Oracle9iAS Containers for J2EE

Servlet Developer’s Guide

Release 2 (9.0.2)

January 2002
Part No. A95878-01

ORACLE

Oracle9iAS Containers for J2EE Servlet Developer’s Guide, Release 2 (9.0.2)
Part No. A95878-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Authors: Brian Wright, Tim Smith

Contributors: Jasen Minton, Joyce Yang, Sunil Kunisetty, Bryan Atsatt, Ashok Banerjee, Charlie Shapiro,
Philippe Le Mouel, Paolo Ramasso, Olaf Heimburger, Sheryl Maring, Mike Sanko, Ellen Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, PL/SQL, SQL*Net, SQL*Plus,
and Oracle Store are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

SeNd US YOUT COMMEBNTS ...ttt vii
PRI AC ..o ettt et ettt et te ettt et ettt ettt et iX
1 (=Yg Lo [=To AN Lo [1=T 5 (o] TSRO X
Documentation ACCESSIDIIITYooiiiie et e et et e X
L@ o =T aT V2= 1o o [OOSR Xi
Related DOCUMENTALIONcoiiviiiieies ettt ee ettt ee et ee e et e s et ee s sabeae s st bessaste s s sabaesssbeeesreessnsens Xi
(O00] 0 1VZ=T o] £ o] o F-THTTU RPN Xiv

1 Servlet Overview

INFOIMALION SOUFICES ...ttt ettt ettt sttt es et st ere et et e e be bt en e benaesea e aneas 1-2
ServIet INFOrMAION ... ettt e reen e n e ee e 1-2
Additional OC4J DOCUIMENTScociiuiiiiie ettt sttt e st es et st e et et be b seesben e seeseeneaneeees 1-2

INTrOAUCLION 10 SEIVIBLS ... ettt ettt b e ben e e e ane s 1-3
AAVANTAGES OF SEIVIETS ... et ettt et st enenes 1-3
Serviets and the SErvIet CONTAINETcoco it e ene 1-4
Request Objects, Response Objects, and Filters ... 1-5
1L (o] T N - Uod 14 o [P ST PSUR 1-6

A FIrst SErvIEt EXAMPIE ... et ettt et e e eneenes 1-7
HEIO WOKIA COUR.......eii ettt et ettt ettt s et e e s eneees 1-7
Compiling and Deploying the Serviet ... e 1-8
RUNNING The SEIVIETo et ettt ettt et et e et s et e e 1-9

Servlet Development

Serviet DeVEIOPMENT BASICSoiiiiiiie ettt e ettt ettt b et e e en s s 2-2
(©oTo [NCT0 0] o] 1 (- TSP PPRR 2-2
SEIVIEE LITECYCIE ...t et ettt ettt se et e e et s 2-3
SEIVIEE BENAVION ...t ettt sttt sttt b e 2-3

INVOKING @ SEIVIBT ...ttt et e et es et sttt ettt see e et en e eee e 2-5
Action by the Servilet Container Upon REQUESTcooiiiiiiirieie et e e 2-5
Invoking a Serviet by Class Name in OCA......c.ooiiiiiiiiiee et e e e 2-6
Configuration for Servlet Invocation in a Deployment Environment............cccccoe v 2-7

Servlet Loading and INItializatioN. ... e 2-9

SEIVIET SESSTONS ... ettt bbb bt e et b et b et bttt 2-10
1L o] I Uod 1 o [OOSR USROS 2-10
SESSION CANCEITALION ... ettt ettt n e 2-11
SESSION SErVIEL EXAMPIE ..o ettt 2-12
SESSION REPIICATION ..ottt ettt ettt s b e beneas 2-15

USE OF JIDBC 1N SEIVIETS ..o 2-17
Database QUETY SEIVIEL...... ...ttt e e s et e ebe bt e 2-17
Deployment and Testing of the Database Query Serviet............ccoi e 2-20

EJIB Calls TrOM SEIVIELS ..ottt ettt 2-23
Local EJB Lookup Within the Same AppliCationcccoviiiiiie i 2-23
Remote EJB Lookup Within the Same Application ... 2-31
EJB Lookup Outside the APPHCAtION........coiuiiii et 2-31

Deployment and Configuration

Introduction to Web Application Deployment and Configurationc.ccocooe i 3-2
Web AppPlIication MOAUIES..........ooi i et s 3-2
Overview 0f OC4) DEPIOYMENT ..o ettt e e enee s 3-3
Overview of Web Configuration FileS...........oioiiiii e s 3-3

APPLICAtIoN ASSEMDBIY ... et ettt et se e anea 3-6
APPlIication DIreCtOry STIUCTUIEooiie ettt et ettt st e e 3-6
Application Build MEChANISIMSco.iiii ettt et e e 3-7

APPLIcation DEPIOYMENT ..o ettt ettt et se e e see e eneanea 3-9

Configuration File DeSCriPLIONS ...t et et et 3-12
Syntax Notes for Element DoOCUMENTation..........ccccoiiiiie it 3-12
The global-web-application.xml and orion-web.xml Files..........cccoooeiniiiiniiiie, 3-12

The default-web-site.xml File and Other Web Site XML FileS.......cccocoeeeeiiiiiieieeiie e, 3-26

4 Servlet Filters

OVEIrVIEW OF SEIVIEE FIITEIS ..ot e sttt et e be e anas 4-2
How the Servlet Container INVOKES FIITEISooviiiie e e 4-3
] L= g T g o] LTRSS 4-4
1L =] g Uy o] o] (=T USSP 4-4
=] g Uy o] o] (=1 SUR 4-7
FIIter EXAMIPIE #3 ...ttt et et et es ettt ettt see e eeeneas 4-10

A Third Party Licenses

APACNE HT TP SEIVET ...ttt ettt ettt ettt e se et et eb et st e b e e ben e seeseeneaneenen A-2
The APache SOTIWAIE LICENSE ..ottt ettt ettt e st se e ben e e ene A-2
YA o= To] o LI KST=T YRR PR PP A-4

Apache JServ Public License

vi

Send Us Your Comments

Oracle9iAS Containers for J2EE Servlet Developer’s Guide, Release 2 (9.0.2)
Part No. A95878-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

vii

viii

Preface

This guide describes the servlet container of the Oracle9iAS Containers for J2EE
(OC4J) application server, including discussion of basic servlets, data-access
servlets, and servlet filters. It also provides an overview of OC4J) deployment and
configuration, with detailed descriptions of key configuration files.

This preface contains these topics:
« Intended Audience

« Documentation Accessibility
« Organization

« Related Documentation

= Conventions

Intended Audience

The guide is intended for J2EE developers who are writing Web applications that
use servlets and possibly JavaServer Pages (JSP). It provides the basic information
you will need regarding the OC4J servlet container.

It does not attempt to teach servlet programming, nor does it document the Java
Servlet API. To learn about these topics, see the documentation available from Sun
Microsystems, or look at one of the trade books on servlet programming.

If you are developing applications that primarily use JavaServer Pages, read the
Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //ww or acl e. cont accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains:

Chapter 1, "Servlet Overview"

Introduces the OC4J servlet container and briefly discusses servlet development in
general, using a simple "Hello World" example.

Chapter 2, "Servlet Development"

Describes how the OC4J servlet container supports servlet development and
invocation. Provides several complete examples.

Chapter 3, "Deployment and Configuration"

Discusses how to configure the OC4J servlet environment and deploy a Web
application in OC4J.

Chapter 4, "Servlet Filters"
Explains the use of filters (new in the Servlet 2.3 specification) to affect servlet input
or output.

Appendix A, "Third Party Licenses"

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document.

Related Documentation

See the following additional OC4J documents available from the Oracle Java
Platform group:

=« Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

« Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

xi

« Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4l.

= Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, JNDI, and the Oracle9i Application Server Java Object Cache.

« Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

» Oracle9i JDBC Developer’s Guide and Reference

« Oracle9i SQLJ Developer’s Guide and Reference

« Oracle9i JPublisher User’s Guide

» Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:
« Oracle9i Application Server Administrator’s Guide

« Oracle Enterprise Manager Administrator’s Guide

« Oracle HTTP Server Administration Guide

= Oracle9i Application Server Performance Guide

« Oracle9i Application Server Globalization Support Guide

» Oracle9iAS Web Cache Administration and Deployment Guide

« Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x
The following are available from the JDeveloper group:

« Oracle JDeveloper online help

« Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracl e. com product s/ j dev/ cont ent . ht m

Xil

The following documents from the Oracle Server Technologies group may also
contain information of interest:

» Oracle9i XML Developer’s Kits Guide - XDK

« Oracle9i Application Developer’s Guide - Fundamentals
« Oracle9i Supplied Java Packages Reference

« Oracle9i Supplied PL/SQL Packages and Types Reference
« PL/SQL User’s Guide and Reference

« Oracle9i SQL Reference

= Oracle9i Net Services Administrator’s Guide

» Oracle Advanced Security Administrator’s Guide

= Oracle9i Database Reference

« Oracle9i Database Error Messages

In North America, printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: // ww or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. cont adm n/ account / nenber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. cont docs/ i ndex. ht m

The following resources are available from Sun Microsystems:
« Web site for Java Servlet technology, including the latest specifications:

http://java. sun. con pr oduct s/ servl et/ i ndex. ht n

xiii

« Web site for JavaServer Pages, including the latest specifications:

http://java. sun. con product s/ j sp/ i ndex. ht m

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
fethphasm, or terms that are defined in the Ensure that the recovery catalog and target
' database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-width)
font

Xiv

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Convention Meaning Example
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names,

(fixed-wi dth)
font

| ower case
italic
nonospace
(fixed-width)
font

and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

The password is specified in the or apwd file.

Back up the data files and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depar t nent _nane,
and | ocat i on_i d columns are in the
hr . depar t ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parametertot r ue.

Connect as oe user.

The JRepUt i | class implements these
methods.

You can specify the par al | el _cl ause.

Run Uol d_rel ease. SQL where
ol d_r el ease refers to the release you
installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usernane FROM dba_users WHERE usernane = ' M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

[]

Brackets enclose one or more optional
items. Do not enter the brackets.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}
[COMPRESS | NOCOVPRESS]

XV

Convention Meaning Example
Horizontal ellipsis points indicate either:
« That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the example
« That you can repeat a portion of the SELECT CO! 1, col2, ..., coln FROM
enpl oyees;

Other notation

Italics

UPPERCASE

| ower case

code

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

acctbal NUMBER(11, 2);
acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB _NAME = dat abase_nane

SELECT | ast _nane, enployee_id FROM
enpl oyees;

SELECT * FROM USER TABLES;
DRCOP TABLE hr. enpl oyees;

SELECT | ast _nane, enployee_id FROM
enpl oyees;

sql plus hr/hr
CREATE USER njones | DENTI FI ED BY t y3MB;

XVi

1

Servlet Overview

Oracle9iAS Containers for J2EE (OC4J) enables you to develop standard
J2EE-compliant applications. Applications are packaged in standard EAR
(Enterprise ARchive) deployment files, which include standard WAR (Web
ARchive) files to deploy the Web modules, and JAR files for any EJB and
application client modules in the application.

The most important thing to understand about servlet development under OC4J is
how the Web application is built and deployed. If OC4J is a new development
environment for you, see Chapter 2, "Servlet Development", and Chapter 3,
"Deployment and Configuration”, to learn how applications are deployed under
OC4l.

This chapter introduces the Java servlet and provides an example of a basic servlet.
It also briefly discusses how you can use servlets in a J2EE application to address
some server-side programming issues.

This chapter covers the following topics:
= Information Sources
=« Introduction to Servlets

« AFirst Servlet Example

Servlet Overview 1-1

Information Sources

Information Sources

This section points you to other information sources about servlets and OC4J.

Servlet Information

You should be generally familiar with the Sun Microsystems Java(TM) Servlet
Specification, Version 2.3. This is especially true if you are developing a distributable
Web application, in which sessions can be replicated to servers running under more
than one Java Virtual Machine (JVM).

You can obtain the Servlet 2.3 specification at the following location:
http://jcp.org/aboutJava/ communityprocess/first/jsr053/index. htn
This guide is not a complete reference for serviet development. For example, it does

not cover the standard servlet APls. For servlet APl documentation, refer to the
Javadoc available from Sun Microsystems at the following location:

http://java. sun. com products/servlet/2.3/javadoc/index. htm

In addition, several trade press books are available to teach you how to develop
servlets and deploy them in J2EE-compatible applications. In particular, the books
from O’Reilly & Associates (htt p: //ww. orei | | y. con) and Wrox

(http:// www. wr ox. com) are useful.

Additional OC4J Documents

You should use this guide together with the following additional Oracle9iAS
publications:

« Oracle9iAS Containers for J2EE User’s Guide, for general information about OC4J
features, simple primers to help you get started, and information about
deployment to OC4J

« Oracle9iAS Containers for J2EE Services Guide, for information about basic J2EE
services supplied with OC4J, such as JTA, JNDI, JMS, JCA, and security. It also
covers the Oracle Java Object Cache (formerly OCS4))

« Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference, for
information about developing JSP pages for OC4J

« Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference, for coverage of EJB development for OC4J

1-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

Introduction to Servlets

A servlet is a Java program that runs in a J2EE application server, such as OC4J. A
servlet is the server-side counterpart of a Java applet. Servlets are one of the four
application component types of a J2EE application, others being applets and
application client programs on the client side, and EJBs on the server side. Servlets
are managed by the OC4J servlet container; EJBs are managed by the OC4J EJB
container. These containers, together with the JavaServer Pages container, form the
core of OCA4J.

JavaServer Pages (JSP) is another server-side component type. JSP pages also
involve the servlet container, because the JSP container itself is a servlet and is
therefore executed by the servlet container. The JSP container translates JSP pages
into page implementation classes, which are executed by the JSP container but
function similarly to servlets. See the JSP chapter in the Oracle9iAS Containers for
J2EE User’s Guide and the Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for more information about JavaServer Pages.

Most servlets generate HTML text, which is then sent back to the client for display
by the Web browser, or is sent on to other components in the application. Servlets
can also generate XML, to encapsulate data, and send this to the client or to other
components.

The remainder of this section covers the following topics:
« Advantages of Servlets

« Servlets and the Servlet Container

« Request Objects, Response Objects, and Filters

« Session Tracking

Advantages of Servlets

Servlet programming offers advantages over earlier models of server-side Web
application development, including the following:

« Servlet programming is a mature and popular standard, effectively replacing
early techniques, such as CGI scripts, for generating dynamic HTML.

« A servlet handles concurrent requests. There is only a single instance of each
servlet, and servlets have a well-defined lifecycle. For higher performance,
servlets can be loaded when OCA4] starts.

« Servlets are fully integrated into the J2EE framework.

Servlet Overview 1-3

Introduction to Servlets

« The servlet request and response objects provide a convenient way to handle
HTTP requests and send text and data back to the client.

« Servlets are fully integrated with the Java language and its standard APIs. The
J2EE framework provides an extensive set of services that your Web application
can use, such as JNDI, JMS, RMI, and security.

Because servlets are written in the Java programming language, they are supported
on any platform that has a Java virtual machine and a Web server that supports
servlets. Servlets can be used on different platforms without recompiling. You can
package servlets together with associated files such as graphics, sounds, and other
data to make a complete Web application. This simplifies application development
and deployment.

In addition, you can port a servlet-based application from another Web server to
OC4J with little effort. If your application was developed for a J2EE-compliant Web
server, then the porting effort is minimal.

Servlets outperform earlier technologies for generating dynamic HTML, such as
server-side "includes" or CGI scripts. Once a servlet is loaded into memory, it can
run on a single lightweight thread; CGI scripts must be loaded in a different process
for every request.

Servlets and the Servlet Container

As with an applet, but unlike a Java client program, a servlet has no static mai n()
method. Therefore, a servlet must execute under the control of a servlet container,
because it is the container that calls servlet methods and provides services that the
servlet needs when executing.

The servlet overrides the appropriate methods from the servlet base

class—j avax. servl et . Ht t pSer vl et class for HTTP servlets, or possibly

j avax. servl et. Generi cServl et for protocol-independent servlets—in order
to process the request and return the response. For example, most servlets override
the Ht t pSer vl et doGet () method or doPost () method or both to process HTTP
GET and POST requests.

The servlet container provides the servlet easy access to properties of the HTTP
request, such as its headers and parameters. Also, a servlet can use other Java APIs,
such as JDBC to access a database, RMI to call remote objects, JIMS for asynchronous
messaging, or many other Java and J2EE services.

Figure 1-1 shows how a servlet relates to the servlet container and to a client, such
as a Web browser. When the Web listener is the Oracle HTTP Server (powered by

1-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

Apache), then the connection to the OC4J servlet container goes through the
nod_oc4j module. See the Oracle HTTP Server Administration Guide for details.

Figure 1-1 Servlets and the Servlet Container

Web

I listener

Servlet Container

.
Ll

1zanbay
Response

Serviet

Data Source

D,

JDBC Connection

Request Objects, Response Objects, and Filters

The Ht t pSer vl et methods, such as doGet () and doPost (), take two
parameters: aj avax. servl et. http. Ht pSer vl et Request objectand a
javax.servlet. http. H t pSer vl et Response object (instances of classes that
implement the Ht t pSer vl et Request and Ht t pSer vl et Response interfaces).
The servlet container passes these objects to the servlet, or to the next filter if there is

a filter chain.

Servlet Overview 1-5

Introduction to Servlets

The Servlet 2.3 specification enables servlet filters, which are Java programs that
execute on the server and can be interposed between the servlet (or group of
servlets) and the servlet container for special request or response processing. See
Chapter 4, "Servlet Filters", for more information.

The request and response objects support methods that let you write efficient
servlet code. "A First Servlet Example" on page 1-7 shows that you can get a stream
writer object from the response and use it to write statements to the response
stream.

Session Tracking

Servlets provide convenient ways to keep the client and a server session in
synchronization, enabling stateful servlets to maintain session state on the server
over the whole duration of a client browsing session.

These techniques involve cookies or URL rewriting, and the
javax.servlet. http. H t pSessi on object. See "Session Tracking" on page 2-10
for more information.

1-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A First Servlet Example

A First Servlet Example

Looking at a basic example is the best way to see how servlets are coded and what
they can do. This section shows the code for a simple servlet, but with a twist for
globalization. The code is commented to explain the basics of servlet development.

Hello World Code

A "Hello World" example is a good way to demonstrate the basic framework that
you use to write a servlet. This servlet just prints the date and a greeting back to the
client, but in Swedish.

Here is the code:

inport java.io.*;

inport java.text.?*;

inport java.util.*;

/] The first three package inports support 1/0, and the locale info and date
/] formatting. The next two inports include the packages that support

/] servlet devel opnent.

inport javax.servlet.*;

inport javax.servlet.http.*;

/| HTTP servlets extend the javax.servlet.http. HtpServlet class.

public class Hel | oWorldServlet extends HtpServlet {

public void doGet (HtpServl et Request req, HttpServletResponse res)
throws ServletException, |CException {
/] doGet() overrides the HtpServlet method. Each nethod of this class
/] has request and/or response paraneters.

/] Set the content type of the response.
res. set Content Type("text/plain");

/] Get a print witer streamto wite output to the response. You
/] could also get s ServletQutputStreamobject to do this.
PrintWiter out =res.getWiter();

/] This statenment tells the client the | anguage of the content--Swedish.
/] However, many Wb browsers will ignore this info.
res. set Header (" Cont ent - Language", "sv");

/1l Set the locale information, so the date will be formatted in a Swedi sh-

/1 friendly way, and the right words are used for months and so on.
Local e local e = new Local e("sv", "");

Servlet Overview 1-7

A First Servlet Example

[/ Cet the date format.

Dat eFormat dat eFormat = Dat eFor mat . get Dat eTi mel nst ance(Dat eFor mat . LONG,
Dat eFor mat . LONG,
locale);

/] Also set the local time zone.
dat eFor mat . set Ti neZone(Ti meZone. get Defaul t ());

/] Now use the printer object to send some HTM. header info to the
/] output stream

out. println("<HTM.><HEAD><TI TLE>Hej WA uQ0e4r| den! </ Tl TLE></ HEAD>") ;
out.println("<BODY>");

/] Send the date to the output.
out.println(dateFormat.format(new Date()));

/] And then, greet the client--
out.printIn("<p>n Swedish (p\uOOE5 Svenska):");
out.println("<H2>Hej VA uOOE4r| den! </ H2>");

/] Don't forget to close the HTM tags.
out. println("</BODY></ HTM.>");

}
}

Compiling and Deploying the Servlet

To try out this servlet in your OC4J server, enter the code using your favorite text
editor, and save it as Hel | owbr | dServl et . j ava in the

j 2eel/ hone/ def aul t - web- apps/ VEEB- | NF/ cl asses directory. This is the
location where the container finds servlet classes for the OC4J default application.
Next, compile the servlet, using a Java 1.3.x-compliant compiler.

For convenience during development and testing, use the OC4J auto-compile
feature for servlet code. Set the attribute devel opnent ="t rue" in the

<ori on- web- app> element of the gl obal - web- appl i cati on. xm
configuration file. You may also have to set the sour ce-di r ect or y attribute
appropriately. With auto-compile enabled, after you change the servlet source and
save it in a specified directory, the OC4J server automatically compiles and
redeploys the servlet the next time it is invoked.

You can find gl obal - web- appl i cati on. xm inthe confi g directory under the
j 2eel/ hone directory. See "Element Descriptions for global-web-application.xml

1-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A First Servlet Example

and orion-web.xml" on page 3-15 for more information about devel opnent and
source-directory.

Running the Servlet

Assuming the OC4J server is up and running, by default you can invoke the servlet
and see its output from a Web browser as follows, where <host > is the name of the
host that the OC4J server is running on, and <por t > is the Web listener port:

http://<host>:<port>/j2eel servlet/HelloWrldServl et
This example assumes that / j 2ee is the root context of the Web application. By
default, this is the case for the OC4J default Web application. Typically, use port

7777 for access through the Oracle HTTP Server with Oracle9iAS Web Cache
enabled.

For related information, see "Invoking a Servlet" on page 2-5 and "The
global-web-application.xml and orion-web.xml Files" on page 3-12.

Servlet Overview 1-9

A First Servlet Example

1-10 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

2

Servlet Development

This chapter provides basic information for developing servlets for OC4J and the

Oracle9i Application Server, covering the following topics:

Servlet Development Basics
Invoking a Servlet

Servlet Loading and Initialization
Servlet Sessions

Use of JDBC in Servlets

EJB Calls from Servlets

Servlet Development

2-1

Servlet Development Basics

Servlet Development Basics

Most HTTP servlets follow a standard form. They are written as public classes that
extend the Ht t pSer vl et class. A servlet overrides thei nit () and destroy()
methods when code is required to perform initialization work at the time the servlet
is loaded by the container, or when finalization code is required when the container
shuts the servlet down. Most servlets override either the doGet () method or the
doPost () method of Ht t pSer vI et , to handle HTTP GET or POST requests. These
two methods take request and response parameters.

This chapter provides sample servlets that are more advanced than the

Hel | oWbr | dSer vl et in "A First Servlet Example" on page 1-7. You can test each
of these servlets using the OC4J default Web application. To do this, save the Java
source files in the following directory:

j 2eel hone/ def aul t - web- app/ \EB- | NF/ ¢l asses

To test some of the servlets, you might have to make changes to the web. xm file in
the j 2ee/ horre/ def aul t - web- app/ V\EB- | NF directory, as directed. When you
change and save the web. xm file, OC4J restarts and picks up the changes to the
default Web application.

This chapter emphasizes the servlet code itself, so deployment is done to the default
Web application for simplicity. Chapter 3, "Deployment and Configuration",
describes Web application development, deployment, and testing under the J2EE
paradigm that you would use for production applications.

Code Template

Here is a code template for servlet development:

public class nyServlet extends HtpServlet {

public void init(ServletConfig config) {
}

public void destroy() {
}

public void doGet (HtpServl et Request request, HttpServletResponse)
throws ServletException, |CException {

}

public void doPost (HttpServletRequest request, HttpServletResponse)
throws ServletException, |CException {

2-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics

}

public String getServletinfo() {
return "Sone information about the servliet.";

}

Overriding thei nit(),destroy(),and get Servl et | nf o() methods is
optional. The simplest servlet just overrides either doGet () or doPost ().

Servlet Lifecycle
Servlets have a predictable and manageable lifecycle:

« The container creates a new instance of a servlet when either the servlet is first
invoked by a client, or OC4J starts. This depends upon whether a
<l oad- on- st art up> element is declared for the servlet in the application
web. xm file.

« When the servlet is loaded, its configuration details are read from web. xmi .
These can include initialization parameters.

« There is only one instance of a servlet. Client requests share servlet instances.

« Client requests invoke the ser vi ce() method of the generic servlet, which
then delegates the request to doGet () or doPost () (or another overridden
request-handling method), depending upon the information in the request
headers.

« Filters can be interposed between the container and the servlet to modify the
servlet behavior, either during request or response. See Chapter 4, "Servlet
Filters", for more information.

« Aservlet can forward requests to other servlets.

« The servlet creates a response object, which the container passes back to the
client in HTTP response headers. Servlets can write to the response using a
java.io.PrintWiter orjavax. servl et. Servl et Qut put St ream
object.

« The container calls the dest r oy() method before the servlet is unloaded.

Servlet Behavior

A servlet typically receives information from one or more sources, including the
following:

Servlet Development 2-3

Servlet Development Basics

« parameters from the request object
« theHtt pSessi on object
« the Ser vl et Cont ext object

« information from data sources outside the servlet (for example: databases, file
systems, or external sensors)

The servlet adds information to the response object, and the container sends the
response back to the client.

Thread Safety

Because a servlet can be invoked from more than one thread, you must ensure that
servlet code is thread-safe. Critical sections of code must be synchronized, although
you must do this selectively and carefully, because it can affect performance. The
servlet specification provides that a servlet can implement the

Si ngl eThr eadMbdel to guarantee synchronized access to the whole servlet, but
this practice is not recommended for OC4J applications.

Session Maintenance

The servlet specification provides a convenient way to enable stateful servlet
sessions, using cookies and the j avax. servl et. http. Ht t pSessi on object. See
"Cookies" on page 2-10 for more information.

Servlet Context

There is a single servlet context for each Web application.

The j avax. servl et . Servl et Cont ext object is contained within the

j avax. servl et. Servl et Confi g object, which the Web server provides to the

servlet and which is used by the servlet container to pass information to the servlet
during initialization.

2-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Invoking a Servlet

Invoking a Servlet

A servlet or JSP page is invoked by the container when a request for the servlet
arrives from a client. The client request might come from a Web browser or a Java
client application, or from another servlet in the application using the request
forwarding mechanism, or from a remote object on a server.

A servlet is requested through its URL mapping. The URL mapping for a servlet
consists of two parts: the context path and the servlet path. The context path is that
part of the URL from the first forward slash after the host name or port number, and
before the servlet path. The servlet path continues from the slash at the end of the
context path (if there is a context path) to the end of the URL string, or until a'?’ or
.’ that delimits the servlet path from the additional material, such as query strings
or rewritten parts of the URI. In a typical deployment scenario, the context path and
servlet path are determined through settings in a standard web. xm file.

The remainder of this section covers the following topics, including some special
OC4) features for invoking a servlet in a development or testing environment:

« Action by the Servlet Container Upon Request
« Invoking a Servlet by Class Name in OC4J

« Configuration for Servlet Invocation in a Deployment Environment

Action by the Servlet Container Upon Request
When the servlet container receives a request for a servlet, it does the following:

» Loads and initializes the servlet, if that has not already been done. See "Servlet
Loading and Initialization" on page 2-9.

« Constructs a request object to pass to the servlet. The request includes, among
other things:

— any HTTP headers from the client

— parameters and values passed from the client (for example, names and
values of query strings in the URL)

— the complete URI of the servlet request

You can determine all the available information passed in the request object by
looking at the Javadoc for the Ht t pSer vl et Request interface, at the
following location:

http://java. sun. com products/servlet/2.3/javadoc/index. htm

Servlet Development 2-5

Invoking a Servlet

« Constructs a response object for the servlet.

« Invokes the servlet ser vi ce() method. Note that for HTTP servlets, the
generic service method is usually overridden in the Ht t pSer vl et class. The
service method dispatches requests to the servlet doGet () or doPost ()
methods, depending on the HTTP header in the request (GET or POST).

If there is a filter or a chain of filters to be invoked before the servlet, these are called
by the container with the request and response objects as parameters. The filters
pass these objects, perhaps modified, or alternatively create and pass new objects, to
the next object in the chain using the doChai n() method. See Chapter 4, "Servlet
Filters", for more information about this topic.

Invoking a Servlet by Class Name in OC4J

In a development or testing environment in OC4J, there is a mechanism for
invoking a servlet by class name. This may simplify the URL for invocation.

Setting the ser vl et - webdi r attribute in the <ori on- web- app> element of the
gl obal - web-appl i cation. xm fileororion-web. xnl file defines a special
URL component. Anything following this URL component is assumed to be a
servlet class name, including applicable package information, within the
appropriate servlet context. By default in OC4J, this setting is "/ servl et ".

The following URL shows how to invoke a servlet called Sessi onSer vl et , with
explanations following. In this example, assume Sessi onSer vl et is in package
f 00. bar, and executes in the OC4J default Web application.

http://<hostnane><: port >/j 2ee/ servl et/ f 0o. bar. Sessi onSer vl et

http:// The network protocol. Other protocols are or m
ftp, https,andsoon.

<host nane> The network name of the server that the Web
application is running on. If the Web client is on the
same system as the application server, you can use
| ocal host . Otherwise use the host name, for
example as defined in/ et ¢/ host s on a UNIX
system.

2-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Invoking a Servlet

<:port> The port that the Web server listens on. (If you do
not specify a port, most browsers assume port 80.)
The server port is defined in the por t attribute of
the <web- si t e> element in the following file:

j 2eel hone/ confi g/ def aul t - web- si t e. xm

/j2ee / j 2ee is the context path of the OC4J default Web
application.

[servl et This is according to the default ser vl et - webdi r
setting.

/ f0o. bar . Sessi onSer vl et Because thereisaser vl et - webdi r setting, this
portion of the URL is simply the servlet package and
class name.

This mechanism applies to any servlet context, however, and not just for the default
Web application. If the context path is f 0o, for example, the URL to invoke by class
name would be as follows:

http://<host nane><: port >/ f oo/ servl et/foo. bar. Sessi onSer vl et

Note: See the Oracle9iAS Containers for J2EE User’s Guide for
information about defined ports and what listeners they are
mapped to, and for information about how to alter these settings.
Depending on the port you specify, you can access OC4J directly
through its own listener (useful in development environments), or
through the Oracle HTTP Server (highly recommended for
deployment environments).

Configuration for Servlet Invocation in a Deployment Environment

In a deployment environment, using the ser vl et - webdi r attribute in

gl obal - web-appl i cation.xm ororion-web. xm isinadvisable for security
reasons. Instead, you should use standard servlet settings and mappings in the
application web. xm file to specify the context path and servlet path.

Inweb. xm , the <ser vl et - name> subelement of the <ser vl et > element defines
a name for the servlet and relates it to a servlet class. The <ser vl et - mappi ng>
subelement relates servlet names to path mappings. The servlet name as well as the
mapping names are arbitrary—it is not necessary for the class that is invoked to

Servlet Development 2-7

Invoking a Servlet

have the same base name, or even a similar base name, to either the
<ser vl et - nane> or any of the <ser vl et - mappi ng> settings.

Note that because of the default OC4J mount point, each context path must start
with "/j2ee/" for the servlet to be routed to OC4J through the Oracle HTTP Server.
If you want to use something other than "/j2ee/", create a new Oc4j Mount
directive in the nod_oc4j . conf file. Copy the default mount directive and replace
"j2ee" as desired. Here is the default directive:

Cc4j Mount /] 2eel *

See the Oracle9iAS Containers for J2EE User’s Guide for more information.

Notes:

« If you use OEM to deploy the application, the new mount point
is added automatically.

« This discussion assumes the Web application is bound to a Web
site that uses AJP protocol, according to settings in
def aul t - web-si t e. xm or the relevant Web site XML file.

There is also a relevant element in the def aul t - web- si t e. xm file (or other Web
site XML file). The <f r ont end> subelement of the <web- si t e> element specifies
a perceived front-end host and port of the Web site as seen by HTTP clients. When
the site is behind something like a load balancer or firewall, the <f r ont end>
specification is necessary to provide appropriate information to the Web application
for functionality such as URL rewriting. Attributes are host , for the hostname of
the front-end server, such as "www. acne. cont', and por t , for the port number of
the front-end server, such as " 80" . Using this front-end information, the back-end
server that is actually running the application knows to refer to ww. acne. com
instead of to itself in any URL rewriting. This way, subsequent requests properly
come in through the front-end again, instead of trying to access the back-end
directly.

2-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Loading and Initialization

Servlet Loading and Initialization

The container instantiates and loads a servlet class when it is first requested, unless
you specify that the class should be loaded and initialized when the OC4J server
starts up. In the application web. xnl file, you can specify a <l oad- on- st art up>
subelement in the <ser vl et > element to have the server load and initialize the
servlet on start-up. For example, the following element names the servlet
represented by the Pri meSear cher . cl ass file as PSear cher, and specifies that
it should be loaded when the server starts:

<servlet>
<servl et - name>PSear cher </ ser vl et - name>
<servl et-class>Pri meSear cher</servl et-cl ass>
<l oad- on- startup/ >

</servl et>

When the servlet is loaded, either at server start-up time or when requested, the
container indirectly calls the servleti ni t () method. A servlet can override the
Ht t pServl et i nit () method to perform actions that are required only once in
the servlet lifetime, such as the following examples:

« establishing data source connections

« getting initialization parameters from the configuration and storing the values
in local variables

= recovering persistent data that the servlet requires
« Creating expensive session objects such as hashtables

« logging the servlet version to the | og() method of the Ser vl et Cont ext
object

See "Database Query Servlet" on page 2-17 for an example that shows a servlet that
uses the i ni t () method to get a data source object at start-up.

Servlet Development 2-9

Servlet Sessions

Servlet Sessions
This section discusses servlet sessions, covering the following topics:
« Session Tracking
= Session Cancellation
« Session Servlet Example

« Session Replication

Session Tracking

The HTTP protocol is stateless by design. This is fine for stateless servlets that
simply take a request, do a few computations, output some results, and then in
effect go away. But many, if not most, server-side applications must keep some state
information and maintain a dialogue with the client. The most common example of
this is a shopping cart application. A client accesses the server several times from
the same browser, and visits several Web pages. They decide to buy some of the
items offered for sale at the Web site, and clicks on the BUY ITEM boxes. If each
transaction were being served by a stateless server-side object, and the client
provided no identification on each request, it would be impossible to maintain a
filled shopping cart over several HTTP requests from the client. In this case, there
would be no way to relate a client to a server session, so even writing stateless
transaction data to persistent storage would not be a solution.

Note: Do notuse Ht t pSessi on objects to store persistent
information that must last beyond the normal duration of a session.
You can store persistent data in a database if you need the
protection, transactional safety, and backup that a database offers.
Alternatively, you can save persistent information on a file system
or in a remote object. See the sample application called st at el ess
in the demos supplied with OC4J to see how to store persistent
information in a remote object.

Cookies

A number of approaches have attempted to add a measure of statefulness to the
HTTP protocol. The most widely accepted at the current time is the use of cookies,
to let the client transmit an identifier to the server, together with stateful servlets
that can maintain session objects. Session objects are simply dictionaries that store a
value (a Java object) together with a key (a Java string).

2-10 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Sessions

When a client first connects to a stateful servlet, the server (container) sends a
cookie that contains a session identifier back to the client, often along with a small
amount of other useful information (all less than 4 KB). Then on each subsequent
request from the same Web client session, the client sends the cookie back to the
server. Cookies are sent and updated by the container in the response header—the
servlet code does not need to do anything to send a cookie. Similarly, cookies are
sent back to the server by the Web browser. A browser user only has to enable
cookies on the browser to get cookie functionality.

The container uses the cookie for session maintenance. A servlet can retrieve
cookies using the get Cooki es() method of the Ht t pSer vl et Request object,
and can examine cookie attributes using the accessor methods of the

j avax. servl et. http. Cooki e objects.

URL Rewriting

Most Web users have learned to keep cookies enabled on their browsers, although
some still do not. An alternative to using cookies is URL rewriting, through the
encodeURL() method of the response object. See "Session Servlet Example" on
page 2-12 for an example of URL rewriting.

Other Session Tracking Methods

Other techniques have been used in the past to relate client and server sessions.
These include server hidden form fields and user authentication mechanisms to
store additional information. Oracle does not recommend that you use these
techniques in OC4J applications, because they have many drawbacks, including
performance penalties and loss of confidentiality.

Session Cancellation

Ht t pSessi on objects persist for the duration of the server-side session. A session
is either terminated explicitly by the servlet, or it "times out" after a certain period
and is cancelled by the container.

Cancellation Through a Timeout

The default session timeout for the OC4J server is 20 minutes. You can change this
for a specific application by setting the <sessi on-t i meout > subelement in the
<sessi on- conf i g>element of web. xm . For example, to reduce the session
timeout to five minutes, add the following lines to the application web. xm :

<sessi on- config>
<sessi on-ti neout >5</ sessi on-ti meout >

Servlet Development 2-11

Servlet Sessions

</ sessi on- confi g>

Cancellation by the Servlet

A servlet explicitly cancels a session by invoking the i nval i dat e() method on
the session object. You must obtain a new session object by invoking the
get Sessi on() method of the Ht t pSer vl et Request object.

Session Servlet Example

The Sessi onSer vl et code below implements a servlet that establishes an
Ht t pSessi on object and prints some interesting data held by the request and
session objects.

SessionServlet Code

inport java.io.*;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.util.Date;

public class SessionServlet extends HtpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, |CException {

/] Get the session object. Create a newone if it doesn't exist.
Ht t pSessi on session = req. get Session(true);

res. set Content Type(“text/htm");
PrintWiter out =res.getWiter();

out.println("<head><title>" + "SessionServlet CQutput " +
"</titl e></head><body>");
out.println("<hl> SessionServlet Qutput </hl>");

/] Set up a session hit counter. "sessionservlet.counter" is just the
/] conventional way to create a key for the value to be stored in the
/] session object "dictionary".
Integer ival =

(I'nteger) session.getAttribute("sessionservlet.counter");
if (ival == null) {

ival = new Integer(1);
}

el se {

2-12 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Sessions

}

ival = new Integer(ival.intValue() + 1);

}

/] Save the counter val ue.
session.set Attribute("sessionservlet.counter", ival);

/] Report the counter val ue.
out.printIn(" You have hit this page " +
ival + " tinmes.<p>");

/] This statenment provides a target that the user can click on
/] to activate URL rewriting. It is not done by default.
out.printIn("dick <a href=" +
res.encodeURL(Htt pUtils. get Request URL(req).toString()) +
">here");
" to ensure that session tracking is working even " +
"if cookies aren't supported.
");
out.printIn("Note that by default URL rewiting is not enabled" +

" due to its large overhead.");

out.println(

/] Report data from request.
out.println("<h3>Request and Session Data</h3>");
out.printIn("Session IDin Request: " +
req. get Request edSessionld());
out.println("
Session IDin Request is froma Cookie: " +
req. i sRequest edSessi onl dFr onCooki e()) ;
out.println("
Session IDin Request is fromthe URL: " +
req.i sRequest edSessi onl dFr onURL()) ;
out.printIn("
Valid Session ID. " +
req.i sRequest edSessi onl dvalid());

/] Report data fromthe session object.
out.println("<h3>Sessi on Data</h3>");

out.println("New Session: " + session.isNew));

out.println("
 Session ID: " + session.getld());

out.printIn("
 Creation Time: " + new Date(session.getCreationTine()));
out.println("
Last Accessed Tine: " +

new Dat e(sessi on. get Last AccessedTime()));

out. println("</body>");
out.close();

public String getServletinfo() {

return "A sinple session servliet";

Servlet Development 2-13

Servlet Sessions

Deploying and Testing

Enter the preceding code into a text editor, and save it in the file

j 2eel/ home/ def aul t - web- app/ VEB- | NF/ cl asses/ Sessi onServl et . j ava. If you
set the attribute devel oprment ="t rue" in the <ori on- web- app> element of the
gl obal - web-appl i cation. xm file, the servlet can be recompiled and
redeployed automatically the next time it is invoked. You may also have to set the
sour ce-di rect ory attribute appropriately. See "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 3-15 for more information
about these attributes.

Figure 2-1 shows the output of this servlet when it is invoked the second time in a
session by a Web browser that has cookies enabled. Experiment with different Web
browser settings—for example, by disabling cookies—then click on the HREF that
causes URL rewriting.

2-14 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Sessions

Figure 2-1 Session Servlet Display

essionServlet Output - Netscape

File Edit “iew Go Communicator Help
Biach Fopward Reload Home Search Metscape Frint Security Shop Stop m

w‘ " Bookmarks £ Location:l d @' What's Related

SessionServlet Qutput

Tou hawve hit this page 2 times.

Click here to ensure that session traclang i worldng even if coolies aren't supported.
Mote that by default TEL rewriting 12 not enabled due to itz large overhead.

Request and Session Data

Zession ID i Bequest: 295e32774%aedc0babesfde 15234412
Zesston ID i Bequest iz from a Coolde: true

Zession ID in Bequest iz from the TTEL: falze

Walid Session ID: true

Session Data

Mew Session: false

Zesston ID: 290eB32774 %aed clbabeefde 15af34412

Creation Time: Tue Aug 28 03:37.55 GRIT-02:00 2001

Last Accessed Tine: Tue Aug 28 08:37:59 GhT-03:00 2001

’E == | |Document: Done

Session Replication

The session object of a stateful servlet can be replicated to other OC4J serversin a
load-balanced cluster island. If the server handling a request to a servlet should fail,
the request can "failover" to another JVM on another server in the cluster island. The
session state will still be available. The Web application must be marked as
distributable in the web. xni file, by use of the standard <di st ri but abl e>
element.

Objects that are stored by a servlet in the Ht t pSessi on object are replicated, and
must be serializable or remoteable for replication to work properly.

Note that a slight but noticeable delay occurs when an application is replicated to
other servers in a load-balanced cluster island. It is, therefore, possible that the

Servlet Development 2-15

Servlet Sessions

servlet could have been replicated by the time a failure occurred in the original
server, but that the session information had not yet been replicated.

2-16 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets

Use of JDBC in Servlets

A servlet can access a database using a JDBC driver. The recommended way to use
JDBC is by using an OC4J data source to get the database connection. See
Oracle9iAS Containers for J2EE Services Guide for information about OC4J data
sources.

For more information about JDBC, see the Oracle9i JDBC Developer’s Guide and
Reference.

Database Query Servlet

Part of the power of servlets comes from their ability to retrieve data from a
database. A servlet can generate dynamic HTML by getting information from a
database and sending it back to the client. A servlet can also update a database,
based on information passed to it in the HTTP request.

The example in this section shows a servlet that gets some information from the

user through an HTML form and passes the information to a servlet. The servlet
completes and executes a SQL statement, querying the sample HR schema to get
information based on the request data.

A servlet can get information from the client in many ways. This example reads a
query string from the HTTP request.

HTML Form

The Web browser accesses a form in a page that is served through the Web listener.
First, enter the following text into a file, naming the file Enpl nf o. ht m .

<HTM.>

<HEAD>

<TI TLE>Get Enpl oyee Information</ Tl TLE>
</ HEAD>

<BODY>

<FORM METHOD=GET ACTI ON="/ser vl et/ Get Enpl nf 0" >

The query is

SELECT LAST_NAME, EMPLOYEE_| D FROM EMPLOYEES WHERE LAST NAME LI KE ?.<p>

Enter the WHERE clause ? parameter (use % for wildcards).

Exanpl e: ' S% :

<I NPUT TYPE=TEXT NAME="queryVal ">

<p>

<INPUT TYPE=SUBM T VALUE="Send Info">

Servlet Development 2-17

Use of JDBC in Servlets

</ FORW>

</ BODY>
</ HTML>

Then save this file in the j 2ee/ home/ def aul t - web- apps directory.

Servlet Code: GetEmplnfo

The servlet that the preceding HTML page calls takes the input from a query string.
The input is the completion of the WHERE clause in the SELECT statement. The
servlet then appends this input to complete the database query. Most of the code in
this servlet is taken up with the JDBC statements required to connect to the data
server and retrieve the query rows.

This servlet makes use of the i ni t () method to do a one-time lookup of a data
source, using JNDI. The data source lookup assumes a data source such as the
following has been defined in the j 2ee/ hone/ confi g/ dat a- sour ces. xm file:

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
name="0r acl eDS"
| ocation="jdbc/ Oracl eCor eDS"
xa- | ocation="j dbc/ xa/ Or acl eXADS"
ej b-1ocation="j dbc/ Oracl eDS"
connection-driver="oracle.jdbc.driver.Oracl eDriver"
user name="scott"
passwor d="tiger"
url ="jdbc: oracl e:thin: @ocal host: 5521: oracl e"
inactivity-timeout="30"

/>

In Oracle9iAS 9.0.2, it is advisable to use only the ej b- | ocat i on JNDI name in the
JNDI lookup for a data source. See the Oracle9iAS Containers for J2EE Services Guide
for more information about data sources.

Here is the servlet code:

inport java.io.*;

inport java.sql.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

/| These packages are needed for the JNDI | ookup.

i nport javax.nam ng.*;

/| These packages support SQ operations and Oracle JDBC drivers.
inport javax.sql.*;

2-18 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets

inport oracle.jdbc.*;

public class GetEnplnfo extends HttpServlet {
Dat aSource ds = null;

public void init() throws ServletException {
try {
Initial Context ic = new Initial Context();
ds = (DataSource) ic.lookup("java:conp/env/jdbc/ O aclebS");
}
catch (Nam ngException ne) {
throw new Servl et Exception(ne);

}

public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, |CException {

String queryVal = req.get Paraneter("queryVval");
String query =
"sel ect last_name, enployee_id from enpl oyees " +
"where |ast_nane like " + queryVal;

resp. set Cont ent Type("text/htm");

PrintWiter out = resp.getWiter();
out.println("<htm>");

out.println("<head><title>CGet Enplnfo</title></head>");
out. println("<body>");

try {
Connection conn = ds. get Connection();

Statement stnt = conn.createStatenment();
Resul tSet rs = stnt.executeQuery(query);

out.println("<table border=1 width=50%");
out.println("<tr><th w dth=75%Last Name</th>" +
"<th width=25%Enpl oyee |D</th></tr>");
for (int count = 0; ; count++) {
if (rs.next()) {
("<

out.println("<tr><td>" + rs.getString(1l) + "</td><td>" +

Servlet Development 2-19

Use of JDBC in Servlets

rs.getint(2) + "</td></tr>");
}
el se {
out.println("</tabl e><h3>" + count + " rows retrieved</h3>");
break;

}

conn. cl ose();
rs.close();
stnt.close();

}

catch (SQLException se) {
se.printStackTrace(out);

}
out.println("</body></htm >");
}
public void destroy() {
}
}

Deployment and Testing of the Database Query Servlet

To deploy this example, save the HTML file in the

j 2ee/ hone/ def aul t - web- app/ directory (the effective document root for the
default application), and save the Java servlet in the

j 2ee/ hone/ def aul t - web- app/ VEB- | NF/ cl asses/ directory. The

Get Enpl nf 0. j ava file is automatically compiled when the servlet is invoked by
the form.

To test the example, invoke the Enpl nf 0. ht m page from a Web browser, as
follows:

http://<host name><: port >/j 2ee/ Enpl nf o. ht m
This assumes / j 2ee is the root context of the OC4J default Web application.
Complete the form and click Submit Query.

2-20 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets

Note: For the port setting, 7777 by default will access OC4J
through the Oracle HTTP Server, powered by Apache, with the
Oracle9iAS Web Cache enabled. Other port settings are possible to
use the OC4J Web listener directly, which may be useful in
development situations. See the Oracle9iAS Containers for J2EE
User’s Guide for information about OC4J port settings and default
settings. For production applications, Oracle recommends that you
use the Oracle HTTP Server, which is part of the Oracle9iAS
distribution. See the Oracle HTTP Server Administration Guide.

When you invoke Enpl nf 0. ht ml , you will see a browser window that looks
something like Figure 2-2.

Figure 2-2 Employee Information Query

Get Some Information - Netscape

File Edit “iew Go Communicator Help

L d Y A S e w3 & O N

Biach Fopward Reload Home Search Metscape Frint Security Shop Stop

w‘ " Bookmarks £ Location:l j @' What's Related
The rquery is
SELECT LAST MAME, EMPLOYEE ID FROM EMPLOYEES WHEERE LAST MNAME
LIEE 7.
Enter the WHEEE clause ¥ parameter (use %0 for wildeards).
Ezxample: '2%"

Submit Query |

[== |Document: Dane

Entering ' S% in the form and pressing Submit Query calls the Get Enpl nf o
servlet, and the results look something like Figure 2-3.

Servlet Development 2-21

Use of JDBC in Servlets

Figure 2-3 Employee Information Results

GetEmplnfo - Netscape

File Edit “iew Go Communicator Help

9 P 8 e m oS & B 3N
i Back Fopward Reload Home Search Metscape Frint Security Shop Stop
v W'thookmarks .3 Location:l j @'W’hat's Related
Employee
Last Name 1]J:DY

[Sciarra [111

[Stiles [133

[seo [139

[Suly [157

[Srmith 158

[Sewall [151

[Srmith [171

[Sultivan [182

|Sarchand 184

9 rows retrieved.

OED

’E == | |Document: Done

2-22 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

EJB Calls from Servlets

A servlet or a JSP page can call an EJB to perform additional processing. A typical
application design often uses servlets as a front-end to do the initial processing of
client requests, with EJBs being called to perform the business logic that accesses or
updates a database. Container-managed-persistence (CMP) entity beans, in
particular, are well-suited for such tasks.

There are three main scenarios for servlet-EJB interactions:

« The servlet calls an EJB within the same application, performing a local lookup.
"Local" is the default lookup mode, so no special action is required. You just
have to complete standard configuration for EJB usage, such as defining the
reference name in an <ej b- r ef > element in the web. xm file. See "Local EJB
Lookup Within the Same Application" below, which includes a detailed
example.

= The servlet calls an EJB within the same application, but performs the lookup
remotely. This may be useful, for example, in a load-balancing situation where
the Web tier and EJB tier are running in different OC4J instances. See "Remote
EJB Lookup Within the Same Application" on page 2-31.

« The servlet looks up an EJB from another application. This is a remote lookup
unless the specified host and port are the same as for the calling servlet. See
"EJB Lookup Outside the Application" on page 2-31.

For additional servlet-EJB examples, see the demo programs that come with the
OC4J distribution.

See the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference for more information about EJB development in OCA4J.

Local EJB Lookup Within the Same Application

This section presents an example of a single servlet, Hel | oSer vl et , that calls a
single EJB, Hel | oBean, within the same application using a local lookup.

Here are the key steps of the servlet code:

1. Import the EJB package for access to the bean home and remote interfaces.
2. Print a message from the servlet.

3. Create an output string, with an error default.

4

Use JNDI to look up the EJB home interface.

Servlet Development 2-23

EJB Calls from Servlets

5. Create the EJB remote object from the home.

6. Invoke the hel | oWbr | d() method on the remote object, which returns a
St ri ng object.

7. Print the message from the EJB.

Servlet Code: HelloServlet
package myServlet;

/] Step 1. Inport the EJB package.

i nport nyEjb.*;

inport java.io.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

i nport javax.nam ng.*; [/ for JNDI

public class HelloServl et extends HtpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, |CException {

response. set Content Type("text/htm");
PrintWiter out = response.getWiter();

out.println("<htm ><head><title>Hello from Servlet</title></head>");
/] Step 2: Print a message fromthe servlet.
out.println("<body><hi>Hello fromhello servlet!</hl></body>");

/] Step 3: Create an output string, with an error default.

String s = "If you see this message, the ejb was not invoked properly!!";
/] Step 4: Use JNDI to look up the EJB hone interface.
try {

Hel | oHone hh = (Hel | oHone)
(new Initial Context()).lookup("java: conp/env/ejb/HelloBean");

/] Step 5. Create the EJB renote I|F.
Hel | oRenot e hr = hh.create();
/] Step 6: Invoke the helloWrld() method on the renote object.
s = hr. hel I oWorld();
} catch (Exception e) {
e.printStackTrace(out);
}
[/ Step 7: Print the message fromthe EJB.
out.println("
" + s);

2-24 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

out.println("</htm>");
}
}

Figure 2-4 shows the output to a Web browser when you invoke the servlet:
htt p: // <host name><: port >/ j 2ee/ myapp/ doubl eHel | o

The output from the servlet is printed in H1 format at the top, then the output from
the EJB is printed in text format below that.

Figure 2-4 Output from HelloServlet

Hello from Servlet - Hetzcape

Edit Wiew Go Communicator Help

Biach Fopward Reload Home Search Metscape Frint Security Shop Stop m

w‘ " Bookmarks £ Location:l d @' What's Related

Hello from hello servlet!

Hello from myEjh HelloBean

’E == | |Document: Done

EJB Code: HelloBean Stateful Session Bean

The EJB, as shown here, is simple. It implements a single
method—hel | oWbr | d() —that returns a greeting to the caller. The home and
remote EJB interface code is also shown below.

Servlet Development 2-25

EJB Calls from Servlets

package nyEjb;

inport java.rn.RenoteException;
inport javax.ejb.*;

public class Hel | oBean inplements Sessi onBean

{
public String hel loWrld () throws RenoteException {

return "Hell o from nyEj b. Hel | oBean";
}

public void ejbCreate () throws RenoteException, CreateException {}
public void ej bRemove () {}

public void setSessionContext (SessionContext ctx) {}

public void ejbActivate () {}

public void ejbPassivate () {}

EJB Interface Code: Home and Remote Interfaces
Here is the code for the home interface:

package nyEjb;

inport java.rn.RenoteException;
i nport javax.ej b. EJBHone;
inport javax.ejb.CreateException;

public interface Hell oHone extends EJBHone

{

public Hell oRenbte create () throws RenpteException, CreateException;

}
Here is the code for the remote interface:
package nyEjb;

inport java.rn.RenoteException;
i nport javax.ejhb. EJBOhj ect;

public interface Hel |l oRenote extends EJBObj ect

{
public String helloWrld () throws RenoteException;

}

2-26 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

Deployment of the Servlet-EJB Application

This section discusses the deployment steps for the Servlet-EJB sample application,
including the Web archive, EJB archive, application-level descriptor, and
deployment commands.

See Chapter 3, "Deployment and Configuration”, for general information about
deployment to OC4J.

Web Archive To deploy this application, an EJB deployment descriptor
(ej b-j ar. xm) and a Web deployment descriptor (web. xm) are required. The
contents of web. xm for this example are as follows:

<?xm version="1.0""?>
<! DCCTYPE WEB- APP PUBLIC "-//Sun M crosystens, Inc.//DID Wb Application
2.2//EN" "http://java.sun.com j2ee/dtds/web-app_2_2.dtd">

<web- app>

<di spl ay- nane>Hel | oServl et </ di spl ay- name>
<description> Hel | oServl et </description>
<servl et>
<servl et-name> ServletCallingE b </servlet-nanme>
<servlet-class> nyServlet.HelloServlet </servlet-class>
</servl et>
<servl et - mappi ng>
<servl et-name> ServletCallingE b </servlet-nanme>
<url-pattern> /doubleHell o </url-pattern>
</ servl et - mappi ng>
<wel cone-file-list>
<wel cone-file> index.htm </welcone-file>
</wel come-file-list>
<ejb-ref>
<ej b- ref - name>ej b/ Hel | oBean</ ej b-r ef - nanme>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<hone>nyEj b. Hel | oHone</ hone>
<r enot e>nyEj b. Hel | oRenot e</ r enot e>
</ejb-ref>
</ web- app>

Next, create the directory structure that is required for Web application deployment,
and move the Web deployment descriptor (web. xm) and the compiled servlet
class file into the structure. The web. xni file must be in a VEB- | NF directory, and
the servlet class files (in their respective packages, as applicable) under the

VEB- | NF/ cl asses/ directory. Once you create the directory structure and

Servlet Development 2-27

EJB Calls from Servlets

populate the directories, create a WAR file to contain the files. From the Web root
directory, create the WAR file as follows:

%jar cvf nyapp-web.war *

When created, the WAR file should look like this:

%jar -tf nyapp-web.war

META- | NF/

META- | NF/ MANI FEST. MF

VEB- | NF/

VEB- | NF/ cl asses/

VEB- | NF/ cl asses/ myServl et/

VEB- | NF/ cl asses/ nmyServl et/ Hel | oServl et. cl ass
VAEB- | NF/ web. xm

EJB Archive The contents of ej b-j ar. xm are as follows. Note that the
<ej b- nane> value here corresponds to the <ej b- r ef - name> value in the
web. xm file above.

<?xm version="1.0""?>
<! DCCTYPE ejb-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise JavaBeans
1.12//EN" "http://java.sun.confj2ee/dtds/ejb-jar_1_1.dtd">
<gj b-jar>
<ent erprise- beans>
<sessi on>
<description>Hel | o Bean</description>
<ej b- nane>ej b/ Hel | oBean</ ej b- name>
<home>nyEj b. Hel | oHome</ hone>
<renot e>nyEj b. Hel | oRenot e</ r enot e>
<ej b-cl ass>nyEj b. Hel | oBean</ ej b-cl ass>
<sessi on-type>Stat ef ul </ sessi on-type>
<transaction-type>Contai ner</transaction-type>
</ sessi on>
</enterprise-beans>
<assenbl y-descri ptor>
</ assenbl y- descri pt or >
</ejb-jar>

Create a JAR file to hold the EJB components. The JAR file should look like this:

%jar tf myapp-ejb.jar
META- | NF/

META- | NF/ MANI FEST. MF
nyEj b/

2-28 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

META- | NF/] b-j ar. xm
myEj b/ Hel | oBean. cl ass
myEj b/ Hel | oHone. cl ass
nmyEj b/ Hel | oRenot e. cl ass

Application-Level Descriptor To deploy the application, create an application
deployment descriptor—appl i cat i on. xm . This file describes the modules in the
application:

<?xm version="1.0"?>
<! DCCTYPE application PUBLIC "-//Sun M crosystens, Inc.//DTD J2EE Application
1.2//EN" "http://java.sun.com j2ee/ dtds/application_1_2.dtd">

<appl i cation>
<di spl ay- nane>Ser vl et _cal | i ng_ej b_exanpl e</ di spl ay- nane>
<nodul e>
<web>
<web- uri >nyapp- web. war </ web- uri >
<cont ext - r oot >/ f 0oo</ cont ext - r oot >
</ web>
</ nodul e>
<nodul e>
<ej b>nyapp-ej b. jar</ej b>
</ nodul e>
</ application>

Note the following regarding the <cont ext - r oot > setting:

« For a new context root (/ f 0o in this example) to route properly to OC4J
through Oracle HTTP Server, there must be an appropriate Oc4j Mount
command in the mod_oc4j . conf file. (See the Oracle9iAS Containers for J2EE
User’s Guide for additional information.) If you use OEM to deploy the
application, this is handled automatically. This discussion assumes the Web
application is bound to a Web site that uses AJP protocol, according to settings
in def aul t - web-si te. xm or the relevant Web site XML file.

« Ifyou runin an OC4J standalone scenario (where OC4J runs apart from
Oracle9iAS), then the <cont ext - r oot > element is ignored. You must specify
the context root by adding appropriate entries to def aul t - web-si te. xm or
the relevant Web site XML file, and to nod_oc4j . conf.

Finally, create an EAR file to hold the application components. The EAR file should
look like this:

Servlet Development 2-29

EJB Calls from Servlets

%jar tf myapp.ear
META- | NF/

META- | NF/ MANI FEST. MF
myapp-ej b. jar

myapp- web. war

META- | NF/ appl i cation. xm

Deployment Commands To perform the application deployment for testing purposes,
you can use the OC4J admi n. j ar tool to issue two commands. The first command
is as follows. (Specify the appropriate machine name.)

%java -jar $J2EE HOVE/ admi n.jar orm://<machi ne_name> adnin wel come \
-deploy -file ./lib/nyapp.ear \
- depl oyment Nane nyapp

This command adds the following entry toj 2ee/ honme/ confi g/ server. xm :

<application
name="nyapp"
pat h="<your_path_to>/1i b/ nmyapp. ear"
auto-start="true"

/>

Here is the second command:

%java -jar $J2EE_HOWE admin.jar orm://<machi ne_name> adni n wel cone
- bi ndWebApp nyapp nyapp-web defaul t-web-site /nyapp

This command binds the Web module to a Web site. It adds the following entry to
j 2eel/ hone/ confi g/ defaul t -web-site. xm :

<web- app
appl i cation="nyapp"
nane="nyapp- web"
root ="/ myapp"

/>

Note: In a production environment, use Oracle Enterprise
Manager (OEM) for deployment.

2-30 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

Remote EJB Lookup Within the Same Application

To perform a remote EJB lookup in OC4J, you must enable the EJB r enot e flag.
This is an attribute in the <ej b- nodul e> subelement of an
<orion-application>elementinthe ori on-application.xm fileforthe
application to which the calling servlet belongs. (The default setting is

renot e="f al se".) Here is an example of enabling this flag:

<orion-application ... >
<ej b-nmodul e renote="true" ... />

</ orion-application>

No changes are necessary to the servlet code. Recall the local EJB lookup from
"Servlet Code: HelloServlet" on page 2-24:

Hel I oHone hh = (Hel | oHone)
(new Initial Context()).lookup("java:conp/env/ejb/HelloBean");

Given arenot e="true" setting, this code would result in a remote lookup of
ej b/ Hel | oBean. Where the lookup is performed is according to how EJB
clustering is configured in the application r mi . xm file.

Configure remote serversin rmi . xm through <ser ver > elements, using the
host, port,user, and passwor d attributes as appropriate. If multiple servers are
configured, OC4J will search all of them, as necessary, for the intended EJB.

See the Oracle9iAS Containers for J2EE Services Guide for information about
rm.xm.

EJB Lookup Outside the Application

To look up an EJB from outside the application, use orm : / /... syntax in the

I ookup() call. The r enot e flag discussed in "Remote EJB Lookup Within the
Same Application" above is not relevant—the lookup is according to the or mi URL.
If the host and port are the same as for the calling servlet, then the lookup is local,
otherwise, the lookup is remote. Here is an example, where appnarne is the name of
the application to which the EJB belongs:

Hel I oHone hh = (Hel | oHone)
(new Initial Context()).lookup("orm://host:port/appnane/env/ejb/HELLOEJB");

Servlet Development 2-31

EJB Calls from Servlets

This assumes that the name ej b/ HELLOEJB is defined in an <ej b- nane> element
in the ej b-j ar. xm file of the remote application. The web. xm file of the
application to which the calling servlet belongs is not relevant.

See the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference for information aboutej b-j ar. xm .

Note: If you omit the host and port in the or m URL, the host is
assumed to be | ocal host and a local lookup is performed.

2-32 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

3

Deployment and Configuration

This chapter describes how to deploy and configure a Web application in OC4J. It
covers the following topics:

« Introduction to Web Application Deployment and Configuration
« Application Assembly
« Application Deployment

« Configuration File Descriptions

Deployment and Configuration 3-1

Introduction to Web Application Deployment and Configuration

Introduction to Web Application Deployment and Configuration

This section provides an overview of OC4J Web applications, deployment, and
configuration, covering the following topics:

« Web Application Modules
« Overview of OC4J Deployment

« Overview of Web Configuration Files

Note: For users of Oracle9iAS release 1.0.2.2, see Migrating from
Oracle9i Application Server 1.x for information about issues in
migrating to Oracle9iAS 9.0.2.

Web Application Modules

An OC4J application can consist of one or more J2EE-compliant modules. These
include:

= Web application modules consist of JSP pages, servlet class files, HTML pages, and
other resources that the application might require (such as data files, images,
and sound files).

« EJB modules contain classes that implement Enterprise JavaBeans.

« Aclient module consists of Java class files that form a client application. The
client application runs on a system that may or may not be the same as the
server host, but normally is not the same.

A J2EE application might consist of only a single Web application module, the client
being a Web browser. Or, it might consist of just a Java client and one or more EJB
modules. Most business applications include both a Web application module
(servlets, JSP pages, and HTML pages) and one or more EJB modules. Optionally, a
Java client might be adopted as the front-end for the application, although there are
many large applications that rely solely on a Web browser for client access.

The examples in this chapter are derived from the sample application st at el ess,
which is provided with OC4J. The actual application name is enpl oyee. This
application includes both a Web and an EJB module, but building and deploying
the Web module follows the same practice as a Web-only application. The sample is
also available at the following location:

http://otn.oracl e.com sanpl e_code/tech/javaloc4j/ htdocs/ oc4jsanpl ecode/ oc4j - demo- ej b. ht n #Ser vl et

3-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Web Application Deployment and Configuration

Overview of OC4J Deployment

For production, use Oracle Enterprise Manager (OEM) for deployment. OEM is
recommended for managing OC4J and other components of Oracle9iAS in a
production environment. Refer to the Oracle9i Application Server Administrator’s
Guide and Oracle Enterprise Manager Administrator’s Guide for information.

OC4J also supports the adm n. j ar tool for deployment, typically in a development
environment. This modifies ser ver . xm and other configuration files for you,
based on settings you specify to the tool. Or you can modify the configuration files
manually (not generally recommended). Note that in Oracle9iAS 9.0.2, if you
modify configuration files without going through OEM, you must use the dcntt |
tool to inform Oracle9iAS Distributed Configuration Management (DCM) of the
updates. (This does not apply in an OC4J standalone mode, where OC4J is being
run apart from Oracle9iAS.) See "Use of admin.jar for Deployment" on page 3-11
regarding dcnct | .

For general OC4J deployment and configuration information and discussion of the
admi n. j ar tool, see the Oracle9iAS Containers for J2EE User’s Guide. For additional
information about deploying an application that has EJB modules, see the
Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and Reference.

For more information about standard J2EE deployment, refer to the J2EE
specification, which is available at the following location:

http://java. sun. com j 2ee/ docs. ht nl

Overview of Web Configuration Files

Figure 3-1 shows the XML configuration files that OC4J supports. OC4J uses the
server configuration files to configure the server on start up. The server
configuration files are located in the j 2ee/ horre/ conf i g directory. The files
shown at the bottom of the figure are application-specific configuration files. The
files at the bottom-left are the J2EE-standard files: web. xm , ej b-j ar. xm ,
application.xm ,andapplication-client.xmn .Atthe bottom-right are the
corresponding OC4J-specific files to add application-specific and
deployment-specific information.

Deployment and Configuration 3-3

Introduction to Web Application Deployment and Configuration

Figure 3-1 OC4J Configuration Files

Server Configuration Files

senierxmi alohakweb-application xml
principals. xmi datasources.xml
jmsxmi renix il
acd4fcannectarsxml default-welrsite xmil
application.xmi

Standard J2EE 0 C4J-8Specific
Packaging Files Deployment Files
application.xml ariorrapplication. xmi
wee) il orion-web xml
ejb-jarxmi arion-ejb-jarxml
application-client.xml arion-application-clientxml

Note that one of the server configuration files is a global appl i cati on. xm file,
which is for overall defaults that apply to any application. In addition, each
application has its own appl i cati on. xm file, which applies to the particular
application only.

Changes to the global appl i cati on. xm , gl obal - web-application. xm
server.xm ,and web. xm are picked up automatically by OC4J.

Deploying a Web application on OC4J involves at least the following configuration
files:

= server.xm

3-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Web Application Deployment and Configuration

def aul t - web-site. xm , or appropriate Web site XML file for a separate Web
site

gl obal - web-appl i cation. xm
web. xm

optionally or i on- web. xm

The server. xnl file (as well as other configuration files from Figure 3-1) is
discussed in the Oracle9iAS Containers for J2EE User’s Guide. The other files are
discussed in this chapter. See "The global-web-application.xml and orion-web.xml
Files" on page 3-12 and "The default-web-site.xml File and Other Web Site XML
Files" on page 3-26. Also be aware that web. xm is defined in the Java(TM) Servlet
Specification, Version 2.2 (and higher); you can refer to that document from Sun
Microsystems at the following location:

http://java. sun. com j 2ee/ docs. ht nl

Deployment and Configuration 3-5

Application Assembly

Application Assembly

How you assemble and build your application is up to you. Nevertheless, a
standard directory structure is required for JAR and WAR deployment files, and it is
simplest if you follow that when developing the application. This section discusses
the standard directory structure, as well as application build mechanisms.

Application Directory Structure

Figure 3-2, shows the directory structure under the application root directory for a
typical Web application. In OC4J, the root directory is

<app- nane>/ <web- app- name>, according to the application name and
corresponding Web application name. The application name is defined in the
server . xm file and mapped to a Web application name in the

def aul t - web-si te. xm file or other Web site XML file. (See "The
default-web-site.xml File and Other Web Site XML Files" on page 3-26.)

Figure 3-2 Application Directory Structure

: WAR file:
Ail WEB-IMF/ :

arion-web. xml

"package_name/"

ErmployeeSerdet.class

myJar. jar
L add.jsp

.| delete.jsp
edit.jsp

1 index. html

N

3-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Application Assembly

For easier application assembly and deployment, it is advisable to set up your Web
application files in a pattern that is required for the deployment WAR file. The
general rules are as follows:

Put HTML files, JSP pages, and other resource files in the application root
directory. The root directory is defined through the r oot attribute of the

<web- app> element of def aul t - web- si t e. xm or the Web site XML file for
a particular Web site.

Put servlet classes under the

<app_nane>/ <web- app- name>/ VEB- | NF/ cl asses directory, in
subdirectories named after packages as appropriate. For example, if you have a
servlet called Enpl oyeeSer vl et in the enpl oyee package, then the class file
should be as follows:

<app_name>/ <web- app- name>/ WEB- | NF/ cl asses/ enpl oyee/ EnpServl et. cl ass

Put library files, such as JARs, that are required for the application in
<app_name>/ <web- app- name>/ VVEB- | NF/ | i b.

Application Build Mechanisms
To build an application you have several options:

Preferred—Create a bui | d. xnl file at the application root and use the ant
utility to build the application. This utility is open-source and portable
(between application servers, as well as operating systems) and so is ideal for
Java-based applications. You can obtain ant and accompanying documentation
at the following site:

http://jakarta. apache.org/ant/

Some of the sample applications that come with OC4J are set up to use ant . You
can study the accompanying bui | d. xm files for models.

Alternative—Create a makef i | e to automate the compilation and assembly
process and use a standard UNIX make utility or the open-source gnake utility
to execute it.

Typically Not Advised—Compile each Java source file manually, using a Java
1.3.x-compatible compiler. You will probably do this only at the very early
stages of developing an application, if at all. It is a potentially error-prone
mechanism.

Deployment and Configuration 3-7

Application Assembly

Abui |l d. xm file or makefi | e might include steps to create EAR, WAR, and JAR
file as appropriate for deployment, or you can create them manually. See
"Application Deployment" on page 3-9 for information about these files.

3-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Application Deployment

Application Deployment

For J2EE-compatible deployment, each module requires a deployment descriptor. The
descriptor is either a JAR file for EJB and client modules, or a WAR (Web ARchive)
file for Web modules such as servlets and JSP pages.

The deployment descriptor for the entire application is the EAR (Enterprise
ARchive) file, which wraps any WAR and JAR files.

You can create each of these deployment descriptors using the standard Java JAR
utility. Specific examples appear below.

To deploy the application, follow these steps:

1.

Create an appl i cati on. xm file to specify the application modules. See the
OC4J demos (such as the st at el ess application) and the Oracle9iAS
Containers for J2EE User’s Guide for more information about creating this file.

For each Web module in the application, create aweb. xm descriptor file. This
file is defined in the Servlet 2.3 specification. In addition, there is some
introductory information about web. xm in "The global-web-application.xml
and orion-web.xml Files" on page 3-12.

If your application has one or more EJB modules, then create an ej b-j ar . xm
file for each of these. See the Oracle9iAS Containers for J2EE Enterprise JavaBeans
Developer’s Guide and Reference for more information about deploying EJB
modules.

Create the WAR file for the Web module. When you are in the application root,
issue the command:

%jar -cvf <app_nane>. war .

This creates a JAR file with a . war extension. You can also examine the contents
of the WAR file using the j ar command. Here is an example, taken from the
WAR file of the OC4J st at el ess sample application:

% cd <app_root >/ web

%jar -tf enployee-web. war

META- | NF/

META- | NF/ MANI FEST. MF

VEB- | NF/

VEB- | NF/ cl asses/

VEB- | NF/ ¢l asses/ enpl oyee/

VEB- | NF/ ¢l asses/ enpl oyee/ Enpl oyeeSer vl et . cl ass
VAEB- | NF/ or i on-web. xm

VAEB- | NF/ web. xm

Deployment and Configuration 3-9

Application Deployment

del ete.jsp
list.jsp
i ndex. htm
edit.jsp
add. j sp

The JAR utility creates the META- | NF/ MANI FST. MF file. You should not have
to modify it.

Create the EAR file for the Web application. Use the j ar command to create
this file, as in the following example:

%jar -cvf enployee. EAR .

Here is an example of an EAR file for the sample application st at el ess:

%jar -tf enployee. ear

META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ appl i cation. xm
META- | NF/ ori on-appl i cation. xn
enpl oyee-ejb.jar

enpl oyee- web. war

enpl oyee-client.jar

For more information about EAR files, see the Oracle9iAS Containers for J2EE
User’s Guide.

If your application has one or more EJB modules, also include the EJB
deployment descriptor in the EAR file. Here is a sample EJB JAR file:

%jar -tf enployee-ejb.jar
META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/] b-j ar. xm

META- | NF/ orion-ej b-jar. xm
enpl oyee/

enpl oyee/ EnpRecor d. cl ass
enpl oyee/ Enpl oyee. cl ass
enpl oyee/ Enpl oyeeBean. cl ass
enpl oyee/ Enpl oyeeHone. cl ass

See the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference for information about creating an EJB deployment descriptor and
deploying an EJB application.

Deploy the application. In a production environment, use OEM.

3-10 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Application Deployment

Use of admin.jar for Deployment To deploy a Web application using the admni n. j ar
command-line tool, typically in a development environment, go to the j 2ee/ hone
directory and issue the following commands in the application root directory.

%java -jar admn.jar orni://local host <adm n_user> <adm n_pw> \
-deploy -file ./lib/<application_name>. ear \
-depl oyment Name <appl i cati on_nane>

This command adds the following entry to the server. xm file:

<appl i cation name="<app_name>"
pat h="<your _path_to>/1ib/.ear"
auto-start="true"

/>

Then bind the Web access location into the def aul t - web-si t e. xmd file:

%java -jar admn.jar ormi://<hostnanme> <admi n_user> <adm n_pw> \
-bi ndWebApp <app_nanme> <app_name>-web defaul t-web-site \
| <app_name>

This adds the following entry to the def aul t - web-si te. xnl file:

<web- app
appl i cati on="<app_nane>"
name="<app_nane>- web"
root ="/ <app_nane>"

/>

Note that in Oracle9iAS 9.0.2, if you modify configuration files without going
through OEM, you must run the dcnct | tool, using its updat eConf i g command,
to inform Oracle9iAS Distributed Configuration Management (DCM) of the
updates. (This does not apply in an OC4J standalone mode, where OC4J is being
run apart from Oracle9iAS.) Here is the dcntt | command:

denct! updateConfig -ct océj

The dcntt | tool is documented in the Oracle9i Application Server Administrator’s
Guide.

Deployment and Configuration 3-11

Configuration File Descriptions

Configuration File Descriptions

This section discusses XML configuration files that are central to servlet
development and invocation in an OC4J environment, including detailed element
and attribute descriptions. The following topics are covered:

« Syntax Notes for Element Documentation
« The global-web-application.xml and orion-web.xml Files

« The default-web-site.xml File and Other Web Site XML Files

Syntax Notes for Element Documentation

The elements described here do not use body values unless specifically noted, and
do not have subelements unless noted. If there is neither, the syntax is as follows
(with "..." where attribute settings would appear):

<el ementnane ... />

If there are subelements, the syntax is as follows:

<el enentnanme ... >
...Subel enents. ..
</ el enent nane>

If a body value is used, the syntax is as follows:

<el enentnane ... >val ue</el enent nane>

The global-web-application.xml and orion-web.xml Files

This section describes the OC4J-specific gl obal - web- appl i cati on. xm and
ori on-web. xm files, and their relationships to the standard web. xmi file.
Overviews of these files and their features are followed by detailed descriptions of
the elements supported by gl obal - web- appl i cati on. xm and

ori on-web. xm . This section is organized as follows:

« Overview of global-web-application.xml, orion-web.xml, and web.xml

» Standard Descriptor Configurations

« OC4] Descriptor Configurations

« Element Descriptions for global-web-application.xml and orion-web.xml

« Default global-web-application.xml File

3-12 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

Overview of global-web-application.xml, orion-web.xml, and web.xml

The file j 2ee/ home/ confi g/ gl obal - web- appl i cati on. xm is the descriptor
for the OC4J global Web application, which is the parent of all Web applications on
OCA4J. The elements in this file define the default behavior of an OC4J Web
application.

There is also, for each Web application, an application-specific web. xm file and an
optional deployment-specific or i on- web. xm file. Both of these files should be in
the application / VEEB- | NF directory. Use of web. xm is standard, according to the
Servlet 2.3 specification (and originally the Servlet 2.2 specification). Elements
defined for the or i on- web. xm file are a superset of those defined for web. xm |
adding elements for OC4J-specific features. The ori on- web. xm DTD is also used
for gl obal - web- appl i cati on. xm —the two files support the same elements.

On deployment of a Web application, OEM or the adni n. j ar tool generates an
ori on-web. xm file, using the settings from the parent

gl obal - web-appl i cation. xm file. You can then update ori on-web. xm as
desired to override default values. You can also package or i on- web. xm as part
of your EAR file if you want to specify resource mappings or OC4J-specific
configuration. In this case you will not have to override or i on- web. xm after
deployment.

The gl obal - web- application. xm ,ori on-web. xm , and web. xnl files all
support a <web- app> element, which has many subelements. As you can see in
"Default global-web-application.xml File" on page 3-23, the

gl obal - web-appl i cation. xm file typically defines defaults for many settings
of the <web- app> element and its subelements. For desired settings specific to an
application, use the <web- app> element and subelements in the web. xm file.
When deploying an application, use the <web- app> element and subelements in
ori on-web. xm if you want to override any settings of the web. xm <web- app>
element for this particular deployment.

OC4J-specific features are supported through the <or i on- web- app> element and
its many subelements in the gl obal - web- appl i cati on. xm and

ori on-web. xnl files. The <web- app> element in these files is a subelement of
<ori on- web- app>. Use this element and its subelements in ori on- web. xm to
override gl obal - web- appl i cati on. xm settings of OC4J features for a
particular application deployment.

Standard Descriptor Configurations

The web. xm descriptor file specifies the following servlet 2.3 standard
configurations, among many others:

Deployment and Configuration 3-13

Configuration File Descriptions

« names and classes of servlets in the Web module

« hames of JSP pages

= servlet context initialization parameters

« location of any application-specific JSP tag libraries
= mappings of servlet names to URL patterns

« EJB references, including the JNDI names for looking up EJB home and remote
interfaces

(Only the Home interface JNDI name is provided, because only the Home
interface is looked up through JNDI.)

= Security constraints and security roles

« error code and error page mappings

= session timeout

= hames of any filters in the Web application

« filter mappings—URL patterns that cause servlet filters to be triggered

(Filter settings are outside the <web- app> element.)

OC4J Descriptor Configurations

The gl obal - web- applicati on. xm and ori on-web. xm descriptor files, in
addition to being able to specify almost all the same configurations as in the
web. xm <web- app> element and subelements, can specify the following
OC4J-specific configurations:

« additional servlet filtering and "servlet chaining"
« buffering

« character sets

« directory browsing

« document root

« locales

« classpath

« MIME mappings

« virtual directories

3-14 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

« access mask (to limit access to the servlet)
« clustering

« request and session tracking

« JNDI mappings

= security role mappings

« EJB mappings

= resource expiration settings

Element Descriptions for global-web-application.xml and orion-web.xml

The element descriptions in this section are applicable to either

gl obal - web-appl i cati on. xm orto an application-specific ori on- web. xm
configuration file. Use gl obal - web- appl i cati on. xm to configure the global
application and set defaults, and or i on- web. xm to override these defaults for a
particular application deployment as appropriate.

See "Syntax Notes for Element Documentation” on page 3-12 for general syntax
information.

<orion-web-app ... >
This is the root element for specifying OC4J-specific configuration of a Web
application.

Subelements:

<cl asspat h>

<cont ext - par am mappi ng>
<ni nme- nappi ngs>
<virtual -directory>
<access- mask>

<cl ust er-config>
<servl et - chai ni ng>
<request-tracker>
<servlet-filter>

<sessi on-tracki ng>
<resour ce-ref - mappi ng>
<env-entry- mappi ng>
<security-rol e-mappi ng>
<ej b-ref - mappi ng>
<expiration-setting>
<web- app>

Deployment and Configuration 3-15

Configuration File Descriptions

Attributes:

« default-buffer-size: Specifies the default size of the output buffer for
servlet responses, in bytes. The default is " 2048" .

« default-charset:Thisis the ISO character set to use by default. The default
is"iso-8859-1".

« depl oynent - ver si on: This is the version of OC4J under which this Web
application was deployed. If this value does not match the current version, then
the application is redeployed. This is an internal server value and should not be
changed.

« devel opnent : This is a convenience flag during development. If
devel opnent issetto"true", then each time you change the servlet source
and save it in a particular directory, the OC4J server automatically compiles and
redeploys the servlet the next time it is invoked. The directory is determined by
the setting of the sour ce- di r ect or y attribute. Supported values for
devel opnent are"true" and"fal se" (default).

« source-directory: Specifies where to look for source files for classes to be
auto-compiled if the devel opnent attribute issetto"true". The default is
"WEB- | NF/ src" if it exists, otherwise " VEEB- | NF/ cl asses".

« directory-browsi ng: Specifies whether to allow directory browsing.
Supported values are " al | ow' and " deny" (default).

« document - r oot : Defines the path-relative or absolute directory to use as the
root for served pages. The default settingis"../".

« file-nodification-check-interval:Thisistheamount of time,in
milliseconds, for which a file-modification check is valid. Within that time
period of the last check, further checks are not necessary. Zero or a negative
number specifies that a check always occurs. The default is " 1000" .

« get-1ocal e-from user: Specifies whether to determine the specific locale of
the logged-in user before looking at the request headers for the information.
Supported values are "t rue" and " f al se" (default, for performance reasons).

= persi stence- pat h: Specifies where to store Ht t pSessi on objects for
persistence across server restarts. Session objects must contain properly
serializable or remoteable values, or EJB references, for this to work. There is no
default.

« servl et-webdi r: Specifies the servlet runner path for running a servlet by
name—anything appearing after this in a URL is assumed to be a class name.
This is typically for use during development and testing. For deployment, you

3-16 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

should instead use standard web. xm mechanisms for defining the context
path and servlet path. The defaultis"/servl et".

« tenporary-directory: Thisis the absolute or relative path to a temporary
directory that can be used by servlets and JSP pages for scratch files. The default
is the . / t enp directory.

Note: The Fi | e object can be retrieved by the following code in a
servlet or JSP page, according to the Servlet 2.2 specification:

File file = (File)application.getAttribute(
"javax.servlet.context.tenmpdir");

<classpath ... >

This specifies a codebase where classes used by this application can be found
(servlet and JavaBeans, for example).

Attribute:

« pat h: This is the path or URL for the codebase, either absolute or relative to the
location of the or i on-web. xm file.

<context-param-mapping ... >deploymentValue</context-param-mapping>

In ori on-web. xm , this overrides the value of a cont ext - par amsetting in the
web. xm file. It is used to keep the EAR assembly clean of deployment-specific
values. Specify the new value in the tag body.

Attribute:

« nane: This is the name of the cont ext - par amsetting to override.
<mime-mappings ... >

This defines the path to a file containing MIME mappings to use.
Attribute:

« pat h: This is the path or URL for the file, either absolute or relative to the
location of the or i on-web. xm file.

<virtual-directory ... >

This adds a virtual directory mapping, used to include files that do not physically
reside under the document root among the Web-exposed files.

Attributes:

Deployment and Configuration 3-17

Configuration File Descriptions

« real -path:Thisisareal path,suchas/usr/ | ocal /real pat h on UNIX or
C\testdir inWindows.

« Virtual - pat h: This is a virtual path to map to the specified real path.

<access-mask ... >

Use subelements of <access- nask> to specify optional access masks for this
application. You can use host names or domains to filter clients, through

<host - access> subelements, or you can use IP addresses and subnets to filter
clients, through <i p- access> subelements, or you can do both.

Subelements:
<host - access>
<i p-access>
Attribute:

« def aul t: Specifies whether to allow requests from clients that are not
identified through a <host - access> or <i p- access> subelement.
Supported values are " al | ow' (default) and " deny" . There are separate node
attributes for the <host - access> and <i p- access> subelements, which are
used to specify whether to allow requests from clients that are identified
through those subelements.

<host-access ... >

This subelement of <access- mask> specifies a host name or domain to allow or
deny access.

Attributes:
« donmi n: This is the host or domain.

« node: Specifies whether to allow or deny access to the specified host or domain.
Supported values are "al | ow" (default) or "deny".

<ip-access ... >

This subelement of <access- mask> specifies an IP address and subnet mask to
allow or deny access.

Attributes:
« 1 p:Thisisthe IP address, as a 32-bit value (example: " 123. 124. 125. 126").
« net mask: This is the relevant subnet mask (example: " 255. 255. 255. 0")

« node: Specifies whether to allow or deny access to the specified IP address and
subnet mask. Supported values are "al | ow" (default) or "deny".

3-18 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

<cluster-config ... >

Define this tag if the application is to be clustered. Clustered applications have their
Ser vl et Cont ext and Ht t pSessi on data shared between the applications in the
cluster. Shared objects must either be serializable or be remote RMI objects
implementing the j ava. r mi . Renot e interface.

See the Oracle9iAS Performance Guide for general information about clustering.
Attributes:

« host : This is the multicast host/IP for transmitting and receiving cluster data.
The defaultis " 230. 0. 0. 1".

« i d:Thisisthe ID (number) of this cluster node to identify itself within the
cluster. The default is based on the local machine IP.

« port: This is the port through which to transmit and receive cluster data. The
defaultis " 9127".

<servlet-chaining ... >

This element specifies a servlet to call when the response of the current servlet is set
to a specified MIME type. The specified servlet will be called after the current
servlet. This is known as servlet chaining and is useful for filtering or transforming
certain kinds of output. Servlet chaining is an older servlet mechanism that is
similar to servlet filtering (see <servl et - fi | t er > below), which is specified in
the Servlet 2.3 specification and covered in Chapter 4, "Servlet Filters".

Attributes:

« m me-type: Thisis the MIME type to trigger the chaining, such
as"text/htm".

« servl et-nane: This is the servlet to call when the specified MIME type is
encountered.

<request-tracker ... >

This element specifies a servlet to use as the request tracker. A request tracker is
called for each request, for use as desired. A request tracker might be useful for
logging purposes, for example.

Attribute:
« servl et-nane: This is the servlet to call as the request tracker.

<servlet-filter ...>

This element specifies a servlet to use as a filter. Filters are invoked for every
request, and can be used to either pre-process the request or post-process the

Deployment and Configuration 3-19

Configuration File Descriptions

response. Optionally, the filter would apply only to requests from servlets that
match a specified URL pattern. Using <ser vl et - fi | t er > to post-process a
response is similar in nature to using <ser vl et - chai ni ng> (see above), but is not
based on MIME type.

Attributes:
= servl et-name: This is the servlet to call as the filter.

« url-pattern:Thisisan optional URL pattern to use as a qualifier for requests
that are passed through the filter. For example: "/t he/ *. pattern".

<session-tracking ... >

This element specifies the session-tracking settings for this application. Session
tracking is accomplished through cookies, assuming a cookie-enabled browser.
Session tracking through URL rewriting, also known as auto-encoding, is not
currently supported.

The servlet to use as the session tracker is specified through a subelement.
Subelement:

<sessi on-tracker>

Attributes:

« aut oj oi n- sessi on: Specifies whether users should be assigned a session as
soon as they login to the application. Supported values are "t r ue" and
"fal se" (default).

« cooki e-domai n: This is the relevant domain for cookies. This is useful for
sharing session state between nodes of a Web application running on different
hosts.

« cooki e- max- age: This number is sent with the session cookie and specifies a
maximum interval (in seconds) for the browser to save the cookie. By default,
the cookie is kept in memory during the browser session and discarded
afterwards.

« cooki es: Specifies whether to send session cookies. Supported values are
"enabl ed" (default) and " di sabl ed".

<session-tracker ... >

This subelement of <sessi on-t r acki ng> specifies a servlet to use as the session
tracker. Session trackers are invoked as soon as a session is created and are useful
for logging purposes, for example.

Attribute:

3-20 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

ser vl et - nane: This is the servlet to call.

<resource-ref-mapping ... >

Use this element to declare a reference to an external resource such as a data source,
JMS queue, or mail session. This ties a resource reference name to a INDI location
when deploying.

Subelement:

<l ookup- cont ext >

Attributes:

« | ocation:Thisisthe JNDI location from which to look up the resource.
Example: " j dbc/ TheDS" .

= nane: This is the resource reference name, which matches the name of a
resour ce-ref elementin theweb. xm file. Example: "j dbc/ TheDSVar " .

<lookup-context ... >

This subelement of <r esour ce- r ef - mappi ng> specifies an optional

j avax. nam ng. Cont ext that will be used to retrieve the resource. This is useful
when connecting to third-party modules, such as a third-party JMS server, for
example. Either use the context implementation supplied by the resource vendor, or,
if none exists, write an implementation that in turn negotiates with the vendor
software.

Subelement:

<context-attribute>

Attribute:

« | ocation:Thisis the name to look for in the foreign (such as third-party)
context when retrieving the resource.

<context-attribute ... >

This subelement of <I ookup- cont ext > (which is a subelement of
<resour ce-r ef - mappi ng>) specifies an attribute to send to the foreign context.

The only mandatory attribute in JNDI isj ava. nam ng. factory.initial,
which is the class name of the context factory implementation.

Attributes:
« nane: Specifies the name of the attribute.

« Vval ue: Specifies the value of the attribute.

Deployment and Configuration 3-21

Configuration File Descriptions

<env-entry-mapping ... >deploymentValue</env-entry-mapping>

In ori on-web. xm , this element overrides the value of an env- ent r y setting in
the web. xm file. It is used to keep the EAR assembly clean of deployment-specific
values. Specify the new value in the tag body.

Attribute:
« nane: This is the name of the env- ent r y setting to override.

<security-role-mapping ... >

This element maps a security role to specified users and groups, or to all users. It
maps to a security role of the same name in the web. xni file. Use either the

i mpl i esAl'| attribute or an appropriate combination of subelements—<gr oup>,
or <user >, or both.

Subelements:
<gr oup>

<user >
Attributes:

« i npliesAll:Specifies whether this mapping implies all users. Supported
valuesare "t rue" or"fal se" (default).

« nane: This is the name of the security role. It must match a name specified in a
<r ol e- name> subelement of a<security-rol e>elementinweb. xm .

<group ... >
Use this subelement of <securi t y-r ol e- mappi ng> to specify a group to map to
the security role of the parent <securi ty-rol e- mappi ng> element. All the
members of the specified group are included in this role.

Attribute:
« nane: This is the name of the group.

<user ... >

Use this subelement of <securi t y-r ol e- mappi ng> to specify a user to map to
the security role of the parent <securi ty-rol e- mappi ng> element.

Attribute:
= nane: This is the name of the user.

<ejb-ref-mapping ... >
This element creates a mapping between an EJB reference, defined in an
<ej b-r ef > element, and a JNDI location when deploying.

3-22 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

The <ej b- r ef > element can appear within the <web- app> element of
ori on-web. xm orweb. xm , and is used to declare a reference to an EJB.

Attributes:
« |l ocation:Thisisthe JNDI location from which to look up the EJB home.

« nane: This is the EJB reference name, which matches the <ej b- r ef - name>
setting of the <ej b- r ef > element.

<expiration-setting ... >
This element sets the expiration for a given set of resources. This is useful for
caching policies, such as for not reloading images as frequently as documents.

Attributes:

« expires: Thisis the time, in seconds, before expiration, or " never " for no
expiration.

« url-pattern:Thisisthe URL pattern that the expiration applies to, such as
"* gif", forexample.

<web-app ... >

This element is used as in the standard web. xm file; see the Servlet 2.3
specification for details. In gl obal - web- appl i cati on. xml , you can establish
defaults for <web- app> settings. In web. xm , you can specify application-specific
<web- app> settings to override the defaults. In ori on- web. xm , you can specify
deployment-specific <web- app> settings to override the settings in web. xmi .

Note: Inagl obal -web-application.xm or

ori on-web. xm file, filter settings within the <web- app> element
are not supported, because that would conflict with the

<servl et-filter>subelement under the <ori on- web- app>
element.

Default global-web-application.xml File

This is an example of a default gl obal - web- appl i cati on. xm file (may be
subject to change in the shipped product):

<?xm version="1.0" standal one='yes' ?>
<! DCCTYPE ori on-web-app PUBLIC '//Everm nd//Orion web-application'
"http://xmns.oracl e.conlias/dtds/orion-web.dtd >

<ori on-web- app

Deployment and Configuration 3-23

Configuration File Descriptions

j sp-cache-directory="./persistence"
servl et-webdir="/servlet"
devel oprment ="f al se"

<!-- The m ne-nmappings for this server -->
<mi ne- nappi ngs path="./m ne.types" />

<web- app>

<I--

<servl et>
<servl et - name>xsl </ ser vl et - nane>
<servl et-class>com evermi nd. servl et. XSLSer vl et
</ servlet-class>
<init-paranm

<par am nane>def aul t Cont ent Type</ par am nane>
<par am val ue>t ext/ ht m </ par am val ue>

</init-paranmr

</servlet>

-->

<servl et>
<servl et - name>j sp</ ser vl et - nane>
<servlet-class>oracle.jsp.runtimev2.JspServl et
</ servlet-class>

</servlet>

<servl et>
<servl et-name>rm </ servl et - nane>

<servl et-class>com evermi nd. server.rm . RM H t pTunnel Ser vl et
</servlet-class>
</servlet>
<servl et>

<servl et - name>r m p</ servl et - name>
<servl et-class>com evermind. server.rm.RM Htt pTunnel ProxyServl et
</servlet-class>
</servlet>

<servlet>
<servl et - name>ssi </ ser vl et - name>
<servl et-class>com evermi nd. server. http. SSI Servl et
</ servlet-class>

</servlet>

3-24 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

<servlet>
<servl et - nanme>cgi </ servl et - nane>
<servl et-class>com evermi nd. server. http. CGl Servl et
</ servlet-cl ass>

</servl et>

<servlet>
<servl et - name>per| </ servl et - nane>
<servl et-class>com everm nd. server. http. CGl Servl et
</ servlet-cl ass>
<init-paranmp
<par am nane>i nt er pr et er </ par am name>
<par am val ue>per| </ par am val ue>
</init-paranmr
</servlet>

<servlet>
<servl et - name>php</ ser vl et - nane>
<servl et-class>com evermi nd. server. http. CGl Servl et
</ servlet-cl ass>
<init-paranm
<param nane>i nt er pret er </ par am nane>
<par am val ue>php</ par am val ue>
</init-paranr
</servl et>

<servl et - mappi ng>
<servl et - name>j sp</ ser vl et - nane>
<url-pattern>/*.jsp</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>j sp</ ser vl et - nane>
<url-pattern>/*.JSP</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>j sp</ servl et - nane>
<url-pattern>/*. sqljsp</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>j sp</ ser vl et - nane>
<url-pattern>/*. SQLISP</url -pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>cgi </ servl et - nane>

Deployment and Configuration 3-25

Configuration File Descriptions

<url-pattern>/*.cgi</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>per| </ servl et - nane>
<url-pattern>/*. pl</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>php</ ser vl et - nane>
<url-pattern>/*. php</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>php</ ser vl et - nane>
<url-pattern>/*. php3</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>php</ ser vl et - nane>
<url-pattern>/*. phtm </url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>ssi </ servl et - nane>
<url-pattern>/*. shtm </url-pattern>
</ servl et - mappi ng>

<wel come-file-list>
<wel cone-fil e>i ndex. ht M </ wel come-file>
<wel cone-fil e>defaul t.jsp</wel cone-file>
</wel cone-file-list>
</ web-app>
</ ori on-web- app>

The default-web-site.xml File and Other Web Site XML Files

This section describes OC4J Web site XML files, including
def aul t - web-si te. xm for the default OC4J Web site. The documentation
includes descriptions of the elements and attributes of these files.

3-26 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

Overview of default-web-site.xml and Web Site XML Files

A Web site XML file contains the configurations for an OC4J Web site. The file
j 2ee/ hone/ confi g/ def aul t - web- si t e. xm configures the default OC4J Web
site, also defining default configurations for any additional Web site XML files.

The names of any additional Web site XML files are defined in the ser ver . xm
file, in the pat h attributes of any <web- si t e> elements. See the Oracle9iAS
Containers for J2EE User’s Guide for more information about the ser ver. xm file.

Configuration settings in Web site XML files include the following:
« host name/IP as well as virtual host settings for this site

« portto listen on and whether the site is secure (using SSL)

« default web application for this site

« additional Web applications for this site

« access-log format

« settings for user Web applications (for /~user/ sites)

« SSL configuration

Note: To use HTTP protocol to access OC4J directly, instead of
going through the Oracle HTTP Server and AJP protocol, use a Web
site XML file that specifies a port setting and pr ot ocol =" ht t p"
(instead of aj p13). These are attributes of the <web- si t e>
element. This is not recommended for a production environment,
however.

Element Descriptions for default-web-site.xml and Web Site XML Files

The element descriptions in this section apply to def aul t - web- si t e. xm and the
Web site XML files for any additional OC4J Web sites. Use

def aul t -web-si te. xm to configure the default Web site and set overall
defaults, and additional Web site XML files to override these defaults for particular
OC4J) Web sites, as appropriate.

See "Syntax Notes for Element Documentation” on page 3-12 for general syntax
information.

<web-site ... >
This is the root element for configuring an OC4J Web site.

Deployment and Configuration 3-27

Configuration File Descriptions

Subelements:

<description>
<front end>

<web- app>

<def aul t - web- app>
<user - web- apps>
<access-log>
<ssl-confi g>

Attributes:

« cluster-island: A cluster island is two or more Web servers that share
session failover state for replication. Use the cl ust er - i sl and attribute when
clustering the Web tier between multiple OC4J instances. If this attribute is set
to a cluster island ID (number spawning from 1 and up), then this Web site will
participate as a back-end server in the island specified by the ID. The ID is a
chosen number that depends on your clustering configuration. If only one
island is used, the ID is always 1.

See the Oracle9iAS Performance Guide for general information about clustering.

« di spl ay- nane: This is for a user-friendly or informal Web site name to display
in GUI configuration tools when the site is being administered.

« host : This is the host IP address for this site. If " [ALL] " is specified, then all IP
addresses of the server are used.

« | og-request-i nfo: Specifies whether to log information about the incoming
request (such as headers) if an error occurs. Supported values are "t r ue" and
"fal se" (default).

« max-request - si ze: Sets a maximum size, in bytes, for incoming requests. If a
client sends a request that exceeds this maximum, it will receive a "request
entity too large" error. The default maximum is 15000.

« secur e: Specifies whether to support SSL (Secure Socket Layer). Supported
valuesare"true" and "f al se" (default). If you enable this, use the
<ssl - confi g> element for SSL configuration settings.

= protocol : Specifies the protocol that the Web site is using. Supported values
are"http","https",and"aj p13" (Apache JServ Protocol, or AJP—default).
The aj p13 protocol is for use with Oracle HTTP Server and nod_oc4j only,
and is highly recommended for production environments. Note that each port
must have a corresponding protocol, and vice versa.

3-28 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

« port: This is the port number for this Web site. Each port must have a
corresponding protocol, and vice versa. Also note that for AJP, port 0 has a
special meaning. Any non-zero port number is static, but with a por t setting of
" 0", the servlet container dynamically accesses any available port. This
functionality is invisible to the user, who is only aware of the Oracle HTTP
Server port specified through the browser (such as 7777, typical for access
through the Oracle HTTP Server with Oracle9iAS Web Cache enabled).

« use-keep-alives: Typical behavior for a servlet container is to close a
connection once a request has been completed. With ause- keep- al i ves
setting of "t r ue" , however, a connection is maintained across requests. For
AJP protocol, connections are always maintained and this attribute is ignored.
For HTTP and HTTPS, the default is "t r ue" ; disabling it may cause major
performance loss.

« Virtual - host s: This optional setting is useful for virtual sites sharing the
same IP address. The value is a comma-separated list of host names tied to this
Web site.

<description>This is the description.</description>

You can optionally use the body of this element for a brief description of the Web
site. The <descri pti on> element has no attributes or subelements.

<frontend ... >

This specifies a perceived front-end host and port of this Web site as seen by HTTP
clients. When the site is behind something like a load balancer or firewall, the

<f r ont end> specification is necessary to provide appropriate information to Web
application code for functionality such as URL rewriting. Using the host and port
specified in the <f r ont end> element, the back-end server that is actually running
the application knows to refer to the front-end instead of to itself in any URL
rewriting. This way, subsequent requests properly come in through the front-end
again instead of trying to access the back-end directly.

Attributes:
=« host : This is the host name of the front-end server, such as " ww. acne. cont'.
« port: This is the port number of the front-end server, such as " 80" .

<web-app ... >

This element creates a reference to a Web application—a J2EE application, defined
in the server. xm file, that is bound to this particular Web site. Each instance of a
J2EE application bound to a particular Web site is a separate Web entity.

The Web application is bound at the location specified by the r oot attribute.

Deployment and Configuration 3-29

Configuration File Descriptions

Attributes:

« application: Thisis the name of the J2EE application, as specified by the
appl i cat i on attribute of an <appl i cati on>elementin the server. xm
file.

« | oad-on-startup: Optional attribute to specify whether this Web application
should be preloaded on startup. Otherwise, it is loaded upon the first request
for it. Supported values are "t rue" and " f al se" (default).

« max-inactivity-time: Optional attribute to specify a period of minutes of
inactivity after which the Web application will automatically be shut down. The
default is no automatic shutdown.

« nane: Specify the desired Web application name. For example, if the J2EE
application name is My App, and this is Web site #2 of 4, you might specify a Web
application name of MyW\ebApp2. This name must be the same as the
corresponding name specified in a <web- nodul e> element in the
application.xm file, to be bound to this Web site under the specified root
context.

« root: The path on this Web site to which the Web application should be bound.
For example, if the Web application Cat al ogApp at Web site ww. si t e. comis
bound to the root "/ cat al og", then it can be accessed as follows:

http://ww. site.com catal og/ Catal ogApp

It is advisable to use the r oot value defined in appl i cati on. xm . This
occurs automatically when you use Oracle Enterprise Manager.

« shar ed: This indicates whether multiple bindings (different Web sites and
context roots) can be shared. Supported values are "t rue" and " f al se"
(default). Sharing implies the sharing of everything that makes up a Web
application, including sessions, servlet instances, and context values. The most
common use for this mode is to share a Web application between an HTTP site
and an HTTPS site at the same context path. If an HTTPS Web application is
marked as shared, its session tracking strategy reverts from SSL session tracking
to session tracking through cookies or URL rewriting. This may make the Web
application less secure, but might be necessary to work around issues such as
SSL session timeouts not being properly supported in some browsers.

<default-web-app ... >
This element creates a reference to the default Web application of this Web site.

The default Web application is bound to "/ j 2ee" in def aul t - web-site. xm .

3-30 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

Attributes are the same as for the <web- app> element described immediately
above, with the following exceptions:

« There isnoneed for ar oot attribute.
« The default setting of | oad-on-startupis“true".

<user-web-apps ... >

Use this element to support user directories and applications. Each user has his or
her own Web application and associated web- appl i cati on. xm file. User
applications are reached at / user name/ from the server root.

Attributes:

« max-inactivity-time: Optional attribute to specify a period of minutes of
inactivity after which the user application will automatically be shut down. The
default is no automatic shutdown.

« pat h: This is a path to specify the local directory of the user application,
including a wildcard for the user name. The default path setting on UNIX, for
example, is"/ home/ *" , where " *" is replaced by the particular user name.

<access-log ... >

This element specifies information about the access log for this Web site, including
the path and what information is included. This is where incoming requests are
logged.

Attributes:

« format: Specify one or more of several supported variables that result in
information being prepended to log entries. Supported variables are $t i me
$request, $i p, $host , $pat h, $si ze, $net hod, $pr ot ocol , $user,
$st at us, $ref erer, $ti ne, $agent , $cooki e, $header, and $ni ne.
Between variables, you can type in any separator characters that you want to
appear between values in the log message. The default setting is as follows:

"$ip - $user - [$tine] '$request’ $status $size"
As an example, this would result in log messages such as the following (with
the second message wrapping around to a second line):

148.87.1.180 - - [06/Nov/2001:10:23:18 -0800] 'GET / HTTP/1.1' 200 2929
148.87.1.180 - - [06/Nov/2001: 10: 23: 53 -0800] ' GET
/webservi ces/ stateful Test HTTP/ 1.1 200 301

Deployment and Configuration 3-31

Configuration File Descriptions

The user is null, the time is in brackets (as specified in the f or mat setting), the
request is in quotes (as specified), and the status and size in the first message
are 200 and 2929, respectively.

« pat h: Specifies the path and name of the access log, suchas". / access. | og".
The default setting in def aul t - web-si te. xm is the following:

"../logl/defaul t-web-access.|og"
« split:Specifies how often to begin a new access log. Supported values are

“none" (never),"hour","day","week", or"nont h". For a value other than
"none", logs are named according to the suf f i x attribute.

« suf fi x: Specifies timestamp information to append to the base file name of the
logs (as specified in the pat h attribute) if splitting is used, to make a unique
name for each file. The format used is that of
j ava. t ext. Si npl eDat eFor mat , and symbols used in suf f i x settings are
according to the symbology of that class. For information about
Si npl eDat eFor mat and the format symbols that is uses, refer to the Sun
Microsystems Javadoc at the following location:

http://java. sun.com products/jdk/1.2/docs/ api/index. htm
The default suf fi x settingis" - yyyy- Mt dd". These characters are
case-sensitive, as described in the Si npl eDat eFor mat documentation.

As an example, assume the following <access- | og> element (using the
default suf fi x value):

<access-log path="c:\foo\web-site.log" split="day" />

Log files would be named such as in the following example:
c:\foo\web-site-2001-11-17.10g

<ssl-config ... >

This element specifies SSL configuration settings, if applicable. Use it when you set
the secur e attribute of the <web- si t e>elementto "t rue".

If the application uses a third-party SSLSer ver Socket Fact or y implementation,
you can use <pr opert y> subelements of <ssl - conf i g> to send parameters to
the factory.

Subelements:

<property>

3-32 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Configuration File Descriptions

Attributes:

« factory: If you are not using JSSE (Java Secure Socket Extension), use the
f act or y attribute to specify an implementation of
SSLSer ver Socket Fact ory. The default setting is:

"JSSE: com everm nd. ssl . JSSESSLSer ver Socket Fact ory"

« keyst ore: Arelative or absolute path to the keystore database (a binary file)
used by this Web site to store certificates and keys for the user base in this
installation. A keystore isaj ava. security. KeySt or e instance. The
database can be created using standard JavaSoft tools.

« keystore-password: The required password to open the keystore.

« needs-client-aut h: Indicates whether the client must submit a certificate
for authorization to log in. Supported values are "t r ue" for client-side
authorization (client must submit certificate), and " f al se" (default), for
server-side authentication (no certificate required).

= provider: Specify the provider if JSSE is used. By default, OC4J generally uses
the Sun Microsystems implementation of SSL (using
com sun. net.ssl.internal.ssl.Provider for provider). However, the
Oracle SSL implementation is also used in some cases, such as for SOAP and
http_client.

<property ... >

If you are using a third-party SSLSer ver Socket Fact ory implementation for

SSL, you can use <pr oper t y> subelements of <ssl - conf i g> to pass parameters

to the factory.

Attributes:
« nane: The name of a parameter to pass to the factory.

« Vval ue: The value of the specified parameter.

Default default-web-site.xml File

This is an example of a default def aul t - web- si t e. xm file (may be subject to
change in the shipped product):

<?xm version="1.0" standal one='yes' ?>
<! DOCTYPE web-site PUBLIC "Oracl e9i AS XM. Web-site"
"http://xmns.oracl e.confias/dtds/web-site.dtd">

<I-- change the host name bel ow to your own host name. Local host will -->

Deployment and Configuration 3-33

Configuration File Descriptions

<I-- not work with clustering -->
<I-- also add cluster-island attribute as bel ow
<web-site host="local host" port="0" protocol ="aj p13"
di spl ay-nanme="Default Oracle 9i AS Java \ebSite" cluster-island="1" >
-->

<web-site port="0" protocol ="ajpl3"
di spl ay- nane="Default Oracle9i AS Containers for J2EE Wb Site">

<l'-- Uncomrent the following line when using clustering -->

<l-- <frontend host="your_host_name" port="80" /> -->

<l-- The default web-app for this site, bound to the root -->
<defaul t -web-app application="default" name="def aul t WebApp"

root="/j2ee" />
<web- app application="default" name="dnms" root="/dnsoc4j" />

<web- app application="o0jspdemps" name="o0j spdenos- web"
root ="/ oj spdenos" />

<l-- Uncomrent the following to access these apps.
<web- app application="cal | erlnfo" name="call erlnfo-web" root="/jazn" />
<web- app applicati on="news" name="news-web" root="/news" />
<web- app application="logger" nanme="messagel ogger-web"
root ="/ messagel ogger" />
<web- app application="ws_exanpl e" name="ws_exanpl e"
root ="/webservices" />
>
<I-- Access Log, where requests are logged to -->
<access-1og path="../1o0g/ def aul t-web-access.|og" />
</ web- site>

3-34 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A

Servlet Filters

This chapter describes servlet filters, which can be a useful part of Web-tier
applications. Filters are new in the Servlet 2.3 specification, although many earlier
Web servers have supported similar constructs.

This chapter covers the following topics:
« Overview of Servlet Filters
« How the Servlet Container Invokes Filters

« Filter Examples

Servlet Filters 4-1

Overview of Servlet Filters

Overview of Servlet Filters

When the servlet container calls a method in a servlet on behalf of the client, the
HTTP request that the client sent is, by default, passed directly to the servlet. The
response that the servlet generates is, by default, passed directly back to the client,
with its content unmodified by the container. So, normally, the servlet must process
the request and generate as much of the response as the application requires.

But there are many cases where some preprocessing of the request for servlets
would be useful. In addition, it is sometimes useful to modify the response from a
class of servlets. One example is encryption. A servlet, or a group of servlets in an
application, might generate response data that is sensitive and should not go out
over the network in clear-text form, especially when the connection has been made
using a non-secure protocol such as HTTP. A filter can encrypt the responses. Of
course, in this case the client must be able to decrypt the responses.

A common case for a filter is where you want to apply pre-processing or
post-processing to requests and responses for a group of servlets, not just a single
servlet. If you need to modify the request or response for just one servlet, there is no
need to create a filter—just do what is required directly in the servlet itself.

Note that filters are not servlets. They do not implement and override
Ht t pSer vl et methods such as doGet () or doPost () . Rather, a filter implements
the methods of the j avax. servl et . Fi | t er interface. The methods are:

= init()
« destroy()
« doFilter()

4-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

How the Servlet Container Invokes Filters

How the Servlet Container Invokes Filters

Figure 4-1 shows how the servlet container invokes filters. On the left is a scenario
where no filters are configured for the servlet being called. On the right, several
filters (1, 2, ..., N) have been configured in a chain to be invoked by the container
before the servlet is called. Specify in the web. xm file which servlets or JSP pages
cause the container to invoke the filters.

Figure 4-1 Servlet Invocation with and without Filters

Web Web
listener listener
Y f
w
Servlet Container Servlet Container
A - A
3 g :& :
2 2 ©filter1 :
g © : :
! |
- filter2
Serviet | |
- filterN: &
v [
Serviet

The order in which filters are invoked depends on the order in which they are
configured in the web. xm file. The first filter web. xni is the first one invoked
during the request, and the last filter in web. xm is the first one invoked during the
response (note the reverse order during the response).

Servlet Filters 4-3

Filter Examples

Filter Examples

This section lists and describes three servlet filter examples.

Filter Example #1

This section provides a simple filter example. Any filter must implement the three
methods in the j avax. servl et . Fi | t er interface or must extend a class that
implements them. So the first step is to write a class that implements these methods.
This class, which we will call Gener i cFi | t er, can be extended by other filters.

Generic Filter

Here is the generic filter code. Assume this generic filter is part of the
com acre. filter package, so you should set up a corresponding directory
structure somewhere.

The numbers in comments at the right of the code match numbers in the "Code
Notes" below.

package com acne.filter; /11
inport javax.servlet.*;

public

class GenericFilter inplements javax.servlet.Filter {
public FilterConfig filterConfig; 112.
public void doFilter(final ServletRequest request, 113.

final ServletResponse response,
Fi | terChai n chain)
throws java.io.|OException, javax.servlet.ServletException {

chain. doFi | ter(request, response); /14,
}
public void init(final FilterConfig filterConfig) { /5.
this.filterConfig = filterConfig;
}
public void destroy() { /186.
}

}

Save this code in a file called Generi cFi | t er. j ava in the package directory.

Code Notes

4-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Filter Examples

The filter examples in this chapter are kept in this package.

This declares a variable to save the filter configuration object.

The doFi | t er () method contains the code that implements the filter.
In the generic case, just call the filter chain.

Thei ni t () method saves the filter configuration in a variable.

o o~ w NP

The dest r oy() method can be overridden to accomplish any required
finalization.

Filter Code: HelloWorldFilter.java

This filter overrides the doFi | t er () method of the Generi cFi | t er class above.
It prints a message on the console when it is called on entrance, next adds a new
attribute to the servlet request, then calls the filter chain. In this example there is no
other filter in the chain, so the container passes the request directly to the servlet.
Enter the following code in afile called Hel | oWor | dFi |l ter. j ava:

package comacne.filter;
inport javax.servlet.*;

public class Hel | oWorldFilter extends GenericFilter {
private FilterConfig filterConfig;

public void doFilter(final ServletRequest request,
final ServletResponse response,
Fi | terChai n chain)
throws java.io.|OException, javax.servlet. ServletException ({
Systemout.printin("Entering Filter");
request.setAttribute("hello","Hello Wrld");
chai n. doFi | ter(request, response);
Systemout.printin("Exiting Hell oWorldFilter");

JSP Code: filter.jsp

To keep the example simple, the "servlet" to process the filter output is written as a
JSP page. Here it is:

<HTM.>
<HEAD>
<TI TLE>Fi | ter Exanple 1</TITLE>

Servlet Filters 4-5

Filter Examples

</ HEAD>

<BODY>

<HR>

<P><%request.get Attribute("hello")%</ P>
<P>Check your console output!</P>

<HR>

</ BODY>

</ HTM.>

The JSP page gets the new request attribute, hel | o, that the filter added, and prints
its value on the console. Putthefi | t er.j sp page in the document root of the
application—in this case, in j 2ee/ hone/ def aul t - web- app—and make sure
your console window is visible when you invoke fi | t er . j sp from your browser.

Setting Up Example #1

To test the filter examples in this chapter, we will use the OC4J default application.
Configure the filter in the web. xm file of the default application by editing

j 2ee/ hone/ def aul t - web- app/ VEB- | NF/ web. xm . Add the following lines to
this file, in the <web- app> element:

<I-- Filter Exanple #1 -->

<filter>
<filter-name>hel | oWorl d</filter-name>
<filter-class>comacne.filter.HelloWrldFilter</filter-class>

</filter>

<filter-mpping>
<filter-name>hel | oWorl d</filter-name>
<url-pattern>/filter.jsp</url-pattern>

</filter-mappi ng>

<I-- end Filter Exanple #1 -->

The <f i | t er > element defines the name of the filter and the Java class that
implements the filter. The <f i | t er - mappi ng> element defines the URL pattern
that specifies to which targets the <f i | t er - name> should apply. In this simple
example, the filter applies to only one target: the JSP code infilter.j sp.

Running Example #1

Invoke fil ter.jsp from your Web browser as follows, and watch the output on
your console:

http://<hostnane><: TTCport>/j 2ee/filter.jsp

The console output should look something like this:

4-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Filter Examples

<host name>% Entering Filter
Exiting Hel loWorldFilter

The output to the Web browser is something like what is shown in Figure 4-2.

Figure 4-2 Example #1 Output

- Filter Example 1 - Netscape
le Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metscape Frint Security Em

w‘ " Bookmarks £ Location:l j @' What's Related

Helle Werldl

Check your console output!

[=B=| |Document: Done = 2 AN

Filter Example #2

You can configure a filter with initialization parameters in the web. xm file. This
section provides a filter example that uses the following web. xm entry, which
demonstrates a parameterized filter:

<I-- Filter Exanple #2 -->
<filter>
<filter-name>nessage</filter-nanme>

Servlet Filters 4-7

Filter Examples

<filter-class>comacne.filter.MessageFilter</filter-class>
<init-paranm
<par am name>message</ par am nane>
<par am val ue>A nessage for you! </ paramval ue>
</init-paranmr
</filter>
<filter-mpping>
<filter-name>nessage</filter-name>
<url-pattern>/filter2.jsp</url-pattern>
</filter-mappi ng>
<I-- end Filter Exanple #2 -->

Here, the filter named message has been configured with an initialization
parameter, also called nessage. The value of the mressage parameter is "A
message for you!"

Filter Code: MessageFilter.java

The code to implement the nessage filter example is shown below. Note that it
uses the Generi cFi | t er class from "Filter Example #1" on page 4-4.

package comacne.filter;
inport javax.servlet.*;

public class MessageFilter extends CGenericFilter {
public void doFilter(final ServletRequest request,
final ServletResponse response,
Fi |l terChai n chain)
throws java.io.|OException, javax.servlet. ServletException {
Systemout.println("Entering MessageFilter");
String message = filterConfig.getlnitParameter("message");
request.setAttribut e("message", message);
chain. doFi | ter(request, response);
Systemout.println("Exiting MessageFilter");
}
}

This filter uses the fi | t er Conf i g object that was saved in the generic filter. The
filterConfig.getlnitParaneter() method returns the value of the
initialization parameter.

JSP Code: filter2.jsp

As in the first example, this example uses a JSP page to implement the "servlet" that
tests the filter. The filter named in the <ur| - patt er n>tag aboveisfilter2.j sp.

4-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Filter Examples

Here is the code, which you can enter into a file
j 2eel/ hone/ def aul t - web-app/filter2.jsp:

<HTM.>

<HEAD>

<TlI TLE>Lesson 2</TI TLE>

</ HEAD>

<BODY>

<HR>

<P><%request.get Attribute("message") %</ P>
<P>Check your console output!</P>
<HR>

</ BODY>

</ HTM.>

Running Example #2

Make sure that you have entered the filter configuration in the web. xm file, as
shown above. Then access the JSP page with your browser:

http://<hostnane>: <port>/j2ee/filter2.jsp

The console output should show something like the following:

Aut o-depl oying file:/private/tssmth/appserver/default-web-app/ (Assenbly had
been updated)...

Enteri ng MessageFilter

Exiting MessageFilter

Note the message from the server showing that it redeployed the default
application after the web. xm file was edited, and note the messages from the filter
as it was entered and exited. The Web browser screen should show something like
what is shown in Figure 4-3.

Servlet Filters 4-9

Filter Examples

Figure 4-3 Example #2 Output

v

¥ Filter Example 2 - Netscape

File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape

Frint Security Em

wtv Bookmarks A Location:l

d @' Wwhat's Related

A message for youl

Check your console output!

’E == | |Document: Done

Filter Example #3

A particularly useful function for a filter is to manipulate the response to a request.

To accomplish this, use the standard

javax.servlet.http. HtpServl et ResponseW apper class, a custom
j avax. servl et. Servl et Qut put St r eamobject, and a filter. To test the filter,
you also need a target to be processed by the filter. In this example, the target that is

filtered is a JSP page.

There are three new classes to write to implement this example:

« FilterServletQutput St ream—a new implementation of

Ser vl et Qut put St r eamfor response wrappers

4-10 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Filter Examples

« CenericResponseW apper —a basic implementation of the response
wrapper interface

« PrePost Fi | t er —the code that implements the filter

This example uses the Ht t pSer vl et ResponseW apper class to wrap the
response before it is sent to the target. This class is an object that acts as a wrapper
for the Ser vl et Response object (using a Decorator design pattern, as described in
Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm,
Johnson, and Vlissides; Addison-Wesley Press). It is used to wrap the real response
so that it can be modified after the target of the request has delivered its response.

The HTTP servlet response wrapper developed in this example uses a custom
servlet output stream that lets the wrapper manipulate the response data after the
servlet (or JSP page, in this example) is finished writing it out. Normally, this cannot
be done after the servlet output stream has been closed (essentially, after the servlet
has committed it). That is the reason for implementing a filter-specific extension to
the Ser vl et Qut put St r eamclass in this example.

Output Stream: FilterServletOutputStream.java

The Fi | t er Ser vl et Qut put St r eamclass is used to manipulate the response of
another resource. This class overrides the three wr i t e() methods of the standard
j ava.i o. Qut put St r eamclass.

Here is the code for the new output stream:
package comacne.filter;
inport javax.servlet.*;

inport javax.servlet.http.*;
inport java.io.*;

public
class FilterServletQutputStream extends ServletQutputStream {

private DataCutput Stream stream

public FilterServletQutputStream OutputStream output) {
stream = new Dat aQut put St ream(out put) ;

}

public void wite(int b) throws | OException {
streamwite(b);

}

Servlet Filters 4-11

Filter Examples

public void wite(byte[] b) throws |OException {
streamwite(b);

}

public void wite(byte[] b, int off, int len) throws | OException {
streamwite(b, off,len);

}
}

Save this code in the following directory and compile it:

j 2eel hone/ def aul t - web- app/ WEB- | NF/ cl asses/ conf acne/filter

Servlet Response Wrapper: GenericResponseWrapper.java

To use the custom Ser vl et Qut put St r eamclass, implement a class that can act as
a response object. This wrapper object is sent back to the client in place of the
original response generated by the servlet (or JSP page).

The wrapper must implement some utility methods, such as to retrieve the content
type and content length of its content. The Gener i cResponseW apper class
accomplishes this:

package comacne.filter;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

public class GenericResponseW apper extends HttpServl et ResponseW apper {
private ByteArrayQutput Stream out put;
private int contentlength;
private String contentType;

public GenericResponseW apper (HttpServl et Response response) {
super (response) ;
out put =new Byt eArrayQut put Strean();

}

public byte[] getData() {
return output.toByteArray();

}

public ServletQutputStream get Qut put Stream() {

4-12 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Filter Examples

return new FilterServletQutputStreanoutput);
}

public PrintWiter getWiter() {
return new PrintWiter(getQutputStream),true);

}

public void setContentLength(int |ength) {
this.contentLength = | ength;
super . set Cont ent Lengt h(l ength);

}

public int getContentlLength() {
return contentLength;

}

public void setContent Type(String type) {
this. content Type = type;
super . set Cont ent Type(type);

}

public String get Content Type() {
return contentType;

}

Save this code in the following directory and compile it:

j 2eel hone/ def aul t - web- app/ WEB- | NF/ cl asses/ conf acne/filter

Writing the Filter

This filter adds content to the response of the servlet (or JSP page) after that target is
invoked. This filter extends the filter from "Generic Filter" on page 4-4.

Filter Code: PrePostFilter.java

package com acne. filter;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

Servlet Filters 4-13

Filter Examples

public class PrePostFilter extends CGenericFilter {

public void doFilter(final ServletRequest request,
final ServletResponse response,
Fi | terChai n chain)

throws | OException, ServletException {

Qut put Stream out = response. get Qut put Strean();

out.wite("<HR>PRE<HR>". get Bytes());

Generi cResponseW apper wrapper = new

Generi cResponseW apper ((Ht t pServl et Response) response);

chai n. doFi | ter (request, w apper);

out.wite(wapper.getData());

out.wite("<HR>POST<HR>". get Byt es());

out.close();

}

}

Save this code in the following directory and compile it:

j 2eel hone/ def aul t - web- app/ WEB- | NF/ cl asses/ conl acne/filter

JSP code: filter3.jsp

As in the previous examples, create a simple JSP page and place it in the root of
def aul t - web- app:

<HTM.>

<HEAD>

<TI TLE>Fi | ter Exanple 3</TITLE>

</ HEAD>

<BODY>

This is a testpage. You shoul d see

this text when you invoke filter3.jsp,

as well as the additional material added

by the PrePostFilter.

</ BODY>

</ HTM-

Save this JSP code as j 2ee/ hone/ def aul t - web-app/filter3.jsp.
Configuring the Filter

Add the following <f i | t er > element to web. xm , after the configuration of the
nmessage filter:

4-14 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Filter Examples

<I-- Filter Exanple #3 -->

<filter>
<filter-name>prePost</filter-name>
<di spl ay- name>pr ePost </ di spl ay- name>
<filter-class>comacne.filter.PrePostFilter</filter-class>

</filter>

<filter-mpping>
<filter-name>prePost</filter-name>
<url-pattern>/filter3.jsp</url-pattern>

</filter-mappi ng>

<I-- end Filter Exanple #3 -->

Running Example #3
In your Web browser, enter a URL such as the following:

http://<hostnane>: <port>/j2ee/filter3.jsp

You should see a page that looks something like what is shown in Figure 4-4.

Servlet Filters 4-15

Filter Examples

Figure 4—4 Example3 Output

Iter Example 3 - Hetscape
File Edit “iew Go Communicator Help

i Back Fornward Reload Hime

Frint Security Em

Search Metzcape

wtv Bookmarks A Location:l

d @' Wwhat's Related

PRE

Thiz 15 a testpage. T ou should zee

this text when you imnvelee filter3 jap,

as well as the additional material added
by the PrePostFilter.

POST

= == |

|Document: Done

4-16 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A

Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document. Topics include:

« Apache HTTP Server
« Apache JServ

Third Party Licenses A-1

Apache HTTP Server

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights
reserved.

Redi stribution and use in source and binary forms, with or without
modi fication, are permitted provided that the fol | owing conditions
are net:

1. Redistributions of source code nust retain the above copyright
notice, this Iist of conditions and the followi ng disclainer.

2. Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the following disclainmer in
the docunentation and/or other materials provided with the
distribution.

3. The end-user docunentation included with the redistribution,
if any, must include the follow ng acknow edgnent:
"This product includes software devel oped by the
Apache Software Foundation (http://ww. apache.org/)."
Alternately, this acknow edgnent nmay appear in the software itself,
i f and wherever such third-party acknow edgnents normal |y appear.

4. The names "Apache" and "Apache Software Foundation" nust
not be used to endorse or promote products derived fromthis
software without prior witten pernission. For witten
perm ssion, please contact apache@pache. org.

5. Products derived fromthis software may not be called "Apache",
nor may "Apache" appear in their nanme, without prior witten

L T R T R

A-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Apache HTTP Server

R . T I

*
-

perm ssion of the Apache Software Foundation.

TH' S SOFTWARE IS PROVIDED ‘“AS IS’ AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, | NCLUDING BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
COF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT
LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOCDS OR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THECRY OF LIABILITY, WHETHER | N CONTRACT, STRICT LI ABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY OQUT
OF THE USE OF THI'S SOFTWARE, EVEN |F ADVI SED OF THE PCSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many

i ndi vi dual s on behal f of the Apache Software Foundation. For nore
information on the Apache Software Foundation, please see
<http://ww:. apache. org/ >.

Portions of this software are based upon public domain software

originally witten at the National Center for Superconputing Applications,
Uni versity of Illinois, U bana-Chanpaign.

Third Party Licenses A-3

Apache JServ

Apache JServ

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

A-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Apache JServ

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Third Party Licenses A-5

Apache JServ

A-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A

admin.jar, 3-11

ant utility, 3-7

application.xml config file, 3-9

assembly, directory structure and build
mechanisms, 3-6

B

behavior, serviet, 2-3
build mechanisms, applications, 3-7
build.xml file, application build, 3-7

C

cancellation of session, 2-11

chaining, servlets, 3-19

clustering (OC4J), 3-19, 3-28

code template, 2-2

configuration
configuration file descriptions, 3-12
default-web-site.xml, Web site XML files,
for servlet invocation, 2-7
global-web-application.xml,

orion-web.xml, 3-12

orion-web-app element, 3-15
overview of configuration files, 3-3
servlet initialization, 2-9
web-app element, 3-13, 3-23
web-site element, 3-27

container, servlet, 1-4

context path, 2-5

cookies, use in servlets, 2-10

3-26

Index

D

data source, OC4J), 2-17
default-web-site.xml config file, 3-26
deployment
application build mechanisms, 3-7
application directory structure, 3-6
configuration file descriptions, 3-12
of EJB sample servlet, 2-27
of JDBC sample servlet, 2-20
overview, 3-3
steps for application deployment, 3-9
use of admin.jar, 3-11
use of OEM, 3-3
destroy() servlet method, 2-3
directory structure, applications, 3-6
doFilter() filter method, 4-2
doGet() servlet method, 1-5
doPost() servlet method, 1-5

E

EAR files, 3-9

EJB calls from servlets, 2-23
local lookup within application, 2-23
lookup outside of application, 2-31
remote lookup within application, 2-31

EJB servlet, deployment, 2-27

ejb-jar.xml config file, 3-9

F

filters
filter example #1, 4-4

Index-1

filter example #2, 4-7

filter example #3, 4-10

generic code, 4-4
HelloWorldFilter, 4-5

invocation by servlet container, 4-3
overview, 4-2

using a JSP page, 4-5

G

GenericServletclass, 1-4

GET, HTTP request, 1-4,2-2
getServletinfo() servlet method, 2-3
global-web-application.xml config file, 3-12

H

HttpServlet class, 1-4
HttpServletRequest object, 1-5
HttpServletResponse object, 1-5
HttpSession object, 2-4

init() servlet method, 2-3
initialization, servlets, 2-9
invoking a servlet
action by container upon request, 2-5
by name (OC4J-specific), 2-6
configuration in deployment environment, 2-7
context path and servlet path, 2-5

J

Javadoc, standard servlet API, 1-2
JDBC in servlets, 2-17

L

lifecycle, servlet, 2-3
loading servlets, 2-9

M

mod_oc4j module, 1-5
mount point, OC4J), 2-8

Index-2

O

Oracle Enterprise Manager (OEM), 3-3

orion-web-app element, configuration,
orion-web.xml config file, 3-12

P

3-15

POST, HTTP request, 1-4,2-2

R

replication of session state, 2-15
request objects, 1-5
response objects, 1-5

S

sample servlets
filter example #1, 4-4
filter example #2, 4-7
filter example #3, 4-10
HelloWorldServlet, 1-7
JDBC query, 2-17
session servlet, 2-12
with EJB session bean, 2-23
servlet 2.3 specification, 1-2
servlet chaining, 3-19
servlet container, 1-4
servlet context, 2-4
servlet filters
filter example #1, 4-4
filter example #2, 4-7
filter example #3, 4-10
generic code, 4-4
HelloWorldFilter, 4-5
invocation by servlet container, 4-3
overview, 4-2
using a JSP page, 4-5
servlet path, 2-5
ServletConfig object, 2-4
ServletContext object, 2-4
session
cancellation, 2-11
maintenance, 2-4
replication of state, 2-15

session servlet example, 2-12
session-tracking element, 3-20
tracking, 1-6,2-10
structure, application directory structure, 3-6
synchronization of code, 2-4

T

template, servlet code, 2-2
thread safety, 2-4
tracking of sessions, 2-10

U

URL rewriting, use in servlets, 2-11

W

WAR files, 3-9

Web site XML config files, 3-26

web-app element, configuration, 3-13, 3-23
web-site element, configuration, 3-27
web.xml config file, 3-12

Index-3

Index-4

	Send Us Your Comments
	Preface
	1 Servlet Overview
	Information Sources
	Servlet Information
	Additional OC4J Documents

	Introduction to Servlets
	Advantages of Servlets
	Servlets and the Servlet Container
	Request Objects, Response Objects, and Filters
	Session Tracking

	A First Servlet Example
	Hello World Code
	Compiling and Deploying the Servlet
	Running the Servlet

	2 Servlet Development
	Servlet Development Basics
	Code Template
	Servlet Lifecycle
	Servlet Behavior

	Invoking a Servlet
	Action by the Servlet Container Upon Request
	Invoking a Servlet by Class Name in OC4J
	Configuration for Servlet Invocation in a Deployment Environment

	Servlet Loading and Initialization
	Servlet Sessions
	Session Tracking
	Session Cancellation
	Session Servlet Example
	Session Replication

	Use of JDBC in Servlets
	Database Query Servlet
	Deployment and Testing of the Database Query Servlet

	EJB Calls from Servlets
	Local EJB Lookup Within the Same Application
	Remote EJB Lookup Within the Same Application
	EJB Lookup Outside the Application

	3 Deployment and Configuration
	Introduction to Web Application Deployment and Configuration
	Web Application Modules
	Overview of OC4J Deployment
	Overview of Web Configuration Files

	Application Assembly
	Application Directory Structure
	Application Build Mechanisms

	Application Deployment
	Configuration File Descriptions
	Syntax Notes for Element Documentation
	The global-web-application.xml and orion-web.xml Files
	The default-web-site.xml File and Other Web Site XML Files

	4 Servlet Filters
	Overview of Servlet Filters
	How the Servlet Container Invokes Filters
	Filter Examples
	Filter Example #1
	Filter Example #2
	Filter Example #3

	A Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

