PLAN statement to see the execution plans for parallel queries.

EXPLAIN PLAN output shows optimizer information in the COST, BYTES, and

CARDINALITY columns. You can also use the utlxplp.sql script to present the

EXPLAIN PLAN output with all relevant parallel information.

There are several ways to optimize the parallel execution of join statements. You can

alter system configuration, adjust parameters as discussed earlier in this chapter, or

use hints, such as the DISTRIBUTION hint.

The key points when using EXPLAIN PLAN are to:

■ Verify optimizer selectivity estimates. If the optimizer thinks that only one row

will be produced from a query, it tends to favor using a nested loop. This could

be an indication that the tables are not analyzed or that the optimizer has made

an incorrect estimate about the correlation of multiple predicates on the same

table. A hint may be required to force the optimizer to use another join method.

Consequently, if the plan says only one row is produced from any particular

stage and this is incorrect, consider hints or gather statistics.

■ Use hash join on low cardinality join keys. If a join key has few distinct values,

then a hash join may not be optimal. If the number of distinct values is less than

the DOP, then some parallel query servers may be unable to work on the

particular query.

■ Consider data skew. If a join key involves excessive data skew, a hash join may

require some parallel query servers to work more than others. Consider setting

PARALLEL_BROADCAST_ENBALED to TRUE or using a hint to cause a

broadcast.

Additional Considerations for Parallel DML
When you want to refresh your data warehouse database using parallel insert,

update, or delete on a data warehouse, there are additional issues to consider when

designing the physical database. These considerations do not affect parallel

execution operations. These issues are:

See Also: Oracle9i Database Performance Guide and Reference for

more information on using EXPLAIN PLAN
 Using Parallel Execution 21-89

Miscellaneous Parallel Execution Tuning Tips
■ PDML and Direct-Path Restrictions

■ Limitation on the Degree of Parallelism

■ Using Local and Global Striping

■ Increasing INITRANS and MAXTRANS

■ Limitation on Available Number of Transaction Free Lists for Segments in

Dictionary-Managed Tablespaces

■ Using Multiple Archivers

■ Database Writer Process (DBWn) Workload

■ [NO]LOGGING Clause

PDML and Direct-Path Restrictions
If a parallel restriction is violated, the operation is simply performed serially. If a

direct-path INSERT restriction is violated, then the APPEND hint is ignored and a

conventional insert is performed. No error message is returned.

Limitation on the Degree of Parallelism
If you are performing parallel UPDATE, MERGE, or DELETE operations, the DOP is

equal to or less than the number of partitions in the table.

Using Local and Global Striping
Parallel updates and deletes work only on partitioned tables. They can generate a

high number of random I/O requests during index maintenance.

For local index maintenance, local striping is most efficient in reducing I/O

contention because one server process only goes to its own set of disks and disk

controllers. Local striping also increases availability in the event of one disk failing.

For global index maintenance (partitioned or nonpartitioned), globally striping the

index across many disks and disk controllers is the best way to distribute the

number of I/Os.

Increasing INITRANS and MAXTRANS
If you have global indexes, a global index segment and global index blocks are

shared by server processes of the same parallel DML statement. Even if the

operations are not performed against the same row, the server processes can share

the same index blocks. Each server transaction needs one transaction entry in the

index block header before it can make changes to a block. Therefore, in the CREATE
21-90 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
INDEX or ALTER INDEX statements, you should set INITRANS , the initial number

of transactions allocated within each data block, to a large value, such as the

maximum DOP against this index. Leave MAXTRANS, the maximum number of

concurrent transactions that can update a data block, at its default value, which is

the maximum your system can support. This value should not exceed 255.

If you run a DOP of 10 against a table with a global index, all 10 server processes

might attempt to change the same global index block. For this reason, you must set

MAXTRANS to at least 10 so all server processes can make the change at the same

time. If MAXTRANS is not large enough, the parallel DML operation fails.

Limitation on Available Number of Transaction Free Lists for Segments in
Dictionary-Managed Tablespaces
Once a segment has been created, the number of process and transaction free lists is

fixed and cannot be altered. If you specify a large number of process free lists in the

segment header, you might find that this limits the number of transaction free lists

that are available. You can abate this limitation the next time you re-create the

segment header by decreasing the number of process free lists; this leaves more

room for transaction free lists in the segment header.

For UPDATE and DELETE operations, each server process can require its own

transaction free list. The parallel DML DOP is thus effectively limited by the

smallest number of transaction free lists available on any of the global indexes the

DML statement must maintain. For example, if you have two global indexes, one

with 50 transaction free lists and one with 30 transaction free lists, the DOP is

limited to 30.

The FREELISTS parameter of the STORAGE clause is used to set the number of

process free lists. By default, no process free lists are created.

The default number of transaction free lists depends on the block size. For example,

if the number of process free lists is not set explicitly, a 4 KB block has about 80

transaction free lists by default. The minimum number of transaction free lists is 25.

Using Multiple Archivers
Parallel DDL and parallel DML operations can generate a large amount of redo

logs. A single ARCH process to archive these redo logs might not be able to keep up.

To avoid this problem, you can spawn multiple archiver processes. This can be done

manually or by using a job queue.
 Using Parallel Execution 21-91

Miscellaneous Parallel Execution Tuning Tips
Database Writer Process (DBWn) Workload
Parallel DML operations dirty a large number of data, index, and undo blocks in the

buffer cache during a short period of time. For example, suppose you see a high

number of free_buffer_waits after querying the V$SYSTEM_EVENT view, as in

the following syntax:

SELECT TOTAL_WAITS FROM V$SYSTEM_EVENT WHERE EVENT = 'FREE BUFFER WAITS';

In this case, you should consider increasing the DBWn processes. If there are no

waits for free buffers, the query will not return any rows.

[NO]LOGGING Clause
The [NO]LOGGING clause applies to tables, partitions, tablespaces, and indexes.

Virtually no log is generated for certain operations (such as direct-path INSERT) if

the NOLOGGING clause is used. The NOLOGGING attribute is not specified at the

INSERT statement level but is instead specified when using the ALTER or CREATE
statement for a table, partition, index, or tablespace.

When a table or index has NOLOGGING set, neither parallel nor serial direct-path

INSERT operations generate undo or redo logs. Processes running with the

NOLOGGING option set run faster because no redo is generated. However, after a

NOLOGGING operation against a table, partition, or index, if a media failure occurs

before a backup is taken, then all tables, partitions, and indexes that have been

modified might be corrupted.

For backward compatibility, [UN]RECOVERABLE is still supported as an alternate

keyword with the CREATE TABLE statement. This alternate keyword might not be

supported, however, in future releases.

At the tablespace level, the logging clause specifies the default logging attribute for

all tables, indexes, and partitions created in the tablespace. When an existing

tablespace logging attribute is changed by the ALTER TABLESPACE statement, then

all tables, indexes, and partitions created after the ALTER statement will have the

new logging attribute; existing ones will not change their logging attributes. The

Note: Direct-path INSERT operations (except for dictionary

updates) never generate undo logs. The NOLOGGING attribute does

not affect undo, only redo. To be precise, NOLOGGING allows the

direct-path INSERT operation to generate a negligible amount of

redo (range-invalidation redo, as opposed to full image redo).
21-92 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
tablespace-level logging attribute can be overridden by the specifications at the

table, index, or partition level.

The default logging attribute is LOGGING. However, if you have put the database in

NOARCHIVELOG mode, by issuing ALTER DATABASE NOARCHIVELOG, then all

operations that can be done without logging will not generate logs, regardless of the

specified logging attribute.

Creating Indexes in Parallel
Multiple processes can work together simultaneously to create an index. By

dividing the work necessary to create an index among multiple server processes,

Oracle can create the index more quickly than if a single server process created the

index sequentially.

Parallel index creation works in much the same way as a table scan with an ORDER
BY clause. The table is randomly sampled and a set of index keys is found that

equally divides the index into the same number of pieces as the DOP. A first set of

query processes scans the table, extracts key-rowid pairs, and sends each pair to a

process in a second set of query processes based on key. Each process in the second

set sorts the keys and builds an index in the usual fashion. After all index pieces are

built, the parallel coordinator simply concatenates the pieces (which are ordered) to

form the final index.

Parallel local index creation uses a single server set. Each server process in the set is

assigned a table partition to scan and for which to build an index partition. Because

half as many server processes are used for a given DOP, parallel local index creation

can be run with a higher DOP.

You can optionally specify that no redo and undo logging should occur during

index creation. This can significantly improve performance but temporarily renders

the index unrecoverable. Recoverability is restored after the new index is backed

up. If your application can tolerate a window where recovery of the index requires

it to be re-created, then you should consider using the NOLOGGING clause.

The PARALLELclause in the CREATE INDEXstatement is the only way in which you

can specify the DOP for creating the index. If the DOP is not specified in the parallel

clause of CREATE INDEX, then the number of CPUs is used as the DOP. If there is no

PARALLEL clause, index creation is done serially.
 Using Parallel Execution 21-93

Miscellaneous Parallel Execution Tuning Tips
When you add or enable a UNIQUE or PRIMARY KEY constraint on a table, you

cannot automatically create the required index in parallel. Instead, manually create

an index on the desired columns, using the CREATE INDEX statement and an

appropriate PARALLEL clause, and then add or enable the constraint. Oracle then

uses the existing index when enabling or adding the constraint.

Multiple constraints on the same table can be enabled concurrently and in parallel if

all the constraints are already in the ENABLE NOVALIDATE state. In the following

example, the ALTER TABLE ... ENABLE CONSTRAINT statement performs the table

scan that checks the constraint in parallel:

CREATE TABLE a (a1 NUMBER CONSTRAINT ach CHECK (a1 > 0) ENABLE NOVALIDATE)
PARALLEL;
INSERT INTO a values (1);
COMMIT;
ALTER TABLE a ENABLE CONSTRAINT ach;

Parallel DML Tips
This section provides an overview of parallel DML functionality. The topics covered

include:

■ INSERT

■ Direct-path INSERT

■ Parallelizing INSERT, MERGE, UPDATE, and DELETE

Note: When creating an index in parallel, the STORAGE clause

refers to the storage of each of the subindexes created by the query

server processes. Therefore, an index created with an INITIAL of 5

MB and a DOP of 12 consumes at least 60 MB of storage during

index creation because each process starts with an extent of 5 MB.

When the query coordinator process combines the sorted

subindexes, some of the extents might be trimmed, and the

resulting index might be smaller than the requested 60 MB.

See Also: Oracle9i Database Concepts for more information on how

extents are allocated when using parallel execution

See Also: Oracle9i Database Concepts for a detailed discussion of

parallel DML and DOP
21-94 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
INSERT
Oracle INSERT functionality can be summarized as follows:

If parallel DML is enabled and there is a PARALLEL hint or PARALLEL attribute set

for the table in the data dictionary, then inserts are parallel and appended, unless a

restriction applies. If either the PARALLEL hint or PARALLEL attribute is missing,

the insert is performed serially.

Direct-path INSERT
Append mode is the default during a parallel insert: data is always inserted into a

new block which is allocated to the table. Therefore the APPEND hint is optional.

You should use append mode to increase the speed of INSERT operations, but not

when space utilization needs to be optimized. You can use NOAPPEND to override

append mode.

The APPEND hint applies to both serial and parallel insert: even serial inserts are

faster if you use this hint. APPEND, however, does require more space and locking

overhead.

You can use NOLOGGING with APPEND to make the process even faster. NOLOGGING
means that no redo log is generated for the operation. NOLOGGING is never the

default; use it when you wish to optimize performance. It should not normally be

used when recovery is needed for the table or partition. If recovery is needed, be

sure to take a backup immediately after the operation. Use the ALTER TABLE
[NO]LOGGING statement to set the appropriate value.

Parallelizing INSERT, MERGE, UPDATE, and DELETE
When the table or partition has the PARALLEL attribute in the data dictionary, that

attribute setting is used to determine parallelism of INSERT, UPDATE, and DELETE

Table 21–6 Summary of INSERT Features

Insert Type Parallel Serial NOLOGGING

Conventional No Yes No

Direct-path
INSERT
(Append)

Yes: requires:

■ ALTER SESSION ENABLE PARALLEL DML

■ Table PARALLEL attribute or PARALLEL hint

■ APPEND hint (optional)

Yes: requires:

■ APPEND hint

Yes: requires:

■ NOLOGGING
attribute set for
table or
partition
 Using Parallel Execution 21-95

Miscellaneous Parallel Execution Tuning Tips
statements as well as queries. An explicit PARALLEL hint for a table in a statement

overrides the effect of the PARALLEL attribute in the data dictionary.

You can use the NOPARALLEL hint to override a PARALLEL attribute for the table in

the data dictionary. In general, hints take precedence over attributes.

DML operations are considered for parallelization only if the session is in a

PARALLEL DML enabled mode. (Use ALTER SESSION ENABLE PARALLEL DML to

enter this mode.) The mode does not affect parallelization of queries or of the query

portions of a DML statement.

Parallelizing INSERT ... SELECT In the INSERT ... SELECT statement you can specify a

PARALLEL hint after the INSERT keyword, in addition to the hint after the SELECT
keyword. The PARALLEL hint after the INSERT keyword applies to the INSERT
operation only, and the PARALLEL hint after the SELECT keyword applies to the

SELECT operation only. Thus, parallelism of the INSERT and SELECT operations

are independent of each other. If one operation cannot be performed in parallel, it

has no effect on whether the other operation can be performed in parallel.

The ability to parallelize inserts causes a change in existing behavior if the user has

explicitly enabled the session for parallel DML and if the table in question has a

PARALLEL attribute set in the data dictionary entry. In that case, existing INSERT ...

SELECT statements that have the select operation parallelized can also have their

insert operation parallelized.

If you query multiple tables, you can specify multiple SELECT PARALLELhints and

multiple PARALLEL attributes.

Example 21–7 Parallelizing INSERT ... SELECT Example

Add the new employees who were hired after the acquisition of ACME.

INSERT /*+ PARALLEL(EMP) */ INTO EMP
SELECT /*+ PARALLEL(ACME_EMP) */ *
FROM ACME_EMP;

The APPEND keyword is not required in this example because it is implied by the

PARALLEL hint.

Parallelizing UPDATE and DELETE The PARALLEL hint (placed immediately after the

UPDATE or DELETE keyword) applies not only to the underlying scan operation,

See Also: Oracle9i Database Concepts for more information on

parallel INSERT, UPDATE and DELETE
21-96 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
but also to the UPDATEor DELETEoperation. Alternatively, you can specify UPDATE
or DELETE parallelism in the PARALLEL clause specified in the definition of the

table to be modified.

If you have explicitly enabled parallel DML for the session or transaction, UPDATE
or DELETE statements that have their query operation parallelized can also have

their UPDATEor DELETEoperation parallelized. Any subqueries or updatable views

in the statement can have their own separate PARALLEL hints or clauses, but these

parallel directives do not affect the decision to parallelize the update or delete. If

these operations cannot be performed in parallel, it has no effect on whether the

UPDATE or DELETE portion can be performed in parallel.

Tables must be partitioned in order to support parallel UPDATE and DELETE.

Example 21–8 Parallelizing UPDATE and DELETE: Example 1

Give a 10 percent salary raise to all clerks in Dallas.

UPDATE /*+ PARALLEL(EMP) */ EMP
SET SAL=SAL * 1.1
 WHERE JOB='CLERK' AND
 DEPTNO IN
 (SELECT DEPTNO FROM DEPT WHERE LOCATION='DALLAS');

The PARALLEL hint is applied to the UPDATE operation as well as to the scan.

Example 21–9 Parallelizing UPDATE and DELETE: Example 2

Remove all products in the grocery category because the grocery business line was

recently spun off into a separate company.

DELETE /*+ PARALLEL(PRODUCTS) */ FROM PRODUCTS
WHERE PRODUCT_CATEGORY ='GROCERY';

Again, the parallelism is applied to the scan as well as UPDATE operation on table

emp.

Incremental Data Loading in Parallel
Parallel DML combined with the updatable join views facility provides an efficient

solution for refreshing the tables of a data warehouse system. To refresh tables is to

update them with the differential data generated from the OLTP production system.

In the following example, assume that you want to refresh a table named

customer that has columns c_key , c_name, and c_addr . The differential data
 Using Parallel Execution 21-97

Miscellaneous Parallel Execution Tuning Tips
contains either new rows or rows that have been updated since the last refresh of

the data warehouse. In this example, the updated data is shipped from the

production system to the data warehouse system by means of ASCII files. These

files must be loaded into a temporary table, named diff_customer , before

starting the refresh process. You can use SQL*Loader with both the parallel and

direct options to efficiently perform this task.

Once diff_customer is loaded, the refresh process can be started. It can be

performed in two phases or with a newer technique:

■ Updating the Table in Parallel

■ Inserting the New Rows into the Table in Parallel

■ Merging in Parallel

Updating the Table in Parallel
A straightforward SQL implementation of the update uses subqueries:

UPDATE customer
SET(c_name, c_addr) =
 (SELECT c_name, c_addr
 FROM diff_customer
 WHERE diff_customer.c_key = customer.c_key)
 WHERE c_key IN(SELECT c_key FROM diff_customer);

Unfortunately, the two subqueries in this statement affect performance.

An alternative is to rewrite this query using updatable join views. To do this, you

must first add a primary key constraint to the diff_customer table to ensure that

the modified columns map to a key-preserved table:

CREATE UNIQUE INDEX diff_pkey_ind ON diff_customer(c_key)
 PARALLEL NOLOGGING;
ALTER TABLE diff_customer ADD PRIMARY KEY (c_key);

You can then update the customer table with the following SQL statement:

UPDATE /*+ PARALLEL(cust_joinview) */
(SELECT /*+ PARALLEL(customer) PARALLEL(diff_customer) */
CUSTOMER.c_name as c_name
CUSTOMER.c_addr as c_addr,
diff_customer.c_name as c_newname, diff_customer.c_addr as c_newaddr
 WHERE customer.c_key = diff_customer.c_key) cust_joinview
 SET c_name = c_newname, c_addr = c_newaddr;
21-98 Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
The base scans feeding the join view cust_joinview are done in parallel. You can

then parallelize the update to further improve performance, but only if the

customer table is partitioned.

Inserting the New Rows into the Table in Parallel
The last phase of the refresh process consists of inserting the new rows from the

diff_customer temporary table to the customer table. Unlike the update case,

you cannot avoid having a subquery in the INSERT statement:

INSERT /*+PARALLEL(customer)*/ INTO customer
SELECT * FROM diff_customer
WHERE diff_customer.c_key NOT IN (SELECT /*+ HASH_AJ */ KEY FROM customer);

However, youcan guarantee that the subquery is transformed into an anti-hash join

by using the HASH_AJ hint. Doing so enables you to use parallel INSERT to execute

the preceding statement efficiently. Parallel INSERT is applicable even if the table is

not partitioned.

Merging in Parallel
In Oracle9i, you combine the previous updates and inserts into one statement,

commonly known as an upsert or merge. The following statement achieves the

same result as all of the statements in "Updating the Table in Parallel" on page 21-98

and "Inserting the New Rows into the Table in Parallel" on page 21-99:

MERGE INTO customer USING diff_customer
ON (diff_customer.c_key = customer.c_key)
WHEN MATCHED THEN
 UPDATE SET (c_name, c_addr) = (SELECT c_name, c_addr
 FROM diff_customer
 WHERE diff_customer.c_key = customer.c_key)
WHEN NOT MATCHED THEN
 INSERT VALUES (diff_customer.c_key,diff_customer.c_data);

See Also:

■ "Rewriting SQL Statements" on page 21-85

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about key-preserved tables
 Using Parallel Execution 21-99

Miscellaneous Parallel Execution Tuning Tips
Using Hints with Cost-Based Optimization
Cost-based optimization is a sophisticated approach to finding the best execution

plan for SQL statements. Oracle automatically uses cost-based optimization with

parallel execution.

Use discretion in employing hints. If used, hints should come as a final step in

tuning and only when they demonstrate a necessary and significant performance

advantage. In such cases, begin with the execution plan recommended by

cost-based optimization, and go on to test the effect of hints only after you have

quantified your performance expectations. Remember that hints are powerful. If

you use them and the underlying data changes, you might need to change the hints.

Otherwise, the effectiveness of your execution plans might deteriorate.

Always use cost-based optimization unless you have an existing application that

has been hand-tuned for rule-based optimization. If you must use rule-based

optimization, rewriting a SQL statement can greatly improve application

performance.

Note: You must use the DBMS_STATS package to gather current

statistics for cost-based optimization. In particular, tables used in

parallel should always be analyzed. Always keep your statistics

current by using the DBMS_STATS package.

Note: If any table in a query has a DOP greater than one

(including the default DOP), Oracle uses the cost-based optimizer

for that query, even if OPTIMIZER_MODEis set to RULEor if there is

a RULE hint in the query itself.
21-100 Data Warehousing Guide

 Query
22

Query Rewrite

This chapter discusses how Oracle rewrites queries. It contains:

■ Overview of Query Rewrite

■ Enabling Query Rewrite

■ How Oracle Rewrites Queries

■ Special Cases for Query Rewrite

■ Did Query Rewrite Occur?

■ Design Considerations for Improving Query Rewrite Capabilities
 Rewrite 22-1

Overview of Query Rewrite
Overview of Query Rewrite
One of the major benefits of creating and maintaining materialized views is the

ability to take advantage of query rewrite, which transforms a SQL statement

expressed in terms of tables or views into a statement accessing one or more

materialized views that are defined on the detail tables. The transformation is

transparent to the end user or application, requiring no intervention and no

reference to the materialized view in the SQL statement. Because query rewrite is

transparent, materialized views can be added or dropped just like indexes without

invalidating the SQL in the application code.

Before the query is rewritten, it is subjected to several checks to determine whether

it is a candidate for query rewrite. If the query fails any of the checks, then the

query is applied to the detail tables rather than the materialized view. This can be

costly in terms of response time and processing power.

The Oracle optimizer uses two different methods to recognize when to rewrite a

query in terms of one or more materialized views. The first method is based on

matching the SQL text of the query with the SQL text of the materialized view

definition. If the first method fails, the optimizer uses the more general method in

which it compares joins, selections, data columns, grouping columns, and aggregate

functions between the query and a materialized view.

Query rewrite operates on queries and subqueries in the following types of SQL

statements:

■ SELECT

■ CREATE TABLE … AS SELECT

■ INSERT INTO … SELECT

It also operates on subqueries in the set operators UNION, UNION ALL, INTERSECT,
and MINUS, and subqueries in DML statements such as INSERT, DELETE, and

UPDATE.

Several factors affect whether or not a given query is rewritten to use one or more

materialized views:

■ Enabling or disabling query rewrite

– by the CREATE or ALTER statement for individual materialized views

– by the initialization parameter QUERY_REWRITE_ENABLED

– by the REWRITE and NOREWRITE hints in SQL statements
22-2 Data Warehousing Guide

Overview of Query Rewrite
■ Rewrite integrity levels

■ Dimensions and constraints

There is also an explain rewrite procedure which will advise whether query rewrite

is possible on a query and if so, which materialized views will be used.

Cost-Based Rewrite
Query rewrite is available with cost-based optimization. Oracle optimizes the input

query with and without rewrite and selects the least costly alternative. The

optimizer rewrites a query by rewriting one or more query blocks, one at a time.

If the rewrite logic has a choice between multiple materialized views to rewrite a

query block, it will select one to optimize the ratio of the sum of the cardinality of

the tables in the rewritten query block to that in the original query block. Therefore,

the materialized view selected would be the one which can result in reading in the

least amount of data.

After a materialized view has been picked for a rewrite, the optimizer performs the

rewrite, and then tests whether the rewritten query can be rewritten further with

another materialized view. This process continues until no further rewrites are

possible. Then the rewritten query is optimized and the original query is optimized.

The optimizer compares these two optimizations and selects the least costly

alternative.

Since optimization is based on cost, it is important to collect statistics both on tables

involved in the query and on the tables representing materialized views. Statistics

are fundamental measures, such as the number of rows in a table, that are used to

calculate the cost of a rewritten query. They are created by using the DBMS_STATS
package.

Queries that contain in-line or named views are also candidates for query rewrite.

When a query contains a named view, the view name is used to do the matching

between a materialized view and the query. When a query contains an inline view,

the inline view can be merged into the query before matching between a

materialized view and the query occurs.

In addition, if the inline view's text definition exactly matches with that of an inline

view present in any eligible materialized view, general rewrite may be possible.

This is because, whenever a materialized view contains exactly identical inline view

text to the one present in a query, query rewrite treats such an inline view like a

named view or a table.

The following presents a graphical view of the cost-based approach.
 Query Rewrite 22-3

Overview of Query Rewrite
Figure 22–1 The Query Rewrite Process

When Does Oracle Rewrite a Query?
A query is rewritten only when a certain number of conditions are met:

■ Query rewrite must be enabled for the session.

■ A materialized view must be enabled for query rewrite.

■ The rewrite integrity level should allow the use of the materialized view. For

example, if a materialized view is not fresh and query rewrite integrity is set to

ENFORCED, then the materialized view will not be used.

Rewrite

Generate
plan

User's SQL

Generate
plan

Choose
(based on cost)

Execute

Oracle9i
22-4 Data Warehousing Guide

Overview of Query Rewrite
■ Either all or part of the results requested by the query must be obtainable from

the precomputed result stored in the materialized view.

To determine this, the optimizer may depend on some of the data relationships

declared by the user using constraints and dimensions. Such data relationships

include hierarchies, referential integrity, and uniqueness of key data, and so on.

Sample Schema and Materialized Views
The following sections use an example schema and a few materialized views to

illustrate how the optimizer uses data relationships to rewrite queries. Oracle's

Sales History demo schema consists of these tables:

CUSTOMERS (cust_id, cust_last_name, cust_city,
 cust_state_province, cust_country, country_id)
PRODUCTS (prod_id, prod_name, prod_category, prod_subcategory)
TIMES (time_id, week_ending_day, time_week, time_month, calendar_month_desc)
SALES (amount, channel_id, promo_id, time_id, cust_id)

The query rewrite examples in this chapter mainly refer to the following

materialized views. Note that those materialized views does not necessarily

represent the most efficient implementation for the Sales History business

example rather than the base for demonstrating Oracle's rewrite capabilities.

Further examples demonstrating specific functionality can be found in the specific

context.

Materialized views containing joins and aggregates:

CREATE MATERIALIZED VIEW sum_sales_pscat_week_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_subcategory, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_subcategory, t.week_ending_day;

CREATE MATERIALIZED VIEW sum_sales_prod_week_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_id, t.week_ending_day, s.cust_id,

See Also: Appendix B, "Sample Data Warehousing Schema", for

details regarding the Sales History demo schema
 Query Rewrite 22-5

Overview of Query Rewrite
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

CREATE MATERIALIZED VIEW sum_sales_pscat_month_city_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

Materialized views containing joins only:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW join_sales_time_product_oj_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id(+);

You must collect statistics on the materialized views so that the optimizer can

determine whether to rewrite the queries. You can do this either on a per object base

or for all newly created objects without statistics.

On a per object base, shown for JOIN_SALES_TIME_PRODUCT_MV:
22-6 Data Warehousing Guide

Enabling Query Rewrite
EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('SH','JOIN_SALES_TIME_PRODUCT_MV',
 estimate_percent=>20,block_sample=>TRUE,cascade=>TRUE);

For all newly created objects without statistics, on schema level:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS('SH', options => 'GATHER EMPTY',
 estimate_percent=>20, block_sample=>TRUE, cascade=>TRUE);

Enabling Query Rewrite
Several steps must be followed to enable query rewrite:

1. Individual materialized views must have the ENABLE QUERY REWRITE clause.

2. The initialization parameter QUERY_REWRITE_ENABLED must be set to TRUE.

3. Cost-based optimization must be used either by setting the initialization

parameter OPTIMIZER_MODE to ALL_ROWS or FIRST_ROWS, or by analyzing

the tables and setting OPTIMIZER_MODE to CHOOSE.

4. The initialization parameter OPTIMIZER_FEATURES_ENABLE should be left

unset for query rewrite to be possible. However, if it is given a value, then it

must be set to at least 8.1.6 or query rewrite and explain rewrite will not be

possible.

If step 1 has not been completed, a materialized view will never be eligible for

query rewrite. ENABLE QUERY REWRITE can be specified either when the

materialized view is created, as illustrated below, or with the ALTER
MATERIALIZED VIEW statement.

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id;

You can use the initialization parameter QUERY_REWRITE_ENABLED to disable

query rewrite for all materialized views, or to enable it again for all materialized

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

further information about using the DBMS_STATS package to

maintain statistics
 Query Rewrite 22-7

Enabling Query Rewrite
views that are individually enabled. However, the QUERY_REWRITE_ENABLED
parameter cannot enable query rewrite for materialized views that have disabled it

with the CREATE or ALTER statement.

The NOREWRITE hint disables query rewrite in a SQL statement, overriding the

QUERY_REWRITE_ENABLED parameter, and the REWRITE hint (when used with

mv_name) restricts the eligible materialized views to those named in the hint.

Initialization Parameters for Query Rewrite
Query rewrite requires the following initialization parameter settings:

■ OPTIMIZER_MODE = ALL_ROWS, FIRST_ROWS, or CHOOSE

■ QUERY_REWRITE_ENABLED = TRUE

■ COMPATIBLE = 8.1.0 (or greater)

The QUERY_REWRITE_INTEGRITY parameter is optional, but must be set to

STALE_TOLERATED, TRUSTED, or ENFORCED if it is specified (see "Accuracy of

Query Rewrite" on page 22-10). It defaults to ENFORCED if it is undefined.

Because the integrity level is set by default to ENFORCED, all constraints must be

validated. Therefore, if you use ENABLE NOVALIDATE, certain types of query

rewrite might not work. To enable query rewrite in this environment, you should

set your integrity level to a lower level of granularity such as TRUSTED or STALE_
TOLERATED.

With OPTIMIZER_MODE set to CHOOSE, a query will not be rewritten unless at least

one table referenced by it has been analyzed. This is because the rule-based

optimizer is used when OPTIMIZER_MODE is set to CHOOSE and none of the tables

referenced in a query have been analyzed.

Controlling Query Rewrite
A materialized view is only eligible for query rewrite if the ENABLE QUERY
REWRITE clause has been specified, either initially when the materialized view was

first created or subsequently with an ALTER MATERIALIZED VIEW statement.

The initialization parameters described above can be set using the ALTER SYSTEM
SETstatement. For a given user's session, ALTER SESSIONcan be used to disable or

enable query rewrite for that session only. For example:

See Also: "View Constraints" on page 22-14 for details regarding

view constraints and query rewrite
22-8 Data Warehousing Guide

Enabling Query Rewrite
ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

You can set the level of query rewrite for a session, thus allowing different users to

work at different integrity levels. The possible statements are:

ALTER SESSION SET QUERY_REWRITE_INTEGRITY = STALE_TOLERATED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = TRUSTED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = ENFORCED;

Rewrite Hints
Hints can be included in SQL statements to control whether query rewrite occurs.

Using the NOREWRITE hint in a query prevents the optimizer from rewriting it.

The REWRITE hint with no argument in a query forces the optimizer to use a

materialized view (if any) to rewrite it regardless of the cost.

The REWRITE(mv1,mv2,...) hint with arguments forces rewrite to select the

most suitable materialized view from the list of names specified.

To prevent a rewrite, you can use the following statement:

SELECT /*+ NOREWRITE */ p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

To force a rewrite using sum_sales_pscat_week_mv , you can use the following

statement:

SELECT /*+ REWRITE (sum_sales_pscat_week_mv) */ p.prod_subcategory,
SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Note that the scope of a rewrite hint is a query block. If a SQL statement consists of

several query blocks (SELECT clauses), you might need to specify a rewrite hint on

each query block to control the rewrite for the entire statement.

Privileges for Enabling Query Rewrite
Use of a materialized view based not on privileges the user has on that materialized

view, but on privileges the user has on detail tables or views in the query.
 Query Rewrite 22-9

Enabling Query Rewrite
The system privilege GRANT REWRITE lets you enable materialized views in your

own schema for query rewrite only if all tables directly referenced by the

materialized view are in that schema. The GRANT GLOBAL REWRITE privilege

allows you to enable materialized views for query rewrite even if the materialized

view references objects in other schemas.

The privileges for using materialized views for query rewrite are similar to those for

definer-rights procedures.

Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the

initialization parameter QUERY_REWRITE_INTEGRITY, which can either be set in

your parameter file or controlled using an ALTER SYSTEM or ALTER SESSION
statement. The three values it can take are:

■ ENFORCED

This is the default mode. The optimizer will only use materialized views that it

knows contain fresh data and only use those relationships that are based on

ENABLED VALIDATED primary/unique/foreign key constraints.

■ TRUSTED

In TRUSTED mode, the optimizer trusts that the data in the materialized views

is fresh and the relationships declared in dimensions and RELY constraints are

correct. In this mode, the optimizer will also use prebuilt materialized views or

materialized views based on views, and it will use relationships that are not

enforced as well as those that are enforced. In this mode, the optimizer also

'trusts' declared but not ENABLED VALIDATED primary/unique key constraints

and data relationships specified using dimensions.

■ STALE_TOLERATED

In STALE_TOLERATED mode, the optimizer uses materialized views that are

valid but contain stale data as well as those that contain fresh data. This mode

offers the maximum rewrite capability but creates the risk of generating

inaccurate results.

If rewrite integrity is set to the safest level, ENFORCED, the optimizer uses only

enforced primary key constraints and referential integrity constraints to ensure that

the results of the query are the same as the results when accessing the detail tables

directly. If the rewrite integrity is set to levels other than ENFORCED, there are

See Also: PL/SQL User’s Guide and Reference for further

information
22-10 Data Warehousing Guide

How Oracle Rewrites Queries
several situations where the output with rewrite can be different from that without

it.

1. A materialized view can be out of synchronization with the master copy of the

data. This generally happens because the materialized view refresh procedure is

pending following bulk load or DML operations to one or more detail tables of

a materialized view. At some data warehouse sites, this situation is desirable

because it is not uncommon for some materialized views to be refreshed at

certain time intervals.

2. The relationships implied by the dimension objects are invalid. For example,

values at a certain level in a hierarchy do not roll up to exactly one parent value.

3. The values stored in a prebuilt materialized view table might be incorrect.

4. Partition operations such as DROP and MOVE PARTITION on the detail table

could affect the results of the materialized view.

5. A wrong answer can occur because of bad data relationships defined by

unenforced table or view constraints.

How Oracle Rewrites Queries
The optimizer uses a number of different methods to rewrite a query. The first, most

important step is to determine if all or part of the results requested by the query can

be obtained from the precomputed results stored in a materialized view.

The simplest case occurs when the result stored in a materialized view exactly

matches what is requested by a query. The Oracle optimizer makes this type of

determination by comparing the text of the query with the text of the materialized

view definition. This method is most straightforward but the number of queries

eligible for this type of query rewrite will be minimal.

When the text comparison test fails, the Oracle optimizer performs a series of

generalized checks based on the joins, selections, grouping, aggregates, and column

data fetched. This is accomplished by individually comparing various clauses

(SELECT, FROM, WHERE, HAVING, or GROUP BY) of a query with those of a

materialized view.
 Query Rewrite 22-11

How Oracle Rewrites Queries
Text Match Rewrite Methods
The optimizer uses two methods:

■ Full Text Match

■ Partial Text Match

In full text match, the entire text of a query is compared against the entire text of a

materialized view definition (that is, the entire SELECT expression), ignoring the

white space during text comparison. Given the following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query matches sum_sales_pscat_month_city_mv (white space excluded)

and is rewritten as:

SELECT prod_subcategory, calendar_month_desc, cust_city,
 sum_amount_sold, count_amount_sold
FROM sum_sales_pscat_month_city_mv;

When full text match fails, the optimizer then attempts a partial text match. In this

method, the text starting from the FROM clause of a query is compared against the

text starting with the FROM clause of a materialized view definition. Therefore, this

query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 AVG(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

is rewritten as:

SELECT prod_subcategory, calendar_month_desc, cust_city,
 sum_amount_sold/count_amount_sold
FROM sum_sales_pscat_month_city_mv;
22-12 Data Warehousing Guide

How Oracle Rewrites Queries
Note that, under the partial text match rewrite method, the average of sales

aggregate required by the query is computed using the sum of sales and count of

sales aggregates stored in the materialized view.

When neither text match succeeds, the optimizer uses a general query rewrite

method.

Also note that text comparison is case sensitive, so keywords like FROM must be in

the same case.

General Query Rewrite Methods
Oracle employs a number of checks to determine if a query can be rewritten to use a

materialized view. These checks are:

■ Selection Compatibility

■ Join Compatibility

■ Data Sufficiency

■ Grouping Compatibility

■ Aggregate Computability

Table 22–1 illustrates how Oracle makes these five checks depending on the type of

materialized view. Note that, depending on the composition of the materialized

view, some or all of the checks may be made.

To perform these checks, the optimizer uses data relationships on which it can

depend. For example, primary key and foreign key relationships tell the optimizer

that each row in the foreign key table joins with at most one row in the primary key

table. Furthermore, if there is a NOT NULL constraint on the foreign key, it indicates

Table 22–1 Materialized View Types and General Query Rewrite Methods

MV with
Joins Only

MV with Joins and
Aggregates

MV with Aggregates
on a Single Table

Selection Compatibility X X X

Join Compatibility X X -

Data Sufficiency X X X

Grouping Compatibility - X X

Aggregate Computability - X X
 Query Rewrite 22-13

How Oracle Rewrites Queries
that each row in the foreign key table must join to exactly one row in the primary

key table.

Data relationships such as these are very important for query rewrite because they

tell what type of result is produced by joins, grouping, or aggregation of data.

Therefore, to maximize the rewritability of a large set of queries when such data

relationships exist in a database, they should be declared by the user.

When are Constraints and Dimensions Needed?
To clarify when dimensions and constraints are required for the different types of

query rewrite, refer to Table 22–2.

View Constraints
Data warehouse applications recognize multi-dimensional cubes in the database by

identifying integrity constraints in the relational schema. Integrity constraints

represent primary and foreign key relationships between fact and dimension tables.

By querying the data dictionary, applications can recognize integrity constraints

and hence the cubes in the database. However, this does not work in an

environment where DBAs, for schema complexity or security reasons, define views

on fact and dimension tables. In such environments, applications cannot identify

the cubes properly. By allowing constraint definitions between views, you can

propagate base table constraints to the views, thereby allowing applications to

recognize cubes even in a restricted environment.

View constraint definitions are declarative in nature, but operations on views are

subject to the integrity constraints defined on the underlying base tables, and

constraints on views can be enforced through constraints on base tables. Defining

constraints on base tables is necessary, not only for data correctness and cleanliness,

but also for materialized view query rewrite purposes using the original base

objects.

Table 22–2 Dimension and Constraint Requirements for Query Rewrite

Rewrite Checks Dimensions
Primary Key/Foreign Key/Not
Null Constraints

Matching SQL Text Not Required Not Required

Join Compatibility Not Required Required

Data Sufficiency Required OR Required

Grouping Compatibility Required Required

Aggregate Computability Not Required Not Required
22-14 Data Warehousing Guide

How Oracle Rewrites Queries
Materialized view rewrite extensively uses constraints for query rewrite. They are

used for determining lossless joins, which, in turn, determine if joins in the

materialized view are compatible with joins in the query and thus if rewrite is

possible.

DISABLE NOVALIDATE is the only valid state for a view constraint. However, you

can choose RELY or NORELY as the view constraint state to enable more

sophisticated query rewrites. For example, a view constraint in the RELY state

allows query rewrite to occur when the query integrity level is set to TRUSTED.
Table 22–3 illustrates when view constraints are used for determining lossless joins.

Note that view constraints cannot be used for query rewrite integrity level

TRUSTED. This level enforces the highest degree of constraint enforcement ENABLE
VALIDATE.

Example 22–1 View Constraints Example

To demonstrate the rewrite capabilities on views, you have to extend the Sales
History schema as follows:

CREATE VIEW time_view AS
SELECT time_id, TO_NUMBER(TO_CHAR(time_id, 'ddd')) AS day_in_year FROM times;

You can now establish a foreign-primary key relationship (in RELY ON) mode

between the view and the fact table, and thus rewrite will take place as described in

Table 22–3, by adding the following constraints. Rewrite will then work for example

in TRUSTED mode.

ALTER VIEW time_view ADD (CONSTRAINT time_view_pk
 PRIMARY KEY (time_id) DISABLE NOVALIDATE);
ALTER VIEW time_view MODIFY CONSTRAINT time_view_pk RELY;
ALTER TABLE sales ADD (CONSTRAINT time_view_fk FOREIGN key (time_id)
 REFERENCES time_view(time_id) DISABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_view_fk RELY;

Table 22–3 View Constraints and Rewrite Integrity Modes

Constraint States RELY NORELY

ENFORCED No No

TRUSTED Yes No

STALE_TOLERATED Yes No
 Query Rewrite 22-15

How Oracle Rewrites Queries
Consider the following materialized view definition:

CREATE MATERIALIZED VIEW sales_pcat_cal_day_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_category, t.day_in_year,
 SUM(s.amount_sold) as sum_amount_sold
FROM time_view t, sales s, products p
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
GROUP BY p.prod_category, t.day_in_year;

The following query, omitting the dimension table products , will also be rewritten

without the primary key/foreign key relationships, because the suppressed join

between sales and products is known to be lossless.

SELECT t.day_in_year,
 SUM(s.amount_sold) AS sum_amount_sold
FROM time_view t, sales s
WHERE t.time_id = s.time_id
GROUP BY t.day_in_year;

However, if the materialized view sales_pcat_cal_day_mv above were defined

only in terms of the view time_view , then you could not rewrite the following

query, suppressing then join between sales and time_view , because there is no

basis for losslessness of the delta materialized view join. With the additional

constraints as shown above, this query will also rewrite.

SELECT p.prod_category,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p
WHERE p.prod_id = s.prod_id
GROUP BY p.prod_category;

To revert the changes you have made to the sales history schema, apply the

following SQL commands:

ALTER TABLE sales DROP CONSTRAINT time_view_fk;
DROP VIEW time_view;

View Constraints Restrictions If the referential constraint definition involves a view,

that is, either the foreign key or the referenced key resides in a view, the constraint

can only be in DISABLE NOVALIDATE mode.

A RELY constraint on a view is allowed only if the referenced UNIQUE or PRIMARY
KEY constraint in DISABLE NOVALIDATE mode is also a RELY constraint.
22-16 Data Warehousing Guide

How Oracle Rewrites Queries
The specification of ON DELETE actions associated with a referential Integrity

constraint, is not allowed (for example, DELETE cascade). However, DELETE,
UPDATE, and INSERT operations are allowed on views and their base tables as view

constraints are in DISABLE NOVALIDATE mode.

Expression Matching
An expression that appears in a query can be replaced with a simple column in a

materialized view provided the materialized view column represents a

precomputed expression that matches with the expression in the query. If a query

can be rewritten to use a materialized view, it will be faster. This is because

materialized views contain precomputed calculations and do not need to perform

expression computation.

The expression matching is done by first converting the expressions into canonical

forms and then comparing them for equality. Therefore, two different expressions

will be matched as long as they are equivalent to each other. Further, if the entire

expression in a query fails to match with an expression in a materialized view, then

subexpressions of it are tried to find a match. The subexpressions are tried in a

top-down order to get maximal expression matching.

Consider a query that asks for sum of sales by age brackets (1-10, 11-20, 21-30, and

so on).

CREATE MATERIALIZED VIEW sales_by_age_bracket_mv
ENABLE QUERY REWRITE
AS
SELECT TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999) AS age_bracket,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c
WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);

The following query rewrites, using expression matching:

SELECT TO_CHAR(((2000-c.cust_year_of_birth)/10)-0.5,999),
 SUM(s.amount_sold)
FROM sales s, customers c
WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);
 Query Rewrite 22-17

How Oracle Rewrites Queries
The above query is rewritten in terms of sum_sales_mv based on the matching of

the canonical forms of the age bracket expressions (that is, 2000 - c.cust_year_
of_birth)/10-0.5), as follows.

SELECT age_bracket, sum_amount_sold
FROM sales_by_age_bracket_mv;

Date Folding
Date folding rewrite is a specific form of expression matching rewrite. In this type

of rewrite, a date range in a query is folded into an equivalent date range

representing higher date granules. The resulting expressions representing higher

date granules in the folded date range are matched with equivalent expressions in a

materialized view. The folding of date range into higher date granules such as

months, quarters, or years is done when the underlying datatype of the column is

an Oracle DATE. The expression matching is done based on the use of canonical

forms for the expressions.

DATE is a built-in datatype which represents ordered time units such as seconds,

days, and months, and incorporates a time hierarchy (second -> minute -> hour ->

day -> month -> quarter -> year). This hard-coded knowledge about DATE is used

in folding date ranges from lower-date granules to higher-date granules.

Specifically, folding a date value to the beginning of a month, quarter, year, or to the

end of a month, quarter, year is supported. For example, the date value

1-jan-1999 can be folded into the beginning of either year 1999 or quarter

1999-1 or month 1999-01 . And, the date value 30-sep-1999 can be folded into

the end of either quarter 1999-03 or month 1999-09 .

Because date values are ordered, any range predicate specified on date columns can

be folded from lower level granules into higher level granules provided the date

range represents an integral number of higher level granules. For example, the

range predicate date_col BETWEEN '1-jan-1999' AND '30-jun-1999' can

be folded into either a month range or a quarter range using the TO_CHAR function,

which extracts specific date components from a date value.

The advantage of aggregating data by folded date values is the compression of data

achieved. Without date folding, the data is aggregated at the lowest granularity

level, resulting in increased disk space for storage and increased I/O to scan the

materialized view.
22-18 Data Warehousing Guide

How Oracle Rewrites Queries
Consider a query that asks for the sum of sales by product types for the years 1991,

1992, and 1993.

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
AND s.time_id >= TO_DATE('01-jan-1998', 'dd-mon-yyyy')
AND s.time_id <= TO_DATE('31-dec-1998', 'dd-mon-yyyy')
GROUP BY p.prod_category;

CREATE MATERIALIZED VIEW sum_sales_pcat_monthly_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_category, TO_CHAR(s.time_id,'YYYY-MM') AS month,
 SUM(s.amount) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_category, TO_CHAR(s.time_id, 'YYYY-MM');

SELECT p.prod_category, SUM(s.amount)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
AND TO_CHAR(s.time_id, 'YYYY-MM')
-- BETWEEN TO_CHAR('01-jan-1998','YYYY-MM') AND TO_CHAR('31-dec-1998','YYYY-MM')
BETWEEN '01-jan-1998' AND '31-dec-1998'
GROUP BY p.prod_category;

SELECT mv.prod_category, mv.sum_amount
FROM sum_sales_pcat_monthly_mv mv
WHERE month
-- BETWEEN TO_CHAR('1-jan-1998','YYYY-MM') AND TO_CHAR('31-dec-1998','YYYY-MM')
BETWEEN '01-jan-1998' AND '31-dec-1998';

The range specified in the query represents an integral number of years, quarters, or

months. Assume that there is a materialized view mv3 that contains

pre-summarized sales by prod_type and is defined as follows:

CREATE MATERIALIZED VIEW mv3
 ENABLE QUERY REWRITE
AS
SELECT prod_type, TO_CHAR(sale_date,'yyyy-mm') AS month, SUM(sales) AS sum_sales
FROM fact, product
WHERE fact.prod_id = product.prod_id
GROUP BY prod_type, TO_CHAR(sale_date, 'yyyy-mm');
 Query Rewrite 22-19

How Oracle Rewrites Queries
The query can be rewritten by first folding the date range into the month range and

then matching the expressions representing the months with the month expression

in mv3. This rewrite is shown below in two steps (first folding the date range

followed by the actual rewrite).

SELECT prod_type, SUM(sales) AS sum_sales
FROM fact, product
WHERE fact.prod_id = product.prod_id AND
 TO_CHAR(sale_date, 'yyyy-mm') BETWEEN
 TO_CHAR('01-jan-1991', 'yyyy-mm') AND TO_CHAR('31-dec-1993', 'yyyy-mm')
GROUP BY prod_type;

SELECT prod_type, sum_sales
FROM mv3
WHERE month BETWEEN
 TO_CHAR('01-jan-1991', 'yyyy-mm') AND TO_CHAR('31-dec-1993', 'yyyy-mm');
GROUP BY prod_type;

If mv3 had pre-summarized sales by prod_type and year instead of prod_type
and month, the query could still be rewritten by folding the date range into year

range and then matching the year expressions.

Selection Compatibility
Oracle supports rewriting of queries so that they will use materialized views in

which the HAVING or WHERE clause of the materialized view contains a selection of

a subset of the data in a table or tables. A materialized view's WHERE or HAVING
clause can contain a join, a selection, or both, and still be used by a rewritten query.

Predicate clauses containing expressions, or selecting rows based on the values of

particular columns, are examples of non-join predicates.

To perform this type of query rewrite, Oracle must determine if the data requested

in the query is contained in, or is a subset of, the data stored in the materialized

view. This problem is sometimes referred to as the data containment problem or, in

more general terms, the problem of a restricted subset of data in a materialized

view. The following sections detail the conditions where Oracle can solve this

problem and thus rewrite a query to use a materialized view that contains a

restricted portion of the data in the detail table.

Selection compatibility is performed when both the query and the materialized

view contain selections (non-joins). A selection compatibility check is done on the

WHERE as well as the HAVING clause. If the materialized view contains selections

and the query does not, then selection compatibility check fails because the

materialized view is more restrictive than the query. If the query has selections and
22-20 Data Warehousing Guide

How Oracle Rewrites Queries
the materialized view does not then selection compatibility check is not needed.

Regardless, selections and any columns mentioned in them must pass the data

sufficiency check.

Definitions
The following definitions are introduced to help the discussion:

■ <join relop>

Is one of the following (=, <, <=, >, >=)

■ <selection relop>

Is (=, <, <=, >, >=, !=, [NOT] BETWEEN | IN| LIKE |NULL)

■ <join predicate>

Is of the form (<column1> <join relop> <column2>) , where columns

are from different tables within the same FROM clause in the current query

block. So, for example, there cannot be an outer reference.

■ <selection predicate>

Is of the form <LHS-expression><relop><RHS-expression> , where LHS

means left-hand side and RHS means right-hand side. All non-join predicates

are selection predicates. The left-hand side usually contains a column and the

right-hand side contains the values. For example, color='red' means the

left-hand side is color and the right-hand side is 'red' and the relational

operator is (=) .

■ <LHS-constrained>

When comparing a selection from the query with a selection from the

materialized view, the left-hand side of the selection is compared with the

left-hand side of the query. If they match, they are said to be LHS-constrained or

just constrained for short.

■ <RHS-constrained>

When comparing a selection from the query with a selection from the

materialized view, the right-hand side of the selection is compared with the

right-hand side of the query. If they match, they are said to be RHS-constrained

or just constrained. Note that before comparing the selections, the

LHS/RHS-expression is converted to a canonical form and then the comparison

is done. This means that expressions such as <column1 + 5> and <5 +
column1> will match and be constrained.
 Query Rewrite 22-21

How Oracle Rewrites Queries
Although selection compatibility does not restrict the general form of the WHERE,
there is an optimal pattern and normally most queries fall into this pattern as

follows:

(<join predicate> AND <join predicate> AND) AND
 (<selection predicate> AND|OR <selection predicate>)

The join compatibility check operates on the joins and the selection compatibility

operates on the selections. If the WHERE clause has an OR at the top, then the

optimizer first checks for common predicates under the OR. If found, the common

predicates are factored out from under the OR then joined with an AND back to the

OR. This helps to put the WHERE into the optimal pattern. This is done only if OR
occurs at the top of the WHERE clause. For example, if the WHERE clause is:

(sales.prod_id = prod.prod_id AND prod.prod_name = 'Kids Polo Shirt')
 OR (sales.prod_id = prod.prod_id AND prod.prod_name = 'Kids Shorts')

The join is factored out and the WHERE becomes:

(sales.prod_id = prod.prod_id) AND (prod.prod_name = 'Kids Polo Shirt'
 OR prod.prod_name = 'Kids Shorts')

Thus putting the WHERE into the most optimal pattern.

If the WHERE is so complex that factoring cannot be done, all predicates under the

OR are treated as selections and join compatibility is not performed but selection

compatibility is still performed. In the HAVING clause, all predicates are considered

selections.

Selection compatibility categorizes selections into the following cases:

■ Simple

Simple selections are of the form <expression> <relop> <constant> .

■ Complex

Complex selections are of the form <expression> <relop>
<expression> .

■ Range

Range selections are such as WHERE (cust_last_name BETWEEN
'abacrombe' AND 'anakin') .

Note that simple selections with relational operators (<,<=,>,>=) are also

considered range selections.
22-22 Data Warehousing Guide

How Oracle Rewrites Queries
■ IN lists

Single and multi-column IN lists such as WHERE(prod_id) IN (102, 233,
....) .

Note that selections of the form (column1='v1' OR column1='v2' OR
column1='v3' OR) are treated as a group and classified as an IN list.

■ IS [NOT] NULL

■ [NOT] LIKE

■ Other

Other selections are when selection compatibility cannot determine

containment of data. For example, EXISTS.

When comparing a selection from the query with a selection from the materialized

view, the left-hand side of the selection is compared with the left-hand side of the

query. If they match, they are said to be LHS-constrained or constrained for short.

If the selections are constrained, then the right-hand side values are checked for

containment. That is, the RHS values of the query selection must be contained by

right-hand side values of the materialized view selection. For example:

Example 22–2 Selection Compatibility: Example 1

With a query of:

WHERE prod_id = 102

And a materialized view of:

WHERE prod_id BETWEEN 0 AND 200

In the above example, the selections are constrained on prod_id and the

right-hand side value of the query 102 is within the range of the materialized view.

Example 22–3 Selection Compatibility: Example 2

A selection can be a bounded range (a range with an upper and lower value), for

example:

With a query of:

WHERE prod_id > 10 AND prod_id < 50
 Query Rewrite 22-23

How Oracle Rewrites Queries
And a materialized view of:

WHERE prod_id BETWEEN 0 AND 200

In the above example, the selections are constrained on prod_id and the query

range is within the materialized view range. In this example, we notice that both

query selections are constrained by the same materialized view selection. The

left-hand side can be an expression.

Example 22–4 Selection Compatibility: Example 3

With a query of:

WHERE (sales.amount_sold * .07) BETWEEN 1.00 AND 100.00

And a materialized view of:

WHERE (sales.amount_sold * .07) BETWEEN 0.0 AND 200.00

In the above example, the selections are constrained on (sales.amount_sold
*.07) and the right-hand side value of the query is within the range of the

materialized view. Complex selections require that both the left-hand side and

right-hand side be matched (for example, when the left-hand side and the

right-hand side are constrained). For example:

Example 22–5 Selection Compatibility: Example 4

With a query of:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

And a materialized view of:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

If the left-hand side and the right-hand side are constrained and the <selection
relop > is the same, then generally the selection can be dropped from the rewritten

query. Otherwise, the selection must be keep to filter out extra data from the

materialized view.

If query rewrite can drop the selection from the rewritten query, then any columns

from the selection may not have to be in the materialized view so more rewrites can

be done with less data.
22-24 Data Warehousing Guide

How Oracle Rewrites Queries
Selection compatibility requires that all selections in the materialized view be

LHS-constrained with some selection in the query. This ensures that the

materialized view data is not more restrictive that the query.

Example 22–6 Selection Compatibility: Example 5

Selections in the query do not have to be constrained by any selections in the

materialized view but if they are then the right-hand side values must be contained

by the materialized view. For example,

With a query of:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

And a materialized view of:

WHERE prod_category = 'Men'

In the above example, selection with prod_category is constrained. The query

has an extra selection that is not constrained but this is acceptable because the

materialized view does have the data. However, the following example fails

selection compatibility check:

Example 22–7 Selection Compatibility: Example 6

With a query of:

WHERE prod_category = 'Men'

And a materialized view of:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

In the above example, the materialized view selection with prod_name is not

constrained. The materialized view is more restrictive that the query because it only

contains the product Shorts , therefore, query rewrite will not occur.

Example 22–8 Selection Compatibility: Example 7

Selection compatibility also checks for cases where the query has a multi-column in

list where the columns are fully constrained by individual columns from the

materialized view single column in lists. For example:

With a query of:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1033, 2000))
 Query Rewrite 22-25

How Oracle Rewrites Queries
And a materialized view of:

WHERE prod_id IN (1022,1033) AND cust_id IN (1000, 2000)

In the above example, the materialized view IN lists are constrained by the columns

in the query multi-column in list. Furthermore, the right-hand side values of the

query selection are contained by the materialized view so that rewrite will occur.

Example 22–9 Selection Compatibility: Example 8

Selection compatibility also checks for cases where the materialized view has a

multi-column in list where the columns are fully constrained by individual columns

or columns from in lists in the query. For example:

With a query of:

WHERE prod_id = 1022 AND cust_id IN (1000, 2000)

And a materialized view of:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1022, 2000))

In the above example, the materialized view IN list columns are fully constrained

by the columns in the query selections. Furthermore, the right-hand side values of

the query selection are contained by the materialized view. However, the following

example fails selection compatibility check:

Example 22–10 Selection Compatibility: Example 9

With a query of:

WHERE (prod_id = 1022 AND cust_id IN (1000, 2000)

And a materialized view of:

WHERE (prod_id, cust_id, cust_city)
 IN ((1022, 1000, 'Boston'), (1022, 2000, 'Nashua'))

In the above example, the materialized view in list column cust_city is not

constrained so the materialized view is more restrictive than the query. Selection

compatibility also works with complex ORs. If we assume that the shape of the

WHERE is as follows:

(selection AND selection AND ...) OR (selection AND selection AND ...)

Each group of selections separated by AND is related and the group is called a

disjunct. The disjuncts are separated by ORs. Selection compatibility requires that
22-26 Data Warehousing Guide

How Oracle Rewrites Queries
every disjunct in the query be contained by some disjunct in the materialized view.

Otherwise, the materialized view is more restrictive than the query. The

materialized view disjuncts do not have to match any query disjunct. This just

means that the materialized view has more data than the query requires. When

comparing a disjunct from the query with a disjunct of the materialized view, the

normal selection compatibility rules apply as specified in the previous discussion.

For example:

Example 22–11 Selection Compatibility: Example 10

With a query of:

WHERE (city_population > 15000 AND city_population < 25000
 AND state_name = 'New Hampshire')

And a materialized view of:

WHERE (city_population < 5000 AND state_name = 'New York') OR
 (city_population BETWEEN 10000 AND 50000 AND state_name = 'New Hampshire')

In the above example, the query has a single disjunct (group of selections separated

by AND). The materialized view has two disjuncts separated by OR. The query

disjunct is contained by the second materialized view disjunct so selection

compatibility succeeds. It is clear that the materialized view contains more data

than needed by the query so the query can be rewritten.

For example, here is a simple materialized view definition:

CREATE MATERIALIZED VIEW cal_month_sales_id_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT t.calendar_month_desc,
 SUM(s.amount_sold) AS dollars
FROM sales s,
 times t
WHERE s.time_id = t.time_id AND s.cust_id = 10
GROUP BY t.calendar_month_desc;

The following query could be rewritten to use this materialized view because the

query asks for the amount where the customer ID is 10 and this is contained in the

materialized view.

SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM times t, sales s
 Query Rewrite 22-27

How Oracle Rewrites Queries
WHERE s.time_id = t.time_id AND s.cust_id = 10
GROUP BY t.calendar_month_desc;

Because the predicate s.cust_id = 10 selects the same data in the query and in

the materialized view, it is dropped from the rewritten query. This means the

rewritten query looks like:

SELECT mv.calendar_month_desc, mv.dollars FROM cal_month_sales_id_mv mv;

Query rewrite can also occur when the query specifies a range of values, such as

s.prod_id > 10000 and s.prod_id < 20000 , as long as the range specified in

the query is within the range specified in the materialized view. For example, if

there is a materialized view defined as:

CREATE MATERIALIZED VIEW product_sales_mv
 BUILD IMMEDIATE
 REFRESH FORCE
 ENABLE QUERY REWRITE
 AS
 SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 GROUP BY prod_name
 HAVING SUM(s.amount_sold) BETWEEN 5000 AND 50000;

Then a query such as:

SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 GROUP BY prod_name
 HAVING SUM(s.amount_sold) BETWEEN 10000 AND 20000;

would be rewritten as:

SELECT prod_name, dollar_sales FROM product_sales_mv
WHERE dollar_sales > 10000 AND dollar_sales < 20000;

Rewrite with select expressions is also supported when the expression evaluates to

a constant, such as TO_DATE(' 12-SEP-1999 ' , ' DD-Mon-YYYY'). For example, if

an existing materialized view is defined as:

CREATE MATERIALIZED VIEW sales_on_valentines_day_99_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
22-28 Data Warehousing Guide

How Oracle Rewrites Queries
AS
 SELECT prod_id, cust_id, amount_sold
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.time_id = TO_DATE('04-FEB-1999', 'DD-MON-YYYY');

Then the query:

SELECT prod_id, cust_id, amount_sold
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.time_id = TO_DATE('14-FEB-1999', 'DD-MON-YYYY');

would be rewritten to:

SELECT * FROM sales_on_valentines_day_99_mv;

Rewrite can also occur against a materialized view when the selection is contained

in an IN expression. For example, given the following materialized view definition,

CREATE MATERIALIZED VIEW popular_promo_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
 SELECT p.promo_name, SUM(s.amount_sold) AS sum_amount_sold
 FROM promotions p, sales s
 WHERE s.promo_id = p.promo_id
 AND promo_name IN ('coupon', 'premium', 'giveaway')
 GROUP BY promo_name;

The query,

SELECT p.promo_name, SUM(s.amount_sold)
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id
AND promo_name IN ('coupon', 'premium')
GROUP BY promo_name;

is rewritten to:

SELECT * FROM popular_promo_sales_mv WHERE promo_name IN ('coupon', 'premium');
 Query Rewrite 22-29

How Oracle Rewrites Queries
You can also use expressions in selection predicates. This process looks like the

following example:

<expression> <relational operator> <constant>

where <expression > can be any arbitrary arithmetic expression allowed by

Oracle. The expression in the materialized view and the query must match. Oracle

attempts to discern expressions that are logically equivalent, such as A+B and B+A,

and will always recognize identical expressions as being equivalent.

You can also use queries with an expression on both sides of the operator or

user-defined functions as operators. Query rewrite occurs when the complex

predicate in the materialized view and the query are logically equivalent. This

means that, unlike exact text match, terms could be in a different order and rewrite

can still occur, as long as the expressions are equivalent.

In addition, selection predicates can be joined with an AND operator in a query and

the query can still be rewritten to use a materialized view as long as every

restriction on the data selected by the query is matched by a restriction in the

definition of the materialized view. Again, this does not mean an exact text match,

but that the restrictions on the data selected must be a logical match. Also, the query

may be more restrictive in its selection of data and still be eligible, but it can never

be less restrictive than the definition of the materialized view and still be eligible for

rewrite.

For example, given the preceding materialized view definition, a query such as:

SELECT p.promo_name, SUM(s.amount_sold)
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id
AND promo_name = 'coupon'
 GROUP BY promo_name
 HAVING SUM(s.amount_sold) > 1000;

would be rewritten to

SELECT * FROM popular_promo_sales_mv
WHERE promo_name = 'coupon' AND sum_amount_sold > 1000;

This is an example where the query is more restrictive than the definition of the

materialized view, so rewrite can occur. However, if the query had selected promo_
category , then it could not have been rewritten against the materialized view,

because the materialized view definition does not contain that column.

For another example, if the definition of a materialized view restricts a city name

column to Boston , then a query that selects Seattle as a value for this column
22-30 Data Warehousing Guide

How Oracle Rewrites Queries
can never be rewritten with that materialized view, but a query that restricts city

name to Boston and restricts a column value that is not restricted in the

materialized view could be rewritten to use the materialized view.

All the rules noted previously also apply when predicates are combined with an OR
operator. The simple predicates, or simple predicates connect by ANDs, are

considered separately. Each predicate in the query must appear in the materialized

view if rewrite is to occur.

For example, the query could have a restriction like city='Boston' OR city
='Seattle' and to be eligible for rewrite, the materialized view that the query

might be rewritten against must have the same restriction. In fact, the materialized

view could have additional restrictions, such as city='Boston' OR
city='Seattle' OR city='Cleveland' and rewrite might still be possible.

Note, however, that the reverse is not true. If the query had the restriction city =
'Boston' OR city='Seattle' OR city='Cleveland' and the materialized

view only had the restriction city='Boston' OR city='Seattle' , then rewrite

would not be possible since the query seeks more data than is contained in the

restricted subset of data stored in the materialized view.

Join Compatibility Check
In this check, the joins in a query are compared against the joins in a materialized

view. In general, this comparison results in the classification of joins into three

categories:

1. Common joins that occur in both the query and the materialized view. These

joins form the common subgraph.

2. Delta joins that occur in the query but not in the materialized view. These joins

form the query delta subgraph.

3. Delta joins that occur in the materialized view but not in the query. These joins

form the materialized view delta subgraph.

They can be visualized as shown in Figure 22–2:
 Query Rewrite 22-31

How Oracle Rewrites Queries
Figure 22–2 Query Rewrite Subgraphs

Common Joins The common join pairs between the two must be of the same type, or

the join in the query must be derivable from the join in the materialized view. For

example, if a materialized view contains an outer join of table A with table B, and a

query contains an inner join of table A with table B, the result of the inner join can

be derived by filtering the anti-join rows from the result of the outer join.

For example, consider this query:

SELECT p.prod_name, t.week_ending_day,
 SUM(amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id
AND t. week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY prod_name, week_ending_day;

Query
delta

Common
subgraph

MV
delta

countries

customers products

sales

times

Query join
graph

Materialized
view join
graph
22-32 Data Warehousing Guide

How Oracle Rewrites Queries
The common joins between this query and the materialized view join_sales_
time_product_mv are:

s.time_id = t.time_id AND s.prod_id = p.prod_id

They match exactly and the query can be rewritten as:

SELECT prod_name, week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY')
GROUP BY prod_name, week_ending_day;

The query could also be answered using the join_sales_time_product_oj_mv
materialized view where inner joins in the query can be derived from outer joins in

the materialized view. The rewritten version will (transparently to the user) filter

out the anti-join rows. The rewritten query will have the structure:

SELECT prod_name, week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY')
AND prod_id IS NOT NULL
GROUP BY prod_name, week_ending_day;

In general, if you use an outer join in a materialized view containing only joins, you

should put in the materialized view either the primary key or the rowid on the right

side of the outer join. For example, in the previous example, join_sales_time_
product_oj_mv , there is a primary key on both sales and products .

Another example of when a materialized view containing only joins is used is the

case of a semi-join rewrites. That is, a query contains either an EXISTS or an IN
subquery with a single table.

Consider this query, which reports the products that had sales greater than $1,000.

SELECT DISTINCT prod_name
FROM products p
WHERE EXISTS
 (SELECT *
 FROM sales s
 WHERE p.prod_id=s.prod_id
 AND s.amount_sold > 1000);
 Query Rewrite 22-33

How Oracle Rewrites Queries
This query could also be seen as:

SELECT DISTINCT prod_name
FROM products p
WHERE p.prod_id IN (SELECT s.prod_id
 FROM sales s
 WHERE s.amount_sold > 1000
);

This query contains a semi-join between the product and the sales table:

s.prod_id = p.prod_id

This query can be rewritten to use either the join_sales_time_product_mv
materialized view, if foreign key constraints are active or join_sales_time_
product_oj_mv materialized view, if primary keys are active. Observe that both

materialized views contain s.prod_id=p.prod_id , which can be used to derive

the semi-join in the query.

The query is rewritten with join_sales_time_product_mv as follows:

SELECT prod_name
FROM (SELECT DISTINCT prod_name
 FROM join_sales_time_product_mv
 WHERE amount_sold > 1000
);

If the materialized view join_sales_time_product_mv is partitioned by time_
id , then this query is likely to be more efficient than the original query because the

original join between sales and products has been avoided.

The query could be rewritten using join_sales_time_product_oj_mv as

follows.

SELECT prod_name
FROM (SELECT DISTINCT prod_name
 FROM join_sales_time_product_oj_mv
 WHERE amount_sold > 1000
 AND prod_id IS NOT NULL
);

Rewrites with semi-joins are currently restricted to materialized views with joins

only and are not available for materialized views with joins and aggregates.

Query Delta Joins A query delta join is a join that appears in the query but not in the

materialized view. Any number and type of delta joins in a query are allowed and
22-34 Data Warehousing Guide

How Oracle Rewrites Queries
they are simply retained when the query is rewritten with a materialized view.

Upon rewrite, the materialized view is joined to the appropriate tables in the query

delta.

For example, consider this query:

SELECT p.prod_name, t.week_ending_day, c.cust_city,
 SUM(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id
AND s.cust_id = c.cust_id
GROUP BY prod_name, week_ending_day, cust_city;

Using the materialized view join_sales_time_product_mv , common joins are:

s.time_id=t.time_id and s.prod_id=p.prod_id . The delta join in the query

is s.cust_id=c.cust_id .

The rewritten form will then join the join_sales_time_product_mv
materialized view with the product table as follows:

SELECT mv.prod_name, mv.week_ending_day, c.cust_city,
 SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv, customers c
WHERE mv.cust_id = c.cust_id
GROUP BY prod_name, week_ending_day, cust_city;

Materialized View Delta Joins A materialized view delta join is a join that appears in

the materialized view but not the query. All delta joins in a materialized view are

required to be lossless with respect to the result of common joins. A lossless join

guarantees that the result of common joins is not restricted. A lossless join is one

where, if two tables called A and B are joined together, rows in table A will always

match with rows in table B and no data will be lost, hence the term lossless join. For

example, every row with the foreign key matches a row with a primary key

provided no nulls are allowed in the foreign key. Therefore, to guarantee a lossless

join, it is necessary to have FOREIGN KEY, PRIMARY KEY, and NOT NULL constraints

on appropriate join keys. Alternatively, if the join between tables A and B is an outer

join (A being the outer table), it is lossless as it preserves all rows of table A.

All delta joins in a materialized view are required to be non-duplicating with

respect to the result of common joins. A non-duplicating join guarantees that the

result of common joins is not duplicated. For example, a non-duplicating join is one

where, if table A and table B are joined together, rows in table A will match with at

most one row in table B and no duplication occurs. To guarantee a non-duplicating
 Query Rewrite 22-35

How Oracle Rewrites Queries
join, the key in table B must be constrained to unique values by using a primary key

or unique constraint.

Consider this query that joins sales and times :

SELECT t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The materialized view join_sales_time_product_mv has an additional join

(s.prod_id=p.prod_id) between sales and products . This is the delta join in

join_sales_time_product_mv . You can rewrite the query if this join is lossless

and non-duplicating. This is the case if s.prod_id is a foreign key to p.prod_id
and is not null. The query is therefore rewritten as:

SELECT week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The query can also be rewritten with the materialized view join_sales_time_
product_mv_oj where foreign key constraints are not needed. This view contains

an outer join (s.prod_id=p.prod_id (+)) between sales and products . This

makes the join lossless. If p.prod_id is a primary key, then the non-duplicating

condition is satisfied as well and optimizer will rewrite the query as:

SELECT week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

Note that the outer join in the definition of join_sales_time_product_mv_oj
is not necessary, because the parent key - foreign key relationship between sales and

products in the Sales History schema is already lossless. It is used for

demonstration purposes only, and would be necessary if sales.prod_id is

nullable, thus violating the losslessness of the join condition sales.prod_id =
products.prod_id .
22-36 Data Warehousing Guide

How Oracle Rewrites Queries
Current limitations restrict most rewrites with outer joins to materialized views

with joins only. There is limited support for rewrites with materialized aggregate

views with outer joins, so those views should rely on foreign key constraints to

assure losslessness of materialized view delta joins.

Data Sufficiency Check
In this check, the optimizer determines if the necessary column data requested by a

query can be obtained from a materialized view. For this, the equivalence of one

column with another is used. For example, if an inner join between table A and table

B is based on a join predicate A.X = B.X , then the data in column A.X will equal

the data in column B.X in the result of the join. This data property is used to match

column A.X in a query with column B.X in a materialized view or vice versa. For

example, consider this query:

SELECT p.prod_name, s.time_id, t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id
GROUP BY p.prod_name, s.time_id, t.week_ending_day;

This query can be answered with join_sales_time_product_mv even though

the materialized view does not have s.time_id . Instead, it has t.time_id ,

which, through a join condition s.time_id=t.time_id , is equivalent to

s.time_id .

Thus, the optimizer might select this rewrite:

SELECT prod_name, time_id, week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_mv
GROUP BY prod_name, time_id, week_ending_day;

If some column data requested by a query cannot be obtained from a materialized

view, the optimizer further determines if it can be obtained based on a data

relationship called functional dependency. When the data in a column can

determine data in another column, such a relationship is called functional

dependency or functional determinance. For example, if a table contains a primary

key column called prod_id and another column called prod_name , then, given a

prod_id value, it is possible to look up the corresponding prod_name . The

opposite is not true, which means a prod_name value need not relate to a unique

prod_id .
 Query Rewrite 22-37

How Oracle Rewrites Queries
When the column data required by a query is not available from a materialized

view, such column data can still be obtained by joining the materialized view back

to the table that contains required column data provided the materialized view

contains a key that functionally determines the required column data.

For example, consider this query:

SELECT p.prod_category, t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND p.prod_category='CD'
GROUP BY p.prod_category, t.week_ending_day;

The materialized view sum_sales_pscat_week_mv contains p.prod_id , but

not p.prod_category . However, we can join sum_sales_pscat_week_mv back

to products to retrieve prod_brand because prod_id functionally determines

prod_category . The optimizer rewrites this query using sum_sales_prod_
week_mv as:

SELECT p.prod_category, mv.week_ending_day,
 SUM(mv.sum_amount_sold)
FROM sum_sales_prod_week_mv mv, products p
WHERE mv.prod_id=p.prod_id
AND p.prod_category='Men'
GROUP BY p.prod_category, mv.week_ending_day;

Here the products table is called a joinback table because it was originally joined

in the materialized view but joined again in the rewritten query.

There are two ways to declare functional dependency:

■ Using the primary key constraint (as shown in the example above)

■ Using the DETERMINES clause of a dimension

The DETERMINESclause of a dimension definition might be the only way you could

declare functional dependency when the column that determines another column

cannot be a primary key. For example, the products table is a denormalized

dimension table that has columns prod_id , prod_name , and prod_
subcategory , and prod_subcategory functionally determines prod_subcat_
desc and prod_category determines prod_cat_desc .

The first functional dependency can be established by declaring prod_id as the

primary key, but not the second functional dependency because the prod_
22-38 Data Warehousing Guide

How Oracle Rewrites Queries
subcategory column contains duplicate values. In this situation, you can use the

DETERMINES clause of a dimension to declare the second functional dependency.

The following dimension definition illustrates how the functional dependencies are

declared.

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product DETERMINES products.prod_name
 ATTRIBUTE product DETERMINES products.prod_desc
 ATTRIBUTE subcategory DETERMINES products.prod_subcat_desc
 ATTRIBUTE category DETERMINES products.prod_cat_desc;

The hierarchy prod_rollup declares hierarchical relationships that are also 1:n

functional dependencies. The 1:1 functional dependencies are declared using the

DETERMINES clause, as seen when prod_subcategory functionally determines

prod_subcat_desc .

The following query:

SELECT p.prod_subcat_desc, t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND p.prod_subcat_desc LIKE '%Men'
GROUP BY p.prod_subcat_desc, t.week_ending_day;

can be rewritten by joining sum_sales_pscat_week_mv to the products table

so that prod_subcat_desc is available to evaluate the predicate. But the join will

be based on the prod_subcategory column, which is not a primary key in the

products table; therefore, it allows duplicates. This is accomplished by using an

inline view that selects distinct values and this view is joined to the materialized

view as shown in the rewritten query below.

SELECT iv.prod_subcat_desc, mv.week_ending_day,
 SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_subcat_desc
 Query Rewrite 22-39

How Oracle Rewrites Queries
 FROM products) iv
WHERE mv.prod_subcategory=iv.prod_subcategory
AND iv.prod_subcat_desc LIKE '%Men'
GROUP BY iv.prod_subcat_desc, mv.week_ending_day;

This type of rewrite is possible because of the fact that prod_subcategory
functionally determines prod_subcat_desc as declared in the dimension.

Grouping Compatibility Check
This check is required only if both the materialized view and the query contain a

GROUP BY clause. The optimizer first determines if the grouping of data requested

by a query is exactly the same as the grouping of data stored in a materialized view.

In other words, the level of grouping is the same in both the query and the

materialized view. For example, a query requests data grouped by prod_
category and a materialized view stores data grouped by prod_subcategory
and prod_subcat_desc . The grouping is the same in both provided prod_
subcategory functionally determines prod_subcat_desc , such as the

functional dependency shown in the dimension example above.

If the grouping of data requested by a query is at a coarser level compared to the

grouping of data stored in a materialized view, the optimizer can still use the

materialized view to rewrite the query. For example, the materialized view sum_
sales_pscat_week_mv groups by week_ending_day , and prod_
subcategory . This query groups by prod_subcategory , a coarser grouping

granularity:

SELECT p.prod_subcategory, SUM(s.amount_sold) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Therefore, the optimizer will rewrite this query as:

SELECT p.prod_subcategory, SUM(sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
GROUP BY p.prod_subcategory;

In another example, a query requests data grouped by prod_category whereas a

materialized view stores data grouped by prod_subcategory . If prod_
subcategory is a CHILD OF prod_category (see the dimension example above),

the grouped data stored in the materialized view can be further grouped by prod_
category when the query is rewritten. In other words, aggregates at prod_
22-40 Data Warehousing Guide

How Oracle Rewrites Queries
subcategory level (finer granularity) stored in a materialized view can be rolled

up into aggregates at prod_category level (coarser granularity).

For example, consider the following query:

SELECT p.prod_category, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_category, t.week_ending_day;

Because prod_subcategory functionally determines prod_category , sum_
sales_pscat_week_mv can be used with a joinback to products to retrieve

prod_category column data, and then aggregates can be rolled up to prod_
category level, as shown below:

SELECT pv.prod_subcategory, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_category
 FROM products) pv
WHERE mv.prod_subcategory=mv.prod_subcategory
GROUP BY pv.prod_subcategory, mv.week_ending_day;

Note that, for this rewrite, the data sufficiency check determines that a joinback to

the products table is necessary, and the grouping compatibility check determines

that aggregate rollup is necessary.

Aggregate Computability Check
This check is required only if both the query and the materialized view contain

aggregates. Here the optimizer determines if the aggregates requested by a query

can be derived or computed from one or more aggregates stored in a materialized

view. For example, if a query requests AVG(X) and a materialized view contains

SUM(X) and COUNT(X), then AVG(X) can be computed as SUM(X)/COUNT(X) .

If the grouping compatibility check determined that the rollup of aggregates stored

in a materialized view is required, then the aggregate computability check

determines if it is possible to roll up each aggregate requested by the query using

aggregates in the materialized view.

For example, SUM(sales) at the city level can be rolled up to SUM(sales) at the

state level by summing all SUM(sales) aggregates in a group with the same state

value. However, AVG(sales) cannot be rolled up to a coarser level unless

COUNT(sales) is also available in the materialized view. Similarly,
 Query Rewrite 22-41

How Oracle Rewrites Queries
VARIANCE(sales) or STDDEV(sales) cannot be rolled up unless

COUNT(sales) and SUM(sales) are also available in the materialized view. For

example, given the query:

SELECT p.prod_subcategory, AVG(s.amount_sold) AS avg_sales
FROM sales s, products p
WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

The above can be rewritten with materialized view sum_sales_pscat_month_
city_mv provided the join between sales and times and sales and

customers are lossless and non-duplicating. Further, the query groups by prod_
subcategory whereas the materialized view groups by prod_subcategory ,

calendar_month_desc and cust_city , which means the aggregates stored in

the materialized view will have to be rolled up. The optimizer will rewrite the

query as:

SELECT mv.prod_subcategory, SUM(mv.sum_amount_sold)/SUM(mv.count_amount_sold)
 AS avg_sales
FROM sum_sales_pscat_month_city_mv mv
GROUP BY mv.prod_subcategory;

The argument of an aggregate such as SUMcan be an arithmetic expression like A+B.

The optimizer will try to match an aggregate SUM(A+B) in a query with an

aggregate SUM(A+B) or SUM(B+A) stored in a materialized view. In other words,

expression equivalence is used when matching the argument of an aggregate in a

query with the argument of a similar aggregate in a materialized view. To

accomplish this, Oracle converts the aggregate argument expression into a

canonical form such that two different but equivalent expressions convert into the

same canonical form. For example, A*(B-C) , A*B-C*A , (B-C)*A , and -A*C+A*B
all convert into the same canonical form and, therefore, they are successfully

matched.

Query Rewrite with Inline Views Oracle supports general query rewrite when the user

query contains an inline view, or a subquery in the FROM list. Query rewrite

matches inline views in the materialized view with inline views in the request

query when the text of the two inline views exactly match. In this case, rewrite

treats the matching inline view as it would a named view, and general rewrite

processing is possible.

Query rewrite now matches inline views in the materialized view with inline views

in the request query when the text of the two inline views exactly match. In this

case, rewrite treats the matching inline view as it would a named view, and general

rewrite processing is possible.
22-42 Data Warehousing Guide

How Oracle Rewrites Queries
Here is an example where the materialized view contains an inline view, and the

query has the same inline view, but the aliases for these views are different.

Previously, this query could not be rewritten because neither exact text match nor

partial text match is possible.

Here is the materialized view definition:

CREATE MATERIALIZED VIEW inline_example
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_name, t.calendar_year p.prod_category,
 SUM(V1.revenue) AS sum_revenue
FROM times t, products p,
 (SELECT time_id, prod_id, amount_sold*0.2 as revenue FROM sales) V1
WHERE t.time_id = V1.time_id
AND p.prod_id = V1.prod_id
GROUP BY calendar_month_name, calendar_year, prod_category ;

And here is the query that will be rewritten to use the materialized view:

SELECT t.calendar_month_name, t.calendar_year, p.prod_category,
 SUM(X1.revenue) AS sum_revenue
FROM times t, products p,
 (SELECT time_id, prod_id, amount_sold*0.2 AS revenue FROM sales) X1
WHERE t.time_id = X1.time_id
AND p.prod_id = X1.prod_id
GROUP BY calendar_month_name, calendar_year, prod_category ;

Query Rewrite with Selfjoins Query rewrite of queries which contain multiple

references to the same tables, or self joins are possible, to the extent that general

rewrite can occur when the query and the materialized view definition have the

same aliases for the multiple references to a table. This allows Oracle to provide a

distinct identity for each table reference and this in turn allows query rewrite.

Below is an example of a materialized view and a query. In this example, the query

is missing a reference to a column in a table so an exact text match will not work.

But general query rewrite can occur because the aliases for the table references

match.

To demonstrate the self-join rewriting possibility with the Sales History schema,

we are assuming the following addition to include the actual shipping and payment

date in the fact table, referencing the same dimension table times. This is for

demonstration purposes only and will not return any results:

ALTER TABLE sales ADD (time_id_ship DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_book_fk FOREIGN key (time_id_ship)
REFERENCES times(time_id) ENABLE NOVALIDATE);
 Query Rewrite 22-43

How Oracle Rewrites Queries
ALTER TABLE sales MODIFY CONSTRAINT time_id_book_fk RELY;
ALTER TABLE sales ADD (time_id_paid DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_paid_fk FOREIGN key (time_id_paid)
REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_paid_fk RELY;

To reverse the changes, you can simply drop the columns:

ALTER TABLE sales DROP COLUMN time_id_ship;
ALTER TABLE sales DROP COLUMN time_id_paid;

Now, we can define a materialized view as follows:

CREATE MATERIALIZED VIEW sales_shipping_lag_mv
ENABLE QUERY REWRITE
AS
 SELECT t1.fiscal_week_number, s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number as lag
 FROM times t1, sales s, times t2
 WHERE t1.time_id = s.time_id
 AND t2.time_id = s.time_id_ship;

The following query fails the exact text match test but is rewritten because the

aliases for the table references match:

SELECT s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id
AND t2.time_id = s.time_id_ship;

Note that Oracle performs other checks to insure the correct match of an instance of

a multiply instanced table in the request query with the corresponding table

instance in the materialized view. For instance, in the following example, Oracle

correctly determines that the matching alias names used for the multiple instances

of table time does not establish a match between the multiple instances of table

time in the materialized view:

The following query cannot be rewritten using sales_shipping_lag_mv even

though the alias names of the multiply instanced table time match because the

joins are not compatible between the instances of time aliased by t2 :

SELECT s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_paid;
22-44 Data Warehousing Guide

Special Cases for Query Rewrite
The request query above joins the instance of the time table aliased by t2 on the

s.time_id_paid column, while the materialized views joins the instance of the

time table aliased by t2 on the s.time_id_ship column. Because the join

conditions differ, Oracle correctly determines that rewrite cannot occur.

Special Cases for Query Rewrite
There are a few special cases when using query rewrite:

■ Query Rewrite Using Partially Stale Materialized Views

■ Query Rewrite Using Complex Materialized Views

■ Query Rewrite Using Nested Materialized Views

■ Query Rewrite Using Nested Materialized Views

■ Query Rewrite with CUBE, ROLLUP, and Grouping Sets

Query Rewrite Using Partially Stale Materialized Views
In Oracle9i, when a certain partition of the detail table is updated, only specific

sections of the materialized view are marked stale. The materialized view must

have information that can identify the partition of the table corresponding to a

particular row or group of the materialized view. The simplest scenario is when the

partitioning key of the table is available in the SELECT list of the materialized view

because this is the easiest way to map a row to a stale partition. The key points

when using partially stale materialized views are:

■ Query rewrite can use an materialized view in ENFORCED or TRUSTED mode if

the rows from the materialized view used to answer the query are known to be

FRESH.

■ The fresh rows in the materialized view are identified by adding selection

predicates to the materialized view's WHERE clause. We will rewrite a query

with this materialized view if its answer is contained within this (restricted)

materialized view. Note that support for materialized views with selection

predicates is a prerequisite for this type of rewrite.

The fact table sales is partitioned based on ranges of store ID as follows:

PARTITION BY RANGE (time_id)
(PARTITION SALES_Q1_1998
 VALUES LESS THAN (TO_DATE('01-APR-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q2_1998
 VALUES LESS THAN (TO_DATE('01-JUL-1998', 'DD-MON-YYYY')),
 Query Rewrite 22-45

Special Cases for Query Rewrite
 PARTITION SALES_Q3_1998
 VALUES LESS THAN (TO_DATE('01-OCT-1998', 'DD-MON-YYYY')), ...

Suppose you have a materialized view grouping by store_id as follows:

CREATE MATERIALIZED VIEW sum_sales_per_city_mv
AS
SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) as sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
GROUP BY time_id, prod_subcategory, cust_city;

Suppose new data will be inserted for December 2000, which will end up in the

partition SALES_Q4_2000.

Until a refresh is done, the materialized view is stale and cannot be used for rewrite

in enforced mode. The fresh rows in the materialized view, that means the data of

all partitions where Oracle knows that no changes have occurred, can be

represented by modifying the materialized view's defining query as follows:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND s.time_id < TO_DATE('01-OCT-2000','DD-MON-YYYY')
GROUP BY time_id, prod_subcategory, cust_city;

Please note that the freshness of partially stale materialized views is tracked on a

per partition base, and not on a logical base. Since the partitioning strategy of the

sales fact table is on a quarterly base, changes in December 2000 causes the

complete partition SALES_Q4_2000 to become stale.

Consider the following query which asks for sales in quarter 1 and 2 of 2000:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY')
GROUP BY time_id, prod_subcategory, cust_city;
22-46 Data Warehousing Guide

Special Cases for Query Rewrite
Oracle knows that those ranges of rows in the materialized view are fresh and can

therefore rewrite the above query with the materialized view. The rewritten query

looks as follows:

SELECT time_id, prod_subcategory, cust_city, sum_amount_sold
FROM sum_sales_per_city_mv
WHERE time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY');

Instead of the partitioning key, a partition marker (a function that identifies the

partition given a rowid) can be present in the select (and GROUP BY list) of the

materialized view. You can use the materialized view to rewrite queries that require

data from only certain partitions (identifiable by the partition-marker), for instance,

queries that reference a partition-extended table-name or queries that have a

predicate specifying ranges of the partitioning keys containing entire partitions. See

Chapter 8, "Materialized Views", for details regarding the supplied partition marker

function DBMS_MVIEW.PMARKER.

The following example illustrates the use of a partition marker in the materialized

view instead of the direct usage of the partition key column.

CREATE MATERIALIZED VIEW sum_sales_per_city_2_mv
ENABLE QUERY REWRITE
AS
SELECT DBMS_MVIEW.PMARKER(s.rowid) AS pmarker,
 t.fiscal_quarter_desc, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND s.time_id = t.time_id
GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 prod_subcategory, cust_city, fiscal_quarter_desc;C

Suppose you know that the partition SALES_Q1_2000 is fresh. You can rewrite the

following query using the above materialized view. This query restricts the data to

the partition SALES_Q1_2000, that means only the first quarter of 2000, and selects

only certain values of cust_city .

SELECT s.city, SUM(f.dollar_sales)
FROM store s, fact f
WHERE s.store_id < 25
AND s.store_name = 'Sears'
GROUP BY s.city;
 Query Rewrite 22-47

Special Cases for Query Rewrite
Assuming the value of p_marker for partition store_id_1_to_24 is P1, the

query can be rewritten as:

SELECT m.city, SUM(m.sum_sales)
FROM store_id_sales m
WHERE m.p_marker = 'P1'
 AND m.store_name = 'Sears'
GROUP BY m.city;

The same query could have been expressed with a partition-extended file name as

in the following statement:

SELECT s.city, SUM(f.dollar_sales)
FROM store s, fact partition(store_id_1_to_24) f
WHERE s.store_name = 'Sears'
GROUP BY s.city;

So the query can be rewritten against the materialized view without accessing stale

data.

Query Rewrite Using Complex Materialized Views
Complex materialized views are views that are not uniquely resolvable for query

rewrite. Rewrite capability with complex materialized views is restricted to text

match-based rewrite (partial or full). You can define a materialized view using

arbitrarily complex SQL query expressions, but such a materialized view is treated

as complex by query rewrite.

For example some of the constructs that make a materialized view complex are: set

operators (UNION, UNION ALL, INTERSECT, MINUS), START WITHclause, CONNECT
BY clause, and so on. Oracle currently supports general rewrite with inline views

and self-joins on certain cases. These are the cases when the texts of inline view in

the query and materialized view exactly match and the aliases of the duplicate

tables in both the query and materialized view exactly match. All other cases

involving inline views and self-joins will make a materialized view complex.

Query Rewrite Using Nested Materialized Views
Query rewrite is attempted iteratively to take advantage of nested materialized

views. Oracle first tries to rewrite a query with a materialized view having

aggregates and joins, then with a materialized join view. If any of the rewrites

succeeds, Oracle repeats that process again until no rewrites have occurred.
22-48 Data Warehousing Guide

Special Cases for Query Rewrite
For example, assume that you had created a materialized views join_sales_
time_product_mv and sum_sales_time_product_mv :

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW sum_sales_time_product_mv
ENABLE QUERY REWRITE
AS
SELECT mv.prod_name, mv.week_ending_day,
 COUNT(*) cnt_all,
 SUM(mv.amount_sold) sum_amount_sold,
 COUNT(mv.amount_sold) cnt_amount_sold
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Consider this query:

SELECT p.prod_name, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_name, t.week_ending_day;

Oracle first tries to rewrite it with a materialized aggregate view and finds there is

none eligible (note that single-table aggregate materialized view sum_sales_
store_time_mv cannot yet be used), and then tries a rewrite with a materialized

join view and finds that join_sales_time_product_mv is eligible for rewrite.

The rewritten query has this form:

SELECT mv.prod_name, mv.week_ending_day, SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Because a rewrite occurred, Oracle tries the process again. This time the above

query can be rewritten with single-table aggregate materialized view sum_sales_
store_time into this form:
 Query Rewrite 22-49

Special Cases for Query Rewrite
SELECT mv.prod_name, mv.week_ending_day, mv.sum_amount_sold
FROM sum_sales_time_product_mv mv;

Query Rewrite with CUBE, ROLLUP, and Grouping Sets
Oracle rewrites queries in the presence of extended GROUP BY clauses (CUBE,
ROLLUP, Grouping Sets, or a concatenation of them) in materialized views or

queries. The following scenarios arise during the rewrite process:

Materialized View has Simple GROUP BY and Query has Extended GROUP BY
When the query contains CUBE, ROLLUP, or concatenation of them, it can be

rewritten in terms of materialized view if all the GROUP BY expressions in the query

either match or functionally dependent on the GROUP BY expressions of the

materialized view. For example, the query:

SELECT c.cust_city, p.prod_subcategory, AVG(s.amount_sold) AS avg_sales_sold
FROM sales s, customers c, products p
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY CUBE(c.cust_city, p.prod_subcategory);

This query can be rewritten in terms of the materialized view sum_sales_pscat_
month_city_mv as:

SELECT mv.cust_city, mv.prod_subcategory,
DECODE(SUM(mv.count_amount_sold), 0, NULL,
 SUM(mv.sum_amount_sold)/SUM(mv.count_amount_sold)) AS avg_sales_sold
FROM sum_sales_pscat_month_city_mv mv
GROUP BY CUBE(mv.cust_city, mv.prod_subcategory);

When a query contains grouping sets or a concatenation of grouping sets, it can be

rewritten if every grouping in the query can be rewritten using the materialized

view. For example, the query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS ((p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory));

can be rewritten in terms of materialized view sum_sales_pscat_month_city_
mv as:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
22-50 Data Warehousing Guide

Special Cases for Query Rewrite
SUM(mv.sum_amount_sold) AS sum_amount_sold
FROM sum_sales_pscat_month_city_mv mv
GROUP BY GROUPING SETS ((mv.prod_subcategory, mv.calendar_month_desc),
 (mv.cust_city, mv.prod_subcategory);

Materialized View has Extended GROUP BY and Query has Simple GROUP BY
To rewrite queries in this scenario, Oracle requires the materialized view satisfy two

additional conditions:

■ to contain a grouping distinguisher, which is the GROUPING_ID function on all

GROUP BY expressions. For example, if the GROUP BY clause of the materialized

view is GROUP BY CUBE(a, b) , then the SELECT list should contain

GROUPING_ID(a, b)

and

■ the GROUP BYclause of the materialized view should not result in any duplicate

groupings. For example, GROUP BY GROUPING SETS ((a, b), (a,b))
would disqualify an materialized view from general rewrite.

Oracle finds the grouping with the lowest cost from which the query can be

computed and uses that for rewrite. For example, consider the materialized view:

CREATE MATERIALIZED VIEW sum_grouping_set_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
 GROUPING_ID(p.prod_category,p.prod_subcategory,
 c.cust_state_province,c.cust_city) AS gid,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
(p.prod_category, p.prod_subcategory, c.cust_city),
(p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city),
(p.prod_category, p.prod_subcategory)
);

The following query:

SELECT p.prod_subcategory, c.cust_city,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, c.cust_city;
 Query Rewrite 22-51

Special Cases for Query Rewrite
will be rewritten as:

SELECT prod_subcategory, cust_city, SUM(sum_amount_sold) AS sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = <grouping identifier of (prod_category,
 prod_subcategory, cust_city)>
 GROUP BY prod_subcategory, cust_city;

Both Materialized View and Query have Extended GROUP BY
In the most general case of materialized view and the query both containing

extended GROUP BY clause, a materialized view that contains all groupings of the

query is selected for rewrite. For example, given a materialized view,

CREATE MATERIALIZED VIEW sum_ext_grouping_set_mv
AS
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
GROUPING_ID(p.prod_category, p.prod_subcategory, c.cust_state_province,
 c.cust_city)
 AS gid,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
(p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city),
(p.prod_category, p.prod_subcategory),
(c.cust_state_province, c.cust_city)
);

The following query:

SELECT p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
(p.prod_category, p.prod_subcategory),
(c.cust_state_province, c.cust_city)
);

can be rewritten in terms of materialized view sum_ext_grouping_set_mv , as in

the following example:
22-52 Data Warehousing Guide

Special Cases for Query Rewrite
SELECT prod_category, prod_subcategory, cust_state_province,
 cust_city, sum_amount_sold
FROM sum_ext_grouping_set_mv
WHERE gid IN (<grouping identifier of (prod_category, prod_subcategory)>,
<grouping identifier of (cust_country, cust_city)>);

For this type of rewrite to occur, the predicates in the WHERE clause of the

materialized view and the query must match (answers could otherwise be

incorrect).

This type of rewrite is useful for OLAP applications where queries ask for

aggregations from multiple levels of a cube. For example, you can construct a sales

cube with two dimensions: product and customers . The product dimension has

two levels: prod_category and prod_subcategory and the customer

dimension two levels: cust_state_province and cust_city . In a cube, we use

a concatenated rollup of the dimensions. The rollup is arranged with decreasing

hierarchy levels. So the sales cube can be represented as a view:

CREATE VIEW sales_cube_view
AS
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province,
 c.cust_city, SUM(s.amount_sold) as sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY ROLLUP(p.prod_category, p.prod_subcategory),
ROLLUP(c.cust_state_province, c.cust_city);
To support that cube, you would build corresponding materialized view:

CREATE MATERIALIZED VIEW sales_cube_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
GROUPING_ID(p.prod_category,p.prod_subcategory,c.cust_state_province,
 c.cust_city) AS gid,
 SUM(s.amount_sold) as sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold,
 COUNT(*) AS cnt_star
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY ROLLUP(p.prod_category, p.prod_subcategory),
ROLLUP(c.cust_state_province, c.cust_city);

Using the sales_cube_view , OLAP queries can ask for multiple levels of

aggregations using a single query. For example, this query asks for sums sales of

product category Men in San Francisco by prod_category and prod_
 Query Rewrite 22-53

Special Cases for Query Rewrite
subcategory , that is, asks for these two groupings: (p.prod_category,
p.prod_subcategory , c.cust_state_province , c.cust_city) and

(p.prod_category , c.cust_state_province , c.cust_city) .

SELECT prod_category, prod_subcategory, cust_state_province,
 cust_city, sum_amount_sold
FROM sales_cube_view
WHERE prod_category = 'Men' AND cust_city = 'San Francisco';

This query will be rewritten using materialized view mv_sales_cube as follows:

SELECT prod_category, prod_subcategory, cust_state_province,
 cust_city, sum_amount_sold
FROM sales_cube_mv
WHERE prod_category = 'Men' AND cust_city = 'San Francisco'
 AND gid IN (<grouping identifier of (prod_category, prod_subcategory,
 cust_country, cust_city)>, <grouping identifier of (prod_category,
 cust_country, cust_city)>);

Note that the rewrite requires simple selection from the materialized view container

table. No rollup is required.

If none of the materialized views contain all groupings of the query, then the

materialized view containing the smallest grouping from which all groupings of the

query can be computed is selected for rewrite. As an example, Oracle rewrites the

query:

SELECT p.prod_category, p.prod_subcategory, c.cust_city,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
(p.prod_category, c.cust_city),
(p.prod_subcategory, c.cust_city));

as:

SELECT prod_category, prod_subcategory, cust_city,
SUM(sum_amount_sold) AS sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = <grouping identifier of (prod_category,
 prod_subcategory, cust_city)>
GROUP BY GROUPING SETS ((prod_category, cust_city),
 (prod_subcategory, cust_city));
22-54 Data Warehousing Guide

Did Query Rewrite Occur?
Did Query Rewrite Occur?
Because query rewrite occurs transparently, special steps have to be taken to verify

that a query has been rewritten. Of course, if the query runs faster, this should

indicate that rewrite has occurred, but that is not proof. Therefore, to confirm that

query rewrite does occur, use the EXPLAIN PLAN statement or the DBMS_
MVIEW.EXPLAIN_REWRITE procedure.

Explain Plan
The EXPLAIN PLANfacility is used as described in Oracle9i SQL Reference. For query

rewrite, all you need to check is that the object_name column in PLAN_TABLE
contains the materialized view name. If it does, then query rewrite will occur when

this query is executed.

In this example, the materialized view cal_month_sales_mv has been created.

CREATE MATERIALIZED VIEW cal_month_sales_mv
ENABLE QUERY REWRITE
AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

If EXPLAIN PLAN is used on the following SQL statement, the results are placed in

the default table PLAN_TABLE. However, PLAN_TABLE must first be created using

the utlxplan.sql script.

EXPLAIN PLAN
FOR
SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

For the purposes of query rewrite, the only information of interest from PLAN_
TABLE is the OBJECT_NAME, which identifies the objects that will be used to

execute this query. Therefore, you would expect to see the object name CALENDAR_
MONTH_SALES_MV in the output as illustrated below.
 Query Rewrite 22-55

Did Query Rewrite Occur?
SELECT object_name FROM plan_table;

OBJECT_NAME

CALENDAR_MONTH_SALES_MV

2 rows selected.

DBMS_MVIEW.EXPLAIN_REWRITE Procedure
It can be difficult to understand why a query did not rewrite. The rules governing

query rewrite eligibility are quite complex, involving various factors such as

constraints, dimensions, query rewrite integrity modes, freshness of the

materialized views, and the types of queries themselves. In addition, you may want

to know why query rewrite chose a particular materialized view instead of another.

To help with this matter, Oracle provides a PL/SQL procedure (DBMS_
MVIEW.EXPLAIN_REWRITE) to advise you when a query can be rewritten and, if

not, why not. Using the results from DBMS_MVIEW.EXPLAIN_REWRITE, you can

take the appropriate action needed to make a query rewrite if at all possible.

DBMS_MVIEW.EXPLAIN_REWRITE Syntax
You can obtain the output from DBMS_MVIEW.EXPLAIN_REWRITE in two ways.

The first is to use a table, while the second is to create a varray. The following shows

the basic syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
 QUERY VARCHAR2(2000),
 MV VARCHAR2(30),
 STATEMENT_ID VARCHAR2(30)
);

You can create an output table named REWRITE_TABLE by executing the

Oracle-supplied script utlxrw.sql .

The QUERY_TXT parameter is a text string representing the SQL query. The

parameter, MV, is a fully qualified materialized view name in the form of

SCHEMA.MV. This is an optional parameter. When it is not specified, EXPLAIN_
REWRITE returns any relevant error messages regarding all the materialized views

Note: The query specified in the EXPLAIN_REWRITE statement is

never actually executed.
22-56 Data Warehousing Guide

Did Query Rewrite Occur?
considered for rewriting the given query. When SCHEMA is omitted and only MV is
specified, EXPLAIN_REWRITE looks for the materialized view in the current

schema.

Therefore, to call the EXPLAIN_REWRITE procedure using an output table is as

follows:

 DBMS_MVIEW.EXPLAIN_REWRITE (
 QUERY VARCHAR2(2000),
 MV VARCHAR2(30),
 STATEMENT_ID VARCHAR2(30)
);

If you want to direct the output of EXPLAIN_REWRITE to a varray instead of a

table, you should call the procedure as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 QUERY VARCHAR2(2000),
 MV VARCHAR2(30),
 OUTPUT_ARRAY SYS.RewriteArrayType
);

Using REWRITE_TABLE
Output of EXPLAIN_REWRITE can be directed to a table named REWRITE_TABLE.
You can create this output table by running the Oracle-supplied script

utlxrw.sql . This script can be found in the admin directory. The format of

REWRITE_TABLE is given below.

CREATE TABLE REWRITE_TABLE(
 statement_id VARCHAR2(30), -- ID for the query
 mv_owner VARCHAR2(30), -- MV's schema
 mv_name VARCHAR2(30), -- Name of the MV
 sequence INTEGER, -- Seq # of error msg
 query VARCHAR2(2000),-- user query
 message VARCHAR2(512), -- EXPLAIN_REWRITE error msg
 pass VARCHAR2(3), -- Query Rewrite pass no
 flags INTEGER, -- For future use
 reserved1 INTEGER, -- For future use
 reserved2 VARCHAR2(256); -- For future use
);
 Query Rewrite 22-57

Did Query Rewrite Occur?
Example 22–12 EXPLAIN_REWRITE Example Using REWRITE_TABLE

An example PL/SQL invocation is:

EXECUTE DBMS_MVIEW.EXPLAIN_REWRITE \
('SELECT p.prod_name, SUM(amount_sold) ' ||\
'FROM sales s, products p ' ||\
'WHERE s.prod_id = p.prod_id ' ||\
' AND prod_name > ''B%'' ' ||\
' AND prod_name < ''C%'' ' ||\
'GROUP BY prod_name', \
'TestXRW.PRODUCT_SALES_MV', \
'SH');

SELECT message FROM rewrite_table ORDER BY sequence;
MESSAGE
--
QSM-01033: query rewritten with materialized view, PRODUCT_SALES_MV
1 row selected.

Here is another example where you can see a more detailed explanation of why

some materialized views were not considered and eventually the materialized view

sales_mv was chosen as the best one.

DECLARE
 qrytext VARCHAR2(500) :='SELECT cust_first_name, cust_last_name,
SUM(amount) AS dollar_sales FROM sales s, customers c WHERE s.cust_id= c.cust_id
GROUP BY cust_first_name, cust_last_name';
 idno VARCHAR2(30) :='ID1';
BEGIN
DBMS_MVIEW.EXPLAIN_REWRITE(querytxt, '', idno);
END;
/
SELECT message FROM rewrite_table ORDER BY sequence;

SQL> MESSAGE
--
QSM-01082: Joining materialized view, CAL_MONTH_SALES_MV, with table, SALES, not possible
QSM-01022: a more optimal materialized view than PRODUCT_SALES_MV was used to rewrite
QSM-01022: a more optimal materialized view than FWEEK_PSCAT_SALES_MV was used to rewrite
QSM-01033: query rewritten with materialized view, SALES_MV
22-58 Data Warehousing Guide

Did Query Rewrite Occur?
Using a VARRAY
You can save the output of EXPLAIN_REWRITE in a PL/SQL varray. The elements

of this array are of the type RewriteMessage , which is defined in the SYS schema

as shown below:

TYPE RewriteMessage IS record(
 mv_owner VARCHAR2(30), -- MV's schema
 mv_name VARCHAR2(30), -- Name of the MV
 sequence INTEGER, -- Seq # of error msg
 query VARCHAR2(2000),-- user query
 message VARCHAR2(512), -- EXPLAIN_REWRITE error msg
 pass VARCHAR2(3), -- Query Rewrite pass no
 flags INTEGER, -- For future use
 reserved1 INTEGER, -- For future use
 reserved2 VARCHAR2(256); -- For future use
);
The array type, RewriteArrayType , which is a varray of RewriteMessage
objects, is defined in SYS schema as follows:

■ TYPE RewriteArrayType AS VARRAY(256) OF RewriteMessage;

Using this array type, now you can declare an array variable and specify it in

the EXPLAIN_REWRITE statement.

■ Each RewriteMessage record provides a message concerning rewrite

processing.

The parameters are the same as for REWRITE_TABLE, except for STATEMENT_
ID , which is not used when using a varray as output.

■ The MV_OWNER field defines the owner of materialized view that is relevant to

the message.

■ The MV_NAME field defines the name of a materialized view that is relevant to

the message.

■ The SEQUENCE field defines the sequence in which messages should be

ordered.

■ The QUERY_TEXTfield contains the first 2000 characters of the query text under

analysis.

■ The MESSAGE field contains the text of message relevant to rewrite processing

of QUERY_TEXT.

■ The FLAGS, RESERVED1, and RESERVED2 fields are reserved for future use.
 Query Rewrite 22-59

Did Query Rewrite Occur?
Example 22–13 EXPLAIN_REWRITE Example Using VARRAY

Consider the following query:

 SELECT c.cust_state_province,
 AVG(s.amount_sold)
 FROM sales s, customers c
 WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_state_province;

and the following materialized view:

 CREATE MATERIALIZED VIEW avg_sales_city_state_mv
 ENABLE QUERY REWRITE
 AS
 SELECT c.cust_city, c.cust_state_province,
 AVG(s.amount_sold)
 FROM sales s, customers c
 WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_city, c.cust_state_province;

The query will not rewrite with this materialized view. This can be quite confusing

to a novice user as it seems like all information required for rewrite is present in the

materialized view. The user can find out from DBMS_MVIEW.EXPLAIN_REWRITE
that AVGcannot be computed from the given materialized view. The problem is that

a ROLLUP is required here and AVG requires a COUNT or a SUM to do ROLLUP.

An example PL/SQL block for the above query, using a varray as its output

medium, is as follows:

SET SERVEROUTPUT ON
DECLARE
 Rewrite_Array SYS.RewriteArrayType := SYS.RewriteArrayType();
 querytxt VARCHAR2(1500) := 'SELECT S.CITY, AVG(F.DOLLAR_SALES)
 FROM STORE S, FACT F WHERE S.STORE_KEY = F.STORE_KEY
 GROUP BY S.CITY';
 i NUMBER;
BEGIN
 DBMS_MVIEW.Explain_Rewrite(querytxt, 'MV_CITY_STATE', Rewrite_Array);
 FOR i IN 1..Rewrite_Array.count
 LOOP
DBMS_OUTPUT.PUT_LINE(Rewrite_Array(i).message);
 END LOOP;
END;
/

22-60 Data Warehousing Guide

Design Considerations for Improving Query Rewrite Capabilities
Following is the output of the above EXPLAIN_REWRITE statement:

>> MV_NAME : MV_CITY_STATE
>> QUERY : SELECT S.CITY, AVG(F.DOLLAR_SALES) FROM STORE S, FACT F
 WHERE S.ST ORE_KEY = F.STORE_KEY GROUP BY S.CITY
>> MESSAGE : QSM-01065: materialized view, MV_CITY_STATE, cannot compute
 measure, AVG, in the query

DBMS_MVIEW.Explain_Rewrite(querytxt, 'ID1', 'MV_CITY_STATE',
 user_name, Rewrite_Array);

Design Considerations for Improving Query Rewrite Capabilities
The following design considerations will help in getting the maximum benefit from

query rewrite. They are not mandatory for using query rewrite and rewrite is not

guaranteed if you follow them. They are general rules of thumb.

Constraints
Make sure all inner joins referred to in a materialized view have referential integrity

(foreign key - primary key constraints) with additional NOT NULL constraints on the

foreign key columns. Since constraints tend to impose a large overhead, you could

make them NO VALIDATE and RELY and set the parameter QUERY_REWRITE_
INTEGRITY to STALE_TOLERATED or TRUSTED. However, if you set QUERY_
REWRITE_INTEGRITY to ENFORCED, all constraints must be enforced to get

maximum rewritability.

Dimensions
You can express the hierarchical relationships and functional dependencies in

normalized or denormalized dimension tables using the HIERARCHY and

DETERMINES clauses of a dimension. Dimensions can express intra-table

relationships which cannot be expressed by any constraints. Set the parameter

QUERY_REWRITE_INTEGRITY to TRUSTED or STALE_TOLERATED for query

rewrite to take advantage of the relationships declared in dimensions.

Outer Joins
Another way of avoiding constraints is to use outer joins in the materialized view.

Query rewrite will be able to derive an inner join in the query, such as (A.a=B.b) ,

from an outer join in the materialized view (A.a = B.b(+)) , as long as the rowid

of B or column B.b is available in the materialized view. Most of the support for
 Query Rewrite 22-61

Design Considerations for Improving Query Rewrite Capabilities
rewrites with outer joins is provided for materialized views with joins only. To

exploit it, a materialized view with outer joins should store the rowid or primary

key of the inner table of an outer join. For example, the materialized view join_
sales_time_product_mv_oj stores the primary keys prod_id and time_id of

the inner tables of outer joins.

Text Match
If you need to speed up an extremely complex, long-running query, you could

create a materialized view with the exact text of the query. Then the materialized

view would contain the query results, thus eliminating the time required to perform

any complex joins and search through all the data for that which is required.

Aggregates
To get the maximum benefit from query rewrite, make sure that all aggregates

which are needed to compute ones in the targeted set of queries are present in the

materialized view. The conditions on aggregates are quite similar to those for

incremental refresh. For instance, if AVG(x) is in the query, then you should store

COUNT(x) and AVG(x) or store SUM(x) and COUNT(x) in the materialized view.

Grouping Conditions
Aggregating data at lower levels in the hierarchy is better than aggregating at

higher levels because lower levels can be used to rewrite more queries. Note,

however, that doing so will also take up more space. For example, instead of

grouping on state, group on city (unless space constraints prohibit it).

Instead of creating multiple materialized views with overlapping or hierarchically

related GROUP BY columns, create a single materialized view with all those GROUP
BY columns. For example, instead of using a materialized view that groups by city

and another materialized view that groups by month, use a materialized view that

groups by city and month.

Use GROUP BY on columns which correspond to levels in a dimension but not on

columns that are functionally dependent, because query rewrite will be able to use

the functional dependencies automatically based on the DETERMINES clause in a

dimension. For example, instead of grouping on prod_name , group on prod_id
(as long as there is a dimension which indicates that the attribute prod_id

See Also: "General Restrictions on Fast Refresh" on page 8-27 for

requirements for fast refresh
22-62 Data Warehousing Guide

Design Considerations for Improving Query Rewrite Capabilities
determines prod_name , you will enable the rewrite of a query involving prod_
name).

Expression Matching
If several queries share the same common subexpression, it is advantageous to

create a materialized view with the common subexpression as one of its SELECT
columns. This way, the performance benefit due to precomputation of the common

subexpression can be obtained across several queries.

Date Folding
When creating a materialized view which aggregates data by folded date granules

such as months or quarters or years, always use the year component as the prefix

but not as the suffix. For example, TO_CHAR(date_col , 'yyyy-q') folds the date

into quarters, which collate in year order, whereas TO_CHAR(date_col,
'q-yyyy') folds the date into quarters, which collate in quarter order. The former

preserves the ordering while the latter does not. For this reason, any materialized

view created without a year prefix will not be eligible for date folding rewrite.

Statistics
Optimization with materialized views is based on cost and the optimizer needs

statistics of both the materialized view and the tables in the query to make a

cost-based choice. Materialized views should thus have statistics collected using the

DBMS_STATS package.
 Query Rewrite 22-63

Design Considerations for Improving Query Rewrite Capabilities
22-64 Data Warehousing Guide

PartVI

Miscellaneous

This section deals with other topics of interest in a data warehousing environment.

It contains the following chapters:

■ Glossary

■ Sample Data Warehousing Schema

 Glo
A

Glossary

additive

Describes a fact (or measure) that can be summarized through addition. An additive

fact is the most common type of fact. Examples include Sales, Cost, and Profit.

Contrast with nonadditive, semi-additive.

advisor

The Summary Advisor recommends which materialized views to retain, create, and

drop. It helps database administrators manage materialized views. It is a GUI in

Oracle Enterprise Manager, and has similar capabilities to the DBMS_OLAP package.

attribute

A descriptive characteristic of one or more levels. Attributes represent logical

groupings that enable end users to select data based on like characteristics. Note

that in relational modeling, an attribute is defined as a characteristic of an entity. In

Oracle9i, an attribute is a column in a dimension that characterizes elements of a

single level.

aggregation

The process of consolidating data values into a single value. For example, sales data

could be collected on a daily basis and then be aggregated to the week level, the

week data could be aggregated to the month level, and so on. The data can then be

referred to as aggregate data. Aggregation is synonymous with summarization, and

aggregate data is synonymous with summary data.

aggregate

Summarized data. For example, unit sales of a particular product could be

aggregated by day, month, quarter and yearly sales.
ssary A-1

ancestor

A value at any level above a given value in a hierarchy. For example, in a Time

dimension, the value 1999 might be the ancestor of the values Q1-99 and Jan-99 .

See also descendant, hierarchy, level.

attribute

A descriptive characteristic of one or more levels. For example, the Product

dimension for a clothing manufacturer might contain a level called Item, one of

whose attributes is Color. Attributes represent logical groupings that enable end

users to select data based on like characteristics.

Note that in relational modeling, an attribute is defined as a characteristic of an

entity. In Oracle9i, an attribute is a column in a dimension that characterizes

elements of a single level.

child

A value at the level below a given value in a hierarchy. For example, in a Time

dimension, the value Jan-99 might be the child of the value Q1-99 . A value can be

a child for more than one parent if the child value belongs to multiple hierarchies.

See also hierarchy, level, parent.

cleansing

The process of resolving inconsistencies and fixing the anomalies in source data,

typically as part of the ETL process. See also ETL.

Common Warehouse Metadata (CWM)

A repository standard used by Oracle data warehousing, decision support, and

OLAP tools including Oracle Warehouse Builder. The CWM repository schema is a

standalone product that other products can share—each product owns only the

objects within the CWM repository that it creates.

cross product

A procedure for combining the elements in multiple sets. For example, given two

columns, each element of the first column is matched with every element of the

second column. A simple example is shown below:

Col1 Col2 Cross Product
---- ---- -------------
a c ac
b d ad
 bc
 bd
A-2 Data Warehousing Guide

Cross products are performed when grouping sets are concatenated, as described in

Chapter 18, "SQL for Aggregation in Data Warehouses".

data source

A database, application, repository, or file that contributes data to a warehouse.

data mart

A data warehouse that is designed for a particular line of business, such as sales,

marketing, or finance. In a dependent data mart, the data can be derived from an

enterprise-wide data warehouse. In an independent data mart, data can be collected

directly from sources. See also data warehouse.

data warehouse

A relational database that is designed for query and analysis rather than transaction

processing. A data warehouse usually contains historical data that is derived from

transaction data, but it can include data from other sources. It separates analysis

workload from transaction workload and enables a business to consolidate data

from several sources.

In addition to a relational database, a data warehouse environment often consists of

an ETL solution, an OLAP engine, client analysis tools, and other applications that

manage the process of gathering data and delivering it to business users. See also

ETL, OLAP.

denormalize

The process of allowing redundancy in a table so that it can remain flat. Contrast

with normalize.

derived fact (or measure)

A fact (or measure) that is generated from existing data using a mathematical

operation or a data transformation. Examples include averages, totals, percentages,

and differences.

dimension

A structure, often composed of one or more hierarchies, that categorizes data.

Several distinct dimensions, combined with measures, enable end users to answer

business questions. Commonly used dimensions are Customer, Product, and Time.

In Oracle 9i, a dimension is a database object that defines hierarchical (parent/child)

relationships between pairs of column sets. In Oracle Express, a dimension is a

database object that consists of a list of values.
 Glossary A-3

dimension value

One element in the list that makes up a dimension. For example, a computer

company might have dimension values in the Product dimension called LAPPC and

DESKPC. Values in the Geography dimension might include Boston and Paris .

Values in the Time dimension might include MAY96 and JAN97.

drill

To navigate from one item to a set of related items. Drilling typically involves

navigating up and down through the levels in a hierarchy. When selecting data, you

can expand or collapse a hierarchy by drilling down or up in it, respectively. See

also drill down, drill up.

drill down

To expand the view to include child values that are associated with parent values in

the hierarchy. (See also drill, drill up.)

drill up

To collapse the list of descendant values that are associated with a parent value in

the hierarchy.

element

An object or process. For example, a dimension is an object, a mapping is a process,

and both are elements.

ETL

Extraction, transformation, and loading. ETL refers to the methods involved in

accessing and manipulating source data and loading it into a data warehouse. The

order in which these processes are performed varies.

Note that ETT (extraction, transformation, transportation) and ETM (extraction,

transformation, move) are sometimes used instead of ETL. (See also data warehouse,
extraction, transformation, transportation.)

extraction

The process of taking data out of a source as part of an initial phase of ETL. (See

also ETL.)

fact table

A table in a star schema that contains facts. A fact table typically has two types of

columns: those that contain facts and those that are foreign keys to dimension
A-4 Data Warehousing Guide

tables. The primary key of a fact table is usually a composite key that is made up of

all of its foreign keys.

A fact table might contain either detail level facts or facts that have been aggregated

(fact tables that contain aggregated facts are often instead called summary tables). A

fact table usually contains facts with the same level of aggregation.

fact/measure

Data, usually numeric and additive, that can be examined and analyzed. Values for

facts or measures are usually not known in advance; they are observed and stored.

Examples include Sales, Cost, and Profit. Fact and measure are synonymous; fact is
more commonly used with relational environments, measure is more commonly

used with multidimensional environments. See also derived fact.

fast refresh

An operation that applies only the data changes to a materialized view, thus

eliminating the need to rebuild the materialized view from scratch.

file-to-table mapping

Maps data from flat files to tables in the warehouse.

hierarchy

A logical structure that uses ordered levels as a means of organizing data. A

hierarchy can be used to define data aggregation; for example, in a Time dimension,

a hierarchy might be used to aggregate data from the Month level to the Quarter
level to the Year level. A hierarchy can also be used to define a navigational drill

path, regardless of whether the levels in the hierarchy represent aggregated totals.

See also dimension, level.

hub module

The metadata container for process data.

level

A position in a hierarchy. For example, a Time dimension might have a hierarchy

that represents data at the Month , Quarter , and Year levels.

(See also hierarchy.)

level value table

A database table that stores the values or data for the levels you created as part of

your dimensions and hierarchies.
 Glossary A-5

mapping

The definition of the relationship and data flow between source and target objects.

materialized view

A pre-computed table comprising aggregated and/or joined data from fact and

possibly dimension tables. Also known as a summary or aggregate table.

metadata

Data that describes data and other structures, such as objects, business rules, and

processes. For example, the schema design of a data warehouse is typically stored in

a repository as metadata, which is used to generate scripts used to build and

populate the data warehouse. A repository contains metadata.

Examples include: for data, the definition of a source to target transformation that is

used to generate and populate the data warehouse; for information, definitions of

tables, columns and associations that are stored inside a relational modeling tool;

for business rules, discount by 10 percent after selling 1,000 items.

model

An object that represents something to be made. A representative style, plan, or

design. Metadata that defines the structure of the data warehouse.

nonadditive

Describes a fact (or measure) that cannot be summarized through addition. An

example includes Average. Contrast with additive, semi-additive.

normalize

In a relational database, the process of removing redundancy in data by separating

the data into multiple tables. Contrast with denormalize.

The process of removing redundancy in data by separating the data into multiple

tables.

operational data store (ODS)

The cleaned, transformed data from a particular source database.

OLAP

Online analytical processing. OLAP functionality is characterized by dynamic,

multidimensional analysis of historical data, which supports activities such as the

following:
A-6 Data Warehousing Guide

• Calculating across dimensions and through hierarchies

• Analyzing trends

• Drilling up and down through hierarchies

• Rotating to change the dimensional orientation

OLAP tools can run against a multidimensional database or interact directly with a

relational database.

parent

A value at the level above a given value in a hierarchy. For example, in a Time

dimension, the value Q1-99 might be the parent of the value Jan-99 . See also child,
hierarchy, level.

refresh

The mechanism whereby materialized views are populated with data.

schema

A collection of related database objects. Relational schemas are grouped by database

user ID and include tables, views, and other objects. See also snowflake schema, star
schema. Whenever possible, a demo schema called Sales History is used

throughout this Guide.

semi-additive

Describes a fact (or measure) that can be summarized through addition along some,

but not all, dimensions. Examples include Headcount and On Hand Stock. Contrast

with additive, nonadditive.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.

See also schema, star schema.

source

A database, application, file, or other storage facility from which the data in a data

warehouse is derived.

star schema

A relational schema whose design represents a multidimensional data model. The

star schema consists of one or more fact tables and one or more dimension tables

that are related through foreign keys. See also schema, snowflake schema.
 Glossary A-7

subject area

A classification system that represents or distinguishes parts of an organization or

areas of knowledge. A data mart is often developed to support a subject area such

as sales, marketing, or geography. See also data mart.

table

A layout of data in columns.

target

Holds the intermediate or final results of any part of the ETL process. The target of

the entire ETL process is the data warehouse. See also data warehouse, ETL.

transformation

The process of manipulating data. Any manipulation beyond copying is a

transformation. Examples include cleansing, aggregating, and integrating data from

multiple sources.

transportation

The process of moving copied or transformed data from a source to a data

warehouse. See also transformation.

validation

The process of verifying metadata definitions and configuration parameters.

versioning

The ability to create new versions of a data warehouse project for new requirements

and changes.
A-8 Data Warehousing Guide

Sample Data Warehousing Sc
B

Sample Data Warehousing Schema

This appendix introduces a common schema (Sales History) that is used in this

guide. Most of the examples throughout this book use the same, simple star schema.

This schema consists of four dimension tables and a single fact table (called sales)

partitioned by month. The definitions of these tables follow:

CREATE TABLE times
(
 time_id DATE,
 day_name VARCHAR2(9)
 CONSTRAINT tim_day_name_nn NOT NULL,
 day_number_in_week NUMBER(1)
 CONSTRAINT tim_day_in_week_nn NOT NULL,
 day_number_in_month NUMBER(2)
 CONSTRAINT tim_day_in_month_nn NOT NULL,
 calendar_week_number NUMBER(2)
 CONSTRAINT tim_cal_week_nn NOT NULL,
 fiscal_week_number NUMBER(2)
 CONSTRAINT tim_fis_week_nn NOT NULL,
 week_ending_day DATE
 CONSTRAINT tim_week_ending_day_nn NOT NULL,
 calendar_month_number NUMBER(2)
 CONSTRAINT tim_cal_month_number_nn NOT NULL,
 fiscal_month_number NUMBER(2)
 CONSTRAINT tim_fis_month_number_nn NOT NULL,
 calendar_month_desc VARCHAR2(8)
 CONSTRAINT tim_cal_month_desc_nn NOT NULL,
 fiscal_month_desc VARCHAR2(8)
 CONSTRAINT tim_fis_month_desc_nn NOT NULL,
 days_in_cal_month NUMBER
 CONSTRAINT tim_days_cal_month_nn NOT NULL,
 days_in_fis_month NUMBER
 CONSTRAINT tim_days_fis_month_nn NOT NULL,
hema B-1

 end_of_cal_month DATE
 CONSTRAINT tim_end_of_cal_month_nn NOT NULL,
 end_of_fis_month DATE
 CONSTRAINT tim_end_of_fis_month_nn NOT NULL,
 calendar_month_name VARCHAR2(9)
 CONSTRAINT tim_cal_month_name_nn NOT NULL,
 fiscal_month_name VARCHAR2(9)
 CONSTRAINT tim_fis_month_name_nn NOT NULL,
 calendar_quarter_desc CHAR(7)
 CONSTRAINT tim_cal_quarter_desc_nn NOT NULL,
 fiscal_quarter_desc CHAR(7)
 CONSTRAINT tim_fis_quarter_desc_nn NOT NULL,
 days_in_cal_quarter NUMBER
 CONSTRAINT tim_days_cal_quarter_nn NOT NULL,
 days_in_fis_quarter NUMBER
 CONSTRAINT tim_days_fis_quarter_nn NOT NULL,
 end_of_cal_quarter DATE
 CONSTRAINT tim_end_of_cal_quarter_nn NOT NULL,
 end_of_fis_quarter DATE
 CONSTRAINT tim_end_of_fis_quarter_nn NOT NULL,
 calendar_quarter_number NUMBER(1)
 CONSTRAINT tim_cal_quarter_number_nn NOT NULL,
 fiscal_quarter_number NUMBER(1)
 CONSTRAINT tim_fis_quarter_number_nn NOT NULL,
 calendar_year NUMBER(4)
 CONSTRAINT tim_cal_year_nn NOT NULL,
 fiscal_year NUMBER(4)
 CONSTRAINT tim_fis_year_nn NOT NULL,
 days_in_cal_year NUMBER
 CONSTRAINT tim_days_cal_year_nn NOT NULL,
 days_in_fis_year NUMBER
 CONSTRAINT tim_days_fis_year_nn NOT NULL,
 end_of_cal_year DATE
 CONSTRAINT tim_end_of_cal_year_nn NOT NULL,
 end_of_fis_year DATE
 CONSTRAINT tim_end_of_fis_year_nn NOT NULL
);
B-2 Data Warehousing Guide

REM creation of dimension table CHANNELS ...
CREATE TABLE channels
(
 channel_id CHAR(1),
 channel_desc VARCHAR2(20)
 CONSTRAINT chan_desc_nn NOT NULL,
 channel_class VARCHAR2(20)
);

REM creation of dimension table PROMOTIONS ...
CREATE TABLE promotions
(
 promo_id NUMBER(6),
 promo_name VARCHAR2(20)
 CONSTRAINT promo_name_nn NOT NULL,
 promo_subcategory VARCHAR2(30)
 CONSTRAINT promo_subcat_nn NOT NULL,
 promo_category VARCHAR2(30)
 CONSTRAINT promo_cat_nn NOT NULL,
 promo_cost NUMBER(10,2)
 CONSTRAINT promo_cost_nn NOT NULL,
 promo_begin_date DATE
 CONSTRAINT promo_begin_date_nn NOT NULL,
 promo_end_date DATE
 CONSTRAINT promo_end_date_nn NOT NULL
);

REM creation of dimension table COUNTRIES ...
CREATE TABLE countries
(
 country_id CHAR(2),
 country_name VARCHAR2(40)
 CONSTRAINT country_country_name_nn NOT NULL,
 country_subregion VARCHAR2(30),
 country_region VARCHAR2(20)
);
Sample Data Warehousing Schema B-3

CREATE TABLE customers
(
 cust_id NUMBER,
 cust_first_name VARCHAR2(20)
 CONSTRAINT customer_fname_nn NOT NULL,
 cust_last_name VARCHAR2(40)
 CONSTRAINT customer_lname_nn NOT NULL,
 cust_gender CHAR(1),
 cust_year_of_birth NUMBER(4),
 cust_marital_status VARCHAR2(20),
 cust_street_address VARCHAR2(40)
 CONSTRAINT customer_st_addr_nn NOT NULL,
 cust_postal_code VARCHAR2(10)
 CONSTRAINT customer_pcode_nn NOT NULL,
 cust_city VARCHAR2(30)
 CONSTRAINT customer_city_nn NOT NULL,
 cust_state_province VARCHAR2(40),
 country_id CHAR(2)
 CONSTRAINT customer_country_id_nn NOT NULL,
 cust_main_phone_number VARCHAR2(25),
 cust_income_level VARCHAR2(30),
 cust_credit_limit NUMBER,
 cust_email VARCHAR2(30)
);

REM creation of dimension table PRODUCTS ...
CREATE TABLE products
(
 prod_id NUMBER(6),
 prod_name VARCHAR2(50)
 CONSTRAINT products_prod_name_nn NOT NULL,
 prod_desc VARCHAR2(4000)
 CONSTRAINT products_prod_desc_nn NOT NULL,
 prod_subcategory VARCHAR2(50)
 CONSTRAINT products_prod_subcat_nn NOT NULL,
 prod_subcat_desc VARCHAR2(2000)
 CONSTRAINT products_prod_subcatd_nn NOT NULL,
 prod_category VARCHAR2(50)
 CONSTRAINT products_prod_cat_nn NOT NULL,
 prod_cat_desc VARCHAR2(2000)
 CONSTRAINT products_prod_catd_nn NOT NULL,
 prod_weight_class NUMBER(2),
 prod_unit_of_measure VARCHAR2(20),
 prod_pack_size VARCHAR2(30),
 supplier_id NUMBER(6),
B-4 Data Warehousing Guide

 prod_status VARCHAR2(20)
 CONSTRAINT products_prod_stat_nn NOT NULL,
 prod_list_price NUMBER(8,2)
 CONSTRAINT products_prod_list_price_nn NOT NULL,
 prod_min_price NUMBER(8,2)
 CONSTRAINT products_prod_min_price_nn NOT NULL
);

REM creation of fact table SALES ...
CREATE TABLE sales
(
 prod_id NUMBER(6)
 CONSTRAINT sales_product_nn NOT NULL,
 cust_id NUMBER
 CONSTRAINT sales_customer_nn NOT NULL,
 time_id DATE
 CONSTRAINT sales_time_nn NOT NULL,
 channel_id CHAR(1)
 CONSTRAINT sales_channel_nn NOT NULL,
 promo_id NUMBER(6),
 quantity_sold NUMBER(3)
 CONSTRAINT sales_quantity_nn NOT NULL,
 amount NUMBER(10,2)
 CONSTRAINT sales_amount_nn NOT NULL,
 cost NUMBER(10,2)
 CONSTRAINT sales_cost_nn NOT NULL
)

PARTITION BY RANGE (time_id)
(PARTITION Q1_1998 VALUES LESS THAN (TO_DATE('01-APR-1998','DD-MON-YYYY')),
 PARTITION Q2_1998 VALUES LESS THAN (TO_DATE('01-JUL-1998','DD-MON-YYYY')),
 PARTITION Q3_1998 VALUES LESS THAN (TO_DATE('01-OCT-1998','DD-MON-YYYY')),
 PARTITION Q4_1998 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY')),
 PARTITION Q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION Q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION Q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION Q4_1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')),
 PARTITION Q1_2000 VALUES LESS THAN (TO_DATE('01-APR-2000','DD-MON-YYYY')),
 PARTITION Q2_2000 VALUES LESS THAN (TO_DATE('01-JUL-2000','DD-MON-YYYY')),
 PARTITION Q3_2000 VALUES LESS THAN (TO_DATE('01-OCT-2000','DD-MON-YYYY')),
 PARTITION Q4_2000 VALUES LESS THAN (MAXVALUE))
 ;
Sample Data Warehousing Schema B-5

REM A foreign-key relationship between SALES and PROMOTIONS is
REM intentionally omitted to demonstrate more sophisticated query
REM rewrite mechanisms

ALTER TABLE sales
ADD (CONSTRAINT sales_product_fk
 FOREIGN KEY (prod_id)
 REFERENCES products,
 CONSTRAINT sales_customer_fk
 FOREIGN KEY (cust_id)
 REFERENCES customers,
 CONSTRAINT sales_time_fk
 FOREIGN KEY (time_id)
 REFERENCES times,
 CONSTRAINT sales_channel_fk
 FOREIGN KEY (channel_id)
 REFERENCES channels
);
COMMIT;
B-6 Data Warehousing Guide

Index

A
access

controlling to change data, 15-3

adaptive multiuser

algorithm for, 21-47

definition, 21-47

affinity

parallel DML, 21-78

partitions, 21-77

aggregates, 8-7, 8-10, 22-62

computability check, 22-41

ALL_PUBLISHED_COLUMNS view, 15-10

ALL_SOURCE_TABLES view, 15-10, 15-13

ALTER MATERIALIZED VIEW statement, 8-23

enabling query rewrite, 22-7

ALTER SESSION statement

ENABLE PARALLEL DML clause, 21-21

FORCE PARALLEL DDL clause, 21-42, 21-45

create or rebuild index, 21-43, 21-46

create table as select, 21-44, 21-45

move or split partition, 21-43, 21-46

FORCE PARALLEL DML clause

insert, 21-41, 21-42, 21-45

update and delete, 21-39, 21-40, 21-45

ALTER TABLE statement

NOLOGGING clause, 21-95

altering dimensions, 9-13

analyzing data

for parallel processing, 21-71

APPEND hint, 21-95

applications

data warehouses

star queries, 17-2

decision support, 21-2

decision support systems (DSS), 6-3

parallel SQL, 21-14

direct-path INSERT, 21-21

parallel DML, 21-20

ARCH processes

multiple, 21-91

architecture

MPP, 21-78

SMP, 21-78

asynchronous I/O, 21-66

attributes, 9-6

B
backups

disk mirroring, 4-11

bandwidth, 5-2, 21-2

bitmap indexes, 6-2

nulls and, 6-5

on partitioned tables, 6-6

parallel query and DML, 6-3

bitmap join indexes, 6-6

block range granules, 5-3

B-tree indexes, 6-10

bitmap indexes versus, 6-3

buffer pools

setting for parallel operations, 21-81

build methods, 8-24

C
cardinality, 6-3

CASE expressions, 19-44

change

capture, 11-5

data capture, 11-5

change data

controlling access to, 15-3

publishing, 15-3

Change Data Capture, 15-1

database extraction advantages, 15-2

DBMS_LOGMNR_CDC_PUBLISH

package, 15-11

change data capture, 11-5

change sets

definition, 15-7

SYNC_SET, 15-7

change source
 Index-1

definition, 15-6

SYNC_SOURCE, 15-6

change tables

columns in, 15-8

contain published data, 15-3

definition, 15-7

importing for Change Data Capture, 15-18

CHANGE_SETS view, 15-10

CHANGE_SOURCES view, 15-10

CHANGE_TABLES view, 15-10

CLUSTER_DATABASE_INSTANCES parameter

and parallel execution, 21-57

columns

cardinality, 6-3

in a change table, 15-8

common joins, 22-32

COMPATIBLE parameter, 13-29, 22-8

COMPLETE clause, 8-27

complete refresh, 14-10

complex queries

snowflake schemas, 17-3

composite columns, 18-21

composite partitioning methods, 5-8

performance considerations, 5-12

concatenated groupings, 18-24

concurrent users

increasing the number of, 21-50

CONSIDER FRESH clause, 14-26

constraints, 7-2, 9-11

foreign key, 7-5

parallel create table, 21-43

RELY, 7-6

unique, 7-4

view, 7-7, 22-14

with partitioning, 7-7

with query rewrite, 22-61

cost

data warehousing with and without Change Data

Capture, 15-2

cost-based optimizations, 21-100

parallel execution, 21-100

cost-based rewrite, 22-3

CPU

utilization, 5-2, 21-2

CREATE DIMENSION statement, 9-4

CREATE INDEX statement, 21-93

rules of parallelism, 21-43

CREATE MATERIALIZED VIEW statement, 8-23

enabling query rewrite, 22-7

CREATE SNAPSHOT statement, 8-3

CREATE TABLE AS SELECT statement, 21-70,

21-86

rules of parallelism

index-organized tables, 21-14

CREATE TABLE statement

AS SELECT

decision support systems, 21-14

rules of parallelism, 21-43

space fragmentation, 21-16

temporary storage space, 21-16

parallelism, 21-14

index-organized tables, 21-14

CUBE clause, 18-10

partial, 18-12

when to use, 18-10

with query rewrite (and also) ROLLUP

clause with query rewrite, 22-50

CUME_DIST function, 19-13

D
data

integrity of

parallel DML restrictions, 21-26

partitioning, 5-4

purging, 14-8

sufficiency check, 22-37

transformation, 13-8

transportation, 12-2

data cubes

hierarchical, 18-26

data manipulation language

parallel DML, 21-18

transaction model for parallel DML, 21-22

data marts, 1-7

data warehouses, 8-2

architectures, 1-5

dimension tables

(lookup tables), 8-7

dimensions, 17-2
 Index-2

fact tables (detail tables), 8-7

partitioned tables, 5-9

refresh tips, 14-15

refreshing table data, 21-20

star queries, 17-2

data warehousing

refreshing table data, 21-20

database

extraction with and without Change Data

Capture, 15-2

database extraction

with and without Change Data Capture, 15-2

database writer process (DBWn)

tuning, 21-92

databases

scalability, 21-20

staging, 8-2

date folding

with query rewrite, 22-18

DB_BLOCK_SIZE parameter, 21-66

and parallel query, 21-66

DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 21-66

DBA_DATA_FILES view, 21-72

DBA_EXTENTS view, 21-72

DBA_PUBLISHED_COLUMNS view, 15-10

DBA_SOURCE_TABLES view, 15-10

DBA_SUBSCRIBED_COLUMNS view, 15-10

DBA_SUBSCRIBED_TABLES view, 15-10

DBA_SUBSCRIPTIONS view, 15-10

DBMS_LOGMNR_CDC_PUBLISH package, 15-3

DBMS_LOGMNR_CDC_SUBSCRIBE

package, 15-3

DBMS_MVIEW package, 14-11

EXPLAIN_MVIEW procedure, 8-43

EXPLAIN_REWRIITE procedure, 22-56

REFRESH procedure, 14-9, 14-12

REFRESH_ALL_MVIEWS procedure, 14-9

REFRESH_DEPENDENT procedure, 14-9

DBMS_OLAP package, 16-3, 16-5

ADD_FILTER_ITEM procedure, 16-18

LOAD_WORKLOAD_TRACE procedure, 16-12

PURGE_FILTER procedure, 16-23

PURGE_RESULTS procedure, 16-32

PURGE_WORKLOAD procedure, 16-18

SET_CANCELLED procedure, 16-32

DBMS_STATS package, 16-5, 22-3

decision support systems (DSS)

bitmap indexes, 6-3

disk striping, 21-78

parallel DML, 21-20

parallel SQL, 21-14, 21-20

performance, 21-20

processes, 21-81

scoring tables, 21-21

degree of parallelism, 21-32, 21-38, 21-40

and adaptive multiuser, 21-46

between query operations, 21-9

parallel SQL, 21-34

DELETE statement

parallel DELETE statement, 21-39

DEMO_DIM package, 9-10

DENSE_RANK function, 19-5

design

logical, 3-2

physical, 3-2

detail tables, 8-7

dimension tables, 2-5, 8-7, 17-2

normalized, 9-9

Dimension Wizard, 9-10

dimensional modeling, 2-3

dimensions, 2-6, 9-2, 9-11

altering, 9-13

creating, 9-4

definition, 9-2

dimension tables (lookup tables), 8-7

dropping, 9-14

hierarchies, 2-6

hierarchies overview, 2-6

multiple, 18-3

star joins, 17-3

star queries, 17-2

validating, 9-12

with query rewrite, 22-61

direct-path INSERT

external fragmentation, 21-84

restrictions, 21-24

disk affinity

disabling with MPP, 4-6

parallel DML, 21-78
 Index-3

partitions, 21-77

with MPP, 21-88

disk striping

affinity, 21-77

DISK_ASYNCH_IO parameter, 21-66

distributed transactions

parallel DDL restrictions, 21-11

parallel DML restrictions, 21-11, 21-27

DML statements

captured by Change Data Capture, 15-4

DML_LOCKS parameter, 21-63

drilling down, 9-2

hierarchies, 9-2

DROP MATERIALIZED VIEW statement, 8-23

prebuilt tables, 8-32

dropping

dimensions, 9-14

materialized views, 8-42

E
ENFORCED mode, 22-10

ENQUEUE_RESOURCES parameter, 21-63

estimating materialized view size, 16-37

EVALUATE_MVIEW_STRATEGY package, 16-38

EXCHANGE PARTITION statement, 7-7

execution plans

parallel operations, 21-69

star transformations, 17-7

EXPLAIN PLAN statement, 21-69, 22-55

query parallelization, 21-89

star transformations, 17-7

exporting

EXP utility, 11-10

exporting a source table

change data capture, 15-18

expression matching

with query rewrite, 22-17

extend window

to create a new view, 15-3

extents

parallel DDL, 21-16

size, 13-29

temporary, 21-87

external tables, 13-6

extraction, transformation, loading (ETL)

overview, 10-2

process, 7-2

extractions

data files, 11-8

distributed operations, 11-11

full, 11-3

incremental, 11-3

OCI, 11-10

online, 11-4

overview, 11-2

physical, 11-4

Pro*C, 11-10

SQL*Plus, 11-8

with and without Change Data Capture, 15-2

F
fact tables, 2-5

star joins, 17-3

star queries, 17-2

facts, 9-2

FAST clause, 8-27

fast refresh, 14-11

fast refresh restrictions, 8-27

FAST_START_PARALLEL_ROLLBACK

parameter, 21-63

FIRST/LAST functions, 19-29

FIRST_VALUE function, 19-24

FORCE clause, 8-27

foreign key constraints, 7-5

foreign key joins

snowflake schemas, 17-3

fragmentation

external, 21-84

parallel DDL, 21-16

FREELISTS parameter, 21-91

full partition-wise joins, 5-15

functions

COUNT, 6-5

CUME_DIST, 19-13

DENSE_RANK, 19-5

FIRST/LAST, 19-29

FIRST_VALUE, 19-24

GROUP_ID, 18-18
 Index-4

GROUPING, 18-13

GROUPING_ID, 18-17

LAG/LEAD, 19-28

LAST_VALUE, 19-24

linear regression, 19-32

NTILE, 19-15

PERCENT_RANK, 19-14

RANK, 19-5

ranking, 19-5

RATIO_TO_REPORT, 19-27

REGR_AVGX, 19-33

REGR_AVGY, 19-33

REGR_COUNT, 19-32

REGR_INTERCEPT, 19-33

REGR_SLOPE, 19-33

REGR_SXX, 19-33

REGR_SXY, 19-33

REGR_SYY, 19-33

reporting, 19-24

ROW_NUMBER, 19-16

WIDTH_BUCKET, 19-43

windowing, 19-17

G
global

indexes, 21-90

striping, 4-5

granting access to change data, 15-3

granules, 5-3

block range, 5-3

partition, 5-4

GROUP_ID function, 18-18

grouping

compatibility check, 22-40

conditions, 22-62

GROUPING function, 18-13

when to use, 18-16

GROUPING_ID function, 18-17

GROUPING_SETS expression, 18-19

groups, instance, 21-37

GV$FILESTAT view, 21-71

H
hash areas, 21-81

hash joins, 21-60, 21-81

hash partitioning, 5-7

HASH_AREA_SIZE parameter

and parallel execution, 21-59, 21-60

hierarchies, 9-2

how used, 2-6

multiple, 9-7

overview, 2-6

rolling up and drilling down, 9-2

hints

PARALLEL, 21-35

PARALLEL_INDEX, 21-35

query rewrite, 22-8, 22-9

histograms

creating with user-defined buckets, 19-45

hypothetical rank, 19-39

I
I/O

asynchronous, 21-66

parallel execution, 5-2, 21-2

striping to avoid bottleneck, 4-2

importing a change table

Change Data Capture, 15-18

importing a source table

Change Data Capture, 15-18

indexes

bitmap indexes, 6-6

bitmap join, 6-6

B-tree, 6-10

cardinality, 6-3

creating in parallel, 21-93

global, 21-90

local, 21-90

nulls and, 6-5

parallel creation, 21-93

parallel DDL storage, 21-16

parallel local, 21-93

partitioned tables, 6-6

partitioning, 5-8

STORAGE clause, 21-94

index-organized tables
 Index-5

parallel CREATE, 21-14

parallel queries, 21-11

INITIAL extent size, 13-29, 21-84

INSERT statement

functionality, 21-95

parallelizing INSERT ... SELECT, 21-41

instance groups for parallel operations, 21-37

instance recovery

SMON process, 21-24

instances

instance groups, 21-37

integrity rules

parallel DML restrictions, 21-26

interface

publish and subscribe, 15-2

invalidating

materialized views, 8-41

J
Java

used by Change Data Capture, 15-8

JOB_QUEUE_PROCESSES parameter, 14-15

join compatibility, 22-31

joins

full partition-wise, 5-15

partial partition-wise, 5-20

partition-wise, 5-15

star joins, 17-3

star queries, 17-2

K
key lookups, 13-34

keys, 8-7, 17-2

L
LAG/LEAD functions, 19-28

LARGE_POOL_SIZE parameter, 21-51

LAST_VALUE function, 19-24

level relationships, 2-6

purpose, 2-7

levels, 2-6

linear regression functions, 19-32

load

parallel, 13-31

LOB datatypes

restrictions

parallel DDL, 21-14

parallel DML, 21-25

local indexes, 6-3, 6-6, 21-90

local striping, 4-4

locks

parallel DML, 21-24

LOG_BUFFER parameter

and parallel execution, 21-63

LOGGING clause, 21-92

logging mode

parallel DDL, 21-14, 21-15

logical design, 3-2

lookup tables, 8-7, 17-2

star queries, 17-2

M
manual

refresh, 14-11

striping, 4-4

massively parallel processing (MPP)

affinity, 21-77, 21-78

massively parallel systems, 5-2, 21-2

materialized views

aggregates, 8-10

altering, 8-42

build methods, 8-24

containing only joins, 8-16

creating, 8-22

delta joins, 22-35

dropping, 8-32, 8-42

estimating size, 16-37

invalidating, 8-41

logs, 11-7

naming, 8-23

nested, 8-18

partitioned tables, 14-22

partitioning, 8-34

prebuilt, 8-23

query rewrite

hints, 22-8, 22-9
 Index-6

matching join graphs, 8-25

parameters, 22-8

privileges, 22-10

refresh dependent, 14-13

refreshing, 8-27, 14-9

refreshing all, 14-13

registration, 8-32

restrictions, 8-25

rewrites

enabling, 22-7

schema design guidelines, 8-8

security, 8-41

storage characteristics, 8-23

types of, 8-10

uses for, 8-2

MAXEXTENTS keyword, 13-29, 21-84

MAXEXTENTS UNLIMITED storage

parameter, 21-23

measures, 8-7, 17-2

media recoveries, 21-88

memory

configure at 2 levels, 21-58

process classification, 21-81

virtual, 21-58

merge, 14-5

MERGE statement, 14-5

MINIMUM EXTENT parameter, 21-17

mirroring

disks, 4-10

monitoring

data capture, 15-10

parallel processing, 21-71

refresh, 14-15

MOVE PARTITION statement

rules of parallelism, 21-43

MPP

disk affinity, 4-6

MULTIBLOCK_READ_COUNT parameter, 13-29

multiple archiver processes, 21-91

multiple hierarchies, 9-7

MV_CAPABILITIES_TABLE, 8-44

MVIEW_WORKLOAD view, 16-2

N
nested loop joins, 21-81

nested materialized views, 8-18

refreshing, 14-20

restrictions, 8-21

nested tables

restrictions, 21-13

NEVER clause, 8-27

NEXT extent, 21-84

NOAPPEND hint, 21-95

NOARCHIVELOG mode, 21-93

nodes

disk affinity in a Real Application Cluster, 21-77

NOLOGGING clause, 21-86, 21-92, 21-93

with APPEND hint, 21-95

NOLOGGING mode

parallel DDL, 21-14, 21-15

nonvolatile data, 1-3

NOPARALLEL attribute, 21-85

NOREWRITE hint, 22-8, 22-9

NTILE function, 19-15

nulls

indexes and, 6-5

O
object types

parallel query, 21-12

restrictions, 21-13

restrictions

parallel DDL, 21-14

parallel DML, 21-25

OLTP database

batch jobs, 21-21

parallel DML, 21-20

ON COMMIT clause, 8-26

ON DEMAND clause, 8-26

online transaction processing (OLTP)

processes, 21-81

optimization

parallel SQL, 21-6

optimizations

query rewrite

enabling, 22-7

hints, 22-8, 22-9
 Index-7

matching join graphs, 8-25

query rewrites

privileges, 22-10

OPTIMIZER_MODE parameter, 14-15, 21-100, 22-8

optimizers

with rewrite, 22-2

Oracle Real Application Clusters

disk affinity, 21-77

instance groups, 21-37

parallel load, 13-32

system monitor process and, 21-24

ORDER BY clause, 8-30

outer joins

with query rewrite, 22-61

oversubscribing resources, 21-82

P
paging, 21-82

rate, 21-59

subsystem, 21-82

PARALLEL clause, 21-95

parallelization rules, 21-38

PARALLEL CREATE INDEX statement, 21-62

PARALLEL CREATE TABLE AS SELECT statement

external fragmentation, 21-84

resources required, 21-62

parallel DDL, 21-13

extent allocation, 21-16

parallelization rules, 21-38

partitioned tables and indexes, 21-13

restrictions

LOBs, 21-14

object types, 21-13, 21-14

parallel delete, 21-39

parallel DELETE statement, 21-39

parallel DML, 21-18

applications, 21-20

bitmap indexes, 6-3

degree of parallelism, 21-38, 21-40

enabling PARALLEL DML, 21-21

lock and enqueue resources, 21-24

parallelization rules, 21-38

recovery, 21-23

restrictions, 21-24

object types, 21-13, 21-25

remote transactions, 21-27

rollback segments, 21-23

transaction model, 21-22

parallel execution

cost-based optimization, 21-100

I/O parameters, 21-65

index creation, 21-93

interoperator parallelism, 21-9

intraoperator parallelism, 21-9

introduction, 5-2

maximum processes, 21-80

method of, 21-31

plans, 21-69

process classification, 4-2, 4-6, 4-9, 4-12

resource parameters, 21-58

rewriting SQL, 21-85

solving problems, 21-84

space management, 21-83

tuning, 5-2, 21-2

understanding performance issues, 21-80

PARALLEL hint, 21-35, 21-85, 21-95

parallelization rules, 21-38

UPDATE and DELETE, 21-39

parallel load

example, 13-31

Oracle Real Application Clusters, 13-32

using, 13-26

parallel partition-wise joins

performance considerations, 5-24

parallel query, 21-11

bitmap indexes, 6-3

index-organized tables, 21-11

object types, 21-12

restrictions, 21-13

parallelization rules, 21-38

parallel scan operations, 4-3

parallel SQL

allocating rows to parallel execution

servers, 21-7

degree of parallelism, 21-34

instance groups, 21-37

number of parallel execution servers, 21-3

optimizer, 21-6

parallelization rules, 21-38
 Index-8

shared server, 21-4

summary or rollup tables, 21-14

parallel update, 21-39

parallel UPDATE statement, 21-39

PARALLEL_ADAPTIVE_MULTI_USER

parameter, 21-47

PARALLEL_AUTOMATIC_TUNING

parameter, 21-30

PARALLEL_BROADCAST_ENABLE

parameter, 21-62

PARALLEL_EXECUTION_MESSAGE_SIZE

parameter, 21-61

PARALLEL_INDEX hint, 21-35

PARALLEL_MAX_SERVERS parameter, 14-15,

21-4, 21-50

and parallel execution, 21-49

PARALLEL_MIN_PERCENT parameter, 21-36,

21-49, 21-57

PARALLEL_MIN_SERVERS parameter, 21-3, 21-4,

21-51

PARALLEL_THREADS_PER_CPU

parameter, 21-30, 21-48

parallelism

degree, 21-32

degree, overriding, 21-84

enabing for tables and queries, 21-46

interoperator, 21-9

intraoperator, 21-9

parameters

CLUSTER_DATABASE_INSTANCES, 21-57

COMPATIBLE, 13-29, 22-8

DB_BLOCK_SIZE, 21-66

DB_FILE_MULTIBLOCK_READ_

COUNT, 21-66

DISK_ASYNCH_IO, 21-66

DML_LOCKS, 21-63

ENQUEUE_RESOURCES, 21-63

FAST_START_PARALLEL_ROLLBACK, 21-63

FREELISTS, 21-91

HASH_AREA_SIZE, 21-59

JOB_QUEUE_PROCESSES, 14-15

LARGE_POOL_SIZE, 21-51

LOG_BUFFER, 21-63

MULTIBLOCK_READ_COUNT, 13-29

OPTIMIZER_MODE, 14-15, 21-100, 22-8

PARALLEL_ADAPTIVE_MULTI_USER, 21-47

PARALLEL_AUTOMATIC_TUNING, 21-30

PARALLEL_BROADCAST_ENABLE, 21-62

PARALLEL_EXECUTION_MESSAGE_

SIZE, 21-61

PARALLEL_MAX_SERVERS, 14-15, 21-4, 21-50

PARALLEL_MIN_PERCENT, 21-36, 21-49,

21-57

PARALLEL_MIN_SERVERS, 21-3, 21-4, 21-51

PARALLEL_THREADS_PER_CPU, 21-30

PGA_AGGREGATE_TARGET, 14-15

QUERY_REWRITE_ENABLED, 22-7, 22-8

ROLLBACK_SEGMENTS, 21-63

SHARED_POOL_SIZE, 21-51, 21-56

SORT_AREA_SIZE, 21-60

STAR_TRANSFORMATION_ENABLED, 17-4

TAPE_ASYNCH_IO, 21-66

TIMED_STATISTICS, 21-72

TRANSACTIONS, 21-62

partial partition-wise joins, 5-20

Partition Change Tracking (PCT), 8-34, 14-22

partition granules, 5-4

partitioned tables

data warehouses, 5-9

example, 13-29

partitioning, 11-7

composite, 5-8

data, 5-4

hash, 5-7

indexes, 5-8

materialized views, 8-34

prebuilt tables, 8-39

range, 5-6

partitions

affinity, 21-77

bitmap indexes, 6-6

parallel DDL, 21-13

partition pruning

disk striping and, 21-78

pruning, 5-13

range partitioning

disk striping and, 21-78

rules of parallelism, 21-43, 21-45

partition-wise joins, 5-15

benefits of, 5-23
 Index-9

PERCENT_RANK function, 19-14

performance

DSS database, 21-20

PGA_AGGREGATE_TARGET parameter, 14-15

physical design, 3-2

pivoting, 13-35

PL/SQL packages

for publish and subscribe tasks, 15-3

plans

star transformations, 17-7

prebuilt materialized views, 8-23

PRIMARY KEY constraints, 21-94

process monitor process (PMON)

parallel DML process recovery, 21-23

processes

and memory contention in parallel

processing, 21-50

classes of parallel execution, 4-2, 4-6, 4-9, 4-12

DSS, 21-81

maximum number, 21-80

maximum number for parallel query, 21-80

OLTP, 21-81

pruning

partitions, 5-13, 21-78

using DATE columns, 5-14

publication

definition, 15-7

publisher

tasks, 15-3

publishers

capture data, 15-3

determines the source tables, 15-3

publish change data, 15-3

purpose, 15-3

purging data, 14-8

Q
queries

ad hoc, 21-14

enabling parallelism for, 21-46

star queries, 17-2

query delta joins, 22-34

query rewrite

controlling, 22-8

correctness, 22-10

enabling, 22-7

hints, 22-8, 22-9

matching join graphs, 8-25

methods, 22-11

parameters, 22-8

privileges, 22-10

restrictions, 8-25

when it occurs, 22-4

QUERY_REWRITE_ENABLED parameter, 22-7,

22-8

R
RAID, 21-88

configurations, 4-9

range partitioning, 5-6

performance considerations, 5-9

RANK function, 19-5

ranking functions, 19-5

RATIO_TO_REPORT function, 19-27

REBUILD INDEX PARTITION statement

rules of parallelism, 21-43

REBUILD INDEX statement

rules of parallelism, 21-43

recovery

instance recovery

parallel DML, 21-24

SMON process, 21-24

media, with striping, 4-10

parallel DML, 21-23

redo buffer allocation retries, 21-63

reference tables, 8-7

refresh

monitoring, 14-15

options, 8-26

refreshing

materialized views, 14-9

nested materialized views, 14-20

partitioning, 14-2

REGR_AVGX function, 19-33

REGR_AVGY function, 19-33

REGR_COUNT function, 19-32

REGR_INTERCEPT function, 19-33

REGR_R2 function, 19-33
 Index-10

REGR_SLOPE function, 19-33

REGR_SXX function, 19-33

REGR_SXY function, 19-33

REGR_SYY function, 19-33

regression

detecting, 21-68

RELY constraints, 7-6

remote transactions

parallel DML and DDL restrictions, 21-11

replication

restrictions

parallel DML, 21-25

reporting functions, 19-24

resources

consumption, parameters affecting, 21-58

consumption, parameters affecting parallel

DML/DDL, 21-62

limiting for users, 21-50

limits, 21-49

oversubscribing, 21-82

parallel query usage, 21-58

restrictions

direct-path INSERT, 21-24

fast refresh, 8-27

nested materialized views, 8-21

nested tables, 21-13

parallel DDL, 21-14

remote transactions, 21-11

parallel DML, 21-24

remote transactions, 21-11, 21-27

query rewrite, 8-25

result set, 17-5

revoking access to change data, 15-3

REWRITE hint, 22-8, 22-9

rewrites

hints, 22-9

parameters, 22-8

privileges, 22-10

query optimizations

hints, 22-8, 22-9

matching join graphs, 8-25

rollback segments, 21-63

MAXEXTENTS UNLIMITED, 21-23

OPTIMAL, 21-23

parallel DML, 21-23

ROLLBACK_SEGMENTS parameter, 21-63

rolling up hierarchies, 9-2

ROLLUP, 18-7

partial, 18-8

when to use, 18-7

root level, 2-6

ROW_NUMBER function, 19-16

RULE hint, 21-100

S
sar UNIX command, 21-77

scalability

batch jobs, 21-21

parallel DML, 21-20

scalable operations, 21-88

schemas, 17-2

design guidelines for materialized views, 8-8

snowflake, 2-3

star, 2-3

star schemas, 17-2

third-normal form, 17-2

security

Change Data Capture, 15-8

subscriber access to change data, 15-8

SELECT privilege

granting and revoking for access to change

data, 15-3

sessions

enabling parallel DML, 21-21

SGA size, 21-58

shared server

parallel SQL execution, 21-4

SHARED_POOL_SIZE parameter, 21-51, 21-56

single table aggregate requirements, 8-13

skewing parallel DML workload, 21-37

SMP architecture

disk affinity, 21-78

snowflake schemas, 17-3

complex queries, 17-3

SORT_AREA_SIZE parameter, 21-60

and parallel execution, 21-60

source systems, 11-2

definition, 15-6

source tables
 Index-11

definition, 15-6

exporting for Change Data Capture, 15-18

importing for Change Data Capture, 15-18

space management, 21-87

MINIMUM EXTENT parameter, 21-17

parallel DDL, 21-16

parallel execution, 21-83

reducing transactions, 21-84

SPLIT PARTITION statement

rules of parallelism, 21-43

SQL statements

parallelizing, 21-3, 21-6

SQL*Loader, 13-26

staging

areas, 1-6

databases, 8-2

files, 8-2

with and without Change Data Capture, 15-2

STALE_TOLERATED mode, 22-10

star joins, 17-3

star queries, 17-2

star transformation, 17-5

star schemas

advantages, 2-4

defining fact tables, 2-5

dimensional model, 2-4, 17-2

star transformations, 17-2, 17-5

restrictions, 17-10

STAR_TRANSFORMATION_ENABLED

parameter, 17-4

statistics, 22-63

estimating, 21-69

operating system, 21-77

storage

fragmentation in parallel DDL, 21-16

STORAGE clause

parallel execution, 21-16

parallel query, 21-94

storage parameters

MAXEXTENTS UNLIMITED, 21-23

OPTIMAL (in rollback segments), 21-23

striping

analyzing, 4-6

example, 13-26

local, 4-4

manual, 4-4

media recovery, 4-10

temporary tablespace, 21-88

subqueries

in DDL statements, 21-14

subscriber

definition, 15-5

subscriber views

definition, 15-7

dropping, 15-3

removing, 15-3

subscribers

access to change data, 15-8

drop the subscriber view, 15-3

drop the subscription, 15-3

extend the window to create a new view, 15-3

purge the subscription window, 15-3

purpose, 15-3

removing subscriber views, 15-3

retrieve change data from the subscriber

views, 15-3

subscribe to source tables, 15-3

tasks, 15-3

subscription window

purging, 15-3

Summary Advisor, 16-2

Wizard, 16-6

summary management, 8-5

summary tables, 2-5

symmetric multiprocessors, 5-2, 21-2

SYNC_SET change set

system-generated change set, 15-7

SYNC_SOURCE change source

system-generated change source, 15-6

synchronous data capture, 15-11

system monitor process (SMON)

Oracle Real Application Clusters and, 21-24

parallel DML instance recovery, 21-24

parallel DML system recovery, 21-24

T
table queues, 21-73

tables

detail tables, 8-7
 Index-12

dimension tables (lookup tables), 8-7

dimensions

star queries, 17-2

enabling parallelism for, 21-46

external, 13-6

fact tables, 8-7

star queries, 17-2

historical, 21-21

lookup tables (dimension tables), 17-2

parallel creation, 21-14

parallel DDL storage, 21-16

refreshing in data warehouse, 21-20

STORAGE clause with parallel execution, 21-16

summary or rollup, 21-14

tablespaces

creating, example, 13-27

dedicated temporary, 21-87

transportable, 11-5, 12-3, 12-6

TAPE_ASYNCH_IO parameter, 21-66

temporary extents, 21-87

temporary segments

parallel DDL, 21-16

temporary tablespaces

striping, 21-88

text match, 22-12

with query rewrite, 22-62

third-normal-form schemas, 17-2

TIMED_STATISTICS parameter, 21-72

timestamps, 11-6

transactions

distributed

parallel DDL restrictions, 21-11

parallel DML restrictions, 21-11, 21-27

rate, 21-83

TRANSACTIONS parameter, 21-62

transformations, 13-2

scenarios, 13-26

SQL and PL/SQL, 13-9

SQL*Loader, 13-5

star, 17-2

transportable tablespaces, 11-5, 12-3, 12-6

transportation

definition, 12-2

distributed operations, 12-2

flat files, 12-2

triggers, 11-7

restrictions, 21-27

parallel DML, 21-25

TRUSTED mode, 22-10

two-phase commit, 21-62

U
unique constraints, 7-4, 21-94

UNLIMITED extents, 21-23

update frequencies, 8-50

UPDATE statement

parallel UPDATE statement, 21-39

update windows, 8-50

upsert (now merge), 13-11

user resources

limiting, 21-50

USER_PUBLISHED_COLUMNS view, 15-10

USER_SOURCE_TABLES view, 15-10

USER_SUBSCRIBED_COLUMNS view, 15-10

USER_SUBSCRIBED_TABLES view, 15-10

USER_SUBSCRIPTIONS view, 15-10

V
V$FILESTAT view

and parallel query, 21-72

V$PARAMETER view, 21-73

V$PQ_SESSTAT view, 21-70, 21-72

V$PQ_SYSSTAT view, 21-70

V$PQ_TQSTAT view, 21-70, 21-73

V$PX_PROCESS view, 21-71, 21-72

V$PX_SESSION view, 21-71

V$PX_SESSTAT view, 21-71

V$SESSTAT view, 21-74, 21-77

V$SORT_SEGMENT view, 21-84

V$SYSSTAT view, 21-63, 21-74, 21-92

validating dimensions, 9-12

view constraints, 7-7, 22-14

views

ALL_PUBLISHED_COLUMNS, 15-10

ALL_SOURCE_TABLES, 15-10, 15-13

CHANGE_SETS, 15-10

CHANGE_SOURCES, 15-10

CHANGE_TABLES, 15-10
 Index-13

DBA_DATA_FILES, 21-72

DBA_EXTENTS, 21-72

DBA_PUBLISHED_COLUMNS, 15-10

DBA_SOURCE_TABLES, 15-10

DBA_SUBSCRIBED_COLUMNS, 15-10

DBA_SUBSCRIBED_TABLES, 15-10

DBA_SUBSCRIPTIONS, 15-10

USER_PUBLISHED_COLUMNS, 15-10

USER_SOURCE_TABLES, 15-10

USER_SUBSCRIBED_COLUMNS, 15-10

USER_SUBSCRIBED_TABLES, 15-10

USER_SUBSCRIPTIONS, 15-10

V$FILESTAT, 21-72

V$PARAMETER, 21-73

V$PQ_SESSTAT, 21-72

V$PQ_TQSTAT, 21-73

V$PX_PROCESS, 21-72

V$SESSTAT, 21-74, 21-77

V$SYSSTAT, 21-74

virtual memory, 21-58

vmstat UNIX command, 21-77

W
wait times, 21-83

WIDTH_BUCKET function, 19-43

windowing functions, 19-17

workloads

distribution, 21-70

exceeding, 21-82

skewing, 21-37
Index-14

	Send Us Your Comments
	Preface
	1 Data Warehousing Concepts
	What is a Data Warehouse?
	Subject Oriented
	Integrated
	Nonvolatile
	Time Variant
	Contrasting OLTP and Data Warehousing Environments

	Data Warehouse Architectures
	Data Warehouse Architecture (Basic)
	Data Warehouse Architecture (with a Staging Area)
	Data Warehouse Architecture (with a Staging Area and Data Marts)

	2 Logical Design in Data Warehouses
	Logical versus Physical Design in Data Warehouses
	Creating a Logical Design
	Data Warehousing Schemas
	Star Schemas
	Other Schemas

	Data Warehousing Objects
	Fact Tables
	Dimension Tables
	Unique Identifiers
	Relationships
	Typical Example of Data Warehousing Objects and Their Relationships

	3 Physical Design in Data Warehouses
	Moving from Logical to Physical Design
	Physical Design
	Physical Design Structures
	Tablespaces
	Tables and Partitioned Tables
	Views
	Integrity Constraints
	Indexes and Partitioned Indexes
	Materialized Views
	Dimensions

	4 Hardware and I/O Considerations in Data Warehouses
	Overview of Hardware and I/O Considerations in Data Warehouses
	Why Stripe the Data?
	Automatic Striping
	Manual Striping
	Local and Global Striping
	Analyzing Striping

	RAID Configurations
	RAID 0 (Striping)
	RAID 1 (Mirroring)
	RAID 0+1 (Striping and Mirroring)
	Striping, Mirroring, and Media Recovery
	RAID 5
	The Importance of Specific Analysis

	5 Parallelism and Partitioning in Data Warehouses
	Overview of Parallel Execution
	When to Implement Parallel Execution

	Granules of Parallelism
	Block Range Granules
	Partition Granules

	Partitioning Design Considerations
	Types of Partitioning
	Partition Pruning
	Partition-wise Joins

	6 Indexes
	Bitmap Indexes
	Bitmap Join Indexes

	B-tree Indexes
	Local Indexes Versus Global Indexes

	7 Integrity Constraints
	Why Integrity Constraints are Useful in a Data Warehouse
	Overview of Constraint States
	Typical Data Warehouse Integrity Constraints
	UNIQUE Constraints in a Data Warehouse
	FOREIGN KEY Constraints in a Data Warehouse
	RELY Constraints
	Integrity Constraints and Parallelism
	Integrity Constraints and Partitioning
	View Constraints

	8 Materialized Views
	Overview of Data Warehousing with Materialized Views
	Materialized Views for Data Warehouses
	Materialized Views for Distributed Computing
	Materialized Views for Mobile Computing
	The Need for Materialized Views
	Components of Summary Management
	Terminology
	Schema Design Guidelines for Materialized Views

	Types of Materialized Views
	Materialized Views with Aggregates
	Materialized Views Containing Only Joins
	Nested Materialized Views

	Creating Materialized Views
	Naming
	Storage Characteristics
	Build Methods
	Enabling Query Rewrite
	Query Rewrite Restrictions
	Refresh Options
	ORDER BY Clause
	Materialized View Logs
	Using Oracle Enterprise Manager
	Using Materialized Views with NLS Parameters

	Registering Existing Materialized Views
	Partitioning and Materialized Views
	Partition Change Tracking
	Partitioning a Materialized View
	Partitioning a Prebuilt Table
	Rolling Materialized Views

	Choosing Indexes for Materialized Views
	Invalidating Materialized Views
	Security Issues with Materialized Views
	Altering Materialized Views
	Dropping Materialized Views
	Analyzing Materialized View Capabilities
	Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
	MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
	MV_CAPABILITIES_TABLE Column Details

	Overview of Materialized View Management Tasks

	9 Dimensions
	What are Dimensions?
	Creating Dimensions
	Multiple Hierarchies
	Using Normalized Dimension Tables
	Dimension Wizard

	Viewing Dimensions
	Using The DEMO_DIM Package
	Using Oracle Enterprise Manager

	Using Dimensions with Constraints
	Validating Dimensions
	Altering Dimensions
	Deleting Dimensions

	10 Overview of Extraction, Transformation, and Loading
	Overview of ETL
	ETL Tools
	Daily Operations
	Evolution of the Data Warehouse

	11 Extraction in Data Warehouses
	Overview of Extraction in Data Warehouses
	Understanding Extraction Methods in Data Warehouses
	Logical Extraction Methods
	Physical Extraction Methods
	Change Data Capture

	Data Warehousing Extraction Examples
	Extraction Using Data Files
	Extraction Via Distributed Operations

	12 Transportation in Data Warehouses
	Overview of Transportation in Data Warehouses
	Understanding Transportation Mechanisms in Data Warehouses
	Transportation Using Flat Files
	Transportation Through Distributed Operations
	Transportation Using Transportable Tablespaces

	13 Loading and Transformation
	Overview of Loading and Transformation in Data Warehouses
	Transformation Flow

	Loading Mechanisms
	SQL*Loader
	External Tables
	OCI and Direct-path APIs
	Export/Import

	Transformation Mechanisms
	Transformation Using SQL
	Transformation Using PL/SQL
	Transformation Using Table Functions

	Loading and Transformation Scenarios
	Parallel Load Scenario
	Key Lookup Scenario
	Exception Handling Scenario
	Pivoting Scenarios

	14 Maintaining the Data Warehouse
	Using Partitioning to Improve Data Warehouse Refresh
	Optimizing DML Operations During Refresh
	Implementing an Efficient Merge
	Maintaining Referential Integrity
	Purging Data

	Refreshing Materialized Views
	Complete Refresh
	Fast Refresh
	ON COMMIT Refresh
	Manual Refresh Using the DBMS_MVIEW Package
	Refresh Specific Materialized Views with REFRESH
	Refresh All Materialized Views with REFRESH_ALL_MVIEWS
	Refresh Dependent Materialized Views with REFRESH_DEPENDENT
	Using Job Queues for Refresh
	When Refresh is Possible
	Recommended Initialization Parameters for Parallelism
	Monitoring a Refresh
	Checking the Status of a Materialized View
	Tips for Refreshing Materialized Views with Aggregates
	Tips for Refreshing Materialized Views Without Aggregates
	Tips for Refreshing Nested Materialized Views
	Tips After Refreshing Materialized Views

	Using Materialized Views With Partitioned Tables
	Fast Refresh with Partition Change Tracking
	Fast Refresh with CONSIDER FRESH

	15 Change Data Capture
	About Oracle Change Data Capture
	Publish and Subscribe Model
	Example of a Change Data Capture System
	Components and Terminology for Synchronous Change Data Capture

	Installation and Implementation
	Security
	Columns in a Change Table
	Views
	Synchronous Mode of Data Capture
	Publishing Change Data
	Subscribing to Change Data
	Steps Required to Subscribe to Change Data
	What Happens to Subscriptions When the Publisher Makes Changes

	Export and Import Considerations

	16 Summary Advisor
	Overview of the Summary Advisor in the DBMS_OLAP Package
	Summary Advisor Wizard

	Using the Summary Advisor
	Identifier Numbers
	Workload Management
	Loading a User-Defined Workload
	Loading a Trace Workload
	Loading a SQL Cache Workload
	Validating a Workload
	Removing a Workload
	Using Filters with the Summary Advisor
	Removing a Filter
	Recommending Materialized Views
	SQL Script Generation
	Summary Data Report
	When Recommendations are no Longer Required
	Stopping the Recommendation Process
	Sample Sessions

	Estimating Materialized View Size
	ESTIMATE_MVIEW_SIZE Parameters

	Is a Materialized View Being Used?
	DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure

	17 Schema Modeling Techniques
	Schemas in Data Warehouses
	Star Schemas

	Optimizing Star Queries
	Tuning Star Queries
	Using Star Transformation

	18 SQL for Aggregation in Data Warehouses
	Overview of SQL for Aggregation in Data Warehouses
	Analyzing Across Multiple Dimensions
	Optimized Performance
	An Aggregate Scenario
	Interpreting NULLs in Examples

	ROLLUP Extension to GROUP BY
	When to Use ROLLUP
	ROLLUP Syntax
	Partial Rollup

	CUBE Extension to GROUP BY
	When to Use CUBE
	CUBE Syntax
	Partial CUBE
	Calculating Subtotals without CUBE

	GROUPING Functions
	GROUPING Function
	When to Use GROUPING
	GROUPING_ID Function
	GROUP_ID Function

	GROUPING SETS Expression
	Composite Columns
	Concatenated Groupings
	Concatenated Groupings and Hierarchical Data Cubes

	Considerations when Using Aggregation
	Hierarchy Handling in ROLLUP and CUBE
	Column Capacity in ROLLUP and CUBE
	HAVING Clause Used with GROUP BY Extensions
	ORDER BY Clause Used with GROUP BY Extensions
	Using Other Aggregate Functions with ROLLUP and CUBE

	Computation Using the WITH Clause

	19 SQL for Analysis in Data Warehouses
	Overview of SQL for Analysis in Data Warehouses
	Ranking Functions
	RANK and DENSE_RANK
	Top N Ranking
	Bottom N Ranking
	CUME_DIST
	PERCENT_RANK
	NTILE
	ROW_NUMBER

	Windowing Aggregate Functions
	Treatment of NULLs as Input to Window Functions
	Windowing Functions with Logical Offset
	Cumulative Aggregate Function
	Moving Aggregate Function
	Centered Aggregate Function
	Windowing Aggregate Functions with Logical Offsets
	Variable Sized Window
	Windowing Aggregate Functions with Physical Offsets
	FIRST_VALUE and LAST_VALUE

	Reporting Aggregate Functions
	Reporting Aggregate Example
	RATIO_TO_REPORT

	LAG/LEAD Functions
	LAG/LEAD Syntax

	FIRST/LAST Functions
	FIRST/LAST Syntax
	FIRST/LAST As Regular Aggregates
	FIRST/LAST As Reporting Aggregates

	Linear Regression Functions
	REGR_COUNT
	REGR_AVGY and REGR_AVGX
	REGR_SLOPE and REGR_INTERCEPT
	REGR_R2
	REGR_SXX, REGR_SYY, and REGR_SXY
	Linear Regression Statistics Examples
	Sample Linear Regression Calculation

	Inverse Percentile Functions
	Normal Aggregate Syntax
	Inverse Percentile Restrictions

	Hypothetical Rank and Distribution Functions
	Hypothetical Rank and Distribution Syntax

	WIDTH_BUCKET Function
	WIDTH_BUCKET Syntax

	User-Defined Aggregate Functions
	CASE Expressions
	Creating Histograms with User-defined Buckets

	20 Advanced Analytic Services
	OLAP
	Benefits of OLAP and RDBMS Integration

	Data Mining
	Enabling Data Mining Applications
	Predictions and Insights
	Mining Within the Database Architecture
	Java API

	21 Using Parallel Execution
	Introduction to Parallel Execution Tuning
	When to Implement Parallel Execution
	Operations That Can Be Parallelized
	The Parallel Execution Server Pool
	How Parallel Execution Servers Communicate
	Parallelizing SQL Statements

	Types of Parallelism
	Parallel Query
	Parallel DDL
	Parallel DML
	Parallel Execution of Functions
	Other Types of Parallelism

	Initializing and Tuning Parameters for Parallel Execution
	Selecting Automated or Manual Tuning of Parallel Execution
	Using Automatically Derived Parameter Settings
	Setting the Degree of Parallelism
	How Oracle Determines the Degree of Parallelism for Operations
	Balancing the Workload
	Parallelization Rules for SQL Statements
	Enabling Parallelism for Tables and Queries
	Degree of Parallelism and Adaptive Multiuser: How They Interact
	Forcing Parallel Execution for a Session
	Controlling Performance with the Degree of Parallelism

	Tuning General Parameters for Parallel Execution
	Parameters Establishing Resource Limits for Parallel Operations
	Parameters Affecting Resource Consumption
	Parameters Related to I/O

	Monitoring and Diagnosing Parallel Execution Performance
	Is There Regression?
	Is There a Plan Change?
	Is There a Parallel Plan?
	Is There a Serial Plan?
	Is There Parallel Execution?
	Is The Workload Evenly Distributed?
	Monitoring Parallel Execution Performance with Dynamic Performance Views
	Monitoring Session Statistics
	Monitoring System Statistics
	Monitoring Operating System Statistics

	Affinity and Parallel Operations
	Affinity and Parallel Queries
	Affinity and Parallel DML

	Miscellaneous Parallel Execution Tuning Tips
	Formula for Memory, Users, and Parallel Execution Server Processes
	Setting Buffer Pool Size for Parallel Operations
	Balancing the Formula
	Parallel Execution Space Management Issues
	Overriding the Default Degree of Parallelism
	Rewriting SQL Statements
	Creating and Populating Tables in Parallel
	Creating Temporary Tablespaces for Parallel Sort and Hash Join
	Executing Parallel SQL Statements
	Using EXPLAIN PLAN to Show Parallel Operations Plans
	Additional Considerations for Parallel DML
	Creating Indexes in Parallel
	Parallel DML Tips
	Incremental Data Loading in Parallel
	Using Hints with Cost-Based Optimization

	22 Query Rewrite
	Overview of Query Rewrite
	Cost-Based Rewrite
	When Does Oracle Rewrite a Query?

	Enabling Query Rewrite
	Initialization Parameters for Query Rewrite
	Controlling Query Rewrite
	Privileges for Enabling Query Rewrite
	Accuracy of Query Rewrite

	How Oracle Rewrites Queries
	Text Match Rewrite Methods
	General Query Rewrite Methods
	When are Constraints and Dimensions Needed?

	Special Cases for Query Rewrite
	Query Rewrite Using Partially Stale Materialized Views
	Query Rewrite Using Complex Materialized Views
	Query Rewrite Using Nested Materialized Views
	Query Rewrite with CUBE, ROLLUP, and Grouping Sets

	Did Query Rewrite Occur?
	Explain Plan
	DBMS_MVIEW.EXPLAIN_REWRITE Procedure

	Design Considerations for Improving Query Rewrite Capabilities
	Constraints
	Dimensions
	Outer Joins
	Text Match
	Aggregates
	Grouping Conditions
	Expression Matching
	Date Folding
	Statistics

	A Glossary
	B Sample Data Warehousing Schema
	Index

