Oracle ™ Text

Application Developer’s Guide

Release 9.0.1

June 2001
Part No. A90122-01

ORACLE

Oracle Text Application Developer’s Guide, Release 9.0.1

Part No. A90122-01

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.
Primary Author: Colin McGregor

Contributors: Omar Alonso, Shamim Alpha, Steve Buxton, Chung-Ho Chen, Yun Cheng, Michele
Cyran, Paul Dixon, Mohammad Faisal, Elena Huang, Garret Kaminaga, Ji Sun Kang, Bryn Llewellyn,
Wesley Lin, Yasuhiro Matsuda, Gerda Shank, and Steve Yang.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Oracle Text, Oracle8, Oracle8i, Oracle9i, Oracle Call
Interface, PL/SQL, SQL*Plus, and SQL*Loader are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

SENA US YOUI COMIMENES oottt oottt ettt ee et e et et e e e e e e e e eee e e e eneeeseienenes iX
g =) =01 < O Xi

1 Introduction to Oracle Text

WAt 1S OFACIE TEXE? ...ttt bbbt s e e bbbt s e b et b e b e s be b sbe b e 1-2
Types of QUENY APPLICALIONSc.ooiiiiieire bbb 1-2
Supported DOCUMENT FOIMALScc.civeieiiicicece et e et sresrenns 1-3
Theme Capabilitieso ettt be b 1-3
Query Language and OPEIatOrS.coieiieriierieie ettt sttt sttt sttt 1-3
Document Services and UsSiNg @ TRHESAUIUScccoviveiiieieiece et e e 14
Prerequisites For Building Your Query Application............ccocviiiiiiiieiiieesenescse e 1-4

Loading YOUr TeXt TaBIecoiii e 1-5
Storing Text iNthe TEXE TabIEc.coviieece s 1-6
StOring File Path NAIMEScc.oiiiie ettt sbe s 1-6
SEOFING URLS ...ttt bbbt et b e bbbttt ettt 1-6
Storing Associated Document INFOrmation ... 1-7
SUPPOItEA COIUNMN TYPES ..ttt sttt sttt see bt et et e e st b e e beabe et e sbesbesbeneas 1-7
Supported DOCUMENT FOIMALSc.oiiiiiiieiie et 1-7
[0 To [To 1Y/ 1=1 1 1 To o [S 1-8

INAEXING YOUF DOCUMENTESoiuiiiiitiiteitiieiee ettt sttt st b et e bbbt st e bt ese bt et e besbesbe b e 1-9
TYPE OF INAEX .ttt bbbt bbbt bttt b bbb e b sbe e 1-9
Creating @ CONTEXT INAEX ...vviiiiiiiiieiie ettt sttt sa e enasresneaneas 1-10
Creating @ CTXCAT INAEXiiiiiieieiieie ettt b ettt ebesbesbe b 1-12
Creating @ CTXRULE INAEX ..ottt e 1-12

aT0 (o) Y F= T) (=] T g [R 1-12

A Simple Text QUEry APPHICALIONcciiiiiiii s 1-14
L@ LU =T YT aTo /o 10 T g o 1= SRS 1-16
QUETNYING WIth CONTAINS ..ottt et et et e 1-16
Structured Field SEarching ... 1-17
THESAUTAl QUETIESccueeveitieiiecte ettt ettt ettt ettt be e sbe s te e be st e e be st e e besbe e besasesbeenseabeenresbeanees 1-18
Document SeCtion SEArCRING.........coi i 1-18
Other QUETY FRATUIES........coiiieiiieeie ettt ettt sb et b bbbt b e b ene e 1-18
Presenting the HitliStcooiii i e ere e 1-20
HILHST EXAMIPIE.....eieie bbb ettt b st sbeere s 1-20
Presenting StrUCTUIEd FIEIAScooiiiiiiciee e 1-22
Ordering the HItliSt.........cvoiicce et sre e 1-22
Presenting Document Hit COUNT...........ccoooi it 1-22
Document Presentation and Highlighting...........cccoeiiiies 1-23
Highlighting EXQmPIe.......cociiiieic et re e sne s 1-24
Document List of Themes EXAMPIEcooiiiii e 1-25
GIST EXAMIPIE....c ettt bbb et b bbbt b et eb et r e n e ene e 1-26
Indexing
ADOUL Oracle TEXE INOEXESc.viviiiitiiitiieie ettt bbbttt 2-2
Structure of the Oracle Text CONTEXT INAEX ...c.vciiiiriiriiiriiiriisiesese e 2-2
The Oracle Text INAeXiNgG PrOCESScccciiiiiiiiie sttt se e e aesae e 2-4
Partitioned Tables and INAEXES.......c..ooiiiieiiee e 2-6
ooV L L= I g T (= q T o 2-6
Limitations fOr INAEXINGccooiviiieii et enreanes 2-7
Considerations FOI INAEXING ..ottt 2-8
LD =201 T - SRS 2-9
LOCALION OF TEXL... .ttt bbbt b bt e b bt s et et eb et sbe b 2-10
Document FOrmats and FIltEIING ..o 2-11
Bypassing ROWS fOr INAEXING ..cvovveiiiiicieieec st ene e 2-12
DOCUMENT CHAFACLEE SETc.iiuiiiiiteitiiteie bbb ettt sbe s 2-12
DOCUMENT LANGUAGEeoviiiiiiitiireite ittt et ane s 2-13
INdeXing SPecial CharaClersS.........ccoov i e 2-13
Case-Sensitive Indexing and QUEIYINGccviieiiiiiie et sre s 2-15
Language SPECITiC FEATUIES ...t 2-15

Fuzzy Matching and STEMIMINGccocoviiiiiie e 2-17

Better Wildcard QUEry PerfOrmManCecooviiiiiieiiciniciiest s 2-17
Document SECLION SEAICHINGcviviiiiierere e re e sre e 2-18
StOPWOIrdS and STOPTNEIMIEScc.oiuiiiiee et sne s 2-18
FaTe (=) O =7 1A o] o SO SO PSSR 2-20
Procedure for Creating @ CONTEXT INAEX ...c..cveiiieiiiiecrse e 2-20
Creating PrefErenCESoii ettt te e e te s e te b e nreenes 2-21
Creating Section Groups for Section SEarching ... 2-25
Using StopwWords and STOPIISTS........civiirereriiceec st 2-25
Creating @N INAEXcvcii ettt re e e s te s e teeseesteenbesreensenreenes 2-27
Creating @ CONTEXT INAEXoviuiiiiiiiiiieineisie et 2-27
Creating @ CTXCAT INAEX .ovviiieieiirieie ettt st e e s s e e e e enesresnesnens 2-29
Creating @ CTXRULE INAEXcciiiiiiiieiicc sttt sne s 2-32
INAEX MAINTENANCEooviiiiciieiee ettt sttt e e et et et e st e s e e e st ereebesnesaennas 2-34
AV A=AV YT oo TN [T (=t = g o SR 2-34
DroppinNg QN TNAEXc.coueiiiiiiiiie bbb bbbttt ettt be b e 2-34
ReSUMING FAIEA INAEX ..o 2-34
[T oW T] [[T o 1= U TN T =G 2-35
Dropping @ PrefErENCeceiiiii ettt 2-35
Managing DML Operations for 8 CONTEXT INAEX......cccccoviiiiiiiiiiiieineeeee e 2-36
AV A T=AVAY T oo T =T g Vo [T g TN 0 | SR 2-36
SYNCAIONIZING the TNAEX.....c.iiiie et sre s 2-36
INAEX OPLIMIZATIONc.viiiiiiiiieectee bbbttt 2-37

3 Querying

OVEIVIEW OF QUETTES ...ttt ettt bbbt e e e st e b e bt e neebesbesbesbeneas 3-2
QUErYING WIth CONTAINS ..ot e e resresresnenes 3-2
Querying With CATSEARCH ..ottt 3-4
QUErying WIth MATCHES ..o 3-5
WOrd and PRrase QUETIEScviiuiiieeiieieeie ettt ettt et sbe e sbe et sbe e sbesba e bestaesbeeasesbeensesbeenes 3-7
ABOUT QUENIES @NA TREIMESocveiiieieciee sttt ste ettt st te st e sbeeneesbe s e nreenes 3-8
QUETY EXPIESSIONS.ccvieiteriettstete sttt ettt sttt st b ettt e ettt b bbbt eb et bt b et bttt 3-9
Case-SenSItiVe SEArCHING ..o e 3-10
(O U] oY == T | o= T SRS 3-11
QUETY EXPIAIN PIAN ...ttt bbb 3-11

vi

Query Operators For CONTAINS ... e 3-13

ABOUT QUETY .ottt ettt r et e et eb s nneane s 3-13
[0 To Tor= 1 I @ 1-] = L (o TSRS 3-13
SECLION SEAICNING .. .iciiieece et e st e e e s ae e beenresteaneesreannes 3-15
Proximity Queries With NEAR OPEratorccoeiiieiiiiiieiiieiese st 3-15
Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators............cccceeevevnnne. 3-15
Stored QUETY EXPIESSIONSccuiiiiiiiitirierie sttt sttt ettt ettt bbbt bbbt b e e b b e 3-15
Calling PLZSQL Functions in CONTAINS ..ot 3-16
Query Operators for CATSEARCH ... 3-18
Optimizing TOr RESPONSE TIME .. .ouiiiiiiiiee et 3-19
Retrieving a Range 0f DOCUMENTS ..ot 3-19
L7010 o1 1 [o o 1 £SO 3-21
SQL CouUNt HItS EXAMIPIE.....ccuiiiiiiitiiiere et 3-21
Counting Hits with a Structured PrediCate...........cocoiiiiiiiiicreeeeeseeseese e 3-21
PLZSQL Count HitsS EXaMPIE ..c.vocveieiecceeeee et 3-21

Document Presentation

Highlighting QUEIY TEIMNSciii ettt st se e s e se e enesresnesrenen 4-2
TeXt NIGRIIGNTING ..o e sre e ste e saesteeaesraens 4-2
Theme HighlIgNTiNg ..o e 4-2
CTX_DOC Highlighting ProCEAUIEScceiueiiirieceiceee e 4-2

Obtaining List of Themes, Gists, and Theme SUMMAFIES..........cccccoevviievieie s 4-4
LIST OF TREIMES ...ttt b et ettt s b e e n et e nbeseesaeneas 4-4
Gist aNd ThEME SUNMIMAIYc.cciieiecisese ettt e e e enaere e e anesrenrenes 4-5

Query Tuning

Optimizing Queries With StatiStiCS........ccccviiiriiccc e 5-2
(070 I LoTot {0] =T 1 oSSR 5-2
RE-COlIECTING STALISTICSveviitiiceeieet ettt 5-3
1= Lo S r= 1 1ot S 5-4

Optimizing Queries for RESPONSE TIME. ..o 5-5
Better Response Time With FIRST_ROWS ... 5-5
Better Response Time With CHOOSE ..o 5-6

Optimizing Queries for TRroUGRNPULccoii e 5-8
CHOOSE and ALL ROWS MOGES.........couiiiiiiiitiieisieisieesseasseassessssessssessssessesassssesssssssesssseses 5-8

FIRST_ROWS IMOGE ...ttt bbbttt bbb 5-8
Tuning Queries With BIOoCKIiNg OPErations ... 5-9

Document Section Searching

About Document SECtION SEAICHINGcviviiiiiiere e 6-2
Enabling SECtion SEArCNINGccccvii i nrens 6-2
=T A To] o I Y 0 1= TS TSSOSO SO PP UR PPN 6-5

HTML SeCtion SEArCHINGcceiiiiiieieeee bbb 6-10
Creating HTIML SECLIONSviiieiie ittt se e enasrenneanens 6-10
Searching HTML MELaA TAGSccvieeiiiie ettt sttt te e besre e sne s 6-10

XML SECLION SEAICHING c..cviiiiiitiiitet bbbttt 6-12
W AN} (0] g = L T3 T=Tod £ (o] o 1 o S 6-12
ATFIDULE SEAICHING ..o ettt e e e ste e e sreanees 6-12
Creating Document TYpe SENSItiVE SECLIONSooiiiiiiiieice e 6-13
Path SeCtion SEArCHINGc..cviiiiiiise e re e s 6-14

Working With a Thesaurus

OVEIVIEW OF TRESAUIT ..ttt bbbttt sttt 7-2
Thesaurus Creation and MaiNtENANCE............ccciiiiiiiiiie e 7-2
CaSE-SENSITIVE TNESAUTT ...cviiiiiiieiie ettt sttt et s b e ne b e sbesbesaeneas 7-3
Case-INSENSILIVE TRESAUIT.........coiiiiiiie e 7-3
DEfaUIT TRESAUIUS ...t bbbt bbbttt b b e 7-4
SUPPIIEA TRESAUIUS......ceciiieeiiieire bbbttt 7-4

Defining TheSAUIal TEIMNS.......cccvii et e e e resre s e sresrennenrens 7-6
BTy T [T aTo)/ a10] 071 1SS 7-6
Defining Hierarchical REIATIONScooiiiiiiiiic s 7-6

Using a Thesaurus in a Query APPLICAtION ... 7-8
Loading a Custom Thesaurus and Issuing Thesaural QUEriesS...........cccccevvvievicieciciesieenn, 7-8
Augmenting Knowledge Base with Custom TheSaurUSccocoveiiiiiincinceececes 7-9

About the Supplied KNOWIEAQE BaSe.........cccvieiieieicicicice s sre s 7-12
Adding a Language-Specific Knowledge Base ... 7-13

Administration
Oracle Text USers and ROIEScoo ittt re e 8-2

Vii

CTXSY S USEI it 8-2

CTXAPP ROIE ...ttt ettt s st s ettt e bt e s bea et e nn et enen 8-2
Granting Roles and Privileges t0 USEISccciiiiicieieeicise e 8-2
DIML QUEUE. ...ttt bttt ettt s et s ket bR bbb st et e sttt e e e et et et n e 8-3
The CTX_OUTPUT PACKAGEcveirieiiriiiirieisieieteese ettt 8-4
T Y] T TP T S PP S PRPRURTPRPRVRTON 8-5
AAMINISTFATION TOOI ... bbbttt b bbb e 8-6

A CONTEXT Query Application

Web Query APpPlicatioN OVEIVIEWccooiiiiiieieieete ettt A-2
The PSP WED APPHICALION ..ot A-2
Web ApPlication Prer@qUISITEScciiiiiiiiceeece s sne e A-3
Building the Web APPLICALIONco.oiiiiiiii e A-3
Web Application SAMPIE COE ..o A-6
TOBAET.CLL. ... A-6
JOBAEI.AALceeecc et A-6
SEArCh_NTMISEIVICES.SOL. .. .ot A-7
SEAICN ML PSP vttt renrenrenren A-9
Index

viii

Send Us Your Comments

Oracle Text Application Developer’'s Guide, Release 9.0.1
Part No. A90122-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@us.oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

This guide explains how to build query applications with Oracle Text. This preface
contains these topics:

« Audience

« Organization

« Related Documentation
« Conventions

« Documentation Accessibility

Xi

Audience

Organization

Xii

Oracle Text Application Developer’s Guide is intended for users who perform the
following tasks:

« Develop Oracle Text applications.
« Administer Oracle Text installations.

To use this document, you need to have experience with the Oracle object relational
database management system, SQL, SQL*Plus, and PL/SQL.

This document contains:

Chapter 1, "Introduction to Oracle Text"

This chapter introduces the basic features of Oracle Text. It also explains how to
build a basic query application using Oracle Text.

Chapter 2, "Indexing"

This chapter describes how to index your document set. It discusses considerations
for indexing as well as how to create CONTEXT, CTXCAT, and CTXRULE indexes.

Chapter 3, "Querying"
This chapter describes how to query your document set. It gives examples for using
the CONTAINS, CATSEARCH, and MATCHES operators.

Chapter 4, "Document Presentation”

This chapter describes how to present documents to the user of your query
application.

Chapter 5, "Query Tuning"

This chapter describes how to tune your queries to improve response time and
throughput.

Chapter 6, "Document Section Searching"
This chapter describes how to enable section searching in HTML and XML.

Chapter 7, "Working With a Thesaurus"

This chapter describes how to work with a thesaurus in your application. It also
describes how to augment your knowledge with a thesaurus.

Chapter 8, "Administration"
This chapter describes Oracle Text administration.

Appendix A, "CONTEXT Query Application"
This chapter describes an Oracle Text example web application.

Related Documentation
For more information about Oracle Text, see:
« Oracle Text Reference
For more information about Oracle9i, see:
« Oracle9i Database Concepts
« Oracle9i Database Administrator’s Guide
« Oracle9i Database Utilities
= Oracle9i Database Performance Guide and Reference
« Oracle9i SQL Reference
« Oracle9i Database Reference
« Oracle9i Application Developer’s Guide - Fundamentals
« Oracle9i Application Developer’s Guide - XML
For more information about PL/SQL, see:
« PL/SQL User’s Guide and Reference
In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http/Amww.oraclebookshop.conv/

Xiii

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, code samples, white
papers, or other collateral, please visit the Oracle Technology Network (OTN). You
must register online before using OTN; registration is free and can be done at

http/fechnet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/technet.oracle.com/docs/index.htm

You can obtain Oracle Text technical information, collateral, code samples, training
slides and other material at:

http:/fechnet.oracle.comvproductstext
Conventions
This section describes the conventions used in the text and code examples of the
this documentation set. It describes:
« Conventions in Text
« Conventions in Code Examples
Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.
Convention Meaning Example
Bold Bold typeface indicates terms that are The C datatypes such as ub4, sword, or
defined in the text or terms that appear in OCINumber are valid.
aglossary, or both. When you specify this clause, you create an
index-organized table.
Italics Italic typeface indicates query terms, book Oracle9i Database Concepts

Xiv

titles, emphasis, syntax clauses, or .

placeholders. You can specify the parallel_clause.
Run Uold_release .SQL where old_release
refers to the release you installed prior to

upgrading.

Convention Meaning Example
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width font)

lowercase
monospace
(fixed-width font)

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

You can back up the database using the BACKUP
command.

Query the TABLE_NAMEolumn in the USER_
TABLEStable in the data dictionary view.

Specify the ROLLBACK_SEGMENT®&rameter.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name ,

Connect as oe user.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

XV

Convention

Other notation

Italics

UPPERCASE

lowercase

Meaning

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

Italicized text indicates variables for
which you must supply particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Documentation Accessibility

Oracle's goal is to make our products,

Example

CREATE TABLE ... AS subquery;

SELECT coll, col2, ..., col
employees;

n FROM

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEMYystem_password

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

services, and supporting documentation

accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

XVi

http/Amww.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Xvii

xViii

1

Introduction to Oracle Text

This chapter introduces the main features of Oracle Text. It is provided to help you
get started with indexing, querying, and document presentation.

The following topics are covered:

What is Oracle Text?

Loading Your Text Table
Indexing Your Documents

A Simple Text Query Application
Querying your Index

Presenting the Hitlist

Document Presentation and Highlighting

Introduction to Oracle Text 1-1

What is Oracle Text?

What is Oracle Text?

Oracle Text is a tool that enables you to build text query applications and document
classification applications. Oracle Text provides indexing, word and theme
searching, and viewing capabilities for text.

Types of Query Applications

You can build two types of applications with Oracle Text:
« Text Query Application

« Document Classification Application

Text Query Applications

The purpose of a text query application is to enable users to find text that contains
one or more search terms. The text is usually a collection of documents. A good
application can index and search common document formats such as HTML, XML,
plain text, or Microsoft Word. For example, an application with a browser interface
might enable users to query a company website consisting of HTML files, returning
those files that match a query.

To build a text query application, you can create either a context or ctxcat index
and query the index with CONTAINS or CATSEARCH respectively.

Document Classification Applications

A document classification application is one that classifies an incoming stream of
documents based on its content. They are also know as document routing or
filtering applications. For example, an online news agency might need to classify its
incoming stream of articles as they arrive into categories such as politics, crime, and
sports.

Oracle Text enables you to build these applications with the CTXRULE index type.
This index type indexes the rules (queries) that define each class. When documents
arrive, the MATCHES operator can be used to match each document with the rules
that select it.

Note: Oracle Text supports document classification for only plain
text, XML, and HTML documents.

1-2 Oracle Text Application Developer's Guide

What is Oracle Text?

See Also: "Indexing Your Documents" in this chapter for more
information about these index types.

Supported Document Formats

For text query applications, Oracle Text supports most document formats for
indexing and querying, including plain text, HTML and formatted documents such
as Microsoft Word.

For document classification application, Oracle Text supports classifying plain text,
HTML, and XML documents.

Theme Capabilities

With Oracle Text, you can search on document themes if your language is English
and French. To do so, you use the ABOUT operator. For example, you can search for
all documents that are about the concept politics. Documents returned might be
about elections, governments, or foreign policy. The documents need not contain
the word politics to score hits.

Theme information is derived from the supplied knowledge base, which is a
hierarchical listing of categories and concepts. As the supplied knowledge base is a
general view of the world, you can add to it new industry-specific concepts. With
an augmented knowledge base, the system can process document themes more
intelligently and so improve the accuracy of your theme searching.

With the supplied PL/SQL packages, you can also obtain document themes
programatically.

See Also: Oracle Text Reference to learn more about the ABOUT
operator.

Themes in Other Languages

You can enable theme capabilities such as ABOUT queries in other languages
besides English and French by loading a language-specific knowledge base.

See Also: Adding a Language-Specific Knowledge Base in
Chapter 7, "Working With a Thesaurus".

Query Language and Operators

To query, you use the SQL SELECT statement. Depending on your index, you can
guery text with either the CONTAINS operator, which is used with the context

Introduction to Oracle Text 1-3

What is Oracle Text?

index, or the CATSEARCH operator, which is used with the ctxcat index. You use
these operators in the WHERE clause of the SELECT statement as follows:

SELECT SCORE(1) tite from news WHERE CONTAINS(text, ‘oracle’, 1) > 0;

To classify single documents, you use the MATCHES operator with a ctxrule index.

For text querying with the CONTAINS operator, Oracle Text provides a rich query
language with operators that enable you to issue variety of queries including simple
word queries, ABOUT queries, logical queries, wildcard and thesaural expansion
queries.

The CATSEARCH operator also supports some of the operations available with
CONTAINS.

See Also: Chapter 3, "Querying"

Document Services and Using a Thesaurus

You can also use the supplied Oracle Text PL/SQL packages for advanced features
such as document presentation and thesaurus maintenance.

See Also:
Chapter 7, "Working With a Thesaurus"

Chapter 4, "Document Presentation"

Prerequisites For Building Your Query Application

To build an Oracle Text query application, you must have the following:
« apopulated text table
« an Oracle Text index

The following sections describe these prerequisites and also describe the main
features of a generic text query application.

1-4 Oracle Text Application Developer's Guide

Loading Your Text Table

Loading Your Text Table
Figure 1-1
Document Collection
Text Table Document 1
author | date | text ——| Document 2 Document Stored In
— [— Text Table
Text Table
author | date | text

4y File 1 /my_path/my_system/docl.doc Text Column Stores
=— File 2 /my_path/my_system/doc2.doc File Paths

Text Table
author | date | text

4—ip URL 1 http://www.mysite.com/mydocl.html Text Column
=—» URL 2 http://www.mysite.com/mydoc1.html Stores URLs

The basic prerequisite for an Oracle Text query application is to have a populated
text table. The text table is where you store information about your document
collection and is required for indexing.

Introduction to Oracle Text 1-5

Loading Your Text Table

You can populate rows in your text table with one of the following elements:
« text information (can be documents or text fragments)

« path names of documents in your file system

« URLs that specify world-wide web documents

Figure 1-1 illustrates these different methods.

By default, the indexing operation expects your document text to be directly loaded
in your text table, which is the first method above.

However, you can specify the other ways of identifying your documents such as
with filenames or with URLSs using the corresponding data storage indexing
preference.

Storing Text in the Text Table
You can store documents in your text table in different ways.

You can store documents in one column using the DIRECT_DATASTORE data
storage type or over a number of columns using the MULTI_COLUMN _
DATASTORE type. When your text is stored over a number of columns, Oracle
concatenates the columns into a virtual document for indexing.

You can also create master-detail relationships for your documents, where one
document can be stored across a number of rows. To create master-detail index, use
the DETAIL_DATASTORE data storage type.

In your text table, you can also store short text fragments such as names,
descriptions, and addresses over a number of columns to create a catalog index.

You can also store your text in a nested table using the NESTED_DATASTORE type.

Oracle Text supports the indexing of the XMLType which you can use to store XML
documents.

Storing File Path Names

In your text table, you can store path names to files stored in your file system. When
you do so, use the FILE_ DATASTORE preference type during indexing.

Storing URLs

You can store URL names to index web-sites. When you do so, use the URL _
DATASTORE preference type during indexing.

1-6 Oracle Text Application Developer’'s Guide

Loading Your Text Table

Storing Associated Document Information
In your text table, you can create additional columns to store structured information
that your query application might need, such as primary key, date, description, or
author.

Format and Character Set Columns
If your documents are of mixed formats or of mixed character sets, you can create
the following additional columns:

« Format column to record format (TEXT or BINARY) to help filtering during
indexing. You can also use to format column to ignore rows for indexing by
setting the format column to IGNORE. This is useful for bypassing rows that
contain data incompatible with text indexing such as images.

« Character set column to record document character set on a per row basis.

When you create your index, you must specify the name of the format or character
set column in the parameter clause of CREATE INDEX.

Supported Column Types

With Oracle Text, you can create a CONTEXT index with columns of type
VARCHAR2, CLOB, BLOB, CHAR, BFILE, and XMLType.

Note: The column types NCLOB, DATE and NUMBER cannot be
indexed.

Supported Document Formats
Because the system can index most document formats including HTML, PDF,
Microsoft Word, and plain text, you can load any supported type into the text
column.

When you have mixed formats in your text column, you can optionally include a
format column to help filtering during indexing. With the format column you can
specify whether a document is binary (formatted) or text (non-formatted such as

HTML).

See Also: Oracle Text Reference for more information about the
supported document formats.

Introduction to Oracle Text 1-7

Loading Your Text Table

Loading Methods

The following sections describe different methods of loading information into a text
column.

INSERT Statement
You can use the SQL INSERT statement to load text to a table.

The following example creates a table with two columns, id and text , using
CREATE TABLE. The example populates the table with the INSERT statement. This
example makes the id column the primary key, which is the required constraint for
a Text table. The text column is VARCHARZ2:

CREATE TABLE docs (id number primary key, text varchar2(80));

To populate this table, use the INSERT statement as follows:

INSERT into docs values(l, ‘this is the text of the first document);
INSERT into docs values(12, ‘this is the text of the second document);

Loading Text from File-System

In addition to the INSERT statement, Oracle enables you to load text data (this
includes documents, pointers to documents, and URLS) into a table from your
file-system using other automated methods, including

« SQL*Loader
« DBMS_LOB.LOADFROMFILE() PL/SQL procedure to load LOBs from BFILEs

= Oracle Call Interface

See Also:

Appendix A, "CONTEXT Query Application” for a SQL*Loader
example.

Oracle9i Supplied PL/SQL Packages Reference For more information
about the DBMS_LOB package.

Oracle9i Application Developer’s Guide - Large Objects (LOBs) for more
information about working with LOBs.

Oracle Call Interface Programmer’s Guide for more information about
Oracle Call Interface.

1-8 Oracle Text Application Developer’'s Guide

Indexing Your Documents

Indexing Your Documents

Figure 1-2

@

Text Table
ID | author | text

Oracle Text
Index

O
O
O

o
o
o

@

To query your document collection, you must first index the text column of your
text table. Indexing breaks your text into tokens, which are usually words. This
creates a CONTEXT index, which records each token and the documents that
contain it. An inverted index as such allows for querying on words and phrases.
Figure 1-2 shows a text table within Oracle9i and its associated Oracle Text index.

Type of Index

Oracle Text supports the creation of three types of indexes depending on your
application and text source. You use the CREATE INDEX statement to create all
Oracle Text index types.

The following table describes these indexes and the type of applications you can
build with them. The third column shows which query operator to use with the
index.

Introduction to Oracle Text 1-9

Indexing Your Documents

Index Type Application Type Query Operator

CONTEXT Use this index to build a text retrieval CONTAINS
application when your text consists of
large coherent documents. You can
index documents of different formats
such as MS Word, HTML, XML, or plain
text.

With a context index, you can customize
your index in a variety of ways.

CTXCAT Use this index type to improve mixed CATSEARCH
query performance. Suitable for
querying small text fragments with
structured criteria like dates, item
names, and prices that are stored across
columns.

CTXRULE Use a CTXRULE index to build a MATCHES
document classification application. The
CTXRULE index is an index created on
a table of queries, where each query has
a classification.

Single documents (plain text, HTML, or
XML) can be classified using the
MATCHES operator.

Creating a CONTEXT Index

Once your text data is loaded in a table, you can use CREATE INDEX to create a
context index. When you create an index and specify no parameter clause, an
index is created with default parameters.

For example, the following command creates a context index called myindex on
the text column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

General Defaults for All Languages

When you use CREATE INDEX to create a context index without explicitly
specifying parameters, the system does the following for all languages by default:

« Assumes that the text to be indexed is stored directly in a text column. The text
column can be of type CLOB, BLOB, BFILE, VARCHAR2, XMLType, or CHAR.

1-10 Oracle Text Application Developer’'s Guide

Indexing Your Documents

« Detects the column type and uses filtering for binary column types. Most
document formats are supported for filtering. If your column is plain text, the
system does not use filtering.

Note: For document filtering to work correctly in your system,
you must ensure that your environment is set up correctly to
support the Inso filter.

To learn more about configuring your environment to use the Inso
filter, see Oracle Text Reference.

« Assumes the language of text to index is the language you specify in your
database setup.

« Uses the default stoplist for the language you specify in your database setup.
Stoplists identify the words that the system ignores during indexing.

« Enables fuzzy and stemming queries for your language, if this feature is
available for your language.

You can always change the default indexing behavior by creating your own
preferences and specifying these custom preferences in the parameter clause of
CREATE INDEX.

Customizing Your CONTEXT Index

Using the parameter clause with CREATE INDEX, you can customize your

context index. For example, in the parameter clause, you can specify where your
text is stored, how you want it filtered for indexing, and whether sections should be
created.

To index a set of HTML files loaded in the text column htmlfile , you can issue the
CREATE INDEX statement, specifying datastore, filter and section group
parameters as follows:

CREATE INDEX myindex ON doc(htmfile) INDEXTYPE IS cixsys.context PARAMETERS
(‘datastore ctxsys.default_datastore fiter ctxsys.null_filter section group

ctxsys.html_section_group));

See Also: "Considerations For Indexing" in Chapter 2, "Indexing"
for more information about the different ways you can create an
index.

Oracle Text Reference for more information on the CREATE INDEX
statement.

Introduction to Oracle Text 1-11

Indexing Your Documents

Creating a CTXCAT Index

A CTXCAT index is an index optimized for mixed queries. You can create this type
of index when you store small documents or text fragments and associated
structured information. To query this index, you use the CATSEARCH operator and
specify a structured clause, if any. Query performance with a CTXCAT index is
usually better for structured queries than with a CONTEXT index.

See Also: "Creating a CTXCAT Index" in Chapter 2, "Indexing"
for a complete example.

Creating a CTXRULE Index

You create a CTXRULE index to build a document classification application in
which an incoming stream of documents is routed according content. You define the
classification rules as queries which you index. You use the MATCHES operator to
classify single documents.

See Also: "Creating a CTXRULE Index" in Chapter 2, "Indexing"
for a complete example.

Index Maintenance

Index maintenance is necessary after your application inserts, updates, or deletes
documents in your base table.

If your base table is static, that is, you do no updating, inserting or deleting of
documents after your initial index, you do not need to maintain your index.

However, if you perform DML operations (inserts, updates, or deletes) on your base
table, you must update your index. You can synchronize your index manually with
CTX_DDL.SYNC_INDEX.

The following example synchronizes the index myindex with 2 megabytes of
memory:

begin
ctx_ddl.sync_index(myindex, 2M);
end,

If you synchronize your index regularly, you might also consider optimizing your
index to reduce fragmentation and to remove old data.

1-12 Oracle Text Application Developer’s Guide

Indexing Your Documents

See Also: "Managing DML Operations for a CONTEXT Index" in
Chapter 2, "Indexing" for more information about synchronizing
and optimizing the index.

Introduction to Oracle Text 1-13

A Simple Text Query Application

A Simple Text Query Application

A typical search application allows the user to enter a query. The application
executes the query and returns a list of documents, usually ranked by relevance,
that satisfy the query. The application enables the user to view one or more
documents in the returned hitlist.

For example, a application portal might index URLs (HTML files) on the worldwide
web and provide query capabilities across the set of indexed URLs. Query hitlists
are composed of URLSs that the user can visit.

Figure 1-3 Flowchart of a Typical Query Application

(Enter Query)4

v
Execute Query

v
Present Hitlist

v
(Select From Hitlist)

\ 4
Present Document

C) User Action
I:l Application
Action

Figure 1-3 illustrates the flowchart of how a user interacts with a simple query
application. The figure shows the steps required to enter the query and to view the
results. Rectangular boxes indicate application tasks and oval boxes indicate
user-tasks.

1-14 Oracle Text Application Developer’s Guide

A Simple Text Query Application

As shown, the a query application can be modeled according to the following steps:
1. user enters query

2. application executes query

3. application presents hitlist

4. user selects document from hitlist

5. application presents document to user for viewing

The rest of this chapter explains how you can accomplish these steps with Oracle
Text.

See Also: Appendix A, "CONTEXT Query Application" for a
description and of a simple web query application.

Introduction to Oracle Text 1-15

Querying your Index

Querying your Index

With Oracle Text, you use the CONTAINS operator to query a context index. This
is the most common operator and index used to build query applications.

For more advanced applications, you use the CATSEARCH operator to query a
ctxcat index, and you use the MATCHES operator to query the ctxrule index.

Querying with CONTAINS

You can use CONTAINS to retrieve documents that contain a word or phrase. Your
document must be indexed before you can issue a CONTAINS query.

Use the CONTAINS operator in a SELECT statement. With CONTAINS, you can
issue two types of queries:

« word query
« ABOUT query

You can also optimize queries for better response time to obtain the top n hits. The
following sections give an overview of these query scenarios.

Word Query Example

A word query is a query on the exact word or phrase you enter between the single
guotes in the CONTAINS or CATSEARCH operator.

The following example finds all the documents in the text column that contain the
word oracle. The score for each row is selected with the SCORE operator using a
label of 1:

SELECT SCORE(1) tite FROM news WHERE CONTAINS(text, ‘oracle’, 1) > 0;
In your query expression, you can use text operators such as AND and OR to

achieve different results. You can also add structured predicates to the WHERE
clause.

See Also: Oracle Text Reference for more information about the
different operators you can use in queries.

You can count the hits to a query using the SQL COUNT(*) statement, or CTX_
QUERY.COUNT_HITS.

1-16 Oracle Text Application Developer’'s Guide

Querying your Index

ABOUT Query Example

In all languages, ABOUT queries increases the number of relevant documents
returned by a query.

In English and French, ABOUT queries can use the theme component of the index,
which is created by default. As such, this operator returns documents based on the
concepts of your query, not only the exact word or phrase you specify.

For example, the following query finds all the documents in the text column that are
about the subject politics, not just the documents that contain the word politics:

SELECT SCORE(1) tite FROM news WHERE CONTAINS(text, 'about(politics), 1) > 0;

See Also: Oracle Text Reference to learn more about the ABOUT
operator.

Optimizing Query for Response Time

You can optimize any CONTAINS query (word or ABOUT) for response time in
order to retrieve the highest ranking hits in a result set in the shortest time possible.
Optimizing for response time is useful in a web-based search application.

See Also: "Optimizing Queries for Response Time" in Chapter 5,
"Query Tuning".

Structured Field Searching

Your application interface can give the user the option of querying on structured
fields related to the text such as item description, author, or date as a means of
further limiting the search criteria.

You can issue structured searches with CONTAINS using a structured clause in the
SELECT statement. However, for optimal performance, consider creating a ctxcat
index which gives better performance for structured queries with the CATSEARCH
operator.

Your application can also present the structured information related to each
document in the hitlist.

See Also: "Creating a CTXCAT Index" in Chapter 2, "Indexing"
for more information about creating a ctxcat index to improve
structured queries with CATSEARCH.

Introduction to Oracle Text 1-17

Querying your Index

Thesaural Queries
Oracle Text enables you to define a thesaurus for your query application.

Defining a custom thesaurus allows you to process queries more intelligently. Since
users of your application might not know which words represent a topic, you can
define synonyms or narrower terms for likely query terms. You can use the
thesaurus operators to expand your query with thesaurus terms.

See Also: Chapter 7, "Working With a Thesaurus"

Document Section Searching

Section searching enables you to narrow text queries down to sections within
documents.

Section searching can be implemented when your documents have internal
structure, such as HTML and XML documents. For example, you can define a
section for the <H1> tag that allows you to query within this section using the
WITHIN operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Note: Section searching is supported for only word queries with a
context index type.

See Also: Chapter 6, "Document Section Searching”

Other Query Features

In your query application, you can use other query features such as proximity
searching. The following table lists some of these features.

Feature Description Implement With

Proximity Searching Enables searches for words NEAR operator at query-time.
near one another.

Stemming Enables searching for words $ operator at query-time.
with same root as specified
term.

1-18 Oracle Text Application Developer’'s Guide

Querying your Index

Feature

Description Implement With

Fuzzy Searching

Search for words that have fuzzy operator at query-time.
similar spelling to specified

term.
Case Sensitive Enables case-sensitive Enable with basic_lexer at
Searching searches. index-time.

Base Letter Conversion

Queries match words with or Enable with basic_lexer at
without diacritical marks index-time.

such as tildes, accents, and

umlauts. For example, with a

Spanish base-letter index, a

query of energia matches

documents containing energia

and energia.

Word Decompounding
(German and Dutch)

Enables searching on words Enable with basic_lexer at
that contain specified term as index-time.
sub-composite.

Alternate Spelling

Enables searches on alternate Enable with basic_lexer at

(German, Dutch, and spellings of words. index-time.

Swedish)

Query Explain Plan Generate query parse CTX_QUERY.EXPLAIN
information.

Hierarchical Query Generate broader term, CTX_QUERY.HFEEDBACK

Feedback

narrower term and related
term information for a query.

Browse index

Browse the words around a CTX_QUERY.BROWSE_WORDS
seed word in the index.

Count hits

Count the number of hitsina CTX_QUERY.COUNT_HITS
query

Stored Query
Expression

Stores a query expression CTX_QUERY.STORE_SQE

Thesaural Queries

Use a thesaurus to expand Thesaurus operators such as SYN
queries. and BT as well as the ABOUT
operator.

Use CTX_THES package to
maintain thesaurus.

Introduction to Oracle Text 1-19

Presenting the Hitlist

Presenting the Hitlist

After executing the query, query applications typically present a hitlist of all
documents that satisfy the query along with a relevance score. This list can be a list
of document titles or URLs depending on your document set.

Your application presents a hitlist in one or more of the following ways:
« show documents ordered by score
« show structured fields related to document, such as title or author

« show document hit count

Hitlist Example

Figure 1-4 is a screen shot of a query application presenting the hitlist to the user.

1-20 Oracle Text Application Developer’'s Guide

Presenting the Hitlist

Figure 1-4 Query Application Presenting Hitlist

ava and XML Search

Page 1 of 4 Oracle found 34 results for Java and XML

Next

1 Oracle Corp. Document = B

Gist: Oracle has built new functionality on the object support of OracleS to produce O .
Precision scove: 100%, Last modified: 15 -mar-00, Page size: 56731 bytes

Kewords: Oreclesi, paradigms, intemet, C¥BER S MaRTS, delivery, technology, swstems, Orecl ..

2 hite Pager =

Gist: Supporting standard EJE and COREA deployment architectures, Oracle Business Comg ...
Precision scove: 57%, Last modified: 13-maR-00, Page size! 29053 bytes

Kewpords: Oracle Corporadion, Java, Oracle Business Components, logic, relafion, wrifing, ...

3 Oracle JDeveloper Suite - Technical Documentation - Parners \"
Gist: Partrer Software Solutions Haloyon Software produces a suite of products for c ..
Precision SCove: 4 3%, Last modified: 13-MAR-00, Page size! 6454 bytes

Kewwards: parners, Oracle JOeveloper, computer software, Jawa, Oracle Corpotation, conuer ..

4 Oracle JDeveloper - Technical Resources - Documentation \‘

Gisk: Using the Oracle Business Components framework, the develaper can facus on writi ..
Precision scove: 19%, Last modified: 13-mAR-00, Page size: 7254 bytes
Kewwords: Java, Oracle Corporation, Oracle JDeveloper, fechnoloay, logic, Orecle Business ...

5 Oracle Corp. Document N

Gist: Oracledi Acdds inter Media, iFS, and XML Support to Provide Leading Platform for | ..
Precision scove: 15%, Last modified: 02-ma R -00, Page size! 10050 bytes
Kewords: Orwcle Corporedion, management, contents, Oracledi, intemet, technology, orecle ..

6 Oracle Corp. Document S Y

Gist: "Over the last decade corporations have built meta-dataislands. 1T departrments ...
Precision scove: 15%, Last modified: 02-mar-00, Page size! 4711 bytes

Kewwords: Oracle Corporetion, Oracle Repository, management, COM S, construction, mefe, fun ..

7 Oracle Corp. Document Y

Gisk: "Over the last decade corporations have built meta-dataislands. IT departments .
Precision Scove: 15%, Last modified: 02-MAR-00, Page size! 4711 bytes

Kewwards: Orwcle Cotporedion, Oracle Repository, management, COMS, canstction, mefs, fun ..

Introduction to Oracle Text 1-21

Presenting the Hitlist

Presenting Structured Fields

Structured columns related to the text column can help identify documents. When
you present the hitlist, you can show related columns such as document titles or
author or any other combination of fields that identify the document.

You specify the name of structured column or columns in the SELECT statement.

Ordering the Hitlist

When you issue either a text query or theme query, Oracle returns the hitlist of
documents that satisfy the query with a relevance score for each document
returned. You can use these scores to order the hitlist to show the most relevant
documents first.

The score for each document is between one and one hundred. The higher the score,
the more relevant the document.

Oracle calculates scores when you use the CONTAINS and CATSEARCH operator.
You obtain scores using the SCORE operator.

See Also: Chapter 3, "Querying"

Presenting Document Hit Count

You present the number of hits the query returned alongside the hitlist, using
SELECT COUNT(*). For example:

SELECT COUNT(*) FROM docs WHERE CONTAINS(text, ‘oracle’, 1) > 0;

To count hits in PL/SQL, you can also use the CTX_QUERY.COUNT_HITS
procedure.

1-22 Oracle Text Application Developer’s Guide

Document Presentation and Highlighting

Document Presentation and Highlighting

Typically, a query application allows the user to view the documents returned by a
guery. The user selects a document from the hitlist and then the application presents
the document in some form.

With Oracle Text, you can display a document in different ways. For example, you
can present documents with query terms highlighted. Highlighted query terms can
be either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from
documents with the CTX_DOC PL/SQL package.

Table 1-1 describes the different output you can obtain and which procedure to use
to obtain each type:

Table 1-1
Output Procedure
Plain text version, no highlights CTX_DOC.FILTER

HTML version of document, no highlights CTX_DOC.FILTER

Highlighted document, plain text version CTX_DOC.MARKUP
Highlighted document, HTML version CTX_DOC.MARKUP
Highlight offset information for plain text CTX_DOC.HIGHLIGHT
version

Highlight offset information for HTML CTX_DOC.HIGHLIGHT
version

Theme summaries and gist of document. CTX_DOC.GIST

List of themes in document. CTX_DOC.THEMES

See Also: Chapter 4, "Document Presentation”

Introduction to Oracle Text 1-23

Document Presentation and Highlighting

Highlighting Example
Figure 1-5 is a screen shot of a query application presenting a document with the
guery terms XSQL and Servlet highlighted.

Figure 1-5 Query Application Presenting Highlighted Document

B [s 8 Conwerndam Help =]

] v # 3 B a @ &S of E H
Oeck (- Paksd fkwa Seach Rebess Pl Sacas

(Diavelopar = 2 prosmsdes nemarcuc atess for Tvva KL Sewalapars =

Shyemtux highbghimg for Jows, YL, X1, sad XEQL Sler

iZzde complebon far Jovs B - exeemely webld waen developieg spphopbara wth the 0L Fareer for Jova

Locall enedl remicis debreggpng of JTows XL sppbcabons, mciudny Sorvkty sod JavaZSeres pages

Tategrated ronbere npp ot Sor JML Serwletr and J3T pages J
Zorrermel Javalior vizwer and clesa broswser Bor warkng wath the Checle X0V

® & & & &

Oracle X500 Pages and the X500 Sorvied
Crailke XEDL Piages e 1enoplates that allsw 501 devclepers 1o decliramvely
= fgdeinbk e JTML “datapagpss® Bued on tae of @ parmnsieneed D01 queiss, aad

= Tengefoers e "Satapags™ 1o prodece & Basl pepl i sy desed 3L, HTRAL. o test-bassd Bt usisg an asocined 51T
Teaaatoemaairn

The XS(AL Kavafor promdsn WTTE sooses o XS0, pages from beowesss and sther Web chsein

Wth NS pagar snd the XS(L Sevnbar, Thsvelopar offtrs & productres sed poseri way to develop XML spphcabons Devwslopsare ¢ an
ean e NSO slerrent warard io sanky devslop XS{AL pages i

& Camprate mmple and complex: XML dociments

4 T 3071 redeckawis v geeersis mba arey beces barmass

4 Fazze XML dacuremiz md ricoe the dats o the detabans
4 Diorbwrsivedly drvelop dymemor web sapplicabara

Addscasly, IDevcoper 3 2 npports XS tags o sozean medde-ger compomemts devel sped wnth Bumcss (Componends for Joee. Bult-m
wrppent for ARQE n IDcucloper ke & cary b rin imd dcbig XE(RE pagrs
R P P T, =

o == [rermrs: o [T - e Y

1-24 Oracle Text Application Developer’'s Guide

Document Presentation and Highlighting

Document List of Themes Example

Figure 1-6 is a screen shot of a query application presenting a list of themes for a
document.

Figure 1-6 Query Application Displaying Document Themes

File Edit “ew Go Communicator Help

1 4 # 3 B8 o @ & & #

Back Forward Reload Home Search Metscape Frirt Security Step

Oracle Service ﬁlnstanth’lessage ﬁlnstantMessage e il Feople ellow Pages Download

-

Themes =

i
ILh

support

Cracle JDeveloper
Business Components
ISP

Jawa

JavaZerver Pages
Cracle Busmess Components
Cracle Corporation
SEEVLETS

SECE

AR

application

applications
blue
borders
clients

color
construction
contents

databazes

[ST S N o Y 5 Y o R T e R O T e B N o B o N T A R R A S o B v B A SN N

| debugging |
|ﬁ“’$| |Document: Done _.i._-jﬁi_ﬂj__@_'fa_ }&_l i

Introduction to Oracle Text 1-25

Document Presentation and Highlighting

Gist Example
Figure 1-7 is a screen shot of a query application presenting a gist for a document.

Figure 1-7 Query Application Presenting Document Gist

+ JDeveloper 3.2 Feature Overview - Netscape

File Edit Wiew Go Communicator Help

' d £ 3 B a2 @H = &£ @

Back Fonvard. Reload Horme Search Metscape Prirt Secrity Stop] i
Oracle Service ,,,%InstanlMessage ,,,%InstanlMessage “Webhail @ People ellow Pages Danarload M
PRODUCT SUMMARY

[

Oracle JDeveloper is a Java development environment for developing Internet applications. JDeveloper provides
an end-to-end, highly productive development environment for the Javaltm) 2 Enterprise Edition (J2EE) platform.

Oracle JDeveloper includes Oracle Business Components for Java which is a standards-based, server-side
frarnewark for creating scalable, high-perfarmance internet applications. The framework provides design-time
facilities and runtime services to drastically simplify the task of building, debugging, customizing, and reusing
business components. Business Components for Java implements design patterns necessary for delivering
real-warld, performant J2EE applications. Also, applications developed with Business Components for Java can
be accessed from a wide wariety of clients including Web browsers, professional desktop clients, hand-helds and
wireless devices.

= == [

1-26 Oracle Text Application Developer’'s Guide

2

Indexing

The chapter is an introduction to Oracle Text indexing. The following topics are
covered:

« About Oracle Text Indexes

« Considerations For Indexing
« Index Creation

« Index Maintenance

« Managing DML Operations for a CONTEXT Index

Indexing 2-1

About Oracle Text Indexes

About Oracle Text Indexes

An Oracle Text index is an Oracle domain index.To build your query application,
you can create an Oracle Text index of type CONTEXT and query it with the
CONTAINS operator.

For better performance for mixed queries, you can create a CTXCAT index. Use this
index type when your application relies heavily on mixed queries to search small
documents or descriptive text fragments based on related criteria such as dates or
prices. You query this index with the CATSEARCH operator.

To build a document classification application, you create an Oracle Text index of
type CTXRULE. With such an index, you can classify plain text, HTML, or XML
documents using the MATCHES operator.

You create an index from a populated text table. In a query application, the table
must contain the text or pointers to where the text is stored. Text is usually a
collection of documents, but can also be small text fragments. If you are building a
document classification application, you store your defining query set in the text
table.

You create a text index as a type of extensible index to Oracle using standard SQL.
This means that an Oracle Text index operates like an Oracle index. It has a name by
which it is referenced and can be manipulated with standard SQL statements.

The benefits of a creating an Oracle Text index include fast response time for text
queries with the CONTAINS, CATSEARCH, and MATCHES Oracle Text operators.
These operators query the CONTEXT, CTXCAT, and CTXRULE index types
respectively.

See Also: For more information about creating a Text index, see
"Index Creation" in this chapter.

Structure of the Oracle Text CONTEXT Index

Oracle Text indexes text by converting all words into tokens. The general structure
of an Oracle Text CONTEXT index is an inverted index where each token contains
the list of documents (rows) that contain that token.

For example, after a single initial indexing operation, the word DOG might have an
entry as follows:

DOG DOC1 DOC3 DOC5

2-2 Oracle Text Application Developer’'s Guide

About Oracle Text Indexes

This means that the word DOG is contained in the rows that store documents one,
three and five.

For more information, see optimizing the index in this chapter.

Merged Word and Theme Index

By default in English and French, Oracle Text indexes theme information with word
information. You can query theme information with the ABOUT operator. You can
optionally enable and disable theme indexing.

See Also: To learn more about indexing theme information, see
"Creating Preferences" in this chapter.

Indexing 2-3

About Oracle Text Indexes

The Oracle Text Indexing Process

Figure 2-1
Internet Stoplist
O/s file
system
Wordlist
Markup I
vV v
Marked-up
Documents _ Text . Text Tokens Indexing
Datastore Filter |——| SECUONET (e | LEXET - Engine

1

Oracle Text
Index

You initiate the indexing process with the CREATE INDEX statement. The goal is to
create an Oracle Text index of tokens according to the parameters and preferences
you specify.

Figure 2-1 shows the indexing process. This process is a data stream that is acted
upon by the different indexing objects. Each object corresponds to an indexing
preference type or section group you can specify in the parameter string of CREATE
INDEX or ALTER INDEX. The sections that follow describe these objects.

Datastore Object

The stream starts with the datastore reading in the documents as they are stored in
the system according to your datastore preference. For example, if you have defined
your datastore as FILE_ DATASTORE, the stream starts by reading the files from the
operating system. You can also store you documents on the internet or in the Oracle
database.

2-4 Oracle Text Application Developer’'s Guide

About Oracle Text Indexes

Filter Object

The stream then passes through the filter. What happens here is determined by your
FILTER preference. The stream can be acted upon in one of the following ways:

« Nofiltering takes place. This happens when you specify the NULL_FILTER
preference type. Documents that are plain text, HTML, or XML need no
filtering.

« Formatted documents (binary) are filtered to marked-up text. This happens
when you specify the INSO_FILTER preference type.

« Textis converted from a non-database character set to the database character
set. This happens when you specify CHARSET_FILTER preference type.

Sectioner Object

After being filtered, the marked-up text passes through the sectioner that separates
the stream into text and section information. Section information includes where
sections begin and end in the text stream. The type of sections extracted is
determined by your section group type.

The section information is passed directly to the indexing engine which uses it later.
The text is passed to the lexer.

Lexer Object

The lexer breaks the text into tokens according to your language. These tokens are
usually words. To extract tokens, the lexer uses the parameters as defined in your
lexer preference. These parameters include the definitions for the characters that
separate tokens such as whitespace, and whether to convert the text to all uppercase
or to leave it in mixed case.

When theme indexing is enabled, the lexer analyses your text to create theme tokens
for indexing.

Indexing Engine

The indexing engine creates the inverted index that maps tokens to the documents
that contain them. In this phase, Oracle uses the stoplist you specify to exclude
stopwords or stopthemes from the index. Oracle also uses the parameters defined in
your WORDLIST preference, which tell the system how to create a prefix index or
substring index, if enabled.

Indexing 2-5

About Oracle Text Indexes

Partitioned Tables and Indexes

You can create a partitioned CONTEXT index on a partitioned text table. The table
must be partitioned by range. Hash, composite and list partitions are not supported.

You might create a partitioned text table to partition your data by date. For
example, if your application maintains a large library of dated news articles, you
can partition your information by month or year. Partitioning simplifies the
manageability of large databases since querying, DML, and backup and recovery
can act on single partitions.

See Also: Oracle9i Database Concepts for more information about
partitioning.

Querying Partitioned Tables

To query a partitioned table, you use CONTAINS in the SELECT statement no
differently as you query a regular table. You can query the entire table or a single
partition. However, if you are using the ORDER BY SCORE clause, Oracle
recommends that you query single partitions unless you include a range predicate
that limits the query to a single partition.

Parallel Indexing

Oracle Text supports parallel indexing with CREATE INDEX on a partitioned text
table.

The parallel indexing operation creates multiple threads where each thread works
on a partition. Since indexing is an 170 intensive operation, parallel indexing is
most effective in decreasing your indexing time when you have distributed disk
access and multiple CPUs.

Since parallel indexing decreases the initial indexing time, it is useful for
« data staging, when your product includes an Oracle Text index
« rapid initial startup of applications based on large data collections

« application testing, when you need to test different index parameters and
schemas while developing your application

Note: Parallel indexing with a partitioned text table can only
affect the performance of an initial index with CREATE INDEX. It
does not affect DML performance with ALTER INDEX, and has
minimal impact on query performance.

2-6 Oracle Text Application Developer’s Guide

About Oracle Text Indexes

Limitations for Indexing

Columns with Multiple Indexes

A column can have no more than a single domain index attached to it, which is in
keeping with Oracle standards. However, a single Text index can contain theme
information in addition to word information.

Indexing Views

Oracle SQL standards does not support creating indexes on views. Therefore, if you
need to index documents whose contents are in different tables, you can create a
data storage preference using the USER_DATASTORE object. With this object, you
can define a procedure that synthesizes documents from different tables at index
time.

See Also: Oracle Text Reference to learn more about USER _
DATASTORE.

Indexing 2-7

Considerations For Indexing

Considerations For Indexing

You use the CREATE INDEX statement to create an Oracle Text index. When you
create an index and specify no parameter string, an index is created with default
parameters.

You can also override the defaults and customize your index to suit your query
application. The parameters and preference types you use to customize your index
with CREATE INDEX fall into the following general categories.

2-8 Oracle Text Application Developer’s Guide

Considerations For Indexing

Type of Index

With Oracle Text, you can create one of three index types with CREATE INDEX. The
following table describes each type, its purpose, and what features it supports:

Supported Preferences

Index Type Description and Parameters Query Operator Notes

CONTEXT Use this index to build a All CREATE INDEX CONTAINS Supports all
text retrieval application preferences and documents services
when your text consists parameters supported and query services.
of large coherent except for INDEX SET. Supports indexing of
documents. You can -
- These supported partitioned text
index documents of include th bl
different formats such as parameters inc ul e the tables.
MS Word, HTML or index partition clause,

lain text and the format, charset,

P : and language columns.
With a context index, you
can customize your
index in a variety of
ways.

CTXCAT Use this index type for INDEX SET CATSEARCH The size of a
better mixed query LEXER (theme indexing This operator has CTXCAT index is
performance. Typically, not supported) its own quer related to the total
with this index type, you PP lanaua g tha){ amount of text to be
index small documents ~ STOPLIST supgpor%s logical indexed, number of
or text fragments. Other STORAGE operations, phrase indexes in the index

columns in the base
table, such as item
names, prices and
descriptions can be
included in the index to
improve mixed query
performance.

WORDLIST (only prefix_
index attribute
supported for Japanese
data)

Format, charset, and
language columns not
supported.

Table and index
partitioning not
supported.

queries, and
wildcarding.

The query
language does not
support ABOUT,
fuzzy, and stem
operators.

set, and number of
columns indexed.
Carefully consider
your queries and
your resources
before adding
indexes to the index
set.

The CTXCAT index
does not support
table and index
partitioning,
documents services
(highlighting,
markup, themes,
and gists) or query
services (explain,
query feedback, and
browse words.)

Indexing 2-9

Considerations For Indexing

Index Type Description

Supported Preferences

and Parameters Query Operator

Notes

CTXRULE Use CTXRULE index to
build a document
classification or routing
application. The
CTXRULE index is an
index created on a table
of queries, where the
queries define the
classification or routing
criteria.

Only the BASIC_LEXER MATCHES
type supported for
indexing your query set.

Queries in your query set
can include ABOUT,
STEM, AND, NEAR,
NOT, and OR operators.

The following operators
are not supported:
ACCUM, EQUIYV,
WITHIN, WILDCARD,
FUZZY, SOUNDEX,
MINUS, WEIGHT,
THRESHOLD.

The CREATE INDEX
storage clause supported
for creating the index on
the queries.

Section group supported
for when you use the
MATCHES operator to
classify documents.

Wordlist supported for
stemming operations on
your query set.

Filter, memory, datastore,
and populate parameters
are not applicable to
index type CTXRULE.

Single documents
(plain text, HTML,
or XML) can be
classified using the
MATCHES operator,
which turns a
document into a set
of queries and finds
the matching rows
in the CTXRULE
index.

See Also:

Location of Text

Index Creation in this chapter.

Your document text can reside in one of three places, the text table, the file system,
or the world-wide web. When you index with CREATE INDEX, you specify the
location using the datastore preference. Use the appropriate datastore according to

your application.

The following table describes all the different ways you can store your text with the
datastore preference type.

2-10 Oracle Text Application Developer’'s Guide

Considerations For Indexing

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in a text column. Each row is
indexed as a single document.

Your text column can be VARCHAR?2, CLOB, BLOB,
CHAR, or BFILE. XMLType columns are supported for
the context index type.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.
Columns are concatenated to create a virtual document,
one document per row.

DETAIL_DATASTORE Data is stored internally in a text column. Document
consists of one or more rows stored in a text column in
a detail table, with header information stored in a
master table.

FILE_DATASTORE Data is stored externally in operating system files.
Filenames are stored in the text column, one per row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet

or the Internet. Uniform Resource Locators (URLS) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a
user-defined stored procedure.

Indexing time and document retrieval time will be increased for indexing URLs
since the system must retrieve the document from the network.

See Also: Datastore Examples in this chapter.

Document Formats and Filtering

Formatted documents such as Microsoft Word and PDF must be filtered to text to be
indexed. The type of filtering the system uses is determined by the FILTER
preference type. By default the system uses the INSO_FILTER filter type which
automatically detects the format of your documents and filters them to text.

Oracle can index most formats. Oracle can also index columns that contain
documents with mixed formats.

Indexing 2-11

Considerations For Indexing

No Filtering for HTML

If you are indexing HTML or plain text files, do not use the INSO_FILTER type. For
best results, use the NULL_FILTER preference type.

See Also: NULL_FILTER Example: Indexing HTML Documents
in this chapter.

Filtering Mixed Formatted Columns

If you have a mixed format column such as one that contains Microsoft Word, plain
text, and HTML documents, you can bypass filtering for plain text or HTML by
including a format column in your text table. In the format column, you tag each
row TEXT or BINARY. Rows that are tagged TEXT are not filtered.

For example, you can tag the HTML and plain text rows as TEXT and the Microsoft
Word rows as BINARY. You specify the format column in the CREATE INDEX
parameter clause.

Custom Filtering

You can create your own custom filter to filter documents for indexing. You can
create either an external filter that is executed from the file system or an internal
filter as a PL/SQL or Java stored procedure.

For external custom filtering, use the USER_FILTER filter preference type.
For internal filtering, use the PROCEDURE_FILTER filter type.

See Also: PROCEDURE_FILTER Example in this chapter.

Bypassing Rows for Indexing

You can bypass rows in your text table that are not to be indexed, such as rows that
contain image data. To do so, create a format column in your table and set it to
IGNORE. You name the format column in the parameter clause of CREATE INDEX.

Document Character Set

The indexing engine expects filtered text to be in the database character set. When
you use the INSO_FILTER filter type, formatted documents are converted to text in
the database character set.

2-12 Oracle Text Application Developer's Guide

Considerations For Indexing

If your source is text and your document character set is not the database character
set, you can use the INSO_FILTER or CHARSET_FILTER filter type to convert your
text for indexing.

Mixed Character Set Columns

If your document set contains documents with different character sets, such as
JA16EUC and JA16SIIS, you can index the documents provided you create a charset
column. You populate this column with the name of the document character set on
a per-row basis. You name the column in the parameter clause of the CREATE
INDEX statement.

Document Language
Oracle can index most languages. By default, Oracle assumes the language of text to
index is the language you specify in your database setup.

You use the BASIC_LEXER preference type to index whitespace-delimited
languages such as English, French, German, and Spanish. For some of these
languages you can enable alternate spelling, composite word indexing, and base
letter conversion.

You can also index Japanese, Chinese, and Korean.

See Also: Oracle Text Reference to learn more about indexing these
languages.

Indexing Multi-language Columns

Oracle can index text columns that contain documents of different languages, such
as a column that contains documents written in English, German, and Japanese. To
index a multi-language column, you need a language column in your text table. Use
the MULTI_LEXER preference type.

You can also incorporate a multi-language stoplist when you index multi-language
columns.

See Also: MULTI_LEXER Example: Indexing a Multi-Language
Table in this chapter.

Indexing Special Characters

When you use the BASIC_LEXER preference type, you can specify how
non-alphanumeric characters such as hyphens and periods are indexed with respect

Indexing 2-13

Considerations For Indexing

to the tokens that contain them. For example, you can specify that Oracle include or
exclude hyphen character (-) when indexing a word such as web-site.

These characters fall into BASIC_LEXER categories according to the behavior you
require during indexing. The way the you set the lexer to behave for indexing is the
way it behaves for query parsing.

Some of the special characters you can set are as follows:

Printjoins Character

Define a non-alphanumeric character as printjoin when you want this character to
be included in the token during indexing.

For example, if you want your index to include hyphens and underscore characters,
define them as printjoins. This means that words such as web-site are indexed as
web-site. A query on website does not find web-site.

See Also: BASIC_LEXER Example: Setting Printjoins Characters
in this chapter.

Skipjoins Character

Define a non-alphanumeric character as a skipjoin when you do not want this
character to be indexed with the token that contains it.

For example, with the hyphen (-) character defined as a skipjoin, the word web-site is
indexed as website. A query on web-site finds documents containing website and
web-site.

Other Characters

Other characters can be specified to control other tokenization behavior such as
token separation (startjoins, endjoins, whitespace), punctuation identification
(punctuations), number tokenization (numjoins), and word continuation after
line-breaks (continuation). These categories of characters have defaults, which you
can modify.

See Also: Oracle Text Reference to learn more about the BASIC _
LEXER.

2-14 Oracle Text Application Developer's Guide

Considerations For Indexing

Case-Sensitive Indexing and Querying

By default, all text tokens are converted to uppercase and then indexed. This results
in case-insensitive queries. For example, separate queries on each of the three words
cat, CAT, and Cat all return the same documents.

You can change the default and have the index record tokens as they appear in the
text. When you create a case-sensitive index, you must specify your queries with
exact case to match documents. For example, if a document contains Cat, you must
specify your query as Cat to match this document. Specifying cat or CAT does not
return the document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the
BASIC_LEXER preference.

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.

Language Specific Features
You can enable the following language specific features at index time:

Indexing Themes

For English and French, you can index document theme information. A document
theme is a main document concept. Themes can be queried with the ABOUT
operator.

You can index theme information in other languages provided you have loaded and
compiled a knowledge base for the language.

By default themes are indexed in English and French. You can enable and disable
theme indexing with the index_themes attribute of the BASIC_LEXER preference

type.

See Also: Oracle Text Reference to learn more about the BASIC _
LEXER.

ABOUT Queries and Themes in Chapter 3, "Querying".
Base-Letter Conversion for Characters with Diacritical Marks

Some languages contain characters with diacritical marks such as tildes, umlauts,
and accents. When your indexing operation converts words containing diacritical

Indexing 2-15

Considerations For Indexing

marks to their base letter form, queries need not contain diacritical marks to score
matches. For example in Spanish with a base-letter index, a query of energia matches
energia and energia in the index.

However, with base-letter indexing disabled, a query of energia matches only
energia.

You can enable and disable base-letter indexing for your language with the base_
letter attribute of the BASIC_LEXER preference type.

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.

Alternate Spelling

Languages such as German, Danish, and Swedish contain words that have more
than one accepted spelling. For instance, in German, the & character can be
substituted for the ae character. The ae character is known as the base letter form.

By default, Oracle indexes words in their base-letter form for these languages.
Query terms are also converted to their base-letter form. The result is that these
words can be queried with either spelling.

You can enable and disable alternate spelling for your language using the alternate
spelling attribute in the BASIC_LEXER preference type.

See Also: Oracle Text Reference to learn more about the BASIC _
LEXER.

Composite Words

German and Dutch text contain composite words. By default, Oracle creates
composite indexes for these languages. The result is that a query on a term returns
words that contain the term as a sub-composite.

For example, in German, a query on the term Bahnhof (train station) returns
documents that contain Bahnhof or any word containing Bahnhof as a sub-composite,
such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

You can enable and disable the creation of composite indexes with the composite
attribute of the BASIC_LEXER preference.

See Also: Oracle Text Reference to learn more about the BASIC _
LEXER.

2-16 Oracle Text Application Developer’'s Guide

Considerations For Indexing

Korean, Japanese, and Chinese Indexing
You index these languages with specific lexers:

Language Lexer

Korean KOREAN_MORPH_LEXER
Japanese JAPANESE_LEXER

Chinese CHINESE_VGRAM_LEXER

The KOREAN_MORPH_LEXER has its own set of attributes to control indexing.
Features include composite word indexing.

See Also: Oracle Text Reference to learn more about these lexers.

Fuzzy Matching and Stemming

Fuzzy matching enables you to match similarly spelled words in queries. Stemming
enables you to match words with the same linguistic root.

Fuzzy matching and stemming are automatically enabled in your index if Oracle
Text supports this feature for your language.

Fuzzy matching is enabled with default parameters for its similarity score lower
limit and for its maximum number of expanded terms. At index time you can
change these default parameters.

See Also: Oracle Text Reference for more information about the
BASIC_WORDLIST preference type.

Better Wildcard Query Performance

Wildcard queries enable you to issue left-truncated, right-truncated and doubly
truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these
gueries can sometimes expand into large word lists, degrading your query
performance.

Wildcard queries have better response time when token prefixes and substrings are
recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index.
If your query application makes heavy use of wildcard queries, consider indexing
token prefixes and substrings. To do so, use the wordlist preference type. The
trade-off is a bigger index for improved wildcard searching.

Indexing 2-17

Considerations For Indexing

See Also: BASIC_WORDLIST Example: Enabling Substring and
Prefix Indexing in this chapter.

Document Section Searching

For documents that have internal structure such as HTML and XML, you can define
and index document sections. Indexing document sections enables you to narrow
the scope of your queries to within pre-defined sections. For example, you can
specify a query to find all documents that contain the term dog within a section you
define as Headings.

Sections must be defined prior to indexing and specified with the section group
preference.

Oracle Text provides section groups with system-defined section definitions for
HTML and XML. You can also specify that the system automatically create sections
from XML documents during indexing.

See Also: Chapter 6, "Document Section Searching”

Stopwords and Stopthemes

A stopword is a word that is not to be indexed. Usually stopwords are low
information words in a given language such as this and that in English.

By default, Oracle provides a list of stopwords called a stoplist for indexing a given
language. You can modify this list or create your own with the CTX_DDL package.
You specify the stoplist in the parameter string of CREATE INDEX.

A stoptheme is a word that is prevented from being theme-indexed or prevented
from contributing to a theme. You can add stopthemes with the CTX_DDL package.

You can search document themes with the ABOUT operator. You can retrieve
document themes programatically with the CTX_DOC PL/SQL package.

Multi-Language Stoplists

You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI_LEXER to index a table
that contains documents in different languages, such as English, German, and
Japanese.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language

2-18 Oracle Text Application Developer’'s Guide

Considerations For Indexing

setting determines the active stopwords, like it determines the active lexer when
using the multi-lexer.

Indexing 2-19

Index Creation

Index Creation

You can create three types of indexes with Oracle Text: CONTEXT, CTXCAT, and
CTXRULE.

Procedure for Creating a CONTEXT Index

By default, the system expects your documents to be stored in a text column. Once
this requirement is satisfied, you can create a text index using the CREATE INDEX
SQL command as an extensible index of type context, without explicitly specifying
any preferences. The system automatically detects your language, the datatype of
the text column, format of documents, and sets indexing preferences accordingly.

See Also: For more information about the out-of-box defaults, see
Default CONTEXT Index Example in this chapter.
To create an Oracle Text index, do the following:

1. Optionally, determine your custom indexing preferences, section groups, or
stoplists if not using defaults. The following table describes these indexing

classes:
Class Description
Datastore How are your documents stored?
Filter How can the documents be converted to plaintext?
Lexer What language is being indexed?
Wordlist How should stem and fuzzy queries be expanded?
Storage How should the index data be stored?
Stop List What words or themes are not to be indexed?
Section Group How are documents sections defined?

See Also: Considerations For Indexing in this chapter and Oracle
Text Reference.

2. Optionally, create your own custom preferences, section groups, or stoplists. See
"Creating Preferences" in this chapter.

2-20 Oracle Text Application Developer’'s Guide

Index Creation

3. Create the Text index with the SQL command CREATE INDEX, naming your
index and optionally specifying preferences. See "Creating an Index" in this
chapter.

Creating Preferences

You can optionally create your own custom index preferences to override the
defaults. Use the preferences to specify index information such as where your files
are stored and how to filter your documents. You create the preferences then set the
attributes.

Datastore Examples

The following sections give examples for setting direct, multi-column, URL, and file
datastores.

See Also: Oracle Text Reference for more information about data
storage.

Specifying DIRECT_DATASTORE The following example creates a table with a CLOB
column to store text data. It then populates two rows with text data and indexes the
table using the system-defined preference CTXSYS.DEFAULT _DATASTORE.

create table mytable(id number primary key, docs clob);

insertinto mytable values(111555, this text will be indexed);
insertinto mytable values(111556, this is a direct_datastore example);
commit;

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters (DATASTORE CTXSYS.DEFAULT_DATASTORE);

Specifying MULTI_COLUMN_DATASTORE The following example creates a
multi-column datastore preference called my_multi on the three text columns to be
concatenated and indexed:

begin

ctx_ddl.create_preferencefmy_multi’, MULT] COLUMN_DATASTOREY);

ctx_ddl.set_attribute(my_mult’,'columns’, ‘column, column2, column3);
end;

Indexing 2-21

Index Creation

Specifying URL Data Storage This example creates a URL_DATASTORE preference
called my_url to which the http_proxy, no_proxy, and timeout attributes are set. The
defaults are used for the attributes that are not set.

begin

ctx_ddl.create preference(my_ur’,URL_DATASTORE);

ctx_ddlset attrbute(my_urd,HTTP_PROXY’,www-proxy.us.oracle.con);
ctx_ddl.set_attribute(my_urf,NO_PROXY",us.oracle.com);

ctx_ddl.set_attribute(my_ur’, Timeout,'300);

end;

Specifying File Data Storage The following example creates a data storage preference
using the FILE_DATASTORE. This tells the system that the files to be indexed are
stored in the operating system. The example uses CTX_DDL.SET_ATTRIBUTE to
set the PATH attribute of to the directory /docs .

begin

ctx_ddl.create preference(mypref, FILE_DATASTORE);

ctx_ddl.set_attribute(mypref, PATH', /docs));

end;

NULL_FILTER Example: Indexing HTML Documents
If your document set is entirely HTML, Oracle recommends that you use the
NULL_FILTER in your filter preference, which does no filtering.

For example, to index an HTML document set, you can specify the system-defined
preferences for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmilfile) indextype is ctxsys.context

parameters(fitter ctxsys.null_fitter
section group ctxsys.html_section_group));

PROCEDURE_FILTER Example

Consider a filter procedure CTXSYS.NORMALIZE that you define with the
following signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR?);

To use this procedure as your filter, you set up your filter preference as follows:

begin
ctx_ddl.create_preference(myfilt, ‘procedure_fitter);

2-22 Oracle Text Application Developer's Guide

Index Creation

ctx_ddl.set_attribute(myfit, ‘procedure’, 'nommalize);

ctx_ddl.set_attrbute(myfit, ‘input_type’, ‘clob’);

ctx_ddl.set_attribute(myfit, ‘output_type', ‘varchar2);

ctx_ddl.set_attribute(myfitt, 'rowid_parameter, TRUEY);

ctx_ddl.set_attribute(myfitt, ‘charset_parameter’, TRUE);
end;

BASIC_LEXER Example: Setting Printjoins Characters

Printjoin characters are non-alphanumeric characters that are to be included in
index tokens, so that words such as web-site are indexed as web-site.

The following example sets printjoin characters to be the hyphen and underscore
with the BASIC_LEXER:

begin

ctx_ddl.create_preference(mylex, BASIC_LEXER);

ctx_ddl.set_attribute(mylex, ‘printoins’,”_-);

end,;

To create the index with printjoins characters set as above, issue the following
statement:

create index myindex on mytable (docs)

indextype is ctxsys.context
parameters ('LEXER mylex');

MULTI_LEXER Example: Indexing a Multi-Language Table

You use the MULTI_LEXER preference type to index a column containing
documents in different languages. For example, you can use this preference type
when your text column stores documents in English, German, and French.

The first step is to create the multi-language table with a primary key, a text column,
and a language column as follows:

create table globaldoc (
doc_id number primary key,
lang varchar2(3),

textclob
)

Assume that the table holds mostly English documents, with some German and
Japanese documents. To handle the three languages, you must create three
sub-lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create preference(english_lexer’ basic_lexer);

Indexing 2-23

Index Creation

ctx_ddl.set_attribute(english_lexer’/index_themes','yes));
ctx_ddl.set_attribute(english_lexer’,theme_language’,'english’);

ctx_ddl.create_preference(german _lexer’,basic_lexer);
ctx_ddl.set_attribute(german_lexer’,composite’, german’);
ctx_ddl.set_attribute(german_lexer,mixed_case’,yes));
ctx_ddl.set_attribute(german_lexer’, altemate_speling’,german’);

ctx_ddl.create_preference(japanese_lexer',japanese_vgram_lexer);

Create the multi-lexer preference:
ctx_ddl.create _preference(global_lexer, 'multi_lexer);

Since the stored documents are mostly English, make the English lexer the default
using CTX_DDL.ADD_SUB_LEXER:

ctx_ddladd_sub_lexer(global_lexer,'default,'english_lexer);

Now add the German and Japanese lexers in their respective languages with CTX_
DDL.ADD_SUB_LEXER procedure. Also assume that the language column is
expressed in the standard 1SO 639-2 language codes, so add those as alternate
values.

ctx_ddladd sub_lexer(global_lexer,'german’,german_lexer’,/ger);
ctx_ddladd_sub_lexer(global_lexer,japanese’,japanese_lexer',jpn);

Now create the index globalx , specifying the multi-lexer preference and the
language column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters (lexer global_lexer language column lang’);

BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

The following example sets the wordlist preference for prefix and substring
indexing. Having a prefix and sub-string component to your index improves
performance for wildcard queries.

For prefix indexing, the example specifies that Oracle create token prefixes between
three and four characters long:
begin

ctx_ddl.create preference(mywordiist, BASIC_WORDLIST);

ctx_ddl.set_attribute(mywordist, INDEX_PREFIX,YES);

ctx_ddl.set_attribute(mywordliist, PREFIX_MIN_LENGTH3);

cx_ddl.set_atribute(mywordiist, PREFIX_MAX_LENGTH', 4);

2-24 Oracle Text Application Developer's Guide

Index Creation

ctx_ddl.set_atmbute(mywordiist, SUBSTRING_INDEX;, 'YES);
end

Creating Section Groups for Section Searching

When documents have internal structure such as in HTML and XML, you can
define document sections using embedded tags before you index. This enables you
to query within the sections using the WITHIN operator. You define sections as part
of a section group.

Example: Creating HTML Sections

The following code defines a section group called htmgroup of type HTML_
SECTION_GROURP. It then creates a zone section in htmgroup called heading
identified by the <H1> tag:

begin

ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);
ctx_ddladd_zone_section(htmgroup’, 'heading’, 'H1);

end,;

See Also: Chapter 6, "Document Section Searching"”

Using Stopwords and Stoplists

A stopword is a word that is not to be indexed. A stopword is usually a low
information word such as this or that in English.

The system supplies a list of stopwords called a stoplist for every language. By
default during indexing, the system uses the Oracle Text default stoplist for your
language.

You can edit the default stoplist CTXSYS.DEFAULT_STOPLIST or create your own
with the following PL/SQL procedures:

«» CTX_DDL.CREATE_STOPLIST

« CTX _DDL.ADD_STOPWORD

«» CTX_DDL.REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE INDEX.

You can also dynamically add stopwords after indexing with the ALTER INDEX
statement.

Indexing 2-25

Index Creation

Multi-Language Stoplists

You can create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI_LEXER to index a table
that contains documents in different languages, such as English, German, and
Japanese.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST
procedure and specify a stoplist type of MULTI_STOPLIST. You add language
specific stopwords with CTX_DDL.ADD_STOPWORD.

Stopthemes and Stopclasses

In addition to defining your own stopwords, you can define stopthemes, which are
themes that are not to be indexed. This feature is available for English only.

You can also specify that numbers are not to be indexed. A class of alphanumeric
characters such a numbers that is not to be indexed is a stopclass.

You record your own stopwords, stopthemes, stopclasses by creating a single
stoplist, to which you add the stopwords, stopthemes, and stopclasses. You specify
the stoplist in the paramstring for CREATE INDEX.

PL/SQL Procedures for Managing Stoplists

You use the following procedures to manage stoplists, stopwords, stopthemes, and
stopclasses:

« CTX_DDL.CREATE_STOPLIST

« CTX_DDL.ADD_STOPWORD

« CTX_DDL.ADD_STOPTHEME

« CTX_DDL.ADD_STOPCLASS

« CTX_DDL.REMOVE_STOPWORD
« CTX_DDL.REMOVE_STOPTHEME
« CTX_DDL.REMOVE_STOPCLASS
« CTX_DDL.DROP_STOPLIST

See Also: Oracle Text Reference. to learn more about using these
commands.

2-26 Oracle Text Application Developer’'s Guide

Index Creation

Creating an Index

You create an Oracle Text index as an extensible index using the CREATE INDEX
SQL command.

You can create three types of indexes:

« CONTEXT
« CTXCAT
« CTXRULE

Creating a CONTEXT Index

The context index type is well-suited for indexing large coherent documents such as
MS Word, HTML or plain text. With a context index, you can also customize your
index in a variety of ways.

The documents must be loaded in a text table.

Default CONTEXT Index Example

The following command creates a default context index called myindex on the
text column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

When you use CREATE INDEX without explicitly specifying parameters, the
system does the following for all languages by default:

« Assumes that the text to be indexed is stored directly in a text column. The text
column can be of type CLOB, BLOB, BFILE, VARCHARZ2, or CHAR.

« Detects the column type and uses filtering for binary column types. Most
document formats are supported for filtering. If your column is plain text, the
system does not use filtering.

Note: For document filtering to work correctly in your system,
you must ensure that your environment is set up correctly to
support the Inso filter.

To learn more about configuring your environment to use the Inso
filter, see the Oracle Text Reference.

« Assumes the language of text to index is the language you specify in your
database setup.

Indexing 2-27

Index Creation

« Uses the default stoplist for the language you specify in your database setup.
Stoplists identify the words that the system ignores during indexing.

« Enables fuzzy and stemming queries for your language, if this feature is
available for your language.

You can always change the default indexing behavior by creating your own
preferences and specifying these custom preferences in the parameter string of
CREATE INDEX.

Custom CONTEXT Index Example: Indexing HTML Documents

To index an HTML document set located by URLS, you can specify the
system-defined preference for the NULL_FILTER in the CREATE INDEX statement.

You can also specify your section group htmgroup that uses HTML_SECTION_
GROUP and datastore my_url that uses URL_DATASTORE as follows:

begin

ctx_ddl.create preference(my_ur’,URL_DATASTORE));

ctx_ddl.set attribute(my_ur’,HTTP_PROXY’, wamn-proxy.us.oracle.com);
ctx_ddl.set_attribute(my_urf,NO_PROXY",us.oracle.com);

cix_ddl.set_attribute(my_urt, Timeout, 300);

end;

begin

ctx_ddl.create section_group(htmgroup’,HTML_SECTION_GROUP);
ctx_ddl.add zone_section(htmgroup’, 'heading’, 'H1);

end;

You can then index your documents as follows:

create index myindex on docs(htmilfile) indextype is ctxsys.context
parameters(‘datastore my_ur fitter ctxsys.null_fitter section group htmgroup’);

See Also: "Creating Preferences" in this chapter for more
examples on creating a custom context index.

2-28 Oracle Text Application Developer’'s Guide

Index Creation

Creating a CTXCAT Index

The CTXCAT indextype is well-suited for indexing small text fragments and related
information. If created correctly, this type of index can give better structured query
performance over a CONTEXT index.

CTXCAT Index and DML

A CTXCAT index is transactional. When you perform DML (inserts, updates, and
deletes) on the base table, Oracle automatically synchronizes the index. Unlike a
CONTEXT index, no CTX_DDL.SYNC_INDEX is necessary.

About CTXCAT Sub-Indexes and Their Costs

A CTXCAT index is comprised of sub-indexes that you define as part of your index
set. You create a sub-index on one or more columns to improve mixed query
performance.

However, adding sub-indexes to the index set has its costs. The time Oracle takes to
create a CTXCAT index depends on its total size, and the total size of a CTXCAT
index is directly related to

« total text to be indexed
« humber of sub-indexes in the index set
« humber of columns in the base table that make up the sub-indexes

Having many component indexes in your index set also degrades DML
performance since more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index,
carefully consider the query performance benefit each component index gives your
application before adding it to your index set.

Indexing 2-29

Index Creation

Creating CTXCAT Sub-indexes

Figure 2-2
Sub-index A
CTXCAT
I Index
Auction Table
R, . . , > (A
item_id | title category_id | price bid_close
number | varchar (100) | number number | date
> [B]
Sub-index B

An online auction site that must store item descriptions, prices and bid-close dates
for ordered look-up provides a good example for creating a CTXCAT index.

Figure 2-2 shows a table called AUCTION with the following schema:

create table auction(
item_id number,
tite varchar2(100),
category_id number,
price number,
bid_close date);

To create your sub-indexes, create an index set to contain them:
begin

ctx_ddl.create_index_set(auction_iset);
end;

Next, determine the structured queries your application is likely to issue. The
CATSEARCH query operator takes a mandatory text clause and optional structured
clause.

2-30 Oracle Text Application Developer’'s Guide

Index Creation

In our example, this means all queries include a clause for the title column which
is the text column.

Assume that the structured clauses fall into the following categories:

Sub-index Definition

Structured Clauses to Serve Query Category
‘price <200 price’ A

‘price = 150°

‘order by price’

‘price =100 order by bid__ ‘price, bid_close’ B

close’

‘order by price, bid_close’

Structured Query Clause Category A The structured query clause contains a expression
for only the price column as follows:

SELECT FROM auction WHERE CATSEARCH(title, ‘camera’, price < 200> 0;
SELECT FROM auction WHERE CATSEARCH(title, ‘camera’, ‘price = 150> 0;
SELECT FROM auction WHERE CATSEARCH|(title, ‘camera’, ‘order by price)>0;

These queries can be served using sub-index B, but for efficiency you can also create
a sub-index only on price , which we call sub-index A:
begin
ctx_ddl.add_index(auction _iset,price)); /* sub-index A*/
end;

Structured Query Clause Category B The structured query clause includes an
equivalence expression for price ordered by bid_close , and an expression for
ordering by price and bid_close in that order:

SELECT FROM auction WHERE CATSEARCH(title, ‘camera’, price = 100 order by bid_
close)>0;

SELECT FROM auction WHERE CATSEARCH(title, ‘camera’,'order by price, bid_
close’)>0;

These queries can be served with a sub-index defined as follows:
begin

ctx_ddladd_index(auction _iset, price, bid_close’); # sub-index B */
end;

Indexing 2-31

Index Creation

Like a combined b-tree index, the column order you specify with CTX_DDL.ADD _
INDEX affects the efficiency and viability of the index scan Oracle uses to serve
specific queries. For example, if two structured columns p and g have a b-tree index
specified as 'p,q’ , Oracle cannot scan this index to sort order by q,p’

Creating CTXCAT Index

The following example combines the examples above and creates the index set
preference with the three sub-indexes:
begin
ctx_ddl.create_index_set(auction iset);
ctx_ddladd_index(auction _iset, price’); /* sub-index A*/
ctx_ddladd_index(auction _iset, price, bid_close’); # sub-index B */
end;

Figure 2-2 shows how the sub-indexes A and B are created from the auction table.
Each sub-index is a b-tree index on the text column and the named structured
columns. For example, sub-index A is an index on the titte column and the bid_
close column.

You create the combined catalog index with CREATE INDEX as follows:
CREATE INDEX auction_titex ON AUCTION(tite) INDEXTYPE IS CTXCAT PARAMETERS

(index set auction_iset);

See Also: Oracle Text Reference to learn more about creating a
CTXCAT index with CREATE INDEX.

Creating a CTXRULE Index

You use the CTXRULE index to build a document classification application. You
create a table of queries and then index them. With a CTXRULE index, you can use
the MATCHES operator to classify single documents.

Create a Table of Queries

The first step is to create a table of queries that define your classifications. We create
a table myqueries to hold the category name and query text:

CREATE TABLE myqueries (
queryid NUMBER PRIMARY KEY,
category VARCHAR2(30)
query VARCHAR2(2000)

2-32 Oracle Text Application Developer’'s Guide

Index Creation

Populate the table with the classifications and the queries that define each. For
example, consider a classification for the subjects US Politics, Music, and Soccer.:

INSERT INTO myqueries VALUES(1, 'US Politics’, 'democrat or republican’);
INSERT INTO myqueries VALUES(2, 'Music',’/ABOUT(music));
INSERT INTO myqueries VALUES(3, 'Soccer’, ’ABOUT(soccer));

Create the CTXRULE Index
Use CREATE INDEX to create the CTXRULE index. You can specify lexer, storage,
section group, and wordlist parameters if needed:

CREATE INDEX ON myqueries(query) INDEXTYPE IS CTXRULE PARAMETERS(lexer lexer_
pref storage storage_pref section group section_prefwordlist wordlist_pref);

Note: The filter, memory, datastore, stoplist, and [no]populate
parameters do not apply to the CTXRULE index type.

Classifying a Document

With a CTXRULE index created on query set, you can use the MATCHES operator
to classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsid NUMBER,
author VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

You can create a before insert trigger with MATCHES to route each document to
another table news_route based on its classification:

BEGIN
—find matching queries
FOR c1 IN (select category
from myqueries
where MATCHES(query, :new.article)>0)
LOOP
INSERT INTO news_route(newsid, category)
VALUES (:new.newsid, c1.category);
END LOOP;
END;

Indexing 2-33

Index Maintenance

Index Maintenance

This section describes maintaining your index in the event of an error or indexing
failure.

Viewing Index Errors

Sometimes an indexing operation might fail or not complete successfully. When the
system encounters an error indexing a row, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER_INDEX_ERRORS. View
errors on all indexes as CTXSYS with CTX_INDEX_ERRORS.

For example to view the most recent errors on your indexes, you can issue:

SELECT enm_timestamp, er_text FROM ctx_user_index_emors ORDER BY em_timestamp
DESC;

To clear the view of errors, you can issue:

DELETE FROM ctx_user_index_errors;

See Also: Oracle Text Reference to learn more about these views.

Dropping an Index
You must drop an existing index before you can re-create it with CREATE INDEX.
You drop an index using the DROP INDEX command in SQL.

For example, to drop an index called newsindex , issue the following SQL
command:

DROP INDEX newsindex;

If Oracle cannot determine the state of the index, for example as a result of an
indexing crash, you cannot drop the index as described above. Instead use:

DROP INDEX newsindex FORCE;

See Also: Oracle Text Reference to learn more about this command.

Resuming Failed Index

You can resume a failed index creation operation using the ALTER INDEX
command. You typically resume a failed index after you have investigated and
corrected the index failure.

2-34 Oracle Text Application Developer’'s Guide

Index Maintenance

Index optimization commits at regular intervals. Therefore if an optimization
operation fails, all optimization work has already been saved.

See Also: Oracle Text Reference to learn more about the ALTER
INDEX command syntax.

Example: Resuming a Failed Index

The following command resumes the indexing operation on newsindex with 2
megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS(resume memory 2M);

Rebuilding an Index
You can rebuild a valid index using ALTER INDEX. You might rebuild an index
when you want to index with a new preference.

See Also: Oracle Text Reference to learn more about the ALTER
INDEX command syntax.

Example: Rebuilding and Index

The following command rebuilds the index, replacing the lexer preference with my
lexer .

ALTER INDEX newsindex REBUILD PARAMETERS(replace lexer my_lexer);

Dropping a Preference
You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the procedure CTX_DDL.DROP_PREFERENCE.

Dropping a preference does not affect the index created from the preference.

See Also: Oracle Text Reference to learn more about the syntax for
the CTX_DDL.DROP_PREFERENCE procedure.

Example

The following code drops the preference my_lexer .
begin

ctx_ddl.drop_preference(my_lexer);

end;

Indexing 2-35

Managing DML Operations for a CONTEXT Index

Managing DML Operations for a CONTEXT Index

DML operations to the base table refer to when documents are inserted, updated or
deleted from the base table. This section describes how you can monitor,
synchronize, and optimize the Oracle Text CONTEXT index when DML operations

occur.
Note: CTXCAT indexes are transactional and thus updated
immediately when there is an update to the base table. Manual
synchronization as described in this section is not necessary for a
CTXCAT index.

Viewing Pending DML

When documents in the base table are inserted, updated, or deleted, their ROWIDs
are held in a DML queue until you synchronize the index. You can view this queue
with the CTX_USER_PENDING view.

For example, to view pending DML on all your indexes, issue the following
statement:

SELECT pnd_index_name, pnd_rowid, to_char(pnd_timestamp, 'dd-mon-yyyy
hh24:mi:ss’) imestamp FROM ctx_user_pending;

This statement gives output in the form:

PND_INDEX_NAME PND_ROWID TIMESTAMP

MYINDEX AAADXNAABAAAS3SAAC 06-0ct-1999 15:56:50

See Also: Oracle Text Reference to learn more about this view.

Synchronizing the Index

Synchronizing the index involves processing all pending updates, inserts, and
deletes to the base table. You can do this in PL/SQL with the CTX_DDL.SYNC _
INDEX procedure.

The following example synchronizes the index with 2 megabytes of memory:
begin

ctx_ddl.sync_index(myindex, 2M);
end;

2-36 Oracle Text Application Developer’'s Guide

Managing DML Operations for a CONTEXT Index

Setting Background DML

You can set CTX_DDL.SYNC_INDEX to run automatically at regular intervals using
the DBMS_JOB.SUBMIT procedure. Oracle Text includes a SQL script you can use
to do this. The location of this script is:

$ORACLE HOME/ctx/sample/script/driobdml.sgl

To use this script, you must be the index owner and you must have execute
privileges on the CTX_DDL package. You must also set the job_queue__
processes parameter in your Oracle initialization file.

For example, to set the index synchronization to run every 360 minutes on myindex,
you can issue the following in SQL*Plus:

SQL> @drjobdml myindex 360

See Also: Oracle Text Reference to learn more about the CTX_
DDL.SYNC_INDEX command syntax.

Index Optimization
Frequent index synchronization can fragment your CONTEXT index. Index
fragmentation can adversely affect query response time. You can optimize your
CONTEXT index to reduce fragmentation and index size and so improve query
performance.

To understand index optimization, you must understand the structure of the index
and what happens when it is synchronized.

CONTEXT Index Structure

The CONTEXT index is an inverted index where each word contains the list of
documents that contain that word. For example, after a single initial indexing
operation, the word DOG might have an entry as follows:

DOG DOC1 DOC3 DOC5

Index Fragmentation

When new documents are added to the base table, the index is synchronized by
adding new rows. Thus if you add a new document (DOC 7) with the word dog to
the base table and synchronize the index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7
Subsequent DML will also create new rows:

Indexing 2-37

Managing DML Operations for a CONTEXT Index

DOG DOC1 DOC3 DOC5
DOG DOC7

DOG DOC9

DOG DOC11

Adding new documents and synchronizing the index causes index fragmentation.
In particular, background DML which synchronizes the index frequently generally
produces more fragmentation than synchronizing in batch.

Less frequent batch processing results in longer document lists, reducing the
number of rows in the index and hence reducing fragmentation.

You can reduce index fragmentation by optimizing the index in either FULL or
FAST mode with CTX_DDL.OPTIMIZE_INDEX.

Document Invalidation and Garbage Collection
When documents are removed from the base table, Oracle Text marks the document
as removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query
time, you must remove the old information from the index by optimizing it in FULL
mode. This is called garbage collection.

Optimizing in FULL mode for garbage collection is necessary when you have
frequent updates or deletes to the base table.

Single Token Optimization

In addition to optimizing the entire index, you can optimize single tokens. You can
use token mode to optimize index tokens that are frequently searched, without
spending time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if
you know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.
To optimize an index in token mode, you can use CTX_DDL.OPTIMIZE_INDEX.

Examples: Optimizing the Index

To optimize an index, Oracle recommends that you use CTX_DDL.OPTIMIZE_
INDEX.

2-38 Oracle Text Application Developer’'s Guide

Managing DML Operations for a CONTEXT Index

See Also: Oracle Text Reference for the CTX_DDL.OPTIMIZE_
INDEX command syntax and examples.

Indexing 2-39

Managing DML Operations for a CONTEXT Index

2-40 Oracle Text Application Developer’'s Guide

3

Querying

This chapter describes Oracle Text querying and associated features. The following
topics are covered:

Overview of Queries

Query Operators for CONTAINS
Query Operators for CATSEARCH
Optimizing for Response Time

Counting Hits

Querying 3-1

Overview of Queries

Overview of Queries

The basic Oracle Text query takes a query expression, usually a word with or
without operators, as input. Oracle returns all documents (previously indexed) that
satisfy the expression along with a relevance score for each document. Scores can be
used to order the documents in the result set.

To issue an Oracle Text query, use the SQL SELECT statement with either the
CONTAINS or CATSEARCH operator. You can use these operators programatically
wherever you can use the SELECT statement, such as in PL/SQL cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

Querying with CONTAINS

When you create an index of type context , you must use the CONTAINS operator
to issue your query. An index of type context is suited for indexing collections of
large coherent documents.

With the CONTAINS operator, you can use a number of operators to define your
search criteria. These operators enable you to issue logical, proximity, fuzzy,
stemming, thesaurus and wildcard searches. With a correctly configured index, you
can also issue section searches on documents that have internal structure such as
HTML and XML.

With CONTAINS, you can also use the ABOUT operator to search on document
themes.

CONTAINS SQL Example

In the SELECT statement, specify the query in the WHERE clause with the
CONTAINS operator. Also specify the SCORE operator to return the score of each
hit in the hitlist. The following example shows how to issue a query:

SELECT SCORE(1) title from news WHERE CONTAINS(text, ‘'oracle’, 1) > 0;

3-2 Oracle Text Application Developer’'s Guide

Overview of Queries

You can order the results from the highest scoring documents to the lowest scoring
documents using the ORDER BY clause as follows:

SELECT SCORE(1), title from news
WHERE CONTAINS(text, ‘oracle’, 1) >0
ORDER BY SCORE(1) DESC;

CONTAINS PL/SQL Example
In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example issues a CONTAINS query against the NEWS table to find
all articles that contain the word oracle. The titles and scores of the first ten hits are
output.

declare
rowno number :=0;
begin
for c1in (SELECT SCORE(1) score, tite FROM news
WHERE CONTAINS(text, 'oracle’, 1) >0
ORDER BY SCORE(1) DESC)
loop
fOWNO :=rowno + 1;
dbms_outputput_line(cL.tte||' |lc1.score);
exit when ronwno = 10;
end loop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is
declared for the return value of the SCORE operator. The score and title are output
to standard out using cursor dot notation.

Structured Query with CONTAINS

A structured query, also called a mixed query, is a query that has a CONTAINS
predicate to query a text column and has another predicate to query a structured
data column.

To issue a structured query, you specify the structured clause in the WHERE
condition of the SELECT statement.

For example, the following SELECT statement returns all articles that contain the
word oracle that were written on or after October 1, 1997:

Querying 3-3

Overview of Queries

SELECT SCORE(1), fitle, issue_date from news
WHERE CONTAINS(text, ‘oracle’, 1) >0
ANDissue_date >=(01-OCT-97)
ORDER BY SCORE(1) DESC;

Note: Even though you can issue structured queries with
CONTAINS, consider creating a ctxcat index and issuing the query
with CATSEARCH, which offers better structured query
performance.

Querying with CATSEARCH

When you create an index of type ctxcat , you must use the CATSEARCH
operator to issue your query. An index of type ctxcat is best suited when your
application stores short text fragments in the text column and other associated
information in related columns.

For example, an application serving an online auction site might have a table that
stores item description in a text column and associated information such as date
and price in other columns. With a ctxcat index, you can create b-tree indexes on
one or more of these columns. The result is that when you use the CATSEARCH
operator to search a ctxcat index, query performance is generally faster for mixed
queries.

The operators available for CATSEARCH queries are limited to logical operations
such as AND or OR. The operators you can use to define your structured criteria are
greater than, less than, equality, BETWEEN, and IN.

CATSEARCH SQL Query

A typical query with CATSEARCH might include a structured clause as follows to
find all rows that contain the word camera ordered by the bid_close date:

SELECT FROM auction WHERE CATSEARCH(tile, 'camera, "order by bid_close desc)>
0;

The type of structured query you can issue depends on how you create your
sub-indexes.

See Also: "Creating a CTXCAT Index" in Chapter 2, "Indexing".

3-4 Oracle Text Application Developer’s Guide

Overview of Queries

CATSEARCH Structured Query

You specify the structured part of a CATSEARCH query with the structured_
query parameter. The columns you name in the structured expression must have a
corresponding sub-index.

For example, assuming that category id and bid_close have a sub-index in
the ctxcat index for the AUCTION table, you can issue the following structured
query:

SELECT FROM auction WHERE CATSEARCH(title, ‘camera’, ‘category_id=99 order by

bid_close desc)>0;

CATSEARCH PL/SQL Example

You can use a cursor to process the output of a CATSEARCH query as you do for
CONTAINS.

Querying with MATCHES

When you create an index of type CTXRULE, you must use the MATCHES operator
to classify your documents. The CTXRULE index is essentially an index on the set
of queries that define your classifications.

For example, if you have an incoming stream of documents that need to be routed
according to content, you can create a set of queries that define your categories. You
create the queries as rows in a text column. You then index the table to create a
CTXRULE index. When documents arrive, you use the MATCHES operator to
classify each document.

MATCHES SQL Query

A matches query finds all rows in a query table that match a given document.
Assuming that a table querytable has a CTXRULE index associated with it, you
can issue the following query:

SELECT classification FROM querytable WHERE MATCHES(text, 'Smith is a common
name in the United States’) >0;

Querying 3-5

Overview of Queries

MATCHES PL/SQL Example

The following example assumes that the table of queries tdrbrn0101 has a
CTXRULE index associated with it. It also assumes that the table newsfeed
contains a set of news articles to be categorized.

This example loops through the newsfeed table, categorizing each article using the
MATCHES operator. The results are stored in the tdrbrn0102 table.

PROMPT Populate the category table based on newsfeed articles
PROMPT
set serveroutput on;
declare

mypk number;

mytitle varchar2(1000);

myarticles clob;

mycategory varchar2(100);

cursor doccur is select pk tite,articles from newsfeed;

cursor mycur is select category from tdrbm0101 where matches(rule,
myarticles)>0;

CUISOr rescur is select category, pk, tite from tdrbm0102 order by
category,pk;

begin
dbms_output.enable(1000000);
open doccur,
loop
fetch doccur into mypk, mytitle, myarticles;
exit when doccuronotfound;
open mycur;
loop
fetch mycur into mycategory;
exit when mycur¥notfound;
insert into tdrbm0102 values(mycategory, mypk, mytite);
end loop;
close mycur;
commit;
end loop;
close doccur;
commit,

end;

/

The following example displays the categorized articles by category.

3-6 Oracle Text Application Developer’s Guide

Overview of Queries

PROMPT display the list of articles for every category
PROMPT

declare

mypk number;

mytitle varchar2(1000);

mycategory varchar2(100);

cursor cateur is select category from tdrbm0101 order by category;

Cursor rescur is select pk, title from tdrbm0102 where category=mycategory
order by pk;

begin
dbms_output.enable(1000000);
open catcur,
loop
fetch catcur into mycategory;
exit when catcur%onotfound;
dbms_outputput_line(*++ CATEGORY: ’||[mycategory|[**rrsertir).
Open rescur;
loop
fetch rescur into mypk, myftite;
exit when rescurdonotfound,
dbms_output put_ine(** (limypkl[). [Imytite);
end loop;
close rescur;
doms_outputput_line(**);
dbms_output.put_
line();
end loop;
close catcur;
end;
/

Word and Phrase Queries

A word query is a query on a word or phrase. For example, to find all the rows in
your text table that contain the word dog, you issue a query specifying dog as your
query term.

You can issue word queries with both CONTAINS and CATSEARCH SQL
operators.

If multiple words are contained in a query expression, separated only by blank
spaces (no operators), the string of words is considered a phrase and Oracle
searches for the entire string during a query.

Querying 3-7

Overview of Queries

For example, to find all documents that contain the phrase international law, you
issue your query with the phrase international law.

Querying Stopwords

Stopwords are words for which Oracle does not create an index entry. They are
usually common words in your language that are unlikely to be searched on by
themselves.

Oracle Text includes a default list of stopwords for your language. This list is called
a stoplist. For example, in English, the words this and that are defined as stopwords
in the default stoplist. You can modify the default stoplist or create new stoplists
with the CTX_DDL package. You can also add stopwords after indexing with the
ALTER INDEX statement.

You cannot query on a stopword by itself or on a phrase composed of only
stopwords. For example, a query on the word this returns no hits when this is
defined as a stopword.

You can query on phrases that contain stopwords as well as non-stopwords such as
this boy talks to that girl. This is possible because the Oracle Text index records the
position of stopwords even though it does not create an index entry for them.

When you include a stopword within your query phrase, the stopword matches any
word. For example, the query:

‘Jack was big'

matches phrases such as Jack is big and Jack grew big assuming was is a stopword.

ABOUT Queries and Themes

An ABOUT query is a query on a document theme. A document theme is a concept
that is sufficiently developed in the text. For example, an ABOUT query on US
politics might return documents containing information about US presidential
elections and US foreign policy. Documents need not contain the exact phrase US
politics to be returned.

During indexing, document themes are derived from the knowledge base, which is
a hierarchical list of categories and concepts that represents a view of the world.
Some examples of themes in the knowledge catalog are concrete concepts such as
jazz music, football, or Nelson Mandela. Themes can also be abstract concepts such as
happiness or honesty.

3-8 Oracle Text Application Developer’s Guide

Overview of Queries

During indexing, the system can also identify and index document themes that are
sufficiently developed in the document, but do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your
industry or query application. When you do so, ABOUT queries are more precise
for the added concepts.

ABOUT queries perform best when you create a theme component in your index.
Theme components are created by default for English and French.

Note: ABOUT queries are supported with only the CONTAINS
operator.

Querying Stopthemes

Oracle enables you to query on themes with the ABOUT operator. A stoptheme is a
theme that is not to be indexed. You can add and remove stopthemes with the CTX_
DLL package. You can add stopthemes after indexing with the ALTER INDEX
statement.

Query Expressions

A query expression is everything in between the single quotes in the text_query
argument of the CONTAINS or CATSEARCH operator. What you can include in a
guery expression in a CONTAINS query is different from what you can include in a
CATSEARCH operator.

CONTAINS Operator

A CONTAINS query expression can contain query operators that enable logical,
proximity, thesaural, fuzzy, and wildcard searching. Querying with stored
expressions is also possible. Within the query expression, you can use grouping
characters to alter operator precedence.

With CONTAINS, you can also use the ABOUT query to query document themes.

See Also: "Query Operators for CONTAINS" in this chapter.
CATSEARCH Operator

With the CATSEARCH operator, you specify your query expression with the text
query operator and your optional structured criteria with the structured_

Querying 3-9

Overview of Queries

guery argument. The text_query argument is limited to querying words and
phrases. You can use logical operations, such as logical and, or, and not.

With structured_query argument, you specify your structured criteria. You can
use the following SQL operations:

. <=

. >=

I

. <

« IN

« BETWEEN

You can also use ORDER BY clause to order your output.

See Also: "Query Operators for CATSEARCH" in this chapter.

MATCHES Operator

The MATCHES operator takes a document as input and finds all rows in a query
table that match it. You do not specify query expressions in the MATCHES operator.

Case-Sensitive Searching
Oracle Text supports case-sensitivity for word and ABOUT queries.

Word Queries

Word queries are case-insensitive by default. This means that a query on the term
dog returns the rows in your text table that contain the word dog, Dog, or DOG.

You can enable case-sensitive searching by enabling the mixed_case attribute in
your BASIC_LEXER index preference. With a case-sensitive index, your queries
must be issued in exact case. This means that a query on Dog matches only
documents with Dog. Documents with dog or DOG are not returned as hits.

Stopwords and Case-Sensitivity If you have case-sensitivity enabled for word queries

and you issue a query on a phrase containing stopwords and non-stopwords, you
must specify the correct case for the stopwords. For example, a query on this boy

3-10 Oracle Text Application Developer’'s Guide

Overview of Queries

talks to that girl does not return text that contains the phrase This boy talks to that
girl, assuming this is a stopword.

ABOUT Queries

ABOUT queries give the best results when your query is formulated with proper
case. This is because the normalization of your query is based on the knowledge
catalog which is case-sensitive. Attention to case is required especially for words
that have different meanings depending on case, such as turkey the bird and Turkey
the country:.

However, you need not enter your query in exact case to obtain relevant results
from an ABOUT query. The system does its best to interpret your query. For
example, if you enter a query of ORACLE and the system does not find this concept
in the knowledge catalog, the system might use Oracle as a related concept for
look-up.

Query Feedback

Feedback information provides broader term, narrower term, and related term
information for a specified query with a context index. You obtain this information
programatically with the CTX_QUERY.HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting
other query terms to the user in your query application.

The feedback information returned is obtained from the knowledge base and
contains only those terms that are also in the index. This increases the chances that
terms returned from HFEEDBACK produce hits over the currently indexed
document set.

See Also: Oracle Text Reference for more information about using
CTX_QUERY.HFEEDBACK

Query Explain Plan

Explain plan information provides a graphical representation of the parse tree for a
CONTAINS query expression. You can obtain this information programatically with
the CTX_QUERY.EXPLAIN procedure.

Explain plan information tells you how a query is expanded and parsed without
having the system execute the query. Obtaining explain information is useful for
knowing the expansion for a particular stem, wildcard, thesaurus, fuzzy, soundex,
or ABOUT query. Parse trees also show the following information:

Querying 3-11

Overview of Queries

« order of execution

« ABOUT query normalization

« query expression optimization
« stop-word transformations

« breakdown of composite-word tokens for supported languages

See Also: Oracle Text Reference for more information about using
CTX_QUERY.EXPLAIN

3-12 Oracle Text Application Developer's Guide

Query Operators for CONTAINS

Query Operators for CONTAINS

ABOUT Query

With the CONTAINS operator, you can add complexity to your searches with query
operators. You use the query operators in your query expression. For example, the
logical operator AND allows you to search for all documents that contain two
different words. The ABOUT operator allows you to search on concepts.

You can also use the WITHIN operator for section searching, the NEAR operator for
proximity searches, the stem, fuzzy, and thesaural operators for expanding a query
expression.

The following sections describe some of the Oracle Text operators.

See Also: Oracle Text Reference for complete information about
using query operators.

Use the ABOUT operator in English or French to query on a concept. The query
string is usually a concept or theme that represents the idea to be searched on.
Oracle returns the documents that contain the theme.

Word information and theme information are combined into a single index. To issue
a theme query, your index must have a theme component which is created by
default in English and French.

You issue a theme query using the ABOUT operator inside the query expression.
For example, to retrieve all documents that are about politics, write your query as
follows:

SELECT SCORE(1), ite FROM news
WHERE CONTAINS(text, ‘about(poliics), 1) >0
ORDER BY SCORE(1) DESC;

See Also: Oracle Text Reference for more information about using
the ABOUT operator.

Logical Operators

Logical operators such as AND or OR allow you to limit your search criteria in a
number of ways. The following table describes some of these operators.

Querying 3-13

Query Operators for CONTAINS

Operator Symbol Description Example Expression

AND & Use the AND operator to ‘cats AND dogs'
search for documents that ‘cats & dogs’
contain at least one occurrence
of each of the query terms.

Score returned is the minimum
of the operands.

OR | Use the OR operator to search ‘cats | dogs'
for documents that contain at ‘cats OR dogs’
least one occurrence of any of
the query terms.

Score returned is the maximum
of the operands.

NOT ~ Use the NOT operator to To obtain the documents that
search for documents that contain the term animals but not
contain one query term and not dogs, use the following expression:
another. ‘animals ~ dogs’

ACCUM | Use the ACCUM operator to The following query returns all
search for documents that documents that contain the terms
contain at least one occurrence dogs, cats and puppies giving the
of any of the query terms. The highest scores to the documents
accumulate operator ranks that contain all three terms:
documents according to the , .
total term weight of a dogs, cats, puppies
document.

EQUIV = Use the EQUIV operator to The following example returns all

specify an acceptable
substitution for a word in a

query.

documents that contain either the
phrase alsatians are big dogs or
German shepherds are big dogs:

‘German
shepherds=alsatians are
big dogs’

3-14 Oracle Text Application Developer's Guide

Query Operators for CONTAINS

Section Searching

Section searching is useful for when your document set is HTML or XML. For
HTML, you can define sections using embedded tags and then use the WITHIN
operator to search these sections.

For XML, you can have the system automatically create sections for you. You can
guery with the WITHIN operator or with the INPATH operator for path searching.

See Also: Chapter 6, "Document Section Searching"”

Proximity Queries with NEAR Operator

You can search for terms that are near to one another in a document with the NEAR
operator.

For example, to find all documents where dog is within 6 words of cat, issue the
following query:

‘near((dog, cat), 6)’

See Also: Oracle Text Reference for more information about using
the NEAR operator.

Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators

You can expand your queries into longer word lists with operators such as
wildcard, fuzzy, stem, soundex, and thesaurus.

See Also: Oracle Text Reference for more information about using
these operators.

Stored Query Expressions

You can use the procedure CTX_QUERY.STORE_SQE to store the definition of a
guery without storing any results. Referencing the query with the CONTAINS SQE
operator references the definition of the query. In this way, stored query expressions
make it easy for defining long or frequently used query expressions.

Stored query expressions are not attached to an index. When you call CTX_
QUERY.STORE_SQE, you specify only the name of the stored query expression and
the query expression.

The query definitions are stored in the Text data dictionary. Any user can reference
a stored query expression.

Querying 3-15

Query Operators for CONTAINS

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY.STORE_SQE.

Defining a Stored Query Expression
You define and use a stored query expression as follows:
1. Call CTX QUERY.STORE_SQE to store the results for the text column. With

STORE_SQE, you specify a name for the stored query expression and a query
expression.

2. Call the stored query expression in a query expression using the SQE operator.
Oracle returns the results of the stored query expression in the same way it
returns the results of a regular query. The query is evaluated at the time the
stored query expression is called.

You can delete a stored query expression using REMOVE_SQE.

SQE Example

The following example creates a stored query expression called disaster that
searches for documents containing the words tornado, hurricane, or earthquake:
begin

ctx_query.store_sqe(disaster’, tomado | hunicane | earthquake’);

end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(2), title from news
WHERE CONTAINS(text, 'SQE(disaster), 1) >0
ORDER BY SCORE(1);

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY.STORE_SQE.

Calling PL/SQL Functions in CONTAINS

You can call user-defined functions directly in the CONTAINS clause as long as the
function satisfies the requirements for being hamed in a SQL statement. The caller
must also have EXECUTE privilege on the function.

For example, assuming the function french returns the French equivalent of an
English word, you can search on the French word for cat by writing:

SELECT SCORE(1), tie from news
WHERE CONTAINS(text, french(cat), 1) >0

3-16 Oracle Text Application Developer’'s Guide

Query Operators for CONTAINS

ORDER BY SCORE(1);

See Also: Oracle9i SQL Reference for more information about
creating user functions and calling user functions from SQL,

Querying 3-17

Query Operators for CATSEARCH

Query Operators for CATSEARCH

The CATSEARCH operator has a simpler query language than CONTAINS. Its
guery language supports logical operations such as AND and OR as well as phrase

gueries.

The CATSEARCH query operators have the following syntax:

Operation Syntax

Description of Operation

Logical AND abc
Logical OR alb]c
Logical NOT a-b

hyphen with no a-b
space

"abc"

0 (AB)] C

Returns rows that contain a, b and c.
Returns rows that contain a, b, or c.
Returns rows that contain a and not b.

Hyphen treated as a regular character.

For example, if the hyphen is defined as
skipjoin, words such as web-site treated as
the single query term website.

Likewise, if the hyphen is defined as a
printjoin, words such as web-site treated
as web site with the space in the CTXCAT
query language.

Returns rows that contain the phrase "a b
c".

For example, entering "Sony CD Player"
means return all rows that contain this
sequence of words.

Parentheses group operations. This query
is equivalent to the CONTAINS query (A
&B) | C.

See Also: Oracle Text Reference for more information about using

these operators.

3-18 Oracle Text Application Developer’'s Guide

Optimizing for Response Time

Optimizing for Response Time

A query optimized for response time provides a fast solution for when you need the
highest scoring documents from a hitlist.

The example below returns the first twenty hits to standard out. This example uses
the FIRST_ROWS hint and a cursor.

declare
cursor cis
select 4+ FIRST_ROWS */ title, score(1) score
from news
where contains(txt_col, 'dog’, 1) >0
order by score(1) desc;
begin
forclinc
loop
dbms_outputput_line(cl.score|||lsubstr(cl title,1,50));
exit when c%orowcount = 20;
end loop;
end;
/

See Also: Chapter 5, "Query Tuning"

Retrieving a Range of Documents

A query optimized for response time provides a fast solution for when you need a
range of documents from a hitlist sorted by score.

The solution uses the FIRST_ROWS hint in a cursor. The code loops through the
cursor to process only the hits in the required range. The example below returns the
sorted documents 11 to 20.

declare
CUrsor cis
select 4+ FIRST_ROWS */ title, score(1) score
from news
where contains(t<t_col, 'dog’, 1) >0
order by score(1) desc;
begin
forclinc
loop
if (¢%rowcount > 10) then
dbms_outputput_line(cl.scorel[||substr(cl.tite,1,50));

Querying 3-19

Optimizing for Response Time

endff;
exit when c%orowcount = 20;
end loop;
end;
/

See Also: Chapter 5, "Query Tuning"

3-20 Oracle Text Application Developer’'s Guide

Counting Hits

Counting Hits

To count the number of hits returned from a query with only a CONTAINS

predicate, you can use CTX_QUERY.COUNT_HITS in PL/SQL or COUNT(*) in a
SQL SELECT statement.

If you want a rough hit count, you can use CTX_QUERY.COUNT_HITS in estimate
mode (EXACT parameter set to FALSE). With respect to response time, this is the
fastest count you can get.

To count the number of hits returned from a query that contains a structured
predicate, use the COUNT(*) function in a SELECT statement.

SQL Count Hits Example

To find the number of documents that contain the word oracle, issue the query with
the SQL COUNT function as follows:

SELECT count(¥) FROM news WHERE CONTAINS(text, ‘oracle’, 1) > 0;

Counting Hits with a Structured Predicate

To find the number of documents returned by a query with a structured predicate,
use COUNT(*) as follows:

SELECT COUNT(*) FROM news WHERE CONTAINS(text, ‘oracle’, 1) >0 and author =
jones;

PL/SQL Count Hits Example

To find the number of documents that contain the word oracle, use COUNT_HITS as
follows:

declare count number;
begin
count:=ctx_query.count_hits(index_name =>my_index, text_query =>'oracle’,
exact=>TRUE);
dbms_outputput_line(Number of docs with oracle?’);
dbms_outputput_line(count);
end;

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY.COUNT_HITS.

Querying 3-21

Counting Hits

3-22 Oracle Text Application Developer's Guide

A

Document Presentation

This chapter describes document presentation. The following topics are covered:
« Highlighting Query Terms

« Obtaining List of Themes, Gists, and Theme Summaries

Document Presentation 4-1

Highlighting Query Terms

Highlighting Query Terms

In Oracle Text query applications, you can present selected documents with query
terms highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting: a marked-up
version of the document, a plain text version of the document (filtered output), and
highlight offset information for the document.

The three types of output are generated by three different procedures in the CTX_
DOC (document services) PL/SQL package. In addition, you can obtain plain text
and HTML versions for each type of output.

Text highlighting

For text highlighting, you supply the query, and Oracle highlights words in
document that satisfy the query. You can obtain plain-text or HTML highlighting.

Theme Highlighting

For ABOUT queries, the CTX_DOC procedures highlight and mark up words or
phrases that best represent the ABOUT query.

CTX_DOC Highlighting Procedures
There are three highlighting procedures in CTX_DOC:
« HIGHLIGHT
« MARKUP
« FILTER

Highlight Procedure

Highlight offset information is useful for when you write your own custom routines
for displaying documents.

To obtain highlight offset information, use the CTX_DOC.HIGHLIGHT procedure.
This procedure takes a query and a document, and returns highlight offset
information for either plaintext or HTML formats.

With offset information, you can display a highlighted version of document as
desired. For example, you can display the document with different font types or
colors rather than using the standard plain text markup obtained from CTX_
DOC.MARKUP.

4-2 Oracle Text Application Developer’s Guide

Highlighting Query Terms

See Also: Oracle Text Reference for more information about using
CTX_DOC.HIGHLIGHT.

Markup Procedure

The CTX_DOC.MARKUP procedure takes a document reference and a query, and
returns a marked-up version of the document. The output can be either marked-up
plaintext or marked-up HTML.

You can customize the markup sequence for HTML navigation.

See Also: Oracle Text Reference for more information about CTX _
DOC.MARKUP.

Filter Procedure

When documents are stored in their native formats such as Microsoft Word, you can
use the filter procedure CTX_DOC.FILTER to obtain either a plain text or HTML
version of the document.

See Also: Oracle Text Reference for more information about CTX _
DOC.FILTER.

Document Presentation 4-3

Obtaining List of Themes, Gists, and Theme Summaries

Obtaining List of Themes, Gists, and Theme Summaries

The following table describes list of themes, gists, and theme summaries.

Table 4-1

Output Type Description

List of Themes A list of the main concepts of a document.

You can generate list of themes where each theme is a single word or
phrase or where each theme is a hierarchical list of parent themes.

Gist Text in a document that best represents what the document is about as a
whole.

Theme Summary Text in a document that best represents a given theme in the document.

To obtain this output, you use procedures in the CTX_DOC supplied package. With
this package, you can do the following:

» ldentify documents by ROWID in addition to primary key

« Store results in-memory for improved performance

List of Themes

A list of themes is a list of the main concepts in a document. Use the CTX_
DOC.THEMES procedure to generate lists of themes.

See Also: Oracle Text Reference to learn more about the command
syntax for CTX_DOC.THEMES.

In-Memory Themes

The following example generates the top 10 themes for document 1 and stores them
in an in-memory table called the_themes . The example then loops through the
table to display the document themes.

declare
the_themes ctx_doc.theme_tab;

begin

ctx_docthemes(myindex,’1’ the_themes, numthemes=>10);

foriin 1..the_themes.count loop
dbms_outputput_line(the_themes(i).theme||"”|lthe_themes().weight);
end loop;

4-4 Oracle Text Application Developer’s Guide

Obtaining List of Themes, Gists, and Theme Summaries

end;

Result Table Themes
To create a theme table:

create table ctx_themes (query_id number,
theme varchar2(2000),
weight number);

Single Themes To obtain a list of themes where each element in the list is a single
theme, issue:

begin

ctx_docthemes(newsindex’,34,CTX_THEMES' 1 ful_themes => FALSE);

end;

Full Themes To obtain a list of themes where each element in the list is a hierarchical
list of parent themes, issue:

begin

ctx_doc.themes(newsindex,34,CTX_THEMES',1,ful_themes =>TRUE);

end;

Gist and Theme Summary

A gist is the text of a document that best represents what the document is about as a
whole. A theme summary is the text of a document that best represents a single
theme in the document.

Use the procedure CTX_DOC.GIST to generate gists and theme summaries. You can
specify the size of the gist or theme summary when you call the procedure.

See Also: Oracle Text Reference to learn about the command syntax
for CTX_DOC.GIST.

In-Memory Gist

The following example generates a non-default size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then
de-allocates the returned CLOB locator after using it.

declare
gklob clob;
amt number :=40;

Document Presentation 4-5

Obtaining List of Themes, Gists, and Theme Summaries

line varchar2(80);

begin
ctx_doc.gist(newsindex’, 34','gklob’,1,glevel => P pov =>'GENERIC,
numParagraphs => 10);
- gklob is NULL when passed-in, so ctx-doc.gist wil allocate a temporary
- CLORB for us and place the results there.

dbms_lob.read(gkiob, amt, 1, line);
dboms_outputput_line(FIRST 40 CHARS ARE:line);
- have to de-allocate the temp lob
dbms_lob.freetemporary(gkiob);

end;

Result Table Gists
To create a gist table:

create table ctx_gist (query_id number,
pov varchar2(80),
gist CLOB);

The following example returns a default sized paragraph level gist for document 34:
begin

ctx_docgist(newsindex,34,CTX_GIST,1,PARAGRAPH,, pov =>GENERIC);

end;

The following example generates a non-default size gist of ten paragraphs:
begin

ctx_doc.gist(newsindex’,34,CTX_GIST,1,PARAGRAPH, pov =>'GENERIC,

numParagraphs => 10);

end;

The following example generates a gist whose number of paragraphs is ten percent
of the total paragraphs in document:

begin

cx_doc.gist(newsindex,34,CTX_GIST1, 'PARAGRAPH', pov =>GENERIC,,

maxPercent =>10);

end;

Theme Summary

The following example returns a theme summary on the theme of insects for
document with textkey 34. The default Gist size is returned.

4-6 Oracle Text Application Developer’s Guide

Obtaining List of Themes, Gists, and Theme Summaries

begin
ctx_docgist(newsindex,34,CTX_GIST',1, PARAGRAPH;, pov =>insects);,
end;

Document Presentation 4-7

Obtaining List of Themes, Gists, and Theme Summaries

4-8 Oracle Text Application Developer’s Guide

D

Query Tuning

This appendix discusses how to tune your queries for better response time. The
following topics are covered:

Optimizing Queries with Statistics
Optimizing Queries for Response Time
Optimizing Queries for Throughput

Tuning Queries with Blocking Operations

Query Tuning 5-1

Optimizing Queries with Statistics

Optimizing Queries with Statistics

Query optimization with statistics uses the collected statistics on the tables and
indexes in a query to select an execution plan that can process the query in the most
efficient manner. The optimizer attempts to choose the best execution plan based on
the following parameters:

« the selectivity on the CONTAINS predicate
« the selectivity of other predicates in the query
« the CPU and I/0 costs of processing the CONTAINS predicates

The following sections describe how to use statistics with the extensible query
optimizer. Optimizing with statistics allows for a more accurate estimation of the
selectivity and costs of the CONTAINS predicate and thus a better execution plan.

Collecting Statistics

By default, Oracle uses the cost-based optimizer to determine the best execution
plan for a query. To allow the optimizer to better estimate costs, you can calculate
the statistics on the table you query. To do so, issue the following statement:

ANALYZE TABLE <table_name>COMPUTE STATISTICS;

Alternatively, you can estimate the statistics on a sample of the table as follows:
ANALYZE TABLE <table_name> ESTIMATE STATISTICS 1000 ROWS;

or
ANALYZE TABLE <table_name>ESTIMATE STATISTICS 50 PERCENT;

These statements collect statistics on all the objects associated with table_name
including the table columns and any indexes (b-tree, bitmap, or Text domain)

associated with the table. To re-collect the statistics on a table, you can issue the
ANALYZE command as many times as necessary or use the DBMS_STATS package

See Also: Oracle9i SQL Reference and Oracle9i Database Performance
Guide and Reference for more information about the ANALYZE
command.

By collecting statistics on the Text domain index, the Oracle cost-based optimizer is
able to do the following:

« estimate the selectivity of the CONTAINS predicate

5-2 Oracle Text Application Developer’'s Guide

Optimizing Queries with Statistics

« estimate the I/0 and CPU costs of using the Text index, that is, the cost of
processing the CONTAINS predicate using the domain index

« estimate the 170 and CPU costs of each invocation of CONTAINS

Knowing the selectivity of a CONTAINS predicate is useful for queries that contain
more than one predicate, such as in structured queries. This way the cost-based
optimizer can better decide whether to use the domain index to evaluate
CONTAINS or to apply the CONTAINS predicate as a post filter.

Example
Consider the following structured query:

select score(1) from tab where contains(txt, ‘freedom’, 1) >0 and author =
'King’ and year > 1960;

Assume the author column is of type VARCHAR?2 and the year column is of type
NUMBER. Assume that there is a b-tree index on the author column.

Also assume that the structured author predicate is highly selective with respect to
the CONTAINS predicate and the year predicate. That is, the structured predicate
(author = 'King’) returns a much smaller number of rows with respect to the
year and CONTAINS predicates individually, say 5 rows versus 1000 and 1500
rows respectively.

In this situation, Oracle can execute this query more efficiently by first doing a
b-tree index range scan on the structured predicate (author = 'King’), followed
by a table access by rowid, and then applying the other two predicates to the rows
returned from the b-tree table access.

Note: When statistics are not collected for a Text index, the
cost-based optimizer assumes low selectivity and index costs for
the CONTAINS predicate.

Re-Collecting Statistics

After synchronizing your index, you can re-collect statistics on a single index to
update the cost estimates. To do so, you can issue any of the following statements:

ANALYZE INDEX <index_name>COMPUTE STATISTICS;
or

ANALYZE INDEX <index_name>ESTIMATE STATISTICS SAMPLE 1000 ROWS;

Query Tuning 5-3

Optimizing Queries with Statistics

or

ANALYZE INDEX <index_name>ESTIMATE STATISTICS SAMPLE 50 PERCENT;

Deleting Statistics
You can delete the statistics associated with a table by issuing:

ANALYZE TABLE <table name>DELETE STATISTICS;

You can delete statistics on one index by issuing the following statement:
ANALYZE INDEX <index_name> DELETE STATISTICS;

5-4 Oracle Text Application Developer’s Guide

Optimizing Queries for Response Time

Optimizing Queries for Response Time

By default, Oracle optimizes queries for throughput. This results in queries
returning all rows in shortest time possible.

However, in many cases, especially in a web-application scenario, queries must be
optimized for response time, when you are only interested in obtaining the first few
hits of a potentially large hitlist in the shortest time possible.

The following sections describe how to optimize Text queries for response time. You
can do so in two ways:

« using FIRST_ROWS hint
« using CHOOSE and DOMAIN_INDEX_SORT hints

Note: Although both methods optimize for response time, the
execution plans of the two methods obtained with EXPLAIN PLAN
might be different for a given query.

Better Response Time with FIRST_ROWS

You can change the default query optimizer mode to optimize for response time
using the FIRST_ROWS hint. When queries are optimized for response time, Oracle
returns the first rows in the shortest time possible.

For example, consider the following PL/SQL block that uses a cursor to retrieve the
first 20 hits of a query and uses the FIRST_ROWS hint to optimize the response
time:

declare

cursor cis

select f++ FIRST_ROWS */ pk, score(1), col from ctx_tab
where contains(txt_col, test, 1) >0 order by score(1) desc;

begin

foriinc

loop

insertintot_s values(i.pk, i.col);

exit when c%rowcount > 21;

end loop;

end;

/

Query Tuning 5-5

Optimizing Queries for Response Time

The cursor c is a SELECT statement that returns the rowids that contain the word
test in sorted order. The code loops through the cursor to extract the first 20 rows.
These rows are stored in the temporary table t_s .

With the FIRST_ROWS hint, Oracle instructs the Text index to return rowids in
score-sorted order, if possible.

Without the hint, Oracle sorts the rowids after the Text index has returned all the
rows in unsorted order that satisfy the CONTAINS predicate. Retrieving the entire
result set as such takes time.

Since only the first 20 hits are needed in this query, using the hint results in better
performance.

Note: Use the FIRST_ROWS hint when you need only the first few
hits of a query. When you need the entire result set, do not use this
hint as it might result in poor performance.

Other Behavior with FIRST_ROWS

Besides instructing the Text index to return hits in score-sorted order, the FIRST_
ROWS hint also tries to avoid blocking operations when optimizing queries for
response time. Blocking operations include merge joins, hash joins, and bitmap
operations.

As a result, using the FIRST_ROWS hint to optimize for response time might result
in a different execution plan than using CHOOSE with DOMAIN_INDEX_SORT,
which also optimizes for response time.

You can examine query execution plans using the EXPLAIN PLAN command in
SQL.

See Also: Oracle9i Database Performance Guide and Reference for
more information about the query optimizer and using hints such
as FIRST_ROWS and CHOOSE.

For more information about the EXPLAIN PLAN command,
Oracle9i Database Performance Guide and Reference and Oracle9i SQL
Reference.

Better Response Time with CHOOSE

When you use the CHOOSE or ALL_ROWS optimizer hints, the query is optimized
for throughput. This is the default optimizer mode. In this mode, Oracle does not

5-6 Oracle Text Application Developer’s Guide

Optimizing Queries for Response Time

instruct the Text domain index to return score-sorted rows, choosing instead to sort
all the rows fetched from the Text index.

To optimize for fast response time under CHOOSE or ALL_ROWS modes, you can
use the DOMAIN_INDEX_SORT hint as follows:

declare

CUrsor cis

select A+ CHOOSE DOMAIN_INDEX_SORT */ pk, score(1), col from ctx_tab
where contains(txt_col, test, 1) > 0 order by score(1) desc;

begin

foriinc

loop

insertintot_s values(i.pk, i.col);

exit when c¥orowcount > 21;

end loop;

end,

/

Note: Although you can optimize for response time with this
method as well as with FIRST _ROWS by itself, the actual execution
plans of the two methods obtained with EXPLAIN PLAN might be
different for a given query.

See Also: Oracle9i Database Performance Guide and Reference for
more information about the query optimizer and using hints such
as FIRST_ROWS and CHOOSE.

For more information about the EXPLAIN PLAN command,
Oracle9i Database Performance Guide and Reference and Oracle9i SQL
Reference.

Query Tuning 5-7

Optimizing Queries for Throughput

Optimizing Queries for Throughput

Optimizing a query for throughput returns all hits in the shortest time possible.
This is the default behavior.

The following sections describe how you can explicitly optimize for throughput.

CHOOSE and ALL ROWS Modes

By default, queries are optimized for throughput under the CHOOSE and ALL _
ROWS modes. When queries are optimized for throughput, Oracle returns all rows
in the shortest time possible.

FIRST_ROWS Mode

In FIRST_ROWS mode, the Oracle optimizer optimizes for fast response time by
having the Text domain index return score-sorted rows, if possible. This is the
default behavior when you use the FIRST_ROWS hint.

If you want to optimize for better throughput under FIRST_ROWS, you can use the
DOMAIN_INDEX_NO_SORT hint. Better throughput means you are interested in
getting all the rows to a query in the shortest time.

The following example achieves better throughput by not using the Text domain
index to return score-sorted rows. Instead, Oracle sorts the rows after all the rows
that satisfy the CONTAINS predicate are retrieved from the index:

select 4+ FIRST_ROWS DOMAIN_INDEX_NO_SORT */ pk, score(1), col from ctx_tab
where contains(t¢t_col, test, 1) > 0 order by score(1) desc;

See Also: Oracle9i Database Performance Guide and Reference for
more information about the query optimizer and using hints such
as FIRST_ROWS and CHOOSE.

5-8 Oracle Text Application Developer’s Guide

Tuning Queries with Blocking Operations

Tuning Queries with Blocking Operations

Issuing a query with more than one predicate can cause a blocking operation in the
execution plan. For example, consider the following mixed query:

select docid from myindex where contains(text, ‘oracle’, 1) >0
AND colA>5
AND coB>1
AND colC>3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap
indexes. The Oracle cost-based optimizer chooses the following execution plan:

TABLE ACCESS BY ROWIDS
BITMAP CONVERSION TO ROWIDS
BITMAP AND

BITMAP INDEX COLA BMX

BITMAP INDEX COLB_BMX

BITMAP INDEX COLC_BMX

BITMAP CONVERSION FROM ROWIDS

SORT ORDER BY

DOMAIN INDEX MYINDEX

Since the BITMAP AND is a blocking operation, Oracle must temporarily save the
rowid and score pairs returned from the Oracle Text domain index before executing
the BITMAP AND operation.

Oracle attempts to save these rowid and score pairs in memory. However, when the
size of the result set containing these rowid and score pairs exceeds the SORT _
AREA_SIZE initialization parameter, Oracle spills these results to temporary
segments on disk.

Since saving results to disk causes extra overhead, you can improve performance by
increasing the SORT_AREA_SIZE parameter using ALTER SESSION as follows;

alter session set SORT_AREA_SIZE = <new memoty size in bytes>;

For example, to set the buffer to approximately 8 megabytes, you can issue:
alter session set SORT_AREA_SIZE =8300000;

See Also: Oracle9i Database Performance Guide and Reference and
Oracle9i Database Reference for more information on SORT_AREA _
SIZE.

Query Tuning 5-9

Tuning Queries with Blocking Operations

5-10 Oracle Text Application Developer’'s Guide

6

Document Section Searching

This chapter describes how to use document sections in an Oracle Text query
application.

The following topics are discussed in this chapter:
« About Document Section Searching

« HTML Section Searching

« XML Section Searching

Document Section Searching 6-1

About Document Section Searching

About Document Section Searching

Section searching enables you to narrow text queries down to blocks of text within
documents. Section searching is useful when your documents have internal
structure, such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.

Enabling Section Searching
The steps for enabling section searching for your document collection are:
1. Create a section group
2. Define your sections
3. Index your documents
4. Section search with WITHIN, INPATH, or HASPATH operators

Create a Section Group

Section searching is enabled by defining section groups. You use one of the
system-defined section groups to create an instance of a section group. Choose a
section group appropriate for your document collection.

You use section groups to specify the type of document set you have and implicitly
indicate the tag structure. For instance, to index HTML tagged documents, you use
the HTML_SECTION_GROUP. Likewise, to index XML tagged documents, you can
use the XML_SECTION_GROUP.

The following table list the different types of section groups you can use:

Section Group Preference Description

NULL_SECTION_GROUP This is the default. Use this group type when you
define no sections or when you define only SENTENCE
or PARAGRAPH sections.

BASIC_SECTION_GROUP Use this group type for defining sections where the
start and end tags are of the form <A>and .
HTML_SECTION_GROUP Use this group type for indexing HTML documents

and for defining sections in HTML documents.

XML_SECTION_GROUP Use this group type for indexing XML documents and
for defining sections in XML documents.

6-2 Oracle Text Application Developer’'s Guide

About Document Section Searching

Section Group Preference

Description

AUTO_SECTION_GROUP

PATH_SECTION_GROUP

NEWS_SECTION_GROUP

Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case-sensitive as in XML.

Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form attribute@tag.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

« You cannot add zone, field or special sections to an
automatic section group.

« Automatic sectioning does not index XML
document types (root elements.) However, you can
define stop-sections with document type.

« Thelength of the indexed tags including prefix and
namespace cannot exceed 64 characters. Tags
longer than this are not indexed.

Use this group type to index XML documents. Behaves
like the AUTO_SECTION_GROUP.

The difference is that with this section group you can
do path searching with the INPATH and HASPATH
operators. Queries are also case-sensitive for tag and
attribute names.

Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

You use the CTX_DDL package to create section groups and define sections as part
of section groups. For example, to index HTML documents, create a section group
with HTML_SECTION_GROUP:

begin

ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);

end;

Document Section Searching 6-3

About Document Section Searching

Define Your Sections

You define sections as part of the section group. The following example defines an
zone section called heading for all text within the HTML < H1> tag:

begin

ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);
ctx_ddladd_zone_section(htmgroup’, 'heading’, 'H1);

end;

Note: If you are using the AUTO_SECTION_GROUP or PATH_
SECTION_GROUP to index an XML document collection, you need
not explicitly define sections since the system does this for you
during indexing.

See Also: "Section Types" in this chapter for more information
about sections.

"XML Section Searching" in this chapter for more information about
section searching with XML.

Index your Documents
When you index your documents, you specify your section group in the parameter
clause of CREATE INDEX.

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters(fitter ctxsys.null_fitter section group himgroup’);

Section Searching with WITHIN Operator

When your documents are indexed, you can query within sections using the
WITHIN operator. For example, to find all the documents that contain the word
Oracle within their headings, issue the following query:

‘Oracle WITHIN heading’

See Also: Oracle Text Reference to learn more about using the
WITHIN operator.

Path Searching with INPATH and HASPATH Operators

When you use the PATH_SECTION_GROUP, the system automatically creates XML
sections for you. In addition to using the WITHIN operator to issue queries, you can
issue path queries with the INPATH and HASPATH operators.

6-4 Oracle Text Application Developer’s Guide

About Document Section Searching

Section Types

See Also: "XML Section Searching" to learn more about using
these operators.

Oracle Text Reference to learn more about using the INPATH
operator.

All sections types are blocks of text in a document. However, sections can differ in
the way they are delimited and the way they are recorded in the index. Sections can
be one of the following:

« ZOnhe section
« field section
« attribute section (for XML documents)

« special (sentence or paragraphs)

Zone Section

A zone section is a body of text delimited by start and end tags in a document. The
positions of the start and end tags are recorded in the index so that any words in
between the tags are considered to be within the section. Any instance of a zone
section must have a start and an end tag.

For example, the text between the <TITLE> and </TITLE> tags can be defined as a
zone section as follows:

<TITLE>Tale of Two Cities</TITLE>
Itwas the best of times...

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the WITHIN operator to search for a term
across all sections. Oracle returns those documents that contain the term within the
defined section.

Zone sections are well suited for defining sections in HTML and XML documents.
To define a zone section, use CTX_DDL.ADD_ZONE_SECTION.

Document Section Searching 6-5

About Document Section Searching

For example, assume you define the section booktitle as follows:

begin

ctx_ddl.create section_group(htmgroup’,HTML_SECTION_GROUP);
ctx_ddl.add_zone_section(htmgroup’, ‘booktite’, TITLE);

end,;

After you index, you can search for all the documents that contain the term Cities
within the section booktitle as follows:

'Cities WITHIN booktitle’
With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle returns

those documents that contain cat and dog within the same instance of a booktitle
section.

Repeated Zone Sections Zone sections can repeat. Each occurrence is treated as a
separate section. For example, if <H1> denotes a heading section, they can repeat
in the same documents as follows:

<H1> The Brown Fox <H1>
<H1> The Gray Wolf <H1>

Assuming that these zone sections are named Heading , the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Zone Sections Zone sections can overlap each other. For example, if
and <I> denote two different zone sections, they can overlap in a document as
follows:

plain bold <I> bold and italic only italic </I> plain

Nested Zone Sections Zone sections can nest, including themselves as follows:
<TD> <TABLE><TD>nested cell</TD></TABLE></TD>
Using the WITHIN operator, you can write queries to search for text in sections

within sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone
sections occur as follows in documents docl and doc2:

docl:
<book1> <author>Scott Tiger</author> This is a cool book to read.<book1>

6-6 Oracle Text Application Developer’s Guide

About Document Section Searching

doc2:
<book2> <author>Scott Tiger</author> This is a great book to read.<book2>

Consider the nested query:
"Scott within author within book1’

This query returns only docl.

Field Section

A field section is similar to a zone section in that it is a region of text delimited by
start and end tags. A field section is different from a zone section in that the region
is indexed separate from the rest of the document.

Since field sections are indexed differently, you can also get better query
performance over zone sections for when you have a large number of documents
indexed.

Field sections are more suited to when you have a single occurrence of a section in a
a document such as a field in a news header. Field sections can also be made visible
to the rest of the document.

Unlike zone sections, field sections have the following restrictions:

« field sections cannot overlap

« field sections cannot repeat

« field sections cannot nest

Visible and Invisible Field Sections By default, field sections are indexed as a
sub-document separate from the rest of the document. As such, field sections are

invisible to the surrounding text and can only be queried by explicitly naming the
section in the WITHIN clause.

You can make field sections visible if you want the text within the field section to be
indexed as part of the enclosing document. Text within a visible field section can be
queried with or without the WITHIN operator.

The following example shows the difference between using invisible and visible
field sections.

The following code defines a section group basicgroup of the BASIC_SECTION_
GROUP type. It then creates a field section in basicgroup called Author for the
<A> tag. It also sets the visible flag to FALSE to create an invisible section:

Document Section Searching 6-7

About Document Section Searching

begin

ctx_ddl create section_group(basicgroup’, BASIC_SECTION_GROUP);
ctx_ddl.add_field section(basicgroup’,'Author’,'A', FALSE);

end,;

Because the Author field section is not visible, to find text within the Author
section, you must use the WITHIN operator as follows:

‘(Martin Luther King) WITHIN Author’

A query of Martin Luther King without the WITHIN operator does not return
instances of this term in field sections. If you want to query text within field sections
without specifying WITHIN, you must set the visible flag to TRUE when you create
the section as follows:

begin

ctx_ddl.add_field_section(basicgroup’,'Author’,’A’, TRUE);

end;

Nested Field Sections Field sections cannot be nested. For example, if you define a
field section to start with <TITLE> and define another field section to start with
<FOO> the two sections cannot be nested as follows:

<TITLE> dog <FOO> cat </[FOO> </TITLE>
To work with nested sections, define them as zone sections.

Repeated Field Sections Repeated field sections are allowed, but WITHIN queries
treat them as a single section. The following is an example of repeated field section
in a document:

<TITLE>cat </TITLE>

<TITLE>dog </TITLE>

The query dog and cat within title returns the document, even though these words
occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone
sections.

Attribute Section

You can define attribute sections to query on XML attribute text. You can also have
the system automatically define and index XML attributes for you.

6-8 Oracle Text Application Developer’s Guide

About Document Section Searching

See Also: "XML Section Searching"” in this chapter.

Special Section

Special sections are not recognized by tags. Currently the only special sections
supported are sentence and paragraph. This enables you to search for combination
of words within sentences or paragraphs.

To add a special section, use the CTX_DDL.ADD_SPECIAL_SECTION procedure.
For example, the following code enables searching within sentences within HTML
documents:

begin

ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);
ctx_ddladd_special_section(htmgroup’,'SENTENCE);

end;

You can also add zone sections to the group to enable zone searching in addition to
sentence searching. The following example adds the zone section Headline to the
section group htmgroup :

begin

ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);
ctx_ddladd_special_section(htmgroup’,'SENTENCE));

ctx_ddladd_zone_section(htmgroup’, Headline','H1);

end;

Document Section Searching 6-9

HTML Section Searching

HTML Section Searching

HTML has internal structure in the form of tagged text which you can use for
section searching. For example, you can define a section called headings for the
<H1> tag. This allows you to search for terms only within these tags across your
document set.

To query, you use the WITHIN operator. Oracle returns all documents that contain
your query term within the headings section. Thus, if you wanted to find all
documents that contain the word oracle within headings, you issue the following

query:
‘oracle within headings’

Creating HTML Sections

The following code defines a section group called htmgroup of type HTML _
SECTION_GROUP. It then creates a zone section in htmgroup called headline
identified by the <H1> tag:

begin
ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);
ctx_ddladd_zone_section(htmgroup’, 'heading’, 'H1);

end;

You can then index your documents as follows:

create index myindex on docs(htmilfile) indextype is ctxsys.context
parameters(fitter ctxsys.null_fitter section group htmgroup’);

After indexing with section group htmgroup , you can query within the heading
section by issuing a query as follows:

‘Oracle WITHIN heading’

Searching HTML Meta Tags

With HTML documents you can also create sections for NAME/CONTENT pairs in
<META> tags. When you do so you can limit your searches to text within
CONTENT.

6-10 Oracle Text Application Developer’'s Guide

HTML Section Searching

Example: Creating Sections for <METAags
Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag
whose NAME value is author:

begin
ctx_ddl.create_section_group(htmgroup’,'HTML_SECTION_GROUP);
ctx_ddladd_zone_section(htmgroup’, ‘author’, ' meta@author’);

end

After indexing with section group htmgroup , you can query the document as
follows:

’ken WITHIN author

Document Section Searching 6-11

XML Section Searching

XML Section Searching

Like HTML documents, XML documents have tagged text which you can use to
define blocks of text for section searching. The contents of a section can be searched
on with the WITHIN or INPATH operators.

For XML searching, you can do the following:
= automatic sectioning

« attribute searching

« document type sensitive sections

« path section searching

Automatic Sectioning

You can set up your indexing operation to automatically create sections from XML
documents using the section group AUTO_SECTION_GROUP. The system creates
zone sections for XML tags. Attribute sections are created for the tags that have
attributes and these sections named in the form tag@attribute.

For example, the following command creates the index myindex on a column
containing the XML files using the AUTO_SECTION_GROUP:

CREATE INDEX myindex ON xmidocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
(‘datastore ctxsys.default_datastore fiter ctxsys.null_filter section group
cixsys.auto_section_group);

Attribute Searching

6-12

You can search XML attribute text in one of two ways:

« Create attribute sections with CTX_DDL.ADD_ATTR_SECTION and then index
with the XML_SECTION_GROUP. If you use AUTO_SECTION_GROUP when
you index, attribute sections are created automatically. You can query attribute
sections with the WITHIN operator.

« Index with the PATH_SECTION_GROUP and query attribute text with the
INPATH operator.

Oracle Text Application Developer’'s Guide

XML Section Searching

Creating Attribute Sections
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities"™>
It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION _
GROUP and define the attribute section as follows:

begin

ctx_ddl.create_section_group(myxmigroup’, XML_SECTION_GROUP);
ctx_ddladd_attr_section(myxmigroup’, booktite’, book@tite’);

end;

To index:

CREATE INDEX myindex ON xmidocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
(‘datastore ctxsys.default_datastore fiter ctxsys.null_filter section group

myxmigroup)),

You can query the XML attribute section booktitle as follows:
"Cities within booktitle’

Searching Attributes with the INPATH Operator

You can search attribute text with the INPATH operator. To do so, you must index
your XML document set with the PATH_SECTION_GROUP.

See Also: "Path Section Searching" in this chapter.

Creating Document Type Sensitive Sections

You have an XML document set that contains the <book> tag declared for different
document types. You want to create a distinct book section for each document type.

Assume that mydocnamel is declared as an XML document type (root element) as
follows:

<IDOCTYPE mydocnamel ... |...

Document Section Searching 6-13

XML Section Searching

Within mydocnamel, the element <book> is declared. For this tag, you can create a
section named mybooksecl that is sensitive to the tag’s document type as follows:

begin
ctx_ddl.create_section_group(myxmigroup’,’ XML_SECTION_GROUP);

ctx_ddl.add_zone_section(myxmigroup’, 'mybooksecl’, 'mydocnamel(book));
end;

Assume that mydocname? is declared as another XML document type (root
element) as follows:

<IDOCTYPE mydocname2

Within mydocname2, the element <book> is declared. For this tag, you can create a
section named mybooksec2 that is sensitive to the tag’s document type as follows:

begin
ctx_ddl.create_section_group(myxmigroup’,’ XML_SECTION_GROUP);

ctx_ddl.add_zone_section(myxmigroup’, mybooksec?’, 'mydocname2(book));
end;

To query within the section mybooksecl, use WITHIN as follows:
‘oracle within mybooksec1’

Path Section Searching
XML documents can have parent-child tag structures such as the following:
<A><C>dog </C></B <A>

In this example, tag C is a child of tag B which is a child of tag A.

With Oracle Text, you can do path searching with PATH_SECTION_GROUP. This
section group allows you to specify direct parentage in queries, such as to find all
documents that contain the term dog in element C which is a child of element B and
soon.

With PATH_SECTION_GROUP, you can also perform attribute value searching and
attribute equality testing.

The new operators associated with this feature are
« INPATH
« HASPATH

6-14 Oracle Text Application Developer's Guide

XML Section Searching

Creating Index with PATH_SECTION_GROUP

To enable path section searching, index your XML document set with PATH _
SECTION_GROUP.

Create the preference:

begin

ctx_ddl.create_section_group(xmipathgroup’, PATH_SECTION_GROUP?;
end;

Create the index:

CREATE INDEX myindex ON xmidocs(xmifile) INDEXTYPE IS cixsys.context PARAMETERS
(datastore ctxsys.default_datastore fiter ctxsys.null_fitter section group

xmipathgroup);
When you create the index, you can use the INPATH and HASPATH operators.

Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)
or

dog INPATH(A)

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(/A)

This query finds the following documents:
<A>dog

and
<A><C>dog</C>

Document Section Searching 6-15

XML Section Searching

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child
of a top-level A element:;

dog INPATH(A/B)

This query finds the following XML document:
<A>My dog is friendly.<A>

but does not find:
<C>My dog is friendly.</C>

Tag Value Testing
You can test the value of tags. For example, the query:

dog INPATH(AB="dog"])

Finds the following document;
<A>dog

But does not find:
<A>My dog is friendly.

Attribute Searching
You can search the content of attributes. For example, the query:

dog INPATH(/A/@B)

Finds the document
<C> </C>

Attribute Value Testing
You can test the value of attributes. For example, the query

Califomia INPATH (/Aj@B ="home address'])

Finds the document:
San Francisco, Califomia, USA

6-16 Oracle Text Application Developer’'s Guide

XML Section Searching

But does not find:
San Francisco, Califomia, USA

Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document
<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing with HASPATH

You can use the HASPATH operator to do section quality tests. For example,
consider the following query:

dog INPATH A

finds
<A>dog

but it also finds
<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality
test with the HASPATH operator. For example,

HASPATH(A="dog")
finds and returns a score of 100 only for the first document, and not the second.

See Also: Oracle Text Reference to learn more about using the
INPATH and HASPATH operators.

Document Section Searching 6-17

XML Section Searching

6-18 Oracle Text Application Developer’'s Guide

v

Working With a Thesaurus

This chapter describes how to improve your query application with a thesaurus.
The following topics are discussed in this chapter:

« Overview of Thesauri
« Defining Thesaural Terms
« Using a Thesaurus in a Query Application

« About the Supplied Knowledge Base

Working With a Thesaurus 7-1

Overview of Thesauri

Overview of Thesauri

Users of your query application looking for information on a given topic might not
know which words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauri which
define synonym and hierarchical relationships between words and phrases. You can
then retrieve documents that contain relevant text by expanding queries to include
similar or related terms as defined in the thesaurus.

You can create a thesaurus and load it into the system.

Note: The Oracle Text thesauri formats and functionality are
compliant with both the 1SO-2788 and ANSI Z39.19 (1993)
standards.

Thesaurus Creation and Maintenance

Thesauri and thesaurus entries can be created, modified, and deleted by all Oracle
Text users with the CTXAPP role.

CTX_THES Package

To maintain and browse your thesaurus programatically, you can use the PL/SQL
package, CTX_THES. With this package, you can browse terms and hierarchical
relationships, add and delete terms, and add and remove thesaurus relations.

Thesaurus Operators

You can also use the thesaurus operators in the CONTAINS clause to expand query
terms according to your loaded thesaurus. For example, you can use the SYN
operator to expand a term such as dog to its synonyms as follows:

'syn(dog)’

ctxload Utility

The ctxload utility can be used for loading (creating) thesauri from a plain-text file
into the thesaurus tables, as well as dumping thesauri from the tables into output
(dump) files.

The thesaurus dump files created by ctxload can be printed out or used as input for
other applications. The dump files can also be used to load a thesaurus into the

7-2 Oracle Text Application Developer’'s Guide

Overview of Thesauri

thesaurus tables. This can be useful for using an existing thesaurus as the basis for
creating a new thesaurus.

Case-sensitive Thesauri

In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as
entered. For example, if a term is entered in mixed-case (using either the CTX _
THES package or a thesaurus load file), the thesaurus stores the entry in
mixed-case.

Note: To take full advantage of query expansions that result from
a case-sensitive thesaurus, your index must also be case-sensitive.

When loading a thesaurus, you can specify that the thesaurus be loaded
case-sensitive using the -thescase parameter.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, you can
specify that the thesaurus created be case-sensitive.

In addition, when a case-sensitive thesaurus is specified in a query, the thesaurus
lookup uses the query terms exactly as entered in the query. Therefore, queries that
use case-sensitive thesauri allow for a higher level of precision in the query
expansion, which helps lookup when and only when you have a case-sensitive
index.

For example, a case-sensitive thesaurus is created with different entries for the
distinct meanings of the terms Turkey (the country) and turkey (the type of bird).
Using the thesaurus, a query for Turkey expands to include only the entries
associated with Turkey.

Case-insensitive Thesauri

In a case-insensitive thesaurus, terms are stored in all-uppercase, regardless of the
case in which they were entered.

The ctxload program loads a thesaurus case-insensitive by default.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, the thesaurus
is created case-insensitive by default.

In addition, when a case-insensitive thesaurus is specified in a query, the query
terms are converted to all-uppercase for thesaurus lookup. As a result, Oracle Text

Working With a Thesaurus 7-3

Overview of Thesauri

is unable to distinguish between terms that have different meanings when they are
in mixed-case.

For example, a case-insensitive thesaurus is created with different entries for the
two distinct meanings of the term TURKEY (the country or the type of bird). Using
the thesaurus, a query for either Turkey or turkey is converted to TURKEY for
thesaurus lookup and then expanded to include all the entries associated with both
meanings.

Default Thesaurus

If you do not specify a thesaurus by name in a query, by default, the thesaurus
operators use a thesaurus named DEFAULT. However, Oracle Text does not provide
a DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you
must create a thesaurus named DEFAULT. You can create the thesaurus through any
of the thesaurus creation methods supported by Oracle Text:

. CTX_THES.CREATE_THESAURUS (PL/SQL)

« ctxload

See Also: Oracle Text Reference to learn more about using
ctxload and the CTX_THES package.

Supplied Thesaurus

Although Oracle Text does not provide a default thesaurus, Oracle Text does supply
a thesaurus, in the form of a ctxload load file, that can be used to create a
general-purpose, English-language thesaurus.

The thesaurus load file can be used to create a default thesaurus for Oracle Text or it
can be used as the basis for creating thesauri tailored to a specific subject or range of
subjects.

See Also: Oracle Text Reference to learn more about using
ctxload and the CTX_THES package.

Supplied Thesaurus Structure and Content

The supplied thesaurus is similar to a traditional thesaurus, such as Roget’s
Thesaurus, in that it provides a list of synonymous and semantically related terms.

7-4 Oracle Text Application Developer’s Guide

Overview of Thesauri

The supplied thesaurus provides additional value by organizing the terms into a
hierarchy that defines real-world, practical relationships between narrower terms
and their broader terms.

Additionally, cross-references are established between terms in different areas of the
hierarchy.

Supplied Thesaurus Location

The exact name and location of the thesaurus load file is operating system
dependent; however, the file is generally named drOthsus (with an appropriate
extension for text files) and is generally located in the following directory structure:

<Oracle_home_directory>
<interMedia_Text_directory>
sample
thes

See Also: For more information about the directory structure for
Oracle Text, see the Oracle9i installation documentation specific to
your operating system.

Working With a Thesaurus 7-5

Defining Thesaural Terms

Defining Thesaural Terms

You can create synonyms, related terms, and hierarchical relationships with a
thesaurus. The following sections give examples.

Defining Synonyms
If you have a thesaurus of computer science terms, you might define a synonym for
the term XML as extensible markup language. This allows queries on either of these
terms to return the same documents.

XML
SYN Extensible Markup Language
You can thus use the SYN operator to expand XML into its synonyms:

'SYNGXMLY

is expanded to:
XML, Extensible Markup Language’

Defining Hierarchical Relations

If your document set is made up of news articles, you can use a thesaurus to define
a hierarchy of geographical terms. Consider the following hierarchy that describes a
geographical hierarchy for the U.S state of California:
Califomia
NT Northem Califomia
NT San Francisco
NT San Jose
NT Central Valley
NT Fresno
NT Southem Califomia
NT Los Angeles

You can thus use the NT operator to expand a query on California as follows:
"NT(Califomia)

expands to:

‘Califomia, Northem Califomia, San Francisco, San Jose, Central Valley,
Fresno, Southem Califomia, Los Angeles’

7-6 Oracle Text Application Developer’s Guide

Defining Thesaural Terms

The resulting hitlist shows all documents related to the U.S. state of California
regions and cities.

Working With a Thesaurus 7-7

Using a Thesaurus in a Query Application

Using a Thesaurus in a Query Application

Defining a custom thesaurus allows you to process queries more intelligently. Since
users of your application might not know which words represent a topic, you can
define synonyms or narrower terms for likely query terms. You can use the
thesaurus operators to expand your query into your thesaurus terms.

There are two ways to enhance your query application with a custom thesaurus so
that you can process queries more intelligently:

« Load your custom thesaurus and issue queries with thesaurus operators

« Augment the knowledge base with your custom thesaurus (English only) and
use the ABOUT operator to expand your query.

Each approach has its advantages and disadvantages.

Loading a Custom Thesaurus and Issuing Thesaural Queries
To build a custom thesaurus, follow these steps:
1. Create your thesaurus. See "Defining Thesaural Terms" in this chapter.

2. Load thesaurus with ctxload. For example, the following example imports a
thesaurus named tech_doc from an import file named tech_
thesaurus.txt

ctddoad -user jsmith/123abc -thes -name tech_doc -file tech_thesaurus.txt

3. Use THES operators to query. For example, you can find all documents that
contain XML and its synonyms as defined in tech_doc:
'SYN(XML, tech_doc)

Advantage

The advantage of using this method is that you can modify the thesaurus after
indexing.

Limitations

This method requires you to use thesaurus expansion operators in your query. Long
gueries can cause extra overhead in the thesaurus expansion and slow your query
down.

7-8 Oracle Text Application Developer’s Guide

Using a Thesaurus in a Query Application

Augmenting Knowledge Base with Custom Thesaurus

You can add your custom thesaurus to a branch in the existing knowledge base. The
knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT
gueries, and deriving themes for document services.

When you augment the existing knowledge base with your new thesaurus, you
guery with the ABOUT operator which implicitly expands to synonyms and
narrower terms. You do not query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus, follow these
steps:

1. Create your custom thesaurus, linking new terms to existing knowledge base
terms. See "Defining Thesaural Terms" and "Linking New Terms to Existing
Terms".

2. Load thesaurus with ctxload . See "Loading a Thesaurus with ctxload".

3. Compile the loaded thesaurus with ctxkbtc compiler. "Compiling a Loaded
Thesaurus” later in this section.

4. Index your documents. By default the system creates a theme component to
your index.

5. Use ABOUT operator to query. For example, to find all documents that are
related to the term politics including any synonyms or narrower terms as
defined in the knowledge base, issue the query:

"about(politicsy

Advantage

Compiling your custom thesaurus with the existing knowledge base before
indexing allows for faster and simpler queries with the ABOUT operator. Document
services can also take full advantage of the customized information for creating
theme summaries and Gists.

Limitations

Use of the ABOUT operator requires a theme component in the index, which
requires slightly more disk space. You must also define the thesaurus before
indexing your documents. If you make any change to the thesuarus, you must
recompile your thesaurus and re-index your documents.

Working With a Thesaurus 7-9

Using a Thesaurus in a Query Application

Linking New Terms to Existing Terms

When adding terms to the knowledge base, Oracle recommends that new terms be
linked to one of the categories in the knowledge base for best results in theme
proving.

See Also: Oracle Text Reference for more information about the
supplied English knowledge base.

If new terms are kept completely separate from existing categories, fewer themes
from new terms will be proven. The result of this is poor precision and recall with
ABOUT queries as well as poor quality of gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term
for the new terms.

Example: Linking New Terms to Existing Terms ~ You purchase a medical thesaurus
medthes containing a a hierarchy of medical terms. The four top terms in the
thesaurus are the following:

« Anesthesia and Analgesia
« Anti-Allergic and Respiratory System Agents

« Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation
Mediators

« Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the
medical thesaurus to map the new terms to the existing health and medicine branch:

health and medicine

NT Anesthesia and Analgesia

NT Anti-Allergic and Respiratory System Agents

NT Anti-Infiamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
NT Antineoplastic and Immunosuppressive Agents

Loading a Thesaurus with ctxload

Assuming the medical thesaurus is in a file called med.thes , you load the
thesaurus as medthes with ctxload as follows:

ctxdoad -thes -thescase y -name medthes -file med.thes -user ctxsys/ctxsys

7-10 Oracle Text Application Developer’'s Guide

Using a Thesaurus in a Query Application

Compiling a Loaded Thesaurus
To link the loaded thesaurus medthes to the knowledge base, use ctxkbtc as
follows:

cixkbtc -user cixsys/ctxsys -name medthes

Working With a Thesaurus 7-11

About the Supplied Knowledge Base

About the Supplied Knowledge Base

Oracle Text supplies a knowledge base for English and French. The supplied
knowledge contains the information used to perform theme analysis. Theme
analysis includes theme indexing, ABOUT queries, and theme extraction with the
CTX_DOC package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main
branches:

« science and technology

« business and economics

« government and military

« social environment

=« geography

« abstract ideas and concepts

See Also: Oracle Text Reference for the breakdown of the category
hierarchy.

The supplied knowledge base is like a thesaurus in that it is hierarchical and
contains broader term, narrower term, and related term information. As such, you
can improve the accuracy of theme analysis by augmenting the knowledge base
with your industry-specific thesaurus by linking new terms to existing terms.

See Also: "Augmenting Knowledge Base with Custom
Thesaurus" in this chapter.

You can also extend theme functionality to other languages by compiling a
language-specific thesuarus into a knowledge base.

See Also: "Adding a Language-Specific Knowledge Base" in this
chapter.

Knowledge Base Character Set

Knowledge bases can be in any single-byte character set. Supplied knowledge bases
are in WE8ISO8859P1. You can store an extended knowledge base in another
character set such as US7ASCI|I.

7-12 Oracle Text Application Developer's Guide

About the Supplied Knowledge Base

Adding a Language-Specific Knowledge Base

You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single-byte whitespace delimited
language, including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting,
and the generation of themes, gists, and theme summaries with CTX_DOC.

You extend theme functionality by adding a user-defined knowledge base. For
example, you can create a Spanish knowledge base from a Spanish thesuarus.

To load your language-specific knowledge base, follow these steps:
1. Load your custom thesaurus using ctxload

2. Set NLS_LANG so that the language portion is the target language. The charset
portion must be a single-byte character set.

3. Compile the loaded thesaurus using ctxkbtc
ctxkbtc -user ctxsys/ctxsys -name my_lang_thes

This command compiles your language-specific knowledge base from the loaded
thesaurus. To use this knowledge base for theme analysis during indexing and
ABOUT queries, specify the NLS_LANG language as the THEME_LANGUAGE
attribute value for the BASIC_LEXER preference.

Limitations
The following limitations hold for adding knowledge bases:

« Oracle supplies knowledge bases in English and French only. You must provide
your own thesaurus for any other language.

« You can only add knowledge bases for languages with single-byte character
sets. You cannot create a knowledge base for languages which can be expressed
only in multi-byte character sets. If the database is a multi-byte universal
character set, such as UTF-8, the NLS_LANG parameter must still be set to a
compatible single-byte character set when compiling the thesaurus.

« Adding a knowledge base works best for whitespace delimited languages.
=« You can have at most one knowledge base per NLS language.

« Obtaining hierarchical query feedback information such as broader terms,
narrower terms and related terms does not work in languages other than
English and French. In other languages, the knowledge bases are derived

Working With a Thesaurus 7-13

About the Supplied Knowledge Base

entirely from your thesauri. In such cases, Oracle recommends that you obtain
hierarchical information directly from your thesauri.

See Also: Oracle Text Reference for more information about theme

indexing, ABOUT queries, using the CTX_DOC package, and the
supplied English knowledge base.

7-14 Oracle Text Application Developer's Guide

8

Administration

This chapter describes Oracle Text administration.The following topics are covered:

Oracle Text Users and Roles
DML Queue

The CTX_OUTPUT Package
Servers

Administration Tool

Administration 8-1

Oracle Text Users and Roles

Oracle Text Users and Roles

CTXSYS User

CTXAPP Role

While any user can create an Oracle Text index and issue a CONTAINS query,
Oracle Text provides the CTXSYS user for administration and the CTXAPP role for
application developers.

The CTXSYS user is created at install time. You administer Oracle Text users as this
user.

CTXSYS can do the following:

« Modify system-defined preferences

« Drop and modify other user preferences

« Call procedures in the CTX_ADM PL/SQL package to set system-parameters
« Query all system-defined views

« Perform all the tasks of a user with the CTXAPP role

The CTXAPP role is a system-defined role that enables users to do the following:
« Create and delete Oracle Text preferences
« Use the Oracle Text PL/SQL packages

Any user can create an Oracle Text index and issue a Text query. The CTXAPP role
allows users create preferences and use the PL/SQL packages.

Granting Roles and Privileges to Users

The system uses the standard SQL model for granting roles to users. To grant a Text
role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text
PL/SQL packages, you must explicitly grant to each user EXECUTE privileges for
the Oracle Text package.

8-2 Oracle Text Application Developer’'s Guide

DML Queue

DML Queue

When there are inserts, updates, or deletes to documents in your base table, the
DML queue stores the requests for documents waiting to be indexed. When you

synchronize the index with CTX_DDL.SYNC_INDEX, requests are removed from
this queue.

Pending DML requests can be queried with the CTX_PENDING and CTX_USER_
PENDING views.

DML errors can be queried with the CTX_INDEX_ERRORS or CTX_USER_INDEX_
ERRORS view.

See Also: Oracle Text Reference for more information about these
views.

Administration 8-3

The CTX_OUTPUT Package

The CTX_OUTPUT Package

Use the CTX_OUTPUT PL/SQL package to log indexing and document service
requests.

See Also: Oracle Text Reference for more information about this
package.

8-4 Oracle Text Application Developer’s Guide

Servers

Servers

You index documents and issue queries with standard SQL. No server is needed for
performing batch DML. You can synchronize the CONTEXT index with the CTX_
DDL.SYNC_INDEX procedure.

See Also: For more information about indexing and index
synchronization, see Chapter 2, "Indexing".

Administration 8-5

Administration Tool

Administration Tool

The Oracle Text Manager is a Java application integrated with the Oracle Enterprise
Manager, which is available on a separate CD.

The Text Manager enables administrators to create preferences, stoplists, sections,
and indexes. This tool also enables administrators to perform DML.

See Also: for more information about the Oracle Text Manager,
see the online help shipped with this tool.

8-6 Oracle Text Application Developer’s Guide

A

CONTEXT Query Application

This appendix describes how to build a simple web-search application using the
CONTEXT index type. The following topic is covered:

« Web Query Application Overview
« The PSP Web Application
« Web Application Sample Code

CONTEXT Query Application A-1

Web Query Application Overview

Web Query Application Overview

A common use of Oracle Text is to index HTML files on web sites and provide
search capabilities to users. The sample application in this Appendix indexes a set
of HTML files stored in the database and uses a web server connected to Oracle to
provide the search service.

There are two versions of this application. One that uses PL/SQL Server Pages
(PSP) and one that uses Java Server Pages (JSP). This appendix describes the PSP
application. You can view and download both the PSP and JSP application code at
the Oracle Technology Network web site:

http:/ftechnet.oracle.comvproductstext

The PSP Web Application

This application is based on PL/SQL server pages. Figure A-1 illustrates how the
browser calls the PSP stored procedure on Oracle9i via a web server.

Figure A-1

http://mymachine: 7777 / mypath / search_html

Browser calls
PSP stored Web Server maps
procedure URLs to PSP
with URL stored procedure __--"" | search_table
= PSP . |
Browser PL/SQL
> = »| Gateway b Storgd
rocedure . -7 | idx_search_table

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

A-2 Oracle Text Application Developer’s Guide

The PSP Web Application

Web Application Prerequisites
This application has the following requirements:

« Your Oracle database (version 8.1.6 or higher) is up and running.
« You have the Oracle PL/SQL gateway running

= You have a web server such as Apache up and running and correctly configured
to send requests to the Oracle9i server.

Building the Web Application

This section describes how to build the web application.

Step 1 Create your Text Table

You must create a text table to store your html files. This example creates a table
called search_table as follows:

create table search_table (tk numeric primary key, title varchar2(2000), text
clob);

Step 2 Load HTML Documents into Table Using SQL*Loader
You must load the text table with the HTML files. This example uses the control file

loader.ctl to load the files named in loader.dat. The SQL*Loader command is as
follows:

% sqlldr userid=scottftiger control=loader.ct

Step 3 Create the CONTEXT index

Index the HTML files by creating a CONTEXT index on the text column as follows.
Since we are indexing HTML, this example uses the NULL_FILTER preference type
for no filtering and uses the HTML_SECTION_GROUP type:

create index idx_search_table on search_table(text)
indextype is ctxsys.context parameters
(fiter ctxsys.null_fiter section group CTXSYS.HTML_SECTION_GROUP);,

Step 4 Compile search_htmlservices Package in Oracle9i

The application must present selected documents to the user. To do so, Oracle must
read the documents from the CLOB in search_table and output the result for
viewing, This is done by calling procedures in the search_htmlservices package. The
file search_htmlservices.sql must be compiled. You can do this at the SQL*Plus
prompt:

CONTEXT Query Application A-3

The PSP Web Application

SQL> @search_htmiservices.sq

Package created.

Step 5 Compile the search_html PSP page with loadpsp

The search page is invoked by calling search_html.psp from a browser. You compile
search_html in Oracle9i with the loadpsp command-line program:

% loadpsp -replace -user scottftiger search_html.psp
"search_html.psp™: procedure "search_html" created.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about using PSP.

Step 6 Configure Your Web Server

You must configure your web server to accept client PSP requests as a URL. Your
web server forwards these requests to the Oracle9i server and returns server output
to the browser. Refer to Figure A-1.

You can use the Oracle WebDB 2.x web listener or Oracle iAS which includes the
Apache web server. See your web server documentation for more information.

Step 7 Issue Query from Browser

You can access the query application from a browser using a URL. You configure
the URL with your web server. An example URL might look like:

http:/imymachine:7777/mypath/search_html

The application displays a query entry box in your browser and returns the query
results as a list of HTML links. See Figure A-2, "Screen shot of Web Query
Application”.

A-4 Oracle Text Application Developer’s Guide

The PSP Web Application

Figure A—2 Screen shot of Web Query Application

search_html Search - Hetscape

File Edit “iew Go Communicator Help

|

-

Back

¢ A ¥ a W S 6k

Farnmard Reload Home Search Metzcape Print Security

1 N

Stop

.Qt " Bookmarks £ Location: Ihttp:.-".n"oalc-nso-sun.us.Dlac:le.com:EEIBEIa’oalonsoEa"search_html ;I @517 what's Related

Oracle Service ﬁlnstantMessage J%InstantMessage Wfebhd ail People elow Pages D ovnload

47% Cisco dumps acquired optical technology - Tech Mews - CHET com [HIMWL] [Highlicht]

10% Eedback antiounces loss, layvofts - Tech News - CIET com [HITWL] [Highlizht]

5% Mhcroseft to rewvise Passport privacy - Tech Hews - CNET com [HIIML] [Highlight]

5% Tech stocks fall on earnings concerns - Tech Mews - CHET com [HTIWIL] [Highlight]

2% CHET com - Mews - Investor - News - Story [HINL] [Highlisht]

2% Sun finds glitch i new Ultra=parc 101 chip - Tech Mews - CHET com [HTWL] [Highlizht]
[== \Document: Done

Search for: IDIJt ical

Search I

CONTEXT Query Application A-5

Web Application Sample Code

Web Application Sample Code

This section lists the code used to build the example web application. It includes the
following files:

« loader.ctl
« loader.dat
« search_htmlservices.sql

« search_html.psp

See Also: http://technet.oracle.com/products/text/

loader.ctl

LOAD DATA
INFILE 'loader.dat
INTO TABLE search_table
REPLACE
FIELDS TERMINATED BY
(tk INTEGER,
tile CHAR,
text fle FILLER CHAR,
text LOBFILE(text fle) TERMINATED BY EOF)

A-6 Oracle Text Application Developer's Guide

Web Application Sample Code

loader.dat

L

Sun finds glitch in new UltraSparc Il chip;0-1003-200-5507959.html
Redback announces loss, layoffs ;0-1004-200-5424681.html
Cisco dumps acquired optical technology ;0-1004-200-5510096.html
Microsoft to revise Passport privacy ;0-1005-200-5508903.html
Tech stocks fall on eamings concems;0-1007-200-5506210.html
CNET.com - News - Investor - News - Story ;0-9900-1028-5510548-0.html
Chicago Tribune JUSTICES HEAR ARGUMENTS ;0_2669 SAV-0103290318_FF.html
Massive new effort to combat African AIDS is planned ;WESTO4.html
U.S. Had Biggest Growth in 1990s ;census_2000.html
; Congress Discusses Napster Issues ;congress_napster.html
;. Washington And China Face Offin Spy Plane Drama ;crash_china_dc_35.html
American Armive To Study in Cuba ;cuba_us_medical_students_1.html
Hubble Spots Most-Distant Supemova ;distant_supemova.html
Survey: U.S. Has 90 Percent Chance of Recession;economy_forecast dc_1.html
House Votes To Repeal Estate Tax ;estate_tax.html
EU Condemns Bush on Global Warming ;eu_global warming.html
Foot-and-Mouth Vaccinations on Hold ;foot_and_mouth.htm
Foot-and-Mouth Vaccinations on Hold ;foot_and_mouth_7.html
Cancer Research Project Links Milions of PCs ;health_cancer_dc_1.html
Company Says Earty HIV Vaccine Data Are Promising ;hiv.html
;Yahoo! Sports: SOW - Maradona Faces New Patemity Suit;maradona.html
; Israel, Palestinians Hold High-Level Talks ;mideast_leadall_dc.html
Evidence Mounts Against Milosevic ;milosevic_slain_rivals.html
; Philippines Files Charges Against Estrada ;philippines_estrada_dc.html
Power Woes Affecting Calif. Economy ;power_woes.html
Dissidents Ask UN Rights Body to Condemn China ;rights_china_dc_2.html
South Africa to Act on Basis HIV Causes AIDS ;safrica_aids_dc_1.html
Shaggy Found Inspiration For Success In Jamaica ;shaggy_found.html
Solar Flare Eruptions Likely ;solar_flare.html
Plane Crash Kills Sudanese Officers ;sudan_plane_crash.html
SOUNDSCAN REPORT: Recipe for An Aspiring Top Ten;urban_groove_1.html

L™

P Ooo~NO O
o - P NP AR

NNRNNNNNNERR R R B BB P
NABAIRBRNRBo6NIaEGRE

REBH

CONTEXT Query Application A-7

Web Application Sample Code

search_htmlservices.sq|
set define off

create or replace package search_htmlServices as
procedure showHTMLDoc (p_id in numeric);

procedure showDoc (p_id in numeric, p_query in varchar2);

end;
/
show errors;

create or replace package body search_htmiServices as

procedure showHTMLDoc (p_id in numeric) is
v_clob_selected CLOB;

v_read_amount integer;

v_read offset integer;

v_buffer varchar2(32767);

begin

selecttextintov_clob_selected from search_table where tk=p _id;
V_read_amount :=32767;
v_read offset:=1;
begin
loop
dbms_lob.read(v_clob_selected,v_read amountv_read_offsetv_buffer);
htp.print(v_buffer);
v_read_offset:=v_read_offset+v_read amount,
v_read amount = 32767,
end loop;
exception
whenno_data_found then
null;
end;
end showHTMLDoc;

procedure showDoc (p_id in numeric, p_query in varchar2) is

v_clob_selected CLOB;

A-8 Oracle Text Application Developer's Guide

Web Application Sample Code

v_read amount integer;
v_read offset integer;
v_buffer varchar2(32767);
V_query varchar(2000);
v_cursor integer;

begin
htp.p(<htmi><tile>HTML version with highlighted terms<fitie>");
htp.p('<body bgcolor="#fffff>");
htp.p(HTML version with highlighted terms');

begin
ctx_doc.markup (index_name =>'search_table_gen index,
textkey =>p_id,
text_query =>p_query,
restab =>v_clob_selected,
starttag =>'<i>",
endiag =>'<ffont><f>);

V_read amount:= 32767,

v_read offset:=1;

begin

loop
dbms_lob.read(v_clob_selectedv_read_amountv_read_offsetv_buffer);
htp.print(v_buffer);
v_read offset:=v_read offset+v_read amount;
v_read_amount := 32767,

end loop;

exception

when no_data_found then
null;

end;

exception
when others then
null; ~showHTMLdoc(p_id);
end;

end showDoc;
end;
/
show errors

set define on

CONTEXT Query Application A-9

Web Application Sample Code

search_html.psp

<%@ plsql procedure="search_html" %>
<%@ plsql parameter="query" default="null" %6>
<%l v_results numeric :=0; %>

<htmb>
<head>
<ttle>search_html Search <file>
<fhead>
<body>

<%
If query is null Then

— This part of the script allows a person
—to enter data on an HTML form.
%>

<center>
<form method=post action="search_html">
Search for:
<input type=text name="query"' size=30>
<input type=submit value=Search>
</center>
<hr>

<%
Else
%>

P>
<%

color varchar2(6) := ffffff;
%>

<center>
<form method=post action="search_html">
Search for.
<input type=text name="query" size=30 value="<%6= query %>">
<input type=submit value=Search>
<fform>
</center>
<hr>

A-10 Oracle Text Application Developer’s Guide

Web Application Sample Code

<p>

<%
— select statement
fordocin(

select 4+ FIRST_ROWS */ rowid, t, title, score(1) scr

from search_table

where contains(text, query,1) >0

order by score(1) desc
)
loop
V_results :=v_results +1;
ifv_results=1then

%>

<center>
<table border="0">
<tr bgcolor="#6699CC">
<th>Score</th>
<th>Tite</th>
<fr>

<% endif,%>
<tr bgcolor="#<%= color %>">
<td> <%= doc.scr %6>% <fd>
<td> <%= doc tile %>

[<a href="search_htmiSenvices.showHTMLDoc?p_id=<%=doc.tk

%>">HTML]

[<a href="search_htmlServices.showDoc?p_id=<%=doc.tk ¥>&p_query=<%-=

query %>">Highlight]
<ft>
<ftr>

<%
if (color = ffffff) then
color :='eeeeee’;
else
color := ffffff;

endif;

end loop;
%>

<fiable>

CONTEXT Query Application A-11

Web Application Sample Code

</center>

<%
endif;
%>

<fbody></htmi>

A-12 Oracle Text Application Developer’'s Guide

A

ABOUT query, 3-13
adding for your language, 7-13
case-sensitivity, 3-11

definition, 3-8
example, 1-17
accents

indexing characters with, 2-15
ACCUM operator, 3-14
ADD_STOPCLASS procedure, 2-26
ADD_STOPTHEME procedure, 2-26
ADD_STOPWORD procedure, 2-25, 2-26
ADD_SUB_LEXER procedure

example, 2-23
administration tool, 8-6
ALL_ROWS hint

better response time, 5-6
ALTER INDEX command

rebuilding index, 2-35

resuming failed index, 2-34
alternate spelling, 2-16
AND operator, 3-14
application

sample, A-1
attribute

searching XML, 6-12
attribute sections, 6-8
AUTO_SECTION_GROUP object, 6-3
automatic sections, 6-12

B

background DML, 8-5

base-letter conversion, 2-15
BASIC_LEXER, 2-13
BASIC_SECTION_GROUP object,
BFILE column, 1-7

indexing, 1-10, 2-27
BINARY

format column value, 2-12
BLOB column, 1-7

indexing, 1-10, 2-27
blocking operations

tuning queries with, 5-9
bypassing rows, 2-12

C

Index

6-2

case-sensitive

ABOUT query, 3-11

indexing, 2-15

queries, 3-10

thesaurus, 7-3
CATSEARCH, 3-4

creating index for, 2-30

operators, 3-18

SQL example, 3-4

structured query, 3-5
CHAR column, 1-7
character set

indexing, 2-12

indexing mixed, 2-13
character set column, 1-7
charset column, 2-13
CHARSET _FILTER, 2-5,2-13
Chinese indexing, 2-17
CHINESE_VGRAM_LEXER, 2-17

Index-1

CHOOSE hint

better response time, 5-6
CLOB column, 1-7

indexing, 1-10, 2-27
column types

supported for indexing, 1-7
composite words

indexing, 2-16
concept query, See ABOUT
CONTAINS

operators, 3-13

PL/SQL example, 3-3

query, 3-2

SQL example, 3-2

structured query, 3-3
CONTEXT index, 1-2

about, 1-10,2-9

creating, 1-10, 2-20, 2-27

customizing, 1-11

HTML example, 2-28, A-3
counting hits, 3-21
CREATE INDEX command, 2-27
CREATE_STOPLIST procedure, 2-25, 2-26
CTX_DDL.SYNC_INDEX procedure, 2-37
CTX_DOC package, 4-2
CTX_INDEX_ERRORS view, 2-34,8-3
CTX_PENDING view, 8-3
CTX_THES package

about, 7-2

CTX_USER_INDEX_ERRORS view, 2-34,8-3

CTX_USER_PENDING view, 8-3
CTXAPP role, 8-2
CTXCAT index, 1-2,1-12
about, 1-10, 2-9
example, 2-29
ctxkbtc
example, 7-11
ctxload
load thesaurus example, 7-2, 7-8, 7-10
CTXRULE index, 1-2,1-12
about, 1-10, 2-10
creating, 2-32
CTXSYS user, 8-2

Index-2

D

data storage
index default, 1-10, 2-27
preference example, 2-22
datastore
about, 2-4,2-20
DATE column, 1-10, 2-27
DBMS_JOB.SUBMIT procedure, 2-37
default thesaurus, 7-4
defaults
index, 1-10, 2-27
DETAIL_DATASTORE, 1-6
about, 2-11
diacritical marks
characters with, 2-15
DIRECT_DATASTORE, 1-6
about, 2-11
example, 2-21
DML
view pending, 2-36
DML processing, 1-12
background, 8-5
DML queue, 8-3
document classification, 2-32
about, 1-2
document formats
filtering, 2-11
supported, 1-3,1-7
document hit count
presenting, 1-22
document invalidation, 2-38
document loading
methods, 1-8
document presentation
about, 1-23
document sections, 2-25
document services
about, 1-23
DOMAIN_INDEX_NO_SORT hint
better throughput example, 5-8
DOMAIN_INDEX_SORT hint
better response time example, 5-6
drjobdml.sqgl script, 2-37
DROP INDEX command, 2-34

DROP_STOPLIST procedure, 2-26
dropping an index, 2-34

E

EQUIV operator, 3-14
errors
DML, 8-3
viewing, 2-34
explain plan, 3-11
extensible query optimizer, 5-2

F

feedback
query, 3-11
field section
definition, 6-7
nested, 6-8
repeated, 6-8
visible and invisible, 6-7
file paths
storing, 1-6
FILE_ DATASTORE, 2-4
about, 1-6,2-11
example, 2-22
filter
about, 2-5,2-20
FILTER procedure, 4-3
filtering
custom, 2-12
index default, 1-11, 2-27
to plain text and HTML, 1-23
filtering documents, 2-11
to HTML and plain text, 4-3
FIRST_ROWS hint, 3-19

better response time example, 5-5

better throughput example, 5-8
example, 1-17
format column, 1-7,2-12
formats
filtering, 2-11
supported, 1-7
fragmentation of index, 2-37
full themes

obtaining, 4-5
fuzzy matching, 2-17

default, 1-11, 2-28
fuzzy operator, 3-15

G

garbage collection, 2-38
gist
definition, 4-4
example, 4-5
GIST procedure, 4-5
granting roles, 8-2

H

HASPATH operator, 6-14
examples, 6-17
HFEEDBACK procedure, 3-11
HIGHLIGHT procedure, 4-2
highlighting
about, 1-23
overview, 4-2
highlighting text, 4-2
highlighting themes, 4-2
hit count, 3-21
hitlist
presenting, 1-20
HTML
filtering to, 1-23, 4-3
indexing, 2-22, 6-2
indexing example, A-3
searching META tags, 6-10

zone section example, 2-25, 6-10

HTML_SECTION_GROUP object,
with NULL_FILTER, 2-22, A-3

2-25, 6-2, 6-10

IGNORE
format column value, 2-12
index
about, 2-2
creating, 2-20, 2-27
dropping, 2-34

Index-3

multiple, 2-7

optimizing, 2-37,2-38

rebuilding, 2-35

structure, 2-2,2-37

synchronizing, 2-36, 8-5
index defaults

general, 1-10, 2-27
index engine

about, 2-5
index errors

viewing, 2-34
index fragmentation, 2-37
index maintenance, 1-12,2-34
index types

about, 1-9

choosing, 2-9
indexing

about, 1-9

bypassing rows, 2-12

considerations, 2-8

limitations, 2-7

overview of process, 2-4

parallel, 2-6

resuming failed, 2-34

special characters, 2-13
indexing views, 2-7
INPATH operator, 6-14

examples, 6-15
INSERT statement

load text example, 1-8
INSO FILTER, 2-5,2-11,2-13

J

Japanese indexing, 2-17
JAPANESE_LEXER, 2-17

K

knowledge base
about, 7-12
augmenting, 7-9
linking new terms, 7-10
supported character set, 7-12
user-defined, 7-13

Index-4

Korean indexing, 2-17
KOREAN_MORP_LEXER, 2-17

L

language
default setting for indexing, 1-11, 2-27
language specific features, 2-15
languages
indexing, 2-13
language-specific knowledge base, 7-13
lexer
about, 2-5,2-20
list of themes
definition, 4-4
obtaining, 4-4
loading text
about, 1-5
SQL INSERT example, 1-8
LOB columns
indexing, 1-10, 2-27
location of text, 2-10
logical operators, 3-13

M

maintaining the index, 2-34
marked-up document

obtaining, 4-3
MARKUP procedure, 4-3
MATCHES

about, 3-5

PL/SQL example, 2-33, 3-6

SQL example, 3-5
META tag

creating zone section for, 6-11
mixed formats

filtering, 2-12
MULTI_COLUMN_DATASTORE, 1-6

about, 2-11

example, 2-21
MULTI_LEXER, 2-13

example, 2-23
multi-language columns

indexing, 2-13

multi-language stoplist
about, 2-26
multiple indexes, 2-7

N

NCLOB column, 1-10, 2-27
NEAR operator, 3-15
nested zone sections, 6-6
NESTED_DATASTORE, 1-6

about, 2-11
NEWS_SECTION_GROUP object, 6-3
NOT operator, 3-14
NULL_FILTER, 2-5

example, 2-22, A-3
NULL_SECTION_GROUP object, 6-2
NUMBER column, 1-10, 2-27

O

offset information
highlight, 4-2

operators

CATSEARCH, 3-18
CONTAINS, 3-13
logical, 3-13
thesaurus, 7-2
optimizing index, 2-37
example, 2-38
single token, 2-38
optimizing queries, 3-19, 5-2
response time, 1-17,5-5
statistics, 5-2
throughput, 5-8
with blocking operations, 5-9
OR operator, 3-14
Oracle Enterprise Manager, 8-6
Oracle9i Text Manager, 8-6

P

parallel indexing, 2-6

paramstring for CREATE INDEX, 2-27
path section searching, 6-14
PATH_SECTION_GROUP

example, 6-15
pending DML

viewing, 2-36
pending updates, 8-3
phrase query, 3-7
plain text

filtering to, 4-3

indexing with NULL_FILTER, 2-22

plain text filtering, 1-23
PL/SQL functions

calling in contains, 3-16
preferences

creating (examples), 2-21

creating with admin tool,

dropping, 2-35
presenting hitlist, 1-20
printjoins character, 2-14
PROCEDURE_FILTER, 2-12
PSP application, A-2

8-6

query
ABOUT, 3-13
about, 1-16

blocking operations, 5-9
case-sensitive, 3-10
CATSEARCH, 34
CONTAINS, 3-2
counting hits, 3-21
MATCHES, 3-5
optimizing for throughput,
overview, 3-2

query application
prerequisites, 1-4
sample, 1-14

query example, 1-16

query explain plan, 3-11

query expressions, 3-9

query features, 1-18

query feedback, 3-11

query optimization, 3-19

query tuning, 5-5

queue
DML, 8-3

5-8

Index-5

R

rebuilding an index, 2-35

REMOVE_SQE procedure, 3-16

REMOVE_STOPCLASS procedure,
REMOVE_STOPTHEME procedure,
REMOVE_STOPWORD procedure,

response time

improving, 5-5

optimizing for, 1-17, 3-19
result buffer size

increasing, 5-9
resuming failed index, 2-34
roles

granting, 8-2

system-defined, 8-2

S

score
presenting, 1-22
section
attribute, 6-8
field, 6-7
HTML example, 2-25
nested, 6-6
overlapping, 6-6
repeated zone, 6-6
special, 6-9
zone, 6-5
section group
about, 2-20
creating with admin tool,
section searching
about, 1-18,6-2
enabling, 6-2
HTML, 6-10
sectioner
about, 2-5
sectioning
automatic, 6-12
path, 6-14
single themes
obtaining, 4-5
skipjoins character, 2-14

Index-6

8-6

SORT_AREA_SIZE parameter, 5-9
special characters

indexing, 2-13
special sections, 6-9
spelling

alternate, 2-16
SQE operator, 3-15
statistics
optimizing with, 5-2
stem operator, 2-17, 3-15
stemming
default, 1-11, 2-28
stopclass, 2-26
stoplist, 2-25
about, 2-20
creating with admin tool, 8-6
default, 1-11,2-28
multi-language, 2-18, 2-26
PL/SQL procedures, 2-26
stoptheme, 2-26
about, 2-18
definition, 3-9
stopword, 2-25, 2-26
about, 2-18,3-8
case-sensitive, 3-10
storage
about, 2-20
STORE_SQE procedure, 3-15, 3-16
stored query expressions, 3-15
storing text, 2-10
about, 1-6
structure of index, 2-37
structured field searching
about, 1-17
structured fields
presenting in application, 1-22
structured query
example, 2-29
SYN operator, 7-6
SYNC_INDEX procedure, 2-37
synchronizing index, 1-12,2-36, 8-5
synonyms
defining, 7-6

T

TEXT
format column value, 2-12
text column
supported types, 1-7
text highlighting, 4-2
Text Manager tool, 8-6
text query applications
about, 1-2
text storage, 2-10
theme capabilities
overview, 1-3
theme functionality
adding, 7-13
theme highlighting, 4-2
theme query, See ABOUT
theme summary

definition, 4-4
themes
indexing, 2-15

THEMES procedure, 4-4
thesaural queries

about, 1-18
thesaurus
about, 7-2

adding to knowledge base,

case-sensitive, 7-3

DEFAULT, 7-4

default, 7-4

defining terms, 7-6

hierarchical relations, 7-6

loading custom, 7-8

operators, 7-2

supplied, 7-4

using in application, 7-8
thesaurus operator, 3-15
throughput

improving query, 5-8
tildes

7-9

indexing characters with, 2-15

tuning queries

for response time, 1-17,5-5

for throughput, 5-8
increasing result buffer size,

5-9

with statistics, 5-2

U

umlauts
indexing characters with,
URL_DATASTORE
about, 2-11
example, 2-22
URLSs
storing, 1-6
user
system-defined, 8-2
USER_DATASTORE, 2-7
about, 2-11
USER_FILTER, 2-12

Vv

2-15

VARCHAR2 column, 1-7
views
indexing, 2-7

w

wildcard operator, 3-15
WITHIN operator, 2-25
word query, 3-7
case-sensitivity, 3-10
example, 1-16
wordlist
about, 2-20

X

XML documents
attribute searching, 6-12
doctype sensitive sections,
indexing, 6-3
section searching, 6-12

6-13

XML_SECTION_GROUP object, 6-2
Z
zone section

definition, 6-5

Index-7

nested, 6-6
overlapping, 6-6
repeating, 6-6

Index-8

	Send Us Your Comments
	Preface
	1 Introduction to Oracle Text
	What is Oracle Text?
	Types of Query Applications
	Text Query Applications
	Document Classification Applications

	Supported Document Formats
	Theme Capabilities
	Themes in Other Languages

	Query Language and Operators
	Document Services and Using a Thesaurus
	Prerequisites For Building Your Query Application

	Loading Your Text Table
	Storing Text in the Text Table
	Storing File Path Names
	Storing URLs
	Storing Associated Document Information
	Format and Character Set Columns

	Supported Column Types
	Supported Document Formats
	Loading Methods
	INSERT Statement
	Loading Text from File-System

	Indexing Your Documents
	Type of Index
	Creating a CONTEXT Index
	General Defaults for All Languages
	Customizing Your CONTEXT Index

	Creating a CTXCAT Index
	Creating a CTXRULE Index
	Index Maintenance

	A Simple Text Query Application
	Querying your Index
	Querying with CONTAINS
	Word Query Example
	ABOUT Query Example
	Optimizing Query for Response Time

	Structured Field Searching
	Thesaural Queries
	Document Section Searching
	Other Query Features

	Presenting the Hitlist
	Hitlist Example
	Presenting Structured Fields
	Ordering the Hitlist
	Presenting Document Hit Count

	Document Presentation and Highlighting
	Highlighting Example
	Document List of Themes Example
	Gist Example

	2 Indexing
	About Oracle Text Indexes
	Structure of the Oracle Text CONTEXT Index
	Merged Word and Theme Index

	The Oracle Text Indexing Process
	Datastore Object
	Filter Object
	Sectioner Object
	Lexer Object
	Indexing Engine

	Partitioned Tables and Indexes
	Querying Partitioned Tables

	Parallel Indexing
	Limitations for Indexing
	Columns with Multiple Indexes
	Indexing Views

	Considerations For Indexing
	Type of Index
	Location of Text
	Document Formats and Filtering
	No Filtering for HTML
	Filtering Mixed Formatted Columns
	Custom Filtering

	Bypassing Rows for Indexing
	Document Character Set
	Mixed Character Set Columns

	Document Language
	Indexing Multi-language Columns

	Indexing Special Characters
	Printjoins Character
	Skipjoins Character
	Other Characters

	Case-Sensitive Indexing and Querying
	Language Specific Features
	Indexing Themes
	Base-Letter Conversion for Characters with Diacritical Marks
	Alternate Spelling
	Composite Words
	Korean, Japanese, and Chinese Indexing

	Fuzzy Matching and Stemming
	Better Wildcard Query Performance
	Document Section Searching
	Stopwords and Stopthemes
	Multi-Language Stoplists

	Index Creation
	Procedure for Creating a CONTEXT Index
	Creating Preferences
	Datastore Examples
	Specifying DIRECT_DATASTORE
	Specifying MULTI_COLUMN_DATASTORE
	Specifying URL Data Storage
	Specifying File Data Storage

	NULL_FILTER Example: Indexing HTML Documents
	PROCEDURE_FILTER Example
	BASIC_LEXER Example: Setting Printjoins Characters
	MULTI_LEXER Example: Indexing a Multi-Language Table
	BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

	Creating Section Groups for Section Searching
	Example: Creating HTML Sections

	Using Stopwords and Stoplists
	Multi-Language Stoplists
	Stopthemes and Stopclasses
	PL/SQL Procedures for Managing Stoplists

	Creating an Index
	Creating a CONTEXT Index
	Default CONTEXT Index Example
	Custom CONTEXT Index Example: Indexing HTML Documents

	Creating a CTXCAT Index
	CTXCAT Index and DML
	About CTXCAT Sub-Indexes and Their Costs
	Creating CTXCAT Sub-indexes
	Structured Query Clause Category A
	Structured Query Clause Category B

	Creating CTXCAT Index

	Creating a CTXRULE Index
	Create a Table of Queries
	Create the CTXRULE Index
	Classifying a Document

	Index Maintenance
	Viewing Index Errors
	Dropping an Index
	Resuming Failed Index
	Example: Resuming a Failed Index

	Rebuilding an Index
	Example: Rebuilding and Index

	Dropping a Preference
	Example

	Managing DML Operations for a CONTEXT Index
	Viewing Pending DML
	Synchronizing the Index
	Setting Background DML

	Index Optimization
	CONTEXT Index Structure
	Index Fragmentation
	Document Invalidation and Garbage Collection
	Single Token Optimization
	Examples: Optimizing the Index

	3 Querying
	Overview of Queries
	Querying with CONTAINS
	CONTAINS SQL Example
	CONTAINS PL/SQL Example
	Structured Query with CONTAINS

	Querying with CATSEARCH
	CATSEARCH SQL Query
	CATSEARCH Structured Query
	CATSEARCH PL/SQL Example

	Querying with MATCHES
	MATCHES SQL Query
	MATCHES PL/SQL Example

	Word and Phrase Queries
	Querying Stopwords

	ABOUT Queries and Themes
	Querying Stopthemes

	Query Expressions
	CONTAINS Operator
	CATSEARCH Operator
	MATCHES Operator

	Case-Sensitive Searching
	Word Queries
	Stopwords and Case-Sensitivity

	ABOUT Queries

	Query Feedback
	Query Explain Plan

	Query Operators for CONTAINS
	ABOUT Query
	Logical Operators
	Section Searching
	Proximity Queries with NEAR Operator
	Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	Stored Query Expressions
	Defining a Stored Query Expression
	SQE Example

	Calling PL/SQL Functions in CONTAINS

	Query Operators for CATSEARCH
	Optimizing for Response Time
	Retrieving a Range of Documents

	Counting Hits
	SQL Count Hits Example
	Counting Hits with a Structured Predicate
	PL/SQL Count Hits Example

	4 Document Presentation
	Highlighting Query Terms
	Text highlighting
	Theme Highlighting
	CTX_DOC Highlighting Procedures
	Highlight Procedure
	Markup Procedure
	Filter Procedure

	Obtaining List of Themes, Gists, and Theme Summaries
	List of Themes
	In-Memory Themes
	Result Table Themes
	Single Themes
	Full Themes

	Gist and Theme Summary
	In-Memory Gist
	Result Table Gists
	Theme Summary

	5 Query Tuning
	Optimizing Queries with Statistics
	Collecting Statistics
	Example

	Re-Collecting Statistics
	Deleting Statistics

	Optimizing Queries for Response Time
	Better Response Time with FIRST_ROWS
	Other Behavior with FIRST_ROWS

	Better Response Time with CHOOSE

	Optimizing Queries for Throughput
	CHOOSE and ALL ROWS Modes
	FIRST_ROWS Mode

	Tuning Queries with Blocking Operations

	6 Document Section Searching
	About Document Section Searching
	Enabling Section Searching
	Create a Section Group
	Define Your Sections
	Index your Documents
	Section Searching with WITHIN Operator
	Path Searching with INPATH and HASPATH Operators

	Section Types
	Zone Section
	Repeated Zone Sections
	Overlapping Zone Sections
	Nested Zone Sections

	Field Section
	Visible and Invisible Field Sections
	Nested Field Sections
	Repeated Field Sections

	Attribute Section
	Special Section

	HTML Section Searching
	Creating HTML Sections
	Searching HTML Meta Tags
	Example: Creating Sections for <META>Tags

	XML Section Searching
	Automatic Sectioning
	Attribute Searching
	Creating Attribute Sections
	Searching Attributes with the INPATH Operator

	Creating Document Type Sensitive Sections
	Path Section Searching
	Creating Index with PATH_SECTION_GROUP
	Top-Level Tag Searching
	Any-Level Tag Searching
	Direct Parentage Searching
	Tag Value Testing
	Attribute Searching
	Attribute Value Testing
	Path Testing
	Section Equality Testing with HASPATH

	7 Working With a Thesaurus
	Overview of Thesauri
	Thesaurus Creation and Maintenance
	CTX_THES Package
	Thesaurus Operators
	ctxload Utility

	Case-sensitive Thesauri
	Case-insensitive Thesauri
	Default Thesaurus
	Supplied Thesaurus
	Supplied Thesaurus Structure and Content
	Supplied Thesaurus Location

	Defining Thesaural Terms
	Defining Synonyms
	Defining Hierarchical Relations

	Using a Thesaurus in a Query Application
	Loading a Custom Thesaurus and Issuing Thesaural Queries
	Advantage
	Limitations

	Augmenting Knowledge Base with Custom Thesaurus
	Advantage
	Limitations
	Linking New Terms to Existing Terms
	Example: Linking New Terms to Existing Terms

	Loading a Thesaurus with ctxload
	Compiling a Loaded Thesaurus

	About the Supplied Knowledge Base
	Knowledge Base Character Set
	Adding a Language-Specific Knowledge Base
	Limitations

	8 Administration
	Oracle Text Users and Roles
	CTXSYS User
	CTXAPP Role
	Granting Roles and Privileges to Users

	DML Queue
	The CTX_OUTPUT Package
	Servers
	Administration Tool

	A A CONTEXT Query Application
	Web Query Application Overview
	The PSP Web Application
	Web Application Prerequisites
	Building the Web Application

	Web Application Sample Code
	loader.ctl
	loader.dat
	search_htmlservices.sql
	search_html.psp

	Index

